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Abstract

As the frequency and complexity of physical human-robot interaction (pHRI) increases,
so does the need to understand the dynamics of this coupled system in real-time. For haptic
displays, which provide information to our senses of touch and proprioception, information
regarding the human impedance and intent can drastically improve transparency while
maintaining operator safety. Numerous online impedance estimators have been proposed
in the literature which make continuous approximations of the coupled dynamics available
online, obviating the need for perturbations or cumbersome sensors. However, character-
izing and validating the performance of these estimators for pHRI is challenging, since it
requires precise knowledge of known, time-varying reference impedances.

This thesis explores the characterization of online impedance estimators using two serial
manipulators (known as the BURT system), coupled at their end effectors, to physically
simulate pHRI. One acts as the human, displaying a reference impedance relative to a
desired trajectory, while the other runs the estimation algorithm and tracks a perturbing
trajectory. Several least-squared impedance estimation strategies from the literature are
validated on the experimental setup, demonstrating its efficacy and utility. The importance
of accounting for the desired human trajectory is highlighted, and future research to apply
results from the field of human motor control is proposed.

A bimanual circle-drawing sensorimotor experiment was also conducted with the BURT
systsem. Visual feedback on the task performance was withdrawn from one hand at a time
and relationships between subject handedness, visual feedback, tracing speed, and circu-
larity were studied. Results show that the non-dominant hand tends to trace less circular
trajectories than the dominant hand while both are visible, but inconsistent differences in
circularity are present across participants when comparing the performance of each hand
in its invisible condition. Both hands showed higher tracing speed when only a single hand
was receiving visual feedback, and traced more slowly in the free visual condition.
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Chapter 1

Introduction

The modelling and control of rigid robot manipulators is heavily researched and, in general,
well understood. There exists a wealth of literature on topics such as controller stability,
performance, and efficiency, as well as modelling various classes of manipulators and their
system identification. However, models of the robot are only half the picture; the environ-
ment with which the robot interacts also influences its performance. A complete system
model takes into account both the dynamics of the robot itself and its environment, allowing
effective and stable control action to be taken. Unknown, dynamic environments naturally
present a particular challenge to sense and thus effectively control the robot within, and
perhaps no environment is more unknown and dynamic than human interaction.

Physical Human-Robot Interaction (pHRI) is quickly becoming an important area of
robotics research as societal demand for performant, yet safe, robotics grows. Examples
of haptic interactions, that is, exchanges of proprioceptive information, with robots that
are already quite prevalent include rehabilitation, manufacturing, remote surgery, and
many more. Robotic systems designed for rehabilitation could be exoskeletal systems or
externally supported, such as the BURT system discussed in detail later in section 2.1.
Humans often interact with lift-assisting robots in a manufacturing context, and may
guide other robots through their desired motions to teach by demonstration. Of course,
the haptic feedback provided during precise teleoperation tasks, such as remote surgery,
are integral to successful task performance.

Current control paradigms for these applications contend with challenge of the human
environment by taking conservative approaches, such as passive control laws, which may be
limited in their performance though they guarantee safety. The virtual stiffness that may
be rendered by the teleoperated surgical robot, for example, might be limited by an inflated

1



safety factor if large variations in the stiffness of the operator must be allowed for. If the
robot were able to unobtrusively sense information about the human environment during
pHRI, such as operator stiffness, this more complete system model could lead to highly
effective haptic interactions that satisfy the requirements safety in presence of spontaneous
human action, intuitive interaction dynamics, and unobtrusive sensing.

This thesis concerns itself with estimating the coupled dynamics of the human during
pHRI, in an effort to improve both the safety and performance of such tasks.

1.1 Background and Related Works

1.1.1 Haptic Devices/pHRI

Control of haptic devices present a unique challenge because they interact with uncertain
environments by their very nature. The “human environment” is often stiff, which is known
to cause contact instabilities [57]. Additionally, time delays inherent in the human system
are often much larger than in the robotic system, affecting the stability [30], and are not
subject to redesign. Work by Gil et. al. [24] suggests that the proportions in which humans
add damping and stiffness to a robotic system by interacting with it are such that they
often increase the margins of stability. This analysis, however, is not a rigorous proof and
does not take into account the time-varying nature of human dynamic parameters. As seen
in Vidyasagar [59], a system’s time-varying state matrix, A(t), may be Hurwitz for all t
but the system may still be unstable.

While there are many examples in the literature of authors deriving stability criterion
for specific, simplified haptic systems [17][57][30], Kazerooni [34] took a general approach
to investigating how human impedance affects system stability using unstructured dynamic
models. He found that system damping, whether physical or virtual, determines the size
of the stable region. Limits on system stiffness are in direct conflict with haptic system
transparency, defined by Lawrence as the ratio of displayed impedance to desired impedance
[37]. Ideally-transparent haptic systems must have zero impedance when emulating free
space and be capable of providing an arbitrarily large impedance as the virtual environment
(virtual or otherwise) demands it. While this is not physically realizable, an optimal haptic
controller would achieve a transparency value as close to unity as possible for the given
physical system.

As a simple example, consider a single-DOF haptic interface, perhaps a lever as shown
in 1.1. An actuator at the pivot allows some haptic control law to be rendered, perhaps a
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Figure 1.1: A schematic representation of a single-DOF haptic lever and a human operator [30].
The mechanical, virtual, and human systems all contribute to the dynamics of the interaction.

simple virtual spring-damper implemented as a PD controller. The motor and lever have
some moment of inertia about the pivot, and the mechanism itself provides some viscous
damping. As the controller is implemented on a discrete time controller, with sample time
T , the system is passive when [12]:

b >
KT

2
+B (1.1)

To guarantee passivity, it is clear that the stiffness the system can provide, and thus its
transparency when rendering certain environments, must be limited. Should the safety
demands be weakened such that only stability, and not passivity, be asked of the system,
then the acceptable values of K increase. Though the stability relationship between virtual
stiffness is not trivial[24], for small values of B the stability condition may be approximated
by:

b+B >
KT

2
(1.2)

When plotted together for a given b and T (see 1.2), the stability regions clearly show
what is already fairly intuitive: passivity conditions guarantee safety at the cost of per-
formance. If “stable” is sufficiently safe for a certain application, performance could be
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Figure 1.2: The unstable (U), stable (S), and passive (P ) regions of the haptic interface as
functions of virtual stiffness (K) and damping (B). [24]

maximized by estimating the interaction dynamics and remaining as close as desired to
the stability threshold.

1.1.2 Impedance Control and Admittance Control for pHRI

Impedance control, first proposed by Hogan [29], is an extremely popular paradigm for
robot interaction control. This genre of controller is appealing for pHRI because it allows
the dynamics of manipulator to be regulated, not just its position or force. By analogy to
electrical engineering, and impedance is the ratio of voltage, an effort variable, to current, a
flow variable. The mechanical equivalent of these, from a system modelling perspective, are
force and velocity, respectively. Thus, an impedance controller commands a force output
for a given velocity (or position) state. Its dual, the admittance controller, maps velocity
outputs onto measured force inputs [44]. Impedance controllers typically excel at rendering
low-inertia, low-stiffness environments, whereas admittance controllers struggle with low-
inertia, but can render high-stiffness environments well [3]. Citing Adams and Hannaford
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[3], Keemink et. al. [36] note the advantage of using admittance control on higher-mass
robotic platforms since the “parasitic inertia” of the underlying system can pollute feeling
of haptics rendered by impedance control and can be difficult to mask in a stable manner.
A formal description of these controllers can be found in section 2.2

The stability of impedance and admittance controllers has been thoroughly studied
[9] [14] [10]. Depending on the virtual dynamics they render, admittance controllers may
be passive [11]. Presenting dynamics with a virtual inertia of less than half the physical
inertia of the device, however, is a sufficient condition for the controller to no longer
be passive (though it might be stable) [18]. Generally, decreasing the virtual inertia of
the controller makes the interaction subject to instability in contact with increasingly
compliant environments [36]. The design of the admittance controller’s inner-loop (velocity
controller) bandwidth is also critical to maximize the range of stable impedance, though
this is balanced by the need for accurate impedance tracking, since it is these inner-loop
dynamics which are presented after a large disturbance [20].

1.1.3 Physiology of Human Impedance

The stiffness of a muscle is a nonlinear function of its length and generated force [32]. The
force generated by a skeletal muscle for a given level of voluntary contractile effort (VCE)
and fatigue is often modeled as a function of both its length and change of length (velocity).
The resulting surface is known as a Hill surface, named for physiologist Archibald Hill, and
is monotonically decreasing in velocity [38]. That is, muscles are strongest in isometric
contraction. So-called “intrinsic” stiffness, as well as contractile force from both reflex and
voluntary effort, contribute to the observed stiffness from a muscle [35][51]. The passive,
material properties of the tissue, its intrinsic stiffness, instantly produce a force in response
to a displacement. On the order of 10ms after an involuntary change of muscle length, reflex
action can be observed attempting to correct the change. Voluntary action in response to
a proprioceptive stimulus can be an order of magnitude slower than that and is naturally
less predictable. Ultimately, a higher generated force will produce a higher stiffness [23].

Skeletal muscles effect motion by creating moments around joints. Since they can only
create tension, they are often found in opposing, or antagonist, pairs. In human joint space,
increased stiffness about a joint, the change in torque for a given angular displacement,
tends to increase with the simultaneous contraction of antagonist pairs [28]. This is known
as co-contraction. Notice that this increase in stiffness can happen without a change in net
torque on the joint, so the impedance of each joint, and thus the hand, may be controlled
independently of the net torque and joint angle. Many authors have created useful models

5



of muscular neuromechanics which can capture some of the nonlinear interactions between
muscle length, velocity, effort, and force [26][25][61].

1.1.4 Human/environment impedance estimation

Much work has been done in the way of estimating various dynamic environmental param-
eters presented to a robot, including those of a human during pHRI. It is uncommon to
find online estimations of environment mass, since this typically involves numerical double
differentiation of the manipulator’s encoder data, or damping [60]. Most commonly, mod-
els of the environment focus on stiffness estimates, rather than the full set of second-order
linear model parameters (m, b, and k). In instances of pHRI, stiffness estimation is often
favored because it has such a large variance: human joint stiffness can vary by orders of
magnitude as a function of voluntary co-contraction [27]. High human stiffness, a natural
reaction to unstable conditions [5], is often cited as exacerbating instabilities [23]. Addi-
tionally, the inertia of the coupled human system is less important compared to lower-order
terms at the relatively low-frequencies common in pHRI [46]. Ultimately, stiffness has the
largest impact on the stability of the interaction [14]. The measurements of position and
interaction force that can be used to make stiffness estimates can also be used to interpret
human intent, such as Duchaine and Gosselin’s strategy in [17][16]. Here, online estimates
of human stiffness, obtained with a windowed least-squares approach, inform a “stability
observer” tasked with modulating virtual damping in response to the changing human dy-
namics. Concurrently, the robot admittance was tuned according the inferred acceleration
intent. The goal of this control scheme was to increase the efficacy of the pHRI by ensuring
the robot admittance complimented the human intent while ensuring the coupled dynamics
always fell within the margins of stability.

In a similar vein, research has been done using electromyography (EMG) data to make
online stiffness estimates during pHRI. Notably, Gallagher et. al. [23] designed an esti-
mator which classified a user’s current co-contractive effort into “high stiffness” or “low
stiffness” categories. This informed a variable impedance controller in an effort to improve
task performance with a haptic manipulator. Further work addressed the stochasticity of
the human behavior to reduce chatter [22], but due to sensor noise no refinement to the
binning or numerical estimation of stiffness was effective. Recent work by Chen et. al.
[8] uses both kinematic and EMG data from sensors on the user to maintain a real-time
model of user stiffness. The obvious disadvantage of EMG-based stiffness estimation is
the reliance on sensors external to the robot and the calibration required, since all EMG
data is interpreted relative to a given user’s baseline and maximum voluntary contraction
(MVC).
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While online stiffness estimates alone can increase haptic task performance and allow
for basic real-time models of human dynamics, knowledge of the full characteristics are
important for robust control. In both [46] and [8], the researchers make approximations
of human damping as a simple function of estimated human stiffness with some success.
Complete estimates of human or environment impedance are made by Love in [39] and
[40] using a recursive least squares approach. A similar approach is take in [60], but an
emphasis is placed on a rapid convergence time for the estimate. Section 3.1 explores
least-squared based estimators such as [16], [39], and [60] with more rigor.

1.1.5 Bimanual Circle Tracing

Bimanual circle tracing (BCT) tasks are a canonical human motor control experiment used
to explore the sensorimotor patterns and symmetries present (or absent) in both healthy
and impaired populations. In BCT experiments, participants are asked to trace circular
trajectories, often in the transverse plane, with both hands simultaneously. These circles
may be in the same or in opposite directions known as non-mirror symmetric (NMS) and
mirror symmetric (MS) tracing, respectively. For example, an experiment by Marteniuk et.
al. [41] showed that participants’ trajectories were highly likely to converge in phase and
amplitude while performing a MS-BCT, leading to a discussion of the role of interhemi-
spheric coupling reducing the independence of each hand during the task. Some evidence
shows that MS tasks tend to be more stable, in a neuromechanical sense, than NMS tasks
due to the tendency of one hand to spontaneously reverse direction during high-rate NMS
motions and settle into an in-phase MS trajectory. [7][4]. Byblow et. al. [6] documented
many instances of “spontaneous pattern shifting,” where participants would suddenly re-
verse the direction of one hand (usually their non-dominant hand (NDH)) away from NMS
trajectories to the more stable MS paths during a fast paced BCT. This same experi-
ment also found that the circularity performance of the NDH was worse than that of the
dominant hand (DH).

BCT experiments lend themselves well to investigations of upper-extremity lateraliza-
tion, such as handedness, as well as other motor control asymmetries, such as stroke and
cerebral palsy (CP). Swinnen et. al [55] considered the effect of different vision conditions
on the performance of each hand during a MS-BCT. By blocking visual feedback from the
hands, inferences could be made regarding the sensorimotor nature of the BCT in healthy
subjects. Similar experiments have been repeated for impaired populations [53]. During
the BCT in [13], partially blindfolded (i.e. only one hand visible) and fully blindfolded
subjects showed that the absence of visual feedback significantly reduced the reaction times
for both arms and led to an increased tracing amplitude in the invisibile arm.
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In this study, a NMS-BCT task is performed by subjects on the BURT platform. Visual
feedback is withheld from one hand at a time, and the relationship between circularity,
tracing speed, and visual conditions are explored. It was hypothesized that the circularity
of the NDH would be worse compared to the DH in equivalent visual conditions (that is,
the circularity of trajectories traced by the NDH while it is visible would be less circular
than those of the DH while it was visible, and similarly for invisible conditions), and that
the pace of circle tracing would decrease when both hands are visible, due to the attention
split between both hands.

1.2 Contributions and Organization

Given the current state-of-the-art outlined above, the contributions of this thesis is a
novel experimental procedure for validating and characterizing the performance of online
impedance estimators is demonstrated. This procedure leverages the bimanual nature of
the BURT system (see Section 2.1) to create a robot-to-robot interaction in which one
manipulator follows human-like trajectories with known, time-varying dynamics while the
second manipulator estimates the impedance parameters of first, to which it is rigidly
coupled at the end-effector.

Chapter 2 presents the mathematical preliminaries, conventions, and notations used
throughout the thesis, including a discussion of the modelling of the BURT system. Chap-
ter 3 considers several numerical online impedance estimation methods from literature and
validates their performance using the robot cooperation method briefly described above.
Results from a published human sensorimotor control study that leverages the BURT sys-
tem, along with a discussion of how results from this thesis may enhance future work, are
given in Chapter 4.
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Chapter 2

Mathematical Preliminaries

2.1 BURT Model

The Barrett Upper-extremities Robotic Trainer, or BURT, is a rehabilitation and pHRI
research robot designed by Barrett Technology as an off-the-shelf full 3D haptic device.
Each BURT arm has three actuated rotational joints with position feedback from encoders,
as well as a passive, unmeasured rotation joint at the end-effector to allow for wrist ad-
duction and abduction. The BURT manipulator may be reconfigured, via quick-release
screw mechanism, to the opposite handedness setup by flipping the devie’s forearm 180◦.
The orientation-agnostic design allows two identical BURT units to be used together for
bimanual applications, as shown in Fig. 2.1. This section will discuss the kinematic and
dynamic models of the BURT as a serial chain manipulator along with the kinematics and
initialization of the 6DOF force-torque sensor mounted to the end-effector.

2.1.1 Kinematics

The well-known modified Denavit-Hartenberg (DH) convention can be used to specify
coordinate frames along a kinematic chain. For a manipulator with three revolute joints
(often denoted by RRR), such as the BURT, it is only required to specify three parameters
for each link, i, known as DH parameters: link length, ai, offset distance, di, and twist
angle, αi. The joint angle, qi, is left as a variable which depends on robot pose. For a
complete description of the coordinate frame assignment procedure, see [49]. Due to the
symmetry of the BURT system, it is possible to assign identical DH coordinate systems to
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Figure 2.1: A BURT user participating in a bi-manual motor control study

both left and right manipulators, though the distance from the 0th joint to the common
origin will be different. Fig. 2.2 shows how coordinate frames may be applied to the
manipulator according to DH convention. Note that this pose is not actually attainable
given the joint limits of the manipulator in either handedness but serves as a natural
configuration for assigning q = 0. Positive values of qi correspond with the right-hand rule
about axis zi.

The particular values for a, d, and α are provided in Table 2.1. Note that the trans-
formation described by the first row describes the rotation from world coordinates to the
0th coordinate frame. The 550mm translation in YWR shown in Fig. 2.2 is not included in
this transformation. With this description of the robot’s geometry, the forward kinematics
problem may be solved. That is, given a particular manipulator configuration q in joint-
space, the position of the end-effector, x, in task-space can be determined. The forward
kinematics problem always has a unique solution.

10



Figure 2.2: The coordinate frames assigned to the BURT system according the modified DH
parameters. Depending on the handedness of the arm, the world origin will be located to the left
or right, respectively. In this configuration, θ1 = θ2 = θ3 = 0 (where θi is the rotation of the joint
about Zi). [1]

The opposite problem, to find the joint-space configuration q that achieves a given
end-effector position, is known as the inverse kinematics problem. In general, the unique
solution is not guaranteed and finding a closed-form analytic solution is not trivial for
systems with larger degrees of freedom (DOF), n. For example, Fig. 2.3 shows a simple
kinematic ambiguity, in which a planar manipulator may achieve a desired end-effector
position with two different joint configurations. For n > 6, a robot is said to have redundant
DOF, its end-effector may achieve any desired position and orientation in its workspace
with infinitely many joint angles. Should x fall outside W , the robot’s workspace, no
solution to the inverse kinematics problem can be found.

The BURT’s joint limits, which for joint 2 depend on the handedness setup of the
manipulator, are presented in 2.1. These joint limits eliminate all but one set of solutions
to the BURT’s inverse kinematics problem. The following equations provide a unique q for
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Table 2.1: Table of modified DH parameters and joint limits for the BURT robot.

DH Parameters Joint Limits (rad)

Link (i) ai αi di θi θmin θmax

0 0 −π/2 0 0 - -
1 0 π/2 0 θ1 -1.01 +0.26
2 0.65 0 0.156 θ2 -0.96 +0.96
3 0.435 −π/2 0.069 θ3 -0.40 +2.84

x
0

x
1

x
d0

x
d1

q
0

q
0
’

q
1

q
1
’

Figure 2.3: A kinematic ambiguity. It is possible for multiple joint configurations q and q′ to
postition the end effector at xd, so a solution to the inverse kinematic problem is not guaranteed
to be unique.

any x = [x0, x1, x2] ∈ W :

q1 = atan2(−x2, x0) + atan2(d,
√
x20 + x22 − d2) (2.1)
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q2 = atan2(x1,
√
x20 + x22 − d2)− atan2(a3 sin(q3), a2 + a3cos(q3)) (2.2)

q3 = atan2(−
√

1−D2, D) (2.3)

where d is the sum of offset lengths from the DH table 2.1:

d = d1 + d2 + d3 (2.4)

and D is the cosine of the angle formed between the second and the third links, found here
using the law of cosines:

D = (x20 + x21 + x22 − d2 − a22 − a23)/(2a2a3) (2.5)

Notice that q3 must be solved before q2. Joint-space angular velocities may be mapped to
the task-space Cartesian velocity of the endeffector via the Jacobian:

ẋ = J(q)q̇ (2.6)

Different Jacobians map joint space onto Cartesian motion at different points, such as the
end effector, J(q)eef , or the COM of joint i, J(q)i. Notice that J(q), a function of joint
positions, is not guaranteed to be invertible, so

q̇ = J−1(q)ẋ (2.7)

is only valid for so-called non-singular configurations of the manipulator. The Jacobian
also relates joint-space torques to Cartesian forces in task-space at the end effector:

F = J(q)τ (2.8)

Due to the the virtual work theorem (see [54]) transpose allows for the transformation in
the opposite direction when the manipulator is in static equilibrium:

τ = JT (q)F (2.9)

2.1.2 Dynamics

In the absence of disturbances, the dynamics of an n-DOF rigid robot manipulator may
be represented by the following well-known differential equation:

D(q)q̈ + C(q, q̇)q̇ +Bq̇ +G(q) = τ (2.10)
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where D(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the matrix of Coriolis forces,
B ∈ Rn×n is a matrix of viscous friction coefficients, G(q) ∈ Rn is a vector of gravitational
forces, and τ ∈ Rn is a vector of motor input torque at each joint.

While the derivation of this dynamic equation is beyond the scope of this thesis, it is
worth discussing some of its properties. D(q) is always positive definite and symmetric.
C(q, q̇) can be defined in terms of the elements of D(q):

ckj =
n∑
i=1

1

2

{
∂dkj
∂qi

+
∂dki
∂qj

+
∂dij
∂qk

}
q̇i (2.11)

The gravity vector may be calculated in any pose by :

G(q) = −
n∑
i=1

J(q)Ti (mig) (2.12)

Thus, it is possible to find D(q), C(q, q̇), and G(q) with knowledge of the mass, the inertia
matrix, and the COM for each link. Viscous friction coefficients B(q) are best determined
experimentally for each joint, and its omission from a model can be tolerated from a safety
perspective since it is a dissipative force. That is, unmodelled friction present in the system
serves only to damp its response by removing energy. Additionally, Colgate and Brown
show in [10] that physical damping in the plant allows for a larger range of dynamics to be
rendered. Inertial parameters for the BURT system, provided by the manufacturer, allowed
for modelling of D(q), C(q, q̇), and G(q) without performing a system identification. The
mass and COM parameters were verified by comparing simulation and measured values of
the steady-state state torque required to counteract the effect of gravity on the robot in
several configurations around its workspace. This model can be used for both simulations
and computed torque control (see section 2.2).

2.1.3 Force Sensor

In order to sense interaction forces on the manipulator, a 6-DOF force-torque sensor was
mounted at the end effector. The sensor, model RFT76-HA01 by Robous Inc., uses ca-
pacitive sensors to measure force and torque in three axes each. This adds an additional
coordinate frame to the four specified in the previous section, 2.1.1, with the following
transformation matrix:

T =


0.866 −0.5 0 0

0 0 −1 0
0.5 0.866 0 0
0 0 0 1

 (2.13)
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corresponding to a 90◦ rotation about the previous frames x-axis, followed by a 30◦ rotation
about its z-axis. The maximum sampling frequency is 1KHz, with an effective resolution
of 200mN in each force axis and 8mNm in each torque axis. The sensor is safe for pHRI,
since its 300N load capacity in each axis greatly exceed both the 45N Cartesian force limit
of the robot and typical pHRI interaction force values from literature.

With the robot in an initial configuration q0, a reading of the force values from the
sensor, Fs, can be decomposed as follows:

Fs = Fa + Fg + Foffset (2.14)

where Fa is the external force applied to the sensor, Fg is the force of gravity due to any
mass past the sensor in the kinetic chain, and Foffset is a constant offset that is a byproduct
of the sensing mechanism. In static operation, a bias force Fb = Fs could be recorded in
an unloaded condition (i.e. when Fa = 0) and subtracted from all future measurements to
remove the DC offset of Fg + Foffset. However, since the orientation of the sensor changes
as a function of q and the robot is not stationary, the original Fg must be added back
in to the sensor reading and compensated for in the world frame, rather than the sensor
frame. In other words, the measured components of the gravitational force will change as
the sensor is rotated, but in the world frame, they are constant.

The procedure to account for this is as follows. Fb is set to Fs when the robot is
initialized at q0 with Fa = 0. The known mass of the sensor and end-effector which would
contribute to Fg0 is denoted by meef . Transformed from the world frame to the sensor
frame, the force of gravity that was grouped in with the bias Fg0:

Fg0 = R4
0(q0)

−1

 0
0

−meefg

 (2.15)

where R4
0 is the rotation matrix from coordinates in frame 4 to the world frame (0). To

find the true applied force, the bias force is subtracted from the current sensor reading
and the initial gravity is added back in. This intermediate vector is then rotated into
world coordinates where the constant value of gravitational force on the end-effector is
subtracted.

Faworld
= R4

0(q)(Fs − Fb + Fg0)−

 0
0

−meefg

 (2.16)
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Figure 2.4: A block diagram representation of the BURT’s system architecture. [2]

2.1.4 System Architecture

The architecture of the BURT system consists of three subcomponents: the motherboard,
a soft-realtime system running the user interface and user-specified control routines; the
mainboard, a hard-realtime system responsible for low-level control (e.g. kinematics, grav-
ity compensation, safety systems); and the robot itself, including the Barrett Puck motor
drivers which provided closed-loop current control to faithfully actuate the commanded
torque. Each of these subcomponents, shown in Fig. 2.4, play an important role in the
BURT’s performance, but particular attention will be paid to the operation of the soft-
realtime motherboard in this section.

The motherboard, which serves as the user interface for the robot, runs the Xubuntu
operating system to support control development in C#/Mono with the BurtSharp library.
It also allows for tight integration with the Unity game engine with the BurtSharpUnity
library, which can be used to facilitate experimental development and quickly create virtual
haptic environments. However, since this is not a hard-realtime system, control inputs
cannot be sent to the BURT with any guaranteed timing. Additionally, the The hard-
realtime mainboard requests control updates from the motherboard at a fixed rate of 500
Hz. The motherboard responds after some delay, determined by competing processes on
the Xubuntu, issuing a new control command on average every 2.08 ± 0.26 ms (481 Hz).
This rate also determines the maximum data logging rate achievable with the system. The
length of the delay between control cycle times is measured by the system and may be
retrieved on the subsequent interation of the control loop.

Occasionally, the time between responses from the motherboard may be as large as
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Figure 2.5: Typical delay between control cycle times during a nearly 10 second bimanual
experiment using the Unity game engine and a force-torque sensor.

325ms when the motherboard prioritizes other tasks. Figure 2.5 shows a typical concen-
tration of control cycle times for both manipulators in a bimanual experiment using Unity
and a force-torque sensor. Instances of control cycle times larger than 50 ms seem to be ex-
acerbated by running the Unity game engine or using multiple force sensors. Investigating
the exact nature of these occurrences warrants further investigation.

2.2 Impedance Control for pHRI

Rather than regulating position or tracking a particular trajectory with no constraint
on the forces required to achieve it, or rendering a particular force profile regardless of
displacement of the end-effector in the case of a force controller, impedance controllers use
a desired dynamic model to control the relationship between force (the effort variable) and
velocity (the flow variable). This section will discuss implementations of the impedance
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controller and its dual, the admittance controller.

2.2.1 Impedance Control

Consider a multi-input, multi-output (MIMO) second-order system with following second
order dynamics:

f = Md(ẍ− ẍd) +Bd(ẋ− ẋd) +Kd(x− xd) (2.17)

where f is the force applied to the system, x is the system position, and xd, together
with its derivatives, form a desired trajectory. Along with system parameters {Md, bd, kd},
xd may, in general, be a time varying trajectory, but the dependence on t is omitted for
notational simplicity. These dynamics specify a certain relationship between position, time,
and force that characterize the system. Thus, if the interaction force during pHRI in a
given direction is controlled to satisfy the dynamic relationship in Eq.(2.17), the arbitrary
dynamics of the robotic system are effectively masked. Since the desired dynamics are
often known in task space, it is common to design for endpoint impedance rather than a
individual joint impedances.

A simple example of impedance control is a task-space PD controller, since it provides
a control output τ that is a function of a measured position:

τ = JT (Kv(ẋ− ẋd) +Kp(x− xd)) (2.18)

To better mask the robot dynamics, a computed torque approach may be used if a force
sensor is available and the system model is known, or at least well approximated, such as
with Eq.(2.10). The computed torque approach, also known as inverse dynamic control,
attempts to cancel out the inherent dynamics of the robot using the torque calculated in
the model:

τ = D(q)J−1(q)(u− J̇(q, q̇)q̇) + C(q, q̇)q̇ +Bq̇ +G(q) + f (2.19)

Substituting control law (2.19) into Eq.(2.10) reduces to

ẍ = u (2.20)

By rearranging the impedance Eq.(2.17), the acceleration that conforms to the desired
dynamics can be found:

u = ẍd +M−1
d (f −Bd(ẋ− ẋd)−Kd(x− xd)) (2.21)

If the model has a good agreement with the plant, all non-linear dynamics can be cancelled
out and an arbitrary task-space acceleration may be imposed on end-effector. The closed-
loop dynamics of the system then become exactly those of Eq.(2.17).
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Figure 2.6: Block diagram of a computed-torque admittance controller.

2.2.2 Admittance Control

Admittance control is the dual of impedance control. Rather than measuring the displace-
ment and its derivatives and outputting a force according to Eq.(2.17) as in an impedance
control scheme, an admittance controller measures the interaction force and enforces a po-
sition output. Since many robots are actuated with torque commands rather than position,
an additional inner loop is needed to achieve this position control.

As shown in Fig. 2.6, an admittance controller can be understood as simulating the
position response of a system with the desired dynamics Eq.(2.17) in an outer loop and
realizing the results of this simulation with a high-bandwidth inner loop position con-
troller. While many options are available for this controller, a high gain, joint-space PD
controller with computed torque feed-forward is a performant and relatively simple choice
to implement:

u = ẍr +Kv(ẋr − ẋ) +Kp(xr − x) (2.22)

where Kp and Kv are gains for the PD controller. The reference from the outer loop
controller, xr, is given below. The PD control action u is further substituted into Eq.(2.19)
to determine the ultimate control law.

Particular care must be exercised in designing of the inner-loop. It must be sufficiently
fast so as not to fall behind the reference signal from the outer-loop, yet must remain
stable. A detailed analysis presented by Valency and Zacksenhouse in [58] demonstrates
the need for the poles of the inner loop to remain faster than those of the desired dynamics.
Frequency content in the trajectory from the outer-loop can excite resonant modes in the
inner-loop dynamics and cause instability in the whole system. Ideally, provided the system
is linear or at least linearized about an operating point, the PD gains would be selected such
that a damping ratio of ζ = 0.7 is a achieved in order to remove any resonance. However,
this was not possible in this case because of derivative noise in the velocity signal limiting
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the magnitude of Kv and thus the amount of virtual damping available. Consequently, a
resonant peak was present in the inner loop’s frequency response which is visible in many
of the experimental results in Chapter 3.

The outer-loop dynamics may be designed separately in task space based on the desired
dynamics for the given task:

ẍr = ẍd +M−1
d (f −Bd(ẋd − ẋr)−Kd(xd − xr)) (2.23)

The reference acceleration ẍr may be integrated twice to provide the inner loop controller
with the full reference trajectory.

2.2.3 Task-Space Model of Human Arm Impedance

In task-space, the following second order linear model is used to represent the human arm
impedance in a given joint configuration:

Fh = Mh(ẍ− ẍd) +Bh(ẋ− ẋd) +Kh(x− xd) (2.24)

The trajectory xd is the voluntary path of hand. Parameters Mh, Bh, and Kh do not
necessarily represent specific physiological phenomena such as muscle tone or spasticity
(often associated with stiffness and damping, respectively), but are rather an abstraction
of the local dynamic behavior for given VCE, level of fatigue, etc. As discussed in Section
1.1, the impedance modeled here is the task-space force generated in response to some
perturbation and depends on intrinsic material properties of the tissue as well as reflex
action. In addition to being physiology-agnostic, this model aligns well with the admittance
control laws implemented on many pHRI systems.

As shown in Tsuji et. al [56], it is possible to express the task-space impedance param-
eters presented in Eq.(2.24) in joint space by using the Jacobian of the kinematic human
arm model:

Kj = J(qh)
TKeJ(qh) (2.25)

Bj = J(qh)
TBeJ(qh) (2.26)

Mj = J(qh)
TMeJ(qh) (2.27)

where qh is the human joint configuration. Thus, if the configuration of the human arm
is known, estimates in the task space can reveal the impedance contributions from each
joint.
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2.3 Parameter Identification

2.3.1 Standard Least-Squares Estimator

Consider the linear system y = Φa, where y is a vector of measured outputs at n time
steps, Φ is an n × m matrix of m inputs measured at n time steps, and a is a vector of
m parameters. Due to the presence of modelling uncertainties and measurement noise, Φa
will never match y exactly, so to make this error explicit we instead write:

y = Φa+ ε (2.28)

The goal of the least square estimator is to recover the best estimate of the parameter
vector a in the presence of the unknown error term ε. To quantify the idea of “best”, a
cost function that minimizes the square of the error can be defined as follows:

J =
n∑
i=0

εi = εT ε (2.29)

To find the minimum, J is expressed in terms of the measurements and differentiated with
respect to a. The result is set to 0 and an expression for â, an estimation of the a, can be
found:

J = (y − Φâ)T (y − Φâ) (2.30)

J = yTy − yTΦâ− âTΦTy + âTΦT âΦ (2.31)

∂J

∂â
= −2ΦTy + 2ΦTΦâ = 0 (2.32)

â = (ΦTΦ)−1ΦTy (2.33)

The expression (ΦTΦ)−1ΦT is also known as the left pseudo-inverse of Φ, or Φ†. Solving for
â in this way minimizes the error in the least squared sense over the most recent n samples,
but this may present several challenges in practice. First, if a is time-varying, this behavior
will not be well-captured in the estimation since standard least squares weights older and
newer data equally. Secondly, calculating the pseudo-inverse at each time step involves a
matrix inversion that can become intractable even for modest values of n. The inclusion
of a “forgetting factor” in a recursive implementation of the least-squares estimator can
address these problems.
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2.3.2 Recursive Least-Squares with Forgetting Factor

The recursive least-squares (RLS) algorithm is implemented as follows:

P [k] =
1

λ

(
P [k − 1]− P [k − 1]φ[k]φ[k]TP [k − 1]

λ+ φ[k]TP [k − 1]φ[k]

)
(2.34)

L[k] =
P [k − 1]φ[k]

λ+ φ[k]TP [k − 1]φ[k]
(2.35)

â[k] = â[k − 1] + L[k](y[k]− φT â[k − 1]) (2.36)

where P [k] is known as the feedback gain and λ is a forgetting factor. With RLS, it is
possible to solve a least squares problem online without recomputing the matrix inverse
(ΦTΦ)−1. For values of λ less than 1, the estimator weights current data more heavily
than older data, allowing the tracking of time-varying parameters. When λ = 1, all data
is equally weighted and the solution is equivalent to that of the standard least-squares
estimator considering the entire history of the regressor. As described in [52], in the
absence of a sufficiently rich or persistently exciting signal Φ, a constant value for λ could
lead to unboundedness in P . Excessively large magnitudes of P makes â highly susceptible
to noise; modulating λ(·) in some manner along with the quality of Φ can be a practical
means of avoiding this problem.

As an implementation consideration, the initialization of P [k] should be set to the
diagonal matrix P [0] = p0I where p0 is a large positive scalar in order to assure fast
convergence. Naturally, reducing the initial error e[0] = a[0] − â[0] with a good initial
estimate also reduces the convergence time.
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Chapter 3

Design of a Novel Testbed for
Validating Online Operator
Impedance Estimators

This section explores a novel, two-manipulator experimental setup designed to simulate
pHRI for the purposes of characterizing and validating online impedance estimators. First,
several flavours of least-squared-based approaches to operator impedance estimation from
literature are discussed. Next, the motivations and protocol for the experimental setup
are described, along with an investigation of admittance controller performance on the
BURT. Results of the robot-robot interaction are presented, demonstrating the experiments
efficacy and allowing a comparison between estimators from the literature.

3.1 Overview of Estimation Methods

The following online impedance estimation methods solve the linear identification problem
of the form: Fm = ΦT â where Φ is the collection of measured points and â contains the
parameters to be estimated.

3.1.1 The RLS Approach

In their 1995 paper [39], Love and Book outline a recursive-least-squares method for esti-
mating the impedance of an environment with a discrete-time system. Designed to map
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the contact dynamics of the robot’s surroundings in order to reduce contact instability,
this method is not by itself suitable for general pHRI since it assumes the trajectory of the
environment is trivial: ẋd = 0 and ẍd = 0. Since a human’s impedance is often resisting
perturbation from a planned, non-trivial trajectory not known a priori, more information is
required to make a meaningful estimation in some cases. Still, this approach to impedance
estimation represents the cornerstone of all RLS-based methods.

Consider a model of the environment similar to 2.2.3:

Fm[k] = Meẍ[k] +Beẋ[k] +Ke(x− x0)[k] (3.1)

where Fm(k) is the measured interaction force at discrete time-step k, and x0 is the initial
position of the contact. Using δ to represent a difference with respect to time, the following
may be defined:

δFm[k] = Fm[k]− Fm[k − 1] =


fmx[k]− fmx[k − 1]
fmy[k]− fmy[k − 1]
fmz[k]− fmz[k − 1]

 (3.2)

δx[k] = x[k]− x[k − 1] =


x1[k]− x1[k − 1]
x2[k]− x2[k − 1]
x3[k]− x3[k − 1]

 (3.3)

with x1, x2, and x3 corresponding to positions in the x, y, and z-axes, respectively. A
discretized model of the environment may then be expressed as:

δFm =

[
Me

(
2

T

)2(
1− z−1

1 + z−1

)2

+Be

(
2

T

)(
1− z−1

1 + z−1

)
+Ke

]
δx (3.4)

where z is the complex variable of the z-transform and T is the sampling time. Rearranging
the discretized model yields the following difference equation:

δFm[k] + 2δFm[k − 1] + δFm[k − 2] = [A]δx[k] + 2[B]δx[k − 1] + [C]δx[k − 2] (3.5)

where [A], [B], and [C] are:

[A] =

[
Me

(
2

T

)2

+Be

(
2

T

)
+Ke

]
(3.6)

[B] =

[
Ke −Me

(
2

T

)2
]

(3.7)
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[C] =

[
Me

(
2

T

)2

−Be

(
2

T

)
+Ke

]
(3.8)

Fitting this into a form that the RLS algorithm may operate on, the output vector y is
constructed as:

yT = δFm[k] + 2δFm[k − 1] + δFm[k − 2] (3.9)

while the regressor φ is:

φ =


δx[k]

δx[k − 1]
δx[k − 2]

 (3.10)

The parameter matrix â is of the form â = [A|B|C], and the parameter matrices may be
solved for accordingly:

K̂e =
1

4
[A+B + C] (3.11)

B̂e =
T

4
[A− C] (3.12)

M̂e =
1

4

(
T

2

)2

[A+ C −B] (3.13)

3.1.2 Time-Varying Forgetting Factors for pHRI

Taking issue with the relatively slow convergence times of simpler RLS-based impedance
estimators, a paper by Wang et. al. [60] explored how estimator performance could
be improved by better choosing the forgetting factor λ[k]. While their work specifically
mentions estimating human impedance during brief interactions (sub-second convergence
times), it does not take into account the human’s desired trajectory and thus is restricted
to use cases where the operator’s path is known.

Two approaches will be described for selecting a time-varying λ[k] which take advantage
of the saturating property of the arctan(·) function. First, the method of Diolaiti et. al [15]
in which λ[k] is inversely proportional to estimation error. Secondly, Wang et. al. proposed
a forgetting factor that is related to change of the parameter estimation. That is, as the
estimate starts to converge, λ[k] increases, while increasing variation in the parameter
estimation implies a change in the true parameter value and λ[k] is decreased to improve
convergence rate.
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When the forgetting factor is tied to estimation error, ê, it may be defined as follows:

λ[k] = 1− α1

(
1

π
arctan(α2(|ê[k]| − α3)) +

1

2

)
(3.14)

where ê[k] is estimation error: ê[k] = y[k]− Φ[k]â[k]. The control parameters α1, α2, and
α3 must be tuned to obtain the desired behaviour of λ. At time-steps with a large ê, λ
converges to 1 − α1. The rate of this convergence is proportional to α2 and the size of a
“large” error is determined by α3.

According to the results of Wang et. al., faster convergence is possible by relating λ[k]
to parameter change. In their scheme, a function R[k] is defined to represent the largest
ratio of parameter change between time-steps:

R[k] =

{
max
i,j

(
âij [k−l]
âij [k]

,
âij [k]

âij [k−l]), âij[k − l]âij[k] 6= 0;

∞, else .
(3.15)

where l ∈ N is the window length over which the parameter change is examined. This
function selects the largest single element change ratio, either gain or loss over the sample
window l. If any element is zero, the function should be set arbitrarily large. R[k] informs
the calculation of λ[k]:

λ[k] =

{
1− α3

π
arctan(|R[k]− 1|), |R[k]− 1| ≥ α2;

α1 + 1
π
(1− α1)(arctan(1− |R[k]− 1|)), else .

(3.16)

Tuning parameters 1
3
≤ α1 ≤ 1, α2 ≥ 0, and 0 ≤ α3 ≤ 2 define the lower bound of λ[k],

the threshold of fast changing speed, and the upper bound of λ[k], respectively.

3.1.3 Windowed Least-Squares with Offset Matrix

Duchaine and Gosselin took a windowed least squares (WLS) approach to stiffness es-
timation in their 2009 paper on adaptive impedance control [16]. Though they did not
estimate any higher order impedance parameters, citing the dominance of human stiffness
at typical pHRI speeds, their estimator did account for “human desired motion” using a
linear regression to determine the so-called offset matrix B. For a window length m in
n-dimensional space, the pHRI dynamics may be modelled as:

Fm = KeX +B (3.17)
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where Fm is an n ×m matrix containing the measured forces with rows fi (i ∈ 1..n), Kh

is an n× n matrix representing the human or environment stiffness, X is an n×m matrix
storing measured positions in task space with rows xi (i ∈ 1..n), and B is the n×m offset
matrix, whose entries correspond to the force at X = 0. The matrix B may be estimated
as follows:

B = (f̄ − V −1Σx̄)1[1×m] (3.18)

where f̄ and x̄ are n×1 column vectors of n row-means from their respective measurement
matrix (i.e. f̄1 = mean(f1), x̄1 = mean(x1)), V is an n×n diagonal matrix whose non-zero
entries are the variance of each row from X, and Σ is an n × n diagonal matrix whose
non-zero entries are the co-variance of X and F for each dimension:

Σij = δij cov(xi, fj) (3.19)

To find human stiffness estimate Kh, windowed least-squares is completed in the usual
way, multiplying the offset force measurement by the right pseudo-inverse of X:

K̂e = (Fm −B)XT (XXT )−1 (3.20)

As the authors point out, care must be taken in calculating the pseudo-inverse of X because
insufficient excitation in any dimension can lead to a singular or ill-conditioned XXT . A
solution to this implementation challenge is presented in [16] involving selecting only rows
for which the position variance is sufficiently large over the window length.

For a three-DOF manipulator and small values of m, taking the pseudo-inverse of
X is tractable in realtime on most systems, including the BURT. However, for resource-
constrained systems or larger window sizes it may be preferable to calculate a single element
of force offset matrix B as described above, subtract it from the measured force, and use
the result as y[k] in a RLS scheme. This would also allow for the estimation of higher order
impedance terms.

3.2 Design of an Experimental Testbed to Validate

Impedance Estimation

Determining the accuracy of an online human impedance estimator is challenging, since
it is not possible to measure the true impedance the human presents to the robot during
the task without invasive perturbations. Often, impedance estimators are validated by
interacting with a machine of known dynamics, such as a damped spring array [50]. The
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limitations of this type of validation are obvious; a passive mechanical spring-mass-damper
system does not provide a time-varying impedance or a realistically varying set point, both
of which are required to meaningfully recreate pHRI. In order to validate the performance
of online impedance estimators, an experimental setup has been devised that exploits the
bimanual nature of the BURT system. The setup involves the robot-robot-interaction of
the left and right manipulators rigidly coupled at their end-effectors. In this configuration,
one arm (the leader) takes the place of the robot - tracking a trajectory while running
the estimator - while the other (the follower) displays a known, time-varying admittance
corresponding to the human. In order for this test be practical, the robot taking the place
of the human must: accurately display a realistic time-varying desired admittance within a
known tolerance, be moved through a realistic excitation trajectory, and be rigidly coupled
to the estimating robot. The following section discusses the design and performance of the
impedance controller, the choice of the exciting trajectory, and a description of the robot
coupling.

3.2.1 Theory of Operation

The robot-robot interaction described in this chapter is a physical simulation of pHRI in
which a pair of BURT arms are rigidly connected (see Fig. 3.1). Admittance control was
used in representing the human dynamics because it can fully mask the inertia and lower
order dynamics of the manipulator, allowing the system to simulate the effective local
mass, damping, and stiffness of the virtual human during the interaction. In its most basic
iteration, the testbed models a robot perturbing a human who is attempting to remain
stationary (a trivial voluntary trajectory) with a possible time-varying admittance, so the
arm representing the human is referred to as the follower. By contrast, the leader applies
forces to the follower to move it through a prescribed trajectory. The leader, as the robot
in the simulated pHRI, uses the interaction force data it collects along with knowledge of
its end-effector position to estimate in real-time the admittance displayed by the follower,
ostensibly to improve its controller’s performance. While the leader may assume a priori
that the follower is attempting to remain stationary, this need not be the case. Should
the follower be rending its impedance relative to a non-trivial xd, this may confound the
dynamics estimation depending on the sophistication of the estimator.

At its core, the system is a pair of symmetric, rigidly connected manipulators that
share a force-torque sensor at their interface. The intent is to demonstrate the utility of
such a setup for testing, validating, and characterizing pHRI estimators and controllers in
a repeatable testbed with more real-world fidelity than a software simulation.
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Figure 3.1: The experimental setup, two rigidly connected BURT manipulators in mirror con-
figuration.

3.2.2 Design and Performance of Experimental Setup

Admittance Control of Follower

The follower robot in this setup is operated based on an admittance controller, meaning it
measures the applied force and tracks an output in x according to the desired dynamics.
Similar to the controller described in Sections 2.2.1 and 2.2.2, a computed torque admit-
tance controller is used with the omission of the viscous friction term Bq̇ from Eq.(2.19).
Sufficient tracking was achieved without identifying the BURT’s B matrix. The desired
trajectory for the follower is ẍd = 0, ẋd = 0, and xd = x0.

Inner-loop PD gains of Kv = diag(8) ∈ R3×3 and Kp = diag(800) ∈ R3×3 were deter-
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Figure 3.2: Top: Force comparison demonstrating Y-axis admittance tracking. Bottom: Force
errors for all three axes.

mined experimentally and provide a balance between admittance tracking accuracy and
acceptable stability margins. The under-damped nature of the inner loop controller, a
result of the low derivative gain, is a performance limitation discussed in Section 3.3.2, and
is necessitated by the phase lag in the BURT’s velocity estimate (see discussion of inner
loop dynamics in Section 2.2.2).

To characterize the admittance tracking of the follower, consider the force error, σ:

σ = Fm − (Md(ẍ− ẍd) +Bd(ẋ− ẋd) +Kd(x− xd)); (3.21)

An impedance error of σ = 0 is achieved when the interaction force matches the force
that should have been produced given x(t) and the desired dynamics, which corresponds
to perfect admittance tracking. This metric can be calculated for a particular experiment
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Figure 3.3: Top: Velocity comparison demonstrating Y-axis admittance tracking. Bottom:
Velocity errors for all three axes.

offline, given only time-series data of position and force as well as the desired dynamic
parameters. However, in practice, determining an accurate ẍ vector from the discrete po-
sition data is challenging. Quantization noise is amplified through discrete differentiation,
and aggressive low-pass filtering attenuates the signal peaks. The solution proposed in [33]
is to apply a Savitzky-Golay filter [48] to the position response, fitting a polynomial of at
least second-order to a specified window of position data, and using the second derivative
of the fitted curve to approximate the acceleration of the unfiltered measured position
data. Since we are only interested in σ as a means of validation after the experiment has
completed, this is treated as a smoothing problem and a window may be selected that
considers both past and future values of x for a given time.

To make this measurement a human operator physically moves the follower (not yet
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coupled to the leader) through an arbitrary trajectory, exciting all three task-space dimen-
sions. Fig. 3.2 shows the results of an admittance tracking characterization. The robot
attempts to display a critically damped admittance of Md = diag(5) kg, Bd = diag(22)
Ns/m, Kd = diag(50) N/m while being moved through an approximately elliptical trajec-
tory exciting all three axes.

Equivalently, the endpoint velocity error, eẋ = ẋ − ẋd, corresponds to admittance
tracking performance (Fig. 3.3).

Sensor noise from the force-torque sensor and derivative noise in the velocity and ac-
celeration measurements contribute to significantly to both sources of error, even after
filtering. A large source of error physically present in the interaction are the oscillations
due to excitation of the under-damped inner loop controller, as discussed in Section 2.2.2.

Trajectory Design

Clearly, the accuracy of any impedance estimation method depends on the strength and
quality of the signal. An excitation that is sufficiently information rich will yield a better
estimation than one that contains relatively little. If a strong signal for an abstract param-
eter identification was desired, any frequency-dense excitation in each axis would suffice.
However, since this system is designed to emulate pHRI, the primary constraint on the
trajectories is that they are human-like. While it is trivial to generate a frequency-rich
trajectory in q that satisfies formal conditions of persistent excitation, it would not serve
to meaningfully validate the impedance estimator if the bandwidth of this trajectory was
outside what is achievable by a the human arm. Further, an appropriate trajectory must
be representative of common motor behaviour to achieve similitude.
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Figure 3.4: Example trajectories that satisfy the Flash-Hogan minimum jerk criteria, x0 = 0,
xf = 1, tf = 2.
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A natural candidate for an exciting trajectory that respects these constraints is Flash
and Hogan’s minimum jerk trajectory [19]. They found that for point-to-point upper
extremity motions, the velocity profile of the hand follows a distinct fourth-order bell
shape which corresponds to the movement that minimizes jerk, the third derivative of
position. Specifically, their empirical data shows that in a given direction, a movement
from x0 to xf over tf follows:

x(t) = x0 + (x0 − xf )(15τ 4 − 6τ 5 − 10τ 3) (3.22)

where τ = t/tf represents the fraction of the movement’s duration. The trajectory in
Eq.(3.22) and its derivatives are shown in Fig. 3.4. They are used in the experimental
trials to create a reasonably human-like motion that would likely occur during a typical
pHRI.

Description of Coupling

Despite each BURT manipulator lacking a wrist, the symmetry of their kinematics allows
robot-robot interaction to occur without the need for a passive wrist joint. In fact, when two
BURT arms are configured in opposite handedness and have an overlapping workspace, the
XZ-planes of their end-effector’s coordinate frame (Fig. 2.2) will be coincident. Rotations
about the Y3 vector are allowed by the built-in passive bearings (Fig. 3.5). To maintain

Figure 3.5: A labeled close up of the robot-robot coupling.
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the rigid kinematic chain between the left arm and the force/torque sensor, the left bearing
must be locked. A torsionally-stiff pin through the centre of the bearing bridges fixturing
(red and dark blue parts) that is attached to either side of the rotating surfaces.

Because the end-effectors have volume, they cannot be exactly collocated. Thus, there
will always be some misalignment of the platforms. This is compounded by play about the
Z3 vector, visible in the figure as uneven spacing between the top and bottom halves of
the bearing. To compensate for this, the coupling is 3D printed with sufficient compliance
to absorb the misalignment tolerance – at the expense of a small internal wrench.

3.3 Experimental Trials

The experimental setup was tested with a series of trials designed to test the performance
of the three methods outlined in 3.1. In the first trial, the follower displayed a constant
impedance to validate the basic RLS algorithm. For the second, step changes in the
displayed admittance allowed for comparison between λ[k] definitions. Finally, in a third

0 2 4 6 8 10 12 14 16 18

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
o
o
l 
T

ra
je

c
to

ry
 (

m
)

X-Axis

Y-Axis

Z-Axis

Figure 3.6: The excitation trajectories for a point-to-point test. Each path between targets
satisfies a Flash-Hogan minimum-jerk trajectory.
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trial, the follower tracked a non-zero trajectory while displaying a constant impedance to
demonstrate the value of the offset matrix B in WLS method.

3.3.1 Results

Constant Admittance

For these investigations, point-to-point movements were provided as excitation to the fol-
lower while it displayed a constant admittance. Fig. 3.6 shows two cycles of the leader’s
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desired trajectory moving between three target locations in each Cartesian axis. The shape
of each section minimizes the jerk when moving from the initial position to final position
over a duration of 2 seconds, with a delay of 1 second between targets. In this trial, the
desired dynamics of the follower were Md = diag(3) kg, Bd = diag(5) Ns/m, Kd = diag(25)
N/m.

Fig. 3.7 shows a typical RLS estimator with a constant value for forgetting factor
λ = 0.999, as presented in Section 3.1.1, approaching the true parameter values with
reasonable accuracy. After a settling time of approximately 1.5 seconds (the leader doesn’t
excite the follower for the first 0.5 s of the experiment), the mean-absolute-error in (MAE)
stiffness estimations are 10%, 11%, and 14% in the x, y, and z-axes, respectively while the
MAE in inertia estimations are 8%, 23%, and 16% over the 18-second trial. Convergence
performance of the estimator for damping was as slow as 8 seconds.

Tracking in the y-axis was notably poor here, settling near 15 Ns/m after an unknown
disturbance along its travel around 7 seconds into the trial. After converging, the MAE
in damping was 6%, 185%, and 11% in the in the x, y, and z-axes, respectively. These
results are typical for the estimation of the damping parameter, which was observed to be
consistently the slowest to converge and most sensitive to numerical disturbances. These
results set a baseline for understanding the performance of the testbed under straightfor-
ward conditions where the estimation is not complicated by variations in impedance or by
a non-zero trajectory in the follower. The effects of measurement noise, variable sampling
frequency, and the bandwidth of the exciting trajectory are present, making these trials a
useful characterization of the system.

Variable Admittance

In variable admittance trials, the leader moves through similar minimum-jerk trajectories
as the constant admittance trials while the follower switches the desired dynamics it renders
at each target location. This allows for comparison of convergence times between time-
varying forgetting factor methods. Fig. 3.8 shows a typical example of convergence after
a step change in displayed inertia from Md = 3 to Md = 8 kg for both error-based and
parameter-change-based definitions of λ[k].

The error-based λ[k] is calculated using tuning parameters α1 = 0.002, α2 = 100, and
α3 = 0.01. These parameters were obtained after extensive trial and error experimentation
and provided a favorable balance between convergence time and over-sensitivity to mea-
surement noise. For the parameter-based definition of λ[k], the tuning parameters were
chosen as α1 = 0.99, α2 = 5, and α3 = 0. Again, these were determined experimentally, as
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Wang et. al. concede in [60] (where they provide a qualitative explanation of tuning proce-
dure) that these parameters must be “... hand-crafted for the proposed method, as for any
similar methods of variable forgetting factors.” While variation in the α-parameters for
each method would, of course, change the results presented here, their values were selected
so as to allow fast convergence time with low steady-state error.

When λ[k] was defined according to the error-based method, it settled to 20% of the
desired value within 1.2 s. Once settled, it had an MAE of 15%. The parameter-change-
based method converged more quickly by 0.3 s with a smaller overshoot, supporting the
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benefits described in the literature. Additionally, the MAE was only 9%. However, the
peak-to-peak noise on the parameter-change-based signal was markedly higher, including
several instances where estimations at consecutive timesteps differed by at least 10 kg.

Non-Zero Follower Trajectories

When the follower has a non-constant xd, akin to the human also moving along some
voluntary trajectory, that path must be known (or at least approximated) in order to

38



estimate the admittance parameters. Since this information is not accessible outside the
mind of the operator, it might be estimated through statistical inference as in Section
3.1.3. In a trial that demonstrates this, the leader drags the follower through an ellipse
in R3, the follower’s position error is measured relative to a setpoint xd that is translating
in the positive y-axis. The changing xd means the location of the coupling relative to
the initial position is no longer exactly proportional to the force produced by the desired
stiffness component of the admittance, so the previous methods fail to estimate the stiffness
accurately (Fig. 3.9-top).

The offset matrix calculated in 3.18 compensates for the changing set-point, allowing
this method to make a reasonable approximation of the stiffness with limited information
(see Fig. 3.9-bottom). A window length of 250 samples was used, which is approximately
0.5 s. Even over a relatively large window, the offset matrix was quite sensitive to noise and
a 500-sample trailing moving mean filter was applied. This affects convergence time and,
as can be seen from the phase delay in the force offset tracking performance, may present
a challenge in regards to pHRI. Section 3.4 proposes future research into an alternative
method that avoids the noise inherent in the statistical approach to estimating the B
matrix.

Since this method does not take into account higher order dynamics, it tends to over-
estimate stiffness. The value of the desired stiffness for this trial was Kd = diag(80)
N/m. The MAE for the stiffness estimate that included the offset matrix is 16%, while the
estimate which did not take into account the force offset failed to converge and oscillated
around 0.

3.3.2 Discussion

The results presented above corroborate the usefulness of the pHRI testbed proposed in
this chapter, while also highlighting some of the challenges. Results from the literature
are confirmed; for example, the parameter-change-based definition of λ[k] due to Wang et.
al. is shown to converge more rapidly with less overshoot after a step change compared to
the error-based method on a similar time-scale (0.25s) to the results in their 2009 paper
[60] (Fig. 3.8). Additionally, the simulated voluntary human movements that resulted in
non-trivial follower trajectories could be approximated by the offset matrix proposed by
Duchaine and Gosselin [16] (Fig. 3.9). While the authors of that paper only provided
high-level experimental results demonstrating improved task performance as evidence of
their stiffness estimator’s success, the experimental setup presented here allows for a more
detailed examination of human voluntary trajectory approximation in a controlled setting.
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However, oscillations from the excitation of under-damped modes of the inner loop
controller continue to pollute the impedance rendering and can lead to instabilities of the
stiffer coupled system. This limits the safe allowable impedance of the leader robot, in turn
preventing accurate trajectory tracking and sufficient excitation in the measurements, ulti-
mately leading to poor estimates saturated with noise. An in-depth study into joint velocity
measurement or observation which can produce a higher fidelity signal is recommended, as
this would allow for a larger virtual damping gain, eliminating this problem.

The geometry of the end-effector coupling also contributes significantly to estimation
error (see Section 3.2.2). Since the end-effectors cannot be truly collocated, rotation about
the free bearing by the opposite end-effector leads to a relative translation in the XZ-
plane of the end-effector coordinate frame. This slippage, though required for the robot-
robot cooperation of two 3-DOF manipulators, is the manifestation of the departure from
redundant human kinematics. The relative motion between end-effectors that would ideally
be collocated adds position error into the estimation not present in true human-robot
interaction.

3.4 Future Work

Identifying human voluntary trajectories in an online impedance estimator is a natural
application of results from the field of inverse optimal control. As Flash and Hogan’s early
work in this area [19] demonstrates, it is possible to have a very accurate prediction of
the desired, unperturbed motion given the category of task being performed, i.e. point-to-
point reaching. All that is required is a cost function that humans tend to minimize for
that task, such as minimizing jerk. If their behaviour matches this criteria, the person can
be modelled as an optimal controller, the control input u that is the solution to:

min
x(·),u(·),T

∫ T

0

J(x(t), u(t))dt (3.23)

where x is the state of the system, constrained by the system dynamics. J is the running
cost function:

J(x(t), u(t), α) =
n−1∑
i=0

αij(x(t), u(t)) (3.24)

in which α is a vector of n weights for the n sub-components of the cost, j(x(t), u(t)).
For example, a hypothetical cost function may have n = 3 sub-costs related to ẋ, ẍ, and
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control effort u. Each of these will have some relative importance α to the final cost and
thus some influence on the behaviour (or may not contribute if αi = 0).

Determining the weights of a hypothetical cost function from observed behaviour, for
example time-series force and position data, is the process of inverse optimal control (IOC).
The numerical methods to achieve this are beyond the scope of this document, but the field
is rich with examples of both low-level (core balance [45]) and high-level (path planning
[42]) neuro-motor processes that can be well described by a custom-fit cost function. This
cost function, then, prescribes a very specific control response given a particular task and
serves as a powerful and compact way of quantifying human behaviour (the disadvantage,
of course, being the involved empirical data collection for each unique task – there is no
universal human cost function).

Once a cost function is known for a particular task, a solution to the optimal control
problem may be used to obtain an approximation of the eventual trajectory. In the case of
minimum-jerk point-to-point reaching task, this is the fifth-order polynomial x(τ, x0, xf ). If
an online estimator could identify the constants τ , x0, and xf , the hidden human voluntary
trajectory would be known. A process to determine these parameters would likely depend
on context clues from the task as well as inference of human intent (see Section II of [16]),
since the true human voluntary trajectory is perturbed by the presence of the robot’s
dynamics during pHRI. Ultimately, a robust operator impedance estimator must draw
from the field of neuromechanics as much as from the fields of robotics and control.
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Chapter 4

Applications of the BURT Platform
to Human Sensorimotor Research

The design of future pHRI systems must rely on an understanding of human motor con-
trol as much as they do on robot control. Advancing knowledge in neuromechanics will
ultimately lead to more effective human-facing robotics by improving intent detection and
human modelling, as well as inspiring human-like controllers. Up to this point, this thesis
has focused on how a robotic system might better estimate human interaction dynamics.
This section will briefly demonstrate how the BURT platform can contribute to human
motor control research. Specifically, this section introduces the experimental investigation
on how the visual information affects dominant and non-dominant hands during bimanual
circle tracing.

Beyond its suitability for pHRI research, the BURT platform constitutes a nearly off-
the-shelf system for conducting human motor and sensorimotor control experiments. Ow-
ing to its design as a medical rehabilitation device, it is a relatively low impedance interface
for capturing and guiding motion of the upper extremities through their natural range of
motion, acting as a three DOF manipulandum. Additionally, the BURT platform is easily
extensible to bimanual investigations, is tightly integrated with the Unity game engine
which can be used as a framework for including graphics and implementing experimental
protocols, and incorporates features such as virtual walls and speed limits, to improve the
safety of the interaction while reducing experiment development time.

This section will describe a novel sensorimotor control experiment conducted on the
BURT in collaboration with M. Nouredanesh [43], discuss future work in this area, and
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Figure 4.1: A screen-shot of the visual feedback interface for the experiment. The large white
circles represent the target trajectories for each hand. The small green and red circles represents
the relative locations of the left and right hands, respectively.

suggest possible improvements that could make the platform even better suited to ongoing
research.

4.1 Method

4.1.1 Participants

Six healthy, adult participants (5 male, 1 female, aged between 24-35 years), all self-
reported as right-handed, with no history of upper-extremity injuries or neurological dis-
orders, were recruited in this experiment. None of the participants had any previous
experience with the robotic apparatus or performing bimanual circle-drawing tasks.

4.1.2 Apparatus

Subjects were comfortably seated between the BURT arms. A 43-inch, high-definition,
LED display, placed 1.6 m in front of the subject, displays two circles, representing the
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desired left-hand and right-hand trajectories (see Fig. 4.1). The user interface is created
in the Unity game engine. The displayed circles correspond to two 0.2 m diameter circular
trajectories with centers spaced 0.4 m apart in the BURT’s workspace. The positions of
the subject’s left and right hands with respect to the desired trajectories are displayed as
green and red markers, respectively. Two distinct trajectories are displayed, rather than
mapping the subjects’ relative hand locations onto a single circle, to provide an intuitive
feedback interface and eliminate the decoding of which marker corresponds to which hand.

While interacting with a BURT arm, subjects grip a molded plastic sphere with a
pronated forearm configuration and are coupled to the end-effector using a padded cuff.
The BURT tracks the subject’s hands’ trajectories, while also constraining them to the
transverse plane at a height determined to be comfortable by the subject at the outset of
the experiment. This provides support for the upper limbs during the trials, minimizing
shoulder fatigue.

4.1.3 Protocol

To compensate for the effect of cross-limb training/skill transfer [31], e.g. bilateral access
hypothesis, 2 sequences i.e. A-B and B-A, were considered (see Figure 4.2-left panel), where
the visual feedback from the left NDH and right DH were withdrawn from sequences A
and B, respectively. Participants were instructed to trace the contours of template circles
with both hands as quickly and accurately as possible in a non-mirror-symmetric, counter-
clockwise mode. A 60-second familiarization step was performed by each subject prior to
the experiments. Subjects alternated between 30 s of rest, to further minimize fatigue, and
60 s of continuous circle-drawing in each of four experimental conditions (see Fig. 4.2-left
panel). In conditions A1 and B1, free-visual conditions (baseline), visual position feedback
was provided for both hands. In conditions A2 and B2, the visual feedback for the left hand
(the green marker) and right hand (red marker), were removed, respectively. In conditions
where only one hand’s marker is visible, that hand is said to be in its visually-guided mode,
while the hand without the marker is said to be in its invisible mode. Signals, i.e. x and y
trajectories from both hands, were recorded synchronously with an average sampling rate
of fs = 481 Hz (see Section 2.1.4).

4.1.4 Data Analysis

Each revolution of the user around the trajectory was separately analyzed for circularity,
enclosed area, and pace. In accordance with [7], x and y end-effector trajectories were
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Experiment B2 

Left Visible-Right Visible Left Invisible-Right Visible

Experiment A1 

Experiment B1 

Experiment A2 

Left Visible-Right Visible Left Visible-Right Invisible 

Sequence A

Sequence B

x

y
(0,0)

Figure 4.2: Left panel: Subjects perform the experiments either in A-B or B-A order. The
visual feedback from dominant and non-dominant hands is withdrawn in experiments B2 and A2,
respectively. X+ (vertical) points upward and Y + points medial, and the centers of two circles
are displayed at a distance equal to 40 cm from each other. The feedback for the right and left
hands positions are displayed with red and green solid circles, respectively.

first processed with a 2nd order Butterworth filter with a cutoff frequency of 10 Hz. The
sample corresponding to the start of the ith revolution boundary in time series data, i.e.
nmax,i, were identified by detecting peaks in y-position data. All data were processed
using MATLAB (R2018b, MathWorks Inc, USA). An ellipse [7] was fitted to the identified
boundary to extract circularity and pace measures.

Performance metrics

For the ith revolution, the ellipse fitting algorithm outputs the coordinate of the center,
the length of the minor (ai) and major (bi) axes. The aforementioned values along with
the area of the fitted ellipse, Ai = π·ai·bi

4
, were further used as the metrics in our analysis.

For each revolution, the aspect ratio (AR), a measure of circularity [7], was obtained
as ARi = ai

bi
. A perfect circle has an AR equal to 1, while 0 displays a straight line.

The distance-from-center variance (DFCV), i.e. the variance of the distance of all points
on the ith unfiltered boundary to the center [7] was used to further quantify the circularity
of the motion. Decreasing variance indicates improved circularity.
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The duration of each revolution was estimated from the timings of peaks (time elapsing
between two successive peaks). The cycling frequency i.e. ∆i = fs/(nmax,i − nmax,i−1),
allowing us to have an estimate of the pace for each circle.

Statistical analysis

The comparisons were made between the DH and NDH, and for each hand separately in
all transitions, e.g. from A1 to A2 and B1 to B2. Due to the non-Gaussian distribution of
the metrics, non-parametric statistical methods were applied. Trends were investigated (a)
within-subject, where one-tailed Wilcoxon rank-sum test (significance level α = 0.05) was
used to compare left and right revolutions traced by the same subject in each condition,
and (b) across subjects, where the means are recomputed for each contrast so as to obtain
six pairs, one per subject, and one-tailed Wilcoxon signed-rank test (α = 0.05) was applied
to these pairs. Cohen’s term d is used as an effect size index. The correlation between
cycling frequency and circularity is quantified by the coefficient of determination (r2) of
the least-squares linear regression of these metrics, for both AR and DFCV circularity.

4.2 Results and Discussion
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Figure 4.3: Representative trajectories from a single subject’s left hand for three experimental
conditions: only the left hand receiving feedback, both hands receiving feedback, and the left
hand receiving no feedback.
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4.2.1 Results

Features were extracted from 685 circles drawn by all subjects during the experiments (340
were traced by NDH, Table 4.1). Fig. 4.3 shows a typical result for the NDH across all
experimental conditions. For all but one subject in the DFCV metric, (r2) of the fitted lines
between cyclic frequency and both circularity metrics are less than < 0.1. This indicates a
very weak correlation between circle drawing rate and circularity. Similarly, a comparison
of cyclic frequency and circularity for all 685 circles showed a linear fit of r2 = 0.08 and
r2 = 0.03 for AR and DFCV, respectively.

Dominant versus Non-Dominant Hand

Across-subject analysis over all experimental conditions, showed a higher circularity for DH
(AR: 0.791±0.052 and DFCV: 0.24±0.16mm) than NDH (AR: 0.767±0.121 and DFCV:
0.377±0.313 mm), both statistically significant, p < 0.01, dAR = 0.20, dDFCV = 0.44.
With the hands in the free visual condition, A1 and B1, the DH (DFCV: 0.052±0.017 mm)
traced more circular trajectories than the NDH did (DFCV: 0.099±0.050 mm), p < 0.05,
dDFCV = 0.94. In their visually guided modes, the circularity of the right DH trajectories in
condition A2 (DFCV: 0.047±0.013 mm) was significantly higher than the NDH trajectories
in condition B2 (DFCV: 0.122±0.077 mm), p < 0.05, dDFCV = 0.97.

The within-subject comparison between DH in experiment B2 and NDH in experiment
A2, hand in invisible mode, showed significant DFCV differences on 3 out of 6 subjects,
manifesting in better performance of DH (p < 0.01, d1 = 0.40, d2 = 0.66, d6 = 1.45). One
subject performed significantly better with the NDH (p < 0.01, d4 = 1.57). The same
comparison on AR (Table 4.1 and Fig. 4.4) showed 2 subjects had a significantly better
performance with their DH (p < 0.01, d2 = 0.90, d6 = 1.95), and 2 with their NDH in the
invisible mode (p < 0.01, d4 = 1.89, d5 = 1.71). There was no statistical difference at the
group level when comparing circularity performance of the DH (AR: 0.791±0.052, DFCV:
0.241±0.162 mm) and NDH (AR: 0.767±0.121, DFCV: 0.377±0.317 mm) in the invisible
condition (AR: p = 0.42, dAR = 0.20, DFCV: p = 0.15, dDFCV = 0.43).

Within-Limb Alterations After Visual Feedback Withdrawal

Transitioning from visible to invisible mode, both DH and NDH in their invisible modes
displayed less circularity in terms of AR and DFCV metrics than when they are provided
with explicit visual feedback. For instance, blocking the visual information of the left hand
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(from experiment A1 to A2) significantly decreased the circularity of the left trajectory
(DFCV: 0.107±0.062 mm to 0.377±0.313 mm, p < 0.05, d = 0.86; AR: 0.824±0.054 to
0.767±0.121, p < 0.05, d = 0.47). Similarly, the circularity of right trajectories decreased
significantly after transitioning from experiment B1 to B2 (DFCV: 0.049±0.018 mm to
0.241±0.162 mm, p < 0.01, d = 1.04; AR: 0.882±0.034 to 0.791±0.052, p < 0.01, d = 1.75).
Additionally, there was a significant increase for both hands in the length of the major
axes (DH: 0.206±0.011 m to 0.307±0.075 m, p < 0.05, d = 1.35; NDH: 0.225±0.014 m to
0.321±0.041 m, p < 0.05, d = 2.34) and minor axes (DH: 0.181±0.010 m to 0.240±0.051
m, p < 0.05, d = 1.18; NDH: 0.188±0.007 m to 0.245±0.047 m, p < 0.05, d = 1.21) of
the fitted ellipses in absence of visual feedback. Since AR does not change significantly for
the NDH between conditions B1 and B2, and for the DH between conditions A1 and A2,
the trajectories maintain approximately the same shape. The area increased significantly
for both hands (Fig. 4.5) when visual feedback is removed on either hand (DH: 293±27
cm2 to 607±295 cm2, p < 0.01, d = 1.06; NDH: 332±26 cm2 to 630±177 cm2, p < 0.01,
d = 1.68).

Across subjects, for both major and minor axes, significant differences were observed
between visually-guided and invisible modes, i.e. conditions A2 and B2, using a one-tailed
signed-rank test for both the DH (major axis: 0.220±0.012 m to 0.307±0.075 m, p < 0.05,
d = 1.16; minor axis: 0.193±0.014 m to 0.240±0.051 m, p < 0.05, d = 0.92) and the
NDH (major axis: 0.321±0.041 m to 0.236±0.020 m, p < 0.05, d = 2.07; minor axis:
0.245±0.047 m to 0.195±0.009 m, p < 0.05, d = 1.06). The larger ellipses were drawn in
the invisible condition, followed by the visually-guided condition, with the smallest traces
drawn in the both-visible condition.

Comparing the mean pace for each subject’s NDH hand during both-hands-visible con-
ditions (A1 and B1) with one-hand-visible (A2 and B2) revealed that subjects followed
the desired trajectory more slowly when visual feedback was provided for both hands
(0.28±0.12 vs 0.32±0.14 Hz for NDH, p < 0.001, d = 0.33), as shown in Fig. 4.6. An
identical test for right-hand data exhibited similar results (0.27±0.12 vs. 0.32±0.14 Hz,
p < 0.001, d = 0.42).

4.2.2 Discussion

With regards to the relationship between self-reported handedness and circularity, our
hypothesis that the DH would trace more circular trajectories than the NDH across all
trajectories was observed in only two of the three conditions. In the free-visual and visually-
guided modes, the DH trajectories were more circular, however, in the invisible mode, no
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Table 4.1: Mean values of both circularity metrics for hands in the invisible mode on a per-
subject basis. The number of circles draw in each condition, n, is also shown for each subject in
each condition. Statistically significant pairs are indicated by ∗.

Aspect Ratio DFCV (mm) n (NDH⁄DH)

Subj. NDH-A2 DH-B2 NDH-A2 DH-B2 A1 A2 B1 B2

1 0.77 (0.07) 0.79 (0.10) 0.24 (0.13) 0.16 (0.20) ∗ 25/25 24/24 27/27 23/23
2 0.80 (0.07) 0.87 (0.07) ∗ 0.11 (0.07) 0.06 (0.05) ∗ 16/16 17/18 8/8 18/17
3 0.77 (0.11) 0.81 (0.07) 0.40 (0.37) 0.31 (0.18) 10/11 9/9 8/8 9/9
4 0.87 (0.05) 0.74 (0.07) ∗ 0.12 (0.07) 0.52 (0.26) ∗ 4/5 5/6 5/6 7/7
5 0.86 (0.05) 0.73 (0.08) ∗ 0.45 (0.54) 0.24 (0.10) 7/8 9/9 8/8 9/9
6 0.54 (0.14) 0.81 (0.09) ∗ 0.95 (0.55) 0.15 (0.15) ∗ 23/23 32/32 16/16 21/21

Mean 0.77 (0.08) 0.79 (0.08) 0.38 (0.29) 0.24 (0.16) 12.8 14.2 12.1 14.4

Subject

1 2 3 4 5 6

A
s
p

e
c
t 
R

a
ti
o

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Hand

NDH

DH

Figure 4.4: Aspect ratio for each subject with hands in their respective invisible conditions. Sub-
jects 2 and 6 show significantly better circularity on their DH, subjects 4 and 5 show significantly
better circularity on their NDH, and subjects 1 and 3 have no significant difference.

significant results were found at the group level. While previous results from the literature
indicated the DH should show better circularity performance than the NDH, this was
only true in two of the six subjects tested. Another two subjects traced more circular
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Figure 4.5: Area, in m2, of DH and NDH trajectories for each condition. In conditions A2 and
B2, both hands trace significantly different areas compared to the free-visual conditions A1 and
B1.

trajectories with their NDH, and the final two subjects showed no significant difference in
circularity.

One postulation for this observation is that, while the DH is known to act more dex-
terously in presence of visual feedback than NDH, when visual information was removed
subjects relied solely on proprioception and forward models, likely better shaped for the
DH in unimanual tasks. Our preliminary results also suggest the possibility of specific
forward models for bimanual tasks which are different than the summation of uniman-
ual forward models. Subsequent experiments to systematically explore this hypothesis are
warranted.

Based on the effect size seen for the statistically insignificant group level result in
the invisible condition, this pilot study reveals the need for at least N = 42 subjects,
ideally 21 of each handedness, in a future full-scale experiment [47, pp. 302-303]. With
the appropriate number of participants, subsequent work would be sufficiently statistically
powered (1− β = 0.8, α = 0.05) so as to avoid a type II error and draw more meaningful
conclusions about the relationship between handedness and visual feedback during a NMS-
BCT.
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Figure 4.6: Tracing Speed by Subject. The difference between the “Both Hands” and “One
Hand” visibility conditions is significant (p < 0.01) in all but subjects 1 and 3.

In agreement with the second hypothesis, participants traced target trajectories more
quickly with feedback from only one hand. Despite increased speed, circularity perfor-
mance did not vary significantly for a given hand between the free-visual condition and
its visually-guided mode (e.g. A1 to A2, for the right hand). This suggests that subjects
adjusted their speed to maintain a threshold of perceived satisfactory circularity. To stay
above this threshold, a decrease in tracing rate was observed during the free-visual con-
dition. Decreased speed may also account for attentional shifts between visual feedback
of each hand. Future work will investigate the critical role that attention plays in these
experiments.

The areas of the ellipses fit to each revolution of the trajectory vary by the experimental
condition. The largest elliptical areas were observed for hands in the invisible condition
(with no significant difference between DH and NDH), followed by traces from the visually-
guided condition. The smallest areas were traced in the free-visual condition. This is in
contrast to the experiment by Swinnen et al. [55] in which subjects performed a MS-
BCT. They found that the traced circle diameters were largest for the condition where
only the DH was visible, followed by the free-visual condition, with their smallest circles
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being traced while the NDH was visible. Also in disagreement with our results, Franz [21]
reported that, in a MS-BCT, the ”visually attended” hand traces larger circles than the
hand obscured. These discrepancies warrant a deeper investigation into the differences
between MS and NMS trajectories during a BCT.

4.3 Improvements to Apparatus

During the experiment, there was no attempt to compensate for the robot’s dynamics,
aside from gravity compensation and the control action constraining the end-effector to
the transverse plane, as development of the computed-torque admittance controller was
still in progress at the time of the study. The interaction forces felt by the participant
varied depending on the configuration of the BURT and, because the task was in-phase
and non-mirror symmetric on a bimanual system with mirrored kinematics, the impedance
presented to each limb was not congruent. That is, the impedance felt by the left hand
passing through the nine o’clock position was not the same as that felt by the right hand
at the same time. Peak values of the norm of the interaction force is approximately 20
N for faster tracers. As a result, participants had to first learn a complex set of dynamic
behaviours of the BURT system around their desired trajectory before they could effectively
perform the task. However, aside from a 60 s familiarization period before collecting data,
no statistical improvement was found in the performance of the free-visual condition trials
between the start and end of the experiment. This suggests that over the course of a
subject’s interaction with the BURT, little changed in the participant’s compensation for
the BURT’s dynamics. The distinct teardrop shape of the trajectories in Fig. 4.3 makes
it apparent that the impedance was not constant in all directions across the workspace.

In future experiments, an impedance or admittance controller could be used to produce
a uniform impedance for the participant to interact with. These intuitive dynamics would
ideally be as high admittance as possible to generate smaller interaction forces to overcome
along the trajectory. As discussed in Section 1.1.2, an impedance controller may be inef-
fective at masking the inherent inertia of the manipulator and the stability of admittance
controller is less likely when rendering low-impedance dynamics. This suggests a certain
maximum admittance that the device could render while ensuring participant safety. The
selection of this value should balance the desire for a haptically transparent system, to
prevent operator fatigue and participants modifying their behaviour in response to large
interaction force, with the requirement of uniform and intuitive dynamic behaviour.
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Chapter 5

Conclusion and Recommendations

5.1 Conclusion

This thesis explored the estimation of physical human-robot interaction dynamics through
two applications of the BURT robotic platform.

First, a novel testbed for validating the performance of realtime operator impedance
estimators was designed. The pHRI is simulated by rigidly connecting the end-effectors
of each arm of the BURT system, allowing one robot to present a time-varying, known
impedance to the other. An admittance control law is implemented to mask the natural
dynamics of BURT, and its performance is verified experimentally. Consideration is also
given to the design of the coupling and the exciting trajectories. Trials of this robot-robot
interaction using a suite of least-squares estimators from the literature demonstrate its
efficacy and utility.

Secondly, the BURT was used as a research platform in a human sensorimotor experi-
ment. While participants were engaged in a non-mirror-symmetric bimanual circle-drawing
task, visual feedback of the task performance was withdrawn from one of the hands. Re-
lationships between the visibility, circularity, tracing speed, and subject handedness are
examined. The results showed that there was not a strong relationship between handedness
and circularity performance without visual feedback. For example, right handed subjects
are in general no better at maintaining the trajectory with their right hand in the absence
of visual feedback than with their left. It was also found that tracing speed increased when
visual feedback was only provided for a single hand.

53



5.2 Recommendations

The control of the testbed could be made more robust by improving the estimate of velocity.
Currently, phase lag in the velocity estimate from low-pass filtering leads to instabilities
for higher derivative gains when a PD position control law is used. The use of external
sensors or better position signal processing would allow the testbed to render a wider range
of admittances with higher fidelity.

Future investigation into task-specific operator impedance estimators that leverage re-
sults from human motor control research are recommended. During point-to-point move-
ments, for example, the human is known to obey the minimum jerk criteria, which allows
an estimator to predict the desired trajectory and improve estimation accuracy. For a
particular task, a cost function (such as minimum jerk) can be identified by solving the
IOC problem. As the understanding of human neuromechanics grows, controllers and es-
timators designed for pHRI must incorporate results from the field to achieve their best
performance.

During the human motor control experiment presented in Chapter 4, the dynamics
of the robot were not uniform throughout the workspace. For example, at locations on
the target trajectory where the desired task-space motions came largely from one of the
BURT’s shoulder joints, the participant felt a relatively large inertia; when the motion
arose from the elbow joint, the perceived inertia was much smaller. It is recommended
that the BURT be admittance-controlled during future studies to provide that is free of
the manipulator’s parasitic dynamics This will reduce operator fatigue and eliminate the
confound of large, non-intuitive manipulator impedance.

A more rigorous study of the relationship between circularity performance, handedness,
and attention is warranted. It is recommended that future experiments in this vein better
guide the attention of participants by using a fixation cross. A more in depth study of the
role of attention may also employ head or eye-tracking technology to glean insight into the
nature of attention during the BCT task, especially as it relates to handedness.
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