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Abstract 
 

This thesis aims to explore the usage of differential mobility spectrometry (DMS) and quantum chemical 

calculations to separate and identify drug compounds, as well as the use of machine learning (ML) to 

predict physicochemical properties such as the collision cross section (CCS) and single solvent binding 

energies (BEs) using experimental DMS data. Chapter 3 shows the ability of DMS to separate derivatized 

amphetamines and methamphetamine isomers and uses calculated BEs to identify the separated isomers 

by their DMS behavior. Chapter 4 demonstrates the separation of (+)-ephedrine and (+)-pseudoephedrine 

as well as three groups of sulfonamide isomers using a variety of gas modifiers within the DMS. CCS are 

used to describe behavior in pure N2 gas, while BEs are used to predict the ordering of the separation 

voltage at the compensation voltage minima (SV at CVmin) values within different isomeric groups. By 

making use of data gathered by Walker et al.1 ML models were generated for prediction of CCS as well 

as H2O and MeOH BEs and tested using the isomers studied in this chapter. In order to demonstrate the 

need for the model to train on similar compounds to those being tested, several of the test compounds 

were moved into the training set of the ML model and the change in predictivity observed. In the final 

chapter of this work, chapter 5, the CCS ML database was expanded using a sizable number of 

compounds with varied structure and functionalities in order to increase the predictivity of the ML model 

for new compounds. The effectiveness of incorporating additional compounds was evaluated by the 

creation of learning curves for the ML training and test sets. These projects ultimately show the capability 

of DMS in making separations of isomeric compounds, as well as its potential for use in the prediction of 

CCSs and BEs through ML modelling.  
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Chapter 1 : Introduction 
 
In recent years it has become increasingly important to be able to distinguish between different isomeric 

compounds for the purposes of drug development and medicinal chemistry. One reason for this is the 

increased importance of enantiomerically pure drugs.2 Some drugs, such as ibuprofen (Figure 1.1) have 

even been switched from a racemate or diastereomeric mixture to a pure composition (in this case S-

ibuprofen) due to various preferable properties. By utilizing a single enantiomer rather than a racemic 

mixture, improvements can be made in therapeutic properties (i.e., increasing potency and selectivity, 

reducing side effects), the time before onset of effects can be decreased, and the chances of drug-drug 

interactions occurring can be lowered.3 Another example of a compound which is now being produced as 

a single enantiomer is the local anesthetic bupivacaine, which had its composition changed from a 

racemic mixture to purely its S(−)-enantiomer because it was shown that the R(+) isomer was the cause of 

the racemic mixture’s cardiotoxic effects.4  

 

Figure 1.1: Structures of S-ibuprofen (right) and R-ibuprofen (left) 
 

Structural isomers are also often observed in the drug development process; they are commonly observed 

in drug metabolite studies5 and are used in the process of creating new drugs. By modifying the location 

of a functional group within a drug candidate the potency of beneficial effects can increased or the 

potency of detrimental effects can be decreased. One such example is the case of paracetamol 

(acetaminophen) and metacetamol (See Figure 1.2), which vary by the placement of a hydroxyl group at 

the para or meta positions along a phenyl ring. Metacetamol has been shown in some studies to be 
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significantly less hepatotoxic.6 A similar effect can be observed between valproic acid, an 

anticonvulsant/bipolar disorder medication with teratogenic properties, and 2-isopropylpentanoic acid, 

which maintains the mood stabilizing effects while reducing the potency of the detrimental side effects.7 

Due to the variance in effects that these minor substitutions can produce, it is important to use analytic 

tools that can separate and quantify these different kinds of isomeric compounds. 

 

Figure 1.2: Structures of metacetamol (left) and paracetamol (right)6 
 

Mass spectrometry (MS) is a commonly used technique for analytical applications due to its sensitivity 

and high throughput capacity.2 However, it is typically unable to distinguish between different isomeric 

compounds due to their identical masses and fragmentation. Several techniques exist for separating chiral 

isomers using MS, including hydrogen deuterium exchange (HDX) or collision induced dissociation 

(CID). In the case of HDX, one of the chiral analytes is selectively deuterated so that it and its isomer can 

be distinguished by their now-differing masses.8 Alternatively, a chirally selective molecule can be added 

to solution to form diastereomeric complexes. These complexes can then be broken down by CID and 

differentiated by differences in their fragmentation patterns.9 Other methods for isomeric separation 

require that an orthogonal technique be added to the MS workflow. Some common techniques include 

Liquid Chromatography-Mass Spectrometry (LC-MS)10,11, Gas Chromatography-Mass Spectrometry 

(GC-MS)12,13, Capillary Electrophoresis-Mass Spectrometry (CapE-MS)14,15, Capillary 
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Electrochromatography-Mass Spectrometry (CEC-MS)16,17, Supercritical Fluid Chromatography-Mass 

Spectrometry (SFC-MS)18,19 as well as Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS)20,21.  

Differential Mobility Spectrometry (DMS) is a relatively new technique that can be used for separating 

various isomeric species including structural isomers22 as well as various tautomeric species of protonated 

nucleobases.22–24 This thesis will further explore the DMS as a method for separating isomeric species by 

examining a variety of molecular systems. Furthermore, if the separation of isomers can be predicted 

computationally, it should also be possible to use the experimental DMS data in order to predict the 

properties which were used to make these predictions. In order to facilitate this, machine learning (ML) 

techniques will be used. 

In chapter 2, the computational and experimental techniques used in this thesis are described. The 

computational techniques include basin hopping, quantum chemistry methods, MobCal-MPI, and ML 

methods. This is followed by the eexperimental techniques that were used (i.e., QTRAP 5500 setup). 

Electrospray ionization is used to introduce analytes into the instrument, which then are analyzed and 

potentially separated in the DMS portion of the instrument, before being distinguished by their charge to 

mass ratio by the tandem mass spectrometer. A section on the analysis of the DMS data is also included. 

Chapter 4 focuses on the separation of amphetamine and methamphetamine isomers via DMS after a 

derivatization reaction with (S)-N-trifluoroacetyl prolyl chloride. These results are further backed by 

computational work comparing the binding energies of solvent-ion clusters. Chapter 5 expands upon the 

work done in Chapter 4, attempting DMS separation for four groups of compounds including ephedrine 

and its diastereomer pseudoephedrine as well as three groups of sulfonamide structural isomers. These 

experimental results are accompanied by computational work for the binding energies of these ions with a 

variety of chemical modifiers that are used in DMS and are used to attempt the prediction of DMS 

behavior. Furthermore, machine learning is used to predict the collision cross section of ions in pure N2 

and binding energies are predicted for ions with H2O and MeOH modifiers. Finally, Chapter 5 is focused 

on expanding the machine learning database with a number of compounds with different activities and the 
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DMS behaviors so that the machine learning model can be used to make predictions about new 

compounds.  
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Chapter 2 : Methods 

2.1 Computational Methods 

2.1.1 Basin Hopping 
 
Basin hopping (BH) is a search algorithm that is employed to find low energy isomer structures for 

analyte compounds by thoroughly exploring their potential energy surfaces (PES).25 This allows for the 

identification of the global minimum isomer structures and the determination of which isomers are 

relevant at a selected temperature. Figure 2.1 shows a simplified version of the BH process. The user 

imposes restrictions on parameters such as the acceptable range of energies, the geometric distortions as 

well as the temperature. A modified Monte Carlo simulation guides the system towards a minimum via a 

series of random distortions.26 Distortions include rotations through dihedral angles, bonding angle bends, 

as well as translations of atoms. (Figure 2.2) Low energy conformers obtained from the BH routine are 

optimized using the Gaussian quantum chemical package27 and then kept or discarded based upon their 

energies. If the energy is lower than the “global” minimum it is retained and set as the new global 

minimum as well as the starting structure for the next BH iteration. If the energy of a structure is not 

below that of the current global minimum, it is kept or rejected according to a thermal Boltzmann 

probability distribution window, which is displayed as Eq. 2.1: 

 exp�-�E-EGM�
kBT

�  > a Eq. 2.1 

In which E is the energy of the current structure, EGM is the current global minimum energy, kB is the 

Boltzmann constant and T is the temperature of the simulation. In typical BH searches the temperature is 

varied such that 50% of examined structures are accepted. “a” is a number chosen between 0 and 1 that 

gives the strictness of Boltzmann acceptance criteria for new structures.  If the result of the Boltzmann 

probability is greater than a, the structure is kept and used for the next BH iteration, while if the result is 

less than a, the structure is discarded, and the most recently accepted geometry is used (i.e., from the 

previous step). This process continues until a pre-set number of BH iterations are completed. 
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Figure 2.1: Schematic diagram of BH algorithm process for several steps, see text for details. 

 

Figure 2.2: Different distortions available for use in basin hopping: a) Angle bend b) Rotation about dihedral c) 
translation of atoms (i.e., movement of free atoms/molecules) 

As the BH algorithm will typically undergo tens of thousands of iterations per simulation, it is important 

to choose an efficient level of theory which also adequately describes the potential energy landscape for 
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the structural optimizations. The BH algorithm employed by the Hopkins group makes use of molecular 

mechanics force fields, such as UFF28 and AMBER29, due to the speed of the calculations that are 

produced. At this level of theory compounds are treated classically with atoms being treated as point 

charges and masses with their vibrations being modelled harmonically. Total energy is then calculated as 

the sum of the bonding interaction energies (bond stretching, angle bending and angle torsion) and the 

nonbonding interaction energies. [van der Waals (vdW) and Coulombic]29 Though the energies and 

structures produced at this level of theory are not particularly accurate, they do serve as candidate 

structures for further optimization. All resulting unique structures from BH are reoptimized at higher 

levels of theory in order to obtain more accurate energies and structures. 

2.1.2 Quantum Chemistry Methods 
 
Using the results of the BH algorithm as a base, structures, energies, and other chemical properties in this 

work were further refined using the PM7 and density functional theory (DFT) methods. PM7 is a semi-

empirical method which employs the neglect of diatomic differential overlap (NDDO) approximations.30 

NDDO reduces the complexity of the two electron integrals in the Hartree-Fock (HF) equations. The 

PMX methods, of which PM7 is the latest, replace the two electron integrals with functions that are fit to 

known experimental and empirical quantities rather than calculating them directly, thus greatly reducing 

computational time.31  

DFT is one of the most popular quantum chemistry methods for determining ground state properties of 

systems due to its ability to provide relatively accurate results at low computational expense. This is 

achieved by using electron density functionals rather than the wavefunction, as is done in HF or coupled 

cluster (CC) theory.32 Additionally, each of the different DFT functionals (such as B3LYP, PBEO, etc,) 

use different empirical functions to approximate the many particle interactions or the exchange 

correlations.33,34 
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2.1.3 MobCal-MPI 
 
Collision cross sections (CCSs) were generated via the use of the MobCal-MPI software35 that was 

developed by Ieritano et al. at the University of Waterloo based on the original MobCal 

implementation.36,37 It uses the trajectory method for calculating CCS which is commonly used in similar 

software. This method computes CCS through numerically approximating the momentum transfer 

integrals in Eq. 2.2: 

 
Ω𝑎𝑣𝑔 =

1
8𝜋2

� 𝑑𝜃
2𝜋

0
∙ � sin𝜑 𝑑𝜑

𝜋

0
∙ �

𝜋
8
�
𝜇
𝑘𝑏𝑇

�
3
𝑑𝛾

2𝜋

0
∙ � g5 ∙ exp�−

𝜇𝑔2

2𝑘𝑏𝑇
�

∞

0
𝑑𝑔

∙ � 2𝑏(1 − cos𝜒(𝜃,𝜑, 𝛾,𝑔, 𝑏)
∞

0
)𝑑𝑏 

Eq. 2.2 

Here, 𝜃, 𝜑, and 𝛾 are used to define the orientation of the ion relative to the center of mass axis of the ion-

collision gas, 𝑔 gives the relative velocity, b gives the impact parameter, 𝜇 gives the reduced mass of the 

ion-collision gas pair, and 𝜒 gives the angle of scattering after buffer gas collision with the ion. These 

integrals are averaged over many permutations of velocity and geometry for the given choice of buffer 

gas and analyte ion. Mobcal-MPI also improves upon its predecessor MobCal in several ways. The 

standard Lennard-Jones (LJ) 12-6 potential (Eq. 2.3) used in determining the vdW interactions was 

replaced with the Exp-6 potential (Eq. 2.4) which has been shown to be more accurate when calculating 

CCS.38  

 
𝑉𝑣𝑑𝑊(𝑟𝑖) =  �𝜀𝑖

𝑛

𝑖=1

��
𝑟𝑖∗

𝑟𝑖
�
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− 2 �
𝑟𝑖∗

𝑟𝑖
�
6

� Eq. 2.3 

 
𝑉𝑣𝑑𝑊(𝑟𝑖) = �𝜀𝑖 �1.84 × 105 exp�

12𝑟𝑖
𝑟𝑖∗

� − 2.25�
𝑟𝑖∗

𝑟𝑖
�
6

�
𝑛

𝑖=1

 Eq. 2.4 

For these equations, 𝜀𝑖 gives the depth of the potential well, 𝑟𝑖 gives the distance between buffer gas and 

its interaction partner, while 𝑟𝑖∗gives equilibrium distance between the same. Parameters were fit for 



 

9 
 

different polarization states of atoms and cover a wider chemical space than previously, adding P, S, Cl, 

Br, and I potentials to the original C, H, O, N, F list. Additionally, calculations have been sped up 

significantly through parallelization using message passing interface (MPI). 

2.1.4 Machine Learning 
 
The Orange software suite was utilized to perform machine learning predictions in the given work.39 Built 

using the python scripting language, Orange makes use of a visual programming GUI and groups low 

level procedures (e.g., feature scoring and data filtering) into larger algorithms in order to simplify ML 

for end users. This allows for easy creation of workflows and for various ML methods to be examined at 

once. (Figure 2.3) 

 

Figure 2.3: Example Orange worksheet, showing the evaluation of two different sets of parameters for predicting the 
CCS for the same set of compounds. The set of parameters that scored more accurately on the training set had its 
ML model save, which was then used to predict the CCS of a test set of compounds. 

Random forest (RF)40 is a ML algorithm that has been shown to perform exceptionally well in predicting 

physicochemical properties through quantitative structure activity relationships (QSAR).41 It performs 

well without requiring a high degree of input data tuning or pruning, can handle large numbers of 
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descriptors, and also copes well with poorly chosen descriptors; such as those that are redundant or 

irrelevant. This algorithm has seen previous use in the Hopkins group for predicting various 

physicochemical properties such as the CCS, pKb, LogD, EPSA and cell permeability in a small set of 

different drug candidate compounds.1 

The RF algorithm (Figure 2.4) uses a large (~100-1000) number of decision trees, each of which 

generates a numeric prediction or classification. Numeric predictions can then be averaged to yield a 

prediction for the “forest” of decision trees. RF is a supervised learning method which uses a training set 

of data to construct a model to be employed for unknown data predictions. Each node on a tree, shown in 

Figure 4 as circles in each tree, is created to sort data based upon a random feature (such as CV at given 

SV, m/z, charge dipole, etc) within the training set. As a sample molecule progresses through the nodes 

within the tree (path is shown in yellow) it becomes grouped with molecules which are increasingly 

similar to itself. Using this grouping and the known data within the training set, classifications such as 

chemical grouping or numeric predictions like CCS are made. Below, a classification result is depicted 

between red and green boxes in each tree. In order to mitigate the effect of any individual input from 

having a disproportionate effect on the algorithm, each tree only examines a portion of the training data. 

Some entries will be used multiple times in the construction of a decision tree, while some will not be 

used at all. This latter case will happen for each “training" compound in around 37% of all trees.42 By 

utilizing a sufficient number of trees in order to come to a consensus, the overall result converges very 

close to the true answer of the classification/regression query, and is relatively insensitive to additional 

features which do not correlate strongly to the target variable. 
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Figure 2.4: Example RF decision tree. 42 

A key part of ML is to be able to predict unknown values.42 In order to test the predictive ability, the input 

data is broken up into test and training sets, and a k-fold cross-validation approach is used  In k-fold cross 

validations the data is split into k equal sets (or folds). One set is used for testing, while the remaining (k-

1) sets are used for training. Sometimes one additional fold is removed from the training set, the internal 

validation set, to further elucidate which parameter values influence predictivity the most.  A visual of 

one such k-fold cross validation approach is shown in Figure 2.5. A predictive model is generated by 

teaching the ML algorithm with the training set to infer relationships/trends between selected features and 

the target. The generated model is used for target prediction on the data within the test set, and its error is 

evaluated through the root mean square error (RMSE) or the average absolute error (AAE) between 

predicted results and the known target values. The total cross validation error is evaluated by iterating the 

test set over each of the k folds, training on the remaining (k-1) (or k-2 with an internal validation set) 

folds in each case, The final cross validation error results from an average over the k model errors. 

Typically, 5 to 10-fold cross validations are used to test generated RF models. 
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Figure 2.5: 5-fold cross validation approach.42 

2.2 Experimental Methods 

2.2.1 Electrospray Ionization 
 
In a standard DMS setup the analyte is injected into an electrospray ionization (ESI) source, where 

cations or anions are pumped by a syringe pump through a charged capillary and released as a fine spray 

of charged droplets. The applied capillary voltage helps generate the ions, often alongside an acid or base 

within the sample solution. Positive and negative ions can be selected by placing positive potential either 

at the capillary or at the counter-electrode. The droplets are guided along a pressure and potential gradient 

towards the DMS cell, and are reduced  in size through a combination of collisions with a nebulizing gas 

(i.e., N2), release of smaller droplets, and thermal evaporation (see Figure 2.6).43,44 The droplets shrink 

until they eventually reach a critical size called the Rayleigh stability limit. Here, the repulsive 

electrostatic forces within the droplet exceed the surface tension of the droplet, which will subsequently 

break apart into smaller droplets in a process called Coulomb explosion.44 When the droplet becomes 
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sufficiently small, excess charge is removed by inducing a phase change into the gas state rather than 

breaking apart further.45  

 

Figure 2.6: Display of the ESI process showing the initial spray, reduction of size and deformation before Coulomb 
explosion into gas phase .43 The dotted lines represent time gaps in the process, showing different stages. 

2.2.2 Differential Mobility Spectrometry 
 
Inside the DMS cell (See Figure 2.7) ions at atmospheric pressure are forced to oscillate perpendicular to 

the longitudinal axis by an applied asymmetric waveform called the separation voltage (SV). An 

atmospheric pressure of a background gas (N2) is present in the cell and collides with the ions as they 

traverse the cell.  Eq. 2.5 describes the changes in ion mobility as a function of the electric field due to 

changes in the apparent collision gas viscosity.46  

 𝐾 �
𝐸
𝑁
� = 𝐾(0) �1 + 𝛼 �

𝐸
𝑁
�� Eq. 2.5 

E/N is the field per volume density of neutral particles (in Td), K(0) is mobility at low field, and 𝛼(E/N) is 

a function that gives mobility change at different E/N values. The differential mobility which results from 

the asymmetric waveform potential, as depicted in Figure 2.7, will cause ions to move towards the 

electrodes .47 A DC voltage, called the compensation voltage (CV), is then applied in order to direct ions 

back along the longitudinal axis and towards the mass spectrometer. Ions with differing zero field 

mobilities and α values will behave differently as they pass through the DMS cell, thus requiring a 

different CV value to guide them through the cell. This difference of CV value allows for these ions to be 

 

  M+  
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distinguished in a method orthogonal to that of a mass spectrometer. The selectivity of DMS is further 

increased by the usage of solvent modifiers (e.g., acetonitrile, water, etc.) that are seeded in the 

background gas that can modify the mobility of the analyte ions.48 In low field conditions the ions can 

become solvated, reducing their mobility due to increased ion-solvent interactions. This decrease in 

mobility is caused by the ions’ apparent size being increased by the bound solvent molecules. Under high 

field conditions the ions are desolvated and their mobility increased as they are accelerated through the 

cell. This dynamic clustering process can generate significantly different clustering profiles for isobars 

with only minute differences in their binding energies (BEs) and thus enabling separation.47 As the 

analyte leaves the DMS cell, a potential difference is applied which accelerates the ion toward the mass 

spectrometer and removes excess solvent molecules leaving the bare ion for detection by MS. The 

potential difference is controlled by the declustering potential (DP). 

 

Figure 2.7: Schematic diagram of the DMS cell. The SV controls the magnitude of the migration toward the 
electrodes due to differing high and low field mobility of ions, and the CV directs ions with a specific mobility into 
the MS.47 

2.2.3 Tandem Mass Spectrometry 
 
Analyte ions pass through a system of four parallel metal rods, called a quadrupole mass analyzer 

(see Figure 2.8), where the pairs of diagonally aligned rods have a radio frequency AC voltage applied, 
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along with a DC voltage offset. This configuration of voltages creates an electric field which pushes the 

ions along parallel to the rods while causing the ions to oscillate perpendicularly to their movement. This 

spiraling movement is described using Eq. 2.6, Mathieu’s differential equation49: 

 𝑑2𝑢
𝑑𝜉2

+ (𝑎𝑢 − 2𝑞𝑢𝑐𝑜𝑠2𝜉) ∗ 𝑢 = 0 Eq. 2.6 

U represents the direction along the coordinate axes, 𝜉 is a dimensionless parameter equal to Ωt/2 where 

Ω is the radial frequency of the rf voltage and t is time, and au and qu are the dimensionless trapping 

parameters. This movement allows only ions with a m/z corresponding to a specific AC/DC voltage 

pairing to pass through the quadrupole. By choosing different of AC and DC voltage pairs, ions of a 

specific m/z can be allowed to pass through to the detector while others are filtered out.50  

 

Figure 2.8: Oscillation of an ion as it moves from source to detector within a quadrupole mass analyser. Adapted 
from Ho et al.43  

The utility of the MS is further improved by using multiple quadrupoles in series, resulting in the tandem 

MS (MS/MS) system. The triple quadrupole MS variant, as is used in the Hopkins lab, is a common 

example of this kind of setup. The first quadrupole (Q1) is used to select for an ion of interest, which is 

accelerated into the second quadrupole (Q2) through application of a potential difference called the 

collision energy (CE). In Q2 ions collide with N2 and fragment according to the CE applied in a process 

From 
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known as collision induced dissociation (CID). The product ions can then be examined in the third 

quadrupole (Q3), giving additional structural information about the parent.43 (See Figure 2.9) 

 

Figure 2.9: Example enhanced product ion (EPI) scan spectra of an unknown 339.3 m/z cluster that contains 
protonated phthalane (depicted in figure) at 121.1 m/z. 

2.3 Data Analysis 
 
Dispersion plots are generated to examine and characterize the DMS behavior of analyte ions. Peak CV 

values are taken from ionograms, which are plots of signal intensity versus CV for a specific SV (see 

Figure 2.10). A dispersion plot is generated by plotting optimal CV for ion transmission as a function of 

SV.  Dispersion plots display three general types of behavior: Type A, B, and C.51 Type A behavior 

demonstrates strong ion-solvent clustering, in which ions exhibit increasingly negative CV values as the 

SV increases. In Type B behavior, ions exhibit weak clustering with the solvent and CV initially 

decreases with SV, before eventually increasing towards positive values. Lastly, Type C behavior is 

indicative of only hard sphere interactions with buffer gas molecules, and CV strictly increases with 

increasing SV.48 Figure 2.11 provides example dispersion plots showing these different behaviors. In 

order to achieve separation of similar compounds, care must be taken to find a modifier that strikes a 

balance between the different DMS behaviors. In general, pure N2 generates the least amount of 
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clustering, while acetone (ACE) provides the strongest clustering. Typically, ideal separation occurs by 

picking a modifier that clusters moderately well with analyte ion, displaying type B behavior. Using a 

modifier that provides weak clustering behavior with a given analyte allows for greater resolution of 

differing ion behavior. In practice, a grouping of ions that displays purely type A or type C behavior is 

less likely to be separable than a grouping of ions that displays purely type B behavior or some mixture of 

the behaviors. 

 

Figure 2.10: Ionogram generated for protonated cocaine ions at a SV of 3250 V and temperature of 150 ⁰C.  

 

Figure 2.11: (Left) General types of DMS behavior. (Right) Dispersion plots for (CH3)4N+ in N2with various solvent 
modifiers added at 1.5% (v/v).47 
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Chapter 3 :  Separating Chiral Isomers of Amphetamine and 
Methamphetamine using Chemical Derivatization and Differential 
Mobility Spectrometry 
 
Chapter 3 examines the separation of derivatized amphetamine and methamphetamine isomers. The 

experimental work in this chapter was carried out by collaborators at SCIEX, while the computational 

work was carried out by me, along with an analysis of the combined data. A manuscript of this work is 

currently under review: 

Reference: Kalfe, Amol; Bowman, Zack; Le Blanc, J.C. Yves; Liu, Chang; Hopkins, W.; Campbell, J 

Separating Chiral Isomers of Amphetamine and Methamphetamine using Chemical Derivatization and 

Differential Mobility Spectrometry. Anal. Chem. (In review). 

3.1 Introduction  
 
Amphetamine (AMP) and methamphetamine (MeAMP) are a similar pair of stimulants that each appear 

as enantiomeric mixtures, with a single chiral center adjacent to the methyl and amine groups (Figure 

3.1). AMP is primarily used as a treatment for attention deficit hyperactivity disorder (ADHD), and has 

seen use in treatment for mild depression, narcolepsy and various other disorders.52 The more potent 

methylated derivative, MeAMP, is also used for treatments of ADHD, though as a second line treatment, 

as well as for obesity and other conditions.53 Typically, only the S isomers are used for medicinal 

purposes with a few notable exceptions; such as the 3:1 R:S AMP isomer ratio used in Adderall52, and R-

MeAMP as an over the counter decongestant.54,55 However, the R and S isomers of both compounds are 

restricted due to their potential for abuse, particularly the S isomer, due to its faster and more complete 

metabolization relative to the R isomer.56 Illegal use is typically also centered on the more potent S-

isomer52,57, so the ability to differentiate these isomers is an invaluable tool in examining seized illicit 

materials. In fact, by US sentencing guidelines a greater punishment is recommended for possession of a 
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>80% mixture of S-MeAMP than for lower amounts, making the sensitivity and specificity of detection 

especially important.57 

 

Figure 3.1: Structures for AMP and MeAMP with the chiral center indicated by the red circle. Designation of 
chirality is made using the Cahn-Ingold-Prelog (CIP) convention.58 

Various methods have been used previously in order to discriminate between the AMP and MeAMP 

enantiomeric pairs. Liquid chromatography (LC) techniques have been used to separate AMP and 

MeAMP enantiomers by using a chiral stationary phase of compounds such as vanomycin and β-

cyclodextrin (i.e., large compounds with many chiral centers).56,59 Comparable compounds, such as HP- 

β-cyclodextrin, have also been used as chiral selectors in capillary electrophoresis (CapE) experiments to 

a similar degree of success.60 Alternatively, the separations are produced in the gas phase using methods 

such as gas chromatography (GC).54,61 Here, however, additional preparations must be made in the form 

of a chemical derivatization step. By using (S)-N-trifluoroacetyl prolyl chloride (TPC) to convert these 

enantiomers into larger diastereomers the structure becomes less polar and more thermally stable than the 

original compounds. Additionally, the physicochemical properties of the enantiomers are modified 

relative to each other, becoming distinct, and the GC sampling and separation is improved. 
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Gas phase chemistry can also be employed alongside ion mobility spectrometry (IMS) techniques in order 

to separate chiral compounds.62 Previous works have shown that compounds which cannot be resolved 

using only nitrogen drift gas can be separated using a gas dopant that is either chiral, such as (S)-2-

butanol,63 or achiral, such as 1-octanol.64 One IMS method that has shown particular promise in 

distinguishing different isomers is DMS24,32,65–68, which separates ions based upon high and low field 

differences in the CCS rather than purely the low field CCS used in drift-time or travelling wave IMS. 

This can allow for separations that might not be possible in only low field conditions. Amphetamine has 

been previously examined with DMS in order to separate it from isobaric contaminants. A variant of 

DMS, high-field asymmetric waveform ion mobility spectrometry (FAIMS)51, has previously been used 

to separate chiral compounds.69,70 However, these separations required metal cores and reference ligands 

to be used in the experiment to create separable clusters, and required high concentrations of solution to 

create clusters. Additionally, these separations were not observed to follow predictable trends. 

Taking advantage of the previous literature results, this experiment will make use of the TPC 

derivatization strategy used in gas chromatography experiments, as well as making use of gas modifiers to 

separate and identify the derivatized analyte diastereomers. Using DMS as a method for separating chiral 

compounds is desirable due to shorter run times and less complicated experimental setups compared with 

GC or LC methods.71,72 

3.2 Experimental Methods 
 
Reagents and Chemicals: Pure species and racemic mixtures of amphetamine (AMP) and 

methamphetamine (MeAMP) were purchased from Cerilliant Corporation and the (S)-N-trifluoroacetyl 

prolyl chloride (TPC) was purchased from Sigma-Aldrich. Each compound was used as received. 

Derivitization reaction (Figure 3.2): 12.5 µL of sample was added to a 500 µL capped Eppendorf tube 

and dried down using nitrogen gas flow. 100 µl of hexane and 100 µL of TPC were added to reconstitute 

the solution before it was sealed and vortexed at 500 rpm for 10s to thoroughly mix the reactants. The 
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mixture was then heated for 15 min at 70 ⁰C, shaking at 500 rpm before being dried and reconstituted 

with 250 µL of 50/50 water/acetonitrile along with 0.1% formic acid by volume. A 30 µL sample of this 

solution was diluted with 1470 µL of the same solvent to form a stock solution of 1000 ng/mL 

concentration. 

 

Figure 3.2: Reaction of AMP and TPC to form TPC-AMP 

DMS Conditions: The DMS was mounted at atmospheric pressure between an ESI source (5500 V) and 

a hybrid triple quadrupole MS. For this experiment, the DMS was set at 150 ⁰C with a nitrogen curtain 

gas of 10 psi and a declustering potential of 100 V. (For further details on the DMS system, see section 

2.2.2) The SV was held constant at 4000 V in order to allow for maximum separation of the analytes, 

while the CV was varied across a wide range in order to ensure that all relevant isomers were observed.  

An external pump provided the gas modifiers in a 1.5% V/V of the total curtain gas flow. Each 

component of the experimental setup was controlled using the Analyst® software (v. 1.6.2). The 

enhanced product ion (EPI) mode was used in order to observe the fragmentation of mass peaks in the 

DMS. EPI mode selects for a parent mass of interest in Q1 and scans over a user selected range of m/z in 

Q3 in order to observe all fragment peaks from the selected parent ion. This allows for the removal of 

isobaric interferences due to differences in the fragmentation pattern.  
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3.3 Computational Methods 
 
For each compound of interest, initial neutral structures were generated using chemical intuition. These 

structures were then geometrically optimized at the PM7 level of theory to give approximated structures 

to use as a starting point for further calculations.30 These preliminary geometries were first used to 

generate various prototropic isomers, which were optimized at the B3LYP/6-31++G(d,p) level of theory  

and examined by comparison of their relative energies.73 The lowest energy protomers were then carried 

forward to be manipulated using the BH algorithm27,32,74–76 which interfaced with Gaussian09 software for 

structural optimization steps. As discussed in Section 2.1.1, this ensures a thorough investigation of the 

PES to identify candidate structures for low energy isomers. For this work, the BH routine used the 

AMBER molecular mechanics forcefield, and partial charges calculated using the CHelpG method for the 

input structure.29,77 Approximately 20,000 geometries were sampled across the PES by manipulating the 

dihedral angle of selected bonds by a random rotation of ‒10° ≤ θ ≤ 10° in each protonated structure. The 

unique structures were then pre-optimized at the semi-empirical PM7 level of theory. This resulting set of 

unique structures was reoptimized at the B3LYP/6-311++G(d,p) level of theory. The DFT-optimized 

isomers were ranked based upon their electronic energies to determine which species were most likely to 

be observed at the internal DMS temperature (150 ⁰C).  In order to ensure that each structure was a local 

minimum on the PES (rather than a transition state), and to obtain thermochemical corrections for the 

energies, normal mode analyses were performed. 

The MobCal-MPI code was used to calculate the orientationally-averaged CCS (ΩN2) for the various 

isomers of amphetamine and methamphetamine with molecular nitrogen as the collision partner.35–37 The 

trajectory method is employed in order to generate these theoretical ΩN2 values.32 For a given structure, 

10 cycles of mobility calculations are completed, using 512 points of impact parameter integration and 48 

points of velocity integration. (See Eq. 2.2) 
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Minima structures from BH were also used to generate ion-solvent structures. For initial guess structures, 

the electrostatic potentials of the protonated ions were examined for areas with a particularly high 

positive/negative partial charge, as these are the likely sites of bonding (see Figure 3.3). The solvent 

molecules are positioned and oriented depending on the polarity of their partial charge and then optimized 

in order to find a minima cluster structure. For example, in the case of ACN where the negative partial 

charge is most accessible, in front of the triple bonded nitrogen along the principal axis, it is placed near 

the most positive areas on the analyte molecule. Optimized geometric structures and thermochemical 

corrections were calculated using the B3LYP/6-311++G(d,p) level of theory. These structures are 

assumed to be the global minima ion solvent structures in this case. 

 

Figure 3.3: Partial charge for one S-TPC-R-AMP isomer. Blue indicates an area of relatively high positive partial 
charge and red indicates an area of relatively high negative partial charge. 
 

3.4 Results & Discussion 

3.4.1 Separation of (S,R/S,S)- AMP/MeAMP 
 
Initially, an attempt was made to observe separation of racemic AMP and MeAMP using DMS alone. 

Unfortunately, the peaks for both enantiomers lie at the same CV value, and so are not separable. In order 
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to increase separation, a derivatization reaction between the AMP/MeAMP isomers and (S)-N-

trifluoroacetyl prolyl chloride (S-TPC) was performed in order to create greater differentiation between 

the chiral groups.  

The TPC-derivatized compounds were initially examined using a pure nitrogen environment with no 

additional gas modifiers. Unfortunately, in this case no separation was observed between the ions of 

interest. Therefore, additional treatment was required for the isomers to be resolved. Two methods were 

examined in order to make a distinction in the isomers’ DMS behavior: i) Supplying a throttle gas to the 

DMS cell in order to extend the DMS flight time and ii) supplementing the cell’s nitrogen environment 

with a modifier gas to enhance separation through modifier-ion clustering. 

Increasing the cell retention time with a throttle gas (@10 psi in this case) causes minute differences in 

structure to be exacerbated and allow for separations that would not occur under standard conditions, as is 

shown in Figure 3.4 for the TPC-AMP derivatives. Since there is very little binding observed in a pure N2 

environment, it is assumed that the CCS is the main contributor to the different mobilities in order to 

determine which peak in the ionograms corresponds with which given isomer. S-TPC-R-AMP was 

calculated to have a CCS of 165.2 Å2, while S-TPC-S-AMP had a calculated CCS of 172.3 Å2. Due to the 

significant difference between these values it is plausible that these compounds could be separable. It is 

expected that more positive CV values will be observed for analytes with smaller calculated CCSs, as 

qualitatively this will lead to larger differential mobilities between high and low field conditions in the 

hard sphere limit. Using this as an “eyeball test” it would be expected that the CV = 11.7 V peak would 

correspond to S-TPC-R-AMP and the CV = 9.9 V peak would correspond to S-TPC-S-AMP. In the case 

of the MeAMP chiral isomers, a CCS of 170.2 Å2 was calculated for S-TPC-R-MeAMP and a CCS of 

171.6 Å2 was calculated for S-TPC-S-MeAMP. Despite the similarity of the CCS values, falling with the 

96% confidence range (~±2 Å2) of each other (as determined by calculated MobCal error), these 

compounds also separated in the N2 gas environment with resolving gas (Figure 3.5) with a similar degree 

of separation as the S-TPC-AMP diastereomers. Due to this overlap it is hard to make an authoritative 
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judgment as to the identity of which isomer is generating each peak. However, due to the high fields 

present; the CCS is not the only property that determines separation. In order to more conclusively 

identify the identity of the S-TPC-AMP and MeAMP diastereomers using theory, another experimental 

method must be used.  

 

Figure 3.4: (Top) Experimental DMS data showing separation of racemic mixture of S-TPC- S/R-AMP in pure N2 
gas modifier. (Bottom) Fragmentation of each parent ion peak, showing the strong similarities between them. 
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Figure 3.5: Experimental DMS data showing separation of racemic mixture of S-TPC-S/R-MeAMP in 
pure N2 gas modifier.  

Seeding the buffer gas with modifier enhances differential mobilities due to differences in modifier-ion 

clustering that can vary even in very similar structures. When ACN was used as a modifier gas, separation 

was observed between both TPC AMP/MeAMP pairs. (Figure 3.6) Peak assignments were established by 

examining each diastereomer separately using the DMS. From the separate diastereomer experiments S-

TPC-R-AMP was assigned to the peak at a CV of −19.6 V, while S-TPC-R-AMP was assigned to the 

peak at −13.3 V. The MeAMP pair had less separation than the AMP pair but the two isomers were still 

distinguishable from each other. The peak at −6.3 V was assigned to S-TPC-S-MeAMP while the peak at 

−3.5 V was assigned to S-TPC-R-MeAMP. One additional peak at a CV of −9.5 V was believed to 

originate from the MeAMP isomers, likely resulting from a cluster of S-TPC-R- and S-TPC-S-MeAMP 

due to the appearance of this peak in both chiral isomer scans. By performing this experiment in multiple 

reaction monitoring (MRM) mode potential isobaric interferences can be removed, such as one observed 
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in a full scan MS/MS analysis. In this case a 343 m/z isobar that was observed in EPI mode, (Figure 3.7) 

was omitted from in Figure 3.6 because it did not have a 166 m/z or 91 m/z fragment that is used for 

signal identification in MRM mode when scanning for the TPC-MeAMP derivatives.   

 

Figure 3.6: Peak separation of the (S/R) pairs of S-TPC-AMP and S-TPC-MeAMP using ACN modifier gas. The S-
isomers are shown in blue on the positive intensity portion of the y-axis, while the R isomers are shown in pink on 
the negative intensity portion of the y-axis. 
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Figure 3.7: EPI scan of S-TPC-MeAMP racemic mixture and fragmentation and observed peaks. Plot a) gives the 
overall ionogram for the mixture at SV = 4000V, while plots b-d ) give the fragmentation patterns observed for each 
ionogram peak as well as their identifications.  

(d) (e) 
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3.4.2 Comparison of computational and experimental results: 
 
While in this case the TPC-AMP/MeAMP peak assignments in the ionograms were made by examining 

individual TPC-AMP/MeAMP derivatives separately and comparing to the racemic mixtures, this is not 

always possible. Sometimes the peaks can be identified by their fragments, such as in the case of the 

isobar observed in EPI mode. However, this is not always the case, especially in such similar compounds 

as diastereomers. An alternative method is to use the empirical understanding of DMS alongside 

computational modeling in order to compare theoretical parameters to the behavior observed in DMS 

experiments. The TPC-AMP/MeAMP system detailed thus far serves as an example for this method of 

understanding DMS separations. 

The BH algorithm was utilized in order to determine the global minimum TPC-AMP and MeAMP 

unsolvated structures, which were then used to determine ACN clustered structures and energies. The 

energy differences between the solvated and unsolvated structures are used to determine the binding 

energy for each of the TPC derivative species with ACN. The energy of binding is presumed to play a 

major role in determining DMS behavior in the presence of a solvent modifier. Compounds which display 

a stronger affinity for binding with the modifier gas (i.e., a larger BE) should display stronger type A 

behavior and therefore require a more negative CV to be applied in order to be detected. 

The BH script (and subsequent optimizations) identified three, two, four and four low energy isomers for 

S-TPC-R-AMP, S-TPC-R-MeAMP, S-TPC-S-AMP and S-TPC-S-MeAMP respectively within ∆G= 

3.59 kcal/mol of the global minimum structure. (See Figure 3.8 below for global minimum structures) 

The amphetamine derivatives displayed an OH•••O sharing of the charge carrying proton, while the 

methamphetamine derivatives exhibited an OH•••N H-bonding motif with the ring bound nitrogen. 
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Figure 3.8: Global minimum structures generated at the B3LYP/6-311++G(d,p) level of theory for (A) S-TPC-R-
AMP, (B) S-TPC-S-AMP, (C) S-TPC-R-MeAMP and (D) S-TPC-S-MeAMP. 

ACN-ion complexes were generated using the unsolvated compounds as a starting point, resulting in the 

creation of 10 S-TPC-R-AMP, 12 S-TPC-S-AMP, 2 S-TPC-R-MeAMP and 9 S-TPC-S-MeAMP structures 

for an overall total of 33 candidate structures. The global minimum structures that were generated for S-

TPC-R-AMP  and S-TPC-S-AMP had solvent binding energies of 7.43 kcal/mol and 7.91 kcal/mol, 

respectively while those generated for S-TPC-R-MeAMP  and S-TPC-S-MeAMP had solvent binding 

energies of 8.09 kcal/mol and 8.32 kcal/mol, respectively.(See Figure 3.9 below) While the differences 

between these BEs are small they still should be seen as significant. Error in the binding energies should 

be in the range of 0.25-0.5 kcal/mol, though due to the similar structures of the isomers the errors should 

occur in the same direction and reduce the relative error observed in the calculations. The TPC-MeAMP 

isomers both share the same location for the ACN-ion interactions, with the ACN molecule interacting 

with the proton that is engaged in an OH•••N H-bonding with the ring nitrogen. Very little structural 

change was observed in the ion upon the addition of ACN. The ordering of the binding energies agreed 

with the experimental results; the more strongly bound cluster (S-TPC-S-MeAMP) is found to have the 

more negative peak CV value of the diastereomer pair. Conversely, the TPC-AMP diastereomers did not 

share the same location for their interactions with the ACN molecule, nor the same H-bonding motifs.  S-
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TPC-R-AMP contains an OH•••O motif and the ACN interacts with the hydrogen bonded to by the chain 

nitrogen, while S-TPC-S-AMP exhibits an NH•••O motif and the ACN clusters with the protonated 

carbonyl group. In either case, the resulting structures draw the phenyl ring close to the area of positive 

charge surrounding the IMHB, bringing its face almost parallel with that of the five membered ring. 

These compact structures are each more favorable than the alternative, where the phenyl ring is located on 

the opposite side of the backbone chain of the structure and cannot compact itself as well, nor can it 

access the positively charged areas due to the curve in the backbone caused by the IMHB. Just like for the 

S-TPC-MeAMP diastereomer pair, the more strongly bound S-TPC-AMP diastereomer (S-TPC-S-AMP) 

produced the more negative peak CV value in DMS experiments. Note that the argument does not hold 

between TPC-AMP and TPC-MeAMP as peak CV values were less negative for the more strongly bound 

MeAMP diastereomers. This highlights the complex behavior underlying observed differential mobility 

and the need for further study. An explanation for this discrepancy could come from the size differences 

in S-TPC-AMP versus S-TPC-MeAMP. Due to the larger size of the S-TPC-MeAMP species, the ∆CCS 

between bare ions versus ion-solvent clusters should be lower relative to the S-TPC-AMP species, 

resulting in a less negative overall CV shift. 

 

Figure 3.9: Global minimum structures for single ACN molecule – analyte clusters of (A) S-TPC-R-MeAMP, (B) S-
TPC-S-MeAMP, (C) S-TPC-R-AMP and (D) S-TPC-S-AMP. The ACN molecules have been highlighted by red 
circles. 
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3.5 Conclusion: 
 
Nitrogen only DMS experiments on AMP and MeAMP were unable to separate their chiral pairs, so a 

derivatization reaction with S-TPC was used to make the compounds easier to resolve. Using nitrogen 

modifier these diastereomers were not able to be separated until a 10 psi throttle gas was applied within 

the DMS. However, the TPC-MeAMP isomer pair was indistinguishable based upon a theoretical 

prediction of CCS for the two diastereomers. Therefore, a different experimental method was followed, in 

which DMS experiments were performed using ACN as a gas modifier. It was demonstrated that the S-

TPC-S pairs for AMP and MeAMP displayed stronger Type-A (more negative CVs) DMS behavior then 

the S-TPC-R pairs. Computational results confirm that the stronger solvent binding S-TPC-S pairs 

demonstrate stronger Type-A behavior as compared with the S-TPC-R variants. While this does allow for 

some understanding of the separations between the diastereomer pairs, in which most properties are 

similar if not equal, the overall trend is not predicted for all the compounds. Following the order of peaks 

CVs from most positive to most negative the trend is S-TPC-R-MeAMP, S-TPC-S-MeAMP, S-TPC-R-

AMP, S-TPC-S-AMP, while the order of BE from smallest to largest: S-TPC-R-AMP, S-TPC-S-AMP, S-

TPC-R-MeAMP, S-TPC-S-MeAMP. Although the calculated BEs for the MeAMP derivatives are greater 

than those calculated for the AMP derivatives, the AMP derivatives show significantly more negative 

peak CV values. This demonstrates that DMS behavior is a complex mixture of ion-solvent CCS and bare 

ion CCS which depends on ion-solvent interactions, which BE trends only can capture for similarly 

structured species. 
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Chapter 4 : Separation of Ephedrine Diastereomers and 
Sulfonamide Structural Isomers Using Differential Mobility 
Spectrometry 
 
Experimental work for this chapter was performed within the lab of Prof. Gérard Hopfgartner at the 

University of Geneva. All other work included in this chapter is my own. 

Reference: Ruskic, D.; Hopfgartner, G. Modifier Selectivity Effect on Differential Ion Mobility 

Resolution of Isomeric Drugs and Multidimensional Liquid Chromatography Ion Mobility Analysis. 

Anal. Chem. 2019. 91(18). 11670-11677. https://doi.org/10.1021/acs.analchem.9b02212 

4.1 Introduction: 

Ephedrine and pseudoephedrine are a pair of diastereomers (Figure 4.1) that share a variety of medical 

properties, including diaphoretic, antipyretic, respiratory, antitussive and antiasthmatic effects.78 Both 

compounds have two chiral centers: in ephedrine there are the 1R,2S (−) or 1S,2R (+) chiral 

configurations (i.e. the hydroxyl and methyl groups face the same directions) and in pseudoephedrine 

there are the 1R,2R (−) and 1S,2S (+) configurations (i..e., the hydroxyl and methyl groups face opposite 

directions). Both ephedrine and pseudoephedrine find use in Chinese traditional medicine as an active 

ingredient in the plant Ephedra sinica, also known as “Ma-Huang”.79  Additionally from the perspective 

of, law enforcement, (−)-ephedrine and (+)-pseudoephedrine are commonly used as precursors in the 

creation of illicit methamphetamine, which differs only by the substitution of the hydroxyl group for a 

hydrogen atom.80  A concern is the false identification of methamphetamine usage in urine sampling, 

which can be caused by overconsumption of ephedrine and/or pseudoephedrine. In such cases the correct 

identification between can only be provided by the measurement of the enantiomeric composition; 

methamphetamine usage will show majority (−)-ephedrine and (+)-pseudoephedrine while medical usage 

should show a more even distribution of isomers.80  
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Figure 4.1: Structural representations of a) (+)-ephedrine (1S,2R) and b) (+)-pseudoephedrine (1S,2S) labeled with 
their chiralities as per Cahn-Ingold-Prelog (CIP) convention. 

Ephedrine and pseudoephedrine have previously been examined with a variety of experimental 

techniques. McCooeye et al.81 used FAIMS in 2003 to separate ephedrine and pseudoephedrine from each 

other as well as several associated metabolites that were obtained from weight loss products. Specific 

enantiomeric designations were not given in this case. More recently in 2012, Holness et al.64 

 used IMS with achiral solvent modifiers in order to separate (−)-ephedrine and (+)-pseudoephedrine, 

showing a 1.34% resolution between these diastereomers when using n-octanol as the modifier gas. Other 

previous experimental techniques include GC-MS/MS82, LC-MS/MS83, CE78 and high performance liquid 

chromatography (HPLC).84 

Sulfonamides are another interesting group of compounds that contain many different isomers. They are 

predominately used in veterinary medicine for the treatment and prevention of bacterial infections, and as 

additives to animal feeds to assist in growth.85–87 Sulfonamides are derived from sulfanilamide (Figure 

4.2), by replacing the one of the hydrogen atoms on the sulfonamide nitrogen with another group, often 

featuring a nitrogen containing ring (See Figure 4.2 for an example of a sulfonamide). One area of 

concern is that the half-life of sulfonamides within animal tissue is long enough that they are still likely 

present when the meat is prepared for human consumption.  Additionally, sulfonamides have been shown 

to appear in animal byproducts like milk85 and honey,88 as well as the runoff water from agricultural 

operations89 which has the potential for creating antibiotic resistances to the sulfonamides Furthermore, 

some of these drugs (e.g., sulfadimidine) have been shown to potentially cause cancer and allergic 
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reactions in humans.85 Many countries have placed restrictions on the amount of sulfonamides that can be 

present as contaminants in animal-derived foods, with sulfadimidine and sulfadimethoxine in particular 

having stricter limits. As different sulfonamides have different limits it is important to be able to 

distinguish between different sulfonamides, particularly those that share the same m/z value, which can 

cause false positive detection for the more strictly regulated compounds. 

 

 

Figure 4.2: A structural representation of sulfanilamide is shown at left. A structural representation of a sulfonamide, 
sulfameter, is depicted at right. 

Various experimental techniques have been shown to have the capability to separate different 

sulfonamides. Cai et al.90 showed simultaneous detection of twenty-four sulfonamide residues from meat 

samples using ultra-performance liquid chromatography and tandem mass spectrometer. (UPLC-MS/MS). 

Berger and Berger91 used ultra-high performance supercritical fluid chromatography (UHPSFC) in order 

to quickly separate nine sulfonamides and test the feasibility of detecting these drugs in a milk matrix. 

While no studies have been done explicitly on the separation of sulfonamides using IMS techniques, 

traveling wave ion mobility spectrometry (TWIMS) has been used to determine the collision cross section 

(CCS) of ten sulfonamide compounds in a larger study of human and veterinary drugs.92 Other techniques 

used include HLPC89,93, HPLC with diode ray ultraviolet detection94, LC-MS/MS88, and ultra-high 

performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS).86 

The following chapter of this thesis will aim to expand upon the work described in Chapter 3, with 

experimental DMS data and computational binding energies and CCSs for the diastereomers (+)-

ephedrine and (+)-pseudoephedrine, as well as three isomeric groups of sulfonamides. DMS data is 
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obtained alongside nine modifier gases. Through combining the results from this chapter with previous 

results, we obtain a greater insight into the behavior of ions within the DMS cell and further show the 

value of DMS as an analytical tool for the separation of isomeric compounds. Additionally, work will be 

conducted to follow up on the ML study of Walker et al.1 In that study connections were shown between 

DMS behavior as well as these properties. Applying the CCS and BE models from this previous work to 

new compounds will provide a test for the effectiveness of the ML models. Additionally, a second test 

will be conducted for each property involving the introduction of several of the testing compounds into 

the training set. The effects of this inclusion on the efficacy of the ML model will then be observed. 

4.2 Experimental Methods: 
The compounds (+)-ephedrine (EPH), (+)-pseudoephedrine (PsEPH), sulfadimethoxine, sulfadimidine 

sulfadoxine, sulfameter, sulfamethoxypyridazine, sulfamonomethoxine, and sulfisomidine were chosen 

for analysis in this experiment. EPH and PsEPH are shown in Figure 4.1 and the sulfonamide structures 

are shown in Figure 4.3, below.  

 

Figure 4.3: Structures of sulfonamides used in this study: A1: sulfameter A2: sulfamethoxypyridazine                            
A3: sulfamonomethoxine B1: sulfadimidine B2: sulfadoxine C1: sulfadimethoxine C2: sulfisomidine. Structural 
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isomers are given the one letter designation (A,B,C) and a numerical designation. Red outlines indicate the 
functional groups that are being moved in each grouping.  

A commercial SelexION QTRAP 5500 instrument available from SCIEX was used in order to perform 

the following experiments. Default DMS parameters were used unless otherwise stated. Experiments were 

carried out separately for each analyte using EPI mode by the Hopfgartner group at the University of 

Geneva. Compounds were sorted into groups by their m/z values in order to compare the behavior of the 

different isomers. The diastereomers (+)-ephedrine and (+)-pseudoephedrine formed one group, while the 

sulfonamides were broken into three groups of positional isomers: A, B, and C. Group A (see Figure 4.3)  

is comprised of sulfameter (A1), sulfamethoxypyridazine (A2), and sulfamonomethoxine (A3) which 

vary by the position of the ring nitrogens and the nearby methoxy group. Group B is comprised of 

sulfadimidine (B1) and sulfadoxine (B2) which differ by the position of a methoxy group which moves 

from the meta position to the ortho position on the pyrimidine ring relative to the sulfonamide group. 

Group C is comprised of sulfadimine (C1) and sulfisomidine (C2) which differ by the ortho versus para 

position of one ring nitrogen on the pyrimidine ring relative to the sulfonamide group. A variety of 

different gas modifiers were tested for their suitability in separating analytes: including H2O, methanol 

(MeOH), ethanol (EtOH), propanol (PrOH), isopropyl alcohol (IPA), ethyl acetate (AcOEt), acetone 

(ACE) and toluene (Tol). 

4.3 Computational Methods: 
As in Chapter 3, candidate structures were generated by optimization of neutral guess structures at the 

PM7 level of theory, followed by the generation of protomers at the B3LYP/6-311++G(d,p) level of 

theory. Basin hopping was then employed in order to generate global minimum candidate structures using 

UFF for each analyte, and are reoptimized and the frequencies calculated at the B3LYP/6-311++G(d,p) 

level of theory. CCSs were computed using MobCal-MPI as discussed previously.  See Section 3.3 for 

further details on this process. In this chapter the structures were identified from their Gibbs energies at 

100 ⁰C, rather than at room temperature, in order to more accurately reflect the conditions within the 

DMS cell.95 For a DMS temperature of 150 ⁰C for molecules at or near the edges of the DMS cell should 
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be around 150 ⁰C, as this is where the temperature is being applied, however 100 ⁰C has been shown to 

give a more accurate representation of the temperature of the along the transmission axis through the 

DMS cell into the MS.95 Singly solvated structures were computed using structures for each of the 

modifier gases that were employed for experiments. A thorough investigation of each potential solvation 

site was first performed for H2O using basin hopping. In order to reduce the number of subsequent 

calculations, it was assumed that the other species capable of hydrogen bonding (MeOH, EtOH, PrOH, 

and IPA) would share similar sites for solvation as H2O. The solvent species which cannot undergo the 

same degree of hydrogen bonding (ACE, AcOEt and Tol) were individually investigated to determine 

their optimal solvated structures. ACE and AcOEt can each accept a hydrogen bond from a protonated 

group; however, neither molecule can donate a hydrogen bond like H2O or the other OH containing 

modifiers; while Tol is unable to form any hydrogen bonds and relies on charge/dipole interactions. Gibbs 

energies for solvated structures were also calculated at 100 ⁰C to match the bare ions. 

In order to examine the general applicability of the machine learning work by Walker et al.1 to other 

compounds outside the training set, a model is constructed from their work which includes N2, H2O and 

MeOH modifier DMS data, calculated CCS, and ion-solvent modifier binding energies. A random forest 

algorithm within the Orange python package39 has been chosen for the learner in this work due to its 

previous successes in predicting CCS and other properties.1 Hyperparameters were chosen to minimize 

fitting errors, 500 decision trees were used to generate the RF algorithm, and each node was allowed to 

split the database into groups as small as two entries. Other hyperparameters for the RF learner were 

chosen by Orange based upon the number of data entries and feature space. For CCS fits features were 

chosen as their m/z values along with a DMS experimental data represented by CV peak values at 

SV = 2000 V, 2500 V, 3000 V, 3500 V, and 4000 V, as well as the experimental temperature. In the case 

of BEs m/z and CCS are used as features, as well as DMS data for SV=0 V-4000 V in 500 V increments. 

BEs used in the ML model were calculated as zero-point corrected energies in order to match with the 

BEs used by Walker et al.1  Each model is evaluated using  10-fold cross validation and also by applying 
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the model to a test set of compounds not included in model training. Specifically, the test set in this case 

is comprised of ephedrine, pseudoephedrine, and the sulfonamides introduced in this chapter. After the 

model evaluation, a few of the test set of compounds will be moved to the training set in order to expand 

the applicability of the ML model. This new training set will then be tested against the remaining test set 

of molecules in order to evaluate the effects on the ML model’s predictive abilities.  

4.4 Results and Discussion 

4.4.1 Pure N2 Experiments 
 
Prior to using any of the modifier gasses, each analyte was examined in a pure N2 environment within the 

DMS. Dispersion plots for EPH, PsEPH and each of the different sulfonamides (Figure 4.3) are shown 

below in Figure 4.4. While there are small differences in optimal CV for transmission of specific isomers 

at high separation voltages, separation between isomers as measured from ∆CV is always less than the 

error as would be expected from the half width at half maximum (HWHM) of the ionogram. Thus, the 

isomeric systems under study cannot be separated using a pure N2 environment. 

 

Figure 4.4: Dispersion plots for EPH, PsEPH, as well as the sulfonamide isomers (Figure 4.3) with no gas modifier 
(pure N2). CV was obtained from a fit to the ionogram of specific SV values.  
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In IMS ions separate within a N2 environment based upon their relative mobilities, which from the 

Mason-Schamp equation (Eq. 4.1) is inversely proportional to their CCS. 

 𝐾(0) =  
3
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�

2𝜋
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�
1/2 𝑧𝑒

𝑁Ω(𝑇)
 Eq. 4.1 

In Eq. 4.1, K(0) is the zero-field mobility, 𝜇 is the ion-buffer reduced mass,  kB is the Boltzman constant, 

T is temperature, ze is the ion charge, N is the number density, and Ω(𝑇) is the ion CCS. In DMS the CCS 

has been shown to behave dynamically as it moves through the cell. Experiments performed by Iertiano et 

al.96 and Haack et al.95 have shown the effect fluctuating temperature and alternating separation voltage 

has upon the CCS. Temperature influences the population of different isomer structures for each analyte 

which can allow for separation as field induced heating causes the population of ions to change, resulting 

in an average CCS that can differ in high versus low field. If CCS does not change appreciably between 

high versus mobilities, K will still differ due to changes in ion-buffer interactions under different field 

conditions. Change in mobility with field is commonly represented with Eq. 2.5. In a pure N2 

environment (no solvent-ion clusters) α will strongly depend on the ion CCS, with a larger CCS requiring 

a more positive CV value for detection to occur and therefore ions experience hard sphere (Type C) 

behavior. As stated previously, CCSs were computed using the MobCal-MPI software.35 See Table 4.1 

for summary comparison of DMS measure CV values at SV = 4000 V and ion CCS. In each of the isomer 

groups the differences separation between calculated CCSs was negligible, with all differences falling 

within the standard deviation in the MobCal-MPI calculations. This ultimately agrees with the 

experimental DMS results that showed little to no separation between the compounds within each group.  
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Group Compound CV / V  CCS / Å2 Std Dev. / Å2 
EPH/PsEPH EPH 4.2 133.4 1.64 
  PsEPH 3.9 134.0 1.23 
A A1 6.2 161.2 1.85 
  A2 7.0 159.6 2.06 
  A3 6.5 161.6 2.53 
B B1 8.0 170.5 2.33 
  B2 7.4 169.3 1.67 
C C1 7.7 163.9 1.85 
  C2 7.0 163.9 1.78 

Table 4.1: Summary of behavior in pure N2 environment. Compound names are given in Figure 4.3. Compensation 
voltages are taken at a SV of 400 V as shown for each compound as well as their MobCal-MPI determined CCS 
values in Å2 along with the standard deviation in Å2. 

In order to build a ML model for CCS prediction, the training set from Walker et al.1 was used and tested 

using 10-fold cross validation method with a random forest algorithm as the learner. In Figure 4.5 the 

results of the RF prediction are shown plotted alongside the MobCal-MPI CCS values.  A linear fit shows 

an R2 value of 0.951, which indicates good performance for the model. Additionally, the root mean square 

error (RMSE) is 6.443 Å2 and the mean absolute error (MAE) is 4.793 Å2 across the complete molecular 

set. The rank module, available in orange, also allows us to determine which features have the largest 

impact on the fit. For the case of CCS fitting m/z values for each compound was the most important 

feature. This connection makes intuitive sense, as the larger molecules will also have larger m/z and vice 

versa. In fact, a preliminary investigation showed that CCS can be predicted using only m/z with an R2 for 

the fit of 0.817. The values for predicted CCS were then influenced by the compounds’ DMS behavior, 

most prominently the CV at SV = 2000 V and SV = 4000 V, and lastly by the temperature of the DMS 

experiment, which had the least influence on the ML fit.  
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Figure 4.5: Plot of MobCal-MPI calculated CCS vs RF predicted CCS (in Å2). The RF fit to experimental data 
gathered from the ML work of Walker et al.1 shows strong correlation between predicted and calculated values 
when employing 10-fold cross validation for CCS prediction. This plot displays an R2 = 0.951 as well as a MAE of 
4.793 Å2 and a percent error of 2.90%. 

 The model was then used to test on the EPH and PsEPH diastereomer pair, along with the sulfonamides 

examined in this chapter. (Figure 4.6a). The R2 for prediction was 0.867 for this test set, with a RMSE of 

4.801 Å2 and a MAE of 4.203 Å2. While this result is promising, it should be further improved by the 

introduction of new chemical functionalities into the training set which were not fully represented by the 

original Walker et al.1 data set. By moving three compounds, PsEPH, A3 and B2 from the test set into the 

training set, the accuracy of the training set changed negligibly (R 2= 0.944, RMSE = 6.374 Å2, 

MAE = 4.72 Å2), however the prediction of the test set jumped from an R2 of 0.867 to 0.946, 

approximately equal to that of the training set. (Figure 4.6b) Additionally, the RMSE of for test set 

prediction fell to 2.708 Å2 and the MAE to 2.18 Å2, close to half of the previous values. PsEPH, A3 and 

B2 were chosen to be moved into the training set as samples to cover the full range of CCS observed 

within the testing set.  
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Figure 4.6: Plots comparing calculated and predicted CCS for: a) the test set containing EPH/PsEPH and the 
sulfonamides and b) the test set containing the remaining compounds after three compounds, EPH, A3 and B2 were 
moved to the training set. The compounds moved from the testing set to the training set are denoted by red markers 
in plot a). Notably, B1 seems to have decreased its RF CCS noticeably after the introduction of B2 to the training 
set. The original training set showed an R2 of 0.867 and MAE of 4.203 Å2 which was improved to an R2 of 0.946 
and MAE of 2.180 Å2. This corresponds with a percent error of 2.67% for the original test set vs. 1.42% for the 
augmented test set. 

While this result is promising for the addition of new compounds into the training set of the ML model, it 

must also be regarded carefully. Due to the small number of compounds being examined, removing a few 

data points from the test set can have strong effects on the criteria used for evaluating performance, such 

as the individual errors generated for the ML fit. As RMSE and MAE are used to evaluate results as 
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opposed to individual errors, the model training and testing is still relatively insensitive to seize but more 

test points are desired for confidence. 

4.4.2  Experiments with Gas Modifiers 

In order to achieve improved DMS resolution as compared with pure N2 experiments, several different 

gas modifiers were seeded into the DMS chamber. Modifiers for which type B (weak binding) behavior 

was observed, such as H2O, MeOH, and Tol, showed mixed results in separating the isomer groups. 

While toluene was able to resolve all isomer groups successfully, H2O failed to resolve isomers A2 and 

A3 from each other as well either in group D, and MeOH modifier also failed to resolve isomers A2 and 

A3. The modifier gases that displayed mainly Type A (strong clustering) DMS behavior; EtOH, PrOH, 

IPA, ACE, and AcOEt proved to be yield larger separations. In only a few cases did the CV shifts remain 

similar between isomers when using these modifiers (around ~1V separation), such as in the case of 

EPH/PsEPH for PrOH modifier, and A2/A3 for IPA modifier. See below for examples of dispersion plots 

for modifier experiments using MeOH (Figure 4.7), Tol (Figure 4.8), and ACE (Figure 4.9). 

 

Figure 4.7: Dispersion plots for EPH, PsEPH, as well as the sulfonamide isomers (Figure 4.3) with MeOH gas 
modifier. CV was obtained from a fit to the ionogram of specific SV values.  
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Figure 4.8: Dispersion plots for EPH, PsEPH, as well as the sulfonamide isomers (Figure 4.3) with Tol gas modifier. 
CV was obtained from a fit to the ionogram of specific SV values.  

 

 

Figure 4.9: Dispersion plots for EPH, PsEPH, as well as the sulfonamide isomers (Figure 4.3) with ACE gas 
modifier. CV was obtained from a fit to the ionogram of specific SV values.  
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Differences in DMS behavior between pure N2 and modifier experiments are presumed to be due to ion-

solvent interactions.95 In an effort to predict DMS behavior using computational properties, calculated 

single solvent binding energies were compared to experimental DMS results. In previous work the 

calculated binding energy has been shown to correlate with the SV value at CVmin for type B dispersion 

plots in quinoline-based drugs by Liu et al.22,97 This correlation tested for some of the dispersion plots in 

Figure 4.7 and Figure 4.8, but is less readily employed for the Type A curves shown in Figure 4.9. 

For Tol this relationship between ion-solvent BE and SV at CVmin is qualitatively observed. In each of the 

four plots shown in Figure 4.8, the ordering of the SV at CVmin observed in experiment matched with that 

predicted by the computational binding energies. EPH and PsEPH show binding energies with Tol of 1.43 

kcal/mol and 4.06 kcal/mol, respectively, with local minimum around SV = 4000 V for EPH and outside 

the DMS range (SV > 4000 V) for PsEPH. Group A provided the most ambiguous results as each show 

BEs with Tol (A1: 1.10 kcal/mol, A2: 1.70 kcal/mol, A3: 1.34 kcal/mol) though they all show the 

expected trend with SV at CVmin values: SV at CVmin = 3250 V  for A1, SV at CVmin = 3750 V for A2 and 

SV at CVmin = 3625 V for A3. Group B placed B1 (1.10 kcal/mol) as more strongly binding than B2 

(−1.36 kcal/mol) which accorded with their minima at ~3000 V and ~2750 V. In group C, C2 was 

predicted to be more strongly binding than C1 (−0.29 kcal/mol vs −1.53 kcal/mol BE) which agreed with 

experimental minima. (C2: 3750 V C1: ~2250 V) It is intuitive that Tol would correlate well with single 

solvent binding energies due to the bulkiness of Tol relative to some of the other solvents used in this 

work. Due to its size a single molecule of Tol may prevent the interaction of other Tol molecules with 

suitable sites on the ion. This comes in contrast with MeOH and H2O, which may be better described 

using multiple solvent-ion binding energies. The negative BEs observed in the latter two groups are 

indicative that ion solvent binding has become energetically unfavorable. While the associated dispersion 

plot traces are typically closer to Type C behavior than the traces with positive BEs, Type B DMS 

behavior is still observed in each case. It should be noted that although the expected SV at CVmin is well 

followed between similar compounds it is not generally followed between groups. 
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The other modifier gases which showed primarily Type B DMS behavior did not fare as well as Tol in 

these comparisons. The SV at CVmin for H2O experiments successfully predicted the behavior in two 

groups, namely the separation of A1 (SV at CVmin = 2500 V) from A2 (SV at CVmin = 2750 V) and A3 

(SV at CVmin = 2750 V) which corresponded with BEs of −0.07 kcal/mol, 2.82 kcal/mol and 

2.10 kcal/mol, respectively. A1 versus A2/A3 shows the expected SV at CVmin trend but no A2/A3 

separation is observed. BEs for B1 (1.55 kcal/mol) and B2 (1.27 kcal/mol) are similar and result in a 

small degree of separation in their minima with SV at CVmin of ~2000 V and ~1875 V, respectively. H2O 

experiments with EPH and PsEPH did not align with the calculated H2O ion binding energies with BEs of 

4.64 kcal/mol and 4.57 kcal/mol and SV at CVmin of 3500 V for EPH and 3750 V for PsEPH. MeOH 

modifier experiments matched the expected trend with binding energies for one group in four, 

successfully predicting the separation of C1 (SV at CVmin = ~2625 V) and C2 (SV at CVmin = ~4000 V) 

with BEs of 1.43 kcal/mol and 4.16  kcal/mol. MeOH experiments with group B were less successful with 

B1 having a BE of 2.29 kcal/mol and B2 having a BE of 2.70 kcal/mol with corresponding SV at CVmin of 

~3125 V and 2500 V, respectively, which run contrary to the expected trend.  This demonstrates that SV 

at CVmin can be correlated with ion-solvent binding energy for cases where single solvent ion binding is 

predominant but does not work as well when multiple sites of solvation are available to smaller solvents 

that will not interfere with each other’s binding. 

Additionally, the SV at CVmin is difficult to predict for BEs of strongly binding modifiers. This is because 

for type A behavior the SV at CVmin needs to be predicted from extrapolation past the experimental limit 

of SV = 4000 V. Separation in CV space for SV = 4000 V may also correlate with binding energy, see 

Table 4.2. In the case of EPH and PsEPH, the small degree of observed separation seemed to match with 

calculated binding energies for each of the strongly binding modifiers except for ACE modifier, where 

EPH-ACE and PsEPH-ACE BEs varied significantly as 5.78 kcal/mol and 7.84 kcal/mol respectively, 

while no distinction was observed in ACE experiment any correlation with CV at SV = 4000 V. Results 

for group A did not show any correlation with CV at SV = 4000 V. Group B, similar to group A, shows 
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no correlation of BEs with experimental results in EtOH, PrOH and ACE. A sizable difference in binding 

energy was observed when clustering AcOEt modifier (6.12 kcal/mol for B1 vs 3.47 kcal/mol for B2), 

which matches with separation observed in experiment. Group C showed the highest degree of agreement 

between experimental and computational results, with largely different BEs corresponding to large 

differences in CV at SV = 4000 V although in ACoET and ACE the trend is reversed relative to the other 

modifiers.(Table 4.2) 

The mixed results in the prediction of experimental DMS behavior from computational binding energies 

can partially be explained by several factors. Firstly, it was initially assumed that single solvent cluster 

binding energies would be able to describe the interactions that are occurring within the DMS cell. This is 

not necessarily the case, and the clustering/declustering process could be occurring with multiple solvent 

molecules, or from single solvent clustering/declustering to a strongly bound ion-solvent complex. This is 

especially possible with smaller solvent molecules that would not interfere with other points of interaction 

on the analyte. Further investigation should be conducted to determine if this is the case. Additionally, in 

the cases of MeOH, EtOH, PrOH, and IPA, not all possible sites of solvation were investigated. It was 

assumed that these compounds would simply solvate the same site as water due to their similar ability to 

form H-bonds. However, with the given results, further investigation is warranted to determine if different 

sites of solvation can better capture the DMS results.  It is worth noting that Haack et al.95 show that 

single solvent binding is dominant for molecules studied therein and we expect similar results in this 

study. 
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Modifier EtOH PrOH IPA 
Group Compound  CV / V BE (kcal/mol)  CV / V BE (kcal/mol)  CV / V BE (kcal/mol) 
EPH/PsEPH EPH −44.8 6.52 −60.1 6.68 −57.6 11.23 
  PsEPH −46.5 6.09 −59.1 6.96 −55.8 10.54 
A A1 −19.6 4.30 −34.7 4.77 −37.4 7.70 
  A2 −22.5 4.85 −31.8 5.10 −29.5 8.96 
  A3 −25.1 3.65 −37.8 4.01 −36.3 7.89 
B B1 −16.3 3.63 −26.5 3.20 −25.6 7.22 
  B2 −7.1 3.58 −20.1 3.22 −20.0 6.36 
C C1 −7.5 1.22 −19.5 2.74 −19.4 5.11 
  C2 −24.0 4.18 −33.0 3.77 −30.9 8.53 

Modifier ACE AcOEt 
Group Compound  CV / V BE (kcal/mol)  CV / V BE (kcal/mol) 
EPH/PsEPH EPH −43.8 5.78 −51.7 7.72 
  PsEPH −41.7 7.84 −47.7 8.13 
A A1 −35.4 3.32 −45.6 4.78 
  A2 −13.0 5.64 −14.4 7.17 
  A3 −29.1 4.83 −34.5 6.69 
B B1 −13.7 4.61 −17.8 6.12 
  B2 −28.0 2.17 −38.3 3.47 
C C1 −30.2 1.27 −39.3 2.84 
  C2 −14.3 4.73 −17.2 7.43 
Table 4.2: Experimental and computational results for strongly binding modifier gases. CV at SV = 4000 V is 
chosen to represent maximal ion separation and is shown alongside calculated single solvent binding energies for 
each compound modifier pair.  

A more rigorous method of predicting BEs with DMS data was demonstrated by Walker et al.1 who 

created ML training set fits for MeOH and H2O BEs with a series of drug candidate compounds using the 

full dispersion plot data. Training sets were then created using the Walker et al.1 data and the resulting 

ML model was tested upon the compounds examined in this chapter, as was done previously for CCS. 

(See Figure 4.10) The ML database made use of m/z, charge state, temperature, SV, CV and single H2O-

ion BEs in order to make predictions. The fit appears to be practically perfect in the training set, with a 

R2 = 1 and a MAE of 0.008 kcal/mol between predicted BE and calculated BE. However, when this 

training set is applied to the isomer groups from this chapter the predicted BE values are unsatisfactory 

(Figure 4.11). A linear fit to predicted BE versus calculated BE for the test set of data achieved a ML fit 

with an R2 of -31.99, a MAE of 1.00 kcal/mol. As was previously done for the CCS ML testing, several of 

these compounds (PsEPH, A3, and B2,) were then moved from the test set into the training set of the ML 
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model to examine the effects expanding the chemical space within the training set. This resulted in an 

increase in the R2 of the test set to 0.596, and a reduction MAE to 0.83 kcal/mol (Figure 4.12) While there 

is still much improvement that can be made in the ML fit, this does demonstrate that by increasing the 

applicability domain of the training set, the quality of the fitting on test data sets will also be improved. In 

order to capitalize on this result, data should be gathered for more compounds in order to improve the 

efficacy of the ML model for testing upon new compounds. As the process for calculating BEs can be a 

computationally expensive and time-consuming process a method for generating these values from 

similar experiments would be a valuable tool for use in the future. 

 

Figure 4.10: Training set results for ML fits with H2O modifier DMS data from Walker et al.1 Measured BEs are 
plotted against ML predicted fit. BEs in kcal/mol. The fit for the plot displays an R2 = 1 as well as a MAE of 
0.008 kcal/mol. 
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Figure 4.11: ML predicted BEs for the test set using the model depicted in Figure 4.10 The fit for this plot (set to 
pass through 0) displays an R2 = -31.99 (no correlation) and a MAE of 1.00 kcal/mol. Compounds moved from the 
testing set to the training set are indicated as red markers. 

 

Figure 4.12: ML predicted BEs for augmented test set using the expanded training model. The fit for this plot 
displays an R2 = 0.596 and a MAE of 0.83 kcal/mol, showing in increase in fit and a decrease in error compared to 
the original test set. 
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A similar train/test ML experiment was carried out using experimental and computational data for MeOH 

modifier from Walker et al.1 As was the case with the H2O modifier training set fit, the MeOH modifier 

training set fit was nearly perfect with an R2 of 1, and MAE of 0.009 kcal/mol. However, when the 

training model was used upon the testing set, a negative R2 was obtained (−1.138), indicating that no 

correlation exists between the test and training sets. Unfortunately, after some of the test compounds were 

introduced into the training set, no significant improvement was observed in the R2 (−1.295). The MeOH 

data set is similar in size to the H2O set (forty compounds examined for MeOH compounds versus 

twenty-eight examined for H2O), and it is likely that ML model is overfitting on the training set, resulting 

in a low training error but extremely high error when applied to the molecules outside the training set. As 

with the H2O model, this can be potentially resolved by the addition of more data points to the model. 

4.5 Conclusions 
A diastereomeric pair (EPH/PsEPH) and three groups of sulfonamide isomers were examined extensively 

using DMS. These experiments could be broken down into three main groups: Pure N2 gas, weakly 

binding modifiers and strongly binding modifiers. Computational investigations were conducted in order 

to show the relationship between calculated parameters, specifically single-solvent binding energies and 

collision cross sections, and experimental results. DMS experiments with pure N2 gas showed little to no 

separations between the compounds within each isomer group; this was expected based on the results of 

CCS calculations which showed very little difference between the compounds in each group. The data 

used by Walker et al.1 was used to train a random forest ML model for the prediction of CCS using DMS 

behavior in N2 and was tested upon the isomer groups examined in this chapter. Initial results were good 

(fit of R2 = 0.867, compared to R2 = 0.944 of the training set) and were further improved by the 

incorporation of several isomer compounds (EPH, A3, B2) into the training set. (R2 = 0.946) In order to 

strengthen this result, more train/testing should be conducted on a larger data set in order to ensure that 

the size of the test set does not influence the result and in order to improve the ML model.  
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The weakly binding solvents showed DMS separation of isomers in most cases, however, computational 

results were mixed. Previous work has shown a relation between SV at CVmin and ion-solvent BE, which 

in general was not observed in this study. Though calculated Tol-analyte binding energies quantitatively 

predicted the ordering of DMS isomer separation using calculated binding energies, H2O-analyte and 

MeOH-analyte binding energies did not show the expected DMS behavior with calculated BE. This could 

be a result of these smaller solvent molecules being able to interact with multiple sites on the analyte ions 

at once instead of a single solvent molecule. Strong binding solvents show good resolution between the 

various isomers in almost all cases, but the qualitative orderings with calculated BE were often incorrect 

or inconclusive. Because SV at CVmin is not directly measurable for Type A (strongly binding) DMS 

behavior, experimental conditions should be changed to move these minima into the range viewable on 

the DMS instrument (i.e., increasing the temperature) or by predicting the minima location by curve 

fitting and extrapolation. SV at 4000 V was examined as an alternative in these cases, with a more 

negative CV shift expected to correlate with a stronger BE. However, this was not observed to be the 

case. Further solvation sites and multi-solvent BEs should be investigated in both strong and weak 

clustering solvents in order to resolve possible discrepancies between experimental and computational 

results. ML fitting to full dispersion plot data was also attempted for H2O and MeOH, with training data 

from Walker et al.1 Training set error was negligible in both H2O and MeOH modifiers, prediction of BEs 

for the test set not possible in the case of H2O (R2 = -31.99) and MeOH. (R2 = −1.138). By introducing 

compounds from the testing into the training set the predictive ability of the H2O BE model was increased 

(R2 = 0.596), while the MeOH BE model remained unable to find any correlations between its own data 

and that within the training set. (R2 = −1.295) The low error in training set fits and large error in the test 

set indicates overfitting which can potentially be corrected by the addition of more data or by using a 

simpler model. As our BE database is quite small the former should be pursued. 

A variety of paths exist for moving forward with the work presented within this chapter. In order to better 

compare inconclusive experimental results with BEs, experiments could be rerun with higher temperature. 
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This would reduce the field required to disrupt ion-solvent binding and shift Type A DMS behavior 

towards Type B behavior to accurately measure SV at CVmin. Alternatively, curve fitting could be applied 

to the experimental data for these compounds and their trends projected to higher SV values in order to 

predict where the minima may lie. The expected trend of more negative CV shift at SV = 4000 V for 

stronger binding energies was not observed between in any of the isomer groups. Further investigation 

should be made in order to better determine the dynamics of DMS behavior. Another focus for further 

work is the expansion of the ML training sets examined in this chapter, to allow the model to be used on a 

wider range of chemical space and in general to improve its accuracy. In Chapter 5, the work on CCSs 

will be expanded with the introduction of a number of new compounds with a range of new chemical 

properties. 
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Chapter 5  : Expanding the ML CCS Database  

5.1 Introduction 
 
A recent development in chemistry is the spike in popularity of employing ML methods in data analysis.98 

This development has followed the availability of large publicly available databases such as DrugBank99 

Pubchem100, and ChemBank101 Much of this increase use of ML stems from the implementation of 

machine learning algorithms such as random forests (RF)40, support vector machines (SVM)102 and 

artificial neural networks (ANN)103 into programs which simplify this process for the user. Orange is an 

example of an interface for several python ML packages.39 One major focus of machine learning within 

medicinal chemistry is determining quantitative structure activity relationships (QSAR) or quantitative 

structure property relationships (QSPR), which predict an activity or property for a compound based upon 

other known properties by finding a relationship between them.104 An example of this type of ML is 

shown by Cao et al. in examining toxicity of ionic liquids on leukemia rat cell lines.105 Another important 

area is quantum machine learning (QML), which combines quantum chemical calculations with ML 

methods.106 As shown by Ramakrishnan et al., this can greatly reduce computational time required to 

predict properties such as the thermochemistry or the electron correlation of a compound by replacing 

difficult to compute calculations with ML learned substitutes.107 A third area of interest is virtual 

screening, which involves searching a database for compounds to that will perform well at a given task 

based upon their properties.108 This approach was used by Wellenzohn et al. to create novel agonists of 

the GPR119 receptor for the treatment of Type 2 diabetes.109 

The Hopkins lab group has also begun to make use of machine learning techniques. The group’s first ML 

published project used unsupervised learning in the examination of the potential energy surface for the 

phenylalanine/serine dimer in order to investigate regions of kinetic trapping.110 The most recent project 

by Walker et al.1 used experimental DMS data to model and predict molecular properties (e.g., the 

collision cross section, pKb) for several sets of drug candidate molecules.1 In the previous chapter ML 
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was explored as a method to determine the collision cross section of analytes in pure N2 gas, as well as 

ion-solvent binding energies in MeOH and H2O modifier. It was further shown that when using this 

technique, ML test results were improved by the introduction of similar compounds to those in the test set 

into the training set of compounds. The chapter looks to expand the ML database with a variety of 

compounds with different functionalities so that the database’s predictions will be accurate across a wide 

range of chemical space. 

5.2 Experimental Methods: 
 
DMS experiments were carried out on a QTRAP 5500 instrument provided by SCIEX. Each component 

of the experimental setup was controlled using the Analyst® software (v. 1.6.2).  All compounds were 

examined for the full range of SVs from 0-4000 V SV, in 500 V increments from 0-2500 V and 250 V 

increments from 2500-4000 V SV. This allows for the creation of dispersion plots showing the different 

types of DMS behavior and provides a finer look at the SV range where CV shifts become more 

pronounced. Each experiment used MRM mode in order to maximize experimental throughput. By 

providing a Q1 mass, the collision energy (CE) required to generate a fragment and the Q3 fragment 

mass, a sizable number of compounds can be run simultaneously. In this case, compounds were examined 

in five groups of approximately forty compounds per group. For the purpose of this section experiments 

were carried out in pure N2 gas. The “Monster Mix” was provided to by SCIEX and contains 196 

compounds which range between 76 - 1279.9 m/z and contain a variety of different chemical 

functionalities. A list of the “Monster Mix” compounds is shown in Appendix B. 

5.3 Computational Methods: 
 
Initially, neutral structures of the compounds of interest were generated based upon structures from 

sources such as Pubchem.100 Each structure was preoptimized at the PM7 level of theory, and then used to 

generate protonated isomers by chemical intuition. Each tautomer was optimized at the B3LYP/6-

31++G(d,p) level of theory and these resulting structures were ranked by their energies in order to 
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determine the preferred site of protonation for each compound. B3LYP/6-31++G(d,p) was chosen as the 

level of theory due to the large size of some of the compounds and the well documented ability of 6-

31++G(d,p) to yield accurate results for similar systems. In order to ensure that this does not have an 

adverse effect on the prediction of CCS, a number of structures were further optimized to B3LYP/6-

311++G(d,p) in order to make a comparison of CCSs at the two levels of theory. Owing to the large 

number of compounds, BH searches were not conducted. MobCal-MPI35 was used for the calculation of 

CCSs. 

ML modeling was carried out using a RF algorithm within Orange39, which used 500 decision trees to 

make its predictions, and the each was allowed to split the database into groups as small as two entries as 

it generated these trees. The remaining hyperparameters for the learner were determined by Orange based 

upon the data number and feature space. The database for this chapter included m/z values, charge states 

for each compound, and a subset of the DMS data covering SVs of 2000 V to 4000 V in 500 V 

increments. All experimental data in the section were gathered at 150 ⁰C. A learning curve will be 

generated from the data in order to evaluate the ability of the training data set to test on new compounds. 

5.4 Results and Discussion: 
 

DMS Experiments were carried out for each of the compounds within the Monster Mix in order to 

generate more data for the CCS ML model. Several example dispersion plots are shown in Figure 5.1 

below. As expected from a N2
 gas environment, most compounds exhibited Type C behavior, with the 

exception of some of the smaller compounds, such as acetaminophen, which displayed a small amount of 

Type B behavior (Figure 5.1). One issue that arose in these experiments was that of multiple CV peaks 

occurring within a dispersion plot. This is thought to be caused by the clustering of ions with solvent 

molecules such as H2O and MeOH that originate from the Monster Mix solution, as observed previously 

in Anwar et al.23 These solvent molecules remain clustered together throughout the asymmetric SV 

waveform resulting in hard sphere type behavior. When multiple peaks are observed, the peak with 
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highest ion signal intensity is taken to correspond to the global minimum structure. In the case of 

acetaminophen, which displayed multiple CV peaks (Figure 5.1), the Type B trace was decided to be 

created the global minimum structure. Due to the large amount of experimental data that needed to be 

processed for this project, an automated method of data extraction was created by one of the Hopkins 

group members, Ce Zhou. This package of python scripts allowed for the generation of ionograms as well 

as dispersion plots directly from experimental outputs from the QTRAP 5500 instrument (.wiff files), 

greatly decreasing the time spent data process required for this project.  

 

Figure 5.1: DMS Dispersion plots for acetopminophen (top) and reserpine (below). Neutral structures are provided 
alongsideError bars give the HWHM values of the CV peaks at a given SV value. 
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Of the 196 compounds investigated in the “Monster Mix” (Appendix B for list), 142 have are used in the 

following ML work. 44 compounds were not successfully observed by DMS for each point within the 

2000-4000 V SV range and for 10 compounds computational optimization did not finish and therefore 

CCS were not calculated.  

A subset of 47 compounds from within the “Monster Mix” were used to compute CCSs at both B3LYP/6-

311++G(d,p) and B3LYP/6-31++G(d,p) levels of theory. In order to facilitate this comparison, each level 

of theory was used these 47 compounds to create a ML training set and were evaluated based upon their 

errors and fit after 10-fold cross validation. Shown in Figure 5.2b is a plot of RF predicted CCS with 6-

311++G(d,p) calculated CCS as the target. Each level of theory showed similar results; treatment of the 6-

31++G(d,p) data yielded an RMSE of 14.1 Å2 and MAE of 9.0 Å2 and 6-311++G(d,p) data yielded an 

RMSE of 13.6Å2 and MAE of 9.4Å2. This is expected as the plot of calculated CCS at each level of 

theory shows very little difference in the results. (Figure 5.2a)  
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Figure 5.2 a) Plot of 6-31++G(d,p) CCS versus 6-311++G(d,p) CCS. A R2 of  0.995 is shown for the fit, as well as a 
a MAE 3.23 Å2 and MPE of 1.82%. b) Fit of calculated CCS at 6-311++G(d,p) theory for 47 "Monster Mix" 
compounds. A fit of R2 = 0.756 is observed, with MAE of 9.0 Å2 and MPE of 5.32%  

To expand the set, all of the data used to predict CCSs from Chapter 4, which includes the four groups of 

isomers as well as the Walker et al.1 ML data, were combined with the 142 new compounds in this 

chapter. This gave a total of 209 compounds to use for creation of the expanded ML model. The database 

containing this data was subsequently divided up into a series of different test set and training set 
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proportions; initially 10% of the data is placed into the training set and 90% is placed into the test set in 

order to generate a learning curve for the ML CCS model, with training set being increased in 10% 

increments of the total database while the test set is reduced by the same. By moving the data from the 

test set to the training set we show how the error in the model evolves with training size. 

Figure 5.3 shows a learning curve for the full data set; 209 compounds split into training and test sets. 10 

sets of training and testing pairs were generated randomly for each split of the database (i.e., 10% 

training, 90% testing). A clear decrease in the MAE for both sets were displayed as a greater portion of 

the total database is moved from the testing into the training set. The MAE for the training set plateaus to 

~2.5 Å2 quite quickly ( at ~61 molecules, 30% of data), while the MAE for the test set follows a much 

slower decline reaching a value of ~8 Å2 at the lowest point for the train/test sets considered (at ~105 

compounds, 50% of data) . To give equal consideration to training and test sets model comparisons were 

carried out at the 50/50 train/test split. (Figure 5.4 and Figure 5.5) One of the 10 random database samples 

at this increment was then taken for further examination. The training set showed a fit of R2 of 0.991, a 

RMSE of 3.54 Å2 and MAE of 2.67 Å2, while the test set demonstrated showed a lesser degree of fit with 

an R2 of 0.905, RMSE of 11.43 Å2, and a MAE of 8.13 Å2. A more important figure for the large m/z 

range considered is the mean percent error (MPE) for the fit, 4.63%. 



 

62 
 

 

Figure 5.3: Learning curve for the combined ML database, showing the change in error as compounds are moved 
from the testing set into the training set. At 50% data contained in the testing set the MPE is 4.63%, as sampled from 
one of the random database splits. 

 

Figure 5.4: Training set ML fit for a sample split of the combined database at 50% train / 50% test split, showing 
calculated CCS versus RF predicted CCS. The fit gives an R2 of 0.991 a MAE of 2.67Å2, and a MPE of 1.59%. 
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Figure 5.5: Testing set ML fit for a sample split of the combined database at 50% train / 50% test split, showing 
calculated CCS versus RF predicted CCS. While not as neatly fit as the training set, the overall fit is still quite good, 
with an R2 of 0.905 a MAE of 8.13Å2, and an MPE of 4.63%.  

While these results are promising, further work must be completed in order to ensure the accuracy of the 

ML generated results. The separation between the training set and test set learning curves gives an 

indication of the ability for the model to make predictions about new compounds and is called the 

generalization gap. In an ideal case this gap should be minimized as much as possible, converging the test 

set error as close to the training set error as possible. The learning curve does not outright give 

information on how this might be accomplished, but one way that the test set error might be reduced is by 

the introduction of larger compounds into the ML database to fill up the 220-320 Å2 CCS region. As 

shown above in Figure 5.4 and Figure 5.5, this range of CCSs is particularly sparse compared to the 

region below 220 Å2. Another potential source of error the usage of only single structures to generate 

CCS for the Monster Mix compounds examined in this chapter. It has been shown previously in Ieritano 

et al.96 that CCS is best represented as a Boltzmann-weighted distribution of CCS of the structures that 

appear at the temperatures observed within the DMS (~100 ⁰C). By employing BH to generate additional 
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structures for each ion of interest and calculating CCS using a Boltzmann-weighted temperature 

distribution of these structures results can be further improved. 

5.5 Conclusions 
 

This chapter expands on the study described in Chapter 4 by introducing many more molecules of a 

variety of types (e.g., amino acids, antidepressants, stimulants, etc.) with the predictions of CCSs using a 

larger ML database. This chapter uses the isomer groups examined in Chapter 4 as well as the Walker et 

al.1 data to construct a larger database with the inclusion of 142 compounds with a variety of different 

chemical functionalities. In order to ensure an accurate comparison of results, a comparison was made of 

CCSs calculated for 47 of the 142 compounds at different levels of theory: B3LYP/6-311++G(d,p) and 

B3LYP/6-31++G(d,p). CCS values at the two levels of theory were very similar with a mean absolute 

difference of ~3.2 Å2. Additionally, a comparison of ML fits to CCS values for the 47 compounds were 

compared at the two levels of theory showed very similar model fit errors, demonstrating that using 

B3LYP/6-31++G(d,p) structures for CCSs is not expected to adversely affect the results.  

Learning curves for training and tests sets were produced using the combined ML database. Both training 

and test set show a decrease in MAE sets as the portion of the database used in training was increased. 

Testing and training set MAE reached minimum values of ~8 Å2 and ~2.5 Å2, respectively. The 

difference between these two curves, the generalization gap, is indicative that the ML training set likely 

needs to be expanded further. The 50/50 train/test ML model was examined further for model predictive 

errors. It was observed that the fitting is particularly poor for CCS larger than ~220 Å2 due to sparsity in 

this region. Further research should be focused on expanding the ML database with compounds that fall 

in the range of 220-320 Å2 for better representation in the model, as well as the expansion of the model to 

include more compounds with different chemical functionalities. 
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Chapter 6 : Thesis Conclusions 
 

In recent years isomeric structures have become increasingly important, especially within areas such as 

medicinal chemistry and drug development, where isomers can potentially have differing effects from 

each other. One of the most commonly used analytical techniques, MS, is unable to distinguish different 

isomeric compounds without the assistance of orthogonal techniques due to the identical masses 

observed. The projects in this thesis use differential mobility spectrometry to separate such compounds, 

along with quantum chemical calculations to reinforce obtained results. Two main properties are assumed 

to influence behavior within the DMS, the collision cross section of ions within the DMS, and the 

clustering / declustering interactions that occur with solvent modifiers that are introduced into the DMS. 

In Chapter 4 this assumption is tested by applying machine learning methods to predict the collision cross 

section of bare ions as well as ion-solvent binding energies using incorporating DMS experimental 

information, while in Chapter 5 the CCS ML model is further improved by the introduction of new 

compounds. 

Chapter 3 explored the use of DMS to perform a separation of derivatized amphetamine and 

methamphetamine isomers. Initially, AMP and MeAMP isomers were examined in nitrogen only DMS 

experiments but were unable to be resolved. After a derivatization reaction with S-TPC these compounds 

were able to be resolved in a nitrogen only gas environment, but only after a throttle gas was applied. 

Unfortunately, TPC-MeAMP isomers were not distinguishable using CCS and an alternative 

experimental method had to be followed. Instead, DMS experiments were performed using ACN as a gas 

modifier. S-TPC-S-AMP/MeAMP isomers were shown in each case to experience more strongly binding 

interaction within the DMS and migrated to more negative CV values compared to the S-TPC-R isomers. 

This agreed with computational results that showed the S-TPC-S isomers experienced larger binding 

energies than the S-TPC-R isomers. However, this trend did not hold between AMP and MeAMP, only 
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between the isomer pairs. This demonstrates that DMS behavior is complex, and is dictated by not just the 

BEs, but also by other parameters such as ion-solvent CCS and the bare ion CCS in a nontrivial way. 

Picking up where Chapter 3 left off, Chapter 4 expands upon the methodology used there with a larger 

number of compounds: (+)-ephedrine, (+)-pseudoephedrine, and three groups of sulfonamide structural 

isomers were examined. These compounds were examined with a variety of modifiers using DMS, 

including H2O, MeOH, EtOH, PrOH, IPA, ACE, AcOEt, Tol and pure N2. Firstly, experiments were 

performed using a pure N2 environment. Little to no separation was observed, a result corroborated by 

their similar calculated CCSs. The data from these experiments was then used in order to test an ML 

model made with data taken from Walker et al.1 The fit produced by the ML model on this new data 

proved be good, and it was further improved by introducing some of the studied compounds into the 

training set for the ML model. This demonstrated the requirement for the model to be trained upon 

compounds similar to the test compounds in order to ensure the best results. 

Experimental results for the other modifiers were performed and then compared with ion-modifier BEs 

obtained from quantum chemical calculations. BEs were compared to the SV at CVmin values (the minima 

appearing within Type B dispersion plots), which had previously shown to correlate to each other by Liu 

et al.97  This comparison showed mixed agreements between experimental and computational results. In 

the case of modifiers which showed mainly Type B behavior, the BEs for Tol showed excellent 

agreement with the ordering of SV at CVmin, while H2O and MeOH were only able to predict some of the 

isomer separations. It was more difficult to make evaluations of the compounds that showed mainly 

Type A behavior, as the SV at CVmin values are not visible within the range of a DMS scan. Even in cases 

where it was possible to assume which curve would have a lower SV at CVmin, these orderings often did 

not match with the computational BE results. Further investigations should be performed on other 

potential solvation sites that were not investigated, as well as multi-solvent BEs in order to reconcile the 

differences in these results. As was performed with the CCSs, a ML model was constructed for the 

prediction of BEs for ion-MeOH and ion-H2O using data from Walker et al.1 and then tested upon the 
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isomers studied in this chapter which showed minimal fit correlation. Three of the isomers were moved 

from the test set into the training set for the model and the remaining compounds were evaluated again. In 

the case of H2O modifier, a weak correlation was observed in testing, which was improved when some 

isomers were included in the training set. In the case of MeOH, no correlation was observed both before 

and after the introduction of isomers into the training set for the model. This is indicative of the model 

overfitting the training data, which has reduced its applicability in testing on molecules outside the set. 

Further work should focus on improving the fit of the H2O and MeOH model by introducing new 

compounds to the training set for the ML model and adjusting hyperparameters for the ML model. 

Chapter 5 follows up on the ML prediction of CCS shown in Chapter 4 and aims to improve the ML 

model by introducing 147 new compounds with a variety of chemical functionalities to its database, 

bringing the number up to 209. Additionally, a comparison was made between the CCSs of structures 

calculated at two different levels of theory: B3LYP/6-311++G(d,p) and B3LYP/6-31++G(d,p). This 

comparison showed little to no difference in the in the MobCal-MPI CCS values as well as the RF 

predicted model errors. In order to show that the training set was improved by the introduction of new 

compounds, a learning curve was generated using the combined ML database. A decrease in the MAE 

was observed in both the training and test sets as the proportion of compounds in the ML training set was 

increased. The minimum gap between these two plateaus gives the generalization gap, in this case around 

5.5 Å2. The size of this gap indicates that improvement to the model can be made by adding more 

compounds to the test set, particularly with CCS ranging from 220-320 Å2. 

Future work with these projects should be focused among three main lines: An examination of the effect 

of multi-solvent binding energies on DMS behaviors, the expansion of the CCS database with the 

addition of further compounds, and the exploration of different gas modifiers and calculated BEs using 

ML. While single solvent binding energies have been used in this work, this may not actually be the case 

due to the complex environment within the DMS. The solvation/desolvation process could be occurring 

from multiple solvent molecules clustering with the ion and declustering partially, or entirely. This could 
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explain some of the discrepancy in the ranking BEs with SV at CVmin values in Chapter 4. Within the 

Hopkins group, experiments are ongoing with a pesticide mix of similar size to the Monster Mix that may 

prove to be useful when incorporated into the ML database. Finally, numerous DMS experiments have 

been taken on the Monster Mix using different gas modifiers, such as ACN, MeOH, ACE, as well as 

partial completion of H2O. These experimental results are waiting on computational BEs in order to 

perform ML predictions and testing with more compounds. This could be particularly useful for modifiers 

which display prominent type A DMS behavior and their SV at CVmin values can therefore not be 

observed. 
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Appendix A 
Chapter 4 Dispersion Plots: 

 

Dispersion plots for EPH, PsEPH, as well as the sulfonamide isomers (Figure 4.3) with H2O gas modifier. CV was 
obtained from a fit to the ionogram of specific SV values.  

 

Dispersion plots for EPH, PsEPH, as well as the sulfonamide isomers (Figure 4.3) with EtOH gas modifier. CV was 
obtained from a fit to the ionogram of specific SV values.  
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Dispersion plots for EPH, PsEPH, as well as the sulfonamide isomers (Figure 4.3) with PrOH gas modifier. CV was 
obtained from a fit to the ionogram of specific SV values.  

 

Dispersion plots for EPH, PsEPH, as well as the sulfonamide isomers (Figure 4.3) with IPA gas modifier. CV was 
obtained from a fit to the ionogram of specific SV values.  
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 Dispersion plots for EPH, PsEPH, as well as the sulfonamide isomers (Figure 4.3) with AcOEt gas modifier. CV 
was obtained from a fit to the ionogram of specific SV values.  
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Appendix B 
Monster Mix Compounds: 

Compounds m/z Molecular Formula SMILES 

L-Glycine 76 C2H5NO2 C(C(=O)O)N 

Sarcosine 89.8 C3H7NO2 CNCC(O)=O 

L-Alanine 90.1 C3H7NO2 O=C(O)[C@@H](N)C 

Choline 104.1 C5H14NO C[N+](C)(C)CCO 

γ-Aminobutyric 
acid (GABA) 104.1 C4H9NO2 C(CC(=O)O)CN 

L-serine 106.1 C3H7NO3 C([C@@H](C(=O)O)N)O 

Histamine 111.8 C5H9N3 NCCC1=C[N]C=N1 

Cytosine 112 C4H5N3O c1cnc(=O)[nH]c1N 

Uracil 113 C4H4N2O2 O=C1NC=CC(=O)N1 

L-proline 116.1 C5H9NO2 C1CC(NC1)C(=O)O 

Fumaric Acid 117.1 C4H4O4 C(=C/C(=O)O)\C(=O)O 
L-Valine 118.1 C5H11NO2 CC(C)[C@@H](C(=O)O)N 

L-threonine 120 C4H9NO3 C[C@H]([C@@H](C(=O)O)N)O 
L-cysteine 122.1 C6H12N2O4S2 C(C(C(=O)O)N)S 

Niacinamide 
(Nicotinamide) 123.1 C6H6N2O c1cc(cnc1)C(=O)N 

Nicotinic acid 
(Niacin) 124.1 C6H5NO2 OC(=O)c1cccnc1 

Methylhistamine 126 C6H11N3 CC(CC1=CN=CN1)N 
Melamine 127.1 C3H6N6 c1(nc(nc(n1)N)N)N 
Thymine 127.1 C5H6N2O2 Cc1c[nH]c(=O)[nH]c1=O 

Vigabatrin 130 C6H11NO2 O=C(O)CCC(\C=C)N 
L-Isoleucine 132.1 C6H13NO2 CC[C@H](C)[C@@H](C(=O)O)N 

L-leucine 132.1 C6H13NO2 CC(C)C[C@@H](C(=O)O)N 
L-asparagine 133.1 C4H8N2O3 C([C@@H](C(=O)O)N)C(=O)N 
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Compounds m/z Molecular Formula SMILES 

Malic Acid 135.1 C4H6O5 O=C(O)CC(O)C(=O)O 

Adenine 136.054
4 C5H5N5 NC1=NC=NC2=C1N=C[NH]2 

(+-)-
Amphetamine 136.1 C9H13N NC(CC1=CC=CC=C1)C 

Salicylic Acid 139 C7H6O3 c1ccc(c(c1)C(=O)O)O 
Dimetridazole 141.9 C5H7N3O2 Cc1ncc([N](=O)=O)n1C 
L-glutamine 147.1 C5H10N2O3 O=C(N)CCC(N)C(=O)O 

L-lysine 147.2 C6H14N2O2 C(CCN)CC(C(=O)O)N 
L-glutamic acid 148.1 C5H9NO4 C(CC(=O)O)C(C(=O)O)N 

Methamphetami
ne 150 C10H15N N(C(Cc1ccccc1)C)C 

L-methionine 150.1 C5H11NO2S CSCC[C@H](N)C(=O)O 
Acetaminophen 152.2 C8H9NO2 CC(=O)Nc1ccc(O)cc1 

Guanine 152.3 C5H5N5O c1[nH]c2c(n1)c(=O)[nH]c(n2)N 
Xanthine 153.1 C5H4N4O2 c1[nH]c2c(n1)nc(nc2O)O 

L-histidine 156.1 C6H9N3O2 O=C([C@H](CC1=CNC=N1)N)O 
Ephedrine 166.1 C10H15NO O[C@H](c1ccccc1)[C@@H](NC)C 

L-phenylalanine 166.1 C9H11NO2 C1=CC=C(C=C1)C[C@@H](C(=O)O)N 

Pseudoephedrine 166.1 C10H15NO O[C@@H](c1ccccc1)[C@@H](NC)C 

Cyromazine 167.1 C6H10N6 C1CC1NC2=NC(=NC(=N2)N)N 
Pyridoxal 168.1 C8H9NO3 O=Cc1c(O)c(C)ncc1CO 

Gabapentin 172.1 C9H17NO2 O=C(O)CC1(CN)CCCCC1 
L-arginine 175.2 C6H14N4O2 NC(CCCNC(N)=N)C(O)=O 

Cis-Aconitic Acid 176.1 C6H6O6 O=C(O)CC(=CC(=O)O)C(=O)O 
(-)-Cotinine 177.1 C10H12N2O O=C2N(C)[C@H](c1cnccc1)CC2 
Phenacetin 180 C10H13NO2 O=C(Nc1ccc(OCC)cc1)C 

(+)-MDA 
(2,3-

Methylenedioxya
mphetamine) 

180.1 C10H13NO2 CC(N)Cc2c1OCOc1ccc2 

L-Tyrosine 182.1 C9H11NO3 N[C@@H](Cc1ccc(O)cc1)C(O)=O 
Selegiline 188.1 C13H17N C#CCN([C@@H](Cc1ccccc1)C)C 

Caffeine 195.1 C8H10N4O2 CN1C=NC2=C1C(=O)N(C(=O)N2C)C 

D-glucose 203.1 C6H12O6 C([C@@H]1[C@H]([C@@H]([C@H]([C@H]
(O1)O)O)O)O)O 

R-(-)-Nirvanol 205.1 C11H12N2O2 CCC1(C(=O)NC(=O)N1)C2=CC=CC=C2 
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Compounds m/z Molecular Formula SMILES 

L-tryptophan 205.1 C11H12N2O2 c1ccc2c(c1)c(c[nH]2)C[C@@H](C(=O)O)N 

S-(+)-Ibuprofen 207.1 C13H18O2 CC(C)Cc1ccc(cc1)[C@@H](C)C(=O)O 

monoxidil 210.1 C9H15N5O Nc1cc(nc(N)[n+]1[O-])N2CCCCC2 
Butabarbital 213.1 C10H16N2O3 O=C1NC(=O)NC(=O)C1(C(C)CC)CC 

Meprobamate 219.1 C9H18N2O4 O=C(OCC(COC(=O)N)(C)CCC)N 
D-Pantothenic 

acid 220.1 C9H17NO5 CC(C)(CO)C(C(=O)NCCC(=O)O)O 

Ritalinic Acid 220.1 C13H17NO2 C1CCNC(C1)C(C2=CC=CC=C2)C(=O)O 

Hydroxynirvanol 221.1 C11H12N2O3 CCC1(NC(=O)NC1=O)c2ccc(O)cc2 
Ethylone 222.1 C12H15NO3 CC(NCC)C(=O)c1ccc2OCOc2c1 

Tapentadol 222.1 C14H23NO Oc1cc(ccc1)[C@@H]([C@@H](C)CN(C)C)C
C 

Acetamiprid 223.1 C10H11ClN4 Clc1ncc(cc1)CN(\C(=N\C#N)C)C 
Terbutaline 226.1 C12H19NO3 Oc1cc(cc(O)c1)C(O)CNC(C)(C)C 

Amobarbital 227.1 C11H18N2O3 O=C1NC(=O)NC(=O)C1(CCC(C)C)CC 

Clonidine 230 C9H9Cl2N3 Clc1c(c(Cl)ccc1)N/C2=N/CCN2 

Naproxen 231.1 C14H14O3 C[C@@H](C1=CC2=C(C=C1)C=C(C=C2)OC)C
(=O)O 

Phenobarbital 231.1 C12H12N2O3 O=C1NC(=O)NC(=O)C1(c2ccccc2)CC 

Melatonin 233.1 C13H16N2O2 COC1=CC2=C(NC=C2CCNC(C)=O)C=C1 

Normeperidine 234.1 C14H19NO2 O=C(C1(CCN(CC1)C)C2=CC=CC=C2)OCC 

Lidocaine 235.1 C14H22N2O O=C(Nc1c(cccc1C)C)CN(CC)CC 
Carbamazepine 237.1 C15H12N2O c1ccc2c(c1)C=Cc3ccccc3N2C(=O)N 

Secobarbital 239.1 C12H18N2O3 O=C1NC(NC(C1(CC=C)C(CCC)C)=O)=O 

Salbutamol 240.1 C13H21NO3 OCc1cc(ccc1O)C(O)CNC(C)(C)C 

Bentazon 241 C10H12N2O3S O=C1N(C(C)C)S(=O)(=O)Nc2ccccc12 

L-cystine 241.1 C3H7NO2S C(C(C(=O)O)N)SSCC(C(=O)O)N 

Cytidine 244.1 C9H13N3O5 O=C1/N=C(/N)\C=C/N1[C@@H]2O[C@@H
]([C@@H](O)[C@H]2O)CO 
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Compounds m/z Molecular Formula SMILES 

Uridine 245.1 C9H12N2O6 O=C1NC(=O)N(C=C1)[C@@H]2O[C@H](CO
)[C@@H](O)[C@H]2O 

O-Desmethyl-cis-
tramadol HCL 250.1 C15H23NO2 CN(C)C[C@H]1CCCC[C@@]1(C2=CC(=CC=C

2)O)O 

Lacosamide 251.1 C13H18N2O3 O=C(N[C@@H](C(=O)NCc1ccccc1)COC)C 

Sulfadiazine 251.1 C10H10N4O2S C1=CN=C(N=C1)NS(=O)(=O)C2=CC=C(C=C2)
N 

Cimetidine 253.1 C10H16N6S N#CN=C(NC)NCCSCc1nc[nH]c1CN#CN\C(=
N/C)NCCSCc1nc[nH]c1C 

Ketoprofen 255.1 C16H14O3 CC(c1cccc(c1)C(=O)c2ccccc2)C(=O)O 

Lamotrigine 256 C9H7Cl2N5 NC1=NC(N)=NN=C1C2=CC=CC(Cl)=C2Cl 

Ketorolac 256.1 C15H13NO3 O=C(c1ccc2n1CCC2C(=O)O)c3ccccc3 

Diphenhydramine 256.2 C17H21NO O(CCN(C)C)C(c1ccccc1)c2ccccc2 

Imidacloprid 256.2 C9H10ClN5O2 [O-][N+](=O)NC/1=N/CCN\1Cc2cnc(Cl)cc2 

phenyltoloxamine 256.2 C17H21NO O(c1ccccc1Cc2ccccc2)CCN(C)C 
Palmitic acid 257.2 C16H32O2 CCCCCCCCCCCCCCCC(=O)O 

(+-)-Propanolol 260 C16H21NO2 CC(NCC(O)COC1=C(C=CC=C2)C2=CC=C1)C 

Carisoprodol 261.1 C12H24N2O4 O=C(OCC(COC(=O)NC(C)C)(C)CCC)N 

Bufuralol 262 C16H23NO2 OC(c2oc1c(cccc1c2)CC)CNC(C)(C)C 

Nortriptyline 264 C19H21N c3cc2c(/C(c1c(cccc1)CC2)=C/CCNC)cc3 

Protriptyline 264 C19H21N c3cc2c(\C=C/c1c(cccc1)C2CCCNC)cc3 

Tramadol 264.2 C16H25NO2 CN(C)C[C@H]1CCCC[C@@]1(C2=CC(=CC=C
2)OC)O 

Sulfamerazine 265 C11H12N4O2S O=S(=O)(Nc1nc(ccn1)C)c2ccc(N)cc2 

Oxprenolol 266.2 C15H23NO3 O(c1ccccc1OC\C=C)CC(O)CNC(C)C 

Atenolol 267 C14H22N2O3 O=C(N)Cc1ccc(cc1)OCC(O)CNC(C)C 

Desipramine 267.2 C18H22N2 c1cc3c(cc1)CCc2c(cccc2)N3CCCNC 
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Adenosine 268.1 C10H13N5O4 n2c1c(ncnc1n(c2)[C@@H]3O[C@@H]([C@
@H](O)[C@H]3O)CO)N 

Tolbutamide 271.1 C12H18N2O3S O=S(=O)(c1ccc(cc1)C)NC(=O)NCCCC 

Dehydroepiandro
sterone (DHEA) 271.2 C19H28O2 O=C3[C@]2(CC[C@@H]1[C@@]4(C(=C/C[C

@H]1[C@@H]2CC3)\C[C@@H](O)CC4)C)C 

Desomorphine 272 C17H21NO2 OC1=C2O[C@@H]3[C@@]45C2=C(C[C@H]
([C@@H]5CCC3)N(C)CC4)C=C1 

Sotalol 273.1 C12H20N2O3S O=S(=O)(Nc1ccc(cc1)C(O)CNC(C)C)C 

Norsertraline HCL 275.1 C16H15Cl2N Clc1ccc(cc1Cl)[C@H]3c2c(cccc2)[C@@H](N
)CC3 

Clenbuterol 277.1 C12H18Cl2N2O Clc1cc(cc(Cl)c1N)C(O)CNC(C)(C)C 
Bromoxynil 277.9 C7H3Br2NO Brc1cc(C#N)cc(Br)c1O 

Amitriptyline 278.1 C20H23N c3cc2c(/C(c1c(cccc1)CC2)=C\CCN(C)C)cc3 

Sulfamethazine 
(Sulfadimidine) 278.9 C12H14N4O2S O=S(=O)(Nc1nc(cc(n1)C)C)c2ccc(N)cc2 

Indoprofen 282.1 C17H15NO3 O=C(O)C(c1ccc(cc1)N3C(=O)c2ccccc2C3)C 

Guanosine 284.3 C10H13N5O5 c1nc2c(=O)[nH]c(nc2n1[C@H]3[C@@H]([C
@@H]([C@H](O3)CO)O)O)N 

Diazepam 285.1 C16H13ClN2O CN1C2=C(C(C3=CC=CC=C3)=NCC1=O)C=C(C
l)C=C2 

7-
Aminoclonazepa

m 
286.1  C15H12ClN3O C1C(=O)NC2=C(C=C(C=C2)N)C(=N1)C3=CC=

CC=C3Cl 

Morphine 286.1 C17H19NO3 CN1CC[C@]23C4=C5C=CC(O)=C4O[C@H]2[
C@@H](O)C=C[C@H]3[C@H]1C5 

Norcodeine 286.1 C17H19NO3 COC1=C2C3=C(C[C@@H]4[C@H]5[C@]3(C
CN4)[C@@H](O2)[C@H](C=C5)O)C=C1 

Oxazepam 287.1 C15H11ClN2O2 OC1N=C(C2=C(NC1=O)C=CC(Cl)=C2)C3=CC
=CC=C3 

Etodolac 288 C17H21NO3 O=C(O)CC3(OCCc2c3nc1c(cccc12)CC)CC 
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Epitestosterone 289.1 C19H28O2 C[C@]12CC[C@H]3[C@H]([C@@H]1CC[C
@H]2O)CCC4=CC(=O)CC[C@]34C 

Testosterone 289.2 C19H28O2 O=C4\C=C2/[C@]([C@H]1CC[C@@]3([C@
@H](O)CC[C@H]3[C@@H]1CC2)C)(C)CC4 

Benzoylecgonine 290.1 C16H19NO4 CN1[C@H]2CC[C@@H]1[C@H]([C@H](C2)
OC(=O)c3ccccc3)C(=O)O 

Hydrocodone 300.2 C18H21NO3 O=C4[C@@H]5Oc1c2c(ccc1OC)C[C@H]3N(
CC[C@]25[C@H]3CC4)C 

Temazepam 301.1 C16H13ClN2O2 CN1C2=C(C(C3=CC=CC=C3)=NC(O)C1=O)C=
C(Cl)C=C2 

Noroxycodone 
HCL 302.1 C17H19NO4 COC1=C2C3=C(C[C@@H]4[C@]5([C@]3(CC

N4)[C@@H](O2)C(=O)CC5)O)C=C1 

Oxymorphone 302.1 C17H19NO4 O=C1[C@@H]2OC3=C(O)C=CC4=C3[C@@]
2([C@]5(CC1)O)CCN(C)[C@@H]5C4 

Cocaine 304.1 C17H21NO4 CN1[C@H]2CC[C@@H]1[C@@H](C(OC)=O
)[C@@H](OC(C3=CC=CC=C3)=O)C2 

Zolpidem 308 C19H21N3O O=C(CC1=C(C2=CC=C(C)C=C2)N=C3C=CC(C)
=CN13)N(C)C 

Alprazolam 309.1 C17H13ClN4 ClC1=CC2=C(C=C1)N3C(C)=NN=C3CN=C2C4
=CC=CC=C4 

Warfarin 309.1 C19H16O4 CC(=O)CC(C\1=C(/O)c2ccccc2OC/1=O)c3cc
ccc3 

(+)-Methadone 310.2 C21H27NO CCC(C(C1=CC=CC=C1)(C2=CC=CC=C2)CC(N(
C)C)C)=O 

Safranin O 315.1 C20H19ClN4 n1c4c([n+](c2c1cc(c(N)c2)C)c3ccccc3)cc(c(c
4)C)N 

Progesterone 315.2 C21H30O2 CC(=O)[C@H]1CC[C@@H]2[C@@]1(CC[C
@H]3[C@H]2CCC4=CC(=O)CC[C@]34C)C 

ranitidine 315.2 C13H22N4O3S [O-
][N+](=O)C=C(NC)NCCSCc1ccc(o1)CN(C)C 

Chlorprothixene 316.1 C18H18ClNS Clc2cc1C(\c3c(Sc1cc2)cccc3)=C/CCN(C)C 
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Clonazepam 316.1 C15H10ClN3O3 
[O-] 

[N+](C1=CC2=C(C=C1)NC(CN=C2C3=CC=CC
=C3Cl)=O)=O 

Flusilazole 316.1 C16H15F2N3Si c2ncnn2C[Si](C)(c(cc1)ccc1F)c3ccc(F)cc3 

Pamaquine 316.2 C19H29N3O O(c1cc(NC(C)CCCN(CC)CC)c2ncccc2c1)C 

Fluvoxamine 319.2 C15H21F3N2O2 FC(F)(F)c1ccc(\C(=N\OCCN)CCCCOC)cc1 

Chloramphenicol 323 C11H12Cl2N2O5 c1cc(ccc1[C@H]([C@@H](CO)NC(=O)C(Cl)C
l)O)[N+](=O)[O-] 

Quinidine 325.2 C20H24N2O2 O(c4cc1c(nccc1[C@H](O)[C@@H]2N3CC[C
@@H](C2)[C@@H](/C=C)C3)cc4)C 

Midazolam 326.1 C18H13ClFN3 ClC1=CC=C2C(C(C3=CC=CC=C3F)=NCC4=CN
=C(C)N42)=C1 

Naloxone 328.1 C19H21NO4 O=C1[C@@H]2OC3=C(O)C=CC4=C3[C@@]
2([C@]5(CC1)O)CCN(CC=C)[C@@H]5C4 

Acebutolol 337 C18H28N2O4 O=C(Nc1ccc(OCC(O)CNC(C)C)c(c1)C(=O)C)C
CC 

Fentanyl 337.2 C22H28N2O O=C(CC)N(C1CCN(CC1)CCc2ccccc2)c3ccccc
3 

Chlorthalidone 338.9 C14H11ClN2O4S O=S(=O)(N)c1c(Cl)ccc(c1)C2(O)c3ccccc3C(=
O)N2 

(+)-Propoxyphene 340.1 C22H29NO2 O=C(CC)O[C@@](CC1=CC=CC=C1)([C@@H
](CN(C)C)C)C2=CC=CC=C2 

Sulpiride 342.1 C15H23N3O4S O=S(=O)(N)c1cc(c(OC)cc1)C(=O)NCC2N(CC)
CCC2 

Propafenone 342.2 C21H27NO3 O=C(c1ccccc1OCC(O)CNCCC)CCc2ccccc2 

Sucrose + H 343.3 C12H22O11 
O1[C@H](CO)[C@@H](O)[C@H](O)[C@@

H](O)[C@H]1O[C@@]2(O[C@@H]([C@@H
](O)[C@@H]2O)CO)CO 

Omeprazole 346.2 C17H19N3O3S Cc1c(OC)c(C)cnc1CS(=O)c2nc3ccc(OC)cc3n
2 
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Ampicillin 350 C16H19N3O4S O=C(O)[C@@H]2N3C(=O)[C@@H](NC(=O)
[C@@H](c1ccccc1)N)[C@H]3SC2(C)C 

Buscopan 360.1 C21H30NO4 
OC[C@H](c1ccccc1)C(=O)O[C@@H]2C[C@
@H]3[C@H]4O[C@H]4[C@H](C2)[N+]3(C)

CCCC 

Prednisolone 361.1 C21H28O5 
O=C\1\C=C/[C@]4(/C(=C/1)CC[C@@H]2[C
@@H]4[C@@H](O)C[C@@]3([C@@](O)(C

(=O)CO)CC[C@@H]23)C)C 

D-trehalose 365.3 C12H22O11 
OC[C@@H]1[C@@H](O)[C@H](O)[C@@H
](O)[C@H](O1)O[C@@H]2[C@H](O)[C@@

H](O)[C@H](O)[C@H](O2)CO 

Amoxicillin 365.7 C16H19N3O5S O=C(O)[C@@H]2N3C(=O)[C@@H](NC(=O)
[C@@H](c1ccc(O)cc1)N)[C@H]3SC2(C)C 

Tamoxifen 372.1 C26H29NO CN(C)CCOc1ccc(cc1)/C(c2ccccc2)=C(/CC)c3
ccccc3 

Haloperidol 376.1 C21H23ClFNO2 c1cc(ccc1C(=O)CCCN2CCC(CC2)(c3ccc(cc3)
Cl)O)F 

25-
Hydroxyvitamin 

D3 
383.4 

C27H44O2 
(loses H2O easily for form 

C27H42O) 

O[C@@H]1CC(\C(=C)CC1)=C\C=C2/CCC[C
@]3([C@H]2CC[C@@H]3[C@H](C)CCCC(O)

(C)C)C 

Prazosin 383.8 C19H21N5O4 O=C(N3CCN(c2nc1cc(OC)c(OC)cc1c(n2)N)C
C3)c4occc4 

Buspirone 386.3 C21H31N5O2 O=C1N(CCCCN2CCN(CC2)C3=NC=CC=N3)C(
CC4(CCCC4)C1)=O 

Urapidil 388.2 C20H29N5O3 O=C1\C=C(/N(C(=O)N1C)C)NCCCN3CCN(c2
ccccc2OC)CC3 

Perphenazine 404.2 C21H26ClN3OS Clc2cc1N(c3c(Sc1cc2)cccc3)CCCN4CCN(CC
O)CC4 

Lovastatin 405.2 C24H36O5 
O=C(O[C@@H]1[C@H]3C(=C/[C@H](C)C1)
\C=C/[C@@H]([C@@H]3CC[C@H]2OC(=O)

C[C@H](O)C2)C)[C@@H](C)CC 
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Norbuprenorphin
e 414.3 C25H35NO4 

C[C@]([C@H]1C[C@@]23CC[C@@]1([C@
H]4[C@@]25CCN[C@@H]3Cc6c5c(c(cc6)O

)O4)OC)(C(C)(C)C)O 

Bendroflumethiaz
ide 421.8 C15H14F3N3O4S2 FC(F)(F)c3c(cc1c(NC(NS1(=O)=O)Cc2ccccc2

)c3)S(=O)(=O)N 

Adenosine 
diphosphate 

(ADP) 
428.3 C10H15N5O10P2 

c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@
H]([C@H](O3)COP(=O)(O)OP(=O)(O)O)O)O)

N 

Angiotensin I 3+ 433.1 C62H89N17O14 

CCC(C)C(C(=O)NC(Cc1cnc[nH]1)C(=O)N2CC
CC2C(=O)NC(Cc3ccccc3)C(=O)O)NC(=O)C(C
c4ccc(cc4)O)NC(=O)C(C(C)C)NC(=O)C(CCCN

=C(N)N)NC(=O)C(CC(=O)O)N 

Spirmycin 442.4 C43H74N2O14 
O=CCC4C(OC2OC(C(OC1OC(C)C(O)C(O)(C)C
1)C(N(C)C)C2O)C)C(OC)C(O)CC(=O)OC(C)C\
C=C\C=C\C(OC3OC(C)C(N(C)C)CC3)C(C)C4 

Verapamil 455.3 C27H38N2O4 N#CC(c1cc(OC)c(OC)cc1)(CCCN(CCc2ccc(O
C)c(OC)c2)C)C(C)C 

Buprenorphine 468.3 C29H41NO4 
Oc7ccc5c1c7O[C@H]3[C@]6(OC)[C@H](C[
C@@]2([C@H](N(CC[C@@]123)CC4CC4)C

5)CC6)[C@@](O)(C)C(C)(C)C 

Terfenadine 472.3 C32H41NO2 OC(c1ccccc1)(c2ccccc2)C4CCN(CCCC(O)c3c
cc(cc3)C(C)(C)C)CC4 

Loperamide 477.2 C29H33ClN2O2 ClC1=CC=C(C2(CCN(CC2)CCC(C3=CC=CC=C3
)(C(N(C)C)=O)C4=CC=CC=C4)O)C=C1 

Raffinose 505.3 C18H32O16 

C([C@@H]1[C@@H]([C@@H]([C@H]([C@
H](O1)OC[C@@H]2[C@H]([C@@H]([C@H]
([C@H](O2)O[C@]3([C@H]([C@@H]([C@H

](O3)CO)O)O)CO)O)O)O)O)O)O)O 

Taurocholic Acid 516.3 C26H45NO7S 

C[C@H](CCC(=O)NCCS(=O)(=O)O)[C@H]1C
C[C@@H]2[C@@]1([C@H](C[C@H]3[C@H
]2[C@@H](C[C@H]4[C@@]3(CC[C@H](C4)

O)C)O)O)C 

Angiotensin II 2+ 523.9 C50H71N13O12 

CCC(C)C(C(=O)NC(Cc1cnc[nH]1)C(=O)N2CC
CC2C(=O)NC(Cc3ccccc3)C(=O)O)NC(=O)C(C
c4ccc(cc4)O)NC(=O)C(C(C)C)NC(=O)C(CCCN

=C(N)N)NC(=O)C(CC(=O)O)N 
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Bradykinin 2+ 530.8 C50H73N15O11 

O=C(N[C@H](C(=O)N[C@H](C(=O)O)CCC/N
=C(\N)N)Cc1ccccc1)[C@H]5N(C(=O)[C@@
H](NC(=O)[C@@H](NC(=O)CNC(=O)[C@H]
3N(C(=O)[C@H]2N(C(=O)[C@@H](N)CCC/
N=C(\N)N)CCC2)CCC3)Cc4ccccc4)CO)CCC5 

Ketoconazole 531.1 C26H28Cl2N4O4 O=C(N5CCN(c4ccc(OC[C@@H]1O[C@](OC
1)(c2ccc(Cl)cc2Cl)Cn3ccnc3)cc4)CC5)C 

Renin Substrate 
2+ 586.7 C85H123N21O20 

O=C(C(NC(=O)C(CC(C)C)NC(C(NC(=O)C(Cc(c
6)ncn6)NC(=O)C(NC(=O)C(C5)N(CC5)C(=O)
C(Cc(n4)cnc4)NC(=O)C(NC(C(NC(=O)C(C(C)
C)NC(=O)C(NC(=O)C(N)CC(O)=O)CCCNC(N)
=N)Cc(c3)ccc(O)c3)=O)C(C)CC)Cc(c2)cccc2)
CC(C)C)=O)C(C)C)NC(C(NC(CO)C(O)=O)=O)

Cc(c1)ccc(c1)O 

(Parathyroid 
hormone 1-34) 7+ 588.8 C181H291N55O51S2 

[H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(
=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)
=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N
[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)
C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C
C1=CNC=N1)C(=O)N[C@@H](CC(N)=O)C(=
O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@
H](CCCCN)C(=O)N[C@@H](CC1=CNC=N1)C
(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(
N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](
CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C
@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C
)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@

H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H]
(CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=

O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCC
N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]
(CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)
N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CN
C=N1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C

@@H](CC1=CC=CC=C1)C(O)=O 
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Cyclosporin A (+2) 602.5 C62H111N11O12 

CC[C@H]1C(=O)N(CC(=O)N([C@H](C(=O)N[
C@H](C(=O)N([C@H](C(=O)N[C@H](C(=O)
N[C@@H](C(=O)N([C@H](C(=O)N([C@H](C
(=O)N([C@H](C(=O)N([C@H](C(=O)N1)[C@
@H]([C@H](C)C/C=C/C)O)C)C(C)C)C)CC(C)C
)C)CC(C)C)C)C)C)CC(C)C)C)C(C)C)CC(C)C)C)C 

Reserpine 609.2 C33H40N2O9 
O=C(OC)[C@H]6[C@H]4C[C@@H]3c2nc1c
c(OC)ccc1c2CCN3C[C@H]4C[C@@H](OC(=

O)c5cc(OC)c(OC)c(OC)c5)[C@@H]6OC 

Angiotensin I 2+ 649.1 C62H89N17O14 

CCC(C)C(C(=O)NC(Cc1cnc[nH]1)C(=O)N2CC
CC2C(=O)NC(Cc3ccccc3)C(=O)O)NC(=O)C(C
c4ccc(cc4)O)NC(=O)C(C(C)C)NC(=O)C(CCCN

=C(N)N)NC(=O)C(CC(=O)O)N 

Bromocriptine 654.1 C32H40BrN5O5 

BrC1=C(C[C@H]2N(C)C3)C4=C(C=CC=C4C2
=C[C@H]3C(N[C@]5(C(C)C)O[C@@]6(N([C
@@H](CC(C)C)C(N7CCC[C@H]76)=O)C5=O

)O)=O)N1 

(Parathyroid 
hormone 1-34) 6+ 686.8 C181H291N55O51S2 

[H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(
=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)
=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N
[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)
C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C
C1=CNC=N1)C(=O)N[C@@H](CC(N)=O)C(=
O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@
H](CCCCN)C(=O)N[C@@H](CC1=CNC=N1)C
(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(
N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](
CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C
@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C
)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@

H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H]
(CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=

O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCC
N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]
(CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)
N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CN
C=N1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C

@@H](CC1=CC=CC=C1)C(O)=O 
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Ritonavir 720.8 C37H48N6O5S2 
CC(C)c4nc(CN(C)C(=O)N[C@@H](C(C)C)C(=
O)N[C@@H](Cc1ccccc1)C[C@H](O)[C@H](

Cc2ccccc2)NC(=O)OCc3cncs3)cs4 

Vancomycin 2+ 724.7 C66H75Cl2N9O24 

C[C@H]1[C@H]([C@@](C[C@@H](O1)O[C
@@H]2[C@H]([C@@H]([C@H](O[C@H]2O
c3c4cc5cc3Oc6ccc(cc6Cl)[C@H]([C@H](C(=
O)N[C@H](C(=O)N[C@H]5C(=O)N[C@@H]

7c8ccc(c(c8)-
c9c(cc(cc9O)O)[C@H](NC(=O)[C@H]([C@

@H](c1ccc(c(c1)Cl)O4)O)NC7=O)C(=O)O)O)
CC(=O)N)NC(=O)[C@@H](CC(C)C)NC)O)CO

)O)O)(C)N)O 

Erythromycin 734.5 C37H67NO13 

CC[C@@H]1[C@@]([C@@H]([C@H](C(=O)
[C@@H](C[C@@]([C@@H]([C@H]([C@@
H]([C@H](C(=O)O1)C)O[C@H]2C[C@@]([C
@H]([C@@H](O2)C)O)(C)OC)C)O[C@H]3[C
@@H]([C@H](C[C@H](O3)C)N(C)C)O)(C)O)

C)C)O)(C)O 

Nigercin 747.7 C40H68O11 

OC(=O)[C@H](C)[C@@H]1O[C@H](CC[C@
@H]1C)C[C@H]6O[C@]2(O[C@@](C)(C[C

@H]2C)[C@H]3CC[C@](C)(O3)[C@@H]4O[
C@H](C[C@@H]4C)[C@H]5O[C@@](O)(C
O)[C@H](C)C[C@@H]5C)[C@H](C)[C@H](

OC)C6 

Azithromycin 749.5 C38H72N2O12 

CN(C)[C@H]3C[C@@H](C)O[C@@H](O[C
@@H]2[C@@H](C)[C@H](O[C@H]1C[C@

@](C)(OC)[C@@H](O)[C@H](C)O1)[C@@H
](C)C(=O)O[C@H](CC)[C@@](C)(O)[C@H](

O)[C@@H](C)N(C)C[C@H](C)C[C@@]2(C)O
)[C@@H]3O 
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Digitoxin 765.4 C41H64O13 

O=C\1OC/C(=C/1)[C@H]2CC[C@@]8(O)[C
@]2(C)CC[C@H]7[C@H]8CC[C@H]6[C@]7(
C)CC[C@H](O[C@@H]5O[C@H](C)[C@@H
](O[C@@H]4O[C@@H]([C@@H](O[C@@

H]3O[C@@H]([C@@H](O)[C@@H](O)C3)C
)[C@@H](O)C4)C)[C@@H](O)C5)C6 

Digoxin 781.4 C41H64O14 

O=C\1OC/C(=C/1)[C@H]2CC[C@@]8(O)[C
@]2(C)[C@H](O)C[C@H]7[C@H]8CC[C@H]
6[C@]7(C)CC[C@H](O[C@@H]5O[C@H](C)
[C@@H](O[C@@H]4O[C@@H]([C@@H](
O[C@@H]3O[C@@H]([C@@H](O)[C@@H
](O)C3)C)[C@@H](O)C4)C)[C@@H](O)C5)C

6 

Glycyrrhizic Acid 823.4 C42H62O16 

O=C(O)[C@H]7O[C@@H](O[C@@H]6[C@
@H](O)[C@H](O)[C@H](O[C@@H]6O[C@
@H]2C(C)(C)[C@@H]3CC[C@@]1(C)[C@]5
(C(=C/C(=O)[C@@H]1[C@@]3(C)CC2)\[C@
@H]4C[C@](C(=O)O)(C)CC[C@]4(C)CC5)C)
C(=O)O)[C@H](O)[C@@H](O)[C@@H]7O 

Rifampicin 823.4 C43H58N4O12 

CN1CCN(CC1)/N=C/c2c(O)c3c5C(=O)[C@@
]4(C)O/C=C/[C@H](OC)[C@@H](C)[C@@H
](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C

@@H](O)[C@@H](C)\C=C\C=C(\C)C(=O)Nc
2c(O)c3c(O)c(C)c5O4 



 

92 
 

Compounds m/z Molecular Formula SMILES 

(Parathyroid 
hormone 1-34) 5+ 823.8 C181H291N55O51S2 

[H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(
=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)
=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N
[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)
C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C
C1=CNC=N1)C(=O)N[C@@H](CC(N)=O)C(=
O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@
H](CCCCN)C(=O)N[C@@H](CC1=CNC=N1)C
(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(
N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](
CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C
@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C
)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@

H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H]
(CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=

O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCC
N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]
(CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)
N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CN
C=N1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C

@@H](CC1=CC=CC=C1)C(O)=O 

Tylosin 916 C46H77NO17 

CC[C@@H]1[C@H](/C=C(/C=C/C(=O)[C@
@H](C[C@@H]([C@@H]([C@H]([C@@H](
CC(=O)O1)O)C)O[C@H]2[C@@H]([C@H]([
C@@H]([C@H](O2)C)O[C@H]3C[C@@]([C
@H]([C@@H](O3)C)O)(C)O)N(C)C)O)CC=O)
C)\C)CO[C@H]4[C@@H]([C@@H]([C@@H

]([C@H](O4)C)O)OC)OC 

 

Table of compounds in the “Monster Mix” as well as their mass to charge ratios, molecular formulas and 
SMILES codes. 
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