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Abstract 

Forested watersheds supply ~75% of global accessible freshwater resources and serve as important 

sources of drinking water. Both natural and anthropogenic landscape disturbances in these regions can 

deteriorate water quality in downstream environments. Climate change-exacerbated increases in the 

frequency and severity of disturbances such as wildfires, floods, and hurricanes threaten global drinking 

water security because the deterioration and/or increased variability of drinking water source quality 

can challenge treatment plants beyond their design and/or operational capacity, resulting in increased 

infrastructure and operating costs, servies disruptions or potentially catatrophic service outages. The 

water quality impacts of such events can last for decades; thus, risk reduction startegies must be 

developed to ensure the uninterrupted provision of adequate amounts of safe drinking water.  

Althgouh forests have not been historically managed for water, forest harvesting has been proposed for 

pre-emptive mitigation of severe natural disturbance effects on source water quality and treatability; 

Depending on how it is implemented, however, it can also deteriorate source quality. Critically, the 

impacts of forest harvesting on drinking water treatability have not been investigated. Thus, the focus 

of this research was to investigate the impacts of contemporary forest harvesting on drinking water 

source quality and treatability. Three types of contemporary forest harvesting (clear-cut with patch 

retention, strip-shelterwood cut, and partial cut) were investigated at the watershed-scale over a range 

of flow conditions in the eastern slopes of the Rocky Mountains of southwestern Alberta, Canada. 

Reference and harvested stream water turbidity and various water quality metrics related to NOM (and 

associated DBP formation potentials) were evaluated during and over the first three post-harvest years. 

The correlations between THM- and HAA-FPs and several proxy indicators (particularly, aromaticity) 

were also investigated. Reported pre-disturbance data from the study watersheds were included in this 

analysis. Notably, no appreciable impacts of forest harvesting on water quality and treatability were 

observed during the harvest and three post-harvest years. Thus, contemporary forest harvesting 

approaches coupled with state-of-the-art BMPs for erosion control show prom source 

water protection (SWP) technologies for mitigating severe disturbance risks to drinking water 

treatability, even in source water regions rich with glacially-derived fine sediments (e.g., many parts of 

western North America). To maximize the impacts of forest management-based approaches to SWP 

and to develop climate change adaptation strategies in lieu of traditional landscape-level, time series 

trend monitoring focused paired catchment investigations that are designed as before-after-control-

impact (BACI) studies are urgently needed.  



iv 

 

Acknowledgements 

First I wish to acknowledge and pay respect to the Attawandaron (Neutral), Anishinaabeg and 

Haudenosaunee peoples. The University of Waterloo is situated on the Haldimand Tract, the land 

promised to the Six Nations that includes ten kilometers on each side of the Grand River. 

I would like to express my sincere appreciation and gratitude to my supervisors Professor Monica 

Emelko and Professor Michael Stone for their guidance, patience and untiring support. Their constant 

mentorship and suggestions have not only enriched my technical knowledge, but have also provided 

me with the confidence and determination needed to pursue and complete this research. Also, I like to 

acknowledge their generous financial support throughout my program, and their kind endeavor to 

ensure the continuity of such support. I wholeheartedly believe that this work would not have been 

possible without the trust and the encouragement of my supervisors. 

Special thanks go to the members of the examination committee, Professor Kirsten Müller and 

Professor Merrin Macrae for the time they spent on reviewing my thesis, and providing me with their 

constructive comments and feedback. Their insights have undoubtedly made this work more valuable 

and practical.  

I extend my sincere appreciation to Professor Uldis Silins, our partner in the Southern Rockies 

Watershed Project (SRWP), for sharing his invaluable knowledge and designing the field sampling 

campaign that enabled this research. I would also like to thank all members of SRWP, particularly Chris 

Williams, for their remarkable fieldwork. 

I also own a great debt of gratitude to Dr. Shoeleh Shams, whom generously shared her knowledge 

with me and constantly helped and supported me throughout this research. Shoeleh, I appreciate your 

encouragement, unconditional support, and extraordinary kindness. I may never be able to requite you 

in full.  

I am very grateful for Dr. William B. Anderson, Dr. Fariba Amiri, and Dr, Maria Mesquita for their 

contribution in conducting this research. Their constructive and insightful comments were crucial for 

the development of my work.  

Professor Peter M. Huck, Dr. Sigrid Peldszus, and Lin Shen are also acknowledged for their support 

with the LC-OCD analysis. I also acknowledge SGS Canada, Inc., particularly Chris Sullivan, 



v 

 

Catharine Arnold, Brian Graham, and Robert Irwin for their support with the chemical analysis of 

DBPs.  

To my friends and colleagues in the Water Science, Technology, and Policy Group (MBE research 

group) I sincerely thank you for sharing your knowledge and ideas with me and helping me in the lab 

whenever I needed. And, of course, special thanks to Kristina Lee, Tyler Owl, Joan Thompson, Jesse 

Skwaruk, and Amy Yang for their support and friendship. Many thanks to the lab technologists, Mark 

Sobon and Mark Merlau for their valuable help. I would also like to give special thanks to the amazing 

Dana Herriman for all her help and support. 

I appreciate the unique opportunity that all of our partners in forWater network have provided  me to 

pursue my graduate studies. The financial supports of Alberta Innovates, NSERC, and the City of 

Calgary during this research is acknowledged and greatly appreciated.  

I would like to especially thank all my middle school friends for being there for me and cheer me up 

when I was down. You are my chosen family and I feel extremely lucky to have you, all, in my life. 

Finally, my deep and sincere gratitude to my family for being my biggest source of strength. This would 

not have been possible without their unfailing love, support and encouragement. 

 



vi 

 

Dedication  

To Kayhan; hoping when you are old enough to read this we have already overcome the climate change 

battle. 

 



vii 

 

Table of Contents 

AUTHOR'S DECLARATION ............................................................................................................... ii

Abstract ................................................................................................................................................. iii

Acknowledgements .............................................................................................................................. iiv

Dedication ............................................................................................................................................. vi

List of Figures ....................................................................................................................................... ix

List of Tables ....................................................................................................................................... xiii

List of Abbreviations ............................................................................................................................ xv

1 Introduction .................................................................................................................................... 1

1.1 Research Motivation ............................................................................................................... 1

1.2 Research Objectives ............................................................................................................... 2

1.3 General Research Approach ................................................................................................... 3

1.4 Thesis Organization ................................................................................................................ 3

2 Literature Review ........................................................................................................................... 4

2.1 Landscape Disturbance Impacts on Water Quality ................................................................ 4

2.1.1 Forest Harvesting Impacts on Water Quality ............................................................... 12

2.2 Natural Organic Matter ......................................................................................................... 26

2.2.1 TOC and DOC .............................................................................................................. 28

2.2.1 UV254 ............................................................................................................................ 29

2.2.2 SUVA ........................................................................................................................... 30

2.2.3 Carbon fractionation by size using LC-OCD ............................................................... 31

2.3 Disinfection By-Product Formation Potentials (DBP-FPs) .................................................. 33

2.4 Source Water Protection Plans ............................................................................................. 41

2.5 Research Needs .................................................................................................................... 42

3 Materials and Methods ................................................................................................................. 44

3.1 Research Approach ............................................................................................................... 44

3.2 Study Sites ............................................................................................................................ 44

3.3 Sample Collection ................................................................................................................ 46

3.4 Water Quality Analysis ........................................................................................................ 48

3.4.1 Turbidity ....................................................................................................................... 48

3.4.2 DOC .............................................................................................................................. 49



viii 

 

3.4.3 UV254 and SUVA ......................................................................................................... 50

3.4.4 Carbon fractionation by size using LC-OCD ............................................................... 50

3.4.5 THM- and HAA-FP ..................................................................................................... 51

3.5 Statistical Analyses .............................................................................................................. 53

4 Results and Discussion ................................................................................................................ 55

4.1 Turbidity .............................................................................................................................. 55

4.2 DOC ..................................................................................................................................... 57

4.3 UV254 and SUVA ................................................................................................................. 62

4.4 Carbon fractions as measured by LC-OCD ......................................................................... 66

4.5 Disinfection By-Product Formation Potential ...................................................................... 72

5 Conclusions and Implications ...................................................................................................... 79

References ............................................................................................................................................ 84

Appendix A ........................................................................................................................................ 123

Dataset for each water quality and treatability metric ....................................................................... 123

DOC concentrations (mg/L) .............................................................................................................. 124

Appendix B ........................................................................................................................................ 135

Appendix C ........................................................................................................................................ 136

Non-parametric Mann-Whitney U test results ................................................................................... 136



ix 

 

List of Figures 

Figure 2-1 The role of forests as natural water treatment infrastructure. ............................................... 4

Figure 2-2 Relationship between watershed forested area and drinking water treatment costs. ............ 5

Figure 2-3 Comparison of financial merits of integrated natural and built infrastructure alternatives for 

desired ecological outcomes. ................................................................................................................ 12

Figure 2-4 Distribution of total suspended solids concentrations (TSS; mg/L), and turbidity (NTU) 

upstream (US; white) and downstream (DS; grey) at three stream crossings: McLaren (top), Star East 

(middle), and Star West (bottom). Horizontal lines represent median, while upper and lower limits of 

boxplots indicate 75th and 25th percentile, whiskers indicate the 95th and 5th percentile, solid dots indicate 

outliers. Different letters are significantly different (Wilcoxon-sign ranked, p < 0.016). .................... 14

Figure 2-5 DOC concentrations in streams before and after forest harvesting, storm/flood, wildfire, and 

insect infestation disturbances in forested watersheds. ........................................................................ 15

Figure 2-6 percentage change in DOC concentrations in streams as a result of different landscape 

disturbances in forested watersheds. .................................................................................................... 16

Figure 2-7 Potential implications of changes in NOM concentration to drinking water treatability. .. 27

Figure 2-8 Classification of dissolved organic compounds in water. ................................................... 28

Figure 2-9 LC-OCD flow scheme of Model 8. .................................................................................... 32

Figure 2-10 Chromatograph of pre-defined NOM fractions measured by LC-OCD following the method 

of Huber (2011). ................................................................................................................................... 33

Figure 2-11 Multi-barrier approach to safe drinking water. ................................................................. 42

Figure 3-1 The Oldman River Basin. ................................................................................................... 45

Figure 3-2 Map of the Southern Rockies Watershed Project Phase II research watersheds. From west 

to east: Star and North York Creeks. Three alternative types of harvesting treatments were performed 

in three sub-watershed of Star Creek Watershed in 2015. ................................................................... 46

Figure 3-3 Example calibration curve for TOC analyzer (n=9; R2 = 0.9754). ..................................... 49

Figure 3-4 Example calibration results for LC-OCD Model 8. ............................................................ 51

Figure 3-5 Shimadzu TOC-VCPH TOC analyzer used to measure DOC concentration. .................... 52

Figure 3-6 UV254 analyzer, a) Hewlett-Packard 8453 spectrophotometer, b) Cary Series UV-Vis 

spectrometer, c) 1 cm quartz cell. ......................................................................................................... 52

Figure 3-7 a) LC-OCD Model 8 and b) Turbidimeter- HACH 2100Q. ............................................... 53



x 

 

Figure 4-1 Turbidity in streams draining adjacent undisturbed, reference and harvested            

watersheds. Light green represents data from undisturbed or reference watersheds prior to harvesting 

(2015); dark green represents data collected after 2015. Blue shading represents data from harvested 

locations. The horizontal bar within the boxes is the median value, the bottom and top of each box 

indicates the 25th and 75th percentiles respectively. The crosses indicate mean values, and the top and 

bottom of whiskers respectively represent the maximum and minimum values observed. ................. 56

Figure 4-2 DOC concentrations in streams draining adjacent undisturbed, reference and harvested 

watersheds. Light green represents data from undisturbed or reference watersheds prior to harvesting 

(2015); dark green represents data collected after 2015. Blue shading represents data from harvested 

locations. The horizontal bar within the boxes is the median value, the bottom and top of each box 

indicates the 25th and 75th percentiles respectively. The crosses indicate mean values, and the top and 

bottom of whiskers respectively represent the maximum and minimum values observed. ................. 59

Figure 4-3 Comparison between DOC concentrations in streams in reference/undisturbed and harvested 

sites from this study and values reported in literature. Green represents reference/undisturbed locations 

and blue represents harvested locations. .............................................................................................. 60

Figure 4-4 DOC concentration time series data from October 2017 to September 2018 for reference, 

undisturbed and harvested locations. Green represents reference/undisturbed locations and blue 

represents harvested locations. ............................................................................................................. 61

Figure 4-5 UV254 absorbance in streams draining adjacent undisturbed, reference and harvested 

watersheds. Light green represents data from undisturbed watersheds prior to harvesting (2015); dark 

green represents data collected after 2015. Blue shading represents data from harvested locations. The 

horizontal bar within the boxes is the median value, the bottom and top of each box indicates the 25th 

and 75th percentiles respectively. The crosses indicate mean values, and the top and bottom of whiskers 

respectively represent the maximum and minimum values observed. ................................................. 64

Figure 4-6 Comparison between stream UV254 in reference/undisturbed and harvested watersheds in  

this study and those reported in literature. ........................................................................................... 64

Figure 4-7 SUVA levels in streams draining adjacent undisturbed, reference and harvested    

watersheds. Light green represents data from undisturbed watersheds prior to harvesting (2015); dark 

green represents data collected after 2015. Blue shading represents data from harvested locations. The 

horizontal bar within the boxes is the median value, the bottom and top of each box indicates the 25th 

and 75th percentiles respectively. The crosses indicate mean values, and the top and bottom of whiskers 

respectively represent the maximum and minimum values observed. ................................................. 65



xi 

 

Figure 4-8 Comparison between stream SUVA levels in reference/undisturbed and harvested sites in 

this study and those reported in literature. Green represents reference/undisturbed locations and blue 

represents harvested locations. ............................................................................................................. 66

Figure 4-9  Humic substances fraction of DOC in streams draining adjacent undisturbed, reference and 

harvested watersheds. Light green represents data from undisturbed or reference watersheds prior to 

harvesting (2015); dark green represents data collected after 2015. Blue shading represents data from 

harvested locations. The horizontal bar within the boxes is the median value, the bottom and top of each 

box indicates the 25th and 75th percentiles respectively. The crosses indicate mean values, and the top 

and bottom of whiskers respectively represent the maximum and minimum values observed. ........... 69

Figure 4-10 Biopolymers fraction of DOC in streams draining adjacent undisturbed, reference and 

harvested watersheds. Light green represents data from undisturbed or reference watersheds prior to 

harvesting (2015); dark green represents data collected after 2015. Blue shading represents data from 

harvested locations. The horizontal bar within the boxes is the median value, the bottom and top of each 

box indicates the 25th and 75th percentiles respectively. The crosses indicate mean values, and the top 

and bottom of whiskers respectively represent the maximum and minimum values observed. ........... 69

Figure 4-11 Building blocks fraction of DOC in streams draining adjacent undisturbed, reference and 

harvested watersheds. Light green represents data from undisturbed or reference watersheds prior to 

harvesting (2015) ; dark green represents data collected after 2015. Blue shading represents data from 

harvested locations. The horizontal bar within the boxes is the median value, the bottom and top of each 

box indicates the 25th and 75th percentiles respectively. The crosses indicate mean values, and the top 

and bottom of whiskers respectively represent the maximum and minimum values observed. ........... 70

Figure 4-12 LMW acids fraction of DOC in streams draining adjacent undisturbed, reference and 

harvested watersheds. Light green represents data from undisturbed or reference watersheds prior to 

harvesting (2015).. ................................................................................................................................ 71

Figure 4-13 LMW neutrals fraction of DOC in streams draining adjacent undisturbed, reference and 

harvested watersheds. Light green represents data from undisturbed or reference watersheds prior to 

harvesting (2015); dark green represents data collected after 2015. Blue shading represents data from 

harvested locations. The horizontal bar within the boxes is the median value, the bottom and top of each 

box indicates the 25th and 75th percentiles respectively. The crosses indicate mean values, and the top 

and bottom of whiskers respectively represent the maximum and minimum values observed. ........... 71

Figure 4-14 Normalized humic substances fraction of DOC in streams draining adjacent undisturbed, 

reference and harvested watersheds. Light green represents data from undisturbed or reference 



xii 

 

watersheds prior to harvesting (2015); dark green represents data collected after 2015. Blue shading 

represents data from harvested locations. ............................................................................................ 72

Figure 4-15 THM-FPs concentration in streams draining adjacent undisturbed, reference and harvested 

watersheds. Light green represents data from undisturbed or reference watersheds prior to harvesting 

(2015); dark green represents data collected after 2015. Blue shading represents data from harvested 

locations. The horizontal bar within the boxes is the median value, the bottom and top of each box 

indicates the 25th and 75th percentiles respectively. The crosses indicate mean values, and the top and 

bottom of whiskers respectively represent the maximum and minimum values observed. ................. 74

Figure 4-16 HAA-FPs concentrations in streams draining adjacent undisturbed, reference and harvested 

watersheds. Light green represents data from undisturbed or reference watersheds prior to harvesting 

(2015); dark green represents data collected after 2015. Blue shading represents data from harvested 

locations. The horizontal bar within the boxes is the median value, the bottom and top of each box 

indicates the 25th and 75th percentiles respectively. The crosses indicate mean values, and the top and 

bottom of whiskers respectively represent the maximum and minimum values observed. ................. 75

Figure 4-17 Comparison of stream THM-FP yields in this study and those in streams and rivers serving 

as drinking water sources globally. ...................................................................................................... 75

Figure 4-18 Comparison of stream DBP-FPs in this study and Canadian drinking water sources on 

average. ................................................................................................................................................ 76

Figure 4-19 Comparison among drinking water quality and treatability parameters measured during  

this study, burned and salvage logged SRWP research watersheds, and rivers and streams serving as 

drinking water sources globally. .......................................................................................................... 76



xiii 

 

List of Tables 

Table 2-1 Water quality parameters that can change as a result of wildfire and their maximum 

concentrations in treated drinking water based on Health Canada and EPA guidelines. ....................... 7

Table 2-2 Summary of studies on forest harvesting impacts on water quality. .................................... 17

Table 2-3 Summary of forest harvesting impacts on stream DOC concentrations. ............................. 20

Table 2-4 Relationship between SUVA and NOM removal through coagulation). ............................. 31

Table 2-5 Trihalomethanes formation potentials (THM-FPs) reported for streams and rivers that serve 

as drinking water sources. .................................................................................................................... 35

Table 2-6 Maximum concentration of regulated DBPs in drinking water. .......................................... 39

Table 2-7 Ranges of THM- and HAA-FP in Canadian drinking water sources. .................................. 40

Table 3-1 Description of the study locations (SRWP Phase II: Harvested Watersheds). .................... 47

Table 3-2 Number of samples previously reported or processed during the study. ............................. 48

Table 3-3 UV254 stability test results for water samples collected on June 26, 2017. .......................... 50

Table 3-4 Detection limits (DLs) for water quality and treatability analytes. ...................................... 51

Table 4-1 Stream turbidity values in study watersheds. ....................................................................... 56

Table 4-2 Stream DOC concentrations in study watersheds. ............................................................... 58

Table 4-3 Comparison of stream DOC concentrations in reference/undisturbed and harvested 

watersheds using all of the collected DOC data. .................................................................................. 61

Table 4-4 Comparison of stream DOC concentrations in reference/undisturbed and harvested 

watersheds excluding the May 2018 data. ............................................................................................ 62

Table 4-5 Stream UV254 values in the study watersheds. ..................................................................... 63

Table 4-6 Stream SUVA values in the study watersheds. .................................................................... 64

Table 4-7 Comparison of stream concentrations of humic substances, biopolymers, and building blocks 

fractions of DOC in reference/undisturbed and harvested watersheds. ................................................ 67

Table 4-8 Stream concentrations of the humic substances fraction of DOC in the study watersheds. 67

Table 4-9 Stream concentrations of the biopolymers fraction of DOC in the study watersheds. ........ 67

Table 4-10 Stream concentrations of the building blocks fraction of DOC in the study watersheds. .. 68

Table 4-11 Stream concentrations of the LMW acids fraction of DOC in the study watersheds......... 68

Table 4-12 Stream concentrations of the LMW neutrals fraction of DOC in the study watersheds. ... 68

Table 4-13 Stream THM-FPs in the study watersheds. ........................................................................ 73

Table 4-14 Stream HAA-FPs in the study watersheds. ........................................................................ 73



xiv 

 

Table 4-15 THM FP constituents by percentage mass......................................................................... 77

Table 4-16  HAA FP constituents by percentage of mass. .................................................................. 77

Table 4-17 Correlation between various metrics of aqueous NOM and DBP-FPs. ............................. 78

 

 

 

 

 

 

 

 

 

 

  



xv 

 

List of Abbreviations 

 

AB Alberta 

AESRD Alberta Environment & Sustainable Resource Development 

AO Aesthetic Objectives 

APHA American Public Health Association 

ASL Above Sea Level 

AWWA American Water Works Association 

BC Britich Columbia 

BDCM Bromodichromethane 

BMPs Best Management Practices 

CA California 

CCME Canadian Council of Ministers of the Environment 

CDC Centers for disease control and prevention 

DBCM Dibromochloromethane 

DBP Disinfection By-Products 

DOC Dissolved Organic Carbon 

DWI Drinking Water Inspectorate 

FAO Food and Agriculture Organization 

HAA Haloacetic Acids 

IC Inorganic Carbon 

IARC International Agency for Research on Cancer 

IPCC Intergovernmental Panel on Climate Change 



xvi 

 

JAMA The Journal of the American Medical Association 

LC-OCD  Liquid Chromatography- Organic Carbon Detention 

LMW Low Molecular Weight  

MA Massachusetts 

MAC Maximum Acceptable Concentration 

MB Manitoba 

MCL Maximum Contaminant Level 

MS Mississippi 

NB New Brunswick 

NDMA N-Nitrosodimethylamine  

NHMRC National Health and Medical Research Council 

NL Newfoundland and Labrador 

NOM Natural Organic Matter 

NPOC Non-Purgeable Organic Carbon 

NS Nova Scotia 

NTU Nephelometric Turbidity Units 

NV Nevada 

NWT CIMP The Northwest Territories Cumulative Impact Monitoring Program 

NY New York 

OCD Organic Carbon Detector 

OG Operational Guidance 

ON Ontario 

OND Organic Nitrogen Detector 

PEI Prince Edward Island 



xvii 

 

POC Particulate Organic Carbon 

QC Quebec 

SD Standard Deviation 

SEC Size-Exclusion Chromatography  

SK Saskatchewan 

SUVA Specific Ultraviolet Absorbance 

SWP Source Water Protection 

THM Trihalomethanes 

TOC Total Organic Carbon 

UNFF United Nations Forum on Forests 

US United States 

USEPA U.S. Environmental Protection Agency 

USGCRP U.S. Global Change Research Program 

UV254 Ultraviolet Absorbance at the Wavelength of 254 nm 

UVA  Ultraviolet Absorbance 

UVD Ultraviolet Absorbance at the Wavelength of 254 nm Detector 

WHO World Health Organization 



1 

 

1  

 

1.1 Research Motivation 

Forested watersheds supply ~75% of global accessible freshwater resources and serve as important 

sources of drinking water (UNFF, 2016; FAO, 2018). In North America, over two-thirds of drinking 

water supplies originate in forested watersheds (Stein & Butler, 2004; Natural Resources Canada, 

2015). Both natural and anthropogenic landscape disturbances in these regions can deteriorate the 

quality of water in downstream environments, however (Janetos et al., 1997; Christensen et al., 2004; 

Huntington et al., 2009; Whitehead et al., 2009; Watts et al., 2015). Deterioration and/or increased 

variability of source water quality can challenge treatment plants beyond their design and/or operational 

capacity and consequently increase the cost of drinking water treatment (Emelko et al., 2011; Emelko 

and Sham, 2014; Emelko et al., 2016). 

Natural organic matter (NOM) is a complex mixture of organic compounds that affects particle 

(including pathogen) charge in natural systems (Yun et al., 2011). It can affect the taste, odor, and color 

of water (Greeson, 1981), as well as its reactivity and amenability to treatment (Aiken et al., 1996; 

AWWA, 1999). Dissolved organic carbon (DOC) is the most widely used indicator of aqueous NOM. 

Landscape disturbances can lead to increases in the concentration of receiving stream DOC, and change 

its aromaticity and structure. These changes can challenge drinking water treatment by driving 

coagulant dose, leading to membrane fouling, exerting oxidant demand, and promoting microbial 

instability/proliferation in distribution systems (Gallard et al., 2002; Westerhoff et al., 2004; Zularisam 

et al., 2006; Guo et al., 2012; Sillanpää et al., 2018). Moreover, DOC can react with disinfectants (e.g., 

chlorine, chloramine, chlorine dioxide, ozone) to form disinfection by-products (DBPs), some of which 

are probable carcinogens (Edzwald et al., 1985; Kitis et al., 2002; Anderson et al., 2010). Consequently, 

periodically elevated or more frequently fluctuating concentrations and character of DOC resulting 

from landscape disturbances can result in the need to use more advanced and expensive treatment 

technologies to effectively treat water (Emelko et al., 2011). 

Due to climate change, the average global surface temperature has risen by ~1°C (±0.2°C) since the 

19th century and continues to rise ~0.2°C (±0.1°C) every 10 years (IPCC, 2018). This level of 

temperature change is enough to alter the hydrological cycle and affect the frequency and intensity of 

extreme natural events, such as wildfires, floods, and hurricanes (Dale et al., 2001;  Schelhaas et al., 
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2003; Seidl et al., 2017). Notably, the profound impacts of such events on water quality can last for 

decades and lead to significant long-term drinking water treatment challenges (Emelko et al., 2016). 

The potential for increased surface water quality variability and the challenges it can pose for drinking 

water treatment necessitates the development and implementation of risk reduction startegies to ensure 

the uninterrupted provision of adequate amounts of safe drinking water (Emelko et al., 2011; Bladon 

et al., 2014; Khan et al., 2015).  

Forest harvesting has been proposed as one approach for pre-emptive mitigation of landscape 

disturbance effects on source water quality and treatability in some jurisdictions (Larsen, 1995; Drever 

et al., 2006; Millar et al., 2007). While forest management-based approaches can be effective in 

mitigating the severity of natural disturbance effects on the landscape (Nakamura, 1996; Stephans & 

Moghaddas, 2005; Waltz et al., 2014), some of these approaches, such as forest harvesting, also can 

lead to deteriorated water quality (Nitschke, 2005; Rodríguez & Kouki, 2015) this is not necessarily 

surprising because some types of harvesting are specifically designed to emulate natural disturbance 

regimes on the landscape, to maintain forest structure and function by stimulating regeneration and 

growth (Nitschke, 2005; Rodríguez & Kouki, 2015). Notably, forests have not been historically 

managed for water; although there is interest in managing them to mitigate risks to drinking water 

supplies, the impacts of forest harvesting on drinking water treatability have not been investigated. 

 

1.2 Research Objectives 

The overall goal of this research was to evaluate the impacts of contemporary forest harvesting on water 

quality and drinking water treatability. The specific objectives of this investigation were to: 

1. Evaluate the impacts of contemporary forest harvesting on drinking water source quality 

and treatability, 

2. Compare the impacts of several contemporary forest harvesting (clear cut, strip-

shelterwood cut, and partial cut) strategies on drinking water source quality and treatability, 

3. Identify the NOM concentration and/or characterization metrics that are the best proxy 

indicators for evaluating drinking water treatability impacts of forest harvesting, and 

4. Assess the potential application of contemporary forest harvesting as a source water 

protection (SWP) technology to mitigate climate change-exacerbated, disturbance-

associated threats to drinking water treatability. 
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1.3 General Research Approach 

Contemporary forest harvesting impacts on drinking water source quality and treatability were 

investigated at the watershed-scale in the eastern slopes of the Rocky Mountains of southwestern 

Alberta. This work was conducted as part of an ongoing watershed-scale study of wildfire, post-fire 

salvage logging, and contemporary forest harvesting impacts on hydrology, water quality, and aquatic 

ecology (i.e., the Southern Rockies Watershed Project [SRWP]), which commenced in 2004 (Silins et 

al., 2016). The SRWP team studied the undisturbed Star and York Creek watersheds as part of that 

study. The present investigation began in 2015, when three types of contemporary forest harvesting 

(clear-cut with patch retention, strip-shelterwood cut, and partial cut) were applied in the previously 

undisturbed watersheds. Specifically, one approach was implemented in each of three sub-watersheds 

of Star Creek in 2015. York Creek was not harvested and served as a reference watershed for 

comparison. During harvesting, best management practices (BMPs) to minimize surface erosion/runoff 

were utilized. Reference and harvested stream water turbidity and various water quality metrics related 

to NOM (and associated DBP formation potentials) were evaluated during and over the first three years 

after forest harvesting. To the extent possible, additional pre-disturbance data (i.e., collected prior to 

harvesting and reported in the literature) from the study watersheds also were included in this analysis. 

 

1.4 Thesis Organization 

This thesis consists of five chapters. Chapter 2 provides a review of landscape disturbance impacts on 

water quality. Key aspects of water quality and their relationship to drinking water treatability are 

discussed. The chapter concludes with an overview of source water protection strategies and research 

needs. Chapter 3 contains a description of the study area, laboratory methods, and approaches for 

statistical analysis of the data evaluated in this research. The results and discussion are presented in 

Chapter 4. Chapter 5 includes the conclusions, implications, and recommendations drawn from this 

research. A list of cited references follows. Appendix A contains the detailed statistical analyses 

conducted during this study. 
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2.1 Landscape Disturbance Impacts on Water Quality 

Forested watersheds supply ~75% of global freshwater supplies (UNFF, 2016). Healthy forests are 

critical sources of drinking water because they grow in regions with high annual precipitation, produce 

large quantities of runoff with relatively low contaminant concentrations, and store large volumes of 

water (Gartner et al., 2014). The value of natural storage and filtration of water by global forests has 

been estimated at $4.1 trillion (US) (Costanza et al., 2014). The forest canopy, floor vegetation, and 

root systems all contribute to regulating soil erosion and reducing sediment transport to receiving 

waters; they also promote infiltration and groundwater storage. These natural treatment processes 

frequently produce high quality water (Figure 2-1). Thus, maintaining the health of forested watersheds 

is critical to minimizing drinking water treatment costs (Ernst, 2004; Freeman et al., 2008). Ernst (2004) 

found that the cost of drinking water treatment decreases by almost 20% for every 10% increase in 

forest cover, up to 60% cover (Figure 2-2). As might be expected, the removal of land cover can directly 

impact the quantity and quality of water in forested watersheds (Kirshen et al., 2008; Butman & 

Raymond, 2011; Evans et al., 2012). Climate change-exacerbated landscape disturbances, such as 

wildfires and hurricanes, can further threaten surface water quality in these environments (Bladon et 

al., 2014; IPCC, 2018).  

 

Figure 2-1 The role of forests as natural water treatment infrastructure (Adapted from: Briggs & 
Smithson, 1985; Kennedy et al., 1987; Beeson & Doyle, 1995; Brooks et al., 2003; Dudley 
& Stolton, 2003; de la Crétaz & Barten, 2007; Smith et al., 2011; Menese et al., 2015). 
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Figure 2-2 Relationship between watershed forested area and drinking water treatment costs 
(Reproduced from Ernst, 2004 with permission). 

 

Climate change has profoundly impacted the hydrological cycle in many regions of the world (IPCC, 

2018). For example, dramatic changes in the timing and quantity of precipitation in some regions have 

increased rainfall and flooding (Mirza, 2011; IPCC SREX, 2012; IPCC 2018), while other regions are 

experiencing drought (IPCC SREX, 2012; Cook, 2018; IPCC, 2018). Climate change also results in 

hotter and drier atmospheric conditions in some forested areas, and has contributed to the increased 

frequency of larger, more severe wildfires (EPA, 2016). Ironically, the high quality and quantity of 

water from forested, snowmelt-dominated watersheds is amongst the most vulnerable to the deleterious 

impacts of such disturbances (Dale et al., 2001; Kaufmann et al., 2009; Logan & Powell, 2009; Emelko 

et al., 2011; Loehman et al., 2017).  

Wildfires consume ~2.5 million hectares of forests in Canada every year (Natural Resources Canada, 

2017). They can affect watershed hydrology by changing the timing of snow melt and increasing net 

precipitation (Williams et al., 2019). Stream temperatures can also increase post-fire (Wagner et al., 

2014) and significant amounts of sediment (Kunze and Stednick, 2006; Silins et al., 2009; Bladon et 

al., 2014), nutrients (Ranalli, 2004; Bladon et al., 2008; Aiken et al., 2011; Emelko and Sham, 2014), 

heavy metals (Wolf et al., 2008; Kelly et al., 2006), and other contaminants (Kalabokidis, 2000; Crouch 

et al., 2006) can be released to receiving waters. These impacts can propagate downstream and last for 

decades in some cases (Stone et al., 2014; Emelko et al., 2016), leading to more variable water quality 
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(Stone et al., 2011) and cascading impacts on stream ecology (Silins et al., 2009; 2014; Martens et al., 

2019). Severe wildfire can change the structure of soils and create a hydrophobic layer, thereby leading 

to decreased infiltration capacity and increased runoff (DeBano, 1991). These conditions increase the 

transport of sediments and associated contaminants (including nutrients) from hillslopes to receiving 

streams (Hauer & Spencer, 1998; Rhoades et al., 2018). The resulting deterioration and greater 

variability in source water quality can substantially challenge water treatment operations (Emelko & 

Sham, 2014; Shams, 2017) and increase treatment costs (Emelko et al., 2011; Price et al., 2016). The 

most significant challenges for drinking water treatment are increased variability in turbidity and 

aqueous natural organic matter (NOM) (Emelko et al., 2011). The potential effects of wildfire on 

various surface water quality parameters and their maximum acceptable concentrations (MACs) and 

maximum contaminant level (MCL) based on Health Canada and EPA guidelines, respectively, in 

treated drinking water are listed in Table 2-1. Critically, most of these parameters can be readily 

removed by conventional drinking water treatment processes the greatest treatment challenges occur 

when water quality changes quickly (precluding adequate response in a timely matter) or deteriorates 

beyond key thresholds, thereby necessitating additional treatment infrastructure (Emelko et al., 2011).    
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Table 2-1 Water quality parameters that can change as a result of wildfire and their maximum concentrations in treated drinking water based on 
Health Canada and EPA guidelines (Adapted from Smith et al., 2011; Health Canada, 1978; 1979; 1987; 1991; 1994; 1998; 2006; 2008; 2012; 2013; 
2016; 2018; 2019; EPA, 2017; 2018; 2019). 

  Parameter Potential Human Health Risks Natural Source 
Health Canada 
Guideline MAC 

(mg/L) 

EPA 
MCL 

(mg/L) 

H
ea

vy
 M

et
al

s 

Aluminum (Al) Neurotoxic Soils and rocks 

OGa: 0.1 
(conventional) 

0.2 (other types of 
treatment) 

0.05 to 0.2c  

Arsenic (As) Carcinogenic 
Dissolution of minerals, 

industrial and mining 
effluent 

0.01 0.01 

Chromium (Cr) 
Carcinogenic, diffuse hyperplasia 

of the small intestine 
Soils and rocks 0.05 0.1 

Copper (Cu) 
Aesthetic, and gastrointestinal 

tract, and liver and kidney issues 
Soils and rocks 2 (AOb: 1) 1.3 

Iron (Fe) 
Aesthetic, and 

staining of pipes and fittings 
Soils and rocks AO: 0.3 0.3c 

Lead (Pb) 
Toxic (affects the central nervous 

system) 
Dissolution from 
natural sources 

0.005 0.015 
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  Parameter Potential Human Health Risks Natural Source 
Health Canada 
Guideline MAC 

(mg/L) 

EPA 
MCL 

(mg/L) 

H
ea

vy
 M

et
al

s 

Manganese (Mn) Aesthetic Soils and rocks 0.12 (AO: 0.02) 0.05c 

Mercury (Hg) 
Toxicity (kidneys, neurological 
disorders and mental disability 

Atmospheric deposition 
from natural (e.g. 

volcanoes) sources 
0.001 0.002 

Zinc (Zn) 
Aesthetic, and gastrointestinal 
effects at high concentration 

Widely distributed in 
rocks 

AO: 5 
5c (secondary 

standard) 

O
th

er
 in

-o
rg

an
ic

s 
 

Ammonia 
(NH3)/ 

Ammonium 
(NH4

+) 

Corrosion of copper pipes and 
fittings; food source for some 

microorganisms 

Microbial metabolism 
and animal waste 

none 30d  

Barium (Ba) 
Vasoconstriction and peristalsis, 

convulsions and temporary 
paralysis 

Soils and rocks 2 2 

Chloride (Cl ) 
Aesthetic and corrosion of pipes 

and fittings 
Dissolution of salt 

deposits 
AO: 250 250c 

Cyanide 
Highly toxic; thyroid gland and 

nervous system issues 

Biomass burning, 
natural 

decomposition of some 
plants, and production 

by some 
microorganisms 

0.2 0.2 
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  Parameter Potential Human Health Risks Natural Source 
Health Canada 
Guideline MAC 

(mg/L) 

EPA 
MCL 

(mg/L) 

O
th

er
 in

-o
rg

an
ic

s 

Nitrate (NO3
- ) 

and 
Nitrite (NO2

- ) 

Thyroid gland issues  
and methaemoglobinemia in 

children  

Nitrate: oxidation of 
organic waste, 

nitrogen-fixing bacteria 
in soils, or lighting 

strikes.  
 

Nitrite (unstable):  
reduction of nitrate in 

low oxygen water 

45  (for nitrate) 
 

3 (for nitrite) 

45 (for nitrate) 
 

3 (for nitrite) 

Sodium (Na+) Aesthetic (taste) 
Dissolution of salt 

deposits 
AO: 200 30-60d 

Sulfate (SO4
2-) 

Aesthetic;  
Purgative effects and corrosion of 

pipes at high concentrations. 
Minerals AO: 500 250c 

O
rg

an
ic

s 

Total organic 
carbon 
(TOC) 

TOC can carry heavy metals and 
other pollutants to water bodies, 

and lead to formation of 
disinfection by-products 

allochthonous and 
autochthonous sources 

none none 
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  Parameter Potential Human Health Risks Natural Source 
Health Canada 
Guideline MAC 

(mg/L) 

EPA 
MCL 

(mg/L) 

 

Polychlorinated 
dibenzodioxins 

and 
dibenzofurans 

(PCDD/Fs) 

Toxic and Carcinogenic 

May be produced 
during forest fires  

(0.5 28 µg/tonne of 
fuel) 

none 0.0005 

Po
ly

cy
cl

ic
 a

ro
m

at
ic

 h
yd

ro
ca

rb
on

s 
(P

A
H

s)
 

Benzo[a]pyrene Carcinogen to humans 

Formed during 
incomplete combustion 

of organic matter  
(eg., wildfire) 

0.00004 0.0002 

Benzo[b]fluoran
thene 

Probably carcinogen to human 

none none 

benzo[j]fluorant
hene 

none none 

benzo[k]fluoran
thene 

none none 

indeno[1,2,3-
cd] pyrene 

none none 
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  Parameter Potential Human Health Risks Natural Source 
Health Canada 
Guideline MAC 

(mg/L) 

EPA 
MCL 

(mg/L) 

 Total nitrogen 
(TN) 

Excessive algal growth and 
cyanobacterial blooms 

(eutrophication) 

Soil- and sediment-
associated N,  
organic matter 

none none 

 

Total 
phosphorous 

(TP) 

Algal/cyanobacterial blooms 
(eutrophication) 

Soil- and sediment-
associated P,  

organic matter 
none none 

 Total dissolved 
solids (TDS) 

Aesthetic;  
High TDS may also result in 

excessive corrosion of pipes and 
fittings 

Inorganic salts, small 
amounts of organic 

material, clay particles, 
colloidal iron, 

manganese oxides, and 
silica 

AO: 500 500c 

 Color Aesthetic Nutrients and organics AO: 15 TCU 15 TCUc  

 

Turbidity/total 
suspended solids 

(TSS) 

Used to monitor treatment process 
performance; 

May carry adsorbed contaminants 

Landscape and in-
stream erosion; runoff 

0.1 NTU 0.3 NTU 

Notes: 

a: OG: operational guidance, established based on operational guidance. 

b: AO: aesthetic objectives, established based on aesthetic considerations. 

c: Secondary Drinking Water Regulations, these values are non-mandatory and non-enforceable standards.  

d: Taste threshold: Concentration at which the majority of consumers do not notice an adverse taste in drinking water; it is recognized that some sensitive 

individuals may detect a chemical at levels below this threshold. 
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2.1.1 Forest Harvesting Impacts on Water Quality 

The benefits of investment in forest management (i green infrastructure ) compared 

to building or upgrading water treatment equipment ( grey infrastructure ) have been widely 

discussed (Ernst, 2004; Gartner et al., 2014; Warziniack et al., 2016). Consequently, state-of-the-art 

forest health protection approaches, such as forest harvesting, mechanical thinning, and prescribed 

burns, have been proposed (and implemented to some extent)  to increase forest resistance and 

resilience to various landscape disturbances (Steenberg et al., 2011), and reduce risks to drinking water 

supply (Gartner et al., 2014). Several watershed-scale investigations have shown that natural/green 

infrastructure options for achieving water management objectives can be competitive with gray 

infrastructure alternatives by reducing/eliminating the need for operating or upfront capital costs and 

increasing resilience/resistance to natural hazards (Schmidt and Mulligan, 2013). The examples in 

Figure 2-3 illustrate the potential benefits of natural infrastructure investment for communities of all 

sizes in a variety of forested physiographic regions (Gartner et al., 2014). Despite this recognition, the 

impacts of forest management approaches such as forest harvesting on water quality and treatability 

have not been described or quantified. 

  

 

Figure 2-3 Comparison of financial merits of integrated natural and built infrastructure alternatives 
for desired ecological outcomes (Reproduced from Gartner et al., 2014 with permission). 
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The removal of forest cover as a result of harvesting can affect stream water quality in a manner similar 

to that of other natural disturbances (Likens et al., 1970; Meyer & Tate, 1983; Adamson and Hornung, 

1990; Neal et al., 1992; Reynolds et al., 1992; Nieminen, 2004; Laudon et al., 2009; Schelker et al., 

2014). For example, forest harvetsing effects on sediment and turbidity production in aquatic systems 

have been widely reported they are highly variable and depend on watershed conditions such as soils 

and surficial materials, ground cover, hydroclimatic conditions, and topography (Crooke & Hairsine, 

2001; Aust & Blinn, 2004; Neary et al., 2010; Anderson & Lockaby, 2011; Lewis et al., 2019). Elevated 

levels of sediment and turbidity may be harmful for some aquatic organisms, alter habitats, and render 

water supplies unacceptable for recreational uses they also can lead to increased drinking water 

treatment costs and challenges (Emelko et al., 2011). Sediment and turbidity yields often increase after 

harvesting as a result of greater soil erosion by water, ice, and wind; however these increases are usually 

transient because of vegetation regrowth and the implementation of erosion control measures (e.g., 

buffer strips, slash retention, silt fence installation, mulch application, etc.) (Rice et al., 1972; Hatten 

et al., 2018). As would be expected, recovery to pre-disturbance conditions is widely variable and may 

last for years, even decades (Beschta, 1978; Lynch & Corbett, 1990; Madoui et al., 2015; Bartels et al., 

2016). Road networks required for forest harvesting operations are generally recognized as the major 

contributors of sediment/turbidity to receiving streams (Megahan et al., 2001; Sidle et al., 2004; Baird 

et al., 2012; Wang et al., 2013) even though they comprise a small fraction (typically <0.5%) of total 

watershed area (Ziegler & Giambelluca, 1997; Ziegler et al., 2001; Arismendi et al., 2017). 

Corrigan (2017) evaluated the initial impacts of rapid road and road-stream crossing decommissioning 

for minimization of sediment and turbidity impacts on high value headwater streams after a short 

duration (10-month) forest harvesting operation in three headwater sub-catchments in the southwestern 

Rocky Mountains of Alberta, Canada. This work was conducted as part of an ongoing watershed-scale 

study of wildfire, post-fire salvage logging, and contemporary forest harvesting impacts on hydrology, 

water quality, and aquatic ecology (i.e., the Southern Rockies Watershed Project [SRWP]) (Silins et 

al., 2016). Notably, both total suspended solids (TSS) concentrations and turbidity remained low and 

within the range of natural variability in that investigation. Specifically, the impact of the combined 

disturbance of rapid harvest (2015) and subsequent road decommissioning (2016) on total suspended 

solids, wash load concentrations, and sediment ingress was largely negligible, and turbidity was often 

significantly higher at locations just upstream of forest harvesting during both years of post-disturbance 

monitoring (Figure 2-4). These observations were attributed to the collective impacts of 

1) implementation of secondary erosion control Best Management Practices (BMPs) (e.g., silt fences) 
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to roads and bridge crossings, 2) rapid decommissioning of roads and crossings to limit exposure of 

those surfaces to erosion processes, and 3) drier El Niño climatic conditions during the study. 

 

 

Figure 2-4 Distribution of total suspended solids concentrations (TSS; mg/L), and turbidity (NTU) 
upstream (US; white) and downstream (DS; grey) at three stream crossings: McLaren 
(top), Star East (middle), and Star West (bottom). Horizontal lines represent median, 
while upper and lower limits of boxplots indicate 75th and 25th percentile, whiskers 
indicate the 95th and 5th percentile, solid dots indicate outliers. Different letters are 
significantly different (Wilcoxon-sign ranked, p < 0.016) (Reproduced from Corrigan, 
2017 with permission). 
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DOC concentrations in streams before and after several types of natural disturbances (i.e., forest 

harvesting, storm/flood, wildfire, and insect infestation) in forested watersheds are summarized in 

(Figure 2-5). It should be noted that forest harvesting and storm/flood impacts on stream DOC have 

been reported for systems with a relatively wider range of pre-disturbance DOC concentrations than 

those that experienced wildfire or insect infestation. While the reported post-disturbance DOC 

concentrations for forest harvesting- and storm/flood- impacted rivers appear higher than for wildfire- 

and insect infestation-impacted rivers, the relative increase from pre-disturbance concentrations was 

higher for the latter two disturbance types (Figure 2-6). Critically, the data presented in Figure 2-5 were 

compiled to provide a brief perspective on the observations that have been reported in the literature

they do not speak to the frequency and type (e.g., mean values/raw data, collection over a range of flow 

conditions, watershed conditions, etc.) of data collected during any given investigation. Thus, they are 

not intended as a rigorous comparison of disturbance effects on stream DOC, but rather as an overview 

of what has been reported. A more in depth analysis of these numerous investigations was beyond the 

scope of this research. 

 

Figure 2-5 DOC concentrations in streams before and after forest harvesting, storm/flood, wildfire, and 
insect infestation disturbances in forested watersheds (Adapted from Moore, 1989; Neal et 
al., 1992; Hinton et al., 1998; Buffam et al., 2001; Inamdar et al., 2004; Nieminen, 2004; 
Mladenov et al., 2005; Buffam et al., 2007; Tetzlaff et al., 2007; Mast & Clow, 2008; Morel 
et al., 2009; Clow et al.,2011; Emelko et al., 2011; Inamdar et al., 2011; Jeong et al., 2012; 
Mikkelson et al., 2012; Cawley et al., 2014; Musetta-Lambert et al., 2017; Shams, 2018).  
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Figure 2-6 percentage change in DOC concentrations in streams as a result of different landscape 
disturbances in forested watersheds (Adapted from Moore, 1989; Neal et al., 1992; Hinton 
et al., 1998; Buffam et al., 2001; Inamdar et al., 2004; Nieminen, 2004; Mladenov et al., 
2005; Buffam et al., 2007; Tetzlaff et al., 2007; Mast & Clow, 2008; Morel et al., 2009; 
Clow et al.,2011; Emelko et al., 2011; Inamdar et al., 2011; Jeong et al., 2012; Mikkelson 
et al., 2012; Cawley et al., 2014; Musetta-Lambert et al., 2017; Shams, 2018).  

 

The currently available, reported investigations of forest harvesting effects on stream DOC 

concentrations are summarized in Table 2-2 and Table 2-3. Notably, it has been suggested that forest 

harvesting impacts on water quality will depend on watershed geology and hydro-climatology (Kiikkilä 

et al., 2014), as well as the duration and intensity of harvesting activities (Neal et al., 1992; Nieminen, 

2004; Kreutzweiser et al., 2008; Laudon et al., 2009; Bolan et al., 2011), and applied best management 

practices (e.g., erosion control) (Wynn et al., 2000). While many studies have reported deleterious 

effects of forest harvesting on soil moisture, temperature, and infiltration capacity (e.g., Standish et al., 

1988; Wynn et al., 2000; Schelker et al., 2012), others have reported increased soil infiltration capacity 

that enabled DOC penetration to deeper soil layers after harvesting, thereby delaying delivery to 

receiving streams and resulting in decreased stream DOC concentrations (Boyer et al. 1996; Boyer et 

al. 1997; Glaz et al., 2015). Overall, these data show that DOC concentrations are highly variable across 

landscapes and disturbance types. Notably, no investigations reported to date have linked forest 

harvesting impacts on DOC to drinking water treatability. 
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Table 2-2 Summary of studies on forest harvesting impacts on water quality.  

Study Study Area 
Type of 
Stream 

Vegetation Type 

Average 
Watershed 
Elevation 
a.s.l. (m) 

Average 
Watershed 
Area (ha) 

Annual 
Precipitation 

(mm) 

Average 
annual 

temperature 
of the 

Watershed 
(°C) 

Number of 
sites 

Meyer & Tate, 
1983 and 

Webster et al., 
1983 

North 
Carolina, US 

Second 
order 

Deciduous 675 60 180 10 
2  

(1 reference, 
1 disturbed) 

Moore, 1989 New Zealand N/A 
Beech (evergreen 

species at study location) 
300 4.2 2400 12 

8  
(2 reference, 
6 disturbed) 

Moore & 
Jackson, 1989 

New Zealand First order 

Coniferous shrubs, 
replanted with 

Coniferous trees prior to 
sampling period. 

300 10.5 1559 12.5 
3  

(1 reference, 
2 impacted) 

Neal et al., 1992 
mid-Wales, 

UK 
Tributary 

On average 58% 
Coniferous and 42% 
Peat and moorland 

cover. 

530 341 2310 7.5 
3  

(1 reference, 
2 impacted) 

Cummins & 
Farrell, 2003a 

and b 

(western) 
Ireland 

Permanent 
Streams 

Coniferous 118 153 1000 10 
3  

(1 reference, 
2 disturbed) 

Nieminen, 2004 
(southern) 

Finland 

N/A (data 
collected 

from ditch) 
Coniferous 87 6 635 4 

5  
(2 control, 

3 disturbed) 
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Study Study Area 
Type of 
Stream 

Vegetation 
Type 

Average 
Watershed 

Elevation a.s.l. 
(m) 

Average 
Watershed 
Area (ha) 

Annual 
Precipitation 

(mm) 

Average 
annual 

temperature 
of the 

Watershed 
(°C) 

Number of 
sites 

Tetzlaff et al., 
2007 

(central) 
Scotland 

Third order Coniferous 167 115 1978 N/A 2 (disturbed) 

Löfgren et al., 
2009 

(northern) 
Sweden 

First order 
(headwaters) 

Coniferous 281 76 500 0.6 
4 ( 2 reference, 

2 disturbed) 

Laudon et al., 
2009 

(northern) 
Sweden 

First order 
(headwaters) 

Coniferous 281 76 500 0.6 
4 ( 2 reference, 

2 disturbed) 

Schelker et al, 
2012 

(northern) 
Sweden 

First order 
(headwaters) 

Coniferous 281 51 500 0.6 
4 (2 reference, 

2 disturbed) 

Cawley et al., 
2014 

New 
Hampshire, US 

First order Deciduous 497 29.5 1400 4.5 
9 (5 references, 

4 disturbed) 

Eklöf et al., 
2014 

(northern) 
Sweden 

N/A 
Coniferous and 

Deciduous  
(near streams) 

300 35 631 1.8 
3 (1 reference, 

2 disturbed) 

Kiikkilä et al., 
2014 

(eastern) 
Finland 

N/A (data 
collected from 

ditch) 
Coniferous 200 3.1 654 2.1 

8 (2 reference, 
6 impacted) 

Palviainen et 
al., 2014 

(eastern) 
Finland 

First order 

84-90% 
Coniferous and 

10-16% 
Deciduous 

192 93.3 564 1.9 
4 (1 reference, 

3 disturbed) 
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Study Study Area 
Type of 
Stream 

Vegetation 
Type 

Average 
Watershed 

Elevation a.s.l. 
(m) 

Average 
Watershed 
Area (ha) 

Annual 
Precipitation 

(mm) 

Average 
annual 

temperature 
of the 

Watershed 
(°C) 

Number of 
sites 

Schelker et al., 
2014 

(northern) 
Sweden 

Both sampling 
locations were 
parts of Balan 

River 

Coniferous and 
Deciduous  

(near streams) 
265 1580 700 6 

2 (downstream 
sites) 

Nieminen et 
al., 2015 

(southern, 
eastern, and 

south-central) 
Finland 

N/A (data 
collected for 

ditch) 
Coniferous 130 4.4 630 3.5 

22  
(5 reference, 
17 disturbed) 

Musetta-
Lambert et al., 

2017 

Ontario, 
Canada (Boreal 

Shield 
ecozone) 

Frist order 
(headwaters) 

Deciduous and 
Coniferous 

396 345 1000 2 
25  

(8 reference, 
17 disturbed) 
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Table 2-3 Summary of forest harvesting impacts on stream DOC concentrations. 

Study 
Forest 

Management 
Practices 

Sampling 
Period 

Historical Land 
Disturbance 

Type of 
Treatment 

Years of 
impact 

% of 
Impact 

Regeneration 

disturbed 
DOC 
range 
(ppm) 

undisturbed 
DOC range 

(ppm) 

Average 
DOC 

change 
(%) 

Moore & 
Jackson, 

1989 
Yes 

Jan- Dec 
1986 

Deciduous 
forests were 
clear cut for 

farming in 19 
century then left 

and became 
scrub dominated 

forest. 

Reference N/A 0 N/A 30-50 

30-50 

N/A 

Crushed+ burned 

Oct 
1981+ 
Mar 
1982 

68 Apr-Jun 1982 25-45 -13 

Crushed+ burned 
Oct 

1984+ 
Feb 1985 

>80 Aug 1985 10-40 -38 

Neal et 
al., 1992 

Yes 
May 1983- 

1989 

The Watersheds 
were replanted 

forest from 1937 
to 1964 

Reference N/A 0 N/A 0.8-2.8 

0.8-2.2 

N/A 

Clear cut 
1985- 
1988 

>80 after 1989 1-2 0 

Clear cut 
1985- 
1988 

>80 after 1989 1-1.9 -3 

Cummins 
& Farrell, 
2003a and 

b 

Yes 1996-2000 

Trees on study 
locations were 
planted from 
1955-1977 

Reference N/A 0 N/A 50-70 

50-70 

N/A 

Clear cut  1999 33 after 1999 40-100 6.5 

Clear cut+ 
Fertilizing  

1995 67 after 1997 80-100 29 
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Study 
Forest 

Management 
Practices 

Sampling 
Period 

Historical Land 
Disturbance 

Type of 
Treatment 

Years of 
impact 

% of 
Impact 

Regeneration 

Disturbed 
DOC 
range 
(mg/L) 

Undisturbed 
DOC range 

(mg/L) 

Average 
DOC 

change 
(%) 

Nieminen, 
2004 

Yes  
Nov 1992- 
Dec 1999 

Peatland 
drainage on all 

sites during early 
20th Century 

Reference N/A 0 N/A 7-49 

7-49 

N/A 

Clear cut 1 1994 40 Naturally 12-21 60 

Clear cut 2 1994 72 
Artificially 

(1998-1999) 
6.5-16.5 85 

Clear cut 3 1996 40 
Artificially 

(1998-1999) 
4-6.5 47 

Tetzlaff et 
al., 2007 

Yes 1988-2005 

39% of 
Watershed was 

cut and replanted 
Partial cut 1 

2003- 
2005 

37 No 6-8 4-6 50 

23% of 
Watershed was 
partially cut and 

Partial cut 2 
2003- 
2005 

23 No 10-16 5-14 35 

Löfgren et 
al., 2009 

Yes 
Jun to Oct 

2007 
N/A 

Reference N/A 0 N/A 15-19 

15-19 

N/A 

Clear cut 2006 30 No 17-20 13.5 

Clear cut + 
Riparian  

2006 73 No 17-19 10.5 

Laudon et 
al., 2009 

Yes 
Jun to Oct 

2007 
N/A 

Reference N/A 0 N/A 7-47 

7-47 

N/A 

Clear cut 2006 30 No 10-52 23 

Clear cut + 
Riparian  

2006 73 No 10-52 23 
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Study 
Forest 

Management 
Practices 

Sampling 
Period 

Historical Land 
Disturbance 

Type of 
Treatment 

Years of 
impact 

% of 
Impact 

Regeneration 

Disturbed 
DOC 
range 
(mg/L) 

Undisturbed 
DOC range 

(mg/L) 

Average 
DOC 

change 
(%) 

Schelker 
et al, 2012 

Yes 
2004- 
2009 

N/A 

Reference N/A 0 N/A 18-27 

18-27 

N/A 

Clear cut 2006 64 No 16-21 3.7- 30.4 

Clear cut + 
Riparian  

2006 88 No 18-32 18- 72.1 

Cawley et 
al., 2014 

Yes 
May 2010- 
Apr 2011 

 Second 
generation trees 
(locations clear-
cut in 1900-17 
and affected by 

hurricane in 
1938) 

Reference N/A 0         

Devegitated 
1965-
1968 

N/A No 1-2.5 2-10 -23 

Progressive Strip-
cut 

1970-
1974 

N/A No 1-2 1.5-2.5 -10 

Whole tree harvest 
1983-
1984 

N/A No 1.5-3 1.5-5 -9 

Calcium addition 1999 N/A No 2-3.5 1.5-3 25 

Eklöf et 
al., 2014 

Yes 
Mar 2005- 

2011 
N/A 

Reference N/A 0 N/A N/A N/A N/A 

Clear cut 2006 64 No 18-21 15-16 14- 27 
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Study 
Forest 

Management 
Practices 

Sampling 
Period 

Historical Land 
Disturbance 

Type of 
Treatment 

Years of 
impact 

% of 
Impact 

Regeneration 

Disturbed 
DOC 
range 
(mg/L) 

Undisturbed 
DOC range 

(mg/L) 

Average 
DOC 

change 
(%) 

Kiikkilä et 
al., 2014 

No 
2008- 
2010 

Drainage of 
peatlands in 

1960s 

Reference N/A N/A N/A 7-29 11-32 N/A 

WTH+ stumps 1 2009 100 2011 39-59 31-51 17 

WTH+ stumps 2 2009 31 2011 25-46 18-26 68 

WTH+ stumps 3 2009 71 2011 14-44 13-23 33 

WTH+ stumps 4 2009 41 2011 29-69 15-37 108 

Stem only harvest 
1 

2009 23 2011 27-57 15-35 48 

Stem only harvest 
2 

2009 35 2011 29-85 16-64 38 

Palviainen 
et al., 
2014 

Yes 

Oct 1991- 
Dec 2010 

N/A 

Reference   0         

Oct 1991- 
Dec 2010 

Clear-cut+ soil 
Prep 

1996 34 2002 5-6.5 5-7 -17 

Oct 1991- 
Dec 2002 

Clear-cut+ soil 
Prep 

1996 11 2002 27-28 27-28 0.4 to 1 

Oct 1991- 
Dec 2010 

Clear-cut+ soil 
Prep 

2000 8 2002 18-24 18-24 N.S 
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Study 
Forest 

Management 
Practices 

Sampling 
Period 

Historical Land 
Disturbance 

Type of 
Treatment 

Years of 
impact 

% of 
Impact 

Regeneration 

Disturbed 
DOC 
range 
(mg/L) 

Undisturbed 
DOC range 

(mg/L) 

Average 
DOC 

change 
(%) 

Schelker 
et al., 
2014 

Yes  
2004- 
2012 

N/A 

Smaller Watershed 2006 18 

No 

5-47 17-24 13.5 

Bigger Watershed 2006 11 5-36  -6 

Nieminen 
et al., 
2015 

Yes 

2007-2011 

N/A 

Reference 1  N/A 0   23-32 26-48 N/A 

2007-2011 WTH 1 
2009-
2010 

46   25-62 17-48 53 

2007-2011 
Stem only harvest 

1 
2009-
2010 

81   33-61 25-38 41 

2007- 
2012 

Reference 2 N/A 0   14-25 19-23 N/A 

2007- 
2012 

Stem only harvest 
2 

2009-
2010 

23 2011 30-44 23-27 37 

2007- 
2012 

WTH+ Stump 2  
2009-
2010 

66   17-57 16-44 44 

2008- 
2012 

Reference 3 N/A 0   65-75 65-75 N/A 

2008- 
2012 

WTH 3 
2009-
2010 

100 2011 65-120 57-89 26 

2008- 
2012 

Stem only harvest 
3 

2009-
2010 

100 2011 55-110 52-89 24 

2008- 
2012 

WTH+ Stump 3  
2009-
2010 

100   63-112 62-72 16 
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Study 
Forest 

Management 
Practices 

Sampling 
Period 

Historical Land 
Disturbance 

Type of 
Treatment 

Years of 
impact 

% of 
Impact 

Regeneration 

Disturbed 
DOC 
range 
(mg/L) 

Undisturbed 
DOC range 

(mg/L) 

Average 
DOC 

change 
(%) 

Musetta-
Lambert 

et al., 
2017 

Yes 

Fall 2010 
and 

Summer 
2011 

No disturbance 
at least since 50 
years ago except 

for harvested 
sites that were 
clear cut 7-17 

years prior to the 
study. 

Reference N/A 0 N/A 10-12 

10-12 

  

Burned 1999 84 No 7-10 -27 

Clear cut+ Riparian 
(30m) 

1993-
2003 

48 No 8-11 -20 
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2.2 Natural Organic Matter 

Natural organic matter (NOM) is a complex, heterogeneous mixture of organic compounds present in 

all aquatic systems (Egeberg et al., 1999). Aqueous NOM structure is influenced by its source, which 

may be either allochthonous or autochthonous (Thurman, 1985; McDowell & Likens, 1988; Aiken & 

Cotsaris, 1995). While the former originates from decomposition of soil organic matter and plants, 

autochthonous NOM arises from photosynthetic activities and biological processes (Aiken and 

Cotsaris, 1995; Donahue et al., 1998; McKnight et al., 2001). The availability and characteristics of 

NOM in aquatic systems are influenced by natural and anthropogenic landscape disturbances (Meyer 

& Tate, 1983; Williams et al., 2010; Emelko et al., 2011; Schelker et al., 2013; Pagano et al., 2014; 

Mann et al., 2014). Changes in the quantity and chemical properties of NOM also can significantly 

challenge drinking water treatment by affecting suspended particle surface charge and increasing 

coagulant demand, producing unpleasant taste and odor compounds, and mobilizing heavy metals and 

organic pollutants (Stumm & Morgan, 1981; Sugai & Burrell, 1984; Baun & Christensen, 2004; Sharp 

et al., 2006; Matilainen et al.,, 2010). NOM also includes precursor materials required for the formation 

of disinfection by-products (DBPs) of potential health significance and can lead to conditions that 

promote bacterial regrowth in drinking water distribution systems (Edzwald and Tobiason, 1999; Kitis 

et al., 2002; Leenheer and Croué, 2003; Liang and Singer, 2003; Ates et al., 2007; Matilainen et 

al.,2010; Emelko et al., 2011; Zhang et al., 2015; Sillanpää et al., 2018). Drinking water treatment 

challenges associated with increases in source water NOM are illustrated in Figure 2-7.  
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Figure 2-7 Potential implications of changes in NOM concentration to drinking water treatability 
(Adapted from Emelko et al., 2011). 

 

Aqueous NOM is most frequently quantified as dissolved organic carbon (DOC) concentration. DOC 

can be classified into two operationally defined fractions: hydrophilic and hydrophobic (Leenheer, 

1981; Giabbai et al., 1983; Kitis et al., 2002; Croué, 2004; Panyapinyopol et al., 2005; Sharp et al., 

2006; Chong Soh et al., 2008; Filella, 2009; Matilainen et al., 2011; Pan et al., 2016). Hydrophilic 

DOC is described as organic compounds with aliphatic carbon with lower molecular weight, while 

hydrophobic fractions of NOM are defined as non-biodegradable aromatic compounds (Leenheer & 

Huffman, 1979; Aiken & Cotsaris, 1995; Krasner et al., 1996). A DOC classification scheme is 

presented in Figure 2-8. 
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Figure 2-8 Classification of dissolved organic compounds in water (Adapted from Leenheer & 
Huffman, 1979). 

 

NOM removal during drinking water treatment is highly dependent on its chemical structure and 

composition (Edzwald, 1993; Matilainen et al., 2011; Ji Won et al., 2016). Different techniques have 

been developed to categorize and characterize NOM based on structural similarities such as size, 

weight, or aromaticity. Shams (2018) reviewed these methods comprehensively. DOC concentration, 

ultraviolet absorbance, specific ultraviolet absorbance, and fractionation based on size using liquid 

chromatography-organic carbon detection (LC-OCD) are among the most common aqueous NOM 

characterization techniques a brief discussion of each of these follows. More detailed reviews of 

NOM characterization methods are available in Leenheer et al. (2003) and Shams (2018). 

 

2.2.1 TOC and DOC 

Total organic carbon (TOC) refers to the sum of particulate and dissolved forms of organic matter in 

water; therefore, it is often used interchangeably with NOM (Croue et al., 1999). Dissolved organic 
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carbon (DOC) is operationally defined as the fraction of total organic carbon (TOC) that passes through 

a 0.45 um filter; the fraction remaining on the filter is referred to as particulate organic carbon (POC) 

(Kolka et al., 2008; APHA, 2017). In natural waters, the concentration of DOC is usually higher than 

POC; often DOC comprises up to 90% of TOC or more (Thurman, 1985). DOC is also more challenging 

to remove during drinking water treatment. The concentration of DOC in drinking water sources can 

range from less than 0.1 mg/L to well above 25 mg/L (APHA, 2017). DOC analyzers oxidize organic 

carbon to CO2 and DOC concentration is quantified using either a high-temperature combustion method 

(HTCM) (Method 5310 B) or persulfate-ultraviolet or heated-persulfate oxidation method (Method 

5310 C) (APHA, 2017). In the HTCM (Method 5310 B),  inorganic carbon (IC) is removed from water 

after acidification by purging with an inert gas. The non-purgable organic carbon (NPOC) is then 

oxidized and the produced CO2 is measured. While this method is effective in oxidizing resistant 

compounds, nonvolatile residues can accumulate in the analyzer (Wangersky, 1993; Bolan et al., 1996; 

APHA, 2017). In contrast, in Method 5310 C, samples are heated and a chemical catalyst, which may 

be used in combination with UV light, is utilized to oxidize organic carbon (APHA, 2017). High 

concentrations of aqueous IC can interfere when using this method of DOC analysis, however 

(Wangersky, 1993; Bolan et al., 1996; APHA, 2017).  

 

2.2.1  UV254  

Organic compounds can absorb light over a wide range of visible and ultraviolet wavelengths from 190 

to 800 nm (Edzwald et al., 1985; Korshin et al., 1997; Spencer et al., 2007). Aromatic organic 

compounds are of particular environmental concern because they are highly reactive with disinfectants 

and other oxidants typically used during drinking water treatment (EPA, 2012). Specifically, they are 

the main precursors of carbonaceous DBPs of potential health significance, including trihalomethanes 

(THMs) and haloacetic acids (HAAs) (EPA, 2012). Aromatic and unsaturated organic compounds 

absorb ultraviolet light at a wavelength of 253.7 nm; thus, UV254 is used as a simple indicator of NOM 

and its character. Based on Beer-Lambert`s law (Equation 2-1), the UV absorbance of any component 

in water is directly related to the concentration of that compound in water:  

                                                                                               Equation 2-1 

where:  a is the absorption coefficient, 
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b is the length of cuvette, and 

C is the concentration of any compound. 

The simplicity and low cost of UV measurement has made UV254, expressed as either UV 

absorbance (UVA) per cm (cm-1) or UV transmittance (UVT) percent (%) a routine method for 

monitoring NOM changes in natural systems and treatment plants (Edzwald et al., 1985; Korshin et al., 

1997; Korshin et al., 2009). 

 

2.2.2 SUVA 

The nature and chemical composition of DOC generally dictates the chemicals and treatment processes 

that are required for its removal (Edzwald, 1993; Edzwald & Tobiason, 1999). Specific ultraviolet 

absorbance (SUVA; expressed as L/mg.m) is calculated by dividing UV254 by DOC concentration. 

Thus, it is an indicator of aqueous NOM aromaticity and reactivity (Edzwald, 1993) and can inform 

strategies for NOM removal by coagulation during drinking water treatment (Edzwald & Tobiason, 

1999). Table 2-4 represents the generalized relationship between SUVA and the potential for aqueous 

NOM removal by coagulation. Generally, NOM in waters with high SUVA (>4 L/mg.m) is considered 

to be mostly composed of hydrophobic compounds; therefore, coagulation is expected to be an effective 

method for NOM removal (MWH, 2012). Despite this generalized trend, hydrophilic fractions of 

aqueous NOM, which are not readily removed by coagulation, also can result in high SUVA (Edzwald, 

1993). It is likely for such reasons that a good correlation between SUVA and DBP formation potential 

(DBP-FP) has been reported in some investigations (Kitis et al., 2002; Wassink et al., 2011), but not 

others (Goslan et al., 2002; Ates et al., 2007; Bougeard et al., 2010). Thus, SUVA is not an ideal 

measure of NOM reactivity, especially as related to DBP formation.   
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Table 2-4 Relationship between SUVA and NOM removal through coagulation (Adapted from Edzwald & 
Tobiason, 1999). 

SUVA 
(L/mg.m) 

NOM composition Coagulation Potential NOM removal 

<2 
Mostly non-humics,  

low hydrophobicity, and  
low molecular weight compounds 

NOM has 
little control 

Poor  NOM removal  
(<25% for alum,  

slightly greater for ferric) 

2-4 

Mix of aquatic humics and non-
humics, mixture of hydrophilic and 

hydrophobic compounds,  
mixture of molecular weights  

 NOM has 
some 

influence 

Fair to good NOM removal  
(25-50% for alum,  

slightly higher for ferric) 

>4 
Mostly aquatic humics,  
highly hydrophobic, and 

 high molecular weight compounds 

NOM 
controls 

coagulation 

Good NOM removal  
(>50% for alum,  

slightly greater for ferric) 

 

 

2.2.3 Carbon fractionation by size using LC-OCD 

Carbon fractionation using liquid chromatography-organic carbon detection (LC-OCD) is used to 

characterize aqueous NOM according to different size fractions  (Huber et al., 2011; Wassink et al., 

2011; Peiris et al., 2013; Mckie et al., 2015; Rutlidge et al., 2015; Chen et al., 2016). This occurs via 

size exclusion, ion interaction, and hydrophobic interaction; however, size exclusion is considered the 

dominant mechanism of separation. In size-exclusion chromatography, different sizes of molecules 

have different retention times due to variation in the degree of steric interactions and ability to diffuse 

within the pores in the stationary phase of a chromatography column (Barth & Boyes, 1992). The mass 

of organic carbon is determined using both UV light and an organic carbon detector (Huber et al., 2011) 

(Figure 2-9). The LC-OCD separates NOM into five method-defined groups that include biopolymers, 

humic substances, building blocks, low molecular weight (LMW) acids, and LMW neutrals (associated 

with distribution system instability) (Huber et al., 2011) (Figure 2-10). During drinking water 

treatment, biopolymers are associated with membrane fouling ( (Hallé et al., 2009; Kimura et al., 2014), 
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and humic substances are reported to be the main precursors of disinfection by-products (Nikolaou et 

al., 2004; Nie et al., 2010). Moreover, the presence of low molecular weight neutrals is associated with 

bacterial regrowth, and the formation of biofilm in distribution system (Hem & Efraimsen, 2001; 

Hammes et al., 2007).  

 

 

Figure 2-9 LC-OCD flow scheme of Model 8 (Reproduced from Huber et al., 2011 with permission). 
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Figure 2-10 Chromatograph of pre-defined NOM fractions measured by LC-OCD following the 
method of Huber (2011). 

 

2.3 Disinfection By-Product Formation Potentials (DBP-FPs) 

Disinfection is a component of drinking water treatment that is critical to the protection of public health 

from waterborne diseases (Carrell, 1971). While, chemical disinfectants (chlorine, chloramines, 

chlorine dioxide, and ozone) inactivate waterborne pathogens, their reactivity with different types of 

organic matter and/or anthropogenic contaminants found in source waters regularly results in the 

formation of disinfection by-products (DBPs), some of which can be cytotoxic or possibly carcinogenic 

(Singer, 1999; Plewa et al., 2002; Richardson & Postig, 2012). The concentration and type of organic 

matter or other precursors in water, pH, temperature, type of disinfectant, disinfectant dose, and contact 

time affect DBP formation (Rodriguez & Sérodes, 2001; Kim et al., 2003; Grellier et al., 2015; Tsitsifli 

& Kanakoudis, 2018). To date, over 600 DBPs have been identified (Richardson et al., 2007); however, 

their diverse structure has hindered the identification of new DBPs and the evaluation of associated 

toxicological risks to human health (Weinberg, 1999; DWI, 2012). Regulatory agencies around the 
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world have imposed regulations to limit the formation of some of the known DBPs in drinking water 

(DWI, 2012; Health Canada, 2009, and 2017; USEPA, 2015; NHMRC, 2018). Table 2-6 lists the 

maximum concentrations of regulated DBPs based on Health Canada and EPA guidelines. While some 

studies found a positive correlation between the exposure to DBPs in drinking water and cancer (Lynch 

et al., 1989; Morris et al., 1992; King & Marrett, 1996), others have reported no evidence of this 

association (Ranmuthugala et al., 2003; Villanueva et al., 2004; Rahman et al., 2010). Notably, most 

of the investigations that have concluded carcinogenicity of certain DBPs have neglected other 

influential factors (e.g., dietary and smoking habits, sex, ethnicity, type 2 diabetes, arsenic, aromatic 

amines, and occupation) these methodological limitations have resulted in the rejection of 

characterization of the use of chlorinated drinking water as carcinogenic to humans (IARC, 1991). A 

recent investigation of trends in the incidence of bladder cancer in eight countries over the 45 years 

since THMs were detected in chlorinated water concluded that smoking is a predominant risk factor 

-related bladder cancer risks remain questionable and likely small compared to 

 & Amato, 2019). Nonetheless, THMs and HAAs are considered indicators of 

potentially harmful compounds that can be formed in chlorinated water that contains NOM precursors 

(WHO, 2017); therefore, they are regulated in finished (i.e., treated) water (Health Canada, 2009, and 

2017; USEPA, 2015). Several methods have been developed to assess DBP formation potential in 

various situations. Discussed below, these methods inform different aspects of drinking water 

treatment; thus, they do not yield equivalent results.  

DBP formation potential (DBP-FP) tests are designed to measure the maximum formation of DBPs that 

can occur in a given water matrix (APHA, 2017). In this test, excessive amounts of chlorine (i.e., hyper-

chlorination at levels that would not be typically encountered during regular drinking water treatment) 

are added to water samples at pH 7, and the concentration of DBPs is measured after 7 days (APHA, 

2017). This analysis is especially relevant to source water evaluation as, relative to other methods, it 

better indicates the maximum DBP formation that could occur from water quality changes resulting 

from shifts in biogeochemical processes, such as those that may be associated with landscape 

disturbances (Wei et al., 2008; Karapinar et al., 2014; Uyak & Demirbas, 2014; Sutherland et al., 2015). 

In streams and rivers that serves as drinking water sources, total DBP-FPs ranging from less than 20 

µg/L to above 700 µg/L have been reported (Table 2-5). Notably, the efficacy of different water 

treatment processes in removing DBP precursors is highly dependant on the type of NOM and its 

molecular weight (Collins et al., 1985; Chadik & Amy, 1987). Ahmad & Husain (2015) reported ranges 
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of FPs for regulated DBPs in various drinking water sources across the provinces of Canada (Table 

2-7). When considering these values (and the associated treatment needs that they suggest), it is critical 

to recognize that DBP-FP analyses are conducted at conditions that are not typically encountered during 

regular drinking water treatment; thus, they inform the types of treatment needs and DBP formation 

risks (especially if shock chlorination is required), but not typical DBP formation during drinking water 

treatment. Other methods (discussed below) are better predictors of DBP formation in plants at typical 

operating conditions. 

Table 2-5 Trihalomethanes formation potentials (THM-FPs) reported for streams and rivers that serve 
as drinking water sources. 

Study Location Source DOC  UV254  THM-FP HAA-FP  
Test 

conditions 

Collins et 
al., 1985 

Canton, 
NY, US 

Grasse 
River 

7.71 31.4 716  - 

pH= 7; 
reaction 
time= 7 
days; 

temperature= 
20 °C 

Las Vegas, 
NV, US 

Colorado 
River 

3.02 4.5 167  - 

LaVerne, 
CA, US 

Colorado 
River 

3.15 4.3 164  - 

Orange 
Co., CA, 

US 

Colorado 
River 

3.13 4.4 167  - 

Anaheim, 
CA, US 

Colorado 
River 

3.42 4.5 152  - 

Oceanside, 
CA, US 

Colorado 
River 

3.28 4.5 142  - 

Chadik & 
Amy, 1987 

MS, US 
Pearl 
River 

5.62 13.6 284  - 
pH= 7; 
reaction 
time= 7 
days; 

temperature= 
20 °C 

NY, US 
Grasse 
River 

6.56 28.8 475  - 

Rathbun, 
1996 

US 

Mississipi 
River 

5.9   576  - pH= 7; 
reaction 
time= 7 
days; 

temperature= 
25 °C 

Missouri 
River 

5.3   468  - 

Ohio 
River 

5   460  - 
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Study Location Source DOC UV254 THM-FP HAA-FP 
Test 

conditions 

Martin-
Mousset et 
al., 1997 

France 

Charente 2.8 5.7 109 pH= 7.5; 
reaction 
time= 3 
days; 

temperature= 
20 °C 

Loire 3.9 8.4 211 

Mayenne 4.2 14 155 

Sevre 
Nantaise 

5.3 15 170 

Garvey & 
Tobiason, 
2003 

Boston, 
MA, US 

Cadwell 
Creek 

2.05 6.1 188 -

pH= 7; 
reaction 
time= 7 
days; 
temperature= 
20 °C 

Purgee 
Brook 

1.73 4.3 131 -

Atherton 
Brook 

2.63 8.6 246 -

West 
Branch 
Swift 
River 

2.92 9.4 257 -

Dickey 
Brook 

3.86 14.5 365 -

Prescott 
Breek 

2.89 9.8 256 -

Underhill 
Brook 

3.08 10.5 291 -

Hop 
Brook 

3.18 10.8 251 -

Middle 
Branch 
Swift 
River 

4.93 17.3 436 -

West 
Branch 
Fever 
Brook 

7.74 28.3 659 -
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Study Location Source DOC UV254 THM-FP HAA-FP 
Test 

conditions 

Garvey & 
Tobiason, 

2003 
 

East 
Branch 
Fever 
Brook 

5.8 20.9 537 - 

 
East 

Branch 
Swift 
River 

4.72 16.1 447 - 

Kim et al., 
2003 

South 
Korea 

Han River 2.35 7.3 56 11 
pH= 5.5, 7, 
raw water 

pH; reaction 
time= 2 
days; 

temperature= 
20 °C 

Youngsan 
River 

2.35 7.2 59 19 

Nackdong 
River 

5.12 11.6 103 9 

van 
Leeuwen et 

al., 2005 
Australia Middle 

River 
13.77 - 99 - 

pH= 5 
(HAA-FP), 7 
(THM-FP); 

reaction 
time= 7 
days; 

temperature= 
25 °C 

Xu et al., 
2007 

Shanghai, 
China 

Huangpu 
River 

6.45 14.55 433 312 

pH= 7; 
reaction 
time= 7 
days; 

temperature= 
25 °C 

Hong et 
al., 2008 

China Dongjiang 
River 

3.82 4.44 15 17 

pH= 5 
(HAA-FP), 7 
(THM-FP); 

reaction 
time= 7 
days; 

temperature= 
20 °C 
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Study Location Source DOC UV THM-FP HAA-FP
Test 

conditions

Jung & 
Son, 2008 

South 
Korea 

Nakdong 
River 

2.86 6.35 111 112 

pH= 8; 
reaction 
time= 1 
days; 

temperature= 
20 °C 

Lantagne et 
al., 2008 

Kenya 
Not 

specified 
3 - 92 - 

pH= 7; 
reaction 
time= 7 
days; 

temperature= 
20 °C 

Chen & 
Westerhoff, 

2010 
US 11 Rivers  6.98 13 244 282 

pH= 8.2; 
reaction 

time= 1 days; 
temperature= 

25 °C 

Bush, 
2008; 

Chowdhury 
et al., 2008 

Kamloops, 
BC, Ca 

South 
Thompso
n River 

2.6 2.6 26 65 

pH= 5 (HAA-
FP), 7 (THM-
FP); reaction 
time= 7 days; 
temperature= 

25 °C 

Zhao et al., 
2013 

China 
Songhua 

River 
4.1 12.3 164 382 

pH= 7; 
reaction 
time= 7 
days; 

temperature= 
25 °C 
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Table 2-6 Maximum concentration of regulated DBPs in drinking water (Adapted from Health Canada, 2009; 2017; EPA, 2016; 2019). 

Main Group Including Compounds Disinfectant Health Effect 
Health 
Canada 

MAC (µg/L) 

EPA 
MCL 
(µg/L) 

Comments 

Trihalomethanes 
(THMs) 

Chloroform Chlorine Liver problems, 
kidney and colorectal 

cancers 
 
 
 

100 80 Organic DBP 
Bromodichloromethane  Chlorine 

Bromoform*  Chlorine/ Ozone 

Dibromochloromethane Chlorine 

Haloacetic Acids 
(HAA) 

Bromochloroacetic Acid  Chlorine Liver cancer, other 
organ cancer, liver, 
body, kidney and 

testes weights effects  
 
 
 
 
 

80 60 Organic DBP 

Bromodichloroacetic Acid  Chlorine 

Chlorodibromoacetic Acid Chlorine 

Dibromoacetic Acid  Chlorine 

Monobromoacetic Acid  Chlorine 

Tribromoacetic Acid Chlorine 
N-

Nitrosodimethyla
mine (NDMA)  

Chloramine Liver cancer 0.04 none Organic DBP 

Bromate  Ozone Renal cell tumor 10 10 Inorganic DBP 

Chlorate  Chlorine dioxide Thyroid gland effects 1000 none Inorganic DBP 

Chlorite  Chlorine dioxide 

Neurobehavioural 
effects, decreased 

absolute liver 
weights, altered liver 

weights 

1000 1000 Inorganic DBP 

* Health Canada has a MAC level of 16 µg/L for bromoform.
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Table 2-7 Ranges of THM- and HAA-FP in Canadian drinking water sources (data collected from the 
inlet of drinking water treatment plants, adapted from Ahmad & Husain, 2015). 

Province Period 
Number of 
Treatment 

Plants 

THM-FP (µg/L) HAA-FP (µg/L) 

mean Range SD mean Range SD 

AB 2000-05 449 61.5 0.6-447 66 38.4 3-141 39 

ON 2000-04 179 40.9 0.5-343 39.9 28.6 0.4-244 28.9 

QC 2002-06 622 42.5 0-565 53.3 41.2 3.9-166 36.2 

MB 2001-06 74 164.9 0.7-640 110.9 72.4 12-249 76.1 

SK 2002-06 204 95.3 4-445 71.8 51.8 1-238 70.8 

BC 2001-05 13 38.4 9-116 22.7 54.4 11-117 21 

NS 1999-04 24 110.2 2-640 84.9 116.2 8-602 119 

NL 2001-07 467 77.3 0-470 79.5 107.8 0-507.5 103 

NB 1993 4 62.1 4.1-146 45 85.7 10-398 96.1 

PEI 2003-06 - 3.5 1.4-5.9 0.96       

 

The uniform formation conditions (UFC) test for DBP formation was introduced as a variation of the 

FP test in which a much lower chlorine dose is applied to be more representative of typical chlorination 

conditions that occur in drinking water treatment plants (Summers et al., 1996). Thus, this test (DBP-

UFC) enables comparison of DBP formation between water treatment plants at consistent and realistic 

chlorination conditions. The incubation time during this test is 24±1 h, samples are buffered at pH 8±0.2 

and they are stored at 20±1°C. As would be expected, DBP concentrations obtained from the DBP-

UFC test are typically lower values than those obtained using the DBP-FP test, due to the higher initial 

chlorine dose and longer incubation time in FP test (Baribeau, 2006; DiCicco, 2015).  

To predict DBP formation in distribution systems, a simulated distribution system (SDS) method also 

was developed (Koch et al., 1991; APHA, 2017). The conditions of this test (free chlorine residual, 

incubation temperature, and contact time) are chosen to simulate an actual distribution system and 

estimate the concentration of potentially formed DBPs at the consumers tap (Koch et al., 1991; APHA, 

2017). Thus, this test delivers DBP formation information that is the most specific to a given system. 
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Notably, DBP-SDS is evaluated to represent a point in the distribution system with the highest 

probability of DBP formation, and the measured values should be below the regulatory or suggested 

guideline values (Table 2-6) (Health Canada, 2009; APHA, 2017).  
 

 

2.4 Source Water Protection Plans 

To safeguard public health from waterborne diseases, it is critical to protect drinking water from 

contamination from its source to the tap. The multi-barrier approach was developed to achieve this 

goal it includes: source protection, treatment, distribution, monitoring, and response (CCME, 2004) 

(Figure 2-11). Source water protection (SWP) plans are designed to protect current and future drinking 

water sources from contamination and overuse to protect human and ecosystem health (Blundell et al., 

2004). SWP strategies involve identifying risks to source water, recognizing the most vulnerable areas 

to contamination, and planning to minimize the discharge of contaminants to water sources (CCME, 

2004; Ivey et al., 2006). In addition to protecting the quality and quantity of water, the implementation 

of SWP strategies can significantly decrease the costs of drinkng water treatment (NRC (U.S.), 2000). 

It has been suggested that SWP costs six to more than 20 times less than treatment of contaminated 

water (Timmer et al., 2007; Patrick, 2011). However, increasing pressures from climate change-

exacerbated, severe landscape disturbances pose new risks to water quality and quantity, which need to 

be addressed through exapnded implementation of SWP strategies (Emelko & Sham, 2014; Robinne, 

2019). 
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Figure 2-11 Multi-barrier approach to safe drinking water (Reproduced from 
https://conservationontario.ca/conservation-authorities/source-water-protection/). 

 

 

2.5 Research Needs 

Over the past 30 years, the impacts of various forest harvesting practices on water quality have been 

widely reported (Table 2-2 and Table 2-3). These investigations have largely focused on linking water 

quality impacts from the disturbances to specific landscape processes. To date, drinking water 

treatability implications of forest harvesting practices have not been reported. This likely is in part 

because of the complexities associated with attributing water quality fluctuations to disturbances (here, 

forest harvesting) as opposed to natural variability and then connecting them to downstream 

drinking water treatability challenges (Emelko et at., 2011). Notably, conducting the requisite long-

term and large-scale watershed research required to informing these connections is often logistically 

and financially prohibitive, especially when the collection of an adequate number of samples is required 

to account for hydroclimatic variability this often requires multiple years of data collection with 

reasonable frequency at a fully representative range of stream flow conditions. Linking source water 
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quality changes to drinking water treatment impacts is further complicated by the lack of available 

metrics to generally describe treatment capacity in absence of specific infrastructure and operational 

practices that may be present in a given water treatment plant. Notably, the potentially catastrophic 

impacts of natural disturbances, such as wildfire, on water quality and treatability emphasize the need 

to find a balance between landscape management strategies (e.g., forest harvesting) that mitigate 

potential risks from natural disturbances and the risk of creating new challenges as a result of those 

management strategies, which are also landscape disturbances that may have deleterious impacts on 

water quality and treatability. 
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3  

 

3.1 Research Approach 

Contemporary forest harvesting impacts on drinking water source quality and treatability were 

investigated at the watershed-scale in the eastern slopes of the Rocky Mountains of southwestern 

Alberta, Canada (Figure 3-1 and Figure 3-2). This work was conducted as part of an ongoing watershed-

scale study of wildfire, post-fire salvage logging, and contemporary forest harvesting impacts on 

hydrology, water quality, and aquatic ecology (i.e., the Southern Rockies Watershed Project [SRWP]), 

which commenced in 2004 (Silins et al., 2016). The SRWP team studied the undisturbed Star and York 

Creek watersheds as part of that study. The present investigation began in 2015 when three types of 

contemporary forest harvesting (clear-cut with patch retention, strip-shelterwood cut, and partial cut) 

were applied in the previously undisturbed watersheds. Specifically, one approach was implemented in 

each of three sub-watersheds of Star Creek in 2015. York Creek was not harvested and served as a 

reference watershed for comparison. During harvesting, best management practices (BMPs) to 

minimize surface erosion/runoff were utilized. Reference and harvested stream water turbidity, DOC, 

aqueous NOM proxies (UV254, SUVA, and NOM fractions evaluated by LC-OCD), and DBP-FPs were 

evaluated during and over the first three years after forest harvesting. To the extent possible, additional 

pre-disturbance data (i.e., collected prior to harvesting and reported in the literature) from the study 

watersheds were also included in this analysis.  

 

3.2 Study Sites 

The study was conducted in two headwater basins of the Crowsnest River; namely, Star Creek and 

York Creek (Figure 3-2), which drain an area of 1035 and 865 ha, respectively. These predominantly 

snow melt dominated headwaters of the basin originate in the eastern slopes of the Rocky Mountains 

(Silins et al., 2014) and represent an imortant source water region for many municipalities in Southern 

Alberta (Oldman Watershed Council, 2010). The surficial geology of the basin is complex and 
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dominated by Cretaceous shales and sandstones (Hamilton et al, 1998; Jackson et al., 2008). These 

formations are overlain by an array of pre-glacial, glacial and recent alluvial deposits (Landenberg et 

al., 2006). The elevation of the study sites ranges from 1432 to 2635 m above sea level and the annual 

precipitation varies from 800 to 1360 mm. The mean annual summer temperature is 16.4°C and the 

mean winter temperature is -5.3°C (Silins et al., 2016). Vegetation in the study watersheds is 

characterized by Engelman spruce (Picea engelmanii), lodgepole pine (Pinus contorta var. latifolia), 

and subalpine fir (Abies lasoicarpa) (Silins et al., 2016). Because this snowmelt dominated area is 

predominantly forested, it is source of high quality water in southern Alberta (Oldman Watershed 

Council, 2010). 

 

 

Figure 3-1 The Oldman River Basin (Reproduced from Oldman Watershed Council, 2007 with 
permission). 
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Figure 3-2 Map of the Southern Rockies Watershed Project Phase II research watersheds. From west 
to east: Star and North York Creeks. Three alternative types of harvesting treatments were 
performed in three sub-watershed of Star Creek Watershed in 2015. 

 

3.3 Sample Collection 

In 2015, three harvest treatments (clear cut, strip cut and partial cut) were applied in three headwater 

sub-catchments of Star Creek watershed (Figure 3-2). Study sites were located above and below each 

harvesting treatment in Star Creek and in an unharvested adjacent watershed York Creek (Table 3-1). 

All water samples were collected to provide a representative assessment of water quality during a range 
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of streamflow conditions (freshet, stormflow and baseflow). The total number of samples used in this 

study is presented in Table 3-2. Depth-integrated water samples were collected in acid-washed triple-

rinsed high-density polyethylene bottles that were refrigerated at 4°C until analysis, which occurred 

within four days after collection. 

 

Table 3-1 Description of the study locations (SRWP Phase II: Harvested Watersheds). 

Site Name Description Treatment 

Ref 1 Headwaters reference Reference 

Undist 1 Undisturbed (not harvested) 

Second order stream downstream of 
reference; published data collected prior 
to 2015 are included for discussion of 
natural variability in the region 

Undist 2 
Undisturbed prior to harvesting, 

downstream of all harvesting 

Second order stream downstream of 
harvesting; published data collected prior 
to 2015 are included for discussion of 
natural variability in the region  

Clear Cut Headwaters harvested Clear cut with patch retention 

Strip Cut Headwaters harvested Strip-shelterwood cut 

Partial Cut Headwaters harvested Partial cut 
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Table 3-2 Number of samples previously reported or processed during the study. 

Location Period Turbidity DOC UV254 
LC-
OCD 

THM HAA 

Ref 1 

2009-2010 (Geng, 2018) - 18 - - - - 
2013-2016 (Shams, 2018) 7 7 7 2 7 7 
2017-2018 8 8 8 3 7 6 
Total Ref 1 15 33 15 5 14 13 

Undist 1 

2013-2016 (Shams, 2018) 9 9 9 6 9 1 
2017-2018 - - - - - - 
Total Undist 1 9 9 9 6 9 1 

Undist 2 

2013-2016 (Shams, 2018) 9 10 10 6 9 1 
2017-2018 - - - - - - 
Total Undist 2 9 10 10 6 9 1 

Clear 
cut 

2013-2016 (Shams, 2018) 8 8 8 3 8 8 
2017-2018 8 8 8 3 7 7 
Total Clear cut 16 16 16 6 15 15 

Strip cut 

2013-2016 (Shams, 2018) 8 8 8 3 8 8 
2017-2018 8 8 8 3 7 7 
Total Strip cut 16 16 16 6 15 15 

Partial 
cut 

2013-2016 (Shams, 2018) 5 5 5 3 5 5 
2017-2018 3 3 3 1 2 2 
Total Partial cut 8 8 8 4 7 7 

Total 73 92 74 33 69 52 
 

 

3.4 Water Quality Analysis  

Water samples were stored at 4°C in the dark until analysis. Several NOM characterization and water 

quality analyses were conducted. The comprehensive raw data are provided in Appendix A. 

3.4.1 Turbidity 

Turbidity was determined on unfiltered samples based on Standard Method 2130B using a HACH 

2100Q (China) low range turbidimeter with a detection limit (DL) of 0.02 NTU (Table 3-4) (Figure 

3-7 ) (APHA, 2017). The device was calibrated prior to each sets of measurements and the calibration 
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was checked on every 10th samples, using a standard formazin solution. Moreover, the measurement 

vial was filled slowly, to prevent the formation of air bubbles. Each sample was analyzed three times 

and the average of the readings was used for statistical analysis. 

3.4.2 DOC 

Water samples were filtered through pre-rinsed 0.45 µm nylon filters (ZAPCAP-CR, Sanford, USA). 

DOC concentrations were analyzed on a Shimadzu TOC-VCPH TOC analyzer (Jiangsu, China;Figure 

3-5) using Standard Method 5310B (APHA, 2017). The device was calibrated, with multiple calibration 

points, using a 10 mg/L solution of potassium hydrogen phthalate that was diluted from a 1000 mg/L 

stock. A sample calibration curve is presented in Figure 3-3. The detection limit (DL) on this instrument 

was calculated as 0.11 mg/L (DL= SD*3) (Table 3-4). The samples were analyzed in triplicate with 

three injections per sample vial; therefore, there were nine points representing each sample. To ensure 

that the use of the average of these nine points in the comparative statistical analyses was valid, a single 

factor ANOVA test was performed for each set of data (9 points) with significance level of 5% 

in Appendix B. 

 

Figure 3-3 Example calibration curve for TOC analyzer (n=9; R2 = 0.9754). 
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3.4.3  UV254 and SUVA 

 UV254 absorbance was analyzed using a Hewlett-Packard 8453 (USA) and a Cary 100 Series UV-Vis 

Spectrometer (Malaysia), both with a 1 cm quartz cell (Method 5910 B; APHA, 2017) (Figure 3-6). 

Prior to each measurement, the device was calibrated with a blank sample (cuvette filled with Milli-

QTM (MQ) water). The calibration was repeated on every 10th sample and each sample were measured 

in triplicate. The detection limit for the device was 0.01 m-1 (Table 3-4), and the reproducibility of 

wavelength was equal to 0.02 nm. Specific ultraviolet absorbance (SUVA, in units of mg/L·m) was 

then calculated as the obtained UV254 divided by the DOC concentration (Edzwald et al., 1985).  

To check the stability of water samples between collection and analysis, a storage study was conducted. 

In this study, UV254 and DOC values for Ref 1, Clear cut, and Strip cut locations, collected on 26 June 

2017, were measured and monitored periodically from the day of arrival until October 2017, (Table 

3-3). The samples were stored in the dark at 4°C, without preservative addition. None of the samples 

showed any significant change in UV254 or DOC concentration during the study period (p-value >> 

0.05); therefore, it was concluded that the shipping period did not degrade DOC concentrations or UV254 

absorbance. 

Table 3-3 UV254 stability test results for water samples collected on June 26, 2017.  

 28-
Jun 

29-
Jun 

30-
Jun 

02-
Jul 

05-
Jul 

12-
Jul 

21-
Jul 

15-
Aug 

04-
Sep 

04-
Oct 

Ref 1 1.11 1.14 1.16 1.12 1.13 1.17 1.10 1.14 1.13 1.16 

Clear 
cut 

1.94 1.96 1.89 1.94 1.96 1.97 1.99 1.94 1.96 1.95 

Strip 
cut 

1.78 1.75 1.77 1.76 1.78 1.75 1.74 1.79 1.76 1.77 

 

3.4.4 Carbon fractionation by size using LC-OCD 

NOM was fractionated by size using an LC-OCD (Model 8, DOC-LABOR, Karlsruhe, Germany) 

(Figure 3-3a). This device employs a technique that uses a weak cation exchange column (250 mm × 

20 mm, TSK HW 50S, 3000 theoretical plates) followed by a UV254 detector (UVD), an organic carbon 

detector (OCD), and an organic nitrogen detector (OND). The resulting chromatographs were then 
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evaluated using ChromCALC, DOC-LABOR data processing software (Huber et al., 2011). The LC-

OCD was calibrated for OCD, OND, and UVD every 6 months (Figure 3-4), and the calibration was 

controlled each time prior to running samples. 

 

 

Figure 3-4 Example calibration results for LC-OCD Model 8. 

 

3.4.5 THM- and HAA-FP 

Total THM and HAA formation potentials (FPs) were evaluated. THM-FP was evaluated using 

Standard Method 5710B (APHA, 2017) and an Agilent Technologies 7890B -MS/5977A GC/MS with 

purge and trap) HAA-FP were analyzed on a Varian CP3800-MS/MS2000 (Saturn MS Ion Trap) 

GC/MS/MS/CI analyzer. The method utilized for HAA-FP analysis was Method 5710D (APHA, 2017). 

The DL for each method is presented in Table 3-4.  

 

Table 3-4 Detection limits (DLs) for water quality and treatability analytes. 

Analyte Detection Limit 

Turbidity (NTU) 0.02 

DOC (mg/L) 0.11 

UV254 (m-1) 0.01 

THM-FP (µg/L) 0.37 

HAA-FP (µg/L) 5.3 
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Figure 3-5 Shimadzu TOC-VCPH TOC analyzer used to measure DOC concentration. 

 

Figure 3-6 UV254 analyzer, a) Hewlett-Packard 8453 spectrophotometer, b) Cary Series UV-Vis 
spectrometer, c) 1 cm quartz cell. 

 

a b c 
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Figure 3-7 a) LC-OCD Model 8 and b) Turbidimeter- HACH 2100Q. 

 

3.5 Statistical Analyses 

All of the water quality and treatability data collected herein were tested for normality using the 

Shapiro-Wilk test. As some of the datasets were not normally distributed, a non-parametric statistical 

analysis of the data was conducted. While a Wilcoxon signed-rank test would have been desirable to 

treat the samples collected from the various watersheds as paired because of their concurrent collection 

across a range of stream flow conditions, the relatively small sample size and the desire to include 

additional (non-paired) samples in the analysis precluded the use of this test. Specifically, a power 

analysis conducted to determine the sufficient sample size using a significance level of 0.05, a power 

of 0.80, a small effect size (dz = 0.2), and two tails (Faul et al., 2013) indicated that at least 208 

samples would be required to demonstrate a small effect; at least 35 samples would be required to 

demonstrate a medium effect (dz = 0.5) (Faul et al., 2009). As the required number of samples was not 

a b 
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available, the Mann-Whitney U test (i.e., the Wilcoxon rank sum test, which differs the Wilcoxon 

signed-rank test) that compares two unpaired groups was used to evaluate whether the investigated 

stream water quality and treatability metrics differed between the reference and harvested watersheds. 

A 5% significance level was utilized. Finally, to characterize simple correlations between parameters, 

coefficients of determination (R2) were determined for least squares linear regression. 
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4  
 

Drinking water quality and treatability at three different harvested watersheds (clear cut, strip cut, and 

partial cut) were investigated and compared to that at three reference sites (Ref 1, Undist 1Undist 1, 

and Undist 2). Below, the turbidity data are discussed first. DOC, UV254, SUVA, and NOM fractions 

(humic substances, building blocks, and biopolymers measured by LC-OCD) data are presented next, 

followed by the DBP-FP data.  

4.1 Turbidity 

Turbidity is critical to optimizing and evaluating overall treatment system performance, especially in 

conventional surface water treatment plants (MWH, 2012). Turbidity levels observed in the streams 

draining the study watersheds were all very low (Table 4-1 and Figure 4-1) and typical of high quality 

forested headwaters regions of the eastern slopes of the Rocky Mountains (Silins et al., 2009; Emelko 

et al., 2011). Forest harvesting disturbances have been widely reported to increase turbidity in streams 

draining impacted watersheds (Yusop & Suki, 1994; Webb & Haywood, 2004; Basher et al., 2011; 

Lewis et al., 2019). The turbidities observed over a range of flow conditions in the streams draining 

strip cut-, and partial cut-impacted watersheds were not statistically different (i.e., not ranked 

differently) than those draining the reference watershed (U = 112, p = 1; and U = 41.5, p = 0.238 

respectively). Stream turbidities in the undisturbed watersheds at locations downstream of those used 

in the present investigation indicated that turbidities in those streams also were generally similar to one 

another in the years prior to harvesting (Appendix C). Although the statistical test results for clear cut- 

impacted and reference watershed indicated a statistically significant difference (U = 57.5, p = 0.012), 

the low and relatively consistent stream turbidities that were observed across all watersheds would not 

pose challenges to conventional surface water treatment (MWH, 2012). Thus, the results from the 

landscape level monitoring (i.e., synoptic sampling) presented herein suggest that the contemporary 

forest harvesting that was conducted with BMPs for erosion control did not have appreciable impacts 

on stream turbidity (Figure 4-1). Comparison of post-harvesting data from streams draining impacted 

watersheds to downstream pre-disturbance data is neither ideal nor useful for comparison in absence of 

other data; however, the general similarities in these data further support the observations from the 
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synoptic sampling. Moreover, these results are notably consistent with the high frequency, focused 

suspended sediment and turbidity data reported in the study catchments during the same period by 

Corrigan (2017). Thus, these collective data are compelling and suggest no meaningful impact of forest 

harvesting on receiving stream turbidity in the present investigation. 

Table 4-1 Stream turbidity values in study watersheds.  

Location 
Turbidity (NTU) 

Median mean SD 
Ref 1 0.30 0.37 0.23 

Undist 1 1.05 2.12 3.21 
Undist 2 1.03 1.07 0.42 
Clear cut 0.51 0.58 0.26 
Strip cut 0.30 0.33 0.2 

Partial cut 0.37 0.8 0.9 
 

 

  

Figure 4-1 Turbidity in streams draining adjacent undisturbed, reference and harvested            
watersheds. Light green represents data from undisturbed or reference watersheds prior to 
harvesting (2015); dark green represents data collected after 2015. Blue shading 
represents data from harvested locations. The horizontal bar within the boxes is the 
median value, the bottom and top of each box indicates the 25th and 75th percentiles 
respectively. The crosses indicate mean values, and the top and bottom of whiskers 
respectively represent the maximum and minimum values observed. 
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4.2 DOC 

DOC is an indicator of NOM in source waters and is one of the key drivers in designing drinking water 

treatment plants (Emelko et al., 2011; MWH, 2012). DOC concentrations in the streams draining the 

study watersheds were all very low (Table 4-2 and Figure 4-2,) and typical of high quality, low DOC 

forested headwaters regions of the eastern slopes of the Rocky Mountains (Alberta Environment, 2007; 

Emelko et al., 2011; Chung et al., 2019) (Figure 4-3). As discussed in Section 2.1.1, forest harvesting 

has frequently resulted in elevated DOC concentrations in streams draining impacted watersheds 

(Moore, 1989; Neal et al., 1992; Cummins & Farrell, 2003a and b; Nieminen, 2004; Tetzlaff et al., 

2007; Löfgren et al., 2009; Laudon et al., 2009; Schelker et al, 2012; Eklöf et al., 2014; Kiikkilä et al., 

2014; Nieminen et al., 2015), though it also has resulted in decreased stream DOC concentrations due 

to increased soil infiltration capacity and associated DOC penetration to deeper soil layers in some 

cases (Moore & Jackson, 1989; Cawley et al., 2014; Palviainen et al., 2014; Musetta-Lambert et al., 

2017). In the present investigation, the DOC concentrations observed over a range of flow conditions 

in the stream draining the clear cut-impacted watersheds were not statistically different from those 

draining the reference watershed (U = 82.5, p = 0.140). The results, however, were statistically 

significant for streams draining the strip cut- and partial cut-impacted watersheds (U = 63.5, p = 0.041;  

and U = 7, p < 0.001 respectively). Consistent with the turbidity results reported above, stream DOC 

concentrations in the undisturbed watersheds at locations downstream of those used in the present 

investigation indicated that DOC concentrations in those streams also were generally similar to one 

another in the years prior to harvesting. The low and relatively consistent stream DOC concentrations 

that were observed herein would not pose any challenges to conventional surface water treatment 

(MWH, 2012). Thus, the results from the landscape level monitoring (i.e., synoptic sampling) presented 

herein suggest that the contemporary forest harvesting that was conducted with BMPs for erosion 

control did not have appreciable impacts on stream DOC concentrations. 
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Table 4-2 Stream DOC concentrations in study watersheds.  

Location 
DOC (mg/L) 

Median mean SD 
Ref 1 0.7 0.84 0.53 

Undist 1 0.79 0.86 0.34 
Undist 2 0.98 1.04 0.4 
Clear cut 0.81 1.19 0.81 
Strip cut 0.98 1.38 0.98 

Partial cut 1.67 2.33 1.91 
 

During May 2018, stream DOC values were relatively elevated at 3.45, 4.15, 4.79, and 7.38 mg/L in 

Ref 1, clear cut, strip cut, and partial cut watersheds, respectively (the points are highlighted in red on 

Figure 4-4) samples were not collected in the Undist 1 and Undist 2 watersheds during this period. 

While there is no reason to exclude these data from the overall analysis, this dataset was excluded from 

the statistical analysis to evaluate its relative impact on the results.  Eliminating these values from the 

data set resulted in slightly lower mean stream DOC concentrations of 0.80±0.26 mg/L, 0.99±0.28 

mg/L, 1.14±0.37 mg/L, and 1.61±0.09 mg/L in the Ref 1, clear cut, strip cut, and partial cut watersheds, 

respectively. Notably, the exclusion of these data from the analysis did not impact the conclusions 

drawn from the data (Table 4-3 and Table 4-4).  
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Figure 4-2 DOC concentrations in streams draining adjacent undisturbed, reference and harvested 
watersheds. Light green represents data from undisturbed or reference watersheds prior to 
harvesting (2015); dark green represents data collected after 2015. Blue shading represents 
data from harvested locations. The horizontal bar within the boxes is the median value, the 
bottom and top of each box indicates the 25th and 75th percentiles respectively. The crosses 
indicate mean values, and the top and bottom of whiskers respectively represent the 
maximum and minimum values observed. 
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Figure 4-3 Comparison between DOC concentrations in streams in reference/undisturbed and harvested 
sites from this study and values reported in literature (Adapted from Table 2-2 and Table 
2-3). Green represents reference/undisturbed locations and blue represents harvested 
locations. 
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Figure 4-4 DOC concentration time series data from October 2017 to September 2018 for reference, 
undisturbed and harvested locations. Green represents reference/undisturbed locations and 
blue represents harvested locations.  

 

Table 4-3 Comparison of stream DOC concentrations in reference/undisturbed and harvested 
watersheds using all of the collected DOC data. 

 U p-value  

Ref 1 (2015-18) vs. Clear cut (2015-18) 82.5 0.14 

Ref 1 (2015-18) vs. Partial cut (2015-18) 7 0.000 

Ref 1 (2015-18) vs. Strip cut (2015-18) 63.5 0.04 

Undist 1 (2013-14) vs. Clear cut (2015-18) 47 0.17 

Undist 1 (2013-14) vs. Partial cut (2015-18) 3 0.001 

Undist 1 (2013-14) vs. Strip cut (2015-18) 36 0.06 

Undist 2 (2013-14) vs. Clear cut (2015-18) 73 0.74 

Undist 2 (2013-14) vs. Partial cut (2015-18) 3 0.000 

Undist 2 (2013-14) vs. Strip cut (2015-18) 62 0.50 
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Table 4-4 Comparison of stream DOC concentrations in reference/undisturbed and harvested 
watersheds excluding the May 2018 data. 

 U p-value  

Ref 1 (2015-18) vs. Clear cut (2015-18) 67.5 0.10 

Ref 1 (2015-18) vs. Partial cut (2015-18) 0 0.000 

Ref 1 (2015-18) vs. Strip cut (2015-18) 49.5 0.02 

Undist 1 (2013-14) vs. Clear cut (2015-18) 47 0.24 

Undist 1 (2013-14) vs. Partial cut (2015-18) 3 0.001 

Undist 1 (2013-14) vs. Strip cut (2015-18) 36 0.10 

Undist 2 (2013-14) vs. Clear cut (2015-18) 63 0.53 

Undist 2 (2013-14) vs. Partial cut (2015-18) 3 0.001 

Undist 2 (2013-14) vs. Strip cut (2015-18) 62 0.67 

 

 

4.3 UV254 and SUVA 

UV absorption by organic compounds is one of the simplest and most useful methods that enable real-

time monitoring of organic matter in water (  et al., 2017). The adverse impacts of various 

landscape disturbances on receiving stream UV254 and DOC aromaticity have been reported (e.g., 

Elbag, 2006; Wade et al., 2013; Writer et al., 2014; Hohner et al., 2016; Shams, 2018) (Figure 4-6). 

Although, significant differences between Ref 1 and each of harvested sites (U = 33.5, p < 0.001;  

U = 31, p = 0.000; and U = 4, p < 0.001 for clear cut, strip cut, and partial cut watersheds, respectively) 

were observed, the UV254 values were low and consistent with high quality source waters in undisturbed 

watersheds in the region (Table 4-5 and Figure 4-5). The UV254 data from the present investigation are 

compared to those reported in the available literature and demonstrate the high quality of surface water 

in the study watersheds (Figure 4-6).  
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Table 4-5 Stream UV254 values in the study watersheds. 

Location 
UV254 (m-1) 

Median mean SD 
Ref 1 1.09 1.22 0.63 

Undist 1 1.35 1.76 1.26 
Undist 2 1.68 2.02 0.97 
Clear cut 1.62 1.77 0.45 
Strip cut 1.85 1.98 0.66 

Partial cut 3.44 3.48 1.93 
 

Notably, although stream DOC concentrations and UV254 values in the partial cut watershed were 

higher than those observed in the other watersheds, specific ultraviolet absorbance (SUVA) was similar 

across all of the study watersheds (Figure 4-7). Stream SUVA values were not significantly different 

between Ref 1 and each of the clear cut, strip cut, and partial cut watersheds (U = 95, p = 0.22; U = 85, 

p = 0.22; and U = 33.5, p = 0.08; respectively). The SUVA data collected during this investigation are 

summarized in Table 4-6. The generally low SUVA values observed in all of the study watersheds 

(Table 4-8), suggest that stream DOC concentrations in these watersheds would not be a key driver of 

coagulant dosing requirements during conventional drinking water treatment during which only a small 

fraction of DOC would likely be removed during coagulation (Edzwald & Benschoten, 1990; Sohn et 

al., 2007). Furthurmore, the poor correlation  between stream DOC concentration and SUVA (R2 =0.44) 

(Table 4-17) demonstrates that SUVA is not an informative indicator of DOC chemical composition in 

the Star Creek study sites. This observation is consistent with Weishaar et al. (2003), who suggested 

that the reactivity od DOC molecules with similar properties and compositions can vary considerably. 
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Figure 4-5 UV254 absorbance in streams draining adjacent undisturbed, reference and harvested 
watersheds. Light green represents data from undisturbed watersheds prior to harvesting 
(2015); dark green represents data collected after 2015. Blue shading represents data from 
harvested locations. The horizontal bar within the boxes is the median value, the bottom and 
top of each box indicates the 25th and 75th percentiles respectively. The crosses indicate 
mean values, and the top and bottom of whiskers respectively represent the maximum and 
minimum values observed. 

 

Figure 4-6 Comparison between stream UV254 in reference/undisturbed and harvested watersheds in  
this study and those reported in literature (Adapted from Table 2-5).  

 

Table 4-6 Stream SUVA values in the study watersheds. 

Location 
SUVA (L/mg.m) 

Median mean SD 
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Ref 1 1.12 1.4 0.6 
Undist 1 1.88 1.88 0.67 
Undist 2 1.89 1.93 0.51 
Clear cut 1.71 1.62 0.59 
Strip cut 1.58 1.6 0.57 

Partial cut 1.67 1.76 0.49 
 

 

 

Figure 4-7 SUVA levels in streams draining adjacent undisturbed, reference and harvested    
watersheds. Light green represents data from undisturbed watersheds prior to harvesting 
(2015); dark green represents data collected after 2015. Blue shading represents data from 
harvested locations. The horizontal bar within the boxes is the median value, the bottom 
and top of each box indicates the 25th and 75th percentiles respectively. The crosses 
indicate mean values, and the top and bottom of whiskers respectively represent the 
maximum and minimum values observed. 
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Figure 4-8 Comparison between stream SUVA levels in reference/undisturbed and harvested sites in 
this study and those reported in literature (Adapted from Table 2-5). Green represents 
reference/undisturbed locations and blue represents harvested locations.  

 

4.4 Carbon fractions as measured by LC-OCD 

The observed stream concentrations of the humic substances, biopolymers, building blocks, LMW 

acids, and LMW neutrals fractions of DOC in the study watersheds are summarized in Table 4-8 to 

Table 4-12, as well as shown in Figure 4-9 to Figure 4-13. The concentrations of these fractions of 

DOC observed over a range of flow conditions in the streams draining the clear cut- and strip-cut 

impacted watersheds were not statistically different from those draining the reference watershed (Table 

4-7). In contrast, the observed concentrations of the humic substances, building blocks, LMW acids, 

and LMW neutrals fractions of DOC in the partial-cut watershed were statistically different from those 

in the reference/unharvested watershed (Table 4-7). As mentioned above, the low and relatively 

consistent stream DOC concentrations that were observed herein would not be expected to pose 

challenges to conventional surface water treatment (MWH, 2012). Although key concentration 

threshold values for the various fractions of DOC have not been identified, the observed concentrations 
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across all of study watersheds (Figure 4-14), which would be expected across similar sub-watersheds 

within a given basin. Collectively, these data suggest that DOC character and composition did not vary 

greatly between the study watersheds. 

Table 4-7 Comparison of stream concentrations of humic substances, biopolymers, and building 
blocks fractions of DOC in reference/undisturbed and harvested watersheds. 

  Clear cut Strip cut Partial cut 

  U p-value U p-value U p-value 

Ref 1 

Humic 
substances 

8 0.25 9 0.33 0 0.02 

Biopolymers 8 0.48 9 0.90 7 0.89 

Building Blocks 6 0.13 10 0.43 1 0.03 

LMW Acids 2 0.11 4 0.19 NA NA 

LMW neutrals 16 0.81 7 0.09 3 0.16 

 

Table 4-8 Stream concentrations of the humic substances fraction of DOC in the study watersheds. 

Location 
Humics (mg/L) 

Median mean SD 
Ref 1 0.31 0.38 0.3 

Undist 1 0.36 0.51 0.38 
Undist 2 0.53 0.57 0.17 
Clear cut 0.67 0.66 0.27 
Strip cut 0.70 0.65 0.31 

Partial cut 1.14 1.14 0.1 
 

Table 4-9 Stream concentrations of the biopolymers fraction of DOC in the study watersheds. 

Location 
Biopolymers (mg/L) 

Median mean SD 
Ref 1 0.005 0.006 0.003 

Undist 1 0.010 0.012 0.007 
Undist 2 0.010 0.010 0.002 
Clear cut 0.007 0.009 0.007 
Strip cut 0.005 0.005 0.002 

Partial cut 0.005 0.006 0.003 
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Table 4-10 Stream concentrations of the building blocks fraction of DOC in the study watersheds. 

Location 
Building blocks (mg/L) 

Median mean SD 
Ref 1 0.05 0.09 0.08 

Undist 1 0.07 0.09 0.05 
Undist 2 0.10 0.11 0.04 
Clear cut 0.15 0.15 0.07 
Strip cut 0.16 0.16 0.09 

Partial cut 0.27 0.27 0.07 
 

Table 4-11 Stream concentrations of the LMW acids fraction of DOC in the study watersheds. 

Location 
LMW Acids (mg/L) 

Median mean SD 
Ref 1 0.011 0.012 0.002 

Undist 1 0.016 0.016 0.020 
Undist 2 0.009 0.010 0.008 
Clear cut 0.025 0.021 0.012 
Strip cut 0.017 0.048 0.069 

Partial cut 0.031 0.031 0.00 
 

Table 4-12 Stream concentrations of the LMW neutrals fraction of DOC in the study watersheds. 

Location 
LMW Neutrals (mg/L) 

Median mean SD 
Ref 1 0.11 o.15 0.18 

Undist 1 0.14 0.17 0.07 
Undist 2 0.14 0.23 0.18 
Clear cut 0.11 0.12 0.07 
Strip cut 0.24 0.28 0.20 

Partial cut 0.20 0.20 0.05 
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Figure 4-9  Humic substances fraction of DOC in streams draining adjacent undisturbed, reference and 
harvested watersheds. Light green represents data from undisturbed or reference 
watersheds prior to harvesting (2015); dark green represents data collected after 2015. Blue 
shading represents data from harvested locations. The horizontal bar within the boxes is 
the median value, the bottom and top of each box indicates the 25th and 75th percentiles 
respectively. The crosses indicate mean values, and the top and bottom of whiskers 
respectively represent the maximum and minimum values observed. 

 

Figure 4-10 Biopolymers fraction of DOC in streams draining adjacent undisturbed, reference and 
harvested watersheds. Light green represents data from undisturbed or reference 
watersheds prior to harvesting (2015); dark green represents data collected after 2015. 
Blue shading represents data from harvested locations. The horizontal bar within the 
boxes is the median value, the bottom and top of each box indicates the 25th and 75th 
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percentiles respectively. The crosses indicate mean values, and the top and bottom of 
whiskers respectively represent the maximum and minimum values observed. 

 

Figure 4-11 Building blocks fraction of DOC in streams draining adjacent undisturbed, reference and 
harvested watersheds. Light green represents data from undisturbed or reference 
watersheds prior to harvesting (2015); dark green represents data collected after 2015. 
Blue shading represents data from harvested locations. The horizontal bar within the 
boxes is the median value, the bottom and top of each box indicates the 25th and 75th 
percentiles respectively. The crosses indicate mean values, and the top and bottom of 
whiskers respectively represent the maximum and minimum values observed. 
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Figure 4-12 LMW acids fraction of DOC in streams draining adjacent undisturbed, reference and 
harvested watersheds. Light green represents data from undisturbed or reference 
watersheds prior to harvesting (2015). 

 

Figure 4-13 LMW neutrals fraction of DOC in streams draining adjacent undisturbed, reference and 
harvested watersheds. Light green represents data from undisturbed or reference 
watersheds prior to harvesting (2015); dark green represents data collected after 2015. Blue 
shading represents data from harvested locations. The horizontal bar within the boxes is 
the median value, the bottom and top of each box indicates the 25th and 75th percentiles 
respectively. The crosses indicate mean values, and the top and bottom of whiskers 
respectively represent the maximum and minimum values observed. 
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Figure 4-14 Normalized humic substances fraction of DOC in streams draining adjacent undisturbed, 
reference and harvested watersheds. Light green represents data from undisturbed or 
reference watersheds prior to harvesting (2015); dark green represents data collected after 
2015. Blue shading represents data from harvested locations.  

4.5 Disinfection By-Product Formation Potential 

The mean total THM-FP and HAA-FP concentrations in the source waters are presented in Table 4-13,  

and Figure 4-15; and Table 4-14 and Figure 4-16, respectively. Similar to UV254, significant differences 

between Ref 1 and each of the disturbed (i.e., clear cut, strip cut, and partial cut) watersheds were 

observed, with U = 43, p = 0.01; and U = 20, p = 0.000, and U = 1, p = 0.000, respectively. In contrast,   

The HAA-FP results were similar to those observed for DOC, with U = 57, p = 0.065; and U = 43, p < 

0.001, and U = 0, p = 0.01, respectively (similar to DOC). Although some of these differences between 

the disturbed and reference watersheds were significant, it is critical to recognize that all of the DBP-

FP observations were relatively low and not of practical concern. Moreover, especially recalling the 

hyperchlorination associated with the FP analysis that would result in greater DBP formation than what 

would be observed at operational relevant applied chlorine doses, the data herein suggest that forest 

harvesting did not result in any practically relevant changes in DBP-FPs. Indeed, DBP formation was 

also examined using the simulated distribution system (SDS) method (Table 2-6). These results 

demonstrate that forest harvesting, as implemented in this study, would not pose any challenges to 

drinking water treatment. Moreover, Figure 4-17 and Figure 4-18 compare the concentrations of THM- 

and HAA-FP measured in this study relative to concentrations of these compounds that have been 
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reported in literature. While the first figure illustrates THM-FP yields from this study relative to rivers 

and streams that are drinking water sources globally, the latter represents the regulated DBP-FP of this 

study relative to all Canadians drinking water sources, including lakes and groundwater aquifers. It is 

evident from these two figures that the study sites investigated herein represent systems with the highest 

quality of source water; thus, it can be concluded that forest harvesting did not meaningfully impact 

drinking water treatability in any of harvested watersheds. 
 

The poor correlations between SUVA and THM- and HAA-FP observed herein (R2= 0.60, and 0.52, 

respectively) were in a general agreement with the reported litrature (e.g. Weishaar et al., 2003; Hua et 

al., 2015), suggesting that SUVA is a weak indicator of regulated DBP-FP. In contrast, the fluctuations 

in THM- and HAA-FP concentrations correlated well with the changes in UV254 values (R2=0.91 and 

0.90, respectively) (Table 4-17). This observation is consistent with the widely reported literature on 

utilizing UV254 as a predictor for regulated DBP-FPs (Singer et al., 1981; Edzwald et al., 1985; 

Reckhow et al., 1990; Wassink et al., 2011; Awad et al., 2016).  

 

Table 4-13 Stream THM-FPs in the study watersheds. 

Location 
THM-FP (µg/L) 

Median mean SD 
Ref 1 16.50 19.31 7.30 

Undist 1 32.00 36.33 35.83 
Undist 2 27.00 23.58 13.80 
Clear cut 26.00 28.33 8.73 
Strip cut 31.00 32.67 10.10 

Partial cut 50.00 65.86 45.90 
 

Table 4-14 Stream HAA-FPs in the study watersheds. 

Location 
HAA-FP (µg/L) 

Median mean SD 
Ref 1 24.40 29 11.68 

Undist 1 42.00 42 - 
Undist 2 39.00 39 - 
Clear cut 35.20 39.59 17.95 
Strip cut 34.00 42.10 15.71 

Partial cut 64.00 92.89 73.20 
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Chloroform, bromodichromethane (BDCM), dibromochloromethane (DBCM), and bromoform are the 

most abundant groups of THMs in drinking water. As only trace concentrations of bromide were found 

in the study watersheds, THMs primarily consisted of chloroform across the study sites and. 

concentrations of DBCM and bromoform were typicallybelow detection limits. The mean percentage 

of formation potentials of chloroform and BDCM for study locations were equal to 98±3%, and 5±2%, 

respectively (Table 4-15). Similarly, brominated HAAs were not formed, and HAAs were comprised 

of 63±7% of trichloroacetic acids and 35±2% of dichloroacetic acids (Table 4-16). 

The results of this study have shown no impact of forest harvesting on water quality and treatability 

during and 3 years post-harvesting in the eastern slopes of the Rocky Mountains, southwestern Alberta. 

Current contemporary forestry practices range from the creation and expansion of protected areas, 

where any type of anthropogenic disturbance including forest harvesting with the goal of mitigating 

potential wildfire or other disturbance risks is prohibited, to integrated forest management employing 

BMPs to mitigate impacts on water. While, the impacts of employing SWP strategies on water quality 

and treatability is not very well understood, this work suggests that contemporary forest harvesting with 

the careful implementation of BMPs will not have any impact on water quality and treatability. 

 

Figure 4-15 THM-FPs concentration in streams draining adjacent undisturbed, reference and harvested 
watersheds. Light green represents data from undisturbed or reference watersheds prior to 
harvesting (2015); dark green represents data collected after 2015. Blue shading represents 
data from harvested locations. The horizontal bar within the boxes is the median value, the 
bottom and top of each box indicates the 25th and 75th percentiles respectively. The crosses 
indicate mean values, and the top and bottom of whiskers respectively represent the 
maximum and minimum values observed. 
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Figure 4-16 HAA-FPs concentrations in streams draining adjacent undisturbed, reference and harvested 
watersheds. Light green represents data from undisturbed or reference watersheds prior to 
harvesting (2015); dark green represents data collected after 2015. Blue shading represents 
data from harvested locations. The horizontal bar within the boxes is the median value, the 
bottom and top of each box indicates the 25th and 75th percentiles respectively. The crosses 
indicate mean values, and the top and bottom of whiskers respectively represent the 
maximum and minimum values observed. 

 

 

Figure 4-17 Comparison of stream THM-FP yields in this study and those in streams and rivers serving 
as drinking water sources globally (Adapted from Table 2-5). 
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Figure 4-18 Comparison of stream DBP-FPs in this study and Canadian drinking water sources on 
average (Adapted from Ahmad & Husain, 2015). 

 

Figure 4-19 Comparison among drinking water quality and treatability parameters measured during  
this study, burned and salvage logged SRWP research watersheds (Adapted from Shams, 
2018), and rivers and streams serving as drinking water sources globally (Adapted from 
Table 2-5). 
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Table 4-15 THM FP constituents by percentage mass. 

 Average Percentage of THMs 

 Chloroform Bromodichromethane 

 mean SD mean SD 

Ref 1 97 3 6 1 

Clear cut 98 3 6 3 

Strip cut 98 2 4 0 

Partial cut 98 2 3 0 

Overall 98 3 5 2 

 

Table 4-16  HAA FP constituents by percentage of mass. 

 Average Percentage of THMs 

 Trichloroacetic Acid Dichloroacetic Acid 

 mean SD mean SD 

Ref 1 65 3 35 3 

Clear cut 59 8 36 2 

Strip cut 62 8 34 2 

Partial cut 66 1 34 1 

Overall 63 7 35 2 
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Table 4-17 Correlation between various metrics of aqueous NOM and DBP-FPs. 

    DOC UV254 SUVA Humics THM-FP 

UV254 
R2 0.84         

p-value 1.84E-30     
  
 

  

SUVA 
R2 0.44 0.72       

p-value 9.42E-11 2.70E-21     
  

Humic 
Substances 

R2 0.96 0.86 0.66   
  

p-value 4.72E-24 7.58E-15 5.52E-09 
    

THM-FP 
R2 0.76 0.92 0.60 0.81 

  

p-value 1.83E-22 2.79E-36 5.35E-15 4.27E-11 
  

HAA-FP 
R2 0.81 0.92 0.52 0.88 0.97 

p-value 4.31E-20 1.24E-27 1.57E-09 1.45E-09 2.50E-40 
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5  

 

The focus of this research was to investigate  the impacts of contemporary forest harvesting on drinking 

water source quality and treatability. To achieve this goal, three types of contemporary forest harvesting 

(clear-cut with patch retention, strip-shelterwood cut, and partial cut) were investigated at the 

watershed-scale in the eastern slopes of the Rocky Mountains of southwestern Alberta, Canada. 

Reference and harvested stream water turbidity and various water quality metrics related to NOM (and 

associated DBP formation potentials) were evaluated during and over the first three years after forest 

harvesting. Reported pre-disturbance data from the study watersheds were included in this analysis. 

Finally, the correlations between THM- and HAA-FPs and several proxy indicators (particularly, 

aromaticity) were investigated. The following conclusions were drawn from this research: 

1. Contemporary forest harvesting (clear cut with patch retention, strip-shelterwood cut, and 

partial cut) with careful implementation of BMPs for erosion control did not yield any 

substantial impacts on drinking water treatability as measured by turbidity or aqueous NOM 

(i.e., DOC, UV254, humic substances, biopolymers, and building blocks).  

The present investigation is the first to demonstrate that forest harvesting can be conducted without 

compromising drinking water source quality and treatability. These reported results the lack of 

substantial impacts of forest harvesting on DOC concentration/character and turbidity provide an 

important contrast to many historical investigations of forest harvesting impacts on water, which 

generally suggest that some extent of water quality deterioration (i.e., relatively elevated NOM 

and/or turbidity) in receiving streams, which can last for years or longer, can be expected after 

forest harvesting. While the results reported herein comprise a synoptic evaluation of water quality 

and treatability, they are critically consistent and connected with the findings of Shams (2018), who 

reported that DOC and turbidity were generally elevated at higher stream flows in the study region; 

and Corrigan (2017), who showed that the combined impact of the rapid harvesting and road 

decommissioning on suspended solids and turbidity was largely negligible in the study watersheds, 

and turbidity was often higher at locations just upstream of forest harvesting. Collectively, these 
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three investigations compellingly demonstrate that forest harvesting can be conducted without 

compromising drinking water source quality and treatability. 

2. Contemporary forest harvesting approaches coupled with state-of-the-art BMPs for erosion 

ating severe climate change-

associated disturbance risks to drinking water treatability, even in source water regions rich 

with glacially-derived fine sediments, such as those found in many parts of western North 

America. 

One of the greatest potential threats of forest harvesting to drinking water treatability is the potential 

release of bioavailable phosphorus-enriched fine sediments that can promote the proliferation of 

microorganisms, and especially potentially toxin-forming cyanobacteria and other algae that may 

produce taste and odor compounds. As shown by Emelko et al. (2016), these fine sediments may 

remain in source waters and untreated water reservoirs for many years, in some cases most 

drinking water reservoirs are not designed to manage these fine sediments to mitigate these threats, 

which can lead to treatment challenges, service disruptions, and in the most severe cases, water 

outages. The present investigation provides the required linkage to Corrigan (2017) and Shams 

(2018) to demonstrate that not only can forest harvesting operations can be conducted without 

compromising drinking water source quality and treatability (Conclusion #1 above), but they can 

be conducted in a manner (detailed by Corrigan, 2017) that minimizes and essentially prevents any 

meaningfully disturbance-associated threats to drinking water treatability. Thus, this work 

highlights a starting point for the consideration of forest management approaches and important 

and climate change adaptation 

strategies. Further, it has been suggested that  source-water 

protection saved an average of $27 in water treatment  By demonstrating 

that forest harvesting can be conducted without adverse impacts on water quality and treatability, 

this work demonstrates that the use of harvesting as a forest management tool for promoting forest 

health can be applied to produce water that is less expensive to treat, transport, and store. Given 

this impact and the associated societal co-benefits (e.g., recreational use, habitat, etc. as described 

in Gartner et al., 2014) suggests that such active approaches for protecting/managing forested 

watersheds can yield significant economic benefits for drinking water utilities. 
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3. The development of forest management-based SWP approaches/technologies requires 

significant investment and a paradigm shift within the drinking water industry. Specifically, 

to maximize the impacts of forest management-based approaches to SWP and to develop 

climate change adaptation strategies in lieu of traditional landscape-level, time series trend 

monitoring focused paired catchment investigations that are designed as before-after-

control-impact (BACI) studies are urgently needed.  

Traditionally, the drinking water industry has advocated landscape-level, time series trend 

described by Neary (2016), these types of investigations are well-suited for determining the 

efficacy of protection or restoration activities; however, they are frequently inadequate for 

discerning hydrological processes and their causes because factors such as hydrograph time 

resolution, sampling frequency, climate variability, stream gauge accuracy, and mixed land uses 

associated with watershed-scale investigations. Thus, traditional landscape-level time series trend 

monitoring approaches are inherently inadequate for demonstrating forest management impacts on 

source water quality and treatability. This point is punctuated by the present investigation. 

Here, a landscape-scale time series trend monitoring experiment was conducted. The headwaters 

sampling locations were remote and challenging to access; nonetheless, an effort was made to 

collect samples across a representative range of stream flow conditions (i.e., baseflows, stormflows, 

freshet) to capture not only shifts in the baseline values of the water quality and treatability metrics 

investigated, but also changes in their variability. It should be emphasized that in the absence of 

pre-disturbance data, water quality and treatability (as described by aqueous NOM concentration 

and character) in streams draining harvesting-impacted watersheds appeared deteriorated (i.e., 

statistically) relative to the reference stream in at least some aspects of water quality. Critically, 

however, the range of both NOM-associated and turbidity values observed during the investigation 

suggested that none of the source water matrices investigated herein would pose any meaningful 

challenges to conventional drinking water treatment. Moreover, the NOM-associated and turbidity 

values reported herein were collected over a representative range of flow conditions the low range 

of observed values (regardless of metric evaluated) that were typical of the of high quality forested 

headwaters regions of the eastern slopes of the Rocky Mountains suggest that water quality and 
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variability evaluated during the present investigation fluctuated within the range of natural 

variability.  

The range of natural variability in the study region was further supported by comparing the data 

collected during the present investigation to available, published pre-disturbance data from nearby 

undisturbed (at the time, in the case of Star Creek) watersheds in which samples were collected at 

downstream locations relative to the sampling locations utilized herein. Finally, the conclusion that 

the data observed during the present investigation were within the range of natural variability of 

monitoring of receiving stream turbidity and suspended solids concentrations upstream and 

downstream of the harvested watersheds, which was conducted concurrently with the present 

investigation). Thus, the present investigation demonstrates some of the potential pitfalls associated 

with landscape-scale time series trend monitoring investigations: while in some cases they are 

inadequate for detecting an impact attributable to landscape disturbance, in others, they may 

suggest an impact where one does not exist; likely by chance or due to some other factor this 

occurred in the present investigation because baseline NOM-associated water quality 

concentrations and character in streams draining the partial cut watershed especially were likely 

higher than those in the reference watershed. Thus, this investigation emphasizes the importance 

and utility of properly BACI designed paired catchment studies for informing for evaluating (1) 

landscape disturbance impacts on water quality and treatability and (2) forest management-based 

approaches as SWP technologies and climate change adaptation strategies. 

4. DOC concentration and aromaticity (measured as UV254) remain the most informative proxy 

indicators of NOM/DOC reactivity in describing disturbance-associated threats to drinking 

water treatability.  

Although none of the observed differences in aqueous NOM characteristics posed significant 

challenges to drinking water treatability, DOC concentration and aromaticity generally correlated 

well with THM- and HAA-FP at the watershed-scale and over multiple flow regimes in the study 

watersheds. This observation is consistent with other reports of drinking water treatability proxy 

indicators evaluated during investigations of landscape disturbances (Shams, 2018). Critically, 

while these proxy indicators inform DBP formation potential threats, they do not inform potential 
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challenges to pre-treatment processes (i.e. coagulation, flocculation, clarification) that although 

plant specific can lead to potentially catastrophic service disruptions. More research is needed to 

better anticipate such risks. 

Overall, this work has demonstrated that carefully implemented contemporary forest harvesting with 

implementation of best management practices that minimize erosion management, such as minimal 

density and/or duration of linear disturbances (i.e., roads) can have minimal or no appreciable impact 

on drinking water source quality and treatability. Nonetheless, further investigations are needed to 

elucidate the long-term impacts of harvesting approaches and associated BMPs on water quality and 

treatability. These evaluations should include other water quality and treatability parameters, such as 

UFC, that are comparable among different watersheds. The considerations of the inclusion of less site 

specific metrics, can enable better-informed decisions on the impact of climate change and source water 

protection. 
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Appendix A 

Dataset for each water quality and treatability metric 
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DOC concentrations (mg/L) 

Time                Location Ref 1 Undist 1 Undist 2 Clear Cut Strip Cut 
Partial 

Cut 

2009 

Jan-09   0.5 0.5       

Mar-09   0.4 0.5    

Apr-09 0.70 1.3 0.8    

May-09 1.40 1.67 1.27    

Jun-09 0.60 0.80 1.18    

Jul-09 0.65 0.70 1.13    

Aug-09 0.90 0.70 0.90    

Sep-09 0.60 0.70 1.30    

Oct-09 0.30 1.10 0.50    

Nov-09   0.80 0.90    

Dec-09 0.60 0.30 0.80    

2010 

Jan-10 0.30 0.60 0.50    

Mar-10 0.60 0.50 0.70    

Apr-10 0.55 0.90 0.93    

May-10 0.88 1.28 1.13    

Jun-10 1.23 1.45 1.98    

Jul-10 0.45 0.60 1.30    

Aug-10 0.80 0.80 1.10    

Sep-10 0.90 0.95 2.45    

Oct-10 0.70 0.90 1.00    

Dec-10 1.00 0.90 1.00    

2013 

Apr-13   1.051 1.180       

May-13   1.330 1.193       

Jul-13     1.029       

Sep-13   0.780 0.971       
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Time                Location Ref 1 Undist 1 Undist 2 Clear Cut Strip Cut 
Partial 

Cut 

2014 

Apr-14   0.63 0.95       

May-14   1.60 1.58       

Jul-14   0.70 0.81       

Aug-14   0.56 0.90       

Sep-14   0.58 0.75       

Oct-14   0.78 0.98       

2015 

Apr-15 0.82   1.09 1.53 1.54 

May-15     1.48 1.52 1.47 

Jun-15 1.12   1.29 1.32 1.73 

Sep-15 0.99   1.42 1.09   

2016 

Mar-16 0.75   0.94 1.01   

May-16 1.04   1.19 0.95 1.64 

Jun-16 0.85   0.90 1.01 1.52 

Aug-16 0.68   0.81 0.85   

2017 

Jun-17 0.65   0.79 0.98 1.64 

Aug-17 0.49   0.76 0.98   

Oct-17 0.36   0.58 0.67   

2018 

Apr-19 1.03   1.37 2.17   

May-19 3.45   4.15 4.79 7.38 

Jun-19 1.28   0.85 0.94 1.70 

Aug-19 0.43   0.72 0.89   

Oct-19 0.65   0.67     
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UV254 (m-1) 

Time             Location Ref 1 Ref 2 Ref 3 
Clear 
Cut 

Strip Cut 
Partial 

Cut 

2013 

Apr-13   1.29 1.44       

May-13   2.51 1.47       

Jul-13     2.03       

Sep-13   1.35 1.72       

2014 

Apr-14   1.35 1.85       

May-14   4.7 4.6       

Jul-14   0.3 1.3       

Aug-14   1.0 1.6       

Sep-14   1.4 1.6       

Oct-14   1.8 2.6       

2015 

Apr-15 0.87     1.61 2.37 2.57 

May-15       2.19 2.35 2.15 

Jun-15 1.09     1.58 1.73 2.9 

Sep-15 1.09     2.02 1.75   

2016 

Mar-16 0.86     1.72 2   

May-16 2.61     2.53 1.92 4.25 

Jun-16 1.34     1.63 2.23 3.6 

Aug-16 0.73     1.61 1.34   

2017 

Jun-17 1.11     1.94 1.78 3.28 

Aug-17 1.09     1.6 1.34   

Oct-17 0.87     1.46 1.97   

2018 

Apr-19 0.83   1.13 1.67   

May-19 2.77   2.87 4.10 8.33 

Jun-19 1.00   1.37 1.63 3.60 

Aug-19 0.70   1.80 1.37   

Oct-19 1.30   1.30 2.20   
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SUVA (L/mg.m) 

Time                Location Ref 1 Undist 1 Undist 2 Clear Cut Strip Cut Partial 
Cut 

2013 

Apr-13   1.23 1.22       

May-13   1.88 1.23       

Jul-13     1.97       

Sep-13   1.74 1.77       

2014 

Apr-14   2.15 1.94       

May-14   3.0 2.9       

Jul-14   0.5 1.6       

Aug-14   1.8 1.8       

Sep-14   2.4 2.2       

Oct-14   2.3 2.6       

2015 

Apr-15 1.06     1.48 1.55 1.67 

May-15 1.54     1.48 1.55 1.46 

Jun-15 0.97     1.22 1.31 1.68 

Sep-15 1.10     1.42 1.61   

2016 

Mar-16 1.15     1.83 1.98   

May-16 2.51     2.13 2.02 2.59 

Jun-16 1.58     1.81 2.21 2.37 

Aug-16 1.07     1.99 1.58   

2017 

Jun-17 1.71     2.46 1.82 2.00 

Aug-17 2.22     2.11 1.37   

Oct-17 2.42     2.52 2.94   

2018 

Apr-19 1.21   1.30 1.36   

May-19 2.49   2.37 3.28 4.99 

Jun-19 0.78   1.61 1.75 1.21 

Aug-19 0.62   0.40 0.65   

Oct-19 2.00   1.94     
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Humic substances (mg/L) 

Time           Location Ref 1 Ref 2 Ref 3 
Clear 
Cut 

Strip Cut 
Partial 

Cut 

2014 

Apr-14   0.35 0.68       

May-14   1.28 0.85       

Jul-14   0.41 0.51       

Aug-14   0.30 0.55       

Sep-14   0.33 0.50       

Oct-14   0.37 0.36       

2015 
Apr-15 0.62     0.74 0.75 1.13 
May-15       0.99 0.85 1.02 
Jun-15 0.77     0.91 0.95 1.28 

2017 

Jun-17 0.10     0.61 0.64 1.14 

Aug-17 0.31     0.42 0.62   

Oct-17 0.13     0.31 0.08   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

129 

 

Biopolymers (mg/L) 

Time            Location Ref 1 Undist 1 Undist 2 Clear Cut Strip Cut Partial 
Cut 

2014 

Apr-14   0.008 0.012       

May-14   0.025 0.011       

Jul-14   0.013 0.010       

Aug-14   0.010 0.007       

Sep-14   0.007 0.010       

Oct-14   0.009 0.009       

2015 
Apr-15 0.005     0.008 0.003 0.004 
May-15       0.022 0.008 0.010 
Jun-15 0.002     0.006 0.005 0.003 

2017 

Jun-17       0.010 0.005 0.007 

Aug-17 0.010     0.005 0.004   

Oct-17 0.006     0.005     
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Building Blocks (mg/L) 

Time            Location Ref 1 Undist 1 Undist 2 Clear Cut Strip Cut Partial 
Cut 

2014 

Apr-14   0.06 0.12       

May-14   0.19 0.20       

Jul-14   0.09 0.09       

Aug-14   0.07 0.11       

Sep-14   0.06 0.09       

Oct-14   0.08 0.08       

2015 
Apr-15 0.16     0.21 0.28 0.29 
May-15       0.21 0.18 0.24 
Jun-15 0.20     0.22 0.22 0.36 

2017 

Jun-17 0.02     0.09 0.13 0.19 

Aug-17 0.05     0.09 0.14   

Oct-17 0.03     0.07 0.01   
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LMW Acids (mg/L) 

Time            Location Ref 1 Undist 1 Undist 2 Clear Cut Strip Cut Partial 
Cut 

2014 

Apr-14           

May-14           

Jul-14   0.01 0.00       

Aug-14           

Sep-14   0.01        

Oct-14   0.01 0.00       

2015 
Apr-15     0.17  
May-15       
Jun-15       

2017 

Jun-17 0.003     0.03 0.01 0.03 

Aug-17 0.01     0.004 0.02   

Oct-17 0.02     0.02 0.02   
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LMW Neutrals (mg/L) 

Time            Location Ref 1 Undist 1 Undist 2 Clear Cut Strip Cut Partial 
Cut 

2014 

Apr-14   0.18 0.11       

May-14   0.13 0.36       

Jul-14   0.12 0.09       

Aug-14   0.14 0.15       

Sep-14   0.14 0.12       

Oct-14   0.31 0.54       

2015 
Apr-15 0.08   0.10 0.28 0.16 

May-15 0.00   0.24 0.50 0.25 

Jun-15 0.14   0.16 0.14 0.20 

2017 

Jun-17 0.50     0.07 0.20   

Aug-17 0.01     0.03 0.02   

Oct-17 0.14     0.12 0.52   
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THM-FP ( g/L) 

Time                
Location Ref 1 Undist 1 Undist 2 Clear Cut Strip Cut Partial 

Cut 

2013 

Apr-13   10.00 8.20       

May-13   17.00 13.00       

Jul-13     8.00       

Sep-13   11.00 10.00       

2014 

Apr-14   38.00 42.00       

May-14   128.0         

Jul-14   32.0 39.0       

Aug-14   26.0 33.0       

Sep-14   32.0 27.0       

Oct-14   33.0 32.0       

2015 

Apr-15 25     31 37 45 

May-15       43 39 35 

Jun-15 23     27 25 50 

Sep-15 17     23 27   

2016 

Mar-16 15     28 31   

May-16 36     39 29 50 

Jun-16 25     26 34 48 

Aug-16 14     20 26   

2017 

Jun-17             

Aug-17 13     21 24   

Oct-17 16     25 30   

2018 

Apr-19 15   19 24   

May-19 7.4   48 65 168 

Jun-19 24   31 32 65 

Aug-19 15   22 31   

Oct-19 25   22 36   
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HAA-FP ( g/L) 

Time                
Location Ref 1 Undist 1 Undist 2 Clear Cut Strip Cut Partial 

Cut 

2013 

Apr-13             

May-13             

Jul-13             

Sep-13             

2014 

Apr-14   42.00 39.00       

May-14             

Jul-14             

Aug-14             

Sep-14             

Oct-14             

2015 

Apr-15 37     36 42 57 

May-15       91 68 64 

Jun-15 50     38 32 74 

Sep-15 24     29 34   

2016 

Mar-16 16     35 32   

May-16 50     53 35 59 

Jun-16 30     33 34 61 

Aug-16 20     23 32   

2017 

Jun-17             

Aug-17 16     21.5 24.6   

Oct-17 22.6     37.4 42.7   

2018 

Apr-19 19.2   24.1 29.6   

May-19     64.1 78.5 258 

Jun-19 28.9   34.2 33.7 77.2 

Aug-19 24.4   39.3 59.3   

Oct-19 38.4   35.2 54.1 
  
 

 
 
 
 

      



 

135 

 

Appendix B 

ANOVA results for 9 points DOC measurements 

p-value Ref 1 Undist 1 Undist 2 Clear cut Strip cut 
Partial 

cut 

May-13   0.9943 0.9990       

Sep-13   0.9922 0.9409       

Apr-14   0.8298 0.9621       

May-14   0.7849 0.9169       

Jul-14   0.6210 0.6702       

Aug-14   0.2623 0.1623       

Sep-14   0.9902 0.4304       

Oct-14   0.6447 0.1087       

Apr-15 0.7612     0.8976 0.5057 0.8030 

Mar-16 0.7860     0.0815 0.1016   

May-16 0.9470     0.9805 0.2899 0.6013 

Jun-16 0.9987     0.9079 0.9434 0.9888 

Aug-16 0.7169     0.9971 0.9991   

Jun-17 0.8961     0.9064 0.5908 0.7042 

Aug-17 0.8294     0.5920 0.4136   

Oct-17 0.9428     0.0911 0.1536   

Apr-19 0.9898     0.9600 0.7931   

May-19 1     1 0.9977 0.9910 

Jun-19 0.9037     0.9221 0.9066 0.8397 

Aug-19 0.9590     0.8860 0.9119   

Oct-19 0.9458     0.4732     
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Appendix C 

Non-parametric Mann-Whitney U test results 

In the following tables the right hand side represents the results of non-parametric test with all available 

data and left hand side represents results from a data set without the inclusion of elevated dataset from 

May 2018. The purpose was to investigate the possible impact of  May 2018 data on statistical analysis. 

For DOC (mg/L) dataset 

All Data      Excluding May 2018 
Data 

  

 U p-value      U p-value  

Ref 1 (2015-18) vs. 
Undist 1 (2013-15)  

66 0.95 
   

Ref 1 (2015-18) vs. 
Undist 1 (2013-15)  

57 0.73 
   

Ref 1 (2015-18) vs. 
Undist 2 (2013-15) 

50 0.18 
   

Ref 1 (2015-18) vs. 
Undist 2 (2013-15) 

40 0.08 
   

Undist 1 (2013-15) vs. 
Undist 2 (2013-15) 

28 0.18 
   

Undist 1 (2013-15) vs. 
Undist 2 (2013-15) 

28 0.18 
   

Ref 1 (2009-15) vs. 
Undist 1 (2009-15)  

210 0.21 
   

Ref 1 (2009-15) vs. 
Undist 1 (2009-15)  

210 0.21 
   

Ref 1 (2009-15) vs. 
Undist 2 (2009-15) 

140 0.003 
   

Ref 1 (2009-15) vs. 
Undist 2 (2009-15) 

140 0.003 
   

Ref 1 vs. Undist 1  (2009-
18) 

436 0.42 
   

Ref 1 vs. Undist 1  (2009-
18) 

57 0.30 
   

Ref 1 vs. Undist 2 (2009-
18) 

306 0.005 
   

Ref 1 vs. Undist 2 (2009-
18) 

40 0.002 
   

Undist 1 vs. Undist 2 
(2009-18) 

327 0.047 
   

Undist 1 vs. Undist 2 
(2009-18) 

327 0.047 
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All Data      Excluding May 2018 Data 

 U p-value     U p-value  

Ref 1 (2015-18) vs. Clear 
cut (2015-18) 

82.5 0.14    Ref 1 (2015-18) vs. Clear 
cut (2015-18) 

67.5 0.10 

Ref 1 (2015-18) vs. 
Partial cut (2015-18) 

7 0.000 
   

Ref 1 (2015-18) vs. 
Partial cut (2015-18) 

0 0.000 
   

Ref 1 (2015-18) vs. Strip 
cut (2015-18) 

63.5 0.04 
   

Ref 1 (2015-18) vs. Strip 
cut (2015-18) 

49.5 0.02 
   

Ref 1 (all) vs. Clear cut 
(2015-18) 

151 0.02 
   

Ref 1 (all) vs. Clear cut 
(2015-18) 

136 0.02 
   

Ref 1 (all) vs. Partial cut 
(2015-18) 

7 0.00 
   

Ref 1 (all) vs. Partial cut 
(2015-18) 

0 0.000 
   

Ref 1 (all) vs. Strip cut 
(2015-18) 

102.5 0.001 
   

Ref 1 (all) vs. Strip cut 
(2015-18) 

88.5 0.001 
   

 

 

 U p-value      U p-value  

Undist 1 (2013-14) vs. 
Clear cut (2015-18) 

47 0.17 
   

Undist 1 (2013-14) vs. 
Clear cut (2015-18) 

47 0.24 
   

Undist 1 (2013-14) vs. 
Partial cut (2015-18) 

3 0.001 
   

Undist 1 (2013-14) vs. 
Partial cut (2015-18) 

3 0.001 
   

Undist 1 (2013-14) vs. 
Strip cut (2015-18) 

36 0.06 
   

Undist 1 (2013-14) vs. 
Strip cut (2015-18) 

36 0.10 
   

Undist 1 (2009-15) vs. 
Clear cut (2015-18) 

163.5 0.08 
   

Undist 1 (2009-15) vs. 
Clear cut (2015-18) 

163.5 0.14 
   

Undist 1 (2009-15) vs. 
Partial cut (2015-18) 

8 0.000 
   

Undist 1 (2009-15) vs. 
Partial cut (2015-18) 

8 0.000 
   

Undist 1 (2009-15) vs. 
Strip cut (2015-18) 

109.5 0.004 
   

Undist 1 (2009-15) vs. 
Strip cut (2015-18) 

109.5 0.010 
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All Data      Excluding May 2018 Data  

 U p-value     U p-value  

Undist 2 (2013-14) vs. 
Clear cut (15-18) 

73 0.74    Undist 2 (2013-14) vs. 
Clear cut (2015-18) 

63 0.53 

Undist 2 (2013-14) vs. 
Partial cut (2015-18) 

3 0.000 
   

Undist 2 (2013-14) vs. 
Partial cut (2015-18) 

3 0.001 
   

Undist 2 (2013-14) vs. 
Strip cut (2015-18) 

62 0.50 
   

Undist 2 (2013-14) vs. 
Strip cut (2015-18) 

62 0.67 
   

Undist 2 (09-15) vs. Clear 
cut (2015-18) 

245 0.96 
   

Undist 2 (2009-15) vs. 
Clear cut (2015-18) 

220 0.78 
   

Undist 2 (2009-15) vs. 
Partial cut (2015-18) 

17 0.000 
   

Undist 2 (2009-15) vs. 
Partial cut (2015-18) 

17 0.000 
   

Undist 2 (2009-15) vs. 
Strip cut (2015-18) 

185 0.27 
   

Undist 2 (2009-15) vs. 
Strip cut (2015-18) 

185 0.44 
   

 

 

All Data      Excluding May 2018 Data  

 U p-value      U p-value  

Clear cut vs. Strip cut 
(2015-18) 

83.5 0.23 
   

Clear cut vs. Strip cut 
(2015-18) 

75.5 0.20 
   

Clear cut vs. Partial cut 
(2015-18) 

8 0.000 
   

Clear cut vs. Partial cut 
(2015-18) 

1 0.000 
   

Strip cut vs. Partial cut 
(2015-18) 

17.5 0.004 
   

Strip cut vs. Partial cut 
(2015-18) 

10.5 0.003 
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For UV254 (m-1) 

All Data      Excluding May 2018 Data  

 U p-value      U p-value  

Ref 1 (2015-18) vs. 
Undist 1 (2013-15)  

37 0.07 
   Ref 1 (2015-18) vs. 

Undist 1 (2013-15)  
29 0.03 

   

Ref 1 (2015-18) vs. 
Undist 2 (2013-15) 

20 0.001 
   Ref 1 (2015-18) vs. 

Undist 2 (2013-15) 
11 0.000 

   

Undist 1 vs. Undist 2 
(2013-15) 

27 0.16 
   Undist 1 vs. Undist 2 

(2013-15) 
27 0.16 

   

Strip cut vs. Clear cut 
(2015-18) 

94.5 0.21 
   Strip cut vs. Clear cut 

(2015-18) 
74.5 0.17 

   

Strip cut vs. Partial cut 
(2015-18) 

10 0.000 
   Strip cut vs. Partial cut 

(2015-18) 
4 0.000 

   

Clear cut vs. Partial cut 
(2015-18) 

4 0.000 
   Clear cut vs. Partial cut 

(2015-18) 
2 0.000 

   

Ref 1 vs. Clear cut (2015-
18) 

33.5 0.000 
   Ref 1 vs. Clear cut (2015-

18) 
18.5 0.000 

   

Ref 1 vs. Partial cut 
(2015-18) 

4 0.000 
   Ref 1 vs. Partial cut 

(2015-18) 
2 0.000 

   

Ref 1 vs. Strip cut (2015-
18) 

31 0.000 
   Ref 1 vs. Strip cut (2015-

18) 
16 0.000 

   

Undist 1 (2013-14) vs. 
Clear cut (2015-18) 

49 0.21 
   Undist 1 (2013-14) vs. 

Clear cut (2015-18) 
48 0.26 

   

Undist 1 (2013-14) vs. 
Partial cut (2015-18) 

8 0.01 
   Undist 1 (2013-14) vs. 

Partial cut (2015-18) 
8 0.01 

   

Undist 1 (2013-14) vs. 
Strip cut (2015-18) 

46 0.15 
   Undist 1 (2013-14) vs. 

Strip cut (2015-18) 
45 0.19 

   

Undist 2 (2013-14) vs. 
Clear cut (2015-18) 

69 0.59 
   Undist 2 (2013-14) vs. 

Clear cut (2015-18) 
60 0.43 

   

Undist 2 (2013-14) vs. 
Partial cut (2015-18) 

8 0.003 
   Undist 2 (2013-14) vs. 

Partial cut (2015-18) 
8 0.007 

   

Undist 2 (2013-14) vs. 
Strip cut (2015-18) 

68 0.55 
   Undist 2 (2013-14) vs. 

Strip cut (2015-18) 
67 0.68 
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For SUVA (L/mg.m) 

All Data      Excluding May 2018 Data  

 U p-value      U p-value  

Ref 1 (2015-18) vs. 
Undist 1 (2013-15)  

49 0.21 
   Ref 1 (2015-18) vs. 

Undist 1 (2013-15)  
41 0.12 

   

Ref 1 (2015-18) vs. 
Undist 2 (2013-15) 

46 0.08 
   Ref 1 (2015-18) vs. 

Undist 2 (2013-15) 
38 0.04 

   

Undist 1 vs. Undist 2 
(2013-15) 

44 0.97 
   Undist 1 vs. Undist 2 

(2013-15) 
44 0.97 

   

Strip cut vs. Clear cut 
(2015-18) 

115 0.86 
   Strip cut vs. Clear cut 

(2015-18) 
98 0.78 

   

Strip cut vs. Partial cut 
(2015-18) 

47 0.43 
   Strip cut vs. Partial cut 

(2015-18) 
40 0.54 

   

Clear cut vs. Partial cut 
(2015-18) 

53 0.53 
   Clear cut vs. Partial cut 

(2015-18) 
47 0.73 

   

Ref 1 vs. Clear cut (2015-
18) 

95 0.22 
   Ref 1 vs. Clear cut (2015-

18) 
78 0.16 

   

Ref 1 vs. Partial cut 
(2015-18) 

35.5 0.08 
   Ref 1 vs. Partial cut 

(2015-18) 
29.5 0.11 

   

Ref 1 vs. Strip cut (2015-
18) 

88.5 0.22 
   Ref 1 vs. Strip cut (2015-

18) 
75.5 0.20 

   

Undist 1 (2013-14) vs. 
Clear cut (2015-18) 

60 0.52 
   Undist 1 (2013-14) vs. 

Clear cut (2015-18) 
53 0.41 

   

Undist 1 (2013-14) vs. 
Partial cut (2015-18) 

36 0.96 
   Undist 1 (2013-14) vs. 

Partial cut (2015-18) 
27 0.68 

   

Undist 1 (2013-14) vs. 
Strip cut (2015-18) 

54 0.45 
   Undist 1 (2013-14) vs. 

Strip cut (2015-18) 
45 0.28 

   

Undist 2 (2013-14) vs. 
Clear cut (2015-18) 

70 0.62 
   Undist 2 (2013-14) vs. 

Clear cut (2015-18) 
62 0.50 

   

Undist 2 (2013-14) vs. 
Partial cut (2015-18) 

39 0.97 
   Undist 2 (2013-14) vs. 

Partial cut (2015-18) 
31 0.74 

   

Undist 2 (2013-14) vs. 
Strip cut (2015-18) 

64 0.57 
   Undist 2 (2013-14) vs. 

Strip cut (2015-18) 
54 0.37 
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For THM-FP ( g/L) 

All Data      Excluding May 2018 Data  

 U p-value      U p-value  

Ref 1 (2015-18) vs. 
Undist 1 (2013-15)  

36.5 0.10 
   Ref 1 (2015-18) vs. 

Undist 1 (2013-15)  
36.5 0.14 

   

Ref 1 (2015-18) vs. 
Undist 2 (2013-15) 

54.5 0.60 
   Ref 1 (15-18) vs. Undist 2 

(2013-15) 
54.5 0.79 

   

Undist 1 vs. Undist 2 
(2013-15) 

34 0.60 
   Undist 1 vs. Undist 2 

(2013-15) 
34 0.60 

   

Strip cut vs. Clear cut 
(2015-18) 

73 0.11 
   Strip cut vs. Clear cut 

(2015-18) 
59 0.08 

   

Strip cut vs. Partial cut 
(2015-18) 

8.5 0.001 
   Strip cut vs. Partial cut 

(2015-18) 
3 0.000 

   

Clear cut vs. Partial cut 
(2015-18) 

4.5 0.000 
   Clear cut vs. Partial cut 

(2015-18) 
2 0.000 

   

Ref 1 vs. Clear cut (2015-
18) 

43 0.01 
   Ref 1 vs. Clear cut (2015-

18) 
43 0.02 

   

Ref 1 vs. Partial cut 
(2015-18) 

1 0.000 
   Ref 1 vs. Partial cut 

(2015-18) 
1 0.000 

   

Ref 1 vs. Strip cut (2015-
18) 

20 0.000 
   Ref 1 vs. Strip cut (2015-

18) 
20 0.000 

   

Undist 1 (2013-14) vs. 
Clear cut (2015-18) 

64.5 0.86 
   Undist 1 (2013-14) vs. 

Clear cut (2015-18) 
56.5 0.69 

   

Undist 1 (2013-14) vs. 
Partial cut (2015-17) 

7 0.01 
   Undist 1 (2013-14) vs. 

Partial cut (2015-17) 
7 0.02 

   

Undist 1 (2013-14) vs. 
Strip cut (2015-18) 

60.5 0.68 
   Undist 1 (2013-14) vs. 

Strip cut (2015-18) 
59.5 0.83 

   

Undist 2 (2013-14) vs. 
Clear cut (2015-18) 

58 0.60 
   Undist 2 (2013-14) vs. 

Clear cut (2015-18) 
58 0.78 

   

Undist 2 (2013-14) vs. 
Partial cut (2015-18) 

2 0.001 
   Undist 2 (2013-14) vs. 

Partial cut (2015-18) 
2 0.002 

   

Undist 2 (2013-14) vs. 
Strip cut (2015-18) 

51.5 0.35 
   Undist 2 (2013-14) vs. 

Strip cut (2015-18) 
51.5 0.48 
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For HAA-FP ( g/L) 

All Data      Excluding May 2018 
Data 

  

 U p-value      U p-value  

Strip cut vs. Clear cut 
(2015-18) 

106.5 0.81 
   

Strip cut vs. Clear cut 
(2015-18) 

93 0.80 
   

Strip cut vs. Partial cut 
(2015-18) 

12 0.003 
   

Strip cut vs. Partial cut 
(2015-18) 

6 0.002 
   

Clear cut vs. Partial cut 
(2015-18) 

10 0.002 
   

Clear cut vs. Partial cut 
(2015-18) 

6 0.002 
   

Ref 1 vs. Clear cut (2015-
18) 

57 0.06 
   

Ref 1 vs. Clear cut (2015-
18) 

57 0.10 
   

Ref 1 vs. Partial cut 
(2015-17) 

0 0.000 
   

Ref 1 vs. Partial cut 
(2015-18) 

0 0.00 
   

Ref 1 vs. Strip cut (2015-
17) 

43 0.01 
   

Ref 1 vs. Strip cut (2015-
18) 

43 0.02 
   

 

 

 

 

 


