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Abstract

Vibration-based modal identification is the process of analyzing vibration measurements

in order to identify the modal properties of the structure, namely the modal frequencies,

damping ratios, and mode shapes. The quality of the estimated modal parameters, par-

ticularly the mode shapes, depends to a great extent on the spatial resolution of the

measurements on the structure. Traditionally, measurements are obtained using networks

of static sensors (i.e., sensors that remain fixed at certain locations on the structure) which

are prone to poor spatial resolution when using a few sensors. To circumvent this issue,

a large, dense network is required which has negative cost and implementation implica-

tions. An appealing alternative to large static sensor networks is the use of a much smaller

network of mobile sensors. Mobile sensors are sensors mounted on carrier vehicles (such

as robots or cars) that can be sequentially conveyed to various locations on a structure,

thereby achieving dense spatial resolution with relatively few sensors.

Two measurement strategies can be used with mobile sensors: re-configurable mobile

sensing, which involves repositioning the mobile sensors in a series of static configurations

and collecting measurement data while not in motion, and in-motion mobile sensing which

involves continuously collecting measurement data while the sensors traverse the spatial

domain of the structure. Conventional modal identification methods – developed for use

with measurement data from static sensor networks – are not directly compatible with data

obtained from mobile sensor networks. This motivates the need to develop new modal iden-

tification algorithms specifically to process mobile sensor data. Furthermore, due to various

factors such as motion over rough surfaces, data transmission errors, vehicle-structure in-

teraction, mobile sensors are typically subjected to more sources of error compared to

static sensors. Therefore, quantifying the uncertainties in the modal parameter estimates

is important and should be included in the algorithms using mobile sensor data.

The current state of research on system identification methods using mobile sensors is

still developing. This thesis addresses some of the theoretical and algorithmic challenges

encountered in system identification using both re-configurable and in-motion mobile sens-

ing strategies. In the context of re-configurable sensing, the feasibility of using a single

mobile actuator-sensor pair for input-output modal identification of a structure is studied.
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An input-output balance method is developed and it is shown that high-resolution mass-

normalized mode shapes can be obtained with a single mobile actuator-sensor pair and the

approximate knowledge of the signs of the mode shapes.

The problem of output-only modal identification using in-motion mobile sensors is

addressed from two perspectives: an incomplete-data perspective and a complete-data

perspective. From an incomplete data perspective, the data matrix generated by mobile

sensors is treated as a static sensor data matrix with missing entries. A Bayesian inference

framework based on a stochastic linear time-invariant state-space model is introduced

to obtain the posterior distribution over the modal parameters. Three computational

algorithms, namely the Expectation-Maximization (EM), the Variational Bayes (VB) and

the Gibbs Sampler (GS) are employed for modal parameter estimation from the data

matrix with missing entries. The EM provides point estimates whereas VB and GS provide

posterior distributions of the modal parameters. From a complete-data perspective, the

mobile sensor data obtained from a network of in-motion mobile sensors are represented

by a single stacked data matrix characterized by spatial discontinuities along each sensor

channel. To facilitate modal parameter estimation with the stacked data matrix, a novel

stochastic linear time-varying modal state model (MSM) is proposed. The EM, VB and

GS algorithms are suitably modified to facilitate inference of the modal parameters via

the MSM. The modal parameter estimation framework employing the MSM is shown to be

flexible and capable of providing high-resolution mode shape estimates along with posterior

uncertainties.

Finally, a methodology to suppress the effect of carrier-vehicle dynamics on the recorded

mobile sensor responses is proposed. The vehicle responses (i.e., responses recorded by a

sensor mounted on top of the carrier-vehicle) are modified versions of the true contact-point

structural responses due to the low-pass filtering effect of the vehicle dynamics. Contact-

point responses – the responses at the contact point of the vehicle with the structure –

are deemed to be better suited for modal identification than measured vehicle responses.

Using the knowledge of the vehicle system, the problem of estimating the contact-point

response from the measured vehicle response is cast as an input reconstruction problem,

and a Gaussian process latent force model (GPLFM) with Kalman filtering is proposed

to recover the contact-point responses. Through various numerical studies, it is shown
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that the recovered contact-point responses are superior – the effect of vehicle dynamics is

reduced and the prominence of higher structural modes is significantly improved.

In summary, this thesis presents a suite of numerical algorithms for modal parameter es-

timation using mobile sensor data. The performances of the proposed numerical algorithms

are evaluated through a series of numerical simulations and bench-scale experimental tests.

The results (i) confirm the advantages of mobile sensing over large static sensor networks,

(ii) verify the different perspectives of analyzing mobile sensor data, and (iii) demonstrate

the capability of the algorithms to include uncertainty quantification.
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Chapter 1

Introduction

In recent years, there has been a notable increase in public awareness of aging infrastructure

around the world due to its direct impact on human well-being and the global economy.

For example, in 2017, the American Society of Civil Engineers (ASCE) reported that

nearly 40% of the 614,387 bridges in the United States are at least 50 years old and that

9.1% of all bridges are considered structurally deficient [1]. Meanwhile, the Canadian

Infrastructure Report Card – a condition-based survey of existing infrastructure published

in 2016 – reported that although most bridges are currently in acceptable condition, the

present levels of investment for maintenance and rehabilitation are insufficient and will

likely lead to a rapid decline in the condition of existing bridges in the near future [2].

These findings have emphasized the importance of structural health monitoring (SHM)

methods which play a key role in decision-making and can be used to prioritize the needs

of major infrastructural systems. A numerical model of the structure is at the core of nearly

all existing SHM strategies [3]. These numerical models are used to evaluate the structural

performance under specific conditions such as heavy loading [4], earthquake motion [5],

wind loading [6], or human activity [7]. Therefore, developing accurate models of existing

structures is critical in order to evaluate vulnerability [8], detect damage [9], study retrofit

alternatives [10], and to predict the remaining useful life [11].

Traditional structural system identification (SSID) techniques can be used to char-

acterize numerical models of existing structures based on measurements of the dynamic
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Lower order mode shape

Higher order mode shape

Figure 1.1: Impact of spatial resolution on estimating mode shapes using static sensors.

responses (i.e., accelerations). Most techniques assume the structural system behaves lin-

early and estimate modal features such as natural frequencies, damping ratios, and mode

shapes. The estimated modal features can then be used to tune the numerical model via

model updating procedures [12]. Conventional SSID techniques rely on data collected from

a network of strategically placed static sensors that remain fixed at specific locations on

the structure over an extended period of time. Although estimating the natural frequencies

and damping ratios requires measurement data from only a few sensors, mode shapes, being

spatial features, require a large number of sensors to achieve sufficient spatial resolution.

Figure 1.1 illustrates the impact of low spatial resolution on estimating mode shapes. As

shown, the use of a limited number of static sensors may lead to low quality estimates of

higher-order mode shapes which, in turn, could negatively impact the results of the model

updating procedure.

The most direct method to circumvent this problem is to use spatially dense networks

of static sensors. However, the increased costs and setup time of dense networks coupled

with large cabling requirements limit the practicality of this method to small or relatively

simple structures. Although the use of wireless sensor networks [13–15] eliminates many

of the cabling requirements, dense deployments of wireless sensors still remain a relatively

expensive proposition.
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Recently,theuseofmobilesensorsformodalidentificationhasdemonstratedanumber

ofadvantagesoverstaticsensornetworks[16–21].Inadditiontoreducingthenumber

ofsensorsneeded,theadvantagesalsoincludeeaseofimplementationandincreasedres-

olutionofmodeshapeestimates. Mobilesensorsaredefinedassensorsthatareableto

repositionthemselvesatdifferentlocationsonastructure.Assuch,therearetwostrate-

giesofacquiringvibrationdatausingmobilesensors:re-configurablesensingwhichinvolves

repositioningthemobilesensor(s)inasequenceofstaticconfigurationsandcollectingdata

whilethesensorsarenotinmotion(seeFigure1.2a),andin-motionsensingwhichinvolves

continuouslycollectingdatawhilethesensorstraversethestructure(seeFigure1.2b

Configuration i Configuration j

Lower order mode shape

Higher order mode shape

).In

bothmethods,highspatialresolutioncanbeachievedusingarelativelysmallnumberof

sensors.

(a)Re-configurable

Lower order mode shape

Higher order mode shape

mobilesensing (b)In-motionmobilesensing

Figure1.2:Useofmobilesensorsresultinhigherresolutionofmodeshapes.

Akeyadvantageinemployingthere-configurablemobilesensingstrategyistheability

toapplyconventionalSSIDalgorithms(therehasbeenanextensivearrayofalgorithms

developedinthisarea)totheindividualdatasetsobtainedfromeachstaticconfiguration.

Combiningthelocalresultsfromeachsetupyieldshighresolutionmodeshapesforthe

overallstructure.Furthermore,theuseofroboticsystemsforrepositioningthesensorshas
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automated the data collection process and enabled data collection from several, possibly

inaccessible, locations. One such example is the flexure-based mobile sensing nodes (FM-

SNs) developed by Zhu et al. [16]. This approach utilized magnetic wall-climbing robots

capable of repositioning to several locations on the structure and pausing to collect data

at those locations. Despite the use of robotic systems, the time needed to acquire data

from multiple configurations is a drawback of re-configurable mobile sensing. Furthermore,

reference sensors are needed in order to combine the local mode shape estimates from each

configuration into high resolution global mode shapes, and thus the configurations must

overlap at selected reference locations. Mobile robotic platforms that contain both sensors

and an actuator such as the deployable autonomous control system (DACS) developed

by Goorts et al. [22], have great potential for re-configurable mobile sensing applications.

These devices offer the ability to (locally) excite the structure using the control actua-

tor while simultaneously measuring the structural response thereby yielding efficient data

collection from several locations on the structure. Given the knowledge of the applied

excitation, mass-normalized mode shapes can be extracted which is useful for controller

design. Since the actuator and sensor pair are collocated at the device position, refer-

ence sensors are needed to apply conventional SSID algorithms. However, the fact that a

single device is sufficient for vibration control applications (as demonstrated in Goorts et

al. [22]) motivates the need for a modal identification methodology using a single mobile

actuator-sensor pair.

As regards in-motion mobile sensing, its motivation stems from the fact that a sensor

mounted on a moving device (e.g., mobile robot, car) can be used as a receiver of rich

structural information. A potential future application of in-motion mobile sensing could

be to harness crowd-sensed data (i.e. data collected from smartphones or sensors in pas-

senger cars while they cross a bridge) which can yield large amounts of information in

addition to steep reductions in cost and time requirements. However, the drawback of

in-motion mobile sensing is that the resulting datasets are incompatible with traditional

SSID algorithms. In this context, the research on modal identification using multiple (or

a network of) in-motion mobile sensors has only recently garnered attention. The newly

developed schemes for system identification using in-motion mobile sensors [18–21] mostly

yield point estimates of the identified modal parameters and do not incorporate uncer-
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tainty quantification. Datasets from in-motion mobile sensors typically have more sources

of noise compared to static sensors; the noise derives from factors such as measurement

noise induced by sensor-motion dynamics, road roughness, and instrument imperfections,

which leads to increased uncertainty in the identified parameters. Quantification of uncer-

tainty in the identified parameters provides a degree of confidence in the resulting estimates

which is crucial for model updating and subsequent decision-making. This calls for the de-

velopment of algorithms for in-motion mobile sensing that allow simultaneous parameter

identification and uncertainty quantification.

1.1 Research objectives and scope

The overarching goal of this thesis is to develop a principled framework for modal parameter

identification and uncertainty quantification using mobile sensors. Along these lines, the

proposed research aims are two-fold:

1. To develop numerical algorithms to estimate structural modal parameters using re-

configurable and in-motion mobile sensor measurements.

2. To incorporate uncertainty quantification into the framework of the modal parameter

identification.

The scope of this thesis is limited to developments of comprehensive modal identification

algorithms – that provide estimates of modal frequencies, damping ratios and mode shapes

– validated with bench-scale tests. More specific objectives in the pursuit of the overarching

goals are provided in Section 2.4 of the next chapter following a background and literature

survey.

1.2 Organization of thesis

The thesis contains 7 chapters and is organized as follows:
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• Chapter 1 provides a brief introduction and motivation for the framework of modal

identification using mobile sensors and presents the overarching research goal.

• Chapter 2 provides background on existing modal identification methodologies using

mobile sensors and reviews Bayesian computational methodologies for parameter

estimation and uncertainty quantification. The research gap areas are identified and

specific research objectives are outlined.

• Chapter 3 presents a feasibility study for extracting high resolution mode shapes

using input-output data from a single re-configurable actuator-sensor pair.

• Chapter 4 presents Bayesian inference algorithms for output-only modal identifi-

cation and uncertainty quantification using a network of in-motion mobile sensors

following an incomplete (or missing) data approach.

• Chapter 5 presents Bayesian inference algorithms for output-only modal identifi-

cation and uncertainty quantification using a network of in-motion mobile sensors

following a complete (or stacked) data approach.

• Chapter 6 presents a probabilistic framework to obtain contact-point responses from

carrier-vehicle responses using an input reconstruction approach.

• Finally, a number of conclusions resulting from the thesis work are discussed in

Chapter 7, followed by several recommendations for future study.
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Chapter 2

Background

In line with the research objectives presented in the previous chapter, this chapter pro-

vides background on two key aspects: (a) existing system identification methods for modal

parameter estimation using mobile sensor data and (b) Bayesian data analysis methods

for incorporating uncertainty quantification into the system identification framework. Ac-

cordingly, this chapter starts with the description of system models that are common in

time-domain identification of structural systems. The problem of modal parameter iden-

tification is then reviewed in the light of emerging mobile sensing strategies, where the

research developments on modal identification using re-configurable mobile sensors and

in-motion mobile sensors are presented. Next, a section is devoted to introduce a class of

Bayesian parameter inference methods using state space models, including the variational

Bayesian methods and the Markov Chain Monte Carlo sampling methods. Finally, key

research gaps in the literature are identified and specific research goals are outlined.

2.1 Vibration-based modal identification

Vibration-based modal identification involves the process of estimating the modal features

(i.e., the natural frequencies, damping ratios, mode shapes, etc.) using measured structural

vibration responses (most commonly accelerations). Over the past decades a number of
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deterministic and stochastic techniques for modal parameter estimation have been formu-

lated in both the time and frequency domains [23–25]. Such extracted modal parameters

have been used to detect, localize or quantify potential damage in the structure, or to

update finite element models. A non-exhaustive set of examples of such applications in

the civil and mechanical engineering fields includes finite element model calibration and

updating [3, 12], structural health monitoring [26, 27], non-destructive damage assessment

[28, 29], and vibration mitigation and control [30, 31].

2.1.1 System modelling

This subsection provides an overview of the time-domain numerical models commonly used

to represent dynamic structural systems.

Physical model

The physical model of a structure is derived from the physical laws governing its vibra-

tion. These models are commonly developed using finite element (FE) software yielding a

physics-based FE model. In general, the structure is assumed to be linear time-invariant

(LTI), and the resulting equation of motion for a discretized n-degrees of freedom (DoF)

structure is represented by the following second order differential equation

Md̈(t) + Cḋ(t) + Kd(t) = Lu(t) (2.1)

where d(t) ∈ Rn is the vector of displacements corresponding to the DoFs and M, C and

K ∈ Rn×n represent the mass, damping, and stiffness matrices of the structural system,

respectively. The initial displacement and velocity vectors are given by d(0) = d0 and

ḋ(0) = ḋ0, u(t) ∈ Rnu denotes the vector of external forces, and L ∈ Rn×nu is the input

location matrix representing the spatial influence of external input force(s).
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Modal model

By assuming a classically damped system, Eq.(2.1) can be decoupled by introducing the

following modal transformation

d(t) = Φη(t) (2.2)

where

η(t) =
[
η1(t) η2(t) . . . ηn(t)

]T
∈ Rn

Φ =
[
φ1 φ2 . . . φn

]T
∈ Rn×n

(2.3)

are the modal displacement vector and the mass-normalized mode shape matrix respec-

tively. The modal transformation yields r decoupled modal equations

η̈r + 2ξrωrη̇r + ω2
rηr = pTr u (2.4)

for r = 1, 2, . . . , n, where

ωr =

√
φTr (M−1K)φr

ξr =

√
φTr (M−1C)φr

/
2ωr

pr = φTr
(
M−1L

) (2.5)

are the rth circular natural frequency, damping ratio, and force participation factor, respec-

tively. The circular natural frequency ωr and mode shape vectors φr satisfy the following

eigenvalue problem:

Kφr = ω2
rMφr. (2.6)

State space model

The state space model (SSM) is a widely used representation of dynamic systems. The

SSM, originating in modern control theory, is a set of first order differential equations rep-

resenting the dynamics of a system. A key advantage of the SSM is its ability to include

the characteristics of the underlying dynamic system while offering fast computation and
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suitability in optimization-related problems. This feature has motivated several time do-

main SSID methods to adopt the SSM for parameter identification including eigensystem

realization algorithm (ERA) [25] and numerical algorithms for subspace state space system

identification (N4SID) [32] and stochastic subspace identification (SSI) [32].

In developing a SSM, a state vector is first defined as

x(t) =

[
d(t)

ḋ(t)

]
(2.7)

where x(t) ∈ Rns , ns is the state dimension and ns = 2n. The set of second-order differen-

tial equations in Eq.(2.1) (or equivalently Eq.(2.4)) are then converted into the following

set of first-order differential equations known as the continuous-time process equation

ẋ(t) = Acx(t) + Bcu(t) (2.8)

where the continuous-time system matrices Ac ∈ Rns×ns and Bc ∈ Rns×nu are defined as

Ac =

[
0n×n In×n

−M−1K −M−1C

]
, Bc =

[
0n×nu
M−1L

]
(2.9)

and I denotes the identity matrix.

If a combination of displacements, velocities, and accelerations are measured, the output

vector y(t), containing no measured quantities, assumes the following form

y(t) =

Sdis 0 0

0 Svel 0

0 0 Sacc


d(t)

ḋ(t)

d̈(t)

 , (2.10)

where, Sdis, Svel, and Sacc are the selection matrices for displacements, velocities and

accelerations, respectively. The observation equation of the SSM is given by

y(t) = Gx(t) + Ju(t), (2.11)

where the output influence matrix G ∈ Rno×ns and direct transmission matrix J ∈ Rno×nu

are defined as

G =

 Sdis 0

0 Svel

−SaccM
−1K −SaccM

−1C

 , J =

 0 0

0 0

SaccM
−1L 0

 . (2.12)
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When combined, equations (2.8) and (2.11) represent a continuous-time SSM:

ẋ(t) = Acx(t) + Bcu(t)

y(t) = Gx(t) + Ju(t).
(2.13)

In practice, continuous time outputs y(t) are not observed but rather obtained via sampling

of the system response at discrete time instances. As such, for numerical implementation

the continuous-time SSM can be converted to the discrete-time form following the zero-

order hold assumption

xk+1 = Axk + Buk,

yk = Gxk + Juk
(2.14)

for k = 1, . . . , N , where A = exp(Ac∆t) is the transition matrix, B = [A − I]A−1
c Bc

is the input-influence matrix and ∆t is the sampling time interval. Eq.(2.14) depicts a

deterministic input-output SSM.

A stochastic input-output SSM, on the other hand, is represented by

xk+1 = Axk + Buk +wk,

yk = Gxk + Juk + vk
(2.15)

where wk and vk are process noise and measurement noise terms that account for un-

certainties in the SSM (such as unmodelled dynamics or measurement errors) and are

modelled as temporally independent zero-mean Gaussian white-noise processes, with the

following covariance structure〈[
wk

vk

] [
wT
k vTk

]〉
=

[
Q 0

0 R

]
. (2.16)

where 〈·〉 denotes the expectation operation. For identification of civil infrastructure, apply-

ing a sufficiently large controlled excitation is often impractical. Thus, a common practice

is to rely on ambient excitation which despite not being measurable, can be represented by

realizations of a stochastic process. In this case, the following output-only stochastic SSM

is used for identification purposes:

xk+1 = Axk +wk (2.17a)
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yk = Gxk + vk. (2.17b)

The modal parameters of the underlying structure (i.e., natural frequencies, damping

ratios, and mode shapes) are preserved in the SSM and can be extracted from the A and G

matrices via an eigenvalue transformation. An algorithm for extracting real-valued modal

parameters from discrete-time SSM matrices is provided in Appendix B.1.

2.1.2 Mobile sensing paradigm

Data collection for structural system identification (SSID) has traditionally relied on static

sensor networks [14, 33] which are comprised of sensors that remain fixed to strategic

locations on the structure during the data collection period. The spatial coverage, which is

a function of the size and the arrangement of sensors in the network, determines the quality

of information that can be extracted by the SSID techniques. Since mode shapes are spatial

features, their spatial resolution is directly related to the spatial coverage of the sensor

networks as the mode shape ordinates are only identified at sensor locations. Thus, the use

of limited static sensors may result in low spatial resolution of the estimated mode shapes.

Although this problem may be alleviated through the use of dense static (wired or wireless)

sensor networks, the increased cost associated with instrumentation and maintenance is a

serious impediment in practical, large-scale implementations. Optimal sensor placement

techniques [34, 35] have been explored in this regard in an effort to minimize the number

of sensors needed to achieve adequate mode shape information from the data; however, the

underlying challenges associated with static sensor networks, including low mode shape

resolution, have not yet been solved.

An appealing alternative to static sensor networks is the concept of mobile sensing.

Mounting sensors on robots or other vehicles and having them traverse to different positions

on the structure enables efficient data collection from a large number of locations. As such,

the use of a few mobile sensors has the potential to imitate large networks of static sensors

with the implication being that high resolution mode shapes may be obtained from data

collected by a few mobile sensors. The various attempts in the literature to implement

mobile sensing can be broadly categorized as either re-configurable or in-motion mobile
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sensing. These two approaches are distinguished by the method in which data is collected;

re-configurable mobile sensing collects data only when the sensors are stationary while

in-motion mobile sensing acquires a continuous stream of measurements from the moving

sensors. Both approaches lead to incomplete datasets which pose challenges for estimating

structural modal parameters. The two methods, along with the challenges posed by the

datasets are discussed next.

Re-configurable mobile sensing

In re-configurable mobile sensing, vibration data is collected at different locations using

multiple non-simultaneous configurations; the data collection happens when the sensors are

not in motion. An example of re-configurable mobile sensing is the flexure based mobile

sensing nodes developed by Zhu et al. [16]. These nodes, each consisting of a pair of two-

wheeled cars and an accelerometer, function by temporarily mounting the accelerometer

directly on the structural surface for data collection and feature automated repositioning

to achieve data collection at several locations on the structure in a sequential manner. In

a subsequent study [17], the authors deployed four such nodes on a steel truss pedestrian

bridge for modal parameter identification. A total of five sequential sensing configurations

were used where the nodes paused to collect ambient acceleration data. With the aid of

two static reference sensors, three mode shapes of the bridge were identified using ERA-

NExT [36] with a higher resolution compared to a fixed sensor network of same size (i.e.,

4 sensors).

The nature of the data collected during each configuration is similar to that of static

sensor networks; however, unlike static sensor networks which provide coverage of the entire

structure, each configuration only covers a portion of the structure resulting in a sequential

collection of datasets from different portions of the structure. This property is illustrated

in Figure 2.1. Each dataset (coming from each configuration) can be individually processed

by conventional SSID techniques to obtain partial (i.e., spatially incomplete) mode shapes.

Subsequently, with the aid of some reference sensors, the individual partial mode shapes

can be merged into global mode shapes. Since the partial mode shapes are dense with

respect to the portion of the structure they measured, fusing several partial mode shapes
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together yields high resolution global mode shapes. This is the key concept underlying the

identification of high resolution mode shapes with re-configurable mobile sensors.

The potential for mobile platforms to carry both sensors and actuators presents a novel

application of re-configurable mobile sensing. The DACS, recently developed by Goorts et

al. [22] is capable of repositioning at different locations on a structure and applying desired

control actions. The platform consists of an unmanned ground vehicle equipped with an

active mass damper and accelerometers. Although the platform was initially intended

for vibration control applications, this type of system can also be used as a collocated

actuator-sensor pair for modal identification purposes. A key advantage of such a system

is that mass-normalized mode shapes could be estimated using knowledge of the input

excitation. However, the feasibility of using a single collocated actuator-sensor pair for

modal identification has yet to be successfully demonstrated in the literature.

In-motion mobile sensing

In-motion mobile sensing differs from re-configurable mobile sensing in that the vibration

data is collected while the sensors are in motion. An advantage of in-motion mobile sensing

is that it improves spatial coverage in a reduced amount of time as the sensors need not

pause at prescribed locations to collect data. However, the datasets obtained from in-

motion mobile sensing are always characterized by spatial discontinuities, meaning that

each entry in a sensor channel can be associated with a different spatial location compared

to its neighbouring entries. This feature prevents a direct application of conventional modal

identification algorithms on mobile sensor data.

Attempts to extract modal parameters from measurements collected using in-motion

mobile sensors began almost a decade ago and the ensuing research since then has been

quite diverse. A growing body of research exists that is focused on using the dynamic

response of an instrumented vehicle – such as a truck fitted with a sensor on its axle –

crossing a bridge for extracting the bridge modal parameters (see reviews [37, 38]). The

concept underlying this methodology has its roots in the theory of vehicle-bridge interac-

tion (VBI); as the vehicle crosses the bridge, both the vehicle and bridge vibrate and the

vehicle response is influenced by the bridge vibration. By analyzing the vehicle response,

15



one aims to identify the modal characteristics of the bridge structure. The idea of extract-

ing the fundamental bridge frequency from the dynamic response of a passing vehicle was

first proposed by Yang et al. [39] and verified experimentally by Lin and Yang [40] using

an accelerometer-instrumented cart towed by a light truck over a bridge. The fundamental

frequency of a bridge was extracted from a fast Fourier transform of the response measure-

ments recorded by the instrumented accelerometer. Later, Yang and Chang [41] adopted

an empirical mode decomposition (EMD) technique for preprocessing the vehicle response

measurements in order to enhance the visibility of higher bridge frequencies which typically

get suppressed in the vehicle responses. More recently, Yang and Chen [42] proposed a

modified stochastic subspace identification to extract the bridge modal frequencies from

the response of a moving instrumented vehicle.

The identification of bridge damping ratios and mode shapes using VBI has been at-

tempted by few researchers. Identification of bridge damping ratios was proposed by

González et al. [43] where the authors developed a six-step iterative algorithm using accel-

eration responses at two axles of a half-car model. The effectiveness of the algorithm under

the influence of measurement noise, road roughness and modelling errors was studied and

it was shown that bridge damping could be identified with reasonable accuracy. Compared

to bridge frequencies and damping ratios, VBI-based estimation of mode shapes has been

looked into very recently. For a simply-supported bridge excited by the crossing of a sin-

gle vehicle, Yang et al. [44] proposed extracting proxy mode shapes of the bridge using

Hilbert transform. The measured vehicle response was separated into multiple monotone

component responses using band-pass filtering. Then using a Hilbert transform on the com-

ponent responses the instantaneous amplitude histories of the component responses were

extracted; the envelope of these instantaneous amplitude histories resembled the mode

shapes of the simply supported bridge. Malekjafarian and O’Brien [45] proposed to split

up the vehicle responses into multiple short segments corresponding to artificial segmented

spans of a bridge; short-time frequency domain decomposition applied to these segmented

vehicle responses yielded mode shape ordinates at the mid-point of the segmented spans.

It is to be mentioned that although the aforementioned techniques based on VBI theory

are developing, a comprehensive modal parameter identification technique where all three

modal parameters (i.e., modal frequencies, damping ratios and mode shapes) are identified
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simultaneously, is still lacking. There is no unifying mathematical framework underpinning

the aforementioned VBI-based approaches for identifying the modal parameters, which is

a deterrent to the development of a unified modal identification framework in the context

of in-motion mobile sensors.

Marulanda et al. [19] developed a high resolution mode shape identification procedure

using just two sensors (one static and one mobile). The procedure first identified the

natural frequencies and damping ratios, and then using them spatially dense mode shapes

were extracted from a space-frequency representation of the responses constructed with

short-time Fourier transforms. Using a numerical example, assuming noise-free data and

known natural frequencies, the authors identified first three mode shapes at 479 points

with great accuracy. The authors conducted a laboratory scale experiment on a simply

supported beam where a moving sensor car instrumented with a wireless iMote2 sensor was

used for in-motion mobile sensing. The beam was excited by white noise using a dynamic

shaker and manually with a rubber hammer. Three mode shapes, with 21 ordinates each,

were successfully identified.

Matarazzo and Pakzad [20] posed the problem of modal identification using mobile sen-

sors as a missing data problem. By assuming the mobile sensing nodes (i.e., the locations

on the structure where the responses were recorded) coincided with the DoFs of the un-

derlying numerical model, the authors showed that the generation of data from in-motion

mobile sensing can be framed as an equivalent static sensor data matrix with unobserved

(or missing) entries. The missing entries include all locations that do not coincide with the

mobile sensor paths, as shown in Figure 2.2, and the mobile sensor data was asserted to be

a specific subset of the full, dense static sensor dataset, with the subset corresponding to

the movement of the mobile sensors. The problem of modal parameter identification using

the missing data matrix was tackled [20] in a SSM-based maximum likelihood (ML) frame-

work and a modified expectation maximization (EM) algorithm was proposed to obtain

the SSM parameters. The modal parameters of the structure were subsequently extracted

from the estimated SSM parameter matrices. In an application of modal identification of

the Golden Gate bridge using ambient vibration data, the authors [20] simulated a mobile

sensor network with 10 moving sensors which resulted in 82% missing entries in the data

matrix. Nevertheless, 19 vibration modes were identified with an accuracy comparable to
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VSLsusingafewmobilesensors,theauthorsproposedtoconstructmultipleTPMswith

2Originallytermedasvirtualprobinglocations(VPLs)[46]
3Duringthisthesiswork,anerrorwasuncoveredinthederivationofSTRIDEXupdateequations[21]
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smaller subsets of VSLs and then run STRIDEX algorithm on each TPM to yield partial

mode shapes. These partial mode shapes were then assembled into high resolution global

mode shapes. The authors demonstrated this procedure experimentally [47] on a 3.66 m

long simply supported steel beam scanned by two toy cars equipped with Imote2 wireless

accelerometers. A total of 144 subsets of VSLs were analyzed (144 STRIDEX runs) which

corresponded to 288 modal ordinates. The first mode shape of the beam was extracted at

248 points on the beam, illustrating the dense spatial information that can be obtained

using in-motion mobile sensors.

In the quest of a unified framework for modal identification using in-motion mobile

sensors, an assumption that the moving sensors are able to directly measure the bridge

responses of a structure is commonly employed. However, in practice the sensors mounted

on carrier-vehicles (e.g., robots, cars) measure the vehicular responses, which are the result

of the convolution of the ‘true’ contact-point bridge responses – the response at the contact

point of the vehicle with the bridge – with the carrier-vehicle system. Yang and Chen [42]

reported that the the bridge modal features can be masked in the vehicle response due

to dominant vehicle dynamics and this could prevent successful identification of bridge

modal parameters. Yang et al. [48] proposed to use contact-point response to get better

modal identification results. Considering a simply supported beam and ignoring vehicle and

bridge damping, an approximate closed-from solution was derived to obtain contact-point

response from the measured vehicle response. The proposed method was assessed using

numerical simulations and it was shown that the contact-point responses outperformed the

vehicle response in extracting the frequencies and mode shapes of a bridge. However, the

approach to obtain contact-point responses is approximate in nature and a more generalized

procedure to obtain contact-point responses is lacking.
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2.2 Bayesian inference using state space models

A certain level of uncertainty is inherent in all methods of modal identification however the

use of mobile sensor data creates additional sources of uncertainty that may impact the

accuracy of the modal parameter estimates. In general, modal identification using mobile

sensor data is subjected to uncertainty from any combination of the following sources:

• Uncertainty due to unmeasured external loads (e.g., wind, traffic, environmental

effects) in case of output-only mobile sensor measurements,

• Measurement error in the sensory system (i.e., instrument noise, transmission error,

missing data),

• Large measurement error induced by the mobile platform moving over a rough road

surface,

• Modelling error due to unmodelled dynamics of sensor-structure interaction and as-

sumption of linear dynamics for the underlying structural system,

• Statistical uncertainty arises due to limited data and reduces with more data.

Uncertainty is typically classified as aleatory (or Type I) and epistemic (or Type II).

Epistemic uncertainty (or reducible uncertainty) stems from gaps in knowledge whereas

aleatory uncertainty (or irreducible uncertainty) is attributed to unknown random varia-

tions when an experiment or physical phenomenon is repeated. In a modelling context,

the assumptions made during the development of a model, such as the linear or nonlinear

behavior, type of boundary condition, material characteristics, etc. result in epistemic un-

certainty. Aleatory uncertainty is often modeled as a random variable added to the output

of a model, and it is used to express the randomness observed when the same experiment

is performed more than once. A detailed exposition on classification of uncertainties that

arise in structural modelling for risk analysis is provided in [49].

In a Bayesian perspective, uncertainty is expressed via probability distributions which

characterize the state of knowledge. Random variables express our knowledge about the
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model parameters and hence in this perspective, uncertainty is only epistemic and can

always be reduced by improving one’s knowledge. Quantifying the uncertainty associated

with estimated modal parameters not only provides a sense of fidelity but is also useful in

further applications such as Bayesian model updating, risk assessment and decision making

[3, 50, 51]. Most of the existing Bayesian formulations of modal parameter identification

using static sensors are confined to the frequency-domain [52–56], where a Fourier transform

is first implemented and then modal analysis is performed. Time-domain Bayesian modal

parameter identification with static sensor data on the other hand has been attempted

only very recently [57, 58].

Bayesian inference [59, 60] is a widely used estimation framework that directly pro-

vides the uncertainties in parameter estimation. The underlying principles of the Bayesian

framework are based on probability distributions and the rules of probability mathematics.

It is therefore essential that all mathematical models used within the Bayesian framework

are formulated in terms of probability distributions; this allows the computation rules of

probability theory to be valid for Bayesian inference of such models. In Bayesian statistics,

the outcome to any inference over a set of random variables is always the posterior prob-

ability distribution, defined as the joint probability distribution of the random variables

given the measurements. Thus, instead of resulting in a single value, the outcome is the

probability density function of the quantities of interest given the data.

The class of mathematical models that are of concern in this thesis are the stochastic

SSMs (e.g. Eq.(2.17)). The two key characteristics of stochastic SSMs are: the decoupled

nature of the system dynamics and measurements (i.e., the process and measurement

equations) and the inclusion of process noise and measurement noise – which induces a

probability distribution over the states and the measurements. The sequence of system

states X = {x1, . . . ,xN+1} contains sufficient information about the system, however they

are typically hidden (or latent) and the inference on the states has to be made entirely

based on the noisy measurements Y = {y1, . . . ,yn}. For example, in structural dynamical

systems, the states contain the displacements and velocities at the DoFs of the structural

model, however in most cases only noisy acceleration measurements are available.

In SSMs representing dynamic systems there are often unknown or uncertain parameters

θ which should be estimated along with the states. The Bayesian approach to addressing
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unknown parameters is to model them as random variables with a certain prior distribution

πpr (θ). A stochastic SSM (as in Eq.(2.17)) with unknown parameters can be written in

the following probabilistic notation:

θ ∼ πpr (θ)

x1 ∼ p (x1 | θ)

xk+1 ∼ p (xk+1 | xk,θ)

yk ∼ p (yk | xk,θ) .

(2.18)

Regarding the notation, p ( · | · ) is used to denote a generic conditional probability density

function (PDF) specified by its arguments and the difference between the notations for

random variables and their realizations is suppressed. Following Bayes’ rule, the joint

posterior distribution of the states and the parameters can be written as:

p (X,θ | Y ) =
p (Y |X,θ) p (X | θ) πpr (θ)

p (Y )
. (2.19)

To obtain the parameters θ, the states are integrated out, which yields the marginal

posterior distribution of parameters:

p (θ | Y ) =

∫
p (X,θ | Y ) dX. (2.20)

The above equation involves a high-dimensional integral (i.e., integration over all state vari-

ables {x1, . . . ,xN+1}) which is analytically intractable. Hence four computational methods

for parameter estimation, namely Laplace approximation, Expectation maximization, vari-

ational Bayes and Markov chain Monte Carlo methods are discussed next, all of which are

based on approximating the marginal posterior distribution (without explicitly forming the

joint posterior distribution of the states and parameters).

2.2.1 Maximum a posteriori and Laplace approximation

The simplest approximation to the posterior distribution is a point estimate based on the

location of the maximum of the posterior distribution. This is known as the maximum a
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posteriori (MAP) estimate and defined as:

θ̂MAP = arg max
θ

ln [p (Y | θ) πpr (θ)] . (2.21)

The disadvantage of the MAP estimate is that it ignores the spread of the posterior distri-

bution and as such lacks uncertainty information. The Laplace approximation, [61] which

performs a Taylor series expansion at the MAP estimate, is one way of improving the

MAP estimate. The idea here is to approximate the posterior with a normal distribution

centered at the MAP estimate,

p (θ | Y ) u N
(
θ | θ̂MAP,

[
H
(
θ̂MAP

)]−1
)

(2.22)

where H is the second order derivative of the negative log joint PDF at the MAP estimate:

H
(
θ̂MAP

)
=
∂2 ln [p (Y | θ)πpr (θ)]

∂θ∂θT

∣∣∣∣
θ=θ̂MAP

. (2.23)

The approximation is based on the asymptotic normality of the posterior under a set of

regularity conditions, as the number of observed data points tends to infinity [62]. How-

ever, the assumption of a normal distribution may misrepresent the posterior uncertainty

for small datasets. Furthermore, the Laplace approximation is not suitable for bounded,

constrained, or strictly positive parameters or for multi-modal probability distributions.

Finally, the second order derivative may be difficult to compute, particularly when the

number of unknown parameters is large.

2.2.2 Expectation Maximization

The expectation-maximization (EM) algorithm [63–65] provides an iterative approach to

find a ML or MAP estimate of the parameters in stochastic SSMs. In order to obtain

the ML estimate of θ, the EM algorithm maximizes the following lower bound of the

optimization problem:

max
θ

[ln p (Y | θ)] = max
θ

[
ln

∫
p (Y ,X | θ) dX

]
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≥ max
θ

[∫
ln p (Y ,X | θ) dX

]
(2.24)

where L (θ) := ln p (Y ,X | θ) is referred as the complete-data log likelihood function and

is much easier to optimize than log p (Y | θ). Starting from an initial guess θ(0), the

EM algorithm seeks to maximize Eq.(2.24) by iteratively alternating between two distinct

subroutines called the E-step and the M-step:

1. Expectation step (E-step): Compute the expectation of the log likelihood function

with respect to the current conditional distribution of X given Y and the current

estimate of the parameter θ(j)

F
(
θ | θ(j)

)
=
〈
L(θ) | Y ,θ(j)

〉
. (2.25)

2. Maximization step (M-step): Find the parameter that maximizes the F
(
θ | θ(j)

)
,

θ(j+1) = arg max
θ

F
(
θ | θ(j)

)
. (2.26)

The iterations are continued until convergence in likelihood is achieved. The EM algorithm

is a local maximizer and has the property that the likelihood increases monotonically [66]

with each EM iteration. The EM algorithm is particularly useful when the likelihood

function belongs to an exponential family of probability distributions; in such a case, the

E-step becomes a sum of expectations of sufficient statistics [65] and the M-step involves

a closed-form update for each step [67]. Application of the EM algorithm for maximum

likelihood estimation of modal parameters using static sensor data has been proposed in

[68–70].

A drawback of the EM algorithm is that it does not provide an estimate of the covariance

matrix corresponding to the parameter estimates. The Supplemented EM algorithm [71]

was proposed to address this limitation by providing the covariances of the estimated

parameters calculated from observed Fischer information matrix. The other drawback

associated with the EM algorithm is the potential for slow convergence, even in seemingly

innocuous problems or in problems where there is too much incomplete information [72].

A detailed presentation of the EM algorithm and its variants is provided in [73].
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2.2.3 Variational Bayes

The variational Bayes (VB) approach [74, 75] casts the Bayesian inference of unobserved

variables (i.e., unknown states and unknown parameters) as a deterministic optimization

problem where an approximate posterior distribution is fit to the true posterior distribution.

A problem often encountered in Bayesian inference is the need to evaluate the log-marginal

likelihood [74, 76] of the observed data Y given by

ln p (Y ) = ln

∫
p (Y ,X,θ) dXdθ. (2.27)

The right hand side of Eq.(2.27) involves a high-dimensional integration and is often an-

alytically burdensome or even intractable. In the VB framework, a lower bound approx-

imation to the log marginal likelihood is sought and iteratively maximized such that the

lower bound eventually converges to a value close to the true log marginal likelihood.

The joint posterior distribution p (X,θ | Y ), in Eq.(2.19), is approximated by an ar-

bitrary probability distribution q (X,θ), known as the “variational distribution”. The

distribution q (X,θ) is usually selected from a family of distributions more simple than

p (X,θ | Y ), with the intention of making q (X,θ) similar to the true posterior distribu-

tion. The following composition of the log marginal likelihood forms the core of the VB

approach:

ln p (Y ) =

∫ ∫
q (X,θ) ln p (Y ) dXdθ

=

∫ ∫
q (X,θ) ln

p (Y ,X,θ)

p (X,θ | Y )
dXdθ

=

∫ ∫
q (X,θ) ln

p (Y ,X,θ)

q (X,θ)
dXdθ +

∫ ∫
q (X,θ) ln

q (X,θ)

p (X,θ | Y )
dXdθ

, Fve (q (X,θ)) + KL (q (X,θ) ||p (X,θ | Y )) . (2.28)

The log marginal likelihood comprises the sum of two information-theoretic quantities:

Fve (q (X,θ)), referred to as the “variational free energy”, and KL (q (X,θ) ||p (X,θ | Y )),

referred to as the Kullback-Leibler divergence (KLD) [77] between the true posterior distri-

bution p (X,θ | Y ) and the variational distribution q (X,θ). The KLD is always greater
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than or equal to zero and can be intuitively understood as the distance between two proba-

bility distributions: if the two probability distributions q (X,θ) and p (X,θ | Y ) are very

dissimilar, the KL (q (X,θ) ||p (X,θ | Y )) returns a high positive value. If and only if the

two probability distributions q (X,θ) and p (X,θ | Y ) are identical, it returns zero. Due

to the non-negativity of KLD, the variational free energy Fve (q (X,θ)) is always smaller

than the log marginal likelihood and thus forms the lower bound of the log marginal like-

lihood (i.e. Fve (q (X,θ)) ≤ ln p (Y )). This fact is exploited in the numerical application

of the VB approach: since the log marginal likelihood is a constant quantity, maximizing

the variational free energy is equivalent to minimizing the KLD.

A common choice for the variational distribution q (X,θ) over the unobserved variables

X and θ is a factorization over sets X and θ:

q (X,θ) = q (X) q (θ) . (2.29)

However, due to the complexity of the integrals involved, a simultaneous analytical maxi-

mization of the variational free energy with respect to both its arguments is often tedious

and a “coordinate-wise” approach that first maximizes with respect to q (X) and second

with respect to q (θ) is preferred [74]. The VB algorithm maximizes the variational free

energy Fve (q (X,θ)) in Eq.(2.28) with respect to the variational distributions q (X) and

q (θ) by alternately applying the following two steps [78, 79]:

1. VB Expectation (VBE-step): Compute the variational distribution of the latent

states

q(j+1) (X) ∝ exp

(∫
ln p (Y ,X,θ) q(j) (θ) dθ

)
∝ exp

(
〈 ln p (Y ,X,θ) 〉q(j)(θ)

)
.

(2.30)

2. VB Maximization (VBM-step): Compute the variational distribution of the unknown

parameters

q(j+1) (θ) ∝ exp

(∫
ln p (Y ,X,θ) q(j+1) (X) dX

)
∝ exp

(
〈 ln p (Y ,X,θ) 〉q(j+1)(X)

)
.

(2.31)
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The above VBE-step and VBM-step are computed iteratively until the variational free

energy converges to a stationary value. Application of the VB algorithm for time-domain

Bayesian inference of modal parameters using static sensor data has been proposed in [57].

The limitations of this method are: (a) there is only one approximating distribution

limiting its effectiveness in representing multi-modal posteriors; however, this can be alle-

viated by considering a mixture of approximate distributions [80, 81]; (b) similar to EM,

the VB is also sensitive to the initial point estimate since VB acts as a local maximizer

and can get stuck in a local maximum; and (c) the spread (covariance) of the posterior

distribution may be underestimated [82, 83] in the variational family.

2.2.4 Markov chain Monte Carlo

A more commonly used class of algorithms is the Markov chain Monte Carlo (MCMC) [84]

algorithms, which are based on sampling from probability distributions via Markov chains.

Like variational inference, MCMC algorithms starts with a random draw from an initial

distribution of the unobserved variables (i.e., unknown states and unknown parameters).

However, rather than optimizing the hyperparameters of this distribution, the MCMC

algorithms construct a Markov chain (i.e. a sequence of random variables in which the

distribution of each element depends on the value of the previous one) by repeatedly

simulating samples in the chain. After simulating for a sufficiently long time, the desired

posterior distribution is eventually obtained as the stationary distribution of the Markov

chain.

The MCMC algorithms [85] are particularly well-suited for simulating samples from

Bayesian posterior distributions p (θ | Y ) as their implementation only requires knowledge

of the unnormalized posterior distribution p (Y | θ) p (θ). As such, there is no need to

evaluate the intractable marginal likelihood p (Y ). Landmark developments in MCMC

tools for Bayesian computation include the Metropolis-Hastings algorithm [86, 87] and

the Gibbs sampler [88]. The use of MCMC algorithms in the context of SSMs has been

discussed in [89, 90].

The Metropolis-Hastings (MH) algorithm is the most common type of MCMC algo-
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rithm. It uses a proposal density q
(
θ | θ(j)

)
for suggesting the next sample, given the

current sample θ(j). Starting from an initial point θ(0), the Markov chain in MH algorithm

is constructed by iterating the following steps:

1. Sample a candidate point θ∗ from the proposal distribution θ∗ ∼ q
(
θ∗ | θ(j)

)
,

2. Evaluate acceptance probability

Aj = min

1 ,
p (θ∗ | Y ) q

(
θ(j) | θ∗

)
p
(
θ(j) | Y

)
q
(
θ∗ | θ(j)

)


3. Generate a uniform random variable u ∼ U(0, 1) and set

θ(j+1) =

θ∗ if u ≤ Aj
θ(j) otherwise

The choice of the proposal distribution is crucial for performance of the MH algorithm

and it has become good practice to adaptively tune the proposal to achieve an optimal

acceptance rate [91].

The Gibbs sampler (GS) is another popular MCMC algorithm, which samples compo-

nents (or blocks) of random variables one (block) at a time from their conditional distribu-

tions given the other random variables [88]. It can be shown that the sequence of samples

constitutes a Markov chain and the stationary distribution of that Markov chain is the

desired joint distribution [59]. In its basic form, GS is a special case of the Metropolis-

Hastings algorithm and is particularly applicable when the joint distribution is not known

explicitly or is difficult to sample from directly while the conditional distribution of each

variable (or block of variables) is known and is easy to sample from.

Gibbs sampling is well suited for SSMs [92] as they are typically specified as a collection

of conditional distributions as depicted in Eq.(2.18). Starting with an initial parameter set

θ(0), the GS performs the following steps to sample the SSM with unknown parameters θ,

latent states X and observed variables Y :
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1. Sample X(j+1) ∼ p
(
X | θ(j),Y

)
,

2. Sample θ(j+1) ∼ p
(
θ |X(j+1),Y

)
Although MCMC algorithms can provide asymptotically exact results of posterior dis-

tributions in Bayesian inference, there are a number of disadvantages to using them in

practice. First, MCMC algorithms are typically much more computationally expensive

compared to variational inference algorithms due to the time required for convergence of

the Markov chain to the desired posterior distribution. Furthermore, verifying convergence

of the Markov chain may require multiple runs of a Markov chain from varying starting

points further adding to the computational demands. Second, the initial samples of the

Markov chains typically come from some non-stationary distribution; these initial samples

are referred to as “burn-in” samples and need to be discarded. Third, the samples gen-

erated from MCMC algorithms are correlated, which can increase the number of samples

needed to achieve good precision. To obtain independent samples, a subsampling procedure

is usually implemented that involves discarding all but every kth sample.

2.3 Research gaps in mobile sensing based modal pa-

rameter identification

A summary of the main gap areas in the existing research on modal parameter identification

using mobile sensing is described below:

• Although modal parameter identification using a network of re-configurable mobile

sensors has been studied in the literature, identification of high resolution mode

shapes using minimal instrumentation, specifically using a single reconfigurable mo-

bile actuator-sensor pair, has not been investigated.

• From an incomplete-data perspective, the mobile sensor data matrix generated using

in-motion mobile sensors was shown to be equivalent to a dense static sensor data

matrix with missing observations [20]. Inference in the presence of large amounts
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of missing data can add significant uncertainty to the identified modal parameters.

The fidelity of the identified parameters, particularly the mode shapes, is directly

related to the degree of missing information, and therefore a framework that allows

quantifying the uncertainty induced by missing observations in the identified modal

parameters is important and has thus far not been explored in the literature.

• The stacked data matrix [46] presents a complete-data perspective to data from in-

motion mobile sensors. However, a direct identification with the stacked data matrix

is not straight-forward due to the spatial discontinuities of the data entries. The

ML-based STRIDEX [46] algorithm, introduced to enable identification with stacked

data matrix, is inflexible due to the constraint of minimum model size and needs to be

improved. Furthermore, uncertainty information of the estimated modal parameters

was not quantified and needs to be accounted for.

• The direct use of in-motion mobile sensor responses for modal identification may lead

to poor estimation results for higher bridge modes. As the sensors are instrumented

on mobile carrier-vehicles, the responses recorded are in fact vehicle responses and

not true contact-point structural responses. Thus the structural dynamics may get

masked in the vehicle responses and this may prevent successful identification of the

structural modal parameters. Contact-point responses are shown to be a better choice

for modal parameter identification over vehicle responses [48], however a generalized

technique to estimate contact-point response from measured vehicle response has not

yet been developed.

2.4 Specific Objectives

Based on the identified gap areas, the specific research objectives of this thesis are as

follows:

1. To determine the feasibility of re-configurable mobile sensing with a single actuator-

sensor pair (i.e., minimal instrumentation) for identification of high resolution mode

shapes. This entails
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(a) developing a methodology for modal identification using input-output data from

a single actuator-sensor pair,

(b) conducting a sensitivity study for performance assessment, and

(c) experimentally verifying the proposed approach.

2. To propose a Bayesian framework for SSM-based output-only modal parameter iden-

tification following the missing data approach to in-motion mobile sensing. This

entails

(a) developing a Bayesian modal parameter identification methodology that can

handle missing observations,

(b) quantifying the uncertainty in the identified modal parameter estimates due to

factors including extent of missing entries in data matrix, and

(c) experimentally verifying the proposed approach.

3. To propose a Bayesian framework for SSM-based output-only modal parameter iden-

tification following the stacked data approach to in-motion mobile sensing. This

entails

(a) developing an improved modelling and estimation framework that is flexible,

(b) establishing a Bayesian framework for modal parameter identification and un-

certainty quantification, and

(c) experimentally verifying the proposed approach.

4. To propose a generalized framework for deriving the contact-point response from

measured vehicle response. This entails

(a) establishing a mathematical relation between the vehicle response and the contact-

point response, and

(b) establishing an estimation framework that recovers contact-point response from

measured vehicle response.

The dynamics associated with mobile sensor platforms will be neglected in pursuit of the

first three objectives and addressed in detail in the fourth objective.
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Chapter 3

Modal identification using a single

re-configurable actuator-sensor pair

This chapter considers the problem of input-output modal identification using a single

re-configurable mobile actuator-sensor pair.1 Although, output-only modal identification

using the ambient response of a structure is more convenient, without knowledge of the

input excitation, the resulting mode shape estimates are arbitrarily normalized [93]. This

poses a challenge for applications such as structural control, frequency response function

(FRF) synthesis, or force estimation where mass-normalized mode shapes are required.

A novel input-output mode shape identification method is developed in this study

whereby a single mobile actuator and a single mobile sensor are used within the re-

configurable mobile sensing approach. Two different implementations of the actuator

and sensor, namely non-collocated actuator sensor (NCAS) and collocated actuator sensor

(CAS) are considered in this study. In the NCAS case, the actuator and sensor move

independently and therefore may or may not be collocated whereas in the CAS case the

actuator and sensor are considered to be a single system and thus always collocated.

The statement of the problem is formally presented next followed by a detailed descrip-

tion of the solution methodology. The proposed approach and effects of different types of

1A portion of the work presented in this chapter was developed in collaboration with Dr. Mukhopad-

hyay. For details, refer to the Statement of Contributions
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identification errors are studied through numerical examples and later verified experimen-

tally using a laboratory-scale beam model.

3.1 Problem Statement

Consider an n-DoF FE model of a classically damped Euler-Bernoulli beam (representing

a bridge), with the equation of motion

Md̈+ Cḋ+ Kd = Lu (3.1)

where the n× n matrices M, C, and K, are respectively the mass, damping and stiffness

matrices of the beam, and L is the n× 1 input location vector. The beam is excited using

a single actuator; when the actuator applies an input u to the jth DoF, Lj = 1 and Li = 0,

∀ i 6= j. The mass of the actuator is assumed to be negligibly small compared to the beam,

and actuator-structure interaction is ignored. The undamped eigenvalue problem for the

system is given by

KΦ = MΦΛ (3.2)

where Φ ∈ Rn×n is the mode shape matrix and Λ ∈ Rn×n is the diagonal matrix of

eigenvalues. The objective is to estimate the modal parameters of the above system using

a single sensor and single actuator. This will be demonstrated using both the NCAS and

CAS approaches, as discussed next.

3.1.1 Non-collocated actuator-sensor (NCAS) case

The NCAS case can be implemented in three different setups derived from the positioning

of the actuator and sensor. The three setups are defined as: (a) mobile actuator - static

sensor, and (b) static actuator - mobile sensor. For each case, a static actuator or sensor

will remain fixed at a specific location on the beam while a mobile actuator or sensor

sequentially repositions itself at different locations along the length of the beam. Once the

mobile sensor/actuator arrives at a new location, a test is performed whereby the actuator

excites the structure and the response is measured by the sensor. This process results in
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acollectionofdatasetseachcorrespondingtoadifferentactuator/sensorposition. As

willsoonbecomeevidentinthesolutionmethodology,atestinwhichtheactuatorand

sensorarecollocatedmustbeperformed,regardlessofthesetup,inorderachieveunique

identificationofmass-normalizedmodeshapes. Thesolutionmethodologypresentedin

Section3.2willfocusspecificallyonsetup(a);however,themethodologyandassociated

equationscanbeextendedtotheothersetup. Withinsetup(a),consideranarbitrarytest

inwhichthemobileactuatorispositionedonthebeamatstationsi,andthesensoris

fixedatstationsjasshowninFigure3.1

Station Station

.

Figure3.1:Beamwithamobileactuatorandastaticsensor.

Thisinput-outputpairisindexedas u(si),y(sj,si),whereu(si)istheinputforcefrom

theactuatoratstationsi,andy
(sj,si)istheresponse(displacement/velocity/acceleration)

measuredbythesensoratstationsjduetotheforceexertedatstationsi.Inthenext

testtheactuatorrepositionsitselftoanotherstation(i.e.,anyadmissiblelocation)on

thestructure,andthisprocedureisrepeated. LetPbethesetofallsuchstationssi,

i={1,2,...,P},wheretheactuatorsequentiallystationsitself. Also,assumethatone

ofthesestationsissjinordertoachievecollocationwithsensor.Traversingtheactuator

tothecompletesetofstationswhilemeasuringtheresponseforeachtestatsjresultsin

asetDNCASofinput-outputpairs,eachindexedbytheircorrespondinginputlocation,as

shownbelow:

DNCAS= u(si),y(sj,si) :si,sj∈P,i=1,2,...,P. (3.3)
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3.1.2 Collocated actuator-sensor (CAS) case

In the CAS case, the actuator-sensor pair move as a single unit, exciting and sensing

different points on the beam, sequentially. The set of input-output pairs in this case is

indexed as

DCAS =
{(
u(si), y(si)

)
: si ∈ P , i = 1, 2, . . . , P

}
, (3.4)

where y(si) is the output measured by the collocated sensor at station si, due to the input

force u(si) applied at si. Given either dataset (i.e., DNCAS or DCAS) of sequential point

input-output measurements, the objective is to estimate the modal parameters (i.e., natural

frequencies, damping ratios, and mode shapes), of the beam.

3.2 Mass Normalized Mode Shape Identification

In this section, a formulation to obtain mode shape ordinates is derived for both NCAS

and CAS cases based on an input-output balance [94]. It will be shown that although the

NCAS case can estimate mode shapes directly, the CAS case requires an additional step

which involves approximating the signs of mode shape components. The signs may be

obtained from apriori knowledge of the structure or mode shapes approximated by a FE

model.

NCAS with Acceleration Output: First consider the case of NCAS, with acceler-

ation output measurements (i.e. y(sj ,si) = d̈(sj ,si)). Assume that only the first nm modes

(nm < n) are dominant in the measured input-output data in DNCAS. Furthermore, as-

sume that any suitable system identification technique can identify all nm dominant modal

frequencies and damping ratios from DNCAS. These identified parameters are denoted as:

(ωr, ξr) for r = 1, . . . , nm where ωr and ξr are the circular natural frequency and damping

ratio corresponding to the rth mode, respectively. The objective is to identify the cor-

responding nm mode shapes at all the locations excited by the mobile actuator, starting

from the identified (ωr, ξr)’s and measured
(
u(si), d̈(sj ,si)

)
’s.
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By modal superposition, the measured acceleration responses with the nm dominant

modes, can be expressed as:

d̈(sj ,si) ≈
nm∑
r=1

φsj ,r η̈r (3.5)

where φsj ,r is the component of the rth mode shape at the sensor location sj, and η̈r is the

rth modal response. For mass normalized mode shapes, substituting Eq.(3.5) in Eq.(3.1),

and noting that in a generic test only a single input u(si) acts at location si, we get the nm

modal equations of motion for r = 1, . . . , nm:

η̈r + 2ξrωrη̇r + ω2
rηr = φsi,r u

(si). (3.6)

Since the mass normalized mode shapes have yet to be identified, define a set of nm pseudo-

modal equations of motion [94]:

¨̃ηr + 2ξrωr ˙̃ηr + ω2
r η̃r = u(si) (3.7)

where ηr = φsi,r η̃r, and η̃r’s are the pseudo-modal responses. Knowing u(si) and the

identified (ωr, ξr)’s, the pseudo-modal acceleration responses, ¨̃ηr for r = 1, . . . , nm, can be

obtained by solving Eq.(3.7). The measured acceleration response, d̈(sj ,si), can then be

expressed as a linear combination of these computed pseudo-modal responses as:

d̈(sj ,si) ≈
nm∑
r=1

φsj ,r η̈r =
nm∑
r=1

φsj ,rφsi,r ¨̃ηr (3.8)

such that the coefficients in the linear combination are the products of mass normalized

mode shape components at input and output locations. Assuming that the input/output

sequences consist of measured values at N time instants (N > nm), estimates of these

coefficients can be obtained as a least squares solution to Eq.(3.8) as:

α(sj ,si) = F(si)
†
d(sj ,si) (3.9)

where † denotes the Moore-Penrose pseudo-inverse;

α(sj ,si) =
[
φ̂sj ,1φ̂si,1 , φ̂sj ,2φ̂si,2 , . . . , φ̂sj ,nmφ̂si,nm

]T
(3.10a)

d(sj ,si) =
[
d̈

(sj ,si)
1 , d̈

(sj ,si)
2 , . . . , d̈

(sj ,si)
N

]T
(3.10b)
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with φ̂si,r denoting an estimate of the corresponding φsi,r and d̈
(sj ,si)
k denoting the measured

value of d̈(sj ,si) at time instant k∆t, ∆t being the sampling time; and

F(si) =


¨̃η1,1

¨̃η2,1 · · · ¨̃ηnm,1
¨̃η1,2

¨̃η2,2 · · · ¨̃ηnm,2
...

...
. . .

...
¨̃η1,N

¨̃η2,N · · · ¨̃ηnm,N

 (3.11)

with any ¨̃ηr,k denoting the computed value of ¨̃ηr at time instant k∆t. Repeating Eqs.

(3.5)-(3.11) for all the P input-output pairs, one can thus obtain estimates of the products

of mode shape components at input-output locations for all the dominant modes, i.e.:

φ̂sj ,rφ̂si,r for r = 1, . . . , nm, si ∈ P . (3.12)

It is evident from Eq.(3.12) that in order to estimate the individual mode shape components

from the identified products, there should be at least one test with collocated input-output.

For the test when the mobile actuator is stationed at the sensor location sj, the estimates

of the mass normalized mode shape coefficients at sj can be first obtained by taking the

square root of the identified products, φ̂2
sj ,r

for r = 1, . . . , nm. The mode shape components

at the remaining actuator locations, i.e. φ̂si,r ∀ si ∈ P , si 6= sj, can be then obtained by

dividing the corresponding products, φ̂sj ,rφ̂si,r, with the estimated φ̂sj ,r, for r = 1, . . . , nm.

The above method for estimating the mass normalized mode shape components can be

similarly applied for the case of a static actuator-mobile sensor (setup (b)). The only con-

dition for unique identification is that at least one test should have the actuator and sensor

collocated. In practice, it may sometimes be necessary to have more than one test with

collocated actuator-sensor, with the locations of collocation changing. This necessity will

arise in situations where, for example, the first location of collocation (say sj) is a node for

one of the modes (say mode r); then, the estimated φ̂sj ,r will be zero, making it impossible

to estimate the remaining components of the rth mode shape. Having test data from addi-

tional tests with different locations of the collocated actuator-sensor will avoid such issues.

Hence, the case where both the actuator and the sensor are mobile is, in general, preferable.
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CAS with Acceleration Output: When the actuator and sensor are always col-

located (sj = si ∀ si ∈ P), applying Eqs. (3.5)-(3.11) for all P input-output pairs gives

the estimates of the squares of the mass normalized mode shape components, at all input-

output locations and for all the dominant modes:

φ̂2
si,r

for r = 1, . . . , nm, si ∈ P . (3.13)

However, in this case, the individual mode shape components with appropriate signs cannot

be obtained from the measured data alone. While the magnitude of the mode shape

components can be obtained as the square roots of the estimated mode shape squares, the

signs need to be assigned based on some additional information. For this purpose, it is

assumed that the sign of any estimated mode shape component is the same as the sign of

the corresponding component obtained from an approximate FE model of the structure. It

is important to underscore that a FE model is not needed in this approach per se, however

the relative mode shape signs are necessary to address the sign ambiguity. In this way, the

estimated mass normalized mode shape components are obtained as:

φ̂si,r = sgn
(
φ0
si,r

)√
φ̂2
si,r

for r = 1, . . . , nm, si ∈ P (3.14)

where ‘sgn’ is the signum function, and φ0
si,r

is the component at location si of the rth FE

mode shape.

Alternative Formulation for Acceleration Output: Here, the least squares esti-

mation in Eq.(3.9) is re-formulated in terms of pseudo-modal velocity and pseudo-modal

displacement responses, while still using measured acceleration outputs. As will be demon-

strated in the numerical study, this alternative formulation leads to improved estimates of

the fundamental mode shape, possibly due to the lower contribution of the fundamental

mode to acceleration as compared to velocity/displacement. Recalling that the estimated

mode shapes are mass normalized, and thus M−1 = ΦΦT , it is possible to obtain the

following relations:

M−1KΦ = ΦΦTKΦ = ΦΛ (3.15a)

M−1CΦ = ΦΦTCΦ = ΦCm (3.15b)
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where Cm is a diagonal matrix with elements 2ξrωr, r = 1, 2, . . . , n, along the diagonals.

Considering the modal superposition d = Φη in Eq.(3.1) along with the above relations

for the r dominant modes, one can write:

d̈ = M−1Lu−M−1CΦη̇ −M−1KΦη

= M−1Lu−ΦCmη̇ −ΦΛη

≈M−1Lu−
nm∑
r=1

2ξrωrφrη̇r −
nm∑
r=1

ω2
rφrηr (3.16)

where φr is the rth mode shape. The acceleration output at sj, due to the single input ap-

plied at si, can then be expressed in terms of the pseudo-modal velocities and displacements

as:

d̈(sj ,si) = M−1
sj ,si

u(si) −
nm∑
r=1

φsi,rφsj ,r
(
2ξrωr ˙̃ηr − ω2

r η̃r
)

(3.17)

where M−1
sj ,si

is the (sj, si)th element of M−1. This leads to an alternative least squares

solution to the products of mode shape components at input and output locations:

α(sj ,si) = H(si)
†
Z(sj ,si) (3.18)

where Z(sj ,si) =
[
z

(sj ,si)
1 , z

(sj ,si)
2 , . . . , z

(sj ,si)
N

]T
, with any z

(sj ,si)
k = M−1

sj ,si
u

(si)
k − d̈(sj ,si)

k ; and

H(sj ,si) =


h1,1 h2,1 · · · hnm,1

h1,2 h2,2 · · · hnm,2
...

...
. . .

...

h1,N h2,N · · · hnm,N

 (3.19)

with any hr,k = 2ξrωr ˙̃ηr(k∆t) − ω2
r η̃r(k∆t). The scalar M−1

sj ,si
is the direct feedthrough

term in a state space model of this system; any appropriate system identification technique

can be used to identify such a model from the measured single input-single output data(
u(si), d̈(sj ,si)

)
, thus giving this scalar.
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excite measure

Figure3.2: ExperimentalsetupincaseofNCAS:staticsensorats11,mobileactuator

sequentiallyexcitingats1tos19.

3.3 NumericalStudy

Inthissection,theperformanceoftheproposedapproachisassessedusingnumerically

simulateddatafromasimply-supportedbeamoflengthL=20m,flexuralrigidity3.2×

108Nm2,andmassdensity2000kg/m.AFEmodelconsistingof60Euler-Bernoullibeam

elementsisusedforsimulatingtheinput-outputmeasurements. Withthismodel,the

naturalfrequenciesforthefirstfivemodesare1.57,6.28,14.14,25.14,and39.28Hz.The

dampingmatrixCisconstructedbyspecifyingthemodaldampingratios:2.5%ofcritical

forthefirstfivemodes,and5%fortheremainingmodes.

Atotalof19measurementstations(s1−s19),equallyspacedat1mintervals,are

consideredwhereinput-outputmeasurementsarecollected.FortheNCAScase(Figure

3.2),theresponseisassumedtobemeasuredatstations11intheverticaldirection,while

all19verticalDoFsatstationss1−s19aresequentiallyexcitedbyamobileactuator.

FortheCAScase(Figure3.3),boththeactuatorandthesensorarerovedtogetherasan

integratedmobileunit,sequentiallyexcitingandmeasuringallverticalDoFsatstations

s1−s19.ZeromeanandunitvarianceGaussianrandomexcitationsbandlimitedsuchthat

theenergydropsgraduallyafter25Hz(seeFigure3.4),areusedasinputforces.Different

typesofoutputs(displacement,velocity,acceleration)areconsidered. Foracceleration

outputs,theestimationusingpseudo-modalaccelerationsistermedApproachI,whilethe

estimationusingpseudo-modalvelocitiesanddisplacementsistermedApproachII.The

simulationsareperformedwithasamplingfrequencyof500Hz.

Basedontheactuationbandwidth,onlythefirstfourmodescanbeidentifiedfrom

theinput-outputdata.TheeigensystemrealizationalgorithmwithobserverKalmanfilter
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Figure3.3:ExperimentalsetupincaseofCAS:mobileactuator-sensorpairsequentially

excitingandmeasuringats1tos19
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Figure3.4:Powerspectraldensityoftypicalrandomexcitationusedinnumericalsimula-

tions.
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Table 3.1: Comparison of MAC values between identified NCAS and FE mode shapes.

Output NCAS

Mode 1 Mode 2 Mode 3 Mode 4

Acceleration (Approach I) 0.999 0.999 0.999 0.998

Acceleration (Approach II) 1.000 0.999 0.999 0.997

Velocity 1.000 1.000 1.000 1.000

Displacement 1.000 1.000 1.000 1.000

identification (ERA-OKID) [25] is used to identify these four sets of natural frequencies

and modal damping ratios from the simulated input-output data. The proposed approach

is then used to identify the 19 vertical components (at stations s1 − s19) of each of the

first four mode shapes. In the case of CAS, the signs of the corresponding FE mode shape

components are used with the magnitudes of the mode shape components identified from

data.

The identified mode shapes are compared with the FE mode shapes using the modal

assurance criterion (MAC) [95]. The MAC values obtained using different types of outputs

are listed in Tables 3.1 and 3.2 for the NCAS and CAS cases respectively. It is observed

that the estimates obtained using velocity and displacement outputs are generally more

accurate than the estimates from acceleration outputs. This may be due to the increased

effect of modal truncation in case of acceleration, which has higher contribution from

high frequency modes as compared to velocity and displacement. For possibly the same

reason, when using acceleration outputs, Approach II is found to provide slightly better

estimates of the fundamental mode shape than Approach I. The least squares fit obtained

using lower frequency pseudo-modal velocities and displacements may be less affected by

modal truncation than the fit obtained using lower frequency pseudo-modal accelerations.

Nonetheless, the estimated mode shapes in all cases can be considered to be sufficiently

accurate from a practical perspective. This is evident from Figures 3.5 and 3.6, where the

identified mode shapes are graphically compared with the corresponding FE mode shapes

for the NCAS and CAS cases.
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Figure 3.5: Comparison of identified mode shapes from acceleration outputs with FE mode

shapes, for the case of NCAS.
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shapes, for the case of CAS.
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Table 3.2: Comparison of MAC values between identified CAS and FE mode shapes.

Output CAS

Mode 1 Mode 2 Mode 3 Mode 4

Acceleration (Approach I) 0.988 0.999 0.998 0.992

Acceleration (Approach II) 0.999 0.999 0.998 0.992

Velocity 0.999 0.999 1.000 0.994

Displacement 0.999 0.999 0.999 0.985

3.3.1 Sensitivity studies

As demonstrated in the methodology, the accuracy of the identified mode shape compo-

nents is not only affected by the accuracy of the identified modal frequencies and damp-

ing ratios, but also the presence of noise in the measured input-output data. Further-

more, when using Approach II for acceleration outputs, any error in the estimated direct

feedthrough term of an identified state space model will affect the estimates of the mode

shapes. For the case of CAS, the estimated mode shape components will also be affected

by any erroneous assignment of sign from the FE mode shapes. In this section, the effect

of these various sources of errors on the accuracy of the identified mode shapes is studied.

Since the underlying methodology for both the CAS and NCAS cases are same, the sen-

sitivity studies reported here are based on simulations of the NCAS case only, unless the

CAS case is explicitly mentioned. The same numerical example considered in Section 3.3

is used here for the sensitivity studies.

Sensitivity to errors in modal frequencies

It is found that errors in the estimates of modal frequencies can produce significant errors in

the estimates of α(sj ,si), and consequently, the identified mode shape components. This is

illustrated in Figure 3.7, which compares the estimates of φ̂2
11,r obtained from acceleration

outputs (both Approach I and II), due to an under-estimation and an over-estimation, by

5%, of the 1st natural frequency (3.7(a) and 3.7(b)), or of the 4th natural frequency (3.7(c)
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Figure3.7:Estimatesofφ̂211,rfromaccelerationoutputsfor:(a)5%underestimationand

(b)5%overestimationofthe1stnaturalfrequency;and(c)5%underestimationand(d)

5%overestimationofthe4thnaturalfrequency.

Itcanbeinferredfromtheseplotsthatanerrorinanyidentifiedfrequencylargelyaffects

theestimatedmodeshapeforthesamemode. ThisisfurtherillustratedinFigure3.8,

whereMACvaluescomparingtheestimated(fromaccelerationoutput,ApproachI)and

FEmodeshapesareplotted,fordifferentlevelsofperturbationsinthe1stto4thnatural

frequencies.Theperturbedfrequenciesareobtainedbymultiplyingthecorrespondingtrue
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frequencies with a scalar factor β varying between 0.9 and 1.1 (i.e. between ±10% error).
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Figure 3.8: Sensitivity of MAC values comparing estimated and FE mode shapes to er-

rors in frequency of: (a) 1st mode, (b) 2nd mode, (c) 3rd mode, and (d) 4th mode, for

acceleration output (Approach I).

However, this behavior of erroneous frequency estimates mostly affecting corresponding

mode shape estimates is not true for all output types. This can be seen from Figure

3.9, where MAC values comparing estimated and FE mode shapes, for different types of

outputs, are plotted against the different levels of perturbations in the 1st and 4th natural

frequencies.
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Figure 3.9: Sensitivity of MAC values comparing estimated and FE mode shapes to errors

in frequency of: (a) 1st mode, and (b) 4th mode, for different output types.
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It is evident that erroneous frequency induced errors in estimated mode shapes vary with

the output type. Further, unlike acceleration/velocity outputs, for displacement outputs,

errors in the 1st frequency affects the mode shape estimates for all modes, albeit by different

extents. This is possibly owing to the fact that displacement responses are more sensitive

to lower frequencies, as compared to acceleration/velocity responses.

Sensitivity to errors in modal damping ratios

Compared to modal frequencies, errors in estimated damping ratios are found to affect the

mode shape estimates to a considerably lesser extent. This is illustrated in Figure 3.10,

M
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M
A
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M
A
C

M
A
C

(a) (b)

(c) (d)

Figure 3.10: Sensitivity of MAC values comparing estimated and FE mode shapes to errors

in damping ratio of: (a) 1st mode, (b) 2nd mode, (c) 3rd mode, and (d) 4th mode, for

acceleration output (Approach I).
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where the MAC values comparing estimated (from acceleration output, Approach I) and

FE mode shapes are plotted, for different levels of perturbations in the 1st to 4th modal

damping ratios.

Similar to the sensitivity testing for frequencies, the perturbed damping ratios are ob-

tained by multiplying the corresponding true ratios with a scalar factor β; in this case, β

is varied between 0.1 and 1.9 (i.e. between ±90% error), to account for the large errors

usually observed in identified damping ratios. Similar to frequencies, the largest effect of

an erroneous rth modal damping ratio is found to be on the estimated rth mode shape.

Nonetheless, the effect of erroneous damping ratios on mode shape estimates can be ob-

served to be much lower as compared to the effect of erroneous frequencies.

3.3.2 Sensitivity to noise in input-output data

The unavoidable presence of measurement noise in the collected input-output data will

not only affect the estimates of the mode shapes directly, in Eqs. (3.9) or (3.18), but also

indirectly, through the estimation errors in frequencies and damping ratios. Since the effect

of erroneous frequencies and damping ratios on mode shape estimates have already been

studied, the focus here is on the impact of measurement noise directly on the identified

mode shapes. To this end, both the input and output measurements are corrupted with

additive noise, while the true values of the modal frequencies and damping ratios are used,

when obtaining the mode shape estimates. The noise added to the input and output data

are zero mean Gaussian white noise sequences, having root-mean-square (RMS) values

equal to x% of the RMS of corresponding “true” signals; x is varied between 5 to 30 in

this study. Figure 3.11 shows the MAC values comparing the estimated mode shapes with

the FE mode shapes, for varying levels of noise, when using different types of outputs.

It is evident that the direct effect of measurement noise on the estimated mode shapes is

considerably less for all output types, with velocity output being the most robust to noise.

51



Acceleration Output (Approach I) Acceleration Output (Approach II)

Velocity Output Displacement Output

(a) (b)

(c) (d)

M
A

C
M

A
C

M
A

C
M

A
C

Percentage Noise Percentage Noise

Percentage Noise Percentage Noise

Figure 3.11: Sensitivity of MAC values comparing estimated and FE mode shapes to vary-

ing percentage of noise in input-output data, when using different outputs: (a) acceleration

(Approach I), (b) acceleration (Approach II), (c) velocity, and (d) displacement.

Although the direct effect of measurement noise is found to be insignificant, the indirect

effect of noisy data can often be significant. To study the effect of measurement noise on the

frequencies and damping ratios identified using ERA-OKID, input-output data corrupted

with different levels of noise, i.e., 10, 20 and 30% of RMS, is used. Acceleration response

is used here as the output. To differentiate between the structural modes and spurious

(noise) modes, stabilization diagram [96] using an averaged response frequency response

function (FRF) is used with typical stabilization criteria of 1% variation for frequency and

5% variation for damping ratio. Figure 3.12 shows a typical stabilization diagram used to
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Figure3.12:Stabilizationdiagramincaseofinput-output(acceleration)measurements

corruptedwith20%noise.

Oncethestablemodesareidentifiedfromthestabilizationdiagram,theERA-OKID

estimatesofthecorrespondingnaturalfrequenciesanddampingratiosareselectedforall

input-outputpairs,andtheestimatesareaveragedforeachmode(overallinput-output

pairs). Table3.3showstheabsolutepercentageerrorsintheseaveragedestimatesof

naturalfrequenciesanddampingratio,obtainedusingthe19input-outputpairs. The

absolutepercentageerrorsarecomputedastheabsolutevaluesofthepercentageerrorsin

theestimatedquantitieswithrespecttothecorrespondingtruequantities. Whiletheerrors

intheestimatednaturalfrequenciesarefoundtomostlyliewithin0−5%,theerrorsin

theestimatesofthedampingratioscanbesignificantlyhigh(nearly500%).Highererrors
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Table 3.3: Absolute percentage error in natural frequencies and damping ratios identified

using ERA-OKID, for different levels of noise (10, 20 and 30%) in input-output (accelera-

tion) data.

Mode ftrue (Hz) |errorf | (in %) ξtrue (%) |errorξ| (in %)

10% 20% 30% 10% 20% 30%

1 1.57 1.28 2.86 4.82 2.50 118.02 187.83 480.84

2 6.28 0.42 0.83 1.92 2.50 29.84 105.72 170.61

3 14.14 0.00 0.13 0.20 2.50 0.57 1.30 12.24

4 25.14 0.02 0.22 0.80 2.50 0.12 0.14 0.32

in damping estimates is also supported by other studies [97, 98] where the uncertainty in

estimated damping ratios has been shown to be higher as compared to estimated natural

frequencies. It can also be seen that the errors are higher for Mode 1, and they decrease

considerably for Modes 3 and 4. This is possibly due to higher energies in Modes 2 to 4

compared to Mode 1, as can be seen from the accelerance FRF in Figure 3.12.

Although the errors in frequency estimates are considerably lower than in damping,

even such low errors would adversely affect the mode shape estimation, as shown earlier.

Furthermore, the significantly high errors in damping would also affect the identified mode

shapes, even though the mode shape estimation is less sensitive to errors in damping.

Hence, to improve the estimates of the modal frequencies and damping ratios, prior to

mode shape identification, the following nonlinear least squares optimization step may be

incorporated to obtain optimal estimates of the modal frequencies and damping ratios,

starting from the initial estimates obtained using ERA-OKID:

γ̂∗p = arg min
γ̂p

N∑
k=1

P∑
i=1

(
d̈

(si)
k − ¨̂

d
(si)
k

(
γ̂p
))2

(3.20)

In Eq.(3.20), γ̂p =
{
ω̂1, . . . , ω̂r, ξ̂1, . . . , ξ̂r

}
denotes the parameter vector of frequencies

and damping ratios;
¨̂
d

(si)
k

(
γ̂p
)

is the reconstructed response at location si at time instant

k∆t computed using the proposed approach for any γ̂p; and γ̂∗p is the optimal γ̂p which
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Table 3.4: Absolute error (AE) percentage in optimized estimates of natural frequencies and

damping ratios, for different levels of noise (10, 20 and 30%) in input-output (acceleration)

data.

Mode ftrue (Hz) AEf (in %) ξtrue (%) AEξ (in %)

10% 20% 30% 10% 20% 30%

1 1.57 0.29 0.56 1.23 2.50 41.02 57.83 78.84

2 6.28 0.05 0.17 0.41 2.50 3.54 5.26 12.51

3 14.14 0.00 0.00 0.01 2.50 0.19 0.34 1.00

4 25.14 0.01 0.02 0.04 2.50 0.08 0.10 0.13

minimizes the sum of squared errors (over all stations and all time instants) between

the measured and reconstructed responses. Table 3.4 shows the errors in the optimal

frequency and damping ratio estimates obtained using Eq.(3.20). Comparing with Table

3.3, a significant improvement, especially in the damping ratios, is evident.

Finally, to examine the performance of the proposed mode shape estimation method

with noisy input-output data, including both the direct and indirect effects of noise, the

identified optimal values of the modal frequencies and damping ratios are used to identify

the mode shapes from the noisy data. Table 3.5 shows the MAC values comparing these

identified modes with FE modes, for cases with different levels of noise (i.e., 10%, 20%

and 30%); both approaches using acceleration outputs are considered. It is evident that

the mode shapes identified using the proposed approach are reasonably accurate, even

in the presence of significant noise in the input-output data. For comparative purposes,

the MAC values for modes identified using an alternative technique, the least squares

frequency domain (LSFD) [99], are also included in Table 3.5. It is observed that, while

the performance of the proposed approach and LSFD in identifying the higher modes

are comparable (with MAC values ≈ 0.99 in all cases), the proposed approach performs

distinctly better than LSFD in estimating the fundamental mode shape in presence of

higher noise.

Note that, in the identification using Approach II, noisy data may have another indirect
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Table 3.5: MAC values comparing estimated and FE mode shapes, for identification using

noisy input-output (acceleration) data, with different noise levels (10%, 20% and 30%), in

the case of NCAS.

Method Mode 1 Mode 2 Mode 3 Mode 4 Noise

Approach I 0.998 0.998 0.998 0.999

Approach II 0.999 0.999 0.998 0.995 10%

LSFD 0.988 0.999 0.999 0.998

Approach I 0.996 0.994 0.998 0.998

Approach II 0.999 0.996 0.997 0.990 20%

LSFD 0.978 0.997 0.998 0.997

Approach I 0.994 0.993 0.998 0.997

Approach II 0.999 0.996 0.997 0.989 30%

LSFD 0.956 0.996 0.997 0.997

effect on the estimated mode shapes. In this approach, an estimate of the direct feedthrough

term in the state space model, is necessary prior to identifying the mode shapes. The direct

feedthrough term is estimated from the state space model identified using ERA-OKID. In

this investigation, since each test consists of a single input - single output measurement,

the identified direct feedthrough is a scalar. Presence of noise in the input-output data

will affect the estimate of direct feedthrough, which in turn may affect the estimated mode

shapes. However, comparing the MAC values for Approaches I and II in Table 3.5, it

can be seen that noise-induced errors in the direct feedthrough term do not produce any

significant additional errors in the estimated mode shapes.

3.3.3 On signs of mode shape components for the CAS case

In the case of CAS, the signs of the mode shape components are assigned from corre-

sponding approximate FE mode shapes. This could lead to erroneous estimates of the

mode shapes if the assigned signs are incorrect. Such mismatch between the sign of an

FE mode shape component and the “true” sign of that component may be expected at
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locations close to the nodes for mode shapes, especially in situations when there are signifi-

cant changes in the stiffness distribution (due to damage). Hence, this issue is particularly

relevant in structural health monitoring applications. It is assumed that a FE model of the

original structure is available, while the test is performed on the structure in its current

deteriorated condition (referred to as the “test structure”). To study the frequency of

such deterioration-induced sign disparities, three possible types of degradation in the test

structure are considered:

• Case 1 – Distributed change in stiffness : In this case, the test structure is affected

by a reduction of stiffness over the entire span of the structure leading to an ap-

proximately uniform reduction in stiffness of the structure. This case is numerically

simulated by introducing random stiffness reductions of ϑ% in all 60 elements of the

beam used in Section 3.3. For any element, the reduction α is sampled from the

uniform distribution on interval (0.13, 0.17), resulting in a mean stiffness reduction

of 15% across all elements.

• Case 2 – Localized damage: In this case, the test structure is affected by local-

ized damage, e.g. due to fatigue cracks, represented here as a localized reduction in

stiffness. Two different damage locations are considered, with the stiffness of the

corresponding affected element reduced by ϑ%: (a) damage at mid-span, affecting

element 30, and (b) damage at quarter-span, affecting element 15. In both situations,

the stiffness reduction ϑ is sampled from uniform distribution on interval (0.18, 0.22).

• Case 3 – Partial fixity at support : In this case, the supports of the test structure

develop some degree of fixity, e.g. due to accumulation of corrosion products at joints.

This is modeled here by introducing rotational springs at the two supports of the

beam, with stiffness values: kleft
r = ϑ1× 1010 Nm/rad and kright

r = ϑ2× 1010 Nm/rad,

with the values of ϑ1 and ϑ2 sampled from uniform distribution on interval (50,200).

For each of the above cases, 10000 different test structures are simulated by sampling the

ϑ values from the respective uniform distributions. The event of sign discrepancy at any

location si, for any mode r, occurs when sgn(φFE
si,r

) 6= sgn(φtest structure
si,r

), where the FE model

is the model of the beam from Section 3.3 in all cases. To ensure that both the FE and
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test structure mode shapes have the same global directions (e.g. the first mode shape is in

the downward direction, as in Figure 3.5), the signs of corresponding mode shapes at the

first translational DoF are kept same. Based on the 10000 simulations in each case, the

probability of sign discrepancy (PoSD), at location si for mode r, is defined as:

PoSD(si, r) =
1

10000

10000∑
i=1

I
(
sgn(φFE

si,r
) 6= sgn(φtest structure

si,r
)
)

(3.21)

where I(·) is the indicator function. For each case, the computed PoSD values for modes

2 to 4 are shown in Figure 3.13; mode 1 is not included as it has a zero PoSD at all

locations in all cases. Comparing these results with the mode shapes plotted in Figure

3.5, it is evident that the mismatch in sign between the FE and test structure mode shape

components occur only near the nodes of the FE mode shapes. While the discrepancies

in sign occur in around 50% of the simulated test structures when there is distributed

deterioration, they occur in almost all test structures when there is localized damage or

partial fixity at the supports. It is also shown that, local damage at mid-span induces

sign changes near nodes of modes all along the span (Figure 3.13(b)), but with a lesser

frequency for symmetric modes (PoSD is zero for mode 2, 0.5 for mode 4, but 1.0 for mode

3). On the other hand, the sign changes induced by a local damage away from the center

does not occur along the entire span, but only around the nodes nearer to the damage

location (Figure 3.13(c)); the frequency of sign change in this case is however high for all

modes. This is possibly due to local damage near the center creating a more global effect

on the structure, as compared to damage away from the center. However, note that since

the components near nodes of any mode shape are themselves very small, it is expected

that the estimated mode shapes, even with incorrect signs of such near-node components,

may still be used for further applications (e.g. condition monitoring), without significantly

affecting the results of such applications.
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Figure3.13:ProbabilityofsigndiscrepancybetweenFEandteststructuremodes,fortest

structurewith:(a)distributedchangeinstiffness,(b)localizeddamageatmid-span,(c)

localizeddamageatquarterspan,and(d)partialfixityofsupports.

3.4 ExperimentalApplication

Inthissection,theproposedapproachisappliedonalaboratoryscalesimplysupported

steelbeam.Theexperimentalset-upisshowninFigure3.14,withaschematicrepresenta-

tionofthebeamandthetestsshowninFigure3.15.Thetestedbeamis1.4minlength,and

hasauniform63mmwide×3mmdeeprectangularcross-section(seeFigure3.15).Along

thelengthofthebeam,19locations,uniformlyspacedat0.07mintervals,areselectedas

stationswherethebeamisexcitedand/ortheresponseofthebeamismeasured.
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Figure3.14:Experimentalset-upinthelaboratory.

Figure3.15:Schematicoflaboratorytests.

Animpulsehammer(DytranDynapulsemodel5800B4)withsoftplasticimpacttip

(model6250PS)isusedtoprovidepulseexcitationsasinputs.Tocomparetheperformance

oftheproposed(singlesensor)approachagainsttraditionalidentificationwithmultiple

sensors,thebeamisinstrumentedusingeightuniaxialpiezoelectricaccelerometers(PCB

PiezotronicsModel333B40)whichmeasuretheverticalaccelerationsofthebeam. One

accelerometeriskeptstationaryatstations11foralltests,whiletheothersarerovedto

coverallthe19measurementstations.Atotalof19testsareperformedbysequentially
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Figure3.16:Inputsfromimpulsehammerinexperiments:(a)Timehistories,and(b)

AveragedFourierspectra.

excitingthebeamatstationss1tos19;thesetestsareindicatedasT1,T2,etc.inFigure

3.15.Themobileaccelerometersaremountedatstationss1−s7duringtestsT1–T7,at

s8−s15duringtestsT8–T15,andfinallyats16−s19duringtestsT16–T19.

TheNCASdataconsistsof19setsofsingleinput–singleoutputmeasurements:the

19inputsintestsT1–T19,andthecorresponding19outputsats11.TheCASdataalso

consistsof19setsofsingleinput–singleoutputmeasurements:the19inputsintests

T1–T19,andcorrespondingoutputsmeasuredatthesamestationsastheinputs. For

thereferencemodalidentification,thedataconsistsofthreesetsofsingleinput–multi-

outputmeasurements:the3inputsintests{T4,T9,T16},andallcorrespondingmeasured

outputs.Ineachtest,thedataiscollectedforadurationof10s,withasamplingfrequency

of1000Hz.Figure3.16showstheinitial0.1stimehistoriesoftheimpulsiveinputsapplied

inall19tests,aswellastheaveraged(overall19tests)Fourieramplitudespectraofthese

inputs.SampleaccelerationoutputsusedintheNCASandCAScasesareshowninFigure

3.17.TheseaccelerationsarerecordedintestT5,andsuggestaverylowdampingforthe

system. TheaveragedFourieramplitudespectraofalloutputaccelerationsusedinthe

NCASandCAScasesareshowninFigure3.18.
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The first eight modes of the beam are clearly visible from the spectra in Figure 3.18.

Based on these spectra, the measured input and output data are filtered using a low

pass 8th order Butterworth filter with a cutoff frequency of 250Hz, so as to reduce the

effect of high frequency noise. The filtered data are then used in ERA-OKID to identify

the modal frequencies and damping ratios, in both NCAS and CAS cases. The stable

modes are distinguished using stabilization diagrams with averaged accelerance FRFs, and

the criteria of 1% variation for frequencies and 5% variation for damping ratios. The

stabilization diagram in case of NCAS measurements is shown as an example in Figure

3.19. For the reference modal identification with multiple sensors, ERA-OKID assisted

with stabilization diagram is used to identify the modal frequencies, damping ratios, as

well as the mode shapes, from the filtered data. In all three cases, the first eight modal

frequencies and damping ratios could be identified. The means and standard deviations

of these identified modal parameters for the reference case (using multiple sensors) are

listed in Table 3.6 and that for NCAS and CAS cases are listed in Table 3.7. These mean

and standard deviation values are computed from the individual values identified in all

the tests for each case: 19 tests in case of NCAS and CAS, and 3 tests in case of the

reference identification. It is evident from Table 3.7 that the identified modal parameters

in both the NCAS and CAS cases agree reasonably well with the corresponding reference

identified parameters in Table 3.6. As expected from the example output time histories in

Figure 3.17, the identified damping values are mostly very low. It can also be seen that the

uncertainty in the frequency estimates are quite low in all cases for all modes, while the

uncertainty in the damping ratio estimates are higher. This is often encountered in modal

identification. However, none of the damping ratio estimates appear to be unrealistic.

After identifying the modal frequencies and damping ratios, the mode shapes are iden-

tified for the NCAS and CAS cases, using both Approaches I and II. For assigning the

signs of the mode shape components in case of CAS, the FE model of a simply supported

uniform beam, with length L = 1.4m, Young’s modulus E = 220 × 109N/m2, moment of

inertia I = 1.42× 10−10m4, and mass density ρ = 8095kg/m3, is used; the FE model is ob-

tained by discretizing the beam into 20 Euler-Bernoulli beam elements. The mode shapes

identified in both NCAS and CAS cases are compared with the corresponding reference

identified mode shapes graphically in Figure 3.21 and through the MAC values in Table
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Table 3.6: Natural frequencies and damping ratios identified from experimental data using

multiple sensors (Reference case).

Mode fexp (Hz) ξexp (%)

Mean SD Mean SD

1 3.99 0.02 1.01 0.25

2 14.27 0.10 0.58 0.13

3 31.03 0.08 0.35 0.07

4 57.10 0.85 0.80 0.33

5 91.30 0.66 0.80 0.33

6 132.89 1.06 1.52 0.86

7 183.11 1.45 0.68 0.35

8 219.52 1.89 1.31 0.73

Table 3.7: Natural frequencies and damping ratios identified from experimental data using

NCAS and CAS cases.

NCAS CAS

Mode fexp (in Hz) ξexp (in %) fexp (Hz) ξexp (%)

Mean SD Mean SD Mean SD Mean SD

1 3.99 0.02 0.96 0.18 3.99 0.02 0.84 0.20

2 14.23 0.12 0.43 0.21 14.22 0.16 0.48 0.16

3 31.02 0.13 0.41 0.11 31.08 0.14 0.39 0.04

4 56.61 1.08 0.70 0.68 56.49 1.13 1.43 1.17

5 91.31 0.90 0.75 0.27 90.90 1.11 0.67 0.32

6 132.80 1.23 1.36 1.08 132.63 1.17 1.18 0.96

7 182.83 2.07 0.57 0.42 182.99 1.76 0.73 0.43

8 219.34 1.94 2.21 1.33 219.10 2.13 3.07 1.59
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3.8.

In NCAS, the eighth mode shape could not be identified as, for this mode, the square

of the mode shape component at s11, obtained in the test with collocated input at s11, is

estimated as negative. This negative estimate is possibly owing to the location s11 being

close to a node for Mode 8, as marked in Figure 3.21, resulting in an output response

with very low signal-to-noise ratio (SNR). Although s11 is similarly next to a node for

Modes 2, 4 and 6, this problem is not encountered in case of these modes. This may be

due to Mode 8 having higher damping relative to the other modes, resulting in a faster

decay of the modal response. Further, it is expected that Mode 8 is more affected by high

frequency noise compared to the other modes, especially with the frequency of Mode 8

(≈ 219 Hz) being close to the cutoff frequency of 250 Hz. In fact, as can be seen from the

the accelerance FRF plot in Figure 3.20a, the energy in Mode 8 is much lesser than in the

other modes for the collocated input-output data at s11.

The issue of negative estimates of the square of mode shape components is also encoun-

tered in the case of CAS, for all Modes 4 to 8. The components affected by this problem

could not be estimated, and are marked with a green 5 in Figure 3.21. However, unlike

the NCAS case, the other mode shape components can be estimated in the case of CAS,

as the estimation of different components are not linked in this case. When computing the

MAC values in Table 3.8, the components affected by this problem have been excluded.

From Figure 3.21, it can again be seen that locations close to nodes are the most prone to

this problem. However, in case of Mode 8, many non-nodal locations are also affected; for

this mode, the estimation is very poor even in locations not affected by this problem. This

is again possibly owing to the cumulative effect of a higher damping as well as higher effect

of noise in case of Mode 8. As can be observed from Figure 3.20(b), for the collocated

input-output data at s4, the energy associated with Modes 5 and 8 are lesser than the

other modes. These are the two modes for which the problem of negative estimates of

squared mode shape components is encountered at location s4 (Figure 3.21), illustrating

that this problem may mostly arise in situations when a mode is not sufficiently excited at

a collocated input-output location.

Although the mode shape for Mode 8 could not be estimated in both NCAS and CAS

cases, as evident from both Figure 3.21 as well as the MAC values in Table 3.8, the
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estimatesofalltheremainingmodeshapesagreereasonablywellwiththecorresponding

referenceidentifiedmodeshapes.Itisalsoseenthat,whileforthelowermodesboth

ApproachesIandIIperformequallywell,forthehighermodesApproachIIsometimes

tendtooverestimatethemodeshapecomponents.

Table3.8: MACvaluescomparingmodeshapesidentifiedusingproposedapproachwith

identifiedreferencemodeshapes.

Mode NCAS CAS

ApproachI ApproachII ApproachI ApproachII

1 0.999 0.999 0.996 0.999

2 0.998 0.998 0.996 0.996

3 0.992 0.992 0.985 0.989

4 0.978 0.979 0.983 0.981

5 0.977 0.981 0.983 0.986

6 0.966 0.964 0.967 0.947

7 0.967 0.949 0.969 0.950

8 – – 0.662 0.638
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3.5 Summary

In this chapter, the feasibility of using a single re-configurable pair of actuator and sensor

for modal identification of bridge decks is studied. The proposed identification strategy

involves performing a suite of tests, with either: (a) a static actuator - mobile sensor or a

mobile actuator - static sensor (NCAS case), or (b) a combined mobile actuator and sensor

system (CAS case). Of particular interest is the case of a combined mobile actuator and

sensor which resembles a mobile device fitted with an actuator and a sensor.

The suite of tests involve sequentially repositioning the mobile actuator/sensor system

to various locations on the structure. At each location the actuator excites the structure

while the sensor measures the response. The output data from the tests is first used to

identify the modal frequencies and damping ratios, using any conventional system identi-

fication method such as ERA-OKID. The identified frequencies and damping ratios, along

with the measured input-output data, are then used to identify the the mass normalized

mode shape components. A time-domain technique, based on input-output balance using

pseudo-modal responses, was developed for estimating the mode shapes. It was shown

that when the actuator and sensor are always collocated (CAS case), which corresponds

to case of using a single mobile actuator-sensor pair, the mode shapes components can

not be directly obtained. Instead only their absolute values can be extracted and an ap-

proximate knowledge of the signs of mode shapes is required for mode shape estimation.

However, no such prior information is needed for the NCAS case. Based on the numerical

and experimental results, the proposed strategy may be considered as a potentially feasible

alternative to traditional static-sensing schemes for modal identification.

The proposed strategy however could be prohibitive in practice due to two reasons: (a)

it requires the use of an actuator which may not be available, and (b) the testing strategy

is time-consuming and may require closing down of the structure. These drawbacks can

be avoided by an output-only testing strategy with a network of in-motion mobile sensors.

The next two chapters will focus on the development of modal identification algorithms

for use with output-only vibration data from in-motion mobile sensors.
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Chapter 4

Bayesian output-only modal

identification using in-motion mobile

sensors: Missing data approach

4.1 Introduction

In the previous chapter, a reconfigurable mobile actuation-sensing strategy was employed

for input-output based modal identification which required pausing at several locations

on the structure to apply excitation and collect data. In contrast to this, output-only

modal identification with in-motion mobile sensors has the advantages that: (1) it does

not need the explicit input information (hence the name output-only) and (2) the mobile

sensors do not need to pause to collect data allowing greater spatial coverage in a reduced

amount of time. Along these lines, this chapter introduces the use of in-motion mobile

sensors for output-only modal identification. However, as mentioned previously in Section

2.1.2, the datasets collected using in-motion mobile sensors are characterized by spatial

discontinuities which prevents the direct application of conventional SSID algorithms for

modal identification.

In this chapter, the problem of modal identification is posed from an incomplete data
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perspective, that is, the data matrix of structural responses collected using in-motion

sensors is treated equivalent to a static sensor data matrix with missing entries – referred

to as a missing data matrix. A time-domain state space modelling approach is adopted

for modal parameter estimation from the missing data matrix. This involves fitting a

parametric SSM to the missing data matrix and then extracting the modal parameters

from the fitted SSM parameters. The state space parameter identification is handled in a

Bayesian framework which provides a principled approach towards parameter estimation

and uncertainty quantification; the uncertainty is caused not only due to variability in the

observed data but also due to missing information inherent in the approach presented in

this study.

This chapter is organized as follows: first, the mechanism of constructing the miss-

ing data matrix is described; next, a stochastic linear SSM is introduced with unknown

parameters which are to be identified using the missing data matrix; and finally, three

computational algorithms – EM, VB and GS – are presented for SSM parameter iden-

tification with from missing data matrices, among which VB and GS enable uncertainty

quantification following Bayesian principles.

4.2 Construction of the missing data matrix

Static sensor networks capture structural responses at a fixed set of spatial points for

the entire test duration. This sensing method yields a data matrix that is complete in the

sense that an entire time-history of the vibration response is available for all predetermined

spatial locations. By contrast, in-motion mobile sensors record structural responses while

simultaneously moving through the space of the structure. Considering the same set of

spatial locations, the continuous movement of sensors from one location to another removes

the ability to capture the entire time history of vibration responses at any given location.

As such, treating the mobile sensor data in a similar fashion to data collected from static

sensor networks (where each column represents a time history for a given location) results

in a data matrix with many unrecorded or missing entries. This matrix, referred to as a

missing data matrix, is constructed by inputting the measured data at the corresponding
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time and spatial indices.

Figure 4.1 illustrates the differences between a complete data matrix and missing data

matrix obtained from a static sensor network and single mobile sensor respectively. In both

cases, three sensing nodes are considered and the path of the mobile sensor is indicated by

an arrow.

Figure 4.1: An example of data collection with both static sensors and in-motion mobile

sensors. Three static sensors generate a complete data matrix whereas one in-motion

mobile sensor generates a missing data matrix, as at any time instant, the mobile sensor

is able to sample only one out of three spatial locations.
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Despite having the advantage of improved spatial coverage and reduced testing time,

the main limitation associated with in-motion mobile sensing is the collected data, when

treated as a missing data matrix, is incompatible for processing with conventional system

identification algorithms. That is, the widely-used output-only (or operational or stochas-

tic) structural system identification algorithms such as ERA-OKID-OO [100], ERA-NEXT

[36], AR [101], SSI [24], N4SID [102], cannot be readily used to with data containing

missing observations. In this study, banking on the state space modelling framework, two

novel Bayesian techniques (i.e., VB and GS) are introduced and modified appropriately to

handle Bayesian inference with missing data.

4.3 Linear Gaussian state space model

The discrete-time linear SSM in Eq.(2.17) is considered once again:

xk+1 = Axk +wk (4.1a)

yk = Gxk + vk. (4.1b)

The dimensions of the variables are, xk ∈ Rns , yk ∈ Rno , A ∈ Rns×ns , G ∈ Rno×ns ,

wk ∈ Rns and vk ∈ Rno . The modal parameters of the structure are related to the param-

eters of the SSM through an eigen-transformation as outlined in Appendix B.1. Eq.(4.1)

specifies a SSM with a multivariate joint Gaussian distribution defined over the latent

state variables {x1, . . . ,xN+1} and the observed variables {y1, . . . ,yN}, and is henceforth

referred to as the linear Gaussian state space model (LGSSM). Specifically, due to the

Gaussian properties of wk and vk (i.e. wk ∼ N (0,Q) and wk ∼ N (0,R)), Eq.(4.1) leads

to the following conditional probability distributions over state and observed variables xk

and yk:

p (xk+1 | xk,A,Q) = N (Axk,Q) , (4.2a)

p (yk | xk,G,R) = N (Gxk,R) , (4.2b)

p (x1 | µ1,V1) = N (µ1,V1) , (4.2c)
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and the joint distribution over the sequence of states and observations is expressed as

p (X,Y | A,G,Q,R,µ1,V1) = p (x1 | µ1,V1)
N∏
k=1

p (xk+1 | xk,A,Q) p (yk | xk,G,R)

(4.3)

where X = {x1, . . . ,xN+1} and Y = {y1, . . . ,yN} and N (· , ·) denotes multivariate

joint Gaussian distribution specified by its arguments (i.e. mean and covariance). Eq.(4.3)

states that the joint distribution over all variables X and Y given the parameters θ =

{A,G,Q,R} (with auxiliary parameters µ1,V1) of the LGSSM is given by the product of

Gaussian marginal and conditional distributions over X and Y respectively.

4.3.1 Notations for observed and missing data

Before commencing, a few notations are introduced for the observed and missing elements

of the data. The no × 1 vector yk denotes the observations at time k. If some elements of

the yk are missing, the missing elements are set to zero:

yk =


y1

0

y3

y4

0

 . (4.4)

Denote the non-missing observations as yobsk and the missing observations as ymissk . Also,

define matrix fff(1)
k which extracts only yobsk from yk, and matrix fff(2)

k which extracts only

ymissk from yk:

yobsk = fff(1)
k yk, fff(1)

k =

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0


ymissk = fff(2)

k yk, fff(2)
k =

[
0 1 0 0 0

0 0 0 0 1

]
.

(4.5)
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Define another set of matrices that zeros out the missing and non-missing observations.

Let I
(1)
k denote the diagonal matrix that zeros out the missing entries in yk and I

(2)
k denote

a matrix that zeros out the observed entries in yk. Considering the above example, the

matrices I
(1)
k and I

(2)
k would be

I
(1)
k = fff(1)

k

T
fff(1)
k =


1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

 , I
(2)
k = fff(2)

k

T
fff(2)
k =


0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

 . (4.6)

The matrices defined above will be used for succinctly representing relations involving

missing data.

4.3.2 Convention for parameters

It is also helpful to establish some linguistic conventions with respect to variables involved

in a Bayesian treatment of Eq.(4.3). In a maximum likelihood (ML) setting, i.e. the

case where θ is not governed by probability distributions, Y is classically referred to as

“observed variables” and X are referred to as “latent” (or “unobserved” or ‘hidden”)

variables, and θ is referred to as “parameter” [64]. In a Bayesian setting, the quantity θ

itself becomes governed by probability distributions, and hence the parameters that one is

interested in are the parameters governing the distribution of θ which will be referred to

as the “hyperparameters” θh in this chapter.

Given the definition of LGSSM and the conventions for missing observations in mea-

surements, three computational algorithms for inference with missing data, namely the

EM, VB and GS, will be presented next.
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4.4 ML estimation of LGSSM via EM

This section studies the use of the EM algorithm for computing ML estimates of modal

parameters from missing data matrices. In this setting, the model parameters are treated as

deterministic (non-random). The objective is to solve for the parameters θ = {A,G,Q,R}
that maximizes the likelihood of the LGSSM given the incomplete data.

In the case of no missing information, the complete-data log-likelihood of the LGSSM

would be given by

L(θ) = ln (p (X,Y | θ))

= ln

(
p (x1 | µ1,V1)

N∏
k=1

p (xk+1 | xk,A,Q)
N∏
k=1

p (yk | xk,G,R)

)
=− ns

2
ln 2π − 1

2
ln |V1| −

1

2
(x1 − µ1)T V−1

1 (x1 − µ1)

− Nns
2

ln 2π − N

2
ln |Q| − 1

2

N∑
k=1

(xk+1 −Axk)
T Q−1 (xk+1 −Axk)

− Nno
2

ln 2π − N

2
ln |R| − 1

2

N∑
k=1

(yk −Gxk)
T R−1 (yk −Gxk)

(4.7)

and the goal to obtain the ML estimate, θ̂ML, is achieved by maximizing L(θ) with re-

spect to θ. However, due to the missing entries in Y and unavailability of state sequence

X, a direct maximization of L(θ) given incomplete data becomes problematic. The EM

algorithm solves this problem by iteratively alternating between making guesses about the

latent states X and missing entries in Y , and finding the θ that maximizes p (Y ,X | θ).

Algorithmically, EM starts from an initial point θ(0) =
{
A(0),G(0),Q(0),R(0)

}
and repeats

the following two steps iteratively until the likelihood converges to a stationary value:

1. E-step: Compute the conditional expectation F
(
θ | θ(j)

)
:=
〈
L(θ) | Y ,θ(j)

〉
,

2. M-step: Obtain θ(j+1) by maximizing F
(
θ | θ(j)

)
.

Here, 〈·〉 denotes the expectation operator, and the superscript (j) denotes the jth iteration

of EM. Since direct maximization of L(θ) is difficult, the EM guesses the expected value
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F
(
θ | θ(j)

)
and maximizes it instead in each iteration. It has been shown in literature

that the convergence of EM is monotonic [63]. For the LGSSM in Eq.(4.1), the required

expectations in the E-step are easily evaluated using the Kalman filter and the Rauch-

Tung-Striebel (RTS) smoother, and the maximization in the M-step can be obtained in

closed form using the results from the smoother.

4.4.1 Derivation of the E-step

The EM algorithm evaluates the conditional expectation F
(
θ | θ(j)

)
which can be ex-

pressed as

F
(
θ | θ(j)

)
=− 1

2
ln |V1| −

1

2
tr
{

V1
−1
〈

(x1 − µ1) (x1 − µ1)T
〉}

− N

2
ln |Q| − 1

2

N∑
k=1

tr
{

Q−1
〈

(xk+1 −Axk) (xk+1 −Axk)
T
〉}

− N

2
ln |R| − 1

2

N∑
k=1

tr
{

R−1
〈

(yk −Gxk) (yk −Gxk)
T
〉}

+ constant.

On further simplification, F
(
θ | θ(j)

)
can be written as

F
(
θ | θ(j)

)
=− 1

2
ln |V1| −

1

2
tr
{

V1
−1
[
V̂1|N +

(
x̂1|N − µ1

) (
x̂1|N − µ1

)T]}
− N

2
ln |Q| − 1

2
tr
{
Q−1

[
Sff −ASTfx − SfxA

T + ASxxA
T
]}

− N

2
ln |R| − 1

2
tr
{
R−1

[
Syy −GSTyx − SyxG

T + GSxxG
T
]}
,

(4.8)

where the variables

x̂k|N =
〈
xk | Y ,θ(j)

〉
, (4.9a)

V̂k|N = COV(xk) =
〈(
xk − x̂k|N

) (
xk − x̂k|N

)T | Y ,θ(j)
〉
, (4.9b)

V̂k+1,k|N = COV(xk+1,xk) =
〈(
xk+1 − x̂k+1|N

) (
xk − x̂k|N

)T | Y ,θ(j)
〉

(4.9c)

are outputs obtained from a slightly modified Kalman filter and RTS smoother.
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The terms Sff , Sfx, Sxx, Syx and Syy in Eq.(4.8) are referred to as the expectations of

sufficient statistics and represent the following expectations:

Sff =
N∑
k=1

〈
xk+1x

T
k+1

〉
, Sfx =

N∑
k=1

〈
xk+1x

T
k

〉
Sxx =

N∑
k=1

〈
xkx

T
k

〉
Syy =

N∑
k=1

〈
yky

T
k

〉
, Syx =

N∑
k=1

〈
ykx

T
k

〉
.

(4.10)

Sff , Sfx, Sxx, involve only the states and are evaluated using the estimated states from

RTS smoother:

Sff =
N∑
k=1

〈
xk+1x

T
k+1

〉
=

N∑
k=1

(
x̂k+1|N x̂

T
k+1|N + V̂k+1|N

)
, (4.11a)

Sfx =
N∑
k=1

〈
xk+1x

T
k

〉
=

N∑
k=1

(
x̂k+1|N x̂

T
k|N + V̂k+1,k|N

)
, (4.11b)

Sxx =
N∑
k=1

〈
xkx

T
k

〉
=

N∑
k=1

(
x̂k|N x̂

T
k|N + V̂k|N

)
, (4.11c)

whereas Syx and Syy involve both states and missing observations and are computed as

follows:

Zk = Ino×no −Rfff(1)
k

T
(
fff(1)
k Rfff(1)

k

T
)−1

fff(1)
k (4.12a)

ŷk = 〈yk〉 = yk − Zk

(
yk −Gx̂k|N

)
(4.12b)

Syy =
N∑
k=1

〈
yky

T
k

〉
=

N∑
k=1

(
I

(2)
k Zk

(
R + GV̂k|NGT

)
ZT
k I

(2)
k + ŷkŷ

T
k

)
(4.12c)

Syx =
N∑
k=1

〈
ykx

T
k

〉
=

N∑
k=1

(
ZkGV̂k|N + ŷkx̂

T
k|N

)
. (4.12d)

These expectations of sufficient statistics are used in the M-step for deriving closed form

expressions for maximizing the parameters. The detailed derivations in Eq.(4.12) can be

found in Appendix C.

Given the parameters, the state estimation problem in the presence of complete data

with no missing values can be handled using the classical Kalman filter (see Appendix F).
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However, state estimation in the presence of missing observations calls for a modification

to these state estimation tools. Shumway and Stoffer [64, 103] recommended modifications

to the Kalman filter to enable unbiased filtering operation in the presence of missing

observations. For running the modified Kalman filter with missing data, it is convenient

to first compute a sequence of matrices
{

I
(1)
k , I

(2)
k

}
1:N

following the notations introduced

in Section 4.3.1. Then, the Kalman filter equations for obtaining predicted and filtered

states and error covariance matrices from incomplete data can be written as:

Kalman filter with missing data : Do for k = 1, . . . , N

y∗k = I
(1)
k yk (4.13a)

G∗k = I
(1)
k G (4.13b)

R∗k = I
(1)
k RI

(1)
k + I

(2)
k I

(2)
k (4.13c)

e∗k = y∗k −G∗kx̂k|k−1 (4.13d)

S∗k = G∗kV̂k|k−1G
∗
k
T + R∗k (4.13e)

K∗k = V̂k|k−1G
∗
k
TS∗k

−1 (4.13f)

x̂k|k = x̂k|k−1 + K∗ke
∗
k (4.13g)

V̂k|k = V̂k|k−1 −K∗kS
∗
kK
∗
k
T (4.13h)

x̂k+1|k = Ax̂k|k (4.13i)

V̂k+1|k = AV̂k|kA + Q. (4.13j)

Here, x̂k|k−1 and x̂k|k represent the kth predicted and filtered state estimate respectively,

and, V̂k|k−1 and V̂k|k denote the kth predicted and filtered state error covariance matrices

respectively. The Kalman filter recursion is started from an initial state estimate x̂1|0 and

an initial covariance estimate V̂1|0. For computational purposes, it is more convenient to

calculate the log-likelihood at the jth EM iteration using the innovations from the Kalman

filter

F̂ (j) = − 1

2

N∑
k=1

(
ln |S∗k|+ e∗k

TS∗k
−1e∗k

)
(4.14)

compared to calculating the actual log-likelihood by Eq.(4.8). Following the filtering step,

the (fixed interval) smoothing recursions given by the RTS smoother are computed as
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follows:

Kalman smoother : Do for k = N, . . . , 1

Nk = V̂k|kA
T
(
V̂k+1|k

)−1

(4.15a)

x̂k|N = x̂k|k + Nk

(
x̂k+1|N − x̂k+1|k

)
(4.15b)

V̂k|N = V̂k|k + Nk

(
V̂k+1|N − V̂k+1|k

)
NT
k (4.15c)

V̂k+1,k|N = V̂k+1|NNT
k , (4.15d)

where V̂k+1,k|N is called the lag-one smoother covariance matrix [64].

4.4.2 Derivation of the M-step

Maximizing F
(
θ | θ(j)

)
with respect to the parameters θ at iteration j constitutes the M-

step of EM. The usefulness of EM in this particular case — where the full model parameters

(i.e. A,G,Q,R) are estimated — stems from the fact that the M-step maximizations are

obtained in closed form by setting the gradient
∂F(θ|θ(j))

∂θ
to zero for each θ = {A,G,Q,R}.

The closed form expressions of θ(j+1) are given as follows:

A(j+1) = SfxS
−1
xx (4.16a)

Q(j+1) =
1

N

[
Sff − SfxA

(j+1)T −A(j+1)STfx + A(j+1)SxxA
(j+1)T

]
(4.16b)

G(j+1) = SyxS
−1
xx (4.17a)

R(j+1) =
1

N

[
Syy − SyxG

(j+1)T −G(j+1)STyx + G(j+1)SxxG
(j+1)T

]
. (4.17b)

The auxiliary parameters µ1 and V1 are set as

µ
(j+1)
1 = x̂1|N (4.18a)

V
(j+1)
1 = V̂1|N . (4.18b)

The derivation of the M-step update rules can be found in [68, 70].
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4.4.3 Initialization of EM

The EM algorithm, being an iterative optimizer, requires an initial estimate of the system,

θ(0), to commence. The choice of the initial estimate determines how quickly the algorithm

converges to a solution. Typically, EM is initialized using estimates from other identifica-

tion algorithms such as numerical algorithm for subspace state space system identification

(N4SID) [104] and SSI [24]. Another preferred strategy is to use random initializations

of the parameters, however some difficulties (i.e. system instability, inaccurate solutions)

have been reported [68] when dealing with higher order SSM. In this study, the initial point

θ(0) =
{
A(0),G(0),Q(0),R(0)

}
are set as follows:

A(0) = ASSI, G(0) = GSSI

Q(0) = Ins×ns , R(0) = Ino×no ,
(4.19)

where ASSI and GSSI are estimates from SSI.

4.4.4 Convergence Criterion of EM

A commonly used convergence criterion for the EM algorithm is based on the change in

the log-likelihood values between iterations as given by:

F̂ (j+1) − F̂ (j)(
F̂ (j+1) + F̂ (j)

)
/2
≤ εtol, (4.20)

where εtol is typically in the range of 10−4 ∼ 10−6. The EM iterations are stopped once the

convergence criterion is satisfied, and the parameters from the final iteration are treated as

the ML estimates of the parameters, θ̂ML =
{

ÂML, ĜML, Q̂ML, R̂ML

}
. The ML estimate

of the modal parameters,
{
f̂i, ξ̂i, φ̂

un

i

}
, can then be obtained by feeding ÂML, ĜML to

Appendix B.1. The complete list of steps for applying the EM algorithm to the missing

data case is provided in Algorithm 1.
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Algorithm 1 Modal parameter estimation using EM with missing data

Input: Y , A(0), G(0), Q(0), R(0), µ
(0)
1 , V

(0)
1 , εtol,

{
fff(1)
k ,fff(2)

k , I
(1)
k , I

(2)
k

}
1:N

E-step:

1. Use Eqs.(4.13) and (4.15) for Kalman filter and RTS smoother

2. Use Eq.(4.14) to compute F̂ (0)

3. Calculate the expectations of sufficient statistics using Eqs.(4.11) and (4.12)

while not converged do

1. M-step: Use Eqs.(4.16), (4.17), and (4.18) to update parameters

→ A(j+1),G(j+1),Q(j+1),R(j+1),µ
(j+1)
1 ,V

(j+1)
1

2. E-step:

(a) Use Eq.(4.13) and (4.15) for Kalman filter and RTS smoother

(b) Use Eq.(4.14) to compute F (j+1)

(c) Calculate the expectations of sufficient statistics using Eqs.(4.11) and (4.12)

3. Use Eq.(4.20) to check if convergence criterion is satisfied

end while

Return ÂML ← A(final), GML ← G(final)

Extract modal frequencies, damping ratios and un-normalized mode shapes from

ÂML, ĜML using Appendix B.1

Output: f̂i, ξ̂i, φ̂
un

i for all modes i = 1, 2, . . .

4.5 Bayesian estimation of LGSSM via VB

While the EM algorithm computes ML point estimates of each parameter, VB computes

(an approximation to) the entire posterior distribution of the parameters and latent vari-

ables. The variational Bayesian approximation assumes a factored distribution over the

parameters and the latent variables (as mentioned in Section 2.2.3) and the VB algorithm

updates their approximate posterior distributions in an alternating fashion (similar to the
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alternating structure of EM).

First, consider applying the VB framework for the LGSSM assuming a complete data

matrix is available (we will later show how the framework is adopted to the missing data

case). To start, the joint distribution of all variables in the LGSSM must be set up as

follows:

p (Y ,X,A,Q,G,R) = p (Y ,X | A,Q,G,R) p (A,Q,G,R) (4.21)

where

p (x1 | µ1,V1) = N (µ1,V1) =
exp

(
− 1

2
(x1 − µ1)TV−1

1 (x1 − µ1)
)

(2π)ns/2 |V1|1/2
(4.22a)

p (xk+1 | xk,A,Q) = N (Axk,Q) =
exp

(
− 1

2
(xk+1 −Axk)

TQ−1(xk+1 −Axk)
)

(2π)ns/2 |Q|1/2
(4.22b)

p (yk | xk,G,R) = N (Gxk,R) =
exp

(
− 1

2
(yk −Gxk)

TR−1(yk −Gxk)
)

(2π)no/2 |R|1/2
. (4.22c)

For the LGSSM parameters, a factorized prior distribution is assumed:

p (A,Q,G,R) = p (A | Q) p (Q) p (G | R) p (R) (4.23)

where random covariance matrices Q and R are assumed independent of each other. The

forms of the prior distributions are assumed as follows:

p (A | Q) =MN (µA,Q,Π) =
exp

(
− 1

2
tr
{
Π−1(A− µA)TQ−1(A− µA)

})
(2π)n2

s/2 |Π|ns/2 |Q|ns/2
, (4.24a)

p (G | R) =MN (µG,R,Π) =
exp

(
− 1

2
tr
{
Π−1(G− µG)TR−1(G− µG)

})
(2π)nsno/2 |Π|no/2 |R|ns/2

, (4.24b)

p(Q) = IW (dQ,DQ) =
|DQ|dQ/2 |Q|−(dQ+ns+1)/2 exp

(
− 1

2
tr {DQQ−1}

)
2nsdQ/2 Γns

(
dQ
2

) , (4.24c)

p(R) = IW (dR,DR) =
|DR|dR/2 |R|−(dR+no+1)/2 exp

(
− 1

2
tr {DRR−1}

)
2nodR/2 Γno

(
dR
2

) , (4.24d)

where MN (·) is the Matrix Normal distribution and IW(·) is the Inverse Wishart dis-

tribution. The joint prior distributions of the parameters, p (A,G,Q,R), is described
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by a Matrix-Normal-Inverse-Wishart (MNIW) distribution [105, 106]. The set of prior

hyperparameters is denoted by πh = (µA,µG,Π,DQ,DR, dQ, dR). The choice of prior

distributions over the LGSSM parameters is motivated by conjugacy – the posterior dis-

tribution of the parameters will also have a MNIW distribution and therefore becomes

convenient for obtaining closed form update expressions for the hyperparameters of the

MNIW distribution. It must be mentioned that the assumption of statistical independence

between the matrices A and G is employed to make the VB inference amenable to closed-

form updates; although, in practice they would actually be correlated. For the same reason,

statistical independence is also assumed between the process and measurement noise which

would be correlated when acceleration measurements are used as outputs.

Following the VB framework, a factorized form of variational approximation to the

posterior distribution (see Eq.(2.29)) over the parameters θ and the latent states X is

assumed:

p (A,Q,G,R,X | Y ) ≈ q (A,Q) q (G,R) q (X)

≈ q (A | Q) q (Q) q (G | R) q (R) q (X) .
(4.25)

The variational free energy is maximized by setting the variational distributions as follows

[107]:

q (A,Q) ∝ exp
(
〈ln p (Y ,X,A,Q,G,R)〉q(G|R)q(R)q(X)

)
(4.26a)

q (G,R) ∝ exp
(
〈ln p (Y ,X,A,Q,G,R)〉q(A|Q)q(Q)q(X)

)
(4.26b)

q (X) ∝ exp
(
〈ln p (Y ,X,A,Q,G,R)〉q(A|Q)q(Q)q(G|R)q(R)

)
(4.26c)

where the 〈f(x)〉q(x) :=
∫
f(x)q (x) dx. In the following, an iterative scheme based on

the above equations is derived by indexing the variational distributions q (·) as q(j) (·) at

the current VB iteration and as q(j+1) (·) as the variational distributions in the next VB

iteration:

q(j) (X) ∝ exp
(
〈ln p (Y ,X,A,Q,G,R)〉q(j)(A|Q)q(j)(Q)q(j)(G|R)q(j)(R)

)
(4.27a)

q(j+1) (A,Q) ∝ exp
(
〈ln p (Y ,X,A,Q,G,R)〉q(j)(G|R)q(j)(R)q(j)(X)

)
(4.27b)

q(j+1) (G,R) ∝ exp
(
〈ln p (Y ,X,A,Q,G,R)〉q(j)(A|Q)q(j)(Q)q(j)(X)

)
. (4.27c)
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Here the jth variational distributions are defined as

q(j) (A | Q) =MN
(
µ

(j)
A ,Q(j),Π(j)

)

=

exp

(
− 1

2
tr

{
Π(j)−1

(
A− µ(j)

A

)T
Q(j)−1

(
A− µ(j)

A

)})
(2π)n2

s/2 |Π(j)|ns/2 |Q(j)|ns/2
(4.28a)

q(j) (G | R) =MN
(
µ

(j)
G ,R(j),Π(j)

)

=

exp

(
− 1

2
tr

{
Π(j)−1

(
G− µ(j)

G

)T
R(j)−1

(
G− µ(j)

G

)})
(2π)nsno/2 |Π(j)|no/2 |R(j)|ns/2

(4.28b)

q(j) (Q) = IW
(
d

(j)
Q ,D

(j)
Q

)

=

∣∣∣D(j)
Q

∣∣∣d(j)Q /2

|Q|−(d
(j)
Q +ns+1)/2 exp

(
− 1

2
tr
{

D
(j)
Q Q−1

})
2nsd

(j)
Q /2 Γns

(
d
(j)
Q

2

) (4.28c)

q(j) (R) = IW
(
d

(j)
R ,D

(j)
R

)

=

∣∣∣D(j)
R

∣∣∣d(j)R /2

|R|−(d
(j)
R +no+1)/2 exp

(
− 1

2
tr
{

D
(j)
R R−1

})
2nod

(j)
R /2 Γno

(
d
(j)
R

2

) (4.28d)

Algorithmically, the variational Bayesian algorithm starts from an initial point of the

hyperparameters

θ
(0)
h =

{
µ

(0)
A ,µ

(0)
G ,Π(0),D

(0)
Q ,D

(0)
R , d

(0)
Q , d

(0)
R

}
(4.29)

and repeats the following two steps iteratively until the free energy Fve
(
q(j) (θ,X)

)
(refer

Eq.(2.28)) converges to a stationary value:

1. VBE-step: Given θ
(j)
h , compute q(j) (X),

2. VBM-step: Using q(j) (X), obtain the hyperparameters θ
(j+1)
h of q(j+1) (θ).

85



4.5.1 Evaluation of variational expectation

To derive the update equations for the VBE and VBM steps, the expectation of the log

joint PDF of the hidden LGSSM variables (i.e., the states and parameters) with respect

to the variational PDFs has to be evaluated. One can use Eqs. (4.21) and (4.24) to arrive

at the following expression for the expected value of the log joint PDF:

〈ln (p (Y ,X,A,Q,G,R))〉q(j)(A|Q)q(j)(Q)q(j)(G|R)q(j)(R)q(j)(X)

∝− 1

2

〈
(x1 − µ1)TV−1

1 (x1 − µ1)
〉
q(j)(x1)

− ns
2
〈ln |Q|〉q(j)(Q) −

no
2
〈ln |R|〉q(j)(R)

− 1

2

〈
tr
{

Q−1
(
S

(j)
ff −AS

(j)
fx

T
− S

(j)
fxA

T + AS(j)
xxAT

)}〉
q(j)(A,Q)

− 1

2

〈
tr
{

R−1
(
S(j)
yy −GS(j)

yx

T − S(j)
yxGT + GS(j)

xxGT
)}〉

q(j)(G,R)

− 1

2

〈
tr
{
Q−1

(
µAΠ−1µTA −AΠ−1µTA − µAΠ−1AT + AΠ−1AT

)}〉
q(j)(A,Q)

− 1

2

〈
tr
{
R−1

(
µGΠ−1µTG −GΠ−1µTG − µGΠ−1GT + GΠ−1GT

)}〉
q(j)(G,R)

− dQ +N + ns + 1

2
〈ln |Q|〉q(j)(Q) −

1

2

〈
tr
{
DQQ−1

}〉
q(j)(Q)

− dR +N + no + 1

2
〈ln |R|〉q(j)(R) −

1

2

〈
tr
{
DRR−1

}〉
q(j)(R)

.

(4.30)

The matrices S
(j)
xx , S

(j)
fx , S

(j)
ff , S

(j)
yx and S

(j)
yy are the expectations of sufficient statistics

needed in the VBM step and are defined as:

S(j)
xx =

N∑
k=1

〈
xkx

T
k

〉
q(j)(X)

,

S
(j)
fx =

N∑
k=1

〈
xk+1x

T
k

〉
q(j)(X)

,

S
(j)
ff =

N∑
k=1

〈
xk+1x

T
k+1

〉
q(j)(X)

,

(4.31a)

S(j)
yx =

N∑
k=1

〈
ykx

T
k

〉
q(j)(X)

, S(j)
yy =

N∑
k=1

〈
yky

T
k

〉
q(j)(X)

. (4.31b)
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The procedures to calculate the expectations of sufficient statistics in Eq.(4.31a) and

(4.31b) are described in the next section.

4.5.2 Derivation of VBE-step: Evaluating q(j) (X)

The evaluation of the expectations needed to compute the expectations of sufficient statis-

tics, as given in Eqs.(4.31a) and (4.31b), constitutes the VBE-step. Under the assumption

of non-random, known θ, the evaluation of the variational distribution q(j) (X) is equiva-

lent to the evaluation of the conditional distribution over the variablesX given an observed

data sequence Y . This corresponds to classical state estimation which can accomplished

using a Kalman filter (and smoother). However, the values of θ in the ensuing varia-

tional approximation are not fixed, but are governed by probability distributions. This

fact renders the standard algorithms inappropriate for evaluating q(j) (X).

A potential solution is the modified state space model, proposed by Barber and Chiappa

[108], which permits the use of a Kalman filter and RTS smoother for complete data

matrices. In this thesis, the modified state space model is adopted for the missing-data

case by applying permutation matrices to separate the missing data from the observed

date (see Section 4.3.1). The sequence of permutation matrices
{
fff(1)
k ,fff(2)

k , I
(1)
k , I

(2)
k

}
1:N

are

computed based on the missingness pattern of the entries in the incomplete data matrix.

The following terms associated with the modified state space model can then be defined

as:

Ã = 〈A〉q(j)(A|Q) = µ
(j)
A (4.32a)

Q̃ = 〈Q〉q(j)(Q) =
D

(j)
Q

d
(j)
Q − ns − 1

(4.32b)

Gk = I
(1)
k 〈G〉q(j)(G|R) = I

(1)
k µ

(j)
G (4.32c)

Rk = I
(1)
k 〈R〉q(j)(R) I

(1)
k + I

(2)
k I

(2)
k =

I
(1)
k D

(j)
R I

(1)
k

d
(j)
R − no − 1

+ I
(2)
k I

(2)
k (4.32d)

UT
kUk =

〈
ATQ−1A

〉
q(j)(A,Q)

−
〈
AT
〉
q(j)(A|Q)

〈
Q−1

〉
q(j)(Q)

〈A〉q(j)(A|Q)
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−
〈
GT
kR−1

k Gk

〉
q(j)(G,R)

−
〈
GT
k

〉
q(j)(G|R)

〈
R−1
k

〉
q(j)(R)

〈Gk〉q(j)(G|R)

= (ns + nobs,k)Π
(j) (4.32e)

where nobs,k is the number of observed entries at time step k, and

ỹk =

[
I

(1)
k yk
0ns

]
, G̃k =

[
Gk

Uk

]
, R̃k =

[
Rk 0no×ns

0Tno×ns Ins

]
. (4.33a)

Furthermore, the Kalman filter and RTS smoother for the modified model are as follows:

Kalman filter for modified LGSSM : Do for k = 1, . . . , N

ẽ∗k = ỹk − G̃kx̂k|k−1 (4.34a)

H̃∗k = G̃kV̂k|k−1G̃
T
k + R̃k (4.34b)

K̃∗k = V̂k|k−1G̃
T
k

(
H̃∗k

)−1

(4.34c)

x̂k|k = x̂k|k−1 + K̃∗kẽ
∗
k (4.34d)

V̂k|k = V̂k|k−1 − K̃∗kH̃
∗
k

(
K̃∗k

)T
(4.34e)

x̂k+1|k = Ãx̂k|k (4.34f)

V̂k+1|k = ÃV̂k|kÃ + Q̃, (4.34g)

Kalman smoother : Do for k = N, . . . , 1

Ñ∗k = V̂k|kÃ
T
(
V̂k+1|k

)−1

(4.35a)

x̂k|N = x̂k|k + Ñ∗k
(
x̂k+1|N − x̂k+1|k

)
(4.35b)

V̂k|N = V̂k|k + Ñ∗k

(
V̂k+1|N − V̂k+1|k

)(
Ñ∗k

)T
(4.35c)

V̂k+1,k|N = V̂k+1|N

(
Ñ∗k

)T
. (4.35d)

Given the estimated states, the three of the expectations of sufficient statistics can be

computed as follows:

S(j)
xx =

N∑
k=1

〈
xkx

T
k

〉
q(j)(X)

=
N∑
k=1

(
x̂k|N x̂

T
k|N + V̂k|N

)
(4.36a)
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S
(j)
fx =

N∑
k=1

〈
xk+1x

T
k

〉
q(j)(X)

=
N∑
k=1

(
x̂k+1|N x̂

T
k|N + V̂k+1,k|N

)
(4.36b)

S
(j)
ff =

N∑
k=1

〈
xk+1x

T
k+1

〉
q(j)(X)

=
N∑
k=1

(
x̂k+1|N x̂

T
k+1|N + V̂k+1|N

)
. (4.36c)

Unlike the expectations of sufficient statistics S
(j)
xx , S

(j)
fx , S

(j)
ff which depend only on the esti-

mated states, S
(j)
yy and S

(j)
yx also depend on the complete observations. Since the observations

have missing components, the expected values of the missing components, conditional on

the estimated states, are obtained prior to the calculation of S
(j)
yy and S

(j)
yx :

R(j) = 〈R〉q(j)(R) =
D

(j)
R

d
(j)
R − no − 1

(4.37a)

Z
(j)
k = Ino×no −R(j)fff(1)

k

T
(
fff(1)
k R(j)fff(1)

k

T
)−1

fff(1)
k (4.37b)

ŷk = 〈yk〉q(j)(X) = yk − Z
(j)
k

(
yk − µ

(j)
G x̂k|N

)
(4.37c)

S(j)
yy =

N∑
k=1

〈
yky

T
k

〉
q(j)(X)

=
N∑
k=1

(
I

(2)
k Z

(j)
k

(
R(j) + µ

(j)
G V̂k|N

(
µ

(j)
G

)T)(
Z

(j)
k

)T
I

(2)
k + ŷkŷ

T
k

)
(4.37d)

S(j)
yx =

N∑
k=1

〈
ykx

T
k

〉
q(j)(X)

=
N∑
k=1

(
Z

(j)
k µ

(j)
G V̂k|N + ŷkx̂

T
k|N

)
(4.37e)

Eq.(4.37c) imputes the missing observations by conditional mean values of the observations

given the expected values of the states.

4.5.3 Derivation of VBM-step: Computing q(j+1) (θ)

This section presents the update rules for the hyperparameters of the variational dis-

tributions q(j+1) (A,Q) and q(j+1) (G,R). The update expressions are derived follow-

ing the maximization rule in Eq.(4.27). The expectations of sufficient statistics in the

jth iteration (refer Eqs.(4.36) and (4.37)) and the set of prior hyperparameters πh =

{µA,µG,Π,DQ,DR, dQ, dR} (refer Eq.(4.24)) are used to derive the expressions. The

details of the derivations of the update rules can be found in Appendix D.1.
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Update for q(j+1) (A,Q)

The hyperparameters of q(j+1) (A,Q) are updated using the following expressions:

Π(j+1) =
(
S(j)
xx + Π−1

)−1
(4.38a)

µ
(j+1)
A =

(
S

(j)
fx + µAΠ−1

)
Π(j+1) (4.38b)

d
(j+1)
Q = dQ +N (4.38c)

D
(j+1)
Q = DQ + S

(j)
ff + µAΠ−1µTA − µ

(j+1)
A Π(j+1)−1

µ
(j+1)
A

T
. (4.38d)

Update for q(j+1) (G,R)

The hyperparameters of q(j+1) (G,R) are updated using the following expressions

µ
(j+1)
G =

(
S(j)
yx + µGΠ−1

)
Π(j+1) (4.39a)

d
(j+1)
R = dR +N (4.39b)

D
(j+1)
R = DR + S

(j)
ff + µGΠ−1µTG − µ

(j+1)
G Π(j+1)−1

µ
(j+1)
G

T
. (4.39c)

The auxiliary parameters µ1 and V1 are set as

µ
(j+1)
1 = x̂1|N (4.40a)

V
(j+1)
1 = V̂1|N . (4.40b)

4.5.4 Evaluation of variational free energy

The computation of the variational free energy F (j)
ve := Fve

(
q(j) (X,θ)

)
(refer Eq.(2.28)) at

each iteration helps to ensure that the lower bound of the marginal likelihood is maximized

monotonically. To conveniently evaluate the variational free energy, the “average energy”

and an “entropy” decomposition [107] is used

F (j)
ve =

∫ ∫
q(j) (X,θ) ln

p (Y ,X,θ)

q(j) (X,θ)
dXdθ

=

∫ ∫
q(j) (X,θ) ln p (Y ,X,θ) dXdθ +

∫ ∫
−q(j) (X,θ) ln q(j) (X,θ) dXdθ
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= E (j)
av +H(j) (4.41)

The detailed calculations of E (j)
av and H(j) are presented in Appendix D.2. The final ex-

pressions needed for their computations are presented as follows:

E (j)
av =

1

2

[
− c3 ln(2π) + (c4ns + c5no − c6) ln 2− 2 ln Γns

(
dQ

2

)
− 2 ln Γno

(
dR

2

)
− ln |V1| − (ns + no) ln

∣∣Π−1
∣∣+ dQ ln |DQ|+ dR ln |DR|

+ c4

ns∑
i=1

γ

(
d

(j)
Q − i+ 1

2

)
+ c5

no∑
i=1

γ

(
d

(j)
R − i+ 1

2

)
− 2tr

{(
Sxx + Π−1

)
Π(j)

}
− c4 ln

∣∣∣D(j)
Q

∣∣∣− c5 ln
∣∣∣D(j)

R

∣∣∣− tr
{

V−1
1 E1 + d

(j)
Q D

(j)
Q

−1
E2 + d

(j)
R D

(j)
R

−1
E3

} ]
,

(4.42)

where Γp (·) and γp (·) are gamma and digamma functions [109] and

c3 = ns +Nns +Nno + n2
s + nsno

c4 = dQ +N + 2ns + 1

c5 = dR +N + ns + no + 1

c6 = dQns + dRno,

(4.43)

and

E1 =
〈
x1x

T
1

〉
q(x1)
− 〈x1〉q(x1)µ

T
1 − µ1

〈
xT1
〉
q(x1)

+ µ1µ
T
1

=
(
V̂1|N + x̂1|N x̂

T
1|N

)
− x̂1|Nµ

T
1 − µ1x̂

T
1|N + µ1µ

T
1

E2 = DQ + µAΠ−1µTA + Sff − µ(j)
A

(
Sfx + µAΠ−1

)T − (Sfx + µAΠ−1
)
µ

(j)
A

T

+ µ
(j)
A

(
Sxx + Π−1

)
µ

(j)
A

T

E3 = DR + µGΠ−1µTG + Syy − µ(j)
G

(
Syx + µGΠ−1

)T − (Syx + µGΠ−1
)
µ

(j)
G

T

+ µ
(j)
G

(
Sxx + Π−1

)
µ

(j)
G

T
.

(4.44)

The entropy term H
(
q(j) (X,θ)

)
can be written as entropy over a product of independent

random variables:

H(j) = H
(
q(j) (A | Q) q(j) (Q) q(j) (G | R) q(j) (R) q(j) (X)

)
. (4.45)
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Then, H
(
q(j) (X,θ)

)
can be computed using the additivity property of differential entropy

for independent variables [110]:

H
(
q(j) (X,θ)

)
= H

(
q(j) (A | Q)

)
+H

(
q(j) (Q)

)
+H

(
q(j) (G | R)

)
+H

(
q(j) (R)

)
+H

(
q(j) (X)

)
.

(4.46)

The expression for the component-wise entropies are given as:

H
(
q(j) (A | Q)

)
=

1

2
ln
∣∣Π(j) ⊗Q(j)

∣∣+
n2
s

2
(1 + ln(2π)) (4.47a)

H
(
q(j) (Q)

)
= ln Γns

(
d

(j)
Q

2

)
+
d

(j)
Q ns

2
+
ns + 1

2
ln

∣∣∣∣∣D
(j)
Q

2

∣∣∣∣∣− d
(j)
Q + ns + 1

2

ns∑
i=1

γ

(
d

(j)
Q − i+ 1

2

)
(4.47b)

H
(
q(j) (G | R)

)
=

1

2
ln
∣∣Π(j) ⊗R(j)

∣∣+
nsno

2
(1 + ln(2π)) (4.47c)

H
(
q(j) (R)

)
= ln Γno

(
d

(j)
R

2

)
+
d

(j)
R no
2

+
no + 1

2
ln

∣∣∣∣∣D(j)
R

2

∣∣∣∣∣− d
(j)
R + no + 1

2

no∑
i=1

γ

(
d

(j)
R − i+ 1

2

)
(4.47d)

H
(
q(j) (X)

)
=

1

2

[
ln
∣∣∣V̂1|N

∣∣∣+
N∑
k=1

(
ln
∣∣∣V̂k+1|N − V̂k+1,k|NV̂−1

k|NV̂T
k+1,k|N

∣∣∣)+ c7

]
(4.47e)

where the constant c7 = (Nn2
s − (N − 1)ns) (1 + ln(2π)) and ‘⊗’ denotes the Kronecker

product.

The total differential entropy H
(
q(j) (X,θ)

)
is obtained by substituting Eq.(4.47) in

Eq.(4.46). Finally, the variational free energy F (j)
ve as a sum of Eq.(4.42) and (4.46) can be

calculated as in Eq.(4.41). This completes the calculation of the variational free energy at

each VB iteration.

4.5.5 Initialization and convergence criterion for VB

The VB algorithm is iterative in nature, and the the hyperparameters θh of the parameter

distributions are updated iteratively using Eqs.(4.38)-(4.40). For commencing the VB

algorithm, the prior as well as the initial variational distributions are needed. First, the

92



hyperparameters of the prior distributions πh = {µA,µG,Π, dQ, dR,DQ,DR} are set as

follows:

µA = A(SSI), µG = G(SSI) (4.48a)

Π = 1015 × Ins×ns , DQ = Ins×ns , DR = Ino×no (4.48b)

dQ = ns + 2, dR = no + 2. (4.48c)

Note the means of prior distributions of A and G are set equal to their SSI estimates and

a large value (∼ 1015) of covariance is assigned to make the prior sufficiently flat (and non-

informative). Next, the hyperparameters of initial variational distribution θ
(0)
h in Eq.(4.29)

are set equal to the hyperparameters of the prior distributions.

µ
(0)
A = A(SSI), µ

(0)
G = G(SSI) (4.49a)

D
(0)
Q = Ins×ns , D

(0)
R = Ino×no (4.49b)

d
(0)
Q = ns + 2, d

(0)
R = no + 2 (4.49c)

µ
(0)
1 = 0ns , V

(0)
1 = Ins×ns . (4.49d)

The convergence criterion for VB algorithm is based on the change in the variational free

energy F (j)
ve between iterations and is given by:

F (j+1)
ve −F (j)

ve(
F (j+1)
ve + F (j)

ve

)
/2
≤ εtol. (4.50)

Note that F (j)
ve is calculated using Eq.(4.41). Typically, εtol is taken in the range of 10−4 ∼

10−6 [57]. The VB iterations are stopped once the convergence criterion is satisfied, and

the hyperparameters obtained at the final iteration θ∗h =
{
µ∗A,µ

∗
G,Π

∗,D∗Q,D
∗
R, d

∗
Q, d

∗
R

}
are treated as the converged hyperparameters governing the posterior distribution of the

parameters θ .

4.5.6 Posterior distributions of modal parameters from VB

The VB algorithm outputs the hyperparameters governing the posterior distributions of

the variables A,G,Q,R. The marginal distributions of A and G, in theory, follows matrix
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variate-t distributions [111] and as the degrees of freedom d∗Q and d∗R increase, the matrix

variate-t distributions of A and G converge to matrix normal distributions. In this study,

the degrees of freedom d∗Q and d∗R are fairly large due to large number of time samples and

hence the posterior distributions of A and G can be considered matrix normal. However,

the posterior distribution of the modal parameters do not have a closed-form solution

due to required eigenvalue transformation. Following the work of Li and Kiureghian [57],

a first-order Taylor series expansion about the posterior means µ∗A and µ∗G is used to

approximate the posterior distributions of the modal parameters. This approximation is

expected to provide a good estimation, because the joint distribution is generally unimodal

and the coefficient of variation of the modal parameters are usually small. Since the modal

frequencies and damping ratios are always positive for stable structures, the first-order

Taylor expansion is operated on their logarithms:

ln fi(A) ≈ ln fi(µ
∗
A) +

∂ ln fi(A)

∂vec (A)

∣∣∣∣
A=µ∗A

(vec (A)− vec (µ∗A)) (4.51a)

ln ξi(A) ≈ ln ξi(µ
∗
A) +

∂ ln ξi(A)

∂vec (A)

∣∣∣∣
A=µ∗A

(vec (A)− vec (µ∗A)) (4.51b)

φuni (A,G) ≈ φuni (µ∗A,µ
∗
G) +

∂φuni (A,G)

∂vec (A)

∣∣∣∣
A=µ∗A

(vec (A)− vec (µ∗A))

+
∂φuni (A,G)

∂vec (G)

∣∣∣∣
G=µ∗G

(vec (G)− vec (µ∗G)) . (4.51c)

Here fi, ξi and φuni are the ith natural frequency, damping ratio and un-normalized mode

shape respectively, and the first-order partial derivatives form the Jacobian matrices which

define the sensitivity of the modal parameters with respect to the elements of A and G.

The calculation of the Jacobian matrices are detailed in Appendix B.2.

The vectors vec (A) and vec (G) are approximately normally distributed with mean

vec (µ∗A) and vec (µ∗G), and covariances
Π∗⊗D∗Q
d∗Q−ns−1

and
Π∗⊗D∗R
d∗R−no−1

respectively, where ‘⊗’ stands

for the Kronecker product. The modal parameters are expressed approximately as linear

equations in Eq.(4.51), which implies that the ith identified modal parameters will follow

multivariate normal distributions:

ln fi(A) ∼ N
(
µln fi , σ

2
ln fi

)
(4.52a)
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ln ξi(A) ∼ N
(
µln ξi , σ

2
ln ξi

)
(4.52b)

φuni (A,G) ∼ N
(
µφuni , Σφuni

)
(4.52c)

with
µln fi = ln fi(µ

∗
A) (4.53a)

µln ξi = ln ξi(µ
∗
A) (4.53b)

µφuni = φuni (µ∗A,µ
∗
G) (4.53c)

σ2
ln fi

=

[
∂ ln fi(A)

∂vec (A)

∣∣∣∣
A=µ∗A

][
Π∗ ⊗D∗Q
d∗Q − ns − 1

][
∂ ln fi(A)

∂vec (A)

∣∣∣∣
A=µ∗A

]T
(4.53d)

σ2
ln ξi

=

[
∂ ln ξi(A)

∂vec (A)

∣∣∣∣
A=µ∗A

][
Π∗ ⊗D∗Q
d∗Q − ns − 1

][
∂ ln ξi(A)

∂vec (A)

∣∣∣∣
A=µ∗A

]T
(4.53e)

Σφuni
=

[
∂φuni (A,G)

∂vec (A)

∣∣∣∣
A=µ∗A

][
Π∗ ⊗D∗Q
d∗Q − ns − 1

][
∂φuni (A,G)

∂vec (A)

∣∣∣∣
A=µ∗A

]T
+[

∂φuni (A,G)

∂vec (G)

∣∣∣∣
G=µ∗G

] [
Π∗ ⊗D∗R
d∗R − no − 1

][
∂φuni (A,G)

∂vec (G)

∣∣∣∣
G=µ∗G

]T
. (4.53f)

Any arbitrary normalized mode shape φni can be obtained from un-normalized mode shape

φuni by scaling with νi ∈ R (i.e., φni = νiφ
un
i ), and the distribution of new arbitrarily

normalized mode shape would be given by

φni (A,G) ∼ N
(
νiµφuni (µ∗A,µ

∗
G), ν2

i Σφuni

)
. (4.54)

Since the logarithms of the modal frequency and damping ratio follow normal distributions,

the modal frequency and damping ratio have lognormal distributions and can be converted

to equivalent normal distributions using transformation:

Mean : µfi = exp

(
µln fi +

σ2
ln fi

2

)
, µξi = exp

(
µln ξi +

σ2
ln ξi

2

)
Variance : σ2

fi
= exp

(
2µln fi + σ2

ln fi

)
exp

(
σ2

ln fi
− 1
)
,

σ2
ξi

= exp
(
2µln ξi + σ2

ln ξi

)
exp

(
σ2

ln ξi
− 1
)
.

(4.55)

The mode shapes, however, follow multivariate normal distributions. The complete list of

steps for applying the VB algorithm to the missing data case is provided in Algorithm 2.
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Algorithm 2 Modal parameter estimation with VB using missing data

Input: Y , εtol,
{
fff(1)
k ,fff(2)

k , I
(1)
k , I

(2)
k

}
1:N

Set prior hyperparameter πh according to Eq.(4.48)

Initialize hyperparameters θ
(0)
h =

{
µ

(0)
A ,µ

(0)
G ,D

(0)
Q ,D

(0)
R ,µ

(0)
1 ,V

(0)
1

}
using Eq.(4.49)

VB E-step:

1. Set A(0), G(0), Q(0) and R(0) to the mean values of their respective distributions

2. Use Eqs.(4.13) and (4.15) for Kalman filter and RTS smoother

3. Calculate the expectations of sufficient statistics using Eqs.(4.36) and (4.37)

while not converged do

1. VB M-step: Use Eqs.(4.38), (4.39) and (4.40) to update parameters

→ µ
(j+1)
A ,µ

(j+1)
G ,Π(j+1),D

(j+1)
Q ,D

(j+1)
R , d

(j+1)
Q , d

(j+1)
R ,µ

(j+1)
1 ,V

(j+1)
1

2. VB E-step:

(a) Run Kalman filter and RTS smoother using Eqs.(4.32) – (4.35)

(b) Calculate the expectations of sufficient statistics usingEqs.(4.36) and (4.37)

3. Use Eqs.(4.41), (4.42) and (4.46) to compute F (j+1)
ve

4. Use Eq.(4.50) to check if convergence criterion is satisfied

end while

Return µ∗A ← µ
(final)
A , µ∗G ← µ

(final)
G , D∗Q ← D

(final)
Q , D∗R ← D

(final)
R , Π∗ ← Π(final),

d∗Q ← d
(final)
Q , d∗R ← d

(final)
R

Set A = µ∗A and G = µ∗G. Then extract the modal parameters i.e. frequency fi, damping

ratio ξi, un-normalized mode shape φuni , using Appendix B.1

for fi, ξi,φ
un
i do

Compute the sensitivities using Eq.(B.6) and Appendix B.3

Compute the means and covariances of the posterior distribution of the identified

modal parameters using Eqs.(4.52) – (4.55)

end for

Output: µfi , µξi ,µφuni , σ
2
fi
, σ2

ξi
,Σφuni

for all modes i = 1, 2, . . .
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4.6 Bayesian estimation of LGSSM via GS

Another inference method for the LGSSM is formulated using a Gibbs Sampler (GS). The

main advantage of using a GS is the ability to achieve arbitrarily accurate approximation

of the posterior distribution (i.e., converges to the true posterior distribution with an

arbitrarily defined error); however, this comes with a cost of heavier computational burden.

In this section, the standard GS [59, 88] is used within a multiple imputation frame-

work for Bayesian inference with missing data. This method will serve as a baseline for

comparison of the different approaches in this study. Multiple imputation [60, 112, 113] in

combination with GS is based on the premise of “filling in” the missing data values and

subsequently applying Bayesian analysis to the complete data matrix.

4.6.1 Multiple imputation procedure

Multiple imputation using GS shares the same underlying philosophy as EM and VB: solv-

ing an incomplete-data problem by repeatedly solving the complete-data version. Multiple

imputation assumes that the missing data are missing at random (MAR), that is, the

probability that an observation is missing may depend on Y obs but not on Y miss. This

MAR assumption holds true for the missing data matrix generated from in-motion mobile

sensing because the pattern of missingness depends only on the path of the mobile sensors

and does not depend on the missing responses Y miss. In multiple imputation, the unknown

missing dataset, Y miss, is replaced by imputed datasets Y
(1)
miss,Y

(2)
miss, . . . ,Y

(D)
miss. Each of

the D completed datasets is analyzed by standard complete-data methods. The variability

among the results of the D analyses provides a measure of the uncertainty due to missing

data.

The multiple imputation procedure follows three steps. First, for every missing entry

in the data, imputation is conducted by drawing samples from the posterior predictive

distribution D times, creating D sets of complete data, denoted Y (d) =
{
Y obs,Y

(d)
miss

}
,

d = 1, . . . , D. Let Q be scalar quantity of interest, with Q̂ as its estimator and U be the

associated variance. With D imputations, one can calculate D different versions of Q̂ and

U . Let Q̂(d) and U (d) be the point and variance estimates using the dth imputed dataset
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Y (d) =
{
Y obs,Y

(d)
miss

}
, d = 1, . . . , D, then valid inferences can be drawn using Rubin’s

combination rule [60]. The multiple imputation point estimate Q̂ is the average of the

D-complete data estimates

Q̂ =
1

D

D∑
d=1

Q̂(d). (4.56a)

The total variance estimate associated with Q̂ is

T = U +

(
1 +

1

D

)
B (4.56b)

where

Within-chain-imputation variance: U =
1

D

D∑
d=1

Û (d) (4.56c)

Between-chain-imputation variance: B =
1

D − 1

D∑
d=1

(
Q̂(d) − Q̂

)2

. (4.56d)

The joint distribution of the unknown parameters θ = {A,G,Q,R}, the hidden states X

and the measurements Y = {Y obs,Y miss} can be written as

p (Y ,X,A,G,Q,R) = p (A | Q) p (Q) p (G | R) p (R) p (x1) (4.57)

×
N∏
k=1

p (xk+1 | xk,A,Q) p (yk | xk,G,R) . (4.58)

To apply the multiple imputation technique, one needs to obtain D completed datasets

which requires running D Markov chains. The Markov chains are constructed using GS,

whereby the elements of the Markov chains are drawn from fully specified conditional dis-

tributions. Given the observed measurements Y obs, the required conditional distributions

can be derived and samples can be drawn during each iteration j of the dth Markov chain

in the following cyclic fashion:
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1. Given θ(d,j) =
{
A(d,j),G(d,j),Q(d,j),R(d,j)

}
and observed measurements Y obs, a se-

quence of hidden state variables are sampled according to

X(d,j) ∼ p
(
X | Y obs,θ

(d,j)
)
. (4.59)

2. Given X(d,j), a sequence of missing measurements is sampled according to

Y
(d,j)
miss ∼ p

(
Y miss | Y obs,X

(d,j),θ(d,j)
)
. (4.60)

3. Given X(d,j) and Y
(d,j)
miss, the unknown parameters θ(d,j+1) are sampled according to

θ(d,j+1) ∼ p
(
θ | Y obs,Y

(d,j)
miss,X

(d,j)
)
. (4.61a)

4.6.2 Forward filtering backward sampling for states

The state sequenceX is sampled following the forward filtering backward sampling strategy

elaborated in Wills et al. [92] (also in [114]). The strategy consists of two parts: forward

filtering and backward sampling. The forward filtering part sequentially predicts and

updates the states and state-error covariances using the Kalman filter, as in Eq.(4.13),

to obtain p (xk | Y obs,θ) for all k = 1, . . . , N + 1. Post forward filtering, the backward

sampling simulates state vectors from time k = N + 1 to k = 1. The joint distribution of

xk+1 and xk conditioned on observed data Y obs [65] can be written as

p (xk+1,xk | Y obs) = N

([
xk+1

xk

] ∣∣∣∣∣m̃1, P̃1

)
(4.62)

where

m̃1 =

[
x̂k+1|N

x̂k|k + Nk

(
x̂k+1|N −Ax̂k|k

)]

P̃1 =

[
V̂k+1|N V̂k+1|NNT

k

NkV̂
T
k+1|N V̂k|k + Nk

(
V̂k+1|N − V̂k+1|k

)
NT
k

]
.

(4.63)
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The matrix Nk = V̂k|kA
T
(
V̂k+1|k

)−1

is the smoother gain matrix at the k time instant,

as calculated in RTS smoother Eq.(4.15a). Using the property of the multivariate normal

distribution, the conditional distribution of xk given xk+1 follows a multivariate normal

distribution (refer Eq. (8.10) in [65])

p (xk | xk+1,Y obs) = N
(
xk | m̃2, P̃2

)
(4.64)

where

m̃2 = x̂k|k + Nk

(
xk+1 −Ax̂k|k

)
P̃2 = V̂k+1|k −NkV̂k+1|kN

T
k .

(4.65)

For the jth iteration of the dth Markov chain, given x
(d,j)
k+1 , one successfully samples x

(d,j)
k

from the multivariate normal distribution in Eq.(4.64). Thus, given A(d,j),G(d,j),Q(d,j),R(d,j)

and Y obs, one can generate the sequence X(d,j).

4.6.3 Sampling the missing observations

Given A, G, Q, R and the state sequence X, the conditional distribution of yk =(
yobsk ,ymissk

)
can be written as[

yobsk | xk
ymissk | xk

]
= N

([
fff(1)
k Gxk

fff(2)
k Gxk

]
,

[
R11 RT

21

R21 R22

])

where fff(1)
k and fff(2)

k are matrices defined based on the missingness pattern in Y , and

R11 = fff(1)
k Rfff(1)

k

T
, R12 = fff(1)

k Rfff(2)
k

T
, R21 = fff(2)

k Rfff(1)
k

T
and R22 = fff(2)

k Rfff(2)
k

T
. Using

the property of conditional distributions for multivariate normal distribution, one can

obtain (
ymissk | yobsk ,xk

)
∼ N

(
µ̈, Σ̈

)
(4.66)

where

µ̈ = fff(2)
k Gxk + R21R

−1
11 fff

(1)
k (yk −Gxk)
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= fff(2)
k

(
yk − Zk

(
yk −Gx̂k|N

))
(4.67a)

Σ̈ = R22 −R21R
−1
11 RT

21

= fff(2)
k ZkRfff(2)

k

T
(4.67b)

and Zk = I − Rfff(1)
k

T
(
fff(1)
k Rfff(1)

k

T
)−1

fff(1)
k . Therefore, given X(d,j) and θ(d,j), one can

sample Y
(d,j)
miss using Eqs.(4.66) and (4.67).

Sampling unknown parameters

The posterior distribution of the parameters θ = {A,G,Q,R} given a sample of the state

sequence X(d,j) and the complete measurements Y (d,j) =
{
Y obs,Y

(d,j)
miss

}
is given by

p
(
θ |X(d,j),Y (d,j)

)
∝ p

(
X(d,j),Y (d,j) | θ

)
p (θ) . (4.68)

Since the prior p (θ) is assumed to be described by a MNIW distribution, the posterior

distribution p
(
θ |X(d,j),Y (d,j)

)
is also a MNIW distribution for the LGSSM, and therefore

one can readily obtain samples of parameters from it. More specifically,

p (A,Q) = p (A | Q) p (Q)

p (G,R) = p (G | R) p (R) .
(4.69)

With the prior distribution in place, the logarithm of joint likelihood term can be written

as

ln p
(
X(d,j),Y (d,j) | θ

)
∝ N ln |Q|+N ln |R|

+ tr

{
Q−1

(
P

(d,j)
ff −A

(
P

(d,j)
fx

)T
−P

(d,j)
fx AT + AP(d,j)

xx AT

)}
+ tr

{
R−1

(
P(d,j)
yy −G

(
P(d,j)
yx

)T −P(d,j)
yx GT + GP(d,j)

xx GT
)}

(4.70)

where P
(d,j)
xx ,P

(d,j)
fx ,P

(d,j)
ff ,P

(d,j)
yx ,P

(d,j)
yy are the expectations of sufficient statistics described

as

P(d,j)
xx =

N∑
k=1

x
(d,j)
k

(
x

(d,j)
k

)T
, P

(d,j)
fx =

N∑
k=1

x
(d,j)
k+1

(
x

(d,j)
k

)T
, P

(d,j)
ff =

N∑
k=1

x
(d,j)
k+1

(
x

(d,j)
k+1

)T
(4.71a)
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P(d,j)
yx =

N∑
k=1

y
(d,j)
k

(
x

(d,j)
k

)T
, P(d,j)

yy =
N∑
k=1

y
(d,j)
k

(
y

(d,j)
k

)T
. (4.71b)

It follows (see West and Harrison [115]) that the posterior distribution is MNIW and is

given by

p
(
A,Q |X(d,j),Y (d,j)

)
= p

(
A |X(d,j),Y (d,j),Q

)
p
(
Q |X(d,j),Y (d,j)

)
(4.72a)

p
(
G,R |X(d,j),Y (d,j)

)
= p

(
G |X(d,j),Y (d,j),R

)
p
(
R |X(d,j),Y (d,j)

)
(4.72b)

with

p
(
Q |X(d,j),Y (d,j)

)
= IW

(
d

(d,j+1)
Q ,D

(d,j+1)
Q

)
(4.73a)

p
(
A |X(d,j),Y (d,j),Q(d,j+1)

)
=MN

(
µ

(d,j+1)
A ,Q(d,j+1),Π(d,j+1)

)
(4.73b)

p
(
R |X(d,j),Y (d,j)

)
= IW

(
d

(d,j+1)
R ,D

(d,j+1)
R

)
(4.73c)

p
(
G |X(d,j),Y (d,j),R(d,j+1)

)
=MN

(
µ

(d,j+1)
G ,R(d,j+1),Π(d,j+1)

)
. (4.73d)

Here,

Π(d,j+1) =
(
P(d,j)
xx + Π−1

)−1
(4.74a)

µ
(d,j+1)
A =

(
P

(d,j)
fx + µAΠ−1

)
Π(d,j+1) (4.74b)

d
(d,j+1)
Q = dQ +N (4.74c)

D
(d,j+1)
Q = DQ + P

(d,j)
ff + µAΠ−1µTA − µ

(d,j+1)
A

(
Π(d,j+1)

)−1
(
µ

(d,j+1)
A

)T
(4.74d)

µ
(d,j+1)
G =

(
P(d,j)
yx + µGΠ−1

)
Π(d,j+1) (4.74e)

d
(d,j+1)
R = dR +N (4.74f)

D
(d,j+1)
R = DR + P(d,j+1)

yy + µGΠ−1µTG − µ
(d,j+1)
G

(
Π(d,j+1)

)−1
(
µ

(d,j+1)
G

)T
. (4.74g)

Thus, given the state sequenceX(d,j) and the complete observations Y (d,j) =
{
Y obs,Y

(d,j)
miss

}
at the jth GS iteration of the dth Markov chain, the updated parameters θ(d,j+1) can be

sampled using Eqs.(4.71), (4.73) and (4.74). For the purposes of implementation, first

Q(d,j+1) and R(d,j+1) are sampled from the respective inverse Wishart distributions, and
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then conditioned on the sampled Q(d,j+1) and R(d,j+1), A(d,j+1) and G(d,j+1) are sampled

from their respective matrix normal distributions. Once A(d,j+1) and G(d,j+1) are sampled,

one obtains samples of modal parameters using the procedure in Appendix B.1.

4.6.4 Initialization of GS

In GS, the desired posterior distribution is obtained after the Markov chain reaches its

stationary distribution. The number of samples needed for a Markov chain to reach its

stationary distribution depends, to a great extent, on the percentage of missing data. The

higher the percentage of missing data, the more samples required to reach stationarity and

the longer the Markov chain needs to be simulated. Since D Markov chains are required

for multiple imputation, the GS is run in parallel for D Markov chains, each of which

is initialized with different parameter estimates from SSI. One way to generate different

parameter estimates
{
ASSI,GSSI

}
from SSI is by randomly varying the number of block

rows inputted to the SSI algorithm. Another way is to obtain an estimate and then

generate more estimates by randomly perturbing the parameter estimate from SSI. The

initial parameter estimates can be selected in the same way as mentioned in Eq.(4.49) with

the hyperparameters of the prior distributions selected using Eq.(4.48).

4.6.5 Convergence monitoring of Markov chains

The first few samples of each Markov chain are discarded to remove the transient sam-

ples; this operation is termed as burn-in and the number of samples used for burn-in

is denoted by nb. A major consideration in MCMC simulations is that of convergence

to the stationary distribution of the Markov chain. The Gelman-Rubin diagnostic eval-

uates MCMC convergence by analyzing the difference between multiple Markov chains.

The convergence is assessed by comparing the estimated between-chains and within-chain

variances for each model parameter. Large differences between these variances indicate

non-convergence. A Gelman-Rubin diagnostic value of 1.2 is typically recommended for

this difference [116, 117].
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4.6.6 Computation of posterior statistics

Typically, the samples of a Markov chain are correlated; to minimize the correlation be-

tween samples one may choose to subsample the Markov chain. If Q(d,1),Q(d,2), . . . ,Q(d,J)

denote the output from the dth Markov chain of length J after discarding nb samples from

an initial burn-in period, the averaged estimate of Q̂(d) and unbiased variance U (d) over

every bth sample of the dth Markov chain is given by

Q̂(d) =
1

L

L∑
l=1

Q(d,bl) (4.75a)

U (d) =
1

L− 1

L∑
l=1

(
Q(d,bl) − Q̂(d)

)2

(4.75b)

where L = J/b and d = 1, . . . , D. Here, Q̂(d) would represent the averaged estimates of

frequencies, damping ratios and mode shapes, and U (d) would represent their respective

variances. The averaged estimates for the modal parameters using outputs for D chains

are obtained using Eq.(4.56) following Rubin’s combination rule.

The complete list of steps for applying the GS algorithm to the missing data case is

provided in Algorithm 3.
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Algorithm 3 Modal parameter estimation with GS using missing data

Input: Y , εtol,
{
fff(1)
k ,fff(2)

k , I
(1)
k , I

(2)
k

}
1:N

, number of chains D, chain length J , burn-in

samples nb, subsampling period b

Set prior hyperparameter πh using Eq.(4.48) and initialize θ
(0)
h using Eq.(4.49)

for Markov chain d do

for j = 1 : J do

1. Forward filtering backward sampling for states

(a) Use Eq.(4.13) for Kalman filter recursions

(b) Calculate smoother gains using Eq.(4.15a)

(c) Generate sequence X(j) using Eqs.(4.64) and (4.65)

2. Sampling missing observations

Use Eqs. (4.66) and (4.67) to sample missing observations Y
(j)
miss

3. Sampling parameters

(a) Compute expectations of sufficient statistics using Eq.(4.71)

(b) Update the distributional hyperparameters using Eq.(4.74)

(c) Sample the covariance parameters Q(d,j+1) and R(d,j+1) using probability dis-

tributions given by Eqs.(4.73a) and (4.73c) respectively

(d) Using samples Q(d,j+1) and R(d,j+1) from previous step, sample the pro-

cess parameters A(d,j+1) and G(d,j+1) using probability distributions given by

Eqs.(4.73b) and (4.73d) respectively

(e) Use Appendix B.1 to extract the modal parameters

end for

Using Eq.(4.75), compute the averaged point estimate Q̂(d) and variance U (d) for each

modal parameter for the dth Markov chain (after discarding nb initial samples)

end for

for fi, ξi,φ
un
i do

Compute the averaged point estimate and total variance using Eq.(4.56)

end for

Output: µfi , µξi ,µφuni , σ
2
fi
, σ2

ξi
,Σφuni

for all modes i = 1, 2, . . .
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4.7 Numerical Demonstration

This section presents a numerical example based on an eight-DoF lumped mass beam

model (adopted from Cara et al. [69]). Figure 4.2 depicts a schematic of the mass-spring-

damper model. The performance of the EM, VB and GS for modal parameter estimation is

demonstrated on data from in-motion mobile sensors following the missing data approach.

The structural parameters are: m = 1 kg, ki = 800i N/m for i = 1, . . . , 9 and damping

matrix C = 0.68M + 1.743 × 10−4K Ns/m (Rayleigh damping), where M and K are the

mass and stiffness matrices, respectively.

Figure 4.2: Eight-DoF mass spring damper model.

The modal frequencies and damping ratios of the above system are tabulated in Table 4.1.

Table 4.1: Modal frequencies (f) and damping ratios (ξ) of the eight-DoF model.

Mode 1 2 3 4 5 6 7 8

f (Hz) 2.942 5.870 8.602 11.188 13.780 16.519 19.536 23.188

ξ (%) 2.000 1.243 1.100 1.096 1.147 1.232 1.347 1.500

The numerical simulations of the structural responses are computed using the following:

• Identical bandlimited Gaussian white noise inputs are applied to all dofs of the

lumped-mass beam model,

• Sampling period ∆t = 0.02s. Total duration of 200s (10000 time steps),

• Acceleration outputs are observed at all eight vertical DoFs of the beam,
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• Zero mean Gaussian white noise sequences with RMS values equal to 20% of the

RMS of the corresponding “true” acceleration signals were added to obtain noisy

acceleration outputs,

• A group of nms mobile sensors is assumed to scan the eight DoFs, shifting back and

forth in a cyclical fashion. At every time step, the locations of the mobile sensors

change and only nms observations are sampled. This leads to a missing data matrix.

Figure 4.3 illustrates a missing data matrix for two mobile sensors (i.e., nms = 2).

The velocity of the mobile sensors are assumed to be such that each mobile sensor

proceeds from one DoF to the next in each sampling instant.

D
oF

s

Time samples

Figure 4.3: An example of missing data matrix for the eight-DoF lumped mass model

when observations are sampled using two adjacent mobile sensors (nms = 2) moving in a

cyclical fashion. The green boxes with ticks represent the mobile sensors’ trajectory; the

white boxes with crosses indicate positions where the data are absent (or missing).

In SSM based modal identification, the model order is first specified, which is typically twice

the number of physical modes. In this case, the theoretical model order is 16 (i.e. twice

the number of modes included in the acceleration responses). However, in practice, the

theoretical model order would not be known in advance, and hence a larger model order

is used to identify the physical modes. In this example, a model order of 20 is chosen.

Furthermore, the physical modes of the structure are identified based on two conditions:

(a) they should correspond to eigenvalues (of A) that appear in complex conjugate pairs,

and (b) they should have positive damping ratios below 5%. If a mode passes both these
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conditions it is considered a physical mode, else it is labelled as a spurious mode and

discarded from the identification process.

The averaged power spectral density (PSD) estimate from eight acceleration outputs is

shown in Figure 4.3 where it can be seen that the modal energy contribution of the first

mode is highest while the energies from the higher modes are diminishing.
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Figure 4.4: Averaged power spectral density from eight acceleration outputs.

For a comprehensive investigation of the modal parameter estimation performance,

three cases of mobile sensor groups (or networks) are considered, as listed in Table 4.2.

The three cases employ different number of mobile sensors for data collection, thus giving

rise to incomplete data matrices with varying degrees (or percentages) of missing data.
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Table 4.2: Cases of mobile sensor groups considered in this study.

Case nms
% data missing

(nms/8× 100)

MS2 2 75%

MS4 4 50%

MS6 6 25%

Estimation algorithms, namely EM, VB and GS, are employed to assess the perfor-

mance of the identified modal parameters using the missing data modelling approach. The

following are used in the inference procedure using EM, VB and GS:

• Initial estimates A(0) and G(0) are obtained from SSI (with model order 20) using

output responses from a slightly perturbed variant of the true system model. The

perturbed system model was set up with perturbed values of frequencies, damping

ratios and mode shapes having random perturbations in the range of 10%, 40% and

30%, respectively about their corresponding true values. Thus, the initial estimates

A(0) and G(0) from SSI produced frequencies f (0), damping ratios ξ(0) and mode

shapes φ(0) that had errors in the range of 10%, 40% and 30% respectively. These

initial errors are introduced to check the robustness of the employed algorithms when

subjected to initialization errors. A(0) and G(0) were set as initial estimates for EM.

For VB and GS, µ
(0)
A and µ

(0)
G were set equal to A(0) and G(0) respectively.

• Q(0) = I20×20 and R(0) = I8×8

• A tolerance value of εtol = 5 × 10−5 is set for both EM and VB for the stopping

criteria

• For GS, 20 Markov chains – each having 2500 samples – are simulated. A typical plot

of Gelman-Rubin statistic is shown in Figure 4.5. The initial 500 samples of each

chain are discarded as burn-in and the rest 2000 samples are further subsampled

with a period of 2 to obtain 1000 samples for each chain, totalling 20000 (20× 1000)

samples for estimation of posterior distribution.
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Figure4.5:ConvergencemonitoringforGSusingGelman-Rubindiagnostic;thedottedline

correspondsaGelman-Rubindiagnosticvalueof1.05.

4.7.1 Estimationwith missingdatafromtwo mobilesensors

Themissingdatamatrixgeneratedusingtwomobilesensorsamountsto75%ofmissing

data,whichisthehighestamongthethreecasesconsideredinTable4.2. Themodal

frequenciesanddampingratiosidentifiedusingEM,VBandGSarelistedinTable4.3

and4.4. NotethatEMprovidesonlypointestimateswhereasVBandGSprovidesthe

posteriordistributionsfromwhichthemeanandcoefficientofvariation(CoV)(=standard

deviation(SD)/mean×100)foreachmodalparametercanbecalculated.

Theestimatesoffrequenciesfromallthreemethodsarequiteconsistentandaccurate,

whilefordamping,theestimatesfromEMarefoundtobemoreaccuratethanthosefrom

VBandGS.TheCoVoftheidentifiedfrequenciesfromVBandGSaresubstantiallysmall

(maxaround0.25%),asnaturalfrequenciesaremucheasiertoestimate. Thedamping

ratiosareidentifiedwithamuchhigherCoVrangingbetween5-15%.Thisisnotunnatural

asdampingratiosareingeneralmuchhardertoestimatecomparedtonaturalfrequencies.

Itistobenotedthatallthreealgorithmsshowgoodperformanceinconvergingcloseto

thetruefrequenciesanddampingratios,astheywerecommencedwitherroneousinitial

valuesofA(0)andG(0);thecorrespondingerroneousinitialfrequenciesf(0)anddamping

ratiosξ(0)areshowninthethirdcolumnsofTables4.3and4.4).
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Table 4.3: Identified modal frequencies (in Hz) using EM, VB and GS.

Mode ftrue f (0) EM VB GS

Mean
SD

(×10−2)

CoV

(%)
Mean

SD

(×10−2)

CoV

(%)

1 2.942 3.128 2.939 2.948 0.725 0.246 2.938 0.809 0.275

2 5.870 6.347 5.870 5.873 0.822 0.140 5.870 0.921 0.157

3 8.602 7.964 8.579 8.578 0.910 0.106 8.579 0.976 0.114

4 11.188 12.102 11.188 11.191 1.179 0.105 11.190 1.423 0.127

5 13.780 14.141 13.778 13.782 1.333 0.097 13.781 1.568 0.114

6 16.519 15.197 16.537 16.538 1.516 0.092 16.535 2.015 0.122

7 19.536 18.672 19.536 19.537 1.676 0.086 19.536 2.229 0.114

8 23.118 23.328 23.168 23.157 1.864 0.081 23.168 3.177 0.137

Table 4.4: Identified modal damping ratios (in %) using EM, VB and GS.

Mode ξtrue ξ(0) EM VB GS

Mean SD
CoV

(%)
Mean SD

CoV

(%)

1 2.000 1.554 1.984 2.200 0.248 11.293 2.112 0.266 12.255

2 1.243 1.302 1.198 1.371 0.141 10.282 1.219 0.156 11.765

3 1.100 0.661 1.035 1.124 0.107 9.519 1.033 0.115 10.784

4 1.096 1.071 1.230 1.406 0.106 7.550 1.238 0.124 8.264

5 1.147 0.763 1.290 1.410 0.097 6.860 1.271 0.119 7.752

6 1.232 0.936 1.366 1.471 0.092 6.268 1.376 0.118 7.143

7 1.347 1.038 1.338 1.448 0.085 5.867 1.351 0.118 6.667

8 1.500 1.232 1.332 1.556 0.087 5.573 1.393 0.144 6.944

It is also noted that the estimated CoVs of the identified modal frequencies and damping

111



ratios from VB are typically smaller than those of GS, with a typical underestimation by

around 15-25%. Furthermore, it is noticed that the CoVs decrease gradually with higher

order modes, particularly for the frequencies.

A comparison of the probability density functions (PDFs) and cumulative distribution

functions (CDFs) of the identified modal frequencies and damping ratios are provided in

Figure 4.6 and 4.7. A distinct feature noticed in the PDFs estimated by VB is that they

consistently show higher peaks than those estimated by the GS. This happens because VB

underestimates the spread (variance) of distribution compared to GS, and thus in order to

keep the area under the PDF equal to 1, the posterior PDFs from VB show higher peaks

than PDFs from GS. Also notice that the mean values of the estimated frequencies and

damping ratios from VB vary slightly from that of GS, thus the PDFs from VB appear

slightly shifted when plotted on top of the histograms from GS.
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(a) Modes 1 - 4

(b) Modes 5 - 8

Figure 4.6: Probability distributions of identified modal frequencies. Solid line: GS; dotted

line: variational Bayes; star: true value.
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(a) Modes 1 - 4

(b) Modes 5 - 8

Figure 4.7: Probability distributions of identified modal damping ratios. Solid line: GS;

dotted line: variational Bayes; star: true value.
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For comparing the estimates of mode shapes from the three algorithms, the modal as-

surance criterion (MAC) is used as it provides a correlation between the estimated mode

shapes and the true mode shapes. The MAC values of the identified mode shapes obtained

from EM, VB and GS are tabulated in Table 4.5 alongside the MAC values of initial mode

shapes; the initial mode shapes correspond to the mode shapes from A(0) and G(0). By

comparing the MAC values, it can be seen that the three algorithms, after starting from

poor initial estimates of mode shapes, are able to yield good final estimates of mode shapes

(with MAC values close to 0.99). However, an exception is noticed for the eighth mode,

whose final estimates from the three algorithms are slightly poorer than its initial MAC

value.

Table 4.5: Comparison of Modal Assurance Criterion (MAC) values of mode shapes iden-

tified using EM, VB and GS.

Mode True Initial EM VB GS

1 1.000 0.964 1.000 1.000 1.000

2 1.000 0.990 1.000 1.000 1.000

3 1.000 0.974 1.000 0.999 0.999

4 1.000 0.984 0.998 0.998 0.998

5 1.000 0.955 0.997 0.996 0.997

6 1.000 0.993 0.997 0.996 0.997

7 1.000 0.981 0.996 0.996 0.996

8 1.000 0.992 0.981 0.983 0.981

For a visual comparison, the means and the SDs of the identified mode shapes from VB

and GS are plotted in Figures 4.8. In the figures, the right panel plots the SDs of the

mode shape ordinates corresponding to their mean values in the left panel. The SDs are

plotted as box plots; the SD bars stretch from -SD to +SD at all mode shape ordinates.

For example, the mean and SD of the eight mode shape estimated from GS at the 8th DoF

is 0.82 ± 0.05 where 0.82 is the mean from left panel and 0.05 is the SD from the right

panel corresponding to the 8th DoF of eighth mode shape.

115



0 2 4 6 8
0

0.5

1

Mo
de
 1

VB GS True

0 2 4 6 8
-0.1

0

0.1
VB GS

0 2 4 6 8
-1

0

1

Mo
de
 2

0 2 4 6 8
-0.1

0

0.1

0 2 4 6 8
-1

0

1

M
o
de
 3

0 2 4 6 8
-0.1

0

0.1

0 2 4 6 8
-1

0

1

M
o
de
 
4

0 2 4 6 8
-0.1

0

0.1

0 2 4 6 8
-1

0

1

M
o
de
 
5

0 2 4 6 8
-0.1

0

0.1

0 2 4 6 8
-1

0

1

M
o
de
 
6

0 2 4 6 8
-0.1

0

0.1

0 2 4 6 8
-1

0

1

Mo
de
 
7

0 2 4 6 8
-0.1

0

0.1

0 2 4 6 8

DoFs

(a) Mean

-1

0

1

Mo
de
 8

0 2 4 6 8

 DoFs

(b) SD

-0.1

0

0.1

Figure4.8:Themeans(leftpanel)andtheSDs(rightpanel)ofthemodeshapesordinates

identifiedusingVBandGS.

116



It is seen that the SDs of the mode shape ordinates are quite low compared to their mean

values. Further, it is noted that the SDs of the estimated mode shapes obtained from VB

exhibit a 40-60% underestimation compared to that from GS especially near the regions of

smaller vibration (or zero crossings). Thus, in the face of large amounts of missing data,

the VB uncertainty estimates of mode shape ordinates may not be reliable.

The log-likelihood convergence plots of the three algorithms i.e. EM, VB and GS, are shown

in Figure 4.9. It can be seen that all three algorithms converge to similar likelihood values.

For the same tolerance εtol = 5 × 105, VB is typically found to converge faster (requiring

fewer iterations) than EM.
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Figure 4.9: Convergence of EM, VB and GS.

Regarding the computational cost of running the algorithms for modal parameter es-

timation, the EM and VB algorithms are computationally much cheaper than the GS. A

comparison of computational runtimes taken by the three algorithms (using SHARCNET

[118] servers) is listed in Table 4.6.
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Table 4.6: Comparison of computational runtimes for EM, VB and GS; computations were

done on SHARCNET server nodes with Intel E5-2683V4 CPU @2.1GHz processor and

4GB RAM.

Algorithm Nodes used Time (hrs)

EM 1 0.26

VB 1 0.28

GS 20 (using parallel computing) 6.78

4.7.2 Impact of missing data on modal parameter estimation

The impact of missing data on the accuracy and uncertainty of modal parameter estimates

is studied by comparing the performance achieved by the three difference mobile sensor

groups: MS2 (2 sensors), MS4 (4 sensors) and MS6 (6 sensors) against a baseline scenario

consisting of a full static sensor network (i.e., Complete data set). The number of mobile

sensors is directly related to the extent of missing information as shown in Table 4.2. The

VB and GS approaches will be compared within each sensor group to assess how missing

data impacts the parameter estimation and uncertainty quantification. The point estimates

from the EM algorithm were generally consistent with the mean estimates from VB and

thus are not presented here.

Comparison of modal frequencies and damping ratios

Consider the impact of missing data on estimates of modal frequencies and damping ratios.

Figures 4.10 and 4.11 compare the absolute error and CoVs across each sensor group using

VB and GS for frequency and damping ratio estimates respectively. The absolute error

percentage is obtained by dividing the absolute difference (between the true value and the

estimated value) by the true value, multiplied by 100.

From Figures 4.10 and 4.11, the following observations are made:
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Figure 4.10: Absolute errors and CoVs of the estimated modal frequencies obtained using

different number of mobile sensors; panel (a): estimates from VB, and panel (b): estimates

from GS.
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using different number of mobile sensors; panel (a): estimates from VB, and panel (b):

estimates from GS.
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1. The estimates from complete dataset (i.e., baseline scenario) contained the lowest

errors. This result is expected given the complete dataset contains the most infor-

mation.

2. The VB and GS approaches yield similar mean estimates of modal frequencies and

damping ratios. One exception/anomaly is the case of MS2 where the errors from VB

are much larger than those from GS.

3. The CoVs tends to decrease with higher modes. This trend is observed for both

frequency and damping estimates obtained from VB and GS.

4. The VB and GS approaches yield similar CoVs of estimated modal frequencies and

damping ratios for all sensor setups. One notable exception is the MS2 case which

yielded slightly higher CoVs for GS estimates.

Comparison of mode shapes

Next, consider the impact of missing data on the mode shape estimates. Table 4.7 sum-

marizes the MAC values of the mode shape estimates obtained from VB and GS for the

different mobile sensor networks and baseline scenario. As shown in the MAC values, the

mode shape estimates improve as the percentage of missing data decreases. For example,

the MAC values of the eighth mode shape estimates improve considerably from 0.981 for

MS2 to 0.996 for MS4, demonstrating considerable improvement when the percentage of

missing data is reduced from 75% to 50%. However, not a large improvement is obtained

when the percentage of missing data is reduced from 50% (4 mobile sensors) to 25% (6

mobile sensors) as the MAC values only marginally improve from 0.996 to 0.998. For a

more comprehensive assessment, the mean and the SDs of the mode shapes from VB and

GS are plotted for mode 8 in Figure 4.12. In the left panel, as one goes from top (Complete

case) to bottom (MS2 case), a decline in the accuracy of the mean estimate of the eighth

mode shape is observed. The right panel of Figure 4.12 plots the corresponding SDs and a

noticeable increase in the SDs with more missing data is seen while this is not so apparent

in the case of VB. It is however noticed that as the number of mobile sensors increases,

the amount of data increases and the SDs of the from GS converge closer to that from
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Table 4.7: Summary of MAC values of the mode shape estimates identified using dataset

from different sensor groups (Complete, MS6, MS4, MS2) via VB and GS.

Complete MS6 MS4 MS2

Mode VB GS VB GS VB GS VB GS

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 1.000 1.000 1.000 1.000 0.999 1.000 0.999 0.999

4 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.998

5 1.000 1.000 0.999 1.000 1.000 1.000 0.996 0.997

6 0.999 0.999 0.999 0.999 0.999 0.999 0.996 0.997

7 0.999 0.999 0.998 0.998 0.997 0.997 0.996 0.996

8 0.998 0.998 0.998 0.998 0.996 0.996 0.983 0.981

VB. Hence, it can be deduced that VB may fall short in capturing the variability of the

parameters when the missing information is large, however, the mean values are estimated

quite accurately.

The log-likelihood convergence plots for the cases Complete, MS6, MS4 and MS2 are

shown in Figure 4.13. Log-likelihood values provide an idea of the goodness-of-fit of the

estimated parameters i.e. higher the stationary log-likelihood, better the fit. From the

inspection of the stationary log-likelihood values for the four cases, it can be seen that the

stationary log-likelihood value decreases with an increase in missing data. In other words,

an incomplete data matrix from a sensor network with larger number of mobile sensors

will lead to higher log-likelihoods (due to a lower percentage of missing data). Thus, an

increase in the log-likelihood is proportional to the amount of measurements, i.e. more the

measurements, higher the likelihood. Furthermore, it is noted that the number of iterations

needed to attain log-likelihood convergence for VB (and EM) decreases with a decrease in

the missingness of data.
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Figure 4.12: Comparison of the means and the SDs of the eighth mode shape estimated

using VB and GS for the four cases Complete, MS6, MS4 and MS2. Left panel shows means

and right panel shows SDs.
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4.8 ExperimentalValidation

Modalparameteridentificationusingin-mobilesensingfollowingthemissingdataapproach

isexperimentallyvalidatedusinga3-storeybench-scaletestframe.Figure4.14illustrates

the3-storeytestframeusedfortestingandapictureoftheactualsetupisprovidedin

Figure4.15

1.
5 
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Figure4.14:Schematicoflaboratoryscale3-storeytestframe:(a)sideview,(b)front

viewand(c)experimentalsetup.

The3-storeytestframeconsistsofsixsteelpanelscolumnsandfourplexi-glassplates.

Eachcolumnwasbuiltupwiththreesteelpanels(ofsize500mm×110mm×1.75mm).

Themassoftheplexiglassplateswere3kgeach.Thesteelpanelsmakeuptwosupporting

columnsandtheplexi-glassblocksactaslumpedfloormasses.Theframeisfixedatitsbase

toaone-directionallineardynamicshaker.Thetestframeisbase-excitedbythedynamic

shakerwitha40Hzband-limitedGaussianwhitenoiseexcitationandisinstrumentedwith

eightstaticaccelerometersasshownin4.14c. Theeightstaticaccelerometerssampled
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structural responses at eight sensing nodes (i.e., locations on the test frame where the

sensors are mounted) at 100 Hz for a time duration of 200s.
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Figure 4.15: Picture of the experimental setup.

The eight measured acceleration responses are shown in Figure 4.16, and their averaged

power spectral density is shown in Figure 4.17 which shows the three clear peaks of lateral

modes of the test frame.
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Figure 4.16: Accelerations (in m/s2) measured at eight sensing nodes (numbered Acc 1-8).
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Figure 4.17: Averaged power spectral density of the acceleration data obtained from eight

static sensors.

A mobile-sensor strategy employing two mobile sensors is simulated using the static

sensor dataset. The two mobile sensors are assumed to scan the eight sensing nodes back
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and forth, resulting in a dataset with 75% missing data. The EM, VB and GS algorithms

are implemented on the mobile sensor data using a model order of 10. The estimates of

A and G obtained from SSI are randomly perturbed to produce initial estimates for EM,

VB and GS; the perturbations are created by adding 5% Gaussian noise to the values of

A and G obtained from SSI which led to perturbed initial modal parameters f (0) and ζ(0).

The modal parameters estimated from SSI – employed on the static sensor dataset – are

used as baseline estimates for comparing estimates from EM, VB and GS using the mobile

sensor dataset.

The estimates of the modal frequencies and damping ratios from the three computa-

tional algorithms are summarized in Tables 4.8 and 4.9 respectively.

Table 4.8: Identified modal frequencies (in Hz) using EM, VB and GS.

Mode fSSI f (0) EM VB GS

Mean
SD

(×10−2)

CoV

(%)
Mean

SD

(×10−2)

CoV

(%)

1 2.186 2.311 2.193 2.191 0.468 0.214 2.192 0.478 0.218

2 6.561 6.226 6.561 6.563 0.422 0.064 6.564 0.456 0.070

3 9.983 10.832 9.985 9.984 0.400 0.034 9.982 0.441 0.044

Table 4.9: Identified modal damping ratios (in %) using EM, VB and GS.

Mode ξSSI ξ(0) EM VB GS

Mean SD
CoV

(%)
Mean SD

CoV

(%)

1 0.599 0.754 0.707 0.598 0.218 36.455 0.553 0.274 49.548

2 0.288 0.402 0.332 0.340 0.066 19.412 0.358 0.070 19.553

3 0.130 0.361 0.137 0.144 0.036 25.000 0.136 0.040 29.412
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Figure 4.18: Means (left panel) and SDs (right panel) of mode shapes obtained using VB

and GS.
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It is observed that modal damping ratios are estimated with greater variability than

the modal frequencies and that VB underestimates the variability of the modal parameters

compared to GS. The mean values and SDs of the estimated mode shapes are illustrated

in Figure 4.18 and they are found to be in very good agreement with the mode shapes

estimated from SSI. As for the variability of the mode shape ordinates, the VB is found to

underestimate the uncertainty by around 40-60% of the uncertainty estimated by GS.

4.9 Summary

In this chapter, the problem of output-only modal parameter estimation using in-motion

mobile sensors is posed from an incomplete data perspective. The mobile sensor data is

treated equivalent to a static sensor dataset with missing entries at DoFs not coinciding

with the mobile sensor paths. Parameters of a linear time-invariant stochastic SSM are

fitted using the missing data matrix and the modal parameters are subsequently extracted

from these estimated SSM parameters. The estimation of the SSM parameters is handled

in a Bayesian framework suitable for obtaining uncertainty information, arising not only

due to measurement and modelling errors but also missingness in data matrix. Three com-

putational algorithms, EM, VB and GS, are presented and modified for use with datasets

featuring missing data.

The performance of the modal parameter estimation and uncertainty quantification is

studied using numerical simulations on a eight-DoF lumped mass beam model as well as

on a laboratory scale 3-storey test frame. All three algorithms (i.e. EM, VB and GS) are

found to provide good point estimates of the modal parameters even when subjected to

large amounts of missing entries. Regarding uncertainty estimation, it was noted that in

comparison to GS, the VB underestimates the uncertainty in modal parameter estimates,

particularly for the mode shapes, when a large amount of entries (e.g. 75%) are missing. It

is observed that the uncertainty estimates in the mode shape ordinates from VB converge

close to that from GS as the percentage of missing data reduces. Finally, among the three

algorithms, the EM and VB are found to be much faster computationally compared to

GS. It must also be mentioned that all the three algorithms can become computationally
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Figure 4.19: Increase in missing entries due to increase in the number of sensing nodes;

cases (a) and (b) correspond to scenarios of measuring 4 DoFs and 8 DoFs using two mobile

sensors resulting in 50% and 75% missing entries, respectively.

costly when the model order of the state space parameters is very high.

Finally, it should be mentioned that a shortcoming of the missing data approach is that

the estimation does not scale well when there are a large number of sensing nodes. This is

due to the fact that the sensing nodes are linked to the modelled DoFs of the structure, and

as the number of sensing nodes increases keeping the number of mobile sensors fixed, the

degree of missing data also increases. This issue is also illustrated in Figure 4.19. As such,

in events when the missing data matrix has 90-99% missing entries, this approach could

be computationally inefficient and may not yield statistically meaningful results. The next

chapter presents a stacked data approach to represent mobile sensor data which does not

feature any missing entries.
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Chapter 5

Bayesian output-only modal

identification using in-motion mobile

sensors: Stacked data approach

5.1 Introduction

The previous chapter dealt with the problem of modal identification using in-motion mo-

bile sensors from an incomplete-data perspective. In this approach, the mobile sensor

observations were used to construct an equivalent static sensor matrix containing missing

entries at the sensing nodes where a mobile sensor was not present. The efficiency of this

approach reduces considerably as the percentage of missing entries increases. This occurs

when the ratio of sensing nodes to mobile sensors becomes large. This chapter presents

a stacked-data approach as an alternative to the missing data approach by reshaping the

problem using a complete-data perspective. Here, each mobile sensor is treated as a sensor

channel that records time-series data from various points in space and concatenation of

these sensor channels yields a stacked data matrix. Unlike the missing data matrix, the

stacked data matrix is complete in the sense that it has no missing entries. The trans-

formation from the missing data representation to stacked data representation has been

previously illustrated in Figure 2.3.
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Adefiningfeatureofthestackeddatamatrixisthepresenceofspatialdiscontinuities

alongitschannels,thatis,theentriesinanyparticularchannelcomefromdifferentspatial

locations.Bycontrast,allentriesinasinglechannelofastaticsensordatamatrixcor-

respondtoasinglefixedlocationinspace.Figure5.1
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Spa�al 
loca�on
varies across
the channel

Mobile 
sensor

Sta�c
sensors

illustratesthedifferencesbetween

thestaticsensordatamatrixandthestackedmobilesensordatamatrix. Moreover,due
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correspondingspatiallocationandtimerecord.Thisisachievedbyconstructingasensor-
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Figure5.1:Illustrationofasinglechannelstackeddatamatrix(fromonemobilesensor)

andfour-channelstaticsensormatrix(fromfourstaticsensors).
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Conventional SSID techniques (such as SSI, ERA-OKID, etc.) are based on LTI SSMs

which are only compatible with static measurements – where each sensor channel measures

responses from from a fixed location. As such, LTI SSMs are incompatible with the stacked

data matrix due to its inherent spatial discontinuities, and thus the conventional SSID al-

gorithms are unable to handle mobile sensor data when stacked in such a manner. In this

study, a new linear time-varying SSM is proposed that can accommodate measurements

with spatial discontinuities and is therefore compatible with the stacked data matrix. Fur-

thermore, new update equations are derived for EM, VB and GS in order to apply them

for modal parameter estimation with the proposed linear time-varying SSM. The proposed

methodology is demonstrated through numerical examples and validated experimentally.

5.2 State space models for identification with stacked

data matrix

The typical LTI SSM, used with a static sensor data matrix, is given by:

xk+1 = Axk +wk (5.1)

yk = Gxk + vk. (5.2)

The fact that G is a constant matrix implies Eq.(5.1) cannot address spatially varying

measurements. This is the main limitation rendering the LTI SSM above incompatible

with a stacked data matrix. A way to modify the above SSM to suit the stacked data

matrix is to incorporate a spatial interpolator in the measurement equation, such that the

mobile sensor measurements from various locations can be mapped to equivalent static

measurements at a set of predetermined locations. Such a mapping can be achieved by

any suitable spatial interpolation function Ω. For example, the structural measurements y

at, say, a vector of locations so can be mapped to equivalent measurements yα at a vector

of locations sα via the use of the structural mode shape matrix Φ as follows:

y = Ωyα = Φo (Φα)−1 yα︸ ︷︷ ︸
ym

. (5.3)
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Here Φo and Φα are mode shape matrices defined at the vector of locations so and sα

respectively, and ym is the vector of modal responses. One can understand the mapping

in Eq.(5.3) as first converting yα to modal response ym by the operation (Φα)−1 yα and

then converting ym back to y using Φoym. As such, Ω = Φo (Φα)−1 is a valid spatial

interpolator which helps to reduce the mobile sensor measurements at various locations to

equivalent static measurements at a set of virtual static locations (VSLs).

Based on this concept, Matarazzo and Pakzad [46] introduced the truncated physical

model (TPM), a time-varying SSM, that enables estimation with the stacked data matrix.

The TPM models the structure with DoFs defined at a set of user-chosen VSLs. The

total number of VSLs, denoted by nα, is typically much less than the number of mobile

sensing nodes (i.e., locations where mobile sensor measurements are recorded). The vector

of spatial locations associated with the VSLs is denoted by sα, and the vector of the mobile

sensors’ locations at each time instant tk is denoted by sok ∈ Rno . Mathematically, the TPM

is expressed as follows:

xαk+1 = Aαxαk +wα
k (5.4a)

yk = Ωk (Gαxαk )︸ ︷︷ ︸
yαk

+vk. (5.4b)

Here, xαk ∈ R2nα , Aα ∈ R2nα×2nα , wα
k ∈ R2nα , yk ∈ Rno , Ωk ∈ Rno×nα , Gα ∈ Rnα×2nα and

vk ∈ Rno . The VSL states xαk represent the physical displacements and velocities at the

selected VSLs. The matrix Gα relates the VSL states xαk to equivalent VSL outputs yαk ,

i.e., yαk = Gαxαk . The measurement equation of the TPM embeds a spatial interpolator

Ωk ∈ Rno×nα . At each time instant tk, Ωk enables the mapping mobile sensor outputs

yk to equivalent outputs yαk at the user-selected VSLs. These spatial interpolators are

referred as to mode shape regression matrices [21], after their regression-of-mode-shapes’

form in Eq.(5.3). However, in practice, the sequence of exact mode shape regression (MSR)

matrices Ω1:N = {Ω1, . . . ,ΩN} are unknown prior to modal identification as they are

dependent on the structural mode shapes themselves. Therefore, a sinc-function-based

MSR was proposed for use [21, 119]:

Ωk =
[
sinc

(
1

∆sα
(sok − sα1 )

)
sinc

(
1

∆sα
(sok − sα2 )

)
. . . sinc

(
1

∆sα

(
sok − sαnα

))]
(5.5)
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sα =
[
sα1 sα2 . . . sαnα

]
sok =

[
so1,k so2,k . . . sonms,k

]T
.

Here sαi is the location of the ith VSL (nα in total) and ∆sα is the distance between the

VSLs. To achieve good estimation accuracy with sinc function-based spatial interpolation,

the VSLs need to be uniformly spaced throughout the structure such that ∆sα remains

constant [46]. Furthermore, that the spacing of the VSLs must be chosen so as to avoid

spatial aliasing. It must be mentioned that the mode shapes are only estimated at the user-

selected VSLs. Thus, by regulating the number of VSLs one can control the resolution of

the estimated mode shapes.

Matarazzo and Pakzad [21] proposed the STRIDEX algorithm, a modified EM algo-

rithm, for modal identification with the TPM. A single run of STRIDEX with the TPM

yielded maximum likelihood point estimates of natural frequencies, damping ratios and

mode shape ordinates at the VSLs. However, the STRIDEX formulation lacks robustness;

more specifically, it suffers from numerical invertibility issues1 whenever the MSR matrices

are non-square leading to errors in identification. To restrict the MSR matrices to square

forms, the authors [21] enforced a minimum model size criterion, following which the num-

ber of VSLs, the number of modes, and the number of mobile sensors were set equal to

each other. Since the number of VSLs must be large to achieve high-resolution mode shape

estimates, the number of mobile sensors must be equally large to satisfy the model size

criterion. To avoid this impracticality, the authors [21] constructed multiple TPMs using

several non-overlapping subsets of VSLs, each subset having the same number of VSLs as

the number of mobile sensors. STRIDEX was then run on each TPM separately to obtain

local mode shapes. These non-overlapping local mode shapes were then merged to obtain

high resolution global mode shapes.

The two main drawbacks of the TPM-based STRIDEX formulation concern its limited

flexibility and robustness which arise due to: (1) the TPM models the structure in physical

space which is typically higher than the modal space and requires higher model order which

can be computationally demanding, and (2) the minimum model size criterion not only

1An error in the STRIDEX update equations was identified during this study
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negatively impacts the flexibility of the STRIDEX formulation but also adds the complexity

of creating multiple VSL subsets and running STRIDEX multiple times.

To address these limitations, an improved modal estimation framework for stacked

sensor data is introduced. In particular, a modal state model (MSM) is presented which

admits lower model orders (compared to TPM), and the three computational algorithms,

EM, VB and GS, are modified accordingly to facilitate modal parameter estimation with

the MSM. The advantages of the new framework are as follows:

1. The MSM is more flexible than the TPM as it does not require modelling the structure

in physical space. The MSM can maintain a lower model order (than that required

by TPM) without sacrificing any relevant information needed for identification.

2. The constraint of having the number of VSLs equal to the number of mobile sensors

is relaxed. There is no need to create multiple smaller subsets of VSLs and the

identification of complete mode shapes at all VSLs can be obtained in a single run.

3. By removing the need to create multiple VSL subsets, the framework circumvents the

problem of scale ambiguity which can arise during the merging of non-overlapping

partial mode shapes into global mode shapes.

5.2.1 Proposed Modal State Model

In this section, the modal-state model is introduced that allows identification with the

stacked data matrix. Transforming the physical VSL states xαk ∈ R2nα to modal states

xk ∈ R2nm using a transformation matrix T =

[
Φα 0

0 Φα

]
such that xαk = Txk, one obtains

the following LGSSM

xk+1 =
(
T−1AαT

)
xk + T−1wα

k

yk = Ωk (GαT)xk + vk.
(5.6)

Typically, nm < nα, thereby further reducing the state dimension of the above SSM in

comparison to the TPM. The resulting LGSSM is represented by the following equations

xk+1 = Axk +wk (5.7a)
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yk = ΩkGxk + vk (5.7b)

where ns = 2nm, xk ∈ Rns ,A ∈ Rns×ns ,wk ∈ Rns are the variables of the process equation

and yk ∈ Rno ,Ωk ∈ Rno×nα ,G ∈ Rnα×ns ,vk ∈ Rno are the variables of the observation

equation. Note that A = T−1AαT and G = GαT and wk = T−1wα
k . The VSL states xk

represent the modal displacements and modal velocities and no longer carry any physical

meaning. The SSM described by Eq.(5.7) is henceforth referred to as the MSM.

The MSM imbibes its probabilistic description from the distributions of wk and vk as

follows:

p
(
xk+1 | xk,A,Q

)
= N

(
Axk,Q

)
, k = 1, . . . , N (5.8a)

p
(
yk | xk,G,R

)
= N

(
ΩkGxk,R

)
, k = 1, . . . , N (5.8b)

p
(
x1 | µ1,V1

)
= N

(
µ1,V1

)
. (5.8c)

Note that the sequence of MSR matrices, {Ωk}1:N , are assumed to be deterministically

known, and are determined using the VSLs and the sensors’ positions (stored in the sensor-

position matrix). The joint distribution over the sequence of states and observations is

given by

p
(
X,Y | A,G,Q,R,µ1,V1

)
= p

(
x1 | µ1,V1

) N∏
k=1

p
(
xk+1 | xk,A,Q

)
p
(
yk | xk,G,R

)
(5.9)

where X = x1:N+1 and Y = y1:N . The above equation expresses the joint distribution of

variables X and Y given the parameters θ =
{
A,G,Q,R

}
(with auxiliary parameters

µ1,V1) of the MSM as the product of Gaussian marginal and conditional distributions

over X and Y respectively.

In the following sections, three computational algorithms, namely EM, VB and GS,

are employed for modal identification with stacked mobile sensor data matrix. Due to the

presence of time-varying MSR terms in the observation equation of the MSM, all the three

algorithms are modified and new update rules are formulated to allow inference with the

proposed MSM.
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5.3 ML estimation of MSM via EM

This section concerns the maximum likelihood estimation of the MSM, in particular, the

application of EM to obtain ML estimates of the MSM parameters. The objective then lies

in finding the parameters θ =
{
A,G,Q,R

}
that maximizes the likelihood of the MSM

given the measured mobile sensor observations in the form of stacked data matrix.

Due to the presence of a time-varying MSR term in the MSM, the E-step and M-step

of the the EM algorithm require modification. To derive the required modifications, it is

helpful to consider the complete data log-likelihood of the MSM as shown below:

L(θ) = ln
(
p
(
X,Y | θ

))
= ln

(
p
(
x1 | µ1,V1

) N∏
k=1

p
(
xk+1 | xk,A,Q

) N∏
k=1

p
(
yk | xk,Ωk,G,R

))
=− ns

2
ln 2π − 1

2
ln
∣∣V1

∣∣− 1

2
(x1 − µ1)T V−1

1 (x1 − µ1)

− ns
2

ln 2π − N

2
ln
∣∣Q∣∣− 1

2

N∑
k=1

(
xk+1 −Axk

)T
Q−1

(
xk+1 −Axk

)
− noN

2
ln 2π − N

2
ln |R| − 1

2

N∑
k=1

(
yk −ΩkGxk

)T
R−1

(
yk −ΩkGxk

)
.

(5.10)

The conditional expectation of the complete-data log-likelihood function given the obser-

vation sequence Y and parameter θ(j) is defined as

F
(
θ | θ(j)

)
=
〈
L(θ) | Y ,θ(j)

〉
. (5.11)
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After simplifying, F
(
θ | θ(j)

)
can be written as

F
(
θ | θ(j)

)
=− 1

2
ln
∣∣V1

∣∣− N

2
ln
∣∣Q∣∣− N

2
ln |R|

− 1

2
tr
{

V1
−1
[
V̂1|N +

(
x̂1|N − µ1

) (
x̂1|N − µ1

)T]}
− 1

2

N∑
k=1

tr
{

Q
−1
[
Sff,k −AST

fx,k
− Sfx,kA

T
+ ASxx,kA

T
]}

− 1

2

N∑
k=1

tr
{

R−1
[
Syy,k −ΩkGSTyx,k − Syx,kG

T
ΩT
k + ΩkGSxx,kG

T
ΩT
k

]}
(5.12)

where the expectations of sufficient statistics are defined as following:

Sff =
N∑
k=1

Sff,k =
N∑
k=1

〈
xk+1x

T
k+1

〉
(5.13a)

Sfx =
N∑
k=1

Sfx,k =
N∑
k=1

〈
xk+1x

T
k

〉
(5.13b)

Sxx =
N∑
k=1

Sxx,k =
N∑
k=1

〈
xkx

T
k

〉
(5.13c)

Syx =
N∑
k=1

Syx,k =
N∑
k=1

yk
〈
xTk
〉

(5.13d)

Syy =
N∑
k=1

Syy,k =
N∑
k=1

yk y
T
k . (5.13e)

The derivations of the E-step and M-steps of the modified EM algorithm are presented

next.

5.3.1 Derivation of E-step

The expected values of the states given by Eq.(5.13) can be obtained using the Kalman

filter and the RTS smoother, however due to the time-varying nature of the MSR, an
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equivalent observation matrix G̃k = ΩkG must be used at each time-step.

Kalman filter for MSM : Do for k = 1, . . . , N

ek = yk − G̃kx̂k|k−1 (5.14a)

Sk = G̃kV̂k|k−1G̃
T

k + R (5.14b)

Kk = V̂k|k−1G̃
T

kS−1
k (5.14c)

x̂k|k = x̂k|k−1 + Kkek (5.14d)

V̂k|k = V̂k|k−1 −KkSkK
T
k (5.14e)

x̂k+1|k = Ax̂k|k (5.14f)

V̂k+1|k = AV̂k|kA + Q. (5.14g)

RTS smoother for MSM : Do for k = N, . . . , 1

Nk = V̂k|kA
T
(
V̂k+1|k

)−1

(5.15a)

x̂k|N = x̂k|k + Nk

(
x̂k+1|N − x̂k+1|k

)
(5.15b)

V̂k|N = V̂k|k + Nk

(
V̂k+1|N − V̂k+1|k

)
NT
k (5.15c)

V̂k+1,k|N = V̂k+1|NNT
k . (5.15d)

Using the results from the RTS smoother, the expectations in Eq.(5.13) can be obtained:

Syx,k = yk 〈xk〉 = ykx̂k|N

Sff,k =
〈
xk+1x

T
k+1

〉
= x̂k+1|N x̂

T

k+1|N + V̂k+1|N

Sfx,k =
〈
xk+1x

T
k

〉
= x̂k+1|N x̂

T

k|N + V̂k+1,k|N

Sxx,k =
〈
xkx

T
k

〉
= x̂k|N x̂

T

k|N + V̂k|N .

(5.16)

The log-likelihood at the jth EM iteration can be calculated using the innovations from

the Kalman filter as

F̂
(j)

= − 1

2

N∑
k=1

(
ln |Sk|+ eTkSk

−1ek
)
. (5.17)
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5.3.2 Derivation of M-step

Maximizing F
(
θ | θ(j)

)
of Eq.(5.12)) with respect to the MSM parameters θ at the jth

iteration constitutes the M-step of EM. The M-step maximizations are obtained in closed

form by setting the gradient
∂F(θ|θ(j))

∂θ
= 0 for each θ =

{
A,G,Q,R,µ1,V1

}
. The update

equations for A(j+1),Q(j+1) and µ
(j+1)
1 ,V

(j+1)
1 end up being

A(j+1) =
(
Sfx
) (

Sfx
)−1

(5.18a)

Q(j+1) =
1

N

(
Sff − SfxA

(j+1)T −A(j+1)STfx + A(j+1)SxxA
(j+1)T

)
(5.18b)

µ
(j+1)
1 = x̂1|N

V
(j+1)
1 = V̂1|N .

(5.18c)

The update equations of G(j+1) and R(j+1) get modified due to the MSR term and are

obtained as follows:

g(j+1) =

(
N∑
k=1

(
Sxx,k ⊗

(
ΩT
kR(j)−1

Ωk

)))−1

vec

(
N∑
k=1

ΩT
kR(j)−1

Syx,k

)
(5.19a)

G(j+1) = mat
(
g(j+1)

)
(5.19b)

R(j+1) =
1

N

N∑
k=1

(
Syy,k −ΩkG

(j+1)STyx,k − Syx,kG
(j+1)TΩT

k + ΩkG
(j+1)Sxx,kG

(j+1)TΩT
k

)
(5.19c)

where g(j+1) is the vectorized form of G(j+1) and mat (·) is an operator that reshapes

vectors to matrices of relevant dimensions. In this case, g(j+1) is a vector of size (nαns×1),

and mat
(
g(j+1)

)
has the same size as G. Note that the update expression for g(j+1) differs

from the corresponding STRIDEX update equation [21] in the sense that the update of

g(j+1) in Eq.(5.19) depends on R(j). The derivations of the above expressions have been

provided in the Appendix E.1.

The convergence criterion and the initialization procedure for EM using the MSM follow

similarly as discussed in sections 4.4.4 and 4.4.3.

A complete list of steps for applying the EM algorithm to the stacked data case is

provided in Algorithm 4.
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Algorithm 4 Modal parameter estimation using EM with stacked data approach

Input: Y , A(0), G(0), Q(0), R(0), µ
(0)
1 , V

(0)
1 , εtol, {sok}1:N

Choose the uniformly spaced locations of VSLs, sα

Build the sequence of mode shape regression matrices {Ω}1:N using Eq.(5.5)

E-step:

1. Use Eqs.(5.14) and (5.15) for Kalman filter and RTS smoother recursions

2. Use Eq.(5.17) to compute F̂
(j)

3. Calculate the expectations of sufficient statistics using Eqs.(5.13) and (5.16)

while not converged do

1. M-step: Use Eqs.(5.18) and (5.19) to update parameters

→ A(j+1),G(j+1),Q(j+1),R(j+1),µ
(j+1)
1 ,V

(j+1)
1

2. E-step:

(a) Use Eqs.(5.14) and (5.15) for Kalman filter and RTS smoother recursions

(b) Use Eq.(5.17) to compute F̂
(j+1)

(c) Calculate the expectations of sufficient statistics using Eqs.(5.13) and (5.16)

3. Use Eq.(4.20) to check if convergence criterion is satisfied

end while

Return ÂML ← A(final), ĜML ← G(final)

Extract modal frequencies, damping ratios and un-normalized mode shapes from

ÂML, ĜML using Appendix B.1

Output: f̂i, ξ̂i, φ̂
un

i for all modes i = 1, 2, . . .

5.4 Bayesian inference of MSM via VB

This section concerns the application of VB to the MSM in Eq.(5.7) and how the VB for

MSM reduces to a combination of parameter update equations with an augmented Kalman

filter and RTS smoothing algorithm. The joint distribution of the measurements, latent
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states and the parameters of the MSM satisfies the following relationship

p
(
Y ,X,A,Q,G,R

)
= p

(
Y ,X | A,Q,G,R

)
p
(
A,Q,G,R

)
(5.20)

with

p
(
x1 | µ1,V1

)
= N

(
µ1,V1

)
=

exp
(
− 1

2
(x1 − µ1)TV−1

1 (x1 − µ1)
)

(2π)ns/2
∣∣V1

∣∣1/2 (5.21a)

p
(
xk+1 | xk,A,Q

)
= N

(
Axk,Q

)
=

exp
(
− 1

2
(xk+1 −Axk)

TQ−1(xk+1 −Axk)
)

(2π)ns/2
∣∣Q∣∣1/2

(5.21b)

p
(
yk | xk,G,R

)
= N

(
Gxk,R

)
=

exp
(
− 1

2
(yk −ΩkGxk)

TR−1(yk −ΩkGxk)
)

(2π)no/2 |R|1/2

(5.21c)

An approximate factorized prior distribution of the parameters of the MSM is assumed

as follows:

p
(
A,Q,G,R

)
= p

(
A
)
p
(
Q
)
p
(
G
)
p (R) (5.22)

where the matrices A and G are no longer assumed to be conditionally dependent on Q

and R respectively, unlike in previous chapter. The prior distributions of A and G are now

defined by multivariate normal distributions over their vectorized forms (i.e. a = vec
(
A
)

and g = vec
(
G
)
) as follows:

p
(
A
)

= p (a) = N (µa,Σa) =
exp

(
− 1

2
(a− µa)T Σ−1

a (a− µa)
)

(2π)n2
s/2 |Σa|

1
2

(5.23a)

p
(
G
)

= p (g) = N
(
µg,Σg

)
=

exp
(
− 1

2

(
g − µg

)T
Σ−1
g

(
g − µg

))
(2π)nsnα/2 |Σg|

1
2

(5.23b)

where N (·) is the Gaussian (Normal) distribution. The prior distributions of Q and R are

given by

p
(
Q
)

= IW
(
dQ,DQ

)
=

∣∣DQ

∣∣dQ/2 ∣∣Q∣∣−(dQ+ns+1)/2
exp

(
− 1

2
tr
{
DQQ−1

})
2nsdQ/2 Γns

(
dQ
2

) (5.23c)
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p (R) = IW (dR,DR) =
|DR|dR/2 |R|−(dR+no+1)/2 exp

(
− 1

2
tr {DRR−1}

)
2nodR/2 Γno

(
dR
2

) (5.23d)

where IW(·) is the Inverse Wishart distribution. The set of prior hyperparameters is

denoted by πh =
{
µa,µg,Σa,Σg,DQ,DR, dQ, dR

}
. The next step is to assume some

approximate factorized form of the true posterior distribution using the variational dis-

tribution q (·) over the unobserved variables
{
X,A,G,Q,R

}
which leads to a tractable

bound:

p
(
A,Q,G,R,X | Y

)
≈ q (a) q

(
Q
)
q (g) q (R) q

(
X
)
. (5.24)

It is to be noted that this factorization amongst the parameters
{
A,G,Q,R

}
falls out

of the initial factorization assumed in Eq.(5.22). The optimum form of the approximate

posteriors is found by taking functional derivatives of the variational free energy with

respect to each distribution over the parameters and the latent state variables.

The variational free energy [107] is maximized by setting:

q(j)
(
X
)
∝ exp

(〈
ln p

(
Y ,X,A,Q,G,R

)〉
q(j)(a)q(j)(Q)q(j)(g)q(j)(R)

)
(5.25a)

q(j+1) (a) ∝ exp
(〈

ln p
(
Y ,X,A,Q,G,R

)〉
q(j)(Q)q(j)(g)q(j)(R)q(j)(X)

)
(5.25b)

q(j+1) (g) ∝ exp
(〈

ln p
(
Y ,X,A,Q,G,R

)〉
q(j)(a)q(j)(Q)q(j)(R)q(j)(X)

)
(5.25c)

q(j+1)
(
Q
)
∝ exp

(〈
ln p

(
Y ,X,A,Q,G,R

)〉
q(j)(a)q(j)(g)q(j)(R)q(j)(X)

)
(5.25d)

q(j+1) (R) ∝ exp
(〈

ln p
(
Y ,X,A,Q,G,R

)〉
q(j)(a)q(j)(Q)q(j)(g)q(j)(X)

)
(5.25e)

where 〈f(x)〉q(x) :=
∫
f(x)q(x)dx and the jth variational distributions are defined as

q(j) (a) = N
(
µ

(j)
a ,Σ

(j)
a

)
=

exp

(
− 1

2

(
a− µ(j)

a

)T
Σ−1
a

(
a− µ(j)

a

))
(2π)n2

s/2

∣∣∣Σ(j)
a

∣∣∣ 12 (5.26a)

q(j) (g) = N
(
µ

(j)
g ,Σ

(j)
g

)
=

exp

(
− 1

2

(
g − µ(j)

g

)T
Σ−1
g

(
g − µ(j)

g

))
(2π)nsnα/2

∣∣∣Σ(j)
g

∣∣∣ 12 (5.26b)
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q(j)
(
Q
)

= IW
(
d

(j)

Q
,D

(j)

Q

)
=

∣∣∣D(j)

Q

∣∣∣d(j)Q
/2 ∣∣Q∣∣−(d(j)Q

+ns+1
)
/2

exp
(
− 1

2
tr
{

D
(j)

Q
Q−1

})
2
nsd

(j)

Q
/2

Γns

(
d
(j)

Q

2

)
(5.26c)

q(j) (R) = IW
(
d

(j)
R ,D

(j)
R

)
=

∣∣∣D(j)
R

∣∣∣d(j)R /2

|R|−
(
d
(j)
R +no+1

)
/2

exp
(
− 1

2
tr
{

D
(j)
R R−1

})
2nod

(j)
R /2 Γno

(
d
(j)
R

2

) .

(5.26d)

The VB algorithm works by iteratively updating the set of hyperparameters

θ
(j)
h =

{
µ

(j)
a ,Σ

(j)
a ,µ

(j)
g ,Σ

(j)
g , d

(j)

Q
,D

(j)

Q
, d

(j)
R ,D

(j)
R

}
(5.27)

of the variational distributions in Eq.(5.26) in an effort to maximize the variational free en-

ergy with each update. Note that producing the updating rules only requires computation

of the variational free energy derivatives.

5.4.1 Evaluation of variational expectation

To derive the update equations for the VBE and VBM steps, it is necessary to evaluate

the expectation of the log joint PDF of the hidden MSM variables (i.e., the states and

parameters) with respect to the variational PDFs. One can use Eqs.(5.20) and (5.23) to

arrive at the following expression for the expected value of the log joint PDF:〈
ln
(
p
(
Y ,X,A,Q,G,R

))〉
q(j)(a)q(j)(Q)q(j)(g)q(j)(R)q(j)(X)

∝− 1

2

〈
(x1 − µ1)TV−1

1 (x1 − µ1)
〉
q(j)(x1)

− 1

2

〈
tr
{

Q−1
(
S

(j)

ff
−AS

(j)

fx

T
− S

(j)

fx
AT + AS

(j)
xxAT

)}〉
q(j)(a)q(j)(Q)

− 1

2

N∑
k=1

[〈
tr
{

R−1
(
S

(j)
yy,k −ΩkGS

(j)
yx,k

T
− S

(j)
yx,kG

TΩT
k + ΩkGS

(j)
xx,kG

TΩT
k

)}〉
q(j)(g)q(j)(R)

]
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− 1

2

〈
aTΣ−1

a a− aTΣ−1
a µa − µTaΣ−1

a a+ µTaΣ−1
a µa

〉
q(j)(a)

− 1

2

〈
gTΣ−1

g g − gTΣ−1
g µg − µTgΣ−1

g g + µTgΣ−1
g µg

〉
q(j)(g)

−
dQ +N + ns + 1

2

〈
ln
∣∣Q∣∣〉

q(j)(Q) −
1

2

〈
tr
{
DQQ−1

}〉
q(j)(Q)

− dR +N + no + 1

2
〈ln |R|〉q(j)(R) −

1

2

〈
tr
{
DRR−1

}〉
q(j)(R)

(5.28)

where the matrices S
(j)
xx,k, S

(j)

fx,k
, S

(j)

ff,k
, S

(j)
yx,k and Syy,k are the expectations of sufficient

statistics, given as:

S
(j)
xx,k =

〈
xkx

T
k

〉
q(j)(X) , S

(j)
xx =

N∑
k=1

S
(j)
xx,k (5.29a)

S
(j)

fx,k
=
〈
xk+1x

T
k

〉
q(j)(X) , S

(j)

fx
=

N∑
k=1

S
(j)

fx,k
(5.29b)

S
(j)

ff,k
=
〈
xk+1x

T
k+1

〉
q(j)(X) , S

(j)

ff
=

N∑
k=1

S
(j)

ff,k
(5.29c)

and

S
(j)
yx,k =

〈
ykx

T
k

〉
q(j)(X) , S

(j)
yx =

N∑
k=1

S
(j)
yx,k (5.30a)

Syy,k =
〈
yky

T
k

〉
q(j)(X) , Syy =

N∑
k=1

S
(j)
yy,k. (5.30b)

The procedure to calculate the expectations of sufficient statistics in Eq.(5.29) and (5.30)

are described in the next section.

5.4.2 Derivation of the VBE-step: Evaluating q(j)
(
X
)

The goal of the VBE step is to evaluate the variational distribution q(j)
(
X
)

given the mea-

surements Y and the hyperparameters θ
(j)
h =

{
µ

(j)
a ,Σ

(j)
a ,µ

(j)
g ,Σ

(j)
g , d

(j)

Q
,D

(j)

Q
, d

(j)
R ,D

(j)
R

}
at
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the jth VB iteration. The expectations over the states are then used to compute the ex-

pectations of sufficient statistics, as given in Eqs.(5.29) and (5.30). This is achieved by

first defining a modified MSM and then employing Kalman filter and RTS smoother on the

modified MSM for state estimation, similar to what has already been discussed in Section

4.5.2 of the previous chapter. A modified MSM is defined with the following parameters:

Ã = µ
(j)

A
, Q̃ =

D
(j)

Q

d
(j)

Q
− ns − 1

(5.31a)

G = µ
(j)

G
, R =

D
(j)
R

d
(j)
R − no − 1

(5.31b)

Va =

〈(
A− Ã

)T
Q̃
−1 (

A− Ã
)〉

q(j)(a)

(5.31c)

Vg
k =

〈(
G−G

)T
ΩT
kR−1Ωk

(
G−G

)〉
q(j)(g)

(5.31d)

Uk = chol(Va + Vg
k) (5.31e)

ỹk =

[
yk
0ns

]
, G̃k =

[
ΩkG

Uk

]
, R̃ =

[
R 0no×ns

0Tno×ns Ins×ns

]
. (5.31f)

In Eq.(5.31e), ‘chol’ stands for upper triangular Cholesky decomposition. Further, the

computations of Va and Vg in Eqs.(5.31c) and (5.31d) are provided in Appendix E.2.

The Kalman filter and the RTS smoother can be then run with the following recursive

equations:

Kalman filter for modified MSM : Do for k = 1, . . . , N

ẽk = ỹk − G̃kx̂k|k−1 (5.32a)

H̃k = G̃kV̂k|k−1G̃
T

k + R̃ (5.32b)

K̃k = V̂k|k−1G̃
T

k H̃−1
k (5.32c)

x̂k|k = x̂k|k−1 + K̃kẽk (5.32d)

V̂k|k = V̂k|k−1 − K̃kH̃kK̃
T
k (5.32e)

x̂k+1|k = Ãx̂k|k (5.32f)
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V̂k+1|k = ÃV̂k|kÃ + Q̃. (5.32g)

RTS smoother for MSM : Do for k = N, . . . , 1

Ñk = V̂k|kÃ
T (

V̂k+1|k

)−1

(5.32h)

x̂k|N = x̂k|k + Ñk

(
x̂k+1|N − x̂k+1|k

)
(5.32i)

V̂k|N = V̂k|k + Ñk

(
V̂k+1|N − V̂k+1|k

)
ÑT
k (5.32j)

V̂k+1,k|N = V̂k+1|NÑT
k . (5.32k)

The µ
(j+1)
1 and V

(j+1)
1 for the (j + 1)th VB iteration are initialized as

µ
(j+1)
1 = x̂1|N , V

(j+1)
1 = V̂1|N . (5.33)

Using the outputs from the RTS smoother, the expectations of sufficient statistics defined

in Eqs.(5.29) and (5.30) can be computed

S
(j)
xx,k =

〈
xkx

T
k

〉
q(j)(X) = x̂kx̂

T

k + V̂k|N (5.34a)

S
(j)

fx,k
=
〈
xk+1x

T
k

〉
q(j)(X) = x̂k+1x̂

T

k + V̂k+1,k|N (5.34b)

S
(j)

ff,k
=
〈
xk+1x

T
k+1

〉
q(j)(X) = x̂k+1x̂

T

k+1 + V̂k+1|N (5.34c)

S
(j)
yx,k =

〈
ykx

T
k

〉
q(j)(X) = ykx̂

T

k (5.34d)

Syy,k =
〈
yky

T
k

〉
q(j)(X) = yky

T
k . (5.34e)

5.4.3 Derivation of VBM-step: Computing q(j+1) (θ)

This section presents the update rules for the hyperparameters of the variational distribu-

tions q(j+1) (a), q(j+1)
(
Q
)
, q(j+1) (g) and q(j+1) (R), given the set of prior hyperparameters

πh =
{
µa,Σa,µg,Σg, dQ,DQ, dR,DR

}
(refer Eq.(5.23)) and the expectations of sufficient

statistics for the jth iteration (refer Eq.(5.34)). The details of the derivations of the update

rules can be found in Appendix E.3.
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Update for q(j+1) (a)

The hyperparameters of q(j+1) (a) are updated using the following:

Σ
(j+1)
a =

(
Σ−1
a + S

(j)
xx ⊗ µ

(j)

Q−1

)−1

(5.35a)

µ
(j+1)
a = Σ

(j+1)
a

(
Σ−1
a µa + vec

(
µ

(j)

Q−1S
(j)

fx

))
(5.35b)

µ
(j+1)

A
= mat

(
µ

(j+1)
a

)
(5.35c)

where µ
(j)

Q−1 = d
(j)

Q
D

(j)

Q

−1
, and mat (·) defines a reshape operator that reshapes vectors to

matrices of relevant dimensions. In Eq.(5.35c), it reshapes a vector of dimension nsns to a

matrix of dimension ns × ns.

Update for q(j+1)
(
Q
)

The hyperparameters update equations for q(j+1)
(
Q
)

are:

M
(j+1)

A
= µ

(j+1)

A
S

(j)
xxµ

(j+1)

A

T
+

ns∑
p=1

ns∑
r=1

(
S

(j)
xx

)
pr

Πa
pr (5.36a)

D
(j+1)

Q
= DQ + S

(j)

ff
− µ(j+1)

A
S

(j)

fx

T
− S

(j)

fx
µ

(j+1)

A

T
+ M

(j+1)

A
(5.36b)

d
(j+1)

Q
= dQ +N (5.36c)

where
(
S

(j)
xx

)
pr

is the (p, r)th element of matrix S
(j)
xx , and Πa

pr ∈ Rns×ns is the (p, r)th block

matrix of Σ
(j+1)
a . The block matrix representation of Σ

(j+1)
a is shown below

Σ
(j+1)
a =


Πa

11 Πa
12 . . . Πa

1ns

Πa
21 Πa

22 . . . Πa
2ns

...
...

. . .
...

Πa
ns1 Πa

ns2 . . . Πa
nsns

 . (5.37)
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Update for q(j+1) (g)

The hyperparameters of q(j+1) (g) are updated as:

Σ
(j+1)
g =

(
Σ−1
g +

N∑
k=1

(
S

(j)
xx,k ⊗

(
ΩT
kµ

(j)

R−1Ωk

)))−1

(5.38a)

µ
(j+1)
g = Σ

(j+1)
g

(
Σ−1
g µg +

N∑
k=1

vec
(
ΩT
kµ

(j)

R−1S
(j)
yx,k

))
(5.38b)

µ
(j+1)

G
= mat

(
µ

(j+1)
g

)
(5.38c)

where µ
(j)

R−1 = d
(j)
R D

(j)
R

−1
and the mat (·) operator in Eq.(5.38c) reshapes a vector of di-

mension nsnα to a matrix of dimension nα × ns.

Update for q(j+1) (R)

The hyperparameters of q(j+1) (R) are updated using the following rules:

M
(j+1)

G,k
=

ns∑
p=1

ns∑
r=1

(
S

(j)
xx,k

)
pr

Πg
pr + µ

(j+1)

G
S

(j)
xx,kµ

(j+1)

G

T
(5.39a)

D
(j+1)
R = DR +

N∑
k=1

(
S

(j)
yy,k −Ωkµ

(j+1)

G
S

(j)
yx,k

T
− S

(j)
yx,kµ

(j+1)

G

T
ΩT
k + ΩkM

(j+1)

G,k
ΩT
k

)
(5.39b)

d
(j+1)
R = dR +N (5.39c)

where
(
S

(j)
xx,k

)
pr

is the (p, r)th element of matrix S
(j)
xx,k, and Πg

pr ∈ Rnα×nα is the (p, r)th

block matrix of Σ
(j+1)
g . Σ

(j+1)
g can be represented using block matrices as shown below

Σ
(j+1)
g =


Πg

11 Πg
12 . . . Πg

1ns

Πg
21 Πg

22 . . . Πg
2ns

...
...

. . .
...

Πg
ns1 Πg

ns2 . . . Πg
nsns .

 (5.40)
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5.4.4 Initialization and convergence criterion for VB

The hyperparameters of the prior distributions πh =
{
µa,µg,Σa,Σg, dQ, dR,DQ,DR

}
are set as

µa = vec
(
A

SSI
)
, µg = vec

(
G

SSI
)

(5.41a)

Σa = 1015 × In2
s×n2

s
, Σg = 1015 × I(nsnα)×(nsnα) (5.41b)

DQ = Ins×ns , DR = Ino×no (5.41c)

dQ = ns + 2, dR = no + 2. (5.41d)

The means of prior distributions over a and g are set equal to their vectorized forms of the

SSI estimates as shown in Eq.(5.41) and large values (∼ 1015) of covariances are assigned to

make the prior sufficiently flat (and non-informative). Furthermore, the hyperparameters

of the initial variational distributions are set equal to the hyperparameters of the prior

distributions, i.e. θ
(0)
h = πh.

Typically, the VB iterations are stopped based on the change in the variational free

energy between successive VB iterations. However, the numerical evaluation of variational

free energy involves a high dimensional integral which is cumbersome to compute in this

case. It is to be noted that the calculation of the variational free energy is not necessary for

running the VB algorithm. Instead of variational free energy, the conditional log-likelihood

is used as a stopping criterion for VB which also increases monotonically with each VB

iteration. This is easily computed using the sequence of innovations ẽ1:N and innovation

covariance matrices H̃1:N , obtained as outputs in the Kalman filtering step. Denoting

L̃
(
θ(j)
)

as the conditional log-likelihood at the jth VB iteration, the stopping criterion is

described by

2
(
L̃
(
θ(j+1)

)
− L̃

(
θ(j)
))

L̃
(
θ(j+1)

)
+ L̃

(
θ(j)
) ≤ εtol. (5.42)

Typical values of the tolerance threshold εtol are in the range of 10−4 ∼ 10−6. The log-

likelihood L (θ) is computed as [104, 120]

L̃ (θ) = − 1

2

N∑
k=1

ln
∣∣∣H̃k

∣∣∣− 1

2

N∑
k=1

ẽTk H̃kẽk (5.43)
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where |·| is the determinant operator, and ẽk and H̃k are obtained as outputs from the

Kalman filtering step, shown in Eqs.(5.32a) and (5.32b) respectively. Once the stop-

ping criterion is reached, the VB iterations are stopped and the hyperparameters θ∗h ={
µ∗a,µ

∗
g,Σ

∗
a,Σ

∗
g,D

∗
Q
,D∗R, d

∗
Q
, d∗R

}
from the final iteration are treated as the converged

hyperparameters governing the posterior distribution of the parameters θ =
{
A,G,Q,R

}
.

5.4.5 Posterior distributions of modal parameters from VB

The posterior distribution of modal parameters are obtained following a procedure similar

to that outlined in Section 4.5.6 where a first-order Taylor series expansion is used to com-

pute closed-form posterior distributions of the modal parameters. The modal parameters

are expressed approximately as linear equations, as demonstrated in Eq.(4.51). Thus, the

ith identified modal parameter will follow a multivariate normal distribution:

ln fi
(
A
)
∼ N

(
µln fi , σ

2
ln fi

)
(5.44a)

ln ξi
(
A
)
∼ N

(
µln ξi , σ

2
ln ξi

)
(5.44b)

φuni
(
A,G

)
∼ N

(
µφuni , Σφuni

)
(5.44c)

where

µln fi = ln fi
(
µ∗

A

)
(5.45a)

µln ξi = ln ξi
(
µ∗

A

)
(5.45b)

µφuni = φuni
(
µ∗

A
,µ∗

G

)
(5.45c)

σ2
ln fi

= Jln fi,A
Σ∗a JT

ln fi,A
(5.45d)

σ2
ln ξi

= Jln ξi,A
Σ∗a JT

ln ξi,A
(5.45e)

Σφuni
= Jφuni ,A Σ∗a JT

φuni ,A
+ Jφuni ,G Σ∗g JT

φuni ,G
(5.45f)

Jln fi,A
=
∂ ln fi

(
A
)

∂vec
(
A
) ∣∣∣∣∣

A=µ∗
A

, Jln ξi,A
=
∂ ln fi

(
A
)

∂vec
(
A
) ∣∣∣∣∣

A=µ∗
A

(5.45g)

153



Jφuni ,A =
∂φuni

(
A,G

)
∂vec

(
A
) ∣∣∣∣∣

A=µ∗
A

, Jφuni ,G =
∂φuni

(
A,G

)
∂vec

(
G
) ∣∣∣∣∣

G=µ∗
G

. (5.45h)

It is noteworthy to mention that the mode shapes follow multivariate normal distributions

whereas the logarithms of modal frequencies and damping ratios follow normal distribu-

tions. To convert to the lognormal distributions of the modal frequencies and damping

ratios to equivalent normal distribution, the transformation formulas as given in Eq.(4.55)

are used.

The complete list of steps for applying the VB algorithm to the stacked data case is

provided in Algorithm 5.

154



Algorithm 5 Modal parameter estimation with VB using stacked data

Input: Y , εtol, VSLs sα and sensing nodes {sok}1:N

Build the sequence of mode shape regression matrices {Ω}1:N using Eq.(5.5)

Set prior hyperparameter πh using Eq.(5.41), and initialize θ
(0)
h = πh

VB E-step:

1. Set A(0), G(0), Q(0) and R(0) to the mean values of their respective distributions

2. Use Eq.(5.14) and (5.15) for Kalman filter and RTS smoother recursions

3. Calculate the expectations of sufficient statistics using Eqs.(5.29) and (5.30)

while not converged do

1. VB M-step: Use Eqs.(5.35), (5.38), (5.36), (5.39) and (5.33) to update hyperpa-

rameters → µ
(j+1)

A
,µ

(j+1)

G
,Σ

(j+1)
a ,Σ

(j+1)
g ,D

(j+1)

Q
,D

(j+1)
R , d

(j+1)

Q
, d

(j+1)
R ,µ

(j+1)
1 ,V

(j+1)
1

2. VB E-step:

(a) Run Kalman filter and RTS smoother using Eqs.(5.31)– (5.32)

(b) Calculate the expectations of sufficient statistics using Eqs.(5.29) and (5.30)

3. Compute variational free energy F (j+1)
ve

4. Use Eq.(4.50) to check if convergence criterion is satisfied

end while

Return µ∗
A
← µ

(final)

A
, µ∗

G
← µ

(final)

G
, D∗

Q
← D

(final)

Q
, D∗R ← D

(final)
R , Σ∗a ← Σ

(final)
a ,

Σ∗g ← Σ
(final)
g , d∗

Q
← d

(final)
Q , d∗R ← d

(final)
R

Set A = µ∗
A

and G = µ∗
G

. Then extract the modal parameters i.e. frequency fi, damping

ratio ξi, un-normalized mode shape φuni , using Appendix B.1

for fi, ξi,φ
un
i do

Compute the sensitivities using Eq.(B.6) and Appendix B.3

Compute the means and covariances of the posterior distribution of the identified

modal parameters using Eqs.(5.44) and Eq.(4.55)

end for

Output: µfi , µξi ,µφuni , σ
2
fi
, σ2

ξi
,Σφuni

for all modes i = 1, 2, . . .
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5.5 Bayesian inference of MSM via GS

In this section, the GS algorithm is derived for the MSM. First, the joint distribution of

the unknown parameters θ =
{
A,G,Q,R

}
, the hidden states X and the measurements

Y can be written as:

p
(
Y ,X,A,G,Q,R

)
= p

(
A
)
p
(
Q
)
p
(
G
)
p (R) p (x1) (5.46)

×
N∏
k=1

p
(
xk+1 | xk,A,Q

)
p
(
yk | xk,G,R

)
. (5.47)

Given the observed measurements Y , the required conditional distributions can be derived

and samples can be drawn from the Markov chain in the following cyclic fashion

1. Given θ(j) =
{
A(j),G(j),Q(j),R(j)

}
and observed measurements Y , a sequence of

hidden state variables are sampled according to

X(j) ∼ p
(
X | Y ,θ(j)

)
, (5.48)

2. Given X(j), the unknown parameters θ(j+1) are sampled according to

θ(j+1) ∼ p
(
θ | Y ,X(j)

)
. (5.49a)

5.5.1 Forward filtering backward sampling for states

The state sequence X is sampled following the forward filtering backward sampling strat-

egy elaborated in Wills et al. [92]. The strategy consists of two parts: forward filtering

and backward sampling. The forward filtering part sequentially predicts and updates the

states and state-error covariances using the Kalman filter, obtaining p (xk | Y ,θ) for all

k = 1, . . . , N . Using the results from forward filtering, the backward sampling strategy

simulates state vectors from time k = N + 1 to k = 1. The joint distribution of xk+1 and

xk conditioned on observed data Y [65] can be written as

p (xk+1,xk | Y ) = N

([
xk+1

xk

] ∣∣∣∣∣m̃1, P̃1

)
(5.50)
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where

m̃1 =

[
x̂k+1|N

x̂k|k + Nk

(
x̂k+1|N −Ax̂k|k

)]

P̃1 =

 V̂k+1|N V̂k+1|NNT
k

NkV̂
T

k+1|N V̂k|k + Nk

(
V̂k+1|N − V̂k+1|k

)
NT
k

 (5.51)

The matrix Nk = V̂k|kA
T
(
V̂k+1|k

)−1

is the smoother gain matrix at the kth time instant.

Using the property of the multivariate normal distribution, the conditional distribution of

xk given xk+1 follows a multivariate normal distribution (refer to Eq. (8.10) in [65])

p (xk | xk+1,Y ) = N
(
xk | m̃2, P̃2

)
(5.52)

where

m̃2 = x̂k|k + Nk

(
xk+1 −Ax̂k|k

)
P̃2 = V̂k+1|k −NkV̂k+1|kN

T
k .

(5.53)

Thus, given A(j),G(j),Q(j),R(j) and Y , one can generate the sequence X(j).

5.5.2 Sampling unknown parameters

The posterior distribution of the parameters θ =
{
A,G,Q,R

}
given a sample of the state

sequence X and the measurements Y is given by

p
(
θ |X,Y

)
∝ p

(
X,Y | θ

)
p (θ) . (5.54)

It turns out that even though the parameters were assumed independent (i.e. a fully

factorized prior distribution was assumed over the parameters), they become dependent in

their joint posterior distributions. Hence, first the joint posterior distribution is written

out and then the fully conditional distributions of the parameters are derived to facilitate

Gibbs sampling. Using the joint probability distribution of complete data (Eq.(5.20)), one
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can write the joint posterior distribution over the parameters as:

p
(
A,Q,G,R | Y ,X(j)

)
∝ p

(
Y ,X(j) | A,Q,G,R

)
p
(
A,Q,G,R

)
∝

dQ +N + ns + 1

2
ln
∣∣Q−1

∣∣+
dR +N + no + 1

2
ln
∣∣R−1

∣∣
− 1

2
tr

{
Q−1

(
P

(j)

ff
−A

(
P

(j)

fx

)T
−P

(j)

fx
AT + AP

(j)
xxAT

)}
− 1

2
tr

{
R−1

N∑
k=1

(
P

(j)
yy,k −ΩkG

(
P

(j)
yx,k

)T
−P

(j)
yx,kG

TΩT
k + ΩkGP

(j)
xx,kG

TΩT
k

)}
− 1

2
tr
{
Σ−1
a

(
µaµ

T
a − aµTa − µaaT + aaT

)}
− 1

2
tr
{
Σ−1
g

(
µgµ

T
g − gµTg − µggT + ggT

)}
− 1

2
tr
{
Q−1DQ

}
− 1

2
tr
{
R−1DR

}
(5.55)

where P
(j)
yx,k,P

(j)
yy,k,P

(j)
xx,k,P

(j)
xx ,P

(j)

fx
,P

(j)

ff
are the expectations of sufficient statistics at the

jth sampling iteration of Markov chain described as

P
(j)
yx,k = yk

(
x

(j)
k

)T
, Pyy,k = yky

T
k (5.56a)

P
(j)
xx =

N∑
k=1

P
(j)
xx,k =

N∑
k=1

x
(j)
k

(
x

(j)
k

)T
(5.56b)

P
(j)

fx
=

N∑
k=1

x
(j)
k+1

(
x

(j)
k

)T
, P

(j)

ff
=

N∑
k=1

x
(j)
k+1

(
x

(j)
k+1

)T
. (5.56c)

Using the θ(j) =
(
A(j),G(j),Q(j),R(j)

)
andX(j) from the jth step of the Markov chain, the

parameters θ(j+1) can be sampled from the following conditional posterior distributions:

• Sample
(
a(j+1) | Q(j),X(j)

)
∼ N

(
µ̃a

(j+1)
, Σ̃a

(j+1)
)

and set A(j+1) = mat
(
a(j+1)

)
,

where

Σ̃a

(j+1)
=
(
Σ−1
a + P

(j)
xx ⊗Q(j)−1

)−1

(5.57a)

µ̃a
(j+1) = Σ̃a

(j+1)
(
Σ−1
a µa + vec

(
Q(j)−1

P
(j)

fx

))
. (5.57b)
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• Sample
(
g(j+1) | R(j),X(j)

)
∼ N

(
µ̃g

(j+1), Σ̃g

(j+1)
)

and set G(j+1) = mat
(
g(j+1)

)
,

where

Σ̃g

(j+1)
=

(
Σ−1
g +

N∑
k=1

(
P

(j)
xx,k ⊗

(
ΩT
kR(j)−1

Ωk

)))−1

(5.58a)

µ̃g
(j+1) = Σ̃g

(j+1)
(
Σ−1
g µg + vec

(
R(j)−1

P
(j)
yx

))
. (5.58b)

• Sample
(
Q(j+1) |X(j),A(j+1)

)
∼ IW

(
d̃Q

(j+1)
, D̃Q

(j+1)
)

, where

D̃Q

(j+1)
= DQ + P

(j)

ff
−A(j+1)

(
P

(j)

fx

)T
−P

(j)

fx

(
A(j+1)

)T
+ A(j+1)P

(j)
xx

(
A(j+1)

)T
(5.59a)

d̃Q

(j+1)
= dQ +N. (5.59b)

• Sample
(
R(j+1) |X(j),G(j+1)

)
∼ IW

(
d̃R

(j+1)
, D̃R

(j+1)
)

, where

D̃R

(j+1)
= DR +

N∑
k=1

(
P

(j)
yy,k −ΩkG

(j+1)
(
P

(j)
yx,k

)T
−P

(j)
yx,k

(
G(j+1)

)T
ΩT
k

)

+
N∑
k=1

(
ΩkG

(j+1)P
(j)
xx,k

(
G(j+1)

)T
ΩT
k

)
(5.60a)

d̃R

(j+1)
= dR +N. (5.60b)

Thus, given the jth sample of parameters θ(j) and state sequence X(j), the updated pa-

rameters θ(j+1) can be sampled from their corresponding conditional distributions with

the updated hyperparameters expressed in Eqs.(5.57), (5.58), (5.59) and (5.60). For the

purposes of implementation, first a(j+1) and g(j+1)) are sampled from the respective multi-

variate Gaussian distributions using Q(j), R(j) andX(j), and reshaped into matrices A(j+1)

and G(j+1). Next using A(j+1),G(j+1) and X(j), the parameters Q(j+1),R(j+1) are sampled

from their respective inverse Wishart distributions.
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5.5.3 Initialization of GS

In Gibbs sampling, the desired posterior distributions are obtained after the Markov chain

reaches its stationary distribution. The number of samples needed for a Markov chain to

reach a stationary distribution depends to a great extent on the amount of observed data.

The lesser the amount of observed data, the greater the number of samples required to

reach stationarity, thus longer becomes the Markov chain. The GS is started with θ
(0)
h ={

µ
(0)
a ,µ

(0)
g ,Σ

(0)
a ,Σ

(0)
g ,D

(0)

Q
,D

(0)
R , d

(0)

Q
, d

(0)
R

}
as the initial estimate along with specification of

the prior hyperparameters πh =
{
µa,µg,Σa,Σg, dQ, dR,DQ,DR

}
. The initial estimates

and the prior parameters are set in the same way as done for VB in Section 5.4.4.

5.5.4 Computation of posterior statistics

The first few samples of each Markov chain are discarded as burn-in samples to remove

transient behavior in the initial phases of the Markov chain. Typically, the samples of

a Markov chain are correlated; to minimize the correlation between samples one may

choose to subsample the Markov chain. It must be noted that, after discarding the burn-in

samples and subsampling the Markov chain, one extracts the modal parameters from the

retained sample pairs
(
A(j),G(j)

)
, j = 1, . . . , J , obtaining J sets of modal parameters.

For grouping the modes, a k-means clustering is adopted using three features: frequencies,

damping ratios and normalized mode shapes. The clusters with physical modes appear

more consistently and these are used for computing the modal distributions.

The complete list of steps for applying the VB algorithm to the stacked data case is

provided in Algorithm 6.
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Algorithm 6 Modal parameter estimation with GS using stacked data

Input: Y , εtol, VSLs sα and sensing nodes {sok}1:N , chain length, burn-in samples,

subsampling period

Build the sequence of mode shape regression matrices {Ω}1:N using Eq.(5.5)

Set prior hyperparameter πh using Eq.(5.41) and initialize θ
(0)
h = πh

for sample j = 1 : J do

1. Forward filtering backward sampling for states

(a) Use Eq.(5.14) for Kalman filter recursions

(b) Calculate smoother gains {N}1:N using Eq.(5.15a)

(c) Generate sequence X(j) using Eqs.(5.52) and (5.53)

2. Sampling parameters

(a) Compute expectations of sufficient statistics using Eq.(5.56)

(b) Using Q(j) and expectations of sufficient statistics, update the distributional

hyperparameters of A following Eq.(5.57). Draw sample a(j+1) and reshape to

A(j+1)

(c) Using A(j+1) and expectations of sufficient statistics, update the distributional

hyperparameters of Q using Eq.(5.59). Draw sample Q(j+1)

(d) Using R(j) and expectations of sufficient statistics, update the distributional

hyperparameters of g using Eq.(5.58). Draw sample g(j+1) and reshape to

G(j+1)

(e) Using A(j+1) and expectations of sufficient statistics, update the distributional

hyperparameters of R using Eq.(5.60). Draw sample R(j+1)

(f) Use Appendix B.1 to extract the modal parameters fi, ξi,φ
un
i using matrices

A(j+1) and G(j+1)

end for

for fi, ξi,φ
un
i do

Compute the mean and variance estimates of the samples of modal parameters (post

subsampling and discarding the initial burn-in samples)

end for

Output: µfi , µξi ,µφuni , σ
2
fi
, σ2

ξi
,Σφuni

for all modes i = 1, 2, . . .
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5.6 Numerical Demonstration

This section presents the performance of the EM, VB and GS for modal parameter estima-

tion on a simply supported beam following the stacked data approach to mobile sensing.

The simply supported beam is assumed to have the following properties: length L = 20m,

flexural rigidity 3.2× 108Nm2, and mass per unit length 2000kg/m. The beam is modelled

using 4000 finite (beam) elements of length equal to 0.005m. The natural frequencies for

the first five modes of the beam are 1.57, 6.28, 14.14, 25.14 and 39.28 Hz. The damping

ratios for the first five modes are set to 1% of the critical damping. The numerical response

data are generated using the following:

• Gaussian white noise inputs with zero means and variances 104N2 were applied at 99

equidistant points on the beam (each point separated by 0.2m). A frequency cutoff

at 45 Hz was applied to the Gaussian white noise input signals with the objective to

excite only the first five modes.

• Sampling period ∆t = 0.01s, total time duration T = 200s, total time samples

N = 20000.

• Static sensor acceleration responses were obtained at 3999 vertical degrees of freedom

of the beam using the modal superposition method (including only the first five

modes).

• Employing nms mobile sensors, a stacked matrix of size nms × N was created by

selecting a specific subset of the noise contaminated static sensor data. The subset

corresponds to the static sensor data that coincided with the path of the mobile

sensors.

• Zero mean Gaussian white noise sequences with RMS values equal to 20% of the RMS

of the corresponding “true” acceleration signals of the stacked matrix were added to

obtain noisy measurements.

The MSM underpinning the three algorithms has to be specified with a model order as

well as the number of VSLs. A model order of 14 is set and 19 equidistant VSLs are chosen
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along the length of the beam as shown in Figure 5.2a. Note the mode shape ordinates are

estimated only at these VSLs. The motivation to choose equidistant VSLs stems from the

fact that the sinc-function based MSR matrices are most accurate when the separation

between VSLs is constant. It must be emphasized that in the proposed framework, the

number of VSLs can be chosen irrespective of the choice of the number of mobile sensors

and/or the model order of the MSM. This is one of the features that contrasts the proposed

approach from the TPM approach presented in [21]. Furthermore, the physical modes of

the structure are identified based on the two successive conditions as mentioned in the

previous chapter, that is, (a) they should correspond to eigenvalues (of A) that appear in

complex conjugate pairs, and (b) they should have positive damping ratios below 5%. The

three algorithms (i.e., EM, VB and GS), employed to estimate the modal parameters from

the stacked data matrix, are run with the following specifications:

• Parameter estimates of ASSI and GSSI, with model order equal to 14, were provided

as initial estimates; these initial estimates corresponded to frequencies f (0), damping

ratios ξ(0) and mode shapes φ(0) having errors in the range of 10%, 40% and 30%,

about their corresponding true values, respectively. The initial errors are introduced

to validate the robustness and efficiency of the employed algorithms.

• A tolerance value of εtol = 5 × 10−6 is set as a stopping threshold for iterations of

both EM and VB.

• For GS, a Markov chain of length 3500 (samples) is run. Initial 500 samples of the

chain are discarded as burn-in and the rest of the chain is sub-sampled with a period

of 3 samples to obtain 1000 samples.

• The remaining parameters related to initialization are set in accordance with the

initialization guidelines mentioned in sections 4.4.3, 5.4.4 and 5.5.3.

A mobile sensor network comprising six mobile sensors, each moving with a constant

velocity of 0.5m/s, scans 3999 equidistant points on the beam. Figure 5.2b illustrates the

mobile sensor network of six moving sensors. The spatial domain of the beam is divided

into six coverage zones corresponding to the six mobile sensors. Each mobile sensor scans

163



Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(a) Equidistant VSL points on beam

(b) Zone-based mobile sensing scheme

Figure5.2:(a)19equidistantVSLsareselectedonabeamwherethemodeshapeestimates

aredesired,and(b)anetworkofsixmobilesensors,eachsensormovingatsamespeed,

scansdesignatedcoveragezonesonthebeamfollowingaback-and-forthmovement.

itsdesignatedzonewithcontinuousback-andforthmotions.Inthetotaldurationof200s,

eachmobilesensorinthesix-mobile-sensor-networkisabletoscanitsdesignatedcoverage

zone30times.

Table5.1and5.2listtheidentifiedmodalfrequenciesanddampingratiosusingthe

threemethods.NotethatEMprovidesonlypointestimateswhereasVBandGSprovides

theposteriordistributionsfromwhichthemean,SDandCoVforeachmodalparameter

canbecalculated.Theestimatesoffrequenciesfromallthreemethodsarequiteconsis-

tent,althoughslightoverestimationcanbeseenintheidentifiedfrequencies. TheCoV

oftheidentifiedfrequenciesusingbothVBandGSaresubstantiallysmallerthanthat

ofthedampingratios.ItisalsonotedthattheestimatedCoVsoftheidentifiedmodal
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frequencies and damping ratios from VB are typically smaller than those of GS, with a

maximum difference of around 15%. Comparing the CoVs of identified modal frequencies

and damping ratios obtained across different modes, it can be seen that the uncertainty is

the highest in the first mode and decreases with higher modes.

Table 5.1: Identified modal frequencies (in Hz) using EM, VB and GS.

Mode ftrue f (0) EM VB GS

Mean CoV (%) Mean CoV (%)

1 1.571 1.737 1.577 1.578 0.304 1.576 0.336

2 6.283 6.918 6.292 6.291 0.112 6.290 0.118

3 14.137 12.727 14.177 14.171 0.076 14.170 0.080

4 25.133 27.624 25.161 25.169 0.059 25.164 0.061

5 39.270 35.335 39.274 39.274 0.039 39.276 0.041

Table 5.2: Identified modal damping ratios (in %) using EM, VB and GS.

Mode ξtrue ξ(0) EM VB GS

Mean CoV (%) Mean CoV (%)

1 1.000 0.712 1.611 1.877 16.493 1.865 18.828

2 1.000 1.105 0.980 1.001 10.897 0.974 12.371

3 1.000 0.607 1.043 1.011 7.922 1.010 7.920

4 1.000 0.856 1.075 1.100 5.461 1.088 5.563

5 1.000 1.352 0.762 0.770 5.202 0.781 5.132

Comparison of the PDFs and CDFs of the identified modal frequencies and damping

ratios are provided in Figure 5.3. The distributions from VB and GS agree quite well.
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Table 5.3: Comparison of Modal Assurance Criterion (MAC) values of mode shapes iden-

tified using EM, VB and GS.

Mode True Initial EM VB GS

1 1.000 0.957 0.998 0.998 0.998

2 1.000 0.976 0.999 0.999 0.995

3 1.000 0.982 0.998 0.998 0.998

4 1.000 0.966 0.997 0.997 0.995

5 1.000 0.975 0.995 0.996 0.995

Regarding the mode shape estimates, the MAC values of the mode shapes at the 19

VSLs as estimated by EM, VB and GS are tabulated in Table 5.3. It is seen that the three

algorithms, after starting from poor initial mode shape estimates, are able to yield good

final mode shape estimates (with MAC values close to 0.99).

The means and the SDs of the mode shapes estimated at the VSLs are plotted in Figure

5.4. The left panel plots the mean values, and it can seen that the mean estimates of the

mode shapes from both VB and GS are consistent. The right panel of figure plots the

SDs of the mode shape ordinates corresponding to their mean values in the left panel.

Comparing the SDs of the estimated mode shapes across different modes, a trend of lower

SDs associated with higher modes is seen for this particular example. This is similar to the

previously discussed trend of CoVs associated with the identified modal frequencies and

damping ratios. It is presumed that a higher sensitivity of higher modes to accelerations

result in their lower uncertainties. Finally it is noted that at certain mode shape ordinates

across different modes, the SDs from VB exhibit considerable underestimation compared

to that from GS i.e. the VB estimates of SD can vary between 40-60% of that from GS.

This is particularly prominent for mode 1 where at all 19 VSLs, the uncertainties are

underestimated.

The log-likelihood convergence plots of the three algorithms i.e. EM, VB and GS, are

shown in Figure 5.5. It can be seen that all three algorithms converge to similar likelihood
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Figure 5.5: Convergence of EM, VB and GS.

Regarding the computational time2 taken for running the algorithms for modal param-

eter estimation, the EM and VB algorithms took much less time than the GS as listed in

Table 5.4.

Table 5.4: Comparison of computational time taken for modal parameter estimation using

EM, VB and GS; computations were done on a SHARCNET server node with Intel E5-

2683V4 CPU @2.1GHz processor and 16GB RAM.

Algorithm Time (hrs)

EM 1.42

VB 2.10

GS 16.57

To this end, the performance of modal parameter estimation using EM, VB and GS on

a stacked data matrix acquired using a network of six mobile sensors has been assessed.

The following observations can be made:

2The computations were done on SHARCNET [118] server nodes
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1. The three algorithms are able to provide good final estimates of modal parameters

despite starting from poor initial estimates.

2. The point estimates of modal parameters from EM are found to be very close to the

mean estimates of the modal parameters from VB.

3. The uncertainty predicted by VB is typically lower than that predicted by GS. While

the uncertainty output from VB for the estimated modal frequencies and damping

ratios are underestimated by 15-20% of that from GS, the underestimation in the

case of identified modal shapes may go up to be around 40-60%.

4. Computationally, the GS takes much longer than VB and EM.

5.6.1 Assessment of estimation performance with different num-

ber of VSLs

A desirable feature of the MSM is that it provides flexibility to control the resolution of

the mode shapes by adjusting the number of VSLs. This can be achieved irrespective of

the model size or the number of mobile sensors. With a single dataset recorded by a group

of nms mobile sensors, the MSM can extract mode shapes at any number of spatial points

(i.e. the VSLs), as determined by the user. This section illustrates this feature of the MSM

using four different cases consisting of different number of VSLs while keeping the number

of mobile sensors constant (nms = 6), as shown in Table 5.5. In each case, the VSLs are

selected symmetrically on the beam with uniform spacing between them.
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Table 5.5: Different cases of VSLs used with dataset recorded with six mobile sensors

(nms = 6).; the VSLs are selected with uniform spacing spanning the length (L = 20 m)

of the simply supported beam.

Case
Set of locations

(spanning L = 20m)

No. of VSLs

(nα)

Spacing

VSL9 {2m, 4m, . . . , 16m, 18m} 9 2 m

VSL19 {1m, 2m, . . . , 18m, 19m} 19 1 m

VSL39 {0.5m, 1m, . . . , 19m, 19.5m} 39 0.5 m

VSL79 {0.25m, 0.5m, . . . , 19.5m, 19.75m} 79 0.25 m

First, it is noted that the computational time required by VB and GS for parameter

estimation increases as the number of VSLs increases, as listed in Table 5.6. This is due to

the increase in the size of the observation matrix (i.e., G) with an increase in the number of

VSLs. Specifically, the estimation of MSM parameters for the case VSL79 (with 79 VSLs)

using the GS can take an inordinate amount of computational time.

Table 5.6: Comparison of computational time (in hrs) taken by VB and GS; computations

were done on a SHARCNET server node with Intel E5-2683V4 CPU @2.1GHz processor

and 16GB RAM.

Algorithm
Time used (in hrs)

VSL9 VSL19 VSL39 VSL79

VB 1.53 2.10 3.69 8.21

GS 9.63 16.57 28.04 85.06

The means and SDs of the mode shapes estimated by VB and GS, corresponding to

the four cases of different VSLs, are plotted for the same three representative modes (i.e.,

modes 1, 2 and 5) in Figures 5.6, 5.7 and 5.8 respectively. It is expected that a lower number
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of VSLs would be unable to capture an accurate representation of the higher modes. This

is confirmed in the left topmost plot in Figure 5.8 where the estimation with 9 VSLs points

(case VSL9) provides a poor representation of the fifth mode shape. Similarly, the use

of more VSLs improves the representation of the fifth mode shape as shown in the left

bottommost plot in Figure 5.8. Nevertheless, the improved representation is associated

with a trade-off in the accuracy of mode shape estimates. That is, as the number of VSLs

increase, the mode shape estimates tend to become more noisy. This is clear in Figure 5.6,

where the first mode shape becomes increasingly poor with increasing numbers of VSLs.

Moreover, the first modal estimate from GS for the case VSL79 was unable to converge to

correct values (and hence omitted in Figure 5.6), implying that GS would need increasingly

more samples to converge as the number of VSLs increase.
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Figure 5.6: Comparison of the means and the SDs of the estimated first mode shape

obtained from VB and GS for the four different cases VSL9, VSL19, VSL39 and VSL79;

nms = 6. Note GS did not converge for VSL79 and hence omitted from plotting.
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Figure 5.7: Comparison of the means and the SDs of the estimated second mode shape

obtained from VB and GS for the four different cases VSL9, VSL19, VSL39 and VSL79;

nms = 6.
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Figure 5.8: Comparison of the means and the SDs of the estimated fifth mode shape

obtained from VB and GS for the four different cases VSL9, VSL19, VSL39 and VSL79;

nms = 6.

The decrease in the accuracy of mode shape estimates with increase in the number of
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VSLs is related to the normalized sinc function spatial interpolator, particularly to its

effective interpolation bandwidth – the spatial region where the sinc function interpolator

has non-negligible amplitude. Figure 5.9 shows normalized sinc functions constructed at

the mid-span for cases VSL9 and VSL79. When the number of VSLs is small (e.g. case

VSL9), the effective interpolation bandwidth of the sinc function is quite large, enabling

interpolation from a larger number of neighbouring samples and increasing accuracy in

mode shape estimation. In contrast to that, for greater number of VSLs (e.g. case VSL79)

the sinc function decays very fast decreasing its effective interpolation bandwidth; thus

only a few neighbouring samples contributes to the interpolation and therefore reduces the

accuracy of estimated mode shapes.
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Figure 5.9: Comparison of effective interpolation bandwidth of a normalized sinc function

drawn for a VSL at mid-span for cases VSL9 (top) and VSL79 (bottom).

It is found that mode shape estimates from VB are more accurate than those from GS as

seen from Figures 5.6, 5.7 and 5.8 for the first, second and fifth mode shapes respectively.

Additionally, the uncertainty in the mode shape estimates increase as the number of VSLs
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increases. This is because as more information is extracted from the same dataset, the

uncertainty in the information increases.

5.7 Experimental verification

In this section, the proposed framework of MSM-based Bayesian inference is experimen-

tally assessed for modal parameter identification following the stacked data approach to

mobile sensing. The 3-storey bench-scale test frame, described in Section 4.8, was used for

testing. However, instead of a few static accelerometers gathering data at a few locations,

a 3D digital image correlation (DIC) technique was used to get displacement responses at

200 locations along the height of the 3-storey test frame. Since a distinct advantage of the

proposed framework is that it allows incorporating a large number of mobile sensing nodes,

a 3D-DIC setup was found well suited for this purpose as it could measure static responses

at a large number of locations and an appropriate mobile sensor dataset could be extracted

from it subsequently. The setup for the 3D-DIC experiment is illustrated in Figure 5.10.

Two digital cameras were used to measure displacement responses at 200 equidistant lo-

cations along the height of the 3-storey building frame. A sampling frequency of 30Hz

was used for 3D-DIC test and a total of 7200 samples of displacement measurements were

obtained at the 200 locations. The averaged power spectral density of the 200 static dis-

placement measurements is shown in Figure 5.12. The first three modal frequencies were

found to be 2.20, 6.56 and 9.99Hz respectively. The third mode had very low energy and

its corresponding peak in the PSD was not so distinct. Within the frequency band of 10Hz,

two additional peaks are observed at 4.40Hz and 8.80Hz respectively which are found to

be spurious modes. The displacement responses were low-pass filtered with a cutoff of 8Hz

using a 5th order Butterworth filter for use in modal identification.

A stacked dataset employing three mobile sensors is simulated using the static sensor

dataset. A zone-based mobile sensing scheme is followed – in which the height of the frame

is divided into three coverage zones corresponding to three mobile sensors – a mobile sensor

dataset is then created by selecting the subset of the static sensor responses that coincided

with the virtual mobile sensor paths. For modal identification with the proposed approach,
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a model order of 30 is chosen for the MSM and twenty equally spaced VSLs at 75mm apart

are selected on the beam. Modal identification results obtained from using SSI (with a

model order of 75) using static displacements at the locations of the VSLs are treated as

baseline results for modal identification.

The computational algorithms EM, VB and GS are initialized with A(0) and G(0)

matrices set equal to the estimates from SSI. For EM and VB the default stopping threshold

of 5× 10−6 is used. For GS, a Markov chain of 2000 samples was simulated where the first

1000 samples were discarded as burn-in and the rest 1000 samples (without subsampling)

were used for the computation of posterior distributions. The modal parameters identified

with the computational algorithms using the stacked dataset are then compared to the

baseline results from SSI.

The frequency and damping estimates obtained from EM, VB and GS are listed in

Tables 5.7 and 5.8 respectively. The frequency estimates from SSI using static sensor data

and that from EM, VB and GS using mobile sensor data are in good agreement. The

damping estimates from SSI using static sensor data is found to differ from those obtained

with EM, VB and GS, especially for the second mode. The damping estimates from EM,

VB and GS for the first modes are found to be pretty consistent with each other, while for

the second mode the VB damping estimate seem to lower than that obtained using EM

and GS.

Table 5.7: Identified modal frequencies (in Hz) using EM, VB and GS.

Mode fSSI f (0) EM VB GS

Mean
SD

(×10−2)

CoV

(%)
Mean

SD

(×10−2)

CoV

(%)

1 2.199 2.311 2.203 2.203 0.166 0.075 2.204 0.167 0.076

2 6.561 6.328 6.592 6.583 0.659 0.101 6.581 0.755 0.115
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Table 5.8: Identified modal damping ratios (in %) using EM, VB and GS.

Mode ξSSI EM VB GS

Mean
SD

(×10−2)

CoV

(%)
Mean

SD

(×10−2)

CoV

(%)

1 0.133 0.224 0.224 8.304 37.071 0.173 7.052 40.763

2 0.206 0.899 0.991 10.080 10.172 0.778 12.300 15.810

The mean values and the SDs of the two mode shapes estimated using VB and GS

are illustrated in Figure 5.13. The mean estimates of the first mode shape from VB and

GS agree quite well with the baseline first mode shape estimated using SSI at the VSLs.

However, the VB and GS estimates of the second mode shape from are seen to differ from

that using SSI. Also, the second mode shape has large uncertainty compared to the first

mode shape.

The MAC values of the modes shapes obtained using EM, VB and GS are listed in

Table 5.9. The MAC values are obtained with respect to the baseline mode shapes from

SSI.

Table 5.9: Modal Assurance Criterion (MAC) values of mode shapes identified using EM,

VB and GS; MAC values calculated with respect to mode shape estimates from SSI.

Mode EM VB GS

1 0.986 0.994 0.994

2 0.918 0.935 0.927

Computationally, the VB worked much faster taking roughly 4 hours in comparison to

GS which took 10 hours, both executed on a SHARCNET [118] server node with 16GB

RAM and Intel E5-2683V4 CPU @2.1GHz processor. It is to be mentioned that only one

run of the MSM produced modal ordinates at 20 VSLs which is advantageous compared to
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the TPM [21] that would need multiple runs to estimate mode shapes at the same number

of VSLs.
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Figure 5.13: Means (left panel) and SDs (right panel) of two mode shapes obtained with

VB and GS using the mobile sensor dataset is compared with the mode shape estimates

obtained with SSI using the static sensor dataset.
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5.8 Summary

In this chapter, the problem of output-only modal parameter estimation using in-motion

mobile sensors is posed from a complete data perspective. The time-series data recorded

by each mobile sensor are concatenated to form a stacked data matrix; each entry in the

stacked data matrix is tagged by its corresponding position of record – stored in a sensor-

position matrix. The stacked data matrix is featured by spatial discontinuities which

makes it incompatible with the conventional system identification methods. In this study,

a modal state model (MSM) is proposed to conduct modal parameter estimation using

the stacked data matrix. The MSM is based on the concept of converting the mobile

sensor data to equivalent static sensor data at some user-chosen set of virtual locations on

the structure. A sequence of sinc function based mode shape regression (MSR) matrices

enables interpolation of the mobile sensor entries from various locations to these VSLs on

the structure. By regulating the number of VSLs used in the MSM, the resolution of the

estimated mode shapes can be controlled.

A Bayesian inference framework is combined with the proposed MSM for estimating the

posterior distribution of modal parameters via the estimation of MSM parameters. Three

computational algorithms, namely the EM, VB and GS, are modified to enable infer-

ence with the MSM. The performance of the modal parameter estimation and uncertainty

quantification is studied using numerical simulations on a simply supported Euler-Bernoulli

beam. The posterior means of the modal frequencies and damping ratios obtained all three

algorithms are found to be similar, but that for the mode shapes are found to better from

EM and VB. The VB however tends to underestimate the uncertainty in the estimated

modal parameters compared to GS. In a comparison study, keeping the number of mobile

sensors constant, the number of VSLs used in MSM are varied to investigate its effect

on modal parameter estimation. While the posterior means of the modal frequencies and

damping ratios did not vary much, it is found that selecting a small number of VSLs pro-

duces lower resolution mode shape estimates while choosing a very high number produces

high resolution but noisy estimates of mode shapes. Moreover, the uncertainty in the mode

shape estimates also increase with an increase in the number of VSLs. Computationally,

the EM and VB algorithms take similar computational time, however, the computational
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demand of GS is usually very high. Finally, an experimental study was undertaken on a

laboratory scale 3-storey building frame. A mobile sensor dataset was created from the

dense static displacements (obtained from DIC) which corresponded to a displacement

dataset collected using three mobile sensors. A MSM with 20 VSLs was employed to carry

out Bayesian inference using the mobile sensor dataset and the estimation results were

found to be comparable to that obtained by conventional techniques using static sensor

data.
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Chapter 6

Extracting contact-point responses

for suppression of carrier-vehicle

dynamics

In the previous chapters, it was assumed that the mobile sensors were able to directly

measure the bridge responses at vehicle-bridge contact points. In other words, the carrier-

vehicles (i.e., the mobile platforms carrying the sensor) were assumed inertialess and the

vehicle dynamics affecting the responses measured by the mobile sensors were ignored.

However, in practice, the carrier-vehicle can introduce additional dynamics to the sensor

measurements – it acts a low pass filter to the bridge responses at contact points. This

low-pass filtering phenomena can mask the bridge dynamics and prevent successful identifi-

cation of modal features. Therefore, a procedure to suppress the effect of vehicle dynamics

in the measurements prior to their use in modal identification is desired. This chapter pro-

poses a technique that attempts to reduce the effect of vehicle dynamics via the recovery

of contact-point responses.

The contact-point response is defined as the response of the vehicle at the point of

contact of the vehicle with the bridge. As will be evident, this response acts as a base-

excited input to the carrier-vehicle whose response is measured by the sensors on the top

of the carrier-vehicle. The problem of recovering contact-point responses from the vehicle
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response measurements is cast as an input reconstruction problem. A Gaussian process

latent force model (GPLFM)-based Kalman filtering approach is adopted to estimate the

unknown contact-point response. The main reason to use GPLFM over some of the popular

input estimation techniques [121–124] is that it adds stability to the inverse-estimation

procedure and thereby provides drift-free input and state estimates [125]. It is assumed

that the knowledge of the dynamic characterization of the carrier-vehicle is available in the

form of either a transfer function or a state-space model. Upon recovery of contact-point

responses, they can be used as outputs in bridge modal identification using any of the

methods presented in the Chapters 4 and 5.

This chapter is organized as follows. First, a mathematical model for the coupled dy-

namics of a sensor-instrumented vehicle crossing a bridge is presented. Next, a relationship

between the vehicle response and the contact-point response is derived where it is shown

that the contact-point response can be considered as a base-excited input to the vehicle

dynamical system. To recover the base-excited input (i.e., the contact-point response), a

GPLFM approach is proposed and the procedure to estimate the base-excited input is pre-

sented. Finally, the effectiveness of the proposed approach is assessed through a numerical

case study involving a sensor-instrumented-vehicle moving over a bridge.

6.1 Carrier-vehicle-bridge interaction model

In this study, the carrier-vehicle is modelled as a linear sprung mass damper with a single

DoF (SDoF) moving at speed v as shown in Figure 6.1 and the bridge deck is modelled

as a simply supported Euler-Bernoulli beam. Note that the carrier-vehicle could also be

modelled using multiple DoFs (such as a quarter car model).
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Figure 6.1: Vehicle-bridge interaction.

6.1.1 Vehicle equation of motion

The equation of motion for a linear SDoF carrier-vehicle moving on a smooth bridge deck

can be written as

mvd̈v(t) + cvḋv(t) + kvdv(t) = cvḋb(vt, t) + kvdb(vt, t) (6.1)

where mv, kv, cv are the mass, stiffness and damping of the vehicle respectively, dv(t) is

the vertical displacement of the vehicle, db(vt, t) is the vertical bridge displacement at the

spatial location x = vt at time t.

6.1.2 Bridge equation of motion

The governing equation for flexural vibrations of a bridge deck (modelled as Euler-Bernoulli

beam) under the influence of a moving vehicle can be written as

EI
∂4db(x, t)

∂x4
+ ρb

∂2db(x, t)

∂t2
+ µb

∂db(x, t)

∂t
= −f(t)δ(x− vt) (6.2)

where EI is the flexural rigidity of the bridge deck, ρb is the mass per unit length, µb is

the viscous damping parameter, f(t) is the interaction force between the force and vehicle

with f(t) = mvg + mvd̈v(t); g is the acceleration due to gravity and δ (·) is the Dirac’s

delta function.
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The displacement response of the bridge deck can be expressed using modal superposition

as

db(x, t) =
nm∑
r=1

φr(x)ηr(t) (6.3)

where nm is the number of participating modes. φr(x) =
√

2
ρbL

sin rπx
L

is the rth vibration

mode shape, ηr(t) is the rth modal response and L is the span of the bridge.

Substituting Eq.(6.3) in Eq.(6.2) and applying orthogonality conditions of vibration modes

yields

η̈r(t) + 2ζrωrη̇r(t) + ω2
rηr(t) = −f(t)φr(vt) (6.4)

where ωr and ζr are the rth modal frequency and damping ratios respectively given by

relations: ω2
r = EI

ρb

(
rπ
L

)4
and ζr = µb

2ρωr
.

The bridge deck is typically subjected to ambient excitations resulting from on-going

traffic, ground motion, wind excitation, etc. For simplicity, the ambient excitation is

considered through support excitations modelled as white noise time series applied at the

right and left bridge supports, denoted by d̈r(t) and d̈l(t), respectively. The equation

of motion for the ith vibration mode of the deck subject to moving vehicle and support

excitations can then be written as

η̈r(t) + 2ζrωrη̇r(t) + ω2
rηr(t) = −f(t)φr(vt)− Pr(t) (6.5)

where Pr(t) = d̈l(t)
∫ L

0
ρb
(
1− x

L

)
φr(x)dx+ d̈r(t)

∫ L
0
ρ x
L
φr(x)dx.

Combining Eqs.(6.1) and (6.5), the equation of motion of the combined vehicle-bridge

system is obtained in the matrix form as

Ma(t)d̈a(t) + Ca(t)ḋa(t) + Ka(t)da(t) = fa(t) (6.6)
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where

Ma(t) =


1 0 . . . 0 mvφ1(vt)

0 1 . . . 0 mvφ2(vt)
...

...
. . .

...

0 0 . . . 1 mvφn(vt)

0 0 . . . 0 mv



Ca(t) =


2ζ1ω1 0 . . . 0 0

0 2ζ2ω2 . . . 0 0
...

...
. . .

...

0 0 . . . 2ζnmωnm 0

−cvφ1(vt) −cvφ2(vt) . . . −cvφnm(vt) cv



Ka(t) =


ω2

1 0 . . . 0 0

0 ω2
2 . . . 0 0

...
...

. . .
...

0 0 . . . ω2
nm 0

−cvφ̇1(vt)− kvφ1(vt) −cvφ̇2(vt)− kvφ2(vt) . . . −cvφ̇nm(vt)− kvφnm(vt) kv



da(t) =


η1(t)

η2(t)
...

ηnm(t)

dv(t)

 fa(t) =


−φ1(vt)mvg − P1(t)

−φ2(vt)mvg − P2(t)
...

−φnm(vt)mvg − Pnm(t)

0

 .

Eq.(6.6) represents an linear ordinary differential equation with time-varying coefficient

matrices and can be solved using Newmark-Beta explicit method [126]. Upon solving

Eq.(6.6), one obtains the dynamic response of the moving vehicle, which in practice, would

represent the measured mobile sensor responses.
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6.2 Contact-point responses as base excitation to the

carrier-vehicle

The contact-point displacements, denoted by uc(t), are displacements of the vehicle at the

contact point of the vehicle with the bridge, and act as an estimator of the bridge responses

db(x, t) at x = vt. Therefore, replacing db(vt, t) with uc(t) in Eq.(6.1) and rewriting it in

relative coordinates dv,rel(t) = dv(t)− uc(t), one obtains

mvd̈v,rel(t) + cvḋv,rel(t) + kvdv,rel(t) = −mvüc(t) (6.7)

This form of Eq.(6.7) resembles the equation of motion of a SDoF dynamical system subject

to a base-excited input, which means that the contact-point acceleration üc(t) acts as a

base-excitation to the carrier-vehicle. Note that the carrier-vehicle typically records the

absolute vehicle acceleration response d̈v(t).

With known vehicle dynamics, Eq.(6.7) can be written in the state space form as

ẋv(t) = Avcxv(t) + Bvcüc(t) (6.8a)

yv(tk) = d̈v(tk) = Gvxv(tk) (6.8b)

where xv(t) represent the vehicle states and yv(tk) is the absolute acceleration response

measured by the sensor on the vehicle. The terms in Eq.(6.8) are given by

xv(t) =

[
dv,rel(t)

ḋv,rel(t)

]
, Avc =

[
0 1

− kv
mv
− cv
mv

]
, Bvc =

[
0

−1

]
, Gv =

[
− kv
mv
− cv
mv

]
(6.9)

It is noted that there is no direct feedthrough term in Eq.(6.8b) because the absolute

acceleration is measured (this term gets cancelled in the observation equation Eq.(6.8b)).

As well, the state space matrices Avc, Bvc and Gv are subject to similarity transformation

[127], that is, for a measured input-output pair there could possibly be infinite pairs of

Avc, Bvc and Gv satisfying Eq.(6.8), and hence the triplet {Avc,Bvc,Gv} in Eq.(6.9) is

just one possible pair.

Now, given noisy vehicle acceleration measurements yv(tk) and the state matrices Avc,

Bvc and Gv for the carrier-vehicle – identified apriori using some system identification
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technique – the goal is to infer the contact-point acceleration response üc(tk) at discrete

time points k = 1, . . . , N . To achieve this goal, a GPLFM with Kalman filter is adopted as

the GPLFM-based input estimation has desirable properties such as observability, stable

inversion and resistance to low-frequency drifts in input and state estimation [125].

6.3 The Gaussian process latent force approach

In this section1, a Gaussian process latent force approach is formulated to reconstruct the

contact-point accelerations from the vehicle acceleration measurements with the knowledge

of vehicle SSM. The Gaussian process latent force model (GPLFM) [125, 128, 129] acts

as a hybrid grey-box model that augments the mechanistic model representing a physical

system with data-driven non-parametric Gaussian processs (GPs); the GPs are used to

represent the inputs exciting the physical system.

6.3.1 Construction of GPLFM in state space

GPs [130] are a popular class of stochastic processes that provide a paradigm for specifying

probability distributions over functions, so each random draw from a GP is a function

from a functional family defined by a covariance function. In this study, the Matérn

family of covariance functions [131, 132] is chosen, and a GP with zero mean function

and a stationary covariance function with smoothness parameter 5/2 is used to model the

contact-point acceleration response. This is typically denoted as follows:

üc(t) ∼ GP
(
0, κ5/2(τ ;θcf )

)
(6.10)

where κ5/2(τ ;θcf ) represents a stationary Matérn covariance function governed by hyper-

parameters θcf = {ς, l}

κ5/2(τ) = ς2

(
1 +

√
5τ

l
+

5τ 2

3l2

)
exp

(
−
√

5τ

l

)
(6.11)

1The material presented in this section was developed in collaboration with Dr. Chakraborty. For

details, refer to the Statement of Contributions
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Here, ς2 and l are positive hyperparameters that denote signal variance and lengthscale

respectively. This class of covariance functions is convenient for modelling narrowband

process and is hence deemed suitable for this study. Several other forms of stationary

covariance functions also exists, the details of which can be found in [130].

Hartikainen and Särkkä [133] showed that it is possible to convert a stationary covari-

ance function into a LTI SSM following a spectral factorization. Following this, the Matérn

covariance function in Eq.(6.11) can be converted to a GP SSM which outputs the desired

üc(t):

ż(t) = Fcfz(t) + Lcfw(t),

üc(t) = Hcfz(t),
(6.12)

where z(t) represent the state vector of GP SSM and the parameter matrices are given as

Fcf =

 0 1 0

0 0 1

−a3 −3a2 −3a

 , Lcf =

0

0

1

 , Hcf =
[
1 0 0

]
(6.13)

In Eq.(6.12), w(t) represents a scalar zero-mean stationary Gaussian white noise process

with power spectral density σw = 400
√

5ς2/ (3l5) and a =
√

5/l.

The GP SSM (in Eq.(6.12)) can be combined with the system SSM (in Eq.(6.8)) to yield

an augmented SSM, which is referred to as the GPLFM[
ẋv(t)

ż(t)

]
=

[
Avc BvcHcf

0 Fcf

]
︸ ︷︷ ︸

Fac

[
xv(t)

z(t)

]
︸ ︷︷ ︸
xac (t)

+

[
0

Lcf

]
︸ ︷︷ ︸

Lac

w(t), (6.14a)

yv(tk) =
[
Gv 0

]
︸ ︷︷ ︸

Gac

[
xv(tk)

z(tk)

]
+ ṽk, (6.14b)

where ṽk represents measurement noise modelled as zero-mean Gaussian white noise with

variance R. In shorthand notation, the GPLFM in Eq.(6.14) can be represented as

ẋac(t) = Facx
a
c(t) +w(t)

yv(tk) = Gacx
a
c(tk) + ṽk.

(6.15)
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where w(t) = Lcfw(t). The state space formulation makes the GPLFM amenable for joint

estimation of latent states and inputs via Kalman filtering.

6.3.2 Joint posterior inference of latent states and inputs

To be able to employ Kalman filter, the continuous-time form of the GPLFM in Eq.(6.15)

is converted to discrete-time form:

xak+1 = Fadx
a
k +wk,

yv,k = Gadx
a
k + ṽk,

(6.16)

where yv,k = yv(tk) and the state matrices Fad = exp (Fac∆t) and Gad = Gac. Furthermore,

wk is a zero-mean Gaussian white noise vector representing the discrete-time form of w(t)

whose covariance is given by

Qd =

∫ ∆t

0

Ψa(∆t− τ) Lcf σw LT
cf Ψa(∆t− τ)Tdτ, (6.17)

where Ψa(τ) = exp (Facτ) is the matrix exponential of the state-transition matrix. The

integral in Eq.(6.17) is solved using matrix fraction decomposition (see [134, 135] for im-

plementation details).

Once the hyperparameters θcf are determined, the matrices Fad, Gad and Qd can be

determined. Thereafter, the posterior distribution of the vehicle states and the inputs can

be estimated with a classical Kalman filter.

6.3.3 Extraction of contact-point response

The input sequence {üc,k}1:N inferred from GPLFM-based Kalman filter correspond to

the contact-point acceleration. An even better estimate of the contact-point acceleration

can be obtained by using the estimated vehicle states, since the system states are often

estimated with better accuracy than the input. The procedure to obtain the contact-point

response from the estimated vehicle states is described as follows. First, the discrete-time

form of the transition equation of Eq.(6.8) is written as

xv,k+1 = Avdxv,k + Bvdüc,k (6.18)
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(6.19)

with the matrices Avd and Bvd defined as

Avd = exp (Avc∆t) Bvd = [Avd − I] A−1
vc Bvc.

Next, from the GPLFM inference, the time sequence of the estimated vehicle states

{x̂v}1:N+1 are obtained. Using Eq.(6.18), the contact-point responses {üc,k}1:N can be

derived by solving a linear over-determined set of equations as follows:

üc,k = B†vd (x̂v,k+1 −Avdx̂v,k) . (6.20)

The term B†vd =
(
BT
vdBvd

)−1
BT
vd represents the Moore-Penrose pseudo-inverse for inverting

non-square matrices.

6.3.4 Hyperparameter optimization for GP covariance function

The GPLFM needs the knowledge of the vehicle model parameter matrices and the co-

variance function hyperparameters. The knowledge of the vehicle state space matrices is

already assumed to be known a priori (either from FE model or from system identification),

and therefore the augmented state estimation results will depend only on the parameters

of the chosen covariance functions modelling the latent input. In general, the hyperpa-

rameters are optimized based on the measurement sensor data. Typical hyperparameters

include lengthscale and signal variance for a standard family of covariance functions. The

hyperparameters can be estimated in different ways, including maximization of marginal

likelihood [130], maximum a posteriori [136], and MCMC methods [137]. In this study,

the optimized hyperparameters are obtained by maximizing the likelihood function based

on the measurements. Maximum likelihood estimates of the hyperparameters (i.e. signal

variance and lengthscale) of the covariance function can be obtained by minimizing the

negative log-likelihood (or maximizing the log-likelihood) of the measurements as follows:

θ̂cf = arg min
θcf

[
N∑
k=1

(
log det Sk + eTkSkek

)]
(6.21)
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The expressions for ek and Sk are provided in Equations F.2a and F.2b respectively. The

minimization can be done using optimization tools such as MATLAB’s built-in functions

fminunc or fmincon. It is noteworthy to mention that maximum likelihood optimization

is susceptible to local minima; to avoid this one may need to start the optimization from

different initial points.

An algorithm depicting the steps involved in the proposed methodology is shown in

Algorithm 7.

Algorithm 7 Contact-point response reconstruction with GPLFM

Input: Avc, Bvc, Gv and vehicle acceleration time history
{
d̈v,k

}
1:N

1. Choose a Matérn covariance function with smoothness parameter 5
2

and initialize the

hyperparameters θcf (refer Eq.(6.11))

2. Convert the covariance function into equivalent continuous-time GP SSM and obtain

Fcf , Lcf , Hcf and σw (refer Eq.(6.12) and (6.13)).

3. Construct the continuous-time augmented SSM matrices Fac and Gac, as shown in

Eq.(6.14)

4. Select initial state and noise covariances for Kalman filter recursions

5. Compute optimum hyperparameter θ̂cf by maximum likelihood optimization (refer

Section 6.3.4)

6. Use θ̂cf to compute Fad, Gad, Qd as in Eq.(6.16) and Eq.(6.17)

7. Use Fad, Gad, Qd for jointly estimating the input and the vehicle states with Kalman

filter (see Appendix F)

8. Use Eq.(6.20) and the estimated vehicle states to estimate the contact-point responses.

Output: Time sequence of contact-point acceleration {üc,k}1:N

6.4 Numerical study

A numerical bridge example (used by Yang and Chen [42]) is adopted to evaluate the

performance of the proposed approach. Eq.(6.6) is used for forward simulation of the

vehicle and bridge contact-point responses with the following parameters:
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• Bridge properties: L = 30m, ρb = 10700kg/m, E = 29.43GPa, I = 0.494m4.

• The first four modal frequencies of the bridge are 2.03, 8.14, 18.31 and 32.55Hz,

respectively. Modal damping ratio is equal to 1% of the critical damping for the first

four bridge modes.

• The amplitude of bridge support excitation at both left and right supports is 0.02m/s2.

• The properties of the carrier-vehicle are chosen as mv = 100kg, kv = 150kN/m. The

modal frequency of the carrier-vehicle is 6.16Hz. Furthermore, a modal damping

ratio equal to 10% of its critical damping is assumed.

• The moving speed of the carrier-vehicle is v = 2m/s. Mobile sensor data is collected

at a sampling rate of 100Hz. The data is collected for the time duration in which the

carrier-vehicle crosses the entire bridge span once.

The (noise-free) dynamic response of the vehicle and the contact-point response of the

bridge is shown in Figure 6.2. From the power spectral density plot in Figure 6.3, it can

be seen that there is a noticeable presence of the vehicle dynamics; there is a significant

peak at the vehicle modal frequency of 6.16Hz and the energy in the third and fourth

modes of the bridge are suppressed to a considerable extent in the vehicle response. This

confirms that the presence of vehicle dynamics alters the vehicle response from the true

contact-point response which could prevent accurate identification of the (higher) modal

features.

The reason for suppression of the third and fourth bridge modes can be explained by

observing the dynamic amplification factor for the carrier-vehicle, illustrated in Figure 6.4.

The dynamic amplification factor provides an idea of how the vehicle dynamics modifies

the input. The shaded region in the plot encompasses the frequency spectrum where the

amplification factor is below 1 and approaches zero asymptotically. This implies that any

bridge mode lying in the shaded region would get suppressed significantly. Since the third

and fourth bridge modes lie in the shaded region their prominence is significantly reduced

in the measured vehicle response.
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Figure 6.2: Vehicle dynamic response (top) and the true contact-point response (bottom).
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Figure 6.3: PSDs of vehicle response and true contact-point response.
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Figure6.4:Plotofdynamicamplificationfactorofthecarrier-vehicle.

Figure6.5showsacomparisonofthetrueandreconstructedcontact-pointresponses;

thereconstructionisfacilitatedbytheuseofGPLFM–withaMat̀erncovariancefunction

asmentionedinSection6.3–onnoise-freevehicleresponses.Thereconstructedcontact-

pointresponsesareconsistentwiththetruecontact-pointtoanacceptabledegree. A

constantdelayintheorderof0.01sisnoticedinthereconstructedresponsescompared

tothetruevalues,howeverthedelaybeingconstantisunlikelytoposeanyproblemsin

output-onlymodalidentification.

Figure6.6plotsthePSDsofthetrueandreconstructedcontact-pointresponses.Itcan

beseenthatthereconstructedcontact-pointresponsehasnotonlysuppressedtheeffectof

vehiclemodalfrequenciesbutalsoenhancedtheprominenceofthethirdandfourthmodes

considerably.Thus,obtainingcontact-pointresponsesisdeemedusefulinimprovingthe

visibilityof(higher)modalfeaturesofthebridge.
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Figure 6.5: Comparison of true and reconstructed contact-point responses.
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Figure 6.6: PSDs of true and reconstructed contact-point responses.
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6.4.1 Effect of measurement noise

In practice, the measured responses will contain some level of sensor noise which will

distort the true sensor responses. Keeping all vehicle parameters unchanged, two sensor

noise scenarios of (i) 5% and (ii) 10% are considered. The noisy sensor signal is numerically

calculated as

ynoisyv = ytruev +
noise%

100
× RMS

(
ytruev

)
× WGN (6.22)

where, ytruev is the true calculated vehicle acceleration, noise% is the noise percentage,

RMS(ytruev ) is the RMS of ytruev and WGN is a vector of standard Gaussian white noise. For

the two noise scenarios, comparisons of the time-series and the PSDs of the true and

reconstruction contact-point responses are shown in Figure 6.7. As expected, higher noise

leads to poorer reconstruction of contact-point responses. In particular, it is noticed that

the fourth mode (which is farthest from the vehicle modal frequency) undergoes some

distortion due to sensor noise which indicates that identification of higher modes may be

difficult under high sensor noise.

6.4.2 Effect of vehicle damping

Assuming noise-free sensor measurements and holding all other vehicular parameters con-

stant, the effect of vehicle damping on the reconstructed contact-point response is inves-

tigated using two different cases of vehicle modal damping ratios of (i) 5% and (ii) 20%,

illustrated in Figure 6.8. The two cases correspond to a low (5%) and a high (20%) modal

damping for the sensor-instrumented vehicle. Observing the PSD in Figure 6.8a, it is seen

that the energies in the third and the fourth modes improve with more damping. Further,

inspecting Figure 6.8b it is found that lower vehicle damping introduces more delay in the

reconstructed contact-point responses compared to higher vehicle damping.

6.4.3 Effect of vehicle speed

Assuming a smooth bridge deck, the effect of vehicle speed on the vehicle response is

considered; all other vehicle parameters are held constant. Vehicle responses are simulated
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Figure 6.7: Effect of sensor noise with noise percentages 5% and 10%.
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Figure 6.8: Effect of vehicle damping with vehicle damping ratios of 5% and 20%.
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Figure 6.9: Effect of vehicle speed on the PSD of reconstructed contact-point responses.

using two cases of vehicle speeds (i) 0.5m/s and (ii) 1m/s. Note the corresponding time

duration of simulation for crossing the bridge span once for the two cases are 60s and 30s,

respectively. The PSDs of the reconstructed contact-point responses for the two cases are

shown in Figure 6.9. The speed of the vehicle is found to have not much effect on the

vehicle response and the reconstructed contact-point response, although, in cases where

the bridge deck is rough lower vehicle speeds are reported to be more effective for extracting

modal features [38].

6.4.4 Effect of vehicle mass

For this, two cases of vehicle mass are considered: (i) 50kg and (ii) 150kg. The vehicle

modal frequencies corresponding to the two cases are 8.72Hz and 5.03Hz respectively. The

PSDs of the reconstructed contact-point responses for the two cases are shown in Figure

6.10. For the first case – with vehicle mass equal to 50kg – the vehicle modal frequency

overlaps closely with the second bridge modal frequency, and hence the second bridge

frequency gets amplified. This causes a slight change in the shape of the PSD at the second

modal peak, which may lead to errors in identification of second modal bridge damping

from vehicle response. It is noticed, however, that the GPLFM recovered contact-point
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Figure 6.10: Effect of vehicle mass on the PSD of reconstructed contact-point responses.

response produces a good match with the true PSD at the second bridge mode. For a

higher mass of 150 kg, the vehicle modal frequency becomes even smaller furthering the

suppression of third and fourth modes, nevertheless, the recovered contact-point response

is still able to enhance the suppressed modes to a considerable extent.

6.5 Summary

In this chapter, the idea of recovering contact-point response from the carrier-vehicle re-

sponse is proposed using an input reconstruction technique. The contact-point response is

shown to act as an base-excited input to the moving carrier-vehicle, and is estimated us-

ing a GPLFM-based Kalman filtering approach, given the knowledge of vehicle dynamical

characteristics. The estimated contact-point responses can be used for modal identification

using the techniques presented in the previous chapters.

The GPLFM-based Kalman filtering methodology presented is suitable for any bridge-

vehicle interaction problem that includes the effect of damping of the bridge and the vehicle,

and is also generalizable to multi-DoF models of carrier-vehicles. Using several numerical

case studies, it is shown that the recovered contact-point responses can serve to not only

204



cancel out the effect of vehicle modal frequency but also enhance the suppressed higher

bridge modes.
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Chapter 7

Concluding Remarks

7.1 Summary of contributions

In this thesis, several theoretical and algorithmic challenges associated with modal pa-

rameter identification using mobile sensors are addressed. Two broad strategies of mo-

bile sensing, re-configurable mobile sensing and in-motion mobile sensing, are considered.

Specific challenges faced with processing data from the two mobile sensing strategies are

discussed, and numerical algorithms facilitating modal parameter identification (and un-

certainty quantification) with the mobile sensor data are developed. The following are the

main contributions of this thesis:

1. The feasibility of identifying high resolution mass-normalized mode shapes using a

single re-configurable mobile actuator-sensor pair is investigated. The single mobile

actuator-and-sensor corresponds to a case of minimal instrumentation required for

modal identification. A high resolution mode shape identification methodology, based

on pseudo-modal responses, has been proposed using two different schemes of re-

configurable mobile actuation-sensing (i.e., collocated and non-collocated actuation-

sensing). The performance of the proposed approach has been studied using numeri-

cal simulations as well as laboratory scale experiments. The major findings from this

study are as follows:
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(a) When the mobile actuator and mobile sensor form two separate units and are

not always collocated, the mode shape components can be identified uniquely.

(b) When the mobile actuator and sensor are collocated (i.e, when they act as a

single unit), only mode shapes squares can be extracted and signs of mode

shapes are needed to be assigned using some prior knowledge (e.g. from an

approximate FE model).

(c) In practice, due to presence of noise, some component(s) of the mode shape

squares near the nodes of mode shapes may turn out to be negative; in such

cases additional tests with different points of collocation may be required.

(d) Based on the numerical and experimental results, it is found that the proposed

methodology may be considered as a feasible alternative to traditional schemes

employing many static sensors for identifying the high resolution mode shapes

of a structure.

2. A Bayesian posterior inference framework is established for output-only modal anal-

ysis using in-motion mobile sensors, following a time-domain state space modelling

approach. Two perspectives of processing in-motion mobile sensor data has been

considered: missing (incomplete) data and stacked (complete) data. Three compu-

tational algorithms, Expectation Maximization (EM), Variational Bayes (VB) and

Gibbs Sampler (GS), are derived estimate modal parameters from mobile sensor

data. Numerical and bench-scale experimental studies have been used to validate

the respective approaches.

For identification with the missing data approach, the mobile sensor data is treated as

equivalent static sensor data with missing entries – at locations which do not coincide

with the mobile sensor paths. The findings from the modal parameter estimation

using the missing data approach are as follows:

(a) The GS-based multiple imputation procedure for parameter estimation provides

reliable posterior distributions of modal parameters but suffer from heavy com-

putational burden.
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(b) Both EM and VB are computationally very efficient compared to GS; EM pro-

vides point estimates only whereas VB provides posterior distributions of modal

parameters.

(c) The point estimates of modal parameters from EM are similar to the corre-

sponding mean estimates from VB.

(d) The VB and GS mean estimates of modal parameters are quite consistent but

VB underestimates the uncertainty in the estimated modal parameters as com-

pared to that from GS. In presence of large proportions of missing data (> 50%),

the underestimation in uncertainty for modal frequencies and damping ratios

is found to be in range of 5-25% while that for mode shapes can be between

40-60%.

(e) The proportion of missing entries is a function of number of sensing nodes and

the number of employed mobile sensors; it increases with the number of sensing

nodes and decreases with the number of mobile sensors. The GS algorithm is

found superior to VB in capturing the uncertainty of the modal parameters as

a function of missing data.

For identification with the stacked data approach, a time-varying Modal State Model

(MSM) is derived. The MSM embeds a sinc function-based deterministic interpolator

that converts mobile sensor data collected at different locations of a structure to

equivalent static sensor data at some user-chosen virtual static locations (VSLs); the

mode shape ordinates are estimated only at these VSLs. The findings from the modal

parameter estimation using the stacked data approach are as follows:

(a) The posterior means of modal parameters are found to be more accurate for EM

and VB compared to GS. However, the uncertainties in the modal parameters

are underestimated by VB compared to GS. In particular for mode shapes, the

uncertainty in scenarios with large number of VSLs and a few mobile sensors

can be severely underestimated (by around 40-70%).

(b) The number of VSLs governs the size of the MSM and the resolution of estimates

mode shapes. More VSLs imply larger size of the MSM and higher resolution

of the estimated mode shapes.
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(c) The computational time required for posterior inference depends on the size of

MSM through the number of the VSLs. As the number of VSLs grows, the

inference procedure takes longer time.

(d) The computational time required by GS is quite large compared to that of VB

and EM i.e., the GS takes on an average eight times longer than EM or VB. For

cases with large number of VSLs, the GS could take very long time and may be

impractical to use.

(e) For a given dataset, increasing the number of VSLs increases the resolution

of the estimated mode shapes, however also increases the uncertainty in the

estimated mode shape ordinates.

3. An input identification framework is established to recover contact-point responses

from responses captured by sensors on top of a carrier-vehicle, given the knowledge

of dynamic characteristics of the carrier-vehicle. The recovery of the contact-point

responses is facilitated by employing a Gaussian process latent force model (GPLFM)

with Kalman filter. The main findings of this study are as follows:

(a) The contact-point responses act as base-excited ground input to the moving

vehicle(s).

(b) The carrier-vehicle responses gets altered from the true contact-point responses

due to vehicle dynamics – the higher modes of the bridge gets suppressed and the

fundamental vehicle modal frequency gets introduced in the vehicle responses.

(c) The GPLFM with Kalman filtering provides a generalizable framework for re-

covering the contact-point responses.

(d) Based on a series of numerical simulations of a linear single DoF vehicle moving

over a Euler-Bernoulli beam, it is found that the contact-point responses are

more effective for modal parameter identification than vehicle responses as they

cancel out the vehicle frequency and enhance the presence of higher bridge

modes.
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7.2 Directions for future study

Based on the research work proposed in this thesis, a couple of research directions can be

pursued for extending the framework:

1. Improvement of VB covariance underestimation: Although VB provides a

fast approach to posterior inference, the posterior covariances tends to be underesti-

mated in comparison to GS, sometimes drastically. Recent research on using full-rank

approach [138] and linear response technique [139] with VB address this issue and

provide a correction to the covariance underestimation. Incorporation of these cor-

rections into the current framework may improve the covariance estimation from VB

while still preserving its computational efficiency.

2. Extension to direct structural parameter estimation: The paradigm for modal

parameter estimation using in-motion mobile sensors can be extended to direct esti-

mation of a structural FE model parameters such as elemental stiffnesses or masses

from in-motion mobile sensor data. However, the convenience of closed-form up-

date expressions may be unlikely in such cases; the GS will have to replaced by MH

sampler and the updating step of VB will involve numerical optimization.

3. Separation of road roughness for contact-point response estimation: The

road roughness profile of a pavement can present difficulties in accurate identification

of contact-point responses, particularly when the speed of the mobile sensors is high.

Extension of the GPLFM framework to account for road roughness has not been

considered in the thesis and can be taken up as a future work.
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StructuralControlandHealthMonitoring,25(3):e2113,32018.

[99]G.KerschenandJ.C.Golinval.Experimentalmodalanalysis,2014.URLhttp://

www.ltas-vis.ulg.ac.be/cmsms/uploads/File/Mvibr_notes.pdf.Lastaccessed:

2017-09-14.

[100]F.Vicario,M.Q.Phan,R.Betti,andR.W.Longman.Outputonlyobserver/Kalman

filteridentification(O3KID).StructuralControlandHealthMonitoring,22(5):847–

872,2015.

[101]P.Andersen.IdentificationofCivilEngineeringStructuresusingVectorARMAMod-

els.PhDthesis,AalborgUniversity,Denmark,1997.

[102]P.VanOverscheeandB.DeMoor.N4SID:Subspacealgorithmsfortheidentification

ofcombineddeterministic-stochasticsystems.Automatica,30(1):75–93,11994.

[103]R.H.ShumwayandD.S.Stoffer.Anapproachtotimeseriessmoothingandfore-

castingusingtheEMalgorithm.JournalofTimeSeriesAnalysis,3(4):253–264,7

1982.

[104]S.GibsonandB.Ninness.Robustmaximum-likelihoodestimationofmultivariable

dynamicsystems.Automatica,41(10):1667–1682,102005.

[105]K.P.Murphy.ConjugateBayesiananalysisoftheGaussiandistribution.Technical

report,2007.

[106]C.MBishop.Patternrecognitionandmachinelearning.Springer,2006.

221

http://www.ltas-vis.ulg.ac.be/cmsms/uploads/File/Mvibr_notes.pdf
http://www.ltas-vis.ulg.ac.be/cmsms/uploads/File/Mvibr_notes.pdf


[107] D. Ostwald, E. Kirilina, L. Starke, and F. Blankenburg. A tutorial on variational

Bayes for latent linear stochastic time-series models. Journal of Mathematical Psy-

chology, 60:1–19, 6 2014.

[108] D. Barber and S. Chiappa. Unified inference for variational Bayesian linear Gaussian

state-space models. In Advances in Neural Information Processing Systems, pages

81–88, 2007.

[109] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions: with formu-

las, graphs, and mathematical tables, volume 55. Courier Corporation, 1965.

[110] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience,

2006.

[111] K. Fujimoto, A. Satoh, and S. Fukunaga. System identification based on variational

Bayes method and the invariance under coordinate transformations. In IEEE Con-

ference on Decision and Control and European Control Conference, pages 3882–3888.

IEEE, 12 2011.

[112] J. Schafer. Analysis of incomplete multivariate data, volume 72 of CRC Monographs

on Statistics and Applied Probability. Chapman and Hall, 8 1997.

[113] S. Van Buuren. Flexible imputation of missing data. Chapman and Hall/CRC, 2018.

[114] B. Li. Uncertainty quantification in vibration-based structural health monitoring using

Bayesian statistics. PhD thesis, UC Berkeley, 2016.

[115] M. West and J. Harrison. Bayesian forecasting and dynamic models. Springer-Verlag,

1997.

[116] A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple

sequences. Statistical Science, 7(4):457–472, 11 1992.

[117] S. P. Brooks and A. Gelman. General methods for monitoring convergence of iterative

simulations. Journal of Computational and Graphical Statistics, 7(4):434–455, 12

1998.

222



[118]SharedHierarchicalAcademicResearchComputingNetwork(SHARCNET)and

Compute/CalculCanada.http://www.sharcnet.ca,2019.

[119]S.O.R.Moheimani,D.Halim,andA.J.Fleming.Spatialcontrolofvibration:theory

andexperiments,volume10. Worldscientific,2003.

[120]L.Ljung.Systemidentification:Theoryfortheuser.PearsonEducation,1999.

[121]S.GillijnsandB.DeMoor.Unbiasedminimum-varianceinputandstateestimation

forlineardiscrete-timesystemswithdirectfeedthrough.Automatica,43(5):934–937,

2007.

[122]E.Lourens,E.Reynders,G.DeRoeck,G.Degrande,andG.Lombaert. Anaug-

mentedKalmanfilterforforceidentificationinstructuraldynamics. Mechanical

SystemsandSignalProcessing,27:446–460,2012.

[123]F.Naets,J.Cuadrado,and W.Desmet. Stableforceidentificationinstructural

dynamicsusingKalmanfilteringanddummy-measurements. MechanicalSystems

andSignalProcessing,50:235–248,2015.

[124]S.E.Azam,E.Chatzi,andC.Papadimitriou. AdualKalmanfilterapproachfor

stateestimationviaoutput-onlyaccelerationmeasurements.MechanicalSystems

andSignalProcessing,60:866–886,2015.

[125]R.Nayek,S.Chakraborty,andS.Narasimhan.AGaussianprocesslatentforcemodel

forjointinput-stateestimationinlinearstructuralsystems.MechanicalSystemsand

SignalProcessing,128:497–530,2019.

[126]H.P.Gavin.Lecturenotesonnumericalintegrationforstructuraldynamics,2018.

[127]F.M.CallierandC.A.Desoer.Linearsystemtheory.SpringerScienceandBusiness

Media,2012.

[128]S.S̈arkk̈a,M.A.́Alvarez,andN.D.Lawrence.Gaussianprocesslatentforcemod-

elsforlearningandstochasticcontrolofphysicalsystems.IEEETransactionson

AutomaticControl,2018.

223

http://www.sharcnet.ca


[129] M. A. Alvarez, D. Luengo, and N. D. Lawrence. Linear latent force models using

Gaussian processes. IEEE Transactions on Pattern analysis and Machine intelli-

gence, 35(11):2693–2705, 2013.

[130] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, USA,

2006.

[131] B. Matérn. Spatial variation: Stochastic models and their applications to some

problems in forest surveys and other sampling investigations. Meddelanden fr̊an

Statens Skogsforskningsinstitut, 49:1–144, 1960.

[132] P. Whittle. On stationary processes in the plane. Biometrika, pages 434–449, 1954.
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[135] Simo Särkkä and Arno Solin. Applied stochastic differential equations, volume 10.

Cambridge University Press, 2019.

[136] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[137] M. Filippone, M. Zhong, and M. Girolami. A comparative evaluation of stochastic-

based inference methods for gaussian process models. Machine Learning, 93(1):

93–114, 2013.

[138] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for

statisticians. Journal of the American Statistical Association, 112(518):859–877, 4

2017.

[139] R. J. Giordano, T. Broderick, and M. I. Jordan. Linear response methods for accu-

rate covariance estimates from mean field variational Bayes. In Advances in Neural

Information Processing Systems, pages 1441–1449, 2015.

224
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Appendix B

Calculation of modal parameter and

their derivatives

B.1 Modal parameter extraction from discrete-time

SSM matrices

The modal parameters of a SSM are invariant under a similarity transformation and can

be uniquely determined from the measured data. The modal parameters can be extracted

by applying the following steps [57]:

1. Apply eigenvalue decomposition on A → A = ΨΛΨ−1;

2. Select the complex pairs of modes, and partition the corresponding eigenvalues and

the eigenvector matrices

Λ =

[
λ 0

0 λ

]
,Ψ =

[
Ψ Ψ

]
(B.1)

3. For each λi,ψi, extract the ith modal frequency and modal damping ratio

λci = lnλi/∆t, fi = abs (λci) /2π, ξi = −Re(λci)/ abs (λci) (B.2)
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where ∆t is the sampling time period, λi is the ith diagonal element of λ and ψi is

the ith column vector of Ψ

4. Define a matrix

ϕi =
[
Re(ψi) Im(ψi)

]
(B.3)

5. Take the generalized eigenvalue decomposition:

P1ϕ
T
i GTGϕiP1ẑ = λminP2ϕ

T
i GTGϕiP2ẑ (B.4)

where P1 =

[
0 1

1 0

]
and P2 =

[
1 0

0 −1

]
, λmin is the smallest eigenvalue and ẑ is the

corresponding eigenvector

6. The ith un-normalized real-valued mode shape is

φuni = GϕiP2ẑ (B.5)

B.2 Calculation of Jacobian matrices

The entries of the Jacobian matrices in Eq.(4.51) are calculated by differentiating the modal

parameters with respect to each element amn (of A) and gmn (of G) using chain rule:

∂ ln fi(A)

∂amn
=
∂ ln fi(A)

∂fi(A)
× ∂fi(λci)

∂λci
× ∂λci
∂λi
× ∂λi
∂amn

=
1

fi

[
Re(λci)

2π abs(λci)
Im(λci)

2π abs(λci)

] [ Re(λci)

∆t abs(λi)
2

Im(λi)

∆t abs(λci)
2

− Im(λi)

∆t abs(λi)
2

Re(λi)

∆t abs(λi)
2

][
Re(λi)
∂amn
Im(λi)
∂amn

]
(B.6a)

∂ ln ξi(A)

∂amn
=
∂ ln ξi(A)

∂ξi(A)
× ∂ξi(λci)

∂λci
× ∂λci
∂λi
× ∂λi
∂amn

=
1

fi

[
− Im(λci)

abs(λci)
3

Re(λci)Im(λci)

abs(λci)
3

] [ Re(λci)

∆t abs(λi)
2

Im(λi)

∆t abs(λci)
2

− Im(λi)

∆t abs(λi)
2

Re(λi)

∆t abs(λi)
2

][
Re(λi)
∂amn
Im(λi)
∂amn

]
(B.6b)

∂φuni (A,G)

∂amn
= G

[
∂Re(ψi)
∂amn

∂Im(ψi)
∂amn

]
P2ẑ + GψiP2

∂ẑ

∂amn
(B.6c)
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∂φuni (A,G)

∂gmn
= eme

T
nψiP2ẑ + GψiP2

∂ẑ

∂gmn
(B.6d)

Computation of the partial derivatives of eigenvalues and eigenvectors is described next.

B.3 Partial derivatives of eigenvalue and eigenvector

This material in this section mostly follows from [57] and [140]. Consider the generalized

eigenvalue problem

A (ν)φ = λB (ν)φ (B.7)

where A(ν),B(ν) ∈ Rn×n. The matrix H = A (ν) − λB (ν) is singular (i.e. |H| = 0).

Consider the LU decomposition of H,

PH = LU (B.8)

where P is a permutation matrix, L is a lower triangular matrix with unit entries along

the diagonal and u is an upper triangular matrix. Using the property of determinant, one

can write

|H| = |L| |U| = |U| (B.9)

where the fact |L| = 1 is used. Since |H| = 0, it means |U| = 0, implying the presence

of a zero element in the diagonal of U. Assuming that this zero element resides in the

last column, i.e. unn = 0, one can obtain the derivative of unn(ν, λ(ν)) with respect to the

parameter ν as

∂unn
∂λ

dλ

dν
+
∂unn
∂ν

= 0

=⇒ dλ

dν
= −

∂unn
∂ν
∂unn
∂λ

(B.10)

To find the terms ∂unn
∂λ

and ∂unn
∂ν

, differentiate Eq. (B.8) with respect to an arbitrary pa-

rameter h

P
∂H

∂h
=
∂L

∂h
U + L

∂U

∂h
(B.11)
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Define two vectors u and z as follows:

u ∈ Cn, s.t. LHu = en (B.12a)

z ∈ Cn, s.t. Uz = 0 and zn = 1 (B.12b)

where en is the nth column of an n × n identity matrix and H represents conjugate

transpose. Pre- and post-multiplying Eq. (B.11) by uH and z yields

uHP
∂H

∂h
z = uH

∂L

∂h
Uz + uHL

∂U

∂h
z =

∂unn
∂h

(B.13)

By setting h equal to λ and ν, one can obtain ∂unn
∂λ

and ∂unn
∂ν

, and then dλ
dν

is obtained from

Eq. (B.10).

For the partial derivative of eigenvectors, one starts by taking derivative of H(ν, λ(ν))φ(ν)(
∂H

∂ν
+
∂H

∂λ

∂λ

∂ν

)
φ+ H

∂φ

∂ν
= 0 (B.14)

Inserting Eq. (B.8) for H and rearranging the above equation leads to the following linear

equation

U
∂φ

∂ν
= −L−1P

(
∂H

∂ν
+
∂H

∂λ

∂λ

∂ν

)
φ (B.15)

where U and the terms on the right hand side are all known from previous steps. However,

U is rank-deficient, and hence not readily invertible. To allow for solution of Eq. (B.15),

a constraint on the normalization of eigenvectors are used i.e.

φHφ = constant (B.16)

Differentiating this constraint with respect to ν

φH
∂φ

∂ν
= 0 (B.17)

Combining Eqs. (B.17) and (B.15) yields[
U(1:n−1,:)

φH

]
∂φ

∂ν
= −L−1P

(
∂H

∂ν
+
∂H

∂λ

∂λ

∂ν

)
φ (B.18)
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where U(1:n−1,:) denotes the first n− 1 rows of matrix U. Now the matrix on the left hand

side becomes square and full-rank; hence ∂φ/∂ν can be uniquely determined.

• Calculation of ∂λ/∂aij

Define H1 = A− λI, and one can write ∂H1

∂λ
= −I and ∂H1

∂aij
= eie

T
j . Using H1 in place of

H gives

∂unn
∂λ

= −uHPz,
∂unn
∂aij

= uHPeie
T
j z = (uHP)izj (B.19)

Using Eq. (B.10),the following is obtained

∂λ

∂aij
=

(uHP)izj
uHPz

(B.20)

which can be written in a compact matrix form as

∂λ

∂vec (A)
=
zT ⊗ (uHP)

uHPz
(B.21)

• Calculation of ∂φ/∂aij[
U(1:n−1,:)

φH

]
∂φ

∂aij
= −L−1P

(
∂H1

∂aij
+
∂H1

∂λ

∂λ

∂aij

)
φ (B.22)

Inserting the known terms from Eqs. (B.19) and (B.20) in the above equation gives[
U(1:n−1,:)

φH

]
∂φ

∂aij
= L−1P

(
∂λ

∂aij
I− eieTj

)
φ (B.23)

which can be written into a compact matrix form as[
U(1:n−1,:)

φH

]
∂φ

∂vec (A)
= L−1P

(
∂λ

∂vec (A)
⊗ φ− φT ⊗ I

)
(B.24)

Solving Eq. (B.23) yields ∂φ/∂aij.
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• Calculation of ∂λmin/∂amn

Define H2 = P1ϕ
T
i GTGϕiP1 − λminP2ϕ

T
i GTGϕiP2, then using H2 in place of H in Eq.

(B.8)

∂H2

∂λmin

= −P2ϕ
T
i GTGϕiP2 (B.25)

and

∂H2

∂amn
=P1

∂ϕi
∂amn

T

GTGϕiP1 + P1ϕ
T
i GTG

∂ϕi
∂amn

P1

− λmin

(
P2

∂ϕi
∂amn

T

GTGϕiP2 + P2ϕ
T
i GTG

∂ϕi
∂amn

P2

) (B.26)

With that, one can write using Eq. (B.13)

∂u22

∂λmin

= −uHPP2ϕ
T
i GTGϕiP2z (B.27a)

∂u22

∂amn
= uHP

∂H2

∂amn
z (B.27b)

and thus one obtains using Eq. (B.27) and Eq. (B.10)

∂λmin

∂amn
= −

∂u22
∂amn
∂u22
∂λmin

=
uHP ∂H2

∂amn
z

uHPP2ϕTi GTGϕiP2z
(B.28)

• Calculation of ∂ẑ/∂amn

For the sensitivity of eigenvector ẑ, one can write using Eq. (B.18)[
U(1,:)

ẑH

]
∂ẑ

∂amn
= −L−1P

(
∂H2

∂amn
+

∂H2

∂λmin

∂λmin

∂amn

)
ẑ

=⇒

[
U(1,:)

ẑH

]
∂ẑ

∂amn
= −L−1P

(
∂H2

∂amn
−P2ϕ

T
i GTGϕiP2

∂λmin

∂amn

)
ẑ (B.29)

Solving Eq. (B.29) yields ∂ẑ/∂amn.
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• Calculation of ∂λmin/∂gmn and ∂ẑ/∂gmn

Taking partial derivative of H2 with respect to gmn, one gets

∂H2

∂gmn
=P1ϕ

T
i ene

T
mGϕiP1 + P1ϕ

T
i GTeme

T
nϕiP1

− λmin

(
P2ϕ

T
i ene

T
mGϕiP2 + P2ϕ

T
i GTeme

T
nϕiP2

) (B.30)

Therefore, with ∂u22
∂gmn

= uHP ∂H2

∂gmn
z

∂λmin

∂gmn
= −

∂u22
∂gmn
∂u22
∂λmin

=
uHP ∂H2

∂gmn
z

uHPP2ϕTi GTGϕiP2z
(B.31)

and the sensitivity of the eigenvector with respect to gmn is given by[
U(1,:)

ẑH

]
∂ẑ

∂gmn
= −L−1P

(
∂H2

∂gmn
−P2ϕ

T
i GTGϕiP2

∂λmin

∂gmn

)
ẑ (B.32)

Solving Eq. (B.32) yields ∂ẑ/∂gmn.
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Appendix C

Calculation of expectations over

missing observations

1. Derivation of 〈yk〉

The distribution of yk conditioned on xk can be written[
yobsk | xk
ymissk | xk

]
= N

([
fff(1)
k Gxk

fff(2)
k Gxk

]
,

[
R11 RT

21

R21 R22

])

Using the property of conditional distributions for multivariate normal distribution,

one can obtain (
yobsk | yobsk ,xk

)
= fff(1)

k yk,(
ymissk | yobsk ,xk

)
∼ N

(
µ̈, Σ̈

)
, where

µ̈ = fff(2)
k Gxk + R21R

−1
11 fff

(1)
k (yk −Gxk)

Σ̈ = R22 −R21R
−1
11 RT

21

(C.1)
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From this, the expected value of yk given yobsk and 〈xk〉 = x̂k|N can be written as

ỹk =
〈
yk | yobsk ,xk

〉
=
〈〈
yk | yobsk ,xk

〉
y|x

〉
x

= 〈yk − Zk (yk −Gxk)〉x
= yk − Zk

(
yk −Gx̂k|N

)
where Zk = I−Rfff(1)

k

T
R−1

11 fff
(1)
k

(C.2)

2. Derivation of
〈
yky

T
k

〉
Denoting ‘COV’ as the covariance of a random variable, one

can write

COVy|x
[
yk | yobsk ,xk

]
= fff(2)

k

T (
R22 −R21R

−1
11 RT

21

)
fff(2)
k

= fff(2)
k

T
(
fff(2)
k Rfff(2)

k

T
− fff(2)

k Rfff(1)
k

T
R−1

11 fff
(1)
k RTfff(2)

k

T
)
fff(2)
k

= I
(2)
k

(
R−Rfff(1)

k

T
R−1

11 fff
(1)
k R

)
I

(2)
k

= I
(2)
k ZkRI

(2)
k

(C.3)

〈
yky

T
k | yobsk ,xk

〉
=
〈〈
yky

T
k | yobsk ,xk

〉
y|x

〉
x

=
〈

COVy|x
[
yk | yobsk ,xk

]
+
〈
yk | yobsk ,xk

〉
y|x

〈
yTk | yobsk ,xk

〉
y|x

〉
x

=
〈
I

(2)
k ZkRI

(2)
k + (yk − Zk (yk −Gxk)) (yk − Zk (yk −Gxk))

T
〉
x

= I
(2)
k ZkRI

(2)
k + COVx [yk − Zk (yk −Gxk)] +

〈yk − Zk (yk −Gxk)〉x 〈yk − Zk (yk −Gxk)〉Tx
= I

(2)
k ZkRI

(2)
k + I

(2)
k ZkGV̂k|NGTZT

k I
(2)
k + ỹkỹ

T
k

= I
(2)
k Zk

(
R + GV̂k|NGTZT

k

)
I

(2)
k + ỹkỹ

T
k

where ỹk = yk − Zk

(
yk −Gx̂k|N

)
(C.4)

3. Derivation of
〈
ykx

T
k

〉
Note that the observation equation (??) relates yk to xk as

yk = Gxk + vk. Now vk is independent of xk and has the property that 〈vk〉 = 0.
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Thus, COV (vk,xk) = 0. This result will be used in the following derivation.〈
ykx

T
k | yobsk

〉
= COVx

[
yk,xk | yobsk

]
+
〈
yk | yobsk

〉
x

〈
xk | yobsk

〉T
x

= COVx

[
yk − Zk (yk −Gxk) + v∗k,xk | yobsk

]
+ ỹkx̂

T
k|N

= COVx [yk,xk]− COVx [Zkyk,xk] + COVx [ZkGxk,xk] +

COVx [v∗k,xk] + ỹkx̂
T
k|N

= 0− 0 + ZkGV̂x|N + 0 + ỹkx̂
T
k|N

= ZkGV̂x|N + ỹkx̂
T
k|N

(C.5)

where v∗k is a random variable with mean 0 and covariance Σ̈ = R22 −R21R
−1
11 RT

21

from Equation (??). v∗k and xk are independent of each other and thus COV [v∗k,xk] =

0.
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Appendix D

Derivation of VBM updates and

evaluation of variational free energy

for missing data approach

D.1 Derivation of update rules for VBM step

The principle for deriving the update rules of parameters A, G, Q and R follows the

maximization expressions given by Eq.(4.27). For a parameter set under consideration,

the expectation under its own variational distribution is ignored and the expectations with

respect to variational distributions of other parameters are evaluated. Additionally, all

terms independent of the parameter under consideration are subsumed in a proportionality

constant.

(a) Update for q(j+1) (A,Q)

Using the log joint likelihood in Eq.(4.30) and ignoring the expectation w.r.t. q(j) (A,Q),

one obtains the following expression as a function of A and Q
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ln q(j+1) (A,Q) ∝− 1

2
tr
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T
− S

(j)
fxA
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)}
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(
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2
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}
∝− ns

2
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{(
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(
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)
AT −A

(
S

(j)
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)T)
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}
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tr
{(
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(
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(j)
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(j)
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}
(D.1)

Adding and subtracting
(
S

(j)
fx + µAΠ−1

)(
S

(j)
xx + Π−1

)(
S

(j)
fx + µAΠ−1

)T
inside the trace

helps in achieving ‘completion-of-squares’ and one obtains the following

ln q(j+1) (A,Q) ∝− ns
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ln |Q| − dQ +N + ns + 1

2
ln |Q|
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(
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A

)T)
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}
(D.2)

where the expressions in the last line are given as

Π(j+1) =
(
S(j)
xx + Π−1

)−1
(D.3a)

µ
(j+1)
A =

(
S

(j)
fx + µAΠ−1

)
Π(j+1) (D.3b)

d
(j+1)
Q = dQ +N (D.3c)

D
(j+1)
Q = DQ + S

(j)
ff + µAΠ−1µTA − µ

(j+1)
A Π(j+1)−1

µ
(j+1)
A

T
(D.3d)
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(b) Update for q(j+1) (G,R)

The update rule for q(j+1) (G,R) follows similarly as that for q(j+1) (A,Q) and one can

derive the following:

ln q(j+1) (G,R) ∝− no
2

ln |R| − dR +N + no + 1

2
ln |R|

− 1

2
tr

{(
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(
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) (
S(j)
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) (
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yx + µGΠ−1

) (
S(j)
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2
tr

{((
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G

)
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G

)T)
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}
(D.4)

where the expressions in the last line are given as

µ
(j+1)
G =

(
S(j)
yx + µGΠ−1

)
Π(j+1) (D.5a)

d
(j+1)
R = dR +N (D.5b)

D
(j+1)
R = DR + S(j)

yy + µAΠ−1µTA − µ
(j+1)
A Π(j+1)−1

µ
(j+1)
A

T
(D.5c)

D.2 Evaluation of variational free energy

The derivation of the variational free energy mostly follows from [107]. The variational

free energy is expressed as the sum of average energy Eav and the entropy H as shown in

Eq.(4.41)

F (j)
ve = E (j)

av +H(j) (D.6)

For conciseness, the superscript (j) on variational distribution q (·) has been dropped in

the following derivations. The expression for average energy Eav can be written as follows:

Eav = 〈ln (p (Y ,X,A,Q,G,R))〉q(A,Q)q(G,R)q(X)
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Note Γ (·) represents the ‘gamma’ function [109].

Next, use the following results

• Expected values of unobserved states and measurements
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where γ (·) represents the ‘digamma’ function [109].

• Expected values of transition and observation matrices
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Substituting the above results into the derivation of Eav, one gets
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Concisely, the expression for E (j)
av can be written as
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Next we calculate the differential entropy term H. For the entropy term

H(j) = H (q(A|Q)q(Q)q(G|R)q(R)q(X)) (D.9)

Using the additivity property of differential entropy for independent variables ([110], pp.

253), the following can be written
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and the expression for the first four terms are available as
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The differential entropy of inverse Wishart distribution can be found in [141].

H
(
q(j)(X)

)
can be evaluated by considering the factorization property of q(X) as

q(j)(X) = p (x1:N+1|ỹ1:N) = p (x1|ỹ1:N)
N∏
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p (x1|ỹ1:N) = N
(
x̂1|N , V̂1|N

)
p (xk+1,xk|ỹ1:N) = N

([
x̂k+1|N

x̂k|N

]
,

[
V̂k+1|N V̂k+1,k|N

V̂T
k+1,k|N V̂k|N

])
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]∣∣∣∣∣− ln
∣∣∣V̂k|N

∣∣∣)+ c7

]

=
1

2

[
ln
∣∣∣V̂1|N

∣∣∣+
N∑
k=1

(
ln
∣∣∣V̂k+1|N − V̂k+1,k|NV̂−1

k|NV̂T
k+1,k|N

∣∣∣)+ c7

]
(D.12a)
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where the constant c7 is

c7 =
N∑
k=1

n2
s(1 + ln(2π))−

N∑
k=2

ns(1 + ln(2π)) =
(
Nn2

s − (N − 1)ns
)

(1 + ln(2π))

and the following result of determinant of block matrices was used

ln

∣∣∣∣∣
[

V̂k+1|N V̂k+1,k|N

V̂T
k+1,k|N V̂k|N

]∣∣∣∣∣ = ln
∣∣∣V̂k+1|N − V̂k+1,k|NV̂−1

k|NV̂T
k+1,k|N

∣∣∣+ ln
∣∣∣V̂k|N

∣∣∣ .
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Appendix E

Derivation of updates for EM and

VB in stacked data approach

E.1 Derivation of update rules for M-step

The update equations of EM are obtained by taking gradient of F
(
θ|θ(j)

)
in Eq.(5.12)

with respect to the parameters θ at iteration j and then setting them to zero. This oper-

ation leads to closed form M-step maximizations. Despite the new likelihood function for

the MSM in Equation (5.10), the updating equations for A(j+1),Q(j+1) and µ
(j+1)
1 ,V

(j+1)
1

end up being identical to those in Eq.(5.12) and (4.18) as they are not involved in the

observation equation. However, the updating formula for G(j+1) and R(j+1) gets modified

due to incorporation of MSR matrices in the observation equation of the MSM.

(a) Update for G(j+1)

To derive the update rule for G(j+1), take the gradient of F
(
θ|θ(j)

)
w.r.t. G and set it to

zero

∂F
(
θ|θ(j)

)
∂G

=
∂

∂G

〈
− 1

2

N∑
k=1

(
yk −ΩkGxk

)T
R−1

(
yk −ΩkGxk

)〉
= 0
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Using the expressions in (70), (71) and (82) from the Matrix Cookbook [142], one obtains

∂F
(
θ|θ(j)

)
∂G

=
N∑
k=1

(
ΩT
kR−1yk

〈
xT
〉
−ΩT

kR−1ΩkG
〈
xkx

T
k

〉)
= 0

Vectorizing the above equation and using the formula vec (ABC) =
(
CT ⊗A

)
vec (B)

vec

(
N∑
k=1

(
ΩT
kR−1yk

〈
xTk
〉
−ΩT

kR−1ΩkG
〈
xkx

T
k

〉))
= 0

=⇒
N∑
k=1

vec
(
ΩT
kR−1yk

〈
xTk
〉)
−

N∑
k=1

vec
(
ΩT
kR−1ΩkG

〈
xkx

T
k

〉)
= 0

=⇒
N∑
k=1

vec
(
ΩT
kR−1yk

〈
xTk
〉)
−

N∑
k=1

(〈
xkx

T
k

〉
⊗
(
ΩT
kR−1Ωk

))
vec
(
G
)

= 0

In the above equations, the individual terms are vectorized and the Kronecker product

‘⊗’ is implemented to extract the G which is sandwiched between two terms. Finally, the

update equation for G is obtained as given in Eq.(5.19a)

vec
(
G(j+1)

)
=

(
N∑
k=1

(〈
xkx

T
k

〉
⊗
(
ΩT
kR(j)−1

Ωk

)))−1

vec

(
N∑
k=1

(
ΩT
kR(j)−1

yk
〈
xT
〉))

=⇒ g(j+1) =

(
N∑
k=1

(
Sxx,k ⊗

(
ΩT
kR(j)−1

Ωk

)))−1

vec

(
N∑
k=1

ΩT
kR(j)−1

Syx,k

)
(E.1)

(b) Update for R(j+1)

Next, to obtain the update rule for R(j+1), the gradient of the expression in Equation (5.12)

with respect to R−1 is set to zero, as shown below

∂

∂R−1

(
N

2
log
∣∣R−1

∣∣− 1

2

N∑
k=1

tr
{

R−1
(
Syy,k −ΩkGSTyx,k − . . .

Syx,kG
TΩT

k + ΩkGSxx,kG
TΩT

k

)})
= 0
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Using the derivative formula (49) and (100) from Matrix Cookbook [142], one gets Eq.(5.19c)

R(j+1) =
1

N

N∑
k=1

(
Syy,k −ΩkG

(j+1)STyx,k − Syx,kG
(j+1)TΩT

k + ΩkG
(j+1)Sxx,kG

(j+1)TΩT
k

)
(E.2)

E.2 Computation of Va and Vg
k

The matrices Va and Vg
k represent weighted covariances whose values can be evaluated

using Σa and Σg respectively. The evaluation of both Va and Vg
k follow similar procedure

and therefore, only the evaluation of Vg
k is shown for the sake of brevity. Using the property,

vec (ABC) =
(
CT ⊗A

)
vec (B), the following can be written

vec
(
Vg
k

)
=

〈
vec

((
G−G

)T
ΩT
kR−1Ωk

(
G−G

))〉
q(j)(g)

=

〈(
G−G

)T
⊗
(
G−G

)T〉
q(j)(g)

vec
(
ΩT
kR−1Ωk

) (E.3)

The variational expectation over
(
G−G

)T
⊗
(
G−G

)T
with respect to q(j) (g) is related

to the covariance matrix of GT at the jth VB iteration. With the knowledge of the

covariance matrix of g (= vec
(
G
)
) at the jth VB iteration, it is required to obtain the

covariance matrix of g′ (= vec
(
GT )

)
. For this, a permutation matrix Tg is defined such

that g′ = Tgg. The covariance matrix for g′ can then be obtained as Σ
(j)

g′ = TgΣ
(j)
g TT

g .

Further, Σ
(j)

g′ can be expressed in terms of block matrices, each of the size nα × nα:

Σ
(j)

g′ =


Πg′

11 Πg′

12 . . . Πg′

1ns

Πg′

21 Πg′

22 . . . Πg′

2ns
...

...
. . .

...

Πg′

ns1 Πg′

ns2 . . . Πg′
nsns

 (E.4)

Using the block matrices, the expression in Eq.(E.3) can be expressed as a matrix multi-

plication

vec
(
Vg
k

)
=
[
vec
(
Πg′

11

)
vec
(
Πg′

21

)
. . . vec

(
Πg′
nsns

)]
vec
(
ΩT
kR−1Ωk

)
(E.5)
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which is useful for numerical implementation. Alternatively, Vg
k can be written in the

summation form as

Vg
k =

ns∑
p=1

ns∑
r=1

(
ΩT
kR−1Ωk

)
pr

Πg′

pr (E.6)

Following a similar procedure for Va, one can define a′ = Taa and obtain Σ
(j)

a′ =

TaΣ
(j)
a TT

a . Finally Va can be expressed as

Va =
ns∑
p=1

ns∑
r=1

(
Q̃
−1
)
pr

Πa′

pr (E.7)

where Πa′
pr is the (p, r)th block matrix of Σ

(j)

a′

Σ
(j)

a′ =


Πa′

11 Πa′
12 . . . Πa′

1ns

Πa′
21 Πa′

22 . . . Πa′
2ns

...
...

. . .
...

Πa′
ns1 Πa′

ns2 . . . Πa′
nsns

 (E.8)

This completes the computation of Va and Vg
k used in Eqs.(5.31c) and (5.31d) respectively.

E.3 Derivation of update rules for the VBM step

The principle for deriving the update rules of parameters A, G, Q and R follows the

maximization expressions given in Eq.(5.25). For a parameter under consideration, the

expectation under its own variational distribution is ignored and the expectations with

respect to variational distributions of other parameters are evaluated. Additionally, all

terms independent of the parameter under consideration are subsumed in a proportionality

constant.

(a) Update for q(j+1) (a)

Using the log joint likelihood in Eq.(5.28) and ignoring the expectation w.r.t. q(j) (a), one

obtains the following expression as a function of a

ln q(j+1) (a) ∝ tr
{〈

Q−1
〉
q(j)(Q)

(
S

(j)

ff
−AS

(j)

fx

T
− S

(j)

fx
AT + AS

(j)
xxAT

)}
+
{
aTΣ−1

a a− aTΣ−1
a µa − µTaΣ−1

a a+ µTaΣ−1
a µa

} (E.9)
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Note that A is the matrix form of a. Using the vectorization properties

tr {AB} = vec
(
AT
)T

vec (B) (E.10a)

tr {ABCD} = vec
(
AT
)T

(D ⊗ B) vec (C) (E.10b)

and the notation µ
(j)

Q−1
:=
〈
Q−1

〉
q(j)(Q) = d

(j)

Q
D

(j)

Q

−1
, one can express Eq.(E.9) as

ln q(j+1) (a) ∝ vec
(
µ

(j)

Q−1S
(j)

ff

)
− vec

(
µ

(j)

Q−1S
(j)

fx

)T
a− aTvec

(
µ

(j)

Q−1S
(j)

fx

)
+ aT

(
S

(j)
xx ⊗ µ

(j)

Q−1

)
a+

{
aTΣ−1

a a− aTΣ−1
a µa − µTaΣ−1

a a+ µTaΣ−1
a µa

}
∝ aT

(
Σ−1
a + S

(j)
xx ⊗ µ

(j)

Q−1

)
a− 2

(
Σ−1
a µa + vec

(
µ

(j)

Q−1S
(j)

fx

))T
a (E.11)

Using the argument of ‘completion-of-squares’ (see Section 8.1.6 in Matrix Cookbook [142]),

one obtains the following form

ln q(j+1) (a) ∝
(
a− µ(j+1)

a

)T
Σ

(j+1)
a

(
a− µ(j+1)

a

)
+ C1 (E.12)

where C1 consists of terms independent of a. Comparing the above form to that of a

multivariate Gaussian distribution, the expressions for hyperparameters Σ
(j+1)
a , µ

(j+1)
a ,

µ
(j+1)

A
are obtained, as depicted in Eq.(5.35).

(b) Update for q(j+1) (g)

The derivation follows similarly as that for q(j+1) (a). One can write

ln q(j+1) (g) ∝
N∑
k=1

(
tr
{〈

R−1
〉
q(j)(R)

(
S

(j)
yy,k −ΩkGS

(j)
yx,k

T
− S

(j)
yx,kG

TΩT
k + ΩkGS

(j)
xx,kG

TΩT
k

)})
+ gTΣ−1

g g − gTΣ−1
g µg − µTgΣ−1

g g + µTgΣ−1
g µg

(E.13)

Denoting µ
(j)

R−1 := 〈R−1〉q(j)(R) = d
(j)
R D

(j)
R

−1
and using the vectorization properties in

Eq.(E.10), one arrives at

ln q(j+1) (g) ∝ gT
(

Σ−1
g +

N∑
k=1

(
S

(j)
xx,k ⊗

(
ΩT
kµ

(j)

R−1Ωk

)))
g

− 2

(
Σ−1
g µg +

N∑
k=1

vec
(
ΩT
kµ

(j)

R−1S
(j)
yx,k

))T

g

(E.14)
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which can be further arranged in the form of ‘completion-of-squares’. Comparing the above

form to that of a multivariate Gaussian distribution, the expressions for hyperparameters

Σ
(j+1)
g , µ

(j+1)
g , µ

(j+1)

G
are obtained, as depicted in Eq.(5.38).

(c) Update for q(j+1)
(
Q
)

Ignoring the expectation of the log joint likelihood in Eq.(5.28) with respect to q(j)
(
Q
)
,

one obtains the following expression as a function of Q

ln q(j+1)
(
Q
)
∝
(
dQ +N + ns + 1

)
ln
∣∣Q∣∣+ tr

{
DQQ−1

}
+ tr

{
Q−1

(
S

(j)

ff
−
〈
A
〉
q(j+1)(a)

S
(j)

fx

T
− S

(j)

fx

〈
A
〉T
q(j+1)(a)

+
〈
AS

(j)
xxAT

〉
q(j+1)(a)

)}
(E.15)

The expectations on the right hand side can be evaluated as follows:〈
A
〉
q(j+1)(a)

= µ
(j+1)

A
(E.16a)

M
(j+1)

A
:=
〈
AS

(j)
xxAT

〉
q(j+1)(a)

=
ns∑
p=1

ns∑
r=1

(
S

(j)
xx

)
pr

Πa
pr + µ

(j+1)

A
S

(j)
xxµ

(j+1)

A

T
(E.16b)

where Πa
pr is the (p, r)th block matrix in Σ

(j+1)
a as depicted in Eq.(5.37) and

(
S

(j)
xx

)
pr

is

the (p, r)th entry of S
(j)
xx . Substituting Eq.(E.16) in Eq.(E.15), one obtains the following

form

ln q(j+1)
(
Q
)
∝
(
dQ +N + ns + 1

)
ln
∣∣Q∣∣

+ tr
{

Q−1
(
DQ + S

(j)

ff
− µ(j+1)

A
S

(j)

fx

T
− S

(j)

fx
µ

(j+1)

A

T
+ M

(j+1)

A

)}
∝
(
d

(j+1)

Q
+ ns + 1

)
ln
∣∣Q∣∣+ tr

{
Q−1D

(j+1)

Q

} (E.17)

Comparing the above form to that of an inverse Wishart distribution, the expressions for

hyperparameters d
(j+1)

Q
, D

(j+1)

Q
are obtained, as depicted in Eq.(5.36).

(d) Update for q(j+1) (R)

Ignoring the expectation of the log joint likelihood in Eq.(5.28) with respect to q(j) (R),
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one obtains the following expression as a function of R

ln q(j+1) (R) ∝ (dR +N + no + 1) ln |R|+ tr
{
DRR−1

}
+

N∑
k=1

tr
{

R−1
(
S

(j)
yy,k −Ωk

〈
G
〉
q(j+1)(g)

S
(j)
yx,k

T
− S

(j)
yx,k

〈
G
〉T
q(j+1)(g)

ΩT
k

)}
+

N∑
k=1

tr

{
R−1

(
Ωk

〈
GS

(j)
xx,kG

T
〉
q(j+1)(g)

ΩT
k

)}
(E.18)

The terms inside the expectations can be evaluated as follows:〈
G
〉
q(j+1)(g)

= µ
(j+1)

G
(E.19a)

M
(j+1)

G,k
:=
〈
GS

(j)
xx,kG

T
〉
q(j+1)(g)

=
ns∑
p=1

ns∑
r=1

(
S

(j)
xx,k

)
pr

Πg
pr + µ

(j+1)

G
S

(j)
xx,kµ

(j+1)

G

T
(E.19b)

where Πg
pr is the (p, r)th block matrix in Σ

(j+1)
g as depicted in Eq.(5.40) and

(
S

(j)
xx,k

)
pr

is

the (p, r)th entry of S
(j)
xx,k. Substituting Eq.(E.19) in Eq.(E.18), one obtains the following

form

ln q(j+1) (R) ∝ (dR +N + no + 1) ln |R|

+ tr

{
R−1

(
DR +

N∑
k=1

(
S

(j)
yy,k −Ωkµ

(j+1)

G
S

(j)
yx,k

T
− S

(j)
yx,kµ

(j+1)

G

T
ΩT
k

))}

+ tr

{
R−1

(
N∑
k=1

(
ΩkM

(j+1)

G,k
ΩT
k

))}
∝
(
d

(j+1)
R + no + 1

)
ln |R|+ tr

{
R−1D

(j+1
R )

}
(E.20)

Comparing the above form to that of an inverse Wishart distribution, the expressions for

hyperparameters d
(j+1)
R , D

(j+1)
R are obtained, as depicted in Eq.(5.39).
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Appendix F

Kalman filter and RTS smoother

Consider a discrete-time time-invariant linear system with additive Gaussian noise

xk+1 = Axk +wk

yk = Gxk + vk
(F.1)

where wk ∼ N (0,Q) and vk ∼ N (0,R) are the process noise and the measurement noise

distribution respectively, with zero cross-correlation between wk and vk.

The Kalman filter [143] and RTS smoother [144] equations for obtaining the smoothed

states x̂k|N and covariances V̂k|N , V̂k+1,k|N are given below.

Kalman filter : Do for k = 1, . . . , N

ek = yk −Gx̂k|k−1 (F.2a)

Sk = GV̂k|k−1G
T + R (F.2b)

Kk = V̂k|k−1G
TS−1

k (F.2c)

x̂k|k = x̂k|k−1 + Kkek (F.2d)

V̂k|k = V̂k|k−1 −KkSkK
T
k (F.2e)

x̂k+1|k = Ax̂k|k (F.2f)

V̂k+1|k = AV̂k|kA + Q (F.2g)
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Here x̂k|k−1 and x̂k|k represent the kth predicted and filtered state estimate respectively,

and, V̂k|k−1 and V̂k|k denote the kth predicted and filtered state error covariance matrices

respectively. The Kalman filter recursion is started from an initial state x̂1|0 and an initial

covariance V̂1|0. ek and Sk represent the innovation and the innovation covariance at the

kth time step.

Following the filtering step, the (fixed interval) smoothing recursions given by the RTS

smoother are computed as follows:

Kalman smoother : Do for k = N, . . . , 1

Nk = V̂k|kA
T
(
V̂k+1|k

)−1

(F.3a)

x̂k|N = x̂k|k + Nk

(
x̂k+1|N − x̂k+1|k

)
(F.3b)

V̂k|N = V̂k|k + Nk

(
V̂k+1|N − V̂k+1|k

)
NT
k (F.3c)

V̂k+1,k|N = V̂k+1|NNT
k (F.3d)
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