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Abstract

Field-theoretic simulations (FTS) offer a Versatlle e od of}dealing with complicated block

copolymer systems, but unfortunately they struggl to co with the level of fluctuations typical
of experiments. Although the main obstacle, an ultrav
renormalizing the Flory-Huggins y paramet &

polymerization indexes, N. Here, we circ M problem by applying the Morse calibration,

iolet (UV) divergence, can be removed by

works for unrealistically large invariant

where a nonlinear relationship between re used in F'TS and the effective x corresponding to

the standard Gaussian-chain model s obtamed by matching the disordered-state structure

function, S(k), of symmetric dil\;}ly ers to renormalized one-loop (ROL) predictions. This

calibration brings the order-disorder transition (ODT) obtained from FTS into agreement with the

universal results of particlesbased\simulations for values of N characteristic of experiment. In the

limit of weak intera
with the previouir/

5K

igns#the calibration reduces to a linear approximation, ¥ =~ zsoXs, consistent

tion of y for large N.
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The standard Gaussian-chain model (GCM)' underpins most calculations for block
copolymer melts, including the self-consistent field theory (SCFT) of Helfand,? the random-
phase approximation (RPA) of Leibler?, the strong-stretching theory(SST) of Semenov,* and
the fluctuation theory of Fredrickson and Helfand.> The GCM trea<s< ck copolymer melts
as an incompressible system of thin elastic threads interacting sanple contact forces. It is
a minimal model that contains only the essential features of th&xt“ , and as such involves
the least number of parameters possible. In the mean-fi ‘%‘p@a ation, the equilibrium

behavior of monodisperse AB diblock copolymers is ¢ontrolleduby just three quantities: the

composition of the diblock, f, the ratio of sengnL lengthsdaa/ap, and the product, xN,

where x is the Flory-Huggins interaction paramet
Fluctuation corrections to the mean-field behaviotare then controlled by one additional pa-
rameter, the invariant polymerization inde\g peN, where a = [fa? + (1 — f)a%]Y/? is
the average segment length and p, is th&;ﬁﬁ-demity,g’ Note that we follow the standard
practice of defining all segments to h %} common volume of py'.

It is believed that all models“aswwell as experimental systems reduce to the standard
GCM at large N.” How larg ds to be will depend on the particular system. The
universality implies that th%a?ra ters of any particle-based model can be mapped onto

ndj\’ is the total number of segments.°

those of the GCM. The'mapping of molecular compositions (e.g., f) is trivial given their

straightforward defiaitiof in terms of volume fraction. The segment lengths are also clearly
defined by the q%r; t that the average end-to-end length or radius of gyration of a
linear homo l}a)er in"“& neat melt reduces to Ry = aN'/? or R, = a(N/6)"/2, respectively,

for large M.

Th on ‘ionyfivial part of the mapping is the relationship between the y parameter
of the%‘l\‘/l" nd some corresponding parameter of the particle-based model, «, specifying
the stre othof its A-B interactions in units of k7. One important constraint is that the

behayior/of the particle-based model must approach SCFT in the N — oo limit. Miiller and

}dbﬁ proposed a linear relationship, x = z(NN)a, that satisfies this requirement, where
z(N) measures the number of intermolecular contacts between molecules of polymerization
N in the athermal limit (i.e., « = 0). This, however, results in a y parameter that not only

depends on molecular weight but also on molecular architecture. Such dependences would
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Publishisegerely limit the predictive power of block copolymer theory. Working on the assumption
that such dependences are not necessary, Morse and coworkers? proposed that x be defined as
a nonlinear function of o, which reduces to x &~ z,.« for small o, where z,, = limy_, 2(N).
The nonlinear dependence is determined by matching the behavior of the particle-based

model to some prediction of the GCM. It could, in principle, be a?{ quantity for any block

copolymer system, but it is best to choose the most accurate pre '@tbon ssible that permits

one-loop (ROL) prediction for the disordered-state struc fungtio

fits to relatively large values of o. Therefore, Morse and cowerkers'? chose the renormalized
\\ , S(k), of symmetric

diblock copolymer melts.'!2 The success of this calibratien‘method has been remarkable,
-

at least, for diblock copolymer melts.!31¢

Given the universality of block copolymer be@or, 1t4s-possible to obtain quantitative

predictions using very simple particle-based rhgde s.@owever, even with simple models,
n parti

it can be challenging to simulate blends and; cular, complicated polymeric architec-

tures. Field-theoretic simulations (FTS)!%1%20 offer a way around this problem.?'?* They

\

simulate a field-based version of the standard GCM, obtained by applying the same transfor-
;\th
fOno

mations used in SCFT.2* For system Iing two chemical species, the interaction energy
is represented by the Hubbard-St \ h identity involving a composition field, W_(r),
i

and the delta function enforcin

r). This allows the polymer coordinates to be integrated out,
uiyalent Hamiltonian, H[W_,W,], that depends only on the

ncompressibility is replaced by a Fourier representation

involving a pressure fiel

leaving a mathematidally

two fields. Rather#t ‘éolv}ng the statistical mechanics of the field-based model using the
saddle-point a 4 ipation of SCKF'T, one simply performs a simulation.
FTS of oa copolymer melts are particularly efficient at large N, but they run into

problems( for he experimentally relevant conditions of 102 < N < 10* For instance,

s dle-psint approximation for W, (r), but their results still diverge when the spacing, A,

the“grid used to represent the fields is reduced towards zero. Fortunately, this ultraviolet
~
V) divergence has the simple effect of disordering the melt, which can be compensated

for by expressing results in terms of a renormalized interaction parameter,6

6
= (1= 50w, 0
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Publishiwficre o = 1.2214 for cubic grids,?” | = 1/ppa® is the packing length, A = m/A is the
wavevector cutoff, and x; is the bare interaction parameter used in the MC-FTS. Although
this renormalization works well for large N,?7 it fails just prior to the experimentally rel-
evant regime. Vorselaars and Matsen®® appeared to resolve the problem by modifying the

renormalization of y. The modification removed the divergence fet diblock copolymers of

I\ﬁ\

N = 102, but it later failed for binary homopolymer blends at v; I&Ss of'Y where the renor-

malization in Eq. (1) worked just fine.?%:3

Here, we take a different approach. Rather than trying % divergence, we fix A

at a small finite value and apply the Morse calibration. Thedifst"step is the evaluation of 2z,

—~y
the relative number of intermolecular contacts in a neat melt Sfi finitely long homopolymers.

-

Next, we define an effective

Zoo Xb, + l%

= ) 2
X +C§_X§ o @)
where the fitting parameters, ¢; and cg, die determined by matching the peak of S(k) for

symmetric diblock copolymers to RO ~ To assess the calibration, we compare the
order-disorder transition (ODT) for‘dihlock ‘egpolymers of N < 10* to

—
W 41.0N7Y3 4 123. 0N (3)

The first two terms are the standagd Fredrickson-Helfand (F-H) approximation,® and the
third term is an empiri laction obtained from particle-based simulations.!?

£
II. FIELD-T % SIMULATIONS

The field-t Detic model for systems with two chemically-distinct segments, A and B,

(XN)ob

involves fwgcomfiposition field, W_(r), that couples to the difference between the A and B

£

nd a pressure field, W, (r), that enforces a uniform segment density of py.

concefitrations
FQ ocl>copolymer melt of n molecules, the field-based Hamiltonian is given by'®2°

HW_ W W2(r
) A g [ (o wm) ar (@)
kgT Xb
N
where () is the partition function for a single molecule subject to the two fields. It is given

by
QUV_.W,] = / o(r, N)dr | (5)
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Publishingcre q(r,t) is a partial partition function for the first ¢ segments of the molecule with the

t’th segment constrained at position r. This function satisfies a diffusion equation,

0 a?
8_3 = Evzq - (We£Wo)g, (6)

with the initial condition ¢(r,0)=1. The ‘+’ and ‘-’ signs are use when the t'th segment
is of type A and B, respectively. Equation (6) is solved numeric I@g\a pseudo-spectral

31,32

algorithm with Richardson extrapolation and a step size o (i.e., N corresponds to

the number of integration steps along the polymer chain). later require an analogous

partial partition function, ¢'(r,t), for the last N — t segmeqté. “M.is obtained by integrating
Eq. (6) with one side multiplied by —1 backwards ini¢, starging from ¢'(r, N) = 1.

FTS are complicated by the fact that W, (r) ds“an imaginary-valued function, which in
turn makes H[W_,W,| a complex-valued q nt(wy. ‘A); a result, the Boltzmann weight,
exp(—H/kgT), is no longer positive deﬁni‘ce‘,\‘qnd\fe “gf-(')re standard simulation methods are

r;}\{h dealt with this by performing complex
Langevin simulations (CL-FTS). Alt rnatlmh'ls complication can be avoided by replacing

not applicable. Fredrickson and cowor

W, (r) with its saddle-point, w (r), hﬁpproximates the incompressibility condition by

¢4 (r) =1, where \ N
N\AN—Q / a(r, 0)q'(r, £)dt (7)

is the mean-field appro mﬁmﬁfor the total concentration. The integral over ¢ is evaluated
using the Simpson giladratuge and the saddle-point is located with Anderson-mixing itera-
tions, as described in Ref. 32. It turns out that w, (r) is a real-valued function, which then
allows for the aba{ho s of statistical mechanics such as ordinary Langevin simulations
(L-FTS)33:34 ﬁonte Carlo simulations (MC-FTS).35:36

Here, We pérformMC-FTS for melts of n = poV//N diblock copolymers in cubic simulation
boxesfof volumeV = L3 with periodic boundary conditions. The fields are represented on

oril with m points in each direction separated by a uniform spacing of A (i.e.,

régvaluation of w, (r). The moves are accepted or rejected based on the standard Metropolis

criterion. We alternate between two kinds of moves:?”

one in real space where W_(r) is
changed at each grid point by amounts selected from a uniform distribution, and another in

Fourier space where W_ (k) is changed at each wavevector with a probability proportional to

5
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Publishitig RPA structure function, Sgpa (k), for YN = 10. The amplitude of each move is adjusted
during the beginning of the equilibration period to achieve an acceptance rate of ~ 40%.
We typically use 106 MCS to equilibrate the system, followed by 10% — 107 MCS for the
collection of statistics. Observables are generally sampled once every 10 MCS.

the fraction of inter-

III. MORSE CALIBRATION 3\
(

The first step of the calibration is to determine z,, = linay o8

molecular contacts in a pure homopolymer melt of infinitely/leng chains. In particle-based

simulations, it is necessary to evaluate z(NV) for finite oi?me s and then extrapolate to infin-
ity, but here we are able to calculate z,, directly peeausewf h

and the absence of fields. The fact that W_(r vgn'ehe‘s)n the x, — 0 limit is obvious from
the form of Eq. (4) or alternatively from théfact t t‘Tﬁe composition field cannot play any
role in the absence of A-B interactions. G&Kthst W_(r) = 0, it immediately follows that

¢4 (r) =1 is satisfied by w, (r) = 0. <=

e saddle-point approximation

Therefore, it suffices to consider a hl&inﬁnite non-interacting chain, with its contour

parameterized by s = —oo to oo\and the s = 0 monomer constrained at the origin. It

is important to remember th coarse-grained segment of the GCM consists of an

arbitrarily large number efanonomers strung together; we are just constraining one monomer
of negligible volume 1&% entire segment. The segments will generally span multiple
et

grid points, and 2& th ; 1 number of segments at the origin, A3py, is not necessarily
y Gase

(S

an integer. In a , alliwe need to know is what fraction of the A3py segments belong to

the same chafn asjthe constrained monomer, and thus experience an intramolecular contact

with tha mopo
Thecalc tiofl requires a propagator for the constrained chain providing the probability

that the s :St monomer is located at r.3” This propagator, qo(r,t), satisfies the diffusion
e u‘z;;ions with the initial condition ¢o(0,0) = 1 for the one grid point at the origin and

eroferall other grid points. It is essential that go(r,t) be solved with the same numerical
ﬁoﬁthm used in the FTS. The resulting quantity ¢o(0,¢), plotted in Fig. 1, then provides
the'probability that the s = ¢t monomer is also at the origin. Thus, the integral of ¢y(0,t)

gives the amount of chain, measured in segments, experiencing intramolecular contact with

the constrained monomer. Due to the symmetry, it is sufficient to just integrate over positive
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FIG. 1: Probability that a segment interacts with agother ségment ¢ steps further along the same

QO(O7t>
1
P
~—

)

polymer chain, calculated for an athermal {1\% » = 0). The dashed curve denotes an

analytical approximation for large t. s\

t and then double the result. Fror&ha\wb fmmediately obtain the fraction of intermolecular

\ .
ZMS%QPO /0 0(0,t)dt = 0.7084 . (8)
The numerical solutién of g(r,t), used to evaluate the Hamiltonian, is a discrete function
of t, and so the inte lm) should be evaluated accordingly. The issue is how the () in
Eq. (5) samples ghe /S, )&hen X is infinitesimally small. The Richardson extrapolation
basically combi es\n~{erical solutions for full steps, At = 1, and half steps, At = 1/2,

contacts,

31,32

weighted b, and 4/3, respectively. Given that the integer steps experience twice

the field Gutedsity, as half-integer steps, the field contribution at integer and half-integer
valued of t is {portional to —2/3 +4/3 = 2/3 and 4/3, respectively. At ¢t = 0, it is
p m&% 0 1/3. These are the precise weightings used by the Simpson quadrature, and
sowe ev%lua,te Eq. (8) using the Simpson method with a step size of At = 1/2. In practice,
‘H’cye{er, we only need to integrate up to t = 10 using the Simpson method, and then the
rést of the integral can be performed analytically using ¢o(0,t) ~ (3A2/2ma?t)3/2.

For the next part of the calibration, we evaluate the disordered-state structure function

for three polymerizations, N = 16, 32, and 64. In FTS, the structure function is given
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FIG. 2: Structure function, S(k), (‘ﬁle:les of polymerization N = 32 calculated for different

interaction parameters, xp. Sy note FTS results, and the curves are fits used to extract

the peak height, S(k*).
1

by24,27,33 Q
2 W) - )

/ ‘ooN (V)2
The size of e‘v')th!{on box, L. = mA, is chosen such that the number of grid points
(m =16 = 23 x 3, and 32 = 2° used for N = 16, 32, and 64, respectively) only

£

contains Ors o

ﬂ
used i the %Se do-spectral algorithm.?? Due to the finite size of the simulation box, the

mé:’éi is only permitted to take on a discrete set of values: k = 2w (h,k,1)/L, where
h, &, an

2 and 3. This aids the numerical efficiency of the fast Fourier transforms

| are integers. Although the cubic box slightly breaks the isotropic symmetry, we
krage S(k) over wavevectors of the same magnitude turning it into a function of k = |k]|.
Figure 2 plots S(k) at a series of y;, values for diblock copolymers of N = 32. The peaks,
S(k*), are extracted from fits to the RPA structure function,® denoted by the solid curves

in Fig. 2.
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poN/S(k*)

S

.
FIG. 3: Inverse peak height of the % function, S~!(k*), plotted in terms of the effective y
rization indexes, N = 64N. Symbols denote FTS results,

parameter for different invaria
solid curves are ROL predictions, and the dashed line is the RPA prediction. The inset shows

the nonlinear dependencéof x on xp, Eq. (2), with a solid curve and the linear approximation,

X R ZooXp, With a daghied line.

4

Sﬁ; e calibration is to adjust the coefficients in Eq (2), ¢; and ¢y, so as to
s,45(k*), from the FTS to the predictions of ROL theory.!'1? Figure 3 shows

The final s
match the pe

our best 4it, where“the F'TS results are plotted with symbols and the ROL predictions are
given (by soli ﬁves. The dashed line denotes the mean-field prediction from RPA.? The
ROL p ictéa slight deviation from RPA at small x N, which is well reproduced by particle-
baged silyulafcionsz13 but absent from our MC-FTS due to the saddle-point approximation.

“Fb)ere e, our fit only includes the data points for y/N > 7. The resulting coefficients are
N

¢ =0.916 and ¢y = 0.952 . (10)

The inset of Fig. 3 shows the nonlinear relationship between y and y; with a solid curve,

while the dashed line denotes the linear approximation, x = zuXs-
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To test the calibration, we examine the order-disorder transition (ODT) of symmetric
diblock copolymer melts for experimentally relevant values of N = 64N. Past FTS?38 ag
well as particle-based simulations®>4° have shown that two lamellat periods are sufficient
to obtain reasonable estimates of the ODT. From previous experéﬂc 2728 the equilibrium
period of the lamellar phase is accurately estimated by D =~ /b, where k* is the peak
position of S(k). Indeed, this was confirmed in our simulations'ef by the period of the

e T. Our initial intention was

lamellar phase that spontaneous formed once Y, exceede
to simulate polymers of N = 16, 32, and 64. Based oh the estimated length of two periods,
the appropriate sizes of the simulation box are Z = 12 7,sdnd 24, respectively. However,

the fast Fourier transform used by the pseudo-gpéetral ‘a‘%orithm would be particularly slow

for m = 17, on account of it being a prinie nu o1 o Therefore, we choose to simulate
N = 28 polymers, for which the approprig;{xye is m = 16.

To locate the ODT, we simulate mu 'h’eplicas of the system at a series of x, values
spanning the expected ODT, all ini ?ﬁ?e,i ith disordered configurations. The replicas
are run in parallel, each following\the usual MC algorithm. The phase at each y; value is

monitored by evaluating the ordér«parameter (), which is an average of

N 2
\qf - <V> ma [ (k) (11)
over the last 10° %ﬁ studies®”?® have demonstrated that (¥) jumps from a small
value in the dideNWt e to a large value in the lamellar phase.

During t s@ﬂa’cion, highly metastable defects often nucleate impeding the formation
of a WellQ}id orphology, particularly when Y, is large. To help remedy this problem,
we implemen aa/allel tempering,*! whereby swaps between replicas at neighboring y, values
are at npteﬁ every 10 MCS (see Ref. 27 for more details). In this way, defect structures
a ;ift d to lower segregation, which allows them to anneal out more easily. As expected,
\ﬁ%t rdered replicas exhibited two lamellar periods. Even with parallel tempering, the

etaRability of the disordered phase may cause an overestimation of (x,/N)opr. Therefore,
we run a second set of parallel tempering simulations starting from ordered lamellar config-

urations. This will generally result in an underestimation of (x,N)opr, thus allowing us to

bracket the true equilibrium ODT.

10
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FIG. 4: Order parameter, (¥), from parallel—te%siﬁulations for molecules of polymerization

N = 16, 28, and 64. Solid and open symbols oté simulations initialized with ordered and

disordered configurations, respectively. \\

Figure 4 shows the order paragneter esﬂfing from pairs of runs for N = 16, 28, and 64.
As it turns out, the runs from orderediand disordered configurations are nearly identical,
indicating that non—equilibriu&‘%ﬂe negligible. However, the transitions are somewhat

broadened due to the it(%zslof the simulation boxes, which makes it difficult to identify
the ODT, particula; f‘(‘)fr —=/16.

To locate the(?{an lon for N = 16 more accurately, Fig. 5 plots histograms of ¥ for a

series of y; va ea?baiistent with a first-order transition, there is a peak around ¥ = 3 that

diminishes as creases, while a distinct peak near ¥ ~ 20 emerges. Visual inspection of

configurdtiong fromthe two peaks reveal disordered and lamellar configurations, respectively.
The efjuilibriutm ODT corresponds to the point where the two peaks are of comparable size,
which thi§ case is (xpNV)opr ~ 20.4. Similar histograms for N = 28 and 64 predict
( )ODsj ~ 19.3 and 18.5, respectively. These values do, indeed, correspond well with the
%}I&FISGS in (U) observed in Fig. 4.

Figure 6 plots the above ODTs in terms of the effective YN and N = 64N, and then
compares them with the universal curve from Eq. (3). The main source of inaccuracy in our

estimates of (xN)opr is undoubtedly from finite-size effects, which we cannot judge without

performing simulations in larger simulation boxes. Nevertheless, the inaccuracy is probably

11
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O

FIG. 5: Histograms of ¥ generated at different values o Xb@ diblock copolymers of polymerization

N =16. | ‘\\

y N
n

FIG. Estinsxtes of the ODT plotted in terms of the effective x and the invariant polymerization
e solid curve denotes the universal prediction in Eq. (3),!3 and the dashed curve is

— _
index, NV 3
%he drickson-Helfand prediction.’

N
atWeast as large as the symbols in Fig. 6, and thus our ODTs agree well with Eq. (3).

12
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The UV divergence has been circumvented by treating the grid spacing, A, as a parameter
in a discrete version of the GCM, and then mapping that model back onto the standard GCM
using the Morse calibration. Because of the discrete grid, Simu?on results will depend

somewhat on the numerical algorithm used to solve the diffusi ation, and therefore

the algorithm is considered as part of the model. In our case] (6) is solved using the
pseudo-spectral algorithm supplemented by Richard extra o%\“:”2 with a contour step
of At = 1. Furthermore, the Simpson quadrature used tQte the integral in Eq. (7) is
also regarded as part of the model.

In particle-based simulations, the segment lengtl rec)nres calibration as well. This
is generally done by evaluating Ry/N'/? or g‘{.ﬁ/\fj’f for neat homopolymer melts of
polymerization N, and then extrapolating 4o th "5 50 limit.? The fact that MC-FTS
reduce to mean-field theory for y, = 0 im};&\sh@ the a in Eq. (6) of the MC-FTS is, in
fact, already the correct segment length. ~en\ce,'wve conveniently avoid the need to calibrate

the segment length. ~
Our particular calibration aned for a grid spacing of A = a and a segment

den81ty of py = 8/a®, which ga 0.7048, ¢; = 0.916, and ¢y = 0.952 for the coefficients
in Eq. . Naturally, a erent oice of A/a and a3py would have resulted in different
coefficients. In the cage of 2., 1e dependence on these quantities is given by
A
oo PO/ 12)
aspo

where the fu ct)
2 o0
0) == t)dt 1
) b0 =5 [ ml0.0) (13)

is eva 12‘1’6?3 6lving the diffusion equation for go(r, ) with a grid spacing of A = Ja, which

n b;done analytically as shown in the Appendix. As before, the integration is per-

%:jmg the Simpson quadrature with a step size of At = 1/2. The resulting function,

1s plotted in Fig. 7. Likewise, the other coefficients, ¢; and ¢y, will depend on the same

0 quantltles but the determination of those dependencies would require computationally
expensive simulations of S(k). Therefore, we leave this for future consideration.

As shown in the Appendix and illustrated by the dashed line in Fig. 7, p(d) — 6a/70

as 0 — 0o, which implies that the linear approximation x & 2z, X is equivalent to the

13


http://dx.doi.org/10.1063/1.5089217

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Publishing Y

FIG. 7: The function controlling the A—depend% in Eq. (12). The dashed line denotes the
0

asymptotic limit derived in the Appendix, Whl\c ides with the renormalization in Eq. (1).

\
renormalization in Eq. (1), provided TS%s performed on grids of A 2 a. In other words,
N
the Morse calibration reduces to K&or small p, which implies that the two approaches
e bec

for dealing with the UV dive%

renormalization proposed by Vorselaars and Matsen?® is equivalent to xy = z(NV)ys, where

1e equivalent at large N. Similarly, the alternative

Ay =Y /N /N 00(0, [t — #])dr'dt (14)

<'(\ AlpoN Jo  Jo ’
is the fraction o?ﬁlte olepﬁlar contacts among linear homopolymers of finite N. This is
the same effecti eNosed by Miiller and Binder,® and thus it has the same undesirable

dependence o lecular weight and polymeric architecture.

The réagon’for the deviation between x ~ z.,x» and Eq. (1) at large 0, as implied by Fig.
7, is dimple. e neglect the Richardson extrapolation, the operator-splitting used by the
pseudo- ect)al algorithm?? treats the polymers as a series of point-like beads connected by
h moni§ springs of unperturbed length a. Each of the beads experiences the field values

Meﬂ)onding to the spatial cell that they occupy. When a > A, bonded beads are able
toyJocate in distant cells thereby jumping past the intermediate cells, which violates the
behavior of a continuous chain. On the other hand, a choice of a < A forces the polymer

to have multiple beads in each of the cells that it visits, thus sampling the fields more than

necessary. According to Fig. 7, our choice of A = a is somewhat conservative but not

14


http://dx.doi.org/10.1063/1.5089217

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Publishigmgessively.

We intentionally chose a®py = 8 so that the polymerizations in our MC-FTS (i.e., N = 16
to 64) would correspond to experimentally relevant values of the invariant polymerization
index (i.e, N ~ 1000 to 4000). Given this choice, it would be impossible to consider sig-
nificantly smaller values of N, because the polymeric behavior would be lost if the number
of segments, N, was too small. Although we could, in principlej=simulate arbitrarily large
N by increasing N, this would be computationally wasteful est way to access other
intervals of N is to recalibrate y for different values of a? \

The fixed grid spacing, A, generally prevents the lamellas’ phase from acquiring its ideal
period. Although past studies?®3%4° have shown that Elis gas a relatively small effect on
the predicted ODT, the period could perhaps b¢ equili d by including the ‘box’ move
from Ref. 28. This MC move involves a volum COHSG{\ZDlg distortion of the simulation box,
whereby the grid spacings in the z, y and z d&{m‘ﬁ’me changed to A, = AA, A, = A71/2A

e

and A, = A"/2A, respectively, while heldin mber of grid points constant. Provided

A remains close to one, the renormalization in Eq. (1) is relatively unaffected. This will

also be true of z.,, given its equivale bﬁd‘Eq. (1). If the same is true of S(k), then the
box move could be included it&N upting the Morse calibration. Nevertheless, this
assumption needs to be tested beforesincluding the move.

Ideally, we would have'simulated larger system sizes in order to assess the finite-size effects
on the ODT. However! when we attempted simulations for three lamellar periods, the parallel
tempering runs y)&
of the ODT. We ak@t\rie to locate the ODT using thermodynamic integration,*® but this

arge metastability intervals preventing an accurate determination

too resulted M large uncertainties due to statistical inaccuracies. The underlying problem
is that the amplittdes of our MC moves decrease when applied to larger simulation boxes.
This dould /Well be remedied by devising better MC moves. Another option is to
perfg\r stanhard Langevin simulations (L-FTS), with the same saddle-point approximation

W+(19.33’34 We are currently exploring these possibilities, now that the issue of the UV

e has been dealt with.

Naurally, the saddle-point approximation for W, (r) will result in some degree of inac-
curacy. Although past studies®*3® have shown the approximation to be accurate, this will
become less so as N is reduced. The clearest evidence for this is the inability of MC-FTS
to capture the departure of S(k*) from the RPA prediction at small yN, as seen in Fig. 3.
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this study.

CL-FTS avoid the saddle-point approximation, but they have their own challenges. In

addition to the UV divergence, CL-FTS of the standard GCM experience an instability

that prevents simulations at realistic values of N.?® However, the %Stability can be tamed

by introducing compressibility. Delaney and Fredrickson®® go her“and smear all their
interactions, so as to also remove the UV divergence. Naturally, aujbration is then required
in order to map the resulting model back onto the stan Swn nical) GCM. In lieu
of a methodology for the Morse calibration, they resorte @j%sui hoc calibration of y to
match their ODT to Eq. (3). R

The application of the Morse calibration to (L;FT ld be complicated by the fact
that the athermal limit does not reduce to mea th‘e)ry. Consequently, the evaluation of
Zoo Would require simulations. Furthermore, L%@en’c length would need to be calibrated,

not too small, it might be sufficientgto us q 8) for 2z, and to ignore changes from the

much in the same way it requires ren\tlo in ROL calculations.!' Perhaps if N is

bare segment length. It would then we'a\matter of repeating the fit in Fig. 3, using the

S(k*) obtained from CL-FTS It is\no¢,_clear, however, whether CL-FTS would be able to,

for example, capture the deviat (k*) from the RPA in Fig. 3. If too much smearing
of the interactions is re n'ed;lhen the CL-FTS might not exhibit the universal behavior

that we are ultimate in, until NV is beyond the experimental regime.

SUMM

been ofbxperimentally relevant molecular weights. This was achieved using a new

Fleld<fzit1 simulations (FTS) for the standard Gaussian-chain model (GCM) have

strategy for @e UV divergence. Rather than trying to remove the divergence by renormal-
%ii interaction parameter, x, according to Eq. (1), we simply fix the grid spacing, A,
segment density, pg, relative to the segment length, a. Due to the finite grid spacing,
HNIOH results are sensitive to the choice of numerical methods and so they are treated as
part of the model. In our case, this includes the pseudo-spectral algorithm with Richardson
extrapolation used to solve the diffusion equation in Eq. (6) and the Simpson quadrature

used to evaluate the integral in Eq. (7). Both algorithms use a step-size of At = 1, which
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PubliShiﬂgJ ates IV with the total number of steps along the polymer contour. The Morse calibration
is then used to map our discrete version of the GCM back onto the continuous one.

The calibration relates the effective y for the standard GCM to the bare x; used in the

FTS by the functional form in Eq. (2), which involves three coefficients. The first coefficient,

Zso, Tepresents the fraction of intermolecular contacts among inﬁn"y/ely long polymers in an

athermal melt (i.e., x, = 0) and is obtained by solving the diffusion equation for zero

field. The remaining two coefficients, ¢; and ¢y, are determine fitting the peak of the
TUMO olymer to predictions

structure function, S(k*), for disordered melts of symmetri

Glim'?""@@hbrabtion was performed

from renormalized one-loop (ROL) theory.'’'? Our

for A/a = 1, which provides a good balance betwgen ths spatial and contour steps of

the diffusion equation, and a®py = 8, which is ideal fo ulating diblock copolymers of
103 S N S 10%. The resulting coefficients of&l@tion are zs, = 0.7048, ¢; = 0.916,

—~—

and ¢, = 0.952. \

To facilitate standard Monte Carlogsimutations (MC-FTS), the incompressibility con-
dition was only satisfied in the me n—ﬁ%ﬁ\agproximation. This has the added benefit of
simplifying the calculation of z.4 an he’g@es the need to calibrate the segment length.
However, it did result in so em . In particular, it prevented us from matching

S(k*) to ROL theory at small XMFig. 3). For the range of N considered in this study,

the resulting inaccuracy/ppears to be small.

Indeed, Fig. 6 shows U'D:;She calibration brings the order-disorder transition (ODT)
from MC-FTS in "gemﬁnt with the universal prediction, Eq. (3), from particle-based
simulations.!? A{OMI‘Z calibration was performed for symmetric diblock copolymers,

@pplica le to all architectures. Thus, MC-FTS can now be readily applied

to any AB-type blogk copolymer system. For those researchers already implementing SCFT
using fhe<pse o/spectral algorithm, the switch to MC-FTS will be particularly straightfor-
W ri S
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Here, we derive the analytical approximation for, p(d), at large J, plotted in Fig. 7 with a
dashed line. In the absence of fields, the pseudo-spectral algorithm becomes a true spectral

algorithm, and therefore it follows that /

1 ik-r—a2k2t/6 \
o(r,t) = — > e . 5 (15)

k

Evaluating this at the origin, we obtain \
0(0,t) = e (16)
,% 3

where we have used the fact that the sums over are equivalent to the one over k,.

approaches infinity, which allows the

The remaining sum is over the wavenumbers k, 7r71~,LmA where n takes on integer values
from —m/2 to m/2. In the thermodyna iﬁ\mt&

sum to be converted to an integral giving .l

wl0,1) = - [—erf@)r | (1)

where the integration varlable k \/t/6 and

T |/t
Q §=%\e- (18)

As explained ze i ly, ;ahe integral of ¢o(0,%) in Eq. (13) for p(d) should, in principle,
be performed usin e

q0(0,t) beco s)slowly varying function over the entire range of ¢, and thus the Simpson

pson quadrature with At = 1/2. However, if ¢ is large, then

method ig well approximated by the analytical calculation of the integral. Transforming the

integration v. 'alﬁe from ¢ to £ then leads immediately to

3 3 [®erf(§) 2.332654
p(é)%m/o A (19)

this to 6a/7md gives v = 1.221375, which is the same value calculated previously

.“5

~
in Ref. 27, albeit with a couple more significant digits.

* Electronic address: mwmatsen@uwaterloo.ca

18


http://dx.doi.org/10.1063/1.5089217

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Publishin‘gi A. W. Matsen, J. Phys.: Condens. Matter 14, R21 (2002).

2 E. Helfand, J. Chem. Phys 63, 999 (1975).

3 L. Leibler, Macromolecules 13, 1602 (1980).

4 A. N. Semenov, Sov. Phys. JETP 61 733 (1985).

® G. H. Fredrickson and E. Helfand, J. Chem. Phys. 87, 697 (1987). /

6 M. W. Matsen and F. S. Bates, Macromolecules 29, 1091 (1996) 3\

J. Glaser, J. Qin, P. Medapuram, M. Miiller, and D. C. Morsé, SoftsMatter 8, 11310 (2012).

M. Miiller and K. Binder, Macromolecules 28, 1825 (19959. ‘s\

N

[ee]

—~

©

J. Qin and D. C. Morse, J. Chem. Phys. 130, 224902 (2009)"

10 3. Glaser, P. Medapuram, and D. C. Morse, Macromolecules %7, 851 (2014).
P, Grzywacz, J. Qin, and D. C. Morse, Phys. Re@7 061802 (2007).
12°J. Qin, P. Grzywacs, and D. C. Morse, J. Chem.“Rhystd35, 084902 (2011).
13 J. Glaser, P. Medapuram, T. M. Beardsle\

113, 068302 (2014). \\“:_
14 p. Medapuram, J. Glaser, and D. C! se, Macromolecules 48, 819 (2015).

—
15 T. M. Beardsley and M. W. Ma e-is. Rev. Lett. 117, 217801 (2016).
fac

16 T. Ghasimakbar and D. C. 6@{\‘: molecules 51, 2335 (2018).

17 V. Ganesan and G. H. EredricksonjJZurophys. Lett. 35, 16 (2001).

atsen, and D. C. Morse, Phys. Rev. Lett.

18 G. H. Fredrickson, anesan and F. Drolet, Macromolecules 35, 16 (2002).

)ibrium Theory of Inhomogeneous Polymers (Oxford University

Press, New Y k,\gg;
20 G. H. Fredfickson, Soft Matter 3, 1329 (2007).

Delaney and G. H. Fredrickson, Macromolecules 50, 6263 (2017)

2 R. K, W. Spencer and M. W. Matsen, J. Chem. Phys. 149, 184901 (2018).

24 M. Miiller and F. Schmid, in Advanced Computer Simulation Approaches for Soft Matter Sci-
ences-11 edited by C. Holm and K. Binder (Springer-Verlag, Berlin, 2005).
J.?oski, H. Chao, and R. A. Riggleman, J. Chem. Phys. 139, 244911 (2013).

26 M. O. de la Cruz, S. F. Edwards, I. C. Sanchez, J. Chem. Phys. 89, 1704 (1988).

27 P. Stasiak and M. W. Matsen, Macromolecules 46, 8037 (2013).

28 B. Vorselaars, P. Stasiak, and M. W. Matsen, Macromolecules 46, 9071 (2015).

19


http://dx.doi.org/10.1063/1.5089217

AllP

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

PUb”Shﬁ?gR- K. W. Spencer and M. W. Matsen, Macromolecules 49, 6116 (2016).

30

31

32

33

34

35

36

37

38

39

40

41

42

43

R. K. W. Spencer and M. W. Matsen, Macromolecules 51, 4747 (2018).

A. Ranjan, J. Qin, and D. C. Morse, Macromolecules 41, 942 (2008).

P. Stasiak and M. W. Matsen, Eur. Phys. J. E 34, 110 (2011).

E. Reister, M. Miiller, and K. Binder, Phys. Rev. 64, 041804 2001

A. Alexander-Katz and G. H. Fredrickson, Macromolecules 40,

D. Diichs, V. Ganesan, G. H. Fredrickson, and F. Schmid, M ules 36, 9237 (2003).
D. Diichs and F. Schmid, J. Chem. Phys. 121, 2798 (200

In the absence of fields, the separation, r, between thessi= d s = t monomers is unaffected
by the tails of the chain (i.e., s < 0 and s > t), and erefor§ its distribution is just given by
the propagator of the intervening chain (i.e., 0 S@t

K. T. Delaney and G. H. Fredrickson, J. Phys. mAB 120, 7615 (2016).

T. M. Beardsley and M. W. Matsen, Eur: ‘%J\ 32, 255 (2010).

A. Arora, D. C. Morse, F. S. Bates, an

orfman, Soft Matter 11, 4862 (2015).

D. J. Earl and M. W. Deem, Phys. m. Phys. 7, 3910 (2005).

a
K. O. Rasmussen and G. Kalosa J. Rolym. Sci., Part B 40, 1777 (2002).

R. K. W. Spencer, B. Vorse{s\d . W. Matsen, Macromol. Theory Simul. 26, 1700036

\

(2017).

20


http://dx.doi.org/10.1063/1.5089217

O-I3 17 7| 'This manuscript was accepted by J. Chem. Phys.

Publishing

0.2 \ < 3 )3/2 ]
R T :

= —
S S o :
(@)
= i |
0.1 B *\ ]
‘0\. °
- "0 -9 99— d
ool o, -0-90-90-0-9


http://dx.doi.org/10.1063/1.5089217

\[P

blishing

=
)
QU

~—

~/

-
SORNIR|

0.01

| This manuscript was accepted by J. Chgm. Phys, Click|
IV — 94



http://dx.doi.org/10.1063/1.5089217

T T T | T T T | T T T | T T T

\I F?’O | This manuscript was accepted by J. Chem. Phys. Click |
. i )

Eq. (2) AR



http://dx.doi.org/10.1063/1.5089217

AP

Publishing

10

18 19 20 21 22


http://dx.doi.org/10.1063/1.5089217

—
—
=.
on
2
=}
]
é
=

=
=
g
=]
a
o
o
e
[ =
=
g
=8
Opg
=3

frequency



http://dx.doi.org/10.1063/1.5089217

I‘ 41110 1HAlIUa1 IPL WWdo dW LI UY J. A ldedll, 1Yo, A
!! R T T

Publishing

= 20 -

10 e
102 10°



http://dx.doi.org/10.1063/1.5089217

All

T "This maniscript was adcepted by J. Chiemn. Py,

(

Publishing
16 .
= |
S |
8 B ///// N
- //// \ 60&
)
0 1 | | |
0 1 2 3 4 5


http://dx.doi.org/10.1063/1.5089217

	Manuscript File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

