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Abstract 

Integration of renewable energy sources into electric grids comes with significant challenges. The produced energy 

from renewable sources such as wind and solar is intermittent, non-dispatchable and uncertain. The uncertainty in the 

forecasted renewable energy will consequently impact the accuracy of the forecasted generation. That, in turn, will 

increase the difficulties for the grid operators to meet the demand-supply balance in the grids. Moreover, the shift to 

electric vehicles (EV) also adds complications to grid operators planning since their demand profiles are unlike 

anything that is currently connected to the grid.  

With the advent of the smart grid, many new interesting and practical technologies will become a reality. 

Unfortunately, most of these elements will not be physically realized in systems for the immediate future. This thesis 

will maintain an overarching constraint of only using aspects of the smart grid that can be implemented, given today’s 

infrastructure, within the next three to five years. For that reason, all loads connected to the system are considered to 

be uncontrollable except EVs when they are connected to a “commercial parking lot”. The goal of this body of work 

is to investigate the benefits of the utility providing incentives, in terms of reducing the price of electricity for charging 

EVs through a commercial parking lot, for the sole goal of enhancing reliability through optimized scheduling of 

charging time periods. Moreover, since the penetration of renewable energy is only predicted to increase over time, 

their impact will also be investigated.  

Since both EVs and renewables add uncertainty and randomness whenever connected, these elements need to be 

accurately and adequately modelled. There will be five electrical components that will need stochastic models built. 

The first two, base electric load and dispatchable/distributed generators, will be modelled based on the IEEE - 

Reliability Test System (IEEE-RTS), with the later using a Monte-Carlo (MC) simulation. The next two, solar and 

wind energy, will be extrapolated from historical weather patterns through a Markov-Chain Monte-Carlo (MCMC) 

simulation. Finally, the EV will be virtually generated from historical commercial parking lot data also using a 

MCMC.  

Three scheduling algorithms were implemented in this work. The first is a base case, in which the EVs charged in a 

first-come first-serve basis, this situation that would arise if no information at all is shared with the parking lot owner. 

The results of the simulation had the value of Expected Energy Not Served (EENS) came out to be 38.05 MWh/year 

(the lower the better). With the second algorithm, a basic Demand Side Management (DSM) algorithm was 

implemented, with the result being that the EENS decreased by 8.35 %. The information shared was the demand shape 

of all consumers for a given day. Lastly, an algorithm that will be called Grid and Demand Side Management (GDSM) 

by this thesis proved to be even more successful, having the EENS reach a value of 29.85 MWh/year, a decrease of 

21.55 %. The GDSM scheduling algorithm needs the grid to share not only the consumer behavior but also the 

expected generator behavior. Based on these results, recommendations are made to the electric utility in terms of the 

benefits it may reap if it expands and develops a communication infrastructure that includes information of generator 

availability.  
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Chapter 1  

Introduction 

1.1 Preamble 

The rapidly growing demand for electric power relative to the available supply, the fears of the depletion of 

conventional energy resources (oil and gas) and the negative environmental impact of greenhouse gas (GHG) 

emissions resulting from burning fossil fuels have been a strong motive to invest in cleaner alternative energy sources 

in the recent years. In 2012, electricity sector and transportation sector have been reported to be the largest contributors 

to greenhouses gas emission in USA; with about 60% of GHG emissions being attributed to them [1]. Therefore, a 

significant decrease in the emission from these two sectors will lead to a significant decrease in the whole emission 

figure. 

One option to achieve the above goal is to replace the current fossil fuels sources with renewable energy sources. The 

deployment of these renewable sources (wind and solar) will, consequently, have a positive impact on the reduction 

of GHG emission in the current electric grid. Wind energy is amongst the fastest growing renewable energy sources, 

Figure 1-1 shows the installed capacity of wind energy worldwide for the years of 2010 to 2018. As of December 

2017, the installed wind capacity in Canada is 12.25 GW, providing 6 % of the demanded electricity [2]. The Canadian 

Wind Energy Association believes that wind energy can satisfy 20 % of Canada’s electricity demand by 2025, reaching 

a capacity of 55 GW [3]. 

 

Figure 1-1: Installed Capacity of Wind Turbines [2010-2018] [2] 
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Photovoltaic (PV) systems, which directly convert solar energy into electricity, is another kind of renewable energy 

that has also been gaining traction. In 2017, solar PV capacity represented 2% of the world power output, reaching a 

capacity of almost 400 GW and generating 460 TWh. By 2023, solar PV is expected to grow to 580 GW as calculated 

by the International Energy Agency (IEA) [4].  Figure 1-2 gives the PV generation and cumulative capacity by region 

for the years of 2017-2023. 

 

Figure 1-2: PV Generation and Cumulative Capacity by Region [2017-2023] [4] 

 

On the other hand, at the demand side, the advent of electric vehicles (EV) looks to be very promising in decreasing 

the carbon footprint from transportation. In 2018, EVs emitted 38 million tonnes carbon dioxide equivalent. If these 

were instead gas/diesel engine cars, the wheel-to-wheel equivalent would have been 78 million tonnes of carbon 

dioxide [5]. Over the last few years, the sale of EVs have shown a healthy growth. Adoption of EVs was 2.1 million 

units in 2018, 64 % higher than for 2017. With the global EV fleet consuming the same total electricity demand of 

Switzerland in 2017, an estimated 58 terawatt-hours (TWh) of electricity in the year of 2018. This growth is driven 

by demand in China and the arrival of the popular Tesla Model-3 [6]. The global monthly sales for EVs between the 

years of 2016-2018 is shown in Figure 1-3 on the next page. 
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Figure 1-3: Global Monthly Sales of EV [2016-2018] [6] 

 

The fact that electricity must be consumed the moment it is generated makes the simple issue of matching the supply 

of electricity with its demand a challenging problem. Because of this, it makes connecting renewable energy resources 

into the current conventional power grid a difficult task. The random variations in power produced by weather-based 

generation causes different levels of uncertainty that impact a variety of decisions. Moreover, the high penetration of 

EVs bring new challenges such as voltage deviations, line congestions, new load profiles and peak load elevation into 

the grid. This forces the current grid to limit the penetration of renewables and still use high polluting dispatchable 

generator to maintain reliability. 

With the evolution of smart grids, many of these issues can be addressed. Since the smart grid is set to have the 

capability of a two-way flow of electricity and information, it will allow it to accept energy from distributed renewable 

energy resources and allow for the monitoring of real-time data. With this extra information, it becomes easier to 

match supply with demand, thereby increasing overall system reliability. With these advancements in the grid, many 

research institutions and individuals are investigating the potential benefits that can be had. Including the capability 

of shifting the power consumption of a refrigerator due to a high spike in demand recorded by smart meters into a 

research model may be useful, but the changes that are needed to actually realize it may need decades to fully mature. 

Even more complex concepts, such as bi-directional power (vehicle to grid configuration), need much more research 

to be implemented. The changes needed for the grid withstanding, the degradation to the EVs battery needs to be 

researched and compensated for. For this reason, this body of research will limit the technology used in to the models 

to components that can be realized realistically realized in the near future.  
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1.2 Motivation 

As current forecasts go, the penetration of wind turbines (WTs), PV panels and EVs is set to increase in a matter that 

will significantly change the way that electric utilities need to operate. Of particular concern is their impact on 

reliability. PV panels and WTs are highly dependent on weather conditions, so they will introduce an undesired 

randomness to the planning of electricity generation. In addition, the EV demand profile shape is unlike any load that 

is currently being consumed. Therefore, it is imperative that these electrical components are considered and modelled 

adequately in any research endeavor that is concerned with power delivery.  

With regards to scheduling the EV loads, there have been several suggestions. The most popular is demand side 

management (DSM), defined as “the modification of consumer demand for energy for the purpose of flattening out 

the demand profile shape”. Since the cost of power generation and transmission is non-linear, with expenditures 

increasing as power demanded increases, the optimal way to minimize costs is to flatten the shape of demand. This 

approach works well when simulations are run in the short-term, where the maximum generational capacity of the 

grid is assumed to be infinite. But in the presence of non-dispatchable units such as PV and WT and increasing the 

time-scale to a longer-term (to a degree in which generators are allowed to fail), it can be seen that merely trying to 

optimize on the demand alone is insufficient. A methodology that incorporates both the demand and generation 

capacity needs to be developed.  

Lastly, the most important overarching constraint that is to be placed on this research is to avoid using any technology 

that cannot be immediately realized, given today’s electric grid infrastructure. With that constraint, three prominent 

issues spring up. The first is that the demand from consumers is considered to be unchangeable, as in the scheduling 

algorithm cannot shift demand for appliances such as laundry dryers and dishwashers. This is done because the 

infrastructure needed to allow the grid to tell a consumer to turn on/off appliances will take a long time to come to 

fruition. Secondly, the concept of a commercial parking lot for EVs is introduced. This means that the EVs are modeled 

arriving and charging in a designated parking lot that is near commercial areas. The reason for this is because it is 

perfectly feasible for a utility to invest in the communication infrastructure needed for scheduling algorithms to 

perform since there would be only a handful of these parking lots, as opposed to building this infrastructure for every 

home in the grid. The reliability savings of implementing these commercial parking lots will be investigated in this 

thesis. The last constraint that should be mentioned is that only a grid-to-vehicle configuration is allowed; the EVs 

cannot give back energy to the grid they can only accept it. The reasoning for this is similar to the first constraint, in 

that there is no power electronics circuitry on the market today that allows for bi-directional power transfer. In 

addition, the amount of deterioration that will inevitably happen to the consumers EV batteries has not yet been 

quantified. 
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1.3 Research Objectives 

The main objective of this body of work is the investigation of the differences between two scheduling algorithms; 

Demand Side Management (DSM) and what this thesis calls Grid and Demand Side Management (GDSM) for the 

purpose of increasing reliability. In GDSM, the objective function contains both the demand profile and available 

generational capacity (whether it be traditional generators, photovoltaic panels or wind turbines), meaning that the 

grid will have to share more information with regards to its operation to the users. The proposed research is composed 

of the following sub-objectives:  

• Build a stochastic model that can accurately and representatively model load demanded by consumers, 

traditional generators, PV panels, WTs and EVs. 

• Vary the penetration levels of PVs, WTs and EVs and quantify their effects on reliability.   

• Development of an efficient way to conduct the simulations and providing suggestions for future researchers 

who wish to undertake a similar methodology 

• Apply different scheduling schemes to the EVs and see if it is indeed in the electric power suppliers’ best 

interest to build an information sharing infrastructure between them and the parking lot owners with the 

explicit goal of enhancing overall system reliability 
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1.4  Thesis Outline 

This thesis is comprised of six chapters. Chapter 1 is an introductory chapter presenting the preamble, motivation, 

research objectives and this outline. The remaining chapters are organized as follows: 

Chapter 2: Background and Literature Review introduces the necessary reliability indices that will be the yard-stick 

in which everything is measured and compared to. After that, a review of the literature will be performed in which 

there will be three main topics. The first is investigating how reliability concerns have been addressed over the years, 

starting from the early 20th century and ending at our current time. The next is studying the various methodologies 

that have been used to model EVs, this is of particular concern since there is not enough empirical data regarding 

them. The last is reviewing how scheduling algorithms, such as DSM, was applied to solve a multitude of issues 

involving grid operations.  

Chapter 3: Stochastic Models first introduced the concept of both Monte Carlo and Markov Chain Monte Carlo 

simulations. After that is explains the methodologies used to build stochastic model for the following elements: electric 

loads, distributed generators, photovoltaic panels, wind turbines and electric vehicles. Lastly, it delves into the 

stopping criteria of the simulation and discusses the benefits of utilizing the coefficient of variance instead of standard 

deviation. 

Chapter 4: Scheduling Schemes presents the three different scheduling strategies for the electric vehicles that will be 

implemented and discussed within the scope of this research. The very well-known scheme of demand-side 

management, in which the times that the load is connected into the grid is adjusted such that it tries to flatten the shape 

of the demand curve, will be examined along with a base case coined “first-come first-serve”. The last case is coined 

as Generation and Demand Side Management, in which the demand profile tries to match both the demand and 

generation profile. 

Chapter 5: Simulations and Results first ventures into how one can apply this research given today’s limitations in 

tech hardware. It gives plenty of suggestions into how the computer intensive simulation tasks can be parallelized 

(such that 10-15 different elements of the code can be run at once, instead of doing them serially, one at a time) and 

provides guidelines on to how to work with whatever computer specifications are at hand at that moment. Then it 

presents the results of the thesis, the outcomes of the 64 cases that are being studied. It delves deeply on the difference 

between each of them and quantifies the potential effects that the addition of renewable energy sources and electric 

vehicles might have on the grid. Furthermore, the results of the different scheduling schemes are also discussed. 

Chapter 6: Conclusion is the conclusion of this thesis. It summarizes the main contributions made by this work, gives 

recommendations to the electrical utility based on its findings and suggests potential future research that can be built 

on top of this. 
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Chapter 2  

Background and Literature Review 

2.1 Preamble 

The concern of this thesis is to both investigate the impact on reliability when introducing renewable energy sources 

and EVs, and the next is to propose a scheduling algorithm that will enhance the reliability. In the background section 

of this chapter, indices will be introduced that can quantify reliability in a consistent manner. Specific care has to be 

taken when selecting which indices to use since this is the variable in which the model will be trying to optimize for. 

For this thesis, the goal is to minimize outright power outage (which occurs when the demand of electricity is higher 

than the supply). This could happen due to a number of reasons; the demand can be higher than was expected, for 

example with the introduction of EVs there could be a spike in demand at an unexpected time or the supply can be too 

low, for example if a dispatchable generator were to go offline or if the PV panel output were to decrease due to a 

cloud. In addition, issues such as the transmission lines overloading or a transformer breaking can also cause an outage. 

In this research, the latter issues will not be considered; the model will assume that the transmission and distribution 

system will have no errors. The indices used to measure reliability and security of the network are the Loss of Load 

Expectation (LOLE) and the Expected Energy Not Served (ENS). 

In the literature review section, three main areas will be studied. The first of which is investigating how reliability 

concerns, with respect to grid operation, have been dealt with over the years and how engineers have reacted with any 

new introduction to the grid. Next, the issue of how to include EVs in any research is studied. This is of particular 

concern since there are, as of today, still no data available publicly on a wide-scale, that gives the unique demand 

profile of EVs. This led to, as to the best of the authors knowledge, to there being no universally accepted methodology 

to stochastically model EVs. Lastly, a review of demand scheduling algorithms will be conducted. Of particular note 

is what assumptions were made to allow these scheduling algorithms to run and what indices were they trying to 

enhance.  

2.2 Reliability Indices 

2.2.1 Loss of Load Expectation 

The Loss of Load (LOL) is an index that acts as a simple counter. It measures the amount of times in which the load 

demanded in an electrical system exceeded the generational capabilities. The unit that will be employed is number of 

hours of power outage per annum. This is given below in the formula: 

𝐿𝑂𝐿 = ∑ 𝑁𝑜. 𝑜𝑓 𝑂𝑢𝑡𝑎𝑔𝑒𝑠 (𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟) 

 

 



 

8 

  

Since highly statistical methodologies are being utilized throughout the research, it is not guaranteed that after 

simulating the first year that the value of LOL calculated will be the true value of the system. If the simulation were 

to be repeated for a second year, it is very likely that the LOL calculated will be different.  Below in Figure 2-1, it 

shows the values of LOL over a 5-year period.  

 

Figure 2-1: LOL Over Five Years 

 

Figure 2-2: LOLE Over 50 Years 

To remedy this issue, the expectation of LOL should be calculated, coined the Loss of Load Expectation (LOLE).  

Above in Figure 2-2, it shows the LOLE over a 50-year period. From it, it can be estimated that perhaps the true value 

of LOL should be around 15 hours per year. But the question arises, when should the simulation be stopped? Is one 

hundred years sufficient or should more be done? The issue of stopping criteria will be addressed in Section 3.10 later 

on. 
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2.2.1.1 Putting LOLE into Perspective 

When designing a system, the goal is to set the LOLE to be very small. For example, in France it is predicted that 

there should be 30-hour disruption every ten years. Thus, the LOLE comes to be 3 hours on average per year. To put 

it into better perspective, a LOLE of 8 hours per year translates to a system security level of 99.90 % - i.e. 99.9% of 

the time all the demand can be met. Furthermore, even if a LOL does actually occur, it doesn’t necessarily translate 

into a nation-wide blackout. But may be able to be solved by temporarily decreasing the voltage level or selectively 

disconnecting large industrial users. When not seen in perspective, a Loss of Load Expectation may give the wrong 

impression that blackouts are expected. To be able to better quantify the impact of the matters that will be researched, 

the base case will feature a much higher LOL than what systems are currently designed for. Reducing the LOL from 

3 hours to 2 hours is not as much telling as being able to reduce the LOL from 150 hours to 100 hours, even though 

both are a deduction of 66.7 %. 

2.2.2 Expected Energy Not Served 

The Energy Not Served (ENS) index is very similar to LOL, but with one minor difference. While the LOL merely 

counts the amount of times a system has failed to supply its load, the ENS quantifies the amount of energy that could 

not be served. For example, if in a day the load demanded was higher than the supply of electricity by 1MW for 3 

hours. The LOL would equal 3 hours/day while the ENS would be 3 MWh/day. 

𝐸𝑁𝑆 =
∑ 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐸𝑛𝑒𝑟𝑔𝑦 𝑁𝑜𝑡 𝑆𝑒𝑟𝑣𝑒𝑑 (𝑀𝑊ℎ) 

8760 ℎ𝑜𝑢𝑟𝑠
 

Like with the LOL, the time frame that we will be looking at for ENS would be in annum. In words it would be the 

amount of generation (in MWh) that was needed by the load that couldn’t be supplied by the generator.  It is given 

above in the formula and its units are MWh not served/year. Figure 2-3 is an example of both the ENS and LOL 

metrics.  

 

Figure 2-3: Example of Calculating the LOL and ENS 
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2.3 Literature Review 

2.3.1 Reliability Studies 

With regards to the operation of the power grid, reliability concerns have always been present. These papers, [7] - 

[11], ranging from 1905 to 1996 have researched various aspects of grid reliability. Ultimately, the simplest way to 

increase reliability in a distribution network is to increase the redundancy in the system. This is done by building more 

generators, transformers, power lines, etc. For example, building a system that had one extra generator in stand-by, in 

case of failures, would ensure there is no power outage if one generator were to fail. If there are two generators in 

stand-by, this would further increase reliability since the system can now handle the case if two generators were to 

both fail simultaneously. Ultimately, this could go endlessly on but unfortunately, trying to achieve a high reliability 

through creating a high redundancy alone would naturally cause the cost to increase to an unacceptable level. For this 

reason, there exists a delicate balance that the utility must maintain between its obligation to its consumers and to its 

own profit margins.  

Throughout the years, whenever new innovations to the grid were added or planned to be added, their impact on the 

reliability of the grid is meticulously studied. The author of [7], suggested in 1905 when electrical utilities started to 

crop up that an “N-1” contingency should be followed for generators. In [8], they describe the procedure of planning 

the power system of Los Angeles in the 1950s in order to maintain reliability. They do this by taking detailed field 

surveys of land use and using historical data to predict likely load growth. While in 1973 and 1988, paper [9] and [10] 

both utilized the, then new technology of computer programming to evaluate reliability of transmission systems. And 

in [11], the authors investigated the impacts of Demand-Side Management (DSM) on the reliability and performing a 

“worth analysis” for the grid of 1996.  

In today’s grid, one of the major changes is the introduction of non-dispatchable renewable energy sources such as 

wind and solar energy. As mentioned in Section 1.1 - Preamble, their penetration levels are expected to grow over the 

coming years. Furthermore, states like California are setting a goal of 100 percent zero-carbon electricity by 2045 

[12]. These renewable resources are of particular concern to reliability since they have a high element of randomness 

in their power outputs. Numerous studies have been conducted with regards to the integration of wind energy to an 

electrical grid. Reliability models incorporating wind energy were implemented by [13] - [17] utilizing various 

methods. In [13] and [14], an extensive study into the generational adequacy of a power grid that had a rapid growth 

of wind generation were conducted. The paper of [15] concerned themselves with attempting to provide simulation 

techniques to adequately determine appropriate wind power generation. The authors of [16] conducted an analytical 

reliability study of wind farms by modelling them as a multistate conventional unit where the probability, frequency 

of occurrence, and departure rate of each state was obtained using the wind regime of wind farms and wind turbine 

characteristics. And in [17] a sequential Monte Carlo simulation was utilized to evaluate reliability of wind turbine 

penetration.   
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Similar to wind energy, the integration of PV panels has also been studied extensively. Papers [18] - [21] specifically 

investigated there impacts on reliability. [18] used Markov Reward Models to estimate the reliability of PV system 

reliability. The authors of [19] used state enumeration to analyze real-life grid-connected PV systems for the purpose 

of reliability analysis. And a Monte Carlo methodology was used by [20] and [21] to adequately evaluate reliability 

of power grid operations. Studies examining reliability while including both PV panels and WTs have also been 

conducted, but not as extensively, given in these references [22] - [25]. 

From the load side, electric vehicles are also predicted to make a significant change. As the penetration of EVs 

increase, their unprecedented demand profile shape may cause reliability issues if not dealt with properly. Despite 

having many electrical parts, EVs can be thought of, from the perspective of the grid, to be simply as a Battery Energy 

Storage System (BESS). These BESSs although have two unique characteristics; the first is that they are randomly 

connected and disconnected to the grid and the second is that the expectation is that they will be fully charged when 

disconnected. Several studies have been done on EV implementation; [26] and [27] studied the impact EVs would 

have on the performance of a power system, in [28] economic analyses were performed and electricity market polices 

and opportunities were investigated by [29] and [30].  

2.3.2 EV Modelling 

To this effect, many studies in the literature have tried to integrate the potential impacts of EVs on the reliability of 

the power systems in their models assuming only the EV charging mode, which is known as grid-to-vehicle (G2V). 

The approaches introduced in [31] - [33] have considered that the EVs are to be charged in residential areas, for 

example through their personal garages. However, each has calculated the EV demand differently. The authors in [31] 

assumed that all EVs will be connected at 18:00 and disconnected at 6:00 the next day.  The proposed models in [32] 

and [33] have assumed three charging periods in the day, albeit each one cut up the segments of the charging periods 

differently.    

In [34] - [36], the authors considered only residential parking lots but in this case they also modeled the EVs as BESSs 

capable of bi-directional power transfer vehicle-to-grid (V2G). The authors in [34] anticipated a precondition in which 

users would actively let the aggregator know their expected departure time. They would be deterred from taking their 

car earlier/later than this through incentives such as a lifetime battery warranty. While the authors in [35] assumed 

two different charging time charging loads, labeled as “Valley Hours (0:00-6:00)” and “Peak Hours (16:00-21:00). 

The proposed EV model in [36] approximated a simple linear model for EV consumption. 

More recent studies have expanded and tried to include the impact of the charging of the EV in commercial and 

industrial areas [37] and [38] using different models. The work introduced in [37] estimated the time of arrival and 

the duration of stay based on the average daily mileage of a personal vehicle. The authors in [38] utilized the daily 

trip data of ten vehicles for a year and then extrapolated this to build their models. There have been suggestions for 

standardizing the methodology of studying the effects of EVs on the grid. For example, the work in [39] suggested 

non-linear instead of linear models for the charging and discharging of the EVs. Displaying a significant difference 

on the grid impact when the batteries are modeled thusly. 
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A consensus seems to have been reached for papers investigating the long-term impact of EVs a consensus seems to 

have been reached for the number of random variables needed for accurate modelling. They use a mixture of three 

random variables, they are the time of arrival, the time of departure and the state of charge. The authors in both [40] 

and [41] stochastically based the random variables on numerous transportation reports.   

2.3.3 Scheduling Algorithms 

Demand response is defined by the Federal Energy Regulatory Commission [42] as “Changes in electricity use by 

demand-side resources from their normal consumption patterns in response to changes in the price of electricity, or to 

incentive payments designed to induce lower electricity use at times of high wholesale market price or when system 

reliability is jeopardized.” This can be achieved via direct control or indirect control. With the former, an aggregator 

can be made that will shift the demand of the users based on whatever optimization is needed to be done. And in the 

latter, pricing mechanisms are utilized to incentivize users to shift their behavior. These programs are acknowledged 

as useful for maintaining a uniform load level, thereby avoiding or deferring the costs of new supply resources, 

reducing wholesale market prices, and operating the grid reliably and efficiently. The benefits will also extend to 

participating customers, and they fall into two categories. First, financial benefits can be recognized throughout the 

bill savings and/or incentives payments received by participating customers who adjust their electricity demand in 

response to system critical events. Second, a proper demand response program helps in reducing the likelihood and 

consequences of electricity disturbances that might decrease customer comfort and satisfaction [43] - [45].  

The concept of managing demand to help improve the functionality of the grid is a very attractive proposal. This could 

potentially enhance any type of index that we are looking for. It has been shown to help in voltage regulation [46] - 

[50] , in which demand is shifted away from a bus that is too overloaded at that time period. With the same working 

principle, it has also been used for frequency support [51] - [54] and in decreasing power loss [55] [56]. Papers [57]  

[58] increased reliability under the presence of wind energy, while [59] and [60] increased it under photovoltaic cells 

and [61] - [63] did it including the interface of electric vehicles.  

In [64] - [66], they used a Home Energy Management System, in which the general behavior of consumers can be 

modeled as a Markov chain, whose states represent different consumer’s activity level. Each activity level can 

influence the probability that a consumer turns ON an appliance. Each consumer has two types of appliances: 

controllable and noncontrollable appliances. An example of controllable appliances is a dishwasher, whose energy 

consumption can be deferred freely, but before a deadline dictated by the consumer’s settings. In addition, a 

refrigerator can also be deferrable with the constraint that the temperature remains within a certain range. An 

uncontrolled appliance is one in which its demand cannot be deferred, like a TV.  

2.3.4 Summary 

Unfortunately, the infrastructure that will allow aspects such as vehicle to grid and advanced demand response will 

not be implemented for several years and if it were to be done today, it will most likely be on a comparatively small 

scale. This thesis takes upon it a constraint to assume that all loads are uncontrollable unless that they can be controlled 

with the current given technology and state of the smart grid. For this reason, it is assumed that only electric vehicles 
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connected to commercial parking lots have a demand scheduling algorithm applied to them, in addition they are only 

considered to be connected in a grid to vehicle configuration. Moreover, this research will also vary the penetration 

levels of the PV panels, wind turbines and electric vehicles to see the impact on reliability for the proposed scheduling 

algorithms. 

Thus, for this system to be employed, there are only two elements that need to be made available. The first is a system 

that can monitor and control the charging times of the EVs, which is something that can be easily realized today. And 

the second is that the utility needs to build communication mechanisms between them and the parking lot owners to 

coordinate the demand response. For the sake of this research, it is considered that the utility will only contact the 

parking lots and then and only then, will it provide them with the demand/generational profile of the grid if it predicts 

that there will be a loss of load during a 24-hour period. Since the potential number of commercial EV parking lots 

will be relatively low, probably next exceeding 3-5 per area for at least the next ten years, the communication 

infrastructure does not need a great investment in money. The way this research sets up the procedure, the system can 

potentially run via a phone call and e-mail. 
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Chapter 3  

Stochastic Models 

3.1 Preamble 

To be able to investigate reliability the following components need to be adequately modelled:  

1) Load Demanded (LD) 

2) Distributed Generators (DG)   

3) Photovoltaic Panels (PV) 

4) Wind Turbines (WT) 

5) Electric Vehicles (EV) 

Since the LOLE and EENS needs thousands of years of simulations (ultimately over a million years were simulated 

for the overall research) until they reach their stopping criteria, it is imperative that this data be made available such 

that the research question can be answered. Ultimately, the most accurate would be to find raw empirical data for the 

above five units. In terms of the PV and WT, the data for the past 100 years of weather conditions could be readily 

found online and that extrapolated to power output for them. But unfortunately, we cannot go back further due to lack 

of data. And even if data was available, it would not make any sense to use it. With the advent of climate change, the 

weather from 200 years ago would not be at all representative of today’s weather. With regards to the LD and DG 

data, this is even harder to find. But if it is assumed that data for 100 years is available most of it would not be useful. 

This is because the modern loads and DG units are very different to what it was even 30 years ago; not at all 

representative. Lastly, finding reliable and extensive EV data is next to impossible for more than 5 years since they 

are new introduced to the market. 

The only solution that can be realistically realized is to try and statistically generate what are known as virtual scenarios 

for the above five elements. Since their statistical characteristics are very different to each other, a different and unique 

mathematical approach will have to be applied to each one of them to ensure a reliable and accurate representation of 

reality. This chapter will first describe how both a Monte Carlo and Markov Chain Monte Carlo approach can be used 

to tackle this issue. After that it will delve into detail on stochastically modelling each element in our system. Finally, 

it will conclude with talk about the stopping criteria used in the research. 
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3.2 Monte Carlo (MC) 

When trying to model the probabilities of different outcomes in a process that cannot be easily predicted using 

mathematical formulas, a Monte Carlo (MC) simulation can be employed. Typically, the way to deal with a random 

variable in a model would be to replace it with a single average number. But if the model includes several random 

variables, in which their various interactions will impact the outcome of the model significantly, a single average 

number wouldn’t suffice. It would be better instead, to attempt to simulate all the various combinations of the random 

variables to get a more accurate prediction of the model’s performance. This is where MC simulations can be of 

invaluable help, the steps to apply MC are listed below with Figure 3-1 summarizing it into a flow chart: 

1) Find a Probability Density Function (PDF) representing your desired random variable 

2) Calculate the Cumulative Density Function (CDF) 

3) Find the inverse CDF 

4) Generate a uniformly distributed random variable  

5) Input it into the inverse CDF to generate a virtual scenario 

 

Figure 3-1: Flowchart of a Monte Carlo Simulation 

 

3.2.1 Markov Chain Monte Carlo (MCMC) 

A downside of just using MC on its own is that while the PDF of the simulated random variable would exactly 

represent the inputted PDF (given that the simulation is run for a long enough time), the outputs of the simulation will 

not be dependent on each other. For example, it is fair to assume that the solar insolation level at 11:00am depends 

heavily on the solar insolation level of 10:00am. Figure 3-2 on the next page showcases a MC simulation for solar 

insolation level over a 24-hour period. As can be seen, by only using a MC simulation, the solar insolation level at 

each hour is independent of the one before it.  
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Figure 3-2: MC Simulation of Solar Insolation for One Day 

 

To remedy this, an extension to MC called Markov Chain Monte Carlo (MCMC) is usually employed. Functionally, 

it is the same as MC except for the fact that they need transitional matrices representing the PDF. To find the inverse 

CDF of transitional matrices, the follow steps need to be taken:  

1) Calculate the sum of each row 

2) Divide each reach row by its own sum, thus making them into discrete PDFs 

3) Compute the CDF of each row 

4) Find the inverse CDF of each row 

In summary, a MC simulation contains within it the information of a PDF and takes in a random variable to generate 

a virtual scenario. On the other hand, a MCMC contains within it the information of transitional PDF matrices and 

takes in both a random variable and the previous state to generate the next virtual scenario. This makes MCMC 

extremely powerful, enabling them to capture very difficult and intricate random process such as a cloud passing over 

the sun. For this research, the MCMC will only look to the immediate preceding state.   
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3.3 Load Demanded (LD) 

To simulate the load profile per hour for the entire year, the IEEE Reliability Test System – 1996 (RTS-96) [67] will 

be utilized.  This is a standardized set of data that is utilized by any researcher studying reliability. Ensuring that all 

research done in this field can be: 

1) Easily reproducible 

2) Reliably compared and contrasted 

Given in the following pages are the Table 3.1: Weekly Peak Load in Percent of Annual Peak, Table 3.2: Daily Load 

in Percent of Weekly Load and Table 3.3: Hourly Peak Load in Percent of Daily Peak.   

Table 3.1: Weekly Peak Load in Percent of Annual Peak 

Week Peak Load Week Peak Load

1 86.2 27 75.5

2 90.0 28 81.6

3 87.8 29 80.1

4 83.4 30 88.0

5 88.0 31 72.2

6 84.1 32 77.6

7 83.2 33 80.0

8 80.6 34 72.9

9 74.0 35 72.6

10 73.7 36 70.5

11 71.5 37 78.0

12 72.7 38 69.5

13 70.4 39 72.4

14 75.0 40 72.4

15 72.1 41 74.3

16 80.0 42 74.4

17 75.4 43 80.0

18 83.7 44 88.1

19 87.0 45 88.5

20 88.0 46 90.9

21 85.6 47 84.0

22 81.1 48 89.0

23 90.0 49 94.2

24 88.7 50 97.0

25 89.6 51 100.0

26 86.1 52 95.2  
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Table 3.2: Daily Load in Percent of Weekly Load 

Day Peak Load

Monday 93

Tuesday 100

Wednesday 98

Thursday 96

Friday 94

Saturday 77  

 

 

 

Table 3.3: Hourly Peak Load in Percent of Daily Peak 

Hour Wkday Wknd Wkday Wknd Wkday Wknd

12-1am 67 78 64 74 63 75

1-2 63 72 60 70 62 73

2-3 60 68 58 66 60 69

3-4 59 66 56 65 58 66

4-5 59 64 56 64 59 65

5-6 60 65 58 62 65 65

6-7 74 66 64 62 72 68

7-8 86 70 76 66 85 74

8-9 95 80 87 81 95 83

9-10 96 88 95 86 99 89

10-11 96 90 99 91 100 92

11-noon 95 91 100 93 99 94

noon-1pm 95 90 99 93 93 91

1-2 95 88 100 92 92 90

2-3 93 87 100 91 90 90

3-4 94 87 97 91 88 86

4-5 99 91 96 92 90 85

5-6 100 100 96 94 92 88

6-7 100 99 93 95 96 92

7-8 96 97 92 95 98 100

8-9 91 94 92 100 96 97

9-10 83 92 93 93 90 95

10-11 73 87 87 88 80 90

11-12 63 81 72 80 70 85

winter weeks summer weeks spring/fall weeks

1-8 & 44-52 18-30 9-17 & 31-43
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3.3.1 Example of Generating LDs 

To showcase this in action, an example of generating the first 6 hours of January 1st, 2019 is given. The characteristics 

of this day are that it is: 

1) During week 1. From Table 3.1, the weekly peak load in percent of annual peak is 86.2 % 

2) On a Tuesday. From Table 3.2, the daily peak load in percent of weekly peak is 100 % 

3) On a weekday in Winter. From Table 3.3, the hourly peak load in percent of daily peak for the hours of 1 

through 6 are 67 %, 63 %, 60 %, 59 %, 59 % and 60 % respectively. 

Using this formula, Table 3.4 is generated. 

𝐿𝑜𝑎𝑑 𝐷𝑒𝑚𝑎𝑛𝑑  (𝐻𝑜𝑢𝑟) = 𝑊𝑒𝑒𝑘𝑙𝑦 𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑 ∗ 𝐷𝑎𝑖𝑙𝑦 𝐿𝑜𝑎𝑑 ∗ 𝐻𝑜𝑢𝑟𝑙𝑦  𝑃𝑒𝑎𝑘 

Table 3.4: Example of a Virtual Load Generated for Jan 1st, 2019 

Time (Hour) Load Demand

12-1am 57.75%

1-2 54.31%

2-3 51.72%

3-4 50.86%

4-5 50.86%

5-6 51.72%  

Extending this, Figure 3-3 shows the virtual load generated for the entire year. The plot is normalized, such that the 

peak is one.  

 

Figure 3-3: Virtual Load Generated for a Year  
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3.4 Dispatchable Generators (DG) 

As opposed to generating load data using a static look up table in section 3.3 - Load Demanded, a statistical 

methodology will be utilized to generate DG data. Using the RTS-1996 again, DG unit’s characteristics can be applied 

to a Monte Carlo (MC) simulation.  

3.4.1 MC Simulations for DG 

To apply MC simulations to generate virtual scenarios for dispatchable DG units, the following inverse CDFs are 

usually invoked: 

𝑇𝑇𝐹𝑖 = −𝑀𝑇𝑇𝐹𝑖 ∗ ln(𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑢𝑚𝑏𝑒𝑟) 

𝑇𝑇𝑅𝑖 = −𝑀𝑇𝑇𝑅𝑖 ∗ ln (𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑢𝑚𝑏𝑒𝑟) 

TTF = Time to Fail   

TTR = Time to Repair 

MTTF = Mean Time to Fail  

MTTR = Mean Time to Repair 

i = the index of the generator. 

3.4.2 Example of Generating DGs 

 

Figure 3-4: Example of 1 DG Unit 
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Assume the following characteristics for a DG unit: 

1) Capacity is 12 MW 

2) MTTF is 2940 

3) MTTR is 60 

The steps to generate virtual scenarios for a DG is, the output of this is shown above in  Figure 3-4: 

1) Input a random number in the TTF equation (for example 0.74), making the TTF be 885.24 

2) Round it to the nearest hour such that the DG will be active for 885 hours before it fails 

3) Input another random number in the TTR equation (for example 0.37), making the TTR be 59.65 

4) Round it to the nearest hour such that the DG will be inactive for 60 hours before it is repaired and goes 

back online again 

5) Generate an array that starts with 885 ones and then 60 zeros 

6) Multiply it by 12 million (maximum available capacity) 
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3.4.3 Generating Multiple DG Units 

In this research, 32 generators will be utilized that have the characteristics listed in Table 3.5, an example of this is 

given in Figure 3-5. 

 

Table 3.5: Characteristics of DG Units 

Number Capacity MTTF MTTR

1 12 2940 60

2 12 2940 60

3 12 2940 60

4 12 2940 60

5 12 2940 60

6 20 450 50

7 20 450 50

8 20 450 50

9 20 450 50

10 50 1980 20

11 50 1980 20

12 50 1980 20

13 50 1980 20

14 50 1980 20

15 50 1980 20

16 76 1960 40

17 76 1960 40

18 76 1960 40

19 76 1960 40

20 100 1200 50

21 100 1200 50

22 100 1200 50

23 155 960 40

24 155 960 40

25 155 960 40

26 155 960 40

27 197 950 50

28 197 950 50

29 197 950 50

30 350 1150 100

31 400 1100 150

32 400 1100 150  
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Figure 3-5: Virtual DG Generated for a Year 
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3.5 Photovoltaic Panels (PV) 

The PV panels are like DGs, in the sense that there is not any look up tables for data. Thus, a statistical methodology 

has to be employed to generate virtual scenarios. Unfortunately, using the same way that was used for generating DG 

data cannot be used here due to three problems. 

3.5.1 First Problem – PV Output Power 

 

Figure 3-6: PV Panel Datasheet (SPR-E20-435-COM) 

Looking into the literature, there is no available inverse CDF that manages to capture the properties of PV panels. To 

overcome this, the inverse CDF will have to be found empirically. To be able to model the output power of PV panels, 

two variables are needed; the temperature and the solar insolation. Assuming that all PV panels are of the model SPR-

E20-435-COM given above in Figure 3-6, the power output can be found using the equations below:  

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝐴 + 𝑆𝐼𝑅 ∗ (
𝑁𝑂𝐶𝑇 − 20

0.8 𝑘𝑊/𝑚2
) 

𝐼𝑃𝑉 = 𝑆𝐼𝑅 ∗ (𝐼𝑆𝐶 + 𝐾𝑖 ∗ (𝑇𝑐𝑒𝑙𝑙 − 25)) 

𝑉𝑃𝑉 = 𝑉𝑂𝐶 − 𝐾𝑉 ∗ (𝑇𝑐𝑒𝑙𝑙 − 25) 

𝐹𝐹 =
𝑉𝑀𝑃𝑃 ∗ 𝐼𝑀𝑃𝑃

𝑉𝑂𝐶 ∗ 𝐼𝑆𝐶

 

𝑃𝑃𝑉 = 𝑁𝑐𝑒𝑙𝑙𝑠 ∗ 𝐹𝐹 ∗ 𝑉𝑃𝑉 ∗ 𝐼𝑃𝑉 
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Figure 3-7: Temperature and Insolation Empirical Data for a Year 

Using the temperature and solar insolation (given above in Figure 3-7), the PV maximum available output power is 

given below in Figure 3-8.  

 

Figure 3-8: Virtual PV Output Calculated for a Year 
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3.5.2 Second Problem – Time Dependencies 

Unfortunately, the data available for temperature and solar insolation is only for six years. Meaning that the empirical 

PV output data is also only available for six years. Thus, there is a need to make do with what is present and utilize a 

MC simulation to generate virtual scenarios from it. And this is where the second problem rises, a limiting constraint 

of using MC is that the data has to be independent on time. A quick cursory glance into Figure 3-8 shows the PV 

output power has a high correlation between the seasons and the output power. For example, during the summer 

months PV output is much higher than in winter. In addition, there is also a similar correlation between the hours. If 

we isolate for season, it can be seen that 12:00 noon would typically have a very high output power while 12:00 

midnight would have a very low output power. To remove these dependencies, there will be two splits.  

The first split that will be done will be to split up our data into four seasons; Winter, Spring, Summer, Fall. For 

consistency with the load, the RTS’ definition of seasons will be followed: 

1) Winter: Weeks 1-8 & 44-52 

2) Spring: Weeks 9-17 

3) Summer: Weeks 18-30 

4) Fall: Weeks 31-43 

The second split will be in terms of the 24 hours in a day. Thus, there will be 24-hour splits with 4 seasons splits, 

resulting in 96 different classes of input data. Each one of these classes are now time independent of each other. 

3.5.3 Third Problem – Markov Chain Monte Carlo 

If a MC simulation were now to be applied an output like that was shown in Figure 3-2 in Section 3.2.1 - Markov 

Chain Monte Carlo (MCMC) is to be expected. The problem with this should be immediately clear and it is an 

unfortunate downside of taking the time dependencies out of the empirical data. This is because that while a correctly 

applied MC simulation will reproduce any PDF that is entered into it; the outputs will be independent of each other. 

This is not a problem with DGs since it is fair to assume that the TTF and TTR of generator i is independent of the 

TTF and TTR of generator i+1. In addition, it is not far off to assume that the TTF and TTR of generator i is also 

independent of each other. However, for PV power output, the state at, for example, 3:00 pm is heavily dependent on 

the one that precedes at 2:00 pm. In turn, the state at 2:00 pm is also heavily dependent on that of 1:00 pm and so on 

and so forth. Therefore, a new technique to virtual generate scenarios that are dependent on the previous state needs 

to be found.  

Fortunately, this can be done with Markov Chain Monte Carlo (MCMC). In functionality, it is very similar to MC 

except for the addition of one-step. While maintaining the 96 splits of data, instead of converting them into a simple 

PDFs (which simply quantifies frequency of occurrence of an event), transitional matrices are employed. This is done 

by first discretizing the states of PV output power (10 states were used) and then by counting the amount of times state 

x become state y between split i and split i+1. This will result in 95 transitional matrices, to get the 96th matrix split 

96 is then compared to split 1.  
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Figure 3-9 below shows the output of the MCMC simulation. If it is compared it to the input data shape of Figure 3-8, 

is similar to it except for one thing. Which is that the transitions between the seasons are not smooth. This is to be 

expected since the year, which consists of 8760 hours was only discretized into four different seasons. A step of 0.1 

was utilized to discretize the transitional matrices. For the purposes of this research, this is sufficient. 

 

 

Figure 3-9: Virtual PV Generated for a Year 
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3.6 Wind Turbines (WT) 

In virtually generating WT scenarios, a very similar methodology the one used for PVs will be applied. The only 

difference is that instead of converting temperature and solar insolation into PV output power, empirical data for wind 

speed will be converted to WT output power. 

3.6.1 WT Output Power 

 

Figure 3-10: Empirical Wind Speed Data for a Year 

Shown above in Figure 3-10 is empirical wind data for one year of the available ten years. To convert it into WT 

output power, these following rules will be followed: 

1) If the input speed v is less than vin then there is not enough wind to turn the wind turbines and power output 

is zero 

2) If the input speed v is greater than vf then the speed of the wind is too high and may be dangerous to the 

turbine, therefore it will be shut off and the power output is again zero. 

3) If the input speed v is between vr and vf then the output of the WT is the rated power Pr  

4) If the input speed v is between vin and vr then the output will be a ramp function 

This is summarized in the formula below and plotted in Figure 3-11 on the next page. 
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Figure 3-11: Wind Speed vs WT Output Power 

Applying the formula to Figure 3-10, the output is given below in Figure 3-12. And in Figure 3-13 is the virtually 

generated WT output over a year period.   

 

Figure 3-12: WT Output Calculated from Wind Speed for a Year 

 

Figure 3-13: Generated Virtual WT for a Year  
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3.7 Electric Vehicles (EV) 

There are several problems that arise when trying to find data for EVs. Like PVs and WTs, the first problem is that 

there is no sufficient amount of empirical data available for the scale of this research. But the problem unfortunately 

extends much further than that. Since the goal is to be able to control the charging and discharging of EVs, the shape 

of the data has to be in an un-aggregated form. With the LD, DG, PV and WT; each are only considered as just one 

unit. For example: 

On day 35, hour 4 the LD is 3500 MW, the DG generates a maximum of 2500 MW, the PV generates a 

maximum of 100 MW and the WT generates a maximum of 300 MW. Which means that at this hour, there is 

indeed a LOL with ENS equal to 600 MW.  

However, with EVs they cannot be thought of simply as a lumped load. Each individual car has its unique power 

requirements and unique times of entry/exit into the parking lot. To that regard, this research defines and uses three 

random variables to allow for these constraints. Two of these will be empirically based on data from the Toronto 

Parking Authority [68]. It contains the entry and exit times of non-EVs which will be repurposed for EVs. The major 

assumption made here is that the behaviors of drivers of non-EVs will be the same as the behaviors of drivers of EVs, 

and this is reasonable because the technology for vehicles that run on electricity has been available for a while now.  

3.7.1 Random Variables 

Like all the previous virtual scenarios, the time scale that will be used throughout is hours. In addition, since there is 

a high correlation between time. Like the PV panels and WTs, the input data will be split into 4 seasons (Winter, 

Spring, Summer and Fall) and 24 hours. In addition, since commercial parking lots are being modelled, there will be 

a time dependency between the days of the week. And thus, an additional split between weekdays and weekends will 

be implemented resulting in 196 splits of data.  

3.7.1.1 RV1 – Arrival Rate 

This variable is defined as the arrival rate of cars per hour. It is empirically calculated from the Toronto Parking 

Authority dataset.  
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3.7.1.2 RV2 – Duration of Stay 

This RV is also found from the Toronto Parking Authority dataset. It is built up on the previous arrival rate. If for 

example, 31 cars arrived at hour 3. The duration of stay is a list of 31 numbers of how long each car stayed before 

leaving the parking lot. 

 

 

3.7.1.3 RV3 – Initial State of Charge 

Unfortunately, a suitable dataset to pull data from for this RV wasn’t found. Therefore, a simple Gaussian function; 

with mean equal to 40 %, standard deviation equal to 20 % and limited from the top to 90 % and the bottom to 10 % 

is utilized for generating this random variable. The PDF is given below in Figure 3-14. 

 

Figure 3-14: PDF for Initial State of Charge 
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3.7.2 Example of Generating Virtual EV Scenarios 

To generate EVs for Jan 5th 2019, between 9:00am-10:00am a weekend the following steps are taking: 

1) Run a MCMC simulation on the first RV of arrival rate. For example, assume the number came out to be 

80.32. After rounding down, 80 cars have arrived in the parking lot at this time 

2) Now run a MC simulation on the second RV of duration of stay 80 times to find how long each car stays in 

the lot 

3) Finally, run a MC simulation on the last RV of initial SOC. 

The output of this is given below in Table 3.6 

Table 3.6: Example of Generating Virtual EV Scenarios 

Vehicle No. T_Arrival Duration T_Departure SOC Initial

1 9:00:00 AM 6.30 Hours 3:18:00 PM 63.75%

2 9:00:00 AM 9.80 Hours 6:48:00 PM 78.33%

3 9:00:00 AM 7.20 Hours 4:12:00 PM 54.00%

. . . . .

. . . . .

. . . . .

79 9:00:00 AM 8.10 Hours 5:06:00 PM 15.23%

80 9:00:00 AM 8.70 Hours 5:42:00 PM 39.64%
 

 

3.7.3 EV and EV Charger Datasheet 

According to the EV company Tesla, they are not planning on using a larger battery than 100 kWh for the foreseeable 

future. This will be taken to be the standard battery size of each EV in the simulation. A fourth random variable could 

be easily added that would contain a distribution of different size of batteries and would, technically, be more accurate 

of a model. But this would unnecessarily increase the needed simulation with no potential gain.  

The EV charger is considered to be 100 % efficient with reference to the grid. For simulation purposes it could be 

made to have a more realistic efficiency, for example 90 %. And thus, when an EV comes in to charge instead of 

requiring, for example 50 kWh it would now draw 55.55 kWh. Since only grid-to-vehicle is considered in this research, 

there is no need to add this. 

The maximum speed of the EV charger was decided to be 33.33 kW. Meaning that the theoretical max time a car 

would need to be fully charge would be 4 hours. (The last hour would be for the extra 0.01 kWh that is needed). But 

since, the minimum charge in our model is 10% of the battery, it would take 3 hours to fully charge an EV battery. 
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3.8 Combined Generation and Load Profile 

As mentioned in 2.2.1.1 - Putting LOLE into Perspective, the value of LOLE needs to be made much higher than it 

normally should be such that any changes made to the system are much more noticeable. In addition, since the 

maximum total amount of energy that can be demanded by an EV at any time is limited by the speed of its charger, 

which is set to be 33 kWh the values of the generators and load has to allow the EV to make an impact.  

Added together, the DGs have a maximum theoretical output capability of 136.2 MW (assuming all DGs are online 

at the same time). The LD will be set to be 92.51 % of this (coming to a maximum of 126 MW). These two values 

will be constants throughout the entire research. 

They are added together according to this generation balance equation: 

𝑉𝑆 = 𝐷𝐺 + 𝑃𝑉 + 𝑊𝑇 − 𝐿𝐷 − 𝐸𝑉 

The values of PV will be 0 %, 5 %, 10 % and 15 %; the values of WT will also be 0%, 5 %, 10 % and 15 %; lastly the 

values of EV will either be 0 or 1 (with one meaning that there is one EV parking lot being simulated). In summary, 

there will be: 4 scenarios for PV, 4 scenarios for WT and 2 scenarios for EV. Coming to a total of 4*4*2 = 32 unique 

scenarios in which the LOLE and EENS will be calculated for each of them to be able to quantify the effect of both 

renewable energy sources and EVs to the reliability of a power grid. 

Furthermore, of the 16 unique scenarios in which the EV are connected to the grid. Three different control algorithms 

will be applied on to them, in which each will have to have LOLE and EENS calculated. Chapter 4: Scheduling 

Schemes will introduce these algorithms.  

In summary, there will be 16 scenarios for measuring the effect of PVs and WTs on an electric grid without EVs and 

48 scenarios for measuring the effect of PVs, WTs and EVs effect on an electric grid, coming to a total of 64 scenarios 

generated. 
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3.9 Note on Parameters Used 

When modeling the five elements, decisions had to be made in terms of where the data should come from and which 

parameters to use. With regards to the LD and DG, the matter was pretty simple. The load profile shape and the DG 

unit characteristics were both taken from the RTS-1996 paper. In addition, selecting the size of DG units and LD was 

done in a matter that would increase the LOLE and the EENS such that the differences between the scheduling 

algorithms would be magnified.  

The PV panels and WTs were also basic; Canadian weather data was used coupled with standard power estimation 

equations and generic PV panel and WT datasheets. Lastly, the EVs were a little bit harder. Since the assumption was 

that the EV parking lots would be most profitable near industrial locations, those parking lots were chosen from the 

Toronto Parking Authority dataset. The parameters for the EVs and the EV battery charger was chosen to be as generic 

as possible also and the formulation of the state of charge was done that way due to a lack of data.  

Any of these parameters can be changed to potentially have different results but it is the belief of that author that they 

cannot be really “tweaked” to give a better/worse performance. Since the ultimate goal is to showcase the difference 

between three different scheduling algorithms, it really shouldn’t change the outcome a lot when comparing between 

a before scenario and an after scenario. For example, if datasheet “xy” was used for the PV panels and the results give 

us a 105 hours/year LOLE for the base case and 70 hours/year LOLE for the demand side management case, resulting 

in a decrease of 33.33%. Then it would be expected that if datasheet “xz” was used for the PV panels then perhaps the 

absolute value of numbers will change, perhaps it could be 91 hour/year for the base case and 60 hours for the demand 

side management case. But the difference between the two should remain almost the same at around 33.33%. 

3.10 Stopping Criteria 

 

Figure 3-15: LOLE over 10,000 Years 

For calculating the expected value of LOL and ENS, ultimately the best approach would be to generate virtual 

scenarios for an infinite amount of time to ensure that the LOLE and EENS are indeed the correct values for the 

system. As previously mentioned, in Figure 2-2: LOLE Over 50 Years, it can be estimated that the LOL should be 
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around 15. But from one scenario to another the jump is too high. Figure 3-15 above shows that when taking 10,000 

scenarios the LOL is actually 21.5931 hours per year and that the value starts stabilizing at around 2000 scenarios. To 

be able to quantify this and implement the stopping criteria in code, the standard deviation of LOLE is calculated. The 

formula of which is given below:  

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

 

To see this in effect, on the next page in Figure 3-16 is a plot of the LOL, LOLE and the standard deviation of LOLE 

over 10,000 years. The first thing of note is that the LOL value never stabilizes, at times it goes as high as 340 hours 

per year and at others it is as low as zero. More importantly than that is the LOLE in which it can be seen that past 

1,000 years the value is practically constant, and this is reflected in the standard deviation. Initially, there was a high 

spike of about 5, but past 500 the value is essentially the same. More ever, seen over the 10,000 years, the value of 

standard deviation is actively decreasing each time the simulation is run. Meaning that after each scenario, the value 

of LOLE is closer and closer to the true value. Ultimately, running the simulation over and infinite amount of years 

will ensure that the expected value is the real value, but this is computationally impossible. Instead, an acceptable 

stopping criterion is chosen when the standard deviation is below a certain value. 

 

Figure 3-16: LOL, LOLE and 𝜎(LOLE) over 10,000 Years 

3.10.1 Coefficient of Variation 

By definition, standard deviation is a measure of the dispersion of a set of data from its mean. The first problem that 

faces this research is that the standard deviation is not unitless. Therefore, the values of standard deviation cannot be 

compared directly between the LOLE and EENS; the unit for LOLE is hours/year while the unit for EENS MWh/yr.. 

Figure 3-17 shows the same plots as Figure 3-16; except for ENS, EENS and standard deviation of EENS.  
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Figure 3-17: ENS, EENS and 𝜎(EENS) of 10,000 Years 
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Since the value of EENS stabilizes at around 120, which is almost six times larger than the value of LOLE (of about 

21), the values of standard deviation of EENS are also much larger than the values of standard deviation of LOLE. 

While indeed, it is expected that it should take more simulations for the EENS to stabilize as compared to the LOLE; 

since the latter is merely a binary counter while the former actually quantifies a value (for example, the LOL can be 3 

hours/yr for 10 years in a row while the ENS can have different values each year). If the units of EENS were changed 

to GWh/yr instead of MWh/yr then the standard deviation would be much lower than that of the LOL. To be able to 

implement a stopping criterion for both the LOLE and EENS, the standard deviation needs to be converted to a unit-

less value such that both can be compared against each other, and thus the coefficient of variation (CV) will be used 

instead, the formula of which is given below: 

𝐶𝑉 =
𝜎

𝑥̅
  

As can be seen, it is simply taking the standard deviation and dividing it by the mean. This is very important since it 

now renders the measure of dispersion unit-less. Below in Figure 3-18 is the comparison of 𝜎 and CV for both the 

LOLE and EENS. From the plots, it can be seen the scale of standard deviation of EENS is almost 10 times higher 

than that of standard deviation of LOLE. While, when comparing the CV of both, the EENS is only twice as high. 

Which seems to be much more reasonable. In this research, the stopping criteria will be 5 % CV.  

 

Figure 3-18: Comparison of 𝜎 and CV for LOLE and EENS 

3.10.2 Step Size of 10,000 Years 

For reasons due to the physical limitations of the computer, the step size of simulation is set at 10,000 years (the 

reasons for this will be elaborated on further in Chapter 5: Simulations and ). This is how the stopping criteria is 

implemented:  

1) If the CV goes below 5 %, then the entire 10,000 years are used for the values of LOLE and EENS and no 

more simulations are used  

2) If the CV doesn’t pass the stopping criteria, then another 10,000 years are simulated. 
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Chapter 4  

Scheduling Schemes 

4.1 Preamble 

Having introduced the concept of virtual scenario generation through MC and MCMC frameworks, built the stochastic 

models for every element used in this research and set up a suitable stopping criterion the issue of how to schedule the 

EVs into loads needs to be addressed. This chapter will delve into three different types of scheduling schemes used. 

The first is called the uncontrolled charging, this would be the case if there was no interaction between the electric 

grid and the parking lot owner. The next one is a basic demand side management (DSM) algorithm, in which the goal 

is to flatten the demand profile of the system. Lastly, an algorithm called grid and demand side management (GDSM) 

is introduced, in which the scheduling of EVs considers both the demand and generational profile. The last two cases 

are under the assumption that the EVs are a controllable load. 

4.2 Uncontrolled Charging/Base Case 

As the name suggests, Uncontrolled Charging (UC) is the strategy that parking lot owners will follow with the charging 

of the vehicles if the power grid does not provide them any incentive to deviate from this path. The policy for charging 

is “First-Come, First-Serve”. As soon as a car comes into the car lot, it will receive the maximum charge it can get 

from the charger (in this simulation it is 33 kWh) and it is fully charged or the car leaves. It can be considered the 

“worst-case scenario” since this will cause the greatest disruption to the power grid. If 500 employees all come and 

park their EVs at 8:00 am in the industrial parking lot, a significant and ultimately unnecessary spike in demand will 

occur. If, for example, 400 of the EV owners are planning to leave at 5:00pm, they are indifferent to when exactly the 

car is charged. As long as it is fully charged when they come to leave.  

Table 4.1: Example for UC 

Car Arrival Departure Initial SOC 

1 8:00 am 2:00 pm 39 % 

2 9:00 am 5:00 pm 25 % 

3 8:00 am 4:00 pm 61 % 

4 8:00 am 3:00 pm 73 % 

 

For example, assume four cars arrived in the parking with the characteristics listed above in Table 4.1. Using the UC 

strategy, the individual demand profile for each them is given below in Figure 4-1. And in Figure 4-2 on the next page, 

the total demand profile is given. Since all the cars are going to be staying far longer than the amount of time they 

need to charge, a much flatter demand profile can be opened if a control strategy were to be applied. 
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Figure 4-1: Individual Demand Profile for UC Example 

 

Figure 4-2: Total Demand Profile for UC Example 
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4.3 Controlled Charging using DSM and GDSM 

The term Demand Side Management (DSM) is a catch-all for a number of techniques in which the demand profile 

may be managed. Figure 4-3 below lists some of the most common. Conservation/efficiency is out of the scope of this 

research and peak shaving is simply considered as an undesirable LOL. Throughout this research the entire focus will 

be on load shifting. As shown in the previous section, an undesirable outcome may occur if a simple UC charging 

methodology is to be applied. In essence, the goal of DSM is to flatten the demand seen by the grid as much as it is 

possible (given the constraints). With this in mind, it is expected the LOLE and EENS to decrease when compared to 

the UC case. 

 

Figure 4-3: Demand Side Management 

Given below in Figure 4-4 is a sample of a DSM algorithm being applied to a demand profile. In the base case (which 

represents the before scenario) a peak of 60 kW occurs during noon. As opposed to this is the best response case, in 

which a scheduling algorithm was applied. The peak has decreased by 26.67 % to 44 kW. In addition, it can also be 

seen that it is much flatter than the base case. This is all while both cases have the exact same total energy consumption 

of 742 kWh; no peak shaving or conservation was done.  

 

Figure 4-4: Example of DSM Before and After 
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The time scale of optimization is one 24-hour day. In addition, the code only optimizes for one car at a time instead 

of optimizing for all cars at the same time. In classical game theory, it is assumed that equilibrium is reached when 

none of the players have any incentive to deviate from their position. For example, if 200 cars arrived into the parking 

lot, the optimization algorithm will be applied to each one sequentially. This method doesn’t guarantee the global 

optimum has been met, so it needs to be repeated until none of the 200 agents change their consumption behavior. For 

this application, it is too computationally intensive to find global optimum for each day since the simulation is to be 

run for thousands of years. In this research, only one sweep through the agents will be applied for both algorithms. 

This is acceptable since the marginal benefit gained by achieving global optimum is offset by the computational time, 

increasing it almost exponentially. Therefore, the results of this body of work will be a conservative estimate of true 

impacts of these scheduling schemes. 

 

Figure 4-5: First 24 Elements of LP of DSM 

 

Figure 4-5 above shows an example of the input to the DSM Algorithm. The first element is the current demand profile 

of the day given in the first graph; this is called Virtual Scenario (VS). Then it is multiplied by the availability of the 

EV (ava); showcasing when the car arrives and when the car leaves and this is present in the second graph. The output, 

which is presented in the third graph, will be multiplied by Pcharge, the amount of power that the car consumed from 

the grid at any time. Since the function is trying to be minimized, the car will attempt to charge in the periods of lowest 

demand, thus performing demand side management. To ensure that the algorithm remains bounded, the state of charge 

(SOC) is capped at 100 %, while the maximum Pcharge allowed is set to 33 kW. To ensure continuity, the next value of 

SOC has to equal the previous value of SOC + Pcharge. Lastly, a constraint is set that the car has to be fully charged by 

the time is leaves. Therefore, the problem can be formulated as given on the next page: 
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minimize         ∑ 𝐴𝑣𝑎(𝑡) ∗ 𝑉𝑆 ∗ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)

24

𝑡=1

 

s. t.                      0.1 < SOC(t) < 1    ∀𝑡 ∈  𝑇   

                                           0 < P𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) < 33𝑘𝑊    ∀𝑡 ∈  𝑇   

SOC(24) = 1 

                                        Pcharge(𝑡) + 𝑆𝑂𝐶(𝑡 − 1) = 𝑆𝑂𝐶(𝑡) 

 

An example of a car entering in with an initial SOC of 39 % is given below in Figure 4-6  . As can be seen the car only 

charges in the three periods with the lowest peak. In addition, amongst the three lowest peaks, hour 15 has the highest 

peak and this is when the car charges minimally. The MATLAB code used is given in Section 8.1.1. 

 

Figure 4-6: Example of DSM applied through LP 

 

The proposed grid and demand side management (GDSM) algorithm includes both the available generation capacity 

and demand in the cost according to the formula given below: 

𝐶𝑜𝑠𝑡 = 𝐿𝐷 + 𝐸𝑉 − 𝐷𝐺 − 𝑊𝑇 − 𝑃𝑉 

The difference between the two algorithms is that, in the DSM, the cost that the EV sees when choosing when to 

charge is based on the demand profile of the day. For example, if the demand is highest at 3:00pm, then 

correspondingly the cost at 3:00pm will be the highest and the scheduling algorithm will attempt to avoid charging 

the car at that time period if it can avoid it. While in the proposed GDSM algorithm the EVs will be charged 

considering both the expected available generation and demand during the day. Therefore, when optimizing the time 

the car needs to be charged, the algorithm will choose the time in which both demand is lowest and available 

generational capacity is greatest. In this case, the GDSM is better at improving reliability since it considers the random 

impact that is introduced to the system by the various generators connected.   
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4.3.1 Flow Chart for Scheduling Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Summary 

In this chapter, the methodology for both the uncontrolled and controlled charging algorithms were introduced. The 

results of the uncontrolled case are what would be expected if the electric grid didn’t provide any incentives to the 

parking lot owners. And since the parking lots utilized in this simulation are in commercial areas, an undesirable peak 

would occur in the morning at around 8:00am to 9:00am. When assuming that the EVs can indeed be controlled, the 

DSM algorithm attempts to manage the demand such that a spike is not seen by the grid. This is expected to improve 

the reliability of the grid, since the demand profile looks more uniform. But with the GDSM algorithm, an even greater 

improvement to reliability is expected. This is because the algorithm schedules the EVs while considering both the 

demand and generational capacities of the electric grid.   
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Chapter 5  

Simulations and Results 

5.1 Preamble 

In chapter 3, the stochastic models were built and in chapter 4, the scheduling algorithms were introduced. This study 

virtually generated over 60 trillion unique scenarios and performed both power analysis and applied scheduling 

algorithms. The first issue that this chapter will tackle is to give recommendations to future researchers who wish to 

conduct a study on this scale.  The second is to present the results of the thesis and discuss them.  

5.2  Simulation Strategies 

5.2.1 Specifications of Computer Used 

In this research, four computers were utilized that had the specification listed below in Table 5.1. From the table, it 

can be seen that the limiting constraint for any code that is to be written is that it should not need more than 8 GB of 

ram to run, otherwise computers 2 and 4 would not be able to run it. In this study, the code spikes at 5.9 GB of ram, 

meaning that computer number 1 can run ten instances of the code, computer 2 one instance, computer 3 two instances 

and computer 4 one instance. For a total of fourteen simultaneous pieces of code running at any one time. If this 

research were to be repeated, the simulation block sizes would be reduced to have the maximum spike of needed ram 

be below 4 GB of ram. Theoretically allowing two instances of code to be run on computers 2 and 4, four on computer 

3 and sixteen on computer 1; for a theoretical total of twenty-four parallel instances.   

 

Table 5.1: Computers Used in Research 

Computer 

Number 

Processor 

Speed 

RAM 

Speed 

1 2.0 GHz 64 GB 

2 2.5 GHz 08 GB 

3 3.6 GHz 16 GB 

4 2.2 GHz 08 GB 
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5.2.2 (Split 1) Virtual Scenario Generation  

To be able to run the scheduling algorithms, virtually scenarios need to be first generated. To take advantage of 

parallelization of tasks, all of them will be generated as a batch. This is as opposed to generating them on the spot 

every time the code is run. There are two main benefits of doing it this way, the first is that troubleshooting the 

scheduling algorithm code is much easier since it is the same data being used, thus the source of any potential error 

can be found much quicker. The second is that if the computer crashes in the middle of any computation, the original 

information of the virtual scenarios remains present. 

Some statistics on the hard-disk space that using MATLAB to store the various virtual scenarios are listed below: 

1) LD takes the least space (0.043 MB), since only one year is stored in memory. If additional years are needed, 

then it is just repeated 

2) The DG on the other hand, cannot simply repeat the first year and thus needs to store many years. It required 

on average 7.5 MB to store 10,000 years 

3) The PV required 61.5 MB to store 10,000 years 

4) The WT requires 42 MB to store 10,000 years 

5) The EV take the longest time to simulate. It was generated in steps of 25 years and it took more time to 

generate it than the DG, PV and WT combined. In addition, those 25 years take 43.5 MB of space on average. 

Translating to 16.5 GB per 10,000 years 

Loading all this data with the step of 10,000 years for LD, DG, PV and WT and the step of 25 years for the EV causes 

a spike of 5.9 GB of RAM. Given our current hardware, a choice of a step of 5,000 years for all LD, DG, PV and WT 

and a step of 20 years for the EV would be chosen to ensure that the maximum RAM needed will be below 4 GB. The 

files were stored in the “.mat” format, and the one million years took about 1 TB of storage. This could differ if another 

file format were to be used. 

5.2.3 (Split 2) Control Strategy #1 

After all the information has been generated and stored, 32 out of the 64 different makeups/control strategies can be 

simulated in parallel. The first sixteen (the ones with no EVs) can all now be done independently of any other 

information and so can the next sixteen (the ones with EVs using the “first-come first-serve strategy).  

5.2.4 (Split 3) Control Strategy #2 and #3 

The last 32 scenarios (involving DSM and GDSM) can technically also be done in split 2. But it is not at all 

recommended. This is because of the potential gains in speeds that can be gained due to the selection of the reliability 

indices. The goal of this research is to simply minimize the LOL in any given year, and if a LOL cannot be minimized 

then at least the ENS should be the next goal. If on average, there are 120 LOL hours in a year. Then the control 

strategies of DSM and GDSM only needs to be applied to those days that contain the LOL (in the worst case scenario, 

there is only one LOL hour per day and even then the run time of the code goes down from simulating 365 days to 

120 days, a reduction by a factor of 3). 
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5.2.5 Summary  

 

Figure 5-1: Simulation Order 

The block diagram above in Figure 5-1 gives a summary of the order of simulations. In summary, all the simulations 

in the first split can be done at any time, independent of each other. Any simulation that will be done in the second 

split is also independent of each other but are dependent on the first split all being finished. Same case with the third 

split, anything listed there are independent on each other, but they are depended on the second split being finished). 

Visualizing these splits in the tasks is essential in ensuring the simulation takes the least time as possible with the also 

the least probability for errors to be introduced along the ways.  
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5.3 Results 

5.3.1 No EV 

Table 5.2: LOLE with No EV 

  WT 00 WT 05 WT 10 WT 15 

PV 00 18.06 15.01 13.25 12.17 

PV 05 13.17 11.12 9.94 9.21 

PV 10 10.53 9.00 8.13 7.58 

PV 15 8.98 7.74 7.04 6.58 

 

Table 5.3: EENS with No EV 

  WT 00 WT 05 WT 10 WT 15 

PV 00 90.36 75.19 66.68 61.40 

PV 05 64.96 54.95 49.34 45.85 

PV 10 51.50 44.15 40.03 37.45 

PV 15 43.88 38.00 34.68 32.59 

 

The first thing to notice is that as more renewable energy sources are added (either the wind turbines or photovoltaic 

panels), the values of both the LOLE and EENS both go down. And this is to be expected, since the systems raw 

capacity has been increased. And this is the methodology that is utilized today to decrease these values, the increase 

of the generation capacity. Below in Figure 5-2 is a 3D plot of Table 5.2 and Table 5.3. 

 

Figure 5-2: 3D Plot of LOLE and EENS for NoEV 
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5.3.2 Uncontrolled Charging (UC) 

Table 5.4: LOLE for UC 

  WT 00 WT 05 WT 10 WT 15 

PV 00 21.59 18.02 15.82 14.42 

PV 05 15.76 13.28 11.81 10.82 

PV 10 12.53 10.69 9.57 8.83 

PV 15 10.63 9.11 8.22 7.62 

 

Table 5.5: EENS for UC 

  WT 00 WT 05 WT 10 WT 15 

PV 00 110.28 91.83 80.83 73.64 

PV 05 79.11 66.67 59.33 54.50 

PV 10 62.44 53.15 47.68 44.09 

PV 15 52.83 45.48 40.98 38.05 

 

Completely predictable results until now, by adding the EVs as an uncontrolled load the values for both the LOLE 

and EENS has increased. On average, the LOLE went up by 16 % while the EENS went up by 31 %. This is because 

a new load has been added for the exact same generational capacity. Figure 5-3 below is a 3D plot of Table 5.4 and 

Table 5.5. Again, they are very similar in shape to Figure 5-2 due to the fact that the load added is the same in all 

cases.  

 

 

Figure 5-3: 3D Plots of LOLE and EENS for UC 
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5.3.3 Demand Side Management (DSM) 

 

Table 5.6: LOLE for DSM 

  WT 00 WT 05 WT 10 WT 15 

PV 00 23.27 19.47 16.65 15.50 

PV 05 16.84 14.15 12.47 11.44 

PV 10 13.47 11.16 10.07 9.45 

PV 15 11.36 9.70 8.59 8.24 

 

Table 5.7: EENS for DSM 

  WT 00 WT 05 WT 10 WT 15 

PV 00 75.79 72.52 71.60 66.82 

PV 05 71.00 59.24 52.25 48.33 

PV 10 56.89 46.88 42.30 39.58 

PV 15 48.70 41.24 35.88 34.87 

 

With this control strategy, something unexpected happens. Now while the EENS goes down on average by a 

percentage of 12.36 % as compared to the uncontrolled load case the LOLE goes up 6.45 % on average. This could 

be due to a number of reasons. With the UC case, all the cars that were arriving at the exact same time were charged 

up immediately, thus causing a very high spike in load demanded and increasing the EENS. But with managing the 

demand more effectively, the DSM control scheme shifts the cars to other hours in the day. Thus, minimizing the 

EENS but also increasing LOLE. In the author’s opinion this is an acceptable compromise, while the number of hours 

the system is overloaded is increased the overall energy not supplied is decreased making for a more efficient system. 

The plots for Table 5.6 and Table 5.7 are given below in Figure 5-4.  

 

Figure 5-4: 3D Plot for LOLE and EENS with DSM 
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5.3.4 Grid and Demand Side Management (GDSM) 

 

Table 5.8: LOLE for GDSM 

  WT 00 WT 05 WT 10 WT 15 

PV 00 18.09 14.92 13.11 11.95 

PV 05 13.16 11.09 10.97 10.32 

PV 10 11.49 9.00 9.07 8.30 

PV 15 10.25 8.48 7.92 7.31 

 

Table 5.9: EENS for GDSM 

  WT 00 WT 05 WT 10 WT 15 

PV 00 75.63 62.51 56.87 54.60 

PV 05 56.79 47.43 46.40 43.20 

PV 10 45.13 36.87 35.43 34.59 

PV 15 42.46 34.64 33.53 29.85 

 

When comparing the GDSM to UC, the benefits are also evident. First of all, the EENS decreases on average by 

25.844 % but moreover the LOLE also decrease by on average a value of 10.38 %. This is in contrast with the DSM 

case in which only the EENS decreased but not the LOLE. This could be due to the very effective nature of GDSM 

on managing the EVs, in which it even manages to decrease the LOLE. 

On comparing the GDSM to the previous DSM, it is found that both the EENS and LOLE decreased on average by 

15.79 % and 15.23% respectively. Given below in is the 3D plots of Table 5.8 and Table 5.9. 

  

Figure 5-5: 3D Plot for LOLE and EENS with GDSM 
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Chapter 6  

Conclusion 

The introduction of PV panels and WTs have added to the instability of the grid and the fact that their penetration 

levels are predicted to increase will exasperate this issue. In addition, the number of EVs are also predicted to increase 

to a significant amount. Adding the novel demand profile of EVs with the intermittency of PVs and WTs presents 

itself as a unique problem. The fact that there is a comparatively low start-up cost to converting a traditional parking 

lot to one that is capable of charging EVs will have private investors wishing to exploit this new market. The question 

that this thesis attempts to answer is: 

“Is there a benefit to a utility operator, in terms of increasing reliability, to share more information and 

give financial incentives to private EV parking lots if they were to participate in scheduling their demands.” 

In the model built, it was found that the addition of EVs increased the EENS by 45.1% on average. To mitigate this, 

two scheduling algorithms were then implemented. The DSM and GDSM, was found to only increase the EENS on 

average by 27% and 8.02%, respectively. It is evident that forcing EVs to be charged via a scheduling algorithm is 

incredibly beneficial, but more importantly the results show that it is in the grids benefit to share extra information 

regarding the available generational capacity for GDSM.  

This is further shown when comparing the changes to the reliability indices when only considering the penetration 

levels of renewables. With no PV panels and WTs connected, the DSM and GDSM had the EENS increase 0.66% and 

0.40%, respectively. But when the penetration levels for PV panels and WTs, the DSM and GDSM increased the 

EENS by 28.10% and 9.75% as compared to the base case, respectively. This shows that as the penetration of 

renewables increase, the differences between the DSM and GDSM start to appear. Which would make sense, since as 

the penetration level of renewables increase, the randomness also increases.  

This body of research recommends grid operators to start sharing information regarding predicted generational 

capacity to aid in the optimized demand scheduling. In addition, financial incentives should be provided to private EV 

parking lot owners to mitigate the immediate impacts of EVs on reliability, without the need for investing in increasing 

generational adequacy or building a modern communication infrastructure. Furthermore, this thesis finds that the as 

the penetration levels of renewables increase (especially PV), the benefits of sharing generational capacity information 

also increases.  
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6.1 Thesis Summary 

The steps taken to achieve this is listed below: 

1) The introduction and definition of the reliability indices that was made to be the objective function. These 

were the: 

a. LOLE (Loss of Load Expectation)  

b. EENS (Expected Energy Not Served).  

In addition, a slightly different stopping criteria was introduced for the benefits of this research 

2) The building of the virtual scenario infrastructure that allowed for the simulation of over a 1,000,000 years 

(with the time segment being 8760 hours per year) for the: 

a. Base Load 

b. Distributed Generators (32 unique) 

c. Photovoltaic Panels (with splits for 4 seasons over 24 hours) 

d. Wind Turbines (with splits for 4 seasons over 24 hours) 

e. Electric vehicles (with an average of 273 cars per day and splits for 4 seasons, weekdays vs 

weekends over 24 hours).  

This resulting in the overall simulation of over 60 trillion unique scenarios throughout this thesis. 

3) The setting up of the various control scenarios that would need to be applied to adequately answer the thesis 

question. Which were the:  

a. No EV  

b. Uncontrolled 

c. Demand Side Management  

d. Grid and Demand Side Management  

In addition, these were coupled with multiple PV and WT penetrations resulting in 64 different schemes.  

4) Employing efficient simulation strategies that managed to optimize the computer resources at hand for the 

publication of this research. Which allowed for the parallelization of an enormous amount of computing.  
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6.2 Main Contributions 

This thesis made the following contributions: 

• The investigation of the positive effects that the different penetration levels of renewable energy resources 

have on system reliability. Both the photovoltaic and wind turbine penetration levels and were varied from 0 

– 15 % with increments of 5 % resulting in 16 different scenarios. 

• The negative impacts that EVs would potentially do if connected without any controlling schemes to the 

current grid 

• The shortcomings associated with the traditional demand side management control algorithms. Since it only 

manages the EVs charging schedule based on one piece of information, the load demanded of the grid. 

Especially in the presence of highly random renewable energy sources this is not sufficient. And while it may 

work theoretically in research that is only looking towards the short-term of a couple of days of simulation it 

does not hold up very well when the expected value of these variables are calculated (which require thousands 

of years of simulation) 

• The introduction of a novel control scheme, called Demand and Grid Side Management which solves the 

inadequacies of demand side management with the inclusion of the data of the various generators. 

• Proving the benefit that a grid operator will have if they were to build the infrastructure that will allow the 

flow of information needed to implement Demand and Grid Side Management (25.88 % decrease in EENS).  

• Giving guidelines and suggestions to future researchers that desire to undertake the same type of research 

such that they will be able to tweak the various hyper parameters used in this thesis to fit their own computing 

resources 

6.3 Future Research Work 

The overall objective of this research was to prove the benefit to a grid operator if they were to co-operate more with 

potential EV parking lot owners. But this could be expanded much further: 

• Application of Demand and Grid Side Management with a different objective function. The benefits it could 

pose to a power system such as the decrease of power loss or an increase in voltage stability. 

• The assumption made was that the parking lot owner was the only one allowed to make decision. A game 

theory framework could be developed that would relax that assumption 

• GDSM was better than the DSM by about 15 % (for the reduction of both LOLE and EENS), but this was 

only applied to the case of unidirectional power flow (grid to vehicle). Would building the infrastructure for 

vehicle to grid, in the sole case of private EV parking lots, have a good return on investment? 
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Chapter 8 Appendix 

 

Table 8.1: DG Generators’ Characteristics 

Capacity MTTF MTTR

12 2940 60

12 2940 60

12 2940 60

12 2940 60

12 2940 60

20 450 50

20 450 50

20 450 50

20 450 50

50 1980 20

50 1980 20

50 1980 20

50 1980 20

50 1980 20

50 1980 20

76 1960 40

76 1960 40

76 1960 40

76 1960 40

100 1200 50

100 1200 50

100 1200 50

155 960 40

155 960 40

155 960 40

155 960 40

197 950 50

197 950 50

197 950 50

350 1150 100

400 1100 150  
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8.1.1 Example of MATLAB Code for DSM 

%% Constants 

a_Bat = 100; 

a_Speed = 0.25; 

a_Cha = a_Bat*a_Speed; 

   

%% Variables 

Ava = [zeros(1,5) ones(1,15) zeros(1,4)]; 

VS_BC  = [100 250 50 125 50 200 100 50 60 150 100 225 100 75 50 75 100 100 25 100 75 25 150 100]; 

  

SOC_initial = 0.39; 

  

%% Setting Up 

a_size = sum(Ava==0)+25; 

Aeq = zeros(a_size,48); 

beq = zeros(a_size,1); 

  

Aeq(1,1) = 1/a_Bat; Aeq(1,25) = -1; beq(1,1) = -SOC_initial; 

  

for no_hour=2:24 

    Aeq(no_hour,no_hour) = 1/a_Bat; 

    Aeq(no_hour,no_hour+23) = 1; 

    Aeq(no_hour,no_hour+24) = -1; 

end 

  

Aeq(25,48) = 1; beq(25,1)=1; 

  

count=25; 

for no_hour=1:24 

    if Ava(1,no_hour) == 0 

        count=count+1; 

        Aeq(count,no_hour) = 1; 

    end 

end 

  

lb(1,1:24) = 0; 

lb(1,25:48) = 0.1; 

ub(1,1:24) = a_Cha; 

ub(1,25:48) = 1; 

  

%% Objective Function 

f(1,1:24) = -Ava.*VS_BC; 

f(1,25:48) = 0; 

%% Linear Programming 

options = optimoptions('linprog','Display','none'); 

z = linprog(f,[],[],Aeq,beq,lb,ub,[],options); 

%% Output 

Pcha = z(1:24,1); 

SOC  = z(25:48,1); 

 


