
Deep Learning-based Driver

Behavior Modeling and Analysis

by

Chaojie Ou

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Chaojie Ou 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Prof. Simon Yang

Professor, Dept. of Engineering,

University of Guelph

Supervisor(s): Prof. Fakhri Karray

Dept. of Electrical and Computer Engineering

University of Waterloo

Internal Member: Prof. Mark Crowley

Dept. of Electrical and Computer Engineering

University of Waterloo

Prof. Zhou Wang

Dept. of Electrical and Computer Engineering

University of Waterloo

Internal-External Member: Prof. William Melek

Dept. of Mechanical and Mechatronics Engineering

University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Driving safety continues receiving widespread attention from car designers, safety reg-

ulators, and automotive research community as driving accidents due to driver distraction

or fatigue have increased drastically over the years. In the past decades, there has been

a remarkable push towards designing and developing new driver assistance systems with

much better recognition and prediction capabilities. Equipped with various sensory sys-

tems, these Advanced Driver Assistance Systems (ADAS) are able to accurately perceive

information on road conditions, predict traffic situations, estimate driving risks, and pro-

vide drivers with imminent warnings and visual assistance. In this thesis, we focus on two

main aspects of driver behavior modeling in the design of new generation of ADAS.

We first aim at improving the generalization ability of driver distraction recognition

systems to diverse driving scenarios using the latest tools of machine learning and con-

nectionist modeling, namely deep learning. To this end, we collect a large dataset of

images on various driving situations of drivers from the Internet. Then we introduce Gen-

erative Adversarial Networks (GANs) as a data augmentation tool to enhance detection

accuracy. A novel driver monitoring system is also introduced. This monitoring system

combines multi-information resources, including a driver distraction recognition system,

to assess the danger levels of driving situations. Moreover, this thesis proposes a multi-

modal system for distraction recognition under various lighting conditions and presents a

new Convolutional Neural Network (CNN) architecture, which can operate real-time on a

resources-limited computational platform. The new CNN is built upon a novel network

bottleneck of Depthwise Separable Convolution layers.

The second part of this thesis focuses on driver maneuver prediction, which infers the

direction a driver will turn to before a green traffic light is on and predicts accurately

whether or not he/she will change the current driving lane. Here, a new method to label

driving maneuver records is proposed, by which driving feature sequences for the training

of prediction systems are more closely related to their labels. To this end, a new pre-

diction system, which is based on Quasi-Recurrent Neural Networks, is introduced. In

addition, and as an application of maneuver prediction, a novel driving proficiency assess-

ment method is proposed. This method exploits the generalization abilities of different

iv

maneuver prediction systems to estimate drivers’ driving abilities, and it demonstrates

several advantages against existing assessment methods.

In conjunction with the theoretical contribution, a series of comprehensive experiments

are conducted, and the proposed methods are assessed against state-of-the-art works. The

analysis of experimental results shows the improvement of results as compared with existing

techniques.

v

Acknowledgements

First and foremost, I would like to express my sincere thanks to Dr. Fakhri Karray

for his continuous support, which starts from my first day at the University of Waterloo.

Throughout the fours years of my Ph.D study, Dr. Fakhri Karray has provided massive

suggestions with his incisive and profound thoughts. Dr. Karray encouraged me to explore

new theories and topics in our research fields. The knowledge and experience I learned

from him is the treasure that I will cherish for my whole life. I am honored to have Dr.

Zhou Wang, Dr. Mark Crowley, Dr. William Melek, and Dr. Simon X. Yang on my thesis

committee.

I would like to thank all the amazing group members, especially, Alaa Khatib and Arief

Koesdwiady, in the Centre for Pattern Analysis & Machine Intelligence for inspiring and

encouraging talks.

I would like to thank my supervisor in NUAA, Dr. Ju Jiang and his wife, Dr. Haiyan

Xu. I cannot even start my study in Waterloo, not to mention to finish it.

I also wish to thank all my wonderful friends in Waterloo for cheerful time we spent

together. They are Weiya Ye, Kede Ma, Wentao Liu, Zhengfang Duanmu, and many

others.

I would like to thank Weiya Ye. She brings so much fun into my life. I enjoy every

second I spend together with her.

Finally, I would like to thank my family, my parents and brothers, for their tremendous

love and support across the Pacific Ocean.

vi

Dedication

This is dedicated to the ones I love, especially to my mother and father.

vii

Table of Contents

List of Figures xii

List of Tables xvi

Abbreviations xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Scope and Objectives . 3

1.3 Contributions . 3

1.3.1 Enhancing Driver Distraction Recognition Using Generative Adver-

sarial Networks . 3

1.3.2 Driver Distraction Recognition Under Various Lighting Conditions . 4

1.3.3 Deep Learning-based Driving Maneuver Prediction System 4

1.4 Thesis Outline . 4

2 Literature Review 6

2.1 Cognitive Abilities of Advanced Driver Assistance Systems 6

2.2 Review of Driver Distraction Recognition 10

viii

2.2.1 Driver Distraction Recognition Systems Design 10

2.2.2 Design of Networks With Small Footprints 14

2.3 Review of Driving Maneuver Prediction . 15

2.4 Summary . 21

3 Enhancing Driver Distraction Recognition Using Generative Adversarial

Networks 22

3.1 Introduction . 22

3.2 System Description . 23

3.2.1 Generative Model for Additional Data Sampling 24

3.2.2 Discriminative Models for Distraction Classification 25

3.3 Experiment and Evaluation . 27

3.3.1 Datsets . 28

3.3.2 Limitation of Training DDR Systems on Images from Video Clips . 30

3.3.3 Generate Images of Different Driving Scenarios 31

3.3.4 Effect of Generated Images on Distraction Recognition Performance 36

3.4 Driver Distraction Recognition as a Module of a Driver Monitoring System 40

3.4.1 Head Pose Estimation Module . 40

3.4.2 Distraction Recognition Module . 42

3.4.3 Danger Level Inference Module . 42

3.4.4 Case Study . 45

3.5 Summary . 51

4 Driver Distraction Recognition Under Various Lighting Conditions 52

4.1 Introduction . 52

ix

4.2 Proposed Approach . 54

4.2.1 Structure of the Proposed System 54

4.2.2 Depthwise Separable Convolution 56

4.2.3 Simplified Inverted Residual Bottleneck 58

4.2.4 Network Architecture . 60

4.3 Data Collection and Experimental Setup 61

4.3.1 Data Collection . 61

4.3.2 Experimental Settings . 63

4.4 Experimental Results and Analysis . 64

4.4.1 Pretrain Networks on ImageNet . 64

4.4.2 Performance in RGB Mode . 65

4.4.3 Performance of Networks in NIR Mode 70

4.4.4 Real-time Inference Speed on a Resource-restricted Computing Plat-

form . 72

4.5 Summary . 73

5 Deep Learning-based Driving Maneuver Prediction System 74

5.1 Introduction . 74

5.2 Methodology . 75

5.2.1 Driving Maneuvers Analysis . 75

5.2.2 The Structure of Driving Maneuver Prediction Systems 78

5.2.3 Recurrent Neural Networks . 80

5.3 Experiments and Evaluation . 85

5.3.1 Database Collection and Annotation 85

5.3.2 Feature Extraction and Evaluation Protocol 89

x

5.3.3 The Information on Observation Actions Improves Maneuver Pre-

diction . 90

5.3.4 Models to Better Capture Temporal and Spatial Information 92

5.4 Driving Proficiency Assessment by Bidirectional Generalization Ability Test 97

5.5 Summary . 102

6 Conclusions and Future Work 103

6.1 Conclusions . 103

6.2 Future Work . 104

References 106

APPENDICES 122

xi

List of Figures

2.1 A general architecture of ADAS, which consists of four collaborative modules

of corresponding functions. 7

3.1 The system structure of WGANs, which consists of a Generator and a Critic. 24

3.2 Illustration of CNN configurations for DDR. This fig follows the convention

in [1] and denotes the parameters of the convolutional layer as ’height ×
width | input channel × output channel | stride | padding’. 26

3.3 Images samples to train WGAN. The first row are images of normal driving,

images of talking while driving and images of texting while driving are in

the second and third row respectively. All images are resized to 64× 64. . 28

3.4 Samples of images in a simulator environment for different classes. In the

first row are images of normal driving, images of talking while driving and

images of texting while driving are shown in the second and third row re-

spectively. All images are picked randomly. 29

3.5 The evolution of the WGAN during training. The decreasing process of two

losses are shown here. 33

3.6 Image samples produced by sampling from distributions. In the first row

are images of normal driving, images of talking while driving and images of

texting while driving are shown in the second and third row respectively.

All images are picked randomly. 34

xii

3.7 The system structure of conditional WGANs, in which the generator is con-

ditioned on label yi. In this structure, yi will be concatenated with zi to

form the input to the Generator. 39

3.8 Overview of the proposed driver behavior monitoring system. Based on the

driver’s facial image captured via Dash Cam 1, the head pose estimation

module determines the driver’s head orientation. The driver’s side view

image is captured via Dash Cam 2 and goes through the distraction recog-

nition module. The duration time of distraction is calculated when one of

these two modules is activated. Finally, the danger level inference module

estimates the danger level based of the type of distraction together with the

speed of the vehicle calculated by the OBD II. 41

3.9 Increasing process of danger level. The dash line represents the curve for

driving with a high speed (80 km/hour), the solid one is for driving with a

low speed (20 km/hour). 46

3.10 Changing processes of the pitch of head pose. The dash line represents the

threshold (20◦) for deciding whether a driver is focusing on the road, the

solid curve is for the pitch angle. 47

3.11 Changing processes of the yaw of head pose. The dash line represents the

threshold (20◦) for deciding whether a driver is focusing on the road, the

solid curve is for the yaw angle. 48

3.12 Changing processes of the yaw of head pose. The dash line represents the

threshold (20◦) for deciding whether a driver is focusing on the road, the

solid curve is for the yaw angle. 50

4.1 Comparison of luminance conditions at different time of a day. 53

4.2 A schematic representation of the proposed system. 55

4.3 Illustration for two different convolution layers. 57

xiii

4.4 Architectures of several different network bottlenecks. In these figures,

’Conv 3×3 64’ represents a convolutional layer with 64 kernels of size 3× 3.

Notice that in our bottleneck Relu activation function is used instead of

Relu6 after the add operation in the bottleneck body. 59

4.5 Image samples from a simulator environment. The first row shows images

taken in the daytime, the second row shows images taken in the nighttime.

The first column represents images of normal driving, and the rest three

columns represent talking, texting, and using IVI while driving, respectively. 62

4.6 The changing process of Top-1 error during the training of MobileNet S.

Top-1 error means the class that has the highest prediction probability is

used for testing. 64

4.7 Confusion matrices achieved by different models in day mode. The left fig

in each row shows results for a non-pretrained network and the right one is

for a corresponding pretrained network. 67

4.8 Image samples adjusted with various brightness factors. Each row shows a

different driving activity. The first column shows images with a brightness

factor of 0.6 while the difference between brightness factors of two consecu-

tive columns is 0.1. 69

4.9 Confusion matrices achieved by different models in night mode. The left fig

in each row shows results for a non pre-trained network and the right one is

for a corresponding pre-trained network. 71

5.1 Time overlap between an observation action and a steering action. 76

5.2 Structure of the proposed driving maneuver prediction network. 78

5.3 The structure of an LSTM node. Image courtesy of [2]. 81

5.4 The structure of a Bidirectional Recurrent Neural Network. 83

5.5 The structure of a QRNN node. 84

5.6 Histogram of time lags between starting observation actions and starting

steering actions. 88

xiv

5.7 Comparison of performance by models trained on different datasets. 91

5.8 Testing performance of lane change prediction by different models with dif-

ferent training epochs. 93

5.9 Testing performance of green light turn prediction by different models with

different training epochs. 94

5.10 An overview of bidirectional generalization ability test system. 98

xv

List of Tables

2.1 Comparison of recent works on distraction recognition 13

2.2 Comparison of several CNN models over complexity and the number of

parameters. 14

2.3 Comparison of recent works on driver behavior prediction. 20

3.1 The numbers of samples in images dataset. 29

3.2 Classification performance with different training and testing datasets. . . 30

3.3 Testing accuracy while train on Int and test on Gen, and vice versa. 36

3.4 Testing performance on Ss by different training strategies. 37

3.5 Comparison of testing accuracy by generated images of different qualities. . 39

3.6 Fuzzy rules used to calculate the degree of truth of the danger level. 44

3.7 Testing performance while combining training. 45

4.1 The architecture of MobileNet S. 61

4.2 Number of samples in image datasets. 62

4.3 Comparison of several network architectures over ImageNet classification

error and Complexity. Top-1 and Top-5 accuracy of all models are for their

Pytorch implementations [3, 4, 5]. 65

4.4 Comparison of several network architectures over classification performance

and Complexity in the RGB mode. 66

xvi

4.5 Accuracy (%) by different models in different brightness conditions. 69

4.6 Comparison of several network architectures over classification performance

and complexity in NIR mode. 70

4.7 Comparing the inference speeds of networks on two computation platforms

by frame rates. 72

5.1 Number of maneuver examples. 88

5.2 Prediction performance while removing different numbers of feature frames. 91

5.3 Prediction performance of different models based on their best AccAction. 95

5.4 Prediction performance of different models based on their best average TTS. 96

5.5 Frequency of blind spot checking for all drivers. 99

5.6 Frequency of mirror checking for all drivers during lane change maneuvers. 99

5.7 Bidirectional testing performance of different models for drivers. 101

xvii

Abbreviations

ADAS Advanced Driver Assistance Systems

AU Action Unit

BDGAT Bidirectional generalization ability test

BDRNN Bidirectional Recurrent Neural Network

BGMM Bernoulli-Gaussian Mixture Model

CNN Convolutional Neural Network

DCP Direction Changing Period

FID Score Fréchet Inception Distance

FOP Frontal Observation Period

GAN Generative Adversarial Nets

GLTP Green lights turn prediction

HCRF Hidden Conditional Random Field

HMM Hidden Markov model

IVI In-Vehicle Infotainment

xviii

KNN K-nearest neighbors algorithm

LCP Lane change prediction

LFP Lane Following Period

LIDAR Light Detection and Ranging

LSTM Long short-term memory

MS-RCNN Multiple scale faster-RCNN

NIR Near-Infrared

NN Neural Network

OBD On-Board Diagnostics

QRNN Quasi-Recurrent Neural Network

RNN Recurrent Neural Network

SOP Surrounding Observation Period

SVM Support Vector Machine

TTI Time to an Intersection

TTS Time to steering actions

V2I Vehicle-2-infrastructure

V2V Vehicle-2-vehicle

xix

Chapter 1

Introduction

1.1 Motivation

A recent driving study reveals that European drivers spend 10% of their driving time on

secondary tasks, and the third of it is spent on mobile phones which involve extensive

visual and manual distraction [6]. Another statistics shows that 90% of crashes are related

to driver-related factors (i.e., driver Judgement error, impairment, fatigue, and distrac-

tion) [7]. These are just two examples among a large number of evidence that danger

factors leading to accidents could come from actions inside the vehicles, which may involve

other passengers or pets.

Over the past decades, there has been a remarkably increasing interest in developing

driver behavior modeling methods to reduce the influence of drivers’ negative behaviors on

driving safety in both academia and industry. These research works can be divided into two

categories. The first category is strategic research. For instance, several large-scale driving

studies, which record and analyze driver behaviors without experimental control, are being

carried out in North America, Europe, and Australia [8, 9, 10]. These strategic projects

aim at gaining a deep understanding of driver behaviors, such as finding the relationship

between accidents and road conditions and revealing the developing process of accidents by

reviewing statistical information. These research works can guide legislative departments

1

and direct the design of new Advanced Driver Assistance Systems (ADAS). The second

category is tactical research, and research works in this category aim at developing new

in-vehicle techniques to mitigate or prevent the effects of drivers errors. For this purpose,

modeling drivers’ behaviors should be treated equivalently to understanding driving sur-

roundings in ADAS. In other words, ADAS should be able to perceive the information on

driving surroundings and driver’s states, reason and recognize critical traffic situations by

fusing that information, and respond in real time while fulfilling drivers’ demands [11, 12].

However, the fact is, while the cognitive ability of ADAS to perceive driving surroundings

has increased progressively over recent years with improved techniques, such as traffic sign

detection and pedestrian detection systems, the ADAS’ awareness of drivers’ behaviors has

not progressed much [13, 14].

Recent progress in autonomous driving systems provides another promising direction

to decrease human error during driving. In autonomous driving systems, perceiving or

modeling the behavior of drivers is, however, still necessary. Now even the most advanced

autopilot system is still in NHTSA-Level 2, which means the vehicle still requires frequent

human interventions [15]. An autopilot system should be monitored continuously by a

human driver. However, without an effective driver monitoring system, an autopilot system

does not know whether the driver is actively participating as per the system’s requirement.

In Level 3, an autopilot system should be able to handle most “safety-critical functions”,

while the driver should intervene appropriately on request [15]. Thus an autopilot system

should be aware of the driver’s availability to avoid shifting the control to an inattentive

driver, and the best method for this is an in-cabin driver monitoring system.

Current research on driver behavior modeling is not comprehensive, and many proposed

methods are limited in scope and performance [16, 17, 18]. Meanwhile, machine learning

methods, which are the cornerstones of a large part of driver modeling systems, has im-

proved rapidly in recent years. These advanced techniques could benefit driver modeling

from the aspect of performance, such as accuracy and reliability. For these reasons, we aim

at developing accurate and reliable driver modeling systems using advanced and innovative

approaches.

2

1.2 Scope and Objectives

Before defining the scope of this research work, we should first distinguish between a driver

behavior prediction task from a driver behavior recognition task. In a driver behavior

recognition task, a behavior may be ongoing or already finished; therefore, some parts or

the entire amount of resulting information about that behavior, e.g., a driving trajectory,

can be collected and used for recognition. In contrast, driver behavior prediction aims to

identify a behavior that will happen in the near future, which means data on that behavior

itself are not available and the prediction must be implemented with information collected

before the behavior starts [19]. Accordingly, this research explores two main components

of driver behavior modeling in ADAS design, including driver distraction recognition and

driving maneuver prediction. Driver distraction recognition aims at detecting whether a

driver is driving while using a cell-phone or In-Vehicle Infotainment (IVI) devices, and

driving maneuver prediction aims at predicting a driver’s next maneuver before he arrives

at an intersection.

The objectives of this research are to overcome the limitations of current computer-

vision-based systems, especially their limitations in hand-crafted feature extraction and

generalization abilities, and to develop accurate and reliable methods using advanced and

innovative approaches.

1.3 Contributions

The contributions of this thesis are threefold.

1.3.1 Enhancing Driver Distraction Recognition Using Genera-

tive Adversarial Networks

This work proposes to explore images of diverse driving scenarios from the Internet and

employ generative models as a data augmentation method to improve the performance of

3

driver distraction recognition. Moreover, a novel driver monitoring system, which inte-

grates multiple information sources, is introduced.

1.3.2 Driver Distraction Recognition Under Various Lighting Con-

ditions

An approach for driving distraction recognition under various lighting conditions is intro-

duced. Unlike many existing systems that work only in the daytime, the proposed system

functions with excellent performance in the daytime and nighttime by utilizing two modes.

Moreover, using a novel network bottleneck, we proposed a new Convolutional Neural

Network (CNN) architecture with a small footprint that provides a state-of-the-art perfor-

mance in both modes. The inference speed of the proposed system on a resource-limited

computing platform is evaluated, and experimental results show that the proposed network

achieves the highest frame rate of inference among baseline models.

1.3.3 Deep Learning-based Driving Maneuver Prediction System

A new system that predicts a driver’s next direction changing action before it happens is

proposed. This work first provides a new perspective on data labeling method, with which

training inputs are more semantically related to their labels, and the system after training

provides better performance. Then a new maneuver prediction system based on Quasi-

Recurrent Neural Networks (QRNN) is proposed. The new system is able to capture spatial

and temporal features better and improve the prediction performance further. Moreover,

a novel application of driver maneuver prediction, which is driving proficiency assessment

by bidirectional generalization ability test, is investigated.

1.4 Thesis Outline

Chapter 2 discusses related works in the literature. It starts with a brief introduction to

research improving the cognitive ability of ADAS and contrasts it with existing ADAS. The

4

following sections then provide a brief overview of the existing work on driver distraction

recognition and driving maneuver prediction.

Chapter 3 introduces methods to improve the generalization ability of distraction recog-

nition systems by using generative models. It discusses the details of implementation and

evaluates the benefits through comprehensive experiments.

Chapter 4 presents a method to develop a real-time distraction recognition system

on a resource-limited computing platform. A new convolutional neural network, which is

based on a novel network bottleneck, and a mechanism to handle recognition under various

lighting conditions, are introduced. This system has the ability of being implemented on

standalone device that drivers could use easily during driving operation (put the device on

a non-disturbing location on the dashboard).

Chapter 5 provides methods to improve driver maneuver prediction. A new prediction

system is presented. This chapter also investigates a new application of driver maneuver

prediction.

Chapter 6 concludes with a highlight of the contributions of this work and discusses

possible extensions.

5

Chapter 2

Literature Review

This chapter surveys related works in the literature. It describes briefly the background

of improving the cognitive ability of ADAS then introduces recent and the state-of-the-

art modeling approaches for driver distraction recognition research and driver maneuver

prediction research.

2.1 Cognitive Abilities of Advanced Driver Assistance

Systems

Several ADAS support drivers by strengthening their cognition abilities, providing warnings

or suggestions in the case of driving errors, or even taking over the vehicle. For this purpose,

ADAS must understand and model driving environments, vehicles, and drivers. Drivers’

information needed in ADAS includes their mental and psychological states, skills/profile,

etc. The required information from driving environments includes the distance from the

ego-vehicle to a heading car and back car, the distance to traffic lights/signs, the existence

of parallel lanes, to name a few. With this information, an assistance system can estimate

ongoing driving situations and predict driving risks in the future to provide appropriate

assistance. A general architecture of ADAS is illustrated in Fig. 2.1. As can be seen, the

6

Driver Vehicle Environment

Distraction
...

Fatigue

Speed
...

Lateral offse

Lights
...

Padestrian

Perception Module

Situation Assessment Module

Decision Making Module

A
ctuator M

odule

Figure 2.1: A general architecture of ADAS, which consists of four collaborative modules

of corresponding functions.

architecture consists of four collaborative modules of corresponding functions. The next

three paragraphs discuss these modules separately.

The Perception Module (PM) employs several different sensors and recognition systems

to collect information about drivers, vehicles, and environments. A driver’s information

collected by the cognitive system composes a profile of him, including distraction status, fa-

tigue status, emotional status, the proficiency of driving, the age range, etc. To implement

maneuver-based driving conflict detection, the ongoing and future maneuvers of the driver

are critical. Thus, the PM should also be able to recognize these two states [20]. To provide

customized maneuver assistance, a driver’s driving profile should also include his driving

7

style, for example, whether he is prone to drive aggressively. The information on the vehicle

includes the gear position, speed, acceleration, and some vehicle performance indexes, for

example, deceleration performance is important to estimate the distance needed to brake

in an emergency. This information can be extracted by analyzing data from the Controller

Area Network (CAN bus) or OBD interface. The environmental information includes the

lateral distance of the vehicle to lane marks, distance to the intersection, distance to the

heading vehicle, distance to the rear vehicle, weather conditions, traffic light status, etc.

The focus of this thesis, which includes driver distraction recognition and driving maneuver

prediction, is on the PM.

The Situation Assessment Module (SAM) receives the information of the ego-vehicle

and other vehicles from the PM to understand and estimate the current traffic situation,

detect latent conflicts between vehicles, then send these results to the Decision Making

Module (DMM) to form decisions. FOR example, the SAM MAY use information on the

distance, speed, acceleration, brake information to estimate the Time-to-Collision (ToC)

of the ego-vehicle to the heading vehicle when following a car. The traffic situation is an

interaction between vehicles on the road, but not all vehicles are related and will affect

other vehicles’ actions. In front of an intersection, a driver pays more attention to vehicles

that may lead to conflicts with him. For example, a driver trying to turn left should keep

observing vehicles coming from the opposite direction on his left side of the road. Thus,

the SAM should be able to understand the current scene and decide which vehicles are

related to the ego-vehicle.

Based on results for the SAM, the DMM determines an appropriate assistance that

minimizes the driving risk and improves the driving comfort. The Actuator Module (AM)

implements the decision from the DMM and provides the visual display, warning, or even

takes over the vehicle to execute evasive actions.

Although extensive research has been performed to improve the awareness of the Per-

ception Module to driving surroundings and drivers, there are few commercial ADAS that

possess both cognitive abilities. In the next paragraphs, we introduce several existing com-

mercial ADAS. These systems relieve drivers from heavy cognition workloads by perceiving

and reacting to the driving surroundings outside of vehicles.

8

Based on the distance and relative speed between vehicles, an Adaptive Cruise Control

system adjusts the ego-vehicle’s speed to maintain a safe distance from the vehicles ahead

[21]. This system can also be extended to provide an Automatic Braking System [22].

The Automatic Braking System will alert the driver when there is a high collision risk;

if the driver keeps ignoring the warning, the system will brake the vehicle automatically.

Sensors involved in these systems are Radar or Light Detection and Ranging (LIDAR).

The Adaptive Cruise Control system and Autonomic Braking System are both essential

for autonomous driving systems in NHTSA-Level 2.

Unlike the Adaptive Cruise Control system which only controls the horizontal dynamic

of vehicles, a Lane Keeping System detects the distance of the car from the lane markings

and implements vertical control to prevent a lane departure [23]. With the same hardware,

it is possible to develop a lane departure warning system.

An Automatic Parking System controls both the vertical and horizontal dynamics of

a car to achieve parallel, perpendicular, or angular parking [24]. Basic sensors needed are

Radar and cameras. With the range and parking lot mark information, the system will

plan a trajectory for the vehicle, then the speed and steering angle control system will

control the car to follow that trajectory.

An indispensable function of ADAS is checking the driver’s state and providing adequate

help. Now several car makers provide driver drowsiness detection systems which are able to

detect drowsy drivers and provide warnings [17, 25, 18]. The various indicators or features

used to detect driver drowsiness are: lane departure frequency, steering angle changing

dynamic, driver eye closure and blinking frequency. There are also systems that detect

drivers’ physiological information to assess their level of drowsiness.

Another research work that incorporates driver behaviour recognition into ADAS is

[16], in which the authors developed a yaw moment control system with two weighted

yaw rate control strategies. The proposed control system will respond to the result of

driver intention recognition and switch between two control strategies. Many researchers

also believe that driver behaviour prediction can facilitate smooth and appropriate control

mode transitions [26, 27]. These research works show that it is possible to integrate driver

behaviour recognition and prediction systems with control systems and other on-vehicle

9

systems to enhance driving safety and comfort [28].

2.2 Review of Driver Distraction Recognition

2.2.1 Driver Distraction Recognition Systems Design

Driver distraction is defined as “a diversion of attention away from activities critical for

safe driving toward a competing activity” [29]. In [30], Klauer et al. studied this subject

extensively and provided a list of distraction tasks, including fetching items in the car, using

a phone, adjusting equipment on the car panel, recognizing signs outside the car, drinking,

eating, and talking with other passengers in the car. Driver distraction recognition aims

at detecting drivers’ engagement in secondary tasks while driving, providing assistance or

generating warnings in risky driving situations. It is a fundamental problem in the design

of ADAS that has not been fully resolved as of yet.

Mobile devices represent one of the most ubiquitous sources of distraction in vehicles.

Many governments have taken legal steps to address the risks arising from this ubiquity, in

tandem with efforts by the research community [31, 32, 33]. Overton et al. [34] described

the danger of distracted driving, especially involving mobile devices. Having surveyed data

on car accidents involving distracted driving, they found that both hands-free and hand-

held devices affect driver attention negatively. In several other works, researchers used

computer vision methods to monitor drivers’ heads, hands, lips, and eyes, and from there,

reason about their state (whether, for example, they are talking on the phone or attend-

ing to the road) [35, 36, 37]. Signals employed by these studies pertain to the physical

movements involved in distraction behaviors. Meanwhile, several other researchers take

a more direct approach, which is detecting the existence of a phone near the head of a

driver. Artan et al. [31] proposed a vision-based approach where a driver’s face is first

localized using an Near-Infrared (NIR) camera system, from where features are extracted

and subsequently fed to a classifier to detect a phone. Le et al. [38] proposed detecting a

driver’s face position, hands positions, phone position, and steering wheel position using a

side-view camera, and use the overlap between a driver’s hands and head to infer whether

10

that driver is using a phone. The researchers in [39] proposed tracking relative positions

of a driver’s body parts and apply Support Vector Machine to classify distraction types.

Other distraction activities also affect driving safety, but electronic device-related distrac-

tion has received more attention from the transportation safety departments. For instance,

in Canada, Ontario’s distracted driving laws apply to the use of hand-held communica-

tion/entertainment devices and certain display screens. This fact motivated this thesis to

focus on electronic device usage.

Since a distraction activity is the mixture of visual, auditory, bio-mechanical, and

cognitive distraction, a common topic is to distinguish only normal driving from distracted

driving instead of detecting the distracting sources. A trait of these methods is that several

distraction activities can be handled naturally together, and most previous works focused

on this [40, 41, 42, 43].

Another problem that has been investigated is estimating the level of visual, auditory,

bio-mechanical, and cognitive distraction. In [41, 43], the authors tried to find the most

discriminative facial features to classify cognitive distracted driving, visually distracted

driving, and normal driving. They compared the classification accuracy with different fea-

tures for different distraction tasks. They found that, for visual distraction detection, gaze

features and facial Action Unit (AU, represents the muscle activity that generates different

facial expressions in the facial action coding system [44]) features are more discriminative,

while for cognitive distraction detection, AU features are more critical. In another work

conducted by the same authors, they proposed a more general method of evaluating the

distraction level of drivers [42].

A large number of research works on distraction recognition are based on computer

vision methods, while several researchers are trying to avoid using in-cabin cameras. They

used physiological measures of drivers and indicators of driving performance to gauge driver

distraction levels [45]. To detect whether a driver is texting and driving, researchers in [46]

developed a system leveraging inertial sensors on the smartphone and checking the text

input frequency and the frequency of typos. This system is also able to detect whether the

phone user is in the car and in which position he/she is in the car. Li et al. proposed in

[47] to detect visual-manual distracted driving by machine learning methods with features

about driving performance indicators from on-board kinematic measurements. The overall

11

accuracy achieved across all drivers is around 95% since well-designed features are utilized.

Iranmanesh et al. used raw vehicle states from CAN as inputs to Neural Networks and

Support Vector Machine (SVM) [48]. The resulting accuracy is significantly less than the

accuracy from a system with well-designed features. Despite this, other experiments show

that the distraction recognition system helps to reduce the miss alert rate of Forward Colli-

sion Warning system. In [49], Aksjonov et al. proposed a method to predict a driver’s lane

keeping offset and vehicle speed deviation based on road curvature and speed limit. The

differences between the real and predicted lane keeping offset and vehicle speed deviation

are used to infer the driver’s distraction level using a fuzzy logic system.

Several research works have tried to combine various information sources to achieve

better performance of distraction recognition. Addressing the detection of cognitive dis-

traction, Liao et al. [50] fused the information of driving performance and eye movements.

This work is a good example of exploring multi-source information (driver dynamics and

visual information). Machine learning methods are widely used in distraction detection,

and most of the existing works are based on supervised learning methods. Liu et al. pro-

posed in [51] a semi-supervised learning method to avoid the tedious work of data labeling

while enhancing the accuracy and the efficiency of distraction recognition.

The work that is most related to this thesis is in [52]. We argue that image segmentation

is not necessary for the image classification in this task. Moreover, the CNNs used in [52]

exhibit significant complexities thus the frame rate of the developed system will decrease

significantly if deployed on a low-cost on-vehicle computing platform.

Table 2.1 summarizes several approaches in the literature to driver distraction recogni-

tion (sorted by date).

12

Table 2.1: Comparison of recent works on distraction recognition

Ref. Signal type Objective Analysis method

[40] Lane, head pose, car states 8 tasks LSTM, RNN

[33] phones, speakers Phone use Differential approach

[53] Face position, mouth, hand position
Talking on

the phone
HCRF

[41]
CAN-Bus, head pose, eye

movement, audio
8 tasks KNN, SVM

[31] Image patch near head Phone use SVM

[54]
Arm position, eye closure, facial

expression, head pose
4 tasks

Adboost, HMM,

Random forest, SVM,

CRF, NN

[42]
Head pose, Can-Bus, mouth

expression
7 tasks

SVM, Adaboost,

Random Forest

[32] Image patch near head
Talking on

the phone
Real Adaboost, SVM

[38] Raw picture Phone use MS-RCNN

[55] Raw picture 4 tasks CNN

[56] Raw picture and patches
10 tasks,

classification
CNN

13

2.2.2 Design of Networks With Small Footprints

Many deep learning-based computer vision studies adopt pretrained or non-pretrained

CNNs that are proposed for other applications; several widely used networks are AlexNet [57],

VGG16 [58], ResNet [59], Inception [60], among others. The computation costs of these

CNNs are very significant, thus hindering the usage of them in resources-limited environ-

ments. Table 2.2 presents a comparison of model sizes and numbers of parameters.

Table 2.2: Comparison of several CNN models over complexity and the number of param-

eters.

Model Size Parameters

VGG16 528 MB 138M

VGG19 549 MB 144M

ResNet50 98 MB 26M

ResNet101 171 MB 44M

MobileNet 16 MB 4M

MobileNet V2 14 MB 3M

There have been two categories of research works on developing networks with small

footprints but excellent representation capabilities. The first category is network compres-

sion while the second one is designing and training a small network from scratch [61, 62, 63,

64, 65, 66, 67]. The work proposed in Chapter 4 is in the second category and is inspired

by papers described in the next paragraph.

Depthwise separable convolution is introduced in [68] and is used to simply replace

normal convolutional layers in [64]. In [65], the network architecture proposed in [64] is

improved by employing bottleneck blocks and identity connections introduced in [59]. In-

stead of using depthwise separable convolution, Zhang et al. introduced a channel shuffle

method for group convolutions and designed a CNN architecture named ShuffleNet [66].

Channel shuffle operation exchanges channels in different convolution groups so each chan-

nel has access to all information in previous layers. After exploring several guidelines

14

and empirical studies for network design, Ma et al. improved ShuffleNet by adjusting the

positions of shuffle layers [67].

2.3 Review of Driving Maneuver Prediction

A short survey on driver behavior prediction research is provided here, and for a more

comprehensive treatment, please refer to [69] and [70].

In many research works, driver behavior prediction is also referred to as behavior an-

ticipation, and we use in this thesis behavior prediction to maintain consistency.

Unlike driver behavior recognition, driver behavior prediction aims at anticipating a

possible behavior before it happens. An early prediction gives a vehicle assistance system

more time to prepare for the coming events. Various aspects of driver behavior prediction

have been investigated: some researchers propose predicting drivers’ next driving states

which are referred to as driving maneuvers, for example turning left, or turning right

[19, 71]. Meanwhile, some other researchers have focused on predicting the trajectory or

other outcomes of a real steering process [72]. The ultimate aim of behavior prediction is

to analyze and detect a latent driving error or risk, hence some researchers take one step

forward by anticipating a potential error and risk directly [72].

Drivers’ behaviors and risk predictions are particularly interesting at intersections, as

traffic situations there are more complex. Drivers will encounter complex situations during

interactions with other drivers and traffic signs. Accidents can be reduced if on-vehicle

systems can provide enough information about other drivers’ intentions and alert drivers

when their decisions may lead to conflicts. For that purpose, an assistant system needs to

predict the ego driver’s next maneuver and other drivers’ maneuvers then try to identify

any conflict between them.

While evaluating a driving situation and deciding on the next action, a driver acquires

information from different sources: surrounding traffic information, vehicle’s states, desti-

nation, and so on. Therefore, to predict a driver’s behavior, a prediction system needs all

this multi-source information to be fused. Before turning right or left, drivers will check the

15

traffic outside their cars; for acceleration, drivers move their feet first. These movements

can be the hints for the next driving actions [73]. At an intersection, the layout of roads

is also an important piece of information and is usually detected by an on-vehicle camera.

In [74], Lefèvre et al. proposed exploiting digital maps on vehicles to access the topology

of intersections. Other useful pieces of information for the prediction of a driver’s next

maneuver are the current states of his vehicle, such as the speed, steering wheel angle, etc.

Modeling methods in previous maneuver prediction research range from traditional

signal processing methods to recent Machine Learning methods. To predict the imminent

maneuver of the ego vehicle before an intersection, Ortiz et al. limited their information

sources to speed, acceleration, and the distance between vehicles as these features are

available both to the ego vehicle and other traffic participants [75]. With this design, it

is easy to extend this system to predict other vehicles’ next maneuvers and decompose

a complex situation into several simple ones. Situation-specific prediction systems for

different traffic situations are trained in this study. A situation-specific learned system

can be used to infer the possible imminent state of a preceding vehicle, then the result

of this prediction serves as an input to predict the behavior of the ego vehicle. Based on

an analysis of drivers’ foot behaviors, Cuong et al. developed a vision-based method to

predict the brake and acceleration behaviors of the ego driver [76]. Through computer

vision methods, they tracked the foot motion of drivers and built a Hidden Markov Model

(HMM) to model the relationship between different pedal-usage states and temporal foot

states. Combined with other ADAS, this system can also predict pedal errors, which means

a wrong pedal is pressed or no pedal is pressed when it should be. They also showed the

trade-off between the advance time and accuracy of predictions in their previous work [77].

Predicting the next maneuver of the ego vehicle is not sufficient for risk assessment

because many accidents involve multiple vehicles. In other words, other vehicles’ informa-

tion is essential for risk assessment. However, it is difficult to collect this information and

estimate other drivers’ next maneuvers. There have been several attempts to estimate the

states of other traffic participants, but the performances still suffer from complex changing

outdoor conditions [78, 74]. In [79], the relationship between a driver’s decision and vehicle

states is modeled by a hybrid-state system, and the relationship between a driver’s behav-

ior and some easily observed states of other vehicles is modeled by an HMM to estimate

16

every driver’s decision. The eventual purpose of this system is to predict other drivers’

decisions before an intersection is in sight. Another research work that aims at developing

a framework for predicting other vehicles’ maneuvers is outlined in [71]. In this work,

Wiest et al. modeled the relationship between states of other vehicles, the intersection

geometry, and the possible maneuver of the ego vehicle by a Bernoulli-Gaussian Mixture

Model (BGMM). As in several other works, they tried to model that probabilistic relation-

ship within a single model. The introduction of online learning BGMM in this work makes

it possible to construct a unified model for all situations. With the development of the

Vehicle-2-vehicle (V2V) communication system, the requirement to have the information

on other vehicles’ actions can be fulfilled by broadcasting each driver’s intended maneuver

among a V2V network.

Compared to red and green lights, yellow lights leave drivers with different choices, and

some drivers choose to accelerate and avoid waiting. Research in [80] aims at estimating

whether a driver will comply with the traffic light and stop properly. Researchers here

assumed that, by a V2V or Vehicle-2-infrastructure (V2I) system, their systems can access

the information about other vehicles. Part of the input to classifiers is the state series of

the ego vehicle for a period before arriving at an intersection. This system also includes a

sub-system to estimate the Time to an Intersection (TTI). This work explored two methods

for prediction, i.e., Support Vector Machines integrated with Bayesian Filtering (SVM-BF)

and HMM. For each method, this work also attempted to find the combination of features

that is more discriminative. In [81], Mabuchi et al. developed a system to predict the

decisions of other drivers when stopping or passing when the light changes to yellow. This

system can also check whether a driver decides to go but stops eventually. The learning-

based system takes the distance between the ego vehicle and an intersection, the speed,

and the acceleration of the ego vehicle as inputs.

Lane changing happens frequently during driving, and factors affecting these actions

are lane information, surrounding traffic, and drivers’ intent. Lane information means

which lane the ego-vehicle is in and the existence of two side lanes. The distance to other

vehicles will also affect drivers’ decisions, while a large distance leaves more safe space for

operations. In many research works, a lane change is defined as starting when a vehicle

touches a lane mark; however the vertical motion before touching a lane mark gives ample

17

information to infer an imminent lane change, and the prediction in this period is more

useful for ADAS. Simulation results in [82] show that usually it takes two seconds for a

vehicle to touch a lane mark after it starts to turn. Doshi et al. found in [73] that head

motion, lane position, and vehicle dynamic provide a good information combination to

predict drivers’ intended maneuvers. In addition, they found that the eye gaze estimation

is more cumbersome and does not improve prediction results significantly. They also notice

the obvious changing of vehicle states that happens two seconds before a lane change. These

results show that lane departure is a strong sign that a lane changing may happen, while

the head pose is another predictive sign. They developed an on-road test system in [83].

Ortiz et al. showed in [84] that it was feasible to predict the lane change of the ego vehicle

with only information from a frontal and rear camera. The best accuracy they achieved

was 80%; while the classification accuracy achieved in [83] was also about 80%. Kumar

et al. tried to predict the lane change of the ego vehicle using lane information, speed,

and steering angle in [85]; in their system, the probability result by an SVM is sent to a

Bayesian filter for smoothing. They claimed that this system can predict the lane change

an average of 1.3 seconds before it happens. In a recent study [86], many features that

can be used for lane change prediction are investigated. The results show that the relative

speed in relation to the front vehicle, the lateral speed to lane marks, and the distance

to lane marks are the three most critical features. With these features, they predicted

the possible lane change with a naive Bayes classifier, while the lane change process was

modeled using a mixture of Gaussian distribution. There are also several research works

that try to predict the lane changes of other vehicles to prevent possible risk. In [72],

after predicting whether another vehicle will cut in in a dangerous manner, the developed

system estimates the trajectory of that vehicle. The predicted trajectory, which is just an

average of trajectory records of the same vehicle states, enables the ego vehicle to take

corresponding evasive maneuvers.

Recent studies that are most related to our work are [87, 19, 88]. In [87, 19], Jain

et al. developed a Recurrent Neural Network (RNN) with Long Short-Term Memory

(LSTM) units to predict turn and lane change maneuvers. Contextual input information

is collected by multiple sensors, such as an in-vehicle camera facing the driver, an out-

vehicle camera facing roads, GPS, and an On-Board Diagnostics (OBD) II to read vehicle

18

speeds. They developed a feature fusion architecture in their network instead of just

concatenating features from different sources in their previous work [89]. The memory cell

in this architecture enables it to capture the long temporal dependencies between input

states. Also, the depth of this network makes the representation of states more effective.

The usage of RNN and multi-sources information as well as drivers’ 3D head pose features

promoted the performance of their system dramatically to a precision of 90.5% and a

recall of 87.4% on their database. Olabiyi et al. extended [87, 19] by an online database

collection and learning system in [88]. Moreover, they explored more features on hand

positions and vehicle states for prediction. Slide-window Bidirectional Recurrent Neural

Network (BDRNN) explored in this work can extract feature representations of temporal

and spatial information from both input sequence ends. To make real-time predictions,

their system introduces a new hyper-parameter which is the length of slide windows, and

this fixed length limits the information used for predictions.

Table 2.3 summarizes several related studies on maneuver prediction from 2011. These

results show that, to improve the performance of driver maneuver prediction, the new

model should be able to efficiently fuse multi-source information. These information

sources can be categorized into two groups: in-vehicle information sources and out-vehicle

information sources. Among the in-vehicle information, the information about driver scan-

ning behaviors, for example, the changing trajectory of facial landmarks, is critical. To

obtain this information, a non-intrusive method is carried out by computer vision; however,

it may be unstable with respect to frequently changing in-cabin environments. The same

situation happens when collecting lane information by computer vision methods. Thus,

developing a prediction system that can effectively extract and fuse visual information from

both groups in a stable and robust manner is challenging but promising.

19

Table 2.3: Comparison of recent works on driver behavior prediction.

Ref. Aimed problem Information
Analysis

method

[87, 19]
Maneuvers prediction

on the road

Head pose, lane

information, vehicle states
Fusion-RNN

[71]
Maneuvers at

intersection
Intersection, vehicle states BGMM

[72]
Trajectory prediction

of lane change

Lateral distance to the

lane mark

HMM, regression

curve

[73]
Lane change, ego

vehicle

Vehicles states,

environment and driver

state

Relevance vector

machine

[90] Lane change

Lateral velocity and

position, relative velocity,

time gap, time to collision

Rule-based

expert system

[74]
Maneuvers at

intersections

Layout of intersections,

vehicle behavior

Bayesian

networks

[75]
Maneuvers at

intersection

Traffic lights, behavior

primitives

Multilayer

Perceptron

[79]
Maneuvers at

intersection

Vehicle velocity, position,

orientation

Hybrid-state-

system,

HMM

[88]
Maneuvers prediction

on the road

Head pose, lane

information, vehicle states
DBRNN

[85]
Lane change

prediction

Lane information, speed,

steering angle

SVM, Bayesian

filter

20

2.4 Summary

This chapter provides an overview of the general architecture of ADAS within the con-

text of preventing driver distraction and introduces several existing advanced commercial

ADAS. The survey of existing work on distracted driver recognition and driving maneuver

prediction shows that both of these problems are still far from solved. The next chapter will

introduce our research work on enhancing driver distraction recognition using Generative

Adversarial Networks.

21

Chapter 3

Enhancing Driver Distraction

Recognition Using Generative

Adversarial Networks

3.1 Introduction

Many existing works address driver distraction recognition by machine learning meth-

ods, based upon hand-crafted features representations, and this problem is formulated as

a multi-class or binary-class classification task. However, feature design requires a lot of

expert knowledge about signals processing and driver behavior patterns [32, 91, 92, 93]. In-

spired by recent successes of CNNs in many computer vision problems [94, 95], researchers

have been working on entirely data-driven end-to-end solutions for DDR [96, 55]. How-

ever, the scarcity of labeled ’real’ training data stands as a significant obstacle to the efforts

deployed by researchers to develop CNN-based DDR systems. Previous CNN-based DDR

methods have addressed this challenge in two ways. The first approach is transfer learning.

These methods adopt network architectures and parameters employed for general image

classification tasks, and thus their performance is highly dependent on the closeness of the

original tasks to the DDR task. The second approach is collecting images by simulation ex-

periments on driving simulator platforms. Note that most current visual driver distraction

22

recognition databases contain images collected by simulation experiments in simulators or

real car environments [96, 55, 97, 98]. These images are extracted from video clips. Thus

their backgrounds are similar, and they lie in an adjacent area within the distribution of

images of distracted driving. Recognition systems trained on these datasets will overfit to

those specific driving scenes and internal vehicle configurations, etc. Therefore, to ensure

the effectiveness of CNN-based DDR systems on different sets of driving conditions, more

diverse data would be required. However, collecting a comprehensive image dataset of

distracted driving is expensive and is dangerous if it involves real driving experiments.

The work in this chapter does not images extracted from video clips for training, instead

it employs an image dataset with significant diversity and explores Generative Adversarial

Networks as a method for data augmentation. A dataset of images of different driving

situations from the Internet is collected and used to train a Generative Adversarial Network

for each driving scenario. These generative models are able to produce arbitrary numbers

of images that locate closely with images of driving from the Internet in the distribution

of images. Subsequently, these generated images, together with pictures from the Internet,

are used to train a CNN-based distraction recognition system.

The rest of this chapter is organized as follows. The detailed framework of the proposed

DDR system is described in Section 3.2. The results of experiments are presented in Section

3.3. Section 3.4 presents a driver monitoring system including a distraction recognition

system as a functional module. Finally, Section 3.5 summarizes this chapter.

3.2 System Description

The proposed DDR system employs a side-view camera to acquire images of drivers in

various sitting configurations. Given each image frame, a CNN will classify the state of

that driver into normal driving, talking while driving, or texting while driving. The training

of that CNN classifier comprises two steps. The first one is to fit a generative model for

each class of driving images then sample from the image distributions of different driving

scenarios. The second step is to model images of distracted driving discriminatively which

is to develop a classification system. The second step makes use of the images generated

23

in the first step. Below, these two steps are described in more details.

3.2.1 Generative Model for Additional Data Sampling

For data features (e.g., images in this work) {Xr
i } and their labels (e.g., classes of distrac-

tion activities) {pi}, a generative model is able to model their joint distribution. Then, by

sampling from this distribution, it is possible to produce an arbitrary number of feature

and label pairs {Xg
i , pi}.

G
en

er
at

or

z ∼ N(μ,)σ
2 C

ritic

{ }X r
i

{ }X
g

i

W(,)Pr Pθ

Figure 3.1: The system structure of WGANs, which consists of a Generator and a Critic.

This work uses Wasserstein Generative Adversarial Networks (WGAN) as the method

to fit generative models [99]. The structure of WGAN is shown in Fig. 3.1. Let Pr be a

real image distribution. The Generator is a parametric function x = Gθ(z) for a random

variable z from a distribution P (z), thus it defines a map from a vector distribution P (z)

to an image distribution Pθ(x). With a batch of image samples from Pr and a batch of

image samples from Pθ(x), the Critic estimates the discrepancy between two distributions

Pr and Pθ(x).

Instead of defining the discrepancy between Pr and Pθ with the Jensen-Shannon di-

vergence as in the original work on GAN [100], WGAN adopts the Earth-Mover distance

(Wasserstein-1) given as

W (Pr, Pθ) = inf
γ∈Π(Pr,Pθ)

E(x,y)∼γ

[
‖x− y‖

]
, (3.1)

where Π(Pr, Pθ) is the set of joint distributions γ(x, y) whose marginal distributions are Pr

24

and Pθ. And by the Kantorovich-Rubinstein duality, W (Pr, Pθ) can be expressed as

W (Pr, Pθ) = sup
‖f‖L≤1

Ex∈Pr [f(x)]− Ex∈Pθ [f(x)], (3.2)

where the supremum is taken over all the 1-Lipschitz functions f : X → R. WGAN adapts

neural networks with parameters w that lie in a compact set to model this critic fw.

The training process of WGAN aims at reducing the discrepancy between the distribu-

tion Pr of training images and Pθ by learning parameter θ. The practical training procedure

of WGAN contains mainly two kinds of update steps. The first one is learning fw to max-

imize Ex∈Pr [fw(x)] − Ex∈Pθ [fw(x)], this step aims at approximating the W (Pr, Pθ). The

second step is learning gθ to minimize −Ex∈Pθ [fw(x)] and reduce the discrepancy between

Pr and Pθ.

After training a WGAN for each driving image class (normal driving, talking on a

phone while driving, texting while driving), the Critic part is dropped. One can sample

an arbitrary number of seed noise zi from P (z) then pass them through the Generator to

produce new image samples Xg
i from Pθ. By this way, a dataset Sg = {Xg

i , Ci} of generated

images of different classes is composed, Ci is a one-hot indicator vector with only one entry

activated to encode the ground truth distraction classes or normal driving class. Together

with Sr = {Xr
i , Ci}, a new dataset of a large number of samples from the distributions of

images of different driving scenes can be formed. Note this new dataset as {Xi, Ci}.

3.2.2 Discriminative Models for Distraction Classification

A discriminative model models the conditional probability distribution P (y|x), so it can

be used to predict y given x, where y is the label of x which may be an image or a feature

combination. This work adopts CNNs as discriminative models for driving image classifi-

cation. As depicted in Fig. 3.2, Xi is first fed into the feature extraction module, which

transforms the raw image pixels into a feature representation optimized for distraction

classification. This feature extraction module is a modified ResNet50 network from [59] for

which the last fully connected layer, the average pooling layer, and the last 9 ’bottlenecks’

are dropped. ResNet50 is adopted in this work as it achieves a high inference frame rate

on Jetson TX2 and great accuracy in our previous work [101].

25

6
4
×
6
4
 R
G
B
 I
m
ag
e

C
o
n
v
 |
 7
×
7
 |
 3
×
6
4
 |
 2
 |
 3

M
ax
P
o
o
l
|
3
×
3
 |
 2
 |
 1

C
o
n
v
 |
 1
×
1
 |
6
4
×
6
4
 |
 1
 |
 0

C
o
n
v
 |
 3
×
3
 |
6
4
×
6
4
 |
 1
 |
 0

C
o
n
v
 |
 1
×
1
 |
6
4
×
6
4
 |
 1
 |
 0

F
C
 |
 3
2
7
6
8
×
1
2
8

F
C
 |
 1
2
8
×
6
4

F
C
 |
 6
4
×
C

C
o
n
v
 |
 1
×
1
 |
6
4
×
6
4
 |
 1
 |
 0

C
o
n
v
 |
 3
×
3
 |
6
4
×
6
4
 |
 1
 |
 0

C
o
n
v
 |
 1
×
1
 |
6
4
×
6
4
 |
 1
 |
 0

 Feature Extraction module

⋯

 Classifier

Te
x
tin

g
?

 T
a

lk
in

g
?

 N
o

rm
a

l?

Figure 3.2: Illustration of CNN configurations for DDR. This fig follows the convention

in [1] and denotes the parameters of the convolutional layer as ’height × width | input

channel × output channel | stride | padding’.

Important parameterizations of convolution, maxpooling, and connectivity for several

layers are detailed in Fig. 3.2. The spatial size of images is reduced by a factor of 8 by this

feature extraction module. Thus, an input image of size 64 × 64 × 3 is represented by an

8× 8× 512 dimensional feature vector. On top of the last ’bottleneck’, there is a classifier

module which consists of two fully connected layers with RELU activations and another

softmax layer. The feature extraction module is initialized with parameters pre-trained on

the ImageNet classification task, while initial parameters in the classifier module are set

randomly. Learnable parameters in this feature extractor module and classifier module are

collectively denoted by ψ in next sections.

The CNN classifier models the posterior probability that a given input Xi belongs to

different classes, which can be expressed as

p̂ki (Xi, ψ) =
exp

(
yki (Xi, ψ)

)
∑C

j=1 exp
(
yji (Xi, ψ)

) , (3.3)

where p̂i = [p̂1
i , · · · , p̂Ci]T is a C-dimensional probability of the i-th input, which indicates

the probability of each distraction class and normal driving class. An error function mea-

sures the difference between ground truth one-hot vector pi and output p̂i. A widely used

26

error function is the empirical cross entropy loss, which is

L({Xi}, ψ) =
N∑
i=1

C∑
k=1

pki log p̂ki (Xi, ψ). (3.4)

The training process of CNNs is to minimize the loss function using gradient descent

ψ∗ = argminL({Xi}, ψ).

The partial derivative of the error with respect to each weight, ∂L
∂ψ

, is calculated using the

chain rule of derivatives, starting from the output of the CNN and moving backward—

a process known as backpropagation. The gradient descent weight update performs the

following iteratively

ψt = ψt−1 − η
∂L
∂ψ

, (3.5)

where η is a learning rate. Given the large number of parameters they often have, CNNs

are vulnerable to overfitting. A preferred practical remedy to overfitting is to add an L-2

Norm regularization term to the error function [102]. Dropout and Batch Normalization

are also widely used methods to improve the generalization ability of CNNs [103, 104].

3.3 Experiment and Evaluation

This section first describes the experimental setups including details of datasets then

presents three sets of experiments. In the first set, the limitation of CNN-based DDR

systems trained on similar images from simulation environments is illustrated. The sec-

ond set gives details of training generative models and analyzes generated image samples.

The third set of experiments report the effect of generated images as a data augmentation

method based on the enhancement of the detection performance.

27

Figure 3.3: Images samples to train WGAN. The first row are images of normal driving,

images of talking while driving and images of texting while driving are in the second and

third row respectively. All images are resized to 64× 64.

3.3.1 Datsets

Images Dataset of Diverse Driving Scenarios

Images collected from the simulation experiments are not diverse as to their backgrounds,

drivers behavior patterns, phone models, etc. To overcome this, more than 1200 im-

ages that representing a large variety of driving scenarios are collected from the Internet.

According to the manually inspection, these images represent different camera positions,

image backgrounds, luminance conditions, human poses, and phone models, etc. This

dataset is referred to as Sr, with representative images shown in Fig. 3.3. The numbers of

images of three different classes are shown in the first column in Table 3.1.

Some images in the Internet dataset are taken from the left side of the drivers. In all

our testing scenarios, however, the camera is positioned on the right side of the drivers.

Thus, those images in which drivers are seen from the left are horizontally flipped. Images

of frontal or back views of drivers are also excluded when training the generative model.

28

Table 3.1: The numbers of samples in images dataset.

Class
Number

Sr Ss

Normal Driving 644 4600

Talking 317 9200

Texting 206 9000

Figure 3.4: Samples of images in a simulator environment for different classes. In the first

row are images of normal driving, images of talking while driving and images of texting

while driving are shown in the second and third row respectively. All images are picked

randomly.

29

Images Dataset of a Simulator Environment

Another image dataset, denoted as Ss, is collected in a simulated environment (a fixed-

base driving simulator is used). Images were obtained from a camera fixed on the frontal

right side of drivers under the same lighting conditions (see Fig. 3.4). There were 23

participants of different ages, genders, and ethnicities involved in this experiment. Each

driver was instructed to perform the following driving activities: normal/safe driving, text

messaging using the right hand while driving, phone calling using the right hand while

driving. Distraction activities involving left hands are not included in this dataset since

there is only a small number of images of drivers where distraction involved left hands in

Sr.

3.3.2 Limitation of Training DDR Systems on Images from Video

Clips

In this set of experiments, the CNN models described in 3.2.2 are trained on Ss and tested

on Sr, and vice versa. These pretrained CNNs are fine-tuned with a learning rate of 1e-5,

which is scaled by a factor of 0.3 after 5 epochs. The number of training epochs was 6,

the batch size was 16, and no data augmentation method or weight decaying method was

used during training. The same hyper-parameters were used in both training experiments

for a fair comparison.

Table 3.2: Classification performance with different training and testing datasets.

Training Dataset
Testing accuracy (%)

Sr Ss

Sr 62.61 ± 2.33

Ss 45.32 ± 1.99

As shown in Table 3.2, the testing accuracy on Sr is only 45.32% when these CNNs

are trained on Ss. On the other hand, when training on Sr, the testing accuracy on Ss is

30

increased to 62.61%. The difference between the two testing accuracies is 17.29%. These

experiments show that models trained on Ss, which is a dataset of a large amount of

images extracted from a limited number of videos clips, cannot generalize well on images

of more diverse driving scenes. Thus, to develop a deep learning-based driver distraction

recognition system, Sr is a better training dataset. This is also supported by experiments

in the next section.

3.3.3 Generate Images of Different Driving Scenarios

The classification accuracy of 62.61% achieved in the previous section by training on Sr

is not enough for a distraction recognition system. One possible method to improve the

accuracy is data augmentation by generative models. This section presents and analyses

the second set of experiments: training a WGAN for each distracted driving class and the

normal driving class, then producing an images dataset of distracted driving, denoted as

Sg as in Section 3.2.1.

This work adopts the implementation of WGANs in [105]. For the generator in WGANs,

the size of the input latent vector z is 100. The first layer in the generator is a 2D transposed

convolution operator with a kernel size of 4, a stride size of 1, and a padding size of 0. The

following layers are a batch normalization layer and a RELU activation layer. Treating a

2D transposed convolution layer, a batch normalization layer, and a RELU activation layer

as a single module, there are another 4 modules in the generator. Kernel sizes in these four

modules are all 4, stride sizes are all 2, and padding sizes are all 1. The generated images

are of size 64× 64.

The structure of the critic in WGANs is a mirror of the structure of the generator

while all transposed convolutional layers are replaced by convolutional layers with the

same kernel size, except for the last layer, which has only one output. During training,

as a practical method to achieve convergence, weights w in Critic fw are updated 8 times

before updating weights θ in Generator Gθ.

Fig. 3.5 presents three training processes of a approximate of W (Pr, Pθ) (represented

by Dloss) and −Ex∈Pθ [fw(x)] (represented by Gloss) on 64 samples of Pr and Pθ. These

31

curves show results after a median filter with kernel size of 101 was applied. Fig. 3.5 (a)

shows that these two losses do not change significantly after about 15000 iterations of

training on images of normal driving, (Gloss stays at about 0.42 while Dloss stays at about

0.9). In Fig. 3.5 (b), these two losses stay stable at about 0.54 and 1.14 respectively after

10000 iterations of training on images of talking while driving. After about 7500 iterations

of training on images of texting while driving, Gloss and Dloss stay stable at about 0.57

and 1.22 respectively as shown in Fig. 3.5 (c). According to these numbers, the training

on images of normal driving takes more iterations to converge, but relatively small losses

show that this training process results in a Generator that approximates closely to the real

distribution of images of normal driving. Even though the numbers of images of talking

while driving and texting while driving are less than the number of images of normal

driving, the losses are still small enough to consider the resulting generators as adequate

models of their respective distributions.

After training WGANs, one can sample from image distributions of distracted driving

and normal driving by sampling latent vectors z from a Gaussian distribution then passing

them through the Generators. Some samples are shown in Fig. 3.6. By checking these

image samples manually, one can find that these images share many similar properties

with training images. In each generated image sample of normal driving, there is a human

driver sitting behind a steering wheel. In some of these images, there are two image patches

whose colors are similar to the tone of human skin (labeled by red polygons). One patch

is close to the upper-left corner of that image, while the other one is in the middle or close

to the lower-right corner. Checking training images of normal driving, one can find that

most of drivers’ heads locate at the upper-left corners, while their hands are close to middle

points of images. Therefore, those two patches of skin tone belong to a driver’s face and

two hands near the steering wheel respectively. There are also image samples that each

contains three areas of human skin tone. In the 5th image in the 1st row, for example,

there are two image areas close to each other that resemble two hands on a steering wheel

and another image area resembles a face.

In a generated image sample of talking while driving, there are at most two areas of

human skin tone, this is consistent with the fact that drivers hold their cellphones near

their ears while talking, meaning the two areas of one hand and the head merge with each

32

(a) Loss during training on images of normal driving

(b) Loss during training on images of talking while driving

Figure 3.5: The evolution of the WGAN during training. The decreasing process of two

losses are shown here. (cont.)

33

(c) Loss during training on images of texting while driving

Figure 3.5: The evolution of the WGAN during training. The decreasing process of two

losses are shown here.

Figure 3.6: Image samples produced by sampling from distributions. In the first row

are images of normal driving, images of talking while driving and images of texting while

driving are shown in the second and third row respectively. All images are picked randomly.

34

other. For an image in which two areas of skin tone can be distinguished, the area that

contains a head and a hand should be close to the left side of the image but most frequently

not close to the upper corner, while the other area, which just contains a hand, is in the

middle of the image.

The Generator for images of texting while driving is not trained to a very small loss,

but images produced by it still show similarities to corresponding training images. In many

generated image samples of texting while driving, there are three areas of human skin tone,

one of them is in the upper-left and the other two are in the lower-right corner. This is

because, while texting, drivers hold their cellphones near the steering wheels as shown in

the third row of Fig. 3.3. The position of hands while texting and driving is very similar

to that of hands during normal driving.

While the generated images are similar to the training images as to their contexts, the

former do lack the details of the latter. The effect of this loss on training a distraction

recognition system using these images, however, is not yet clear. For example, even though

it is easy to locate cellphones by eyes in training images, generated image samples do not

show clear features of cellphones. This is because WGANs, given the limited number of

training images, are not able to model the fine details present in the small patches in the

images corresponding to cell phones. Another issue worth noting pertains to using phones

with left hands. Notice the driver in the second image of the second row of Fig. 3.3 is

talking while holding her cellphone with her left hand. Left-hand drivers are rare in the

training dataset, thus most produced images samples should represent right-hand drivers.

But it is difficult to distinguish which hand the driver is using in a generated image since

most generated images are very blurry and without clear boundary edges.

To quantitatively explore the similarity between these generated images and images

used for training WGANs, this work composes a dataset Sg of generated images, trains

discriminative models on Sr or Sg with a multi-class image classification task, and tests

them on the other dataset respectively. The CNN described in section 3.2.2 is employed

as the discriminative model. It is trained with an ADAM optimizer [106] and a learning

rate of 1e-4 for 6 epochs. The training task is to classify images of three classes (Normal

driving, talking while driving, and texting while driving). Testing accuracies with different

training datasets and different numbers of training images are shown in Table 3.3.

35

Table 3.3: Testing accuracy while train on Int and test on Gen, and vice versa.

Training Dataset Testing Dataset Accuracy (%)

Sr Sg×6400 92.43 ± 1.11

Sg×800 Sr 74.64 ± 0.57

Sg×1600 Sr 74.09 ± 0.67

Sg×3200 Sr 76.25 ± 1.46

Sg×6400 Sr 78.24 ± 1.59

Sg×12800 Sr 79.82 ± 1.33

This table shows that CNNs trained on Sr achieve a high average testing accuracy of

92.43% on Sg. The testing accuracy on Sr while training with 800 images from Sg is only

74.64%. With more training images, CNNs can achieve better accuracies, but only up to a

point: increasing the number of training images from 6400 to 12800 only leads to a marginal

increment in testing accuracies. With 12800 training images, which are more than 10 times

the number of images in Sr, these CNNs can achieve an accuracy of 79.82%, which is 5.18%

more than the accuracy of CNNs trained on 800 images. Accuracies of 79.82% (training

on Sg and testing on Sr) and 92.43% (training on Sr and testing on Sg) suggest that the

two distributions of images in Sg and Sr are very related to each other. Furthermore, the

accuracy of 79.82%, which results from training on Sg with a large number of images and

testing on Sr, is less than 92.43%, which is the accuracy obtained by training on Sr and

testing on Sg. This shows that images in Sg cover a smaller distribution of images than Sr

does. Even though the trained generative models produce images of limited diversity, the

following section shows that images sampled from these generative models help to improve

the performance of distraction recognition system.

3.3.4 Effect of Generated Images on Distraction Recognition Per-

formance

The kernel part of a vision-based distraction recognition system is an image classification

system which distinguishes images of distracted driving from images of normal driving.

36

Table 3.4: Testing performance on Ss by different training strategies.

Training Dataset
Testing accuracy On Ss (%)

Ori L2 Aug Aug & L2

Sr 62.61 ± 2.33 64.20 ± 2.52 68.70 ± 3.00 68.12 ± 3.91

Sg×800 61.86 ± 4.00 62.77 ± 2.26 - -

Sg×1600 56.62 ± 1.55 55.85 ± 3.00 - -

Sg×3200 55.49 ± 2.54 56.28 ± 4.18 - -

Sg×6400 54.33 ± 4.17 53.88 ± 1.87 - -

Sg×12800 51.41 ± 5.03 51.23 ± 3.94 - -

Sr & Sg×800 74.06 ± 1.37 72.20 ± 1.85 72.63 ± 2.95 73.79 ± 1.60

Sr & Sg×1600 74.04 ± 1.85 73.03 ± 2.84 72.35 ± 3.07 72.96 ± 2.98

Sr & Sg×3200 71.74 ± 2.90 70.32 ± 2.50 72.03 ± 1.75 70.16 ± 2.92

Sr & Sg×6400 67.06 ± 4.34 61.85 ± 5.00 69.63 ± 2.10 69.28 ± 4.16

Sr & Sg×12800 63.38 ± 4.14 65.66 ± 4.11 64.40 ± 4.55 68.44 ± 4.34

The third set of experiments addresses this by employing the developed generative models

to increase the accuracy of the CNN-based end-to-end image classification system.

With Sg and Sr, the CNNs described in section 3.2.2 are trained to classify images

into normal driving, talking while driving, and texting while driving. Moreover, these

re-trained CNNs are tested on Ss, which is an image dataset of distracted driving in a

simulated environment. The training process uses an Adam optimizer with a learning

rate of 1e-4 and trained CNNs for 6 epochs. The performance of these experiments is

evaluated using accuracy, as shown in Table 3.4. ’L2’ in this table indicates that weight

decay (L2 Norm of parameters) is used during training for results of that column, while

’Aug’ represents augmentation methods (i.e., random crop, random affine transform, color

jitter, and random perspective transform) are used on images from Sr.

As shown in the first row of this table, augmentation methods and weigh decay can

obviously improve the generalization ability of models trained on images from the Internet.

With weights decay, the accuracy is increased to 64.20%±2.52% from 62.61%±2.33%; with

37

data augmentation method, the accuracy is increased to 68.70%±3.00%; with these two

methods, the accuracy is increased to 68.12%±3.91%. These results indicate that CNNs

trained on Sr are able to classify images in Ss but only with limited performance, since

the background environment of images in Ss is a simulated driving environment and is

different from real driving environments of images in Sr.

Rows 2–6 of the first column in this table show that CNNs trained with 800 images

from Sg achieve a similar average accuracy to CNNs trained on Sr. However increasing the

number of training images in Sg does not introduce an increment of the testing performance;

on the contrary, the testing accuracy decreases from 61.86% to 51.41% when the number of

training images increases from 800 to 12800. This decremental trend suggests that training

CNNs with an excessive number of images from Sg is similar to training CNNs with a small

number of images but with a large number of epochs since the diversity of images in Sg is

less than that of images in Sr. Furthermore, training with an excessive number of images

in Sg leads to over-fitting with respect to Ss. Rows 7–11 of the first column show testing

results of CNNs trained on a mixture of Sr and different numbers of images in Sg. With Sr

and 800 images in Sg, CNNs achieve an average testing accuracy of 74.06% which is 11.45%

more than the testing accuracy of CNNs trained on Sr only and 13.42% more than the

testing accuracy of CNNs trained on 800 images in Sg. Increasing the number of training

images from Sg to 3200 and more leads to a decrement of the testing performance.

Comparing results in the first row and first column in this table, one can find that,

generated images help to enhance the generalization ability of trained models further, which

is 5.94% more the accuracy by training on augmented Sr with weight decay. However, the

application of traditional augmentation methods and weight decay on the dataset of real

and generated images does not improve the accuracy further, as accuracies shown in the

7-th rows are almost the same.

The relation between the quality of generate images and the increment of generalization

ability is investigated in Table 3.5. In this table, Fréchet Inception Distance (FID Score)

measures the quality of generated images by the similarity between generated images and

images used to train the GAN and a small value indicates better generated images [107].

The FID score is calculated per class. The second column shows results by the same GAN

architecture from the first column but trained with only a quarter of its epochs, and the

38

Table 3.5: Comparison of testing accuracy by generated images of different qualities.

WGAN DWGAN CWGANGP

F
I

D

Normal Driving 237.79 285.22 258.10

Talking 294.65 342.62 284.29

Texting 315.21 327.19 288.98

A
C

C
U

R
A

C
Y Sr & Sg×800 74.06 ± 1.37 63.59 ± 2.49 63.10 ± 2.14

Sr & Sg×1600 74.04 ± 1.85 59.95 ± 3.31 60.43 ± 2.68

Sr & Sg×3200 71.74 ± 2.90 63.49 ± 3.52 58.07 ± 2.89

Sr & Sg×6400 67.06 ± 4.34 57.89 ± 6.33 57.07 ± 3.25

Sr & Sg×12800 63.38 ± 4.14 58.72 ± 6.04 51.91 ± 5.50

third column shows results by the GAN model from [108] but conditioned on class labels,

as shown in Fig. 3.7. One could notice that the Critic trained in these GANs are not

discriminate models required in the second stage.

G
en
er
at
or∼ �(�,)�� �

2

C
ritic

{ , }��
� ��

{ , }�
�

� ��

� (,)�� ����

Figure 3.7: The system structure of conditional WGANs, in which the generator is condi-

tioned on label yi. In this structure, yi will be concatenated with zi to form the input to

the Generator.

Two key observations from this table are as follows. First, if the WGAN is not trained

with enough epochs, the similarity between training and generated images is small. Train-

ing with these images of a low quality, all training strategies achieve low accuracies. Second,

the conditional GAN provides images of the best quality. However, these images of a high

quality do not improve the testing accuracy for any strategies. The reason is that the FID

39

measures perceptual quality of generated images and the same network parameters are

used to generate images of different classes in the conditional WGAN.

3.4 Driver Distraction Recognition as a Module of a

Driver Monitoring System

This section describes the structure of a Driver Monitoring System composed of three main

modules: a driver head pose estimation module, a distraction activity recognition module,

and a danger level inference module. Fig. 3.8 illustrates an overview of the proposed

system.

With the driver’s facial image captured by Dash Cam 1, the head pose estimation

module calculates the driver head’s yaw and pitch angles. If one of these two angles passes

a threshold, the system decides that the driver is not focusing on the road and starts

calculating the time duration tL that he is distracted. With the driver’s side view image

captured by Dash Cam 2, a deep learning-based distraction recognition module estimates

the probability the driver is driving safely or is distracted (i.e. talking or texting on the

phone). The system calculates the time duration tD during which the driver is distracted.

With tL and tD as inputs, the danger level inference module infers the danger level by a

fuzzy-logic-based inference mechanism. The speed of the vehicle obtained by the OBD II

affects the sensitivity of the danger level inference module; while with a high speed, the

danger level inference module is more sensitive to the increase in tD and tL.

3.4.1 Head Pose Estimation Module

The aim of this module is to determine how a driver’s head is tilted with respect to the

dash camera main axis. This information is an important visual cue in deciding whether

the driver is paying attention to the road ahead or is oriented to a different target (e.g.

radio system). This module utilizes OpenFace [109], which is an open source toolkit that

provides functions to perform real-time facial behavior analysis including facial landmarks

detection, gaze estimation, and head pose estimation.

40

01/02/2018 wcci1.html

1/1

Head Pose
Estimation

Distraction
Recognition

tL

tD

D
an

ge
r

Le
ve

l I
nf

er
en

ce

Embedding System
Dash

Cam 1

Dash
Cam 2

OBDII

Figure 3.8: Overview of the proposed driver behavior monitoring system. Based on the

driver’s facial image captured via Dash Cam 1, the head pose estimation module determines

the driver’s head orientation. The driver’s side view image is captured via Dash Cam 2

and goes through the distraction recognition module. The duration time of distraction is

calculated when one of these two modules is activated. Finally, the danger level inference

module estimates the danger level based of the type of distraction together with the speed

of the vehicle calculated by the OBD II.

Briefly, OpenFace extracts facial landmarks from each video image containing human

face using the Conditional Local Neural Fields (CLNF) proposed in [110]. Then based

on the camera parameters (focal length and principal point), a 3D representation of the

extracted facial landmarks is projected to 2D coordinates on the image using orthographic

camera projection, allowing an accurate estimation of the head pose [110]. Our use of

OpenFace is only limited to the generation of the pitch and yaw of the driver’s head. This

information is used later as inputs to the danger level inference module.

41

3.4.2 Distraction Recognition Module

The distraction recognition module is a deep learning-based system that takes as input the

drivers’ side view image captured by a dashcam. The aim of this system is to classify the

image according to the driving behavior (e.g. normal driving, texting while driving, etc.).

Hence, the driver distraction recognition problem is treated as a multi-class classification

problem, which maps the input observations to distraction activities or normal driving

behavior. At every time point i, the distraction recognition system receives an image Ii as

input to the classifier. This latter is a deep convolutional neural network that computes

the probability distribution

Acti = [Acti1, Acti2, . . . , ActiK], (3.6)

where ActiK represents the probability that at time point i the driver is performing a

distraction activity K. Moreover,
∑K

j=1Actij = 1 since Acti is a probability distribution.

In other words, the classifier models the conditional probability

Actij = P (Actj|Ii) =
P (Ii|Actj)P (Actj)

p(Ii)
, j ∈ {1, . . . , K}. (3.7)

This module adopts the ResNet-50 pre-trained on ImageNet dataset in Keras. Imaget-

Net [111] is a publicly available dataset containing more than 1.2 million images grouped

into 1000 classes. In order to adapt ResNet-50 to our distraction recognition problem, the

fully connected layers in the original ResNet-50 model are replaced by two fully connected

layers and a softmax layer, which is commonly used in the literature [94]. These two new

fully connected layers have 256 and 128 neurons respectively, rectified linear unit activation

functions, and randomly initialized parameters.

3.4.3 Danger Level Inference Module

For each frame from Dash Cam 1, the head pose estimation module estimates the yaw and

pitch of the driver head. If one of these two angles exceeds a threshold, the system starts

calculating the number of frames that the driver is not watching the front, this number is

42

the time period tL. For each frame from Dash Cam 2, the distraction recognition module

estimates the probability P (Actj|Ii) that the driver is performing distraction tasks. If this

probability exceeds a threshold, the system starts calculating the number of frames that

the driver is distracted, this number is the time period tD.

The danger level inference module is based on a fuzzy logic approach and consists

of two inputs: HeadPose and Distraction obtained from the head pose estimation and

distraction recognition modules, respectively. In order to take the speed of the vehicle

into consideration, the two inputs are computed as follows, where S is a rate that is

propositional to the vehicle speed and is defined empirically:

HeadPose = S ∗ tL,
Distraction = S ∗ tD.

(3.8)

We have defined the same fuzzy logic topology for both inputs. The fuzzy set is com-

posed of three linguistic variables: short (between 0 and 3), medium (between 1 and 5)

and long (between 3 and 10). A triangular membership function is associated with the

variable short, while trapezoidal functions are used for the two other linguistic variables.

The fuzzy logic output is the DangerLevel variable, which represents the danger level using

three linguistic variables: low (between 0 and 0.4), medium (between 0.25 and 0.75) and

high (between 0.6 and 1). These parameters are chosen for a experimental present purpose.

With expertise, they can be set to more practical and reliable values.

The fuzzy control inference engine defines the rules that should be applied over the fuzzy

values previously obtained from the HeadPose and Distraction variables. More specifically,

this engine uses the Mamdani inference method for evaluating the systems rule base and

determining the degree of truth of each linguistic variable for the level of danger. The rule

base defined for the proposed system is shown in Table 3.6.

In [101], different strategies to combine images from the Internet and simulations are

tried and found that the best strategy is to mix images from the Internet and simulations

for the training of distraction recognition module. Here, this work tries to mix generated

images with images from simulations to train the CNN described in Section 3.2.2 as the

distraction recognition module. Images in Ss are captured with a frame rate of 5/sec.

43

Table 3.6: Fuzzy rules used to calculate the degree of truth of the danger level.

HeadPose

short medium long

Distraction

short low medium high

medium medium high high

long high high high

To reduce similar images, images of normal driving are resampled to a frame rate of

1.25/sec and resample images of distracted driving to a frame rate of 0.3125/sec. 800

generated images of normal driving, 400 generated images of driving while texting, and

400 generated images of driving while talking on a phone are used. In training dataset,

the rate between the number of images of normal driving and the number of images of

distracted driving should comply with the rate of normal driving and distracted driving

confirmed by Naturalistic Driving Study (NDS) [6]. However, the rate of normal driving

and distracted driving activities in our simulation dataset does not follow this percentage,

and therefore all datasets are resampled so the rates in both the training dataset and the

testing dataset are the same. The testing results are shown in Table 3.7.

The first row in Table 3.7 shows testing resulting on images from simulations of 10

drivers while the model is trained on images of the other 10 drivers. The second row shows

results by training the distraction recognition module on images from the Internet and

simulations of 10 drivers and testing on images of the other 10 drivers. The third row

shows results while training on the mixture of 800 generated images and simulations of

10 drivers. The forth row shows results while training on the mixture of images from the

Internet, 800 generated images ,and images of simulations of 10 drivers. All these numbers

are the average result of 10 random drivers combinations. These accuracies show that

training on the mixture of generated images and images from simulations gives the best

performance which is 94.36% and is 2.23% better than the accuracy on the mixture of

images from the Internet and simulations. In all these experiments, we stop the training

process after the training accuracy achieves 100% and notice that the combination in the

second row uses less epochs than the other two. This has a similar effect to early stop

44

Table 3.7: Testing performance while combining training.

Training Dataset
Testing Performance On Ss

Accuracy (%) Cross Entropy

Ss×10 93.42 ± 3.10 0.21 ± 0.10

Sr & Ss×10 92.13 ± 1.91 0.21 ± 0.05

Sg & Ss×10 94.36 ± 2.95 0.18 ± 0.09

Sr & Sg & Ss×10 91.96 ± 1.65 0.23 ± 0.07

method in network training, and we think this is the reason that the combination in the

second row achieves the best performance. Thus, we train the CNN on the mixture of

generated images and images of simulations of 20 drivers to form the driver monitoring

system and test this system on different distracted driving scenarios of new drivers.

3.4.4 Case Study

Fig. 3.9 shows the danger level for four different scenarios denoted as X-Y , where X

represents the driver’s direction of view, and Y represents the distraction activity. Fig. 3.10

and Fig. 3.11 illustrate that driver’s head movements during these driving scenarios by pitch

and yaw angles.

It can be seen from Fig. 3.9 (a) that driving normally while focusing on the frontal view

at a low speed (20 km/hour) or a high speed (80 km/hour) makes the danger level stable

at 0. In fact, the values of the pitch and yaw associated with this scenario are located

below the threshold as shown in Fig. 3.10 (a) and Fig. 3.11 (a), respectively.

The scenario Right-Normal (Fig. 3.9 (b)) means the yaw exceeds the threshold (Fig. 3.11

(a)) and the driver is not using a phone. 7.3 seconds after the driver turns his head to

the right, the danger level increases to 1 if he is driving slowly (20 km/hour). Meanwhile,

driving with high speed (80 km/hour) while keeping watching the right-side view results

in a sharply increasing danger level. In fact, the maximum danger level with 80 km/hour

is reached after only 4.7 seconds, compared to 7.3 seconds for 20 km/hour. These tests are

45

0.0

0.5

1.0

Da
ng

er
 le

ve
l (

0-
1)

(a) Front-Normal
20
80

(b) Right-Normal
20
80

0 10
Time (s)

0.0

0.5

1.0

Da
ng

er
 le

ve
l (

0-
1)

(c) Front-Texting
20
80

0 10 20
Time (s)

(d) Front-Talking
20
80

Figure 3.9: Increasing process of danger level. The dash line represents the curve for

driving with a high speed (80 km/hour), the solid one is for driving with a low speed (20

km/hour).

46

0

10

20

30

Pi
tc

h
an

gl
e

(
)

(a) Front-Normal (b) Front-Normal

0 10
Time (s)

0

10

20

30

Pi
tc

h
an

gl
e

(
)

(c) Front-Texting

0 10 20
Time (s)

(d) Front-Talking

Figure 3.10: Changing processes of the pitch of head pose. The dash line represents the

threshold (20◦) for deciding whether a driver is focusing on the road, the solid curve is for

the pitch angle.

47

0

20

40

Ya
w

an
gl

e
(

)

(a) Front-Normal (b) Front-Normal

0 10
Time (s)

0

20

40

Ya
w

an
gl

e
(

)

(c) Front-Texting

0 10 20
Time (s)

(d) Front-Talking

Figure 3.11: Changing processes of the yaw of head pose. The dash line represents the

threshold (20◦) for deciding whether a driver is focusing on the road, the solid curve is for

the yaw angle.

48

made on a simulator using a specific embedded computer, the results may vary based on

the parameters setting (e.g., S in Equation 3.8) and faster processor. But this experiment

is only to give insights and not the actual values.

The scenario Front-Texting shown in Fig. 3.9 (c) is considered dangerous even though

the driver is holding a phone on a hand but not looking at the phone. Even though the

pitch and yaw are below the threshold as shown in Fig. 3.10 (c) and Fig. 3.11 (c), the

danger level increases slowly and reaches the maximum danger level 6.6 seconds after the

driver picks up his phone. Increasing the speed from 20 km/h to 80 km/h (80-front) makes

the danger level reach the maximum level in only 3.7 seconds. The situation Front-Talking

shown in Fig. 3.9 (d) is similar to the one in Fig. 3.9 (c), thus the danger level changing

processes in them are also similar.

In all distraction driving scenarios (Fig. 3.9 (b)-Fig. 3.9 (d)), the danger level started to

increase shortly once a driver is distracted then sharply dropped to 0 as soon as he returned

back to normal driving. This experiment shows that our system is able to effectively adjust

the danger level output in a short time according to the driver’s behavior changes.

The most dangerous situation is illustrated in Fig. 3.12 where a driver is driving while

typing on a phone. Notice that the yaw of this driver’s head exceeds the threshold since

he is watching a phone near his legs. The danger level increases rapidly and reaches its

maximum after only 3.2 seconds if he drives with a speed of 80 km/hour, similar results

are obtained in the case where he is driving with a speed of 20 km/hour (4.3 seconds).

49

0.0

0.5

1.0

Da
ng

er
 le

ve
l (

0-
1)

Danger level
20
80

0 10 20
Time (s)

0

20

40

Ya
w

an
gl

e
(

)

Head pose

Figure 3.12: Changing processes of the yaw of head pose. The dash line represents the

threshold (20◦) for deciding whether a driver is focusing on the road, the solid curve is for

the yaw angle.

50

3.5 Summary

This chapter proposes a method to develop end-to-end Convolutional Neural Network-

based driver distraction recognition systems that can generalize to diverse driving con-

ditions. The proposed method consists of two stages: developing generative models to

produce images of different driving scenarios and developing a discriminative model for

image classification. Unlike traditional methods based on image datasets collected by sim-

ulation experiments, a diverse dataset of drivers in different driving conditions and activity

patterns from the Internet is collected and used to train generative models for multiple

driving scenarios. By sampling from these generative models, we augment the collected

dataset with new training samples and train a Convolutional Neural Network for distrac-

tion recognition. The experiment results demonstrate that the generative models are able

to generate images of drivers in different driving scenarios. With augmented images, the

DDR system achieves an improvement of 11.45% on image classification performance in a

driving simulation environment. Moreover, this chapter presents a novel driver monitoring

system, in which a distraction detection system works as a critical information resource.

The effectiveness of this monitoring system is also presented by case testing experiments.

51

Chapter 4

Driver Distraction Recognition

Under Various Lighting Conditions

4.1 Introduction

One major drawback for most existing computer vision-based driver distraction recognition

methods is that they only work during daytime since they require RGB images as inputs

for analysis, including classification, phone detection, etc. As shown in Fig. 4.1, luminance

conditions at night are quite different from them in the daytime, and the distribution of

RGB images collected at different time of a day varies significantly. Thus, the performance

of these recognition systems may degrade in different time of a day. One system that

addresses distraction recognition but does not rely on visible light is in [31]. This system

works on Near Infrared (NIR) images; after localizing a driver’s face in an image, features

from image patches around his/her ears are extracted for image classification. Inspired by

this work, this work proposes to detect drivers’ distraction at nighttime based on in-vehicle

NIR images of drivers’ body poses.

Another drawback of many existing studies by deep learning is that models employed

in them have enormous complexities and sizes, such as VGG-16 in [114], ResNet-50 in

[101], and Multiple Scale Faster-RCNN in [38]. The inference processes of these models

52

(a) An image of cabin environment in the day-

time [112].

(b) An image of cabin environment at night

[113].

Figure 4.1: Comparison of luminance conditions at different time of a day.

involve a large amount of floating-point multiplication-adds computations. Therefore, they

require powerful computation devices, e.g., GPUs. Once be deployed in resources-limited

environments, the frame rate of inference processes of these models will be low. Thus, to

develop real-time recognition systems on resources-limited platforms, one critical step is to

design CNNs with small complexities and model sizes.

This chapter explores a driver distraction recognition system that works at both daytime

and nighttime by two modes. In each mode, a camera collects corresponding images and

sends them to a CNN for classification. A light sensor detects the light condition in the

vehicle and enables this system switching between two modes when necessary. Moreover,

by a novel network bottleneck, this work proposes a new CNN for the classification of

driver images. Three distraction activities are investigated in this work: talking on a

cell phone, texting on a cell phone, and interacting with an In-Vehicle Infotainment (IVI)

device [115]. The levels of danger by different distraction activities are distinct, and the

accurate detection of them enables ADAS providing targeting assistance. The proposed

approaches are evaluated on an image dataset of distracted driving collected in a simulator

environment with different drivers. Experiment results demonstrate that, even with a

small footprint, the proposed system detects driver distraction with the state-of-the-art

performance on both modes, 98.87 percentage of images of daytime are classified correctly

53

while 97.80 percentage of images of nighttime are classified correctly. The inference speed of

the proposed system is assessed on a resource-limited computing platform, and experiment

results show that the proposed network achieves the highest frame rate of inference.

The key contributions are summarised as follows:

• The development of an approach for driving distraction detection under various light-

ing conditions.

• The design of a novel bottleneck for building CNNs in computer vision applications.

• Comprehensive experiments to collect images of distracted driving under two lighting

conditions by 25 drivers and evaluate the proposed methods on this data set.

This chapter is organized as follows. The proposed approach is detailed in Section 4.2.

In Section 4.3, the description of the collected dataset, experimental setup, and fine-tuning

approaches are given. Analysis of experimental results is in Section 4.4, and finally, Section

4.5 concludes the chapter.

4.2 Proposed Approach

4.2.1 Structure of the Proposed System

To address distraction recognition in both daytime and nighttime, this work proposes using

two recognition modes: an RGB mode and an NIR mode. The RGB mode is activated in

the daytime and uses images collected from an RGB camera to identify distraction. The

NIR mode, on the other hand, is activated in the nighttime and uses an NIR camera. In

each mode, the system identifies distraction by a CNN image classifier. To know which

mode to activate at any given time, the system uses a light sensor to estimate the in-

vehicle luminance conditions. If the luminance is above a certain threshold, the RGB

mode is triggered, otherwise, the NIR mode is activated. Fig. 4.2 shows a schematic of the

proposed system.

54

CNN
result

RGB Mode
Normal
Talking
Texting
Using	IVI

CNN
result

NIR Mode
Normal
Talking
Texting
Using	IVI

Light sensor

Daytime

Nighttime

LUX

Figure 4.2: A schematic representation of the proposed system.

In each mode, the driver distraction recognition is approached as a four-class image

classification problem: one class for “normal driving” and three classes for various distrac-

tion activities. The recognition system receives an image Ii at time instance i then classifies

it according to the driver body pose in it, and the result is a probability distribution

Acti = [Acti1, Acti2, . . . , Acti4], (4.1)

where Actij represents the probability that at time point i the driver is performing a

distraction activity j. Moreover,
∑4

j=1 Actij = 1 since Acti is a probability distribution.

In other words, the classifier models the conditional probability

Actij = P (Actj|Ii). (4.2)

This work employs end-to-end CNN classifiers for image classification. To detect dis-

traction in real-time on a resource-restricted computing platform, the CNNs in this system

must be computationally efficient. Most widely-adopted CNN architectures, such as VGG

network series [58] and ResNet network series [59], are able to achieve great performances

on many computer vision problems, but they require substantial memory sizes and are

computation-intensive. To overcome this, this work proposes a new network architecture

that is dedicated to resource-restricted environments. The new network is based on a novel

bottleneck module of depthwise separable convolutions [116].

55

4.2.2 Depthwise Separable Convolution

Convolution layers are kernel components of CNNs, and they represent features maps

by convolution operations on spatial dimensions. A standard convolution layer convolves

every kernel across all features maps and computes dot products between elements of the

kernel and an image patch at every position during the forward pass computation. This

is illustrated in Fig. 4.3 (a) on the next page, in which the kernel size k = 2, the channel

number of the input feature maps DIn = 3, and the channel number of output feature

maps DOut = 3.

Given input feature maps I of size H×W ×DIn and a standard convolution layer with

a kernel size of k × k ×DIn ×DOut, the computational cost is

H ·W ·DIn ·DOut · k2, (4.3)

where H and W are the spatial width and height of input feature maps, DIn is the depth

of input maps (the number of input channels), k is the spatial width and height of a

square convolution kernel, and DOut is the depth of output maps. Here, a stride size of

1 is assumed in these convolution operations. The fact that the computational cost is

proportional to the spatial sizes of input and output inhibits the usage of a large number

of kernels at the beginning phrases of CNNs. Therefore, many CNNs tend to increase the

numbers of kernels and reduce the sizes of feature maps synchronously; a good example is

VGG16.

While a standard convolution computes dot-products cross channels by a kernel, a

Depthwise Separable Convolution layer, originally introduced in [68], computes dot-products

for each channel with a corresponding kernel (i.e., depthwise convolutions) then convo-

lutes all channels by kernels of size 1 × 1 (i.e., pointwise convolutions). This is shown in

Fig. 4.3 (b). In a standard convolution layer, non-linearity is added by nonlinear activa-

tion after convolutions, while a Depthwise Separable Convolution layer can include two

activation operations: one after depthwise convolutions and the other one after pointwise

convolutions.

Given inputs and outputs of same sizes as earlier, the computational cost for a Depth-

wise Separable Convolution layer is the sum of computations in depthwise convolutions

56

k × k × DIn

(a) A standard convolution layer with 3 kernels.

k × k

(b) A depthwise convolution layer with 3 kernels.

Figure 4.3: Illustration for two different convolution layers.

57

and pointwise convolutions

H ·W ·DIn ·DOut +H ·W ·DIn · k2. (4.4)

By replacing a standard convolution layer with a Depthwise Separable Convolution

layer, the computation cost is reduced by a rate of

DOut + k2

DOut · k2
(4.5)

=
1

DOut

+
1

k2
. (4.6)

For many widely-used CNNs, DOut is significantly larger than k2, so this rate is dominated

by k2. For a convolution layer with k = 3, the computation cost shrinks by a rate of almost
1
9

and the model size also decreases.

4.2.3 Simplified Inverted Residual Bottleneck

Depthwise Separable Convolution layers contain less trainable parameters, but the naive

replacement of standard layers with Depthwise Separable Convolution layers will reduce

the representation ability of networks. Therefore, instead of the network architecture that

repeats Depthwise Separable Convolution layers as in [64] (shown in Fig. 4.4 (b) on the

next page), Sandler et al. in [65] proposed a new bottleneck, named as Inverted Residuals

Bottleneck. As shown in Fig. 4.4 (c), an input to the bottleneck passes a pointwise con-

volution layer to increase the dimension of feature maps, then a depthwise layer applies

one kernel on each channel, the last pointwise convolution layer restores the dimension of

representation to enable an identity shortcut. The increasing and shrinking process of di-

mension in this bottleneck is opposite to the process in bottlenecks of ResNet, as shown in

Fig. 4.4 (a), but the computational cost in this new bottleneck is still significantly reduced.

To reduce the computational cost further while adding representation ability to bottle-

necks, this work proposes a new bottleneck and names it as Simplified Inverted Residual

Bottleneck. As shown in Fig. 4.4 (d), the first layer in this bottleneck is a depthwise layer,

which applies multiple kernels on each channel to expend the dimension of features. The

58

Input

Conv 3x3 64

Conv 3x3 64, Relu

Input

Conv 3x3 64, Relu

Conv 1x1 64, Relu

Conv 1x1 256, Linear

Relu

Relu

(a) Network blocks of ResNet [59].

Input

Dwise 3x3,
Stride=s, Relu6

Conv 1x1, Relu6

(b) Network block of MobileNet [64].

Input

Dwise 3x3,
Stride=2, Relu6

Conv 1x1, Relu6

Conv 1x1, Linear

Input

Dwise 3x3, Relu6

Conv 1x1, Relu6

Conv 1x1, Linear

(c) Network blocks of MobileNet V2

[65].

Conv 1x1 64,
Relu

Dwise 3x3 128,
Stride=2,

Relu6

Input

Dwise 3x3 128,
Relu6

Conv 1x1 64,
Linear

Input

Relu

(d) Network blocks of MobileNet S.

Figure 4.4: Architectures of several different network bottlenecks. In these figures, ’Conv

3×3 64’ represents a convolutional layer with 64 kernels of size 3 × 3. Notice that in our

bottleneck Relu activation function is used instead of Relu6 after the add operation in the

bottleneck body.

59

second layer performs pointwise convolution to calculate the linear combination of results

from the previous layer. If the spatial dimension is not reduced (by a stride of more than

1), a short cut will be inserted into the bottleneck to improve the gradient propagation

ability across layers, then the results of add operation will pass a Relu activation. Notice

that in our bottleneck Relu activation function is used instead of the Relu6 after the add

operation in the bottleneck body.

For an input tensor of size H×W×Din, the computational cost for an inverted residual

bottleneck with a expansion factor of e is

H ·W ·DIn · k2 · e+ 2 ·H ·W ·D2
In · e, (4.7)

and the computational cost for our bottleneck with the same expansion factor is

H ·W ·DIn · k2 · e+H ·W ·D2
In · e. (4.8)

These two numbers show that the proposed Simplified Inverted Residual Bottleneck

decreases the computation cost, by H ·W · D2
In · e, and the number of training parame-

ters. Through dropping the pointwise convolution layer and moving its functionality to a

depthwise layer, the complexity of bottleneck is reduced.

4.2.4 Network Architecture

Besides the design of bottlenecks, there are several hyperparameters in a network architec-

ture that should be set by cross-validation experiments. Due to the limitation of computa-

tion resources, this work does not perform grid searching on the network architecture. The

main structure of the network in [65] is adopted while the original bottleneck is replaced by

the proposed one, and the new network is named as MobileNet S. Obviously, this network

structure is not optimal for the proposed bottleneck, but the experiments in the rest of

this paper will show that this network can achieve an excellent performance with respect

to the accuracy and the inference speed.

Table 4.1 presents the architecture of MobileNet S, in which e is the expansion rate,

c is the number of output channels, n is the repeated time of bottleneck, and s is the

60

Table 4.1: The architecture of MobileNet S.

Input Operator e c n s

2242 × 3 conv2d - 32 1 2

1122 × 32 bottleneck 1 16 1 1

1122 × 16 bottleneck 6 24 2 2

562 × 24 bottleneck 6 32 3 2

282 × 32 bottleneck 6 64 4 2

142 × 64 bottleneck 6 96 3 1

142 × 96 bottleneck 6 160 3 2

72 × 160 bottleneck 6 320 1 1

72 × 320 conv2d 1× 1 - 1280 1 1

72 × 1280 avgpool 7× 7 - - 1 -

1× 1× 1280 conv2d 1× 1 - 1000 -

size of stride in the first one of repeated bottlenecks. This work does not use the input

image resolution and width multiplier as tunable hyper parameters to trade-off between

performances and model sizes as limited by our computation capacity.

4.3 Data Collection and Experimental Setup

This section describes the data collection process and presents the experimental setup to

evaluate the performance of the proposed approaches.

4.3.1 Data Collection

To evaluate the proposed system, an image dataset of several distraction activities in a

driving simulator is collected in this work. A camera is located at the right frontal side

of drivers to capture a complete view of drivers’ upper body movements. Images were

collected on 25 participants of different ages, genders, ethnicities, etc.

61

Figure 4.5: Image samples from a simulator environment. The first row shows images

taken in the daytime, the second row shows images taken in the nighttime. The first

column represents images of normal driving, and the rest three columns represent talking,

texting, and using IVI while driving, respectively.

Table 4.2: Number of samples in image datasets.

Class

Number of samples

Daytime Nighttime

Normal Driving 4993 4893

Talking while driving 9871 9943

Texting while driving 9900 9933

Operating Info while driving 4877 4935

62

Before experiments, each participant was asked to drive the simulator for a short time

to get familiar with the experimental environment. Then, each driver was instructed to

perform the following driving activities: normal/safe driving while checking side mirrors

occasionally, driving while typing messages with his/her right hand, driving while talking

on a cell phone, and driving while operating a device near the gear stick of the simulator

to mimic programming an IVI device. Images were extracted from a video stream of 5

frames per second. With this low frame rate, images of adjacent time stamps present

different body poses. Fig. 4.5 gives some sample images of different activities. The number

of images for each class is given in Table 4.2.

4.3.2 Experimental Settings

The kernel part of the proposed work is to train CNN classifiers for recognition. This work

explores and compares several CNNs that were proposed for Imagenet competition [111].

Since a potential future direction is to deploy this system on a small portable computing

platform, the proposed network is compared to three existing CNNs (ResNet50, MobileNet,

and SqueezeNet). Among them, MobileNet and SqueezeNet own relatively small sizes but

powerful representation abilities and ResNet50 was used in our previous research works.

The only adjustment made to the original models is the original last fully connected layers

are replaced by fully connected layers of 4 nodes.

All models are trained with an Adam optimizer with a learning rate of 1e-3 and a batch

size of 32 [106]. The preprocessing transforms of training images include a color jitter with

a random brightness factor in the range of [0.6, 1.4], a random contrast factor, saturation

factor, and hue factor in the range of [0.95, 1.05]. Channel normalization is also used in

the images preprocessing. Each model is trained on images of 24 drivers and tested on

the other one, these experiments are repeated with 5 different random seeds and report

average performance cross 25 drivers and 5 repeats. The performances of all models are

measured based on their classification accuracy.

63

Figure 4.6: The changing process of Top-1 error during the training of MobileNet S. Top-1

error means the class that has the highest prediction probability is used for testing.

4.4 Experimental Results and Analysis

4.4.1 Pretrain Networks on ImageNet

For many computer vision applications, pretraining deep learning models on the ImageNet

database provides well placed initial parameters that could benefit subsequent training

processes [117]. Following this practice, the proposed network is trained on the training part

of ImageNet and evaluated on the validation part. The training process uses a standard

SGD optimizer with a momentum set to 0.9, a weight decay rate set to 4e-5, and a batch

size of 32. A batch normalization layer is used after every layer, the initial learning rate is

0.01, and the learning rate decays with a gamma of 0.01 after 200 and 300 epochs. Fig. 4.6

shows that the training process is stable after 300 epochs and the validation error does not

decrease obviously in the last stage of training.

64

Table 4.3: Comparison of several network architectures over ImageNet classification error

and Complexity. Top-1 and Top-5 accuracy of all models are for their Pytorch implemen-

tations [3, 4, 5].

Model
Complexity Parameters Top-1

Accuracy

Top-5

Accuracy

(MFLOPs) (Million) (%) (%)

ResNet50 [59] 4087 23.5 76.15 92.87

ShuffleNet V2 [67] 144 2.3 69.40 88.37

MobileNet V2 [65] 299 2.2 72.10 90.48

MobileNet S 170 1.5 66.40 86.86

Table 4.3 compares the model sizes and performances by several selected networks

and the proposed one. ResNet50 achieves the best accuracy on both Top-1 and Top-5

tasks but with a price of the most complex architecture, its complexity is 24 times of

MobileNet S’ and its number of parameters is 14 times more than MobileNet S’. As to

two lightweight network examples, MobileNet V2 has a complexity of 299 MFLOPs, and

this number is two times of ShuffleNet V2’s; meanwhile, these two networks have similar

numbers of parameters. Our proposed network has 170 MFLOPs, which is slightly more

complex than the smallest one, and it has 1.5 million of parameters, which is the smallest

in this table. Due to the not-optimal structure, the proposed network does not give a

performance that is comparable to the other two networks. Experiments in the rest of

this paper will show that, even with this structure, MobileNet S is still able to achieve an

almost identical accuracy and a faster inference speed for distraction recognition to the

other two lightweight networks.

4.4.2 Performance in RGB Mode

In this section, the performance of the proposed system in RGB mode is evaluated on

testing images preprocessed as training images. These testing images are jittered in the

same way as training images and these reported results are for images with random bright-

65

Table 4.4: Comparison of several network architectures over classification performance and

Complexity in the RGB mode.

Model

Multi-class Accuracy (%) Binary-class Accuracy (%)

Non-Pretrained Pretrained Non-Pretrained Pretrained

ShuffleNet V2 66.13±1.86 98.64±0.43 66.16 98.63

MobileNet V2 73.67±1.38 98.87±0.30 73.72 98.88

MobileNet S 73.23±0.76 98.41±0.33 73.33 98.40

ness conditions. Table 4.4 compares the proposed network to two others based on their

performances of two classification tasks, complexities, and sizes. In this table, a multi-class

accuracy is the accuracy of a task in which each image is classified into one of four classes

(Normal, texting while driving, talking while driving, or using IVI while driving.) and a

binary-class accuracy means the network is classifying each image into one of two classes

(Normal or distracted). Table 4.5 illustrates the testing results on images which are jit-

tered with several fixed brightness factors, while Fig. 4.7 presents the confusion matrices

of testing results by these models.

As shown in Table 4.4, pre-trained models achieve better performances for both multi-

class and binary-class classifications, and the difference can be as large as 30%. This result

justifies this work utilizes models pre-trained on the ImageNet dataset. The 4th column

in this table illustrates that ShuffleNet V2, among non pre-trained models, achieves an

obviously low accuracy in multi-class classification task while the results of the other two

networks are similar. This phenomenon presents that a pre-training process is more critical

for the success of adopting ShuffleNet V2 in computer vision applications. The 5th column

shows the accuracy of multi-class tasks by pre-trained models. Among the three models,

MobileNet V2 achieves the best accuracy, which is 98.87%, while owning the most complex

structure. ShuffleNet V2, which has only a half of the complexity and a similar number of

parameters of MobileNet V2, achieves a similar accuracy. When comparing the footprints of

MobileNet V2 and the proposed MobileNet S, the latter has 57% of the former’s complexity

and 68% of its number of parameters. Despite this, the difference of accuracy by these two

66

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.66 0.18 0.09 0.07

0.18 0.59 0.15 0.08

0.11 0.17 0.61 0.11

0.02 0.03 0.04 0.91

(a) ShuffleNet V2

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.96 0.00 0.03 0.00

0.00 1.00 0.00 0.00

0.01 0.01 0.98 0.00

0.00 0.00 0.00 0.99

(b) Pretrained ShuffleNet V2

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.69 0.18 0.08 0.05

0.16 0.67 0.11 0.05

0.09 0.13 0.72 0.06

0.01 0.02 0.03 0.95

(c) MobileNet V2

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.98 0.00 0.02 0.00

0.00 1.00 0.00 0.00

0.01 0.01 0.98 0.00

0.00 0.00 0.00 1.00

(d) Pretrained MobileNet V2

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.67 0.19 0.07 0.07

0.14 0.69 0.11 0.06

0.09 0.15 0.70 0.07

0.02 0.01 0.01 0.96

(e) MobileNet S

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l
0.98 0.00 0.02 0.00

0.00 1.00 0.00 0.00

0.02 0.01 0.97 0.00

0.00 0.00 0.00 1.00

(f) Pretrained MobileNet S

Figure 4.7: Confusion matrices achieved by different models in day mode. The left fig in

each row shows results for a non-pretrained network and the right one is for a corresponding

pretrained network.

67

networks is only 0.46% which is not obvious when compared to the standard deviation of

their own accuracy. The 6th and 7th columns are evaluation results based on the same

training experiments as the previous two columns while merging three classes of distraction

activities into one single class, namely distracted driving. In the new inference process, if

one of three distraction classes receives the highest probability, the corresponding image

is classified into the distracted driving class. These two columns show a key observation

that the performance does not change significantly even the classification task is reduced

to a binary one.

Fig. 4.7 illustrates the confusion matrices for testing results of three networks on the

multi-class task, in which the diagonal shows the percentages of correctly classified images

for the corresponding class. Several key observations from these figures are as follows.

First, talking or using IVI while driving is easy to be detected for all networks while

misclassification occurs frequently on images of normal driving. Second, images of texting

while driving tend to be classified into normal driving or talking while driving. The reason

is that drivers’ hand positions while texting vary from near their legs to close to steering

wheels (similar to normal driving) or even above steering wheels (similar to talking while

driving). Third, most misclassified images of normal driving are classified as texting while

driving.

In our image dataset, all RGB samples are collected in the same light condition. In

the image preprocessing of training, images are jittered with random factors so trained

models are able to generalize to images from different lighting conditions. Among sev-

eral lighting factors, the effect of changing brightness on the performance of distraction

recognition systems is the most interested, as it occurs frequently during daily driving.

Fig. 4.8 gives image samples that are adjusted with various brightness factors, in which a

brightness factor 1.0 means images are not changed. Table 4.5 investigates the robustness

of the proposed systems to varying brightness conditions by comparing performances in

different brightness conditions by different models. The 1st-3rd rows are results by not

pretrained models, and the 4th-6th rows are results by pretrained models. As shown in

this table, all networks achieve their best performances when the brightness factor is 1.0.

And with this factor MobileNet V2, among all models, gives the best accuracy, which is

98.98%. But for each network, the accuracy only varies marginally with different bright-

68

ness factors. The standard deviation of MobileNet S’s performances with 9 factors is only

0.20%. These results show that the proposed network and training method enable the dis-

traction recognition system to work effectively under different lighting conditions during

the daytime.

Figure 4.8: Image samples adjusted with various brightness factors. Each row shows a

different driving activity. The first column shows images with a brightness factor of 0.6

while the difference between brightness factors of two consecutive columns is 0.1.

Table 4.5: Accuracy (%) by different models in different brightness conditions.

Model

Brightness Factor

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

ShuffleNet V2 66.06 67.25 67.55 67.67 66.82 66.20 65.10 63.54 61.50

MobileNet V2 71.62 73.12 73.76 74.53 74.85 74.32 73.76 72.93 71.63

MobileNet S 70.39 71.92 73.07 74.60 74.97 74.65 73.86 72.94 71.47

ShuffleNet V2 98.70 98.74 98.77 98.78 98.76 98.67 98.54 98.39 98.19

MobileNet V2 98.83 98.93 98.96 98.97 98.98 98.91 98.78 98.69 98.59

MobileNet S 98.20 98.37 98.51 98.58 98.60 98.47 98.35 98.23 97.93

69

Table 4.6: Comparison of several network architectures over classification performance and

complexity in NIR mode.

Model

Multi-class Accuracy (%) Binary-class Accuracy (%)

Non-Pretrained Pretrained Non-Pretrained Pretrained

ShuffleNet V2 85.49±1.41 98.33±0.16 85.48 98.32

MobileNet V2 92.93±0.30 97.90±0.62 92.90 97.86

MobileNet S 90.44±1.35 97.80±0.37 90.39 97.76

4.4.3 Performance of Networks in NIR Mode

Now this work focuses on the performance of the proposed system in NIR mode. Table

4.6 presents experiment results with different models and on two tasks, and Fig. 4.9

exhibits corresponding confusion matrices. As shown in the 4th and 5th columns, the

pre-trained ShuffleNet V2 provides the best accuracy for multi-class classification, which

is 98.33%. The accuracy by pre-trained MobileNet V2 is only 0.4% less than the best one,

the accuracy by proposed MobileNet S is 0.53% less than it, and the difference between

the accuracy of MobileNet V2 and MobileNet S is only 0.1%. Compared to it in the multi-

class recognition task, the accuracy by each model does not change significantly in the

binary recognition task, as shown in the 6th and 7th columns in Table 4.6. From confusion

matrices in Fig. 4.9, one can observe that it is difficult to classify images of normal driving,

and many of them are mis-classified as texting or using IVI while driving. Meanwhile, the

same as in RGB mode, a part of images of texting while driving are detected as images of

normal driving or talking while driving.

Comparing the performances shown in Table 4.6, Table 4.4, Fig. 4.7, and Fig. 4.9,

one can observe that the proposed system achieves a better performance in RGB mode.

Furthermore, the accuracy by MobleNet S in the multi-class recognition decreases by 0.6%

in the NIR mode, while the one by MobielNet V2 decreases by 0.9%. Even though, the

proposed system is able to classify images in various lighting conditions with the state-of-

the-art accuracy. The accuracy achieved in our previous work in [101] is 98.30% for RGB

images from a fixed lighting condition, while here the accuracy for the same experiment

70

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.90 0.06 0.01 0.03

0.03 0.84 0.08 0.05

0.09 0.08 0.80 0.03

0.01 0.02 0.02 0.95

(a) ShuffleNet V2

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.97 0.00 0.02 0.01

0.00 1.00 0.00 0.00

0.02 0.00 0.98 0.00

0.00 0.00 0.01 0.99

(b) Pretrained ShuffleNet V2

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.93 0.02 0.02 0.03

0.02 0.92 0.06 0.01

0.06 0.02 0.91 0.01

0.01 0.00 0.01 0.97

(c) MobileNet V2

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.96 0.00 0.02 0.02

0.00 0.99 0.01 0.00

0.02 0.01 0.97 0.00

0.01 0.00 0.00 0.99

(d) Pretrained MobileNet V2

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l

0.91 0.04 0.03 0.02

0.02 0.89 0.06 0.02

0.05 0.04 0.89 0.02

0.02 0.00 0.02 0.96

(e) MobileNet S

Norm
al Ta

lk
Te

xt IVI

Predicted label

Normal

Talk

Text

IVI

Tr
ue

 la
be

l
0.95 0.01 0.02 0.02

0.00 0.99 0.01 0.00

0.02 0.00 0.97 0.00

0.01 0.00 0.01 0.98

(f) Pretrained MobileNet S

Figure 4.9: Confusion matrices achieved by different models in night mode. The left fig in

each row shows results for a non pre-trained network and the right one is for a corresponding

pre-trained network.

71

Table 4.7: Comparing the inference speeds of networks on two computation platforms by

frame rates.

Model G1070 Nano

ResNet50 29.81 4.43

ShuffleNet V2 29.81 10.96

MobileNet V2 29.81 12.08

MobileNet S 29.82 15.85

is 98.98% by MobileNet V2 and 98.60% by the proposed MobileNet S. The best accuracy

from a recent work in [52] is only 91.4% for the binary-class task. Finally, there is still much

room for an improvement of correctly classifying driving images. The author conjectures

that finding a better network structure for the proposed bottleneck and collecting more

training images with different driving environments may help improve the results.

4.4.4 Real-time Inference Speed on a Resource-restricted Com-

puting Platform

The fast inference of distraction recognition enables results to be fused with other informa-

tion resources for a further situation assessment. Table 4.7 presents the inference speeds of

these networks on a desktop computer with an NVIDIA GTX 1070 GPU (G1070) and on

an NVIDIA Jetson Nano computer (Nano). Networks investigated in this work are com-

pared to ResNet 50, which was adopted for distraction recognition in our previous research

works [101]. The 2nd and 3rd columns in this table show the frame rates of real-time

distraction recognition systems, in which networks are required to give a prediction per

image from a web-camera. As can be seen, the Frame Per Second (FPS) of inferences of

all networks on the desktop computer are nearly the same, but the FPS of inferences on

the Jetson Nano are significantly different. The FPS by ResNet50 on Jetson Nano is 4.43

which is not enough for a real-time system. The FPS by ShuffleNet V2 and Mobilenet

V2 which have small footprints are 10.96 and 12.08, respectively. The proposed network

MobileNet S gives the highest FPS, which is 15.85. These numbers show the proposed

72

network achieves an excellent inference speed, and the author believes this performance

improvement arises from the novel bottlenecks proposed in this work.

4.5 Summary

This chapter proposes a novel dual-mode system for driving distraction recognition un-

der various lighting conditions. A novel and efficient CNN bottleneck is introduced to

build a network with a small footprint and a high inference speed. The proposed sys-

tem is trained on images collected under a simulation environment and its performance

is evaluated based on its detection accuracy and inference speed. Extensive experiments

demonstrate that, with a relatively modest small footprint and design structure, the pro-

posed system achieves the state-of-the-art accuracy on driver distraction detection for both

modes, and the proposed network achieves the highest inference speed. The authors be-

lieve these enhancements of performance arise from the new network architecture with

novel bottlenecks for efficient feature representations.

73

Chapter 5

Deep Learning-based Driving

Maneuver Prediction System

5.1 Introduction

A US statistical study on crashes reveals that improper driving actions account for about 94

percent of crashes in the US [118]. Drivers’ decision errors (e.g., misjudgment of time gaps

or others’ speed) and performance errors (e.g., poor directional control) together comprise

44% of crashes. These facts illustrate the importance of providing immediate assistance

to drivers when planning or performing a maneuver [119]. Furthermore, the information

about drivers’ states and imminent maneuvers enables ADAS to accurately understand

driving scenes and provide targeted assistance according to drivers’ needs. Hence, next

generation ADAS should incorporate not only recognition systems that can perceive and

understand driving environments but also recognize and predict driver behaviors. However,

the performance of current driving maneuver prediction systems are still far from satisfying

OEM requirements to be incorporated as a part of existing ADAS. The best accuracy

achieved in recent studies is only around 90% on various data sets, which is insufficient to

be implemented in real world applications [19, 88].

In this work, we investigate new methods to improve the performance of driving ma-

74

neuver prediction. Unlike existing works which handle maneuver prediction under different

situations through a single system, our work addresses different driving scenarios by differ-

ent systems since, for most driving situations, feasible maneuvers do not span all maneuver

types; e.g., on a highway, the prediction for a left turn is meaningless. In the proposed

system, features of drivers’ head movements, vehicle states, and driving surroundings are

extracted from driving recordings and fed into a recurrent neural network based prediction

model that learns to capture high-level temporal and spatial information from the data.

With this information, the system is able to infer drivers’ imminent steering actions before

they are performed. We evaluate our approach on a driving data set collected under di-

verse environments with different drivers. Two prediction tasks are employed as examples,

i.e., inferring which direction a driver will turn to at a green traffic light and whether he

will change his lane while driving. Moreover, this work explores a new driving proficiency

testing method which is based on driving maneuver prediction systems.

The rest of this chapter is organized as follows. Section 5.2 details an analysis of

drivers’ steering procedure in maneuvers, and the proposed prediction method and its

alternative architectures. Section 5.3 conducts extensive comparative and ablation experi-

ments to present the validity of the proposed methods. Section 5.4 presents the prototype

of bidirectional generalization ability test for driver proficiency assessment and simulation

experiments of its core functions. Section 5.5 concludes this chapter.

5.2 Methodology

This section starts with a brief description on how drivers usually perform maneuvers. This

description highlights the detailed research scope and some background on the proposed

method. The proposed approach is also elaborated in this section.

5.2.1 Driving Maneuvers Analysis

Driving maneuvers follow a three-step model: 1) observation action, 2) decision action,

and 3) steering action. An observation action during a maneuver can be divided into

75

Figure 5.1: Time overlap between an observation action and a steering action.

two stages: a Frontal Observation Period (FOP) and a Surrounding Observation Period

(SOP). Driver’s observation actions in an FOP aim at following a lane or regulating vehicle

position, while observation actions in an SOP aim at deciding whether to take actions or

not. The wheel steering action during a maneuver can also be divided into two periods: a

Direction Changing Period (DCP) and a Lane Following Period (LFP). In a DCP, a driver

steers a vehicle into a new lane. An LFP follows a DCP closely, in which a driver adjusts

the position and orientation of his vehicle to the new lane. According to this, a driving

maneuver starts with a surrounding observation action and ends with a direction changing

action. Before drivers make any steering actions, they observe the surrounding traffic

and look for potential confrontation factors. If safety conditions permit, they perform

actions. However, in real driving scenarios, time gaps between these steps are not clear,

and although a driver may repeatedly check his surrounding, he may start a direction

changing action before finishing the last checking action, which means his SOP and DCP

overlap. The overlap between an SOP and a DCP is illustrated in Fig. 5.1. This figure

shows that the major information used to predict a driver’s steering action is gathered

from his observation actions. Other preparation actions, such as deceleration, are also

performed during this observation period.

76

Driving maneuver behaviors vary with the color of traffic lights and the layouts of

intersections, thus they should be handled separately. Different scenarios will be addressed

in the next few paragraphs. In these driving maneuvers, even without obvious violations

of traffic rules, driving risk persists due to inaccurate estimations of time windows and

failures to detect objects in blind spots. ADAS with abilities to predict the next maneuver

and provide corresponding assistance should be able to reduce the driving risk.

For an intersection controlled by traffic lights, if there are three lanes on the road, a

common layout is: the left lane can be used for a left turn, and the center lane for going

straight, and the right lane for a right turn. In some intersections with three lanes, the

middle lanes can also be used for the right turn. At an intersection with two lanes, a driver

can turn left only in the left lane and turn right in the right lane, but he may go straight

in both lanes.

Turning maneuvers on red traffic lights are strictly controlled by traffic rules: left turn

is forbidden, and drivers must stop and wait for a green light; to turn right, a driver must

stop and wait for a safe time window. A possible risk of turning right at a red light is

overestimating the distance between the ego-vehicle and the vehicle coming from the left

direction which may lead to a rear-end collision.

Maneuvers on green lights are allowed by traffic rules, and drivers do not have to stop

to check before changing directions, which makes these maneuvers risky. A left turn on a

green traffic light is risky when a driver overestimates the time window before the vehicle

in the opposite direction arrives at the intersection. Right turns on green lights could

be dangerous to bicyclists on the right side and pedestrians on the zebra crossing. Before

reaching an intersection with a green light, a driver preparing for a maneuver would control

the speed of the vehicle within an appropriate range and start an observation action. Thus

a deceleration action and observation action are strong hints as to whether this driver will

go straight or make a turn.

Lane changes are another kind of common driving maneuver in which drivers must keep

enough distance from vehicles when changing lanes. Experienced drivers check side mirrors

and blind spots before taking actions. The acceleration action before lane changing is also

a common preparation action. During a lane change, an accident may happen if the vehicle

77

Feature
Extraction

RNN

Feature
Extraction

RNN

Feature
Extraction

RNN

Left Turn: 0%
Go Straight: 100%

Right Turn: 0%

Left Turn: 0%
Go Straight: 60%
Right Turn: 40%

Left Turn: 0%
Go Straight: 45%
Right Turn: 55%

... ...

Feature
Extraction

RNN

Feature
Extraction

RNN

Left Turn: 0%
Go Straight: 10%
Right Turn: 90%

...

5 consecutive
same predicions

Figure 5.2: Structure of the proposed driving maneuver prediction network.

in the blind spot is ignored or the vehicle behind the ego vehicle is approaching at a higher

speed.

5.2.2 The Structure of Driving Maneuver Prediction Systems

Based on the analysis in the previous section, we propose to infer drivers’ direction changing

actions based on information about their observation actions, vehicle states, and road

information. To be specific, we develop a system to predict whether a driver will go

straight or turn at an intersection with a green light and whether a driver will change

his lane during driving. Even through there are many other driving situations in which

maneuver prediction would be helpful for ADAS, we focus on these two since they occur

frequently during driving. By restricting the input information to drivers’ observation

actions between the beginning of SOP and the beginning of DCP, the prediction system

can predict drivers’ next maneuvers before they take steering actions.

Since drivers’ observation actions can be represented by videos of their head movements,

78

we propose to use these videos as one input resource for our prediction system. The second

input resource is vehicle speed since several previous works suggest that the temporal

information in a speed sequence could represent a deceleration or acceleration action and

is important for the prediction [79]. The third input resource is the number of lanes beside

the discussed vehicle.

An overview of the proposed driving maneuver prediction system is presented in Fig.

5.2. In this prediction system, which is a variant of RNN, the Feature Extraction module

takes a video of a driver’s face as input and extracts high-level visual features at each time

t. These visual features are concatenated with the speed value and the number of lanes

as inputs to an RNN which exploits temporal information among these inputs at different

time instances to infer possible future maneuvers. The number of lanes on each side of the

ego vehicle should be extracted by a lane detection system, which is not the focus of this

work, so we labeled this feature manually during database labeling. Concisely, the input

to our system is an information sequence

[xt−T , xt−T+1, · · · , xt], (5.1)

where xt represents the feature vector of a driver’s face, vehicle speed, and the number of

lanes at time instance t. The output is a probability distribution sequence

[mt−T , mt−T+1, · · · , mt], (5.2)

where

mt = [m1
t , m

2
t , · · · , mk

t], (5.3)

and mk
t represents the probability that a driver will take a maneuver action k in the near

future. Hence, at any time t, the maneuver prediction system models the conditional

probability

mj
t = p(m = j|[x0, · · · , xt],Θ), j ∈ {1, · · · , k}, (5.4)

where [x0, . . . , xt] represents a feature sequence and it includes input xt and inputs at

previous time instances, and Θ represents all parameters in the model. This recurrent

79

neural network may not memorize information from all previous time instances, so in this

equation [x0, . . . , xt] just represents that previous input information is used to infer future

maneuvers.

The RNN in this system is trained in a sequence-to-sequence manner. Every input

sequence is labeled with the maneuver it represents by a label sequence the same length as

the input. For each input sequence, this system will output a prediction for each feature

frame as an output sequence. The training process will compare the label sequence to this

output sequence to evaluate a loss and optimize the RNN using a variant of the stochastic

gradient descent method. After this training procedure, the system will learn to infer

drivers’ next maneuvers based only on partial information.

5.2.3 Recurrent Neural Networks

Recurrent Neural Networks are designed to process temporal data sequences and exploit

information dependency at different time instances to make accurate predictions.

Given an input sequence of observation

X = [xt−T , xt−T+1, · · · , xt],

where the length of the sequence is T + 1 and xt ∈ Rn, an RNN generates a sequence of

hidden variables

Ht = [ht−T , ht−T+1, · · · , ht]

via a non-linear cell. The hidden variable will store information from the current and

previous inputs. By adding a fully connected layer after the hidden layer, the network

produces a sequence for the last classification or regression results.

The function for hidden variables is

ht = ĥ(Wxhxt +Whhht−1 + bh), (5.5)

and the function for output variables is

ot = f(Whoht + bo), (5.6)

80

Figure 5.3: The structure of an LSTM node. Image courtesy of [2].

where ĥ and f are two nonlinear activation functions. Wxh, Whh, and Who are transfer

parameters, while bh and bo are bias parameters. All these parameters are trainable. As

the equations show, the hidden variable ht at time t is related to not only the input xt at

time t but also the hidden variable at the previous time instance t − 1. In this way, the

network can infer the current result based on the current and previous input information.

Long Short-term Memory

The training process of RNN suffers from a phenomenon known as exploding and vanishing

gradient. Long Short-term Memory is designed to avoid these problems and achieve long-

term memory [2]. The architecture of an LSTM node is shown in Fig. 5.3. There is an

input gate, an output gate, a forget gate, and a hidden memory cell in each LSTM node.

The hidden memory cell Ct in LSTM stores information from previous inputs. The

input gate

it = σ(Wi · [ht−i, xt] + bi) (5.7)

decides which input information from

C̄t = tanh(WC · [ht−i, xt] + bc) (5.8)

should be updated to the hidden memory cells. In these equations, W with a subscript

represents a corresponding transfer matrix and b with a subscript is a base matrix. ht

81

represents the hidden states which will be given later, and σ is the sigmoid activation

function.

A forget gate

ft = σ(Wf · [ht−i, xt] + bf) (5.9)

decides to remember or drop the information from the previous hidden memory cells in

each update. Thus, the update to the hidden memory cell will be

Ct = ft ∗ Ct−1 + it ∗ C̄t, (5.10)

where ∗ means the element-wise production.

The hidden state ht is related to the hidden memory cell Ct, the hidden state at the

previous time point ht−1, and the input xt at time point t as

ot = σ(Wo · [ht−i, xt] + bo) (5.11)

ht = ot ∗ tanh(Ct). (5.12)

It is also possible to connect a fully connected layer with the hidden node to obtain the

final prediction output yt. Then we have the final output

yt = Wyht + by, (5.13)

where Wy and by are trainable parameters in a fully connected layer.

Bidirectional Recurrent Neural Networks

In basic RNNs, recurrent operations start from one end of an input sequence and stop

at the other end. Thus, at each time step, only input information at or before that time

will be used for a prediction inference. Bidirectional Recurrent Neural Networks overcome

this with parallel consecutive recurrent operations from two directions [120], as illustrated

in Fig. 5.4. This structure is critical for many sequence processing tasks in which whole

feature sequences are available for predictions [121, 122].

82

RNN

RNN

xt−T

RNN

RNN

xt−T+1

RNN

RNN

xt

concat concat concat

htht−T+1ht−T

...
...

Figure 5.4: The structure of a Bidirectional Recurrent Neural Network.

Quasi-recurrent Neural Networks

Temporal dependency is achieved by delivering hidden states ht to operations at the next

timestep in RNNs, while spatial dependency is achieved by layer-wise convolution op-

erations in Convolutional Neural Networks. Quasi-recurrent Neural Networks (QRNNs)

combine the advantages of these two kinds of operations for sequence data processing. The

first layer in a QRNN is a convolutional layer on the timestep dimension, the following

layer is for hidden states propagation [123]. QRNNs could reveal temporal relationships

between adjoining feature steps which could be vital for many sequence processing tasks

[124, 125].

Given an input sequence X = [xt−T , xt−T+1, · · · , xt], a convolutional layer with m

filters performs convolution operations on the timestep dimension. The convolution oper-

ation at any timestep should not use future features to infer current intermediate states.

Thus, a filter of width k convolute only feature xt−k+1 to feature xt to calculate zt, as

shown in 5.5 (a),

Z = tanh(Wz �X), (5.14)

where Wz ∈ Rk×n×m are the convolutional filter weights and � denotes the convolution

operation.

83

� = tanh(∗ �)��

� = �(∗ �)��

� = �(∗ �)��

����−� ��−�+2

��

��

��

ℎ�−1 ��

ℎ�

-1

��

��−1 ��

-1

��

��

ℎ�

��

(a) Convolutional component in a QRNN cell. The filter

width is 3, and xt−T , xt−T+1, and xt−T+2 are used to

calculate zt−T+2, ft−T+2, and ot−T+2.

ℎ�−1 ��

ℎ�

-1

��

(b) f -pooling in a QRNN cell.

��−1 ��

-1

��

��

ℎ�

��

(c) fo-pooling in a QRNN cell.

Figure 5.5: The structure of a QRNN node.

84

Another two banks of convolutional operations are performed followed by element-wise

nonlinear activation functions to calculate the forget gate ft and the output gate ot,

F = σ(Wf �X),

O = σ(Wo �X),
(5.15)

where Wf and Wo ∈ Rk×n×m are the convolutional filter weights.

Similar to operations in a traditional LSTM cell [2], the hidden state ht is calculated

as

ht = ft ∗ ht−1 + (1− ft) ∗ zt, (5.16)

where ∗ denotes element-wise multiplications, as shown in 5.5 (b).

Alternatively, the calculation of hidden states may also involve an output gate, as shown

in 5.5 (c),

ct = ft ∗ ct−1 + (1− ft) ∗ zt,
ht = ot ∗ ct.

(5.17)

We can connect a fully connected layer to the hidden layer to obtain the final prediction

output yt. Then, the final output can be represented as

yt = Wyht + by,

where Wy and by are trainable parameters in a fully connected layer.

5.3 Experiments and Evaluation

In this section, we first provide an overview of our dataset and experimental protocol.

Then, we present and analyze the quantitative results and evaluations.

5.3.1 Database Collection and Annotation

To train the proposed prediction system, we need a driving maneuver database. A related

database is introduced in [89], which includes 700 maneuvers containing 274 lane changes,

85

131 turns, and 295 randomly sampled instances of going straight. Several cars were used

for data collection in driving experiments, so the camera positions vary among samples.

However, the authors annotated the starting times of cars touching lane marks (for lane

change maneuvers) or cars starting to yaw (for turn maneuvers) and the ending times

of steering actions, but did not annotate the beginning and ending times of observation

actions or starting times of steering actions [89]. For many samples, the beginning parts

of observation actions are ignored, while these parts are critical to training a system that

makes early predictions. Moreover, left (and right) turns before different traffic lights are

treated as one kind of maneuver, while as we discussed previously these maneuvers are

quite different and should be handled accordingly.

Given these facts, we collected and annotated a new database for our research work

here. Only one vehicle is used in our experiments, so the camera position and background

of those images do not change significantly across videos. Our database does not include

actions at red traffic lights.

A total of 7 subjects (4 males and 3 females) who have valid Canadian driving licenses

participated in the data collection experiments. Each driver was required to make 20 left

turns, 20 right turns, 20 right lane changes, and 20 left lane changes. We did not give drivers

any instructions about how to perform maneuvers, so they drove under almost naturalistic

conditions in the city of Waterloo, Canada. Videos in our database last for 7.87 hours with

a frame rate of 30 frames per second. The database includes diverse weather conditions

and landscapes. In our driving experiment, we used a dual-lens dashcam to record both

inside and outside views of the car, and OBD II software to write the speed of the vehicle

to a comma-separated values (CSV) file.

Our driving maneuver database is annotated manually. The starting and ending time

stamps for both SOP and DCP are annotated by checking videos frame-by-frame. For

every maneuver, the traffic sign and the numbers of lanes on the right side and left side of

the ego-vehicle are also annotated. The annotation method is described as follows:

1) For a lane change maneuver, we labeled the starting time of SOP as the time that

the driver started to turn his head to check the rear mirror, the blind spot, or a side mirror,

and we labeled the ending time of SOP as the time when his head returned to focus on the

86

frontal view. The starting time of a DCP was labeled as the time when the vehicle started

to approach a lane mark, and the ending time point was the moment that the orientation

of the vehicle was no longer changing.

2) For a right or left turn at a green light, we labeled the starting time of DCP with

the time that the vehicle reached the ending line of the lane, and labeled the starting point

of SOP with the time step of 2 seconds before the starting time of DCP. The ending time

of DCP, the number of lanes on the left side and right side of the ego-vehicle were also

labeled.

3) During lane change maneuvers, drivers do not always check mirrors and blind spots.

We labeled the orders of their observation actions during maneuvers to understand how

drivers perform these observation actions. Take a left lane change as an example; if the

driver checks the rear mirror first, then the side mirror, and the blind spot last, the

observation actions in this maneuver are labeled as “RSB”, which represents the rear

mirror, the side mirror, and the blind spot respectively.

Fig. 5.6 presents the distribution of time lags between starting observation actions and

starting steering actions of all drivers for lane change maneuvers. It shows that most time

lags are between 1 to 3 seconds, and the average time lag is 2.03 seconds. The predicted

average Time to Steering Acts for testing results should be less than or close to this number.

The numbers of maneuver samples in our database are shown in Table 5.1. To train our

network to predict left and right lane changes, negative samples are those of lane following

which are selected randomly from driving records in which drivers are following lanes.

87

1 2 3 4 5
0

5

10

15

Left Change

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time/(second)

0

5

10

15
Right Change

Figure 5.6: Histogram of time lags between starting observation actions and starting steer-

ing actions.

Table 5.1: Number of maneuver examples.

Maneuver Traffic sign Number

Right turn Green 61

Left turn Green 45

Go straight Green 129

Right lane change 138

Left lane change 142

88

5.3.2 Feature Extraction and Evaluation Protocol

From our raw data sequences, we extract multi-modality feature sequences as in [87, 88].

The feature of whether a vehicle is within 15 meters of a road artifact (e.g., intersections,

highway exits) is not included in our database due to the limitations of experimental

equipment.

Algorithm 1 Testing algorithm

Initialize: k ← 0, Maneuver← 1

Input: Feature sequence [x0, x1, · · · , xT]

Output: Next maneuver Maneuver

for t is 0 to T do

Estimate probability mj
t for each maneuver j

Prediction = arg maxj∈{1,··· ,k}m
j
t

if Maneuver is Prediction then

k ← k + 1

if k is 5 then

break

end if

else

Maneuver← Prediction, k ← 0

end if

end for

return Maneuver

To demonstrate the capabilities of the proposed system, we evaluate it for lane change

prediction (LCP) and green light turn prediction (GLTP) tasks and compare it with the

state-of-the-art work. All systems are evaluated based on their prediction accuracy and

prediction times to steering actions (TTS), i.e., the time between making a correct predic-

tion and when a driver starts steering actions for a given maneuver. Algorithm 1 shows

the testing steps for maneuver prediction systems. While passing a feature sequence (of a

frequency of 5/second) into a model, it assigns a probability for each possible maneuver

89

at every time step. At each time step, the maneuver with the highest probability is the

predicted one. The system makes an effective prediction only if the same maneuver is

predicted at 5 consecutive time steps. For an input sequence, a prediction is correct if that

maneuver is performed seconds later. We calculate the average percentage of maneuvers

classified correctly and label it as AccAction. Only for correct lane change or turn ma-

neuver predictions, the intervals between the time of prediction and the time that a driver

starts steering actions are meaningful and used to calculate the Average TTS.

Hyper parameters in our models are chosen by cross-validation on data from random

drivers. For each system, we train it on data from 6 drivers and test it on the left out

driver. We repeat this process for each driver and execute code with different random seeds

5 times. All results in the rest of this chapter are the average values of these experiments.

5.3.3 The Information on Observation Actions Improves Maneu-

ver Prediction

Drivers’ observation actions in surrounding observation periods aim at deciding whether

to take actions. To present the importance of the information on these observation and

preparation actions to the performance of maneuver prediction systems, we conducted a

series of experiments with databases in which different parts of feature sequences were

removed.

We first built the original database of lane change maneuvers by mapping each lane

change maneuver into a feature sequence between the beginning and ending of SOP. This

original database contains complete information of drivers’ observation and preparation

actions before lane changes. Then, several training databases are formed by removing

different numbers of feature frames from the beginnings of sequences; the testing database is

left unsullied. We train the same LSTM-based prediction system on these different training

databases and test them using the same method. The evaluation results by classification

performance and average TTS are presented in Table 5.2 and Fig. 5.7. We stop at removing

7 frames since a part of training samples will be removed if more than 7 frames are removed.

The last row in this table shows testing results of models that are trained on the database

of feature sequences of driving records between the beginnings and the endings of DCP.

90

Table 5.2: Prediction performance while removing different numbers of feature frames.

Preframe AccAction (%) Average TTS (seconds)

0 89.59 ± 0.41 1.56 ± 0.06

1 88.41 ± 0.91 1.50 ± 0.04

2 86.45 ± 0.96 1.38 ± 0.07

3 85.90 ± 0.86 1.41 ± 0.03

4 85.23 ± 0.99 1.38 ± 0.03

5 82.59 ± 1.80 1.37 ± 0.03

6 84.14 ± 1.39 1.41 ± 0.03

7 82.53 ± 1.31 1.37 ± 0.04

Act 67.96 ± 1.04 1.01 ± 0.10

0 1 2 3 4 5 6 7
Num of dropped frames

0.84

0.86

0.88

Ac
cA

ct
io

n
(*

10
0%

)

0 1 2 3 4 5 6 7
Num of dropped frames

1.40

1.45

1.50

1.55

Av
er

ag
e

TT
S

Figure 5.7: Comparison of performance by models trained on different datasets.

91

As shown in Fig. 5.7, there is an obvious trend that, as more information of observation

actions is removed from the training database, both the prediction accuracy and average

TTS drop significantly. By training on the original database, the achieved testing accuracy

is 89.59% and average TTS is 1.56 seconds. Removing the information of the 1st frame

induces a decrement of 1% in the testing accuracy while the reduction of average TTS is

trivial. The accuracy and average TTS keep decreasing as we remove more information

regarding observation actions from the training database. After removing 7 frames from

training samples, the testing accuracy drops to 82.53% which is 6.94% less than the accu-

racy achieved by training on the original database, while the average TTS drops to 1.37

seconds which is 0.2 seconds less. The last row in the table shows that models trained on

feature sequences between the beginning and end of DCP give poor performance on this

maneuver prediction problem, which is 21.51% less than the accuracy and 0.56 seconds

less than the average TTS achieved by training on the original database.

5.3.4 Models to Better Capture Temporal and Spatial Informa-

tion

Besides correctly labeled training data, a model that is able to draw and fuse historical

information effectively from sequences is also essential for accurate maneuver prediction.

We propose using a QRNN to learn the correlation between feature sequences and driver

maneuvers for a maneuver prediction system. We replace QRNN with other sequence-to-

sequence RNNs to baseline with two state-of-the-art systems, one based on LSTM [87] and

the other based on bidirectional RNN [88].

The configuration of LSTM follows conclusions in [87] and [88] in which every hidden

cell includes 64 nodes and there is only one layer of LSTM cell. The configuration of

BDRNN follows conclusions in [88], in which a unidirectional GRU cell of 128 nodes atop

a bidirectional LSTM cell of 64 nodes. As in [88], the implementation of the bidirectional

model employs a slide window method to make real-time predictions. The system of QRNN

contains 2 layers of QRNN cells and each cell contains 64 nodes. Another critical hyper-

parameter of QRNN is the size of convolutional windows; in the LCP task this number is

set to 2 while in the GLTP task it is set to 1 by cross-validation experiments. An Adam

92

0 20 40 60 80 100 120 140
Epochs

60

70

80

Ac
cF

ra
m

e
(%

)

LSTM BDRNN QRNN

0 20 40 60 80 100 120 140
Epochs

60

80

Ac
cA

ct
io

n
(%

)

LSTM BDRNN QRNN

0 20 40 60 80 100 120 140
Epochs

0

1

Av
er

ag
e

TT
S

(s
)

LSTM BDRNN QRNN

Figure 5.8: Testing performance of lane change prediction by different models with different

training epochs.

optimizer with a learning rate of 0.001 and a batch size of 6 is adopted in all training

processes [106].

Fig. 5.8 presents the testing performance of the proposed lane change prediction system

and baseline models during the training process, and Fig. 5.9 presents green light turn

prediction task performance. The AccFrame in both figures represents the percentage of

frames that are assigned with correct labels. According to these two figures, all three

metrics (AccFrame, AccAction, and Average TTS) grow rapidly in the first 20 epochs,

then the growth tends to slow down and become tardy. Curves in Fig. 5.8 are smooth

after 40 epochs of training, while curves in Fig. 5.9 keep oscillating due to a relatively

small number of training samples. All training processes are stopped at 150 epochs since

93

0 20 40 60 80 100 120 140
Epochs

60

70

Ac
cF

ra
m

e
(%

)

LSTM BDRNN QRNN

0 20 40 60 80 100 120 140
Epochs

60

70

80

Ac
cA

ct
io

n
(%

)

LSTM BDRNN QRNN

0 20 40 60 80 100 120 140
Epochs

2

3

4

Av
er

ag
e

TT
S

(s
)

LSTM BDRNN QRNN

Figure 5.9: Testing performance of green light turn prediction by different models with

different training epochs.

94

Table 5.3: Prediction performance of different models based on their best AccAction.

Task Model AccAction (%) Average TTS (seconds)

LSTM 89.59 ± 0.41 1.56 ± 0.06

LCP BDRNN 88.63 ± 0.64 1.25 ± 0.03

QRNN 90.52 ± 0.87 1.50 ± 0.03

LSTM 75.65 ± 1.20 2.57 ± 0.11

GLTP BDRNN 75.29 ± 2.06 2.94 ± 0.57

QRNN 78.59 ± 1.72 2.53 ± 0.06

no obvious change on loss is presented even systems are trained for more epochs

While choosing model weights from training results, two metrics, i.e, AccAction and

Average TTS, should be taken into consideration. Table 5.3 shows the best performance

achieved by three models. The AccAction for each model is the best among different

training epochs, and the Average TTS is the result that corresponds to that epoch. The

2nd-4th rows in Table 5.3 present testing performance of lane change prediction. As can

be seen, the QRNN system achieves the best prediction accuracy of 90.52%. This accuracy

is 0.93% better than the one achieved by the LSTM system and 1.89% better than the

one achieved by the BDRNN system. Meanwhile, the Average TTS of the QRNN system

reaches 1.50 seconds and is 0.5 seconds higher than the one achieved by the BDRNN

system. This accuracy is also comparable to the best result which is 1.56 seconds, achieved

by the LSTM system. Readers may notice the obvious difference between average TTSs in

LSTM and BDRNN models implemented by us and the ones achieved in original papers

[87] and [88]. This is because the definitions of starting maneuver are different in our

work from those in [87] and [88]. We define it as the start time that a car starts yawing,

while [87] and [88] define it as the time that a car touches a lane mark. The 5th-7th rows

in Table 5.3 present testing performances for turn change prediction at intersections with

green lights. Our QRNN system achieves an obvious better accuracy, which is 78.59%

(3.3% better than the accuracy achieved by the BDRNN system and 2.9% better than the

one by LSTM system); however, the average TTS achieved is not as good as the other two

95

Table 5.4: Prediction performance of different models based on their best average TTS.

Task Model AccAction (%) Average TTS (seconds)

LSTM 87.38 ± 2.19 1.61 ± 0.04

LCP BDRNN 87.98 ± 0.97 1.34 ± 0.03

QRNN 89.17 ± 0.88 1.54 ± 0.03

LSTM 72.26 ± 2.60 2.96 ± 0.53

GLTP BDRNN 72.06 ± 2.50 3.89 ± 0.65

QRNN 75.21 ± 2.02 2.75 ± 0.20

(0.41 second less than the one in BDRNN).

While Table 5.3 is organized based on the best accuracy of the various models, Table

5.4 is organized based on the best Average TTS of each model. The Average TTS of each

model is the best among different training epochs, and the AccAction is the result that

corresponds to that epoch. Comparing the 2nd-4th rows in Table 5.4 to the 2nd-4th rows

in Table 5.3, we can find an obvious drop in accuracy with a slight increment of Average

TTS for each system. The 2nd-4th rows in Table 5.4 show that the proposed QRNN system

gives an Average TTS of 1.54 seconds which is only 0.07 seconds less than the best one (1.61

seconds by LSTM). However, our system firmly gives the best accuracy, which is 89.17%

(1.19% higher than BDRNN and 1.79% higher LSTM). A similar situation happens to the

5th-7th rows with an exception that the Average TTS achieved by the BDRNN system

increases by 0.95 seconds.

The analysis of these two tables illustrates that if model weights are chosen from the

epoch that gives the best Average TTS, all models will lose performance. Thus, these

weights should be chosen from the epoch with the best prediction accuracy. By this

method, the proposed system achieves excellent performance in prediction accuracy and

comparable performance in Average TTS.

96

5.4 Driving Proficiency Assessment by Bidirectional

Generalization Ability Test

Driving proficiency assessment is usually performed in three forms: watch on-road test

[126], self-questionnaire test [127, 128], or administered cognitive task test [129, 130]. The

first and last one require a trained human who has to be on site, thus it is time-consuming.

The last two tests are not implemented in real driving scenarios, thus are not consid-

ered as direct assessments of drivers’ visual, cognitive and decision performance. In-door

simulation-based systems are seriously limited by their visual fidelity and only provide

specific driving scenarios for assessment [131].

In this work, we propose to estimate driving proficiency through bidirectional general-

ization ability test of driving maneuver prediction systems (BDGAT). The main intuition

behind this method is that feature sequences of maneuvers by drivers with the same driv-

ing proficiency should have similar distributions. Therefore, maneuver prediction models

trained on drivers with a certain level of driving proficiency should be able to generalize

well to other drivers with the same level of proficiency.

As shown in Fig. 5.10, the BDGAT system first acquires a set of canonical drivers’

driving records and extracts feature sequences of various maneuvers. With these data

sequences, this system trains several maneuver prediction models. These data sequences

and trained models are saved for tests on subject drivers. A set of equipment (Cameras,

OBD II, etc.) will be installed on a subject driver’s personal vehicle. After a period of

driving, this driver will be familiar with this equipment and will drive under naturalistic

conditions. This set of equipment logs and recognizes a set of maneuvers performed by this

driver during daily driving. Feature sequences extracted from these maneuvers are used to

train another set of maneuver prediction systems. With two sets of models and two sets of

feature sequences, the BDGAT system performs two sets of generalization ability testing.

More specifically, the first set, which is named forward testing, is testing models trained

with sequences of canonical drivers on feature sequences of the subject driver. The second

set (backward testing) is used for testing models trained with sequences of the subject

driver on feature sequences of canonical drivers. The subject driver’s driving proficiency

97

Left Turn
...

Right Change

LRCN
QRCN
LSTM
QRNN

2. Feature
Extraction

3. Models
Training

Subject
Driver

Left Turn
...

Right Change

Headpose
Speed Hist
Left Lane

...

5. Feature
Extraction

1. Maneuver
Labeling

Headpose
Speed Hist
Left Lane

...

4. Maneuver
Recognition

Canonical
Drivers

LRCN
QRCN
LSTM
QRNN

Feature
Sequences

Models

Feature
Sequences

Models

AccAction
Average TTS

6. Models
Training

7. Forward
Testing

8. Backward
Testing

AccAction
Average TTS

Figure 5.10: An overview of bidirectional generalization ability test system.

is estimated based on the testing results (AccAction) of both directions.

We propose a formulation to calculate a driver’s proficiency based on performance,

which is

Driving Proficiency

=
∑
d

∑
t

∑
m

rd ∗ rt ∗ rm ∗ (AccAction) (5.18)

where rd represents the scale of the contribution of the accuracy by testing direction d,

rt represents the scale of the contribution of the accuracy on task t, and rm represents

the scale of the contribution of the accuracy by model m. One significant assumption for

machine learning methods is that models trained on a dataset should be able to generalize

well on another dataset from the same distribution, and this is bidirectional. Thus, ma-

neuver prediction models trained on driving records of specific drivers (e.g., well trained)

should have a generalization ability with respect to similar drivers. The metric to indicate

the generalization ability of classification tasks is accuracy. Therefore, the accuracy of

models trained and tested on different drivers represents the similarity of these drivers.

98

Table 5.5: Frequency of blind spot checking for all drivers.

Driver
Blind Spot Checking Frequency (%)

Left turn Right turn Left change Right change

1 0.0 0.0 95.45 80.00

2 0.0 0.0 68.42 94.74

3 0.0 0.0 0.0 0.0

4 0.0 0.0 82.35 94.12

5 0.0 0.0 40.00 55.00

6 0.0 0.0 00.00 15.38

7 0.0 0.0 100.00 100.00

Average 0.0 0.0 55.17 62.75

Table 5.6: Frequency of mirror checking for all drivers during lane change maneuvers.

Driver
Rear mirror Side mirror

Left change Right change Left change Right change

1 4.55 10.00 100.00 100.00

2 21.05 31.58 100.00 100.00

3 19.05 59.09 100.00 100.00

4 5.88 82.35 100.00 88.24

5 100.00 100.00 96.00 100.00

6 30.77 30.77 100.00 100.00

7 9.09 80.95 100.00 33.33

Average 27.20 56.39 99.43 88.80

99

This accuracy is affected by three factors: the similarity of drivers, the general capacity

of models, and the capacity of models on different prediction tasks. The proposed driving

proficiency index combines all these factors and a generalization ability should be bidirec-

tional. This index also gives more weight to models with large prediction capacities for

different prediction tasks.

To illustrate the effectiveness of the proposed BDGAT, we organize a set of experiments

to simulate the testing system based on the driver maneuver data set we collected earlier.

The first step is to find canonical drivers. Table 5.5 shows each driver’s frequency of blind

spots checking among all possible maneuvers. During the whole driving process, Driver 3

never checked the blind spot, while Driver 5 and Driver 6 only checked occasionally. Other

drivers check blind spots more often. Table 5.6 presents how frequently drivers check their

mirrors during lane change maneuvers. It is obvious that all drivers check side mirrors

with high frequency but the frequency of rear mirror checking differs greatly. We rank

the average of each driver’s frequency of blind spot checking and frequency of rear mirror

checking during lane changes ([47.5%, 53.95%, 19.54%, 66.18%, 73.75%, 19.23%, 72.51%]

for drivers 1-7.) and choose the four best drivers {2, 4, 5, 7} as canonical drivers to assess

drivers {1, 3, 6}. Three models were trained on data for each driver, and the number of

training epochs is 100 for all experiments.

Forward testing consists of testing the generalization ability of many canonical drivers

on a single driver. This testing result is more robust, thus we set rforward = 0.6 and

rbackward = 0.4. As green light turn maneuvers are more complex then lane changes, we set

rLCP = 0.4 and rGLTP = 0.6. For these three models, we set rQRNN = 0.5, rLSTM = 0.3,

and rBDRNN = 0.2 as the model that achieves a better prediction performance in Section

5.3.4 gives a more reliable assessment. It is worth noting that these scales are set empirically

in this work only because the number of drivers in our data set is limited (we have only

4 canonical drivers). Given a data set of enough drivers, these scales should be set using

the following: organize canonical drivers into two sets randomly, use the second set as the

testing set and rank drivers’ proficiency in this set based on their ground truth proficiency,

then adjust these scales so the testing results of BDGAT rank drivers’ proficiency correctly.

The testing accuracy for different experiments are shown in Table 5.7. Based on this

assessment method, the driving proficiency of driver 1 is 0.78, the driving proficiency of

100

Table 5.7: Bidirectional testing performance of different models for drivers.

Driver Task Model Forward Backward

1

GLTP

BDRNN 0.77 0.58

LSTM 0.80 0.68

QRNN 0.78 0.58

LCP

BDRNN 0.95 0.75

LSTM 0.95 0.76

QRNN 0.96 0.80

3

GLTP

BDRNN 0.78 0.52

LSTM 0.74 0.49

QRNN 0.76 0.51

LCP

BDRNN 0.97 0.77

LSTM 0.97 0.82

QRNN 0.97 0.82

6

GLTP

BDRNN 0.67 0.68

LSTM 0.76 0.75

QRNN 0.74 0.75

LCP

BDRNN 0.73 0.63

LSTM 0.77 0.67

QRNN 0.78 0.70

101

driver 3 is 0.76, and the driving proficiency of driver 6 is 0.73. Meanwhile, according to

Table 5.5 and Table 5.6, the average of driver 1’s frequency of blind spot checking and

frequency of rear mirror checking during lane change maneuvers (47.5%) is higher then

that of driver 3 (19.54%), and driver 3 is better than driver 6 (19.23%). These results

show that the proposed BDGAT ranks these drivers correctly. However, the difference

between driver 1’s estimated proficiency and driver 3’s estimated proficiency is not larger

than that between driver 3 and driver 5, as the size of our dataset constrained us to some

extent from fine tuning parameters in proficiency index Equation 5.18.

5.5 Summary

This chapter addresses the question of predicting drivers’ imminent maneuvers before they

perform actual steering operations. The proposed system uses deep recurrent neural net-

works to fuse the information regarding driver observation actions and the driving environ-

ment. With a new data labeling method and an effective sequential modeling approach,

the system is able to predict driving maneuvers with a high accuracy shortly before actual

steering operations. A set of experiments show that the proposed approach anticipates

lane change maneuvers 1.50 seconds before cars start to yaw with an accuracy improved

to 90.52% and anticipates turn maneuvers at intersections with green lights 2.53 seconds

before cars start to yaw with an accuracy improved to 78.59%. This chapter also presents

a new application for driving maneuver prediction, which is driving proficiency assessment

by bidirectional generalization ability test.

102

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The ability to model and understand drivers’ behaviors is essential for future ADAS to

provide drivers with the appropriate assistance. The proposed research work attempts to

investigate new methodologies to design driver behavior recognition and maneuver predic-

tion systems for future ADAS.

We first aim at improving the generalization ability of driver distraction to diverse driv-

ing scenarios. To this end, we collect an image dataset of various driving situations from

the Internet. Then we introduce Generative Adversarial Networks as a data augmentation

method to enhance detection accuracy. The experimental results demonstrate enhanced

performance, which we believe originates from more diverse and abundant training sam-

ples. In addition, we show the effectiveness of mixing general driving images with images of

a specific environment to handle distraction recognition in that specific environment and

combining the resultant recognition system as a module in a driver monitoring system.

Moreover, this thesis proposes a dual-mode system for recognition under various lighting

conditions and designs a new CNN, which can work in real-time on a resources-limited plat-

form, through a novel network bottleneck. The experimental results demonstrate that the

proposed system achieves state-of-the-art performance, which arises from the new network

architecture with novel bottlenecks for efficient feature representations.

103

The second part of this thesis focuses on driving maneuver prediction. A new method

to label driving maneuver records and a new prediction system are introduced. These

novel approaches enhance the prediction performance to the state-of-the-art. In addition,

the proposed novel driving proficiency assessment method, as an application of maneuver

prediction, demonstrates several advantages against existing methods.

6.2 Future Work

The current work can be extended in many ways, some of which are listed as follows.

• The application scope of the proposed driver distraction recognition system and net-

work is not limit to distraction activities related to electronic devices only. A promis-

ing future direction is to extend the current work to include comprehensive images

from real driving environments and to test the system for daily driving scenarios.

• Furthermore, the proposed network architecture may be incorporated into other com-

puter vision applications in computational resource-limited environments. For exam-

ple, there is an increasing trend to enhance the recognition ability of small-sized

robots.

• The design idea of the proposed driving monitoring system can be extended to many

other applications. Take a system to warn workers trying to touch a moving mechan-

ical part in a factory as an example. The required basic steps will be camera position

design, data collection, network design, and system deployment. The camera should

be installed in a position where is able to collect clear images of workers’ hands. With

a camera installed, the next step is to collect an image data of different workers try-

ing to touch that part. Images from other resources, for example the Internet, with

similar human positions or similar scenarios could be used for training. The next

step is network training and optimization, so that it is small enough to be deployed

on small computational devices with limited resources.

• Our work on driving maneuver prediction can be extended to other maneuvers that

involve various traffic conditions. For example, a large number of intersections are

104

controlled by stop signs in North America. Collecting a comprehensive data set of

these intersections and exploring effective prediction methods would be an interesting

direction yet to be explored.

• Another direction is building a comprehensive and naturalistic data set for driver

maneuver prediction, as the sizes of current data sets are still small compared to the

complexity of the addressed problem. Meanwhile, the absence of benchmark data set

limits the comparisons on various methods proposed by different research groups.

105

References

[1] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image

compression. arXiv preprint arXiv:1611.01704, 2016.

[2] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

putation, 9(8):1735–1780, 1997.

[3] Pytorch. Torchvision Models. https://pytorch.org/docs/stable/torchvision/

models.html/, 2018. [Online; accessed 18-April-2019].

[4] Eric Sun. Shufflenet-v2-Pytorch. https://github.com/ericsun99/

Shufflenet-v2-Pytorch/, 2018. [Online; accessed 18-March-2019].

[5] Evgeniy Zheltonozhskiy. Impementation of MobileNetV2 in pytorch. https:

//github.com/Randl/MobileNetV2-pytorch/, 2018. [Online; accessed 18-March-

2019].

[6] UDRIVE. European drivers spend 10% of the ride on

secondary tasks. http://www.udrive.eu/index.php/news/

145-european-drivers-spend-10-of-the-ride-on-secondary-tasks. Ac-

cessed: 2018-07-18.

[7] Thomas A Dingus, Feng Guo, Suzie Lee, Jonathan F Antin, Miguel Perez, Mindy

Buchanan-King, and Jonathan Hankey. Driver crash risk factors and prevalence

evaluation using naturalistic driving data. Proceedings of the National Academy of

Sciences, 113(10):2636–2641, 2016.

106

https://pytorch.org/docs/stable/torchvision/models.html/
https://pytorch.org/docs/stable/torchvision/models.html/
https://github.com/ericsun99/Shufflenet-v2-Pytorch/
https://github.com/ericsun99/Shufflenet-v2-Pytorch/
https://github.com/Randl/MobileNetV2-pytorch/
https://github.com/Randl/MobileNetV2-pytorch/
http://www.udrive.eu/index.php/news/145-european-drivers-spend-10-of-the-ride-on-secondary-tasks
http://www.udrive.eu/index.php/news/145-european-drivers-spend-10-of-the-ride-on-secondary-tasks

[8] National Research Council. Strategic highway research: Saving lives, reducing con-

gestion, improving quality of life. Technical report, National Research Council, 2001.

[9] Yvonne Barnard, Fabian Utesch, Nicole Nes, Rob Eenink, and Martin Baumann.

The study design of UDRIVE: The naturalistic driving study across europe for cars,

trucks and scooters. Springer European Transport Research Review, 8(2):1–10, 2016.

[10] MA Regan, Ann Williamson, Raphael Grzebieta, Judith Charlton, M Lenneb, Barry

Watson, Narelle Haworth, Andry Rakotonirainy, Jeremy Woolley, and Robert An-

derson. The Australian 400-car naturalistic driving study: Innovation in road safety

research and policy. In Australasian Road Safety Research, Policing & Education

Conference, pages 1–13, 2013.

[11] Andrea Heide and Klaus Henning. The “cognitive car”: A roadmap for research

issues in the automotive sector. Elsevier Annual Reviews in Control, 30(2):197–203,

2006.

[12] Li Li, Ding Wen, Nan-Ning Zheng, and Lin-Cheng Shen. Cognitive cars: A new fron-

tier for ADAS research. IEEE Transactions on Intelligent Transportation Systems,

13(1):395–407, 2012.

[13] Yujun Zeng, Xin Xu, Dayong Shen, Yuqiang Fang, and Zhipeng Xiao. Traffic sign

recognition using kernel extreme learning machines with deep perceptual features.

IEEE Transactions on Intelligent Transportation Systems, 18(6):1647–1653, 2017.

[14] Xiao Lu, Yaonan Wang, Xuanyu Zhou, Zhenjun Zhang, and Zhigang Ling. Traffic

sign recognition via multi-modal tree-structure embedded multi-task learning. IEEE

Transactions on Intelligent Transportation Systems, 18(4):960–972, 2017.

[15] SAE On-Road Automated Vehicle Standards Committee. Taxonomy and definitions

for terms related to on-road motor vehicle automated driving systems. Technical

report, SAE, 2014.

[16] Tomonori Mizushima, Pongsathorn Raksincharoensak, and Masao Nagai. Direct

yaw-moment control adapted to driver behavior recognition. In IEEE International

Joint Conference on SICE-ICASE, pages 534–539, 2006.

107

[17] Yuichi Saito, Makoto Itoh, and Toshiyuki Inagaki. Driver assistance system with

a dual control scheme: Effectiveness of identifying driver drowsiness and prevent-

ing lane departure accidents. IEEE Transactions on Human-Machine Systems,

46(5):660–671, 2016.

[18] Duy Tran, Eyosiyas Tadesse, Weihua Sheng, Yuge Sun, Meiqin Liu, and Senlin Zhang.

A driver assistance framework based on driver drowsiness detection. In IEEE Inter-

national Conference on CYBER Technology in Automation, Control, and Intelligent

Systems, pages 173–178, 2016.

[19] Ashesh Jain, Avi Singh, Hema S Koppula, Shane Soh, and Ashutosh Saxena. Recur-

rent neural networks for driver activity anticipation via sensory-fusion architecture.

In IEEE International Conference on Robotics and Automation, pages 3118–3125,

2016.

[20] Seong-Woo Kim and Wei Liu. Cooperative autonomous driving: A mirror neuron

inspired intention awareness and cooperative perception approach. IEEE Intelligent

Transportation Systems Magazine, 8(3):23–32, 2016.

[21] Pamela I. Labuhn and William J. Chundrlik Jr. Adaptive cruise control, October 3

1995. US Patent 5,454,442.

[22] Deaglan O’meachair and Matthew Crumpton. Adaptive braking system and method,

April 4 2017. US Patent 9,610,931.

[23] Hajime Oyama. Lane keeping control system for vehicle, January 5 2016. US Patent

9,227,634.

[24] Yoshio Mukaiyama. Automatic parking system, April 12 2016. US Patent 9,308,913.

[25] Marco J. Flores, José M. Armingol, and Arturo de la Escalera. Driver drowsiness

warning system using visual information for both diurnal and nocturnal illumination

conditions. EURASIP Journal on Advances in Signal Processing, 2010(1):438205,

2010.

108

[26] Nuria Oliver and Alex P. Pentland. Graphical models for driver behavior recognition

in a smartcar. In IEEE Intelligent Vehicles Symposium, pages 7–12, 2000.

[27] Thomas B. Sheridan. Driver distraction from a control theory perspective. Human

Factors: The Journal of the Human Factors and Ergonomics Society, 46(4):587–599,

2004.

[28] Myounghoon Jeon and Bruce N. Walker. What to detect? Analyzing factor structures

of affect in driving contexts for an emotion detection and regulation system. In Sage

the Human Factors and Ergonomics Society Annual Meeting, volume 55, pages 1889–

1893, 2011.

[29] Michael A Regan, John D Lee, and Kristie Young. Driver distraction: Theory, effects,

and mitigation. CRC Press, 2008.

[30] Sheila G Klauer, Feng Guo, Bruce G Simons-Morton, Marie Claude Ouimet,

Suzanne E Lee, and Thomas A Dingus. Distracted driving and risk of road crashes

among novice and experienced drivers. New England Journal of Medicine, 370(1):54–

59, 2014.

[31] Yusuf Artan, Orhan Bulan, Robert Loce, and Peter Paul. Driver cell phone usage

detection from HOV/HOT NIR images. In IEEE Conference on Computer Vision

and Pattern Recognition Workshops, pages 225–230, 2014.

[32] Keshav Seshadri, Felix Juefei-Xu, Dipan Pal, Marios Savvides, and Craig Thor.

Driver cell phone usage detection on strategic highway research program (SHRP2)

face view videos. In IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pages 35–43, 2015.

[33] Jie Yang, Simon Sidhom, Gayathri Chandrasekaran, Tam Vu, Hongbo Liu, Nicolae

Cecan, Yingying Chen, Marco Gruteser, and Richard P. Martin. Detecting driver

phone use leveraging car speakers. In ACM International Conference on Mobile

Computing and Networking, pages 97–108, 2011.

109

[34] Tiffany L Overton, Terry E Rives, Carrie Hecht, Shahid Shafi, and Rajesh R Gandhi.

Distracted driving: prevalence, problems, and prevention. International Journal of

Injury Control and Safety Promotion, 22(3):187–192, 2015.

[35] Matti Kutila, Maria Jokela, Gustav Markkula, and Maria R. Rué. Driver distraction

detection with a camera vision system. In IEEE International Conference on Image

Processing, volume 6, pages 201–204, 2007.

[36] Yulan Liang, Michelle L. Reyes, and John D. Lee. Real-time detection of driver cog-

nitive distraction using support vector machines. IEEE Transactions on Intelligent

Transportation Systems, 8(2):340–350, 2007.

[37] Masahiro Miyaji, Mikio Danno, Haruki Kawanaka, and Koji Oguri. Drivers cog-

nitive distraction detection using adaboost on pattern recognition basis. In IEEE

International Conference on Vehicular Electronics and Safety, pages 51–56, 2008.

[38] T. Hoang Ngan Le, Yutong Zheng, Chenchen Zhu, Khoa Luu, and Marios Sav-

vides. Multiple scale faster-RCNN approach to driver’s cell-phone usage and hands

on steering wheel detection. In IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 46–53, 2016.

[39] Tashrif Billah, SM Mahbubur Rahman, M Omair Ahmad, and MNS Swamy. Recog-

nizing distractions for assistive driving by tracking body parts. IEEE Transactions

on Circuits and Systems for Video Technology, 2018.

[40] Martin Wollmer, Christoph Blaschke, Thomas Schindl, Björn Schuller, Berthold Far-

ber, Stefan Mayer, and Benjamin Trefflich. Online driver distraction detection using

Long Short-Term Memory. IEEE Transactions on Intelligent Transportation Sys-

tems, 12(2):574–582, 2011.

[41] Nanxiang Li, Jinesh J. Jain, and Carlos Busso. Modeling of driver behavior in real

world scenarios using multiple noninvasive sensors. IEEE Transactions on Multime-

dia, 15(5):1213–1225, 2013.

110

[42] Nanxiang Li and Carlos Busso. Predicting perceived visual and cognitive distractions

of drivers with multimodal features. IEEE Transactions on Intelligent Transportation

Systems, 16(1):51–65, 2015.

[43] Nanxiang Li and Carlos Busso. Analysis of facial features of drivers under cognitive

and visual distractions. In IEEE International Conference on Multimedia and Expo,

pages 1–6, 2013.

[44] E Friesen and Paul Ekman. Facial action coding system: a technique for the mea-

surement of facial movement. Palo Alto, 3, 1978.

[45] Masahiro Miyaji, Haruki Kawanaka, and Koji Oguri. Driver’s cognitive distraction

detection using physiological features by the adaboost. In IEEE International Con-

ference on Intelligent Transportation Systems, pages 1–6, 2009.

[46] Cheng Bo, Xuesi Jian, Xiang-Yang Li, Xufei Mao, Yu Wang, and Fan Li. You’re driv-

ing and texting: detecting drivers using personal smart phones by leveraging inertial

sensors. In Annual International Conference on Mobile Computing and Networking,

pages 199–202. ACM, 2013.

[47] Zhaojian Li, Shan Bao, Ilya V Kolmanovsky, and Xiang Yin. Visual-manual distrac-

tion detection using driving performance indicators with naturalistic driving data.

IEEE Transactions on Intelligent Transportation Systems, 19(8):2528–2535, 2017.

[48] Seyed Mehdi Iranmanesh, Hossein Nourkhiz Mahjoub, Hadi Kazemi, and Yaser P

Fallah. An adaptive forward collision warning framework design based on driver

distraction. IEEE Transactions on Intelligent Transportation Systems, 19(12):3925–

3934, 2018.

[49] Andrei Aksjonov, Pavel Nedoma, Valery Vodovozov, Eduard Petlenkov, and Martin

Herrmann. Detection and evaluation of driver distraction using machine learning and

fuzzy logic. IEEE Transactions on Intelligent Transportation Systems, 20(6):2048–

2059, 2019.

111

[50] Yuan Liao, Shengbo Eben Li, Wenjun Wang, Ying Wang, Guofa Li, and Bo Cheng.

Detection of driver cognitive distraction: A comparison study of stop-controlled inter-

section and speed-limited highway. IEEE Transactions on Intelligent Transportation

Systems, 17(6):1628–1637, 2016.

[51] Tianchi Liu, Yan Yang, Guang-Bin Huang, Yong Kiang Yeo, and Zhiping Lin. Driver

distraction detection using semi-supervised machine learning. IEEE Transactions on

Intelligent Transportation Systems, 17(4):1108–1120, 2015.

[52] Yang Xing, Chen Lv, Huaji Wang, Dongpu Cao, Efstathios Velenis, and Fei-Yue

Wang. Driver activity recognition for intelligent vehicles: A deep learning approach.

IEEE Transactions on Vehicular Technology, 2019.

[53] Xuetao Zhang, Nanning Zheng, Fei Wang, and Yongjian He. Visual recognition

of driver hand-held cell phone use based on hidden CRF. In IEEE International

Conference on Vehicular Electronics and Safety, pages 248–251, 2011.

[54] Amira Ragab, Celine Craye, Mohamed S. Kamel, and Fakhri Karray. A visual-

based driver distraction recognition and detection using random forest. In Springer

International Conference Image Analysis and Recognition, pages 256–265, 2014.

[55] Arief Koesdwiady, Safaa M Bedawi, Chaojie Ou, and Fakhri Karray. End-to-end

deep learning for driver distraction recognition. In International Conference Image

Analysis and Recognition, pages 11–18. Springer, 2017.

[56] Hesham M Eraqi, Yehya Abouelnaga, Mohamed H Saad, and Mohamed N Moustafa.

Driver distraction identification with an ensemble of convolutional neural networks.

Journal of Advanced Transportation, 2019, 2019.

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems, pages 1097–1105, 2012.

[58] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. In International Conference on Learning Representations, 2015.

112

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[60] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In IEEE conference on Computer Vision and Pattern

Recognition, pages 1–9, 2015.

[61] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer param-

eters and <0.5MB model size. arXiv preprint arXiv:1602.07360, 2016.

[62] Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Flattened convolutional

neural networks for feedforward acceleration. arXiv preprint arXiv:1412.5474, 2014.

[63] Min Wang, Baoyuan Liu, and Hassan Foroosh. Factorized convolutional neural net-

works. In IEEE International Conference on Computer Vision, pages 545–553, 2017.

[64] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[65] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh

Chen. MobilenetV2: Inverted residuals and linear bottlenecks. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.

[66] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely

efficient convolutional neural network for mobile devices. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 6848–6856, 2018.

[67] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet V2: Prac-

tical guidelines for efficient CNN architecture design. In European Conference on

Computer Vision, pages 116–131, 2018.

113

[68] Laurent Sifre and Stéphane Mallat. Rigid-motion scattering for image classification.

PhD thesis, Ph. D. thesis, 1:3, 2014.

[69] Arief Koesdwiady, Ridha Soua, Fakhreddine Karray, and Mohamed S Kamel. Recent

trends in driver safety monitoring systems: State of the art and challenges. IEEE

Transactions on Vehicular Technology, 66(6):4550–4563, 2016.

[70] Yang Xing, Chen Lv, Huaji Wang, Hong Wang, Yunfeng Ai, Dongpu Cao, Efstathios

Velenis, and Fei-Yue Wang. Driver lane change intention inference for intelligent

vehicles: Framework, survey, and challenges. IEEE Transactions on Vehicular Tech-

nology, 68(5):4377–4390, 2019.

[71] Jürgen Wiest, Matthias Karg, Felix Kunz, Stephan Reuter, Ulrich Kreßel, and Klaus

Dietmayer. A probabilistic maneuver prediction framework for self-learning vehicles

with application to intersections. In IEEE Intelligent Vehicles Symposium, pages

349–355, 2015.

[72] Peng Liu and Arda Kurt. Trajectory prediction of a lane changing vehicle based on

driver behavior estimation and classification. In IEEE International Conference on

Intelligent Transportation Systems, pages 942–947, 2014.

[73] Anup Doshi and Mohan M. Trivedi. On the roles of eye gaze and head dynam-

ics in predicting driver’s intent to change lanes. IEEE Transactions on Intelligent

Transportation Systems, 10(3):453–462, 2009.

[74] Stéphanie Lefèvre, Christian Laugier, and Javier Ibañez-Guzmán. Exploiting map

information for driver intention estimation at road intersections. In IEEE Intelligent

Vehicles Symposium, pages 583–588, 2011.

[75] Michaël G. Ortiz, Jens Schmüdderich, Franz Kummert, and Alexander Gepperth.

Situation-specific learning for ego-vehicle behavior prediction systems. In IEEE

International Conference on Intelligent Transportation Systems, pages 1237–1242,

2011.

114

[76] Tran Cuong, Anup Doshi, and Mohan Manubhai Trivedi. Modeling and prediction

of driver behavior by foot gesture analysis. Elsevier Computer Vision and Image

Understanding, 116(3):435–445, 2012.

[77] Cuong Tran, Anup Doshi, and Mohan M. Trivedi. Pedal error prediction by driver

foot gesture analysis: A vision-based inquiry. In IEEE Intelligent Vehicles Sympo-

sium, pages 577–582, 2011.

[78] Zachary N Sunberg, Christopher J Ho, and Mykel J Kochenderfer. The value of

inferring the internal state of traffic participants for autonomous freeway driving. In

IEEE American Control Conference, pages 3004–3010, 2017.

[79] Vijay Gadepally, Ashok Krishnamurthy, and Umit Ozguner. A framework for esti-

mating driver decisions near intersections. IEEE Transactions on Intelligent Trans-

portation Systems, 15(2):637–646, 2014.

[80] Georges S. Aoude, Vishnu R. Desaraju, Lauren H. Stephens, and Jonathan P. How.

Driver behavior classification at intersections and validation on large naturalistic

data set. IEEE Transactions on Intelligent Transportation Systems, 13(2):724–736,

2012.

[81] Ryuki Mabuchi and Keiichi Yamada. Prediction of driver’s stop or go at yellow

traffic signal from vehicle behavior. In IEEE Intelligent Vehicles Symposium, pages

1161–1166, 2013.

[82] Kim Schmidt, Matthias Beggiato, Karl H. Hoffmann, and Josef F. Krems. A math-

ematical model for predicting lane changes using the steering wheel angle. Elsevier

Journal of Safety Research, 49(2014):85–90, 2014.

[83] Brendan Morris, Anup Doshi, and Mohan Trivedi. Lane change intent prediction

for driver assistance: On-road design and evaluation. In IEEE Intelligent Vehicles

Symposium, pages 895–901, 2011.

[84] Michaël Garcia Ortiz, Franz Kummert, and Jens Schmüdderich. Prediction of driver

behavior on a limited sensory setting. In IEEE International Conference on Intelli-

gent Transportation Systems, pages 638–643, 2012.

115

[85] Puneet Kumar, Mathias Perrollaz, Stéphanie Lefevre, and Christian Laugier.

Learning-based approach for online lane change intention prediction. In IEEE Intel-

ligent Vehicles Symposium, pages 797–802, 2013.

[86] Julian Schlechtriemen, Andreas Wedel, Joerg Hillenbrand, Gabi Breuel, and Klaus-

Dieter Kuhnert. A lane change detection approach using feature ranking with max-

imized predictive power. In IEEE Intelligent Vehicles Symposium, pages 108–114,

2014.

[87] Ashesh Jain, Hema S Koppula, Shane Soh, Bharad Raghavan, Avi Singh, and

Ashutosh Saxena. Brain4cars: Car that knows before you do via sensory-fusion

deep learning architecture. arXiv preprint arXiv:1601.00740, 2016.

[88] Oluwatobi Olabiyi, Eric Martinson, Vijay Chintalapudi, and Rui Guo. Driver ac-

tion prediction using deep (bidirectional) Recurrent Neural Network. arXiv preprint

arXiv:1706.02257, 2017.

[89] Ashesh Jain, Hema S. Koppula, Bharad Raghavan, Shane Soh, and Ashutosh Saxena.

Car that knows before you do: Anticipating maneuvers via learning temporal driving

models. In IEEE International Conference on Computer Vision, pages 3182–3190,

2015.

[90] Julia Nilsson, Jonas Fredriksson, and Erik Coelingh. Rule-based highway maneuver

intention recognition. In IEEE International Conference on Intelligent Transporta-

tion Systems, pages 950–955, 2015.

[91] Arief Koesdwiady, Ramzi Abdelmoula, Fakhri Karray, and Mohamed Kamel. Driver

inattention detection system: A pso-based multiview classification approach. In

IEEE International Conference on Intelligent Transportation Systems, pages 1624–

1629, 2015.

[92] Georgios K Kountouriotis, Panagiotis Spyridakos, Oliver MJ Carsten, and Natasha

Merat. Identifying cognitive distraction using steering wheel reversal rates. Accident

Analysis & Prevention, 96:39–45, 2016.

116

[93] Tianchi Liu, Yan Yang, Guang-Bin Huang, Yong Kiang Yeo, and Zhiping Lin. Driver

distraction detection using semi-supervised machine learning. IEEE Transactions on

Intelligent Transportation Systems, 17(4):1108–1120, 2016.

[94] Kede Ma, Wentao Liu, Kai Zhang, Zhengfang Duanmu, Zhou Wang, and Wangmeng

Zuo. End-to-end blind image quality assessment using deep neural networks. IEEE

Transactions on Image Processing, 27(3):1202–1213, 2018.

[95] Kede Ma, Huan Fu, Tongliang Liu, Zhou Wang, and Dacheng Tao. Local blur

mapping: Exploiting high-level semantics by deep neural networks. arXiv preprint

arXiv:1612.01227, 2016.

[96] Yehya Abouelnaga, Hesham M Eraqi, and Mohamed N Moustafa. Real-time dis-

tracted driver posture classification. arXiv preprint arXiv:1706.09498, 2017.

[97] Kaggle. State farm distracted driver detection. https://www.kaggle.com/c/

state-farm-distracted-driver-detection. Accessed: 2018-06-11.

[98] Salah Taamneh, Panagiotis Tsiamyrtzis, Malcolm Dcosta, Pradeep Buddharaju,

Ashik Khatri, Michael Manser, Thomas Ferris, Robert Wunderlich, and Ioannis

Pavlidis. A multimodal dataset for various forms of distracted driving. Scientific

Data, 4:170110, 2017.

[99] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv

preprint arXiv:1701.07875, 2017.

[100] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in Neural Information Processing Systems, pages 2672–2680, 2014.

[101] Chaojie Ou, Chahid Ouali, Safaa M Bedawi, and Fakhri Karray. Driver behavior

monitoring using tools of deep learning and fuzzy inferencing. In 2018 IEEE Inter-

national Conference on Fuzzy Systems, pages 1–7, 2018.

[102] Anders Krogh and John A. Hertz. A simple weight decay can improve generalization.

In Advances in Neural Information Processing Systems, pages 950–957, 1992.

117

https://www.kaggle.com/c/state-farm-distracted-driver-detection
https://www.kaggle.com/c/state-farm-distracted-driver-detection

[103] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[104] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on Machine

Learning, pages 448–456, 2015.

[105] Martin Arjovsky. Code accompanying the paper ”wasserstein gan”. https://

github.com/martinarjovsky/WassersteinGAN. Accessed: 2017-12-30.

[106] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[107] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. In Advances in Neural Information Processing Systems, pages 6626–

6637, 2017.

[108] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of wasserstein gans. In Advances in Neural Information

Processing Systems, pages 5767–5777, 2017.

[109] Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. Openface: an

open source facial behavior analysis toolkit. In IEEE Conference on Applications of

Computer Vision, pages 1–10, 2016.

[110] Tadas Baltrusaitis, Peter Robinson, and Louis-Philippe Morency. Constrained local

neural fields for robust facial landmark detection in the wild. In IEEE International

Conference on Computer Vision Workshops, pages 354–361, 2013.

[111] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 248–255, 2009.

118

https://github.com/martinarjovsky/WassersteinGAN
https://github.com/martinarjovsky/WassersteinGAN

[112] Mercury Insurance. Distracted Driving Isnt Worth the

Risk. https://blog.mercuryinsurance.com/insurance/

distracted-driving-isnt-worth-the-risk/, 2018. [Online; accessed 18-

April-2019].

[113] GovAppSolutions. Distracted Driving: Day and Night. https://govappsolutions.

com/distracted-driving-day-and-night//, 2018. [Online; accessed 18-April-

2019].

[114] Murtadha D Hssayeni, Sagar Saxena, Raymond Ptucha, and Andreas Savakis. Dis-

tracted driver detection: Deep learning vs handcrafted features. Electronic Imaging,

2017(10):20–26, 2017.

[115] Government of Ontario. What counts as distracted driving. https://www.ontario.

ca/page/distracted-driving. Accessed: 2019-03-12.

[116] François Chollet. Xception: Deep learning with depthwise separable convolutions.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 1251–1258,

2017.

[117] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet

large scale visual recognition challenge. International Journal of Computer Vision,

115(3):211–252, 2015.

[118] National Highway Traffic Safety Administration. National motor vehicle crash cau-

sation survey: Report to congress. Technical report, National Highway Traffic Safety

Administration, 2008.

[119] Santokh Singh. Critical reasons for crashes investigated in the national motor vehicle

crash causation survey. Technical report, National Highway Traffic Safety Adminis-

tration, 2015.

[120] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681, 1997.

119

https://blog.mercuryinsurance.com/insurance/distracted-driving-isnt-worth-the-risk/
https://blog.mercuryinsurance.com/insurance/distracted-driving-isnt-worth-the-risk/
https://govappsolutions.com/distracted-driving-day-and-night//
https://govappsolutions.com/distracted-driving-day-and-night//
https://www.ontario.ca/page/distracted-driving
https://www.ontario.ca/page/distracted-driving

[121] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition

with deep recurrent neural networks. In IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 6645–6649, 2013.

[122] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recogni-

tion with deep bidirectional LSTM. In IEEE Workshop on Automatic Speech Recog-

nition and Understanding, pages 273–278, 2013.

[123] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-

Recurrent Neural Networks. In International Conference on Learning Representa-

tions, 2017.

[124] Muhammad Abdul-Mageed and Lyle Ungar. Emonet: Fine-grained emotion detec-

tion with gated recurrent neural networks. In Annual Meeting of the Association for

Computational Linguistics, volume 1, pages 718–728, 2017.

[125] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Convolutional sequence to

sequence model for human dynamics. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 5226–5234, 2018.

[126] Driveable Assessment Centres. The driveable on-road evaluation. https://

driveable.com/index.php/products/dore. Accessed: 2019-2-15.

[127] AAA SENIOR DRIVING. Drivers 65 plus: Check your performance.

https://seniordriving.aaa.com/evaluate-your-driving-ability/

self-rating-tool/. Accessed: 2018-12-10.

[128] David W Eby, Lisa J Molnar, Jean T Shope, Jonathon M Vivoda, and Tiffani A

Fordyce. Improving older driver knowledge and self-awareness through self-

assessment: The driving decisions workbook. Journal of Safety Research, 34(4):371–

381, 2003.

[129] CogniFit. Online driving test: Cognitive assessment battery (dab). https://www.

cognifit.com/cognitive-assessment/driving-test. Accessed: 2018-12-10.

120

https://driveable.com/index.php/products/dore
https://driveable.com/index.php/products/dore
https://seniordriving.aaa.com/evaluate-your-driving-ability/self-rating-tool/
https://seniordriving.aaa.com/evaluate-your-driving-ability/self-rating-tool/
https://www.cognifit.com/cognitive-assessment/driving-test
https://www.cognifit.com/cognitive-assessment/driving-test

[130] Driveable Assessment Centres. The driveable cognitive assessment tool. https:

//driveable.com/index.php/products/dcat. Accessed: 2019-2-15.

[131] Tomoaki Nakano, Muneo Yamada, and Shin Yamamoto. A method for assessing the

driving ability of the elderly and thoughts on its systematization. IATSS research,

32(1):44–53, 2008.

121

https://driveable.com/index.php/products/dcat
https://driveable.com/index.php/products/dcat

APPENDICES

1. Two videos shown below present the working process of the driver monitoring system

proposed in Section4, Chapter 3.

2. This video (https://www.dropbox.com/s/rryfle8q0y5afof/speed20.avi?dl=0) shows

the system working while a driver is driving on a speed of 20 km/hour. In this

video, the estimated danger level stays at 0 while he/she is driving normally (two

hands on the steering wheel while watching hi front). The danger level starts to in-

crease once he/she starts using a phone(texting or talking) or keeps watching his/her

right side. Instantly after he returns back to normal driving, the danger level drops

to zero.

3. This video (https://www.dropbox.com/s/z0fl4h056hg6ws5/speed100.avi?dl=0) shows

the system working while a driver is driving on a speed of 100 km/hour. In this video,

the estimated danger level increases or decreases more sharply than it is with a speed

of 20.

122

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Scope and Objectives
	Contributions
	Enhancing Driver Distraction Recognition Using Generative Adversarial Networks
	Driver Distraction Recognition Under Various Lighting Conditions
	Deep Learning-based Driving Maneuver Prediction System

	Thesis Outline

	Literature Review
	Cognitive Abilities of Advanced Driver Assistance Systems
	Review of Driver Distraction Recognition
	Driver Distraction Recognition Systems Design
	Design of Networks With Small Footprints

	Review of Driving Maneuver Prediction
	Summary

	Enhancing Driver Distraction Recognition Using Generative Adversarial Networks
	Introduction
	System Description
	Generative Model for Additional Data Sampling
	Discriminative Models for Distraction Classification

	Experiment and Evaluation
	Datsets
	Limitation of Training DDR Systems on Images from Video Clips
	Generate Images of Different Driving Scenarios
	Effect of Generated Images on Distraction Recognition Performance

	Driver Distraction Recognition as a Module of a Driver Monitoring System
	Head Pose Estimation Module
	Distraction Recognition Module
	Danger Level Inference Module
	Case Study

	Summary

	Driver Distraction Recognition Under Various Lighting Conditions
	Introduction
	Proposed Approach
	Structure of the Proposed System
	Depthwise Separable Convolution
	Simplified Inverted Residual Bottleneck
	Network Architecture

	Data Collection and Experimental Setup
	Data Collection
	Experimental Settings

	Experimental Results and Analysis
	Pretrain Networks on ImageNet
	Performance in RGB Mode
	Performance of Networks in NIR Mode
	Real-time Inference Speed on a Resource-restricted Computing Platform

	Summary

	Deep Learning-based Driving Maneuver Prediction System
	Introduction
	Methodology
	Driving Maneuvers Analysis
	The Structure of Driving Maneuver Prediction Systems
	Recurrent Neural Networks

	Experiments and Evaluation
	Database Collection and Annotation
	Feature Extraction and Evaluation Protocol
	The Information on Observation Actions Improves Maneuver Prediction
	Models to Better Capture Temporal and Spatial Information

	Driving Proficiency Assessment by Bidirectional Generalization Ability Test
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	APPENDICES

