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Abstract

Traditionally, wireless networks communicate over the conventional microwave band

(sub-6 GHz) as it supports reliable communication over a large geographic area. The ever

increasing demand for bandwidth to support the rising number of consumers and services,

however, is fast depleting the available microwave spectrum. As such, complementing the

microwave spectrum with additional bandwidth from the millimeter-wave (mm-wave) band

has been envisioned as a promising solution to this problem.

Since transmissions in the mm-wave band are typically achieved with highly directional

steerable antenna arrays to counter the severe path-loss in mm-wave frequencies, the result-

ing mm-wave links are typically rendered highly directional, which can often be modeled as

directional point-to-point links. However, mm-wave transmissions are inherently unreliable

compared to those in the microwave band. Hence, communicating simultaneously over both

bands in an integrated mm-wave/microwave dual-band setup is emerging as a promising

new technology. In this dual-band setting, high-rate data traffic can be carried by relatively

unreliable high-bandwidth mm-wave links, while control signals and moderate-bandwidth

traffic can be communicated over the relatively reliable microwave band.

In this thesis, we first study two dual-band multi-user networks that model two im-

portant aspects of wireless communication: inter-user interference and relay-cooperation.

The broad goal of this study is to characterize information-theoretical performance limits of

such networks, which can then be used to obtain insights on the optimal encoding/decoding

strategy, effective resource allocation schemes, etc.

In the first part of this thesis, we study a two-transmitter two-receiver dual-band Gaus-

sian interference channel (IC) operating over an integrated mm-wave/microwave dual-band.

This channel models a setting where a pair of single-transmitter single-receiver links com-

municate simultaneously, and thus mutually interfere. Here, transmissions in the underly-

ing microwave band are modeled as a two-user conventional Gaussian IC (GIC). In contrast,

a transmitter in the mm-wave band is assumed to be capable of communicating to either

the desired destination or the interfered destination via a point-to-point direct-link or a

cross-link, respectively. The dual-band IC is first classified into 3 classes according to the

interference level in the underlying microwave GIC, and then sufficient channel conditions

are obtained under which the capacity region of the 3 classes are characterized. For cases

in which the sufficient conditions do not necessarily hold, approximate capacity results are

obtained that characterizes the capacity region to within 1/2 bit per channel use per user.
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The performance of the dual-band IC is likely to be impacted significantly by the point-

to-point nature and large bandwidth of the mm-wave links, and specifically by whether

the mm-wave spectrum is used as direct-links or cross-links. Transmitting in either the

direct-links only or the cross-links only is not optimal for all channel conditions, and there

exists a non-trivial trade-off between the two modes. To understand the impact of this

trade-off on the performance of the dual-band IC, we study the power allocation scheme

over the mm-wave direct and cross-links that maximizes the sum-rate of the channel. The

resulting power allocation strategy is characterized in closed form, which possesses rich

properties and reveals useful insights into the trade-offs in such networks.

In the second part of this thesis, we study a fading Gaussian multiple-access relay

channel (MARC) over an integrated mm-wave/microwave dual-band, where two sources

communicate to a destination with the help of a relay. In the dual-band MARC, trans-

mission in the underlying microwave band is modeled as a conventional Gaussian MARC.

However, similar to that in the dual-band IC, a mm-wave transmitter in this channel is

modeled as being able to communicate to either the destination or the relay by creating a

direct-link or a relay-link, respectively. For dual-band MARC, we characterize an achiev-

able region and a set of rate upper bounds, and then obtain sufficient channel conditions

under which its capacity region is characterized.

Similar to the dual-band IC, the performance of the dual-band MARC will likely be sig-

nificantly affected by whether the mm-wave band is used as direct-links or relay-links, and

a non-trivial trade-off between the two modes exists in this case as well. To understand this

trade-off, we study the transmission power allocation scheme over the mm-wave direct and

relay-links that maximizes the sum-rate of the dual-band MARC. The resulting power allo-

cation scheme, characterized in closed form, is observed to have rich structural properties,

which reveal insights into the trade-offs in relay cooperation in dual-band networks.

While dual-band communication is a promising technology, currently the bulk of the

connectivity is still supported by the microwave band. However, the problem of interference

mitigation for conventional microwave bands is still open even for the basic case of a two-

user IC. Motivated by this, in the third part of the thesis, we study the performance limits

of the multiple-access interference channel (MAIC) which models the interference during

cellular uplink over the conventional single band. Focusing on the weak interference case,

which provides a more realistic model of the inter-cell interference, we characterize an

achievable strategy and 3 novel upper bounds on the sum-rate in the partially symmetric

case, thereby providing improved sum-rate upper and lower bounds in these cases.
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Chapter 1

Introduction

In the last decade, advances in wireless communication technology have played a pivotal

role in improving and expanding public connectivity around the globe [1]. In particular,

the 4th generation of cellular networks (i.e., 4G) have been responsible for dramatically

improving user quality of service as measured by data-rate, the range of connectivity,

reliability [2, 3], etc. In addition to improving user connectivity in general, the higher

speeds available in 4G have also facilitated the introduction and growth of an array of

Internet-based applications such as high definition (HD) video streaming, interactive online

gaming, virtual reality experience [4,5], etc., resulting in explosive growth of mobile traffic.

For instance, the average smartphone is expected to generate 11 GB of traffic per month

by 2022, more than a 4.5-fold increase over the 2017 average of 2 GB per month [6].

Since the available bandwidth for wireless communication is limited, this bandwidth

is typically shared among many devices that transmit simultaneously over this shared

medium. In cellular communication settings, this leads to the paradigm of multi-user

communication where multiple users communicate over a shared frequency band simul-

taneously. One of the major bottlenecks to the performance of such multi-user networks

is inter-user interference: due to the nature of the shared medium, transmissions from a

transmitter are typically received by all neighboring receivers, thereby deteriorating the

overall performance of the network. The optimal strategy for mitigating interference is

unknown in general, and highly non-trivial even for basic cases [7]. For example, simply

increasing the transmission powers of all devices will not reduce the effect of interference

as the power of interference then also increases proportionally. Therefore, interference

management schemes have been at the forefront of research [8–11].
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1.1 Multi-User Communication in Conventional Net-

works

1.1.1 Interference in Conventional Networks

In incumbent cellular communication settings, users communicate to the base station (BS)

over the shared microwave band (i.e., sub-6 GHz band). Due to the nature of the microwave

band, when a user in a cell communicates to its designated BS, it inadvertently interferes

with the reception at the BSs in neighboring cells. This leads to performance loss in general

if interference is not mitigated properly.

The classic two-user interference channel (IC) is a useful model of the interference-

limited cellular communication between two single-transmitter and single-receiver links.

Here, each user transmitting to its designated BS in the uplink phase is modeled as a

point-to-point link, and the IC then models the interference between two such point-to-

point links operating in two neighboring cells that interfere mutually.

Although the IC considers a basic two-cell setup, the capacity region or the optimal

strategies for the channel are still unknown in general. In fact, the optimal transmission

strategy, which has been identified for a few specific cases, depends on the relative interfer-

ence power received at each BS, or equivalently on the relative strength of the interfering

links (denoted as cross channels) as compared to the desired links. More precisely, de-

pending on the strength of the cross channels, the Gaussian IC can be classified into three

cases: the GIC with strong interference, where both cross channels are stronger than the

direct channels, the GIC with weak interference, where both cross channels are weaker than

the direct channels, and the GIC with mixed interference, where one of the cross channels

is stronger, while the other is weaker. In the Gaussian IC with strong interference, the

capacity region is known, and in this regime the optimal strategy is to decode the messages

of the intended users as well as the interfering users at each BS.

In many practical cellular settings, such as those where the power of transmissions

from the desired users in the current cell is larger than the power of interference from users

located far away in the neighboring cell, interference is appropriately modeled by the weak

Gaussian IC. Therefore, finding optimal strategies for this case may reveal important prac-

tical insights. However, in contrast to strong interference, in the weak interference regime

the strategy of decoding interference is suboptimal, and in fact, treating the interfering
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signal as noise provides optimal sum-rate when the cross channels are sufficiently weak.

The Han-Kobayashi (HK) strategy [7] for the two-user IC allows for partially decoding

the interference, and the resulting region was shown to achieve within a 1/2 bit/channel

use gap of the capacity region of the Gaussian IC with real channel coefficients. Hence,

even in the basic set-up of the two-user IC, the problem of interference mitigation is yet to

be solved completely. Moreover, advanced encoding-decoding strategies that achieve the

capacity of the IC approximately (i.e., within a constant gap) such as the HK scheme are

quite complex.

Moreover, in the IC only one transmitter-receiver pair communicates in each cell,

whereas in typical cellular settings, multiple transmitter-receiver pairs communicate si-

multaneously. For example, during cellular uplink, multiple users communicate to the BS

simultaneously, thus forming a multiple-access channel (MAC). During the uplink phase,

when two such MACs operating in two neighboring cells mutually interfere, the resulting

channel is known as the multiple-access interference channel (MAIC) [12]. The MAIC

thus models a more realistic setting of cellular communication, however only a few results

on its performance are known, especially in the weak interference regime. Lack of opti-

mal strategies for the MAIC and similar interference-limited channels, necessitates further

study aiming at the development of new techniques for inter-cell interference mitigation.

1.1.2 Cooperation in Conventional Networks

In addition to interference, multipath fading in wireless communication also leads to per-

formance degradation in cellular networks [13–15]. Relay cooperation [16, 17] serves as an

effective technology to counter the ill-effects of multipath fading. The basic setup of relay

cooperation is modeled by the relay channel introduced in [16], where the transmission

from a single source (e.g., user) to a single destination (e.g., base station) is aided by a

single relay. More specifically, the relay receives the transmission from the user, and then

reinforces the user signal at the destination by transmitting either a compressed/quantized

or a re-encoded version of the same signal. Although the relay channel in [16] models a

basic setup, its capacity region is unknown in general, whereas the decode-and-forward

relaying scheme was shown to achieve within 1/2 bit of the capacity region [17].

While the relay channel models a cellular setting where the relay cooperates with only

a single user, typically multiple users communicate to the base station in the uplink. The

multiple-access relay channel (MARC) models such a realistic setup where a single relay
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helps the transmission of multiple users [18,19]. However, similar to the relay channel, the

capacity region of the MARC is also unknown in general. Hence, it is crucial to investigate

optimal strategies for the MARC, which may lead to useful relaying techniques in practical

cellular networks.

1.2 5G and the Millimeter Wave Communication

While 4G [20] ushered in an era of vastly improved mobile communication compared to

3G, as the number of subscribers and demand for high data-rate applications has rapidly

increased in recent years, due in part to the limited amount of bandwidth available in

the microwave band, 4G is expected to become unable to deliver the required quality of

service in the future [21]. In fact, with the introduction of new technologies such as the

Internet-of-things (IoT) and machine-to-machine communication [22], which are expected

to increase the number of connected devices exponentially in the future, 4G is expected to

suffer from a serious problem of spectrum-scarcity.

To address this imminent problem, the fifth generation of cellular networks (i.e., 5G)

was recently proposed that aims to improve user quality-of-experience, and meet market

demands. While the broad goals of 5G include increasing the cell capacity and user data

rates dramatically, as well as reducing latency and energy expenditure [22], among others,

scarcity of spectrum in the microwave band poses a serious impediment to realizing such

goals. To address this problem, many new disruptive technologies are being investigated.

One of the most promising solution to the problem of spectrum crunch in the sub-6 GHz

microwave band is to integrate and provide cellular access over frequencies above 6 GHz,

more specifically in the spectrum from 27 GHz to 80 GHz. While the spectrum from the 30

GHz to the 300 GHz band is formally referred to as the millimeter wave (mm-wave) band,

with a slight abuse of notation, the 27-80 GHz band is also referred to as the mm-wave

band, where most current research effort on 5G is concentrated [22,23].

1.2.1 Transmission in the Millimeter Wave Band

Omnidirectional transmission in the mm-wave band, similar to those in the conventional

microwave band, suffers from heavy attenuation due to its smaller wavelength and in-

creased atmospheric and molecular absorption at such higher carrier frequencies [24, 25].
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Such propagation losses can be overcome by beamforming with co-phased directional an-

tennas arrays [26] deployed at the transmitters and the receivers, which typically produce

unidirectional mm-wave links. In addition, high absorption in this band makes scattering

sparse [26, 27], thus rendering the mm-wave links point-to-point. Hence, such mm-wave

links are often modeled as point-to-point additive white Gaussian noise (AWGN) links in

a multitude of studies ranging from studies on the network layer [28–30,30–36] to those on

the physical layer [37–40].

While conventional microwave transmission is able to diffract around large object such

as buildings, mm-wave links fail to do so owing to their highly directional nature and rel-

atively smaller wavelength. As a result, mm-wave transmissions suffer from blockage due

to urban features [29, 41–43], and even human movements [44, 45], thus leading to inter-

mittent connectivity. Moreover, measurement campaigns on mm-wave cellular networks

(e.g., in the 28 GHz band in Brooklyn and Manhattan [41, 46], in the 38 GHz band in

Austin [47–49], in the 28 GHz and 73 GHz bands in New York City [50], etc.) reveal that

such networks provide connectivity within only ∼ 200 m distance from the base station,

and a significant number of users beyond this range are typically in outage due to blocking.

1.2.2 The Integrated Millimeter-Wave/Microwave Dual-Band

While the mm-wave band offers plenty of bandwidth resources, transmissions in this band

suffer from heavy attenuation, absorption and blocking, thus leading to unreliable con-

nections. However, instead of transmitting over the unreliable mm-wave links only, com-

municating simultaneously over multiple radio bands including the mm-wave band and

the conventional microwave band (called sub-6 GHz band) can compensate for this short-

coming [51–54]. NTT-Docomo proposed a heterogeneous network architecture in 2014,

called the Phantom cell [55], where the macro-cells and small-cells operate over over the

conventional microwave band and the mm-wave band, respectively [56–58].

Transmissions in the conventional microwave band complement those in the mm-wave

band. More specifically, in contrast to mm-wave links, which provide high speed intermit-

tent connectivity to a relatively small region, conventional networks support medium data

rates and provides reliable cellular coverage over a much larger geographical area. As such,

simultaneously (jointly) transmitting over an integrated mm-wave/microwave dual-band

can provide high speed, reliable communication. In this setting, high speed data would

be communicated via the high-bandwidth and somewhat unreliable mm-wave links, while
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transmissions in the conventional microwave band would provide more reliable coverage

and carry medium rate traffic and control signals [26,41,59–61].

Such integrated mm-wave/microwave dual-band networks have been subject to much

investigation recently. For example, studies from the network layer perspective focus on

how to improve metrics such as the number of connected users and throughput, etc., by us-

ing the high-bandwidth, highly directional mm-wave links along with incumbent microwave

networks [26,55,59–66]. Unlike the microwave band, where inter-user interference are typi-

cally managed by interference-avoidance schemes such as scheduling, the directional nature

of mm-links are particularly useful in simplifying the design of interference management

schemes [63, 64]. Moreover, recent works from the physical layer perspective [23, 66–70]

also indicate favorable results in such a dual-band setting. In fact, commercial production

of dual-band modems such as those in Qualcomm [71] and Intel [67] illustrate the poten-

tial of such networks. Hence, simultaneous transmission in the microwave and mm-wave

dual-bands is an attractive technology for future cellular access.

In Chapter 2, a more detailed survey of integrated mm-wave/microwave dual-band

networks is presented.

1.2.3 Interference in Dual-Band Networks

In integrated mm-wave/microwave dual-band networks, while the transmissions in the mm-

wave band are point-to-point in nature, transmissions in the conventional microwave band

cause interference to unwanted destinations receiving in the same band. More specifically,

many proposed mm-wave network architectures rely on communicating via narrow and

directed beams produced by phased antenna arrays [55, 57], thereby reducing interference

to unwanted receivers. However, in a dual-band setting, the underlying microwave trans-

missions will still suffer from the same interference problem as in conventional networks.

Therefore, it is necessary to characterize effective interference management strategies for

such dual-band networks.

1.3 Motivation and Overview of Contribution

While mm-wave band communication is emerging as one of the most promising technologies

in 5G, mm-wave communication needs to be complemented by transmissions in the con-

ventional microwave band to offset the unreliable nature of mm-wave transmissions. Such
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dual-band networks have been studied from the network and wireless communication per-

spectives, however few studies have been reported on information-theoretic limits of such

networks, and especially for multi-user networks over such a dual-band. Such studies are

crucial in identifying the limits of achievable rates, simplified encoding schemes, effective

resource allocation and interference management strategies, etc., for practical dual-band

networks. Hence, in this thesis, we study interference mitigation and cooperation strategies

for multi-user networks operating over an integrated mm-wave/microwave dual-band.

Transmissions in the mm-wave band, produced by phased-antenna arrays, are highly di-

rectional, and are typically modeled as point-to-point AWGN links. Moreover, such point-

to-point mm-wave beams can be digitally steered towards a specific receiver as needed.

Therefore, a transmitter in the mm-wave band can be modeled as being able to trans-

mit towards an intended receiver and cause negligible to no interference to unwanted re-

ceivers [30,72], while being able to switch to another receiver as needed.

It is worth noting that phased-antenna arrays for mm-wave beamforming are already

available in practice, e.g., the AWA-0142 by Anokiwave [73], a 256-element reconfigurable

phased-antenna array operating in the 24.25-27.5 GHz band. Moreover, in contrast to a

co-phased antenna array where all antenna elements are used together to beamform to one

particular receiver, in hybrid antenna array systems, the set of available antenna elements

can be reconfigured into multiple smaller and independent antenna arrays, each of which

can then be digitally controlled to produce a separate beam to carry independent signals to

multiple receivers [72–75]. Hence, if a hybrid antenna array is used, a mm-wave transmitter

is able to communicate independent information to multiple receivers in parallel.

Compared to the mm-wave band, in the microwave band transmitters and receivers

are assumed to use a single antenna. Moreover, due to the nature of this band, a receiver

receives the transmissions from both desired and undesired transmitters.

In Chapter 2, we first present a detailed survey on the integrated mm-wave/microwave

dual-band, and then introduce multi-user information theoretic terminologies and state of

the art on the channels studied in the thesis.

In Chapter 3, we first study the performance of a two-transmitter two-receiver dual-

band interference channel (IC), where two sources communicate to their respective des-

tinations over the integrated mm-wave/microwave dual-band, while interfering mutually.

We characterize the performance limits of this channel by first classifying the channel de-

pending on whether the underlying Gaussian IC in the microwave band has strong, weak,
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or mixed interference, and then deriving capacity or approximate capacity results for the

different variations of the channel.

The throughput of the dual-band IC will likely be affected significantly by the point-

to-point mm-wave links [60]. For example, the mm-wave links can be used to either convey

fresh information to the intended receiver, or forward interference information to the non-

designated receiver. Neither of the two modes is optimal for all channel conditions, and

thus there exists a non-trivial trade-off between the two modes. Hence, to characterize

the optimal performance of the dual-band IC over the parameters in the mm-wave band,

in Chapter 3, we also study the power allocation scheme over the mm-wave band that

maximizes the sum-rate of the channel. We derive the optimal power allocation strategy

in closed form, which possesses rich properties and reveals useful insights into the trade-offs

in such networks.

In Chapter 4, we study the performance of the two-user dual-band fading Gaussian

multiple-access relay channel (MARC), where two sources communicate to a destination

with the help of a relay over the integrated mm-wave/microwave dual-band. Relay aided

communication already plays a key role in microwave networks, and it will likely play a vital

role in dual-band networks as well, especially to offset impairments arising from blockage

and fading in the mm-wave band [37,40,64,76]. For example, the dual-band MARC models

uplink scenarios in 5G such as the fixed wireless access [77], which is expected to overhaul

last mile connectivity by replacing wired connections to end users with directional mm-wave

links.

For the conventional MARC that operates over the microwave band, if the MARC

is subject to Rayleigh and phase fading, its capacity is known in closed form for the

case where the source-relay channel gains are stronger than the source-destination channel

gains [77]. For the dual-band MARC, we consider the case where these strong source-relay

conditions do not necessarily hold in the underlying microwave band, and then derive

channel conditions over both bands under which its capacity is characterized in closed

form.

Similar to the dual-band IC, each source in the MARC can utilize the point-to-point

mm-wave links to transmit to either the destination or the relay, depending on which

the performance (e.g., sum-rate) of the dual-band MARC is affected significantly. In

fact, there exist a non-trivial trade-off between transmitting solely to the relay and the

destination. To understand this trade-off, we study the transmission power allocation

scheme over the mm-wave band that maximizes the sum-rate of the MARC. The resulting
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power allocation scheme is then characterized in closed form, which is shown to have rich

structural properties and reveal interesting insights into the trade-offs in relay cooperation

in dual-band networks.

While stand-alone mm-wave and dual-band networks are still in their infancy, the in-

cumbent microwave networks still provide the bulk of the connectivity. In fact, most

research initiatives into high speed mm-wave networks are motivated by the need to sup-

port high bandwidth demands in locations with high user density such as urban centers,

university campuses, etc. In contrast, for low data-rate demanding areas such as rural re-

gions, it may be advantageous to continue using the already available microwave networks

which provide reliable, long-range connectivity with moderate speed. Therefore, incumbent

microwave networks are still indispensable, especially since commercial mm-wave networks

are currently being rolled out only in a handful of urban regions [78], and more time is

needed for experimentation and full-scale deployment. However, as already discussed, con-

ventional microwave networks suffer from inter-user interference and the optimal strategies

for most interference-networks are unknown in general.

Therefore, in Chapter 5, we study the multiple-access interference channel (MAIC)

operating over the conventional microwave band only, which models the uplink cellular

interference in conventional networks. Here, a pair of two-user multiple access channels

operating in two neighboring cells mutually interfere. The capacity of the MAIC is un-

known in general. In particular, for the MAIC with weak interference, which provides a

model of the inter-cell interference in practice, existing achievable strategies are subop-

timal. Hence, for this model, we first characterize an achievable strategy that provides

better performance by allowing for partial interference decoding. Then, focusing on the

sum-rate of the MAIC for the partially symmetric case, we derive 3 novel sum-rate upper

bounds. Numerical examples illustrate that one of the upper bounds is quite close to the

achievable sum-rate for a significant range of cross channel gains, which thus provides im-

proved sum-rate upper and lower bounds in this range. Moreover, we characterize a set

of rate bounds that serves as an outer to the capacity region of the MAIC irrespective of

whether the MAIC has strong or weak interference.

Finally, in Chapter 6, conclusions are drawn and potential future works are outlined.

9



1.3.1 Organization of the Thesis

The thesis contains chapters that are organized as follows:

• Chapter 1 provides a brief introduction to conventional networks and integrated

mm-wave/microwave dual-band networks, and briefly outlines the motivation for the

thesis and contribution of the thesis.

• Chapter 2 provides background on existing works on the dual-band networks, and

present a brief summary of information-theoretic terminologies for related multi-user

channels. We also identify specific research objectives.

• Chapter 3 presents the capacity and approximate capacity results as well as the

study of a resource allocation strategy for the dual-band interference channel.

• Chapter 4 presents the capacity results and the the study of a resource allocation

strategy for the dual-band multiple-access relay channel.

• Chapter 5 presents the results on the multiple-access interference channel over the

conventional band.

• Chapter 6 provides conclusions derived from the thesis, where several potential

future studies are also outlined.
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Chapter 2

Literature Survey

2.1 Integrated Millimeter-Wave/Microwave Dual-Band

Networks

Explosive growth in the number of connected devices and the ever increasing demand for

high-bandwidth applications in the future has motivated the use of the mm-wave band for

cellular communication. As discussed in Chapter 1, transmissions in the mm-wave band

are relatively unreliable due to their susceptibility to blockage. Hence, the paradigm of

using the mm-wave band along with the conventional microwave band in an integrated

dual-band setup has emerged as a promising technology in 5G.

In this chapter, we first discuss the current state of the art on integrated mm-wave/microwave

dual-band communication, and then introduce the basics and state of the art of relevant

multi-user information theoretic models.

2.1.1 Characteristics of Millimeter Wave Transmission

Transmissions in the mm-wave band suffer from heavy attenuation due to increased prop-

agation losses including losses from rain, atmospheric and molecular absorption [24,25,29].

Such losses can be overcome by deploying beamforming at the transmitters and the re-

ceivers with co-phased-antennas arrays [26,73]. Such antenna-arrays are already commer-

cially available, e.g., the AWA-0142 by Anokiwave [73], which is a 256-element reconfig-

urable co-phased antenna-array operating in the 24.25-27.5 GHz band.
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Communicating with directional antenna-arrays causes the mm-wave links to become

highly directional. In addition, atmospheric and oxygen absorption in this band makes

scattering sparse [26, 27], thus effectively producing point-to-point links in the mm-wave

band. For example, transmitting with circularly polarized directional antenna-arrays and

receiving through narrow beamwidth antennas, multipath reflections in the 60 GHz band

can be suppressed to a great extent [34, 35, 79]. Such sparsity, coupled with narrow-beam

directed communication, explains the directed nature mm-wave communication.

Numerous studies on mm-wave networks have focused on characterizing schemes that

utilize the directed nature of mm-wave transmissions to obtain high network throughput.

For instance, communicating with narrow-beam directional antennas in the 60 GHz mm-

wave band is shown to produce highly directional links in indoor network settings [33–35]

as well as outdoor network settings [30,36]. Such links typically have a strong line-of-sight

(LoS) component, whereas the non-LoS components are found intermittently at best, if any,

and only appear in highly cluttered environments with powers an order of magnitude less

than that of the LoS component. As such, the study in [30] motivated a “pseudo-wired”

abstraction of directional mm-wave links, based on which a cross-layer multihop MAC

protocol was proposed to counter blockage in an outdoor network. In [63], a hybrid mm-

wave and 4G microwave protocol was proposed to communicate over a mm-wave/microwave

dual-band. This protocol was specifically designed with the aim of utilizing the directional

mm-wave links to reduce inter-user interference and achieve high data throughput in a

device-to-device communication setting. Similar works such as those in [80–82] also use

the directed nature of mm-wave links to design network layer protocols that provide high

throughput in stand-alone mm-wave networks.

While transmissions in the microwave band are able to combat blockage by diffracting

around large objects such as buildings, transmissions in the mm-wave band are typically

unable to do so due to the small wavelength and directed nature of such links, resulting

in increased absorption and blockage [29, 41, 42]. For example, building materials such

as bricks can attenuate mm-wave transmissions by as much as 80 dB [43]. Even the

human body can attenuate mm-wave transmissions by 20-30 dB [44], and nominal indoor

human movement can block mm-wave transmissions for about 1% to 2% of time in realistic

settings [45]. Moreover, since the carrier frequency in the mm-wave band is much higher

compared to that in the microwave band, the Doppler effect [83] increases considerably.

Thus the mm-wave channel typically changes in a few hundred micro seconds, making it

difficult to estimate the channel in a timely manner. This, coupled with blockage, can
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result in intermittent connectivity of mm-wave links.

In a nutshell, the mm-wave links are able to support high data rates due to their large

bandwidth but can be unreliable.

2.1.2 Millimeter Wave Networks and their Limitations

Early studies on mm-wave networks mostly focused on investigating the propagation char-

acteristics of indoor stand-alone mm-wave networks. In particular, the transmission char-

acteristics of the 60 GHz band was studied for specific target applications such as HDTV

and UHDV streaming [84], WiGiG, Wireless HD and ECMA 387 [1], etc. Studies on

indoor cellular connectivity reveal that transmitting via omnidirectional antennas offers

more resilience against blockage via multipath propagation, but its coverage range is quite

small [85]. This range is considerably extended by communicating with a directional

antenna-array which creates a strong directional line-of-sight (LoS) link [33]. A similar

study in [34] with a directive antenna with a 3-dB beamwidth of ∼ 10◦ was also shown

to produce directional mm-wave links. Similar directional mm-wave links were the used

to improve performance via new multihop MAC protocols [86], or through macroscopic

diversity [35,87], etc.

Since preliminary studies on mm-wave propagation provided favorable results in indoor

environments, similar studies for outdoor networks were also conducted. For instance, it

was shown in [36] that similar to indoor settings, communicating with directional antennas

in the 60 GHz band typically results in strong LoS links in many cases. Similar results were

found in the study in [30] where mm-wave links were typically directional and misaligned

beams and lack of coordination were the primary bottleneck to network performance.

Moreover, studies in [80–82] from the network layer perspective also concluded that beam-

forming with directed antenna-arrays is instrumental in reducing inter-user interference in

the mm-wave band to a great extent compared to the microwave band.

Since mm-wave communication has shown promising results in a few outdoor settings,

the next set of studies naturally focused on understanding whether cellular communication

over the mm-wave band is viable. The studies in [41, 46] conducted in the 28 GHz band

in Brooklyn and Manhattan reveal that while both LoS and non-LoS paths exist, non-

LoS paths suffer from significantly heavier attenuation than LoS paths (as expected), and

beyond 200 m a significant number of users (e.g., 57 % in Brooklyn) were in outage. A

similar study in [88] in Manhattan found that unlike in [41, 46], the non-LoS multi-path

13



components, possibly created due to very dense urban features, were quite strong and

helped reduce blockage. However, reliable connections were mostly limited to only 78 m,

compared to 200 m in [41, 46]. A related study on the 38 GHz band in Austin [47–49]

found propagation characteristics that are qualitatively similar to those found in earlier

studies in [41, 46]. Such studies, along with a more detailed study in [50] indicate that

stand-alone mm-wave cellular networks are expected to provide an order of magnitude

more cell-capacity than existing 4G networks. However, the effective size of mm-wave cells

will likely be limited to ∼200 m.

The Need for Integrated Millimeter-Wave/Microwave Dual-Band Networks

In cellular settings, the relatively smaller range of mm-wave coverage may be useful in

reducing interference between neighboring cells, thus increasing frequency reuse. However,

smaller cell sizes need to be compensated with much denser cell deployments which in-

creases the overall network capacity significantly. While dense mm-wave cell deployment

would be expensive, the increased capacity from such dense cell deployment can potentially

be utilized in an efficient manner in high bandwidth-demanding regions such as urban city

centers, university campuses, tourist spots, major transport hubs, etc. However, in areas

with moderate to low bandwidth demand such as suburban or rural regions, capacity of

such dense mm-wave networks will likely be severely under utilized.

Moreover, due to relatively smaller size of mm-wave cells, mobile users or vehicles in

transit will need to undergo frequent hand-overs between adjacent cells. Furthermore,

as discussed earlier, mm-wave channels are harder to estimate reliably as they change

significantly in a few hundred micro-seconds due to increased Doppler effect. Therefore,

such frequent hand-overs and channel estimation will interrupt connectivity, and increase

channel estimation overhead significantly. In addition, blockage continues to be a significant

bottleneck to mm-wave connectivity, especially in dense urban settings.

As such, while stand-alone mm-wave cellular networks may provide a drastic increase

in network throughput due to their vast bandwidth, such networks may suffer from unre-

liability, along with other issues such as network underutilization, and increased mobility

management overhead. These issues suggest that stand-alone mm-wave cellular systems

are unlikely to provide uniform and reliable coverage with robust high capacity links to

users across different types of deployments. Hence, it has been envisioned [61,89] that mm-

wave cells will coexist with microwave bands in an integrated dual-band setup, which may
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serve as an effective solution to the bandwidth-scarcity problem in the short-to-medium

term future.

Dual-band connectivity has thus emerged as one of the most promising technologies

for 5G cellular access in recent times, beginning with the introduction of the Phantom cell

architecture by NTT-Docomo in 3GPP Release 12 [55] in 2014, through the introduction of

the dual connectivity (EN-DC) configuration in the recent 3GPP Release 15 [90] in 2019.

The key idea is to integrate additional spectrum from the mm-wave band while continuing

to use the incumbent microwave spectrum in the sub-6 GHz band. Transmissions over the

mm-wave band are expected to handle high-throughput data sessions, while transmissions

in the conventional microwave band are likely to carry control signals, and provide con-

nectivity of moderate speed data when the mm-wave network connectivity is disrupted or

unavailable [56–58].

It is interesting to note that the transmission characteristics in the mm-wave band

are complementary to those in the microwave band. To combat the propagation loss in

higher mm-wave frequencies, mm-wave links need to be used with directional antenna-

arrays. This renders mm-wave links highly directional, and as discussed earlier, such

links are prone to blockage and mobility management issues, thereby limiting cellular

coverage severely [29, 41, 42]. In contrast, conventional communication in the microwave

band provides extended coverage and far less blockage [29, 63, 91]. Such complementary

characteristics of the two bands thus call for an integrated dual-band access scheme where

users can fall back on the conventional microwave cell when mm-wave coverage is lost

[41,60].

Dual-Band Networks from the Network Layer Perspective

In [62], a joint mm-wave and microwave network with time division multiplexing-based

MAC structure was studied as a prospective candidate for 5G. Here, important control

functions and moderate bandwidth traffic are communicated over the existing and reliable

microwave network, whereas the high capacity mm-wave links are used to offload traffic

from the macro cells and provide better services for high bandwidth demanding traffic.

Unlike the microwave band, where inter-user interference is typically managed by

interference-avoidance schemes, e.g., scheduling, the directional nature of mm-links are

particularly useful in simplifying design. For instance, in the related work in [63] an optimal

resource allocation problem for a cellular network over the integrated mm-wave/microwave
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dual-band is studied. The proposed technique, which utilizes the directional nature of the

mm-wave links, is shown to vastly improve performance metrics such as the number of

supported users and the link connection probability, etc.

Similarly in [60], several variations of the heterogeneous network over the existing mi-

crowave band and the mm-wave band were studied, with the objective of achieving high-

capacity access and backhaul. In this setting, control traffic is carried by microwave links,

while high speed services are supported by mm-wave links, leading to a high-throughput

and reliable system. Studies such as [64,92] also provide similar results, while that in [32]

focuses on minimizing the energy consumption of such networks.

Recently, [38] studied the role of spatial re-use in enhancing resource management

of a multi-hop heterogeneous network operating over an integrated mm-wave/microwave

dual-band, where directed antenna-arrays are used to create the mm-wave links. In this

work, solutions were proposed that improve the throughput and latency performance of

the network. In a similar work in [93], a heterogeneous network with directional point-

to-point mm-wave links and conventional microwave links are considered for device-to-

device communication, and a resource allocation study is then shown to achieve significant

improvement over stand-alone mm-wave transmission schemes.

In a related work in [64], a heterogeneous network was considered over two mm-wave

bands, the 60 GHz band and the 70/80 GHz band. Due to its relatively higher absorption

and blockage, the 60 GHz band was used to create short-distance point-to-point links, while

the 70/80 GHz band was used to establish relatively longer-range links. A novel paradigm

was then introduced that leverages the point-to-point links in the 60 GHz and the more

reliable links of the 70-80 GHz bands to achieve significant throughput enhancement over

the conventional networks.

Dual-Band Networks from the Physical Layer Perspective

Recent works have also focused on the physical layer performance metrics of integrated mm-

wave/microwave dual-band networks. In [70], a cellular network over such a dual-band is

studied where mm-wave small cells have been densely deployed with conventional sub-6

GHz microwave cells. The study of opportunistic uplink and downlink user-association in

this network reveals that, while directional beamforming in the mm-wave band improves

the user association overall, users are more likely to connect to sub-6 GHz cells in the uplink,

thereby indicating the efficacy of a dual-band connectivity. Similar works in [23, 94] also
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conclude that simultaneous transmission over the integrated mm-wave/microwave dual-

band is one of the most promising solutions that addresses the problem of unreliability in

mm-wave transmission. In these works, scheduling algorithms were proposed that utilizes

side information from both bands in the network to provide optimized quality of service.

In related works [68, 69], the channel information in the sub-6 GHz band is shown to be

useful in estimating the mm-wave channels in such dual-band networks.

In a related work in [95], the authors studied the performance of traffic hot-spots

that operate over an integrated mm-wave/microwave dual-band. They conclude that this

dual-band network outperforms both the conventional microwave only network and the

stand-alone mm-wave network in terms the coverage probability. They also show that

there exists a non-trivial trade-off between the deployment parameters of the mm-wave

and the microwave base stations that achieves the optimal performance.

More importantly, developments on dual-band communication such as those in [66,67,

71] have demonstrated the immense potential of such networks in practice. For example,

the authors in [66] designed a queue-based strategy that transmits from a single transmitter

to a single receiver simultaneously over the dual 3 GHz microwave and 30 GHz mm-

wave bands. Successful practical experiments conducted in this dual-band setup favorably

indicate the feasibility and the effectiveness of dual-band transmission schemes. In addition,

Intel [67] and Qualcomm [71] have announced the production of a dual-band modem that

supports both sub-6 GHz and 28 GHz bands.

Finally, recent works in [37, 39, 40] are a few of the most relevant works on mm-wave

networks from the physical layer perspective. Here fundamental information-theoretic per-

formance limits of a class of stand-alone mm-wave Gaussian relay networks are established.

In these works, the authors focused on Gaussian 1-2-1 networks, where a single transmitter

communicates with a single receiver with the help of a set of half-duplex relays. In partic-

ular, while [37, 39] focuses on establishing approximate capacity results for such channels,

thereby characterizing good achievable strategies for the network, [40] focuses on secure

communication over the channel. It is worth noting that mm-wave transmissions in this

network are also modeled as point-to-point additive white Gaussian noise channels, an as-

sumption that aligns well with those in many studies from the network and physical layer

perspectives and from practical measurement campaigns.
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Connection to the Thesis

The preceding discussions show that while transmitting over the mm-wave spectrum is a

promising technology for next generation wireless networks, stand-alone mm-wave networks

inherently suffer from unreliability of mm-wave links. Therefore, communicating over an

integrated mm-wave/microwave dual-band, which complements the transmissions in the

high-bandwidth, unreliable mm-wave links with transmissions in the moderate-bandwidth,

reliable microwave links, provides an attractive solution for the near-to-medium term fu-

ture. Hence, networks over such an integrated dual-band have been subject to much

investigation recently from the physical and network layer perspective, as discussed above.

However, very few studies, if any, focus on characterizing the information-theoretic

performance limits of such dual-band networks. Such studies, especially for multi-user net-

works, are instrumental in finding practical achievable performance limits, good encoding-

decoding strategies, effective resource allocation schemes, etc. While the works in [37,39,40]

characterize information-theoretic performance limits of a specific stand-alone mm-wave

channel, they consider neither dual-band networks nor the aspect of inter-cell interference.

In this thesis, we make progress in this front by studying two multi-user channels over

the integrated mm-wave/microwave dual-band that analyze the aspects of interference and

relay-cooperation.

2.2 Multi-User Information Theoretic Models

In the pioneering work in [96], Shannon first considered the problem of communicating

from a single source to a single destination in a point-to-point channel under a probabilistic

framework. It was shown that data can be reliably transmitted over the channel if the data

rate is less than the so-called capacity of the channel (C), thus providing a fundamental

limit on data rates.

Specifically, a discrete memoryless channel (DMC) is defined by the tuple (X ,Y , pY |X(y|x)),

where X and Y are the finite, discrete alphabets, and input x ∈ X produces output y ∈ Y
according to the channel transition probability pY |X(y|x).

The fundamental result in [96] shows that an input message with rate R can be reliably

transmitted over the DMC if

R < C := max
pX

I(X;Y ),
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Figure 2.1: The point-to-point additive white Gaussian noise (AWGN) channel.

where I(X;Y ), the so-called mutual information between random variables X and Y , is

defined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

pX(x)pY |X(y|x) log
pY |X(y|x)

pY (y)
,

where X and Y are from finite discrete alphabets X and Y , and they are distributed as

X ∼ pX(x) and Y ∼ pY (y) :=
∑

x′∈X pY |X(y|x′)pX(x′). The input distribution p∗X that

maximizes I(X;Y ) is called the capacity achieving or optimal input distribution.

The point-to-point Additive White Gaussian Noise (AWGN) channel, depicted in Fig-

ure 2.1, is a continuous-alphabet counterpart of the DMC and a popular model that effec-

tively captures noisy wireless communication. The system model of the standard AWGN

is given by

Yi = Xi + Zi, i = 1, . . . , n,

where Xi and Yi are the real input and output symbols at ith channel, i.e., Xi, Yi ∈ R,

and Zi are additive white Gaussian noise samples which are identically and independently

distributed (i.i.d.) as Zi ∼ N (0, N). In real-world transmissions, the inputs must satisfy

a transmit power budget P in that over a block of n symbols, input Xn must satisfy
1
n

∑n
i=1 E[X2

i ] ≤ P .

The capacity of the AWGN channel is given by

C =
1

2
log

(
1 +

P

N

)
, (2.1)

where the so-called signal-to-noise ratio is denoted by SNR := P
N

, and the optimal distri-

bution is X ∼ N (0, P ).

Multiple-Access Channel

While the AWGN channel models single-user communication between a single transmitter-

receiver pair, it is common to have multi-user communication in cellular settings, where

multiple transmitter-receiver pairs communicate with each other over a shared medium.
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multiple-access

channel

Figure 2.2: The two-user discrete memoryless multiple-access channel (DM-MAC).

One of the most widely studied multi-user channel is the multiple-access channel (MAC)

where two or more sources simultaneously communicate to a single destination, which then

attempts to estimate the messages from all sources.

The two-user discrete memoryless MAC [97, Chapter 4], denoted DM-MAC, is depicted

in Figure 2.2 and defined as follows:

Definition 2.1 (The DM-MAC). The DM-MAC is defined by the tuple (X1,X2,Y,

pY |X1,X2(y|x1, x2)) where X1 and X2 are two finite, discrete input alphabets, Y is a finite,

discrete output alphabet, and pY |X1,X2(y|x1, x2) is the channel transition law.

Here, X1 and X2 are input alphabets for the two sources S1 and S2, while Y is the output

alphabet at the destination D, as depicted in Figure 2.2. Since the channel is memoryless,

the channel probability mass function (pmf) after n channel uses decomposes as

p(yn|xn1 , xn2 , ) =
n∏
i=1

p(yi|x1i, x2i).

We now introduce information theoretic terminologies for the MAC which generalizes

to other multi-user channels as well. The problem of communicating over the DM-MAC is

formalized by defining a code and an achievable rate pair [97, Chapter 4] as given below.

Definition 2.2 (Code for the DM-MAC). A (2nR1 , 2nR2 , n) code for the DM-MAC consists

of (i) two independent, uniformly distributed message setsMk := {1, 2, . . . , 2nRk}, k = 1, 2,

one for each of the sources S1 and S2; (ii) two encoders φk : Mk → X n
k ∈ X n

k , k = 1, 2,

one for each of S1 and S2; and (iii) a decoder for the destination D ψ : Yn →M1 ×M2.

To communicate messages M1 and M2, they are encoded into codewords Xn
1 (M1) =

φ1(M1) and Xn
2 (M2) = φ2(M2), and transmitted over the channel. The destination re-

ceives a superimposed signal Y n from which it decodes both messages. The probability of

decoding error at the destination is given by

P n
e := Pr [ψ(Y n) 6= (M1,M2)] ,
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Figure 2.3: An example of the capacity region of the DM-MAC (neglecting Q).

where (M1,M2) ∈M1 ×M2 are uniformly distributed.

The objective here is to design encoding/decoding strategies such that both messages

can be decoded with vanishing error probability (P n
e ) as n→∞. These results are typically

described in terms of achievable rates and capacity of the channel.

Definition 2.3 (Achievable rate pair and Capacity region for the DM-MAC). A rate pair

(R1, R2) is said to be achievable for the DM-MAC if there exists a sequence of (2nR1 , 2nR2 , n)

codes such that P n
e → 0, as n→∞. The capacity region of the DM-MAC is defined as the

closure of the set of all nonnegative achievable rate pairs.

The capacity region of a multi-user channel provides a fundamental rate limit for the

sources beyond which its message cannot be reliably decoded. Characterizing the capac-

ity region of a channel typically involves two steps: (a) a converse part, which follows

from Fano’s inequality and specifies rate constraints (outer bounds) that is valid for ar-

bitrarily correlated codewords; (b) an achievable part, which entails identifying a specific

encoding/decoding strategy and codeword distribution that achieves the outer bounds.

For the DM-MAC, the capacity region is given by the set of all non-negative (R1, R2)

that satisfy

R1 ≤ I(X1;Y |X2, Q)

R2 ≤ I(X2;Y |X1, Q)

R1 +R2 ≤ I(X1, X2;Y |Q), (2.2)

for some joint distribution (X1, X2, Q) ∼ p(q)p(x1|q)p(x2|q), where Q ∈ Q is the time-

sharing variable with cardinality |Q| ≤ 4. In Figure 2.3, an example of the capacity region

of the DM-MAC is provided (neglecting the time sharing variable Q).
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Figure 2.4: The two-user discrete memoryless interference channel (DM-IC).

The terminologies and the results for two-user DM-MAC naturally generalize to the

K-user DM-MAC [97].

Similar to the DMC case, the DM-MAC has a counterpart that models the wireless

multi-user access: the Gaussian MAC [97, Chapter 4.6]. In the two-user Gaussian MAC, the

sources communicate their messages via real codewords Xn
1 and Xn

2 that must satisfy block

power constraints P1 and P2. Notably, similar to the AWGN channel, the capacity region

of the Gaussian MAC is achieved by using independent codewords Xn
k ∼ N (0, Pk), k = 1, 2,

i.i.d., and without time-sharing.

2.2.1 Interference Channel

The interference channel (IC) is a fundamental model for multi-user interference-limited

communication, where two or more source-destination pairs communicate over a shared

wireless medium, and thus mutually interfere. Unlike the MAC, where the destination

attempts to decode both desired messages, a destination in the IC is interested in its

desired message only. Since interference is not useful for the destination and difficult to

mitigate, it can drastically reduce the source-destination rate or network throughput if

interference is not mitigated judiciously [97, Chapter 6].

The two-user discrete memoryless interference channel (DM-IC) [97, Chapter 6], de-

picted in Figure 2.4, is a fundamental model which provides insight into the functioning of

the general interference-limited networks. The DM-IC consists of two source-destination

pairs where source S1 communicates with destination D1 and source S2 communicates with

destination D2 while interfering mutually.

Definition 2.4 (The DM-IC ). The DM-IC is defined by the tuple (X1,X2,Y1,Y2,

pY1,Y2|X1,X2(y1, y2|x1, x2)) where X1 and X2 are two finite, discrete input alphabet sets, Y1

and Y2 are two finite, discrete output alphabet sets and pY1,Y2,X1,X2(y1, y2|x1, x2) is the

channel transition law.

22



The transmission from the two sources are uncoordinated, and thus the transmitted

messages are assumed to be independent. Since the channel is discrete memoryless, the

n-letter channel pmf decomposes as

p(yn1 , y
n
2 |xn1 , xn2 ) =

n∏
i=1

p(y1i, y2i|x1i, x2i). (2.3)

The problem of reliably communicating over the IC is formalized by defining a code and

an achievable rate pair as follows:

Definition 2.5 (Code for the DM-IC). A (2nR1 , 2nR2 , n) code for the 2-DM-IC consists of

(i) two independent, uniformly distributed message sets Mk := {1, 2, . . . , 2nRk}, k = 1, 2,

one each for sources S1 and S2; (ii) two encoders, φk : Mk → X n
k , k = 1, 2, one each for

S1 and S2; and (iii) two decoders for destinations D1 and D2, ψk : Ynk →Mk, k = 1, 2.

To communicate messages M1 ∈ M1 and M2 ∈ M2 from S1 and S2, they are encoded

into codeword Xn
1 (M1) and Xn

2 (M2) for transmission. Due to mutual interference, both

codewords superimpose at each destination, and each destination attempts to estimate its

designated message only. The decoding probability of error for the code is defined as

P n
e = Pr[ψ1(Y n

1 ) 6= M1 ∪ ψ2(Y n
2 ) 6= M2],

where the average is taken over uniform distribution of (M1,M2) ∈M1 ×M2.

Definition 2.6 (Achievable rate for the DM-IC). A rate pair (R1, R2) is said to be achiev-

able for the DM-IC if there exists a sequence of (2nR1 , 2nR2 , n) codes such that P n
e → 0, as

n→∞.

The capacity region of the DM-IC is defined as the closure of the set of all nonnegative

achievable rate pairs. Unlike the DM-MAC, the closed form expression of capacity region

of the DM-IC is unknown in general except for the strong interference case.

Definition 2.7 (Strong interference for the DM-IC). The DM-IC is said to have strong

interference [98] if

I(X1;Y1|X2) ≤ I(X1;Y2|X2), I(X2;Y2|X1) ≤ I(X2;Y1|X1) (2.4)

for all input distribution p(x1, x2) on X1 and X2 with p(x1, x2) = p(x1)p(x2).

The capacity region of the DM-IC under strong interference is given by the set of all

nonnegative (R1, R2) that satisfy

R1 ≤ I(X1;Y1|X2, Q)
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Figure 2.5: The two-user Gaussian interference channel (GIC).

R2 ≤ I(X2;Y2|X1, Q)

R1 +R2 ≤ min (I(X1, X2;Y1, Q), I(X1, X2;Y2, Q)) ,

for some (X1, X2, Q) ∼ p(q)p(x1|q)p(x2|q), where Q ∈ Q is the time-sharing variable.

Compared to the DM-MAC, where the destination attempts to decode both messages,

each destination in a DM-IC only decodes its own message. However, under strong inter-

ference, decoding both the desired user as well as the interfering user at each destination

as in a DM-MAC is optimal. Therefore, in a strong DM-IC, each destination can de-

ploy the DM-MAC decoder without additional rate penalty. Since, the sources effectively

form a MAC at each of the destinations, the overall rate region is obtained by taking the

intersection of these two MAC rate regions.

Note that the optimal encoding strategy for DM-ICs without strong interference, espe-

cially those with weak interference where the inequalities in (2.4) is reversed, is unknown.

Two User Gaussian Interference Channel

The two-user real Gaussian interference channel (denoted GIC) can be regarded as a

wireless counterpart of a DM-IC, where the transmitted signals are continuous and are

corrupted by AWGN at the receivers. The GIC thus effectively captures the interference-

limited multi-user communication in wireless medium. Unlike the single-user AWGN chan-

nel, where increasing the user transmit power is helpful in improving the user rate, in the

GIC increasing the transmit powers does not necessarily improve the performance as the

resulting power in interference also increases proportionally [10]. Fortunately, interfer-

ence often has useful structure that can be exploited to find strategies leading to superior

throughput [10].
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Without loss of generality, the GIC can be described by its standard form [99] as

depicted in Figure 2.5: the channel outputs at destination D1 and destination D2 at time

t are given by

Y1,t = X1,t + a21X2,t + Z1,t, (2.5)

Y2,t = a12X1,t +X2,t + Z2,t, t = 1, . . . , n, (2.6)

where the input symbols Xk,t ∈ R and the output symbols Yk,t ∈ R are real-valued,

Zk,t ∼ N (0, 1), are i.i.d., AWGN samples, and ak` ∈ R is the cross channel coefficients

from source Sk to D`, k 6= ` ∈ {1, 2}. Similar to the AWGN channel, the input codewords

Xn
k must satisfy a transmit power budget: 1

n

∑n
i=1 E[X2

k,i] ≤ Pk, k = 1, 2.

The terminologies for the GIC such as the definitions of a (2nR1 , 2nR2 , n) code, the

average probability of error and the achievable rates follows from those for the DM-IC

after imposing the transmit power constraints, and hence are not repeated here.

Capacity Results for the Gaussian IC

Similar to the two-user DM-IC, the capacity region of GIC is not known in general except

for certain regimes of channel parameters. In particular, the GIC is classified according to

the relative strength of the power of interfering signal compared to the power of desired

signals, which can be equivalently described by regimes of cross channel gains a2
12 and

a2
21 [100] as follows. As such, the capacity region of the GIC has been characterized in

closed form for the very strong interference and the strong interference regimes, while in

the weak interference regime only few results exist.

Definition 2.8 (Very strong interference for the GIC [99]). The GIC is said to have very

strong interference if

a2
12 ≥ 1 + P2, a2

21 ≥ 1 + P1.

In this case, the capacity region is given by the set of (R1, R2) ∈ R2
+ such that

R1 ≤ C(P1) ,

R2 ≤ C(P2) ,

where C(x) := 1
2

log2(1 + x).

In this case, each source encodes its message into codewords Xn
k ∼ N (0, Pk), k = 1, 2,

i.i.d., whereas each destinations deploys successive interference decoding : a destination first
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decodes the interference by treating its desired signal as noise, removes the interference

from the received signal, and then decodes the desired message from the resulting “inter-

ference free channel”. The very strong interference condition ensures that such a successive

decoding does not incur any rate penalty.

Definition 2.9 (Strong interference for the GIC [101]). The GIC is said to have strong

interference if

a2
12 ≥ 1, a2

21 ≥ 1.

The capacity region of the strong GIC is given by the set of (R1, R2) ∈ R2
+ such that

R1 ≤ C(P1)

R2 ≤ C(P2)

R1 +R2 ≤ min
(
C
(
P1 + a2

21P2

)
, C
(
P2 + a2

12P1

))
.

Similar to the very strong case, the capacity region is obtained by transmitting codewords

Xn
k ∼ N (0, Pk), i.i.d., for k = 1, 2. In contrast, the destinations now deploy simultaneous

unique decoding to decode both signals in a MAC decoding fashion.

Definition 2.10 (Mixed interference for the GIC [102]). The GIC is said to have mixed

interference if

either a2
12 ≥ 1, a2

21 < 1, or a2
12 < 1, a2

21 ≥ 1.

While the capacity region for this case is not known entirely, the sum capacity for the

mixed IC with a2
12 ≥ 1, a2

21 < 1 is given by [102]

Csum = C(P2) + min

(
C

(
P1

1 + a2
21P2

)
, C

(
a2

12P1

1 + P2

))
.

For the case with a2
12 ≥ 1, a2

21 < 1, the sum-capacity is achieved by transmitting i.i.d.

Gaussian codewords, and then decoding the interference at D1 (where interference is strong)

and treating the interference as noise at D2 (where the interference is weak). The sum

capacity for second set of condition is found by interchanging the roles of D1 and D2.

Definition 2.11 (Weak interference for the GIC [102]). The GIC is said to have weak

interference if

a2
12 < 1, a2

21 < 1.

Similar to the mixed GIC, the capacity region for the weak GIC is not fully known.

However, the sum-capacity is known for the so-called noisy interference regime [11,102,103],
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where

|a21(1 + a2
12P1)|+ |a12(1 + a2

21P2)| ≤ 1

holds. For the noisy interference regime, the sum-capacity is given by

Csum = C

(
P1

1 + a2
21P2

)
+ C

(
P2

1 + a2
12P1

)
,

which is achieved by transmitting inputs Xn
k ∼ N (0, Pk), i.i.d., for k = 1, 2, and treating

interference as noise at both destinations.

Approximate Capacity Results for the Gaussian IC

Since the capacity region of the GIC is unknown in the weak interference regime except

for the sum-capacity result for the noisy interference regime, a considerable effort has been

directed at characterizing the so-called approximate capacity results, also called constant

gap results, for this regime. Constant gap results typically entail characterizing an achiev-

able rate region and an outer bound to the capacity region of the channel such that the

difference between the two differ only by a small constant that is independent of all channel

parameters, i.e., channel gains and transmit powers.

Definition 2.12 (Constant gap for the GIC). An achievable region is said to be within

δ bit/channel use of the capacity region if for a rate pair (R1, R2) on the boundary of the

achievable region, the rate pair (R1 + δ, R2 + δ) is outside the outer bound to the capacity

region, where δ ∈ R+ is a constant and not a function of channel parameters a2
12, a

2
21, P1, P2.

Intuitively, an achievable scheme with a constant gap of δ achieves an achievable rate

region from which the capacity region is at most δ bits away per dimension (user). As

such, if δ is reasonably small, this rate gap is effectively negligible as compared to the

rates achieved with moderate transmit powers. Hence, research efforts are typically geared

towards determining a “good” achievable scheme and a “good” outer bound such that they

differ only by a small constant.

The HK scheme [7] is the most versatile achievable scheme for the GIC, and provides

the best known achievable rates that contains all other known schemes such as the joint

decoding (optimal in the strong interference regime), or treating interference as noise (op-

timal in the noisy interference regime), etc., as special cases. In this scheme, each input

message is allowed to be divided into multiple independent parts, each regarded as a vir-

tual user, that are superimposed in a layer-by-layer fashion to generate a single codeword
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for transmission. As such, the total transmit power budget is divided into the transmit

power of those virtual users, also known as power-splitting. The decoder then decodes all

virtual users from its desired user with a range of possibilities: it may choose to decode a

set of desired virtual users in one of the many possible orders, whereas for the interfering

virtual users, it may choose to decode only a subset of them depending on the strength of

the received interference power. In addition, the power-splitting operation can be varied

to achieve a wide range of achievable regions.

Such versatility of approaches in the HK scheme results in a significant complexity.

In fact, the HK achievable region, found by taking union of rate regions over all possible

parameters such as the power-splitting, the distribution of codewords used, the number of

virtual users, etc., has not yet been characterized in closed form. This motivates the need

to simplify the HK scheme such as those in [10, 100]. The scheme of [10] is of particular

interest as it achieves the capacity of the weak GIC within δ = 1
2

bits/channel use per user.

In this scheme, each message is divided into only two independent parts, a common

and a private part, and the total power budget Pk is split into two fixed parts, Pkc and Pkp

for the common and the private parts, that depend on the cross channel gains as follows

Pkp =


1

a2
k`

, if a2
k`Pk ≥ 1, ` 6= k ∈ {1, 2}

Pk, otherwise, and

Pkc = Pk − Pkp. (2.7)

Moreover, only i.i.d., Gaussian codewords are used for encoding, and time-sharing is

not used. Finally, each destination decodes the intended private and common messages

uniquely, the interfering common message non-uniquely, and treats the interfering private

message as noise. These simplifications result in an achievable region in closed form, given

by the set of rate tuples (R1, R2) ∈ R2
+ that satisfy [7, Lemma 2]

R1 ≤ I(X1;Y1|W2)

R2 ≤ I(X2;Y2|W1)

R1 +R2 ≤ I(X2,W1;Y2) + I(X1;Y1|W1,W2)

R1 +R2 ≤ I(X1,W2;Y1) + I(X2;Y2|W1,W2)

R1 +R2 ≤ I(X1,W2;Y1|W1) + I(X2,W1;Y2|W2)

R1 + 2R2 ≤ I(X2,W1;Y2) + I(X2;Y2|W1,W2) + I(X1,W2;Y1|W1)

2R1 +R2 ≤ I(X1,W2;Y1) + I(X1;Y1|W1,W2) + I(X2,W1;Y2|W2), (2.8)
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where the I(.; .) terms are computed with distributions Wk ∼ N (0, Pkc), i.i.d., Uk ∼
N (0, Pkp), i.i.d., with Xk := Wk + Uk ∼ N (0, Pk), and Yk are defined by (2.5)-(2.6) with

Xk ∼ N (0, Pk), k = 1, 2.

To evaluate how close the achievable region in (2.8) is to the capacity, closed form

outer bounds are needed, which are difficult to derive in the weak interference regime in

general. To that end, considerable progress has been made in [10, 11] where genie-signal

aided techniques were used to characterize useful closed form outer bounds. Specifically,

the closed form outer bound derived in [10] is of interest, as the achievable region in (2.8)

was shown to differ from these outer bounds only by at most 1/2 bit/channel use per user.

The Parallel Gaussian IC

The traditional two-user IC models the interference between two source-destination pairs

that communicate over a frequency-flat channel: in frequency-flat channels, the attenuation

of a signal is assumed to be constant (i.e., flat) over the entire bandwidth of the channel.

In contrast, in many wireless channels, the signal attenuation exhibits different character-

istics in different ranges of frequencies. Such channel are referred to as frequency-selective

channels. A common approach to analyze frequency-selective channels is to divide the

entire bandwidth of the channel into a number of sub-channels such that each sub-channel

behaves as a frequency-flat channel [104, Chapter 11]. Such a set of sub-channels can be

realized via frequency-band separation, and thus these sub-channels do not interfere with

one another, and hence are referred to as parallel channels.

The parallel Gaussian IC (PGIC) models two-user interference-limited communica-

tion over a frequency selective channel [105, 106]. In contrast to the GIC over a single

frequency-flat channel, communication in the PGIC is over a set of parallel channels that

do not interfere with each other. As such, the PGIC can be regarded as a set of Gaussian

ICs that operate over several orthogonal parallel channels (sub-channels): a conventional

(single-band) GIC operates in each sub-channel without interfering with those in other

sub-channels [105].

Similar to the conventional GIC, the capacity region of the PGIC is known only when

the GIC in each sub-channel has strong interference [107], while its sum-capacity is known

for the case with noisy interference in each band [106]. Specifically, the capacity region in

the strong interference case is achieved by encoding jointly over all sub-channels (as opposed

to encoding separately in each sub-channel), and decoding messages from both transmitters
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from the signals received from all sub-channels. Hence, while it may apparently seem

reasonable to perform encoding/decoding separately over each sub-channel of a PGIC,

such separate strategy is suboptimal in general [108,109].

The ergodic fading GIC (EF-GIC) [110] models the effect of fading in wireless interference-

limited communication. In contrast to the GIC with fixed gains, in the EF-GIC the channel

gains are subject to fading that vary according to some fading distribution, e.g., Rayleigh

fading. The achievable rates for the EF-GIC is found by taking expectation of the rates

over the fading distribution: this expectation can be interpreted as taking a weighted sum

of rates achievable for each realization of channel gains (fading state), with the weights

denoting the probability of occurrence of that fading state. Hence, the EF-GIC can be re-

garded as a PGIC as follows: each fading state of an EF-GIC corresponds to a sub-channel

in a PGIC, and the achievable rates for the EF-IC is found by a weighted average of the

rates achievable in each sub-channel of the PGIC, where the weights are the probability

of realization of the fading state. As such, the capacity of the ergodic fading GIC was

characterized in all cases for which the capacity of the PGIC is known [110].

Resource Allocation for the Interference Channel

The overall performance of multi-user channels are typically characterized by optimizing

a specific design-metric. Such metrics include the sum-rate, aimed at maximizing the to-

tal throughput of all users, the worst-user rate, aimed at providing a fair rate to users,

etc. For interference channels in particular, resource allocation techniques that maxi-

mize the sum-rate have revealed insights into how resource should be allotted to increase

the throughput of practical microwave networks [105, 111, 112]. In [105], the GIC over a

frequency selective channel, modeled as the PGIC, is studied. For this model, the sub-

optimal resource allocation scheme of iterative waterfilling was proposed, which was shown

to provide close-to-optimum performance while possessing a distributed coding and power

allocation structure, which are attractive in practice. Similar studies on optimal resource

allocation have also been conducted from a game-theoretic perspective such as that for

the frequency selective GIC in [111], and the GIC with quality-of-service and RF energy

harvesting constraints in [112], which reveal useful insights that improve the performance

in the corresponding settings.
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,

Figure 2.6: The Gaussian multiple-access interference channel (GMAIC) as defined in [12].

Connection to the Thesis

In Chapter 3, we study the two-user interference channel over the integrated mm-wave/microwave

dual-band. We characterize fundamental performance limits of the dual-band IC in the

form of capacity results and approximate capacity results for different variations of the

channel. We then study the problem of resource allocation over the mm-wave links of the

channel that optimizes the sum-rate of the dual-band IC, which reveals useful practical

insights.

2.2.2 The Multiple Access Interference Channel

In cellular communication settings, the two-user IC models the interference between two

point-to-point links that operates in two neighboring cells. Each such link can model

the communication from a single source (e.g., user) to a single destination (e.g., the base

station). However, as opposed to only a single transmitter-receiver pair, typically multi-

ple terminals communicate within a cell. For example, during the cellular uplink phase,

multiple users communicate to a single base station (BS) in the cell, which is effectively

modeled as a multi-access channel (MAC). When two such MACs, operating in two neigh-

boring cells, transmit over the same shared microwave band and mutually interfere, and

the resulting channel is modeled as the multiple-access interference channel (MAIC) [12].

The MAIC can thus be regarded as a generalization of the two-user IC, as it models

a more practical interference phenomena in cellular networks. Hence similar to the two-

user IC, understanding how to address the interference problem in the MAIC is crucial in

characterizing useful strategies for practical cellular networks.
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In [12], the Gaussian MAIC (GMAIC), depicted in Figure 2.6, was studied where each

interfering MAC is modeled as a Gaussian MAC. The authors in [12] classified the GMAIC

based on the strength of interference in the cross channels, i.e., the channel from a source

to the interfered destination located in the other cell. In particular, the GMAIC is said

to have strong interference if the gains in the cross channels are larger than that of the

respective direct channels, while it is said to have weak interference if the cross channel

gains are smaller. Such a characterization serves as a natural extension of the strong and

weak interference cases for the GIC [100].

The capacity of the GMAIC was then determined for a subset of the strong interfer-

ence case in [12], where jointly decoding the interfering messages along with the intended

messages as in a 4-user MAC is the optimal decoding strategy, if the channel gains satisfy

a certain set of conditions in addition to the strong interference conditions. In contrast, for

the weak interference regime, the capacity and the optimal achievable strategy is unknown

in general. However, some progress were made in [12]: a sum-rate upper bound was derived

for the weak interference regime, and then it was compared to the sum-rate achieved via

the simple strategy of treating interference as noise (TIN). Empirical examples show that

the gap between these two bounds are small when the cross channel gains are very small

(close to zero). However, as either the transmit powers increase, or the cross channel gains

increase within the weak interference regime, this gap increases consistently. This behavior

calls for more sophisticated upper bounds and achievable strategies that perform well over

a wide range of channel parameters.

In [113], another upper bound on the sum-capacity was derived via an interference-

alignment approach. They also proposed an achievable scheme for the GMAIC based

on lattice codes, and showed that the resulting sum-rate is within a constant gap to the

sum-capacity. It should be noted that while [113] considers the same system model of the

GMAIC as in [12], the model for channel gains, the definition of weak interference, and

the upper bounding approaches are all different from those in [12].

First, in contrast to the channel gain of [12], which can model any real number, the

notation adopted for channel gains in [113] is only able to model gains larger than 1.

Second, while the definition of strong and weak interference in [12] can be regarded as

a natural extension of the same for the GIC as in [100], which simply depends on the

relative magnitude of the cross and direct channel gains and not on transmit powers, the

weak interference in [113] is defined by a more complex relation involving both channel

gains and transmit powers. Such a definition is motivated by the use of the specific outer
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bounding technique in [113], and does not naturally extend from the same in the GIC.

Finally, the sum-capacity upper bound presented in [113, Theorem 7] is shown to be

valid for a subset of channel gains. However, since the bound was derived using an existence

result in number theory, it was only shown to exist but the exact subset of channel gains for

which this bound holds was not specified. Moreover, the constant gap between this upper

bound and the achievable sum-rate is presented as a function of some unknown constants

that have not been characterized. Therefore, the bound is not expressed in closed form,

nor is the exact value of the constant gap completely expressed.

Connection to the Thesis

The preceding discussion reveals that only a few results exist on the Gaussian MAIC. Par-

ticularly, in the weak interference regime, the upper bound of [12] becomes loose compared

to the achievable sum-rate, while that in [113] is not characterized in closed form, as noted

above.

In Chapter 5, we study the Gaussian MAIC over the conventional microwave band

and characterize new performance bounds. The channel model and information-theoretic

terminologies for the GMAIC are presented in Chapter 5, and hence are not repeated here.

Note that since the notation for the GMAIC in [12] naturally extends from the same for

the GIC, these notations are adopted in Chapter 5.

2.2.3 Relay Cooperation

Wireless channels are inherently unreliable due to obstacles, multipath channel fading, and

power loss due to wave propagation over wireless medium. Relay cooperation is one of the

most effective techniques to combat the ill-effects of wireless channels and boost the service

range of cellular communication. The basic setup of relay cooperation, introduced as the

relay channel in [16], is a widely studied topic which models the communication from a

single source to a single destination aided by a single relay node.

The discrete memoryless relay channel (DM-RC) [16], depicted in Figure 2.7, and a

code for such a channel are defined as follows:

Definition 2.13 (The DM-RC). The DM-RC is defined by the tuple (X1,X2,Y2,Y3,

pY2,Y3|X1,X2(y2, y3|x1, x2)), where X1 and X2 are two finite, discrete input alphabets, Y2 and

33



relay

channel

relay

encoder

Figure 2.7: The discrete memoryless relay channel (DM-RC).

Y3 are two finite, discrete output alphabets, and pY2,Y3|X1,X2(y2, y3|x1, x2) is the channel

transition law.

Definition 2.14 (A code for the DM-RC). A (2nR, n) code for the DM-RC consists of (i)

an uniformly distributed message set M := {1, 2, . . . , 2nR}; (ii) and encoder for the source

φ : M → X n
1 ; (iii) a causal relay encoder φR : Y i−1

2 → X2 for each i ∈ {1, 2, . . . , n}; and

(iv) a decoder for the destination ψ : Yn3 →M.

In essence, source S transmits a message M ∈ M via codeword Xn(M), and due to

the nature of conventional microwave band, this transmission is received by both relay R

and destination D. After channel use i ∈ {1, 2, . . . , n}, the relay encodes the information

received in all previous time slots, i.e., Y i−1
2 , causally into a codeword symbol X2,i(Y

i−1
2 ),

and transmits it, thereby making the signal from the source and the relay correlated. The

transmission from the source and the relay then superimpose at the destination, which

then attempts to decode message M from its received signal.

While the relay channel has been subject to much investigation [16,17,114], its capacity

region is still unknown in general. In [16], an upper bound to the rate was found using

the cutset technique, and two important relaying schemes were introduced, the decode-

and-forward (DF) scheme and the quantize-and-forward (QF) scheme. In DF relaying, the

relay decodes the signal transmitted from the source, re-encodes it, and then transmits it to

the destination. Due to such positive reinforcement of the transmitted signal, the overall

transmission rate due to DF relaying improves if the quality of the source-relay link is

good. Specifically, if the relay is located closer to the source, i.e., the resulting source-relay

link is strong, the source message can be decoded at the relay without imposing additional

constraint, thereby producing net gain in rate at the destination.

On the other hand, if the source-relay link is of bad quality, fully decoding the source

signal at the relay imposes additional rate constraint, and hence DF relaying is not as useful
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Figure 2.8: The Gaussian relay channel (GRC).

as in the former case. In such cases, quantize-and-forward (QF) relaying performs better,

where the relay just compresses the received signal and forwards it to the destination,

instead of trying to decode it fully.

The Gaussian relay channel (GRC) [16], depicted in Figure 2.8, is a wireless counterpart

of the DM-RC. The channel output of the GRC at the i-th time-step are defined as

YR = a1RX1i + ZRi,

YD = a1DX1i + aRDXRi + ZDi, i = 1, . . . , n,

where a1R, a1D and aRD are channel gains between the nodes as depicted in Figure 2.8, and

ZRi ∼ N (0, 1), and ZDi ∼ N (0, 1) are independent noise samples.

Similar to the DM-RC, the capacity of the GRC is also unknown except for the special

case of the degraded relay channel [16], where the signal received at the destination is

assumed to be a degraded (i.e., noisier) version of the signal received at the relay. For

degraded relay channels, capacity was shown to be achieved by the DF relaying scheme

that uses correlated source and relay codewords.

Since the capacity of the relay channel is still unknown, considerable efforts have been

directed towards characterizing approximate capacity results similar to the GIC. For the

classic GRC, the DF relaying scheme was shown to achieve to within 1/2 bit of the capacity

[17]. Similarly, in [114] it was shown that the compress-and-forward scheme achieves to

within 1/2 bit of the capacity, whereas the simpler strategy of amplify-and-forward achieves

within 1 bit of the capacity.

It is worth noting that typically a good achievable strategy for the relay channel will

require the signals transmitted by the source and the relay to be correlated, and a part

of the difficulty in obtaining capacity results lies in finding optimal distributions for the
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codewords and optimal correlations between the source and relay codewords.

Multipath Fading and the Relay Channel

Relaying plays an important role in combating one of the most serious impediments in

wireless communication: multipath fading. It is a small-scale propagation effect that arises

when the transmitted signal reaches the receiver via multiple different propagation paths,

each with distinct propagation delays, amplitudes, and phase shifts. Such indirect paths are

formed, for example, by the reflection of the transmitted signal from surrounding obstacles

such as buildings, cars or other urban features. When these multipath components combine

at the receiver destructively, the receiver power is reduced to small levels, thereby causing

fading that leads to failure of reliable communication [115–118].

Since relaying helps against multipath fading, fading relay channels have been subject

to much investigation with the aim of characterizing optimal cooperation strategy and

performance limits of such networks [13–15,119]. Two such fading models, namely Rayleigh

and phase fading, have been studied in detail, as they are able to effectively model a

number of communication impairments. For instance, Rayleigh fading effectively models

the phenomena of multipath fading [120], whereas phase fading models the effects of phase

uncertainties and synchronization errors in carrier oscillators [121].

In [77] the Gaussian relay channel subject to phase and Rayleigh fading was studied

under the practical assumption of availability of channel state information (CSI) at the

receiver. The capacity of this faded GRC was then characterized for the case when the

source-relay links were stronger than the source-destination links in terms of data rate,

or in other words, when the relay is closer to the source than the destination. Note that

unlike [16], where the capacity of the GRC was derived under a degradedness assumption,

the capacity result for the fading GRC in [77] does not need such an assumption. More

specifically, due to the availability of CSI at receiver and the presence of phase or Rayleigh

fading, uncorrelated source and relay signals were found to be optimal, resulting in a closed

form capacity result.

Multiple Access Relay Channel

The multiple-access relay channel (MARC) is a natural generalization of the single source

single destination relay channel of [16]. Instead of a single source, in the MARC multiple
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Figure 2.9: The Gaussian multiple-access relay channel (MARC).

sources communicate with a single destination as in a multiple access channel, while a

single relay aids the communication of all users. Similar to the Gaussian relay channel,

the Gaussian MARC models the MARC in wireless settings, and thus it has been studied

extensively [18, 19, 122–124]. In Figure 2.9, the Gaussian MARC (G-MARC) with two

sources is depicted.

Similar to the relay channel, the capacity of the G-MARC is also unknown in general,

however some progress have been made in characterizing its performance limits. In [18],

outer bounds to the capacity region of the G-MARC were characterized based on the

cutset bounding technique, while an achievable rate region was derived after extending the

DF relaying strategy of [16]. Similar to the degraded Gaussian relay channel in [16], the

sum-capacity of the degraded G-MARC was characterized in [19].

Since the relay in the G-MARC is beneficial in combating the adverse effects of wireless

fading as in the GRC, fading G-MARCs have been subject to investigation recently. In

[124], the G-MARC subject to phase fading was studied, where conditions for joint source-

channel communication over this channel were obtained. Moreover, similar to the fading

GRC, the capacity region of the phase and Rayleigh faded G-MARC was also characterized

under the assumption that the CSI is available at the receivers [77,122,123]. These results

show that when the near conditions hold in the G-MARC, i.e., when the relay is located

near the sources in the sense of [77, Theorem 9], its capacity region can be characterized

in closed form.

Resource Allocation for the Multiple Access Relay Channel

Similar to other multi-user channels, such as those for the interference channels in [105,

111,112], the overall performance of the MARC is typically characterized by optimizing a
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design-specific goal such as those in [123,125–127]. For instance, the sum-rate serves as an

effective metric for the total throughput of the network, while the worst-user rate can serve

as a fair user-rate in the channel. In [123], the optimal resource allocation for the ergodic

fading orthogonal G-MARC was studied, where the relay is half-duplex and transmits and

receives on orthogonal channels. Then, under the assumption of availability of CSI at all

nodes, the optimal power allocations were derived that achieves the maximum sum-rate.

In [127], a similar study was conducted on the G-MARC in an OFDMA framework, where

several power and sub-carrier allocations were proposed, which were then shown to achieve

close to optimal rates.

Connection to the Thesis

In Chapter 4, we study the dual-band fading Gaussian MARC, which operates over the

integrated mm-wave/microwave dual-band. We consider a general ergodic fading, which

specializes to phase and Rayleigh fading, and thus is consistent with similar works on

the G-MARC in [77, 122, 123]. We characterize the fundamental performance limits of

this dual-band MARC in terms of achievable rates and capacity results. We then study

a resource allocation problem over the mm-wave links of this channel with the aim of

optimizing the achievable sum-rate. The resulting power allocation scheme is shown to

reveal useful insights for such dual-band networks.
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Chapter 3

The Dual-Band Interference Channel

In this chapter1, we study the performance of a two-source two-destination dual-band

interference channel, denoted the dual-band IC. Here, a source communicates to its re-

spective destination simultaneously over the microwave and the mm-wave bands. In the

microwave band of this channel, the source-destination pairs mutually interfere, and thus

form a conventional single-band Gaussian interference channel (GIC) [101].

The mm-wave channels, however, are operated as highly directional point-to-point links

created by beamforming with co-phased antenna arrays [30]. Hence, a source in this band

is well-modeled as being able to choose whether to transmit towards its desired destination

only, the other destination only, or time-share between the two destinations. This raises

the question of to which destination a source in the mm-wave band should transmit. In this

dual-band IC, the transmitters in the mm-wave band can transmit in one of the following

configurations: (a) the first source (S1) to the first destination (D1), and the second source

(S2) to the second destination (D2); (b) S1 to D2, and S2 to D1; (c) both S1 and S2 to D2;

or (d) both S1 and S2 to D1.

In this work, we focus on the first two cases. Therefore, the transmitters in the mm-

wave band can either transmit (a) from S1 to D1, and from S2 to D2, via the S1-D1 and

S2-D2 direct-links, (b) from S1 to D2, and from S2 to D1, via the S1-D2 and S2-D1 cross-

links, or (c) divide the spectrum between the direct- and cross-modes via time/frequency

division. The channel resulting from the first mode, where the sources transmit only in

the direct-links, is denoted by the Direct-Link IC (DLIC), whereas the same for the second

mode, where the sources transmit only in the cross-links, is denoted by the Cross-Link IC

1The results of this chapter (except for Section 3.3) have been published in [65] and [128].
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(CLIC). Finally, in the third mode the sources share the spectrum between the two model,

and hence the resulting channel is denoted by the Direct-and-Cross-Link IC (DCLIC).

In this chapter, we study the capacity of the DCLIC, the CLIC and several of its

variations. Importantly, we first show that the capacity region of the DCLIC can be

decomposed into the capacity region of the underlying CLIC and the set of direct-links.

As such, the capacity of the DCLIC can then be established if the capacity of the underlying

CLIC is characterized, and thus we focus solely on the CLIC thereon.

We observe that capacity of the CLIC depends largely on whether the destinations

posses strong or weak interference in the microwave band. Based on this, we classify the

CLIC in the following classes: (i) the strong CLIC, where both destinations have strong

interference, (ii) the mixed CLIC where only one destination has strong interference while

the other has weak interference, and (iii) the weak CLIC, where both destinations have weak

interference. We then characterize sufficient channel conditions under which the capacity

regions for the three classes of CLICs are established. Moreover, if these particular sufficient

channel conditions do not hold, the capacity region of the CLICs, especially those of the

the weak and mixed CLICs, are unknown. Therefore, we then characterize approximate

capacity regions for them.

An important special case of the conventional microwave GIC is the Z-interference

channel (ZIC) where one of the destinations do not suffer from interference, i.e., the mi-

crowave cross-link between from one source to this destination does not exist and taken to

be zero [100]. We consider the dual-band counterpart of the ZIC, denoted Z-CLIC: here

the underlying microwave GIC is a ZIC, and depending on whether both or one mm-wave

cross-link(s) are present, we identify three kinds of Z-CLICs: Z-CLICs of type-0, type-1,

and type-2, as detailed in the next section. We then characterize capacity and approximate

capacity results for such channels.

For multi-user channels, it is common to characterize optimal resource allocation aimed

at a specific design-metric, such as the sum-rate aimed at maximizing the total throughput,

or the worst-user rate aimed at providing fair rates to all users, etc., which can serve as an

effective tool for allocating resources in practice. For example, in the case of the interference

channel, resource allocation schemes that maximize the sum-rate have been investigated

thoroughly [105,111,112].

The DCLIC models a basic multiuser network over the microwave and mm-wave dual-

band, and a similar resource allocation study will shed light on important trade-offs in
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such networks. For example, in the dual-band IC the point-to-point mm-wave links can

be used to either convey desirable user-information to the designated receiver, or forward

interference information to the non-designated receiver. Neither of these two modes of

transmission for the mm-wave links provides the optimal performance for all channel con-

ditions, and thus there exists a non-trivial trade-off between the two modes of use for the

mm-wave links. Since the mm-wave links will significantly affect the performance of the

dual-band IC due to their point-to-point nature and relatively higher bandwidth, it is useful

to understand how to optimize the performance of the DCLIC over the parameters in the

mm-wave band. We therefore study the power allocation scheme over the four mm-wave

links that maximizes the sum-rate of the channel. The optimal power allocation scheme,

derived in closed form, possesses rich properties and reveals useful insights.

The contributions of this chapter are summarized as follows:

Capacity Results (presented in Section 3.2)

• Decomposition of the capacity of the DCLIC: We show that the capacity region of

the DCLIC can be decomposed into the capacity region of the underlying CLIC and

the two direct-links in the mm-wave band. As such, the direct-links improve the rates

of individual users, whereas the cross-links play a non-trivial role in characterizing

the capacity of the CLIC.

• Strong CLIC: The capacity of the strong CLIC is characterized, and the strong

interference condition in the microwave band is shown to be sufficient to characterize

the capacity.

• Weak CLIC: We characterize combined weak-very strong channel conditions over the

cross-channel gains in the microwave and the mm-wave bands, under which its capac-

ity is established. This condition shows that even if the GIC in the microwave band

has weak interference, the mm-wave cross-links with adequately strong interference

are able to drive the combined interference to a very strong regime, thus producing

the capacity result.

• Mixed CLIC: We characterize the capacity of the mixed CLIC under a set of channel

conditions. This condition, which holds over channel gains of the microwave and mm-

wave links, can be interpreted as being able to drive the mixed interference regime

to a strong one, thus characterizing the capacity.
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• Z-CLIC: We identify three kinds of Z-CLICs, denoted as type-0, type-1, and type-2,

depending on the presence of mm-wave cross-links. We first show that the capacity

of the Z-CLIC of type-0 is the same as that of the Z-CLIC of type-1.

Then the capacity of the Z-CLIC of type-1 is characterized under two sets of channel

conditions, which can interpreted as being combined strong and very strong interfer-

ence conditions over both bands.

Finally, the capacity of the Z-CLIC of type-2 was shown to be the same as that of

the Z-IC: the Z-IC is an one-sided IC operating in the microwave band only, and its

capacity results are well known in literature.

Approximate Capacity Results (presented in Section 3.3)

• Weak CLIC: We obtain a constant gap result which characterizes the capacity of

the weak CLIC within 1/2 bit/channel use per user for the entire weak interference

regime.

• Mixed CLIC: We characterize the capacity region of the mixed CLIC within 1/2

bit/channel use per user which is valid for the entire regime of the mixed interference.

• Z-CLIC of type-1: For this model, we derive a constant gap result valid for the entire

regime that characterizes its capacity within 1/2 bit/channel use per user.

Resource Allocation for the DCLIC (presented in Section 3.4)

We derive the optimal power allocation scheme over the mm-wave direct-links and cross-

links of the DCLIC that maximizes the sum-rate of channel. For notational convenience,

this optimal power allocation scheme for the the DCLIC is denoted by the IC-OPA. We

observe that depending on the value of the power budget (P ) and certain channel condi-

tions, power is either allocated to a only specific subset of the 4 links, or is shared between

all links. This behavior is equivalent to partitioning the entire range of the power budget P

into several link-gain regimes (LGR), such that in each LGR, the IC-OPA allocates power

to the links in distinct modes. We characterize all such LGRs which reveal useful insights.

Specifically, we observe the following:

• The IC-OPA allocates the power budget among (P ) the direct- and cross-links fol-

lowing two properties: a waterfilling-like property and a saturation property.
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• When P is sufficiently small, the IC-OPA assigns power to only a subset of the links;

the power in the allocated links increase piece-wise linearly as P increases, while the

power in the remaining links are zero.

• Due to the saturation property, the IC-OPA imposes a maximum limit on the cross-

link powers. When P exceeds a certain saturation threshold (Psat), the cross-link

powers reach their peak value, and all additional increments to P are added only to

the direct-links that do not have such limits.

• If the underlying GIC in the microwave band has very strong interference, the IC-

OPA assigns the power budget entirely to the direct-links.

• If the channel parameters satisfy one of the following criteria, then transmitting only

in the direct-links is approximately optimal, in the sense that the difference between

the sum-rates resulting from allocating to only direct-links and that from allocating

optimally in all links is negligibly small: (a) the transmit powers in the underlying

GIC in the microwave band is small; (b) the mm-wave cross-link gains are large.

• When the mm-wave bandwidth is large, the optimal power allocation for the symmet-

ric case simplifies as follows: (a) if the direct-links are stronger than the cross-links,

allocating the budget P entirely to the direct-links is optimal for all P ≥ 0; (b)

alternatively, if the cross-links are stronger, for P smaller than the saturation thresh-

old, allocating P entirely to the cross-links is optimal, while for P larger than the

threshold, the cross-links are saturated, and all increments of P are allotted to the

direct-links.

The rest of the chapter is organized as follows: We define the system models in Sec-

tion 3.1. We present all capacity results in Section 3.2. In Section 3.3, all constant gap

results are presented. The resource allocation problem for the DCLIC is presented in

Section 3.4. Finally, a summary of results is provided in Section 3.5.

3.1 System Model

We now define the system models of all the channels studied in this chapter. First, we define

the discrete memoryless (DM) DCLIC, depicted in Figure 3.1, from which the Gaussian

DCLIC is defined. We thus establish the notations needed to define the other models.
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In the dual-band IC, the number of channel uses in the microwave band and the mm-

wave band will likely be different as the mm-wave band has more bandwidth than the

microwave band. We model this bandwidth difference with a bandwidth mismatch factor

(BMF) α between the first (microwave) band and the second (mm-wave) band: during n

accesses of the first band, the second band is accessed n̂(n) := bαnc times in total, where

bxc denotes the largest integer no larger than x.

Note that a transmitter in the mm-wave band is assumed to be capable of creating

either a direct-link or a cross-link by beamforming to the relevant destination via a co-

phased antenna-array. Since the two links must be time-shared, the total BMF of α for

the mm-wave band needs to be divided into two parts, α1 for the cross-links and α2 for

the direct-links, with α = α1 + α2. More specifically, during n accesses of the first band,

the second band is accessed n1(n) := bα1nc times as cross-links, and n2(n) := bα2nc times

as direct-links. For notational convenience, throughput this chapter we denote n1(n) and

n2(n) by n1 and n2 respectively.

In an alternative setting where a mm-wave transmitter uses a hybrid antenna array

instead of a single co-phased antenna arrays, in principle, available antenna elements in

the hybrid antenna array can be reconfigured into two smaller and independent antenna

arrays, and then be used to communicate to both destinations simultaneously [72–74], as

discussed in Section 1.3. Hence, the direct- and cross-links from a mm-wave transmitter

can then be realized simultaneously without any time-sharing, and in essence, both the

direct- and cross-links are able to utilize the full BMF α. This setting can be regarded as

a special case of the setting considered in this chapter by doubling the BMF α and then

allocating equal bandwidths for the direct- and cross-links, i.e., α1 = α2, with a suitable

reduction in the path-loss to account for the reduced array gain.

The discrete memoryless DCLIC

Definition 3.1 (The DM-DCLIC). The DM-DCLIC is defined by the tuple

((Xk, X̂k, X̄k)2
k=1, (Yk, Ŷk, Ȳk)2

k=1, p(.)), where Xk and Yk are finite, discrete input and output

alphabets of the interference channel in the first band, X̄k and Ȳk are finite, discrete input

and output alphabets for the Sk to Dk direct-links in the second band, k ∈ {1, 2}, X̂k and

Ŷ` are finite, discrete input and output alphabets for the Sk to D` cross-link in the second

band, k 6= ` ∈ {1, 2}, and p(.) is the channel transition law that decomposes as follows

44



microwave

DM-IC

dual-band IC

direct link

direct link

cross link

cross link

Figure 3.1: System model of the discrete memoryless DCLIC. It consists of an underlying

DM-IC in the microwave band and the set of direct- and cross-links in the mm-wave band.
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n1
1 , ŷn1
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We now define a code and an achievable rate pair for the DM-DCLIC.

Definition 3.2 (A code for the DM-DCLIC). A (2nR1 , 2nR2 , n, α1, α2) code for the DCLIC

to consist of (i) two independent, uniformly distributed message setsMk := {1, 2, . . . , 2nRk},
k = 1, 2, one each for sources S1 and S2; (ii) two encoders φk :Mk → X n

k ×X̂
n1
k ×X̄

n2
k , k =

1, 2, one each for S1 and S2; and (iii) two decoders ψk : Ynk × Ŷ
n1
k × Ȳ

n2
k →Mk, k = 1, 2,

one each for destinations D1 and D2, with nk ≤ αkn, and αk = limn→∞ nk/n, k = 1, 2.

As depicted in Figure 3.1, S1 and S2 communicate messages M1 ∈ M1 and M2 ∈ M2

by encoding them into codewords φk(Mk) = (Xn
k (Mk), X̂

n1
k (Mk), X̄

n2
k (Mk)), k = 1, 2, for

transmission. Then, (Xn
1 (M1), Xn

2 (M2)) are transmitted through the first band which

forms a DMIC. Sender S1 forwards the “interference information” to D2 by transmitting

X̂n1
1 (M1) via the S1-D2 cross-link in the second band, whereas X̂n2

2 (M2) is sent through

the S2-D1 cross-link for interference forwarding from S2. Finally, S1 sends X̄n2
1 (M1) to D1

via the S1-D1 direct-link in the second band to communicates the “desired information”,

while S2 does the same via the S2-D2 direct-link.

The decoders estimate the input messages from the received signals. As such, the
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decoding probability of error for the code is defined as

P (n)
e = Pr

[
ψ1(Y n

1 , Ŷ
n1

1 , Ȳ n2
1 ) 6= M1 ∪ ψ2(Y n

2 , Ŷ
n1

2 , Ȳ n2
2 ) 6= M2

]
,

where the average is taken over uniform distribution of (M1,M2) ∈M1 ×M2.

Definition 3.3 (Achievable rate for the DMIC). A rate pair (R1, R2) is said to be achiev-

able for the DM-DCLIC if there exists a sequence of (2nR1 , 2nR2 , n, α1, α2) codes such that

n1 ≤ nα1, n2 ≤ nα2, and P
(n)
e → 0, as n, n1, n2 →∞.

Finally, the capacity region of the DM-DCLIC is defined as the closure of the set of all

achievable rate tuples.

Note that in the special case of BMF α1 = α2 = 1, i.e., where the microwave IC,

the cross-links and the direct-links all have the same bandwidth, the DM-DCLIC can be

modeled as an equivalent discrete memoryless interference channel where the users can com-

municate with an augmented alphabet. More specifically, this equivalent channel consists

of 3 parallel sub-channels such that the transmissions in the 3 sub-channels are modeled as

a conventional DMIC, a set of cross-links only, and a set of direct-links only, respectively.

Since the BMF is 1, the codeword lengths for all sub-channels are the same. Thus the

users can use an augmented alphabet (e.g., the Cartesian product of the 3 alphabets for

the 3 sub-channels) to communicate over this equivalent channel.

However, for the general case of α1 6= 1, α2 6= 1, modeling the DM-DCLIC as a single

equivalent channel as described above is not possible. When α1, α2 ≥ 1 the DM-DCLIC

can instead be modeled as a state-dependent interference channel where (a) in the first

state, the channel consists of the single equivalent interference channel with 3 parallel sub-

channels described in the paragraph above, (b) in the second state, only the cross-links

are present, and (c) in the third state only the direct-links are present. The general BMF

α1, α2 ≥ 1 can then be realized by using 3 states of the channel appropriate number of

times.

The Gaussian Models

We now define the Gaussian counterpart of the discrete memoryless DCLIC, and few of

its variations studied here. In this chapter, we will focus on these Gaussian models, and

thus reference to a channel model should be assumed to be a reference to the Gaussian

model by default, unless otherwise specified. For example, by the DCLIC we refer to the

46



link

link

Figure 3.2: System model of the Gaussian DCLIC. It consists of an underlying GIC in the

microwave band and the set of direct-links and cross-links in the mm-wave band.

Gaussian DCLIC, and the discrete memoryless DCLIC is specifically referred to as the

DM-DCLIC.

The Gaussian DCLIC

The Gaussian DCLIC (denoted the DCLIC), depicted in Figure 3.2, consists of a GIC in

the underlying microwave band and the set of direct- and cross-links in the mm-wave band.

The GIC in the first band is modeled as in [101], where the signals received at D1 and D2

at the ith channel use are given by

Y1i = X1i + a21X2i + Z1i, (3.1)

Y2i = X2i + a12X1i + Z2i, i = 1, . . . , n. (3.2)

Here, Xki, Yki ∈ R, ak` ∈ R are cross-channel coefficients from Sk to D`, k 6= ` ∈ {1, 2} (a2
kk

are normalized to 1 as in [101]), and Zki ∼ N (0, 1), i.i.d., are noise samples. In addition,

the codewords now satisfy the average power constraint, 1
n

∑n
i=1X

2
ki ≤ Pk, k = 1, 2.

The cross-links in the second band are point-to-point, and are modeled as

Ŷ2i = c12X̂1i + Ẑ2i, (3.3)

Ŷ1i = c21X̂2i + Ẑ1i, i = 1, . . . , n1, (3.4)

where X̂ki, Ŷki ∈ R, ck` ∈ R are coefficients of the Sk-D` cross-links, k 6= ` ∈ {1, 2},
and Ẑki ∼ N (0, 1), i.i.d., are noise samples. The codewords satisfy the average power

constraint, 1
n1

∑n1

i=1 X̂
2
ki ≤ P̂k, k = 1, 2. The direct-links are similarly modeled as

Ȳ1i = d1X̄1i + Z̄1i, (3.5)
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Figure 3.3: System model of the Gaussian DLIC. It consists of an underlying GIC in the

microwave band and only the set of direct-links in the mm-wave band.

Ȳ2i = d2X̄2i + Z̄2i, ` = 1, . . . , n2, (3.6)

where X̄ki, Ȳki ∈ R, dk ∈ R are the direct-link coefficients, Z̄k` ∼ N (0, 1), i.i.d., are noise

samples, and codewords satisfy the average power constraint, 1
n2

∑n2

i=1 X̄
2
ki ≤ P̄k, k = 1, 2.

A (2nR1 , 2nR2 , n, α1, α2) code and an achievable rate pair for the DCLIC are defined

from those of the DM-DCLIC given in Def. 3.1 and Def. 3.2, respectively, by choosing all

codeword alphabets to be R and imposing average power constraints on the codewords

Xn
k , X̂

n1
k and X̄n2

k , k = 1, 2, as defined above.

Note that for the special case of BMF α1 = α2 = 1, i.e., where the microwave IC, the

cross-links and the direct-links all have the same bandwidth, the DCLIC can be considered

a special case of the parallel Gaussian IC [110] and the vector/MIMO gaussian IC [129].

The Gaussian DLIC

The Gaussian DLIC (denoted the DLIC) is defined from the DCLIC by taking X̂k = Ŷk =

∅, k = 1, 2, i.e., by deleting the two cross-links. The DLIC is depicted in Figure 3.3.

Hence, the DLIC is defined by (3.1)–(3.2) and (3.5)–(3.6). The definition of a code and

an achievable pair of the DLIC follow from those of the DCLIC after setting X̂k = Ŷk =

∅, k = 1, 2, hence not repeated here.
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Figure 3.4: System model of the Gaussian CLIC. It consists of an underlying GIC in the

microwave band and only the set of cross-links in the mm-wave band.

The Gaussian CLIC

The Gaussian CLIC (denoted the CLIC), depicted in Figure 3.4, is defined from the DCLIC

by taking X̄k = Ȳk = ∅, k = 1, 2, i.e., by deleting the two direct-links. Hence, the CLIC is

defined by (3.1)–(3.4). The definition of a code and an achievable pair of the CLIC follows

from those of the DCLIC, hence not repeated.

For ease of exposition, the CLIC is classified into 3 classes based on the interference of

the underlying GIC with cross-channel gains a2
12 and a2

21. A CLIC is said to be a

1. strong CLIC, if a2
12 ≥ 1 and a2

21 ≥ 1, i.e., the underlying GIC is strong;

2. weak CLIC, if a2
12 < 1 and a2

21 < 1, i.e., the underlying GIC is weak;

3. mixed CLIC, if a2
12 < 1 and a2

21 ≥ 1, i.e., the underlying GIC is mixed.

Note that the mixed CLIC can also be defined under the alternative condition a2
12 ≥ 1 and

a2
21 < 1, i.e., the role of the strong and weak destinations are exchanged. The results for

the latter mixed CLIC can be trivially obtained from those for the former mixed CLIC,

and hence not repeated.

The Gaussian Z-CLIC

The Z-interference channel (ZIC) is an important subclass of the conventional GIC, where

only one of the two destinations is affected by interference, while the other operates in

an interference-free manner. For example, if D2 in the GIC is unaffected by interference

from S1, the resulting ZIC can be regarded as a special case of the GIC after taking the

corresponding cross-channel gain a12 = 0 and keeping all other links intact.
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(a) The Gaussian Z-CLIC of type-0

(b) The Gaussian Z-CLIC of type-1 (c) The Gaussian Z-CLIC of type-2

Figure 3.5: (a) System model of the Gaussian Z-CLIC of type-0. In the underlying mi-

crowave ZIC, we have a12 = 0, but both mm-wave cross-links are present.

In this chapter, we consider the dual-band counterpart of the ZIC, denoted the Z-CLIC,

where the underlying microwave GIC is a ZIC with a12 = 0 and a21 6= 0. In addition to the

microwave ZIC, the Z-CLIC also consists of two mm-wave cross-links, and based on which

of the cross-links are present, the Z-CLIC can be classified into 3 cases: (i) Z-CLIC of

type-0, depicted in Figure 3.5a, where both mm-wave cross-links are present; (ii) Z-CLIC

of type-1, depicted in Figure 3.5b, where the mm-wave S1-D2 cross-link is removed, i.e.,

c12 = 0; and (iii) Z-CLIC of type-2, depicted in Figure 3.5c, where the mm-wave S2-D1

cross-link is removed, i.e., c21 = 0.

Note that while the Z-CLIC and the ZIC considered in this chapter has a12 = 0 and

a21 6= 0 in the underlying GIC, the alternate version of the Z-CLIC and the ZIC can be

obtained by taking a12 6= 0 and a21 = 0. However, the capacity results for this alternative

setting follows trivially from those presented here by exchanging the roles of the sources

and the destinations, and hence are not repeated.

Note that while the results included in this chapter are for the dual-band interference

channel with real channel coefficients, these results can be extended to the case with

complex channel coefficients following similar techniques.
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3.2 Capacity Results

3.2.1 Decomposition of the Capacity of the DCLIC

Recall that in the DCLIC with BMFs α1 and α2, for n channel uses in the first band, the

second band is used n1 = bα1nc times as cross-links and n2 = bα2nc times as direct-links.

We show below that the capacity of the DCLIC can be decomposed into the capacity of the

underlying CLIC, complemented by the direct-links that are used to transmit individual

user information to their respective receivers.

In the following theorem, we present this decomposition result.

Theorem 3.1. The capacity region of the DCLIC with BMFs α1 and α2 is given by the

set of all non-negative rate tuples (R1, R2) that satisfy the decomposition

R1 ≤ r1 + α2C
(
d2

1P̄1

)
R2 ≤ r2 + α2C

(
d2

2P̄2

)
, (3.7)

where (r1, r2) is an achievable rate tuple in the underlying CLIC with BMF α1.

Proof. The proof is relegated to Appendix B.1. �

Theorem 3.1 shows that an achievable rate pair in the DCLIC can be equivalently rep-

resented by a rate pair achievable in the underlying CLIC with BMF α1, complemented by

the capacity of the direct-links,
(
α2C

(
d2

1P̄1

)
, α2C

(
d2

2P̄2

))
, as depicted in Figure 3.6. Hence,

the capacity of the DCLIC can be characterized from that of the underlying CLIC. Hence,

hereon we focus on the CLIC instead of the DCLIC. In addition, this decomposition result

shows that it is optimal to deploy the encoding/decoding for the direct-links separately

from those of the CLIC. This clearly simplifies the encoding/decoding operation for the

channel.

Decomposition of the Capacity of the DLIC

Before delving into the CLIC, we first consider the DLIC, depicted in Figure 3.3, which

consists of an underlying GIC in the microwave band, and the two direct-links in the

mm-wave band.

Similar to the DCLIC, the DLIC also admits a capacity decomposition as follows:
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Figure 3.6: Decomposition of the Capacity of the DCLIC.

Lemma 3.1. The capacity region of the DLIC with BMF α2 is given by the set of all

non-negative rate tuples (R1, R2) that satisfy the decomposition

R1 ≤ r1 + α2C
(
d2

1P̄1

)
R2 ≤ r2 + α2C

(
d2

2P̄2

)
, (3.8)

where (r1, r2) is an achievable rate tuple in the underlying GIC in the microwave band.

The proof of this lemma follows that of Theorem 3.1, and hence is omitted. Similar to

the result for the DCLIC, this result shows that a rate pair in the DLIC can be achieved

by a rate pair achievable in the underlying microwave GIC, and then complemented by the

direct-links. Therefore, the capacity of the DLIC can be found easily for cases in which a

capacity result exists for the conventional GIC. For example, the capacity of the DLIC can

be characterized when the underlying GIC has strong interference [100], whereas only sum-

capacity results for the DLIC can be characterized if the underlying GIC has mixed [100]

or noisy interference [108].

3.2.2 The Strong CLIC

Hereon, we focus entirely on the CLIC and its variants. In the strong CLIC, where the

underlying GIC in the first band has strong interference (i.e., a2
12 ≥ 1 and a2

21 ≥ 1), the
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capacity region is given below.

Lemma 3.2 (The strong interference case for the CLIC). The capacity region of the strong

CLIC with BMF α1 is given by the set of all non-negative rate tuples (R1, R2) that satisfy

R1 ≤ C(P1) , (3.9)

R2 ≤ C(P2) , (3.10)

R1 +R2 ≤ C
(
P1 + a2

21P2

)
+ α1C

(
c2

21P̂2

)
, (3.11)

R1 +R2 ≤ C
(
P2 + a2

12P1

)
+ α1C

(
c2

12P̂1

)
. (3.12)

The proof of Lemma 3.2 follows from the proof for the strong interference case in [110]

in a straightforward manner. Hence, we omit the proof and discuss only the key idea. In

the strong CLIC, the GIC in the first band has strong interference. Additionally, in the

second band, the cross-link gains are positive while the direct-link gains are zero, which

results in a GIC with strong interference. Hence, the strong CLIC is a parallel GIC with

strong interference in both bands, for which the capacity results is found in [110]. As

such, the outer bound to the capacity region is characterized in a single-letter form under

the sufficient condition a2
12 ≥ 1 and a2

21 ≥ 1. For the achievability part, each message is

encoded jointly over both bands using Gaussian codewords, and each destination decodes

messages from both transmitters in a multi-access channel fashion.

Since the capacity of the strong CLIC with BMF α1 is characterized in closed form in

Lemma 3.2, the capacity of the DCLIC with an underlying strong CLIC, which follows

from Theorem 3.1, is also found in closed form as below

R1 ≤ C(P1) + α2C
(
d2

1P̄1

)
(3.13)

R2 ≤ C(P2) + α2C
(
d2

2P̄2

)
(3.14)

R1 +R2 ≤ C
(
P1 + a2

21P2

)
+ α1C

(
c2

21P̂2

)
+ α2C

(
d2

1P̄1

)
+ α2C

(
d2

2P̄2

)
(3.15)

R1 +R2 ≤ C
(
P2 + a2

12P1

)
+ α1C

(
c2

12P̂1

)
+ α2C

(
d2

1P̄1

)
+ α2C

(
d2

2P̄2

)
. (3.16)

While this result is trivial, expression of the rate region of the DCLIC will prove useful in

Section 3.4.

3.2.3 The Weak CLIC

As defined in Section 3.1, in the weak CLIC, the underlying GIC has weak interference, i.e.,

a2
12 < 1 and a2

21 < 1. Hence, unlike the strong CLIC, where having strong cross-channel
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gains in the underlying microwave band was sufficient to characterize the capacity, in the

weak case additional conditions on the channel parameters of both bands are needed to

characterize the capacity.

We say that the weak CLIC satisfies the combined weak-very strong interference condi-

tion, if the channel conditions in (3.17)-(3.18) hold. For such CLICs, we have the following

capacity result

Theorem 3.2 (The combined weak-very strong interference case for the CLIC). If the

channel parameters of the CLIC with BMF α1 satisfy a2
12 < 1 and a2

21 < 1, as well as the

conditions

(1 + P1)(1 + P2) ≤ (1 + P2 + a2
12P1)(1 + c2

12P̂1)α1 (3.17)

(1 + P1)(1 + P2) ≤ (1 + P1 + a2
21P2)(1 + c2

21P̂2)α1 , (3.18)

then the capacity of the CLIC is given by the set of non-negative tuples (R1, R2) that satisfy

R1 ≤ C(P1) (3.19)

R2 ≤ C(P2) . (3.20)

Proof. The proof, which follows along the lines of the proof for the ergodic very strong

interference result in [110], is relegated to Appendix B.2. �

In this case, the capacity is obtained by first decoding the interfering message, removing

its effect from the receives signal, and then decoding the desired message. Here, although

the GIC in the first band is weak, under conditions (3.17)-(3.18), the cross-links in the

second band are sufficiently strong in the sense that the combined interference forwarded

through the cross-channels in both bands are enough to drive the CLIC to a very strong

interference regime. Once the CLIC has very strong interference, it is optimal to first

decode the interfering message by treating the desired user as noise, and then decode the

desired message interference free.

Note that for the special case of BMF α1 = α2 = 1, i.e., where the microwave IC, the

cross-links and the direct-links all have the same bandwidth, the capacity results for the

strong CLIC and the weak CLIC can be recovered from the strong and the very strong

interference cases of the parallel Gaussian IC [110] and the vector/MIMO gaussian IC [129].

To illustrate the relationship between the channel parameters that satisfy the combined

weak-very strong interference condition (3.17)-(3.18), we consider a symmetric weak CLIC
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Figure 3.7: (a) The plot of c2
min against a2 for α1 ∈ {0.5, 1, 2}. (b) The plot of c2

min against

α1,min for c2 ∈ {0.5, 1, 2}. (c) Partitioning of the set of channel gains (a2, c2) of a symmetric

CLIC based on whether its capacity region has been characterized.

where the cross-channel gains as well as the transmit powers of the two sources are the

same: in the microwave band, we have a2 := a2
12 = a2

21 and P := P1 = P2, and in the

mm-wave band, we have c2 := c2
12 = c2

21 and P̂ := P̂1 = P̂2. For such a CLIC, the two

conditions (3.17) and (3.18) coincide. For ease of exposition, we define

c2
min :=

1

P̂

((
(1 + P )2

1 + a2P

)1/α1

− 1

)
, α1,min :=

log
(

(1+P )2

1+a2P

)
log(1 + c2P̂ )

, (3.21)
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where c2
min represents the minimum c2 required to satisfy (3.17), whereas α1,min denotes the

minimum α1 required for (3.17) to hold.

We now show the interplay between a2, c2
min and α1,min for P = P̂ = 1. In Figure 3.7a, we

plot c2
min against a2 ∈ (0, 1) for α1 ∈ {0.5, 1, 2}, and note that c2

min reduces monotonically

as a2 or α1 increases. This follows since, if a2 increases then the first band forwards more

interference, and if α1 increases, then the pre-log factor of the cross-link capacity increases.

In either case, smaller c2
min is required to satisfy (3.17). Similarly in Figure 3.7b, we plot

α1,min against a2 ∈ (0, 1) for c2 ∈ {0.5, 1, 2}, and note that α1,min reduces as either a2

or c2 increases. Finally, in Figure 3.7c, we depict the set of cross-channel gains (a2, c2)

of a symmetric CLIC with P = P̂ = 1, α1 = 2, and partition it depending on whether

the capacity has been characterized in each subset. We note that while the capacity is

known for the strong interference regime (i.e., a2 ≥ 1) and the combined weak-very strong

interference regime (i.e., where (3.17) holds), the capacity for the remaining subset, where

a2 < 1 and c2 < c2
m hold, has not been characterized yet.

3.2.4 The Mixed CLIC

In the mixed CLIC, the underlying GIC has mixed interference, i.e., a2
12 < 1 and a2

21 ≥ 1.

For the mixed CLIC, we derive a capacity result as presented below.

Theorem 3.3. If the channel gains of the mixed CLIC with BMF α1 satisfy a2
12 < 1,

a2
21 ≥ 1 and the following conditions

(1 + P1) ≤ (1 + a2
12P1)(1 + c2

12P̂1)α1 (3.22)

(1 + P1 + a2
21P2)(1 + c2

21P̂2)α1 ≤ (1 + P2 + a2
12P1)(1 + c2

12P̂1)α1 , (3.23)

its capacity is given by the set of non-negative rate tuples (R1, R2) that satisfy

R1 ≤ C(P1)

R2 ≤ C(P2)

R1 +R2 ≤ C
(
P1 + a2

21P2

)
+ α1C

(
c2

21P̂2

)
. (3.24)

Proof. The proof is relegated to Appendix B.3. �

In the mixed CLIC, the underlying GIC has a2
21 ≥ 1 and a2

12 < 1, i.e., D1 has strong

interference while D2 has weak interference. Hence, it is optimal for D1 to decode both

the intended and the interfering messages, whereas the same strategy may be sub-optimal
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at D2 due to the reception of weak interference as compared to D1. Now, if the channel

conditions (3.22)-(3.23) hold, sufficient interference is forwarded jointly through the S1-D2

cross-link and the weak microwave link that pushes D2 to the strong interference regime

and enables it to decode both messages without incurring rate loss.

Note that a similar capacity result can be characterized for the mixed CLIC where

a2
12 ≥ 1 and a2

21 < 1 by changing the roles of the sources and destinations.

3.2.5 The Z-CLIC

In the Z-CLIC, the underlying microwave GIC is a ZIC with a12 = 0. As presented in

Section 3.1, the Z-CLIC can be classified into three cases: the Z-CLIC of type-0, where

both mm-wave cross-links are present, the Z-CLIC of type-1, where only S2-D1 cross-link

is present, and the Z-CLIC of type-2, where only S1-D2 cross-link is present, as depicted

in Figure 3.5a - Figure 3.5c.

The following lemma shows that the capacity of the Z-CLIC of type-0 is the same as

that of type-1.

Lemma 3.3. The capacity of the Z-CLIC of type-0 is the same as that of the Z-CLIC of

type-1.

Proof. The proof is relegated to Appendix B.4. �

In essence, D2 in the Z-CLIC is not interfered by S1, i.e., Y n
2 ⊥⊥ Ŷ n1

2 . Therefore, the

mm-wave S1-D2 cross-link does not provide additional help to D2 in decoding its intended

message. Hence, removing this cross-link does not result in the reduction of rate achievable

at D2. Removing this cross-link from the Z-CLIC of type-0 then produces the Z-CLIC of

type-1 where the capacity region of the latter is the same as that for the former.

Therefore, hereon we focus on the Z-CLIC of type-1.

Capacity of the Z-CLIC of Type-1: For the Z-CLIC of type-1, we consider three cases:

the combined very strong interference, the strong interference, and the weak interference.

We characterize the capacity in the first two cases, while establishing a constant gap result

for the third case in the next subsection.
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Lemma 3.4 (Combined weak-very strong interference for the Z-CLIC of type-1). If the

Z-CLIC of type-1 satisfies

(1 + P1)(1 + P2) ≤ (1 + P1 + a2
21P2)(1 + c2

21P̂2)α1 , (3.25)

its capacity region is given by the set of all non-negative tuples (R1, R2) that satisfy

R1 ≤ C(P1)

R2 ≤ C(P2) .

The proof is similar to that of Theorem 3.2, and hence is not repeated. Note that in the

Z-CLIC of type-1, we have a12 = 0 and c12 = 0, i.e., destination D2 operates interference

free, while D1 still receives interference from source S2. However, if (3.25) holds, then first

decoding the interference at D1 by treating the desired signal as noise, and then decoding

the desired signal after removing the effect of interference, does not incur a rate penalty,

which produces the rectangular rate region in Lemma 3.4.

Next, we consider two cases where the very strong interference condition in (3.25) does

not hold, and thus sequential decoding as in Lemma 3.4 is not optimal anymore. First, we

present the capacity region for the strong case where a2
21 ≥ 1.

Lemma 3.5 (Strong Interference for the Z-CLIC of type-1). If the Z-CLIC of type-1

satisfies a2
21 ≥ 1 and

(1 + P1)(1 + P2) > (1 + P1 + a2
21P2)(1 + c2

21P̂2)α1 , (3.26)

its capacity region is given by the set of all non-negative tuples (R1, R2) that satisfy

R1 ≤ C(P1)

R2 ≤ C(P2)

R1 +R2 ≤ C
(
P1 + a2

21P2

)
+ α1C

(
c2

21P̂2

)
.

The proof is similar to that of Lemma 3.2, and hence is omitted. Similar to the case

of Lemma 3.4, in the Z-CLIC of type-1, destination D2 is interference free, while D1 is

interfered by source S2. In contrast, now condition (3.26) holds, and hence sequential

interference decoding at D1 is sub-optimal. Instead, since D1 has strong interference, both

the desired and the interfering message is jointly decoded at D1 as in multi-access channel,

which is optimal.

Capacity of the Z-CLIC of Type-2: For the sake of completeness, we also consider

the Z-CLIC of type-2, and show that its capacity is the same as that of the underlying ZIC
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without any mm-wave link.

Lemma 3.6. The capacity of the Z-CLIC of type-1 is the same as that of the conventional

ZIC with a12 = 0.

Proof. The proof follows along the lines of Lemma 3.3, and hence not repeated. �

For a Z-CLIC of type-2 where a12 = 0 and c21 = 0, due to a12 = 0 destination D2

operates interference free in the underlying GIC. Hence, the S1-D2 mm-wave cross-link

does not provide any additional information, and thus can be removed without changing

the capacity. This is equivalent to taking c12 = 0, which results in the conventional ZIC

with a12 = 0 for which the capacity is known [100].

Note that for the capacity results for the alternate version of the Z-CLIC, where a21 = 0,

can be obtained from the results of the current Z-CLIC by just changing the source and

destination indexes appropriately.

3.3 Approximate Capacity Results

While the capacity region of the strong CLIC has been characterized in closed form, for

the weak CLIC, mixed CLIC and the Z-CLIC, the capacity region were obtained only

under certain channel conditions. Hence, we now derive approximate capacity results (i.e.,

constant gap results) for these channels that are valid for their entire regimes of definition.

As presented in Definition 2.12, a constant gap result characterizes an outer bound to

the capacity region and an achievable rate region for the channel such that the gap between

the two is a positive constant that does not depend on the channel parameters. Deriving

constant gaps, therefore, typically entails characterizing a “good” achievable strategy and

a “good” capacity outer bound such that they differ by only a constant. Hence, the original

capacity region, which is sandwiched between the two bounds, is closely approximated by

the achievable region, thus revealing an encoding/decoding scheme that is “approximately

optimal”.

3.3.1 The Weak CLIC

For the weak CLIC, the capacity region is unknown for the range of channel parameters

that do not satisfy (3.17)-(3.18). In this case, we first derive an outer bound to the capacity
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region with the help of a set of genie-signals, and then an achievable region that is within

a constant gap from the outer bounds.

Outer Bounds to the Capacity Region

We derive the outer bound first. Note that in the weak interference regime, the destinations

do not have sufficient interference information, which makes it hard to computable the

single-letter rate upper bounds. This difficulty can be alleviated by providing a destination

with the interfering message, but it leads to loose outer-bounds that fails to effectively

capture the rates achievable in this regime. We strike a balance between the two approaches

by providing genie-signals along with the interfering signals that produces computable rate

upper bounds which effectively captures the achievable rates.

For the two destinations in the CLIC defined by (3.1)–(3.4), we define the following

genie-signals in the microwave band

S1i = a12X1i + Z2i, (3.27)

S2i = a21X2i + Z1i, i = 1, . . . , n, (3.28)

and the following genie-signals in the mm-wave band

Ŝ1i = c12X̂1i + Ẑ2i, (3.29)

Ŝ2i = c21X̂2i + Ẑ1i, i = 1, . . . , n1. (3.30)

Signals (Sn1 , Ŝ
n1
1 ) is provided to destination D1, which can be regarded as a noisy version of

its intended codewords that reinforces the desired signal. Similarly, (Sn2 , Ŝ
n1
2 ) is provided

to destination to D2. Also, from (3.1)–(3.4), it is apparent that (Y n
1 , Ŷ

n1
1 )|(Xn

1 , X̂
n1
1 ) has

the same distribution as (Sn2 , Ŝ
n1
2 ), while (Y n

2 , Ŷ
n1

2 )|(Xn
2 , X̂

n1
2 ) has the same distribution as

(Sn1 , Ŝ
n1
1 ).

For notational convenience, we define the following parameters

SNR1 := P1, INR1 := a2
21P2,

SNR2 := P2, INR2 := a2
12P1, (3.31)

where SNRk can be interpreted as the ratio of power of the desired signal from Sk to Dk

and noise power (i.e., 1 here), and INRk represents the ratio of power of interference signal

from S` to Dk and noise power, k 6= ` ∈ {1, 2}. We now present the following outer bound

to the capacity region.
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Theorem 3.4 (An outer bound to the capacity region of the weak CLIC). The capacity

region of the weak CLIC with BMF α1 is contained within the set of non-negative rate pairs

(R1, R2) that satisfy

R1 ≤ C(SNR1) (3.32)

R2 ≤ C(SNR2) (3.33)

R1 +R2 ≤ C(SNR1) + C

(
SNR2

1 + INR2

)
+ C12 (3.34)

R1 +R2 ≤ C(SNR2) + C

(
SNR1

1 + INR1

)
+ C21 (3.35)

R1 +R2 ≤ C

(
INR2 +

SNR2

1 + INR1

)
+ C

(
INR1 +

SNR1

1 + INR2

)
+ C12 + C21 (3.36)

R1 + 2R2 ≤ C(INR2 + SNR2) + C

(
SNR1

(1 + INR1)(1 + INR2)

)
+ C(SNR2) + C12 + C21 (3.37)

2R1 +R2 ≤ C(INR1 + SNR2) + C

(
SNR2

(1 + INR1)(1 + INR2)

)
+ C(SNR1) + C12 + C21 (3.38)

where C12 := α1C
(
c2

12P̂1

)
and C21 := α1C

(
c2

21P̂2

)
, with C(x) = 1

2
log(1 + x).

Proof. We present the key steps of the proof here while details are relegated to Ap-

pendix B.5. Following the outer bounding techniques in [10], each bound is derived by

providing an appropriate additional signal, either a genie-signal defined in (3.27)-(3.30) or

the full interference signal, to one or both receivers such that the resulting negative entropy

terms either cancel out or can be bounded by applying the worst additive noise (WAN)

technique [130]. The remaining positive entropy terms are then single-letterized by using

Gaussian codewords as in [131, Lemma 1]. �

Achievable Region

Unlike the strong interference case where decoding the interfering message along with the

desired message, or the very strong case where decoding the interfering message and then

the desired message in a sequential manner, in the weak interference regime, decoding the

interference in its entirety is not optimal in general. Moreover, treating the interference as

noise is also not optimal unless the interference is very weak. Therefore, we need a flexible

framework that fills the gap between the two approaches of addressing the interference

problem.

The Han-Kobayashi (HK) scheme [7] provides such a flexible framework, and achieves
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the best known rates for the conventional IC [98]. In this scheme, the message from each

source is first partitioned into a public and a private part, and both parts superimpose

to generate a single codeword for transmission. In particular, each public message is first

encoded into a “cloud center” which carries “coarse information”, upon which a private

message is superimposed to create a “satellite codeword” carrying the full information.

The total transmission power is divided into those for the public and private parts. Such

partitioning enables a destination to decode only a part (e.g., the public part) of the

interference only, and relieves it from the constraint of either fully decoding the interference

or treating it entirely as noise.

Note that in the HK scheme, the distribution of the codewords and the power-splitting

between the public and private parts can be varied to adapt to channel conditions. More-

over, all such variations can be time-shared to produce an overall rate region which makes

it prohibitively complex to compute the HK region in closed form as the time-sharing vari-

able can have large cardinality. The need for an easily computable region motivated the

simplified HK scheme of [10] for the conventional GIC, where only Gaussian codewords

and a fixed power-splitting were used without time-sharing. The resulting rate region was

able to achieve within 1/2 bit/channel use of the capacity for the real GIC.

In the following Lemma, we present a computable achievable rate region for the CLIC

based on a scheme adapted from [10].

Lemma 3.7 (An achievable region for the CLIC based on message splitting). For the

CLIC with BMF α1 defined in (3.1)-(3.4) with transmit powers P1, P2, P̂1 and P̂2, let P∗

be the set vectors p := (PU1, PW1, PU2, PW2, P̂1, P̂2) � 0 such that

P∗ = {p : PU1 + PW1 = P1, PU2 + PW2 = P2}. (3.39)

For i.i.d. random variables Wk ∼ N (0, PWk), X̂k ∼ N (0, P̂k) and Uk ∼ N (0, PUk), k = 1, 2,

define the Xk := Wk +Uk such that Yk is the resulting outputs in (3.1)-(3.2), and Ŷk be the

resulting outputs in (3.3)-(3.4). Let R(p) be the set of non-negative rate tuples (R1, R2)

that satisfy

R1 ≤ I(X1;Y1|W2)

R2 ≤ I(X2;Y2|W1)

R1 +R2 ≤ I(X1;Y1|W1,W2) + I(X2,W1;Y2) + C12

R1 +R2 ≤ I(X2;Y2|W1,W2) + I(X1,W2;Y1) + C21

R1 +R2 ≤ I(X1,W2;Y1|W1) + I(X2,W1;Y2|W2) + C12 + C21
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R1 + 2R2 ≤ I(X2,W1;Y2) + I(X2;Y2|W1,W2) + I(X1,W2;Y1|W1) + C12 + C21

2R1 +R2 ≤ I(X1,W2;Y1) + I(X1;Y1|W1,W2) + I(X2,W1;Y2|W2) + C12 + C21

where C12 = α1I(X̂1; Ŷ2) and C21 = α1I(X̂2; Ŷ1). Then, an achievable region for the CLIC

is given by R = ∪p∈P∗R(p).

Proof. The proof of this lemma follows from extending the Han-Kobayashi encoding scheme

for the conventional IC in [7] to the CLIC. The details are relegated to Appendix B.6. �

Constant Gap Result

The achievable region in Theorem 3.7 is still not computable as a union still needs to

be taken over all possible power-splits p ∈ P∗. Hence, to characterize a closed form, we

now restrict the power-splits for the two sources (PU1, PW1) and (PU2, PW2) to a specific

form that depends on the SNR and INR values of the two destinations defined in (3.31) as

in [10]. In particular, the private message power PU2 and public message power PW2 for

source S2, defined as a function of INR1, is given by

PU2 =

1/a2
21 if INR1 ≥ 1

P2 if INR1 < 1,
PW2 =

P2 − 1/a2
21 if INR1 ≥ 1

0 if INR1 < 1.
(3.40)

Similarly, the private message power PU1 and public message power PW1 for source S1,

defined as a function of INR2, is given by

PU1 =

1/a2
12 if INR2 ≥ 1

P1 if INR2 < 1.
PW1 =

P1 − 1/a2
12 if INR2 ≥ 1

0 if INR2 < 1.
(3.41)

The resulting region in Lemma 3.7 can thus be parameterized by (INR1, INR2) and denoted

by R(INR1, INR2). It turns out that R(INR1, INR2) provides a closed form achievable region

that it is within a constant gap to the capacity region of the weak CLIC.

Theorem 3.5 (The constant gap result for the weak CLIC). The achievable region, denoted

by R(INR1, INR2) and found by restricting the region of Lemma 3.7 to the private-public

message powers defined in (3.40)-(3.41), is within δ = 1
2

bit/channel use per user of the

capacity region of the weak CLIC with BMF α1.

Proof. The proof borrows the techniques of the constant gap results for the weak GIC in

[10], and is detailed in Appendix B.7. In essence, the set of (INR1, INR2) is first partitioned

into four sets depending on the values of (INR1, INR2), and the private-public message
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Figure 3.8: An example of the constant gap result for the CLIC. The gap between the

achievable region and the outer bound region is within 1/2 bit/channel use per dimension.

powers are then adapted according to (3.40)-(3.41). This results in closed form expressions

for the inner bound R(INR1, INR2) and outer bound in Theorem 3.4, which are then shown

to be within a distance of δ = 1
2

bit per user. �

Finally, we illustrate an example of the constant gap result for the CLIC in Figure 3.8

with parameters SNR1 = SNR2 = 10, INR1 = INR2 = 2, and C12 = C21 = 0.1. Here, while

all seven constraints are active in the achievable region, only six constraints are active

in the outer bound region, nevertheless, the gap between the two regions is within 1/2

bit/channel use in each dimension.

3.3.2 The Mixed CLIC

Recall that the capacity of the mixed CLIC was characterized only under conditions (3.22)-

(3.23), beyond which the capacity is unknown. Hence, this motivates the study of a

constant gap results for the mixed CLIC.

64



Outer Bound to the Capacity Region

First, we characterize an outer bound to the capacity region of the mixed CLIC.

Theorem 3.6 (An outer bound to the capacity region of the mixed CLIC). The capacity

region of the mixed CLIC with BMF α1 that satisfies a2
21 ≥ 1 and a2

12 < 1 is contained

within the set of non-negative rate pairs (R1, R2) that satisfy

R1 ≤ C(SNR1) (3.42)

R2 ≤ C(SNR2) (3.43)

R1 +R2 ≤ C(SNR1) + C

(
SNR2

1 + INR2

)
+ C12 (3.44)

R1 +R2 ≤ C(SNR1 + INR1) + C21 (3.45)

R1 + 2R2 ≤ C(SNR2 + INR2) + C

(
INR1 +

SNR1

1 + INR2

)
+ C

(
SNR2

1 + INR1

)
+ C12 + C21

(3.46)

where C12 = α1I(X̂1; Ŷ2) = α1C(c2
12P1) and C21 = α1I(X̂2; Ŷ1) = α1C(c2

21P2).

Proof. The proof is relegated to Appendix B.8. �

Achievable Region

We characterize a closed form achievable region for the mixed CLIC by adapting the region

in Lemma 3.7 to the following private-public message power split: the transmission power

from source S1 is split according to (3.41) depending on INR2, whereas the total transmission

power from source S2 is allotted entirely to the common message, i.e., PW2 = P2 and

PU2 = 0, irrespective of the value of INR1. For notational convenience, we denote the

resulting achievable region by R(INR2, ∗) where ∗ in place of INR1 denotes the insensitivity

of the scheme to INR1 values.

Intuitively, since strong interference from S2 to D1 holds (i.e., a2
21 ≥ 1), decoding the

message M2 entirely at D1 does not incur any rate loss, and hence all of P2 is allocated to

the common message. In contrast, we have weak interference from S1 to D2 (i.e., a2
12 < 1),

where message splitting as in the weak CLIC proves to be beneficial.
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Constant Gap Result

We now have the following constant gap result which shows that the achievable region

R(INR2, ∗) is within 1/2 bit of the capacity region.

Theorem 3.7 (The constant gap result for the mixed CLIC). For the mixed CLIC with

BMF α1 that satisfies a2
21 ≥ 1 and a2

12 < 1, the achievable region R(INR2, ∗) is within

δ = 1/2 bit/channel use of the capacity region.

Proof. Similar to the weak CLIC, we first partition the range of INR2 into two sets INR2 ≥ 1

and INR2 < 1. Then for each set, we simplify the achievable region R(INR2, ∗) and show it

to be within δ = 1/2 bit of the outer bound in Theorem 3.6. The details are relegated to

Appendix B.9. �

Note that for the alternative mixed CLIC, where the destinations with strong and weak

interference are exchanged (i.e., a2
21 < 1 and a2

12 ≥ 1), a similar constant gap result can be

obtained from Theorem 3.7 by exchanging the roles of the sources and destinations.

3.3.3 The Z-CLIC

Finally, consider the Z-CLIC and recall that its capacity was characterized for cases with

very strong interference condition (3.25) or strong interference condition a2
21 ≥ 1. If neither

of these two conditions hold, neither successive interfering decoding nor joint decoding of

interference at destination D1 is optimal. As such, based on the HK region in Lemma 3.7,

we characterize an achievable region which is then shown to be within constant gap of the

outer bound.

Theorem 3.8 (The constant gap result for the weak Z-CLIC of type-1). For the weak Z-

CLIC of type-1 with BMF α1 that satisfies a2
21 < 1, the achievable region is within δ = 1/2

bit/channel use of the capacity region.

Proof. The proof is similar to that of Theorem 3.7 and is relegated to Appendix B.10. �

3.4 Resource Allocation in the DCLIC

The mm-wave links will significantly impact the performance of the DCLIC due to the

point-to-point nature of mm-wave transmissions and relatively larger bandwidth, and thus
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it is important to quantify the impact of the mm-wave band on resource allocation in

the DCLIC. As such, we take the sum-rate to be the figure of performance of the DCLIC,

which captures the total throughput of the network, and study the optimal power allocation

scheme over the mm-wave direct- and cross-links that maximizes the sum-rate. For this

study, we solely focus on the strong DCLIC, as the capacity region for this case, given in

(3.13)-(3.16), is known without any condition on the mm-wave link channel parameters.

Recall that the normalized bandwidth (α) of the second band is shared between the

direct-links (α2) and the cross-links (α1). We denote the fraction of α alloted to the

direct-links by β := α2/α and the same for the cross-links by β̄ := 1 − β = α1/α, where

β, β̄ ∈ (0, 1). Thus, β provides a trade-off between the bandwidths in the direct- and

cross-links.

We formulate the problem for a class of DCLICs that satisfies the following assumptions:

• [A1] the DCLIC has strong interference but not very strong interference, i.e.,

1 ≤ a2
12 < 1 + P1 and 1 ≤ a2

21 < 1 + P2;

• [A2] the DCLIC satisfies the symmetry condition P2 + a2
12P1 = P1 + a2

21P2;

• [A3] β > 0 and β̄ > 0 are fixed a priori;

• [A4] the transmit power in the direct-links (pk) and cross-link (qk) from source Sk

are constrained by the total power budget P , i.e., βpk + β̄qk = P, k = 1, 2.

In [A1], we assume that the DCLIC has strong interference, as the power allocation

for the very strong interference is trivial as shown in Section 3.4.5. For ease of exposition,

we assume in [A2] that the underlying GIC receives equal power in both its receivers: this

symmetry condition helps to ease the exposition while preserving the defining structures

of the optimal power allocation scheme which is then extended to the asymmetric case in

Section 3.4.4. Note that the class of DCLICs that satisfies [A2] contains as a special case

the DCLIC where the underlying microwave GIC has symmetric cross-channel gains and

power constraints.

In [A3], β is assumed to be fixed a priori and known. This models practical constraints

in many wireless networks where dynamically allocating the bandwidth may not be feasible

or straightforward [123]. In [A4], we assume that the total power budget P in both sources

are the same. This causes no loss of generality as the relative difference between the power

budgets of the two sources, if any, can be absorbed into the gains of mm-wave the direct-

and cross-links without altering the treatment of the problem.
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3.4.1 Problem Formulation and Solution

For a fixed power allocation (p1, q1, p2, q2) in the mm-wave channels, the achievable sum-

rate for the DCLIC is given by the minimum of rates Σ1, Σ2 and Σ: Σ1 and Σ2 are the

sum-rates achievable at destinations D1 and D2, given by (3.15) and (3.16), respectively,

while Σ is the interference-free sum-rate, given by the sum of individual rates in (3.13) and

(3.14). For convenience, the three sum-rate expressions are presented below

Σ1 = A1 +
αβ̄

2
log
(
1 + c2

21q2

)
+
αβ

2

(
log
(
1 + d2

1p1

)
+ log

(
1 + d2

2p2

))
, (3.47)

Σ2 = A2 +
αβ̄

2
log
(
1 + c2

12q1

)
+
αβ

2

(
log
(
1 + d2

1p1

)
+ log

(
1 + d2

2p2

))
(3.48)

Σ = A+
αβ

2

(
log
(
1 + d2

1p1

)
+ log

(
1 + d2

2p2

))
, (3.49)

where

A1 :=
1

2
log
(
1 + P1 + a2

21P2

)
A2 :=

1

2
log
(
1 + P2 + a2

12P1

)
A :=

1

2
log (1 + P1) (1 + P2) (3.50)

are defined for notational convenience. Note that under assumptions [A1] and [A2], we

have A1 = A2 < A.

For a power allocation vector (p1, q1, p2, q2), a necessary and sufficient condition for R to

be an achievable sum-rate of the DCLIC is R ≤ min{Σ1,Σ2,Σ}. Hence, the optimization

problem that maximizes R over the transmit powers (p1, q1, p2, q2) is as follows

[P1] maximize R (3.51)

subject to: R ≤ Σ1 (3.52)

R ≤ Σ2 (3.53)

R ≤ Σ (3.54)

βp1 + β̄q1 = P (3.55)

βp2 + β̄q2 = P (3.56)

(p1, q1, p2, q2, R) � 0. (3.57)
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Solution of Problem [P1]

The solution of problem [P1] has been relegated to Appendix B.11. Specifically, note that

[P1] is a convex optimization problem: its objective function R is linear, the equality

constraints (3.55) and (3.56) are affine, and the inequality constraints (3.52)-(3.54) are

convex and differentiable. Moreover, [P1] satisfies the Slater constraint qualification con-

dition [132, Chapter 5.2.3]. Hence, [P1] can be solved using the Karush–Kuhn–Tucker

(KKT) conditions [132, Chapter 5.5.3], as detailed in Appendix B.11.

Constraint Qualification for Problem [P1]

In Appendix B.12, it was shown that problem [P1] satisfies the Mangasarian-Fromovitz

constraint qualification.

3.4.2 Optimal Power Allocation and Link Gain Regimes

To gain insights into the optimal power allocation scheme (IC-OPA), we characterize the

solution of problem [P1] in closed form. As revealed shortly, link transmission powers are

allocated in different modes that depend on certain conditions on the channel parameters

and the power budget P . Such conditions lead to partitioning the set of all channel

parameters and P into a few mutually exclusive link-gain regimes (LGR): in each LGR, the

IC-OPA allocates the link transmission powers in different modes. Such a characterization

turns out to be beneficial in deriving practical insights.

The LGRs are obtained while solving the convex problem [P1] using KKT conditions:

we solve for the optimal primal variables (i.e., the optimal link transmit powers) and the

optimal dual variables (i.e., the optimal Lagrange multipliers or OLM). For convenience,

we first partition the set of OLMs associated with the inequality constraints (3.52), (3.53)

and (3.54) into a few subsets depending on whether the OLMs are positive or zero, i.e.,

whether the associated constraint is tight or not (detailed in Appendix B.11). As such,

each resulting subset of OLMs are mutually exclusive.

Then, for each such subset of OLMs, we characterize the optimal link transmit powers

in closed form. Since the conditions that define these subsets of OLMs are still expressed

in terms of the OLMs, we then express these conditions explicitly in terms of channel
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Table 3.1: Definition of LGRs and optimal link powers for problem [P1] in terms of channel

parameters a = (d1, d2, c12, c21, γ, P ). Table 3.2 provides the threshold powers in terms of

(d1, d2, c12, c21, γ), and γ is defined in (3.58).

Definition of LGR Optimal Power Allocation

Ad,d := {a : 0 ≤ P ≤ P̄1} p1 =
P

β
, q1 = 0,

p2 =
P

β
, q2 = 0,

Ac,cd := {a : 0 ≤ P ≤ min(P̄2, P̄4)} p1 = 0, q1 =
P

β̄
,

p2 =
P (c2

21 − c2
12)

βc2
21

, q2 =
c2

12

c2
21

P

β̄
,

Acd,cd := {a : max(P̄1, P̄2) < P < P̄3} p1 =
P − β̄q1

β
, q1 =

F (P )

c2
12

,

p2 =
P − β̄q2

β
, q2 =

c2
12

c2
21

q1,

Scd,cd := {a : max(P̄3, P̄4) ≤ P} p1 =
P

β
− β̄(γ − 1)

βc2
12

, q1 =
γ − 1

c2
12

,

p2 =
P

β
− β̄(γ − 1)

βc2
21

, q2 =
γ − 1

c2
21

,

parameters (d1, d2, c12, c21), power budget P , and a parameter γ, defined as

γ :=

(
(1 + P1)(1 + P2)

1 + P1 + a2
21P2

)1/αβ̄

, (3.58)

which models the effect of microwave band channel parameters.

As a result, the set of (d1, d2, c12, c21, γ, P )-tuples is now partitioned into a few sub-

sets (i.e., LGRs), each corresponding to one and only one subset of OLMs. Moreover,

the defining condition of each LGR is further simplified by expressing these condition as

upper and lower bounds threshold powers on the power budget P that are functions of

(d1, d2, c12, c21, γ). Hence, for a given set of (d1, d2, c12, c21, γ), this procedure results in

partitioning the range of power budget P ≥ 0 into a few intervals, each corresponding to

an LGR and defined by the associated threshold powers.
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LGRs in the Case with c2
21 > c2

12: Without loss of generality, we study here the optimal

power allocation for the case with c2
21 > c2

12. In Table 3.1, the LGRs and the corresponding

optimal powers are defined, where threshold powers P̄1, P̄2, P̄3 and P̄4 are expressed in

Table 3.2 below, with %[p(x)] denoting the non-negative square-root of polynomial p(x),

and

F (P ) :=
1

2β̄(1 + β)

(
E1 + E2 −

√
(E1 − E2)2 + 4β2E1E2

)
− 1, with

E1 =

(
Pc2

12 + β̄ + β
c2

12

d2
1

)
,

E2 =

(
Pc2

21 + β̄ + β
c2

21

d2
2

)
. (3.59)

Note that in this case, only 4 LGRs are needed to characterize the IC-OPA, Ad,d, Ac,cd,

Acd,cd, and Scd,cd. 3

As discussed in detail shortly, the IC-OPA follows two distinct properties, the Waterfilling-

like property and the saturation property: the LGRs associated with the Waterfilling-like

property are denoted by A(.,.), while LGR Scd,cd is associated with the saturation property.

We relegate the details of the derivation to Appendix B.11.

Also note that while we study the IC-OPA for the case with c2
21 > c2

12, the IC-OPA

under c2
21 < c2

12 can be readily obtained from Table 3.1 by swapping the indexes 1 ↔ 2,

while the case with c2
21 = c2

12 is studied in Section 3.4.4.

Notation for the LGRs: The notation of the LGRs can be interpreted as follows. For

LGR Ax,y with x, y ∈ {d, c, cd}, entries x and y denote the transmission status in the direct-

and cross-links from source S1 and S2, respectively: for a given source, entry d, c and cd

denotes that power is allocated to the direct-link only, the cross-link only, and in both links,

respectively. For example, in LGR Ac,cd the total power budget for source S1 is allocated

to the S1-D2 cross-links only, the budget for source S2 is shared between both the cross-

and direct-link originating from S2.

Since the LGRs are defined from mutually exclusive sets of OLMs as discussed above,

they are inherently mutually exclusive. For example, given a set of channel parameters

a = (d1, d2, c12, c21, γ, P ), due to the mutual exclusiveness of the LGRs, the threshold

powers P̄1 of Ad,d and P̄2 of Ac,cd have the following relation: if P̄1 > 0, then P̄2 < 0, and

conversely, if P̄1 < 0, then P̄2 > 0. In particular, if P̄1 > 0, there exists P ≥ 0 such that

0 ≤ P ≤ P̄1, i.e., transmitting as in Ad,d is optimal for this range of P . In addition, since
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Table 3.2: Definition of the threshold powers for LGRs defined in Table 3.1 with γ defined

in (3.58).

P̄1 := %

[
d2

1

c2
12(1 + xd2

1/β)
+

d2
2

c2
21(1 + xd2

2/β)
− 1

]

P̄2 := %

[(
1 + c2

12x/β̄
)( d2

1

c2
12

+
1

x(c2
21 − c2

12)/β + c2
21/d

2
2

)
− 1

]

P̄3 := %

[
βγ

xc2
21 + β̄ + βc2

21/d
2
2 − β̄γ

+
βγ

xc2
12 + β̄ + βc2

12/d
2
1 − β̄γ

− 1

]

P̄4 :=
β̄(γ − 1)

c2
12

P̄1 > 0 =⇒ P̄2 < 0, one condition of Ac,cd, 0 ≤ P ≤ P̄2, is not satisfied by any P ≥ 0, and

hence transmitting as in Ac,cd is not optimal for any P ≥ 0. In this case, the direct-links

can be interpreted as being stronger than cross-links. Similarly, the complementary case,

where P̄2 > 0 =⇒ P̄1 < 0, can be interpreted as the cross-links being stronger than the

direct-links.

3.4.3 Properties of the Optimal Power Allocation

It is well known that optimal power allocation in parallel Gaussian AWGN channels,

where a source communicates to a single destination via parallel point-to-point links (sub-

channels), follows the Waterfilling (WF) property: if the power budget is sufficiently small,

it is allocated entirely to the “strongest” sub-channel, and, as the power budget is increased,

power is allocated to the other sub-channels, in addition to the strongest one [97, Chap-

ter 3.4.3]. In the ensuing discussion, it becomes clear that the IC-OPA has two distinct

properties: a WF-like property, due to which it assigns power to the cross- and direct-links

following a WF-like allocation, and a saturation property, due to which there exists a peak

power constraint on the cross-links, while no such limit exists for the direct-links.

These two properties are effectively captured by a certain saturation threshold P̄sat on

the total power budget P such that the IC-OPA allocates power in the links as follows:

• For P < P̄sat: if P is sufficiently small, for each source, the IC-OPA allocates the

power budget either entirely in the strongest of the direct- and cross-links (e.g., only

in both direct-links as in Ad,d), or in the strongest link of one source and both links
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of the other source (as in Ac,cd); as P increases further within P < P̄sat, power is

eventually allocated to all four links in a WF fashion as in Acd,cd.

• For P ≥ P̄sat: the transmit powers allocated to both cross-links are saturated in the

sense that as P increases further, the power in the cross-links remain unchanged, and

all such increments in P are allocated only to the direct-links.

The Waterfilling-like Property

As already mentioned, condition P̄1 > 0 in Ad,d implies that the direct-links are “stronger”

than the cross-links in that, for sufficiently small P , allocating P only to the direct-links

results in a larger sum-rate than that achieved from allocating power to any other subset

of links. Thus, when P ≤ P̄1, following its WF-like property, IC-OPA allocates P entirely

to the direct-links, i.e., p1 = p2 = P
β

, and q1 = q2 = 0. In Ad,d, the direct-link powers thus

increase linearly with P , while the cross-link powers are zero.

On the other hand, condition P̄2 > 0 in Ac,cd implies that the cross-links are “stronger”

than the direct-links in that, for sufficiently small P , the sum-rate achieved by allocating

P to three links as in Ac,cd is larger than that achieved in Ad,d. This power allocation

remains optimal for P ≤ P̄2, and the powers in two cross-links and the direct-link from S2

increase linearly with P . Moreover, condition P < P̄4 ensures that power in the cross-links

are not saturated.

Note that when the direct-links are stronger as in Ad,d, allocating P entirely to the both

direct-links results in the optimal sum-rate R = Σ2 = Σ1. In contrast, when cross-links

are stronger, due to the assumption c2
21 > c2

12, transmitting only in two cross-links results

in a sub-optimal sum-rate R = Σ2 < Σ1. In this case, the sum-rate is limited to R = Σ2,

and allocating full power to the S2-D1 cross-link is not necessary as the larger rate Σ1 is

not realized. Hence, the IC-OPA allocates power to both cross-links as well as a direct-link

by sharing P between the cross- and direct-links from source S2 to produce the optimal

sum-rate R = Σ2 = Σ1.

As P is increased, the marginal benefits of transmitting in a particular subset of links

(e.g., only direct-links in Ad,d, or cross- and direct-links as in Ac,cd) begins to diminish.

Hence, for max(P̄1, P̄2) < P ≤ P̄3, the IC-OPA allocates power to all links in a WF fashion

as in Acd,cd. This also achieves the maximum sum-rate R = Σ2 = Σ1.
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The Saturation Property

While the IC-OPA follows the WF property for P < P̄sat, once P ≥ P̄sat it follows the

saturation property: both cross-link powers are simultaneously constrained at q1 = γ−1
c212

and q2 = γ−1
c221

, and as P increases further, the cross-link powers remain unchanged and all

additional increments in P are allocated only to the direct-links, as in LGR Scd,cd. The

cross-links are thus said to be saturated in that allocating more cross-link powers does

not improve the sum-rate. Such limits on the cross-link powers is unlike the WF-only

allocation in [97].

The cross-links become saturated due to the objective of maximizing min(Σ1,Σ2,Σ).

The analysis of the KKT conditions reveals that for small enough P , it is optimal to allocate

powers that achieve only Σ1 = Σ2 < Σ, while having a gap between Σ1 = Σ2 and Σ, as has

been achieved in LGRs Ad,d, Ac,cd, and Acd,cd. Note that the link powers in LGRs A(.,.)

increase piece-wise linearly as P increases: the increases in p1 and p2 results in an equal

increase of Σ1,Σ2 and Σ, whereas an increase in q1 only increases Σ2, while an increase in q2

only increases Σ1. Therefore, as P increases, the gap between Σ1 = Σ2 and Σ reduces, and

at P = P̄sat, the IC-OPA achieves Σ1 = Σ2 = Σ, with the corresponding cross-link powers

reaching their saturation levels. However, as P increases beyond P̄sat, if any more power

is allocated to either q1 or q2, a suboptimal sum-rate R = Σ < min{Σ1,Σ2} will result.

Therefore, it is optimal to maintain q1 and q2 at their saturation levels, and to divert all

additional increments of P to the direct-links that lead to sum-rate R = Σ = Σ1 = Σ2.

3.4.4 Evolution of Link Gain Regimes with the Power Budget

In the preceding section, we observed that for a given power budget P and a set of channel

parameters, one of the four LGRs is active in the sense that the IC-OPA allocates the link

powers according to the active LGR. As the budget P increases, the active LGR changes

from one to another, thereby producing a sequence of active LGRs, denoted by LGR path.

As already mentioned, given a set of parameters a = (d1, d2, c12, c21, γ, P ), we have:

• if P̄1 > 0, then direct-links are said to be stronger than the cross-links in the sense

that for the range 0 ≤ P ≤ P̄1, transmitting as in LGR Ad,d is sum-rate optimal,

whereas there exists no P > 0 for which transmitting as in Ac,cd is optimal;
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saturation 

levels in

cross links

Figure 3.9: A pictorial representation of the four LGRs in the context of the Waterfilling

and saturation properties. Here, allocation of power to a link is depicted via the presence

of “water-level” in the link, while an absence of water-level denotes that power is not

allocated to a link. Saturation levels of the cross-links are also depicted.

• conversely, if P̄2 > 0, cross-links are stronger than the direct-links in the sense that

for the range 0 ≤ P ≤ min(P̄2, P̄4), transmitting as in LGR Ac,cd is sum-rate optimal,

whereas there exists no P > 0 for which transmitting as in Ad,d is optimal;

• moreover, if 0 < P̄3 < P̄4 < P̄2, the cross-links are said to be much stronger in the

sense that the IC-OPA continues transmitting as in Ac,cd until saturation, beyond

which it transmits as in Scd,cd skipping Acd,cd.

LGR-paths for the IC-OPA

We now characterize all LGR paths for the IC-OPA: according to whether the cross-links

are weaker, stronger, or much stronger than the direct-links, the IC-OPA follows paths

[S1], [S2], and [S3], respectively. The conditions of the paths, and the intervals in which

each LGR in the path is active, are given in Table 3.3, and an example is depicted in

Figure 3.9. Note that the saturation threshold P̄sat on P beyond which the cross-links

saturate, depends on the specific LGR path followed as specified below.
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Table 3.3: LGR paths for the IC-OPA. Table 3.2 provides the threshold powers in terms of

link gains and γ. Each path originates from one of two initial LGRs Ad,d and Ac,cd, and they

terminate at the final LGR Scd,cd.

LGR Path Condition Interval of P in each LGR respectively

[S1]: Ad,d → Acd,cd → Scd,cd P̄1 > 0 [0, P̄1), [P̄1, P̄3), [P̄3, ∞)

[S2]: Ac,cd → Acd,cd → Scd,cd P̄2 > 0 [0, min(P̄2, P̄4)), [min(P̄2, P̄4), max(P̄3, P̄4)),

[max(P̄3, P̄4), ∞)

[S3]: Ac,cd → Scd,cd 0 < P̄3 < P̄4 < P̄2 [0, P̄4), [P̄4, ∞)

• If P̄1 > 0, the IC-OPA follows path [S1]. Since the direct-links are now stronger, the

IC-OPA allocates P entirely to the direct-links as in Ad,d for P < P̄1. However, as P

increases, the additional benefit from transmitting only in the direct-links decreases.

Hence, when P ≥ P̄1, the IC-OPA begins transmitting in both cross- and direct-links

as inAcd,cd following its WF-like property, which remains optimal for all P̄1 ≤ P ≤ P̄3.

Finally, when P > P̄3, the saturation property comes into effect due to which the

cross-links become saturated, and thus the IC-OPA follows the allocation in Scd,cd.

Note that, in this case, the saturation threshold for P is P̄sat = P̄3.

• On the other hand, the IC-OPA follows path [S2] if P̄2 > 0 but 0 < P̄3 < P̄4 < P̄2

is not satisfied, i.e., the cross-links are stronger but not much stronger than the

direct-links. Hence, for all P < min{P̄2, P̄4}, the IC-OPA now transmits in both

the cross-links and the S2-D2 direct-link as in Ac,cd following its WF-like property.

Similar to path [S1], as P increases, the benefit of transmitting only in this subset

of links diminishes, and thus P ≥ min{P̄2, P̄4}, the IC-OPA transmits in all links as

in Acd,cd. Finally, when P > max{P̄3, P̄4}, the cross-links become saturated, and the

IC-OPA follows the allocation in Scd,cd thereon. in this case, the saturation threshold

for P is P̄sat = max(P̄3, P̄4).

Note that, whenever P̄2 > 0, the IC-OPA follows path [S2] irrespective of how P̄2, P̄3,

and P̄4 compare, except in two cases: (a) 0 < P̄3 < P̄4 < P̄2, in which case the IC-

OPA follows path [S3], described next, and (b) 0 < P̄4 < P̄3 < P̄2, which is infeasible

as they violate the mutual exclusiveness of Ac,cd and Scd,cd.
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• Finally, when 0 < P̄3 < P̄4 < P̄2, the IC-OPA follows path [S3]. In this case, the cross-

links are much stronger than the direct-links, and thus similar to [S2], for 0 ≤ P < P̄4

the IC-OPA allocates power to both cross-links and a direct-link as in Ac,cd. However,

as P increases, due to having much stronger cross-links, as much power is allocated

to the cross-links as possible until they become saturated at P ≥ P̄4, and then the

IC-OPA begins assigning power to all channels as in Scd,cd. Hence, compared to [S2],

Acd,cd is skipped. Note that in this case, the saturation threshold is P̄sat = P̄4.

Numerical Examples

We illustrate the characteristics of the IC-OPA with numerical examples of paths [S1] and

[S2] for the following parameters, a2
12 = a2

21 = 1.5, P1 = P2 = 5, α = 2, β = 0.5. Note that

in each plot, an analytical expression (of power or sum-rate), which is given by marker-line,

is observed to match its counterpart computed numerically using the CVX program [133],

given by solid line.

First, we illustrate an example of [S1] by choosing d2
1 = 2, d2

2 = 3, c2
12 = 1, c2

21 = 1.5,

such that the direct-links are stronger than the cross-links in the sense that P̄1 = 0.619 and

P̄2 = −0.75 6∈ R+. In Figure 3.10a, we plot the optimal powers against the power budget

P , and by labeling the power allocations according to LGRs, we verify that the IC-OPA

indeed follows path [S1]: (i) when 0 ≤ P < P̄1 = 0.619, the IC-OPA allocates P entirely to

the direct-links as in Ad,d, and thus p1 and p2 increase with P , and q1 = q2 = 0; (ii) when

P̄1 ≤ P ≤ P̄3 = 2.73, power is allocated to all links as in Acd,cd, and thus q1 and q2 also

increase with P ; (iii) finally, when P > P̄3, the IC-OPA follows Scd,cd where the cross-links

become saturated simultaneously, and all increments of P are added to p1 and p2.

We depict the resulting constraints Σ1,Σ2, and Σ in Figure 3.10b. First, note that the

IC-OPA preserves R = Σ1 = Σ2 for all P . However, there exists a gap between Σ1 = Σ2

and Σ in Ad,d and Acd,cd. Specifically, in Ad,d, the gap remains constant (A−A1); in Acd,cd,

it reduces gradually as the IC-OPA transmits in the cross-links, and, in Scd,cd, it becomes

zero as the IC-OPA achieves R = Σ1 = Σ2 = Σ, as expected.

Next, we illustrate an example of [S2] with the channel gains d2
1 = 0.5, d2

2 = 1, c2
12 =

1.5, c2
21 = 3, such that the cross-links are stronger than the direct-links in the sense that

P̄2 = 0.22 and P̄1 = −0.21 6∈ R+. In Figure 3.11a, we verify that the IC-OPA indeed

follows path [S2] by plotting the powers against P and labeling them with LGRs: (i) when

P < P̄2 = 0.22, the IC-OPA follows the allocation in Ac,cd, and thus p2, q1 and q2 increase
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Acd,cd

Scd,cd

Ad,d

(a)

Acd,cd

Scd,cd

Ad,d

(b)

Figure 3.10: Example of path [S1] Ad,d → Acd,cd → Scd,cd: (a) The optimum power allocation.

(b) The resulting sum-rate constraints.
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Acd,cd

Scd,cd

Ac,cd

(a)

Acd,cd

Scd,cd

Ac,cd

(b)

Figure 3.11: Example of path [S2] Ac,cd → Acd,cd → Scd,cd. (a) The optimum power allocation.

(b) The resulting sum-rate constraints.
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with P , whereas p1 = 0; (ii) when P̄2 ≤ P ≤ P̄3 = 0.97, the IC-OPA allocates power to

all links as in Acd,cd, and thus p1 now increases with P as well; (iii) finally, when P > P̄3,

the IC-OPA follows Scd,cd, and thus the cross-links become saturated simultaneously, as

expected in [S2].

In Figure 3.11b, we plot the sum-rate constraints, and note that the IC-OPA achieves

R = Σ1 = Σ2 in all the sets. In addition, the gap between Σ1 = Σ2 and Σ is gradually

offset as the IC-OPA transmits in the cross-links in SC and Acd,cd, and it finally becomes

zero in Scd,cd, as expected.

The example of [S3] (i.e., SC → Scd,cd) is similar to [S2] with Acd,cd skipped, as hence

omitted.

The Optimal Power Allocation for the Asymmetric DCLIC

The optimal power allocation scheme for the asymmetric case, where condition A1 = A2

in (3.50) does not necessarily hold, is presented in Appendix B.13.

The Optimal Power Allocation for the Completely Symmetric DCLIC

For more intuition, we now adapt the optimal power allocation scheme to the completely

symmetric DCLIC, where the underlying microwave GIC is symmetric, i.e.,

a2 := a2
12 = a2

21, and P1 = P2, (3.60)

and the mm-wave cross- and direct-links are also symmetric, i.e.,

c2 := c2
12 = c2

21, and d2 := d2
1 = d2

2. (3.61)

Note that the resulting γ now simples to

γ̃ :=

(
(1 + P1)2

1 + P1 + a2P1

)1/αβ̄

> 1. (3.62)

Due to symmetry, considering only symmetric power allocation of the form (p, q, p, q)

is sufficient, and does not cause loss of generality. Moreover, for any feasible (symmetric)

power allocation, we have Σ1 = Σ2, rendering the constraint R ≤ Σ2 in (3.53) redundant.

Hence, the sum-rate optimization problem now is given by problem [P1] after deleting

constraints (3.53) and (3.56). The resulting problem is solved in the same manner as [P1],

and hence the details are omitted.
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Table 3.4: Definition of LGRs and optimal link powers for the completely symmetric DCLIC in

terms of channel parameters a = (d, c, γ̃, P ), with the threshold powers defined in (3.63) and γ̃

in (3.62).

Definition of LGR Optimal Power Allocation

Ãd,d := {a : P ≤ P̃1} p =
P

β
, q = 0,

Ãc,c := {a : P ≤ min(P̃2, P̃4)} p = 0, p =
P

β̄

Ãcd,cd :={a :max(P̃1, P̃2)<P < P̃3} p =
2

1 + β

(
P +

β̄

c2
− β̄

2d2

)
, q =

1

1 + β

(
P +

β

d2
− 2β

c2

)
S̃cd,cd := {a : max(P̃3, P̃4) ≤ P} p =

P

β
− β̄(γ̃ − 1)

βc2
, q =

γ̃ − 1

c2
,

In Table 3.4, the 4 LGRs needed to characterize the optimal power allocation for this

case are defined along with the optimal transmission powers in terms of parameters a =

(d, c, γ̃, P ), where the threshold powers are given by

P̃1 := β
( 2

c2
− 1

d2

)
,

P̃2 :=
β̄

2

( 1

d2
− 2

c2

)
,

P̃3 :=
(1 + β)γ̃

c2
− β

d2
− β̄

c2
,

P̃4 :=
β̄(γ̃ − 1)

c2
. (3.63)

The 4 LGRs in Table 3.4, Ãd,d, Ãc,c, Ãcd,cd, and S̃cd,cd, can be regarded as counterparts of

the four LGRs Ad,d,Ac,cd,Acd,cd and Scd,cd defined in Table 3.1.

As expected, the optimal power allocation scheme (IC-OPA) in this case also follows the

Waterfilling-like (WF-like) and the saturation properties as in Section 3.4.3. Moreover, the

IC-OPA follows one of the three LGR paths, presented in Table 3.5, but due to symmetry,

the channel conditions for the LGR paths can now be more clearly interpreted as detailed

below:

• If c2 < 2d2 (i.e., the cross-links are weaker than the direct-links): the IC-OPA follows

path [S1]. In this case, the IC-OPA first follows the WF property: for P ≤ P̃1, it

transmits only in the direct-links as in Ãd,d, and then for P̃1 < P < P̃3, it transmits in

all four links as in Ãcd,cd. Thus, in Ãd,d and Ãcd,cd, the link powers increase piece-wise
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Table 3.5: LGR paths for the completely symmetric DCLIC with the threshold powers defined

in (3.63). Each path originates from one of two initial LGRs Ãd,d and Ãc,cd, and they terminate

at the final LGR S̃cd,cd.

LGR Path Condition Interval of P in each LGR respectively

[S1]: Ãd,d → Ãcd,cd → S̃cd,cd c2 < 2d2 [0, P̃1), [P̃1, P̃3), [P̃3,∞)

[S2]: Ãc,c → Ãcd,cd → S̃cd,cd 2d2 ≤ c2 < 2d2γ̃ [0, P̃2), [P̃2,min(P̃3, P̃4)), [min(P̃3, P̃4),∞)

[S3]: Ãc,c → S̃cd,cd c2 ≥ 2d2γ̃ [0, P̃4), , [P̃4,∞)

linearly with P . Finally, for P ≥ P̃3 saturation sets in, and the cross-link powers are

saturated while all increments of P are allotted only to the direct-links as in S̃cd,cd.

• If 2d2 ≤ c2 < 2d2γ̃ (i.e., the cross-links are stronger than the direct-links): the IC-

OPA now follows path [S2]. Similar to path [S1] above, due to the WF property, the

IC-OPA transmits only in the cross-links as in Ãc,c when P ≤ P̃2, and then transmits

in all four links as in Ãcd,cd for P̃2 < P < min{P̃3, P̃4}. When P ≥ min{P̃3, P̃4},
finally saturation occurs as in S̃cd,cd.

• If c2 ≥ 2d2γ̃ (i.e., the cross-links are much stronger than the direct-links): in this

case, the IC-OPA follows path [S3]. Similar to [S2] above, for P ≤ P̃4, the IC-OPA

transmit in the cross-links as in Ãc,c. Since the cross-links are much stronger, it

continues to transmit only in the cross-links until they become saturated at P = P̃4,

and beyond that it follows S̃cd,cd. Hence, compared to [S2], LGR Ãcd,cd is skipped.

In Figure 3.12, we consider a completely symmetric DCLIC with parameters a2 =

1.5, P1 = 5, α = 2, β = 0.5, and illustrate an example of how the set of cross- and direct-

link gains (i.e., the set of (c2, d2)) can be partitioned depending on whether the set of

cross-links or direct-links are stronger.

The Optimal Power Allocation in the Large Millimeter-Wave Bandwidth Regime

It is interesting to study how the optimal power allocation behaves as the mm-wave band-

width becomes large. For this study, we consider the completely symmetric DCLIC for

which the optimal allocation is given in Table 3.4.
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cross links 

much stronger

cross links 

stronger

cross links 

weaker

Figure 3.12: Example of the partition of the set of (c2, d2) of a completely symmetric DCLIC

based on whether the cross-links are much stronger, stronger, or weaker than the direct-links.

Recall that the direct- and cross-links in the DCLIC are modeled as point-to-point

AWGN channels with a bandwidth-mismatch factor (BMF) of α. For example, consider

the S1-D1 direct-link with transmit power p, link gain d0, and noise variance N , for which

the achievable rate is given by αβ
2

log
(

1 +
d20p

N

)
as in (3.47). In the previous settings, since

the mm-wave bandwidth (BW) was considered to be a fixed constant, the BMF α and the

noise variance N were also taken to be constant, e.g., N was taken to be N = 1 in (3.6).

When the mm-wave BW increases, the noise variance N as well as the BMF α increases

proportionally, which can be modeled by defining N := N0w and α := α0w for some

N0, α0, w > 0. Then, the large BW regime is modeled by having w → ∞. For the S1-D1

direct-link described above, the achievable rate is now given by

α0wβ

2
log

(
1 +

d2
0p

wN0

)
=
α0wβ

2
log

(
1 + d2 p

N0

)
, (3.64)

with the identification α = α0w and d2 =
d20
w

, which capture the effect of varying BW.

For the other direct-link and two cross-links, after similarly capturing the effect of varying

BW, the resulting link gains and BMF are given by

α = α0w, d2 =
d2

0

w
, c2 =

c2
0

w
. (3.65)

We now examine the effect of large BW, i.e., w → ∞, on the optimal power allocation of

Table 3.4. First, parameter γ̃, defined in (3.62), simplifies as follows

γ̃ =

(
(1 + P1)2

1 + P1 + a2P1

)1/α0β̄w
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= Γ1/w

= e
1
w

loge Γ

≈ 1 +
1

w
loge Γ, for large w, (3.66)

where Γ =
(

(1+P1)2

1+P1+a2P1

)1/α0β̄

> 1. As a result, accounting for the link gains in (3.65), for

large w, threshold power P̃4 simplifies to

P̃4 =
β̄

c2
(γ̃ − 1)

≈ β̄w

c2
0

(1 +
1

w
loge Γ− 1) =

β̄

c2
0

loge Γ > 0. (3.67)

Similarly, the other threshold powers simplify to

P̃1 = wβ

(
2

c2
0

− 1

d2
0

)
, P̃2 = w

β̄

2

(
1

d2
0

− 2

c2
0

)
,

P̃4 ≈ wβ

(
2

c2
0

− 1

d2
0

)
+

1 + β

c2
0

loge Γ.

As presented in Table 3.4, the optimal power allocation in the symmetric case is described

by 4 LGRs, Ãd,d, Ãc,c, Ãcd,cd, and S̃cd,cd. Simple algebraic manipulations reveal that as

w → ∞, LGR Ãcd,cd approaches the empty set. This leaves only 3 LGRs, and thus the

optimal power allocation for large BW, where w →∞, simplifies as follows:

• if 2d2
0 ≥ c2

0, the power budget P is entirely allocated to the direct-links for all P ≥ 0.

• if 2d2
0 < c2

0, when P ≤ P̃4 ≈ β̄
c20

loge Γ, the budget P is entirely allocated to the cross-

links; instead, when P > P̃4 ≈ β̄
c20

loge Γ, the cross-links are saturated with power

q ≈ 1
c20

loge Γ, and all additional increments of P are allotted to the direct-links only.

In the large BW regime, allocating power in both direct and cross-links in Waterfilling-like

fashion as in LGR Ãcd,cd is suboptimal. In this regime, when transmitting in either the set

of direct-links or the set of cross-links, due to w →∞, the marginal return from allocating

additional power to the same set of links remains constant, as opposed to reducing as in

the regime with finite w. Thus, as P increases, it is beneficial to continue transmitting in

the same set of links, and it is suboptimal to allocate a fraction P to the other type of

link as in Ãcd,cd. For example, when 2d2
0 ≥ c2

0, i.e., when budget P is allocated entirely

to the direct-links, and thus p = P , the achievable rate in the S1-D1 direct-link in (3.64)

simplifies to the following, as w →∞
α0wβ

2
log

(
1 +

d2
0P

wN0

)
→ α0wβ

2

d2
0P loge 2

wN0

=
α0βd

2
0 loge 2

2N0

P.
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Therefore, the marginal return from allocating additional increments of P to the direct-

links is constant, and thus for all P ≥ 0, it is optimal to transmit in the direct-links only

as in Ãd,d. Alternatively, when 2d2
0 < c2

0, the achievable rates for the cross-links behave

similarly as w →∞, and thus transmitting only in the cross-links is optimal for P smaller

than the saturation threshold. However, for P larger than the threshold, the cross-links

become saturated, and all additional increments of P are alloted to the direct-links, as in

S̃cd,cd.

3.4.5 Special Cases and Further Insights

In the following, we present a discussion on some useful insights obtained from the optimal

power allocation. Unless otherwise specified, we refer to the power allocation scheme for

the original problem [P1], which is described by 4 LGRs in Table 3.1.

The case with very strong interference in the GIC: Recall that the DCLIC consists

of an underlying GIC in the microwave band, and the mm-wave cross- and direct-links.

In the optimal power allocation for the DCLIC with strong underlying GIC presented in

Table 3.1, we observed that, if the mm-wave direct-links are stronger than the mm-wave

cross-links, then for sufficiently small power budget P , it is optimal to allocate P entirely

to the direct-links only (the Waterfilling-like property). However, as P increases such

allocation becomes sub-optimal, and sharing the power budget should among all other

links are optimal.

In contrast, if the underlying GIC has very strong interference, i.e., a2
12 ≥ 1 + P1 and

a2
21 ≥ 1 + P2, it is optimal to allocate P entirely to the direct-links for all values of P ,

irrespective of whether the direct-links are stronger or weaker than the cross-links. Under

very strong interference, any feasible power allocation results in Σ ≤ min{Σ1,Σ2}, and

therefore, the sum-rate is maximized by maximizing Σ, which is achieved by allocating all

of P to the direct-links.

The case with small/large transmit powers in the GIC: If the transmit powers in

the underlying GIC with the strong CLIC are small, i.e., P1 ≈ 0, P2 ≈ 0, then allocating

P entirely to the direct-links as in Ad,d is approximately optimal for all values of P , in

the sense that the difference between the sum-rates achieved with the allocation in Ad,d

and that achieved with the optimal scheme is small. This behavior can be attributed to
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the fact that the GIC with strong interference (i.e., a2
12 ≥ 1, a2

21 ≥ 1) and small transmit

powers (i.e., P1 ≈ 0, P2 ≈ 0) mimics the very strong interference regime (i.e., a2
12 ≥ 1 +P1,

a2
21 ≥ 1 + P2), where allocating P entirely to the direct-links as in Ad,d is optimal for all

P .

On the other hand, if the transmit powers in the GIC are large, i.e., P1, P2 � 1, then

it is optimal to allocate power in all links as in Acd,cd for all but a relatively short range

of P with small values. From Table 3.1, recall that the IC-OPA transmits in a subset of

all links such as only direct-links in Ad,d or two cross- and a direct-link in Ac,cd when P

is sufficiently small, and beyond that it transmits in all links as in Acd,cd. Recall that in

Acd,cd, the sum-rate is R = Σ1 = Σ2 < Σ, and as P increases the gap between Σ1 and

Σ decreases and gradually reduces to zero at P = P̄sat as saturation sets in. However, if

P1, P2 � 1, this gap is large, and a large P is needed to reach saturation. Therefore, for

all moderate values of P , allocation in Acd,cd remain optimal.

The case with small/large mm-wave cross-link gains: If the mm-wave cross-link

gains are large, allocating P entirely to the direct-links as in Ad,d is approximately optimal

for all P , in the sense described in the point immediately above. With large c2
12 and c2

21,

the powers needed to saturate the cross-links, namely q1 = γ−1
c212

and q2 = γ−1
c221

, is very

small. Thus, the resulting optimal allocation scheme allots a very small fraction of P to

the cross-links to saturate them, and redirects the remaining of P (almost all of P ) to the

direct-links, and this allocation closely resembles that in Ad,d.

The case with limiting values of β: Note that β ∈ (0, 1). When β ≈ 1, the DCLIC

can be approximated by the DLIC, and thus allocating P entirely to only the direct-links

is approximately optimal. In this case, as P increases, the sum-rate continues to increase

with P since the direct-link rate continue to increase.

On the other hand, when β ≈ 0, the DCLIC can be approximated by the CLIC where

allocating P entirely to the cross-links is approximately optimal. However, in this case, as

P increases, and reaches the saturation threshold, the sum-rate saturates to Σ. With in

the cross-links already saturated, and no direct-links (i.e., β ≈ 0) additional increments of

P does not result in the increase of the sum-rate anymore.
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3.5 Summary

In this chapter, we studied the performance of a two-user interference channel over the

integrated mm-wave/microwave dual-band, where the mm-wave links from a source to its

designated and the non-designated destinations are modeled as AWGN direct-link and

cross-link respectively. We first showed that the capacity region of a DCLIC can be de-

composed into the capacity region of the underlying CLIC and that of the direct-links, and

hence the direct-links can be operated independently of the CLIC without compromising

optimal rates. Next, we characterized the capacity region of the CLIC with strong un-

derlying GIC, and then obtained sufficient channel conditions under which the capacity

region of the CLIC with weak and mixed underlying GIC is characterized. Then, for the

weak and mixed CLICs, an approximate capacity result was obtained that characterized

the capacity region to within 1/2 bits per channel use per user.

We then characterized the optimal power allocation over the mm-wave direct-links and

cross-links that maximizes the sum-rate of the DCLIC. The optimal power allocation

scheme, which was characterized in closed form, allocates power to the links in differ-

ent modes based on whether certain conditions on the link gains and budget P hold (i.e.,

based on which link gain regime is active). In particular, the optimal allocation has a

Waterfilling-like property due to which, when the power budget P is small, it assigns the

budget entirely to either both direct-links, or both cross-links and at most one direct-link.

As the budget P is increased, the optimal allocation eventually assigns power to all links.

As the power budget is increased further, due to the saturation property, a maximum limit

is imposed on the power of the cross-links, while the power allocated to the direct-links

increase linearly with the budget P . Moreover, in the large mm-wave bandwidth regime,

if the direct-links are stronger than the cross-links, budget P should be allocated entirely

to the direct-links for all P ≥ 0. In contrast, if the cross-links are stronger, P should be

allocated entirely to the cross-links until they saturate, and then all subsequent increments

of P should be allotted to the direct-links only.
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Chapter 4

The Dual-Band Multiple Access

Relay Channel

In this chapter1, we study the performance of a two-source single-relay dual-band multiple-

access relay channel (MARC), denoted the dual-band MARC. As discussed in Section 2.2.3,

relay cooperation plays a key role in improving the performance of microwave networks

[18, 77], and will likely play a vital role in the dual-band networks as well, especially to

offset mm-wave link impairments such as blockage and limited range [37,40,64,76].

In the immediate future, the dual-band MARC can model uplink scenarios such as the

fixed wireless access [77] which is expected to replace last-mile wired connections to end

users with high speed wireless connection in 5G. Since dual-band communication typically

requires a more complex hardware than microwave-only communication, in the immediate

future, while base stations and fixed access-points are likely to be equipped with hardware

capable of communicating over a dual-band, a substantial fraction of end user devices (e.g.,

mobile handsets) may be capable of conventional microwave-only communication. In this

setting, the base station can provide high data-rate connectivity to fixed access-points due

to the additional spectrum in the mm-wave band, while the fixed access points, likely to

be located outside a building, can then provide high data-rate access to end users, e.g.,

users inside the building. In this setting, the dual-band MARC can model relay-assisted

uplink from two such fixed access-points located in nearby buildings.

In the near to medium future, when mobile handsets are also equipped with dual-band

communication capable hardware, the dual-band MARC can model relay-aided cellular

1The results of this chapter (except for Section 4.3) have been published in [134].
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uplink from mobile users to the base station [67,71,90].

In the dual-band MARC studied in this chapter, two sources (S1 and S2) communicate to

a destination (D) with the help of a relay (R) over an integrated mm-wave/microwave dual-

band. In the underlying microwave band, transmissions from both sources are superimposed

at the relay and at the destination as in a conventional MARC, denoted c-MARC, which

operates over the microwave band only [77].

In contrast, transmissions in the mm-wave band are produced by using highly direc-

tional co-phased antenna arrays [30], and thus the resulting mm-wave links are modeled as

AWGN links as in the dual-band IC in Chapter 2. Moreover, as discussed in Section 1.3, if

hybrid antenna array systems are used for mm-wave communication, the set of available an-

tenna elements can be reconfigured into multiple smaller and independent antenna arrays,

each of which can then be digitally controlled to produce a separate beam to communicate

to a specific receiver [72–74]. Hence, using hybrid antenna arrays, a mm-wave transmitter

is able to communicate independent information to multiple receivers in parallel.

In the dual-band MARC, a mm-wave transmitter is assumed to deploy a hybrid antenna

array, and thus it is able to create two parallel non-interfering links to communicate with

both the relay and the destination simultaneously [72, 74, 135]. Similarly, a mm-wave

receiver is modeled as being able to simultaneously receive transmissions from multiple mm-

wave transmitters via separate mm-wave links with negligible inter-link interference [136].

It is therefore natural to ask whether a source in the mm-wave band should transmit to

the relay, the destination, or both simultaneously. Depending on whether each of the two

sources transmits to only the relay, only the destination, both, or none, 16 different models

of the dual-band MARC are possible. The general model that includes all microwave and

mm-wave links is referred to as the destination-and-relay-linked MARC (DR-MARC).

In the DR-MARC, sources S1 and S2 simultaneously communicate to the destination

D via the mm-wave S1-D and S2-D direct-links, as well as the relay R via the mm-wave

S1-R and S2-R relay-links. All other models with varying mm-wave link connectivity can

be obtained from the DR-MARC by setting the relevant transmit powers and link gains to

zero, and hence they are not defined explicitly. However, one specific model, where only

the mm-wave S1-R and S2-R relay-links are active in the mm-wave band, is an important

variant, and hence is referred to as the relay-linked MARC (R-MARC). Clearly, the R-

MARC can be obtained from the DR-MARC by setting the transmit powers in both S1-D

and S2-D mm-wave direct-links to zero.
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Note that in addition to the 4 mm-wave links, the dual-band MARC also consists of

an underlying conventional MARC (c-MARC) in the microwave band [77]. When such

an individual c-MARC is subject to phase and Rayleigh fading, the capacity of the near

c-MARC is characterized in closed form [77, Theorem 9], as detailed in Section 2.2.3. As

such, for consistency, we assume that the underlying microwave c-MARC of the dual-band

MARC is subject to a general ergodic fading where the phase of the fading coefficients

are i.i.d. uniform in [0, 2π), similar to phase and Rayleigh fading. This general fading

contains phase and Rayleigh fading as special cases, and thus can model a wide range of

channel impairments. For instance, phase fading models the effect of oscillator phase noise

in high-speed time-invariant communications [121], the effect of phase-change due to slight

transmitter-receiver misalignment in links with a strong LoS component [124], etc., while

Rayleigh fading models the effect of rich scattering [120].

First, we consider the DR-MARC where all 4 mm-wave links are present, i.e., the

sources simultaneously transmit in both the mm-wave relay-links and direct-links. We

show that its capacity can be decomposed into the capacity of the underlying R-MARC

and the two mm-wave direct-links. Hence, thereon we focus on the R-MARC.

Note that the R-MARC consists of an underlying c-MARC and two mm-wave relay-

links. As detailed in Section 2.2.3, the capacity of near c-MARCs was characterized in

closed form in [77, Theorem 9], where the relay is near the sources in the sense that the

source-to-relay achievable rates are larger than the source-to-destination achievable rates.

Similar to the near c-MARCs, we focus on the class of jointly-near R-MARCs that satisfy

certain sufficient channel conditions over both bands (precisely defined in Section 4.2.4),

under which the capacity of R-MARCs are characterized in closed form. The jointly-near

conditions are more general than the near conditions in [77, Theorem 9] in the sense that

when the R-MARC satisfies the jointly-near conditions, the underlying c-MARC need not

necessarily satisfy its near conditions.

Moreover, the DR-MARC is a basic building block for future dual-band multiuser

networks that captures the effect of relay-cooperation. Since, its performance will be

significantly affected by the mm-wave links due to their point-to-point nature and relatively

larger bandwidths [23,60,128], it is useful to understand how allocating the mm-wave band

resources optimizes the performance, similar to that for the dual-band IC in Section 3.4 and

other multiuser networks [13, 37, 128]. Therefore, to quantify the impact of the mm-wave

spectrum on the performance of the DR-MARC, we study the power allocation strategy

for the mm-wave direct-links and relay-links (subject to a power budget) that maximizes
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the achievable sum-rate of the DR-MARC.

The contributions of this chapter are summarized as follows:

Capacity Results (presented in Section 4.2 and Section 4.3)

• We show that the capacity region of the DR-MARC can be decomposed into the

capacity region of the underlying R-MARC and the two mm-wave direct-links. This

shows that operating the R-MARC independently of the direct-links is optimal, which

simplifies the encoding/decoding operation. Hence, the direct-links are able to im-

prove the rates of individual users, while the relay-links play a non-trivial role in

characterizing the capacity of the R-MARC.

• We then characterize an achievable region for the R-MARC based on a block-Markov

encoding scheme, which performs joint encoding over both bands.

• For the R-MARC, we obtain a set of sufficient channel conditions, denoted the jointly-

near conditions, under which the capacity of the R-MARC is characterized by the

aforementioned achievable scheme. These jointly-near conditions show that even

when the microwave source-relay channels are not strong enough, if the mm-wave

source-relay links are sufficiently strong, then a closed form capacity result is char-

acterized.

• We also extend these results to the K-user version of the DR-MARC and the R-

MARC, where K > 2.

Resource Allocation in the DR-MARC (presented in Section 4.4)

We characterize the optimal power allocation scheme over the mm-wave direct-links

and relay-links of the DR-MARC that maximizes the sum-rate achievable on the chan-

nel with the aforementioned achievable scheme, where the two mm-wave links from each

source are subject to a total power budget P . For notational convenience, this optimal

power allocation scheme for the DR-MARC is denoted the MARC-OPA. For intuition, we

partition the entire range of the power budget P into several link gain regimes (LGR) such

that that the MARC-OPA allocates link powers in different modes in each LGR. We obtain

all such LGRs and modes of power allocation which reveal useful insights.
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We observe that for a class of DR-MARCs, where the jointly-near condition in the un-

derlying R-MARC is satisfied by the source-relay microwave channel gains only, allocating

the entire budget P to the direct-links is optimal for all P ≥ 0.

In contrast, for DR-MARCs where the jointly-near condition in the underlying R-

MARC cannot be satisfied by the microwave channel gains only, and hence must be satisfied

jointly by both bands, the optimal power allocation (the MARC-OPA) has the following

properties:

• when P is smaller than a certain saturation threshold (Psat), for the direct and

relay-links of each source, the MARC-OPA allocates powers following a Waterfilling

(WF) approach. Specifically, for sufficiently small P , the MARC-OPA allocates P

entirely to the strongest of the direct-link and the relay-link of each source, and as

P increases, it eventually allocates power to the remaining links. Thus, for P < Psat,

each link-power either increases piecewise linearly with P , or remains zero.

• when P ≥ Psat, saturation occurs where the power in both relay-links are constrained

to satisfy a certain saturation condition. As P increases beyond Psat, the relay-link

powers vary with P as follows: there exists a final threshold Pfin ≥ Psat, such that

1. if one relay-link is significantly stronger than the other (in a sense to be defined

later), then for all P ≥ Pfin, power in the stronger relay-link remains fixed at a

constant level, while power in the weaker relay-link remains zero.

2. in contrast, if one relay-link is only stronger but not significantly stronger than

the other (in a sense to be defined later), for all P ≥ Pfin, power in the stronger

and the weaker relay-links monotonically increase and decrease respectively, and

they approach positive constant levels as P grows.

However, as opposed to the relay-links, as P increases beyond Psat, the direct-link

powers grow unbounded with P .

• when the mm-wave bandwidth is large, the optimal power allocation for the symmet-

ric case simplifies as follows: (a) if the direct-links are stronger than the relay-links,

allocating P entirely to the direct-links is optimal for all P ≥ 0; (b) alternatively, if

the relay-links are stronger, for P smaller than the saturation threshold, P should

be allocated entirely to the relay-links, whereas for P larger than the threshold,

the relay-links become saturated, and all increments of P should be allotted to the

direct-links.
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The rest of the chapter is organized as follows: The system model is presented in

Section 4.1. The capacity results and some numerical examples are presented in Section 4.2.

The capacity results are then extended to the K-user case in Section 4.3. In Section 4.4, the

optimal resource allocation problem is presented in along with some discussion on insights

derived from the optimal power allocation. Finally, a summary of results is provided in

Section 4.5.

4.1 System Model

In Figure 4.1a, a cellular uplink scenario is depicted where two users (sources) communicate

to a base station (destination) with the help of a relay. This two-user relay-assisted uplink

is modeled by a Gaussian DR-MARC, denoted hereon by DR-MARC and depicted in

Figure 4.1b.

Recall that a bandwidth mismatch factor (BMF) α may exist between the microwave

and the mm-wave bands. Hence, for n uses of the microwave channels, the mm-wave links

are used n1(n) := bαnc times, where bxc denotes the largest integer no larger than x.

Moreover, since in the mm-wave band the sources are able to communicate to both the

destination and the relay simultaneously via the mm-wave direct- and relay-links, for n uses

of the microwave channels, both the mm-wave relay-links and direct-links are assumed to

be used n1(n) = bαnc times.

Channel Model

We now define the channel model of the DR-MARC. In the microwave (first) band, the

outputs at destination D and relay R at the i-th use of the channel are given by [77]

YD,i = H1D,iX1,i +H2D,iX2,i +HRD,iXR,i + ZD,i (4.1)

YR,i = H1R,iX1,i +H2R,iX2,i + ZR,i, i = 1, . . . , n, (4.2)

where HkD,i ∈ C are channel fading coefficients from source Sk to destination D, HkR,i ∈ C
are the same from source Sk to relay R , k ∈ {1, 2}, and HRD,i ∈ C are the same from R to

D. The input symbols Xm,i ∈ C are block power constrained, 1
n

∑n
i=1 E[|Xm,i|2] ≤ Pm,m ∈

{1, 2,R}. Also, the noise RVs are ZR,i ∼ CN (0, 1), i.i.d., and ZD,i ∼ CN (0, 1), i.i.d.

The outputs of the mm-wave S1-R and S2-R relay-links from sources S1 and S2 to relay
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Figure 4.1: (a) Example of the DR-MARC in cellular uplink: sources S1 and S2 commu-

nicate to the base station with the help of a relay. (b) System model of the Gaussian

DR-MARC: solid lines denote microwave links while dashed lines denote mm-wave links.

R are modeled as

Ȳ1R,` = H̄1R,`X̂1,` + Z̄1R,`, (4.3)

Ȳ2R,` = H̄2R,`X̂2,` + Z̄2R,`, ` = 1, . . . , n1, (4.4)

respectively, where H̄kR,` are the fading coefficients of the mm-wave Sk-R relay-links. Here,

the input symbols X̂k,` ∈ C are block power constrained, 1
n1

∑n1

`=1 E[|X̂k,`|2] ≤ P̂k, and the

noise RVs are Z̄kR,` ∼ CN (0, 1), k ∈ {1, 2}, i.i.d.

Similarly, the outputs of the mm-wave S1-D and S2-D direct-links from sources S1 and

S2 to destination D are modeled as

Ȳ1D,` = H̄1D,`X̄1,` + Z̄1D,`, (4.5)

Ȳ2D,` = H̄2D,`X̄2,` + Z̄2D,`, ` = 1, . . . , n1, (4.6)

while the outputs of the mm-wave R-D link is modeled as

ȲRD,` = H̄RD,`X̄R,` + Z̄RD,`, ` = 1, . . . , n1, (4.7)

where H̄kD,` and H̄RD,` are the fading coefficients of the mm-wave Sk-D direct-links and the

mm-wave R-D link, respectively. The input symbols X̄m,` ∈ C are block power constrained,
1
n1

∑n1

`=1 E[|X̄m,`|2] ≤ P̄m, while the noise RVs are Z̄mD,` ∼ CN (0, 1),m ∈ {1, 2,R}, i.i.d.

In the DR-MARC, to communicate a message Mk from source Sk, it is encoded into

three codewords, Xn
k (Mk), X̂

n1
k (Mk) and X̄n1

k (Mk), of lengths n, n1 and n1 respectively.

Then, Xn
k (Mk) is transmitted towards D by using the microwave channel n times. Due to
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the nature of this band, Xn
1 (M1) and Xn

2 (M2) superimpose at D and at R as in the c-MARC

[77], described by (4.1)-(4.2). Meanwhile, in the mm-wave band, codeword X̂n1
k (Mk) is

transmitted to R through the Sk-R relay-link, while codeword X̄n1
k (Mk) is transmitted

to D via the Sk-D direct-link, simultaneously by using both links n1 times. The relay

aids in communication by creating codewords Xn
R and X̄n1

R from its received signals, and

transmitting them to D via the microwave and mm-wave bands respectively.

We formally define the encoding/decoding procedure shortly.

Fading Model and Channel State Information

We assume that the DR-MARC is subject to an ergodic fading process where the fading

coefficients across channel uses are i.i.d., such that the phase of the fading coefficients

are i.i.d., random variables in [0, 2π), while the magnitude of the fading coefficients are

i.i.d., non-negative random variables. Specifically, the channel fading coefficients Hmt,i in

(4.1)-(4.2) for the first band are defined as

Hmt,i :=
√
Gmt,ie

jΘmt,i , (4.8)

where the magnitude of fading coefficients are Gmt,i ∈ R+, i.i.d., and the phase of the

fading coefficients Θmt,i are uniformly distributed in [0, 2π), i.e., Θmt,i ∼ U [0, 2π), i.i.d.,

with j :=
√
−1, m ∈ {1, 2,R}, t ∈ {R,D},m 6= t. Moreover, the channel fading coefficients

H̄mt,` in the second band are defined as

H̄mt,` :=
√
Ḡmt,`e

jΘ̄mt,` , (4.9)

where the magnitude of fading coefficients are Ḡmt,` ∈ R+, i.i.d., and the phase of the

fading coefficients Θ̄mt,` ∈ [0, 2π) are i.i.d., m ∈ {1, 2,R}, t ∈ {R,D},m 6= t.

Note that unlike phase Θmt,i in the microwave band which is uniformly distributed in

[0, 2π), phase Θ̄mt,` ∈ [0, 2π) in the mm-wave band can be distributed according to any

appropriate distribution. Moreover. the magnitude of fading coefficients Gmt,i and Ḡmt,`

depend on the distance dmt between transmitter node m and receiver node t, as well as

pathloss exponent β1 (for the first band) and β2 (for the second band). This general fading

specializes to cases where both bands are under phase or Rayleigh fading as follows:

• it specializes to phase fading by taking fading magnitudes Gmt,i and Ḡmt,` to be

constants that depend on the geometry of the network and path-loss coefficients, as

well as taking mm-wave fading phases to be uniform, i.e., Θ̄mt,` ∼ U [0, 2π), i.i.d.;
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• it specializes to Rayleigh fading by taking fading magnitudes Gmt,i ∼ exp(µmt), and

Ḡmt,` ∼ exp(µ̄mt), i.i.d., in which exp(µ) is an exponential distribution with mean µ,

and µmt and µ̄mt are constants that depend on the network-geometry and path-loss

coefficients, as well as taking mm-wave fading phases to be Θ̄mt,` ∼ U [0, 2π), i.i.d..

We also assume the following on the availability of channel state information (CSI) at

the receiver: (i) the long term parameters, i.e., the distances between transmitters and

receivers, and the pathloss exponents, are known at all nodes; (ii) the instantaneous CSI,

i.e., the phase and magnitude of the fading coefficients, are not available to any transmitter;

and (iii) each receiver knows the instantaneous CSI on its incoming channels only, but has

no CSI on other channels. These assumptions model practical scenarios where CSI feedback

to a transmitter is unavailable, while a receiver can reliably estimate the CSI [13,137].

Channel Code

We now define a code and an achievable rate pair for the DR-MARC. Note that given a

BMF α, for n uses of the microwave band, the mm-wave band is used n1(n) := bαnc times,

while for n1 uses in the mm-wave band, the microwave band is used n(n1) := bn/αc times.

Definition 4.1 (A code for the DR-MARC). A (2nR1 , 2nR2 , n, α) code for the DR-MARC

consists of (i) two independent, uniformly distributed message setsMk = {1, . . . , 2nRk}, k ∈
{1, 2}, one for each source S1 and S2; (ii) two encoders φ1 and φ2 such that φk : Mk →
Cn×Cn1(n)×Cn1(n), k ∈ {1, 2}, one each for S1 and S2; (iii) a set of causal relay encoding

functions, {fi}ni=1 and {f̄`}n1(n)
`=1 , such that

xR,i = fi(y
i−1
R , {hi−1

kR , ȳ
n1(i−1)
kR , h̄

n1(i−1)
kR }2

k=1), and

x̄R,` = f̄`(y
n(`−1)
R , {ȳ`−1

kR , h̄`−1
kR , h

n(`−1)
kR }2

k=1), (4.10)

with xR,i, x̄R,` ∈ C; and (iv) a decoder ψ at D such that ψ : Cn ×C3n1(n) ×C3n ×C3n1(n) →
M1 ×M2, with n1(n) := bαnc and n(n1) := bn/αc.

Here, the relay helps by computing codewords {xR,i}ni=1 and {x̄R,`}n1(n)
`=1 causally by

applying relay-encoding functions {fi}ni=1 and {f̄`}n1(n)
`=1 on its past received signals and CSI

in both bands as in (4.10), and then transmitting them to destination D. The destination

then estimates the input messages from the received signals. The decoding probability of

error at D for the code is defined as

P (n)
e := Pr

[
ψ
(
Y n

D , {Ȳ
n1
mD, H

n
mD, H̄

n1
mD}m∈{1,2,R}

)
6= (M1,M2)

]
,
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Figure 4.2: The R-MARC. Compared to the DR-MARC in Figure 4.1b, in the R-MARC

the mm-wave direct-links are not present.

where the average is taken over uniform distribution of (M1,M2) ∈M1 ×M2.

Definition 4.2 (Achievable rate for the DR-MARC). A rate tuple (R1, R2) is said to be

achievable if there exists a sequence of (2nR1 , 2nR2 , n, α) codes such that n1 = bnαc and

P
(n)
e → 0, as n→∞.

The capacity region of the DR-MARC is defined as the closure of the set of all achievable

rate tuples.

System Model for the R-MARC

The R-MARC, depicted in Figure 4.2, consists of an underlying c-MARC in the first band,

and the mm-wave S1- R and S2- R relay-links and the R-D link in the second band. Hence,

the system model of the R-MARC is defined by (4.1)-(4.2) in the first band, and (4.3)-(4.4)

and (4.7) in the second band.

A (2nR1 , 2nR2 , n, α) code and achievable rate pair for the R-MARC are defined from

those of the DR-MARC in Def. 4.1 and Def. 4.2 after removing the mm-wave S1-D and S2-

D direct-links, i.e., setting X̄kD,l = ȲkD,l = H̄kD,l = ∅, k = 1, 2, and modifying the encoding

and decoding functions accordingly.

System Model for the K-User MARCs

In the K-user DR-MARC, K distinct users S1,. . . ,SK communicate to the destination D

over the integrated mm-wave/microwave dual-band with the help of a single relay R. In

the first band, the channel outputs at D and R at the i-th channel use are respectively
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given by

YD,i = H1D,iX1,i +H2D,iX2,i + . . .+HKD,iXK,i +HRD,iXR,i + ZD,i

YR,i = H1R,iX1,i +H2R,iX2,i + . . .+HKR,iXK,i + ZR,i, i = 1, . . . , n,

where the channel fading coefficients Hmt,i ∈ C, the input signals Xm,i ∈ C that have

average power constraints Pm, m 6= t,m ∈ {1, 2, . . . , K,R}, t ∈ {R,D}, and the noise RVs

ZR,i ∼ CN (0, 1) and ZD,i ∼ CN (0, 1), are all defined in the same manner as in (4.1)-(4.2).

Similarly, in the second band, the outputs of the Sk-R relay-links at the relay R are

modeled as

ȲkR,` = H̄kR,`X̂k,` + Z̄kR,`, k ∈ {1, 2, . . . , K}, ` = 1, . . . , n1,

while the outputs of the Sk-D direct-links and the R-D link at the destination D are modeled

respectively as

ȲmD,` = H̄mD,`X̄m,` + Z̄mD,`, m ∈ {1, 2, . . . , K}, ` = 1, . . . , n1,

ȲRD,` = H̄RD,`X̄R,` + Z̄RD,`, ` = 1, . . . , n1,

where the fading coefficients (H̄kR,`, H̄kD,`, H̄RD,`), the input signals X̂k,` ∈ C and X̄m,` ∈ C
that have average power constraints P̂m and P̄k, and the noise RVs are defined similarly to

(4.3)-(4.7).

We also assume that the fading model and the assumption on the CSI of the K-User

MARCs are the same as those for the two-user case detailed in Section 4.1. The other

terminologies such as the code and the achievable region for the K-user DR-MARC are

defined in a similar manner to those for the DR-MARC in Def. 4.1 and Def. 4.2, and hence

not repeated.

Finally, the K-user R-MARC is defined from the K-user DR-MARC by removing the

mm-wave Sk-D direct-links, k = 1, . . . , K. Moreover, a code and achievable rates for the

K-user R-MARC is defined in a similar fashion as for the R-MARC.

4.2 Capacity Results

4.2.1 Decomposition of the Capacity of the DR-MARC

We show that the capacity of the DR-MARC with BMF α can be decomposed into the

capacity region of the underlying R-MARC and the capacity of the mm-wave direct-links.
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The decomposition result is presented below.

Theorem 4.1. The capacity of the DR-MARC with BMF α is given by the set of all rate

tuples (R1, R2) ∈ R2
+ that satisfy

R1 ≤ r1 + αE[C̃(Ḡ1DP̄1)],

R2 ≤ r2 + αE[C̃(Ḡ2DP̄2)], (4.11)

where (r1, r2) ∈ R2
+ is an achievable rate tuple in the underlying R-MARC, and the expec-

tations are taken over channel gains Ḡ1D and Ḡ2D, with C̃(x) = log2(1 + x).

Proof. The proof is relegated to Appendix C.1. �

This result shows that any achievable rate pair (R1, R2) in the DR-MARC can be

obtained by achieving (r1, r2) in the underlying R-MARC, and then supplementing it with

the capacity of the direct-links. Hence, operating the direct-links independently of the

R-MARC remains optimal, which simplifies the encoding/decoding strategy. Since the

capacity region of the DR-MARC can thus be determined from that of the underlying R-

MARC, it is sufficient to focus on the R-MARC, which is considered next. While separating

the operation of the mm-wave direct-links from the underlying R-MARC is optimal as noted

in Theorem 4.1, in the R-MARC separating the operation of the mm-wave relay-links from

the underlying c-MARC is suboptimal in general.

4.2.2 Achievable Region for the R-MARC

We first characterize an achievable rate region for the R-MARC.

Theorem 4.2. An achievable region of the R-MARC with BMF α is given by the set of

all rate tuples (R1, R2) ∈ R2
+ that satisfy

R1 < E
[
C̃ (G1RP1)

]
+ αE

[
C̃
(
Ḡ1RP̂1

)]
, (4.12)

R2 < E
[
C̃ (G2RP2)

]
+ αE

[
C̃
(
Ḡ2RP̂2

)]
, (4.13)

R1 +R2 < E
[
C̃ (G1RP1 +G2RP2)

]
+ αE

[
C̃
(
Ḡ1RP̂1

)]
+ αE

[
C̃
(
Ḡ2RP̂2

)]
, (4.14)

R1 < E
[
C̃ (G1DP1 +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
, (4.15)

R2 < E
[
C̃ (G2DP2 +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
, (4.16)

R1 +R2 < E
[
C̃ (G1DP1 +G2DP2 +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
, (4.17)
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where the expectations are taken over the channel gains Gmt and Ḡmt, m ∈ {1, 2,R}, t ∈
{R,D},m 6= t, and C̃(x) = log2(1 + x).

Proof. The achievable region is obtained by performing a block Markov encoding scheme

[122] as follows: (a) the source messages are partitioned into multiple blocks that are

encoded and transmitted by the sources; (b) the relay deploys forward decoding to decode

the source messages in the current block, and then re-encodes them for transmission in the

next block; (c) the destination uses backward decoding to estimate the source messages in

the reverse order of transmission. The details are relegated to Appendix C.2. �

We emphasize that instead of sending independent messages through the microwave

c-MARC and the mm-wave relay-links, the same message is jointly encoded into two code-

words, one for the microwave c-MARC and the other for the mm-wave relay-link, which are

then transmitted jointly over the two bands. Also bounds (4.15)-(4.17) can be interpreted

as an achievable region for the multi-access channel (MAC) from the two sources to the

destination aided by the relay, while bounds (4.12)-(4.14) can be regarded as the same for

the MAC from the sources to the relay.

4.2.3 Capacity Region Outer Bounds for the R-MARC

We now characterize a set of upper bounds on the rates of the R-MARC.

Theorem 4.3 (Upper bounds on the rates of the R-MARC). The capacity region of the

R-MARC with BMF α is contained within the set of rate tuples (R1, R2) ∈ R2
+ that satisfy

R1 < E
[
C̃ (G1DP1 +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
, (4.18)

R2 < E
[
C̃ (G2DP2 +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
, (4.19)

R1 +R2 < E
[
C̃ (G1DP1 +G2DP2 +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
, (4.20)

with the expectations taken over gains Gmt, Ḡmt, m 6= t,m ∈ {1, 2,R}, t ∈ {R,D}.

Proof. The derivation of the outer-bounds follow from a cut-set bounding technique (see

[138, Chapter 14.10]), and are relegated to Appendix C.3. �

The key steps in the proof of is in steps (j) of (C.5): the cross-correlation coefficients

between the source and relay codeword symbols are set to zero. Since instantaneous CSI

are not available to the transmitters, and the phase of the fading coefficients are distributed

as U [0, 2π), i.i.d., setting this cross-correlation coefficients to zero proves optimal.
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4.2.4 Capacity of a class of R-MARCs

We now characterize a set of sufficient channel conditions, denoted the jointly-near condi-

tions, under which the capacity of the R-MARC is established.

Theorem 4.4 (Capacity region of the jointly-near R-MARC). If the R-MARC with BMF

α satisfies

E
[
C̃ (G1DP1 +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
≤ E

[
C̃ (G1RP1)

]
+ αE

[
C̃
(
Ḡ1RP̂1

)]
(4.21)

E
[
C̃ (G2DP2 +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
≤ E

[
C̃ (G2RP2)

]
+ αE

[
C̃
(
Ḡ2RP̂2

)]
(4.22)

E

[
C̃

(
2∑

k=1

GkDPk +GRDPR

)]
+ αE

[
C̃
(
ḠRDP̄R

)]
≤

E
[
C̃ (G1RP1 +G2RP2)

]
+ αE

[
C̃
(
Ḡ1RP̂1

)]
+ αE

[
C̃
(
Ḡ2RP̂2

)]
, (4.23)

its capacity region is given by the set of rate tuples (R1, R2) ∈ R2
+ that satisfy (4.18)-(4.20),

where the expectations are over gains Gmt, Ḡmt, m 6= t,m ∈ {1, 2,R}, t ∈ {R,D}.

Proof. The proof follows from Theorem 4.1 and Theorem 4.2 in a straightforward manner.

First, Theorem 4.2 provides upper bounds on rates R1, R2 and R1 + R2 given in (4.18),

(4.19), and (4.20), respectively. Next, under conditions (4.21)-(4.23), the rates achievable

for the sources at the relay, given by (4.12)-(4.14), is larger than the rates achievable at

the destination aided by the relay, given by (4.15)-(4.17). Thus, the achievable rates for

the R-MARC are given by (4.15)-(4.17), which matches the upper bounds in Theorem 4.2,

thus characterizing the capacity region. �

The Jointly-Near Conditions: From the discussion in Section 2.2.3, one may recall

that the capacity of an individual c-MARC operating solely in the microwave band (i.e.,

where mm-wave links do not exist) is known under the near conditions in [77, Theorem 9]:

the relay is near the sources in the sense that the source-relay achievable rates are larger

than the source-destination achievable rates. Similar conditions for the R-MARC, under

which its capacity region is characterized in closed form, are given by (4.21)-(4.23). In

relation to the near conditions for the individual c-MARC, conditions (4.21)-(4.23) for the

R-MARC are denoted the jointly-near conditions, as the achievable scheme of Theorem 4.1

now performs joint encoding over the two bands of the R-MARC.

Intuitively, under (4.21)-(4.23) the relay achieves better rates than the destination, and

thus can decode both messages without becoming a bottleneck to the achievable rates.

101



More specifically, under (4.21), the rate achievable from source S1 to relay (on the r.h.s) is

larger than the rate achievable from source S1 to destination (on the l.h.s); (4.22) provides

similar conditions for the rate of source S2, while (4.22) provides similar conditions for the

sum-rate.

Note that due to joint encoding over both bands, the source-relay-links over the mi-

crowave and mm-wave bands together characterize the jointly-near conditions in (4.21)-

(4.23). If the underlying c-MARC in the R-MARC has strong enough microwave source-

relay channel gains to satisfy the jointly-near conditions by themselves, then the mm-wave

relay-links are not needed to characterize the closed form capacity result. In the com-

plementary setting, however, the benefits of joint encoding becomes clear. Due to joint

encoding over both bands, the rates achieved at the relay are augmented by the rate of the

mm-wave relay-links, i.e., αE
[
C̃
(
Ḡ1RP̂1

)]
and αE

[
C̃
(
Ḡ2RP̂2

)]
. Therefore, even when

the microwave source-relay channel gains are not strong enough to satisfy the jointly-

near conditions by themselves, if the mm-wave relay-links are sufficiently strong, then the

jointly-near conditions may hold jointly over both the bands, thereby providing a closed

form capacity result for the R-MARC.

Phase and Rayleigh Fading Cases: Note that the decomposition result for the DR-

MARC in Theorem 4.1, the achievable region and outer bound results for the R-MARC in

Theorem 4.2 and Theorem 4.3, as well as the capacity result in Theorem 4.4 all specialize

directly to phase and Rayleigh fading cases. Specifically, for phase fading the microwave

channel gains Gmt and mm-wave channel gains Ḡmt are taken to be constants that depend

on the geometry of the network and path-loss coefficients, and thus the expectations in

the theorems are not needed. Moreover, for Rayleigh fading the expectations are over

Gmt,i ∼ exp(µmt), and Ḡmt,` ∼ exp(µ̄mt), i.i.d., where the means µmt and µ̄mt are constants

that depend on the network-geometry and path-loss coefficients.

4.2.5 Numerical Examples

We illustrate the impact of mm-wave spectrum on the capacity of the R-MARC by consid-

ering a two-dimensional topology as in Figure 4.3a. Here R and D are located on the x-axis

at (0, 0) and (0, dRD), and S1 and S2 are located symmetrically at (−dSR cosφ,±dSR sinφ),

with φ being the angle between a source and R and dSD = (d2
SR + d2

RD + 2dSRdRD cosφ)1/2

the resulting source-destination distance.

102



dSR dSD

dSD

S1

S2

D

R

dSR

dRD

(a)

0 0.5 1 1.5 2 2.5

Source-relay distance

0

5

10

15

20

25

S
u

m
-r

a
te

 (
b

p
c

u
)

d
RD

=1

d
RD

=0.5

Achievable
 Sum-rate Outer bound

on Sum-rate

d
SR

*
=0.91 d

SR

*
=1.41

(b)

Figure 4.3: (a) A 2-D geometry of the DR-MARC. The relay and the destination are

located on the x-axis, and the sources are located symmetrically on either side of the

x-axis at a distance dSD from the destination, and at a distance dSR from the relay. The

relay-destination distanced is dRD. (b) The achievable sum-rate matches the sum-rate outer

bound if dSR ≤ d∗SR for both cases of dRD.

For ease of exposition, (a) we take the underlying microwave band in the R-MARC

to be under phase fading with constant fading magnitudes Gmt,i = 1/dβ1mt that depends

on the inter-node distance dmt and path-loss coefficient β1 in a manner similar to [77],

and (b) we similarly take constant mm-wave fading magnitudes Ḡmt,` := 1/dβ2mt where

β2 is the path-loss coefficient for the mm-wave band, m ∈ {1, 2,R}, t ∈ {D,R},m 6=
t. Therefore, expectations in conditions (4.21)-(4.23) and Theorem 4.2 are not needed,

and observations can be directly interpreted in terms of inter-node distances and pathloss

coefficients. Moreover, all power constraints in the R-MARC are set to 10 and pathloss

coefficients are taken to be β1 = 2, β2 = 4.

In the first example, we illustrate the interdependencies between the jointly-near con-

ditions in (4.21)-(4.23), the channel parameters dSR, dSD, dRD, φ and BMF α in the setting

of Figure 4.3a, and the achievable rates in Theorem 4.2. For simplicity, we focus on the

achievable sum-rate (denoted the ASR), given by the minimum of r.h.s. of (4.14) and

(4.17), and the sum-rate outer bound (denoted the OB), given by the r.h.s. of (4.17).

As such note that under (4.23), the OB matches the ASR. For ease of exposition, we fix

dRD, φ and BMF α. Hence, condition (4.23) is now equivalent to dSR ≤ d∗SR(dRD, φ, α) for
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some threshold source-destination distance d∗SR(dRD, φ, α). It is thus expected that for all

dSR ≤ d∗SR(dRD, φ, α), the ASR and the OB will match, while for dSR > d∗SR(dRD, φ, α), the

ASR will be strictly less than the OB.

In Figure 4.3b, we verify this for a fixed φ = π/4 and α = 2 and the two cases

dRD ∈ {1, 0.5} by plotting the ASR and the OB as functions of dSR ∈ (0, 2.5]. We observe

that the ASR matches the OB if dSR ≤ d∗SR with d∗SR ≈ 1.41 for dRD = 1, and d∗SR ≈ 0.91

for dRD = 0.5, otherwise the ASR is strictly smaller, as expected. Moreover, as dRD reduces

from 1 to 0.5, for condition (4.23) to hold, d∗SR also reduces from d∗SR ≈ 1.41 to ≈ 0.91.

In the next example, we illustrate the impact of the higher mm-wave bandwidth on the

performance of the R-MARC. Specifically, in Figure 4.4, we depict the source locations

relative to the relay and the destination in the setting of Figure 4.3a, for which the scheme

of Theorem 4.2 achieves the capacity region of the R-MARC, i.e., source locations for which

all of conditions (4.21)-(4.23) are satisfied. As such, we fix dRD = 1, vary φ ∈ (0, π) and

dSR ∈ (0, 2) to vary the location of the sources, and then plot the resulting regions. To

capture the impact of BMF α, we overlay the region for the case without mm-wave links

(i.e., α = 0) on those with mm-wave links for α ∈ {2, 4, 10}, as well as α→∞.

First, for the case without mm-wave links (i.e., α = 0), conditions (4.21)-(4.23) hold

only when sources are within the innermost black region in Figure 4.4. It should be noted

that for each φ, the resulting threshold distance d∗SR(φ) is at the boundary of this region,

and as φ increases from φ = 0 to φ = π, d∗SR(φ) decreases monotonically from ≈ 1.2

to ≈ 0.47. We thus observe that conditions (4.21)-(4.23) hold for much larger threshold

distance d∗SR when sources are located far away from destination (i.e., φ ≈ 0), and d∗SR

reduces considerably when sources are closer to the destination (i.e., φ ≈ π).

We note that the above trends continue to hold when mm-wave links are used (i.e.,

α > 0), however, the resulting region (union of the inner black and outer gray regions)

now extends much closer to the destination. For example, for the region with α = 2, d∗SR

reduces to only ≈ 0.96 near the destination, compared to ≈ 0.47 with α = 0. Moreover,

while the resulting region grows with α, the growth saturates for higher values of α, with

α = 10 producing almost the same region as that for α→∞.
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Figure 4.4: The source locations for which the scheme of Theorem 4.2 achieves the capacity

of the R-MARC (i.e., the locations at coordinates (x,±y) in the shaded regions).

4.3 Extension to the K-user Case

We now extend the achievability and capacity results for the two-user MARCs to the K-

user MARCs where K > 2 sources communicate to a destination with the help of a relay.

The system model and other terminologies of the K-user DR-MARC and K-user R-MARC

are defined in Section 4.1. We also assume that the K-user MARCs follows the same fading

model and the same assumptions on the channel state information (CSI) as in Section 4.1.

Extension of Theorem 4.1

Theorem 4.5 (Decomposition result for the K-user DR-MARC). The capacity of the K-

user DR-MARC with BMF α is given by the set of all rate tuples (R1, . . . , RK) ∈ RK
+ that

satisfy

Rk ≤ rk + αE[C̃(ḠkDP̄k)], k ∈ {1, . . . , K}, (4.24)

where (r1, . . . , rK) ∈ RK
+ is an achievable rate tuple in the underlying K-user R-MARC,

and the expectations are taken over channel gains Ḡ1D, . . . , ḠKD, with C̃(x) = log(1 + x).

Proof Sketch. The proof of this result follows directly from the proof of Theorem 4.1 pre-

sented in Appendix C.1. More specifically, the technique used to upper bound rate R1 can
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be applied to each of rates R2, . . . , RK . �

Extension of Theorem 4.2

Theorem 4.6 (Achievable region for the K-user R-MARC). An achievable region of the

K-user R-MARC with BMF α is given by the set of all rate tuples (R1, . . . , RK) ∈ RK
+ that

satisfy ∑
k∈S

Rk < E

[∑
k∈S

C̃ (GkRPk)

]
+ α

∑
k∈S

E
[
C̃
(
ḠkRP̂k

)]
, (4.25)

∑
k∈S

Rk < E

[∑
k∈S

C̃ (GkDPk +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
, (4.26)

for all S ⊆ {1, 2, . . . , K}, S 6= ∅, where expectations are over channel gains Gmt and Ḡmt,

m 6= t,m ∈ {1, . . . , K,R}, t ∈ {R,D}.

Proof Sketch. The achievable region is obtained by performing block Markov encoding, and

deploying backward decoding for the destination and forward decoding for the relay. The

procedure follows that of the proof of Theorem 4.2 and naturally generalize to K users.

Note that forward decoding at the relay results in rates (4.25), while backward decoding

at the destination results in (4.26). �

Extension of Theorem 4.3

Theorem 4.7 (Outer bounds to the capacity region of the K-user R-MARC). The ca-

pacity region of the R-MARC with BMF α is contained within the set of all rate tuples

(R1, . . . , RK) ∈ RK
+ that satisfy∑

k∈S

Rk < E

[∑
k∈S

C̃ (GkDPk +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
, (4.27)

for all S ⊆ {1, 2, . . . , K}, S 6= ∅, where expectations are over channel gains GmD,m ∈
{1, . . . , K,R} and ḠRD.

Proof Sketch. The proof of this theorem follows from that of Theorem 4.3 in a straight-

forward manner by taking all subsets U ⊆ {1, 2, . . . , K},U 6= ∅, and hence is not repeated.

Specifically, the crucial step of (j) of (C.5), where setting the cross-correlation between

source and relay codeword symbols to zero is optimal, extends to the K-user case. �
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Extension of Theorem 4.4

Theorem 4.8 (Capacity region of a class of K-user R-MARCs). If the channel parameters

of the K-user R-MARC with BMF α satisfies

E

[∑
k∈S

C̃ (GkDPk +GRDPR)

]
+ αE

[
C̃
(
ḠRDP̄R

)]
≤ E

[∑
k∈S

C̃ (GkRPk)

]
+ α

∑
k∈S

E
[
C̃
(
ḠkRP̂k

)]
, (4.28)

for all S ⊆ {1, 2, . . . , K}, S 6= ∅, where the expectations are over channel gains Gmt, Ḡmt,

m 6= t,m ∈ {1, . . . , K,R}, t ∈ {R,D}, then its capacity region is given by the set of all rate

tuples (R1, . . . , RK) ∈ RK
+ that satisfy (4.27).

Proof Sketch. It is evident that under conditions (4.28), the achievable rate region in The-

orem 4.6 simplifies to that given by (4.26), which then matches the outer bound region in

Theorem 4.7, and thus the capacity region is characterized. �

4.4 The Resource Allocation in the DR-MARC

The performance of the DR-MARC can be significantly affected by the mm-wave links

due to their point-to-point nature and relatively larger bandwidths. To understand the

impact of mm-wave spectrum on the performance of the DR-MARC, we study how the

sum-rate achievable on the DR-MARC (with the scheme of Theorem 4.2) is maximized by

optimally allocating power to the mm-wave direct-links and relay-links. We observe that

the resulting scheme allocates power to the mm-wave links in different modes depending

on whether certain channel conditions hold. This characterization reveals insights into the

nature of the optimal scheme, and can serve as an effective resource allocation strategy for

such dual-band networks in practice.

From Section 4.2 recall that the fading magnitudes of the mm-wave links are taken to be

non-negative i.i.d., random variables. In this section for ease of exposition, we assume that

these fading magnitudes are constants that depend on the network-geometry and path-loss

parameter. This modified fading is an appropriate model for mm-wave links such as those

in [30], as it can be viewed as a special case of the general fading model of [117] when the

diffuse component associated with the non-LoS propagation is not present. Furthermore,

this simplification reveals useful insights into the optimal power allocation, while keeping
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the analysis tractable. In contrast, the microwave band is assumed to be under the same

general fading as in Section 4.2.

We limit this study to the two-user DR-MARC only, where the problem of optimal

power allocation is posed on the four mm-wave links (two direct-links and two relay-links)

as such a study with an arbitrary number of users (say K) will involve 2K number of

mm-wave links and will soon become intractable.

For notational convenience, we have the following:

• the mm-wave S1-D and S2-D direct-links are referred to as DL1 and DL2 respectively,

while the mm-wave S1-R and S2-R relay-links are referred to as RL1 and RL2.

• as discussed above, under the simplified fading model for the mm-wave links, the

gain of the direct-link DLk, ḠkD, and the gain of the relay-link RLk, ḠkR, are network-

geometry dependent constants. For notational simplicity, the gain of DLk is denoted

by dk := ḠkD, while the gain of RLk is denoted by rk := ḠkR, k ∈ {1, 2}.

We formulate the problem for the DR-MARCs under the following assumptions:

• [A1] the transmit power in DLk (i.e., pk) and RLk (i.e., qk) from source Sk are con-

strained by the total power budget P , i.e., pk + qk = P, k = 1, 2.

• [A2] The BMF α > 0 is fixed a priori and known.

Note that assuming the same power budget for the two sources as in [A1] does not incur any

loss in generality, as any difference between two different power budgets can be absorbed

into the link gains without altering the treatment of the problem. In [A2], BMF α > 0 is

assumed to be fixed a priori and known.

4.4.1 Problem Formulation and Solution

For a fixed power allocation (p1, q1, p2, q2), R is an achievable sum-rate of the DR-MARC

iff

R ≤ min{ΣR,ΣD}, (4.29)

where ΣR and ΣD denote the sum-rates achievable at the relay and destination, given by

ΣR := σR + α
2∑

k=1

log (1 + rkqk) + log (1 + dkpk) , (4.30)
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ΣD := σD + α
2∑

k=1

log (1 + dkpk) , (4.31)

with

σD := E[C̃(G1DP1 +G2DP2 +GRDPR)] + αC̃(ḠRDP̄R), and

σR := E[C̃(G1RP1 +G2RP2)] (4.32)

that are defined in Theorem 4.2.

Note that rates ΣR and ΣD are obtained as follows. First, from the decomposition

result in Theorem 4.1 it follows that for given direct-link powers p1 and p2, the sum-rate

of the DR-MARC is given by the sum of the sum-rate of the underlying R-MARC and

the rates of the two direct-links, i.e., α log(1 + d1p1) and α log(1 + d2p2). Now, for given

relay-link powers q1 and q2, the sum-rate of the R-MARC is given by the minimum of r.h.s.

of (4.14) and (4.17). It then follows that ΣR is given by the sum of the r.h.s. of (4.14) and

α
∑2

k=1 log(1 + dkpk) as expressed in (4.30), while ΣD is given by the sum of the r.h.s. of

(4.17) and α
∑2

k=1 log(1 + dkpk) as given in (4.31).

The problem of maximizing R over the transmit powers (p1, q1, p2, q2) is then

[P2] maximize R (4.33)

subject to R ≤ ΣR, (4.34)

R ≤ ΣD, (4.35)

p1 + q1 = P, (4.36)

p2 + q2 = P, (4.37)

(p1, q1, p2, q2, R) � 0. (4.38)

Solution of Problem [P2]

The details of the solution of problem [P2] has been relegated to Appendix C.4. Specifically,

note that [P2] is a convex optimization problem: its objective function R is linear, the

equality constraints (4.36)-(4.37) are affine, and the inequality constraints (4.34)-(4.35)

are convex and differentiable. Moreover, [P2] satisfies the Slater constraint qualification

condition [132, Chapter 5.2.3]. Hence, [P2] can be solved using the Karush–Kuhn–Tucker

(KKT) conditions [132, Chapter 5.5.3], as detailed in Appendix C.4.
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Constraint Qualification for Problem [P2]

In Appendix C.5, problem [P2] is shown to satisfy the Mangasarian-Fromovitz constraint

qualification.

4.4.2 Link Gain Regimes and Optimal Power Allocation

To gain insights, we derive the optimal power allocation in closed form, and describe it

in terms of link-gain regimes (LGR): LGRs are partitions of the set of all tuples of link

gains and power budget P , which are found while solving the KKT conditions for [P2].

Specifically, we derive the KKT conditions and solve for the optimal primal variables (i.e.,

link transmission powers) and the optimal Lagrange multipliers (OLM). To simplify the

procedure, we consider the set of tuples of OLMs associated with inequality constraints in

(4.34), (4.35) and (4.38), and partition this set into a few subsets based on whether the

OLMs in the set are positive or zero, i.e., whether the associated primal constraints are

tight or not (detailed in Appendix C.4).

For each resulting partition of the set of OLM tuples, we first derive the expression for

the optimal powers in closed form. However, the conditions that define these partitions

are still characterized in terms of the OLMs. Therefore, to express the optimal power

allocation explicitly in terms of link gains (r1, r2, d1, d2) and power budget P , we express

the conditions that partition the set of the OLM tuples in terms of link gains, P , and a

parameter γ, defined as

γ := 2(σD−σR)/α (4.39)

which models the effect of microwave band parameters, with σD and σR defined in (4.32).

As a result, the set of all (r1, r2, d1, d2, γ, P )-tuples are partitioned into a few subsets, each

called an LGR and correspond to one and only one subset of OLM tuples. The conditions

for each LGR is then simplified and expressed as upper and lower bounds (threshold powers)

on power budget P where the threshold powers depend on (r1, r2, d1, d2, γ). This results in

an equivalent partitioning of the range of the power budget, P ≥ 0, into a few intervals,

each describing an LGR.

For the optimum sum-rate problem, we specifically consider the two cases σD ≤ σR and

σD > σR, as the optimum power allocation for the two cases differ significantly. Moreover,

when interpreting the optimum power allocation scheme, we need to often compare ΣD

and ΣR. Substituting the expressions of ΣD and ΣR in (4.30) and (4.31), this comparison
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is equivalent to that between σD and σR +α
(

log(1 + r1q1) + log(1 + r2q2)
)
, i.e., comparison

between (1 + r1q1)(1 + r2q2) and 2(σD−σR)/α. For convenience, we thus define γ = 2(σD−σR)/α

in (4.39). Moreover, cases σD ≤ σR and σD > σR are now equivalent to cases γ ≤ 1 and

γ > 1.

Case γ ≤ 1:

When γ ≤ 1, the set of all (r1, r2, d1, d2, γ, P )-tuples turn out to belong to a single LGR

where the allocation (p1, q1, p2, q2) = (P, 0, P, 0) is optimal for all P ≥ 0.

First, note that for any feasible allocation (p1, q1, p2, q2), rates ΣD and ΣR in (4.30)-(4.31)

are expressed as ΣD = σD + α
∑2

k=1 log (1 + dkpk) and ΣR = σR + α
∑2

k=1 log (1 + dkpk) +

α
∑2

k=1 log (1 + rkqk). Since in this case γ ≤ 1, we have σD ≤ σR from (4.39). In addition,

since for any feasible allocation qk ≥ 0, we have ΣD ≤ ΣR. Therefore, for any feasible

allocation (p1, q1, p2, q2), the sum-rate is R = ΣD. However, ΣD is a function of p1, p2 only,

and thus for a given power budget P , allocating p1 = p2 = P and q1 = q2 = 0 maximizes

ΣD (i.e., the achievable sum-rate R = ΣD) for all values of channel parameters and P .

Case γ > 1:

In contrast to the previous case, for the case with γ > 1, the optimal power allocation (the

MARC-OPA) has much richer structure. As discussed in detail shortly, the MARC-OPA

follows two distinct properties, the Waterfilling-like property and the saturation property.

In this case, the set of all channel parameter-tuples c := (r1, r2, d1, d2, γ, P ) are partitioned

into 14 LGRs: 9 LGRs are associated with the Waterfilling-like property, and the remaining

5 LGRs are associated with the saturation property.

In Table 4.1, the definition of LGRs associated with the Waterfilling-like property

(denoted by A(.,.)) and the optimal link powers in these LGRs are presented, whereas

the same for the LGRs associated with the saturation property (denoted by S(.,.)) are

presented in Table 4.2. Note that for the LGRs in Table 4.2, the relay-link gains are

denoted by r := (r1, r2), and the set of all r are partitioned into 4 subsets

RS1 := {r : r1 ≥ γr2}, R1 := {r : γr2 > r1 ≥ r2},

RS2 := {r : r2 ≥ γr1}, R2 := {r : γr1 > r2 > r1}. (4.40)

Finally, the threshold powers for the LGRs in Table 4.1 and 4.2 are defined in Table 4.3,

with %[f(x)] denoting the non-negative root of polynomial f(x).
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Table 4.1: For the case with γ > 1, definition of LGRs and optimal link powers associated

with the Waterfilling-like property of the MARC-OPA is given in terms of channel parameters

c = (r1, r2, d1, d2, γ, P ). Table 4.3 provides the threshold powers in terms of (r1, r2, d1, d2, γ).

Definition of LGR Optimal Power Allocation

Ad,d := {c : 0 ≤ p1 = P, q1 = 0,

P ≤ min(Pd,d, P̂d,d)} p2 = P, q2 = 0

Ad,r := {c : 0 ≤ p1 = P, q1 = 0,

P ≤ min(P̂′d,d,Pd,d,Pd,r)} p2 = 0, q2 = P

Ar,d := {c : 0 ≤ p1 = 0, q1 = P,

P ≤ min(P′d,d, P̂d,d,Pr,d)} p2 = P, q2 = 0

Ar,r := {c : 0 ≤ p1 = 0, q1 = P,

P ≤ min(P′d,d, P̂
′
d,d,Pr,r)} p2 = 0, q2 = P

Ard,d := {c : max(Pd,d,P
′
d,d) < p1 =

1

2

(
P +

1

r1
− 1

d1

)
, q1 =

1

2

(
P − 1

r1
+

1

d1

)
,

P ≤ min(P̂d,d,Prd,d)} p2 = P, q2 = 0

Ad,rd := {c : max(P̂d,d, P̂
′
d,d) < p1 = P, q1 = 0,

P ≤ min(Pd,d,Pd,rd)} p2 =
1

2

(
P +

1

r2
− 1

d2

)
, q2 =

1

2

(
P − 1

r2
+

1

d2

)
Ar,rd := {c : max(P̂d,d, P̂

′
d,d) < p1 = 0, q1 = P,

P ≤ min(P′d,d,Pr,rd)} p2 =
1

2

(
P +

1

r2
− 1

d2

)
, q2 =

1

2

(
P − 1

r2
+

1

d2

)

Ard,r := {c : max(Pd,d,P
′
d,d) < p1 =

1

2

(
P +

1

r1
− 1

d1

)
, q1 =

1

2

(
P − 1

r1
+

1

d1

)
,

P ≤ min(P̂′d,d,Prd,r)} p2 = 0, q2 = P

Ard,rd := {c : max(Pd,d, P̂d,d, p1 =
1

2

(
P +

1

r1
− 1

d1

)
, q1 =

1

2

(
P − 1

r1
+

1

d1

)
,

P′d,d, P̂
′
d,d) < P ≤ Prd,rd} p2 =

1

2

(
P +

1

r2
− 1

d2

)
, q2 =

1

2

(
P − 1

r2
+

1

d2

)
,

Notation for the LGRs: For the LGRs in Table 4.1, which are associated with the

Waterfilling-like property, Ax,y, x, y ∈ {d, r, rd}, x and y denote the transmission status in

the mm-wave links of sources S1 and S2 respectively as follows: for each source, subscript d,
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Table 4.2: For the case with γ > 1, definition of LGRs and optimal link powers associated

with the Saturation property of the MARC-OPA is given in terms of channel parameters c =

(r1, r2, d1, d2, γ, P ). Table 4.3 provides the threshold powers in terms of (r1, r2, d1, d2, γ).

Definition of LGR Optimal Power Allocation

Sr,rd := {c : max(Pr,r,Pr,rd) < p1 = 0, q1 = P,

P ≤ min(Pr,rd,Pr,d)} p2 = P − q2, q2 =
1

r2

γ

1 + Pr1
− 1

r2

Srd,r := {c : max(Pr,r,Prd,r) < p1 = P − q1, q1 =
1

r1

γ

1 + Pr2
− 1

r1
,

P ≤ min(Prd,r,Pd,r)} p2 = 0, q2 = P

Srd,d := {c : r ∈ RS1, p1 = P − γ − 1

r1
, q1 =

γ − 1

r1
,

max(Pr,d,Prd,d,Prd,d) < P} p2 = P, q2 = 0

∪{c : r ∈ (R1 ∪R2 ∪RS2),

max(Pr,d,Prd,d) < P < Prd,d}

Sd,rd := {c : r ∈ RS2, p1 = P, q1 = 0,

max(Pd,r,Pd,rd,Pd,rd) < P} p2 = P − γ − 1

r2
, q2 =

γ − 1

r2

∪{c : r ∈ (R1 ∪R2 ∪RS1),

max(Pd,r,Pd,rd) < P < Pd,rd}

Srd,rd := {c : r ∈ (R1 ∪R2), p1 = P − q1,

max(Prd,d,Pd,rd,Prd,r,Pr,rd,Prd,rd) < P} q1 =
1

r1

(γ(Pr1 + r1d
−1
1 + 1)

Pr2 + r2d
−1
2 + 1

)1/2
− 1

r1
,

∪{c : r ∈ RS1, p2 = P − q2,

max(Pd,rd,Prd,r,Pr,rd,Prd,rd) < P ≤ Prd,d} q2 =
1

r2

(γ(Pr2 + r2d
−1
2 + 1)

Pr1 + r1d
−1
1 + 1

)1/2
− 1

r2

∪{c : r ∈ RS2,

max(Prd,d,Prd,r,Pr,rd,Prd,rd) < P ≤ Pd,rd}

r and rd denotes that the MARC-OPA transmits in the direct-link only, the relay-link only

and both the direct- and relay-links originating from the source, respectively. For example,

in LGR Ard,d the MARC-OPA transmits in both the direct- and relay-links of source S1,

while it transmits only in the direct-link of source S2. The LGRs S(.,.) in Table 4.2, which

are associated with the saturation property, can be similarly interpreted. Moreover, the

threshold powers P(.,.), P̂(.,.),P
′
(.,.), P̂

′
(.,.) and P(.,.) follow the same notation as the LGRs,
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Table 4.3: Definition of the threshold powers in LGRs defined in Table 4.1 and Table 4.2.

Pd,d := r−1
1 − d

−1
1 , P′d,d := −Pd,d,

P̂d,d := r−1
2 − d

−1
2 , P̂′d,d := −P̂d,d,

Pr,d := (γ − 1)r−1
1 , Pd,r := (γ − 1)r−1

2 ,

Pr,r := %[(1 + xr1)(1 + xr2)− γ],

Prd,d := (2γ − 1)r−1
1 − d

−1
1 , Pd,rd := (2γ − 1)r−1

2 − d
−1
2 ,

Pr,rd := %[(1 + r2d
−1
2 + xr2)(1 + xr1)− 2γ], Prd,r := %[(1 + r1d

−1
1 + xr1)(1 + xr2)− 2γ],

Prd,rd := %[(1 + r1d
−1
1 + xr1)

(1 + r2d
−1
2 + xr2)− 4γ],

Pr,rd := %[(1 + r2/d2 + xr2)(1 + xr1)2 Prd,r := %[(1 + r1/d1 + xr1)(1 + xr2)2

−γ(1 + r1/d1 + xr1)], −γ(1 + r2/d2 + xr2)],

Prd,d :=
γ − 1 + γr2d

−1
2 − r1d

−1
1

r1 − γr2
, Pd,rd :=

γ − 1 + γr1d
−1
1 − r2d

−1
2

r2 − γr1
.

while the following relationships hold: P′(.,.) := −P(.,.), and P̂′(.,.) = P̂(.,.). Finally, threshold

powers P(.,.) are used for LGRs S(.,.) only, while all other threshold powers are used for

both type of LGRs A(.,.) and S(.,.).

LGRs are Mutually Exclusive: Note that all LGRs in Table 4.1 and Table 4.2 are

mutually exclusive in that, for a given tuple of channel parameters c = (r1, r2, d1, d2, γ, P ),

the condition for one and only one LGR holds. For example, suppose a tuple c ∈ Ad,d,

hence it satisfies min(Pd,d, P̂d,d) ≥ P ≥ 0. From Table 4.3, since P′d,d := −Pd,d, P̂′d,d := −P̂d,d

the condition (Pd,d, P̂d,d) � 0 for Ad,d requires (P′d,d, P̂
′
d,d) � 0, which implies that Ar,r =

Ar,d = Ad,r = Ar,rd = Ard,r = ∅. Next, if c ∈ Ad,d, then c 6∈ Ard,d as condition Pd,d < P

for Ard,d violates condition Pd,d ≥ P for Ad,d. Similarly, if c ∈ Ad,d, then c 6∈ Ad,rd and

c 6∈ Ard,rd. Also, when c ∈ Ad,d, c 6∈ Srd,d as condition Prd,d < P for Srd,d violates Pd,d > P

for Ad,d since Pd,d < Prd,d; similarly when c ∈ Ad,d, c 6∈ Sd,rd. We can also show that for

c ∈ Ad,d, we have c 6∈ Sr,rd, c 6∈ Srd,r and c 6∈ Srd,rd via simple algebraic manipulations.

Therefore, if c ∈ Ad,d, c does not belong to any other LGR. Similarly any other LGR-pair

can be shown to be mutually exclusive.
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4.4.3 Properties of the Optimal Power Allocation

We observe that the MARC-OPA has two underlying properties: a Waterfilling-like prop-

erty and a saturation property. First, there exists a certain saturation threshold Psat such

that for power budget P < Psat, the MARC-OPA allocates powers as follows:

• if P is sufficiently small such that P satisfies the condition of one of the 4 LGRs

Ad,d,Ar,d,Ad,r or Ar,r, then for each source the MARC-OPA transmits only in the

strongest of the relay-link and direct-link originating from that source.

• as P increases, for at least one source, the MARC-OPA transmits in both the relay-

link and direct-link originating from that source, thereby transmitting in 3 of the 4

mm-wave links. As P increases further, depending on the relative magnitudes of the

link gains, the MARC-OPA may eventually transmit all 4 links. Thus, for P < Psat,

all link powers are either zero, or increase piecewise linearly with P .

The Waterfilling-like Property

This property of the MARC-OPA resembles the Waterfilling (WF) [138, Chapter 10.4]

property for parallel AWGN channels, and thus it is referred to as the WF-like property.

All LGRs with power allocations satisfying this property are denoted by LGRs Ax,y, x, y ∈
{d, r, rd}. Specifically, depending on the gains of the direct-links (DL1 and DL2) and the

gains of the relay-links (RL1 and RL2), the MARC-OPA transmits in one of the following

sets of links: (i) DL1 and DL2 if d1 ≥ r1, d2 ≥ r2, (ii) RL1 and RL2 if r1 > d1, r2 > d2, (iii)

DL1 and RL2 if d1 ≥ r1, r2 > d2, and (iv) DL2 and RL1 if d2 ≥ r2, r1 > d1. Note that the

corresponding LGRs are Ad,d, Ar,r, Ad,r and Ar,d.

Since the marginal return from transmitting only in the strongest link of each source

diminishes as P increases, for sufficiently large P (that is still below Psat) the MARC-

OPA transmits in one additional link. The chosen link, however, depends on the relative

magnitude of the link gains, and provides the maximum increase in the sum-rate among

all inactive links.

For example, consider a given (r1, r2, d1, d2, P )-tuple such that for P < min(Pd,d, P̂d,d),

the MARC-OPA transmits in links DL1 and DL2 only, i.e., as in Ad,d. Now, if Pd,d < P̂d,d

holds, and P increases to Pd,d ≤ P ≤ min(P̂d,d,Prd,d), then the MARC-OPA transmits in

the relay-link RL1, in addition to the two direct-links, following the allocation in LGR Ard,d.

115



Note that through LGRs Ad,d and Ard,d, the powers p1 and q1 increase piecewise linearly

with P , while p2 = P increasing linearly with P and q2 = 0, as per the WF-like property.

Based on the intuition for LGR Ard,d above, the other LGRs that follow the WF-like

property, i.e., Ad,rd, Ar,rd and Ard,r, can be explained as well. Specifically, the intuition

behind LGR Ad,rd follows by swapping the roles of the sources compared to Ard,d, whereas

the intuition behind Ar,rd and Ard,r follow from Ad,rd and Ard,d respectively by exchanging

the roles of the relay-links as well as the direct-links. Finally, in Ard,rd the MARC-OPA

transmits in all 4 links following a Waterfilling allocation.

The Saturation Property

While for P < Psat, the MARC-OPA follows the WF-like property, for P ≥ Psat, the

MARC-OPA limits the relay-link powers such that the saturation condition holds, which

is expressed as

(1 + r1q1)(1 + r2q2) = γ. (4.41)

Thus, as P increases beyond Psat, q1 and q2 can no longer both increase with P . In contrast,

the direct-link powers pk = P − qk, increase unbounded with P . This property is referred

to as the saturation property and is clearly unlike WF-like property.

The 5 LGRs satisfying this property are denoted by S(.,.) in Table 4.2. Given a set

of parameters (r1, r2, d1, d2, γ), as P increases, saturation first occurs in one of LGRs

S(.,.), called the saturation LGR. The specific saturation LGR depends on the given set of

parameters (r1, r2, d1, d2, γ), or equivalently on how the resulting threshold powers compare.

In either case, the saturation threshold Psat is given by the lower bound on P in the

respective LGRs S(.,.) in Table 4.2. For example, if the saturation LGR is Sr,rd, then

Psat = max(Pr,r,Pr,rd).

While saturation may occur in one of the 5 possible LGRs S(.,.) in Table 4.2 that depend

on the given set of parameters (r1, r2, d1, d2, γ), the general intuition behind all 5 saturation

cases are the same. We explain below the intuition behind the saturation phenomena by

observing how the so-called sum-rate-gap, defined below in (4.42), behaves as the power

budget P increases from P = 0 to the saturation threshold Psat. Recall that the objective

of the MARC-OPA is to maximize R = min{ΣR,ΣD}. For a given P ≥ 0 and a feasible

power allocation (p1, q1, p2, q2), we define the sum-rate-gap as follows

∆R(p1, q1, p2, q2) := ΣD − ΣR = σD − σR − α (log (1 + r1q1) + log (1 + r2q2)) , (4.42)
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where ΣR and ΣD are expressed in (4.30)-(4.31). Clearly, ∆R is not a function of pk, but

it is a decreasing function of qk. Also, since the sum-rate is R = min{ΣR,ΣD}, so long as

∆R > 0, only R = ΣR < ΣD is achieved.

We can now explain saturation by observing how ∆R changes as P increases from

P = 0. First, note that at P = 0, the resulting allocation is pk = qk = 0, and therefore the

resulting rates are ΣD = σD and ΣR = σR, with σR and σD defined in (4.32). Since in the

current case we have γ > 1, which implies σD > σR from (4.39), we have the sum-rate-gap

∆R = σD − σR > 0. Hence, at P = 0 only R = ΣR < ΣD is achieved.

Next, recall that as P increases from P = 0, due to the Waterfilling-like property, link

powers pk and qk increase piecewise linearly with P . Since ∆R is not a function of pk,

if pk increases with P , ∆R remains unaffected. In contrast, if qk increases with P , ∆R

generally reduces from ∆R|P=0 = σD − σR > 0. More specifically, except for LGR Ad,d,

for all other LGRs in Table 4.1, as P increases, either q1 or q2, or both increase with P ,

and thus in all these LGRs ∆R monotonically decreases with P . As such, when P is

sufficiently increased, q1 and q2 are alloted enough power to reduce ∆R to ∆R = 0. This

is achieved at P = Psat, the so-called saturation threshold, and the resulting condition

∆R = 0 ⇐⇒ (1 + r1q1)(1 + r2q2) = γ, is called the saturation condition given in (4.41).

In terms of rates, now the sum-rate R = ΣR = ΣD is achieved.

If P is increased beyond Psat, it turns out to be optimal to constrain q1 and q2 such

that ∆R = 0 continues to hold. Therefore, as P is increased beyond Psat, all additional

increase in P needs to be allocated to the direct links, i.e., pk = P − qk. As such, for all

P ≥ Psat, the sum-rate R = ΣR = ΣD is achieved.

Optimal Powers in Saturation LGRs: As noted earlier, for a given set of parameter

(r1, r2, d1, d2, γ) saturation can first occurs in one of 5 LGRs S(.,.), depending on which

the optimal powers vary differently with P . Specifically, in Sr,rd, as P increases, q1 = P

increases linearly with P , and thus p1 = P − q1 = 0. However, due to saturation, since

q1 = P we have q2 = ( γ
1+Pr1

− 1)/r2, which decreases non-linearly with P . The same trend

is found in the complementary LGR Srd,r after the role of the two sources are swapped

compared to Sr,rd. In Srd,rd, as P increases, if r1 ≥ r2 (resp. r1 < r2), q1 and q2 (resp. q2 and

q1) monotonically increase and decrease non-linearly with P , while both p1 and p2 increase

non-linearly. Finally, in Srd,d, as P increases, q1 = γ−1
r1

and q2 = 0 remain fixed, and all

additional increments of P are allotted to the direct-links, whereas in the complementary

LGR Sd,rd, the same trend is followed with the roles of the sources exchanged.
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Saturation LGR and Final LGR: For a given set of parameters (r1, r2, d1, d2, γ) as P

increases, while saturation first occurs in one of LGRs S(.,.) for P ≥ Psat associated with

that LGR, as P increases further, one or more other LGRs S(.,.) may become optimal where

saturation continues to hold. More specifically, there exists a threshold Pfin ≥ Psat such

that for all P ≥ Pfin, a specific LGR S(.,.) remain optimal, denoted the final LGR.

To describe this more precisely, recall that in (4.40), we partitioned the relay-link

gains r := (r1, r2) into subsets RS1 := {r : r1 ≥ γr2}, R1 := {r : γr2 > r1 ≥ r2},
R2 := {r : γr1 > r2 > r1}, and RS2 := {r : r2 ≥ γr1}. Intuitively, in RS2, relay-link

RL2 is significantly stronger than RL1 (i.e., r2 ≥ γr1) while in R2, it is only stronger (i.e.,

r2 > r1) but not significantly stronger (i.e., r2 < γr1). The intuitions for RS1 and R1

follow similarly. We observe that for a given set of parameters (r1, r2, d1, d2, γ), if

• r ∈ R1 or r ∈ R2: Pfin = max(Prd,d,Pd,rd,Prd,r,Pr,rd,Prd,rd), and the final LGR is

Srd,rd.

• r ∈ RS1: Pfin = max(Pr,d,Prd,d,Prd,d), and the final LGR is Srd,d.

• r ∈ RS2: Pfin = max(Pd,r,Pd,rd,Pd,rd), and the final LGR is Sd,rd.

Naturally, for some link gain tuples, the saturation and the final LGRs are the same, and

thus Pfin = Psat.

4.4.4 Evolution of Link Gain Regimes with the Power Budget

In Table 4.1 and Table 4.2, the LGRs are defined as partitions of the set of the power

budget P . Since the threshold powers in Table 4.3 are functions of link gains, for a given

(r1, r2, d1, d2, γ)-tuple and P , it is easy to determine which LGR is active (i.e., the condition

of which LGR holds). It is evident that, as P increases, the active LGR may change as

well, and thus the MARC-OPA follows a set of active LGRs, called a LGR-path, which

reveals useful insights on the optimal power allocation.

Recall that for a given (r1, r2, d1, d2, γ)-tuple, saturation can occur in either of 5 LGRs,

Sr,rd,Srd,r, Srd,rd,Srd,d and Sd,rd, which leads to a vast number of LGR-paths and makes it

difficult to interpret insights. Hence, to simplify the exposition, we now assume the gains

of the direct-links to be the same, i.e., d := d1 = d2. Although this causes some loss of

generality, the resulting LGR-paths are simplified. For example, under this assumption,

for r ∈ R2, LGRs Ar,d = Ard,d = Ar,rd = Sr,rd = Srd,d = Sd,rd = ∅, and thus saturation can
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now occur only in either Srd,r or Srd,rd. Nonetheless, the paths for the case with d1 6= d2

can be similarly characterized.

In this section, we discuss the paths for r ∈ R2 and r ∈ RS2 only, as the paths for

r ∈ R1 and r ∈ RS1 can be derived from those for r ∈ R2 and r ∈ RS2, respectively, by

exchanging the roles of relay-links RL2 and RL1 as well as those of direct-links DL2 and DL1.

Case r ∈ R2:

In this case, we have 7 LGR-paths denoted [S1], . . . , [S7] which are presented in Table 4.4

along with their underlying conditions, and the interval of P for each LGR in the path.

Note that the conditions in Table 4.4 are mutually exclusive for r ∈ R2. Moreover, for

ease of exposition, we have omitted the boundary cases in which one or more inequalities

in the condition of an LGR-path hold with equality. In such boundary cases, one or more

LGRs in the LGR-path becomes empty. The LGR-path is then simplified by omitting

the empty LGRs, and the simplified LGR-path may turn out to be the same as some

other LGR-path. For example, consider paths [S2] and [S3] in Table 4.4. If the channel

parameters are such that the two threshold powers Pr,r and P′d,d are equal, i.e., Pr,r = P′d,d,

then simple algebraic manipulation reveals that LGR Ard,rd is empty. The simplified path,

obtained by omitting this empty LGR from [S2], turns out to be the same as path [S3].

Initial LGR: While paths [S1], [S2], [S3] originate from the initial LGR Ar,r, path [S4]

originates from Ad,d, and paths [S5], [S6], [S7] from Ad,r. The initial LGRs vary based

on how the direct-link gain d compares to the relay-link gains r1 and r2. For example, if

d ≥ r2 ≥ r1 ⇐⇒ 0 ≤ P̂d,d ≤ Pd,d (i.e., each DLk is stronger than its corresponding RLk),

for sufficiently small P , following the WF-like property the MARC-OPA transmits only in

the direct-links as in LGR Ad,d, and thus Ad,d serves as the initial LGR.

On the other hand, if r2 ≥ r1 > d ⇐⇒ 0 < P′d,d ≤ P̂′d,d (i.e., each RLk is stronger than

its corresponding DLk), for sufficiently small P , following the WF-like property the MARC-

OPA transmits only in the relay-links as in Ar,r. Furthermore, depending on how threshold

powers P′d,d, P̂
′
d,d and Pr,r compare, the MARC-OPA follows one of the paths [S1], [S2], [S3],

as given in Table 4.4. Similarly, for the case of r2 > d > r1 ⇐⇒ Pd,d > 0, P̂′d,d > 0, the

MARC-OPA transmits in the two stronger links RL2 and DL1 as in Ad,r. Then, based on

how threshold powers Pd,d, P̂
′
d,d and Prd,r compare, one of paths [S5], [S6], [S7] is followed.
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Table 4.4: LGR paths for r ∈ R2. Table 4.3 provides the threshold powers in terms of
link gains and γ. Each path originates from one of three initial LGRs Ar,r,Ad,d or Ad,r,
and terminate at the final LGR Srd,rd. If for certain values of link gains and γ, one or more
LGRs in the path becomes empty, the path is simplified by omitting the empty LGRs.

LGR path Condition Interval of P in each LGR

[S1] : Ar,r → Ard,r → 0 < P′d,d < P̂′d,d < Pr,r [0,P′d,d) , [P′d,d, P̂
′
d,d) ,

Ard,rd → Srd,rd [P̂′d,d,Prd,rd) , [Prd,rd,∞)

[S2] : Ar,r → Ard,r → 0 < P′d,d < Pr,r < P̂′d,d [0,P′d,d) , [P′d,d,Prd,r) ,

Srd,r → Srd,rd [Prd,r,Prd,r) , [Prd,r,∞)

[S3] : Ar,r → Srd,r → Srd,rd 0 < Pr,r < P′d,d < P̂′d,d [0,Pr,r) , [Pr,r,Prd,r) , [Prd,r,∞)

[S4] : Ad,d → Ad,rd → 0 < P̂d,d < Pd,d [0, P̂d,d) , [P̂d,d,Pd,d) ,

Ard,rd → Srd,rd [Pd,d,Prd,rd) , [Prd,rd,∞)

[S5] : Ad,r → Ard,r → 0 < Pd,d < P̂′d,d < Prd,r [0,Pd,d) , [Pd,d, P̂
′
d,d)

Ard,rd → Srd,rd [P̂′d,d,Prd,rd) , [Prd,rd,∞)

[S6] : Ad,r → Ard,r → 0 < Pd,d < Prd,r < P̂′d,d [0,Pd,d) , [Pd,d,Prd,r) ,

Srd,r → Srd,rd [Prd,r,Prd,r) , [Prd,r,∞)

[S7] : Ad,r → Ad,rd → 0 < P̂′d,d < Pd,d [0, P̂′d,d) , [P̂′d,d,Pd,d) ,

Ard,rd → Srd,rd [Pd,d,Prd,rd) , [Prd,rd,∞)

Saturation Cases: In this case, saturation first occurs in either LGR Srd,rd or LGR Srd,r

as follows.

Saturation occurs in Srd,rd if the condition of one of the paths [S1], [S4], [S5] or [S7] is

met. Here, Psat = Prd,rd, and as P increases for all P ≥ Prd,rd, q2 increases monotonically

and q1 decreases monotonically, and they approach constants qk → q̄k :=
√

γ
r1r2
− 1

rk
> 0,

as P → ∞. Intuitively, since in Srd,rd, condition (1 + r1q1)(1 + r2q2) = γ must hold, as

P increases, q1 and q2 both cannot increase. Moreover, since in the case with r ∈ R2,

relay-link RL2 is stronger than RL1, as P increases, the MARC-OPA achieves the best rate

by increasing q2 and decreasing q1. However, since RL2 is not significantly stronger than
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RL1, instead of only in RL2, the MARC-OPA should transmit in both relay-links for all

P ≥ Prd,rd. Thus, q1 and q2 both remain non-zero and approach constant levels as P →∞.

On the other hand, saturation first occurs in LGR Srd,r if the condition of one of

the paths [S2], [S3] or [S6] holds. Here, Psat = max(Prd,r,Pr,r), and Srd,r is active for

only max(Prd,r,Pr,r) ≤ P ≤ Prd,r. When Srd,r is active, for source S2, the MARC-OPA

allocates (p2, q2) = (0, P ). In contrast, for source S1, the MARC-OPA allocates (p1, q1) =

(P − q1,
1
r1

( γ
1+Pr2

− 1)). Clearly, as P increases in this range, q2 = P increases and

q1 = 1
r1

( γ
1+Pr2

−1) decreases, and hence the MARC-OPA follows the same trend as in Srd,rd

discussed above.

Final LGR: For P ≥ Pfin = max(Prd,rd,Prd,r), all paths terminate at the final LGR Srd,rd.

LGR-paths: We first discuss path [S2] in some detail, and interpret its underlying con-

dition 0 < P′d,d < Pr,r < P̂′d,d as follows:

• In this case, each RLk is stronger than its corresponding DLk, k = 1, 2. In terms of

channel gains, this is equivalent to r2 > r1 > d ⇐⇒ 0 < P′d,d < P̂′d,d. Hence, for

P ∈ [0,P′d,d), following the WF-like property the MARC-OPA allocates P entirely to

RL1 and RL2 as in Ar,r, where q1 = q2 = P increase with P , while p1 = p2 = 0.

• As P increases, the return from transmitting only in the relay-links decreases. Due

to condition 0 < P′d,d < Pr,r, for the range of P ∈ [P′d,d,Prd,r), the MARC-OPA

achieves the best rate by transmitting in both DL1 and RL1 as in LGR Ard,r. Hence,

for P ∈ [P′d,d,Prd,r), following the WF-like property the MARC-OPA allocates power

as in Ard,r where p1, q1 and q2 increase with P , and p2 = 0.

• Due to condition 0 < Pr,r < P̂′d,d, as P is increased further to P = Psat = Prd,r,

saturation first occurs in LGR Srd,r as it becomes active. In this LGR, the MARC-

OPA allocates p1 = P − q1, q1 = 1
r1

γ
1+Pr2

− 1
r1
, and p2 = 0, q2 = P , which remains

optimal for the range of P ∈ [Prd,r,Prd,r).

• Finally, for P ≥ Prd,r, LGR Srd,rd becomes active.

Path [S1] is similar to [S2] as the first two LGRs and the final LGR are the same. The

only difference between the two is that condition 0 < P̂′d,d < Pr,r in [S1] is opposite to that

in [S2], and due to this LGR Srd,r in [S2] is swapped with LGR Ard,rd in [S1]. Hence in
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[S1], as P increases, instead of saturation, the MARC-OPA continues to allocate power

according to LGR Ard,rd following the WF-like property. Finally, as P is increased further,

saturation occurs in LGR Srd,rd, which remains active for P ≥ Psat = Prd,rd.

Path [S3] is similar to [S2] except that LGR Ard,r is now skipped. The difference

between the two paths is that as opposed that in [S2], we now have condition Pr,r <

P′d,d < P̂′d,d. Hence, as P is increased, Ard,r is skipped and instead Srd,r becomes active at

P = Psat = Pr,r where saturation occurs first. Finally, for P ≥ Prd,r, LGR Srd,rd is active.

Path [S4] is complementary to [S1] in that each DLk is now stronger than its corre-

sponding RLk, k = 1, 2. In terms of link gains, this is equivalent to d ≥ r2 ≥ r1 ⇐⇒ 0 ≤
P̂d,d ≤ Pd,d. As a result, compared to the first two LGRs Ar,r and Ard,r in [S1], the first

two in [S4] are Ad,d and Ad,rd, while the remaining two LGRs are the same as in [S1].

Similar to [S1], in [S4] for sufficiently small P , the MARC-OPA allocates power following

the WF-like property as LGRs Ad,d, Ad,rd and Ard,rd become active, and then saturation

occurs in LGR Srd,rd for P ≥ Psat = Prd,rd. The details are similar to those of [S1], and

hence are omitted.

Finally, for the case of r2 > d > r1, where DL1 is stronger than RL1 and DL2 is weaker than

RL2, the MARC-OPA follows [S5], [S6] and [S7] in a manner similar to that of [S1], [S2]

and [S4] respectively. While the exact thresholds of P and specific LGRs in a path vary

depending on a given set of channel parameters (r1, d1, r2, d2, γ), overall the the MARC-

OPA allocates the link-powers in accordance to its WF-like and saturation properties. The

details are omitted to avoid repetition.

Case r ∈ RS2:

In this case, we have 10 paths, denoted [T3], . . . , [T7] and [N1], . . . , [N5] and given in Table

4.5. Note that paths [T3], . . . , [T7] are the counterparts of paths [S3], . . . , [S7] in Table 4.4

with Sd,rd appended as the final LGR, and thus are denoted in this manner. Also, paths

[S1] and [S2] do not have any counterparts here, and thus [T1] and [T2] are not defined.

Moreover, paths [N1], . . . , [N5] are valid exclusively for r ∈ RS2.

Similar to the case with r ∈ R2, the conditions in Table 4.5 are mutually exclusive

for r ∈ RS2. Moreover, similar to those for the case with r ∈ R2, we have omitted the

boundary cases in which one or more inequalities in the condition of an LGR-path hold

with equality. In such boundary cases one or more LGRs become empty, and the simplified

LGR-path is then obtained by omitting the empty LGRs.
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Table 4.5: LGR paths for r ∈ RS2. Table 4.3 provides the threshold powers in terms of
link gains and γ. Each path originates from one of three different LGRs Ar,r,Ad,d or Ad,r,
and they terminate at the final LGR Sd,rd. If for certain values of link gains and γ, some
LGR in the path becomes empty, the path is simplified by omitting the empty LGRs.

LGR path Condition Interval of P in each LGR

[T3] : Ar,r → Srd,r → 0 < Pr,r < P′d,d < P̂′d,d, [0,Pr,r), [Pr,r,Prd,r),

Srd,rd → Sd,rd and Prd,r ≤ Pd,r [Prd,r,Pd,rd), [Pd,rd,∞)

[N1] : Ar,r → Srd,r → 0 < Pr,r < P′d,d < P̂′d,d, [0,Pr,r), [Pr,r,Pd,r),

Sd,rd and Prd,r > Pd,r [Pd,r,∞)

[T4] : Ad,d → Ad,rd → 0 < P̂d,d < Pd,d < Pd,rd [0, P̂d,d), [P̂d,d,Pd,d),

Ard,rd → Srd,rd → [Pd,d,Prd,rd), [Prd,rd,Pd,rd),

Sd,rd [Pd,rd,∞)

[N2] : Ad,d → Ad,rd → 0 < P̂d,d < Pd,rd < Pd,d [0, P̂d,d), [P̂d,d,Pd,rd),

Sd,rd [Pd,rd,∞)

[T5] : Ad,r → Ard,r → 0 < Pd,d < P̂′d,d [0,Pd,d), [Pd,d, P̂
′
d,d),

Ard,rd → Srd,rd → < Prd,r < Pd,r [P̂′d,d,Prd,rd), [Prd,rd,Pd,rd),

Sd,rd [Pd,rd,∞)

[T6] : Ad,r → Ard,r → 0 < Pd,d < Prd,r < P̂′d,d < Pd,r, [0,Pd,d), [Pd,d,Prd,r),

Srd,r → Srd,rd → or 0 < Pd,d < Prd,r [Prd,r,Prd,r), [Prd,r,Pd,rd),

Sd,rd < Pd,r < P̂′d,d [Pd,rd,∞)

[T7] : Ad,r → Ad,rd → 0 < P̂′d,d < Pd,d < Pd,r, or [0, P̂′d,d), [P̂′d,d,Pd,d),

Ard,rd → Srd,rd → 0 < P̂′d,d < Pd,r [Pd,d,Prd,rd), [Prd,rd,Pd,rd),

Sd,rd < Pd,d < Pd,rd [Pd,rd,∞)

[N3] : Ad,r → Ard,r → 0 < Pd,d < Pd,r [0,Pd,d), [Pd,d,Prd,r),

Srd,r → Sd,rd < Prd,r < P̂′d,d [Prd,r,Pd,r), [Pd,r,∞)

[N4] : Ad,r → Ad,rd → 0 < P̂′d,d < Pd,r [0, P̂′d,d), [P̂′d,d,Pd,rd),

Sd,rd < Pd,rd < Pd,d [Pd,rd,∞)

[N5] : Ad,r → Sd,rd 0 < Pd,r < min(P̂′d,d,Pd,d) [0,Pd,r), [Pd,r,∞)
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Initial LGR: While [T3] and [N1] originate from the initial LGR Ar,r, [T4] and [N2]

originate from LGR Ad,d, and [T5], . . . [N5] originate from LGR Ad,r. The initial LGRs

vary depending on how d compares to r1 and r2 as in the case of r ∈ R2, hence is not

repeated here.

Saturation Cases: Saturation first occurs in one of LGRs Srd,rd, Sd,rd and Srd,r.

Saturation first occurs in Srd,rd if the condition of one of the paths [T4], [T5] or [T7] is

met. Here, Psat = max(Prd,r,Prd,rd). Unlike in case r ∈ R2, LGR Srd,rd is now active only

for the finite range of P , i.e., max(Prd,r,Prd,rd) ≤ P ≤ Pd,rd. Intuitively, when r ∈ RS2,

relay-link RL2 is significantly stronger than RL1 (i.e., r2 > γr1). Hence, transmitting in both

relay-links as in Srd,rd is optimal only for a finite range of P . In fact, for all P sufficiently

large, transmitting only in the significantly stronger link RL2 turns out to be optimal.

Saturation first occurs in Srd,r if the condition of one of the paths [T3], [N1], [T6] or

[N3] hold. Here, Psat = max(Prd,r,Pr,r), and Srd,r is active for the range max(Prd,r,Pr,r) ≤
P ≤ min(Prd,r,Pd,r).

Finally, saturation first occurs in Sd,rd when the condition of one of the paths [N2], [N4]

or [N5] hold. Here, for all P ≥ Psat = max(Pd,r,Pd,rd,Pd,rd), LGR Sd,rd is active. Note that

in Sd,rd, as P increases, q2 = γ−1
r2

> 0 and q1 = 0 are fixed, and all additional increments of

P are allotted to the direct-links only. Intuitively, since RL2 is significantly stronger than

RL1, for all P ≥ Psat, the best rate is achieved by transmitting only in RL2.

Final LGR: For P ≥ Pfin = max(Pd,rd,Pd,rd,Pd,r), all paths terminate at final LGR Sd,rd.

LGR-paths: Since paths [T3], . . . , [T7] can be interpreted similarly to paths [S3], . . . , [S7],

they are not detailed here. Hence, we only discuss paths [N1], . . . , [N5] briefly.

Path [N1] is similar to [T3] with Srd,rd skipped. In contrast to [T3], we now have

Pd,r < Prd,r, and hence the allocation of Srd,rd is suboptimal. Therefore, as P increases and

P > Pd,r, LGR Srd,rd is skipped, and the MARC-OPA allocates the link powers according

to Sd,rd for all P ≥ Pd,r.

Path [N2] is similar to [T4] with Ard,rd and Srd,rd skipped. The conditions for [N2]

simplifies to r2 ≥ r1(2γ − 1). Due to this, RL2 is so much stronger than RL1 that, for all

P ≥ 0, the best rate is achieved by transmitting solely in RL2 and not transmitting in RL1
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Figure 4.5: Path [S5] with (r1, r2, d, γ) = (1, 2.9, 1.3, 3). For P < Psat = 0.62, all link

powers follow the WF-like property. At P = Psat, saturation occurs in LGR Srd,rd and it

remains active for all P ≥ Psat.

at all. Thus, compared to [T4] where non-zero power is allocated to RL1 in LGRs Ard,rd

and Srd,rd, these LGRs are now suboptimal and need to be skipped here.

Likewise, [N3] is similar to [T6] with Srd,rd skipped, [N4] to [T7] with Ard,rd and Srd,rd

skipped, and [N5] to [N4] with Ad,rd skipped. The conditions for these paths can be

interpreted in a manner similar to those discussed above, and hence are not detailed.

Numerical Examples: We now illustrate examples of paths [S5] and [T5] in Figure 4.5

and Figure 4.6 respectively by plotting the optimal link powers against budget P for

parameters (r1, r2, d, γ) as noted in the respective figures. In each example, the analytical

expression of powers (marker-line) indeed match their numerically computed counterparts

(solid line) using the CVX package [133]. We also verify that the MARC-OPA follows the

respective paths by labeling the active LGRs in the relevant intervals.

In Figure 4.5, we verify path [S5] where Psat = Pfin = Prd,dr = 0.62. Here, LGR Ad,r

is first active for 0 ≤ P < Pd,d, where p1 = q2 = P , while q1 = p2 = 0. Then, for

Pd,d ≤ P < P̂d,d, LGR Ard,r becomes active where, in addition to p1 and q2, q1 increases

with P as well. As P increases, for P̂′d,d ≤ P < Psat, LGR Ard,rd is active where all 4 powers
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Figure 4.6: Path [T5] with (r1, r2, d, γ)=(1, 4, 1.52, 3). For P <Psat =0.49, all link powers

follow the WF-like property. Saturation first occurs at P = Psat and LGR Srd,rd becomes

active. For P ≥ Pfin = 1.34, LGR Sd,rd is active where q2 = 1/2 and q1 = 0 remain fixed.

increase with P . Finally, for P ≥ Psat, saturation occurs in Srd,rd where q2 increases and q1

decreases towards limits q̄2 = 0.67 and q̄1 = 0.02 (not shown in Figure 4.5), while p1 and

p2 grow unbounded with P .

We similarly verify [T5] in Figure 4.6 and omit the details since in [T5], the first 4 LGRs

are the same as those of [S5] in Figure 4.5. Nevertheless, for [T5] while saturation occurs

at Psat = Prd,rd = 0.49 in Srd,rd, unlike in [S5], the final LGR is Sd,rd where q2 =0.5, q1 = 0

are fixed for all P ≥ Pfin = 1.34.

4.4.5 Optimal Power Allocation for the Symmetric Case

For the symmetric case with d = d1 = d2 and r = r1 = r2, considering a symmetric

power allocation of the form (p, q, p, q) is sufficient. The optimal power allocation scheme

(the MARC-OPA) for this case is presented in Table 4.6. Due to symmetry, only 3 LGRs

Ad,d,Ar,r and Ard,rd are sufficient to describe the Waterfilling-like property, while only one

LGR Srd,rd is needed to describe the saturation property.

Moreover, in this case only 3 LGR-paths, [S̃1], [S̃2] and [S̃3], are valid which are

presented in Table 4.7 along with the underlying conditions on channel gains and the
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Table 4.6: For the symmetric case with γ > 1 definition of LGRs and optimal link powers are

given in terms of channel parameters c = (r, d, γ, P ), where γ is defined in (4.39).

Definition of LGR Optimal Power Allocation

Ad,d := {c : 0 ≤ P ≤ 1
r −

1
d} p = P, q = 0

Ar,r := {c : 0 ≤ P ≤ min
(

1
d −

1
r ,

γ1/2−1
r

)
} p = 0, q = P

Ard,rd := {c : max
(

1
r −

1
d ,

1
d −

1
r

)
< p =

1

2

(
P +

1

r
− 1

d

)
, q =

1

2

(
P − 1

r
+

1

d

)
P < 2γ1/2−1

r − 1
d}

Srd,rd := {c : max
(
γ1/2−1

r , 2γ1/2−1
r − 1

d

)
≤ P p = P − γ1/2 − 1

r
, q =

γ1/2 − 1

r

intervals of the LGRs. In particular, we observe the following

• if d ≥ r (i.e., direct-links are stronger than relay-links), path [S̃3] is followed. Since

direct-links are stronger, for P ∈ [0, 1
r
− 1

d
), the MARC-OPA transmits only in the

direct-links as in Ad,d. Then, for P ∈ [1
r
− 1

d
, 2γ1/2−1

r
− 1

d
), all 4 links are allocated

power in a WF-fashion as in Ard,rd. Finally, for all P ≥ Psat = 2γ1/2−1
r
− 1

d
, saturation

occurs in Srd,rd, where q = γ1/2−1
r

remains fixed.

• if d < r ≤ dγ1/2 (i.e., relay-links are stronger but not significantly stronger than

direct-links), path [S̃1] is followed. Since relay-links are stronger, for P ∈ [0, 1
d
− 1

r
),

the MARC-OPA now transmits only in the relay-links as inAr,r. Then, as P increases,

LGRs Ard,rd and Srd,rd are followed as above for path [S̃3].

• if r > dγ1/2 (relay-links are significantly stronger), path [S̃2] is followed. When

P ∈ [0, γ
1/2−1
r

), the MARC-OPA transmits only in relay-links as in Ar,r until they

saturate, and then for P ≥ Psat = γ1/2−1
r

, the relay-links saturate and Srd,rd becomes

active.

The Optimal Power Allocation in the Large Millimeter-Wave Bandwidth Regime

It is interesting to study how the optimal power allocation for the symmetric case behaves

as the mm-wave bandwidth becomes large. Recall that the direct- and relay-links in the
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Table 4.7: LGR paths for the symmetric case. Each path originates from one of two initial
LGRs Ar,r or Ad,d, and terminate at the final LGR Srd,rd.

LGR path Condition Interval of P in each LGR

[S̃1] : Ar,r → Ard,rd → Srd,rd d < r ≤ dγ1/2 [0, 1
d −

1
r ) , [1

d −
1
r ,

2γ1/2−1
r − 1

d) , [2γ1/2−1
r − 1

d ,∞)

[S̃2] : Ar,r → Srd,rd r > dγ1/2 [0, γ
1/2−1
r ) , [γ

1/2−1
r ,∞)

[S̃3] : Ad,d → Ard,rd → Srd,rd d ≥ r [0, 1
r −

1
d) , [1

r −
1
d ,

2γ1/2−1
r − 1

d) , [2γ1/2−1
r − 1

d ,∞)

DR-MARC are modeled as point-to-point AWGN channels with a bandwidth-mismatch

factor (BMF) of α. For example, consider the S1-D1 direct-link with transmit power p, link

gain d
1/2
0 , and noise variance N , for which the achievable rate is given by α log

(
1 + d0p

N

)
as

in (4.30). In the previous settings, since the mm-wave bandwidth (BW) was considered to

be a fixed constant, the BMF α and the noise variance N were also taken to be constant,

e.g., N was taken to be N = 1 in (4.7).

When the mm-wave BW increases, the noise variance N as well as the BMF α increases

proportionally, which can be modeled by defining N := N0w and α := α0w for some

N0, α0, w > 0. Then, the large BW regime is modeled by having w → ∞. For the S1-D1

direct-link described above, the achievable rate is now given by

α0w log

(
1 +

d0p

wN0

)
= α0w log

(
1 + d

p

N0

)
, (4.43)

with the identification α = α0w and d = d0
w

, which capture the effect of varying BW. For

the other direct-link, two relay-links, and the relay-destination link in the mm-wave band

after similarly capturing the effect of varying BW, the resulting link gains and BMF are

given by

α = α0w, d =
d0

w
, r =

r0

w
, ḠRD =

ḠRD,0

w
. (4.44)

We now examine the effect of large BW, i.e., w → ∞, on the optimal power allocation

of Table 4.6. First, from the definition of σD and σR in (4.32), parameter γ1/2 in (4.39)

simplifies as follows

γ1/2 = 2
(σD−σR)

2α
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= 2(E[C̃(G1DP1+G2DP2+GRDPR)]−E[C̃(G1RP1+G2RP2)])/2α · 2(log(1+ḠRDP̄R))/2

(a)
= 2δ/α

(
1 + ḠRDP̄R

)1/2

(b)
= 2δ/α0w

(
1 +

ḠRD,0

w
P̄R

)1/2

(c)
= e

δ
α0w

loge 2

(
1 +

ḠRD,0

w
P̄R

)1/2

(d)
≈
(

1 +
δ

α0w
loge 2

) (
1 +

ḠRD,0

2w
P̄R

)
(e)
≈ 1 +

1

w
Γ + o(1/w) (4.45)

where (a) follows from defining δ := 1/2(E[C̃(G1DP1 + G2DP2 + GRDPR)] − E[C̃(G1RP1 +

G2RP2)]), (b) follows from expressing BMF α and link gains as in (4.44), (c) follows

from expressing 2δ/α0w as e
δ

α0w
loge 2

, (d) follows from e
δ

α0w
loge 2 ≈ 1 + δ

α0w
loge 2, and(

1 +
ḠRD,0

w
P̄R

)1/2

≈
(

1 +
ḠRD,0

2w
P̄R

)
, for large w, and finally in (e), the quadratic term

is presented as o(1/w) such that o(1/w)
1/w

→ 0, as w →∞, and Γ =
(
δ loge 2
α0

+
ḠRD,0

2
P̄R

)
.

As a result, accounting for the link gains in (4.44) and the parameter γ1/2 in (4.45), for

large w, i.e., w →∞, the threshold power γ1/2−1
r

in Table 4.6 simplifies to

γ1/2 − 1

r
≈ 1 + Γ/w − 1

r0/w

=
Γ

r0

. (4.46)

Similarly, the other threshold powers in Table 4.6 simplify to

1

r
− 1

d
= w

(
1

r0

− 1

d0

)
,

1

d
− 1

r
= w

(
1

d0

− 1

r0

)
,

2γ1/2 − 1

r
− 1

d
≈ w

(
1

r0

− 1

d0

)
+

2Γ

r0

.

As presented in Table 4.6, the optimal power allocation in the symmetric case is described

by 4 LGRs, Ad,d,Ar,r,Ard,rd, and Srd,rd. Simple algebraic manipulations reveal that as

w → ∞, LGR Ard,rd approaches the empty set. This leaves only 3 LGRs, and thus the

optimal power allocation for large BW, where w →∞, simplifies as follows:

• if d0 ≥ r0, the power budget P is entirely allocated to the direct-links for all P ≥ 0.

• if d0 < r0, when P ≤ γ1/2−1
r
≈ Γ

r0
, the budget P is entirely allocated to the relay-
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links; instead, when P > Γ
r0

, the relay-links are saturated with power q ≈ Γ
r0

, and all

additional increments of P are allotted to the direct-links only.

In the large BW regime, allocating power in both direct and relay-links in Waterfilling-

like fashion as in LGR Ard,rd is suboptimal. In this regime, when transmitting in either

the set of direct-links or the set of relay-links, due to w → ∞, the marginal return from

allocating additional power to the same set of links remains constant, as opposed to reducing

as in the regime with finite w. Thus, as P increases, it is beneficial to continue transmitting

in the same set of links, and it is suboptimal to allocate a fraction P to the other type

of link as in Ard,rd. For example, when d0 ≥ r0, i.e., when budget P is allocated entirely

to the direct-links, and thus p = P , the achievable rate in the S1-D1 direct-link in (4.43)

simplifies to the following, as w →∞
α0w

2
log

(
1 +

d0P

wN0

)
→ α0w

2

d0P loge 2

wN0

=
α0d0 loge 2

2N0

P. (4.47)

Therefore, the marginal return from allocating additional increments of P to the direct-

links is constant, and thus for all P ≥ 0, it is optimal to transmit in the direct-links only

as in Ad,d. Alternatively, when d0 < r0, the achievable rates for the relay-links behave

similarly as w →∞, and thus transmitting only in the relay-links is optimal for P smaller

than the saturation threshold. However, for P larger than the threshold, the relay-links

become saturated, and all additional increments of P are alloted to the direct-links, as in

Srd,rd.

Optimum power allocation in a 2-D topology

We now illustrate how the mode of optimal link powers varies as the source locations vary.

For this, we consider the 2-D topology of Figure 4.3a, where R and D are located on the

x-axis at (0, 0) and (0, dRD), while the sources are located at (−dSR cosφ,±dSR sinφ) with φ

being the angle between the sources and the relay. Due to symmetric source placement, the

resulting link gains are symmetric, i.e., d = d1 = d2 and r = r1 = r2, which simplifies the

power allocation. Moreover, similar to the Section 4.2.5, the microwave band is assumed

to be under phase fading, whereas the mm-wave fading gains are taken to be constant.

More specifically, from node s to t, the microwave fading gains are Gst = 1/dβ1
st , while the

mm-wave relay-link gains are r = 1/dβ2

SR and the mm-wave direct-link gains are d = 1/dβ2

SD,

where d(.,.) is the inter-node distance and β1, β2 are path-loss coefficients in the two bands.

For illustration, we take the following parameters Pk = 10, k ∈ {1, 2,R}, P̄R = 1,
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Figure 4.7: For the 2-D network topology of the DR-MARC in Figure 4.3a, the source

locations are at coordinates (x,±y). The source locations are partitioned into several

regions, for each of which the optimal transmission mode for the mm-wave links are labeled.

β1 = 2, β2 = 4, α = 2, while the power budget is P = 10. We then plot the source

locations in Figure 4.7 by varying φ ∈ (0, π) and dSR ∈ (0, 4) for fixed dRD = 1 unit, and

partition this space based on which mode of mm-wave transmission is optimal. First, in

region L1, sources are much closer to the relay than the destination in that σR ≥ σD (i.e.,

γ ≤ 1), with σR, σD and γ defined in (4.30), (4.31) and (4.39). Therefore, for sources

located in L1, it is optimal to transmit only in the direct-links for all P ≥ 0.

All regions except L1, correspond to the case of γ > 1, and depending on the budget

P and source locations (i.e., the resulting direct-link and relay-link gains), the optimal

transmission mode in different regions vary. For example, the sources in the region labeled

Ar,r are not as close to the relay as in L1 but are sufficiently close to the relay such that

0 < P ≤ dβ2

SD−d
β2

SR holds. Hence, for these source locations, allocating the budget P entirely

to the relay-links is optimal. On the other hand, the sources in the region labeled Ad,d are

sufficiently close to the destination in that 0 < P ≤ dβ2

SR − dβ2

SD holds. Hence, it is optimal

to allocate the budget P entirely to the direct-links. As opposed to these two regions, the

sources in the region labeled Ard,rd are at an intermediate distance from the relay and the

destination in that P < (2γ1/2 − 1)dβ2

SR − dβ2

SD holds. Here, transmitting in all 4 links as in

Ard,rd is optimal. Finally, sources in the region Srd,rd are such that P ≥ (2γ1/2 − 1)dβ2

SR−d
β2

SD

hold. Here, saturation occurs, and allocating power as in Srd,rd is optimal. Clearly, for fixed

dSR, dSD and γ, as P increases, the region labeled Srd,rd grows.
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4.5 Summary

In this chapter, we studied the performance of the fading MARC over the integrated mm-

wave/microwave dual-band, where the mm-wave links to the relay and to the destination

are modeled as non-interfering AWGN links. We showed that the capacity of the DR-

MARC can be decomposed into the capacity of the underlying R-MARC and the two mm-

wave direct-links, hence the direct-links can be operated independently of the R-MARC

without compromising optimal rates. Next, we characterized an achievable region for the

R-MARC, which is then shown to achieve the capacity region of the R-MARC under a set

of sufficient channel conditions, denote the jointly-near conditions. This shows that even

when the sources are not near in the underlying microwave c-MARC, for sufficiently strong

source-relay mm-wave links, they become jointly near over both bands such that capacity

is characterized in closed form.

Next, we studied the optimal power allocation over the mm-wave links that maximizes

the achievable sum-rate of the DR-MARC for the case where the fading gains of the mm-

wave links are geometry dependent constants. The resulting scheme allocates power in

different modes depending on the power budget P and the link gains (i.e., according to the

active link gain regime), and all such modes were characterized. When the budget P is

sufficiently small, it is entirely allocated only to the strongest of the relay- and direct-links,

and as P increases but remains below the saturation threshold, power is allocated to other

links as in Waterfilling solution. However, for P above the so-called saturation threshold,

if one relay-link is stronger but not significantly stronger than the other, power in the two

links respectively increases and decreases with P and approach non-zero levels as P →∞.

Otherwise, power in the significantly stronger relay-link is fixed at a constant while that

in the other is zero.

Moreover, in the large mm-wave bandwidth regime, if the direct-links are stronger

than relay-links, budget P should be allocated entirely to the direct-links for all P ≥ 0.

Alternatively, if the relay-links are stronger, P should be allocated entirely to the relay-

links until they saturate, and then all subsequent increments of P should be allocated to

the direct-links only.

These results illustrate the benefits of relay-cooperation and the impact of point-to-

point mm-wave links on the performance of the dual-band MARC, and thus they can be

useful in practical resource allocation in dual-band uplink scenarios.
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Chapter 5

The Multiple Access Interference

Channel

Inter-user interference, caused by transmission of other users in a shared medium, is a

common source of performance bottleneck in wireless communication. In cellular commu-

nication settings, such interference is typically caused by base stations and users in neigh-

boring cells that operate at the same carrier frequency. Since interference is a common

impairment in wireless networks, means to mitigate interference has been widely studied

in the literature [10,12,100,139,140].

In this chapter1, we study the multiple-access interference channel (MAIC) operating

solely in the microwave band. The MAIC models the interference-limited communication

between a pair of two-user multiple-access channels that operate in two neighboring cells

over the same shared band, and thus mutually interfere. In typical cellular communication,

multiple transmitters communicate to a single receiver simultaneously. For example, in

the cellular uplink, multiple users transmit to the base station and form a multiple-access

channel (MAC). Hence, the MAIC models communication when two such MACs mutually

interfere, and thus provides a more realistic model of cellular interference.

The performance of the MAIC is limited due to the presence of noise as well as inter-

ference. While increasing the transmit power of all users helps to safeguard transmissions

against noise, the power in the resulting inter-user interference also increases proportion-

ally. This increased interference can then constitute a possible major bottleneck to the

performance. Hence, understanding how interference should be handled by, e.g., decoding

1The results of this chapter (except for Section 5.4) have been published in [140].
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it, treating it as noise or some other scheme, is immensely helpful in characterizing useful

strategies for the MAIC.

Similar to the two-user interference channel (IC), the capacity of the Gaussian MAIC

(GMAIC) is known only in a few specific regimes [12,113,141]. For example, if the interfer-

ence is strong, jointly decoding the two interfering messages along with the two intended

messages as in a four-user Gaussian MAC proves optimal for certain subsets of the strong

interference regime [12].

In contrast, the MAIC with weak interference models a more practical setting of cellular

interference such as the following: when the users in a cell interferes with the base station

of another cell, since the interfering users are located at a farther distance than the desired

users, the resulting power in the interference is typically smaller than the power in the

desired signals. While the weak MAIC effectively models such settings, neither jointly

decoding interference nor treating interference as noise (TIN) is optimal in this regime.

Since characterizing the capacity region of the MAIC is highly non-trivial in general,

recent studies have focused on characterizing the sum-rate performance of the GMAIC.

In [12, eq.(13)], a sum-rate upper bound was characterized for the GMAIC which performs

well for very small values of the cross-channel gains. However, numerical studies show that

as the cross-channel gains increases within the weak interference regime, the gap between

the upper bound and the TIN achievable sum-rate increase consistently and becomes large.

Moreover, the sum-rate of the GMAIC has also been studied in [113]. However, as discussed

in Section 2.2.2, the channel model, the exact definition of weak interference, and the upper

bounding approach are all different from those in [12]. While a constant gap result for the

sum-rate has been proposed in the study of [113], this gap has only been shown to exist,

and neither the exact numerical value of the gap, nor the exact set of channel gains for

which this gap holds, has been characterized.

In this chapter, we study the performance limits of the GMAIC, and focus primarily

on the weak MAIC which is of more practical interest. Note that the usual terminologies

of the MAIC such as the channel model and the definition of weak and strong interference

regimes in [12] can be regarded as natural extensions of the same for the IC [100], and

hence the notations for this chapter are adopted from [12].

First, we characterize an achievable region for the MAIC based on the Han-Kobayashi

encoding (HK) scheme for the IC [7]. We then focus on the sum-rate, and characterize

several genie-signal aided sum-rate upper bounds and an outer bound to the capacity region

134



of the channel.

The contributions of this chapter are summarized as follows:

• Achievable rate region for the discrete memoryless (DM) MAIC: In Section 5.2, we

provide an achievable region for the DM-MAIC based on the HK strategy, where each

transmitter splits its message into a private and a common part, and each receiver is

allowed to decode the common part of the interfering message non-uniquely.

• Achievable rate region for the Gaussian MAIC: for the GMAIC, directly adapting

the achievable scheme from the DM-MAIC results in a non-computable region due

to a possible large cardinality of the time-sharing variable Q. We characterize a

computable region by limiting Q ∈ Q = {1, 2} and adapting the operation at the

transmitters depending on the state of Q.

• Sum-rate upper bounds for the partially symmetric GMAIC: Focusing on the partially

symmetric case (to be defined in the next section), we derive three novel upper

bounds on the sum-rate of the weak GMAIC by providing different genie-signals

to the receivers. We also simplify the first upper bound to a closed form for the

completely symmetric case where all cross-channel gains are the same. Numerical

examples demonstrate that for a wide range of cross-channel gains, the achievable

sum-rate and one of the sum-rate upper bounds differ only by a small numerical gap,

thus providing good approximations to the sum-capacity in these cases.

• For the general GMAIC without any symmetry, we characterize a sum-rate upper

bound for the weak interference case. We then characterize a set of outer bounds to

the capacity region of the GMAIC that is valid for any interference regime.

The rest of the chapter is organized as follows: The system model is defined in Sec-

tion 5.1. The achievable region is characterized in Section 5.2. In Section 5.3, the sum-rate

upper bounds for the partially symmetric GMAIC are characterized, and numerical exam-

ples are presented. In Section 5.4, the capacity region outer bound is derived, and finally,

a summary is provided in Section 5.5.

5.1 System Model

The MAIC consists of two interfering 2-user MACs as depicted in Figure 5.1. In the first

MAC, sources S1 and S2 send independent messages M1 and M2 to destination D1, while in
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Figure 5.1: A depiction of the MAIC where the multiple-access channel from sources S1 and

S2 to D1 and the multiple-access channel from sources S3 and S4 to D2 mutually interfere.

the second MAC, sources S3 and S4 communicate their independent messages M3 and M4

to destination D2. However, due to the nature of the shared medium, transmissions from

all sources superimpose at both destinations, and thus cause mutual interference between

the two MACs.

First, we consider the discrete memoryless MAIC as depicted in Figure 5.2.

Definition 5.1 (The DM-MAIC). The DM-MAIC is defined by the tuple ((Xk)4
k=1,Y1,Y2,

pY1,Y2|X1,X2,X3,X4(y1, y2|x1, x2, x3, x4)) where Xk, k ∈ {1, 2, 3, 4} are finite, discrete input al-

phabets, Y`, ` ∈ {1, 2} are finite, discrete output alphabets, and the channel transition law

is defined as pY1,Y2|X1,X2,X3,X4(y1, y2|x1, x2, x3, x4).

The transmission from the sources are uncoordinated, and hence the transmitted mes-

sages are assumed to be independent. Since the channel is discrete memoryless, the channel

probability mass function (pmf) after n channel uses factors as

p(yn1 , y
n
2 |xn1 , xn2 , xn3 , xn4 ) =

n∏
i=1

p(y1i, y2i|x1i, x2i, x3i, x4i). (5.1)

Definition 5.2 (Code for the DM-MAIC). A (2nR1 , 2nR2 , 2nR3 , 2nR4 , n) code for the DM-

MAIC consists of (i) four uniformly distributed message sets, Mk = {1, . . . , 2nRk}, one

for each source Sk, k ∈ {1, 2, 3, 4}; (ii) an encoder for each source φk : Mk → X n
k , k ∈

{1, 2, 3, 4}; and (iii) two decoders ψ1 and ψ2 for destinations D1 and D2 such that ψ1 :

Yn1 →M1 ×M2 and ψ2 : Yn2 →M3 ×M4.

The probability of decoding error for the DM-MAIC is defined as

P (n)
e := P[ψ1(Y n

1 ) 6= (M1,M2) ∪ ψ2(Y n
2 ) 6= (M3,M4)],

where all messages are independent of each other and distributed uniformly.
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Figure 5.2: The discrete memoryless MAIC (DM-MAIC).

Definition 5.3 (Achievable rate for the DM-MAIC). A rate tuple (R1, R2, R3, R4) is said

to be achievable for the DM-MAIC if there exists a sequence of (2nR1 , 2nR2 , 2nR3 , 2nR4 , n)

codes such that P
(n)
e → 0, as n→∞.

Moreover, the capacity region of the MAIC, denoted by CMAIC, is defined as the closure

of the set of all achievable rate tuples. Finally, the sum-capacity is defined as

CS := max
(R1,R2,R3,R4)∈CMAIC

R1 +R2 +R3 +R4. (5.2)

The Gaussian MAIC

In this work, we mostly focus on the real Gaussian MAIC (GMAIC), depicted in Figure 5.3,

where the channel coefficients are real-valued, fixed and known throughout the network [12].

The channel outputs at D1 and D2 at the i-th channel use are given by

Y1,i = X1,i +X2,i + h3X3,i + h4X4,i + Z1,i,

Y2,i = h1X1,i + h2X2,i +X3,i +X4,i + Z2,i, i = 1, . . . , n (5.3)

where h3 and h4 are the cross-channel coefficients from S3 and S4 to D1, whereas h1 and h2

are the cross-channel coefficients from S1 and S2 to D2. The direct-channel coefficients from

the sources to their designated destinations in the individual MACs, e.g., the coefficient

for the channel from S1 to D1, are assumed to be 1. The input codewords Xn
k ∈ Rn are

assumed to be block power constrained, i.e., 1
n

∑n
i=1 E[X2

k,i] ≤ Pk, k ∈ {1, 2, 3, 4}. Finally,

the noise samples are Z1,i ∼ N (0, 1), i.i.d., and Z2,i ∼ N (0, 1), i.i.d.

We focus mostly on the GMAIC with weak interference, where the magnitude of the

cross-channel coefficients are smaller than that of the direct-channels, i.e.,

h2
k < 1, k ∈ {1, 2, 3, 4}. (5.4)
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,

Figure 5.3: The Gaussian MAIC (GMAIC) as defined in [12].

A (2nR1 , 2nR2 , 2nR3 , 2nR4 , n) code and an achievable rate pair for the GMAIC are defined

from those of the DM-MAIC given in Def. 5.2 and Def. 5.3, respectively, by choosing all

codeword alphabets to be R and imposing average power constraints on the codewords

Xn
k , k ∈ {1, 2, 3, 4}. Hence they are not repeated here.

Note that while the results included in this chapter are for the MAIC with real channel

coefficients, these results can be extended to the case with complex channel coefficients

following similar techniques.

Moreover, the MAIC can be considered a special case of the k × m-user X channel

[142, 143] after restricting k and m to k = 4,m = 2, and eliminating all messages from

the first and second sources to the second destination and all messages from the third

and fourth sources to the first destination. However, we have used a different achievable

strategy as compared to those in [142,143] for the X channel. Moreover, the outer bounding

techniques for the X channel in [142, 143] provide loose bounds for the MAIC in general,

and thus we proposed novel genie-aided bounds that provide better results.

5.2 Achievable Region for the MAIC

First, we derive an achievable region for the DM-MAIC based on the HK scheme [7] for

the IC. We then adapt it to the GMAIC.
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5.2.1 An Achievable Region for the DM-MAIC

Let P be the set of joint pmfs p on the random variables (Q,U1, X1, U2, X2, U3, X3, U4, X4)

that factor as

p = pQ(q)
4∏

k=1

pUk,Xk|Q(uk, xk|q). (5.5)

We thus have the following achievable region for the DM-MAIC.

Theorem 5.1 (An achievable Region for the DM-MAIC). The region A := ∪p∈P (R1(p) ∩R2(p))

is achievable for the DM-MAIC, where the union is over all p ∈ P that factors as (5.5),

and for a given p,

R1(p) := {(R1, R2, R3, R4) � 0 | ∃(R10, R20, R30, R40) � 0, (5.6)

such that

R10 < R1, (5.7)

R20 < R2, (5.8)

R30 < R3, (5.9)

R40 < R4 (5.10)

R1 −Ra0 < I(X1;Y1|Ua, X2, U3, U4, Q) (5.11)

R2 −Rb0 < I(X2;Y1|Ub, X1, U3, U4, Q) (5.12)

R1 +R2 −Ra0 −Rb0 < I(X1, X2;Y1|Ua, Ub, U3, U4, Q) (5.13)

R1 −Ra0 +R30 < I(X1, U3;Y1|Ua, X2, U4, Q) (5.14)

R2 −Rb0 +R30 < I(X2, U3;Y1|Ub, X1, U4, Q) (5.15)

R1 +R2 −Ra0 −Rb0 +R30 < I(X1, X2, U3;Y1|Ua, Ub, U4, Q) (5.16)

R1 −Ra0 +R40 < I(X1, U4;Y1|Ua, X2, U3, Q) (5.17)

R2 −Rb0 +R40 < I(X2, U4;Y1|Ub, X1, U3, Q) (5.18)

R1 +R2 −Ra0 −Rb0 +R40 < I(X1, X2, U4;Y1|Ua, Ub, U3, Q) (5.19)

R1 −Ra0 +R30 +R40 < I(X1, U3, U4;Y1|Ua, X2, Q) (5.20)

R2 −Rb0 +R30 +R40 < I(X2, U3, U4;Y1|Ub, X1, Q) (5.21)

R1 +R2 −Ra0 −Rb0 +R30 +R40 < I(X1, X2, U3, U4;Y1|Ua, Ub, Q)}, (5.22)

for all a ∈ {∅, 1} and b ∈ {∅, 2}, with R∅0 := 0 and U∅ := ∅, and I(.) terms computed

with the given distribution p ∈ P. Region R2(p) is defined by the region found by swapping

indexes 1↔ 3, 2↔ 4 and signal Y2 ↔ Y1 in R1(p).
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Proof. The proof is relegated to Appendix D.1. �

While the proof is relegated to Appendix D.1, we briefly outline the key points here.

First, the time-sharing variable Q is used to time-share between different achievable strate-

gies. For example, each realization of Q may correspond to a different distribution of the

associated random variables satisfying (5.5), each resulting in a specific achievable region,

and the overall achievable region is then obtained by averaging over all such rate regions.

However, irrespective of a specific instance of Q, the same encoding and decoding strategies

are deployed. Hence, for brevity we omit the time sharing variable and explain the basic

principles behind the encoding and decoding strategies.

The achievable region is derived using arguments similar to that for the Han-Kobayashi

scheme in [7] for the IC. More specifically, here source Sk, k ∈ {1, 2, 3, 4} partitions its mes-

sages Mk (with rate Rk) into a common message Mkc (with rate Rk0) and a private message

Mkp (with rate Rk − Rk0 > 0). It then performs superposition encoding to superimpose

both partitions of the message into a single codeword Xn
k (Mkc,Mkp) for transmission.

Destination D1 then uniquely decodes both the private and common messages from its

designated sources S1 and S2, i.e., (M1c,M1p,M2c,M2p), and non-uniquely decodes only the

2 common messages (M3c,M4c) from the non-designated sources S3 and S4, while treating

the private messages (M3p,M4p) as noise. The decoding scheme follows from generalizing

the scheme for the IC in [7]. The resulting rate region for destination D1 is given by R1(p)

for some common message rates 0 < Rk0 < Rk, k ∈ {1, 2, 3, 4}.

Note that the first 4 inequalities (5.7)-(5.10) on the common message rates are appli-

cable to both destinations D1 and D2, whereas the remaining inequalities correspond to

the rate constraints for non-unique decoding at destination D1. Moreover, each set of 3

constraints, (5.11)-(5.13), (5.14)-(5.16), (5.17)-(5.19), and (5.20)-(5.22), succinctly repre-

sents a set of 8 constraints that are expressed concisely using binary variables a ∈ {∅, 1}
and b ∈ {∅, 2}. For example, the set of 3 constraints (5.11)-(5.13) actually represents 8

constraints when accounted for all combinations of a, b.

The decoding procedure for destination D2 follows from that for D1 after exchanging

the roles of the two sets of sources as well as that of the two destinations. Hence, the rate

constraints for D2 can be found from that for D1 by changing the respective variables as

indicated in the theorem. Finally, the achievable region for a given distribution p satisfying

(5.5) is obtained by taking the intersection R1(p) ∩ R2(p) for the two destinations, while
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the overall achievable region is obtained by taking the union over all such distribution

∪p∈P (R1(p) ∩R2(p)).

5.2.2 Achievable Region for the Gaussian MAIC

Note that the rates in Theorem 5.1 need to be computed by taking expectation over a

time-sharing variable Q, and thus many different distributions for the input codewords

can potentially be considered, one for each realization of Q. Moreover, when the message-

splitting operation is deployed in the Gaussian MAIC, it amounts to the total transmit

power at the source being split between the private and public messages. Hence, for each

realization of Q, a different power-split can be considered. Since the cardinality of Q can

potentially be large, it results in a large number of choices for the encoding strategy, and

hence the exact characterization of the rates in Theorem 5.1 becomes computationally hard

for the Gaussian MAIC.

Therefore, we provide a computable region for the GMAIC by restricting the cardinality

of Q, the input distribution and the power splitting at the sources as follows:

• only i.i.d. Gaussian codewords are considered for the inputs.

• Q is restricted to be binary, i.e., Q ∈ Q = {0, 1}, with P[Q = 0] = P[Q = 1] = 1
2
.

• for Q = 0, the encoding operation is modified as follows:

– sources S3 and S4 do not deploy message splitting: they transmit only common

messages (i.e., M`c = M`,M`p = ∅, ` = 3, 4), which are then encoded into

codewords Un
` ∼ N (0, P`), i.i.d., ` = 3, 4.

– sources S1 and S2 perform message splitting : for a fixed power splitting Pk,p :=

αkPk and Pk,c := (1 − αk)Pk, with 0 ≤ αk ≤ 1, k = 1, 2, they encode their

private messages into codewords V n
k ∼ N (0, Pk,p), i.i.d., and common messages

into codewords Un
k ∼ N (0, Pk,c), i.i.d., and transmit the superimposed codeword

Xn
k := Un

k + V n
k , k = 1, 2.

• conversely, for Q = 1 the roles of S1 and S2 are swapped with those of S3 and S4.

• the decoding operations at destinations D1 and D2 are unchanged.
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The resulting region is computable where each I(.) term is now computed with Gaussian

signals with appropriate powers that depend on Q ∈ {0, 1}. For example, in constraint

(5.14), i.e., R1 − Ra0 + R30 < I(X1, U3;Y1|Ua, X2, U4, Q), with a ∈ {∅, 1}, the I(.) term

evaluates to
1

2
log(1 +

P1 − Pa,c + h2
3P3

1
) +

1

2
log(1 +

P1 − Pa,c + h2
3P3,c

1 + h2
3P3,p + h2

4P4,p
), where P∅,c := 0 and the first

and the second terms correspond to Q = 0 and Q = 1, respectively.

Since the achievable region for the GMAIC is obtained from that in Theorem 5.1

following the restrictions listed above, it is not repeated here.

5.3 Partially Symmetric MAIC: Sum-rate Upper Bounds

We first consider the partially-symmetric GMAIC where the cross-channel gains for sources

S1 and S2 are the same, i.e.,

h2
1 = h2

2,

as well the cross-channel gains for sources S3 and S4 are also the same, i.e.,

h2
3 = h2

4.

We then characterize three upper bounds for the sum-rate of the partially-symmetric

GMAIC based on genie-signal aided upper bounding techniques.

5.3.1 A Genie-aided Sum-rate Upper Bound

In the weak case, both cross-channels are weak, i.e.,

h2
1 = h2

2 < 1, h2
3 = h2

4 < 1.

We provide two types of side-information (genie-signals) to the receivers and characterize

the bounds based on the worst additive noise technique [144]. First, consider the genie-

signals Sn1 and Sn2 intended for destinations D1 and D2:

Sn1 = h1(Xn
1 +Xn

2 ) +Nn
1 ,

Sn2 = h3(Xn
3 +Xn

4 ) +Nn
2 , (5.23)

where Nk ∼ N (0, σ2
Nk

) is independent of (X1, . . . , X4) and correlated with Zk, which is

defined in (5.3), such that E(NkZk) = ρNkσNk , with |ρNk | ≤ 1, and σ2
Nk
≤ 1, k = 1, 2.

These signals provide a noisy version of the intended signals to the receivers.
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Next, we consider genie-signals Un
1 and Un

2 intended for receivers D1 and D2, given by

Un
1 = h3(Xn

3 +Xn
4 ) +W n

1 ,

Un
2 = h1(Xn

1 +Xn
2 ) +W n

2 , (5.24)

where Wk ∼ N (0, σ2
Wk

) is independent of (X1, . . . , X4) and correlated with Zk, which is

defined in (5.3), such that E(ZkWk) = ρWk
σWk

, with |ρWk
| ≤ 1, and σ2

Wk
≤ 1, k = 1, 2. As

opposed to (5.23), (5.24) provide a noisy version of the interfering signals to the receivers.

We denote the set of parameters involved in (5.23)-(5.24) as

c := (σN1 , σN2 , σW1 , σW2 , ρN1 , ρN2 , ρW1 , ρW2) (5.25)

such that σNk , σWk
∈ [0, 1] and ρNk , ρWk

∈ [−1, 1], k = 1, 2.

For notational convenience, we also tabulate the variance (σ2
(.)) of a few relevant Gaus-

sian random variables appearing in the expression of the upper bound as follows

σ2
W2|Z2−W2

= σ2
W2

(1− ρ2
W2

)/(1 + σ2
W2
− 2ρW2σW2) (5.26)

σ2
Z2−W2

= 1 + σ2
W2
− 2ρW2σW2 (5.27)

σ2
Z1−N1/h1

= 1 + σN1

2/h1
2 − 2ρN1σN1/h1 (5.28)

σ2
Z1|N1

= 1− ρ2
N1
. (5.29)

We now have the following sum-rate upper bound.

Theorem 5.2 (Sum-rate upper bound for the partially symmetric weak GMAIC). For a

set of parameters c in (5.25), consider the following conditions:

[A1] σ2
Z1−N1/h1

≤ 1, (5.30)

[A2] σ2
Z2−W2

≤ σ2
Z1|N1

/h2
3, (5.31)

[A3] σ2
W2
≤ σ2

W2|Z2−W2
, σ2

N1
≤ 1, (5.32)

[A4] σ2
N1
≤ σ2

W2|Z2−W2
, σ2

W2
≤ 1. (5.33)

If c satisfies either the three conditions [A1], [A2] and [A3], or the three conditions [A1], [A2]

and [A4], the sum-capacity of the partially symmetric weak GMAIC is upper bounded by

CS ≤
1

4
log

P1 + P2 + h2
3(P3 + P4) + 1− (h1(P1+P2)+ρN1

σN1
)2

h21(P1+P2)+σ2
N1

h2
3(P3 + P4) + 1−

σ2
N1

(ρN1
−σN1

/h1)2

h21(P1+P2)+σ2
N1


︸ ︷︷ ︸

µ1

143



+
1

4
log

(
h2

1(P1 + P2) + σ2
N1

h2
1(P1 + P2) + σ2

W2|Z2−W2

)
︸ ︷︷ ︸

µ2

−1

4
log(h2

3) +
1

4
log

(
h2

1(P1 + P2) + σ2
W2

h2
1(P1 + P2) + 1

)
︸ ︷︷ ︸

µ4

+
1

4
log

h2
1(P1 + P2) + P3 + P4 + 1− (h21(P1+P2)+σW2

ρW2
)2

h21(P1+P2)+σ2
W2

P3 + P4 +
1−ρ2N1

h23
−

σ2
W2

(ρW2
−σW2

)2

h21(P1+P2)+σ2
W2


︸ ︷︷ ︸

µ3

−1

4
log
(
σ2
N1
σ2
Z2−W2

)

+
1

4
log
(
1 + P1 + P2 + h2

3(P3 + P4)
)

+
1

4
log
(
1 + P3 + P4 + h2

1(P1 + P2)
)
. (5.34)

Proof. We relegate the proof to Appendix D.2. �

While the details are relegated to Appendix D.2, the key idea of the proof is given

here: we provide side-information Sn1 to destination D1 and Un
2 to destination D2, and then

single-letterize the resulting multi-letter entropy terms by applying the (conditional) worst

additive noise (WAN) technique [130,144].

The effectiveness of this bound is illustrated with some numerical examples in Sec-

tion 5.3.3. Note that a complementary upper bound can also be found by providing Un
1 to

D1 and Sn2 to D2. The resulting bound is obtained from that in Theorem 5.2 by exchanging

indexes 1↔ 3 and 2↔ 4. Additionally, another bound can be obtained by providing only

the noisy interfering signals Un
1 and Un

2 to D1 and D2, however, this bound turns out to be

quite loose compared to that in Theorem 5.2, and hence is omitted.

The Completely Symmetric Case: Simplification of the Bound in Theorem 5.2

Note that the upper bound in (5.34) is valid for all channel parameters that satisfy the

constraints of Theorem 5.2, and therefore, to characterize the tightest upper bound, (5.34)

needs to be minimized over all choices of these parameters. This problem, however, is non-

convex and thus difficult to solve. Hence, we simplify bound (5.34) to a closed form for

the completely-symmetric weak GMAIC where all cross-channel gains as well as all power

constraints are the same, i.e.,

h2 := h2
k < 1, and P := Pk, k ∈ {1, 2, 3, 4}. (5.35)

We now have the following upper bound on the sum-rate of the completely symmetric

weak GMAIC.
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Theorem 5.3. The sum-capacity of the completely symmetric weak GMAIC is upper

bounded by the minimum of (5.36) and (5.37) below:

CS ≤
1

2
log
(

2|h|P +
1 + 2P

|h|

)
+

1

4
log

4h4

σ2
N1

(4h2 − σ2
N1

)
, where (5.36)

σ2
N1

=

4h2(1− h2), if h2 ≤ 1
2
,

1, otherwise,

CS ≤
1

2
log
(

2|h|P +
1 + 2P

|h|

)
+

1

2
log

4h2 + 1

4|h|
. (5.37)

Proof. Bound (5.36) is obtained by taking conditions [A1], [A2] and the first condition in

[A3], i.e., σ2
W2
≤ σ2

W2|Z2−W2
, with equality, and then minimizing the remaining terms over

σ2
N1
≤ 1. First, taking [A1] with equality results in µ1 = 1 in (5.34), and thus log(µ1) = 0.

This also results in σN1 = 2ρN1h. Similarly, taking [A2] with equality simplifies µ3 in (5.34)

to µ3 = 1, and thus log(µ3) = 0.

Next, taking the first condition in [A3] σ2
W2
≤ σ2

W2|Z2−W2
with equality gives σ2

W2
= ρ2

W2
,

and this results in the numerator of µ4 and denominator of µ2 in (5.34) having the same

value which cancel each other. Moreover, from (5.27), (5.29), and equality in [A1] and

[A2], we solve for ρW2 , which gives us ρW2 = h−1(h2 + σ2
N1
/4h2 − 1)1/2.

The remaining terms in (5.34) then simplify to

CS ≤ min
σ2
N1

1

2
log
(

1 + 2P + 2h2P
)
− 1

4
log(h2) +

1

4
log
(2h2P + σ2

N1

2h2P + 1

)
+

1

4
log

4h4

σ2
N1

(4h2 − σ2
N1

)

(5.38)

subject to 4h2(1− h2) ≤ σ2
N1
≤ min(1, 4h2). (5.39)

In the constraint (5.39), the first upper bound σ2
N1
≤ 1 follows directly as defined in (5.25),

whereas the other upper bound σ2
N1
≤ 4h2 follows from the upper bound ρ2

N1
≤ 1 in (5.25)

since σN1 = 2ρN1h. Moreover, the lower bound 4h2(1 − h2) ≤ σ2
N1

follows from the lower

bound ρ2
W2
≥ 0 in (5.25) after substituting ρW2 via ρW2 = h−1(h2 + σ2

N1
/4h2 − 1)1/2.

Note that only the last 2 terms in (5.38) depend on σ2
N1

, and thus the problem reduces

to that of minimizing these two terms subject to (5.39). This problem is non-convex as

the term γ(σN1) := log
(

2h2P+σ2
N1

2h2P+1

)
in (5.38) is non-convex. However, since for all valid

σN1 (i.e., σ2
N1
∈ [0, 1]), we have γ(σN1) ≤ 0, we simplify the problem by taking γ(σN1) = 0.

Thus, the problem reduces to

minimize − log σ2
N1

(4h2 − σ2
N1

) (5.40)
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subject to 4h2(1− h2) ≤ σ2
N1
≤ min(1, 4h2). (5.41)

This problem is convex, and hence is solved using KKT conditions (see Appendix D.3 for

the details). The optimum solution is given in closed form by

σ2
N1

=

4h2(1− h2), if h2 ≤ 1
2
,

1, otherwise,

and, when this solution is applied to (5.36), it yields a closed form upper bound to the

sum-rate.

Next, the bound in (5.37) is found by taking conditions [A1], [A2] and both conditions

in [A4] with equality. Specifically, taking [A1] with equality results in log(µ1) = 0 in (5.34),

and taking [A2] with equality results in log(µ3) = 0 in (5.34), as in the previous case. Then,

taking the first and the second condition in [A4] with equality results in log(µ2) = 0 and

log(µ4) = 0 in (5.34) respectively. Moreover, taking [A2] and [A4] with equality results in

the following closed form solution of variables ρW2 = 4h2−1
4h2+1

and σ2
N1

= 4h2

(4h2+1)
. Substituting

the expressions for ρW2 and σ2
N1

, the remaining terms simplify to (5.37). �

5.3.2 Additional Genie-aided Sum-rate Upper Bounds

The sum-rate upper bound in Theorem 5.2 is generally better than existing bounds in the

weak interference regime such as that in [12] when the values of the cross-channel gains

are moderate (i.e., cross-channel gains not close to either 0 or 1). However, when the

cross-channel gains are close to 1, the following sum-rate upper bound outperforms that

of Theorem 5.2.

Theorem 5.4. The sum-capacity of the partially symmetric GMAIC with h2
1 < 1 is upper

bounded by

R1 +R2 ≤
1

2
log (1 + P ′1) , R3 +R4 ≤

1

2
log

(
1 +

P ′2
P ′1 + 1/h2

1

)
(5.42)

for some P ′1, P
′
2 > 0 that satisfy

P ′1 + P ′2 = P1 + P2 +
P3 + P4

h2
1

. (5.43)

Conversely, an upper bound for the partially symmetric GMAIC with h2
3 < 1 is found by

swapping indexes 1↔ 3 and 2↔ 4.

Proof. The proof is given in the Appendix D.4. �
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We prove this result by transforming the GMAIC into a degraded 4-user broadcast

channel (BC) in a step-by-step manner as detailed in Appendix D.4, which follows a similar

approach for the IC in [139]. Intuitively, compared to the GMAIC where the individual

power constraint of each source needs to be satisfied, in the degraded BC the powers of

all sources can be shared. Since power-sharing does not reduce the sum-rate, the resulting

sum-rate upper bound for the degraded BC provides an upper bound to the sum-rate of

the GMAIC as well.

Note that instead of channel parameters (P1, . . . P4), the above bound is expressed in

terms variables (P ′1, P
′
2) that satisfy (5.43). Hence, the best upper bound can be found

by optimizing (5.42) subject to (5.43). However, the problem is non-convex, and hence

difficult to solve. Therefore, to characterize a closed form of this bound, we choose the

particular operating point on the (P ′1, P
′
2)-plane where the two rate bounds in (5.42) are

the same, i.e., R1 + R2 = R3 + R4 holds. Solving for P ′1, P
′
2, and substituting them, the

following closed form bound is obtained

CS ≤ log

1− 1

h2
1

+

((
1 +

1

h2
1

)2

+ 4

(
P1 + P2 +

P3 + P4

h2
1

))1/2
− 1. (5.44)

Also note that unlike Theorem 5.2, where both cross-channels are weak, the bound in

Theorem 5.4 is valid when at least one of the cross-channel gains is weak, e.g., for (5.44)

to hold, channel gain h2
1 < 1.

We now provide another upper bound on the sum-rate, which is valid irrespective of

whether any of the cross links is weak or strong.

Theorem 5.5. The sum-capacity of the partially symmetric GMAIC is upper bounded by

CS ≤
1

2
log

[
(1 + P3 + P4 + h2

1(P1 + P2)) (1 + P1 + P2)

1 + min(h2
1, 1)(P1 + P2)

]
.

A second upper bound is found by swapping indexes 1↔ 3 and 2↔ 4.

Proof. The proof is given in the Appendix D.5 �

We outline the key steps here. We provide destination D2 a single genie-signal, and aim

to upper bound the resulting terms as in Theorem 5.2. In contrast to Theorem 5.2, where

two different genie-signals, a noisy version of the intended signals and a noisy version of

the interfering signals, are provided, in this case a single genie-signal is provided which

can be considered a noisy version of both the intended and the interfering signals. This
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approach is similar to that of [139] for the IC. Under some conditions on the parameters

of the genie-signal, destination D2 is then shown to be able to decode all messages as in a

4-user MAC, thus providing a sum-rate upper bound. Finally, the obtained upper bound

is minimized over the parameters of the genie-signal to characterize a tighter bound.

While the bound in Theorem 5.5 is valid in both the weak and strong interference

regime, for the weak interference regime, the bound in Theorem 5.5 is outperformed by

that in Theorem 5.4.

Lemma 5.1. If h2
1 < 1, the bound in Theorem 5.4 is tighter than that in Theorem 5.5.

Proof. Suppose that h2
1 < 1. We can choose P ′1 = P1+P2 and P ′2 = P3+P4

h21
, and the resulting

bound in (5.42) simplifies to that of Theorem 5.5. Therefore, the bound in Theorem 5.5 is

a special case of that in Theorem 5.4, and is generally looser. �

For the case with h2
3 < 1, the counterparts of bounds in Theorem 5.4 and Theorem 5.5

are obtained by swapping the indexes 1 ↔ 3 and 2 ↔ 4. Then, following the principle of

Lemma 5.1, the bound resulting from Theorem 5.4 can be shown to be tighter than that

from Theorem 5.5.

5.3.3 Numerical Examples

We now present some numerical examples to demonstrate the effectiveness of the sum-

rate upper bounds derived in the previous section. In Figure 5.4, we present numerical

examples of the upper bounds in Theorem 5.2 through Theorem 5.4, and for comparison

we also include the upper bound in [12, equation (13)]. For simplicity of exposition, we

provide the examples for the completely symmetric case where all cross-channel gains are

the same h2 = h2
k as well as all transmit powers are the same P = Pk, k ∈ {1, . . . , 4}.

More specifically, we plot these bounds against cross-channel gain h2 ∈ (0, 1) in the weak

interference regime with transmit power P = 100.

Note that the bound in Theorem 5.2 is subject to certain constraints on the parameters

involved, and not available in closed form. Hence, we plot the numerically optimized version

of this bound. Also recall that the bound of Theorem 5.3 was obtained by simplifying the

bound of Theorem 5.2 for the completely symmetric case. Moreover, for the bound in

Theorem 5.4, the closed form version provided in (5.44) is plotted.

We observe the following in Figure 5.4 :
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Figure 5.4: Sum-rate upper bounds for the completely symmetric weak GMAIC. The

following sum-rate upper bounds are plotted against cross-channel gain h2 ∈ (0, 1) with

transmit power P = 100: Theorem 5.2, its simplified version in Theorem 5.3, the closed

form of Theorem 5.4 in (5.44), Theorem 5.5, and [12, equation (13)].

• Bound in [12] (square markers): this is the tightest bound for small h2, i.e., h2 ≤ 0.09

approximately. However, as h2 increases beyond h2 ≈ 0.09, the gap between this

bound and other bounds increases consistently in h2 ∈ (0, 1).

• Theorem 5.2 (solid line): this bound is the tightest one for a wide range of h2, i.e.,

0.09 < h2 ≤ 0.83 (approx.).

• Theorem 5.3 (solid star markers): even though this bound is the simplified version

of the bound in Theorem 5.2, for this example, the former almost overlaps with the

latter, and thus provides a tight bound.

• Theorem 5.4 (triangle markers): for a wide range of h2, i.e., h2 ≤ 0.83 (approx.),

this bound is outperformed by Theorem 5.2. However, for large values of h2, i.e.,

1 > h2 > 0.83, it provides the tightest bound.

• Theorem 5.4 (circle markers): for the entire range of weak channel gains, i.e., 0 <

h2 < 1, this bound is outperformed by that in Theorem 5.4. In addition, for large

values of h2, i.e., 1 > h2 > 0.84, it outperforms Theorem 5.2.
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Figure 5.5: Achievable sum-rates for the completely symmetric weak GMAIC: the sum-

rates from the scheme of Theorem 5.1, the TIN scheme, the TDM scheme. The bounds

are plotted against cross-channel gain h2 ∈ (0, 1) with transmit power P = 100.

We now compare three achievable sum-rates, the sum-rate resulting from the scheme

in Theorem 5.1, the sum-rate achieved by treating interference as noise (RTIN), and the

sum-rate achieved by time-division multiplexing with power control (RTDM), as specified

below.

Note that the rate region in Theorem 5.1 is expressed in terms of rates (R1, . . . , R4) as

well as common rates (R10, . . . , R40). Hence, we characterize the maximum sum-rate by

first applying Fourier Motzkin elimination [100] to eliminate the common rates, and then

finding the optimum private-common power splitting via a numerical grid search.

In the TIN scheme, the two interfering messages are treated entirely as noise at each

receiver, and the resulting sum-rate is

RTIN = log

(
1 +

2P

1 + 2h2P

)
.

Note that TIN can be regarded as a special case of the scheme in Theorem 5.1 if the time-

sharing variable is restricted to only Q = 0, and all sources transmit only private messages,

while both destinations treat the interfering messages as noise.

In the TDM with power control, for a fraction 1
2

of the total transmission time, the

sources in the first MAC transmit with double their average power limit, i.e., 2P , while the

sources in the second MAC remain silent. For the remaining 1
2

of the total transmission

150



Figure 5.6: Comparison of sum-rate upper bounds of Theorem 5.2 and (5.44) with achiev-

able sum-rates of Theorem 5.1 and TDM for the completely symmetric weak GMAIC. The

bounds are plotted against cross-channel gain h2 ∈ (0, 1) with transmit power P = 100.

time, the roles of the two MACs are swapped. Since each source transmit for only 1
2

of the

total transmission time with power 2P , the average power constraint of P still holds. The

resulting sum-rate is given by

RTDM =
1

2
log(1 + 4P ).

In Figure 5.5, we plot these three achievable sum-rates for the completely symmetric

GMAIC against h2 ∈ (0, 1) in the weak interference regime for P = 100, and observe that

• TIN: the TIN sum-rate performs well only for very small h2, i.e., h2 ≤ 0.05 (approx.),

and beyond that it performs poorly compared to the two other bounds.

• The scheme of Theorem 5.1: except for small values of h2, i.e., h2 ≤ 0.11 (ap-

prox.), this sum-rate provides the best performance among the three, however, its

performance almost overlap with the TDM bound for large enough h2, i.e., h2 ≥ 0.6

(approx.).

• TDM: this sum-rate does not depend on h2, and hence remains constant. Moreover,

its performance becomes close to that of the scheme of Theorem 5.1 for large enough

h2, i.e., h2 ≥ 0.6 (approx.).
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Finally, in Figure 5.6, we compare the two most relevant sum-rate upper bounds, i.e.,

the bound in Theorem 5.2 (optimized numerically as in Figure 5.4) and the bound in (5.44)

derived from Theorem 5.4, with two most relevant achievable sum-rates, i.e., the sum-rate

of Theorem 5.1 (optimized numerically as in Figure 5.5) and the TDM sum-rate. The

sum-rates are plotted for the completely symmetric GMAIC against h2 ∈ (0, 1) for the

weak interference regime with P = 100, from which we observe that

• the achievable rate of Theorem 5.1 is quite close to the sum-rate upper bound in

Theorem 5.2. For example, for h2 ≥ 0.16, the achievable rate is within 97% of the

upper bound.

• the simple scheme of TDM is also quite close to the sum-rate upper bound in The-

orem 5.2. For example, for h2 ≥ 0.16, the TDM rate is within 94% of the upper

bound.

We thus observe that for the case of Figure 5.6, the sum-capacity of the symmetric weak

GMAIC is closely approximated by the upper bound in Theorem 5.2 and the lower bound

in Theorem 5.1 for a wide range of cross-channel gains.

5.4 Outer Bounds for the General Gaussian MAIC

In this section, we characterize a sum-rate upper bound and an outer bound to the capacity

region of the GMAIC in the general case, where the channel gains are arbitrary and do

not need to satisfy either the partially symmetric or the completely symmetric channel

conditions of Section 5.3. Since symmetry conditions on the channel gain do not hold

anymore, new upper bounding techniques are needed.

5.4.1 A Sum-rate Upper Bound

First, we present the following sum-rate upper bound, which is derived based on providing

specific subsets of interfering signals to each receiver.

Theorem 5.6 (A sum-rate upper bound for the general MAIC). Let Ω1 := {1, 2}, Ω2 :=

{3, 4}, and XΩ1 := {Xm}m∈Ω1, XΩ2 := {Xm}m∈Ω2. The sum-capacity of the GMAIC is

then upper bounded by

CS ≤
1

2
min ( U(X3, X2), U(X3, X1), U(X4, X2), U(X4, X1) ) ,
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where, for ` ∈ Ω1 and k ∈ Ω2, we have

U(Xk, X`) := I(XΩ1 , XΩ2\k;Y1|Xk) + I(XΩ1\`, XΩ2 ;Y2|X`)

+ I(XΩ1\`;Y1|XΩ2 , X`)− I(XΩ1\`;Y2|XΩ2 , X`)

+ I(XΩ2\k;Y2|XΩ1 , Xk)− I(XΩ2\k;Y1|XΩ1 , Xk)

+ min
(
I(X`, Xk;Y1|XΩ1\`, XΩ2\k) + I(Xk;Y2|XΩ2\k, XΩ1)− I(Xk;Y1|XΩ2\k, XΩ1),

I(X`, Xk;Y2|XΩ1\`, XΩ2\k) + I(X`;Y1|XΩ2 , XΩ1\`)− I(X`;Y2|XΩ2 , XΩ1\`)
)
,

in which Xi ∼ N (0, Pi), i ∈ {1, 2, 3, 4}, are independent of each other, and (Y1, Y2) are

obtained from (5.3).

Proof. The proof is relegated to Appendix D.6. �

While the proof is relegated to Appendix D.6, we provide the key idea here. Referring

to Theorem 5.6, we take ` = 2, k = 3, and provide destination D1 the interfering signal Xn
k

and destination D2 the interfering signal Xn
` . The resulting terms can then be expressed

as either of the two types of terms which are upper bounded as follows: (a) positive

multi-letter entropy terms, which are upper bounded by taking Xi ∼ N (0, Pi), i.i.d., as

in [131, Lemma 1], or (b) the difference of two multi-letter entropy terms, which are upper

bounded by applying the worst additive noise technique [130], for which Xi ∼ N (0, Pi),

i.i.d., proves optimal. The bounds for all other cases of ` ∈ Ω1 and k ∈ Ω2 are obtained

similarly.

5.4.2 An Outer Bound to the Capacity Region

We now present an outer bound to the capacity region of the GMAIC. The outer bounding

technique is based on a similar result on a related model, the MAC-IC-MAC channel [145]

depicted in Figure 5.7. In contrast to the GMAIC where all users in one MAC interferes

with the receiver of the other MAC, in the MAC-IC-MAC only one user from each MAC

interferes with the receiver of the other MAC. Hence, in the the MAC-IC-MAC the two

non-interfering users communicate with their desired receivers in a point-to-point fashion,

while the two interfering users form a two-user IC as depicted in Figure 5.7. It can be noted

that the MAC-IC-MAC can be obtained from the GMAIC by removing the interfering links

from S2 to D2 and S4 to D1.

We now have the following outer bound result for the GMAIC.
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The G-MAIC The MAC-IC-MAC

Figure 5.7: The GMAIC and the Gaussian MAC-IC-MAC of [145].

Theorem 5.7 (An outer bound to the capacity region of the general GMAIC). The

capacity region of the GMAIC is contained within the set of non-negative rate tuples

(R1, R2, R3, R4) that satisfy the following bounds∑
k∈Ω1

Rk ≤ C

(∑
k∈Ω1

Pk

)
, Ω1 ∈ 2{1,2} \ ∅ = {{1}, {2}, {1, 2}}

∑
k∈Ω2

Rk ≤ C

(∑
k∈Ω2

Pk

)
, Ω2 ∈ 2{3,4} \ ∅ = {{3}, {4}, {3, 4}}

∑
k∈Γ1

Rk +
∑
k∈Ω2

Rk ≤ C

 P2

1 + h2
2P2

+
∑

k∈Γ1\{2}

Pk

+ C

(
h2

2P2 +
∑
k∈Ω2

Pk

)

Γ1 ∈ {2} ∪ 2{1,2}\{2} = {{2}, {1, 2}}

∑
k∈Ω1

Rk +
∑
k∈Γ2

Rk ≤ C

 P3

1 + h2
3P3

+
∑

k∈Γ2\{3}

Pk

+ C

(
h2

3P3 +
∑
k∈Ω1

Pk

)

Γ2 ∈ {3} ∪ 2{3,4}\{3} = {{3}, {3, 4}}

∑
k∈Γ1

Rk +
∑
k∈Γ2

Rk ≤ C

 P2

1 + h2
2P2

+ h2
3P3 +

∑
k∈Γ1\{2}

Pk


+ C

 P3

1 + h2
3P3

+ h2
2P2 +

∑
k∈Γ2\{3}

Pk


∑
k∈Γ1

Rk +
∑
k∈Ω1

Rk +
∑
k∈Γ2

Rk ≤ C

 P2

1 + h2
2P2

+
∑

k∈Γ1\{2}

Pk

+ C

(
h2

3P3 +
∑
k∈Ω1

Pk

)
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+ C

 P3

1 + h2
3P3

+ h2
2P2 +

∑
k∈Γ2\{3}

Pk


∑
k∈Γ1

Rk +
∑
k∈Ω2

Rk +
∑
k∈Γ2

Rk ≤ C

 P3

1 + h2
3P3

+
∑

k∈Γ2\{3}

Pk

+ C

(
h2

2P2 +
∑
k∈Ω2

Pk

)

+ C

 P2

1 + h2
2P2

+ h2
3P3 +

∑
k∈Γ1\{2}

Pk

 . (5.45)

Proof. The proof is relegated to Appendix D.7. �

The key idea is that in general, removing one or more interfering links from the GMAIC

results in a channel whose capacity region is no less than the capacity region of the GMAIC.

Intuitively, having less interference via eliminating interfering links may facilitate decoding

of the intended signals with no lesser (and possibly larger) rates. Since the MAC-IC-MAC

is obtained by eliminating two interfering links from the GMAIC, capacity region of the

MAC-IC-MAC naturally serves as an outer bound to the capacity region of the GMAIC.

While the capacity region of the MAC-IC-MAC is unknown in general, an outer bound

to its capacity region has been characterized in [145, Theorem 7]. This outer bound for

the MAC-IC-MAC, therefore, also serves as an outer bound to the capacity region of the

GMAIC, which is presented in Theorem 5.7.

5.5 Summary

In this chapter, we studied the performance limits of the Gaussian MAIC (GMAIC).

The GMAIC models the interference-limited communication between a pair of two-user

multiple-access channels that operate solely over the shared conventional single band in

two neighboring cells, and thus mutually interfere. For the GMAIC, we first characterized

an achievable region based on the Han-Kobayashi strategy, where each transmitter splits

its message into a private and a common part, and each decoder is allowed to non-uniquely

decode the common interfering message. Numerical examples for the symmetric case il-

lustrates that for a significant range of channel gains, the sum-rate resulting from the

proposed achievable strategy outperforms that of traditional schemes such as the scheme

of treating interference as noise.
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Then, focusing on the weak interference case, which is a more relevant model for practi-

cal cellular interference, we characterized 3 novel genie-signal aided sum-rate upper bounds

for the partially symmetric case, and one sum-rate upper bound for the case without any

symmetry. Numerical examples for the symmetric case shows that the proposed sum-rate

upper bounds outperform the existing one for a broad range of channel gains. They also

show that for a wide range of channel gains, the achievable sum-rate and one of the upper

bounds differ only by a small numerical gap, thus providing good approximations to the

sum-capacity in these cases.
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Chapter 6

Concluding Remarks

6.1 Summary of Contributions and Conclusions

Complementing the transmissions in the conventional microwave band with transmissions

in the mm-wave spectrum has emerged as an attractive solution to the problem of spectrum

scarcity in 5G. Therefore, in this thesis, we studied the performance of two multi-user

networks over an integrated mm-wave/microwave dual-band. In this work, transmissions

in the mm-wave band, which are established by beamforming via digitally steerable co-

phased antenna arrays, are modeled as point-to-point AWGN links that can be steered

towards a desired receiver with negligible to no interference to neighboring nodes. In

contrast, due to the nature of the conventional microwave band, transmissions in this band

interfere with the reception at neighboring nodes.

We studied two multi-user channels in such a dual-band setting that model two impor-

tant aspects of wireless communication: inter-user interference and relay cooperation. In

particular, we studied the two-user dual-band interference channel, and the two-user dual-

band multiple-access relay channel with the overall goal of characterizing the fundamental

limits of their performance. Moreover, since the performance of the two dual-band net-

works are significantly affected by the point-to-point mm-wave links, we then studied the

problem of optimal resource allocation over the mm-wave links of these networks. In addi-

tion, motivated by the fact that the optimal performance of interference-limited networks

over the conventional single band is still an open problem, we studied the multiple-access

interference channel over a single band with the aim of characterizing its performance

limits and optimal encoding/decoding strategies.
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The following are the major contributions of the thesis:

In Chapter 3, we studied the performance limits of two significant variations of the

dual-band two-user interference channel: (a) the direct-and-cross-link IC (DCLIC), which

consists of an Gaussian interference channel (GIC) in the underlying microwave band as

well as two direct-links and two cross-links in the mm-wave band; and (b) the cross-link

IC (CLIC), which consists os the microwave GIC and the two mm-wave relay-links.

The major findings from this study are as follows:

1. First, we showed that the capacity region of the DCLIC can be decomposed into

the capacity region of the underlying CLIC and the capacity of the two mm-wave

direct-links. This illustrates that it is optimal to operate the mm-wave direct-links

independently from the CLIC, which simplifies the encoding/decoding procedure. As

such, the mm-wave direct-links can be used to improve the data-rates of individual

users, whereas the mm-wave cross-links play a non-trivial role in characterizing the

capacity of the CLIC.

2. Due to the decomposition result, the capacity region of the DCLIC can be charac-

terized from the capacity region of the CLIC. Hence, we next focus on the CLIC.

Depending on whether the underlying GIC of the CLIC has strong, weak, or mixed

interference, we classified the CLIC into the strong CLIC, the weak CLIC, and the

mixed CLIC. We then characterized sufficient channel conditions under which the

capacity region of these 3 classes of the CLIC is obtained in closed form. More

specifically, we observed the following:

(a) For the strong CLIC, the capacity region was characterized in closed form for

the entire regime. In this case, the strategy of jointly decoding the intended

messages and the interfering messages is optimal.

(b) For the weak CLIC, we characterized the capacity under the combined weak-very

strong conditions. This condition shows that even if the GIC in the microwave

band has weak interference, adequately strong mm-wave cross-links are able

to forward enough interference information to drive the overall interference to

the very strong regime, where the capacity region is characterized by successive

interference cancellation.

(c) For the mixed CLIC, the capacity region was characterized under a set of suffi-

cient conditions, which can be interpreted as being able to drive the CLIC from
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the mixed to the strong interference regime. Under this condition, the strategy

of jointly decoding both the intended and the interfering messages is optimal.

3. For the weak and mixed CLICs that do not necessarily satisfy the sufficient condi-

tions in items (b)-(c) above, we characterized an approximate capacity result. More

specifically, an achievable strategy is characterized where a message is allowed to be

partitioned into a private part and a public part, while a receiver is able to decode

only the interfering public message non-uniquely. Then, by adapting the power al-

located to the private and public parts according to the level of interference in the

underlying GIC, a closed form achievable region was obtained. This achievable region

was then shown to be within 1/2 bit/channel use per user for the entire regimes of

the weak or mixed CLICs.

4. Next, we studied the problem of optimal power allocation (OPA) over the mm-

wave direct- and cross-links that maximizes the sum-rate of the DCLIC under a

total power budget P for each source. The resulting scheme was shown to allocate

power to the mm-wave links in distinct modes depending on the power budget P

and channel parameters. The OPA was derived in closed form and its characteristics

were described using the link-gain regimes which reveal useful insights. In particular,

depending on the value of P , the OPA was shown to allocate power to the mm-wave

links following either a Waterfilling-like property or a saturation property. More

specifically, we observed the following:

• For sufficiently small P , the OPA assigns power to only a subset of the links that

depends on the relative strength os the links. Then, as P increases but remains

below a saturation threshold, the OPA allocates power to all 4 links. In this

regime of P , the OPA follows a Waterfilling-like strategy, and thus the power in

the allocated links increase piece-wise linearly, while that in the remaining links

are zero.

• When P is increased beyond the saturation threshold, saturation occurs, which

imposes a maximum limit on the power in the cross-links. Hence, as P increases

further, the cross-link powers remain limited to a peak value, and all additional

increments to P are allocated only to the direct-links.

We also observed that when the mm-wave bandwidth is large, the optimal power

allocation for the symmetric case simplifies as follows: (a) if the direct-links are
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stronger than the cross-links, allocating the budget P entirely to the direct-links is

optimal for all P ≥ 0; (b) on the other hand, if the cross-links are stronger, all P

smaller than the saturation threshold should be allocated entirely to the cross-links,

whereas for P larger than the threshold, the cross-links become saturated, and hence

all increments of P should be allotted to the direct-links.

In Chapter 4, we studied the dual-band two-user fading multiple-access relay chan-

nel, and more specifically, the performance limits of the two important variants of the

channel: (a) the direct-and-relay-link MARC (DR-MARC), which consists of a conven-

tional Gaussian MARC in the underlying microwave band as well as two direct-links and

two relay-links in the mm-wave band; and (b) the relay-link MARC (R-MARC), which

consists of an underlying Gaussian MARC and only the two mm-wave relay-links.

We obtain the following findings from this study:

1. First, we showed that the capacity region of the DR-MARC can be decomposed

into the capacity region of the underlying R-MARC and the capacity of the two

mm-wave direct links. Hence, similar to the dual-band interference channel, it is

optimal to operate the mm-wave direct links independently from the R-MARC, which

simplifies the encoding/decoding operation. While the direct-links can be used to

improve individual user-rates, the relay-links play a significant role in the performance

characterization of the R-MARC.

2. Due to this decomposition, the capacity of the DR-MARC can be readily determined

from the capacity of the R-MARC. Hence, we focused on the R-MARC next:

• We characterized an achievable region for the R-MARC based on a block-Markov

encoding scheme that performs encoding jointly over both bands, where the relay

operates in the decode-and-forward mode.

• We obtained sufficient channel conditions, denoted the jointly-near conditions,

under which the capacity of the R-MARC is characterized by the aforemen-

tioned achievable scheme. This condition show that even when the underlying

microwave source-relay channels are not strong enough, if the mm-wave relay-

links are sufficiently strong, then adequate information can be sent to the relay

such that the relay is not a bottleneck to achievable rates. As a result, under

these conditions the capacity region of the R-MARC was derived in closed form.
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Moreover, the achievability and capacity results were then shown to generalize to the

K-user version of the DR-MARC and the R-MARC, where K > 2.

3. We then studied the problem of the optimal power allocation (OA) over the mm-wave

direct and relay-links of the DR-MARC with the goal of maximizing its sum-rate

achievable with the aforementioned achievable scheme, where the links are subject to

a total power budget P for each source. The resulting scheme was shown to allocate

the link powers in different modes based on the value of P and channel parameters.

All such modes were characterized in closed form, and the OA was then described

using the link gain regimes, which reveals useful insights.

For example, for a class of DR-MARCs where the jointly-near condition in the un-

derlying R-MARC is satisfied by the source-relay microwave channel gains only, it is

optimal to allocate the budget P entirely to the direct-links for all values of P ≥ 0.

In contrast, for DR-MARCs where the jointly-near condition needs to be satisfied

jointly by the channel gains of both the microwave and mm-wave source-relay links,

the MARC-OPA has a richer structure. Depending on the value of P , the MARC-

OPA was shown to follow either a Waterfilling-like or a saturation property. In

particular, we observed that

• when P is smaller than a certain saturation threshold, the MARC-OPA follows

the Waterfilling-like strategy. Hence, for sufficiently small P , the MARC-OPA

allocates P entirely to the strongest of the direct and relay-links of each source.

As P increases further but remains below the saturation threshold, the MARC-

OPA eventually allocates power to all the two remaining links. Thus, in this

regime, each link-power either increases piecewise linearly with P , or remains

zero.

• for P larger than the saturation threshold, the relay-link powers are constrained

to satisfy a certain saturation condition, and thus the power in both relay-

links cannot increase with P . As P increases further, if a relay link is only

stronger than the other relay-link, then the power of both relay-links vary with

P monotonically and approach positive constant levels, whereas if the relay

link is significantly stronger, its power remains constant, and the power in the

weaker relay-link remains at zero. In contrast to the relay-links, as P increases,

the direct-link powers grow unbounded.
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Moreover, when the mm-wave bandwidth becomes large, the optimal power allocation

scheme for the symmetric case simplifies as follows: (a) if the direct-links are stronger

than the relay-links, the budget P should be allocated entirely to the direct-links for

all P ≥ 0; (b) in contrast, when the relay-links are stronger, if P is smaller than the

saturation threshold, then P should be allocated entirely to the relay-links, whereas

for P larger than the threshold, the relay-links saturate, and thus all increments of

P should then be allotted to the direct-links.

Finally, in Chapter 5, we studied the performance limits of the Gaussian multiple-access

interference channel (MAIC) over a conventional single band, where a pair of two-user

multiple access channels mutually interfere while communicating over a shared medium.

More specifically, we studied the weak Gaussian MAIC, which is a more relevant model in

practice, and focused on the sum-rate performance of the channel, from which the following

findings are obtained:

1. We characterized an achievable region for the Gaussian MAIC where each transmit-

ter is allowed to partition its message into a private and a common part, and each

receiver is allowed to decode the common interfering message non-uniquely. A com-

putable achievable region was then obtained by limiting the time-sharing variable Q

to be binary and adapting the transmitters’ operation accordingly. Numerical ex-

amples showed that this scheme outperforms conventional achievable schemes over a

significant range of channel gains for the weak Gaussian MAIC.

2. We then considered the partially symmetric weak Gaussian MAIC, and derived three

upper bounds on the sum-rate by providing different genie signals to the receivers.

Numerical examples were then used to illustrate effectiveness of these bounds. By

comparing the upper bounds with the achievable sum-rates for the completely sym-

metric case, it was found that for a wide range of cross channel gains, one of the

upper bounds was close to the sum-rate achievable with the aforementioned scheme,

thereby providing improved lower and upper bounds on the sum-rate of the weak

Gaussian MAIC.

3. Finally, we derived a sum-rate upper bound for the general weak Gaussian MAIC,

and characterized a set of outer bounds to the capacity region that is valid for any

interference regime of the Gaussian MAIC.
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6.2 Directions for Future Work

In the following, we list a few potential future directions we plan to pursue. While a few

of these are extensions or generalizations of the work presented in this thesis, for the other

problems new approaches are needed.

Resource Allocation for Dual-Band Channels with Alternative Objectives

Recall that in Chapter 3 and Chapter 4, we studied two problems of mm-wave resource

allocation with the goal of maximizing the sum-rate of the respective channels. The sum-

rate was considered as it captures the aggregate performance of all users, an important

figure of merit for multi-user networks. However, such a resource allocation may greedily

assign more rate to users with stronger channels, while starving users with weaker channels.

In many settings, it may be desirable or necessary to provide a fair rate to all users, and

hence optimizing the max-min rate [146,147] or the proportional-fair rate [148–150] may be

more relevant in such cases. Hence, as an alternative to the sum-rate objective in the thesis,

the resource allocation problems for the dual-band channels can be investigated with either

the max-min rate or the proportional-fair rate objective functions. Such problems are of

interest for wireless settings with fairness quality-of-service constraints, and the resulting

power allocation schemes may lead to useful practical insights. While the exact nature of

these optimal power allocation schemes will be revealed only after thorough analysis, we

believe that characteristics of these power allocation schemes will still be governed by the

Waterfilling and the saturations properties in some form.

Extension to Other Dual-Band Multi-User Channels

In this thesis, we studied multi-user channels that model inter-user interference and relay

cooperation, two important aspects in wireless communication. In particular, the dual-

band IC and the dual-band MARC models the two aspects in a mm-wave and microwave

dual-band setting. As networks become denser, interference mitigation using relays will

play a key role in improving the user performance, which can be effectively captured by

the interference-relay channel (IRC), which is a more general model compared to the IC

or the MARC.

In the basic model of the dual-band fading IRC, two sources communicate to their

respective destinations over both bands with the help of a relay in the presence of fading. In
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the dual-band IRC, the transmissions in the underlying microwave band mutually interfere

at each destination, which can be captured by the conventional Gaussian IRC, while the

transmissions in the mm-wave band can be modeled as point-to-point steerable links.

While it is apparent that characterizing the performance limits of the IRC may reveal

useful practical insights, the capacity region of the single band fading IRC or the optimal

encoding/decoding and relaying strategies are unknown in general except for a few specific

cases [122,124]. Part of the difficulty in obtaining closed form capacity results lies in finding

optimal source-relay codeword correlation in the presence of interference. Moreover, while

conventional techniques from the literature on the Gaussian IC can be applied, it provides

capacity for only a narrow set of channel parameters. Hence, new techniques are needed

to characterize the performance limits of single band and dual-band IRC.

Full duplex communication, which has the potential of doubling the spectral efficiency

for communication by communicating simultaneously in both directions, has been subject

to much investigation [151], and is now gradually becoming viable in practice [152]. In the

related two-way relay channel (TWRC) [153], two terminals communicate simultaneously

in both directions with the help of one relay. The dual-band TWRC and its multi-terminal

extension can effectively model a scenario of relay-assisted full-duplex communication be-

tween many pairs of interacting terminals over an integrated mm-wave/microwave dual-

band. In such a dual-band TWRC, transmissions in the underlying microwave band can

be modeled as a Gaussian TWRC, while those in the mm-wave band can be modeled as

point-to-point links. It is worth noting that similar to the relay channel, the capacity of the

Gaussian TWRC is also unknown in general, and hence novel techniques may be needed

to characterize the capacity of single and dual-band TWRC.

The dual-band IRC and the dual-band TWRC are two basic models that incorporate

relay-cooperation, interference mitigation, and full-duplex communication in a dual-band

setting, all of which are important aspects in current wireless communication practices.

Therefore, studying the performance limits of these channels is an important and interesting

further step towards characterizing practical insights that are applicable to a wide range

of wireless settings.

Optimal Encoding/Decoding Strategies for Single Band Channels

While the primary focus of the thesis was on dual-band channels, interference mitigation

in conventional networks is still an important open problem. Hence, in Chapter 5 we
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studied the multiple-access interference channel (MAIC) over the microwave band where

two multiple-access channels mutually interfere. While our work provides improved bounds

on the sum-rate performance of the MAIC, its capacity region is still unknown in general.

Since the MAIC presents a more general setting compared to the two-user IC, optimal or

approximately optimal encoding/decoding strategies for the MAIC are expected to provide

valuable insights into effective interference mitigation strategies for practical microwave

cellular networks. Therefore, characterizing capacity or approximate capacity results for

the MAIC is another potentially important future work which may require revisiting the

approaches for outer bounds and achievable strategy.
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Appendix B

Appendices for Chapter 3

B.1 Proof of Theorem 3.1

Outer bound: We derive the bounds on R1 and R2 as follows. If source S1 transmits the

message Mk, k = 1, 2, we have from Fano’s inequality

nR1 = H(M1)

= I(M1;Y n
1 , Ŷ
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1 , Ȳ n2

1 ) +H(M1|Y n
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1 , Ȳ n2

1 ) + nεn

(a)
= I(Xn

1 , X̂
n1
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1 , Y n
1 , Ŷ

n1
1 ) + nεn

(c)
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1 , Ŷ
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(d)
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n1
1 ;Y n

1 , Ŷ
n1

1 ) + n2C(d2
1P̄1) + nεn, (B.1)

where (a) follows from the chain rule; (b) follows since the second term of (a) is zero due

to the Markov chain (MC) X̄n2
1 −◦−(Xn

1 , X̂
n1
1 )−◦−(Y n

1 , Ŷ
n1

1 ), and the fourth term of (a) is

zero due to the MC (Y n
1 , Ŷ

n1
1 , Xn

1 , X̂
n1
1 )−◦−X̄n2

1 −◦−Ȳ n2
1 ; (c) follows since unconditioning does

not reduce entropy, and also from the memoryless Gaussian model of the direct-links; and

(d) follows since X̄1` ∼ N (0, P̄1), i.i.d., maximizes the mutual information. Bounding R2
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similarly, and since n2 ≤ α2n, we have

R1 ≤ r1 + α2C(d2
1P̄1)

R2 ≤ r2 + α2C(d2
2P̄2),

where (r1, r2) is an achievable rate pair in the underlying CLIC with BMF α1, which is

defined as the set of all non-negative (r1, r2) that satisfy

r1 := sup
Xn

1 ,X̂
n1
1

1

n
I(Xn

1 , X̂
n1
1 ;Y n

1 , Ŷ
n1

1 ), r2 := sup
Xn

2 ,X̂
n1
2

1

n
I(Xn

2 , X̂
n1
2 ;Y n

2 , Ŷ
n1

2 )

for product distribution p(xn1 , x̂
n1
1 )p(xn2 , x̂

n1
2 ) and n1 ≤ α1n.

Achievability: We will code over t blocks of symbols together. We choose (n, n1, n2),

and define Uk := (Xn
k , X̂

n1
k ), k = 1, 2, where p(U1,U2) = p(U1)p(U2), and define Ūk :=

X̄n2
k , k = 1, 2. Suppose source Sk transmits Mk ∈ Mk, k = 1, 2. Thus, to encode Mk

over t blocks for the underlying CLIC, we generate 2tnRk i.i.d. sequences Ut
k(Mk), one

for each Mk ∈ Mk, where Ut
k(Mk) are distributed according to p(utk) =

∏t
`=1 p(uk,`) =∏t

`=1 p
(
xn`k,(`−1)n+1x̂

n1`
k,(`−1)n1+1

)
, k = 1, 2. Similarly, for the two direct-links, we generate

2tnRk i.i.d. sequences Ūt
k(Mk), distributed as

∏n2t
`=1 p(x̄k`), where x̄k` ∼ N (0, P̄k), for k =

1, 2, and ` = 1, . . . , n2.

Thus, to transmit Mk, k = 1, 2, Ut
1(M1) and Ut

2(M2) are transmitted through the CLIC,

and Ūt
1(M1) and Ūt

2(M2) are transmitted through the two direct-links in the second band.

Upon receiving the sequences (Y nt
k , Ŷ n1t

k ) and Ȳ n2t
k , destination Dk employs joint typical

decoding to estimate the transmitted message as in [97, Chapter 4.3]. The probability of

decoding error vanishes with t→∞, if

Rk <
1

n
I(Xn

k , X̂
n1
k ;Y n

k , Ŷ
n1
k ) +

n2

n
C(d2

kP̄k), k = 1, 2, (B.2)

which matches the upper bound on R1 and R2, as n1 ≤ α1n, n2 ≤ α2n, and n → ∞.

Finally, the capacity region of the CLIC with BMF α1 is defined as the closure of the

union of all sets of achievable rate pairs (R1, R2) that satisfy (B.2), where the union is

taken over all product distributions, p(xn1 , x̂
n1
1 )p(xn2 , x̂

n1
2 ), and for all positive integers n, n1,

such that n ≤ α1n.
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B.2 Proof of Theorem 3.2

Outer bound: We derive the bound on R1 first. Assuming that source S1 transmits

message M1, we have

nR1 = H(M1)

= I(M1;Y n
1 , Ŷ
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(d)
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1 |Xn
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(e)

≤
n∑
i=1

I(X1i;Y1i|X2i) + nεn

=
n

n

n∑
i=1

I(X1i;Y1i|X2i) + nεn

(f)
= nI(X1;Y1|X2, Q) + nεn

(g)

≤ n
1
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i=1

1

2
log (1 + P1i) + nεn

(h)

≤ nC(P1) + nεn, (B.3)

where the first term in (a) follows from Markov chain (MC) M1−◦−(Xn
1 , X̂

n1
1 )−◦−(Y n

1 , Ŷ
n1

1 ),

while the second term follows from Fano’s inequality; (b) follows from (Xn
1 , X̂

n1
1 ) ⊥⊥ (Xn

2 , X̂
n1
2 );

(c) follows from the chain rule; (d) follows from the first term in (c) due to MCs X̂n1
2 −◦−Xn

2−◦−Y n
1

and (X̂n1
1 , X̂n1

2 )−◦−(Xn
1 , X

n
2 )−◦−Y n

1 , and since the second term in (c) is zero due to MC

(Xn
1 , X̂

n1
1 , Xn

2 , Y
n

1 )−◦−X̂n1
2 −◦−Ŷ n1

1 ; (e) follows since unconditioning does not reduce entropy,

and also from the memoryless Gaussian model; and (f) follows by defining random vari-

ables X1 := X1Q and X2 := X2Q with E[X2
1i] =: P1i and E[X2

2i] =: P2i, i ∈ {1, . . . , n},
where Q ∼ U[1, . . . , n], 1

n

∑n
i=1 P1i ≤ P1,

1
n

∑n
i=1 P2i ≤ P2, and Y1Q is the resulting output

at D1; (g) follows from the fact that Gaussian inputs maximize differential entropy; (h)

follows by applying Jensen’s inequality to the concave log function.

We similarly bound R2 by R2 ≤ C(P2).
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Achievability: Fix block lengths n and n1 such that n1 ≤ nα1. Sender Sk encodes

message Mk ∈ Mk into two codewords, Xn
k (Mk) and X̂n1

k (Mk) that are intended for the

microwave and the mm-wave bands, respectively, and generated according to distributions

Xn
k (Mk) ∼ N (Pk), i.i.d., and X̂n1

k (Mk) ∼ N (P̂k), i.i.d., k = 1, 2. Of the generated code-

words, Xn
1 (M1) and Xn

2 (M2) are transmitted through the GIC in the microwave band,

while X̂n1
1 (M1) and X̂n1

1 (M1) are transmitted through the S1-D2 cross-link and the S2-D1

cross-link, respectively. Destination D1 first estimates the interfering message M2 from the

signals observed over both bands while treating the intended message M1 as noise as in a

point-to-point channel. Similarity, destination D2 estimates M1 while treating M2 as noise.

Using standard random coding arguments [97, Chapter 6], the probability of decoding er-

ror can be shown to become arbitrarily small at D1 and D2, as n → ∞, if the following

conditions are satisfied, respectively

R2 ≤
1

2
log

(
1 +

a2
21P2

1 + P1

)
+ α1

1

2
log
(

1 + c2
21P̂2

)
=: r21, (B.4)

R1 ≤
1

2
log

(
1 +

a2
12P1

1 + P2

)
+ α1

1

2
log
(

1 + c2
12P̂1

)
=: r12. (B.5)

Once the interfering message has been decoded, each destination removes the interference

and estimates the intended signal interference-free, which results in the rates at D1 and D2

R1 ≤
1

2
log (1 + P1) =: r11 (B.6)

R2 ≤
1

2
log (1 + P2) =: r22. (B.7)

Note that r11 in (B.6) provides the maximum rate from S1 to D1. Now, under condition

(3.17), we have r11 ≤ r12, i.e., decoding M1 at D2 does not incur any rate loss. Similarly,

under condition (3.18), we have r22 ≤ r21, i.e., decoding M2 at D1 does not incur any rate

loss as well. Hence, under conditions (3.17)-(3.18), the rates (B.6)-(B.7) are achievable,

which matches the rate outer bounds.

B.3 Proof of Theorem 3.3

Outer bound: The outer bounds on R1 and R2 can be derived as in (B.3), hence, we

derive the outer bound on the sum rate. Assuming that message Mk was transmitted from

source Sk, k = 1, 2, we have

n(R1 +R2) = nR2 + nR1

= H(M2) +H(M1)
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1 )− h(Ŷ n1
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1 |X̂n1
2 ) + nεn

(g)
= I(Xn

1 , X
n
2 ;Y n

1 ) + I(X̂n1
2 ; Ŷ n1
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where (a) follows from Fano’s inequality; (b) follows from Mk−◦−(Xn
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n1
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k ), k =
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2 ), then expressing mutual information in terms of differential entropies and apply-

ing Y n
1 −◦−Xn

1−◦−X̂
n1
1 to the third term; (e) follows from unconditioning steps h(Ŷ n1

1 |Y n
1 ) ≤

h(Ŷ n1
1 ) and −h(Ŷ n1

1 |Y n
1 , X

n
1 , X̂

n1
1 ) ≤ −h(Ŷ n1

1 |Y n
1 , X

n
1 , X̂

n1
1 , X̂n1

2 ); (f) follows from having

a2
21 ≥ 1 which results in I(Xn

2 ;Y n
2 |Xn

1 ) ≤ I(Xn
2 ;Y n

1 |Xn
1 ), and also due to the Markov chain

Ŷ n1
1 −◦−X̂n1

2 −◦−(Xn
1 , X̂

n1
1 , Y n

1 ) which results in −h(Ŷ n1
1 |Y n

1 , X
n
1 , X̂

n1
1 , X̂n1

2 ) = −h(Ŷ n1
1 |X̂n1

2 );

(g) follows by consuming the first three terms in (f) into one; and (h) follows from max-

imizing the mutual information terms by using Xn
1 ∼ N (0, P1), Xn

2 ∼ N (0, P2), and

X̂n
2 ∼ N (0, P̂2), i.i.d., as in [131, Lemma 1] and following similar steps to (e)-(h) of (B.3).

Achievability: We use an achievability scheme that is similar to that is Appendix B.2.

Specifically, the encoding proceeds in exactly the same manner as in Appendix B.2, whereas

the decoding scheme is different: instead of sequential decoding, at each destination both

the desired and the interfering messages are uniquely decoded as in a multi-access channel.

Standard random coding arguments show that the following rates achievable at D2

R1 ≤ C
(
a2

12P1

)
+ α1C

(
c2

12P̂1

)
R2 ≤ C(P2)

R1 +R2 ≤ C
(
P2 + a2

12P1

)
+ α1C

(
c2

12P̂1

)
, (B.9)
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whereas at the achievable rates at D1 are given below

R1 ≤ C(P1)

R2 ≤ C
(
a2

21P2

)
+ α1C

(
c2

21P̂2

)
R1 +R2 ≤ C

(
P1 + a2

21P2

)
+ α1C

(
c2

21P̂2

)
. (B.10)

Since a2
21 ≥ 1, comparing the two bounds on R2 in (B.9) and (B.10), we have R2 ≤

C(P2) < C(a2
21P2) + α1C

(
c2

21P̂2

)
. Next, condition (3.22) requires that C(P1) ≤ C(a2

12P1) +

α1C
(
c2

12P̂1

)
, from which we haveR1 ≤ C(P1). Finally, condition (3.23) requires C(P1 + a2

21P2)+

α1C
(
c2

21P̂2

)
≤ C(P2 + a2

12P1)+α1C
(
c2

12P̂1

)
, and thus comparing the two bounds on R1+R2,

we have R1 +R2 ≤ C(P1 + a2
21P2) + α1C

(
c2

21P̂2

)
.

B.4 Proof of Lemma 3.3

We bound rates R1 and R2 for the Z-CLIC of type-0 as follows. Since the signals received

as D1 of both these channels are the same, the transmission rate of S1 remains unchanged,

and thus the bound on R1 are the same for both channels.

We bound rate R2 for the Z-CLIC of type-0 as

nR2 = H(M2)

= I(M2;Y n
2 , Ŷ

n1
2 ) +H(M2|Y n

2 , Ŷ
n1

2 )

= I(M2;Y n
2 ) + I(M2; Ŷ n1

2 |Y n
2 ) +H(M2|Y n

2 , Ŷ
n1

2 )

= I(M2;Y n
2 ) +H(M2|Y n

2 ) (B.11)

where the last step follows from having I(M2; Ŷ n1
2 |Y n

2 ) = 0, and from H(M2|Y n
2 , Ŷ

n1
2 ) =

H(M2|Y n
2 ) as (W2, Y

n
2 ) ⊥⊥ Ŷ n1

2 . Finally, note that the constraint on R2 in (B.11) is the

same as that in the Z-CLIC of type-1.

B.5 Proof of Theorem 3.4

The bounds on the individual rates R1 and R2 in (3.32) and (3.33) are found by following

the same steps as in (3.19)-(3.20) that are detailed in Appendix B.2.

The sum-rate bound in (3.34) is derived by providing interfering signals (Xn
2 , X̂

n1
2 ) to
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D1 that completely cancels interference from source S2 as follows

n(R1 +R2) = H(M1) +H(M2)

(a)

≤ I(M1;Y n
1 , Ŷ

n1
1 ) + I(M2;Y n

2 , Ŷ
n1

2 ) + nεn

(b)

≤ I(Xn
1 , X̂

n1
1 ;Y n

1 , Ŷ
n1

1 ) + I(Xn
2 , X̂

n1
2 ;Y n

2 , Ŷ
n1

2 ) + nεn

(c)

≤ I(Xn
1 , X̂

n1
1 ;Y n

1 , Ŷ
n1

1 , Xn
2 , X̂

n1
2 ) + I(Xn

2 , X̂
n1
2 ;Y n

2 , Ŷ
n1

2 ) + nεn

(d)
= I(Xn

1 , X̂
n1
1 ;Y n

1 , Ŷ
n1

1 |Xn
2 , X̂

n1
2 ) + h(Y n

2 , Ŷ
n1

2 )− h(Y n
2 , Ŷ

n1
2 |Xn

2 , X̂
n1
2 ) + nεn

= I(Xn
1 ;Y n

1 |Xn
2 ) + h(Y n

2 ) + h(Ŷ n1
2 |Y n

2 )− h(Y n
2 |Xn

2 , X̂
n1
2 )

− h(Ŷ n1
2 |Y n

2 , X
n
2 , X̂

n1
2 ) + nεn

(e)

≤ I(Xn
1 ;Y n

1 |Xn
2 ) + h(Y n

2 ) + h(Ŷ n1
2 )− h(Y n

2 |Xn
2 )− h(Ŷ n1

2 |Y n
2 , X

n
2 , X̂

n1
2 , X̂n1

1 ) + nεn

(f)
= h(Y n

2 )− h(Zn
1 ) + h(Ŷ n1

2 )− h(Ẑn1
2 ) + h(Y n

1 |Xn
2 )− h(Y n

2 |Xn
2 ) + nεn

(g)

≤ nh(Y2G)− nh(Z2) + n1h(Ŷ2G)− n1h(Ẑ2) + n log

(
1 + P1

1 + a2
12P1

)
+ nεn

= nC
(
P2 + a2

12P1

)
+ n1C

(
c2

12P̂1

)
+ n log

(
1 + P1

1 + a2
12P1

)
+ nεn (B.12)

where (a) follows from Fano’s inequality; (b) follows from Mk−◦−(Xn
k , X̂

n1
k )−◦−(Y n

k , Ŷ
n1
k ), k =

1, 2; (c) follows by providing (Xn
2 , X̂

n1
2 ) to D1; (d) follows since (Xn

1 , X̂
n1
1 ) ⊥⊥ (Xn

2 , X̂
n1
2 );

(e) follows from unconditioning steps h(Ŷ n1
2 |Y n

2 ) ≤ h(Ŷ n1
2 ) and −h(Ŷ n1

2 |Y n
2 , X

n
2 , X̂

n1
2 ) ≤

−h(Ŷ n1
2 |Y n

2 , X
n
2 , X̂

n1
2 , X̂n1

1 ); (f) follows since h(Ŷ n1
2 |Y n

2 , X
n
2 , X̂

n1
2 , X̂n1

1 ) = h(Ŷ n1
2 |X̂n1

1 ) =

h(Ẑn1
2 ) due to the Markov chain Ŷ n1

2 −◦−X̂n1
1 −◦−(Xn

2 , X̂
n1
2 , Y n

2 ); (g) follows from upper bound-

ing h(Y n
2 ) ≤ nh(Y2G) using X1 ∼ N (0, P1) and X2 ∼ N (0, P2), and h(Ŷ n1

2 ) ≤ n1h(Ŷ2G)

using X̂1 ∼ N (0, P̂1) as in [131, Lemma 1], and upper bounding h(Y n
1 |Xn

2 )− h(Y n
2 |Xn

2 ) =

h(Xn
1 + Zn

1 )− h(a12X
n
1 + Zn

2 ) ≤ n log
(

1+P1

1+a212P1

)
by applying the WAN technique.

The bound in (3.35) is derived by exchanging the roles of S1↔S2 and D1↔D2, and then

following the steps in (B.12).

The sum-rate bound in (3.36) is derived as follows:

n(R1 +R2) = H(W1) +H(W2)

= I(W1;Y n
1 , Ŷ

n1
1 ) + I(W2;Y n

2 , Ŷ
n1

2 )

(a)

≤ I(Xn
1 , X̂

n1
1 ;Y n

1 , Ŷ
n1

1 ) + I(Xn
2 , X̂

n1
2 ;Y n

2 , Ŷ
n1

2 )

(b)

≤ I(Xn
1 , X̂

n1
1 ;Y n

1 , Ŷ
n1

1 , Sn1 , Ŝ
n1
1 ) + I(Xn

2 , X̂
n1
2 ;Y n

2 , Ŷ
n1

2 , Sn2 , Ŝ
n1
2 )
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(c)
= I(Xn

1 , X̂
n1
1 ;Sn1 , Ŝ

n1
1 ) + I(Xn

1 , X̂
n1
1 ;Y n

1 , Ŷ
n1

1 |Sn1 , Ŝ
n1
1 )

+ I(Xn
2 , X̂

n1
2 ;Sn2 , Ŝ

n1
2 ) + I(Xn

2 , X̂
n1
2 ;Y n

2 , Ŷ
n1

2 |Sn2 , Ŝ
n1
2 )

(d)
= h(Sn1 , Ŝ

n1
1 )− h(Sn1 , Ŝ

n1
1 |Xn

1 , X̂
n1
1 )

+ h(Y n
1 , Ŷ

n1
1 |Sn1 , Ŝ

n1
1 )− h(Y n

1 , Ŷ
n1

1 |Xn
1 , X̂

n1
1 , Sn1 , Ŝ

n1
1 )

+ h(Sn2 , Ŝ
n1
2 )− h(Sn2 , Ŝ

n1
2 |Xn

2 , X̂
n1
2 )

+ h(Y n
2 , Ŷ

n1
2 |Sn2 , Ŝ

n1
2 )− h(Y n

2 , Ŷ
n1

2 |Xn
2 , X̂

n1
2 , Sn2 , Ŝ

n1
2 )

(e)
= h(a12X

n
1 + Zn

2 , c12X̂
n1
1 + Ẑn1

2 )− h(Zn
2 , Ẑ

n1
2 )

+ h(Y n
1 , Ŷ

n1
1 |Sn1 , Ŝ

n1
1 )− h(a21X

n
2 + Zn

1 , c21X̂
n1
2 + Ẑn1

1 )

+ h(a21X
n
2 + Zn

1 , c21X̂
n1
2 + Ẑn1

1 )− h(Zn
1 , Ẑ

n1
1 )

+ h(Y n
2 , Ŷ

n1
2 |Sn2 , Ŝ

n1
2 )− h(a12X

n
1 + Zn

2 , c12X̂
n1
1 + Ẑn1

2 )

(f)

≤ h(Y n
1 |Sn1 )− h(Zn

1 ) + h(Ŷ n1
1 |Ŝn1

1 )− h(Ẑn1
1 )

+ h(Y n
2 |Sn2 )− h(Zn

2 ) + h(Ŷ n1
2 |Ŝn1

2 )− h(Ẑn1
2 )

(g)

≤ nh(Y1G|S1G)− nh(Z1) + n1h(Ŷ1G)− n1h(Ẑ1)

+ nh(Y2G|S2G)− nh(Z2) + n1h(Ŷ2G)− n1h(Ẑ2)

(h)
=
n

2
log

(
1 + a2

12P1 +
P2

1 + a2
21P2

)
+
n

2
log

(
1 + a2

21P2 +
P1

1 + a2
12P1

)
+
n1

2
log(1 + c2

12P̂1) +
n1

2
log(1 + c2

21P̂2)

where (a) follows from (Y n
k , Ŷ

n1
k )−◦−(Xn

k , X̂
n1
k )−◦−Wk, for k = 1, 2; (b) follows since providing

genie-signals (Sn1 , Ŝ
n1
1 ) to D1 and (Sn2 , Ŝ

n1
2 ) to D2 does not reduce the mutual information;

(c) follows from expanding the I(.) terms using chain rule; (d) follows from expressing

express mutual informations in terms of differential entropies; (e) follows from expressing

the variables via their respective definitions, for example, the third term follows as

h(Y n
1 , Ŷ

n1
1 |Xn

1 , X̂
n1
1 , Sn1 , Ŝ

n1
1 )

= h(Xn
1 + a21X

n
2 + Zn

1 , c21X̂
n1
2 + Ẑn1

1 |Xn
1 , X̂

n1
1 , a12X

n
1 + Zn

2 , c12X̂
n1
1 + Ẑn1

2 )

= h(a21X
n
2 + Zn

1 , c21X̂
n1
2 + Ẑn1

1 |Xn
1 , X̂

n1
1 , Zn

2 , Ẑ
n1
2 )

= h(a21X
n
2 + Zn

1 , c21X̂
n1
2 + Ẑn1

1 )

(f) follows by first noticing that the first and the eighth terms, and the fourth and the

fifth terms in (e) cancel each other, and then unconditioning terms h(Y n
1 , Ŷ

n1
1 |Sn1 , Ŝ

n1
1 )

and h(Y n
2 , Ŷ

n1
2 |Sn2 , Ŝ

n1
2 ); (g) follows by single letterizing the positive entropy terms in (f):

(i) h(Ŷ n1
k |Ŝ

n1
k ) = h(Ŷ n1

k ), which is then single letterized h(Ŷ n1
k ) ≤ n1h(ŶkG) by using
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X̂n1
` ∼ N (0, P`), i.i.d., for k 6= ` ∈ {1, 2}; (ii) h(Y n

1 |Sn1 ) is single letterized h(Y n
1 |Sn1 ) ≤

nh(Y1G|S1G) following [131, Lemma 1], by choosing inputs Xn
1 ∼ N (0, P1), i.i.d., and

Xn
2 ∼ N (0, P2), i.i.d., where Y1G and S1G are the resulting output variables; finally, (h)

follows from computing the (conditional) entropy terms in (g) which is straightforward.

Next, the bound in (3.37) is derived as follows

n(R1 + 2R2) = H(M1) +H(M2) +H(M2)

(a)

≤ I(M1;Y n
1 , Ŷ

n1
1 ) + I(M2;Y n

2 , Ŷ
n1

2 ) + I(M2;Y n
2 , Ŷ

n1
2 ) + nεn

(b)

≤ I(Xn
1 , X̂

n1
1 ;Y n

1 , Ŷ
n1

1 ) + I(Xn
2 , X̂

n1
2 ;Y n

2 , Ŷ
n1

2 ) + I(Xn
2 , X̂

n1
2 ;Y n

2 , Ŷ
n1

2 ) + nεn

(c)

≤ I(Xn
1 , X̂

n1
1 ;Y n

1 , Ŷ
n1

1 , Sn1 , Ŝ
n1
1 )

+ I(Xn
2 , X̂

n1
2 ;Y n

2 , Ŷ
n1

2 , Xn
1 , X̂

n1
1 ) + I(Xn

2 , X̂
n1
2 ;Y n

2 , Ŷ
n1

2 ) + nεn

(d)
= I(Xn

1 , X̂
n1
1 ;Sn1 , Ŝ

n1
1 ) + I(Xn

1 , X̂
n1
1 ;Y n

1 , Ŷ
n1

1 |Sn1 , Ŝ
n1
1 )

+ I(Xn
2 ;Y n

2 |Xn
1 ) + I(Xn

2 , X̂
n1
2 ;Y n

2 , Ŷ
n1

2 ) + nεn

(e)
= h(a12X

n
1 + Zn

2 , c12X̂
n1
1 + Ẑn1

2 )− h(Zn
2 , Ẑ

n1
2 )

+ h(Y n
1 , Ŷ

n1
1 |Sn1 , Ŝ

n1
1 )− h(a21X

n
2 + Zn

1 , c21X̂
n1
2 + Ẑn1

1 )

+ h(Xn
2 + Zn

2 )− h(Zn
2 ) + h(Y n

2 , Ŷ
n1

2 )− h(a12X
n
1 + Zn

2 , c12X̂
n1
1 + Ẑn1

2 ) + nεn

(f)

≤ h(Y n
2 ) + h(Ŷ n1

2 )− h(Zn
2 )− h(Ẑn1

2 ) + h(Y n
1 |Sn1 ) + h(Ŷ n1

1 |Ŝn1
1 ) + nεn

+ h(Xn
2 + Zn

2 )− h(a21X
n
2 + Zn

1 )− h(Zn
2 )− h(c21X̂

n1
2 + Ẑn1

1 |a21X
n
2 + Zn

1 , X̂
n1
2 )

(g)

≤ nh(Y2G) + n1h(Ŷ2G)− nh(Z2)− n1h(Ẑ2) + nh(Y1G|S1G) + n1h(Ŷ1G)

+ nh(X2G + Z2)− nh(a21X2G + Z1)− nh(Z2)− n1h(Ẑ1) + nεn

= nC
(
P2 + a2

12P1

)
+ n1C

(
c2

12P̂1

)
+ n1C

(
c2

21P̂2

)
+ C

(
a2

21P2 +
P1

1 + a2
12P1

)
+ n log

(
1 + P1

1 + a2
12P1

)
+ nεn (B.13)

where (a) follows from Fano’s inequality; (b) follows from Mk−◦−(Xn
k , X̂

n1
k )−◦−(Y n

k , Ŷ
n1
k ), k =

1, 2; (c) follows by providing signals (Sn1 , Ŝ
n1
1 ) to D1 and (Xn

1 , X̂
n1
1 ) to D2; (d) follows from

(Xn
1 , X̂

n1
1 ) ⊥⊥ (Xn

2 , X̂
n1
2 ); (e) follows by expanding the mutual information terms into those

of differential entropy, and then using the definition of the variables involved; (f) follows

by first noticing that the first and the last terms in (e) cancel, and then unconditioning

h(Y n
2 , Ŷ

n1
2 ) ≤ h(Y n

2 )+h(Ŷ n1
2 ), and h(Y n

1 , Ŷ
n1

1 |Sn1 , Ŝ
n1
1 ) ≤ h(Y n

1 |Sn1 )+h(Ŷ n1
1 |Ŝn1

1 ); (g) follows

from first unconditioning −h(c21X̂
n1
2 + Ẑn1

1 |a21X
n
2 +Zn

1 , X̂
n1
2 ) ≤ −h(c21X̂

n1
2 + Ẑn1

1 |a21X
n
2 +

Zn
1 , X̂

n1
2 , X̂n1

2 ) = −h(Ẑn1
1 ), and then maximizing the remaining entropy terms with Gaus-
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sian random variables as in step (g) of (B.12).

Finally, the bound in (3.38) is derived from (B.13) by exchanging the roles of S1↔S2

and D1↔D2.

B.6 Proof of Lemma 3.7

Encoding: Fix the block lengths n and n1 such that n1 = bα1nc. For a given set of power

constraints P1, P2, P̂1 and P̂2, take P1 and P2, and fix a power-splitting (PU1, PW1, PU2, PW2) �
0 such that vector p = (PU1, PW1, PU2, PW2, P̂1, P̂2) ∈ P∗.

The message M1 ∈ [1 : 2nR1 ] from source S1 is first divided into a public part M10 ∈
[1 : 2nR10 ] and a private part M11 ∈ [1 : 2nR11 ] such that R1 = R10 + R11. The message

from source S2 is similarly divided into public and private parts M20 ∈ [1 : 2nR20 ] and

M21 ∈ [1 : 2nR21 ] such that R2 = R20 + R21. The public message M10 is then jointly

encoded into two codewords (W n
1 (M10), X̂n1

1 (M10)), where the codewords are generated

according to W n
1 ∼ N (0, PW1) and X̂n1

1 ∼ N (0, P̂1), i.i.d. Similarly, message M20 is

jointly encoded into two codewords (W n
2 (M20), X̂n1

2 (M20)) for the two bands, where the

codewords are generated according to W n
2 ∼ N (0, PW2) and X̂n1

2 ∼ N (0, P̂2), i.i.d. The

private messages M11 and M21 are encoded into two codewords Un
1 (M11) and Un

2 (M21),

generated according to Un
1 ∼ N (0, PU1) and Un

2 ∼ N (0, PU2), i.i.d.

For transmission of message M1 = (M10,M11), the private codeword Un
1 (M11) is su-

perimposed on the cloud center W n
1 (M10) to create a single codeword Xn

1 (M10,M11) :=

W n
1 (M10)+Un

1 (M11). Similarly, to transmit message M2 = (M20,M21), codewords Un
2 (M21)

is superimposed on W n
2 (M20) to create a single codeword Xn

2 (M20,M21) := W n
2 (M20) +

Un
2 (M21).

Since in the mm-wave band, only cross-links only carry interference information, a

message splitting is not necessary.

Decoding: The decoder at destination D1 uniquely decodes both desired public and

private messages (M10,M11) and non-uniquely decodes the interfering public message M20

while treating the interfering private message M21 as noise as in [7]. Using the standard

random coding arguments as in [97, Chapter 6.5.1], such decoding at D1 is successful as

n, n1 →∞, if the public and private message rates satisfy the following constraints

R11 < I(X1;Y1|W1,W2)
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R11 +R10 < I(X1;Y1|W2)

R11 +R20 < I(X1,W2;Y1|W1) + I(X2,W1;Y2) + C21

R11 +R10 +R20 < I(X1,W2;Y2) + C21. (B.14)

Similarly, destination D2 uniquely decodes intended public and private messages (M20,M21),

while non-uniquely decoding M10 and treating M11 as noise, resulting in the following rate

constraints

R21 < I(X2;Y2|W1,W2)

R21 +R20 < I(X2;Y2|W1)

R21 +R10 < I(X2,W1;Y2|W2) + I(X1,W2;Y1) + C12

R21 +R20 +R10 < I(X2,W1;Y1) + C12. (B.15)

The individual private and public message rates satisfy R1 = R10 + R11 and R2 =

R20 + R21. To present the achievable region in terms of only R1 and R2, we eliminate

the individual private and public message rates in (B.14) and (B.15) by applying Fourier-

Motzkin elimination as in [97, App. D], which results in the region R(p) in Theorem 3.7.

Finally, R(p) was obtained for a fixed power-splitting p ∈ P∗, hence the overall achievable

region is found by taking union over all such power-splits R = ∪p∈P∗R(p).

B.7 Proof of Theorem 3.5

We partition the range of (INR1, INR2) into four sets: (i) Sinr
1 = {(INR1, INR2) : INR1 ≥

1, INR2 ≥ 1}, (ii) Sinr
2 = {(INR1, INR2) : INR1 < 1, INR2 ≥ 1}, (iii) Sinr

3 = {(INR1, INR2) :

INR1 ≥ 1, INR2 < 1}, and (iv) Sinr
4 = {(INR1, INR2) : INR1 < 1, INR2 < 1}. In each set,

depending on the values of (INR1, INR2), the private-public message powers are adapted

according to (3.40)-(3.41). This results in closed form expressions for the inner bound

R(INR1, INR2) and outer bound in Theorem 3.4, which are then shown to be within a

distance of δ = 1
2

bit per user.

First consider Sinr
1 where INR1 ≥ 1 and INR2 ≥ 1. Adapting R(INR1, INR2) according

to the powers in (3.40)-(3.41), achievable region R(Sinr
1 ) is given by

R1 ≤ C(1 + SNR1)− 1/2 (B.16)

R2 ≤ C(1 + SNR2)− 1/2 (B.17)
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R1 +R2 ≤ C(2INR2 + SNR1 − 1) + C

(
1 + SNR2

INR2

)
+ C12 − 1 (B.18)

R1 +R2 ≤ C(2INR1 + SNR2 − 1) + C

(
1 + SNR1

INR1

)
+ C21 − 1 (B.19)

R1 +R2 ≤ C

(
INR1 +

SNR1

INR2

)
+ C

(
INR2 +

SNR2

INR1

)
+ C12 + C21 − 1 (B.20)

R1 + 2R2 ≤ C(INR2 + SNR2) + C

(
1 +

SNR2

INR1

)
+ C

(
INR1 +

SNR1

INR2

)
+ C12 + C21 − 3/2

(B.21)

2R1 +R2 ≤ C(INR1 + SNR1) + C

(
1 +

SNR1

INR2

)
+ C

(
INR2 +

SNR2

INR1

)
+ C12 + C21 − 3/2,

(B.22)

where C12 and C21 are given in Lemma 3.7.

Now consider the achievable region in (B.16)-(B.22) and the outer bound in (3.32)-

(3.38): clearly, both are piece-wise linear, and only consist of straight lines with slopes

0,−1/2,−1,−2, and ∞. Our aim is to bound the difference between two bounds with the

same slope by a constant. As such, we define δR1 to be the difference between the bounds

on R1 in (3.32) and (B.16), and similarly define variables δR2 , δR1+R2 , δ2R1+R2 , and δR1+2R2

for the subsequent bounds.

Now, for the achievable region in (B.16)-(B.22) to be within 1/2 bit of the capacity

region, if (R1, R2) is an achievable rate tuple, then (R1 + 1/2, R2 + 1/2) must be outside

the outer bound region in (3.32)-(3.38). If (R1, R2) is on the boundary of the achievable

region (B.16)-(B.22), it must be on one of the bounding straight lines. Hence, for (B.16)-

(B.22) to be within 1/2 bit of the capacity region, the following must be satisfied

δR1 ≤ 1/2

δR2 ≤ 1/2

δR1+R2 ≤ 1

δR1+2R2 ≤ 3/2

δ2R1+R2 ≤ 3/2. (B.23)

For δR1 , we write

δR1 = C(SNR1)− C(1 + SNR1) +
1

2

=
1

2
log (1 + SNR1)− 1

2
log (2 + SNR1) +

1

2
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=
1

2
log

(
1 + SNR1

2 + SNR1

)
+

1

2

<
1

2
log

(
2 + SNR1

2 + SNR1

)
+

1

2

=
1

2
.

Similarly, δR2 is bounded as δR2 < 1/2. Next, denoting the three outer bounds on R1 +R2

in (3.34)-(3.36) by a1, a2, a3, respectively, and the three inner bounds on the same in (B.18)-

(B.20) by b1, b2, b3, respectively, we have [10, eq.(62)]

δR1+R2 = min{a1, a2, a3} −min{b1, b2, b3}

= max{a1 − b1, a2 − b2, a3 − b3},

and thus δR1+R2 is bounded by the maximum of the three bounds ak − bk, k = 1, 2, 3. In

particular, a1 − b1 in (3.34) and (B.18) is bounded as follows

a1 − b1 =
1

2
log (1 + SNR1) +

1

2
log

(
1 +

SNR2

1 + INR2

)
+ C12

− 1

2
log (2INR2 + SNR1)− 1

2
log

(
1 +

1 + SNR2

INR2

)
− C12 + 1

=
1

2
log

(
1 + SNR1

2INR2 + SNR1

)
+

1

2
log

(
INR2

1 + INR2

)
+ 1

<
1

2
log

(
2INR2 + SNR1

2INR2 + SNR1

)
+

1

2
log

(
1 + INR2

1 + INR2

)
+ 1

= 1

where the inequality is due to 1 < 2 < 2 INR2. The other two bounds are similarly found

to be a2 − b2 < 1 and a3 − b3 < 1. Therefore, we have δR1+R2 < 1.

Next, we bound δR1+2R2 in (3.37) and (B.21)

δR1+2R2 =
1

2
log (1 + INR2 + SNR2) +

1

2
log

(
1 +

SNR1

(1 + INR1)(1 + INR2)

)
+

1

2
log (1 + SNR2)

− 1

2
log (1 + INR2 + SNR2)− 1

2
log

(
2 +

SNR2

INR1

)
− 1

2
log

(
1 + INR1 +

SNR1

INR2

)
+

3

2

=
1

2
log

(
1 + INR1 +

SNR1

1 + INR2

)
− 1

2
log

(
1 + INR1 +

SNR1

INR2

)
+

1

2
log

(
1 + SNR2

1 + INR1

)
− 1

2
log

(
2 +

SNR2

INR1

)
+

3

2

<
1

2
log

(
1 + INR1 +

SNR1

INR2

)
− 1

2
log

(
1 + INR1 +

SNR1

INR2

)
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+
1

2
log

(
2INR1 + SNR2

INR1

)
− 1

2
log

(
2 +

SNR2

INR1

)
+

3

2

=
3

2

where the inequality is due to 1 < 2 < 2 INR1. The bound on δ2R1+R2 is similarly found to

be δ2R1+R2 < 3/2.

Hence, the constant gap result is proved for the set Sinr
1 . For the other three sets,

we proceed similarly, and verify that constant gap result with the same constant gap of

δ = 1/2 bit/channel use hold.

B.8 Proof of Theorem 3.6

The proof follows from steps similar to those of Theorem 3.7 and Theorem 3.3, except

the bound for R1 + 2R2 in (3.46), hence only an outline is provided. First, the individual

bounds in (3.42) and (3.43) are derived following the same steps as those for (3.32) and

(3.33). Second, since the weak interference condition a2
12 < 1 in the mixed CLIC is the

same as in the weak CLIC, the sum-rate bound in (3.44) is the same as in (3.34). Third,

due to the strong interference condition a2
21 ≥ 1, the sum-rate bound in (3.45), which has

the same expression as the bound (3.24) of Theorem 3.3, follows from the same steps as

those for (3.24).

Next, the bound on R1 +2R2 in (3.46) needs to be derived differently compared to that

in (3.37) as the the strong interference condition a2
21 ≥ 1 in the mixed CLIC is opposite to

that in the weak CLIC. Assuming that source Sk transmits message Mk, k = 1, 2, bound

(3.46) is derived as follows

n(R1 + 2R2) = H(M1) +H(M2) +H(M2)

(a)

≤ I(M1;Y n
1 , Ŷ

n1
1 ) + I(M2;Y n

2 , Ŷ
n1

2 ) + I(M2;Y n
2 , Ŷ

n1
2 ) + nεn

(b)

≤ I(Xn
1 , X̂

n1
1 ;Y n

1 , Ŷ
n1

1 ) + I(Xn
2 , X̂

n1
2 ;Y n

2 , Ŷ
n1

2 ) + I(Xn
2 , X̂

n1
2 ;Y n

2 , Ŷ
n1

2 ) + nεn

(c)

≤ I(Xn
1 , X̂

n1
1 ;Y n

1 , Ŷ
n1

1 , Sn1 , Ŝ
n1
1 ) + I(Xn

2 , X̂
n1
2 ;Y n

2 , Ŷ
n1

2 )

+ I(Xn
2 , X̂

n1
2 ;Y n

2 , Ŷ
n1

2 , Xn
1 , X̂

n1
1 , Sn2 , Ŝ

n1
2 ) + nεn

(d)
= I(Xn

1 , X̂
n1
1 ;Sn1 , Ŝ

n1
1 ) + I(Xn

1 , X̂
n1
1 ;Y n

1 , Ŷ
n1

1 |Sn1 , Ŝ
n1
1 ) + I(Xn

2 , X̂
n1
2 ;Y n

2 , Ŷ
n1

2 )

+ I(Xn
2 , X̂

n1
2 ;Sn2 , Ŝ

n1
2 |Xn

1 , X̂
n1
1 ) + I(Xn

2 , X̂
n1
2 ;Y n

2 , Ŷ
n1

2 |Xn
1 , X̂

n1
1 , Sn2 , Ŝ

n1
2 ) + nεn
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(e)
= h(Sn1 , Ŝ

n1
1 )︸ ︷︷ ︸

β1

−h(Sn1 , Ŝ
n1
1 |Xn

1 , X̂
n1
1 ) + h(Y n

1 , Ŷ
n1

1 |Sn1 , Ŝ
n1
1 )

− h(Y n
1 , Ŷ

n1
1 |Sn1 , Ŝ

n1
1 , Xn

1 , X̂
n1
1 )︸ ︷︷ ︸

β2

+h(Y n
2 , Ŷ

n1
2 )− h(Y n

2 , Ŷ
n1

2 |Xn
2 , X̂

n1
2 )︸ ︷︷ ︸

β3

+ h(Sn2 , Ŝ
n1
2 |Xn

1 , X̂
n1
1 )︸ ︷︷ ︸

β4

−h(Sn2 , Ŝ
n1
2 |Xn

1 , X̂
n1
1 , Xn

2 , X̂
n1
2 )

+ h(Y n
2 , Ŷ

n1
2 |Xn

1 , X̂
n1
1 , Sn2 , Ŝ

n1
2 )− h(Y n

2 , Ŷ
n1

2 |Xn
1 , X̂

n1
1 , Sn2 , Ŝ

n1
2 , Xn

2 , X̂
n1
2 ) + nεn

(f)

≤ h(Y n
1 |Sn1 ) + h(Ŷ n1

1 |Ŝn1
1 )− h(Zn

2 )− h(Ẑn1
2 ) + h(Y n

2 )− h(Zn
1 ) + nεn

+ h(Ŷ n1
2 )− h(Ẑn1

1 ) + h(Y n
2 |Xn

1 , S
n
2 ) + h(Ŷ n1

2 |X̂n1
1 , Ŝn1

2 )− h(Zn
2 )− h(Ẑn1

2 )

(g)
= h(Y n

1 |Sn1 )− h(Zn
1 ) + h(Ŷ n1

1 )− h(Ẑn1
1 ) + h(Y n

2 )− h(Zn
2 ) + nεn

+ h(Ŷ n1
2 )− h(Ẑn1

2 ) + h(Y n
2 |Xn

1 , S
n
2 )− h(Zn

2 ) + h(Ẑn1
2 )− h(Ẑn1

2 )

(h)

≤ n (h(Y1G|S1G)− h(Z1) + h(Y2G)− h(Z2) + h(Y2G|X1G, S2G)− h(Z2)) + nεn

+ n1

(
h(Ŷ2G)− h(Ẑ2) + h(Ŷ1G)− h(Ẑ1)

)
= C

(
P2 + a2

12P1

)
+ C

(
a2

21P2 +
P1

a2
12P1 + 1

)
+ C

(
P2

a2
21P2 + 1

)
+ nεn (B.24)

where (a) follows from Fano’s inequality; (b) follows from Mk−◦−(Xn
k , X̂

n1
k )−◦−(Y n

k , Ŷ
n1
k ), k =

1, 2; (c) follows by providing (Sn1 , Ŝ
n1
1 ) to D1 and (Xn

1 , X̂
n1
1 , Sn2 , Ŝ

n1
2 ) to D2; (d) follows from

expanding the mutual information terms using chain rule and since (Xn
1 , X̂

n1
1 ) ⊥⊥ (Xn

2 , X̂
n1
2 );

(e) follows by expression mutual information via differential entropies; (f) follows by first

noticing that β1 and β3, as well as β2 and β4, cancel each other, and then applying un-

conditioning steps h(Y n
1 , Ŷ

n1
1 |Sn1 , Ŝ

n1
1 ) ≤ h(Y n

1 |Sn1 ) + h(Ŷ n1
1 |Ŝn1

1 ), h(Y n
2 , Ŷ

n1
2 ) ≤ h(Y n

2 ) +

h(Ŷ n1
2 ) and h(Y n

2 , Ŷ
n1

2 |Xn
1 , X̂

n1
1 , Sn2 , Ŝ

n1
2 ) ≤ h(Y n

2 |Xn
1 , S

n
2 ) + h(Ŷ n1

2 |X̂n1
1 , Ŝn1

2 ); (g) follows

since Ŷ n1
1 ⊥⊥ Ŝn1

1 and h(Ŷ n1
2 |X̂n1

1 , Ŝn1
2 ) = h(Ẑn1

2 ) due to the Markov chain Ŷ n1
2 −◦−X̂n1

1 −◦−Ŝn1
2 ;

finally, (h) follows from maximizing (conditional) entropy by choosing i.i.d. Gaussian in-

puts [131, Lemma 1] through steps similar to steps (e)-(h) of (B.3).

Finally, note that compared to the seven outer bounds in Theorem 3.7 for the weak

CLIC, the mixed case has only five bounds. This is due to the fact that the two remaining

bounds, a bound on 2R1 +R2 and the third bound on R1 +R2, have the same expressions

as those in (3.36) and (3.38) but are redundant.
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B.9 Proof of Theorem 3.7

We partition the range of INR2 into two sets INR2 ≥ 1 and INR2 < 1, and then for each

set, we simplify the achievable region R(INR2, ∗) and show it to be within δ = 1/2 bit of

the outer bound in Theorem 3.6.

First consider INR2 ≥ 1, for which R(INR2, ∗) is characterized by rates

R1 ≤ C(SNR1) (B.25)

R2 ≤ C(SNR2)− 1/2 (B.26)

R1 +R2 ≤ C(INR2 + SNR2) + C

(
SNR1

INR2

)
+ C12 − 1/2 (B.27)

R1 +R2 ≤ C(INR1 + SNR1) + C21 (B.28)

R1 + 2R2 ≤ C(INR2 + SNR2) + C

(
INR1 +

SNR1

INR2

)
+ C12 + C21 − 1/2 (B.29)

Note that compared to seven inequalities for the weak CLIC, the achievable region for

th mixed CLIC is defined by only five inequalities as one constraint on R1 + R2 and one

on 2R1 + R2 turn out to be redundant. Similar to (B.23) for the weak CLIC, for the

achievable region (B.25)-(B.29) to be within 1/2 bit of the outer bound (3.42)-(3.46), the

gap δ(.) between two respective bounds should satisfy

δR1 ≤ 1/2

δR2 ≤ 1/2

δR1+R2 ≤ 1

δR1+2R2 ≤ 3/2. (B.30)

First, it is clear from (3.42) and (B.25) that δR1 = 0, and also from (3.43) and (B.26), that

δR2 = 1/2. Next, the difference between the bounds in (3.45) and (B.28) is δR1+R2 = 0,

while the same between the bounds in (3.45) and (B.28) is

δR1+R2 =
1

2
log (1 + SNR1) +

1

2
log

(
1 +

SNR2

1 + INR2

)
− 1

2
log (1 + INR2 + SNR2)− 1

2
log

(
1 +

SNR1

INR2

)
+

1

2

=
1

2
log

(1 + SNR1) INR2

(INR2 + SNR1) (1 + INR2)
+

1

2

< 1

where the inequality follows from simple algebraic manipulations. Similarly, it can be
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shown that δR1+2R2 < 3/2 in a straightforward manner. Hence, the constant gap result is

proved for INR2 ≥ 1.

The proof for the other set INR2 < 1 follows similar steps, and hence not repeated.

B.10 Proof of Theorem 3.8

Proof. Outer Bound: For the Z-CLIC of type-1, the following set of tuples (R1, R2)

provide an outer bound to the capacity region

R1 ≤ C(SNR1) (B.31)

R2 ≤ C(SNR2) (B.32)

R1 +R2 ≤ C

(
SNR1

1 + INR1

)
+ C(SNR2) + C21, (B.33)

where the individual rate bounds are the same as (3.32) and (3.33) and found as in (B.3),

and the sum-rate bound is the same as (3.35) and is found as in Appendix B.5.

Achievability: The achievable region is characterized as follows. Since a12 = 0, D2 is

interference-free, and hence S1 does not deploy message splitting and communicates only

the private message by allocating PU1 = P1 and PW1 = 0. On the other hand, since

a2
21 6= 0, S1 deploys message splitting and adapts the private-common message powers

according to the interference level INR1 following (3.40). The resulting achievable region

R (INR1, INR2 = 0) is presented below for the two cases: INR1 ≥ 1, and INR1 < 1.

If INR1 ≥ 1, then R (INR1, INR2 = 0) is given by the set of tuples (R1, R2) that satisfy

R1 ≤ C(SNR1)− 1/2 (B.34)

R2 ≤ C(SNR2) (B.35)

R1 +R2 ≤ C(INR1 + SNR1) + C

(
SNR2

INR1

)
+ C21 − 1/2, (B.36)

whereas for INR1 < 1, R (INR1, INR2 = 0) is given by

R1 ≤ C

(
SNR1

1 + INR1

)
(B.37)

R2 ≤ C(SNR2) (B.38)

R1 +R2 ≤ C

(
SNR1

1 + INR1

)
+ C(SNR2) + C21. (B.39)
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Constant Gap: Now, for INR1 < 1, it is clear from (B.32) and (B.38) that δR2 = 0,

and from (B.33) and (B.39) that δR1+R2 = 0, while from (B.31) and (B.37) it follows

that δR1 < 1/2. Similarly, for INR1 ≥ 1, it is apparent that δR2 = 0, and simple algebraic

manipulations of bounds in from (B.31) and (B.34) lead to δR1 < 1/2, while those in (B.33)

and (B.36) lead to δR1+R2 < 1. Thus, the constant gaps are obtained. �

B.11 Derivation of the Optimal Power Allocation in

Section 3.4.1

Convexity of Problem [P1]: We first show that [P1] is convex. Denote by x :=

(p1, q1, p2, q2, R) ∈ R5
+ a feasible point, satisfying the constraints in [P1]. The objective of

[P1] is equivalent to minimizing −R, which is linear. In addition, the equality constraints

(3.55) and (3.56) are affine. Next, we note that the constraints (3.52)–(3.54) are convex.

To illustrate, we consider constraint (3.52) denoted

g1(x) := R− A1 −
αβ̄κ

2
ln(1 + c2

21q2)− αβκ

2
ln(1 + d2

1p1)− αβκ

2
ln(1 + d2

2p2),

with κ := 1/ ln 2, and derive its Hessian

∇2g1(x) :=
ακ

2
diag

[
βd4

1

(1 + d2
1p1)2

, 0,
βd4

2

(1 + d2
2p2)2

,
β̄c4

21

(1 + c2
21q2)2

, 0

]
,

where D = diag [a1, . . . , am] is a diagonal matrix with elements a1, . . . , am. Note that

∇2g1(x) is positive semidefinite, and thus (3.52) is convex. Likewise, constraints (3.53)

and (3.54) are found to be convex. In addition, (3.55) and (3.56), and x � 0 imply that

the feasible set is compact for given P > 0. Hence, [P1] is a convex problem over a compact

set.

The KKT Conditions: Problem [P1] satisfies Slater’s condition [132, Chapter 5.2.3]: it

can be illustrated by considering the point x̃ :=
(
P − β̄ε/β, ε, P − β̄ε/β, ε, A1

)
which

is strictly feasible for sufficiently small ε > 0. Therefore, [P1] can be solved using the KKT

conditions [132, Chapter 5.5.3]. Moreover, [P1] also satisfies the Mangasarian-Fromovitz

constraint qualification as illustrated in Appendix B.12.

We define the Lagrange multipliers {λi}3
i=1, corresponding to constraints (3.52)–(3.54),

{µi}2
i=1, corresponding to constraints (3.55) and (3.56), and {ρi}5

i=1, corresponding to the
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non-negativity constraints, (p1, q1, p2, q2, R) � 0. The Lagrangian is then defined as

L = −R + λ1(R− Σ1) + λ2(R− Σ2) + λ3(R− Σ)

+ µ1

(
βp1 + β̄q1 − P

)
+ µ2

(
βp2 + β̄q2 − P

)
− ρ1p1 − ρ2q1 − ρ3p2 − ρ4q2 − ρ5R,

where Σ1,Σ2, and Σ are defined in (3.47)–(3.49) with A1 = A2.

With a slight abuse of notation, we denote the optimal primal variable by (p1, q1, p2, q2, R),

and the optimal Lagrange multipliers by (λ1, λ2, λ3, µ1, µ2, ρ1, ρ2, ρ3, ρ4, ρ5), which satisfy

the KKT conditions below

λ1 + λ2 + λ3 = 1, (B.40)

ρ1 = β

(
µ1 −

ακ

2

d2
1

1 + d2
1p1

)
, (B.41)

ρ2 = β̄

(
µ1 −

ακ

2

c2
12λ2

1 + c2
12q1

)
, (B.42)

ρ3 = β

(
µ2 −

ακ

2

d2
2

1 + d2
2p2

)
, (B.43)

ρ4 = β̄

(
µ2 −

ακ

2

c2
21λ1

1 + c2
21q2

)
, (B.44)

βp1 + β̄q1 = P, (B.45)

βp2 + β̄q2 = P, (B.46)

R− Σ1 ≤ 0, (B.47)

R− Σ2 ≤ 0, (B.48)

R− Σ ≤ 0, (B.49)

λ1(R− Σ1) = 0, (B.50)

λ2(R− Σ2) = 0, (B.51)

λ3(R− Σ) = 0, (B.52)

ρ1p1 = 0, (B.53)

ρ2q1 = 0, (B.54)

ρ3p2 = 0, (B.55)

ρ4q2 = 0, (B.56)

(p1, q1, p2, q2, R, λ1, λ2, λ3, ρ1, ρ2, ρ3, ρ4) � 0. (B.57)

Note that since R ≥ A1 > 0, the associated multiplier ρ5 = 0. Next, in order to solve for

the optimal variables from the KKT conditions, we assume that A1 = A2 (assumptions

[A2]) and c2
12 < c2

21, and partition the set of optimal Lagrange multipliers.
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Partitioning the Set of the Optimal Lagrange Multipliers: We now partition the

set of optimal Lagrange multipliers, i.e., the set of all (ρ,λ), where ρ := (ρ1, ρ2, ρ3, ρ4) � 0

and λ := (λ1, λ2, λ3) � 0, into 18 subsets. First, the set of (ρ1, ρ2)-tuples are partitioned

into 3 subsets I1 := {(ρ1, ρ2) : ρ1 > 0, ρ2 = 0}, I2 := {(ρ1, ρ2) : ρ1 = 0, ρ2 > 0}, and

I3 := {(ρ1, ρ2) : ρ1 = 0, ρ2 = 0}, since the other possible subset I4 := {(ρ1, ρ2) : ρ1 >

0, ρ2 > 0} is empty as (ρ1, ρ2) ∈ I4 requires p1 = q1 = 0, which violates (B.45). Similarly,

the set of (ρ3, ρ4)-tuples are partitioned into 3 subsets J1 := {(ρ3, ρ4) : ρ3 > 0, ρ4 = 0},
J2 := {(ρ3, ρ4) : ρ3 = 0, ρ4 > 0}, and J3 := {(ρ3, ρ4) : ρ3 = 0, ρ4 = 0}.

Next, the set of λ � 0 is partitioned into only 2 non-empty subsets L1 := {λ :

λ1 > 0, λ2 > 0, λ3 = 0}, and L2 := {λ : λ1 > 0, λ2 > 0, λ3 > 0}, since all other

subsets are empty as illustrated below. First, the remaining subsets of λ are denoted

as L3 := {λ : λ1 > 0, λ2 = 0, λ3 ≥ 0}, L4 := {λ : λ1 = 0, λ2 > 0, λ3 ≥ 0}, and

L5 := {λ : λ1 = 0, λ2 = 0, λ3 > 0}, whereas the subset L6 := {λ : λ1 = 0, λ2 = 0, λ3 = 0}
is empty as it violates (B.40).

Now, we examine below which ρ ∈ Ik∩Jl and λ ∈ Lj jointly satisfy the KKT conditions

(i.e., compatible), or not (i.e., incompatible):

B1. For any ρ ∈ Ik ∩ Jl, k ∈ {1, 3}, l ∈ {1, 2, 3}, we have λ 6∈ L3,L5. This follows

from a specific relation between ρ2 and λ2: for any ρ ∈ Ik ∩ Jl where ρ2 = 0,

and for any λ 6∈ Lm where λ2 = 0, we have µ1 = 0 from (B.42), resulting in

ρ1 = −ακd2
1/(2(1 + d2

1p1)) < 0 from (B.41), which violates ρ1 ≥ 0 in (B.57). Since

ρ2 = 0 in all ρ ∈ Ik ∩Jl, k ∈ {1, 3}, l ∈ {1, 2, 3}, and λ2 = 0 in all λ 6∈ L3, ,L5, these

pairs of ρ and λ are incompatible.

B2. For any ρ ∈ Ik ∩ Jl, k ∈ {1, 2, 3}, l ∈ {1, 3}, we have λ 6∈ L4,L5. This follows from

the consequence of having ρ4 = 0 in all ρ ∈ Ik ∩ Jl, k ∈ {1, 2, 3}, l ∈ {1, 3}, and

λ1 = 0 in all λ 6∈ L4, ,L5, as in [B1] above.

B3. For ρ ∈ I1 ∩ J2, we have λ 6∈ L4,L1,L2. This follows since for ρ ∈ I1 ∩ J2, we

have ρ1 > 0, ρ2 = 0, ρ3 = 0, ρ4 > 0, which requires p1 = 0, q1 = P/β̄, p2 = P/β, q2 =

0, from (B.53)–(B.56), (B.45), and (B.46). This further implies Σ1 < Σ2, which

contradicts the implications of λ ∈ L4, that requires Σ1 > Σ2, or of λ ∈ L1,L2 that

requires Σ1 = Σ2.

B4. For ρ ∈ I2 ∩ J1, we have λ 6∈ L3,L1,L2, which follows along the lines of [B3] by

exchanging the roles of ρ1, ρ3, and Σ1 with those of ρ2, ρ4, and Σ2, respectively..
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B5. For ρ ∈ I2 ∩ J3, we have λ 6∈ L3,L1,L2. It follows from the fact that ρ ∈ I2 ∩ J3

satisfies ρ1 = 0, ρ2 > 0, ρ3 = 0, ρ4 = 0, which requires p1 = P/β, q1 = 0, p2 > 0, q2 >

0, following (B.53)–(B.56), (B.45), and (B.46). This assertion results in Σ1 > Σ2,

which contradicts the implications of λ ∈ L3, that requires Σ1 < Σ2, or of λ ∈ L1,L2

that requires Σ1 = Σ2.

B6. For ρ ∈ I3 ∩ J2, we have λ 6∈ L4, ,L1,L2, which follows along the lines of [B5] by

exchanging the roles of ρ1, ρ2, and Σ1 with those of ρ3, ρ4, and Σ2, respectively.

B7. For ρ ∈ I2∩J2, we have λ 6∈ L3,L4,L5,L2. This follows from the fact that ρ ∈ I2∩J2

satisfies ρ1 = 0, ρ2 > 0, ρ3 = 0, ρ4 > 0, which requires p1 = P/β, q1 = 0, p2 =

P/β, q2 = 0, from (B.53)–(B.56), (B.45), and (B.46). This results in Σ1 = Σ2 < Σ,

which is consistent with the implication of λ ∈ L1 only, and not with any other

subset of λ.

B8. For ρ ∈ I1 ∩ J1 or ρ ∈ I3 ∩ J1, we have λ 6∈ L1,L2. This follows since in I1 ∩ J1

or I3 ∩ J1, ρ satisfies ρ3 > 0 and ρ4 = 0, which requires q2 = P/β̄, p2 = 0. However,

in L1 or L2, λ satisfies λ1 > 0, λ2 > 0, which requires Σ1 = Σ2 that results in

q1 =
c221
c212
q2 =

c221
c212
P/β̄. Under c2

21 > c2
12, the resulting q1 =

c221
c212
P/β̄ > P which violates

the total power constraint.

The assertions of [B1]-[B8] above are summarized succinctly in Table B.1 below where

the incompatibility between subsets Ik∩Jl and Lm is indicated by×, whereas compatibility

between the two, which corresponds to a specific link-gain regime (LGR), is labeled with

the associated LGR.

205



Table B.1: Compatibility of subsets Ik ∩ Jl and Lm.

Ik ∩ Jl L3 L4 L5 L1 L2

I1 ∩ J1 × × × × ×

I1 ∩ J2 × × × × ×

I1 ∩ J3 × × × Ac,cd Scd,cd

I2 ∩ J1 × × × × ×

I2 ∩ J2 × × × Ad,d ×

I2 ∩ J3 × × × × ×

I3 ∩ J1 × × × × ×

I3 ∩ J2 × × × × ×

I3 ∩ J3 × × × Acd,cd Scd,cd

The Optimum Power Allocation: As illustrated in Table B.1, each LGR is associated

with one or more mutually exclusive subsets of optimal Lagrange multipliers as follows:

(i) Ac,cd corresponds to ρ ∈ I1 ∩ J3 and λ ∈ L1; (ii) Ad,d corresponds to ρ ∈ I2 ∩ J2

and λ ∈ L1; (iii) Scd,cd corresponds to ρ ∈ I3 ∩ J3 ∪ I1 ∩ J3 and λ ∈ L2; and (iv) Acd,cd

corresponds to ρ ∈ I3 ∩ J3 and λ ∈ L1.

Next, we obtain the conditions of each LGR explicitly in terms of the channel param-

eters by characterizing the condition of the corresponding subsets of optimal Lagrange

multipliers. In addition, we characterize the optimal power allocation in each LGR as well.

Ac,cd: Since ρ ∈ I1 ∩ J3, it satisfies ρ1 > 0, ρ2 = 0, ρ3 = 0, ρ4 = 0, which requires

p1 = 0, q1 = P/β̄ from (B.45), (B.53), and (B.54), and also p2 > 0, q2 > 0 from (B.46),

(B.55), and (B.56). In addition, λ ∈ L1 implies Σ1 = Σ2 from (B.50) and (B.51), which,

from the expressions of Σ1 and Σ2 in (3.47) and (3.48) gives c2
21q2 = c2

12P/β̄. Thus, we

have q2 = Pc2
12/(c

2
21β̄), and therefore, p2 = P (1 − c2

12/c
2
21)/β from (B.46). Note that

P > 0 and c2
12 < c2

21 are sufficient for (q1, p2, q2) � 0, and any additional condition is

not required for this non-negativity. Next, λ3 = 0 is equivalent to Σ2 < Σ, resulting

in P < β̄(γ − 1)/c2
12, i.e., P < P̄4 where γ > 1 is defined in (3.58). Then, from ρ3 =

0, ρ4 = 0, and (B.43)–(B.44), we have λ1 = (1 + Pc2
12/β̄)/(P (c2

21 − c2
12)/β + c2

12/d
2
2). In

addition, from ρ2 = 0 and (B.41), the condition for ρ1 > 0 is λ2 > d2
1(1 + Pc2

12)/c2
12.
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Since λ3 = 0, from (B.40) we must satisfy λ2 + λ1 = 1, which subsequently gives d2
1(1 +

Pc2
12/β̄)/c2

12 + (1 + Pc2
12/β̄)/(P (c2

21 − c2
12)/β + c2

12/d
2
2) < 1, i.e., P < P̄2 as in Table 3.1.

Thus, the condition of Ac,cd is

[C1] : P < P̄4, P < P̄2, (B.58)

and the optimal transmit powers in Ac,cd are as given in the second row of Table 3.1.

Ad,d: Since ρ ∈ I2 ∩ J2, it satisfies ρ1 = 0, ρ2 > 0, ρ3 = 0, ρ4 > 0, which imply

p1 = P/β, q1 = 0, p2 = P/β, q2 = 0, following (B.53)–(B.56) and (B.45) and (B.46).

In addition, λ ∈ L1 implies Σ1 = Σ2 < Σ from (B.50)–(B.52), and assumption [A1] is

sufficient for this. Next, using ρ1 = ρ3 = 0, and (B.41)–(B.44), the sufficient conditions for

ρ2 > 0 and ρ4 > 0 are found to be λ2 < d2
1/(c

2
12(1 + d2

1P/β)) and λ1 < d2
2/(c

2
21(1 + d2

2P/β)),

respectively. Since λ3 = 0, and thus λ1 + λ2 = 1 from (B.40), the bounds on λ1 and λ2 are

combined, which gives d2
1/(c

2
12(1 + d2

1P/β)) + d2
2/(c

2
21(1 + d2

2P/β)) > 1, i.e., P < P̄1 as in

Table 3.1. Finally, P > 0 is sufficient for (p1, p2) � 0. Therefore, the condition of Ad,d is

[C2] : P < P̄1, (B.59)

and the optimal transmit powers in Ad,d are as given in the first row of Table 3.1.

Scd,cd: Since ρ ∈ I3 ∩ J3, it satisfies ρ = 0, which imply (p1, q1, p2, q2) � 0, following

(B.53)–(B.56). In addition, λ ∈ L2 implies Σ1 = Σ and Σ2 = Σ following (B.50)–(B.52),

which gives q1 = γ−1
c212

and q2 = γ−1
c221
, respectively, with γ > 1. Thus, we also have p1 =

P/β − β̄(γ−1)

βc212
and p2 = P/β − β̄(γ−1)

βc221
from (B.45) and (B.46). Note that the condition for

p1 > 0 is equivalent to P > β̄(γ − 1)/c2
12, i.e., P > P̄4, which is also sufficient for p2 > 0

due to c2
21 > c2

12.

Now, from ρ = 0 and (B.41)–(B.44), and using the expressions of (p1, q1, p2, q2) as

derived above, we find that λ1 = βγ/(Pc2
21 + βc2

21/d
2
2 − β̄(γ − 1)),

and λ2 = βγ/(Pc2
12 + βc2

12/d
2
1 − β̄(γ − 1)). We also note that P > P̄4 is sufficient to ensure

λ1 > 0, λ2 > 0. Next, to ensure λ3 > 0, λ1 and λ2 must satisfy λ1 + λ2 < 1, which gives

the condition P > P̄3 as in Scd,cd in Table 3.1. In addition, note that γ > 1 is sufficient for

(q1, q2) � 0.

Finally, the case with ρ ∈ I1∩J3 only differ from that with I3∩J3 in that now ρ1 > 0,

and thus p1 = 0. We note that P = P̄4 is sufficient for p1 = 0. We also note that the

other sufficient condition, which follows from the conditions on λ1 and λ2 as in I3 ∩ J3, is

expressed by evaluating g3(P ) < 1 derived above at P = P̄4. Therefore, the conditions of
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Scd,cd are given by

[C3] : P ≥ P̄4, P > P̄3, (B.60)

whereas the optimal transmit powers are as given in the fourth row of Table 3.1.

Acd,cd: Since ρ ∈ I3∩J3, it satisfies ρ = 0 that implies (p1, q1, p2, q2) � 0, which follows

from (B.53)–(B.56). Next, substituting ρ = 0 in (B.41)–(B.44), (B.45) and (B.46), we find
ακ
2µ1

(β+β̄λ2) = P+ β̄
c212

+ β
d21

, and ακ
2µ2

(β+β̄λ1) = P+ β̄
c221

+ β
d22

. In addition, λ ∈ L1 implies Σ1 =

Σ2, from which and from (3.47) and (3.48), we have λ2µ2c
2
12 = λ1µ1c

2
21. In addition, since

λ3 = 0 we also have λ1 = 1−λ2. Combining these conditions, we get a quadratic equation

of λ2, Âλ2
2−B̂λ2+Ĉ = 0, where Â := β̄(E1−E2), B̂ := E1−E2+2βE2, and Ĉ := βE2, with

E1, E2 as defined in (3.59). One of its roots, λ
(1)
2 := (B̂ +

√
B̂2 − 4ÂĈ)/2Â, is infeasible as

it violates (B.40) and the non-negativity of λ2 for Â > 0 and Â < 0, respectively. Therefore,

the valid solution is λ2 = (B̂ −
√
B̂2 − 4ÂĈ)/2Â. Next, from (B.42) and substituting λ2 in

ακ
2µ1

(β+β̄λ2) = P+ β̄
c212

+ β
d21

, and with some algebraic simplification, we obtain q1 = F (P )/c2
12,

where F (P ) is defined in (3.59). Finally, simple algebraic manipulations show that due to

the mutual exclusiveness of the LGRs, the condition of Acd,cd is

[C4]: max(P̄1, P̄2) ≤ P, P ≤ P̄3, (B.61)

and the optimal transmit powers are as given in the third row of Table 3.1.

B.12 Constraint Qualification for Problem [P1]

The Mangasarian-Fromovitz Constraint Qualification

Consider an optimization problem [P ′] over variable x ∈ Rv as follows

[P ′] minimize f(x) (B.62)

subject to: gi(x) ≤ 0, i = 1, . . . ,m, (B.63)

hi(x) = 0, i = 1, . . . , n, (B.64)

where f, gi, hi : Rv → R are assumed to be continuously differentiable functions. For a

feasible point x∗ of problem [P ′], the active set is defined as

I(x∗) := {i ∈ {1, . . . ,m} : gi(x
∗) = 0}. (B.65)

The Mangasarian-Fromovitz constraint qualification conditions [155, Section 2.1.2], [154,

Section 4.3] holds at x∗ if
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• ∇hi(x∗) are linearly independent for i = 1, . . . , n, and

• there exists a direction vector t ∈ Rv such that

1. ∇hi(x∗)T t = 0, i = 1, . . . , n, and

2. ∇gi(x∗)T t < 0, i ∈ I(x∗).

Constraints and Gradients in Problem [P1]

Note that in problem [P1] defined in (3.51)-(3.57), all equality and inequality constraints

are differentiable. Given a set of channel parameters (d1, d2, c12, c21, γ, P ), consider a feasible

point x = (p1, q1, p2, q2, R) for problem [P1].

For convenience, we denote the inequality constraints (3.52), (3.53) and (3.54) by

g1(x) = R− A1 −
αβ̄

2
log
(
1 + c2

21q2

)
− αβ

2
log
(
1 + d2

1p1

)
− αβ

2
log
(
1 + d2

2p2

)
,

g2(x) = R− A2 −
αβ̄

2
log
(
1 + c2

12q1

)
− αβ

2
log
(
1 + d2

1p1

)
− αβ

2
log
(
1 + d2

2p2

)
,

g3(x) = R− A− αβ

2
log
(
1 + d2

1p1

)
− αβ

2
log
(
1 + d2

2p2

)
,

where A,A1, A2, α, β, β̄ are non-negative constants that do not depend on the feasible point

x. The gradients of these functions, ∇g1(x), ∇g2(x) and ∇g3(x), are given by

∇g1(x) =

(
−αβκ

2

d2
1

1 + d2
1p1

, 0, −αβκ
2

d2
2

1 + d2
2p2

, −αβ̄κ
2

c2
21

1 + c2
21q2

, 1

)T
,

∇g2(x) =

(
−αβκ

2

d2
1

1 + d2
1p1

, −αβ̄κ
2

c2
12

1 + c2
12q1

, −αβκ
2

d2
2

1 + d2
2p2

, 0, 1

)T
,

∇g3(x) =

(
−αβκ

2

d2
1

1 + d2
1p1

, 0, −αβκ
2

d2
2

1 + d2
2p2

, 0, 1

)T
,

where aT denotes the transpose of vector a, and κ = log2 e > 0.

Next, the non-negativity constraints in (3.57) and their gradients are given as follows

g4(x) = −p1, ∇g4(x) = (−1, 0, 0, 0, 0)T ,

g5(x) = −q1, ∇g5(x) = (0,−1, 0, 0, 0)T ,

g6(x) = −p2, ∇g6(x) = (0, 0,−1, 0, 0)T ,

g7(x) = −q2, ∇g7(x) = (0, 0, 0,−1, 0)T ,

g8(x) = −R, ∇g8(x) = (0, 0, 0, 0,−1)T .
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Finally, the equality constraints (3.55) and (3.56) are denoted as

h1(x) = βp1 + β̄q1 − P, (B.66)

h2(x) = βp2 + β̄q2 − P, (B.67)

and their gradients are given as follows

∇h1(x) = (β, β̄, 0, 0, 0)T (B.68)

∇h2(x) = (0, 0, β, β̄, 0)T . (B.69)

Problem [P1] Satisfies the MFCQ

First, note that ∇h1(x) and ∇h2(x) in (B.68)-(B.69) are linearly independent. Next, for

notational convenience, the active set I(x) at x is denoted as

I(x) = I1(x) ∪ I2(x) ∪ I3(x), where

I1(x) ⊆ {1, 2, 3} \ ∅, I2(x) ⊆ {4, 5} \ (4, 5), I3(x) ⊆ {6, 7} \ (6, 7). (B.70)

More specifically, I1(x) is a subset of I(x) corresponding to constraints {gi(x)}3
i=1, and

since at least one of the three constraints must be tight, I1(x) 6= ∅. I2(x) is a subset of

I(x) corresponding to non-negative constraints {gi(x)}5
i=4, while I3(x) is a subset of I(x)

corresponding to non-negative constraints {gi(x)}7
i=6.

The intuition into why I2(x) 6= (4, 5) and I3(x) 6= (6, 7) are given below:

• due to (3.55), if p1 = 0, then q1 > 0. Hence g4(x) is tight =⇒ g5(x) is not tight,

i.e., 4 ∈ I2(x) =⇒ 5 6∈ I2(x). Similarly, if q1 = 0, then due to (3.55), p1 > 0, and

hence 5 ∈ I2(x) =⇒ 4 6∈ I2(x). Moreover, if both p1 > 0, q1 > 0, then I2(x) = ∅.
Therefore, depending on x, I2(x) is either of = ∅, {4}, or {5}}, but I2(x) 6= (4, 5).

• the rationale for I3(x) ⊆ {6, 7} \ (6, 7) follows from those for I2(x) explained above,

after replacing constraints 4 and 5 on variables p1 and q1 for I2(x) with constraints

6 and 7 on variables p2 and q2 for I3(x) that satisfy (3.56).

Finally, constraint g8(x) is never tight, i.e., 8 6∈ I(x), since R is always R > 0 due the fact

that A,A1, A2 > 0.

It thus follows from (B.70) that 63 combinations of active sets are possible. As an

illustrative example, we first consider the following case and show that the MFCQ holds.
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Case with Active Set I(x) = {1, 2, 3} ∪ {4} ∪ {6}: Clearly, in this case constrains

g1(x), g2(x) and g3(x), and non-negativity constraints g4(x) and g6(x) are tight, along

with the equality constraints h1(x) and h2(x).

Consider a direction vector t = (t1, t2, t3, t4, t5)T . First, to satisfy ∇h1(x)T t = 0, and

∇h2(x)T t = 0, vector t needs to satisfy

∇h1(x)T t = 0 =⇒ t2 = −β/β̄t1,

∇h2(x)T t = 0 =⇒ t4 = −β/β̄t3. (B.71)

For the MFCQ to hold, in addition to (B.71), ∇gk(x)T t < 0, k = 1, 2, 3, 4, 6, must also

hold. For ∇g4(x)T t < 0 and ∇g6(x)T t < 0 to hold, t must satisfy

∇g4(x)T t < 0 ⇐⇒ t1 > 0, and ∇g6(x)T t < 0 ⇐⇒ t3 > 0.

After substituting for t2 and t4 as in (B.71), for ∇g1(x)T t < 0 to hold, t must satisfy

∇g1(x)T t < 0 ⇐⇒ t5 + t3
αβκ

2

(
c2

21

1 + c2
21q2

− d2
2

1 + d2
2p2

)
︸ ︷︷ ︸

=:s1

−t1
αβκ

2

d2
1

1 + d2
1p1︸ ︷︷ ︸

>0

< 0. (B.72)

While t1 > 0 and t3 > 0, t5 is free. For inequality (B.72) to hold, if s1 > 0 finite, t5 < 0

needs to be taken to be a sufficiently large negative number, while if s1 ≤ 0, any t5 < 0 is

sufficient.

Similarly, substituting for t2 and t4 as in (B.71), for ∇g2(x)T t < 0 to hold, t must

satisfy

∇g2(x)T t < 0 ⇐⇒ t5 + t1
αβκ

2

(
c2

12

1 + c2
12q1

− d2
1

1 + d2
1p1

)
︸ ︷︷ ︸

=:s2

−t3
αβκ

2

d2
2

1 + d2
2p2︸ ︷︷ ︸

>0

< 0. (B.73)

As before, t1 > 0, t3 > 0, and t5 is free. For inequality (B.73) to hold, if s2 > 0 finite,

t5 < 0 needs to be taken to be a sufficiently large negative number, while if s2 ≤ 0, any

t5 < 0 is sufficient.

Finally, for ∇g3(x)T t < 0 to hold, t must satisfy

∇g3(x)T t < 0 ⇐⇒ t5 − t1
αβκ

2

d2
1

1 + d2
1p1︸ ︷︷ ︸

>0

−t3
αβκ

2

d2
2

1 + d2
2p2︸ ︷︷ ︸

>0

< 0. (B.74)

Since t1 > 0, t3 > 0, inequality (B.73) holds by taking any t5 < 0.

Therefore, we have found t = (t1, t2, t3, t4, t5)T , where t1, t3 > 0, t2 = −β/β̄t1, t4 =

−β/β̄t3, and t5 is the minimum of the two sufficiently large negative numbers found for

inequalities (B.72) and (B.73). Therefore, the problem satisfies the MFCQ for the active
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set I(x) = {1, 2, 3} ∪ {4} ∪ {6}.

Other Active Sets: While the above analysis is for the specific active set I(x) =

{1, 2, 3} ∪ {4} ∪ {6}, similar analysis holds for all other active sets. Since the analysis for

other active sets is tedious and repetitive, we omit their explicit derivation.

The Linear Independence Constraint Qualification

For problem [P ′] in (B.62)-(B.64), if x∗ is a feasible point, the linear independence con-

straint qualification (LICQ) [155, Section 2.1.2], [156] is said to hold if

• {∇hi(x∗), i = 1, . . . , n}, and {∇gi(x∗), i ∈ I(x∗)} are linearly independent.

Problem [P1] Does Not Satisfy the LICQ in General

We observe that [P1] does not satisfy the LICQ in general. For a feasible point x for

problem [P1], the total number of constraints in an active set I(x) defined in (B.70), may

potentially be as large as 5. In addition, there are two equality constraints as in (B.66)-

(B.67). Therefore, the total number of gradient vectors to be considered for LICQ can be

as large as 7. However, the feasible point x has the dimension of 5, and thus no more than

5 vectors can be linearly independent. Thus [P1] does not satisfy the LICQ in general.

While LICQ is not guaranteed to hold for [P1] in general, it may hold for active sets

with cardinality 3 or less. However, there exists a large number of such active sets for [P1],

and verifying if LICQ holds for all such sets is tedious and repetitive. Therefore, instead of

treating the general case of problem [P1], we limit the analysis for the case in Section 3.4.2

as this specific case has been studied in detail in this chapter. In particular, we consider

the case where problem [P1] is subject to the assumptions [A1] through [A4] in Section 3.4

and condition c2
21 > c2

12 in Section 3.4.2.

As a result, the potential number of active sets for the problem now reduces to only four,

given by either I(x) = {1, 2, 4, 6}, I(x) = {1, 2, 4}, I(x) = {1, 2, 3}, or I(x) = {1, 2},
depending on the appropriate feasible x, presented as valid LGRs in Table B.1 and detailed

in Section B.11.
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Active set I(x) = {1, 2, 4, 6}: LICQ does not hold, and the optimal Lagrange multipliers

are non-unique [156].

For active set I(x) = {1, 2, 4, 6}, when the two equality constraints are also included,

for LICQ to hold, 6 vectors {∇h1(x),∇h2(x),∇g1(x),∇g2(x),∇g4(x),∇g6(x)} need to

be linearly independent. Since the feasible point has a dimension of 5, these vectors

are linearly dependent, and hence LICQ does not hold. Therefore, the optimal Lagrange

multipliers are non-unique [156].

Active set I(x) = {1, 2, 4}: LICQ holds, and the optimal Lagrange multipliers are

unique.

For active set I(x) = {1, 2, 4}, when the two equality constraints are included, for LICQ

to hold, 5 vectors {∇h1(x),∇h2(x),∇g1(x),∇g2(x),∇g4(x)} need to be linearly indepen-

dent. Simple algebraic manipulations show that these vectors are indeed linearly indepen-

dent. Hence, LICQ holds, and the optimal Lagrange multipliers are unique [156].

LICQ also holds for I(x) = {1, 2, 3}, and I(x) = {1, 2} as well, but the details are

omitted to avoid repetition.

B.13 The Optimal Power Allocation for the Asym-

metric DCLIC

Recall that in Section 3.4.1, problem [P1] was formulated under assumptions [A2], i.e.,

A1 = A2 in (3.50), which provides symmetry in the underlying microwave IC, as well as

c2
12 < c2

21 in the mm-wave cross-links. We now characterize the optimal power allocation

scheme for the asymmetric DCLIC where the symmetry condition of [A2] does not nec-

essarily hold. More specifically, keeping c2
12 < c2

21 unchanged, we now formulate problem

[P1] under a more general assumption [A2G]

[A2G]: A2 < A1. (B.75)

In this case, seven LGRs are needed to describe the optimal allocation scheme (IC-OPA).

The definition and the expressions of the optimal powers of the LGRs are found by solving

the problem [P1] under [A2G] in a manner similar to that for problem [P1] under [A2].

Hence, the explicit derivation is omitted, and only the resulting LGRs are discussed.

Of the seven LGRs, four LGRs denoted Âd,d, Âc,cd, Âcd,cd, and Ŝcd,cd are counterparts of
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Table B.2: The optimal link powers for the asymmetric DCLIC in terms of channel parameters

a = (d1, d2, c12, c21, γ1, γ2, η, P ), with F̂ (P ) defined in (B.76), and γ1, γ2 and η defined in (B.77).

LGR Optimal Power Allocation

Âd,d p1 =
P

β
, q1 = 0, p2 =

P

β
, q2 = 0

Âc,cd p1 = 0, q1 =
P

β̄
, p2 = P − q2, q2 =

Pc2
12/β̄ + 1− η
ηc2

21

Ŝcd,cd p1 =
P

β
− β̄(γ1 − 1)

βc2
12

, q1 =
γ1 − 1

c2
12

, p2 =
P

β
− β̄(γ2 − 1)

βc2
21

, q2 =
γ2 − 1

c2
21

Âcd,cd p1 =
P − β̄q1

β
, q1 =

F̂ (P )

c2
12

, p2 =
P − β̄q2

β
, q2 =

1 + c2
12q1

ηc2
21

− 1

c2
21

the four LGRs Ad,d,Ac,cd,Acd,cd, and Scd,cd in Table 3.1, in the sense that the mode of link

power allocation in an LGR Â(.,.) in the former set is similar to its counterpart A(.,.) in the

latter set as detailed below. In addition to these four LGRs, three “new” LGRs Âc,d, Âcd,d

and Ŝcd,d are found: the mode of link power allocation in these LGRs are different than

those in any of the LGRs in Table 3.1, and hence designated “new”.

In Table B.2, the optimal power allocations for the first four LGRs are presented, where

F̂ (P ) :=
1

2β̄(1 + β)

(
E1 + ηE2 −

√
(E1 − ηE2)2 + 4β2ηE1E2

)
− 1, (B.76)

with E1, E2, defined in (3.59), and γ1, γ2 and η are defined as follows

γ1 :=

(
(1 + P1)(1 + P2)

1 + P2 + a2
21P2

)1/αβ̄

,

γ2 :=

(
(1 + P1)(1 + P2)

1 + P1 + a2
12P1

)1/αβ̄

,

η :=

(
1 + P1 + a2

21P2

1 + P2 + a2
12P1

)1/αβ̄

. (B.77)

We omit the definitions of these LGRs for the sake of conciseness. These LGRs, i.e.,

Âd,d, Âc,cd, Âcd,cd, and Ŝcd,cd, are similar to their counterparts in Table 3.1 in that they

follow the same Waterfilling-like (WF-like) and saturation properties: (a) when the power

budget P is sufficiently small, the IC-OPA allocates power to only the direct-links (in

Âd,d), or in both cross-links and one direct-link (in Âc,cd) depending on whether the direct-

or the cross-links are stronger in a sense similar to that for Ad,d and Ac,cd; (b) as P is

increased, the IC-OPA allocates power to all channels (in Âcd,cd) as in Acd,cd; and (c) when

P is sufficiently large, both cross-links become saturated (in Ŝcd,cd) as in Scd,cd.
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Table B.3: Definition of the “new” LGRs and optimal link powers for the asymmetric DCLIC

in terms of parameters a = (d1, d2, c12, c21, γ1, γ2, η, P ), with γ1, γ2 and η defined in (B.77), and

the threshold powers defined in (B.78).

LGR Optimal Power Allocation

Âc,d := {a : 0 ≤ P ≤ min(P̄5, P̄6)} p1 = 0, q1 =
P

β̄
,

p2 =
P

β
, q2 = 0

Âcd,d := {a : max(P̄6, P̄7) ≤ P ≤ P̄8} p1 = P +
β̄

c2
12

− β̄

d2
1

, q1 = P +
β

d2
1

− β

c2
12

,

p2 =
P

β
, q2 = 0

Ŝcd,d := {a : max(P̄5, P̄8) ≤ P ≤ P̄9} p1 =
P

β
− β̄(η − 1)

βc2
12

, q1 =
η − 1

c2
12

,

p2 =
P

β
, q2 = 0

Note that, if assumption [A2G] simplifies to [A2], we have η = 1 and γ1 = γ2, and the

powers in Table B.2 simplify to those in Table 3.1.

Next, in Table B.3 we present definitions of the three “new” LGRs and the correspond-

ing optimal link powers, where the threshold power are defined as below, with %[f(P )]

denoting the non-negative square root of polynomial f(P )

P̄5 := β̄
η − 1

c2
12

,

P̄6 := β̄

(
1

d2
1

− 1

c2
12

)
,

P̄7 := β

(
1

c2
12

− 1

d2
1

)
,

P̄8 :=
η − β̄
c2

12

− β

d2
1

,

P̄9 := %

[
d2

2

c2
21(1 + d2

2P/β)
+

βη

Pc2
12 + β̄ + βc2

12/d
2
1 − β̄η

]
− 1. (B.78)

The power allocation for the new LGRs can be interpreted following the WF-like and

saturation properties as follows. In Âc,d, we have P̄6 > 0 ⇐⇒ d2
1 < c2

12 (i.e., the cross-

link from source S1 is stronger than the corresponding direct-link), and thus following the

WF-like property, for sufficiently small P , the power budget is entirely allocated to the
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Figure B.1: An example of the optimum power allocation in the asymmetric case. The

IC-OPA follows path Âd,d → Âcd,d → Ŝcd,d → Âcd,cd → Ŝcd,cd, where Âcd,d and Ŝcd,d are

new.

cross-link, i.e., q1 = P/β̄, p1 = 0. However, under assumptions [A2G] and c2
12 < c2

21, it is

sub-optimal to allocate power to the other cross-link as such allocation results in Σ2 < Σ1,

and does not increase min{Σ2,Σ1} as much as possible, resulting in a suboptimal sum-

rate. Therefore, for source S2, it is optimal to allocate P only to the direct-link, i.e.,

p2 = P/β, q2 = 0 as long as P < max(P̄5, P̄6). This results in the maximum increases of

the bottleneck rate Σ2 in this range of P .

As P increases, additional benefits from transmitting only in the cross-link from source

S1 reduces. Hence, when P > max{P̄6, P̄7}, it becomes optimal to allocate a fraction of

P to the direct-link as well following the WF-like property, resulting in the allocation in

Âcd,d, and this allocation remains optimal for P < P̄8.

Note that in Âc,d and Âcd,d, the power budget P is small enough such that the optimal

sum-rate is R = Σ2 < Σ1. When P > max{P̄5, P̄8}, enough power has been allocated to

the cross-link of source S1 to cause Σ2 = Σ1. As P increases further, it becomes optimal to

maintain Σ2 = Σ1 by keeping this cross-link power fixed at q1 =
η − 1

c2
12

, while all additional

increments of P are allotted to the direct-link only. This allocation, described by Ŝc,d,

remains optimal as long as P < P̄9, beyond which transmitting in all four links as in Âcd,cd

in Table B.2 becomes optimal.
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In summary, it is apparent that while the optimal power allocation scheme for the

asymmetric DCLIC with [A2G] is more complex (with seven LGRs) than that of the case

with [A2] (with only four LGRs), it can nonetheless be satisfactorily explained by the

WF-like and saturation properties similar to those for the case with [A2]. Since the power

allocation does not reveal nay additional properties, for the clarity of exposition, we omit

any further discussion on this case.

Finally, in Figure B.1, we provide an example of the optimum power allocation in the

asymmetric case with parameters with a2
12 = 1.5, a2

21 = 2, P1 = P2 = 2, α = 2, β = 0.5, d2
1 =

1, d2
2 = 0.5, c2

12 = c2
21 = 0.5. In this example, the optimal power allocation follows path

Âd,d → Âcd,d → Ŝcd,d → Âcd,cd → Ŝcd,cd, where LGRs Âcd,d and Ŝcd,d are new.
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Appendix C

Appendices for Chapter 4

C.1 Proof of Theorem 4.1

Outer Bound: Assume that source Sk transmits Mk, k ∈ {1, 2}. Since the destination

knowsHn
D and H̄n1

D whereHD,i := {HmD,i}m∈{1,2,R}, i = 1, . . . , n, H̄D,` := {H̄mD,`}m∈{1,2,R}, ` =

1, . . . , n1, by Fano’s inequality we have

nR1 = H(M1)

= I(M1;Y n
D , Ȳ

n1
RD, Ȳ

n1
1D ) +H(M1|Y n

D , Ȳ
n1

RD, Ȳ
n1

1D )

≤ I(Xn
1 , X̂

n1
1 , X̄n1

1 ;Y n
D , Ȳ

n1
RD, Ȳ

n1
1D ,H

n
D, H̄

n1
D ) + nεn

(a)

≤ I(Xn
1 , X̂

n1
1 , X̄n1

1 ;Y n
D , Ȳ

n1
RD, Ȳ

n1
1D |H

n
D, H̄

n1
D ) + nεn

(b)

≤ I(Xn
1 , X̂

n1
1 ;Y n

D , Ȳ
n1

RD|H
n
D, H̄

n1
RD)

+

n1∑
`=1

h(Ḡ
1/2
1D,`e

jΘ̄1D,`X̄1,` + Z̄1D,`|Ḡ1D,`, Θ̄1D,`)− h(Z̄1D,`) + nεn

(c)

≤ I(Xn
1 , X̂

n1
1 ;Y n

D , Ȳ
n1

RD|H
n
D, H̄

n1
RD) +

n1∑
l=1

E[log(1 + Ḡ1DP̄1,l)] + nεn

(d)

≤ I(Xn
1 , X̂

n1
1 ;Y n

D , Ȳ
n1

RD|H
n
D, H̄

n1
RD) + n1E[C̃(Ḡ1DP̄1)] + nεn (C.1)

where (a) follows since (Xn
1 , X̂

n1
1 , X̄n1

1 ) ⊥⊥ (Hn
D, H̄

n1
D ); (b) follows by first expanding (a) into

four I(.; .) terms using chain rule where two I(.; .) terms turn out to be zero due to Markov

chains (MC) X̄n1
1 → (Xn

1 , X̂
n1
1 ,Hn

D, H̄
n1
RD)→ (Y n

D , Ȳ
n1

RD), and (Xn
1 , X̂

n1
1 ,Hn

D, H̄
n1
RD, Y

n
D , Ȳ

n1
RD)→

(X̄n1
1 , H̄n1

1D)→ Ȳ n1
1D ; the last two terms follow from the Gaussian model and applying chain

rule and unconditioning to one of the remaining I(.) terms; (c) follows from maximizing the
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first h(.) term in (b) by using X̄1,` ∼ CN (0, P̄1,`) where 1
n1

∑n1

`=1 P̄1,` ≤ P̄1 and expectations

are over Ḡ1D,` i.i.d., with C̃(x) = log(1+x); (d) follows by applying the Jensen’s inequality.

Bounding R2 similarly, the following bounds

Rk ≤
1

n
I(Xn

k , X̂
n1
k ;Y n

D , Ȳ
n1

RD|H
n
D, H̄

n1
RD) +

n1

n
E[C̃(ḠkDP̄k)], k ∈ {1, 2} (C.2)

are found where expectations are over ḠkD. Taking n→∞ such that n1/n→ α and εn → 0,

then gives the bounds in Theorem 4.1, for some empirical probability mass function (pmf)

distributed as a

p(xn1 , x̂
n1
1 , x̄

n1
1 )p(xn2 , x̂

n1
2 , x̄

n1
2 )

n∏
i=1

p(yR,i, yD,i|x1,i, x2,i, xR,i)

n∏
i=1

p(xR,i|yi−1
R , {ȳn1(i−1)

kR , hi−1
kR , h̄

n1(i−1)
kR }2

k=1)

n1∏
`=1

p(x̄R,`|yn(l−1)
R , {ȳl−1

kR , h
n(l−1)
kR , h̄l−1

kR }
2
k=1)

n1∏
`=1

p(ȳRD,`|x̄R,`) p(ȳ1D,`|x̄1,`) p(ȳ2D,`|x̄2,`) p(ȳ1R,`|x̂1,`) p(ȳ2R,`|x̂2,`). (C.3)

Finally, the outer bound to the capacity region of the underlying R-MARC is given by the

first I(.; .) term in (C.2).

Achievability: We pick integers (n, n1) and a distribution that factors as (C.3), and

then code over t blocks of symbols together. Define Uk := (Xn
k , X̂

n1
k ) and Ūk := X̄n1

k where

U1 ⊥⊥ U2, and Ūk = X̄n1
k ∼ CN (0, P̄k) i.i.d., k = 1, 2. To encode Mk ∈ Mk, we generate

2tnRk i.i.d. sequences utk(Mk) and ūtk(Mk), distributed according to p(utk) =
∏t

i=1 p(uk,i) =∏t
i=1 p(x

in
k,(i−1)n+1, x̂

in1

k,(i−1)n1+1) and p(ūtk) =
∏t

i=1 p(ūk,i), k = 1, 2. To communicate Mk,

we transmit utk(Mk) and ūtk(Mk) through the underlying RL-MARC and the Sk-D direct-

links respectively. The relay assists each (n, n1) block of symbols, by producing codewords

according to the relay-distribution in (C.3), and forwarding them. The destination then

decodesMk from the received signals, (Y nt
D , Ȳ n1t

RD , Ȳ
n1t
kD ), using the CSI (Hn

D, H̄
n1
D ). Applying

standard random coding techniques as in [138, Chapter 8.7], the rates

Rk <
1

n
I(Xn

k , X̂
n1
k ;Y n

D , Ȳ
n1

RD|H
n
D, H̄

n1
RD) +

n1

n
E[C̃(ḠkDP̄k)], k ∈ {1, 2} (C.4)

are achievable. Finally, an achievable rate pair on the RL-MARC is given by the first term

in (C.4), and its capacity of the R-MARC is the closure of the union of sets of all achievable

rate pairs on the RL-MARC where the union is over all (n, n1) and pmfs factoring as in

(C.3) with ȳkD,` = x̄k,` = ∅, k = 1, 2.
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C.2 Proof of Theorem 4.2

The achievable region is obtained by performing block Markov encoding over B+ 1 blocks

with i.i.d., circularly symmetric complex Gaussian (CSCG) codewords and backward de-

coding at destination following a scheme similar to that for the single-band fading MARC

as presented in [77]. As such, we present below only the notable details of the scheme.

Encoding: Encoding for block b ∈ {1, . . . , B + 1} proceeds as follows: (i) the block

lengths (n, n1), and the input distributions pm(x), p̄m(x̄) and p̂k(x̂),m ∈ {1, 2,R}, k ∈ {1, 2}
are chosen; (ii) the message Mk,b ∈ Mk from Sk is encoded into codewords xnk(Mk,b) and

x̂n1
k (Mk,b), generated according to

∏n
i=1 pk(xk,i(Mk,b)) and

∏n1

`=1 p̂k(x̂k,`(Mk,b)), k ∈ {1, 2},
and transmitted; (iii) assuming that the relay estimated (M1,b−1,M2,b−1) in block b−1 cor-

rectly, they are encoded into codewords xnR(M1,b−1,M2,b−1) and x̄n1
R (M1,b−1,M2,b−1), gen-

erated according to
∏n

i=1 pR(xR,i(M1,b−1,M2,b−1)) and
∏n1

`=1 p̄R(x̄R,`(M1,b−1,M2,b−1)), and

transmitted. The messages Mk,0 and Mk,B+1 are known at the destination, k ∈ {1, 2} as

in [77,124].

Decoding at the Relay: Assume that the message pair (M1,b−1,M2,b−1) was correctly

decoded in block b − 1. The relay then uses the side information xnR(M1,b−1,M2,b−1)

and x̄n1
R (M1,b−1,M2,b−1) and the CSI at block b, i.e., {Hn

kR(b), H̄n1
kR(b)}2

k=1, and estimates

(M1,b,M2,b) from the signals received in block b as in [138, Chapter 14.3.1]. Such decod-

ing yields certain rate constraints on R1, R2 and R1 + R2 which are then maximized by

using i.i.d. CSCG codewords Xm ∼ CN (0, Pm), X̂k ∼ CN (0, P̂k),m ∈ {1, 2, 3}, k ∈ {1, 2}.
Finally, the achievable rates are obtained by averaging the resulting rate constraints over

i.i.d. squared-magnitudes of fading coefficients GkR and ḠkR (since rate constraints are

independent of the phases), as given in (4.12)-(4.14).

Decoding at the Destination: (Backward decoding) Assuming that (M1,b+1,M2,b+1)

were decoded correctly in block b + 1, the decoder estimates (M1,b,M2,b) from the sig-

nals received in blocks b and b + 1 as in [138, Chapter 14.3.1] by using the side infor-

mation xnk(Mk,b+1) and x̂n1
k (Mk,b+1), k ∈ {1, 2}, and CSI in blocks b and b + 1, given by

{Hn
mD(`), H̄n1

RD(`)}b+1
`=b ,m ∈ {1, 2,R}. The resulting rate constraints are maximized by the

same i.i.d. CSCG codewords as for the relay, and achievable rates are obtained by taking

expectation over i.i.d. GkD and ḠRD, as given by (4.15)-(4.17).
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C.3 Proof of Theorem 4.3

The outer-bounds are derived by applying the cut-set bounding technique such as those

in [138, Chapter 14.10].

For notational convenience, define U ⊆ {1, 2} and Uc := {1, 2} \ U, such that MU :=

{Mk, k ∈ U}, and XU := {Xk, k ∈ U}. In the following, we characterize the upper bound

on
∑

k∈U Rk for an arbitrary U ⊆ {1, 2}, from which the upper bounds on rates R1, R2,

and R1 +R2 are obtained by taking U = {1},U = {2}, and U = {1, 2}, respectively.

Assuming that source Sk transmits the message Mk, k ∈ {1, 2}, we have

n
∑
k∈U

Rk = H (MU)

(a)
= H (MU|MUc)

(b)
= I

(
MU;Y n

D , Ȳ
n1

RD,H
n
D, H̄

n1
RD|MUc

)
+H

(
MU|Y n

D , Ȳ
n1

RD,H
n
D, H̄

n1
RD,MUc

)
(c)

≤ I
(
MU;Y n

D , Ȳ
n1

RD,H
n
D, H̄

n1
RD|MUc

)
+ nεn

(d)
= I

(
MU;Y n

D |Hn
D, H̄

n1
RD,MUc

)
+ I

(
MU; Ȳ n1

RD|Y
n

D ,H
n
D, H̄

n1
RD,MUc

)
+ nεn

(e)
=

n∑
i=1

h
(
YD,i|Y i−1

D ,Hn
D, H̄

n1
RD,MUc , XUc,i

)
− h

(
YD,i|Y i−1

D ,Hn
D, H̄

n1
RD,MU,MUc , XU,i, XUc,i

)
+

n1∑
l=1

h
(
ȲRD,l|Ȳ l−1

RD , Y n
D ,H

n
D, H̄

n1
RD,MUc

)
− h

(
ȲRD,l|Ȳ l−1

RD , Y n
D ,H

n
D, H̄

n1
RD,MUc ,MU

)
+ nεn

(f)

≤
n∑
i=1

h
(
YD,i|Y i−1

D ,Hn
D, H̄

n1
RD,MUc , XUc,i

)
− h

(
YD,i|Y i−1

D ,Hn
D, H̄

n1
RD,MU,MUc , XU,i, XUc,i, XR,i

)
+

n1∑
l=1

h
(
ȲRD,l|Ȳ l−1

RD , Y n
D ,H

n
D, H̄

n1
RD,MUc

)
− h

(
ȲRD,l|Ȳ l−1

RD , Y n
D ,H

n
D, H̄

n1
RD,MUc ,MU, X̄R,l

)
+ nεn

(g)

≤
n∑
i=1

h (YD,i|XUc,i,HD,i)− h (YD,i|XU,i, XR,i, XUc,i,HD,i)

+

n1∑
l=1

h
(
ȲRD,l|H̄RD,l

)
− h

(
Z̄RD,l

)
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(h)
=

n∑
i=1

h

(∑
k∈U

G
1/2
kD e

jΘkD,iXk,i +G
1/2
RDe

jΘRD,iXR,i + ZD,i|{GmD,i,ΘmD,i}m∈{1,2,R}

)

− h (ZD,i) +

n1∑
l=1

h
(
Ḡ

1/2
RDe

jΘ̄RD,lX̄R,l + Z̄RD,l|ḠRD,l, Θ̄RD,l

)
− h

(
Z̄RD,l

)
(i)

≤
n∑
i=1

E

[
log

(
1+GRDPR,i +

∑
k∈U

(
GkDPk,i+2G

1/2
kD G

1/2
RD Re{ej(ΘkD−ΘRD)E

[
Xk,iX

∗
R,i

]
}
))]

+

n1∑
l=1

E
[
log
(
1 + ḠRDP̄R,l

)]
(j)

≤
n∑
i=1

E

[
log

(
1 +

∑
k∈U

GkDPk,i +GRDPR,i

)]
+

n1∑
l=1

E
[
log
(
1 + ḠRDP̄R,l

)]
(k)

≤ nE
[
log
(

1 +
∑

k∈U
GkDPD +GRDPR

)]
+ n1E

[
log
(
1 + ḠRDP̄R

)]
(C.5)

where (a) follows since messages are independent, i.e., MU ⊥⊥ MUc ; (b) follows since the

channel-state information for the channels to the destination, i.e., Hn
D and H̄n1

RD where

HD,i := {HmD,i}m∈{1,2,R}, i = 1, . . . , n, is known at the destination, along with the re-

ceived signals Y n
D , Ȳ

n1
RD; (c) follows from the Fano’s inequality; (d) follows from the chain

rule and noticing the fact that I(MU;Hn
D, H̄

n1
RD|MUc) = 0; (e) follows by expressing the

mutual information I(.; .) terms as the difference of two differential entropies h(.), and

then applying chain rule, while conditioning with XU,i(MU) and XUc,i(MUc) (determin-

istic functions of MU and MUc) do not alter entropy; (f) follows since conditioning the

negative h(.) terms with XR,i and X̄R,l does not decrease entropy; in (g), the two pos-

itive h(.) terms follow from unconditioning, while the two negative h(.) terms follow

from the two Markov chains (Y i−1
D ,H

n\i
D , H̄n1

RD,MU,MUc)→ (XU,i, XUc,i, XR,i,HD,i)→ YD,i

and (Ȳ l−1
RD , Y n

D ,H
n
D, H̄

n1\l
RD ,MU,MUc) → (X̄R,l, H̄RD,l) → ȲRD,l, respectively, imposed by the

memoryless system model, where a vector Fm\j := {Fi}mi=1 \ Fj; (h) follows directly from

the fading Gaussian model; (i) follows by maximizing the first positive h(.) term of (h)

by choosing Xk,i ∼ CN (0, Pk,i) [77], with Pk,i := E[|Xk,i|2], k ∈ {1, 2,R}, where E[Xk,iX
∗
R,i]

denotes the cross-correlation between Xk,i and XR,i with the expectation taken over column

i of the codebook, and Re(.) denotes the real part; the other positive h(.) term in (h) is

similarly maximized by X̂k,l ∼ CN (0, P̂k,l); the outer expectation for the first term is over

i.i.d. fading magnitudes and phases, while the same for the second term is over the i.i.d.

fading magnitudes only; (j) follows from [77, Theorem 8]: since in the first term of (i), Θ̃ :=

ΘkD −ΘRD ∼ U [0, 2π), each summand of the form EΘ̃,G,B log(1 +G+ 2G1/2B1/2Re{ejΘ̃ρ})
can be upper bounded as EΘ̃,G,B log(1 + G + 2G1/2B1/2Re{ejΘ̃ρ}) ≤ EA log(1 + G) when
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Θ̃ ∼ U [0, 2π), ρ ∈ C; and (k) follows from applying Jensen’s inequality as in steps (c)-(d)

of (C.1).

Finally, dividing both sides of (C.5) by n, as n, n1 →∞, we have

RU ≤ E
[
C̃
(∑

k∈U
GkDPD +GRDPR

)]
+ αE

[
C̃
(
ḠRDP̄R

)]
, U ⊆ {1, 2}, (C.6)

from which individual bounds on R1, R2, and R1 + R2 are obtained by choosing U = {1},
U = {2}, and U = {1, 2}, respectively.

C.4 Solution of Problem [P2] in Section 4.4.1

Convexity of Problem: We first show that [P2] is convex. We denote a feasible point

by x := (p1, q1, p2, q2, R) ∈ R5
+, and use the equivalent objective, minimize −R. Note that

the objective is linear, and the equality constraints in (4.36) are affine. Moreover, the

constraint in (4.34) is convex as its Hessian is a positive semidefinite matrix with

ακ

2

(
d2

1

(1 + d1p1)2
,

r2
1

(1 + r1q1)2
,

d2
2

(1 + d2p2)2
,

r2
2

(1 + r2q2)2
, 0

)
on its leading diagonal. Similarly, constraint (4.35) can also be shown to be convex. In

addition, (4.36) and (4.37), and x � 0 imply that the feasible set is compact for a given

P > 0. Hence, [P2] is a convex optimization problem over a compact set.

The KKT Conditions: Problem [P2] satisfies Slater’s condition [132, Chapter 5.2.3]:

it can be illustrated by considering the point x̃ :=
(
P −ε, ε, P −ε, ε, σR

)
, which is strictly

feasible for sufficiently small ε > 0. Moreover, [P2] also satisfies the MFCQ as illustrated

in Section 4.4.1. Therefore, [P2] can be solved using KKT conditions [132, Chapter 5.5.3].

The Lagrangian function for [P2] is given by

L = −R+ λ1(R− ΣR) + λ2(R− ΣD) +
∑2

k=1 µk(pk + qk − P )− ρ1p1 − ρ2q1 − ρ3p2 − ρ4q2 − ρ5R,

where {λk}2
k=1, {µk}2

k=1 and {ρi}5
i=1 are Lagrange multipliers corresponding to constraints

(4.34)-(4.35), (4.36), and (p1, q1, p2, q2, R) � 0 respectively, with ΣR and ΣD in (4.30)–

(4.31). With slight abuse of notation, we denote the optimal primal variables by (p1, q1, p2, q2, R),

and the optimal Lagrange multipliers (OLM) by (λ1, λ2, ρ1, ρ2, ρ3, ρ4) and (µ1, µ2), and they

satisfy the following KKT conditions

λ1 + λ2 = 1, (C.7)
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ρ1 = µ1 −
α

2

d1

1 + d1p1

, ρ2 = µ1 −
α

2

λ1r1

1 + r1q1

, ρ3 = µ2 −
α

2

d2

1 + d2p2

, ρ4 = µ2 −
α

2

λ1r2

1 + r2q2

,

(C.8)

p1 + q1 = P, p2 + q2 = P, (C.9)

R− ΣR ≤ 0, R− ΣD ≤ 0, λ1(R− ΣR) = 0, λ2(R− ΣD) = 0, (C.10)

ρ1p1 = 0, ρ2q1 = 0, ρ3p2 = 0, ρ4q2 = 0, (C.11)

(p1, q1, p2, q2, R) � 0, (λ1, λ2, ρ1, ρ2, ρ3, ρ4) � 0, (µ1, µ2) 6= 0. (C.12)

with ρ5 = 0 since R ≥ min(σD, σR) > 0.

Partitioning the Set of OLMs: We now partition the set of all (ρ,λ)-tuples where ρ :=

(ρ1, ρ2, ρ3, ρ4) � 0 and λ := (λ1, λ2) � 0, into 18 subsets. First, the set of (ρ1, ρ2)-tuples is

partitioned into 3 subsets, I1 := {(ρ1, ρ2) : ρ1 > 0, ρ2 = 0}, I2 := {(ρ1, ρ2) : ρ1 = 0, ρ2 > 0},
and I3 := {(ρ1, ρ2) : ρ1 = 0, ρ2 = 0}, since subset I4 := {(ρ1, ρ2) : ρ1 > 0, ρ2 > 0} violates

(C.9) by requiring p1 = q1 = 0. The set of (ρ3, ρ4)-tuples is similarly partitioned into 3

subsets Jk, k ∈ {1, 2, 3}.

Finally, the set of λ-tuples is partitioned into 2 subsets L1 := {λ : λ1 = 1, λ2 = 0} and

L2 := {λ : λ1 > 0, λ2 > 0}, since subset L3 := {λ : λ1 = 0, λ2 = 1} violates the assumption

γ > 1 in the MARC-OPA by requiring ΣD < ΣR, and L4 := {λ : λ1 = 0, λ2 = 0}
violates (4.34)–(4.35) by requiring R < min(ΣD,ΣR). Thus, the set of (ρ,λ)-tuples are

now partitioned into 18 subsets Ik ∩ Jl ∩ Lm, k, l ∈ {1, 2, 3},m ∈ {1, 2}.

Note that a (ρ,λ)-tuple now satisfies the KKT conditions as well as the condition of

the subset to which it belongs. When all conditions on (ρ,λ) are expressed in terms of

(P, r1, r2, d1, d2, γ), each subset leads to an LGR as presented in Table C.1. However, only

14 LGRs are valid, since 3 are subsumed into an existing LGR (Ã(.,.) ⊆ A(.,.)), and Ãd,d is

invalid as it violates the assumption γ > 1.

Power Allocation in LGRs: Next, we express the conditions on (ρ,λ) in each LGR

in terms of P and threshold powers in Table 4.3. We also derive the expression of optimal

powers in this process.

LGR Ar,r: Here, ρ ∈ I1 ∩ J1 and λ ∈ L1. For ρ ∈ I1 ∩ J1, we have ρ1 > 0, ρ2 =

0, ρ3 > 0, ρ4 = 0, which require p1 = 0, q1 = P, p2 = 0, q2 = P from (C.9), (C.11)-(C.12).

Now, λ ∈ L1 requires ΣR < ΣD that results in P < Pr,r from (C.10). The conditions for

ρ1 > 0, ρ3 > 0 are derived by substituting ρ2 = ρ4 = 0 in (C.8) and eliminating (µ1, µ2).
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Table C.1: Set of (ρ,λ)-tuples are partitioned into 18 subsets and the LGR corresponding

to each subset is provided.

λ ∈ L1 λ ∈ L2

ρ ∈ I1 ∩ J1 Ar,r Ãr,r ⊆ Ar,r

ρ ∈ I2 ∩ J1 Ad,r Ãd,r ⊆ Ad,r

ρ ∈ I3 ∩ J1 Ard,r Srd,r

ρ ∈ I1 ∩ J2 Ar,d Ãr,d ⊆ Ar,d

ρ ∈ I2 ∩ J2 Ad,d Ãd,d is invalid

ρ ∈ I3 ∩ J2 Ard,d Srd,d

ρ ∈ I1 ∩ J3 Ar,rd Sr,rd

ρ ∈ I2 ∩ J3 Ad,rd Sd,rd

ρ ∈ I3 ∩ J3 Ard,rd Srd,rd

Hence, the conditions for Ar,r are given by

P ≤ P′d,d = d−1
1 − r−1

1 , P ≤ P̂′d,d = d−1
2 − r−1

2 , P < Pr,r. (C.13)

The conditions of the counterpart Ãr,r (with λ∈L2 instead of λ∈L1) is valid only for

a set of measure zero at P =Pr,r but the optimum powers are the same as in Ar,r, thus it

is subsumed in Ar,r.

LGR Ad,rd and Sd,rd: In Ad,rd, ρ ∈ I2 ∩ J3 and λ ∈ L1. For ρ ∈ I2 ∩ J3, we have

ρ1 = 0, ρ2 > 0, ρ3 = 0, ρ4 = 0, which require p1 = P, q1 = 0, p2 ≥ 0, q2 ≥ 0 from

(C.9), (C.11)-(C.12). First, by substituting ρ3 = ρ4 = 0, λ1 = 1 in (C.8), we obtain

p2 = 0.5(P + r−1
2 −d−1

2 ) and q2 = 0.5(P +d−1
2 − r−1

2 ), and conditions (p2, q2) � 0 require

P ≥ P̂′d,d, P ≥ P̂d,d. The condition for ρ2 > 0, found by substituting ρ1 = 0, λ1 = 1 in

(C.8), requires P ≤Pd,d = r−1
1 −d−1

1 . Finally, λ ∈ L1 requires ΣR < ΣD, i.e., P < Pd,rd =

(2γ − 1)r−1
2 − d−1

2 . Thus, the conditions for Ad,rd are

min(Pd,d,Pd,rd) ≥ P ≥ max(P̂d,d, P̂
′
d,d).

In Sd,rd, ρ ∈ I2 ∩ J3, which still requires p1 = P, q1 = 0, p2 ≥ 0, q2 ≥ 0. However,

now λ ∈ L2, i.e., (λ1, λ2)� 0, which requires ΣR = ΣD, resulting in q2 = (γ − 1)r−1
2 , and

p2 = P − (γ − 1)r−1
2 . Due to γ > 1, we have q2 > 0, but p2 > 0 additionally requires

P > Pd,r = (γ − 1)r−1
2 . Since λ1 +λ2 = 1 in (C.7), (λ1, λ2)� 0 is equivalent to 1> λ1 > 0.
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Solving for λ1 by substituting (p2, q2) above and ρ3 =ρ4 =0 in (C.8), the condition 1>λ1>0

requires P >Pd,rd. The condition for ρ2>0, found by substituting ρ1 =0 in (C.8), requires

P >Pd,rd if r∈RS2, and P <Pd,rd otherwise. Therefore, the conditions of Sd,rd are

P ≥ max(Pd,r,Pd,rd,Pd,rd), if r ∈ RS2, and max(Pd,r,Pd,rd) ≤ P < Pd,rd, otherwise.

LGR Ard,r and Srd,r: In Ard,r, ρ ∈ I3 ∩ J1 and λ ∈ L1. For ρ ∈ I3 ∩ J1, we have

ρ1 = 0, ρ2 = 0, ρ3 > 0, ρ4 = 0, which require p1 ≥ 0, q1 ≥ 0, p2 = 0, q2 = P from

from (C.9), (C.11)-(C.12). First, by substituting ρ1 = ρ2 = 0, λ1 = 1 in (C.8) we find

p1 = 0.5(P + r−1
1 −d−1

1 ) and q1 = 0.5(P +d−1
1 − r−1

1 ), and (p1, q1) � 0 require P ≥ P′d,d and

P ≥ Pd,d. The condition for ρ3 > 0, found by substituting ρ4 = 0, λ1 = 1 in (C.8), requires

P ≤ P̂′d,d. Also, λ ∈ L1 (i.e., ΣR < ΣD) requires P < Prd,r. Thus, the conditions for Ard,r

are given by

P ≥ max(Pd,d,P
′
d,d), P ≤ min(P̂′d,d,Prd,r).

In Srd,r, ρ ∈ I3 ∩ J1 still requires p1 ≥ 0, q1 ≥ 0, p2 = 0, q2 = P , but λ ∈ L2 now

requires ΣR = ΣD, from which we solve for λ1. Then, using λ1 and ρ1 = ρ2 = 0 in (C.8),

we find p1 = P − r−1
1 (γ/(1 + Pr2) − 1) and q1 = r−1

1 (γ/(1 + Pr2) − 1), and (p1, q1) � 0

require Pd,r > P > Pr,r. Conditions (C.7) and λ ∈ L2 simplify to 1 > λ1 > 0 which requires

P > Prd,r, while the condition for ρ3 > 0 requires P < Prd,r. Thus, conditions for Srd,r are

min(Pd,r,Prd,r) ≥ P ≥ max(Pr,r,Prd,r).

LGR Srd,rd: Here, ρ ∈ I3 ∩ J3, i.e., ρ = 0, and λ ∈ L2: this require ΣR = ΣD, from

which we solve for λ1. Conditions (C.7) and λ ∈ L2 simplify to 1 > λ1 > 0 which

requires P > Prd,rd. Using the expression of λ1 and ρ = 0 in (C.8), we find q2 and q1

as in the last and third to last rows of Table 4.1. From (C.9) we have pk = P −qk, and

pk > 0, k = 1, 2, requires P > max(Pr,rd,Prd,r). Finally, depending on the relay-link gains,

condition qk > 0, k = 1, 2, simplify to either of the following three conditions

max(Prd,d,Pd,rd) < P, for r ∈ R2 ∪R1,

Prd,d < P < Pd,rd, for r ∈ RS2,

Pd,rd < P < Prd,d, for r ∈ RS1,

as in Table 4.1.

The optimal powers and conditions for Ard,d,Srd,d,Ar,rd and Sr,rd are derived from

Ad,rd,Sd,rd,Ard,r and Srd,r by exchanging the roles of the direct-links and relay-links, while

those for Ad,d, Ad,r, Ar,d and Ard,rd are derived through similar tedious algebraic manipu-
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lations. The details are omitted here.

C.5 MF Constraint Qualification for Problem [P2]

The Mangasarian-Fromovitz Constraint Qualification

Consider an optimization problem [P ′] over variable x ∈ Rv as follows

[P ′] minimize f(x) (C.14)

subject to: gi(x) ≤ 0, i = 1, . . . ,m, (C.15)

hi(x) = 0, i = 1, . . . , n, (C.16)

where f, gi, hi : Rv → R are assumed to be continuously differentiable functions. For a

feasible point x∗ of problem [P ′], the active set is defined as

I(x∗) := {i ∈ {1, . . . ,m} : gi(x
∗) = 0}. (C.17)

The Mangasarian-Fromovitz constraint qualification conditions [155, Section 2.1.2], [154,

Section 4.3] holds at x∗ if

• ∇hi(x∗) are linearly independent for i = 1, . . . , n, and

• there exists a direction vector t ∈ Rv such that

1. ∇hi(x∗)T t = 0, i = 1, . . . , n, and

2. ∇gi(x∗)T t < 0, i ∈ I(x∗).

Constraints and Gradients in Problem [P2]

Note that in problem [P2] defined in (4.33)-(4.38), all equality and inequality constraints

are differentiable. Given a set of channel parameters (d1, d2, r1, r2, γ, P ), consider a feasible

point x = (p1, q1, p2, q2, R) for problem [P2].

For convenience, we denote the inequality constraints (4.34) and (4.35) by

g1(x) = R− σR − α log (1 + r1q1)− α log (1 + r2q2)− α log (1 + d1p1)− α log (1 + d2p2) ,

g2(x) = R− σD − α log (1 + d1p1)− α log (1 + d2p2) ,
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where σR, σD, α, r1, r2, d1, d2 are non-negative constants that do not depend on the feasible

point x. The gradients of these functions, ∇g1(x) and ∇g2(x), are given by

∇g1(x) =

(
− ακd1

1 + d1p1

, − ακr1

1 + r1q1

, − ακd2

1 + d2p2

, − ακr2

1 + r2q2

, 1

)T
,

∇g2(x) =

(
− ακd1

1 + d1p1

, 0, − ακd2

1 + d2p2

, 0, 1

)T
,

where aT denotes the transpose of vector a, and κ = log2 e > 0.

Next, the non-negativity constraints in (4.38) and their gradients are given as follows

g3(x) = −p1, ∇g3(x) = (−1, 0, 0, 0, 0)T ,

g4(x) = −q1, ∇g4(x) = (0,−1, 0, 0, 0)T ,

g5(x) = −p2, ∇g5(x) = (0, 0,−1, 0, 0)T ,

g6(x) = −q2, ∇g6(x) = (0, 0, 0,−1, 0)T ,

g7(x) = −R, ∇g7(x) = (0, 0, 0, 0,−1)T .

Finally, the equality constraints (4.36) and (4.37) are denoted as

h1(x) = p1 + q1 − P, (C.18)

h2(x) = p2 + q2 − P, (C.19)

and their gradients are given as follows

∇h1(x) = (1, 1, 0, 0, 0)T (C.20)

∇h2(x) = (0, 0, 1, 1, 0)T . (C.21)

[P2] Satisfies the MFCQ

First, note that ∇h1(x) and ∇h2(x) in (C.20)-(C.21) are linearly independent. Next, for

notational convenience, the active set I(x) at x is denoted as

I(x) = I1(x) ∪ I2(x) ∪ I3(x), where

I1(x) ⊆ {1, 2} \ ∅, I2(x) ⊆ {3, 4} \ (3, 4), I3(x) ⊆ {5, 6} \ (5, 6). (C.22)

More specifically, I1(x) is a subset of I(x) corresponding to constraints {gi(x)}2
i=1, and

since at least one of the two constraints must be tight, I1(x) 6= ∅. I2(x) is a subset of

I(x) corresponding to non-negative constraints {gi(x)}4
i=3, while I3(x) is a subset of I(x)

corresponding to non-negative constraints {gi(x)}6
i=5.

The intuition into why I2(x) 6= (3, 4), and I3(x) 6= (5, 6) are given below:
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• due to (4.36), if p1 = 0, then q1 > 0. Hence g3(x) is tight =⇒ g4(x) is not tight,

i.e., 3 ∈ I2(x) =⇒ 4 6∈ I2(x). Similarly, if q1 = 0, then p1 > 0, and hence

4 ∈ I2(x) =⇒ 3 6∈ I2(x). Moreover, if both p1 > 0, q1 > 0, then I2(x) = ∅.
Therefore, I2(x) ⊆ {3, 4} \ (3, 4).

• the rationale for I3(x) ⊆ {5, 6} \ (5, 6) follows from those for I2(x) explained above,

after replacing constraints 3 and 4 on variables p1 and q1 for I2(x) with constraints

5 and 6 on variables p2 and q2 for I3(x) that satisfy (4.37).

Finally, constraint g7(x) is never tight, i.e., 7 6∈ I(x) as R is always R > 0 due to the fact

that σR, σD > 0.

It thus follows from (C.22) that 27 combinations of active sets are potentially possible.

As an illustrative example, we first consider the following case and show that the MFCQ

holds.

Case with Active Set I(x) = {1, 2} ∪ {3} ∪ {5}: Clearly, in this case constrains g1(x)

and g2(x), and non-negativity constraints g3(x) and g5(x) are tight, along with the equality

constraints h1(x) and h2(x).

Consider a direction vector t = (t1, t2, t3, t4, t5)T . First, to satisfy ∇h1(x)T t = 0, and

∇h2(x)T t = 0, vector t needs to satisfy

∇h1(x)T t = 0 =⇒ t2 = −t1,

∇h2(x)T t = 0 =⇒ t4 = −t3. (C.23)

For the MFCQ to be satisfied, in addition to (C.23), ∇gk(x)T t < 0, k = 1, 2, 3, 5, must

hold as well. For ∇g3(x)T t < 0 and ∇g5(x)T t < 0 to hold, t must satisfy

∇g3(x)T t < 0 ⇐⇒ t1 > 0, and ∇g5(x)T t < 0 ⇐⇒ t3 > 0.

Then, after substituting for t2 and t4 as in (C.23), for ∇g1(x)T t < 0 to hold, t must satisfy

∇g1(x)T t < 0 ⇐⇒ t5 + t1

(
ακr1

1 + r1q1

− ακd1

1 + d1p1

)
︸ ︷︷ ︸

=:s1

+t3

(
ακr2

1 + r2q2

− ακd2

1 + d2p2

)
︸ ︷︷ ︸

=:s2

< 0.

(C.24)

While t1 > 0 and t3 > 0, t5 is free. Hence, so long as (s1, s2) are finite, irrespective of

whether (s1, s2) satisfy either (a) s1 > 0, s2 > 0, (b) s1 > 0, s2 < 0, (c) s1 < 0, s2 > 0, or

(d) s1 < 0, s2 < 0, inequality (C.24) can be satisfied by taking t5 to be a sufficiently large

negative number.
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Similarly, substituting for t2 and t4 in (C.23), for ∇g2(x)T t < 0 to hold, t must satisfy

∇g2(x)T t < 0 ⇐⇒ t5 − t1
ακd1

1 + d1p1︸ ︷︷ ︸
>0

−t3
ακd2

1 + d2p2︸ ︷︷ ︸
>0

< 0. (C.25)

As before, t1 > 0, t3 > 0, and t5 is free. Hence, taking any t5 < 0 is sufficient for inequality

(C.25) to hold.

Therefore, we have found t = (t1, t2, t3, t4, t5)T , where t1, t3 > 0, t2 = −t1, t4 = −t3,

and t5 is the minimum of the two sufficiently large negative numbers found for inequalities

(C.24) and (C.25). Therefore, the problem satisfies the MFCQ for the active set I(x) =

{1, 2} ∪ {3} ∪ {5}.

Other Active Sets: While the above analysis is for the specific active set I(x) =

{1, 2} ∪ {3} ∪ {5}, similar analysis holds for all other active sets. Since the analysis for

other active sets is tedious and repetitive, we omit their explicit derivation.

[P1] Does Not Satisfy the LICQ in General

For problem [P ′] in (C.14)-(C.16), if x∗ is a feasible point, the linear independence con-

straint qualification (LICQ) [155, Section 2.1.2], [156] is said to hold if

• {∇hi(x∗), i = 1, . . . , n}, and {∇gi(x∗), i ∈ I(x∗)} are linearly independent.

We observe that [P2] does not satisfy the LICQ in general.

To verify, consider a feasible point x for problem [P2], for which the active set has a

cardinality of 4, i.e., the active set is either I(x) = {1, 2} ∪ {3} ∪ {5}, I(x) = {1, 2} ∪
{4} ∪ {5}, I(x) = {1, 2} ∪ {3} ∪ {6}, or I(x) = {1, 2} ∪ {4} ∪ {6}. For these active sets,

when the two equality constraints in (C.18)-(C.19) are also included, the total number of

gradient vectors to be considered becomes 6. Since feasible point x has dimension 5, any

6 vectors cannot be linearly independent. Hence for these active sets [P2] does not satisfy

the LICQ, and thus the optimal Lagrange multipliers are non-unique [156].

For all other active sets, the cardinality is at most 3. Hence, including the two equality

constraints in (C.18)-(C.19), the number of gradient vectors to be considered for linear

independence is at most 5. For each such active set, we convert the problem of verifying

linear independence into that of determining the rank of a matrix associated with a system
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of linear equations. Then applying standard row reduction technique, we observe that the

vectors for all such active sets are linearly independent. As such, for these active sets,

problem [P2] satisfies the LICQ, and thus the optimal Lagrange multipliers are unique

[156]. The details are omitted.
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Appendix D

Appendices for Chapter 5

D.1 Proof of Theorem 5.1

Fix a distribution p ∈ P , and let the time-sharing variable Q be available to all sources

and destinations. Suppose that source Sk wants to communicate its message Mk at

rate Rk where the common message is Mkc with rate Rk0, k ∈ {1, 2, 3, 4}. The en-

coding proceeds as follows. First, a time-sharing sequence qn is generated according to

qn ∼ pQn(qn) =
∏n

i=1 pQ(qi). Source Sk then generates 2nRk0 codewords unk according to

unk ∼ pUnk |Qn(unk |qn) =
∏n

i=1 pUk|Q(uk,i|qi), and indexes them by the common message Mkc ∈
{1, . . . , 2nRk0}. To employ superposition encoding, we take each unk(Mkc) as a cloud cen-

ter, and generate 2n(Rk−Rk0) codewords xnk according to xnk ∼ pXn
k |U

n
k ,Q

n(xnk |unk(Mkc), q
n) =∏n

i=1 pXk|Uk,Q(xk,i|uk,i(Mkc), qi), and index them by common-private message pair (Mkc,Mkp) ∈
{1, . . . , 2nRk0}×{1, . . . , 2n(Rk−Rk0)}. After the codebook for all sources are generated, they

are revealed to the destinations and kept fixed. To communicate message Mk, source Sk

sends xnk(Mkc,Mkp).

The codewords from all sources are superimposed at both the destinations. Destination

D1 employs joint typical decoding [7] to find the pair (M̂1, M̂2) = ((M1c,M1p), (M2c,M2p))

such that (qn, (xnk(Mkc,Mkp), unk(Mkc))
2
k=1, (u

n
` (M`c))

4
`=3) ∈ A(n)

ε , for some (M3c,M4c). The

error events and the corresponding rate constraints are then derived by adapting the tech-

niques of [7] for 2-user IC to the 2-user MAIC, and the resulting rate region is given by

R1(p) in Theorem 5.1. The decoding for D2 proceeds similarly with the roles of S1 and

S2 swapped with those of S3 and S4. The decoding procedure and notations are quite

standard and similar to the two-user IC case detailed in [97, Chapter 6], and hence the
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details are omitted for brevity.

D.2 Proof of Theorem 5.2

We bound the sum-rate as follows

2nCS = 2n(R1 +R2) + 2n(R3 +R4)

= n(R1 +R2) + n(R1 +R2) + n(R3 +R4) + n(R3 +R4)

(a)

≤ I(Xn
1 , X

n
2 ;Y n

1 ) + I(Xn
1 , X

n
2 ;Y n

1 ) + I(Xn
3 , X

n
4 ;Y n

2 ) + I(Xn
3 , X

n
4 ;Y n

2 ) + nεn

(b)

≤ I(Xn
1 , X

n
2 ;Y n

1 ) + I(Xn
1 , X

n
2 ;Y n

1 , S
n
1 ) + I(Xn

3 , X
n
4 ;Y n

2 ) + I(Xn
3 , X

n
4 ;Y n

2 , U
n
2 ) + nεn

(D.1)

where (a) follows from Fano’s inequality, and (b) follows by providing Sn1 to one of the

terms for D1 and Un
2 to one of the terms for D2.

We now expand the terms in (D.1) as follows:

I(Xn
1 , X

n
2 ;Y n

1 ) = h(Y n
1 )− h(h3(Xn

3 +Xn
4 ) + Zn

1 )︸ ︷︷ ︸
=:α1

,

I(Xn
1 , X

n
2 ;Y n

1 , S
n
1 ) = I(Xn

1 , X
n
2 ;Y n

1 |Sn1 ) + I(Xn
1 , X

n
2 ;Sn1 )

= h(Y n
1 |Sn1 ) + h(Sn1 )− h(Y n

1 |Sn1 , Xn
1 , X

n
2 )− h(Sn1 |Xn

1 , X
n
2 )

= h(Xn
1 +Xn

2 + h3(Xn
3 +Xn

4 ) + Zn
1 |h1(Xn

1 +Xn
2 ) +Nn

1 )

+ h(h1(Xn
1 +Xn

2 ) +Nn
1 )

− h(Xn
1 +Xn

2 + h3(Xn
3 +Xn

4 ) + Zn
1 |Xn

1 , X
n
2 , N

n
1 )− h(Nn

1 )

= h(h3(Xn
3 +Xn

4 ) + V n
1 |Sn1 )︸ ︷︷ ︸

=:α2

+h(h1(Xn
1 +Xn

2 ) +Nn
1 )︸ ︷︷ ︸

=:α3

− h(h3(Xn
3 +Xn

4 ) + Zn
1 |Nn

1 )︸ ︷︷ ︸
=:α4

−nh(N1),

I(Xn
3 , X

n
4 ;Y n

2 ) = h(Y n
2 )− h(h1(Xn

1 +Xn
2 ) + Zn

2 )︸ ︷︷ ︸
=:α5

,

I(Xn
3 , X

n
4 ;Y n

2 , U
n
2 ) = I(Xn

3 , X
n
4 ;Un

2 ) + I(Xn
3 , X

n
4 ;Y n

2 |Un
2 )

(a)
= h(Xn

3 +Xn
4 + h1(Xn

1 +Xn
2 ) + Zn

2 |h1(Xn
1 +Xn

2 ) +W n
2 )

− h(Xn
3 +Xn

4 + h1(Xn
1 +Xn

2 ) + Zn
2 |Xn

3 , X
n
4 , h1(Xn

1 +Xn
2 ) +W n

2 )

= h(Xn
3 +Xn

4 + Zn
2 −W n

2 |Un
2 )− h(Zn

2 −W n
2 |Un

2 )
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(b)
= h(Xn

3 +Xn
4 + V n

2 |Un
2 )︸ ︷︷ ︸

=:α6

+h(h1(Xn
1 +Xn

2 ) +W n
2 )︸ ︷︷ ︸

=:α7

− h(h1(Xn
1 +Xn

2 ) +W n
2 |Zn

2 −W n
2 )︸ ︷︷ ︸

=:α8

−nh(Z2 −W2), (D.2)

where (a) follows since (Xn
3 , X

n
4 ) ⊥⊥ Un

2 , and thus I(Xn
3 , X

n
4 ;Un

2 ) = 0; and in (b) V n
1 ∼

N (0, σ2
Z1−N1/h1

), i.i.d., and V n
2 ∼ N (0, σ2

Z2−W2
), i.i.d. are used for notational convenience.

We pair the negative and positive multi-letter h(.) terms as follows α2−α1, α6−α4, α3−
α8 and α7 − α5, and single-letterize them by applying the WAN technique [144]. For

example, α2 − α1 is bounded as

α2 − α1 = h(h3(Xn
3 +Xn

4 ) + V n
1 |Sn1 )− h(h3(Xn

3 +Xn
4 ) + Zn

1 )

(a)

≤ h(h3(Xn
3 +Xn

4 ) + V n
1 |Sn1 )− h(h3(Xn

3 +Xn
4 ) + Zn

1 |Sn1 )

(b)

≤ nh(h3(X∗3 +X∗4 ) + V1|S∗1)− nh(h3(X∗3 +X∗4 ) + V1 + Ṽ1|S∗1)

where (a) follows by conditioning the negative h(.) term by Sn1 , which does not reduce

entropy, and (b) follows from the worst additive noise (WAN) result in [144, Lemma 2]: if

σ2
Z1−N1/h1

≤ σ2
Z1

= 1, (a) is maximized by choosing X∗k ∼ N (0, Pk), i.i.d., resulting in (b),

where S∗1 := h1(X∗1 +X∗2 ) +N1, and Ṽ1 ∼ N (0, 1−σ2
Z1−N1/h1

) and independent of all other

variables. The resulting term is given by 1/2 log(µ1) in (5.34) and the condition as [A1] in

(5.31).

Similarly, α6 − α4 is bounded as

α6 − α4 =h(Xn
3 +Xn

4 + V n
2 |Un

2 )− h(h3(Xn
3 +Xn

4 ) + Zn
1 |Nn

1 )

≤(a) h(Xn
3 +Xn

4 + V n
2 |Un

2 )− h(h3(Xn
3 +Xn

4 ) + Zn
1 |Nn

1 , U
n
2 )

≤(b) nh(X∗3 +X∗4 + V2|U∗2 )− nh(X∗3 +X∗4 + V2 + Ṽ2|U∗2 )− n log |h3|

where (a) follows from conditioning, and (b) follows from the WAN result in [144, Lemma 2]:

under σ2
Z2−W2

≤ σ2
Z1|N1

/h2
3, (a) is maximized by taking X∗k ∼ N (0, Pk) i.i.d., which results

in (b), where U∗2 := h1(X∗1 +X∗2 )+W2, and Ṽ2 ∼ N (0, σ2
Z1|N1

/h2
3−σ2

Z2−W2
) and independent

of all other variables. The resulting term is given by 1/2 log(µ3) − 1/2 log(h2
3) in (5.34),

and the condition is given as [A2] in (5.31).

Similarly, α3 − α8 and α7 − α5 are single letterized if σ2
N1
≤ σ2

W2|Z2−W2
and σ2

W2
≤

σ2
Z2

= 1 hold respectively, given in (5.33). The resulting terms are given as 1/2 log(µ2)

and 1/2 log(µ4) in (5.34). Moreover, the expression in (5.34) remain unchanged, if terms

α3, α8, α7, α5 are alternatively combined as α3−α5 and α7−α8, which are single letterized
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under conditions σ2
N1
≤ 1 and σ2

W2
≤ σ2

W2|Z2−W2
, given in (5.32).

D.3 Solution of Problem (5.40) in Theorem 5.3

Replacing σ2
N1

by x for notational convenience, Problem (5.40) is expressed as

minimize − log x(4h2 − x) (D.3)

subject to 4h2(1− h2) ≤ x ≤ min(1, 4h2). (D.4)

Simple inspection reveals the objective function to be convex, while the constraints are

simple, hence this a convex optimization problem which can be solved by using the approach

of KKT conditions [132].

For simpler treatment, we consider two mutually exclusive cases: h2 ≥ 1/4, and h2 <

1/4. When h2 ≥ 1/4, the constraint in (5.40) simplifies to x ≤ 1, while for h2 < 1/4, the

same constraint simplifies to x ≤ 4h2.

First, consider h2 ≥ 1/4, in which case the Lagrangian function for Problem (D.3) is

L1 = − log x(4h2 − x) + λ1

(
4h2(1− h2)− x

)
+ λ2(x− 1) (D.5)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrange multipliers associated with the lower and upper

bounds in (D.3). The KKT condition are as follows

− 1

x
+

1

4h2 − x
− λ1 + λ2 = 0 (D.6)

λ1

(
4h2(1− h2)− x

)
= 0, λ1 ≥ 0, 4h2(1− h2) ≤ x (D.7)

λ2(x− 1) = 0, λ2 ≥ 0, x ≤ 1. (D.8)

We consider the 4 cases of (λ1, λ2), and solve for the optimal point x∗ along with the interval

of h2 under which the optimal solution is valid: (i) for λ1 > 0, λ2 > 0, we have x∗ = 1, if

h2 = 1/2; (ii) for λ1 = 0, λ2 > 0, we have x∗ = 1, if h2 > 1/2; (iii) for λ1 > 0, λ2 = 0, we

have x∗ = 4h2(1− h2), if 1/4 ≤ h2 < 1/2; (iv) λ1 = 0, λ2 = 0 is invalid.

Considering h2 < 1/4, through similar KKT condition analysis we have the following:

(i) for λ1 > 0, λ2 > 0, we have x∗ = 1, if h2 = 1/2; (ii) for λ1 = 0, λ2 > 0 is invalid; (iii) for

λ1 > 0, λ2 = 0, we have x∗ = 4h2(1− h2), if 0 ≤ h2 < 1/4; (iv) λ1 = 0, λ2 = 0 is invalid.

Accounting for the two cases, in summary, we have

x∗ = 4h2(1− h2), if h2 < 1/2,

x∗ = 1, if h2 ≥ 1/2.
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Channel-1 Channel-2

Channel-3Channel-4

Channel-5

Figure D.1: Intermediate channels for the proof of Theorem 5.4.

D.4 Proof of Theorem 5.4

We prove this result by transforming the GMAIC into a degraded broadcast channel via

a few intermediate channels in a step-by-step manner. For intuition, in Figure D.1 we

depict this transformation process and the resulting intermediate channels, denoted as
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Channel-1 through Channel-5. Finally, we show that the sum-capacity of the GMAIC is

upper bounded by a sum-rate upper bound on the broadcast channel, which then provides

a sum-rate upper bound for the former.

Consider the MAIC where both destinations are impaired by interference, depicted by

Channel-1 in Figure D.1. First, the interfering links from sources S3 and S4 to destination

D1 is removed, resulting in a MAIC with partial interference, depicted as Channel-2 in

Figure D.1. Equivalently, Channel-2 is found from Channel-1 by providing the interfering

signals (Xn
3 , X

n
4 ) to D1 so that the effect of interference is completely canceled out. Since

the capacity of this genie-aided channel (i.e., Channel-2) is always as large as that of the

original channel (i.e., Channel-1), the sum-capacity of Channel-1 is upper bounded by that

of Channel-2. Note that for Channel-2 the output at D1 is now given by

Ỹ n
1 = (Xn

1 +Xn
2 ) + Zn

1 . (D.9)

Next, Channel-3 is constructed from Channel-2 by absorbing the effect of the cross-

channel gains h1 from sources S1 and S2 to destination D2 into the transmit powers of

sources S3 and S4 and noise variance at D2, as depicted in Figure D.1. Note that this

transformation on Channel-2 does not change its capacity region. To see that, first note

that in both channels the signals received at D1 are the same as given in (D.9). Next,

scaling the output at D2 of Channel-2 by 1/h1, we obtain

Y n
2 /h1 = (Xn

1 +Xn
2 ) + (Xn

3 +Xn
4 )/h1 + Zn

2 /h1, (D.10)

which is statistically the same as the output at D2 of Channel-3, given by

Ỹ n
2 = (Xn

1 +Xn
2 ) + (X̃n

3 + X̃n
4 ) + Z̃n

2 , (D.11)

where the transmit power constraints are
∑n

i=1 E[X̃2
3,i] ≤ P3/h

2
1 and

∑n
i=1 E[X̃2

4,i] ≤ P4/h
2
1,

while the noise is Z̃n
2 ∼ N (0, 1/h2

1), i.i.d.

Since scaling by a constant does not change mutual information, the capacity region of

Channel-2 and Channel-3, and in particular, the sum-capacities, are the same.

Note that Channel-3 can be equivalently represented as Channel-4, depicted in Fig-

ure D.1. It can be observed that in Channel-3, output Ỹ n
2 can be regarded as a degraded

version of output Ỹ n
1 . To see this, note that h2

1 < 1, i.e., 1/h2
1−1 > 0, and thus Z̃n

2 in (D.11)

can be decomposed as Z̃n
2 = Zn

1 + ∆Zn
2 , where Zn

1 ∼ N (0, 1) ⊥⊥ ∆Zn
2 ∼ N (0, 1/h2

1 − 1).

As such, substituting Z̃n
2 in (D.11), one can observe that Ỹ n

2 is a degraded version of
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Ỹ n
1 = (Xn

1 +Xn
2 ) + Zn

1 , i.e.,

Ỹ n
2 = Ỹ n

1 + (X̃n
3 + X̃n

4 ) + ∆Zn
2 . (D.12)

Since the two received signals are statistically the same in Channel-3 and Channel-4, they

posses the same sum-capacity.

Finally, we transform Channel-4 into Channel-5 in Figure D.1, a degraded broadcast

channel, and show that the capacity region of these two channels are the same. First, the

channel output at destination D2 for Channel-4, i.e., Ỹ n
2 = (Xn

1 +Xn
2 ) + (X̃n

3 + X̃n
4 ) +Zn

2 +

∆Zn
2 , is statistically the same as the channel output at D2 for Channel-5. In contrast, the

channel output at destination D1 for Channel-4 is

Ỹ n
1 = (Xn

1 +Xn
2 ) + Zn

1 , (D.13)

while the same for Channel-5 is

Ŷ n
1 = (Xn

1 +Xn
2 ) + (X̃n

3 + X̃n
4 ) + Zn

1 . (D.14)

Therefore, Ỹ n
1 in Channel-4 is less noisy than Ŷ n

1 in Channel-5. Then, following [157,

Figure 6] it can be shown that the capacity region of Channel-5 is at most as large as that

of Channel-4.

We now show the other way, i.e., the capacity region of Channel-4 is at most as large as

that of Channel-5, or in other words, an achievable rate tuple for Channel-4 is also achiev-

able in Channel-5. Suppose that a rate tuple (R1, R2, R3, R4) is achievable in Channel-4,

and hence from Fano’s inequality we have

H(W1,W2|Ỹ n
1 ) ≤ nε1,n, H(W3,W4|Ỹ n

2 ) ≤ nε2,n, (D.15)

where ε1,n, ε2,n → 0, as n→∞. We then need to show that the same rate tuple is achievable

in Channel-5, i.e.,

H(W1,W2|Ŷ n
1 ) ≤ nδ1,n, H(W3,W4|Ŷ n

2 ) ≤ nδ2,n, (D.16)

where δ1,n, δ2,n → 0, as n→∞.

Since Ŷ n
2 in Channel-5 and Ỹ n

2 in Channel-4 are statistically the same, we only need

to show that the implication for H(W1,W2|Ŷ n
1 ) ≤ nδ1,n. Consider the following term that

can be expanded in two ways as follows

H(W1,W2,W3,W4|Ŷ n
1 ) = H(W3,W4|Ŷ n

1 ) +H(W1,W2|W3,W4, Ŷ
n

1 )

= H(W1,W2|Ŷ n
1 ) +H(W3,W4|W1,W2, Ŷ

n
1 )
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We then have

H(W1,W2|Ŷ n
1 ) = H(W3,W4|Ŷ n

1 ) +H(W1,W2|W3,W4, Ŷ
n

1 )−H(W3,W4|W1,W2, Ŷ
n

1 )

(a)

≤ H(W3,W4|Ŷ n
1 ) +H(W1,W2|W3,W4, Ŷ

n
1 )

(b)

≤ nε2,n +H(W1,W2|W3,W4, Ŷ
n

1 )

(c)
= nε2,n +H(W1,W2|W3,W4, X̃

n
3 , X̃

n
4 , Ŷ

n
1 )

= nε2,n +H(W1,W2|W3,W4, X̃
n
3 , X̃

n
4 , Ŷ

n
1 − (X̃n

3 + X̃n
4 ))

(d)
= nε2,n +H(W1,W2|W3,W4, X̃

n
3 , X̃

n
4 , Ỹ

n
1 )

(e)

≤ nε2,n +H(W1,W2|Ỹ n
1 )

(f)

≤ nε2,n + nε1,n (D.17)

where (a) follows since H(W3,W4|W1,W2, Ŷ
n

1 ) ≥ 0; (b) follows by first noticing that Ŷ n
1 is

less noisy than Ŷ n
2 , i.e., H(W3,W4|Ŷ n

1 ) ≤ H(W3,W4|Ŷ n
2 ), and then from the fact in (D.15)

that H(W3,W4|Ỹ n
2 ) ≤ nε2,n; (c) follows since for a given code, X̃n

3 and X̃n
4 are deterministic

functions of W3 and W4; (d) follows since Ŷ n
1 − (X̃n

3 + X̃n
4 )) is statistically the same as Ỹ n

1 ;

(e) follows from unconditioning; and (f) follows from (D.15).

Since ε2,n + ε1,n → 0, as n → ∞, messages (W1,W2) can be decoded from Ỹ n
1 in

Channel-4. Therefore, Channel-4 has the same capacity region, and in particular, the same

sum-capacity as that of Channel-5. Note that Channel-5 is a degraded Gaussian broadcast

channel where the less noisy receiver has noise variance N1 = 1 and power constraints P1

and P2, while the more noisy receiver has noise variance N2 = 1/h2
1 and power constraints

P3/h
2
1 and P4/h

2
1. Standard converse technique for the degraded broadcast channel [139,

Prop. 3] shows that the rates of sources S1 and S2, and the rates of sources S3 and S4 satisfy

R1 +R2 ≤
1

2
log (1 + P ′1) , R3 +R4 ≤

1

2
log

(
1 +

P ′2
P ′1 + 1/h2

1

)
(D.18)

for some P ′1, P
′
2 > 0 that satisfy P ′1 + P ′2 = P1 + P2 + (P3 + P4)/h2

1.

D.5 Proof of Theorem 5.5

Similar to that fo the IC in [139, Theorem 2], we provide the following “general” genie-

signal

Ỹ n
2 = d1(Xn

3 +Xn
4 ) + d2(Xn

1 +Xn
2 ) + d3Z

n
2 + d4Z̃2

n
(D.19)
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to destination D2 where d1, d2, d3, d4 ∈ R, and Zn
2 ∼ N (0, 1), i.i.d., is defined in (5.3) while

Z̃2
n ∼ N (0, 1), i.i.d., is independent of all other variables.

Since for an achievable scheme, destination D2 is able to decode (Xn
3 , X

n
4 ) from its

received signal Y n
2 , after receiving the genie-signal Ỹ n

2 , D2 creates an approximation of Y n
1 ,

i.e., the signal received at destination D1, as follows

Ŷ n
1 = αY n

2 + βỸ n
2 + (h3 − (α + βd1))Xn

3 + (h3 − (α + βd1))Xn
4

= α (Xn
3 +Xn

4 + h1X
n
1 + h1X

n
2 + Zn

2 ) + β
(
d1(Xn

3 +Xn
4 ) + d2(Xn

1 +Xn
2 ) + d3Z

n
2 + d4Z̃2

n
)

+ (h3 − (α + βd1))Xn
3 + (h3 − (α + βd1))Xn

4

= h3X
n
3 + h3X

n
4 +Xn

1 (αh1 + βd2) +Xn
2 (αh1 + βd2) + V n, (D.20)

where α, β ∈ R, V n := Zn
2 (α+βd3)+βd4Z̃2

n ∼ N (0, σ2
V ), i.i.d., with σ2

V = (α+βd3)2+β2d2
4.

Now, taking α such that αh1 + βd2 = 1 in (D.20), results in

Ŷ n
1 = h3X

n
3 + h3X

n
4 +Xn

1 +Xn
2 + V n, with

σ2
V =

(
h−1

1 + β(d3 − d2/h1)
)2

+ β2d2
4. (D.21)

Adjusting parameters (β, d2, d3, d4) such that σ2
V ≤ 1 in (D.21) holds, the noise variance in

Ŷ n
1 is less than that in Y n

1 , i.e., Ŷ n
1 is less noisy than Y n

1 . In other words, given (W3,W4)

and (Y n
2 , Ỹ

n
2 ), Ŷ n

1 can be constructed as in (D.20), which is less noisy than Y n
1 , i.e.,

H(W1,W2|Y n
2 , Ỹ

n
2 ,W3,W4) ≤ H(W1,W2|Y n

1 ,W3,W4). (D.22)

We now upper bound the sum-rate as follows

nCS = n(R1 +R2) + n(R3 +R4)

(a)

≤ I(W1,W2;Y n
1 ) + I(W3,W4;Y n

2 ) + nεn

≤ I(W1,W2;Y n
1 ,W3,W4) + I(W3,W4;Y n

2 ) + nεn

(b)
= I(W1,W2;Y n

1 |W3,W4) + I(W3,W4;Y n
2 ) + nεn

= H(W1,W2)−H(W1,W2|Y n
1 ,W3,W4) + I(W3,W4;Y n

2 ) + nεn

(c)

≤ H(W1,W2)−H(W1,W2|Y n
2 , Ỹ

n
2 ,W3,W4) + I(W3,W4;Y n

2 ) + nεn

= I(W1,W2;Y n
2 , Ỹ

n
2 |W3,W4) + I(W3,W4;Y n

2 ) + nεn

(d)

≤ I(Xn
1 , X

n
2 ;Y n

2 , Ỹ
n

2 |Xn
3 , X

n
4 ) + I(Xn

3 , X
n
4 ;Y n

2 , Ỹ
n

2 ) + nεn

= h(Y n
2 , Ỹ

n
2 )− h(Y n

2 , Ỹ
n

2 |Xn
3 , X

n
4 ) + h(Y n

2 , Ỹ
n

2 |Xn
3 , X

n
4 )− h(Y n

2 , Ỹ
n

2 |Xn
1 , X

n
2 , X

n
3 , X

n
4 )

= h(Y n
2 , Ỹ

n
2 )− h(Zn

2 , V
n)
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(e)

≤ nh(Y2G, Ỹ2G)− nh(Z2, V )

=
n

2
log
[(

1 + P3 + P4 + h2
1(P1 + P2)

) (
d2

3 + d2
4 + d2

1(P3 + P4) + d2
2(P1 + P2)

)
− (d1(P3 + P4) + h1d2(P1 + P2) + d3)2]− n

2
log d2

4. (D.23)

where (a) follows from Fano’s inequality; (b) follows since (W1,W2) ⊥⊥ (W3,W4); (c) follows

from (D.22); (d) follows from providing Ỹ n
2 to the term for D2; (e) follows by maximizing

the h(.) terms by choosing Xn
k ∼ N (0, Pk), k ∈ {1, 2, 3, 4} as in [131, Lemma 1], and the

resulting received signals are given by Y2G and Ỹ2G.

Hence, the sum-rate upper bound is given by the expression found by dividing the term

on the r.h.s. of (D.23) by n, which we denote by Σ(d1, d2, d3, d4). The tightest upper bound

can then obtained by CS ≤ mind1,d2,d3,d4 Σ(d1, d2, d3, d4) under constraint σ2
V ≤ 1 in (D.21).

Note that having strict inequality in the constraint (D.21), i.e., σ2
V < 1 makes Ŷ n

1 strict

less noisy than Y n
1 , which results in strict inequality in step-(c) of (D.23). Hence, the

tightest bound is obtained at equality σ2
V = 1, which leads to a quadratic equation in β.

For β to be real, the discriminant of that equation must be non-negative, i.e.,

(d2 − h1d3)2 − d2
4(1− h2

1) ≥ 0. (D.24)

Now, we provide a step-by-step procedure to minimize Σ(d1, d2, d3, d4) in (D.23) under

constraint (D.24). Instead of optimizing Σ(d1, d2, d3, d4) jointly over (d1, d2, d3, d4), we

first optimize only over d1. We observe that Σ(d1, d2, d3, d4) is convex over d1, hence this

minimizer is obtained as d1 = d∗1 = d3+d2h1(P1+P2)

1+h21(P1+P2)
. Thus, the following upper bound is

obtained

min
d1,d2,d3,d4

Σ(d1, d2, d3, d4) ≤ min
d2,d3,d4

min
d1

Σ(d1, d2, d3, d4) = min
d2,d3,d4

Σ1(d2, d3, d4),

where Σ1(d2, d3, d4) = mind1 Σ(d1, d2, d3, d4) = Σ(d1, d2, d3, d4)|d1=d∗1

The problem now simplifies to obtaining mind2,d3,d4 Σ1(d2, d3, d4) under constraint (D.24),

which is unchanged as d1 is not involved in the constraint. As such, we take d∗3 =

−d2h1(P1 +P2), which results in the modified constraint d2
2(1 + h3

1(P1 +P2)) ≥ d2
4(1− h2

1).

Finally, we take d∗4 = 1, and take the constraint with equality to obtain d∗2 =
(1−h21)1/2

1+h21(P1+P2)
.

Hence, the following upper bound is obtained

min
d2,d3,d4

Σ1(d2, d3, d4) ≤ Σ1(d2, d3, d4)|d2=d∗2,d3=d∗3,d4=d∗4
,

and the final expression of this bound is given in Theorem 5.5.

Note that taking d∗3 = −d2h1(P1 + P2) results in d∗1 = 0, which is justified as follows.
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In (D.19), d1 represents the weight of intended signals (Xn
3 , X

n
4 ) for destination D2. Since

for an achievable scheme, (Xn
3 , X

n
4 ) is assumed to be decodable at D2, there is no need to

additionally boost (Xn
3 , X

n
4 ) by having d∗1 6= 0, and thus d∗1 = 0 is chosen.

D.6 Proof of Theorem 5.6

We take ` = 2, k = 3, and bound the sum-rate by U(X3, X2). Since all other bounds can

be similarly obtained, we only provide the proof for U(X3, X2) here.

Note that U(X3, X2) consists of the minimum of two terms, the first of which is bounded

as follows. From Fano’s inequality, we have

2n(R1 +R2 +R3 +R4)

≤ I(Xn
1 , X

n
2 ;Y n

1 ) + I(Xn
1 , X

n
2 ;Y n

1 ) + I(Xn
3 , X

n
4 ;Y n

2 ) + I(Xn
3 , X

n
4 ;Y n

2 ) + nεn

(a)
= I(Xn

1 , X
n
2 ;Y n

1 ) + I(Xn
2 ;Y n

1 ) + I(Xn
1 ;Y n

1 |Xn
2 )

+ I(Xn
3 , X

n
4 ;Y n

2 ) + I(Xn
3 ;Y n

2 ) + I(Xn
4 ;Y n

2 |Xn
3 ) + nεn

(b)

≤ I(Xn
1 , X

n
2 ;Y n

1 , X
n
3 ) + I(Xn

2 ;Y n
1 , X

n
1 , X

n
4 ) + I(Xn

1 ;Y n
1 , X

n
3 , X

n
4 |Xn

2 )

+ I(Xn
3 , X

n
4 ;Y n

2 , X
n
2 ) + I(Xn

3 ;Y n
2 , X

n
1 , X

n
2 , X

n
4 ) + I(Xn

4 ;Y n
2 , X

n
1 , X

n
2 |Xn

3 ) + nεn

(c)
= I(Xn

1 , X
n
2 ;Y n

1 |Xn
3 ) + I(Xn

2 ;Y n
1 |Xn

1 , X
n
4 ) + I(Xn

1 ;Y n
1 |Xn

3 , X
n
4 , X

n
2 )

+ I(Xn
3 , X

n
4 ;Y n

2 |Xn
2 ) + I(Xn

3 ;Y n
2 |Xn

1 , X
n
2 , X

n
4 ) + I(Xn

4 ;Y n
2 |Xn

1 , X
n
2 , X

n
3 ) + nεn

= I(Xn
1 , X

n
2 ;Y n

1 |Xn
3 ) + I(Xn

4 ;Y n
2 |Xn

1 , X
n
2 , X

n
3 )

+ I(Xn
3 , X

n
4 ;Y n

2 |Xn
2 ) + I(Xn

1 ;Y n
1 |Xn

3 , X
n
4 , X

n
2 )

+ I(Xn
2 ;Y n

1 |Xn
1 , X

n
4 ) + I(Xn

3 ;Y n
2 |Xn

1 , X
n
2 , X

n
4 ) + nεn

(d)
= h(Y n

1 |Xn
3 )− h(Zn

2 )︸ ︷︷ ︸
d1

+h(Xn
4 + Zn

2 )− h(h4X
n
4 + Zn

1 )︸ ︷︷ ︸
d2

+ h(Y n
2 |Xn

2 )− h(Zn
1 )︸ ︷︷ ︸

d3

+h(Xn
1 + Zn

1 )− h(h1X
n
2 + Zn

2 )︸ ︷︷ ︸
d4

+ h(Y n
1 |Xn

1 , X
n
4 )− h(Zn

2 )︸ ︷︷ ︸
d5

+h(Xn
3 + Zn

2 )− h(h3X
n
3 + Zn

1 )︸ ︷︷ ︸
d6

+nεn

(e)

≤ nh(Y ∗1 |X∗3 )− nh(Z∗2) + nh(X∗4 + Z∗2)− nh(h4X
∗
4 + Z∗1)

+ nh(Y ∗2 |X∗2 )− nh(Z∗1) + nh(X∗1 + Z∗1)− nh(h1X
∗
2 + Z∗2)

+ nh(Y ∗1 |X∗1 , X∗4 )− nh(Z∗2) + nh(X∗3 + Z∗2)− nh(h3X
∗
3 + Z∗1) + nεn
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(f)
= nh(Y ∗1 |X∗3 )− nh(Y ∗1 |X∗1 , X∗2 , X∗3 , X∗4 ) + nh(Y ∗2 |X∗1 , X∗2 , X∗3 )− nh(Y ∗1 |X∗1 , X∗2 , X∗3 )

+ nh(Y ∗2 |X∗2 )− nh(Y ∗2 |X∗1 , X∗2 , X∗3 , X∗4 ) + nh(Y ∗1 |X∗4 , X∗2 , X∗3 )− nh(Y ∗2 |X∗4 , X∗2 , X∗3 )

+ nh(Y ∗1 |X∗1 , X∗4 )− nh(Y ∗1 |X∗1 , X∗2 , X∗3 , X∗4 ) + nh(Y ∗2 |X∗1 , X∗2 , X∗4 )− nh(Y ∗1 |X∗1 , X∗2 , X∗4 )

+ nεn (D.25)

where (a) follows from the chain rule; (b) follows from providing the first term in (a)

with Xn
3 , second term with (Xn

1 , X
n
4 ), third term with (Xn

3 , X
n
4 ), and in a complementary

manner, providing the fourth term with Xn
2 , the fifth term with (Xn

1 , X
n
2 , X

n
4 ), and the

last term in (Xn
1 , X

n
2 ); (c) follows since any Xn

k ⊥⊥ Xn
j , k 6= j ∈ {1, 2, 3, 4}; (d) follows

from expressing mutual information in terms of differential entropies and rearranging;

(e) follows by upper bounding d1, d3 and d5 by using Xn
k ∼ N (0, Pk), k ∈ {1, 2, 3, 4} as

in [131, Lemma 1], whereas terms d2, d4 and d6 are also upper bounded by using Xn
k ∼

N (0, Pk), k ∈ {1, 2, 3, 4} and applying the worst additive noise result [130]; (f) follows

from re-writing the terms in (e) in the form that, when combined, gives the expressions in

Theorem 5.6.

This proves the first term inside the minimum of U(X3, X2). To prove the second term,

we change the information provided in step (b) of (D.25): instead of (Xn
1 , X

n
4 ), we provide

(Xn
1 , X

n
3 , X

n
4 ) to the second term of (b), and instead of (Xn

1 , X
n
2 , X

n
4 ), we provide (Xn

1 , X
n
4 )

to the fifth term of (b). The resulting terms are then obtained similarly to the above case.

D.7 Proof of Theorem 5.7

We denote the received signal at D1 in the MAC-IC-MAC by Ỹ n
1 , which is statistically

the same as the received signal at D1 in the GMAIC conditioned on X4, i.e., Y n
1 − h4X

n
4 .

Considering a code for the GMAIC as in Def. 5.2, we now show that rate R1 for the GMAIC

can be upper bounded by rate R̃1 for the MAC-IC-MAC.

For the GMAIC, we have

nR1 = H(M1)

(a)
= H(M1|M4)

(b)
= I(M1;Y n

1 |M4, X
n
4 ) +H(M1|Y n

1 ,M4, X
n
4 )

(c)
= I(M1;Y n

1 |M4, X
n
4 ) +H(M1|Ỹ n

1 ,M4, X
n
4 )

(d)

≤ I(M1;Y n
1 |M4, X

n
4 ) +H(M1|Ỹ n

1 )
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= H(M1)−H(M1|Y n
1 ,M4, X

n
4 ) +H(M1|Ỹ n

1 )

(e)
= H(M1)−H(M1|Ỹ n

1 ) +H(M1|Ỹ n
1 )

= I(M1; Ỹ n
1 ) +H(M1|Ỹ n

1 )

(f)
= nR̃1 (D.26)

where (a) follows since M1 ⊥⊥M4; (b) follows since Xn
4 is deterministic function of M4; (c)

follows from observing that Ỹ n
1 has the same distribution as Y n

1 |Xn
4 in the second term; (d)

follows from unconditioning; (e) follows from the Markov chain M1−◦−Ỹ n
1 −◦−(M4, X

n
4 ); (f)

follows since the rate of message M1 in the MAC-IC-MAC is nR̃1 = I(M1; Ỹ n
1 )+H(M1|Ỹ n

1 ).

Similarly, other rates R2, R2, R4 for the GMAIC can be upper bounded by their coun-

terparts in the MAC-IC-MAC, R̃2, R̃3, R̃4. Thus, the capacity region of the GMAIC is

contained within the capacity region of the MAC-IC-MAC. Finally, [145, Theorem 7] states

that the capacity region of the MAC-IC-MAC is outer bounded by the region in (5.45),

which hence outer bounds the capacity region of the GMAIC.
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