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Abstract 

 Among all kinds of gene therapy, siRNA, a class of 20 to 25 nucleotide-long double-

stranded RNA molecules, is one of the promising therapeutic solution to regulate post 

transcriptional process for cancer treatment. However, naked siRNA is easily degradable in the 

body circulation system and cannot efficiently being consumed by cells. To overcome this 

problems, cell-penetrating peptides (CPPs) have received much attention due to their ability to 

translocate through plasma membranes along with a low toxicity. In past years, our group has 

developed a CPP called NP1 (Stearyl-HHHHHHHHHHHHHHHHRRRRRRRR-NH2), 

aiming to provide highly efficient siRNA delivery. However, although NP1 has outstanding 

transfection results on various cell line on in vitro tests, it could not provide promising results 

on serum environment since the presence of serum largely reduces the transfection efficacy 

and the overall positively charged surface of NP1/siRNA complex is not favored in systematic 

application.  

Matrix metalloproteinase-2, a category of gelatinase subgroup of MMPs, has been 

confirmed playing a critical role in tumor progression, angiogenesis, and metastasis. It has the 

ability to degrade the surrounding ECM to help cancer cell migrate inside the body. Thus, 
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relatively larger amount of MMP-2 secretion can be detected at tumor site which makes them 

an universal stimulus for bio-responding. 

Herein, this thesis focus on increasing the stability of NP1 while maintaining the high 

transfection efficiency in the presence of serum. The complex surface will be sheltered with 

polyethylene glycol (PEG) to screen the surface charge and avoid serum protein binding; 

Furthermore, the linker between NP1 and PEG, with composed of 8 specific amino acid 

sequence (GPLGIAGQ), will be recognized by matrix metalloproteinase-2 to achieve sensitive 

cleavage of PEG.  

 In this study, the following objective has been examined: (i) success cleavage of the 

designed linker and the existence of MMP2 in the cultured environment ; (ii) the 

physicochemical characterization of the modified peptides, and the interaction between 

peptides and siRNA molecules; (iii) the evaluation of the silencing efficiency, and toxicity of 

peptides/siRNA complexes in cultured cells in serum environment versus the results from NP1; 

(iv) in vitro biocompatibility study of the peptides/siRNA nanocomplexes, and (vi) the stability 

along with the RNase resistance ability of new modified peptide carrier comparing with NP1.  
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Chapter 1  

Introduction  

 

1.1 Overview  

1.1.1 Matrix metalloproteinase-2 (MMP-2) 

Matrix metalloproteinase-2 (gelatinase A, Mr 72,000 type IV collagenase), along with 

MMP-9 (gelatinase B, Mr 92,000 type IV collagenase) are proteases that belong to a gelatinase 

subgroup of the MMPs family 1,2. In particular, MMP-2 shares a strong tie with cancer. There 

are several steps that involve in the process of cancer cells invasion and metastasis: (i) tumor 

cell detachment from the primary site; (ii) extracellular matrix (ECM) degradation and blood 

vessels invasion; (iii) adhesion to blood vessels at another site; and (iv) invasion of the organs. 

Among all the steps, degradation of surrounding ECM (step (ii)) is considered the essential 

step in tumor invasion and metastasis 3, and MMP-2 has been discovered as an important role 

in this step 4–7. It is a biomarker of malignancy since its overexpression is in almost all types 
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of tumors 8. Therefore, it has been widely used as drug delivery target or release stimulus for 

different kinds of carriers.   

Based on the specific protease activity of MMP-2, it can be utilized for enzymatically 

metabolized drug delivery, in which therapeutic drugs or protection composition are covalently 

bound to MMP-2 substrate peptides 9,10, and activated upon cleavage of the peptide by MMP-

2 afterwards. For example, a specific tumor-targeted prodrug, comprised of MMP-specific 

peptide and methotrexate, has been developed and tested by Robert Langer’s group for 

chemotherapeutics in human tumor xenograft models 11,12. Similarly, Lin and etc. have tried 

co-delivery of siRNA and hydrophobic drugs into A549 lung cancer cells using a MMP2-

sensitive multifunctional micelles formed by the PEG-peptide-PEI conjugation 13. All in all, 

the specialty of MMP-2 secretion at tumor site and the MMP-2 specific peptide provides a new 

strategy for cancer targeting therapy. 

1.1.2  RNA interference (RNAi)  

 RNA interference is considered as one of the most exciting and enlivening phenomenon 

that has been discovered in the past decade by many biologists 14. It is a highly efficient 

regulatory process in which the expression of specific genes can be forbidden by the 
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degradation of its corresponding mRNA sequence in the cytoplasm by short double-stranded 

RNA (dsRNA) in most eukaryotic cells 15–18. Two American scientists Andrew Z. 

Fire and Craig C. Mello, who discovered RNA interfering phenomenon in the 1990s, shared 

the Nobel Prize for Physiology or Medicine in 2006 for their work. 

 In general, short interfering RNA (siRNA) are produced from the cleavage of dsRNA, 

which are the precursors that derived from either convergent transcription or hairpin-structured 

RNAs, by the RNase III like enzyme, endonuclease Dicer, or synthesized by chemical or 

biochemical methods 19–21. They are normally 21-23 nucleotides in length with a stabled double 

stranded structure. After the formation of siRNA, they will be loaded onto an RNA-induced 

silencing complex (RISC), which has Argonaute 2 (Ago-2) as the catalytic core of RISC21. 

Upon binding to double-stranded siRNA, RISC will be activated by the cleavage and release 

of the “passenger” strand, and the remaining single-stranded RNA molecule that called “guide” 

strand will direct the specifically recognition of the target complementary mRNA by 

intermolecular base pairing 22–25. Ultimately, Ago-2 cleaves the target mRNA for preventing 

protein formation from its corresponding genes 26. Tuschl and his colleagues also noticed that 

the introduction of chemically synthesized siRNA into mammalian cells can performed its 
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silencing functionality as same as the long dsRNA 17. The entire RNA interference pathway is 

illustrated by Figure 1.1 27. 

 

Figure 1.1 Illustration of siRNA gene silencing mechanism 27.  

 RNA interference has been widely exploited in basic biological research and clinical 

applications. Developing gene-specific drugs based on short interfering RNA therapy is 
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becoming one of the prominent means for functional genomics study 28,29. In biology area, 

examining the phenotype of organisms that lack of or contain mutations in its encoding gene 

is the straightforward way for biological function or pathway determination of a protein 30. In 

this case, siRNAs are powerful tools on specific silencing the expression of certain genes. Due 

to its high efficiency and diversity, it become one of the latest additions to gene-silencing 

reagents. Meanwhile, RNA interference has been an attractive choice for future therapeutics 

due to its ability to control the disease-associated genes. Switching off problematic genes using 

RNA interference therapy is promising for a large number of human diseases. Ideally, every 

human disease caused by the activation of one or a few genes could be eliminated contributed 

from RNAi-based intervention. The first clinical trial of RNAi therapy has been directed in 

patients at the treatment of age-related macular degeneration (AMD) back in 2004 31. Millions 

of adults suffer from blindness or limited vision causing by this disease every year 32,33. At the 

same time, the extended clinical evaluations of siRNA in other genetic and viral diseases were 

performed due to its relatively low safety concerns in humans 34. Moreover, RNA interference 

technology suggests a powerful gene therapy for people as an non-harmful cancer treatment 

that tremendous side effects of traditional surgery, chemotherapy and radiation due to the non-
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specificity to the tumor cells can be avoid 35. Some in vivo experiments on xenograft mouse 

model have already shown the successful inhibition of tumor cell growth by siRNA 36–40. 

 Although in vivo studies have shown great potential and promises of RNAi-based therapies, 

there are various of issues that need to be considered for siRNA-based therapeutics. Among 

them, the most essential consideration is the efficient delivery of siRNA to its target site in the 

cytoplasm. All the unfavorable physicochemical properties such as its hydrophilicity, large 

molecular weight, negative charge and easily degradation by nuclease and instability with 

plasma 41 impede significantly on the uptake of siRNA into the target cells, especially after 

intravenously injection 42. Therefore, a safe and efficient delivery which can secure the 

biological functionalities of siRNA is crucial for them to be a potentially successful therapeutic 

agent. An ideal delivery system should bear the following properties: (1) prevent siRNA from 

serum degradation, (2) reduce clearance rate in the human body and increase the retention time 

of siRNA in the circulatory system, (3) facilitate the delivery of siRNA to specific cell types, 

(4) promote cellular uptake, (5) successful siRNA release in the cytoplasm after internalization, 

(6) be composed of well characterized, biocompatible and easily prepared material and (7) 

showing minimized level of toxicity to the human body. 
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1.1.3 Carriers for siRNA Delivery 

Many non-viral carriers, which can be classified into 3 main categories — lipids, polymer 

and peptides, have been developed to deliver siRNAs into the cells for years, and all three have 

achieved varying degrees of success. Lipid-based delivery systems, such as micelles, liposomes, 

emulsions, and solid lipid nanoparticles, represents a mature technology for all kinds of drugs 

delivery and were introduced as carriers for RNA over 20 years ago 43,44. The development of 

cationic lipids is one of the key factors in the success of lipid-based siRNA delivery systems 

owing to their simple formation manner, stability, high transfection efficiency and enhanced 

pharmacokinetic properties. 

 Cationic lipids, the main component for lipid-based delivery system, have been wildly 

used to encapsulate negatively charged siRNA molecules by electrostatic interaction and 

deliver them into cells. In an aqueous environment, lipid bilayer, which are automatically 

formed by amphiphilic lipid particles, can further become a sphere with an aqueous core. 

Therefore, siRNA can be protected from enzymatic degradation and renal clearance reduction. 

Moreover, the physical and chemical properties of liposomes can be optimized with 

additional flexibility using multiple types of lipid 45. However, the relatively large amounts 



    8 

of the lipids required for siRNA transfection can results in toxicity 46. It has been reported that 

cationic lipids can modify cellular signaling pathways and further stimulate specific immune 

or anti-inflammatory responses 47. These toxic/immunogenic features limit the use of lipidic 

carriers in vivo. 

Another class of carrier systems for siRNA therapeutics is synthetic/natural polymers, 

which consisting of repeated units of covalently bonded monomers. The structural and 

chemical properties of the polymers are well established, siRNAs can bind to cationic polymers 

through electrostatic interactions. Dendrimers, a relatively new class of cationic polymers, have 

been studied extensively in recent years 48–51. Various of polymers such as polyethyleneimine 

(PEI), poly-(lactic-co-glycolic acid) (PLGA), poly-l-lysine, poly (alkylcyanoacrylate), 

chitosan, and gelatin has been investigated as well 52. Typically, PEI is the most widely used 

polymer and PLGA has been used for decades in pharmaceutical applications since it is 

biodegradable and biocompatible. Similar to lipidic carriers, the development of polymeric 

delivery systems also restricts to relatively high cellular toxicity  and immunological rejection 

53.  

 Peptide-based carriers are emerging as an alternative for safer in vitro and in vivo delivery 
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due to the existence of safety concerns and efficacy issues with current drug delivery systems. 

As of now, more than 100 peptides with the cell-penetrating ability, which called cell-

penetrating peptides (CPPs), have been identified 54. Cell-penetrating peptides can deliver a 

variety of cargos including small molecule pharmaceuticals, proteins and oligonucleotides into 

cells through cellular membrane efficiently and specifically 54. Particularly, these CPPs can 

reach area of the body that are not easily accessible, such as the blood-brain barrier, and 

successfully deliver active substances.  

Our lab has been studying and developed a self-assembled CPP called NP-1 which can be 

used as drug or gene delivery vehicle 55. It has been proven to successfully used to encapsulate 

siRNA and deliver it across the cell membrane in a controlled manner in vivo. However, as the 

environment gets increasingly severe with the addition of serum, the transfection efficiency 

was dramatically decreased. The non-ideal results were considered to have been caused by the 

instability of the peptide/siRNA complexes in the serum systems where a lot of unfavored 

components, such as various of ions, have the effect of destabilizing the complexes. Thus, the 

idea of peptide conjugated with polyethylene glycol (PEG) and controlled MMP-2 sensitive 

detachment has been receiving growing attention. PEG can serve several purposes at the same 
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time: (1) masking the CPP activity to inhibit contacts with cell membranes 56 (2) prolong the 

half-life of therapeutic molecules in the bloodstream and preventing the interactions with blood 

components (3) enhances passive tumor targeting following the enhanced permeability and 

retention (EPR) effect 57. Meanwhile, a specific designed, 8 amino acids sequence was applied 

as the MMP-2 responding cleavage site, and 3 different molecular weight of PEG were 

conjugated with the linker then linked with NP-1. The new designed peptides were called NP1-

peg3, NP1-peg9 and NP1-peg18, in abbreviation peg3, peg9 and peg18, according to the 

difference in size of PEG. Physicochemical characterizations were first applied to study the 

formed peptide/siRNA complexes including size and zeta potential. Then, the optimal 

concentration ratio for peptide versus siRNA to form complexes was determined and their 

cellular uptake, cytotoxicity and transfection tests were all performed in A549 cancer cells 

under this specific ratio. The design principle for MMP-2 related cleavage was also be tested 

and confirmed. Finally, the stability of the complexes against RNase were determined 

qualitatively and quantitatively. Based on the results reported in this study, strategies could be 

referenced to construct more functional peptide-based nanocarriers for in vitro siRNA delivery 

and cancer treatment.  
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1.2 Research Objectives  

The goal of this research is to improve the functionality of NP-1 as a more efficient and 

safer carrier for in vitro siRNA delivery (with serum). To achieve this goal, polyethylene 

glycol (PEG) was introduced as the particle protector and matrix metalloproteinase-2 cleavable 

amino acid sequence was conjugated as a controlled release switch for PEG detachment. 

Particle stability, siRNA conservation ability, silencing efficiency and cultured cells toxicity 

were studied for the new designed peptide and siRNA complexes. The specific objectives of 

this thesis are listed in the following:  

(1)  Design of modified peptide based on NP-1 sequence that can remain high siRNA 

transfection efficiency and low cytotoxicity while increasing stability in serum 

environment.  

(2)  Characterization of peptide/siRNA complexes; This including the particle size, zeta 

potential, the optimal peptide (positive charge)/siRNA (negative charge) molar ratio, 

thereby providing basic information for better-formed siRNA/peptide complexes.  

(3)  Verification of the specific amino acid, which can be recognized by MMP-2, 

performance with A549 lung cancer cell. 
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(4)  Investigation of the transfection efficacy, toxicity and biocompatibility of the 

complexes in vitro with serum in A549 cells along with the particle stability and resistivity 

towards RNase degradation. 

1.3 Outline of the Thesis  

The thesis consists of eight chapters. The following are the scopes of each chapter:  

Chapter 1 gives an overview of the thesis, including a brief introduction to matrix 

metalloproteinase-2, a highly employed drug release stimulus, and RNA interference with its 

mechanism, potential clinical applications along with existing gene delivery options and the 

promising future of peptide based delivery system. The research objectives and the outline of 

the thesis are also given in this chapter.  

Chapter 2 provides an overview of the application of matrix metalloproteinase-2 and the 

advantages of RNAi as potential new pharmaceutical drugs following with therapeutic 

applications of siRNAs and current siRNA delivery systems. Uptake pathways and subsequent 

intracellular trafficking of cell-penetrating peptides (CPPs) are also mentioned at the end of 

this chapter.  
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Chapter 3 introduces all the instruments with clear photos that have been used during this 

research and the experimental procedure.  

Chapter 4 presents a series newly modified NP-1, amphiphilic and cationic cell-penetrating 

peptide peg3, peg9 and peg18. Physicochemical characterizations, transfection efficacy, 

cytotoxicity, particle stability and resistivity towards RNase degradation of the complexes in 

serum environment were conducted in A549 lung cancer cells. Performance of the specific 

amino acid linker was also been evaluated. Finally in this chapter, discussion and conclusions 

of this study from this research and recommendations for future work were stated.  
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Chapter 2  

Literature Review  

 

2.1 Functionality and application of matrix metalloproteinase 

2.1.1 Functionality of matrix metalloproteinase 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes, 

which play a central role in a range of numerous physiological and pathological processes such 

as cartilage and bone repair, morphogenesis, cell migration, wound healing, angiogenesis and 

cancer invasion 58. There are more than 25 structurally related enzymes categorized into four 

main classes according to their cellular localization and substrate specificity: 

gelatinases (MMP-2 and MMP-9), stromelysins (MMP-3, MMP-10, MMP-12), 

collagenases (MMP-1, MMP-8 and MMP-13)  and membrane-type MMPs (MT1-

MMP, MT2-MMP, MT3-MMP, MT4-MMP) 59–62. Although they are best known for 

remodeling of the extracellular matrix (ECM) and degradation of extracellular proteins in the 

context of cancer cell invasion and metastasis, they also been found involving in cell survival, 
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differentiation, proliferation, migration, adhesion and in cell-cell interactions as well as their 

importance in regulating the entire extracellular signaling milieu 63,64. Among all MMPs, the 

most popular enzyme is matrix metalloproteinase-2 (MMP-2 or gelatinase A), a constitutive 

enzyme that can be found in almost all cell types with its ability for collagen type IV (a 

component of the basement membrane) and denatured collagen (gelatin) as well as other 

degradation 65,66. Without the adhesion and support from extracellular matrix proteins, cancer 

cells can easily transfer from original lesion location to a distant site through circulation system 

in the body. Since they are highly participated in tumor invasion, MMP-2 overexpression can 

be employed as a trigger for developing self-localized, on-demand drug delivery systems. 

2.1.2 Matrix metalloproteinase triggered release 

  Substantial interest has been attracted on developing MMPs responsive drug delivery 

systems that have resulted in numerous remarkable published designs and various of different 

applications. Since MMPs exhibit high efficiency on typical substrates and are frequently 

overexpressed in specific disease states or /and tissues, “smart” linkers between the drug and a 

carriers can be designed for controlled cleavage 67. They are ensured to be stable during 

administration, storage, in the blood circulation system and under physiologic conditions but 
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are enzymatically broken upon contact with specific MMPs. The best performed linker is a 

peptide linker with high sensitivity of MMP recognition,  biocompatibility and simple 

synthesis process. The sequence of peptide linker is unique for specific kind of MMP, as Kratz 

et al. has proved in their research that the incorporated octapeptide with a sequence of Gly-Pro-

Gln-Arg–Ile-Ala-Gly-Gln  cannot be cleaved by activated MMP2 and MMP9 in contrast to 

the sequence which only two amino acids change of Gly-Pro-Leu-Gly–Ile-Ala-Gly-Gln that is 

cleaved efficiently by activated MMP2 and MMP9 68. 

Meanwhile, with different MMP that been chosen as stimulus, MMP sensitive systems can 

accommodate different drug types, such as cytotoxic drugs like DOX or protoporphyrin, low 

molecular weight chemical drugs and high molecular weight nucleic acids drugs like DNA or 

siRNA with appropriate synthetic carrier molecules. Various synthetic carriers have been 

developed instead of natural carriers such as albumin, which can be synthesized at high purity 

and modified further in a simple manner. Additional functionalities can be added to the delivery 

systems such as solubility tailoring, which improves intracellular or pharmacokinetics delivery 

of the cargo 12,69. As one of the synthesis carrier — cell penetrating peptides(CPP), its activity 

is reduced or entirely inhibited as long as the conjugate is intact. As soon as the MMP-
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specific peptide linkers cleaves at the target site, CPP will be released and facilitate cellular 

uptake of the cargo 9,70–72.  

MMP-specific PEG or alternative polymer shells disassembly or de-shielding is a strategy 

frequently employed for stabilizing and protecting drug delivery carriers by several research 

groups, either alone or in combination with RGD motifs, cell penetration enhancers or other 

targeting moieties73–78.  

 

Figure 2.1 schematic of in vivo de-shielding of PEG induced by MMP-9 80. 
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This concept can be exemplified by the research from Grünwald et al., who prepared poly 

(lactic-co-glycolic acid) (PLGA) as backbone with MMP-sensitive PEG coating for efficient 

tumor targeting 79. The targeting strategy relied on (1) elongated circulation half-life by 

PEGylation; (2) particles passive accumulation in the tumor due to the EPR effect and (3) 

subsequent specific de-shedding of the PEG corona by tumor-secreted MMPs (Fig. 

2.1). Overall, a successful MMP responsive drug delivery requires optimal incorporation of 

MMP sensitive elements concerning the conjugation to the main carrier and/or drug, 

minimized interaction of MMP sensitive elements with scaffold and/or drug that provides 

accessibility for MMPs along with thoughtful selection on materials and synthetic strategies 80. 

2.2 Pharmaceutical potential of RNAi as a drug  

2.2.1 siRNA therapy versus traditional drugs  

Most approved drugs have the ability to bind to proteins or alter protein function with 

similar features like apolarity and relatively small in size (molecular weight< 500 Da) 81. 

Although traditional drugs designing and their modification for in vivo efficacy improvement 

are well known, the actual development of small molecule drugs is often announced abortive 

in preclinical trials even with this sufficient experience 82. However, siRNA drugs are not the 
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same comparing with traditional drugs. Sharon Engel, director of genomic data at Compugen 

Ltd., Tel Aviv, Israel said “ The process for creating traditional drug was done by trial and 

error—applying random materials to cells until the desired phenotype is obtained, this may 

results in extensive side effects and non-specificity. On the contrary, it’s possible to minimize 

the side effects by identifying the reason for a phenotype to develop, validating your 

identification, and attack the exact location in the cell where responsible for disease with 

siRNA. The specificity RNAi’s sequence can fulfill different kinds of treatment you would 

demand from a next-generation drug.” As an advanced therapeutic approach, RNAi may 

overcome the major difficulties from traditional pharmaceutical drugs. Key features of RNAi 

as a therapeutic approach compared with small molecules and proteins and antibodies, two 

major classes of traditional pharmaceutical drugs, are shown in Figure 2.2 83.  
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Figure 2.2 Key features of RNAi as a therapeutic approach comparing with small molecules 

and proteins and antibodies. 

 

The most outstanding advantage of RNAi over other drugs is that the targets are can be “non- 

druggable”, where they have not been known to or predicted to bind with high affinity to a 

certain drug. It is a time-consuming and difficult process to identify highly selective and potent 

compounds for small molecule drugs 83. For RNAi, highly selectivity and potent targets make 

it a promising pharmaceutical drug in modern medicine. 

2.2.2 Therapeutic applications of RNAi  

RNAi therapy has outstanding merits including therapeutic precision, broad applicability 

and minimized side effects owed to its highly selectivity. Currently, advanced technologies 

have broadened its applications for multitudinous human diseases where the diseased gene has 

been reported silenced by administration of siRNAs. Figure 2.3 shows the organs in the human 

body for which RNAi silencing has been proved 83. Direct RNAi, a way for siRNA delivery at 

local site, has been carried out successfully to a lot of tissues and organs like eye, skin, nose, 
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lung, the nervous system and the digestive system. Furthermore, intravenous delivery of siRNA 

molecules, the systemic RNAi, has been found efficient into lung, liver, joint and tumors.  

 

Figure 2.3 Diseases and organs for which the RNAi effect has been proved 83.  

 

Several diseases that are widely studied and common for siRNA treatment will be 

discussed as following. 
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Infectious disease  

 One of the major causes of death worldwide are the diseases caused by bacteria and viruses. 

Out of many of the diseases including AIDS, hepatitis and influenza for virus infection and 

sepsis and pneumonia for bacterial infections, can emerge resistant strains against medication 

which have become a rising concerns for people 84. Fortunately, the inhibition of infectious 

agents’ cellular uptake or replication have been demonstrated in cell culture studies for RNAi, 

eg. HBV gene virus 85,86. 

With the help of a genomic RNA intermediate and virally encoded reverse transcriptase, 

HBV, as a DNA virus, can replicate itself in the cell automatically. Many studies have shown 

that specific siRNAs exhibited various levels of efficacies on inhibition of the gene expression 

and viral DNA replication on virus 86–88. For example, intravenous injections of a stable 

nucleic-acid-lipid particle (SNALP) which can reduce serum HBV DNA concentration in mice 

has been reported by Morrissey et al. 87. McCaffrey et al. demonstrated a significant reduction 

of viral mRNAs and protein expression in mouse liver by injection of HBV specific shRNAs 

(small heparin RNA) along with a large volume of plasmids encoding the HBC gene 89. Table 

2.1 shows more examples of siRNA treatment for HBV virus. 
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Table 2.1 Examples of siRNA targeting towards HBV virus 

 

 

 Another infectious agent targeted by RNAi is the HIV virus which is well known for its 

gene expression pattern and lifecycle. A number of siRNAs and shRNAs has been tested on 

targeting HIV genome regions such as tat, pol, env, vpr, rev, gag, vif, nef, and the long terminal 

repeat (LTR) showed promising results in inhibition of viral production in infected cells 90. 

Due to the high viral mutant rate that may let mutants escape from being targeted, targeting the 

virus directly encounters a substantial challenge for clinical application 91. Therefore, RNAi 

therapy suggests an alternative approach of cofactors which associated with virus infection 
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knockdown. Qin et al. successfully developed a lentivirus-based vector for siRNAs delivery 

into human peripheral blood T lymphocytes against the HIV-1 co-receptor CCR5 92. The results 

showed a 10-fold inhibition of CCR5 expression on the cell surface over two weeks and a 3-7 

fold dropping in infected cells since the lymphocyte populations was protected substantially 

from the HIV-1 virus infection. Surabhi and Gaynor addressed in their research that siRNAs 

directed silencing NF-êB p65 subunit could significantly decrease the corresponding protein 

levels and thus inhibiting HIV-1 replication 93.  

Cancer  

Cancer is the second fatal disease leads to human death after cardiovascular disease and it 

is estimated to cause 13.1 million human casualties in 2030 94. It can cause growing burden to 

the patients, families and even society. Current cancer treatment commonly rely on surgery, 

chemotherapy and radiation which has been strongly limited by critical side effects. Luckily, 

recent understanding of the genetic causes of cancers provides the prospective for gene therapy 

as an alternative approach. There are a lot of anti-gene approaches such as anti-gene 

oligonucleotides 95, ribozymes 96, peptide nucleic acids (PNAs) and antisense oligonucleotides. 

Among them, siRNAs, which apply a post-transcriptional gene silencing (PTGS) mechanism, 
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Table 2.2 Comparison of advantages and disadvantages for different gene therapy 
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perform much better in target gene silencing comparing with the antisense RNA alone since 

the transcript of the gene will be rapidly degraded before accumulation. Pros and cons of 

different gene silencing strategies are summarized in Table 2.2 35.  

 

Figure 2.4 Representation of siRNA molecules targeting pathways and genes used in 

preclinical studies to develop an anti-cancer treatment. AKT 1/2/3: KLFisoforme of 

serinethreonin kinase; Bcl: B-cell lymphoma; CA: ceramidase acid; Doce: docetaxel; Dox: 
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doxorubicin; EphA2: receptor of ephrins; FAK: focal adhesion kinase; HIF-1a: hypoxia 

inducible factor 1a; KLF-5: Kruppel-like factor 5; MAD2: mitotic-arrest deficient 2; Mcl-1: 

myeloid cell leukemia; MDM2: murine double minute 2; PAR-1: protease activated receptor 

1; PKN3: protein kinase N3; Plk1: polo-like kinase1; PLX1DC: plexin domain containing 1; 

POSTN: periostin; VEGF: vascular endothelium growth factor. 

Proto-oncogenes have been frequently been activated in cancer cells by various 

mechanisms. Cancer cells are different from normal cells in uncontrolled growth due to an 

abnormality in the cell cycle and long survival time caused by the dysfunction of the proteins 

that mediate cell apoptosis. In this circumstance, they can gradually gain resistance to many 

anti-cancer drugs. Thus, the downregulation of tumor progression gene, such as an anti-

apoptotic gene and/or expression of the oncogenes in cell cycle in cancer cells through siRNA 

treatment suggests a better solution for cancer treatment compared to traditional drugs. There 

are a lot of other tumor formation genes also widely studied, eg. vascular growth factor that 

can facilitate cancer metastasis and mutated genes in cancer cells that developed drug-

resistivity. Figure 2.4 represents successful in vivo animal studies of different target genes and 

pathways for cancer treatment 97. At the meantime, many studies have confirmed the 
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anticipated tumor inhibition effect of RNAi in vivo and showed its therapeutic potential. 

Detailed information were summarizes in Table 2.3 97.  

 

Table 2.3 Various studies based on siRNA delivery for cancer treatment 
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s.c: sub-cutaneous injection, i.p: intraperitoneal injection, i.v: intravenous injection. AKT 1/2/3: 

KLFisoforme of serinethreonin kinase; Bcl: B-cell lymphoma; CA: ceramidase acid; EphA2: 

receptor of ephrins; FAK: focal adhesion kinase; HIF-1a: hypoxia inducible factor 1a; KLF-5: 

Kruppel-like factor 5; MAD2: mitotic-arrest deficient 2; Mcl-1: myeloid cell leukemia; MDM2: 

murine double minute 2; PAR-1: protease activated receptor 1; PKN3: protein kinase N3; Plk1: 

Polo-like kinase1; PLX1DC: plexin domain containing 1; POSTN: periostin; VEGF: vascular 

endothelium growth factor.  
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 However, in order to avoid side effects that occur in traditional treatment, precise 

selectivity for cancer cells destruction solely need to be ensured without damaging normal cells. 

To achieved this purpose, the siRNA should be designed to target specific genes involved in 

cancer cell growth and delivered to the desired tumor site directly.     

2.2.3 siRNA therapeutics in clinical trials  

RNAi has rapidly upgraded from research level to clinical trials within a short period. 

Numerous financial investment and manpower have contributed in introducing siRNA 

technology into actual drug market. VEGF pathway for the wet form of AMD, a leading cause  

Table 2.4 siRNA drugs in clinical trials 
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of blindness and on the RSV genome, and RSV infection, the leading cause of pediatric 

hospitalizations, have been chosen as the therapeutic targets in the initial trials 98. They have 

both towards non-toxicity in Phase I trials. A total number of 14 RNAi therapeutic programs 

initiated by different companies have been reported to enter clinical trials in 2010 99, and 

promptly, this number increased to 22 untill 2013, as shown in Table 2.4 100. Among them, the 

QP1-1007 from Quark and ALN-PCS02, with a new name called Inclisiran, from Alnylam 

and he Medicines Company have been reported proceeding from phase I to phase III in 2018. 

Similarly, the siRNA drug invented by Sylentis and PharmaMar called SYL-1001 with the 

name changing to Tivanisiran, have made promising progress from phase I, II to phase III 

last year 101. 
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The exciting potential of siRNAs can be demonstrated according to the promising results 

in these clinical trials. However, there are still several extracellular and intracellular challenges 

that strongly limit the use of RNAi in the actual therapy. Some target organ and tissues may 

requires unique treatment since gene silencing approaches may not be able to completely get 

rid of the mRNA, which could led to off-target silencing. Moreover, siRNA can induce 

potential unwanted effects such as activating an innate immune response or shutting off defense 

systems in the body which has the functionality of viruses elimination. 

2.3 Current delivery systems  

siRNA molecules cannot activate the RNAi pathway unless entering the target cells. 

However, in some cases that have been described in many literatures, eye, lung and central 

nervous system can directly uptake naked siRNA without any delivery facilitation 98, but the 

mechanism behind this uptake is still not well explained. Other than this particular 

circumstance, siRNAs require specific delivery strategy to assist their cellular uptake and 

protect them from degradation since they are too large and hydrophilic to pass through cell 

membranes by themselves in most cases. The barriers the delivery system may encounter in 

vivo are shown in Figure 2.5 102. 
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To solve these issues, many types of delivery strategies have been created. Physical 

internalization method, such as hydrodynamic injection 103,104, which a large volume of siRNA 

solution is rapidly inject into a mouse via the tail vein, particle bombardment and  
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Figure 2.5 Systemic delivery barriers for siRNA in vivo. An injected nanoparticle must have 

the ability to prevent siRNA from filtration, phagocytosis and degradation in the 

bloodstream (a); transport across the vascular endothelial barrier (b); diffuse through the 

extracellular matrix (c); be taken up by the target cell (d); escape from the endosome (e); 

and release the siRNA in cytosol (f). 

 

are well established 103,104. Although these methods may avoid possible immune system 

stimulations that often arise in normal chemical based delivery systems, they have not been 

investigated as extensively as chemical delivery systems such as viral vectors, the most 

powerful transfection tools due to their high efficiency. Yet, they are difficult to produce in a 

large scale and more problematic, their inflammatory and immunogenic nature stop them from 

clinical administration. In this case, a few non-viral vectors that benefited from their relatively 

low immunogenicity and high biocompatibility have been studied as an safer alternative for 

siRNA delivery to overcome these limitations. Three major types of delivery system for siRNA 

will be discussed as following. 
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2.3.1 Lipid-based siRNA delivery system  

Lipid carriers has attracted tremendous interest worldwide since the first discovery and 

active research of in 1965 105. Liposomes, the most versatile supramolecular assemblies with 

respect to size variety, composition and capacity to capsulate a variety of compounds, has made 

significant progress in the pharmaceutical industry, especially in drug and gene delivery. 

Several liposomes have been proved their biocompatibility and efficiency for small molecule 

drugs delivery in patients. Their superiority perfectly exemplified by Doxorubicin liposome 

(Doxil; Orthobiotech) which has received FDA approval for breast cancer, ovarian cancer and 

other solid tumors treatment 106.  

With different structures and formulations, a variety of LNPs including liposomes, 

microemulsions, micelles and solid lipid nanoparticles have been generated 107. Cationic 

liposomes and lipoplexes emerged as the most promising vehicles among these synthetic 

carriers. The ideal liposomes can encapsulate siRNA with high affinity, prevent siRNA from 

enzymatic degradation in serum, and form a narrow size distribution around 100 nm to ensure 

the accession to extravascular regions. They are normally form a phospholipid bilayer 

constructed with an aqueous core for entrapping hydrophilic drug in the contrary to lipoplexes, 
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which can spontaneously formed through static interaction 108. There will be electrostatic 

interaction between the positive charges of the cationic lipid and the negatively charged 

phosphate backbone of the siRNA upon mixing of the two species in solution, then the overall 

complexes will be neutralized due to the siRNA being condensed with the lipid. 

 Lipid-based carriers have been proven to be successfully delivering siRNA into cells. For 

instance, mRNA and protein levels of CD31 and Tie2 genes in vivo was downregulated by the 

complex of cationic and fusogenic lipids and corresponding siRNA after intravenous injection 

109. Intraperitoneal injection of cationic liposomes DOTAP complexed with anti-TNF α siRNA 

can inhibit LPS induced anti-TNF α gene expression in mice 110. Besides, Lipofectamine, 

Oligofectamine, RNAifect are lipid-based delivery system that are routinely used in the 

laboratory and have been commercialized for years 111. 

 There are still inherent difficulties that exist although satisfactory results have been 

obtained using lipid based siRNA delivery system. The relatively large amount of the lipids 

required for efficient siRNA transfection can results in severe toxicity. Moreover, they can 

easily adsorb to serum proteins and trigger unexpected immune system response in the body 

46.  



    39 

 

2.3.2 Polymers-based siRNA delivery system  

Cationic polymers, made up of repeated units of covalently bonded monomers in linear or 

branched structure is another category of siRNA delivery systems that have been widely 

studied. Some typical polymer nanocarrier structures designed for siRNA delivery are shown 

by Figure 2.6 112. Similarly, negatively charged siRNA can bind to positively charged polymers 

through electrostatic interaction 113.    

 

Figure 2.6 Schematic structure of various polymer nanocarrier for siRNA delivery 112. 

Numerous polymers have been investigated including poly(ethyleneimine)(PEI), chitosan 

114, gelatin 115, poly-(L-lysine)(PLL) 116, poly-D,L-lactide-co-glycolide (PLGA) 117, poly 

(dimethylaminoethylme-thacrylate) (PDMAEMA) 118,119 and poly (trimethylamino- 
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ehylmethacrylate) (PTMAEMA). Among them, PEI is the most popular polymer for siRNA 

delivery due to its higher transfection efficiency offered by the branched structure. Successful 

internalization by the cells and significant silencing effect was achieved by non-covalently 

complexed PEI/siRNA. Unfortunately, the drawback came along with the advantage, as there 

is its increased toxicity caused by the high molecular weight. The systemic application of PEI 

complexed with HER-2-specific gene has proved inhibition of the established tumors growth 

120. PEI-siRNA complex that targets the pain receptor NR2B subunit with intrathecal injection 

was shown to have a decrease of mRNA level and its associated protein expression 121. 

2.3.3 Cell-penetrating peptide based siRNA delivery system  

Cell penetrating peptides are named because their ability to penetrate through cytoplasmic 

and/or other cellular compartments after internalization 122. The initial discovery of cell 

penetrating peptide was when the HIV-1 transactivating protein Tat was found to be taken up 

by mammalian cells about twenty years ago 123,124, following by the discovery of the 

homeodomain of Drosophila melanogaster transcription factor Antennapedia which also share 

the same property among some “non-nature” peptides 125. According to the mutation and 

deletion analysis, only small domains within these proteins are actually responsible for the 
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cellular uptake instead of the full-length peptide, and these small peptide sequences are now 

referred as CPPs or protein transduction domains (PTDs). The CPPs, normally amphipathic 

and net positively charged at physiological pH 126, can be directly obtained from nature 

sequences such as Tat and penetratin, they can also be artificially designed and constructed 

with critical feature of already known CPPs 127,128. siRNAs can be linked to CPPs by expression 

as a fusion or by chemical coupling which led to less peptide requirement since higher peptide 

amount could result in higher toxicity to the cells. Same as the lipid and polymer delivery 

system, the most popular way to form siRNA/peptide complex is binding each other through 

ionic interactions. This approach has the advantage of being fast, as there is a reduction in the 

purification procedure and nature structure of RNAs conservation since it is not necessary for 

siRNAs chemical modification 129. Some positively charged amino acid such as arginine, lysine 

and histidine are often utilized for CPP regarding to this purpose. Figure 2.7 presents the 

pathways of peptide mediated siRNA delivery 130.  

The	first CPP/siRNA complex is called MPG which derived from the nuclear localization 

sequence (NLS) of SV 40 T antigen and the fusion peptide domain of HIV-1 gp41 protein 131 

and the Luciferase activity was shown a decrease by 80% after transfection. The siRNA 
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binding ability and transfection efficiency were enhanced by the derivatives MPG∆NLS and 

MPGα 132. Furthermore, information and current development related to CPPs can be found in 

a variety of reviews 133–135. 

 

Figure 2.7 Pathways of peptide mediated siRNA delivery 130.  
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Chapter 3  

Equipment Introduction and Experimental Procedure 

 

3.1 Zetasizer Nano ZS  

 

Figure 3.1 Picture of Zetasizer Nano ZS instrument in the lab. 
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The Zetasizer Nano ZS was mainly used for particle size and zeta potential determination. 

The hydrodynamic diameter of the peptide/siRNA complexes was measured by dynamic 

lighter scattering (DLS) on this machine that bought from Malvern Instruments, Malvern, UK 

equipped with a 4 mW He-Ne laser operating at 633 nm. The measuring cell was a quartz 

microcell (45 µL) with a 3 mm light path and the scattered light intensities were collected at an 

angle of 173°. Zeta potential measurements of the complexes were also performed on the same 

machine using DTS1070 zeta cells. The zeta potential results were obtained with the 

multimodal algorithm CONTIN, Dispersion Technology Software 5.0. Three measurements 

were performed to generate the intensity-based size and zeta potential plot reported herein.  

 

3.2 Mini-PROTEAN Tetra cell 

MMP2 existence in cultured medium for A549 lung cancer cell was determined using the 

electrophoresis cell. The cultured medium was collected from A549 cultured plate after 24 

hours growth in the incubator at 37 degree, then concentrated by Amicon Ultra-0.5 centrifugal 

filter device (30K MWCO) at 7,200 × g for 20 mins and eventually load and run on the precast 
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4-20% SDS-PAGE gel with sample loading dye. The gel was stained by self-made 0.25% wt. 

brilliant blue for 2 hours and distained for 72 hours.  

 

Figure 3.2 Picture of Mini-PROTEAN Tetra cell and its components in the lab. 

The Precision Plus Protein Standards (Dual Color) was used as molecular weight markers.  
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3.3 BD FACSAria Fusion Special Order System 

 

Figure 3.3 Picture of BD FACSAria Fusion Special Order System in the lab from biology 

department. 

Fluorescence-activated cell sorting (FACS), which measuring the cellular uptake of Cy-3 

labeled GAPDH siRNA (100 nM), was performed using BD FACSAria Fusion Special Order 

System (BD Biosciences, Mississauga, Canada) shown above. A549 cells were transfected 

with the complexes (molar ratio 60:1) according to the protocol listed below. Nontreated cells 
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served as a negative control. After 3 h incubation, the culture medium was discarded and cells 

were washed with PBS. 2 µL of Trypsin-EDTA was then added into each well to detach the 

cells from the plate, eventually the cells were suspended in 4% PFA solution and collected.  

 

3.4 Mx3005PTM Real-Time PCR System (only for cDNA now) 

cDNA, the second step after RNA extraction for gene silencing assay, was conducted by 

Mx3005PTM Real-Time PCR System from Agilent Technologies, Wilmington, USA.  

A549 lung cancer cells (40,000/well) were plated in a 24-well cell culture plate in F-12K 

medium with 10% FBS for 24 hours. The medium was removed and washed with PBS 

afterwards. 30 µL of the sample solution was prepared in RNase free water containing the 

complexes of GAPDH siRNA (100 nM) formulated with peg3/peg9/peg18 at molar ratio 1:60 

or Lipofectamine 2000 and diluted to 300 µL F-12K with 10% FBS medium. The final solution 

was add to the cells and 300 µL of F-12K with 10% FBS was added after 3 hours transfection. 

The cells were incubated for 48 h at 37 °C in a 5% CO2 atmosphere. Afterwards, the cultures 

were then washed with PBS. Total RNA was extracted from the cells with 200 µL/well TRIzol 
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Figure 3.4 Picture of Mx3005PTM Real-Time PCR in the lab. 
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reagent (Life Technologies, Carlsbad, USA), then treated with 40 µL/well chloroform (Sigma, 

Oakville, Canada) and 100 µL/well 2-propanol (Sigma-Aldrich, Oakville, Canada) as 

recommended by the manufacturer. Final RNA concentrations were measured by Nanodrop 

spectrophotometer ND-1000 (Thermo scientific, Ottawa, Canada). All RNAs were reverse 

transcribed with Quantabio qScript cDNA SuperMix (Quantabio, Beverly, USA). The cDNA 

synthesis was primed with a unique blend of oligo (dT) and random primers. The thermal 

profile of cDNA is comprising of 2 continuously segments: 1 cycle at 25 °C for 5 mins in 

segment 1 and 1cycle of 30 mins at 42°C then rising to 85 °C for 5 mins in segment 2. 

 

3.5 C1000 Touch Thermal Cycler 

Polymerase chain reaction (PCR) which is the final step of gene silencing assay, was 

performed with PerfeCTa SYBR Green FastMix (Quantabio, Beverly, USA) on the instrument 

shown below.  

The following pairs of human GAPDH gene primers were used for PCR: forward 5′-

GAAATCCC ATCACCAT CTTCCAGG-3′, reverse 5′-GAGCCCCA GCCTTCTC CATG-3′ 

(Sigma, Oakville, Canada). Here, the housekeeping gene cyclophilin was chosen as an internal 
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Figure 3.5 Picture of C1000 Touch Thermal Cycler in the lab from Professor Paul Craig. 

control to normalize the GAPDH gene. The normalization was performed after the 

amplification of human cyclophilin mRNA with the following primers: forward 5′-GGTGATC 

TTTGGTCT CTTCGG-3′ and reverse 5’-TATATGC TCTTTCC TCCCTGTG-3′ (Sigma, 
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Oakville, Canada). The thermal profile of PCR was comprising of 3 continuously segments: 1 

cycle at 90 °C for 30 seconds in segment 1; 40 cycles of 5 seconds at 95°C then decreasing to 

60 °C for 30 seconds in segment 2 and 1 cycle of 1 mins at 95°C then decreasing to 55 °C for 

30 seconds finally rising back to 95°C for 30 seconds in segment 3. 

 

3.6 FLUOstar OPTIMA microplate reader 

Cytotoxicity assay was conducted using this equipment. A549 lung cancer cells were 

plated in to 96-well plates (8000 cells/well) in F-12K medium with 10% FBS. The medium 

was removed and washed with PBS after 24 h hours. The solutions containing peptides or Lipo 

were prepared in RNase free water and diluted by F-12K medium with 10% FBS medium to 

the concentrations which were the same as those in gene silencing assay. 60 µL of the solution 

was added to the cells, and 60 µL F12-K medium with 10% FBS was added after 3 hours.  

After incubation for 3 and 24 hours at 37 °C in a 5% CO2 atmosphere, the cultures were 

removed. 80 µL of F12-K medium with CCK-8 reagent was then added to each well. Cell 

viability was assessed by measuring the absorbance at 570 nm with the FLUOstar OPTIMA 
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microplate reader showed above and expressed as the ratio of the treated cells with the carriers 

over the nontreated cells (negative control). 

 

Figure 3.6 Picture of FLUOstar OPTIMA microplate reader in the lab. 

 

3.7 Electrophoresis System 

The optimal siRNA/peptide ratio and the qualitative RNase resistance assay along with the 

Heparin destruction assay were all conducted on this equipment from FisherBiotech. Since the 
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siRNA and peptides were complexed due to their contrary ionic charges, the optimal molar 

ratio for the peptide to fully wrap siRNA needed to be determined. Thus, samples of naked 

siRNA, peg3/peg9/peg18 to GAPDH siRNA on molar ratio of 3:1, 4.8:1, 9:1, 15:1, 30:1 and 

60:1, were all loaded on the 1.8 wt%/vol preformed agarose gel stained with gel red and run 

under 100 constant volts for 1 hour. Then the gel was imaged on ChemiDoc MP Imaging 

System.  

Heparin destruction assay was for the concentration determination of which heparin can 

disassociate the complexes. 0, 0.5, 2.5, 5 and 10 µg of heparin were added to different peptide 

to siRNA molar ratio of 15:1, 40:1, 60:1, 80:1 complexes and repeat for peg3, peg9 and peg 

18 accordingly. All the samples were loaded and run on the same condition above, and 

eventually imaged on ChemiDoc MP Imaging System. 

Agarose gel retardation assay was performed to examine the stability of siRNA in serum 

and RNase with and without the protection of peptide. Negative control siRNA at concentration 

of 5 µM was complexed with peg3, peg9, peg18 and NP1 at molar ratio 60:1 and diluted with 

RNase free water into 160 µL stock solution, all the stock solutions including siRNA only were 

incubated with 20% FBS/human serum or 0.08 µg/µL RNase at 37 °C. Every 20ul sample was 
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taken out from the corresponding stock solution at time 0, 30min, 1h, 2h, 4h, 8h, 12h and 24h 

and immediately put into -80 °C freezer. Heparin in the concentration of 1 µg/µL was added to 

the complexes to release siRNA before agarose gel analysis. 

 

 

Figure 3.7 Picture of Electrophoresis System in the lab. 
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3.8 SpectraMax M3 Multi-Mode Microplate Reader 

The quantitative assessment of particle stability against RNase along with the MMP2 

sensitive linker cleavage assay were both measured by the microplate reader in different modes.  

For the RNase resistance, RNaseA (RNaseA: siRNA = 10 ng: 1 µg) was added to the 

naked siRNA and to peg3/peg9/peg18 siRNA complexes (molar ratio = 60) solution. These 

solutions were incubated in room temperature at 37 °C for time 0, 30min, 1h, 2h, 4h, 8h, 12h 

and 24h and immediately put into -80 °C freezer. Before analysis, the siRNA was decondensed  

 

Figure 3.8 Picture of Microplate Reader in professor Mark Servos lab. 
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by 1 µg/µL Heparin and labeled by SYBR Green. The fluorescence intensity of each sample 

was collected from 497nm to 520nm by microplate reader. The relative fluorescence intensity 

result for each point was determined by the fluorescence intensity at 511nm for each point 

divided by the result at time 0. 
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Chapter 4  

Experimental Results and Conclusion 

 

4.1 Experimental Results 

4.1.1 Structure of the peptide carrier after modification 

The modified peptide carrier was designed utilizing NP1 as the basic structure. The end 

opposite to the stearyl acid modification was linked with the MMP2 sensitive amino acid 

sequence then conjugated with PEG in the outmost layer forming a final structure of Stearyl-

HHHHHHHHHHHHHHHHRRRRRRRRGPLGIAGQC-PEG. The thiol side group in amino 

acid cysteine was used as PEG coupling reaction site. Considering the hydrophilic-hydrophobic 

property of the entire particle after complexed with siRNA, the PEG, acts as a hydrophilic tale, 

cannot be too large as the complex will be outbalanced by the hydrophilicity leading to an 

unstable NPs. In this circumstance, the PEG was designed in different molecular weight, which 

were Peg3 (MW=4519.21), Peg9 (MW=4783.54) and Peg18 (MW=5180.02). All the peptides 

were purchased from WuXi App Tec (Shanghai, China). High performance liquid 
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chromatography (HPLC) analysis indicated that the synthetic peptide was 95% pure. Fig. 4.1 

presents the schematic structure of PEG series peptide and the expected performance. 

 

Figure 4.1 Schematic structure of PEG modified peptide and its expected performance. 

4.1.2 Optimal modified peptide/siRNA ratio determination 

Since the modified peptide peg3, peg9 and peg18 were elongated by several amino acid 

and PEG polymer chain, the optimal molar ratio for NP1 to fully protect siRNA may have been 

affected. So the agarose gel electrophoresis assay stained by gel red was used to determine the 

new molar ratio. Naked siRNA, peg3/peg9 and peg18 with GAPDH siRNA at molar ratio 3:1, 

4.8:1, 9:1, 15:1, 30:1 and 60:1 were all tested at the same time. Gel red is an nucleic acid stain 

that will fluoresce with an orange color that strongly intensifies after binding to DNA. Similar 

appliance to RNA as DNA, the more well protected siRNA, there will be a decrease of 

fluorescence on the image. Surprisingly, the results showed that it was still 60:1 molar ratio 

group in different PEG modified groups showed the best condition that no signal was imaged 
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on the gel in or outside the well, indicating full coverage of siRNA. From the results, it can be 

concluded that the best molar ratio for peg3/peg9/peg18 to siRNA was still 60:1 since they 

complexed through electrostatic interaction and either the additional 9 amino acids nor PEG 

increased the positive charge overall. Under this situation, all the complexes were formed under 

the peptide to siRNA molar ratio of 60:1 in the entire research.   

 

Figure 4.2 Image of agarose gel stained with gel red for optimal PEG modified peptide/siRNA 

molar ratio determination. 

4.1.3 Particle size and zeta potential 

The particle size and surface charge significantly affect nanoparticle circulation in the 

bloodstream, biodistribution, and uptake by the cells. It would be ideal for particle size ranging 

from 100 to 500 nm to target solid tumors based on the enhanced permeability and retention 
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(EPR) effect 136. Therefore, those nanoparticles posses appropriate physical properties could 

remarkably enhance its therapeutic effect. The particle size and zeta potential of 

peg3/peg9/peg18/NP1 complexed with GAPDH siRNA were studied.    

Table 4.1 Particle size of the modified peptide/siRNA complexes determined by DLS (n = 3) 

at time 0 and time 30 mins. 

time Name  Size (nm) PDI a 

Right after complexed  Peg3 448 ± 23 0.39 ± 0.02 

 Peg9 282 ± 3 0.32 ± 0.10 

 Peg18 272 ± 1 0.24 ± 0.01 

 NP1 360 ± 15 0.48 ± 0.05 

After 30 mins stabilization Peg3 309 ± 50 0.31 ± 0.10 

 Peg9 265 ± 20 0.21 ± 0.01 

 Peg18 239 ± 5 0.17 ± 0.01 

 NP1 141 ± 5 0.31 ± 0.01 

a. PDI: Polydispersity index.  
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The peptides were complexed with GAPDH siRNA at molar ratio=60:1, then immediately 

measured, and measured once again after 30 minutes of stabilization in MilliQ water at room 

temperature. As shown in the particle size results in table 4.1, all the samples were below 500 

nm which indicated they all appropriate for delivery size-wise. It’s clear that the size were 

changed after 30 mins of stabilization since the peptide and siRNA were complexed through 

weak force — ionic interaction, as they became more uniform as the intensity and number-

based DLS results showed the average size between 150 and 300 nm. 

 

 

Figure 4.3 Zeta potential of peg3/peg9/peg18/NP1 GAPDH siRNA complexes at molar ratio 

60/1 right after complexed (A), and after 30 minutes stabilized (B) in MilliQ water at room 

temperature. 
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Modified Peptide peg3/peg9/peg18 and NP1 were complexed with GAPDH siRNA at 

molar ratio=60:1, then measured for zeta potential immediately and once again after 30 minutes 

of stabilization in MilliQ water at room temperature. Zeta potential reflects the surface charge 

for the complex. It is crucial for nanoparticles to have net positive surface charge since it 

inhibits particle aggregation and enhances electrostatic interaction with the negatively charged 

phospholipids of the cell membrane upon siRNA delivery.   

All the samples showed net positive charge upon contact, which meant that the peptides 

fully enwrapped siRNA and covered the surface of the complex immediately. After 30 mins of 

incubation, the zeta potential averagely increased 15mV in all the samples. This may due to 

more positively charged arginine residues being exposed to the environment through the 

stabilization process.  

4.1.4 MMP2 existence  

The MMP2 secretion by A549 cancer cells was testified by running SDS-PAGE gels. 20 

µL of 1 µg/µL bovine serum albumin (BSA), which is band 1 shown in figure 4.4, was served 

as a quantity standard. Band 2 and 3 were 100 times dilution solution from the concentrated 
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culture medium collected after 2 days of cell seeding along with 50 times dilution solution of 

band 4 and 5. Band 2 and 4 were the F12K with 10 percent FBS cultured medium with cell 

growing in the system and band 3 and 5 were the same incubation condition only containing 

same culture medium with no cell seeding. Since secreted MMP2 has the same molecular 

weight around 66kD as one of the main proteins — BSA in FBS, in the same dilution level, 

there was a clear protein band showing at 66kD regardless of the existence of cells. However, 

there is an obvious difference in band width, which indicated the protein quantity difference,  

between the group with and without cells. The difference in protein quantity was the amount 

of MMP2 secreted by A549 cells comparing to the corresponding no-cell environment.     

 

 

Figure 4.4 MMP2 levels in cell culture medium indicated by SDS/PAGE gel. 
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Table 4.2 Quantity analytical results of MMP2 level in cell culture medium. 

 

Setting the BSA band as reference, the relative quantity results of each band were directly 

analyzed by quantity tools in image processing software from Bio-Rad (table 4.2). The 

numerical results, which showed a higher relative quantity of 0.1 in cell-present sample 

compared to the corresponding system without cells.    

4.1.5 MMP2 sensitive linker cleavage  

The cleavage of the MMP2 sensitive amino acid linker has been tested by thin layer 

chromatography (TLC).  

The cleavability of peg3, peg9 and peg18 was evaluated by enzymatic digestion. Briefly, 

2.5 mg/mL peg3/peg9/peg18 was incubated with active human MMP2 (~5 ng/µL) in pH 6.4  



    65 

 

 

 

 

  

         

Figure 4.5 TLC results for MMP2 sensitive linker cleavage assay before adding MMP2 (A), 

and after incubation overnight at 37 °C with MMP2 (B). 
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HBS containing 10 mM CaCl2 at 37 °C overnight. In parallel, the unmodified NP1 was 

incubated in the same condition and later checked by TLC and visualized by Dragendroff’s 

staining. The reaction mixture was analyzed by TLC (chloroform/methanol/acetone, 8:1.2:0.8, 

vol/vol) before adding MMP2 and after incubation (chloroform/methanol/acetone, 8:1.5:0.5, 

vol/vol)followed by Dragendroff reagent staining. In Fig. 4.4a, there is only one dot in both 

NP1 group and peg9 group before adding MMP2 which indicated that only one chemical was 

present in the solution. After being incubated with MMP2 overnight at 37 °C (Fig. 4.4b), there 

was only one line in the NP1 group and one clear line parallel with a faded line in peg9 group. 

Since the sensitive linker has been successfully cleaved by MMP2, there were 2 chemicals in 

the solution which were PEG and peptide on the contrary to NP1 group with only peptide due 

to the absence of the sensitive linker.  

NOTE: the line shape in the after incubation results, which may due to the high solubility of 

peptide and PEG, should be 2 dots in peg9 group and 1 single dot in NP1 group. However, 

after adjusting the eluent composition for over 30 times, the results still stayed as a line shape 

or even disappeared from the whole plate in worse cases.   
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4.1.6 Cellular uptake 

The efficiency of PEG modified peptides to deliver siRNA in 500 nM into A549 lung 

cancer cells in serum environment was evaluated using FACS. As shown in Figure 4.5, cellular 

uptake efficiency of siRNA was outstanding for lipofectamine group, which has the broadest  

	

Figure 4.6 Flow cytometry results for Cy3-labeled siRNA 500 nM delivered by NP1, peg3, 

peg9 and peg18 at molar ratios of 1:60 in A549 cells. Lipofectamine 2000 served as positive 

control. 
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Figure 4.7 Mean fluorescence intensity of Cy3-siRNA (500nM) complexes formulated with 

NP1, peg3, peg9 and peg18 at 3 h after the treatment of A549 cells.  

 

fluorescence peak, and followed by the NP1 group. However, the uptake efficiency for 

peg3/peg9 siRNA complex showed only one third of the mean fluorescence intensity (Fig.4.6) 

comparing with unmodified NP1, while the uptake for peg18 complex was even worse. 

This unexpected results may due to the hinderance of the PEG in the outmost layer. 

Although it significantly shelter the particles from degradation, it prevents the oligoarginines, 

which can bind to the cell surface with high affinity 137, from exposure to the cell membrane. 
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4.1.7 Gene silencing 

As GAPDH siRNA uptake for PEG modified peptide cannot be as effective as NP1 or 

lipofectamine group for A549 cells, the results for proving whether the delivered siRNA is 

able to perform RNAi and decrease the expression level of GAPDH mRNA is considerably 

important.  

The knockdown efficiency was first tested by delivering 100 nM of GAPDH siRNA using 

modified peptide carrier to A549 cells in the environment without serum. In figure 4.7 of 2 

times of transfection experiments, no obvious superiority can be found in the modified peptide 

group comparing with the unmodified NP1. Moreover, they seem even little weaker in gene 

silencing performance but relatively uniform in different times typically for peg3 and peg9 

group. 

The knockdown efficiency was then tested by delivering 100 nM, 300nM and 500 nM of 

GAPDH siRNA separately using the modified peptides into A549 cells in the environment 

with the presence of serum. The GAPDH siRNA in different concentrations were complexed 

and transfected with peg3, peg9, peg18 and NP1 into A549 cell in F-12K with 10% FBS 

medium using the protocol stated in chapter 3 section 4. 
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Figure 4.8 Gene silencing efficiency of PEG modified peptide/siRNA complexes and NP1 on 

A549 cells. Relative GAPDH mRNA level in A549 cells after transfected in OPTIMUM 

medium was measured by qRT-PCR method. All the data were normalized to another house-

keeping gene cyclophilin.  

 

 In Figure 4.8, as the concentration of GAPDH siRNA increasing from 100 nM to 500 nM, 

smaller distinction in knockdown efficiency and larger difference in result consistency was 

noticed. Starting from the siRNA concentration of 100 nM, which was the same concentration 
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in the transfection experiment without serum, all the group showed unsatisfactory results due 

to the substantial severity of serum environment. The PEG modified groups only had roughly 

10 percent higher in the knockdown result than the NP1 group. 

 As the siRNA concentration rising to 300 nM, the advantage in particle stability with PEG 

modification became more prominent. Although the knockdown efficiency was still not 

conspicuously overtop the NP1 group with only 20 percent higher in value, the uniformity of 

the results in 2 transfection experiments obviously precede than NP1 group.  

This situation was noticed in the transfection experiments of 500 nM siRNA as well. 
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    B 

 

 

 

 

    C 

 

 

 

 

 

Figure 4.9 Gene silencing efficiency of 100 nM (A), 300 nM (B) and 500 nM (C) GAPDH 

siRNA delivered by PEG modified peptides and NP1 on A549 cells. Relative GAPDH mRNA 

level in A549 cells after transfected in F-12K with 10% FBS medium was measured by qRT-

PCR method. All the data were normalized to another house-keeping gene cyclophilin. 
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In the combination of cellular uptake results in previous section, the PEG modified group, 

especially peg3 and peg9, was shown to achieve the same knockdown efficiency but in a more 

stable pattern among 3 times of transfection experiments with only one third of the cellular 

uptake compared to the NP1 group. This result strongly indicated the superiority in gene 

silencing of PEG and the smart linker modification towards the original unmodified NP1.  

 

4.1.8 Cytotoxicity 

CCK8 assay was performed to evaluate the cytotoxicity of peg3, peg9 and peg18 siRNA 

complexes comparing with NP1/siRNA complexes at various siRNA concentrations at 100 nM, 

300 nM and 500 nM. As shown in Figure 4.9A, cell survival was not significantly impacted by 

the treatments of every group after 3 hours incubation. All of the experiment group showed 

more than 80% cell viability. There is no clear trend neither between the siRNA concentration 

to the cell viability nor the difference in molecular weight of PEG modification to the cell 

survival percentage in the result.  

However, observing from the cell viability results after 24 hours incubation, the 

cytotoxicity level in PEG modified groups were apparently lower than NP1 group , especially 
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in higher siRNA concentration of 300 and 500 nM. The average lead in cell viability from peg3 

or peg9 was around 70 % over the NP1 group. 
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Figure 4.10 Cytotoxicity assay of peg3, peg9, peg18 and NP1 complexed with GAPDH siRNA 

was conducted in A549 cells in different siRNA concentrations after 3 hours (A) and 24 hours 

(B). Results correspond to the average of three separate experiments and normalized to 

untreated cells cultured in the same condition.  

 

4.1.9 Heparin destruction 

Heparin competition assay was used to examine the stability of the formed complex in 

the presence of heparin. Peptide can interact with siRNA through noncovalent interactions such 

as hydrogen bonding and Coulombic forces. In particular, the peptide riches in arginine and 

histidine carries positive charges and can interact with the negatively charged phosphate groups 

on the siRNA sugar rings through electrostatic interactions. When the negatively charged 

heparin introduced to the environment, it will compete with siRNA to bind with the positively 

charged peptide eventually result in the complex disassociation. The freed siRNA molecules 

could move toward the positive electrode when the voltage is applied, whereas the inability of 

peptide/siRNA complexes to be seen in agarose gel suggests the formation of stable complex 

with no free siRNAs to be shown under imaging.  
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The stability of peg3/siRNA complexes at different molar ratios in the presence of heparin 

was analyzed by agarose gel electrophoresis. As shown in Figure 4.10, peg3/siRNA complexes 

were stable in the absence and 0.5 µg heparin per 10 µL samples (first and second well from  

 

Figure 4.11 Stability of peg3/siRNA complex demonstrated by heparin competition assay. 

Different amounts of heparin corresponding to final concentrations of 0 to 10 µg heparin per 

10 µL of complex were added to peg3/siRNA complexes solution at different molar ratios. The 

stability of complexes was analyzed by electrophoresis on agarose gel (1.8 wt %/vol) stained 

with gel red. For better comparison, only the desired siRNA bands from four independent gels 

were put in the same image.  
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left), and no free siRNA was shown in siRNA bands at all molar ratios (MRs). As the MR 

increased from 15:1 to 40:1, it was clear that 2.5 µg heparin per 10 µL could not destruct the 

complex any more since no siRNA band was seen, and the band showed up when the heparin 

concentration raised to 5 µg per 10 µL of sample. However, as the MR reached 60:1 and even 

higher to 80:1, the complex both remained to be completely stable under the heparin 

concentration of 5 µg per 10 µL of sample and dissociated at higher heparin concentration (10 

µg in 10 µL of loaded sample) which demonstrated that the highest heparin concentration of 

10 µg in 10 µL of sample wass already saturated for particles to deconstruct in both MRs. Thus, 

10 µg of heparin in 10 µL of sample, which had a concentration of 1µg/µL in the final solution, 

were determined and applied for further particle destruction experiments. 

 

4.1.10 Particle stability in serum/RNase (qualitative assessment) 

The 3 different PEG modified peptide and NP1 were complexed with siRNA at molar ratio 

60:1 for particle stability assay by gel electrophoresis. Naked siRNA group and NP1 group 

were served as comparison. The color unevenness of siRNA bands shown in Figure 4.11 
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indicated the condition of siRNA protection by peptides — the lighter the color indicates the 

less of the remaining siRNA.  

All the groups with peptide protection showed significant siRNA existence among 72 hours 

incubation in opposite to the rapid degradation of naked siRNA group under the environment 

containing 20% of human serum, yet there was no clear intra-group difference between 

modified and unmodified peptide with PEG. (Figure 4.11B)    

In the degradation experiments by 20% FBS or RNase, siRNA bands all showed various 

degrees of fadedness after 24 hours, especially in those that were incubated with RNase. The 

naked siRNA degraded at the contact with RNase immediately, while the siRNA showed 

approximately half remaining after 72 hours incubation with the peptide protection and even 

better with the protection from the peptides modified with PEG. 

A 
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B 

C 

 

Figure 4.12 Qualitative assessment of the stability of siRNA in FBS (A), human serum (B) 

and RNase (C) with and without the protection of peptide by agarose gel retardation assay. 

The samples from left to right were naked siRNA, NP1, peg3, peg9 and peg18 consecutively. 

 

Overall, although there was a slightly difference between peg modified groups and the 

NP1 group, they can both protect siRNA from degradation in a certain degree after 72 hours. 
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4.1.11 Particle stability in RNase (quantitative assessment) 

Particle stability can be quantified by measuring the fluorescence intensity of SYBR Green 

labelled siRNA after RNase degradation. The higher intensity, the more remaining siRNA, 

which directly indicated a better protection provided from the peptide. The relative 

fluorescence of each sample was calculated by the fluorescence intensity of each time divided 

by the initial fluorescence intensity at time 0. NP1 and NsiRNA (naked siRNA) were served 

as comparison. The expected trend for all samples should be a smooth gradual decrease line, 

however the bumpy lines shown in Figure 4.12 may due to the experimental errors in each 

sample caused by the following process. A total volume of 200 µL different complexes were 

prepared individually and aliquoted into 20 µL for each time measurement, the complexes may 

not have been homogenously distributed in the stock solution which may have been attributed 

to the slightly quantity difference of complexes in each small portion. Moreover, the percentage 

of siRNA that was released from the peptide after adding heparin was also slightly different in 

each sample, in spite of the fact that heparin quantity has been proven to be excessed by heparin 

destruction assay. However, despites of these uncertainties, there is a clear trend in the peg3, 

peg9 and peg18 group compared to the NP1 group. The complexes with PEG protection 
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showed a steady relative fluorescence percentage which was around 75% after 48 hour 

incubation with RNase in the contrast to a decrease trend in NP1 group without PEG 

modification. As expected, the naked siRNA was rapid degraded in the presence of RNase. 
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Figure 4.13 RNase resistance comparison of (A) naked siRNA, PEG3 and NP1 with siRNA 

complexes, (B) peg9, peg18 and NP1 with siRNA complexes. The complexes were prepared 

by incubation at room temperature for 30 min. All the data point stated were the average of 3 

times repeat experiments. 

 

4.2 Discussion and Conclusion  

In this study, matrix metalloproteinase 2 sensitive amino acid linker has been utilized in 

cell-penetrating peptide modification in the purpose of improving the particle stability while 

maintaining the transfection efficacy of the cargo in the present of serum. The modification 

was based on the original structure of peptide called NP1 which has been previously developed 

in our group for years. In the opposite to the hydrophobic end modified with stearyl acid in 

NP1, the 8 specific amino acids in the sequence of GPLGIAGQC and PEG were consecutively 

coupled to the existing structure. PEG can prevent the peptide/siRNA complexes from serum 

degradation and enhance passive tumor targeting before entering the cells, also de-shield the 

complex upon MMP2 contacting before linker cleavage. Due to relatively higher MMP2 
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secretion and accumulation in tumor site, the design was realized in A549 lung cancer cells in 

this work. 

As for the physical property of the complex, including the particle size and zeta potential, 

the PEG modified peptide were adequate for siRNA delivery comparing with NP1 with an 

average overall size of 150 nm-300nm and positive charged surface. The size was qualified for 

the complexes undergo EPR effect spontaneously and the cationic surface facilitated the 

penetration across the cellular membrane. 

The MMP2 cleavage essay through TLC examination has indicated the success of PEG 

detachment from the peptide backbone as expected, however, the actual situation of linker 

breakage in the transfection process cannot be monitored. Thus, whether all the linker were 

fully cleavage by MMP2 and let all peptide/siRNA complexes exposed to the cell membrane 

remained unknown. The un-cleaved particles which may not successfully release siRNA since 

the hinderance from PEG or even haven not been endocytosed by the cells could lead to an 

incomplete transfection efficiency.   

Taking consideration of the concern, FACS has been performed in order to acquire the 
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particle uptake situation. Based on the observations of the results, there was a considerable 

difference between the peptide with PEG modification and NP1 complexes. At the siRNA 

concentration of 500 nM together with a peptide to siRNA molar ratio of 60:1, the mean 

fluorescence intensity, which indicated the siRNA quantity that has been uptake by the cells, 

of NP1 group was as twice as higher than peg3 or peg9 group and the result from peg18 was 

even worse. The relative low uptake from PEG modification group may be due to the effect on 

PEG masking and size disadvantages. Although final size stabilized at an ideal size range of 

100 to 300 nm, the complexes with PEG modification still showed 100 to 150 nm larger than 

NP1 complexes, which was unfavored for being endocytosed by cell. Meanwhile, 

oligoarginines in the peptide sequence can bind to the cell surface with high affinity and 

facilitate the uptake, but PEG protection masked the interaction between oligoarginines and 

cell membrane thus resulted in another disadvantage.   

 Nevertheless, surprisingly noticed from the results of gene silencing assay, the knockdown 

efficiency from peg3 and peg9 groups were equal to the result collected from NP1 at the same 

concentration in FACS experiment, which may contributed from the reason that endosomal 

escape of siRNA delivered by PEG modified peptide was easier than the siRNA carried by 
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NP1. Since the negatively charged siRNA and cationic peptide were complexed through 

electrostatic interaction, the smaller in size means the stronger interaction, which could 

potentially cause difficulty in siRNA release after entering the cells. However, with the outmost 

PEG shell, free siRNA molecule could be locked in the core area by the polymer crosslink 

chain and a relatively weaker ionic interaction with the peptide, ultimately leading to an easier 

releasing of siRNA contrasted to NP1 group. Moreover, in both siRNA concentration of 300 

nM and 500 nM, the gene silencing results from peg3 and peg9 groups showed higher 

consistency as well.    

 The superiority of PEG modification was more embodied in the results of cell viability. 

Those groups with the surrounding of PEGylation showed a cell survival percentage above 80% 

after 3 hours incubation, which is also the transfection time, and almost no decrease in the next 

21 hours no matter for low siRNA concentration of 100 nM or high concentration of 300 or 

500 nM. On the contrary, the majority of cells died in 24 hours in NP1 group at high 

concentration, also incomparable with peg3 or peg9 group in the low concentration of 100 nM. 

The toxic behavior of NPs varies with their size, shape and surface charge etc. In this case, the 

difference in toxicity with or without PEG may due to the size distinction and blocking effect 
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from PEGylation upon membrane contact. The NP1 groups showed an average size of 150 nm , 

about 200 nm smaller than the complexes with PEG, thus caused higher toxicity in the 

environment since toxicities are normally inversely proportional to the size of the NPs138–140. 

Meanwhile, the cationic surface of NP1/siRNA complexes can be directly attracted to the 

negatively charged prokaryotic membrane and induced disintegration of the membrane leading 

to a subsequent collapse of electrochemical gradient141, eventually caused the death of the cells. 

 The RNase resistance assay demonstrated the siRNA remaining level after RNase 

degradation straightforwardly. It was distinct from the results that the relative fluorescence 

intensity, which reflected the relative quantity of siRNA in the system, still maintain in a high 

level with almost no sign of decreasing with the PEG protection. Nevertheless, there was a 

gradually descending trend of the fluorescence intensity in NP1 group in the 48-hours-period 

incubation.  

Conclude from this work, the modified peptide peg3 and peg9 which has a matrix-

metalloproteinase-2 sensitive linker coupled with various molecular weight of PEG have been 

proved better performance in delivering GAPDH siRNA into A549 cancer cells than 

unmodified peptide holistically. The results demonstrated an equal and consistent transfection 
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efficacy from peg3 especially peg9 under the premise of lower cellular uptake comparing to 

NP1, along with a much higher cell viability at the same siRNA concentration with serum 

presence. Meanwhile, benefit from the usefulness of PEGylation, particle stability was also 

been improved in the serum environment. However, the quantity of MMP2 secretion by the 

cells and the sensitive linker cleavage efficiency are still the key factors that could potentially 

dominate the overall performance of the PEG modified particles.  
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