
Usability of the Access Control
System for OpenLDAP

by

Yi Fei Chen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

© Yi Fei Chen 2019



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis addresses the usability of the Access Control System of OpenLDAP. OpenLDAP
is a open source implementation of the Lightweight Directory Access Protocol (LDAP),
which is a protocol that communicates with a directory service. A directory service is a
database that stores information about network resources, such as files, printers and users.
An access control system is the mechanism that mediates access, for example, read or
write, to a resource by a user. The access control system makes these decisions based on
an access control policy which states who should have access to what. We hypothesize that
the access control system of OpenLDAP has poor usability. By usability, in this context,
we mean how easy it is for a systems administrator to encode a high-level, informally
expressed, enterprise security policy as an access control policy in syntax that OpenLDAP
expects. We discuss the design and carrying out of a human-subject study to validate this
hypothesis. The study consist of presenting a high-level policy to the participants and
asking them to translate it into an OpenLDAP policy. The study has been approved by
the University of Waterloo’s office of research ethics. We have carried out the study with
a total of 54 users. We present the results from analyzing the data we collected from the
study. We observe that our hypothesis is validated in that only few (20%) people were able
to express a high-level policy as a correct OpenLDAP policy. There is a low correlation
between self reported correctness and actual correctness which suggest that people are not
aware if they made any mistake in their submission. The main source of error comes from
confusion about the OpenLDAP syntax and how precedence rule works.

iii



Acknowledgements

I would like to thank my supervisor Mahesh Tripunitara for his help on my thesis

iv



Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview of OpenLDAP access control system 6
2.1 Directory Information Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Extended Backus-Naur Form . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Syntax of the OpenLDAP access control policy . . . . . . . . . . . . . . . 8
2.4 Resource selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Principal selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Control statment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Precedence rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8.1 Example of effect of precedence rule . . . . . . . . . . . . . . . . . 14

3 Design of the study 16
3.1 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



3.3 Potential difficulties in the task . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Training a participant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Ethics Clearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Data analysis 30

5 Recommendations 35
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Related work 37

vi



List of Tables

2.1 OpenLDAP permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Reliability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



List of Figures

1.1 Access control diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 LDAP tree example used to explain access control . . . . . . . . . . . . . . 3

2.1 LDAP tree example used to explain DN . . . . . . . . . . . . . . . . . . . 7

3.1 LDAP tree for the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Example of the LDAP tree used for the study . . . . . . . . . . . . . . . . 22
3.3 Recruitment poster used for the study . . . . . . . . . . . . . . . . . . . . 26
3.4 Consent letter used for the study . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Consent form used for the study . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Number of submission that accomplish each goal . . . . . . . . . . . . . . 32
4.2 Number of submission vs number of goals accomplished . . . . . . . . . . . 32

viii



Chapter 1

Introduction

Access control is an important part of a security system. It constrains what a user can do
directly, as well as what programs executing on behalf of a user are allowed to do. In this
way access control seeks to prevent activity that could lead to breach of security [19]. We
refer to an user or a program that carries out an action as a principal. We refer to the
action an user or a program performs as an access. There can be different levels of access,
for example, read or write, we call these different levels permissions. The item that is read
or written to is called a resource. The figure 1.1 below show the role of access control in
the overall system system. Access control allows us to set different access permissions for
different principals so that confidential resources could only be accessed by principal with
higher privilege. This configuration is specified by a security policy that is maintained by
a special user called the administrator.
A well-established syntax to express an access control policy is the access control list[19].
An access control list is an ordered tuple of access control rules. Each rule is composed
of resource, principal and permission. These rules specifies which principal can access this
resource with what kind of permission. For example in the following policy Alice can read
and write the docs and Bob could only read docs.

docs: Alice: read,write
docs: Bob: read

In this thesis, we address access control in the context of OpenLDAP, which is an open
source implementation of the Lightweight Directory Access Protocol (LDAP). LDAP is a
protocol that communicates with a directory service. A directory service is a database that

1



Figure 1.1: The diagram shows the function of access control in the security system. There
is a usually an authentication mechanism to validate the user then the access control
mechanism determines if that user has the right to access some object based on a policy
maintained by the administrator.

2



contains information about network resources such as files, computers, printers and users in
a hierarchical structure. An example of a directory service is Microsoft’s Active Directory
[13] . Microsoft’s Active Directory is used, for example, to store login information. The
login program then interacts with the directory service at the time when an user attempts
to login.
OpenLDAP, as we mention above, is an open source implementation of LDAP which is
compatible with GNU/Linux server. In the protocol standard there is no specification for
the implementation of access control in LDAP; thus, each variant of LDAP, and in partic-
ular OpenLDAP, has its own implementation [10].

OpenLDAP uses the syntax of an access control list. OpenLDAP’s syntax for access control
differs from more traditional syntaxes for access control lists such as the one for the POSIX
file system in that it has features to make it more flexible and expressive. These features
also render the syntax more complex.
To illustrate these points, we now present an example of a OpenLDAP policy policy.

Figure 1.2: In this tree, there is a group of two users Alice and Bob and a group of
documents called docs. The high-level policy we want is for Alice to able to read and write
every docs and for Bob to only be able to read doc1.

1: to dn.subtree="ou=docs,dc=example,dc=com"
2: by dn.subtree="uid=alice,ou=users,dc=example,dc=com" write
3: by * break
4: to dn.subtree="uid=doc1,ou=docs,dc=example,dc=com"
5: by dn.subtree="uid=bob,ou=users,dc=example,dc=com" read

3



The OpenLDAP police above encodes the high-level policy mentioned in Figure 1.2. Line
(1) specifies all “docs” as the resource and then Alice is specified as the principal write
permission is given which contain the read permission in OpenLDAP. At line (3) there
is a control statement “break” which is needed for the current setup. Line (4) is where
the second rule starts. Only doc1 is specified as the resource and Bob is specified as the
principal. The permission for this rule is read.

1.1 Our work

In this study, we are investigating the usability of OpenLDAP’s access control system.
Usability in this context is about how easy it is for administrators to use the access control
as a tool to configure the system in order to archive certain security property. In this
thesis, we are focused on how easy it is to translate a high-level policy into a OpenLDAP
policy. This is often a necessary step because “policies are made/implemented by multiple
people” [2]. There is usually a business manager who is the policy maker. He wants
certain security property based on use cases that the system would need to satisfy. The
policy implementer is a system administrator who is familiar with the technology used
in the system. The high-level policy, usually in English, is what the business manager
gives to the system administrator who then transforms it into a policy that OpenLDAP
understand. This is not the only possible task involving access control system. Sometimes
the opposite happen like in the paper by Bera et al [5] where they are assembling rules in
a distributed system to generate a central policy. There are other papers discussing what
kind of high-level policy is the best like the paper by Maritza et al [11]. These aspects are
not in the scope for this study. In this study, we focused on the task of translating the
high-level policy into an OpenLDAP policy in a setup that simulates a small company.
Multiple online blog that teacher how to use OpenLDAP access control system stated that
it is very hard to use:
One Stanford tutorial states “Writing Access Control Lists (ACLs) in OpenLDAP can be
one of the most difficult tasks to undertake. One needs to really consider what goals they
are trying to accomplish with their ACLs”[23]. This tutorial teaches all the different ways
we can specify the principal and resource in OpenLDAP. These ranges from the most basic
such as a subtree group to more complex like regular expression matching. We can also
use attribute list or connection property to filter these expression. Therefore, the tutorial
suggest that the complexity from all these different way of specifying principal and resource
make OpenLDAP difficult to use.

4



Ingo Bente wrote up a tutorial about OpenLDAP from his own experience working with
it. He said “there are multiple ways to really mess things up when changing your LDAP
ACLs”[4]. He identified sequencing as a big problem. Other difficulties related to how
other programs use OpenLDAP to retrieve the information and it is not obvious what
access right the other programs need.
Zytrax’s explained “The access directive (ACL) is brutally complex. It allows very fine
control over who can access what objects and attributes and under what conditions. The
side-effect of this complexity and power is that it is very easy to get olcAccess (access to)
attributes/directives horribly wrong.” [29] This suggest that the difficulty comes from all
the different additional features in the languages that modifies the meaning of a basic rule
such as the attribute list filtering of principal and the resource. Another feature that can
be difficult to use is how the control statements influencing the precedence rule.
Based on my own cognitive walkthrough, in the task of translating a high-level policy into
a OpenLDAP policy, there are two potential source of error. One is the ability to identify
the principal and resource correctly and the other is ability to work out the precedence
rule with all the different control statements that modify it.
Our hypothesis is:

The access control system of OpenLDAP suffers from poor usability.

We designed an usability study where participants are first taught the basics of LDAP and
OpenLDAP ’s access control system. We showed them examples of different OpenLDAP
policies and help them through a quick exercise. Finally they are given a high-level policy
and ask to do the task of transforming it into an OpenLDAP policy. This high-level policy
approximates a basic setup for a small company.
The following chapters explain the basics of OpenLDAP, the design of the study and how
the data was analyzed.

5



Chapter 2

Overview of OpenLDAP access
control system

This overview starts with the explanation of Directory Information Tree which is the back
end system that LDAP connects to. Then we show the structure of OpenLDAP policy
and the semantic meaning of different parts of the syntax. Lastly, the precedence rule that
resolves conflicts is explained.

2.1 Directory Information Tree

As stated before in the introduction, LDAP is a protocol that communicates with a direc-
tory service and a directory service is a database that stores information about network
resources in a hierarchical structure. That structure is a Directory Information Tree. There
is a single root node at the top of the directory tree. Each node in the tree beside the
root node have one and only one parent node. Each node can have any number of child
nodes. In general, each leaf node in the tree represents one network resource such as a
single user, a file or a computer. The intermediate nodes are there to give the tree its
structure and organize the nodes into logical groups. For example, each department in a
company can be a different subtree where the leaf nodes are the employees. Each node in
the Directory Information Tree is associated with a list of attributes and each attribute has
a value. The format of the value depends on the attribute. Each node in the tree belong to
one objectclass. The objectclass specifies what are the mandatory and optional attributes
of the node. There is a schema file that defines these objectclasses and the format of the

6



value for each attribute. Each node in the tree is uniquely identified by a distinguished
name(DN). The distinguished name is a list of comma separated terms, where each term
has the form “objectclass=name”. The distinguish name of any child nodes contains the
distinguish name of its parent as a suffix. This naming convention makes distinguish name
form a path from the root node to the current node.

Figure 2.1: This is a simple example of a directory information tree. The two leaf node
represent uses and has DN. “uid=alice, ou=user, dc=example, dc=com ” and “uid=bob,
ou=user, dc=example, dc=com” . Their parent is “ou=user, dc=example, dc=com” like
the name suggest this node functions as a parent node to a group of users.

2.2 Extended Backus-Naur Form

In this thesis, we use the Extended Backus-Naur Form (EBNF) notation to explain the
syntax of OpenLDAP policy.
The EBNF notation is composed of a list of production rules. Each production rule has
“:=” to separate the right hand side from the left hand side. The left hand side is always a
non-terminal and the right hand side is a sequence of terminals and non-terminals. These
production rules tells us we can replace the left hand side non-terminal with the sequence
on the right hand side. There is a top non-terminal. Using the production rule, we can
replace that non-terminal with sequence of terminals and non-terminals. Repeat this step
for every non-terminal in the sequence, until the final expression consist of only terminals,
which would be a syntactically valid expression.
In EBNF notation angle bracket is used to indicate a non-terminal. The vertical bar is used

7



for options as you can choose one of the expressions before or following the bar. Square
brackets means the terms inside are optional and square brackets with a plus sign means
that the terms inside can appear one or multiple times. Braces means that the terms can
appear zero or more times.

2.3 Syntax of the OpenLDAP access control policy

Below is the OpenLDAP syntax in EBNF notation taken from the OpenLDAP documen-
tation page [slapd]. However this is not a complete syntax since not every non-terminal
has a production rule to explain how to decompose it. Even though it is not a complete
syntax, this should give a basic idea of the structure of the syntax of OpenLDAP policy.

⟨access directive⟩ ::= to ⟨what⟩ [by ⟨who⟩ [⟨access⟩] [⟨control⟩] ]+

⟨what⟩ ::= *
| [dn[.⟨basic-style⟩]=⟨regex⟩ | dn.⟨scope-style⟩=⟨DN⟩]

[filter=⟨ldapfilter⟩] [attrs=⟨attrlist⟩]

⟨basic-style⟩ ::= regex | exact

⟨scope-style⟩ ::= base | one | subtree | children

⟨attrlist⟩ ::= ⟨attr⟩ [val[.⟨basic-style⟩]=⟨regex⟩]
| ⟨attr⟩ , ⟨attrlist⟩

⟨attr⟩ ::= ⟨attrname⟩ | entry | children

⟨who⟩ ::= *
| [anonymous | users | self | dn[.⟨basic-style⟩]=⟨regex⟩ | dn.⟨scope-style⟩=⟨DN⟩]

[dnattr=⟨attrname⟩]
[group[/⟨objectclass⟩[/⟨attrname⟩][.⟨basic-style⟩]]=⟨regex⟩]
[peername[.⟨basic-style⟩]=⟨regex⟩]
[sockname[.⟨basic-style⟩]=⟨regex⟩]
[domain[.⟨basic-style⟩]=⟨regex⟩]
[sockurl[.⟨basic-style⟩]=⟨regex⟩]
[set=⟨setspec⟩]
[aci=⟨attrname⟩]

8



⟨access⟩ ::= [self]{⟨level⟩|⟨priv⟩}

⟨level⟩ ::= none
| disclose
| auth
| compare
| search
| read
| write
| manage

⟨priv⟩ ::= {=|+|-} {m|w|r|s|c|x|d|0}+

⟨control⟩ ::= [stop | continue | break]

An OpenLDAP policy is a list of rules. A rule in the OpenLDAP nomenclature is called
a directive. Let’s focus on the production rule for directive It has four non-terminals :
⟨what⟩, ⟨who⟩, ⟨access⟩ and ⟨control⟩. The semantic meaning of these components are
explained in the following sections. The first component is ⟨what⟩. This is a resource
selector. It is used to specify a group of items that is being accessed. ⟨who⟩ is the principal
selector, It specifies a group of user that’s doing the access. ⟨access⟩ specifies what kind of
permission this rule allows such as read or write. Lastly, we have ⟨control⟩ which influence
the precedence rule. The precedence rule is explain in its own section. The ⟨who⟩,⟨access⟩
and ⟨control⟩ are surrounded by a square bracket with a plus sign. This means that
this tuple could appear one or multiple times in a single directive. We call this tuple a
subdirective. lastly [⟨control⟩] is surrounded by just a square bracket, which means that it
is optional. Putting all this together, The OpenLDAP access control list is composed of
a list of directives. Each directive have a resource selector at the beginning and then one
or multiple subdirectives, each composed of a principal selector, an access statement and
optionally a control statement.

2.4 Resource selector

Resources in OpenLDAP that we can add or modify are the nodes of the tree and the
attribute values associate with each node. First, let’s look at the production rule for
⟨what⟩ ,the resource selector. There are two options, the first one is ∗, this is a special
keyword to signify everything in the tree. Next we have ⟨scope-style⟩ or ⟨basic-style⟩.

9



Both these styles are used to select a group of nodes in the Directory Information Tree.
⟨basic-style⟩ uses regular expression matching to define a group of nodes. The nodes with
their DN matching the regular expression form the group of nodes selected by basic style.
While ⟨scope-style⟩ rely on the tree structure to create a group. In ⟨scope-style⟩ we can
define a group of nodes using subtree by just specify the root node of this subtree.
We have two optional terms for ⟨what⟩. The first one is ⟨ldapfilter⟩, this is used to filter
the group of nodes specified by the previous term. The filtering is based on attribute
value. The ⟨ldapfilter⟩ follows the the syntax of search filer specified in LDAP protocol
[22]. The last optional term is a ⟨attrlist⟩. This can take two forms one is the form of :
attributename value=expression. This has the same function as the ldap filter which is to
filter the group of nodes base on attribute value. The other form ⟨attrlist⟩ can take is a list
of attributes. As stated before the resources can be specific attributes of the nodes. If this
optional term is not present then the resource selector is selecting every attribute in the
node of the group, but if this attribute list is present then only attributes in the attribute
list are selected. This gives finer control to how the resource are selected.

2.5 Principal selector

In OpenLDAP, the principals can be any node in the directory information tree. However
most of the time the principals are the leaf node that represent a network user. Like the
resource selector ⟨what⟩, the principal selector, ⟨who⟩, can use ⟨basic-stlye⟩ or ⟨scope-style⟩
to specify a group of nodes as the principal. It also has a ⟨attrlist⟩ to filter base on attribute
value. In addition to that, you could also filter base on network connection properties like
what IP address you are connection from and the security strength of that connection.
The principal selector also have more keywords like anonymous, user and self. Anonymous
would match anyone who is not authenticated. User are anyone who is authenticated. Self
is for when the resource is the same node as the principal.

2.6 Access

There are two ways to specify access permission: ⟨level⟩ and ⟨priv⟩ . In the study ⟨level⟩
are used, since it is easier to understand. ⟨level⟩ has 9 possible keywords that specify what
kind of access they permit. Most of them are self-evident. The table below, taken from the
openldap documentaion [16] shows all the permission keywords with a brief explanation
of the kind of permission they allow. The ordering that these keywords appear in the

10



notation is actually important. With ⟨level⟩ any permission that appear later include
the permissions that appear earlier. For example, write permission contains the read
permission. Therefore using only the ⟨level⟩ syntax, it is not possible for an user to write
something that he cannot read. If this behaviour is desired than we need to switch to the
⟨priv⟩ syntax. The ⟨priv⟩ syntax is more powerful as it can expresses more permission setup
than the ⟨level⟩ notation. ⟨priv⟩ has eight possible letters and one number each signify
some kind of access. They are “m,w,r,s,c,x,d,0”. Each of these signify a kind of permission.
The ⟨priv⟩ syntax is composed of two parts an operation sign and a sequence of letters.
The operation sign states what to do with the permissions represented by the sequence
of letters. Plus sign means adding those permissions and minus sign means remove those
permissions. Equals sign means set those permissions, which means remove all previous
permissions and then add those permissions specified by the current directive. The table
below is taken from the OpenLDAP documentation[16]. It explains what each kind of
permission means and also matches each ⟨level⟩ with their equivalence in ⟨priv⟩.

Level Privileges Description
none =0 no access

disclose =d needed for information disclosure
on error

auth =dx needed to authenticate (bind)
compare =cdx needed to compare
search =scdx needed to apply search filters
read =rscdx needed to read search results
write =wrscdx needed to modify/rename
manage =mwrscdx needed to manage

Table 2.1: OpenLDAP permissions

2.7 Control statment

The ⟨control⟩ is the control statement that influences how the precedence rule determines
which directive takes effect when a conflict arises. There are three possible control state-
ments: “stop”, “continue” and “break”. However the control statement is optional, when
it is not present then it works as though the “stop” statement is there.

11



2.8 Precedence rule

The semantics explained in the previous sections shows how a single directive grants a
permission to a group of resources for a groups of principal. However, a single resource
can potentially appear in multiple different directives and a single principal can potentially
appear in multiple different directives or just different principal groups in the same directive
but different subdirectives. When that happens, there is a conflict and the precedence rule
is used to determine which directive takes effect. The precedence rule is quite complex and
works on a case by case basis where each pair of a single resource and a single principal is
considered a case. The behaviour of how OpenLDAP determines the permission for any
pair of principal and resource is explained using the pseudo code below. The pseudo code
is written by us based on the explanation of the control statements in the OpenLDAP
documentation. The part of the system that executes this algorithm is referred to as the
reference monitor. There are two inputs to this algorithm. One of them is a tuple T(P,R,X)
that contains the information of the access control check and the other is the OpenLDAP
policy.
In the tuple T, T.P is the principal that is requesting the access. T.R is the resource that
is being accessed and T.X is what kind of permission is required for this access. Both T.P
and T.R are a single principal and a single resource respectively.
When an access control check is initiated, the reference monitor processes the directives
in the order they appear in the configuration file. However there are some modifications
made to the OpenLDAP policy. These modifications are an added default end directive
and an added default end subdirective. There is a directive “to * by * none stop” added
at the end of the policy. It is there to catch all the cases where no other directive matches
the resource and the principal in T. The subdirective: “ by * none stop” is added at the
end of every directive. Please note that these modifications do not actually appear on
the OpenLDAP policy they are there to make the precedence rule easier to understand
conceptually.
The algorithm assumes that the permission is specified using the ⟨priv⟩ syntax if the ⟨level⟩
syntax is used we can covert them to their equivalence in ⟨priv⟩ according to the permis-
sion table in the previous section. In the pseudo code we use the word match to means
when the resource selector contains T.P or when the principal selector contains T.R. The
algorithm stores a set of permissions in a variable called accumulator which is the return
value of the algorithm. If T.X is one of the permissions contained in the accumulator then
the access control check succeeds and the access is allowed else the access is denied.

12



1 initialize accumulator to empty set
2 lastcontrol get none
3 // iterate through each directive
4 for each directive , d, in acl do
5 if d.what matches T.b then
6 // iterate through each subdirective
7 for each subdirective, s, in d do
8 if s.who matches T.a then
9 // modify accomulator appropriately

10 if subdirective.accessop = “+” then
11 accumulator ← accumulator ∪ s.accesslevels
12 end
13 if subdirective.accessop = “-” then
14 accumulator ← accumulator \ s.accesslevels
15 end
16 if subdirective.accessop = “=” then
17 accumulator ← s.accesslevels
18 end
19 // store the control statement
20 lastcontrol ← s.control
21 if s.control ̸= continue then
22 break
23 end
24 end
25 end
26 // check if the last control is break
27 if lastcontrol ̸= break then
28 return accumulator
29 end
30 end
31 end
The reference monitor will execute this algorithm when an access control check is initiated.
There are two loops in the code. The first one at line 4 and the second one at line 7. They
are not infinite loops since there are a finite number of directives and subdirectives to loop
through. However, because of the default directive the algorithm is guaranteed to return
at line 28. The check for control statement at line 21 is reached when the principal selector

13



and resource selector matches the principal and resource in T. If the control statement is
“continue” then the algorithm continues looping through the subdirectives. If the control
statement is “break” then the check at line 27 fails and the algorithm continues looping
through the directives. If the control statement is “stop” then the reference monitor returns
with the value in the accumulator. This means that reference monitor always returns at line
28 after processing a matching subdirective that has “stop” control statement. This is the
case for the default end directive since it has “stop” as control statement and its principal
and resource matches everything. The default directive returns with none permission.
Therefore, the question is if there is another directive and subdirective that matches the
principal and resource in T and have a “stop” so that the reference monitor return before
reaching the default end directive.

2.8.1 Example of effect of precedence rule

We now discuss some examples of the manner in which a control statement impacts an
OpenLDAP policy. We use a line number followed by a colon, for example, “3:” so we can
refer to each line with clarity. The following OpenLDAP policy comprises two lines, Line
(1) and (2). Line (1) gives Alice read permission to herself. Line (2) has no effect because
Line (1) matched.

1: to dn.subtree="uid=alice" by dn.subtree="uid=alice" read
2: by dn.subtree="uid=alice" write

Following is the same policy as Lines (1) and (2) with the “continue” control statement
appended to Line (1). We refer to this new policy as Lines (3) and (4) below. In the
OpenLDAP policy that comprises Lines (3) and (4) below, Line (3) grants Alice read
to herself, but is however overridden by Line (4), which grants Alice write to herself.
Suppose Alice attempts to exercise read access. Then even though this attempt matches
the principal and resource in Line (3), the “continue” at the end of Line (3) causes
the reference monitor to continue on to line (4) which also match and gives Alice write
permission.

3: to dn.subtree="uid=alice" by dn.subtree="uid=alice" read continue
4: by dn.subtree="uid=alice" write

Another example, in this following OpenLDAP policy Bob does not have read permission
to Alice because the first directive at line (5) have the resource selector that contains Alice.

14



When the reference monitor process the line (5) the default subdirective will match the
case when bob tries to read Alice, thus it will return with none permission.

5: to dn.subtree="uid=alice" by dn.subtree="uid=alice" read
6: to dn.subtree="uid=alice" by dn.subtree="uid=bob" read

However, if we use the “break” control statement in the first directive. The reference
monitor would not return at line (7) and continues processing to line (8). Then Bob would
have read permission to Alice.

7: to dn.subtree="uid=alice" by dn.subtree="uid=alice" read by * break
8: to dn.subtree="uid=alice" by dn.subtree="uid=bob" read

These example shows that in order to check all the potential conflict we would need to keep
track of all the other directives and figure out exactly who the principal and resource are
and then try to identify if these groups of principal and resource intersect with any other
groups of resource and principal in another directive. This can be difficult as we need com-
pare every directive. Changes in a single directive could have unintended consequence for
other directive in the list, thus we potentially need to go through the whole access control
list again to verify the correctness after each change. This process is also what makes the
access control very expressive because of the many different way of grouping the principal
and resource and using different control statement, we can produce very different look-
ing access control list which grants the same permissions. So there is not a single correct
implementation when we want to write an access control list for a specific high-level policy.

15



Chapter 3

Design of the study

In this chapter, we explain how we conceived the task for the study and how we teach the
participants to use OpenLDAP access control system.

3.1 Policy

As stated before the focus of the study is for the participants to translate a high-level
policy into a corresponding OpenLDAP policy that accomplish the goals of the high-level
policy. In the study, the high-level policy is one that imitates the setup of a small company.
we decide not to design the study base on multiple simple task that accomplish a single
goal at a time because a major step that can cause difficulties is how we organize the
directives and if we need to separate them or merge together. If the study is a series
of simple tasks of one goal at a time then there is less opportunity for the participants
to reorganize the directives. Therefore, we design the the task to be composed of list of
multiple goals that can potentially interfere with each other. Given the time limitation,
we decided that a single task that is composed of multiple goals would be enough. For
this study, the participants are given a high-level policy composed of a list of goals that we
want to accomplish and they are specifically told that there are no ordering for these goals
and there is no one to one mapping between each policy goal and a access control directive.
This is to remind them that there are always multiple possible OpenLDAP policy that can
satisfy the same high-level policy. The first list below is the high-level policy that is given
to the participant as the goal of the task of the study.

16



The high level policy of the study

1. admin has write permission to every-
thing in the tree.

2. every user has write permission to
her/his own attributes (displayName,
mobile, telephoneNumber, and user-
Password).

3. humanresources has write permission to
all employee entries.

4. sambaservice has read permission to all
userPasswords.

5. managers of engineering and account-
ing have write permission to all their
users.

6. anonymous has authentication permis-
sion to all userPasswords.

7. all employees can read the displayName,
mobile and telephoneNumber attributes
of all other employees .

Goals taken directly from Bente’s blog [4]
A There is a technical admin user that has write access

to everything. LDAP admins have write access to ev-
erything by using their personal user accounts.

B A user has write access to a certain set of his attributes,
including the password. This is mandatory to support
any reasonable kind of self service. However, a user
should not be able to change all of his attributes.

C For example, a user should not be able to change hist
email address (otherwise, your IT department might
have a really bad day). Obviously, a user should not
be able to read or change the password of other users.

D Members of User Help Desk and HR have access to
manage user accounts by using their own, personal user
accounts. This involves task like resetting passwords,
deactivating existing accounts and provisioning of new
accounts.

E There will be technical service accounts. Think of a
Samba server that requires read permissions on some
user attributes (like sambaNTPassword which sadly is
still a thing). Such accounts should have read access
to basically the entire LDAP tree, but should avoid to
be given write access. You don’t want to misuse your
technical admin account as a service account either.

F This one is a bit tricky. Depending on your business,
you will need some sort of group membership man-
agement. In order to keep your LDAP admins from
freaking out, you need to come up with a distributed
approach. We did the following: For each group, there
is a specific set of managers. Each manager has write
access to his group, so that he can add new members
and remove existing members, but not to other groups.

G Anonymous cannot read or write anything.

This policy of the study is inspired by Bente [4] who sought to migrate an existing system
to the OpenLDAP directory service. This policy has seven goals, Goals (1)–(5) are directly
from Bente [4], except that my goals are simplified and my goals all have the same simple
sentence structure : principal has permission to resource. This makes it easier for partici-
pants to figure out what the principal resource and permission are for each goal. The last
two of my goals was not explicitly stated in Bente’s policy but they are very common uses

17



cases.
Bente’s Goals (A) and (B) merged into one goal since those two goals were very similar.
They were both about some kind of administrator having write access to everything. This
translate into my goal (1) : the system administrator have write to everything. My goal
(2) is for self service where each user can change their own attributes. We did not include
the constraint where some attribute are not writable by oneself. My goal (3) is give HR
the ability to manage all employees. This is a translation of goal (D) from Bente. My
goal (4) is to allow certain programs to work with the information stored in the directory
tree. Specifically sambaservice is the SMB protocol of the windows system. This goal
corresponds to Bente’s goal (E). My goal (5) is for each department to be managed by
their own managers which corresponds to Bente’s goal (F). My goal (6) is an one rule that
needs to be included in every working OpenLDAP policy since it is needed for user to login
to the LDAP system. My goal (7) is for employee to know some basic contact information
of other employees which is a very logical requirement.
This policy is applied to the LDAP tree below. Ingo Bente did not show what kind of
tree he was working with. The tree below is a simple one that represents a small company
with three departments that has managers for engineering and accounting departments.
The participants are given the tree diagram below. They also have access to a program
called ApacheDirectoryStudio which is used to examine Directory Information Trees. This
program shows each node with its attribute and its place in the directory tree structure.

18



Figure 3.1: LDAP tree for the study

3.2 Syntax

The syntax used in this study is a scaled down version of the full syntax for OpenLDAP.
The following is the reference sheet giving to the participants to show the restricted syntax.

syntax of each acl rule

to RESOURCE by PRINCIPAL PERMISSION
[by PRINCIPAL PERMISSION]
...

19



[by PRINCIPAL PERMISSION]
[by * break]

to RESOURCE by PRINCIPAL PERMISSION
...

RESOURCE :
dn.subtree="domain name" [attrs="attribute name","attribute name"]
* [attrs="attribute name","attribute name"]

PRINCIPAL :
dn.subtree="domain name"
*
users
anonymous
self

PERMISSION :
none
auth
read
write

The order of the rules in an access control list matters.

In this restricted syntax, only “dn.subtree” and the special character ⋆ are used as a way
to specify the resource. This syntax also include the attribute list use to specify the set of
attributes for the resource group. The principal selector also uses the “dn.subtree” syntax
and four other possible keywords : ⋆, user, anonymous and self. The restricted syntax
uses only the default “stop” control statement except we give the option of adding “by *
break’’ at the end of the directive to change the precedence rule. The simpler ⟨level⟩ syntax
for permissions are used. This simplified syntax contains most source of difficulties in
OpenLDAP access control system, while not overloading the participants with complexity
like more detailed ways to specify the resource and principal and additional ways we can
modify how the precedence rule works with more control statements.

20



3.3 Potential difficulties in the task

To write the OpenLDAP policy that encodes the policy from the first section, a participant
would first need to identify the principal, resource and permission that would satisfy each
case mentioned in the policy goal, then they would try to write down a set of directives
that accomplish that policy goal, preferable in as few directives as possible. This step is
repeated for all 7 policy goals. After finishing the previous step for all the policy goals, the
participant puts all the directives together into a single list and then check the ordering
of the directives which means going through each policy goal and trying to figure out if
one of the directive conflict with another. This involves checking if the resource in one
directive intersect another and then if it the principal intersect. If such intersection exist
the participant needs to try to figure out if with the current order of the directives in the
access control list is correct or some kind of fix is necessary, such as changing the ordering
of the directives or decompose one directive into multiple different directives that cover
different part of the resource and principal. Another task during this process is to try to
merge multiple directives into one directive in order to simplify the access control list. The
merge is possible when the two directive have the same resource.

3.4 Training a participant

The participants were first taught the scaled down version of the syntax by going through
the syntax reference sheet which explains what each expression means. After, they were
given the following examples.

21



Figure 3.2: Example of the LDAP tree used for the study

The following is the policy that all the examples want to accomplish

1. Alice has write permission to herself

2. Bob has write permission to himself

3. Alice and bob has read permission to each other.

Example 1:

1: to dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca"
2: by dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca" read
3: by dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca" write
4: to dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca"
5: by dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca" read
6: by dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca" write

22



Example 2:

7: to dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca"
8: by dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca" write
9: by dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca" read
10: to dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca"
11: by dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca" write
12: by dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca" read

The first two example has the same strategy of using one directive for when Alice is the
resource and another directive for when Bob is the resource. For each directive there are
two subdirectives one to give read permission to each other and the other to give write
permission to themselves. The difference between the examples is the ordering of the
subdirectives. Example 1 fails to accomplish the policy, as Alice and Bob does not have
permission to write to themselves. If we look at the case where Alice tries write to herself.
The resource selector at line 1 and the principal selector at line 2 would match that access
control check, thus the reference monitor would return at line 2 with read permission which
means that Alice can not write to herself. The same thing would happen for Bob with line
4 and line 5. Example 2 fixes this problem by changing the ordering of the subdirectives so
that the first subdirectives are for writing to themselves and the second subdirectives for
reading each other. This ordering prevent the issue encounter at examples 1. If we look
at the case where Alice write to herself then line 7 and line 8 would match and give the
corresponding write permission. The case where Bob reads Alice would match line 7 and
line 9 and gives the correct permission. line 8 does not interfere with this case since the
principal selector would not match.

Example 3:

13: to dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca"
14: by dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca" read
15: to dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca"
16: by dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca" write
17: to dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca"
18: by dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca" write

Example 4:

23



19: to dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca"
20: by dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca" write
21: to dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca"
22: by dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca" write
23: to dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca"
24: by dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca" read

Example 5:

25: to dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca"
26: by dn.subtree="uid=alice,ou=examplegroup,dc=uwaterloo,dc=ca" write
27: by * break
28: to dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca"
29: by dn.subtree="uid=bob,ou=examplegroup,dc=uwaterloo,dc=ca" write
30: by * break
31: to dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca"
32: by dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca" read

The following examples use the same strategy of matching a single directive for each policy
goal. Example 3 fails because of the ordering of the directives. The goal of Alice writing
to herself is supposed to be fulfill by directive at line 15 and the goal of Bob writing to
himself is supposed to be fulfill by directive at line 17. However, for both these cases, the
reference monitor will return after line 14 because the resource selector at line 13 and the
principal selector at line 14 would also match all these cases and thus the reference monitor
gives read permission. Therefore example 3 fail to accomplish the policy.
Example 4 tries to fix the mistake in example 3 by reorder the directives. However, If we
look at the case where Alice tries to read Bob the reference monitor will return after line
22 with the default subdirective. The resource selector at line 21 matches Bob which is the
case we looking at, although the principal selector at line 22 does not match the principle,
we need to remember the added default subdirective with a principal selector that matches
everything thus the reference monitor would return after line 22 with none permission for
Alice tries to read Bob. The same thing happens when Bob tries to read Alice the reference
monitor will return after line 20, thus example 4 also fails to accomplish the policy.
Example 5 fixes the problem with example 4 by adding the “by * break” statements.
For the case when Alice tries to read Bob, although line 28’s resource selector would still
match. Line 30’s control statement will tell the reference monitor to continue looking at

24



the following directives thus the reference monitor will return at line 32 and give read
permission. The same happens for Bob trying to read Alice with line 27.

Example 6:

33: to dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca"
34: by self write
35: by dn.subtree="ou=examplegroup,dc=uwaterloo,dc=ca" read

The last example teaches the participant how to use the keyword self and how to merge
two directives into one. Line 33 and Line 34 gives Alice and Bob write permission to
themselves as this leverage the power of the keyword self which is when the principal and
resource are the same node, thus line 34 would only match when Alice and Bob tries to
write to themselves. Line 25 would catch the other case which is When Alice and Bob
would try to read each other.
After the examples we proceed into an exercise where the goal is change to

1. Alice has write permission to herself

2. Bob has write permission to himself

3. Alice and bob has read permission to each other’s display name but not userpassword

This exercise requires the participants to use the attribute list in the resource selector since
we need to select only the displayname attribute not the userpassword attribute.

3.5 Ethics Clearance

We applied for, and received clearance, from the Office of Research Ethics at the University
of Waterloo. Our study requires such clearance because it involves human subjects. We
determined there are minimal risk to the participants since the task only involve them
sitting in front of the computer and typing a few commands. The sessions are record but
their information are kept anonymized to preserve their privacy. This information is also
kept secure in the primary investigators office.

25



u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
75

0-
82

92

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
75

0-
82

92

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
75

0-
82

92

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
75

0-
82

92

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
75

0-
82

92

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
75

0-
82

92

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
75

0
-8

29
2

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
75

0-
8
29

2

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
75

0
-8

29
2

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o
.c

a
22

6-
75

0
-8

29
2

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o.

ca
22

6-
7
50

-8
2
92

u
sa

b
le

se
cu

ri
ty

y
f8

ch
en

@
u
w

at
er

lo
o
.c

a
22

6-
75

0-
8
29

2

$20 for 1 hour
of contribution to university research

USABLE COMPUTER SECURITY
Electrical & Computer Engineering, University of Waterloo

Seeking participants for a university research
study on usable computer security

You will be provided training and asked to complete a set of tasks using a

command-line on a conventional desktop computer. You need to possess basic

working knowledge of a UNIX/Linux command-line shell (e.g., bash, csh) and

no prior working knowledge of LDAP. With your permission, we will record

what you type and audio. Your anonymity will be preserved as set out by the

Office of Research Ethics. Your participation will be for an hour, for which we

will remunerate you $20. To participate, please contact one of:

Yi Fei Chen, yf8chen@uwaterloo.ca, MASc candidate

Prof. Mahesh Tripunitara, tripunit@uwaterloo.ca

This study has been reviewed by, and received ethics clearance through, the Office of Research Ethics,
University of Waterloo.

1

Figure 3.3: Recruitment poster used for the study

During the recruitment process we only require the participants to be familiar with UNIX
command line. Since we want the participants to be familiar with tree structure and some
notion of access control and it would be difficult to ask people if they have some knowledge
of access control. However that is a ambiguous question, thus we ask for familiarity in with
UNIX since the UNIX file system is one examples of access control system. Anyone familiar
with the UNIX command should also be able to navigate through a tree structure. We
assume the participants who fulfill the requirement are very similar in technical knowledge
to junior system administrators.

26



Figure 3.4: The consent letter informs the participants what they are doing during the
study and they are recorded with a screen capture and audio recording.

27



Figure 3.5: The consent form just ask them to acknowledge that they have given their
permission for the recordings.

28



3.6 Limitations

Our study has some limitations, which we discuss in this section. One limitation for the
study, it that we assume that the directory information tree is static. A dynamic tree could
create more difficulties, but then we would need to constraint the study to the most likely
changes such as adding user or removing a user from a group. There could also be more
drastic changes like adding new attribute to every user.
Another aspect to consider is that the task of the study is focused on writing OpenLDAP
policy base on a high-level policy. However the opposite case could also occur like when we
need to update the system but was unable to find the original high level policy. In this case
we would need to figure out the original high-level policy base on the current OpenLDAP
policy that is in the system.

29



Chapter 4

Data analysis

There were a total of 54 people who participate in the study.
The first four participants were treated as pilot participants, in that they were used to fine-
tune the manner in which we conducted the study for the remainder of the participants.
Two of them accomplished the task without too much difficulty. One of them made the
mistake of switching principal and resource in the syntax and another had difficulty with
the self keyword. Thus the training script was changed to explicitly mention these issues
as mistakes to avoid.
The actual study was conducted on 50 participants. However two of the participants had
a lot of difficulty with the task. Both of them gave up halfway through the session and did
not finish the task. Thus those two submissions are discarded. Out of the remaining 48
submissions only 20.8% got everything correct with +/-11.5% for the 95 percent confidence
interval. Since the high-level policy is given in English there could be some interpretation
difference. More specifically, for goal 5 “managers of engineering and accounting have
write permission to all their users”. The term “their users ” could have two different
interpretations. If we look back at the directory tree the engineering department has two
sub groups engineers and mangers. The accounting department also have two subgroups
accountants and managers. One interpretation of the high-level policy is that “their users
” means everyone in the department including the managers. The other interpretation is
that “their users” only include the workers of the department but not the managers. For
the correctness both of these interpretation are considered valid.
During the study, we note down the time it takes for each participant to accomplish the
task. The timer starts after introducing the high-level policy and showing the participants
the directory tree. The timer stops after we confirmed with the participants that they feel

30



that they did the best they could. We always the participants the option of taking as much
time as they want. After they finish the task, we also ask them how confident they are
that their OpenLDAP policy accomplishes the goals listed in the high-level policy.
The average time it takes to accomplish the task is 25.73 minutes with standard deviation
of 6.84 minutes. The point-biserial correlation between time taken and correctness is only
0.105 which is very low. This is not very surprising since the participants know that there
are 30 minutes allocated for the task and most people use all the time provided. The
participants was also ask for how well do they think they did between 0 to 100 percent.
The average of the self reporting is 71.10 percent with a standard deviation of 14.17%.
The point-biserial correlation between self reported correctness and actual correctness is
also very low at 0.0275. The low correlation tells us the participants are not certain if they
made any mistakes in their submission.
Each submission is also evaluated based on the if the submission accomplish each individual
policy goal. There are 7 high-level policy goals, 1 point is giving if their OpenLDAP policy
fulfills the requirement for every possible combination of principal and resource mentioned
in that policy goal. There is a extra point awarded for checking that the submission does
not give extra permission to principal and resource pair not mentioned in the high-level
policy. Since a single syntax mistake can causes the whole submission to fail in the eyes
of the system. We fix the following simple syntax mistakes: missing quotation marks,
extra quotation mark/bracket and spacing issue. These issue are fixed because with a
robust error detection tool, these error should be obvious to anyone writing the policy.
They appear in the study since the tool used did not have a very good error message
system to show where the syntax errors are. For all other syntax mistakes, we remove all
directives that cause a syntax issue and evaluate the left over directives as is. Based on
those criteria, the following table shows the number of participants that accomplish each
goal in the high-level policy.

31



Figure 4.1: Number of submission that accomplish each goal

We also compiled to see how many goals is accomplish by each submission. The following
table shows what number of submission scored how many points.

Figure 4.2: Number of submission vs number of goals accomplished

We can see that there are actually lot of people who got six and seven points and there is

32



Scale
Mean
if Item
Deleted

Scale
Variance
if Item
Deleted

Corrected
Item Total
Correla-
tion

Cronbach’s
Alpha
if Item
Deleted

policy1 4.19 5.47 0.38 0.81
policy2 4.25 5.55 0.30 0.83
policy3 4.40 4.50 0.79 0.75
policy4 4.46 4.72 0.67 0.77
policy5 4.42 4.72 0.67 0.77
policy6 4.37 5.05 0.51 0.80
policy7 4.31 4.86 0.62 0.78
no extra
permission 4.17 5.63 0.31 0.82

Table 4.1: Reliability analysis

another group that only got a one or two right. This seems to imply that there are two
groups in the participants. One group that understood most of OpenLDAP access control
system and the other that has lots of difficulty with it. However this can be misleading,
because of the precedence rule one directive could influence all directives after it. Thus one
submission that only got one or two points could be just that they made mistake on one
control statement that derail all the other directives after it. Half of the submissions that
only got around 2 points is because they did not use “by * break” after the first directive
which was necessary in order to not interfere with the other directives. Another reason
that there are a big group of people who only got a few right is that they made the mistake
of confusing where the principal and the resource should be placed in the syntax. Thus
they fail lots of policy goals. Interestingly for those that got confused about the placement
of principal and resource in the syntax. For directives that uses keywords such as self or
anonymous, they would write the directive with the correct syntax. This is probable due to
the fact that the reference sheet would remind them that these keywords are the principal
and where it should be place in the syntax. While when the principal and resource both
use “dn.subtree” syntax, they would get confused.
Using reliability test we can see how difficult each policy goal is and which one are more
correlated with the correctness of the submission. The goal that is least correlated with
correctness should be the most difficult to accomplish.
The first and second policies are the least correlated with successful, since there are more

33



submissions that accomplishes these goal. The majority of the submissions follow the order
that the goal are list in the high-level policy so the directive that accomplish the first goals
are usually the first directives in the list and since the precedence rule favours the directives
that appears first. These directive are less likely to be affected by any precedence issue ,
thus higher rate of success. The “no extra permission point” is also not very correlated.
The participants are fairly conservative when writing permission very few people actually
try to write a directive that can potentially gives extra permissions and then use the
precedence rule to restricted it. The submission that gives extra permission are all caused
because they misunderstood how the syntax works.
The 3rd goal is most correlated with success followed by goal 4 and 5. These goals contain
errors that participants are more likely to make. One source of error comes from the
fact that if the submission give the employee read permission to each other appear before
directives that try to accomplish goal 3 and 5, the directive for goal 3 can interfere with
the other directives that accomplish goal 3 and 5. For goal 4, a common error is that
when the high-level policy refer to the resource as all userpasswords the participants gets
confused and only use the employees userpasswords as resource. In their mind only the
employees are the users for this case. Interestingly goal 6, has the exact same resource but
less participants made the same mistake on it. Some participants that got goal 4 wrong
got goal 6 correct.

34



Chapter 5

Recommendations

There were many participants that made the mistake of switching the principal and re-
source, thus we should change the syntax so that the principal appear first and then the
resource. This matches more closely to the English sentence structure of subject-verb-
object. The principal corresponds to the subject and the resource corresponds to object.
This new syntax would feel more natural to English speaker as the ordering of the principal
and resource in the OpenLDAP syntax would match the order in the English language.
Another recommendation would be to change the default subdirective in order to minimize
the need for control statement. Using the current OpenLDAP syntax two directives that
has the same resource selector would cause conflict even if the principal selector does not
intersect. If we change the default sub directive so that if the resource selector intersect
but no principal selector intersect then the reference monitor would continue looking at
other directives without need to add a break statement at the end. In the current syntax,
if we want to minimize the use of control statements we need to merge as many directive as
possible that targets the same resource. If this change is implemented then we only need
to consider the precedence rule, when the resource selector and the principal selector both
intersect with another directive instead of current syntax where only the resource selector
needs to intersect.

5.1 Future work
The previous recommendations focused on the more obvious mistakes made by a lot of
participants, however the problem of ordering the directives does appear to affect some of
the participants. Solutions to fix this problem would require more work.

35



Like other access control system such as svnauthz for the SVN version control system,
there is a tool in OpenLDAP that can verify for a specific pair of principal and resource
what kind of access is allowed. The tool is called slapacl. The inputs to it are a DN that
serve as the principal, another DN for the resource, an attribute name and the kind of
access permission that is being checked. The tool returns “allowed” or “denied” to tell us
is the current access succeed or not with the current OpenLDAP policy. This tool was
not used in the study. If introduced for the participants that were confused about the
syntax, the tool can clarify what the current OpenLDAP policy is doing. However, this
tool can only be of limited help since it is restricted to a specific principal and resource at
a time, so not a group of principal and resource. For example, if we look at the task in the
study there are more than 400 possible pairs of principal and resource. This tool does not
single-handedly solve the problem of ordering the directives, since looking through each
pair will be a very time consuming process and potential very tedious. There are many
similar pairs of principal and resource that have the same permission, thus it is still up to
the participants to find the edge cases. A better auditing tool would be one that can figure
out which directives are actually conflicting with each other and states all the conflicting
cases in a succinct way. It should point out the directive that has precedence and propose
some possible alternative if the precedence is not working as what the user has in mind.
Another possible solution to the sequencing issue is to make a completely new tool that
uses a different conceptual model for the access control policy which avoids the need of a
precedence rule by being internal consistent. The new model would use a new syntax based
on declarative language which describe the end result with out caring about the details.
This new syntax would still need to model the access relationship between resources and
principals. It should also still uses the tree structure of the nodes to group them together.
After devising such a model, we can make a tool that converts any policy in the new syntax
into an OpenLDAP policy and then conduct a study to verify if the new model is indeed
easier to user than the current OpenLDAP model.

36



Chapter 6

Related work

Our work relates usability with access control. While some instance it can be argued that
there is a trade off in system with usability and security. Such as the papers by Raz et al
[6] and Feth [9] that tries to find the balance between security and usability.
However, this view is only valid when looking at normal users for the system. If we look at
the experiences of the system administrator, then usability and security goes hand in hand.
As explained by Saltzer and Schroeder [18]. They explain the principal of Psychological
Acceptability which is that human interface must be easy to use. The user must have a
correct mental image of the goals and the mechanism of the system. In the instance they
user they are talking about is the administrator.
There are multiple papers testing different systems to see if users does indeed have correct
mental image. Raja et al [17] showed “Most of the participants did not have a useful
mental model of of firewalls”. Felt et al [8] show that Android users do not understand the
permission system. This lack of understanding could lead to security venerability. Xu et al
[28] show that security misconfigurations happen because user does not fully understand
the system and use trial and error to configure it.Tan et al [24] showed users are more
likely to accept security prompt when there is a brief explanation even if they don’t really
understand it.
In order to increase the usability there are paper that focus on the kind of policies that
people want and implement. Smetters et al [21] examine how uses share their files and
notice that they prefer sharing sharing the whole folder rather than configure each file
individually. Motiee et al [14] also examine the policy of users for sharing files and see if
they follow the principal of least privilege. They showed Windows users do not follow the
principal of least privilege.

37



There are multiple aspect to configure the security policy. The following paper concentrate
on the step of how security requirement becomes a high level policy and how we can improve
this step. Werlinger et al [27] examine how security administrator communicates with
different stake holder in the context of security. Karp et al [12] presents some guideline to
make access control part of the user work flow thus easier to configure and less likely to
make mistakes. Another asepct that is being investigate is the different model for security
we can have. More specifically how the different syntax models the security requirements
Olson et al [15] propose a different model for access control syntax that is more expressive
and based on the semantics of Transaction Datalog. Beckerle et al [3] propose some metrics
to evaluate the usability of access control policy.
These model of secuirty can be easily translate from one to another as the paper by
Barkley [1] show an role based model can be implemented using access control list with
group mechanism.
There are other research on increasing the usability of the access control of specific system
with a new tool. Such as Xiang Cao et al’s [7] who designed a wizard that walks though
the decision process of configuring access control for WebDAV. Ueno et al [25] propose
a what you see is what you get access control interface for mashups. Schreuders et al
[20] propose a alternative for Linux program security mechanism that can help user with
limited knowledge about security. There is also the work of Reeder et al’s [26] who also
investigate the conflict resolution of access control system for windows file system and
arrives at the conclusion that the conflict resolution based on “the specificity-based method
provides substantial usability gains for tasks that require a policy author to make changes
to a default decision issued by the conflict-resolution method.” Which in fact is what
OpenLDAP does when the control statement is the default.

38



Bibliography

[1] John Barkley. “Comparing Simple Role Based Access Control Models and Access
Control Lists”. In: Proceedings of the Second ACM Workshop on Role-based Access
Control. RBAC ’97. Fairfax, Virginia, USA: ACM, 1997, pp. 127–132. isbn: 0-89791-
985-8. doi: 10.1145/266741.266769. url: http://doi.acm.org/10.1145/
266741.266769.

[2] Lujo Bauer et al. “Real Life Challenges in Access-control Management”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI
’09. Boston, MA, USA: ACM, 2009, pp. 899–908. isbn: 978-1-60558-246-7. doi: 10.
1145/1518701.1518838. url: http://doi.acm.org/10.1145/1518701.1518838.

[3] Matthias Beckerle and Leonardo A. Martucci. “Formal Definitions for Usable Access
Control Rule Sets from Goals to Metrics”. In: Proceedings of the Ninth Symposium
on Usable Privacy and Security. SOUPS ’13. Newcastle, United Kingdom: ACM,
2013, 2:1–2:11. isbn: 978-1-4503-2319-2. doi: 10.1145/2501604.2501606. url:
http://doi.acm.org/10.1145/2501604.2501606.

[4] Ingo Bente. keeping your sanity while designing openldap acls. medium. 2015. url:
https://medium.com/@moep/keeping-your-sanity-while-designing-openldap-
acls-9132068ed55c.

[5] P. Bera, S. K. Ghosh, and P. Dasgupta. “Policy Based Security Analysis in Enterprise
Networks: A Formal Approach”. In: IEEE Transactions on Network and Service
Management 7.4 (2010), pp. 231–243. issn: 1932-4537. doi: 10.1109/TNSM.2010.
1012.0365.

[6] Christina Braz, Ahmed Seffah, and David M’Raihi. “Designing a Trade-off Between
Usability and Security: A Metrics Based-model”. In: Proceedings of the 11th IFIP
TC 13 International Conference on Human-computer Interaction - Volume Part II.
INTERACT’07. Rio de Janeiro, Brazil: Springer-Verlag, 2007, pp. 114–126. isbn:
3-540-74799-0, 978-3-540-74799-4. url: http://dl.acm.org/citation.cfm?id=
1778331.1778344.

39

https://doi.org/10.1145/266741.266769
http://doi.acm.org/10.1145/266741.266769
http://doi.acm.org/10.1145/266741.266769
https://doi.org/10.1145/1518701.1518838
https://doi.org/10.1145/1518701.1518838
http://doi.acm.org/10.1145/1518701.1518838
https://doi.org/10.1145/2501604.2501606
http://doi.acm.org/10.1145/2501604.2501606
https://medium.com/@moep/keeping-your-sanity-while-designing-openldap-acls-9132068ed55c
https://medium.com/@moep/keeping-your-sanity-while-designing-openldap-acls-9132068ed55c
https://doi.org/10.1109/TNSM.2010.1012.0365
https://doi.org/10.1109/TNSM.2010.1012.0365
http://dl.acm.org/citation.cfm?id=1778331.1778344
http://dl.acm.org/citation.cfm?id=1778331.1778344


[7] Xiang Cao and Lee Iverson. “Intentional Access Management: Making Access Control
Usable for End-users”. In: Proceedings of the Second Symposium on Usable Privacy
and Security. SOUPS ’06. Pittsburgh, Pennsylvania, USA: ACM, 2006, pp. 20–31.
isbn: 1-59593-448-0. doi: 10.1145/1143120.1143124. url: http://doi.acm.org/
10.1145/1143120.1143124.

[8] Adrienne Porter Felt et al. “Android Permissions: User Attention, Comprehension,
and Behavior”. In: Proceedings of the Eighth Symposium on Usable Privacy and
Security. SOUPS ’12. Washington, D.C.: ACM, 2012, 3:1–3:14. isbn: 978-1-4503-
1532-6. doi: 10.1145/2335356.2335360. url: http://doi.acm.org/10.1145/
2335356.2335360.

[9] Denis Feth. “User-centric Security: Optimization of the Security-usability Trade-
off”. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE 2015. Bergamo, Italy: ACM, 2015, pp. 1034–1037. isbn:
978-1-4503-3675-8. doi: 10.1145/2786805.2803195. url: http://doi.acm.org.
proxy.lib.uwaterloo.ca/10.1145/2786805.2803195.

[10] R. Harrison. Lightweight Directory Access Protocol (LDAP): Authentication Methods
and Security Mechanisms. RFC 4513. RFC Editor, 2006. url: https://tools.
ietf.org/html/rfc4513.

[11] Maritza L. Johnson et al. “Laissez-faire File Sharing: Access Control Designed for
Individuals at the Endpoints”. In: Proceedings of the 2009 Workshop on New Security
Paradigms Workshop. NSPW ’09. Oxford, United Kingdom: ACM, 2009, pp. 1–10.
isbn: 978-1-60558-845-2. doi: 10.1145/1719030.1719032. url: http://doi.acm.
org/10.1145/1719030.1719032.

[12] Alan H. Karp and Marc Stiegler. “Making Policy Decisions Disappear into the User’s
Workflow”. In: CHI ’10 Extended Abstracts on Human Factors in Computing Systems.
CHI EA ’10. Atlanta, Georgia, USA: ACM, 2010, pp. 3247–3252. isbn: 978-1-60558-
930-5. doi: 10.1145/1753846.1753966. url: http://doi.acm.org/10.1145/
1753846.1753966.

[13] Microsoft. Active Directory Domain Services Overview. Microsoft. 2019. url: https:
//docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/
virtual-dc/active-directory-domain-services-overview.

[14] Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov. “Do Windows Users Follow
the Principle of Least Privilege?: Investigating User Account Control Practices”. In:
Proceedings of the Sixth Symposium on Usable Privacy and Security. SOUPS ’10.
Redmond, Washington, USA: ACM, 2010, 1:1–1:13. isbn: 978-1-4503-0264-7. doi:

40

https://doi.org/10.1145/1143120.1143124
http://doi.acm.org/10.1145/1143120.1143124
http://doi.acm.org/10.1145/1143120.1143124
https://doi.org/10.1145/2335356.2335360
http://doi.acm.org/10.1145/2335356.2335360
http://doi.acm.org/10.1145/2335356.2335360
https://doi.org/10.1145/2786805.2803195
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/2786805.2803195
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/2786805.2803195
https://tools.ietf.org/html/rfc4513
https://tools.ietf.org/html/rfc4513
https://doi.org/10.1145/1719030.1719032
http://doi.acm.org/10.1145/1719030.1719032
http://doi.acm.org/10.1145/1719030.1719032
https://doi.org/10.1145/1753846.1753966
http://doi.acm.org/10.1145/1753846.1753966
http://doi.acm.org/10.1145/1753846.1753966
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview


10.1145/1837110.1837112. url: http://doi.acm.org/10.1145/1837110.
1837112.

[15] Lars E. Olson, Carl A. Gunter, and P. Madhusudan. “A Formal Framework for Reflec-
tive Database Access Control Policies”. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security. CCS ’08. Alexandria, Virginia, USA:
ACM, 2008, pp. 289–298. isbn: 978-1-59593-810-7. doi: 10.1145/1455770.1455808.
url: http://doi.acm.org/10.1145/1455770.1455808.

[16] OpenLDAP. OpenLDAP Software 2.4 Administrator’s Guide. OpenLDAP Founda-
tion. 2011. url: https://www.openldap.org/doc/admin24/access-control.
html.

[17] Fahimeh Raja et al. “It’s Too Complicated, So I Turned It off!: Expectations, Per-
ceptions, and Misconceptions of Personal Firewalls”. In: Proceedings of the 3rd ACM
Workshop on Assurable and Usable Security Configuration. SafeConfig ’10. Chicago,
Illinois, USA: ACM, 2010, pp. 53–62. isbn: 978-1-4503-0093-3. doi: 10.1145/1866898.
1866907. url: http://doi.acm.org/10.1145/1866898.1866907.

[18] J. H. Saltzer and M. D. Schroeder. “The protection of information in computer
systems”. In: Proceedings of the IEEE 63.9 (1975), pp. 1278–1308. issn: 0018-9219.
doi: 10.1109/PROC.1975.9939.

[19] R. S. Sandhu and P. Samarati. “Access control: principle and practice”. In: IEEE
Communications Magazine 32.9 (1994), pp. 40–48. issn: 0163-6804. doi: 10.1109/
35.312842.

[20] Z. Cliffe Schreuders, Tanya McGill, and Christian Payne. “Empowering End Users
to Confine Their Own Applications: The Results of a Usability Study Comparing
SELinux, AppArmor, and FBAC-LSM”. In: ACM Trans. Inf. Syst. Secur. 14.2 (Sept.
2011), 19:1–19:28. issn: 1094-9224. doi: 10.1145/2019599.2019604. url: http:
//doi.acm.org/10.1145/2019599.2019604.

[21] D K Smetters and Nathan Good. “How Users Use Access Control”. In: Proceedings
of the 5th Symposium on Usable Privacy and Security. SOUPS ’09. Mountain View,
California, USA: ACM, 2009, 15:1–15:12. isbn: 978-1-60558-736-3. doi: 10.1145/
1572532.1572552. url: http://doi.acm.org/10.1145/1572532.1572552.

[22] M. Smith. Lightweight Directory Access Protocol (LDAP): String Representation of
Search Filters. RFC 4515. RFC Editor, 2006. url: http://www.rfc-editor.org/
rfc/rfc4515.txt.

[23] stanford. OpenLDAP ACL Examples. stanford. 2015. url: https://uit.stanford.
edu/service/directory/aclexamples.

41

https://doi.org/10.1145/1837110.1837112
http://doi.acm.org/10.1145/1837110.1837112
http://doi.acm.org/10.1145/1837110.1837112
https://doi.org/10.1145/1455770.1455808
http://doi.acm.org/10.1145/1455770.1455808
https://www.openldap.org/doc/admin24/access-control.html
https://www.openldap.org/doc/admin24/access-control.html
https://doi.org/10.1145/1866898.1866907
https://doi.org/10.1145/1866898.1866907
http://doi.acm.org/10.1145/1866898.1866907
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1109/35.312842
https://doi.org/10.1109/35.312842
https://doi.org/10.1145/2019599.2019604
http://doi.acm.org/10.1145/2019599.2019604
http://doi.acm.org/10.1145/2019599.2019604
https://doi.org/10.1145/1572532.1572552
https://doi.org/10.1145/1572532.1572552
http://doi.acm.org/10.1145/1572532.1572552
http://www.rfc-editor.org/rfc/rfc4515.txt
http://www.rfc-editor.org/rfc/rfc4515.txt
https://uit.stanford.edu/service/directory/aclexamples
https://uit.stanford.edu/service/directory/aclexamples


[24] Joshua Tan et al. “The Effect of Developer-specified Explanations for Permission
Requests on Smartphone User Behavior”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’14. Toronto, Ontario, Canada: ACM,
2014, pp. 91–100. isbn: 978-1-4503-2473-1. doi: 10.1145/2556288.2557400. url:
http://doi.acm.org/10.1145/2556288.2557400.

[25] Nachi Ueno et al. “Soramame: What You See is What You Control Access Control
User Interface”. In: Proceedings of the Symposium on Computer Human Interaction
for the Management of Information Technology. CHiMiT ’09. Baltimore, Maryland:
ACM, 2009, 5:38–5:41. isbn: 978-1-60558-572-7. doi: 10.1145/1641587.1641592.
url: http://doi.acm.org/10.1145/1641587.1641592.

[26] Robert W. Reeder et al. “More than skin deep: Measuring effects of the underlying
model on access-control system usability”. In: May 2011, pp. 2065–2074. doi: 10.
1145/1978942.1979243.

[27] Rodrigo Werlinger et al. “Security Practitioners in Context: Their Activities and In-
teractions with Other Stakeholders Within Organizations”. In: Int. J. Hum.-Comput.
Stud. 67.7 (July 2009), pp. 584–606. issn: 1071-5819. doi: 10.1016/j.ijhcs.2009.
03.002. url: http://dx.doi.org/10.1016/j.ijhcs.2009.03.002.

[28] Tianyin Xu et al. “How Do System Administrators Resolve Access-Denied Issues in
the Real World?” In: Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems. CHI ’17. Denver, Colorado, USA: ACM, 2017, pp. 348–361.
isbn: 978-1-4503-4655-9. doi: 10.1145/3025453.3025999. url: http://doi.acm.
org/10.1145/3025453.3025999.

[29] zytrax. OpenLDAP Samples. 2015. url: http://www.zytrax.com/books/ldap/
ch6/index.html#ex-parts.

42

https://doi.org/10.1145/2556288.2557400
http://doi.acm.org/10.1145/2556288.2557400
https://doi.org/10.1145/1641587.1641592
http://doi.acm.org/10.1145/1641587.1641592
https://doi.org/10.1145/1978942.1979243
https://doi.org/10.1145/1978942.1979243
https://doi.org/10.1016/j.ijhcs.2009.03.002
https://doi.org/10.1016/j.ijhcs.2009.03.002
http://dx.doi.org/10.1016/j.ijhcs.2009.03.002
https://doi.org/10.1145/3025453.3025999
http://doi.acm.org/10.1145/3025453.3025999
http://doi.acm.org/10.1145/3025453.3025999
http://www.zytrax.com/books/ldap/ch6/index.html#ex-parts
http://www.zytrax.com/books/ldap/ch6/index.html#ex-parts

	List of Tables
	List of Figures
	Introduction
	Our work

	Overview of OpenLDAP access control system
	Directory Information Tree
	Extended Backus-Naur Form
	Syntax of the OpenLDAP access control policy
	Resource selector
	Principal selector
	Access
	Control statment
	Precedence rule
	Example of effect of precedence rule


	Design of the study
	Policy
	Syntax
	Potential difficulties in the task
	Training a participant
	Ethics Clearance
	Limitations

	Data analysis
	Recommendations
	Future work

	Related work

