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Abstract 29 

Purpose: Using atomic force microscopy (AFM) to investigate anterior surface topography (AST) in 30 

worn and unworn, plasma surface-treated (PST) and untreated (UT) gas permeable (GP) lenses, and 31 

influence of surface topography on in vivo comfort. 32 

Methods: GP lens AST evaluated with AFM in tapping mode, using an uncoated, 40nm symmetric tip 33 

(sampling frequency: 300kHz), at five randomised locations, over a 100µm2 area, to produce mean 34 

average roughness (Ra) and root mean square (RMS) values for each sample. Four unworn lenses (two 35 

PST, two UT) were examined (Quasar/Boston EO material). Twenty worn lenses (ten PST, ten UT) of 36 

same design and material as unworn lenses collected after 3 months lens wear. General wearing 37 

comfort reported by visual analogue scale (VAS) at 3 months visit. For sample preparation, two worn 38 

UT GP lenses were divided into four segments; each segment underwent a different lens rinse and 39 

drying method. 40 

Results: Unworn: UT lenses had significantly higher mean RMS and Ra values compared to PST 41 

(Mann-Whitney, p<0.05). Worn: UT Median RMS values were significantly higher than PST (Mann-42 

Whitney, p<0.05). Comfort: no correlation found between general comfort and RMS or Ra scores. 43 

Sample preparation: Method 4 (purified, distilled water rinse/nitrogen gas dry) produced optimum 44 

median RMS and Ra values. 45 

Conclusions: Unworn PST GP lenses had lower Ra and RMS values compared with unworn UT GP 46 

lenses. After 3 months wear, PST lenses had smoother surface topographies than UT lenses. No 47 

relationship was found between surface topography and lens wear comfort. Sample preparation 48 

protocol directly impacts AFM results. 49 

 50 

 51 

Highlights: 52 

• Plasma-surface treatment reduces roughness of unworn gas permeable contact lenses. 53 

• Benefit of plasma treatment continues for at least 3 months of daily wear. 54 

• No relationship was found between surface roughness and wear comfort. 55 

• A sample preparation protocol was developed to produce repeatable results. 56 

 57 

 58 

Keywords: gas permeable contact lenses, plasma-treatment, surface roughness, comfort 59 

 60 
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Introduction 62 

The surface roughness of a device in contact with a living system will influence the biological 63 

reactivity of the device with the surface (Hosaka et al, 1983). So, for a contact lens placed on the ocular 64 

surface, the lens polymer should interfere as little as possible with the epithelial surface, cornea and 65 

conjunctiva (Efron et al, 2013). This is important for maintenance of ocular health and patient tolerance 66 

of the lens. 67 

 68 

Gas permeable (GP) contact lenses are typically prescribed for full-time daily wear, often for many 69 

months. Planned replacement after 6 or 12 months wear is common, but sometimes lenses are worn 70 

until degradation of comfort or acuity necessitates replacement. Despite cleansing and disinfection 71 

procedures, organisms and deposits adhere to lens surfaces. Wear, handling and cleaning of GP contact 72 

lenses changes the physio-chemical properties (hydrophobicity, electrostatic charge and surface 73 

roughness) of the contact lens surface. 74 

 75 

Plasma surface-treatment (PST) of GP lenses is proposed as a method for improving wear comfort and 76 

resistance to deposition, over that achieved with un-treated (UT) lenses, by altering the superficial 77 

polymer surface without significantly affecting the remaining underlying material (Chu et al., 2002). 78 

In this way, surface properties of the lens, including wettability, adhesion, adsorption, chemical 79 

reactivity and sensitivity to light, may be altered (Ru and Jie-rong, 2006). However, it may wear off 80 

over time (Valsesia et al., 2004). 81 

 82 

In GP lenses, PST aims to remove residual spoilation from the lens manufacturing process and thereby 83 

reduce the contact angle to make the lens more wettable. It has been suggested that this may improve 84 

lens comfort and vision (Port and Loveridge, 1986; Schafer, 2006; Young and Tapper, 2007; Yin et 85 

al., 2008). Furthermore, it is thought that PST reduces surface roughness and binding of potentially 86 

sinister microbes, such as pseudomonas aeruginosa (Bruinsma et al., 2003). However, no research 87 

relating GP surface quality to the performance or comfort of the lens has been performed. 88 

 89 

Atomic force microscopy (AFM) maps the topography of a polymer surface using a scanning probe to 90 

create a three-dimensional image (Meyer, 1992; Stuart, 2002). It is usually performed in ambient 91 

conditions and, because no electrical surface conductivity is required, many inorganic and polymer 92 
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surfaces may be studied with minimal cost and relative ease, since little or no sample preparation is 93 

required (Munk and Aminabhavi, 2002). 94 

 95 

AFM uses a fine-tipped probe which is positioned several angstroms above the surface of the sample. 96 

It measures the interaction force between the tip of the probe and the surface. The resultant force has 97 

two components: an attractive van der Waals component, typical for molecules in contact, and a 98 

repulsive component that does not allow the molecules to overlap (Munk and Aminabhavi, 2002). The 99 

probe is an insulator and is attached to a cantilever with a reflective surface, which is scanned in the 100 

x-y plane. A piezo-electric support is used to mount the sample and this moves in response to surface 101 

changes sensed by the probe. The deflections are monitored by a reflected laser beam. Measurements 102 

can be made either in contact (no oscillation of the cantilever), or by tapping (with oscillation of the 103 

cantilever) mode. 104 

 105 

Atomic force microscopy (AFM) is a well-established technique in flatness analysis and imaging of 106 

polymer surfaces, including biopolymers (Merrett et al., 2002; Munk and Aminabhavi, 2002). AFM 107 

has been used to analyse the surface of both GP (Baguet et al, 1995; Bhatia et al, 1997; Bruinsma et 108 

al., 2002; Munk and Aminabhavi, 2002; Yin et al, 2008; Ren et al, 2009) and soft contact lenses (SCL) 109 

(Gonzalez-Meijome et al., 2006; Giraldez et al. 2010). In SCL studies, AFM has been described as a 110 

very powerful tool for high resolution examination of lens surface structure and identification of 111 

significant differences in worn and unworn lens morphology (Bhatia et al, 1997). 112 

 113 

This study examined the surface topography of unworn PST and UT GP lenses, and of 3 months worn 114 

PST and UT GP lenses, using AFM, with the aim of investigated whether samples that have undergone 115 

surface modification have smoother topographies than UT samples, irrespective of wear, and whether 116 

there is any correlation between lens comfort and topography, i.e. the smoother the lens, the better the 117 

subjective comfort. An initial method development was required for optimising of lens sample 118 

preparation. 119 

 120 

Materials and Methods 121 

Atomic Force Microscope 122 

The AFM (Nanoscope IIIa Dimension 3100, Digital Instruments, Santa Barbara, USA) was operated 123 

in tapping mode, at five locations, using an uncoated, symmetric tip of 40nm, at a sampling frequency 124 
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of 300kHz. The five locations were selected randomly on each lens surface (Fig. 1). Root mean-square-125 

roughness (RMS) and average surface roughness (Ra) were obtained from the roughness analysis 126 

program using the Nanoscope III software (Digital Instruments, Santa Barbara, USA). Both values 127 

were expressed in nanometres. These measures were selected because they have been widely used in 128 

other surface roughness studies, as they give the most meaningful and reliable statistical interpretation 129 

of the surface topography (González-Méijome et al., 2006). RMS represents the standard deviation for 130 

the mean surface plane, and Ra represents the average distance of the roughness profile to the centre 131 

plane of the surface profile. Some earlier studies also report maximum roughness values, however 132 

reporting the peak roughness value of an area does not reflect the topography of the lens and may be 133 

unreliably high due to local imperfection or sample contaminations (Bruinsma et al., 2003). 134 

 135 

 136 

 137 

 138 

 139 

Fig. 1: Approximate position of the five surface locations on GP lens selected for AFM analysis. 140 

 141 

Surface roughness images were also recorded at each location on each sample. This imaging technique 142 

was employed to visualise the local variation in topography within a sample. This technique was not 143 

evident in other published work (Bruinsma et al., 2003). 144 

 145 

Comparison of GP lens sample preparation 146 

In the following protocols, only dry sample preparation was investigated. Four different methods for 147 

GP lens sample preparation were examined. The methods employed to prepare GP samples for AFM 148 

were based on work which investigated multiple surface properties of worn GP lenses (Bruinsma et 149 

al., 2003). 150 

 151 

Worn UT fluorosilicone acrylate GP lenses (Quasar, No7 Contact Lens Laboratory Ltd, Hastings, UK) 152 

were collected from both eyes of a single subject who had worn them on a standard, all-day protocol, 153 

for 3 months (giving two lenses in total for further study).  The lenses were stored in a lens case filled 154 
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with care solution (Menicare Plus, Menicon Co. Ltd, Japan), and transported to the laboratory. Each 155 

lens was removed from its transport container and transferred to fresh Menicare Plus solution in a 156 

sterile well, using sterile stainless-steel tweezers. The lens remained in solution for a minimum of 5 157 

mins. 158 

 159 

Each lens was then removed from its case and cut into four smaller segments using a sterile surgical 160 

knife. A single, worn lens was thus used to produce four samples in order to provide one sample for 161 

four sample preparation methods. Since both lenses of the subject were treated in this way, two lens 162 

surface samples were supplied for each method. 163 

 164 

Following removal from the lens case, four sample preparation methods were used (Table 1). Method 165 

1 matched the protocol of Baguet et al. (1993), with the lenses dipped five times in 0.9% saline (non-166 

preserved), and excess saline removed by gently tapping the lens edge on a paper tissue. The lenses 167 

were allowed to air dry. In Method 2, the lenses were not rinsed, but were only dried using a nitrogen 168 

gas hose (pressure: 2 bar). In Method 3, the lenses were dipped five times in 0.9% saline (non-169 

preserved), and excess saline removed by gently tapping the lens edge on a paper tissue. The lenses 170 

were then dried using the nitrogen gas hose. In Method 4, the lenses the lenses were dipped five times 171 

in purified, distilled water and excess water removed by gently tapping the lens edge on a paper tissue. 172 

The lenses were then dried using the nitrogen gas hose. 173 

 174 

Finally, each lens section was mounted onto the AFM platform using adhesive tape. 175 

 176 

Method 

Storage Lens rinse preparation Lens drying 

Menicare 

Plus 

0.9% saline 

(unpreserved) 

Not 

rinsed 

Purified, 

distilled water 
Air dried 

Nitrogen 

hose 

Method 1 P P   P  

Method 2 P  P   P 

Method 3 P P    P 

Method 4 P   P  P 

Table 1: Overview of the sample preparation used in each Method (Method 1 is based on Bruinsma 177 

et al., 2003); (Menicare Plus, Menicon Co. Ltd, Japan). 178 

 179 

 180 
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Repeatability of GP surface AFM measurement 181 

A single worn UT GP lens (Quasar, No7 Contact Lenses, Hastings, UK) was collected from a subject 182 

who had worn it on a standard, all-day protocol, for 3 months. The lens was stored in a lens case filled 183 

with care solution (Menicare Plus, Menicon Co. Ltd, Japan), and transported to the laboratory. The 184 

lens was removed from its transport container and transferred to fresh Menicare Plus solution in a 185 

sterile well, using sterile stainless-steel tweezers. The lens remained in solution for a minimum of 5 186 

mins.  The lens was then removed from its case and cut into two smaller segments using a sterile 187 

surgical knife. The two lens sections were prepared for AFM using the Method 4 protocol. Five 188 

100µm2 areas were scanned on each lens sample, referred to as Sample 1 and Sample 2. 189 

 190 

Unworn lens samples 191 

Four unworn GP lenses (Quasar, No7 Contact Lenses, Hastings, UK, with Boston EO material, 192 

Polymer Technologies, Boston, USA) were examined under AFM. Two lenses were PST and two were 193 

UT, but they were otherwise identical. The lenses were removed from their lens case and storage 194 

solution (Menicare Plus, Menicon Co. Ltd, Japan) in which they had been transported from the 195 

manufacturing laboratory and placed in a sterile vial filled with fresh Menicon Plus solution, with the 196 

aid of sterile metal tweezers. Using the tweezers to avoid contamination, the lenses were then cut into 197 

smaller segments using a sterile surgical knife and prepared using the Method 4 protocol. 198 

 199 

Worn lens samples 200 

Lens samples were collected from subjects recruited for a separate study investigating the clinical 201 

benefits of PST on the same type of GP lenses (Quasar, No7 Contact Lens Laboratory Ltd, Hastings, 202 

UK, with Boston EO material, Polymer Technologies, Boston, USA). Following 3 months of daily GP 203 

wear, twenty lenses were collected: ten PST and ten UT. These lenses were prepared for AFM using 204 

the Method 4 protocol. As an additional step, subject comfort with the lenses was measured using a 205 

visual analogue scale (VAS), rating comfort on a 10 cm scale between ‘0 = Not at all comfortable’ and 206 

‘100 = Very comfortable’. 207 

 208 

Statistical analysis 209 

Data was analysed using SPSS 16.0 (SPSS Inc., Chicago, USA) and examined for normality by the 210 

Shapiro-Wilk test. As the results were not normally distributed, the median and range values for root 211 

mean square (RMS) and surface roughness (Ra) were used to describe the results. Differences between 212 
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groups were assessed by Mann-Whitney, Kruskal-Wallis and Wilcoxon Rank tests, and correlation by 213 

the Pearson test. A probability value of <0.05 was used for statistical significance. 214 

 215 

Results 216 

Sample preparation 217 

As the results were not normally distributed, the median and range values of RMS and Ra for each 218 

preparation method (1-4) are shown in Fig. 2, and examples of the surface images produced in two and 219 

three dimensions are shown in Fig. 3. 220 

 221 

 222 
Fig. 2: Box-plots showing median and range values of the surface analysis results for each of the four 223 

sample preparation methods. 224 

 225 
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 226 
Fig. 3: Two (upper) and three-dimensional (lower) image examples for each sample preparation 227 

method. 228 

 229 

Preparation Methods 1 and 3 (where samples were rinsed with saline prior to AFM) showed similar 230 

results, with the lowest median RMS and Ra values and the least variability (Mann-Whitney, RMS 231 

and Ra; p=0.70 and p=0.70). However, visual comparison revealed visible sodium crystals on the lens 232 

surface as the saline solution evaporated. Evidence of this is illustrated in Fig. 3C. 233 

 234 

Method 2, where the Menicare Plus solution was not rinsed from the lens surface prior to AFM, gave 235 

higher RMS and Ra scores, and a wider range, compared with the other preparation methods. Method 236 

4 produced median RMS and Ra values of 15.07nm and 12.16nm, respectively. These values were 237 

lower than Method 2 and marginally higher, with a wider range, than those produced by Methods 1 238 

and 3. Statistically, results were not significantly different (Kruskal-Wallis, p=0.25 and p=0.21, for 239 

RMS and Ra) between Methods 1, 3 and 4. 240 

 241 

Repeatability of AFM for measurement of GP surface topography 242 

Considering the five measures on each sample, Sample 1 showed a larger range of results for RMS 243 

and Ra than Sample 2, but no statistically significant difference was found between results for either 244 

RMS or Ra in the two lens samples (Wilcoxon Rank, RMS and Ra; p=0.35 and p=0.89) (Fig. 4). 245 

A) Method 1 B) Method 2 D) Method 4C) Method 3
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 246 
Fig. 4: Box-plot showing median, upper and lower quartiles and range AFM repeatability study 247 

results for the two samples taken from the same lens. 248 

 249 

Unworn lens samples 250 

The surface roughness analysis results for the two factory-new UT and the two factory-new, PST GP 251 

lenses are listed in Table 2 and displayed in Fig. 5, and a three-dimensional image example of the 252 

lenses is shown in Fig. 6. The results showed that the UT lenses had significantly higher mean RMS 253 

and Ra values compared with the PST samples (Mann-Whitney, p<0.05). 254 

 255 

 Unworn Worn 
Ra RMS Ra RMS 

Median Range Median Range Median Range Median Range 
Untreated 
(UT) 12.37 11.10-17.80 17.63 15.00-27.03 12.92 11.34-26.59 18.70 15.01-32.94 

Plasma-treated 
(PST) 11.53 7.46-15.76 14.92 11.10-20.93 11.18 7.68-15.97 14.82 11.24-20.99 

Table 2: Ra and RMS median and range for unworn and worn untreated (UT) and plasma-treated 256 

(PST) GP lenses. 257 
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 258 
Fig. 5: Box-plot showing median and range values for roughness analysis of unworn PST and UT 259 

lenses (2 lenses, 2 samples from each lens, 5 readings per sample). 260 

 261 

 262 
Fig. 6: Example surface appearances of unworn GP lenses; (left) PST, (right) UT. 263 

 264 

Worn lens samples 265 

Median Ra values were higher in the worn UT lenses [12.92nm (range 11.34-26.59)] than the worn 266 

PST lenses [11.18nm (range 7.68-15.97)], a difference which approached statistical significance 267 

(Mann Whitney, p=0.06). Median RMS scores were significantly higher in worn UT samples [18.70nm 268 

(15.01-32.94)] than the worn PST samples [14.82nm (11.24-20.99)] (Mann-Whitney, p<0.05) (Table 269 

2 and Fig. 7). 270 
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 271 
Fig. 7: Box-plot showing median and range values for surface analysis results for worn PST and 272 

worn UT samples. 273 

No correlation was found between general comfort, reported by VAS at the 3 months visit, and RMS 274 

or Ra scores (Pearson, RMS and Ra; p=0.73, R2=0.059, and p=0.80, R2=0.069) (Fig. 8). No correlation 275 

was found between surface treatment and roughness (Pearson, p=0.36). 276 

 277 

 278 

A 
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 279 
Fig. 8: Correlation between surface roughness measured by AFM and VAS comfort after 3 months 280 

of lens wear; A: Correlation between general comfort VAS scores and RMS, and B: Correlation 281 

between general comfort VAS and RA (0=Not at all comfortable, 100=Very comfortable). 282 

 283 

Discussion 284 

AFM has been used to analyse the surfaces of both GP and SCL lenses. In SCL studies, AFM has been 285 

described as a very powerful tool for high resolution examination of lens surface structure and 286 

identification of significant differences in worn and unworn lens morphology (Bhatia, Goldberg and 287 

Enns, 1997). González-Méijome et al. (2006) reported significant differences in AFM results when 288 

investigating surface topography of three different unworn soft lenses, with the highest roughness 289 

result observed in a PST modified lens. This finding may have implications regarding lens spoilation, 290 

resistance to bacterial adhesion or mechanical interaction with the ocular surface. 291 

 292 

Bruinsma et al. (2003) examined worn GP lenses to explore the relationship between surface roughness 293 

and bacterial adhesion, and found that, within each individual, major changes in lens surface properties 294 

occur during wear. They found that variations in roughness from 4-14nm have little influence on 295 

bacterial deposition, while higher roughness levels increase bacterial adhesion. The study concluded 296 

that wearing GP lenses for longer periods (over 50 days) increased roughness and, therefore, GPs 297 

should be prescribed with a planned replacement strategy. While it is known that the risk of MK with 298 

GP lenses is already low, frequent replacement of GP lenses may help to reduce surface deposition, 299 

improve wetting and maintain an optimum visual performance, to ensure the risk of MK is kept at a 300 

B 



 14 

minimum. For PST lenses, it has been reported that the treatment wears off over a period of months 301 

(Young and Tapper, 2007; Sanchis et al., 2008). This may cause an increase in surface roughness and 302 

physiological influence on wearing comfort. However, it has been hypothesised that patients and their 303 

tear physiology are adapted to the lens material by this point, so it is relatively unimportant (Young 304 

and Tapper, 2007). 305 

 306 

Sample Preparation 307 

When AFM is used to measure surface topography of worn lenses, it is important that the preparation 308 

of samples is consistent and avoids degradation or surface disruption to ensure accurate, reliable 309 

results. Sample contamination could lead to falsely high, surface roughness readings. SCL are 310 

generally examined under aqueous buffered conditions (González-Méijome et al., 2006). However, 311 

GP lenses may be examined either wet or dry. Published work investigating GP surfaces using AFM 312 

has described only one method of sample preparation (Baguet et al., 1993), but this may not be the 313 

best protocol for AFM. In particular, in this published method, the lens sample is dipped five times 314 

into non-preserved saline and the lens tapped on tissue paper before analysis, which may contaminate 315 

the sample surface. 316 

 317 

This current study has demonstrated that the sample preparation protocol directly impacts AFM results. 318 

As such, it is critical that the sample is not contaminated prior to AFM, so that the results produced 319 

are consistent, accurate and meaningful. Avoiding contamination during sample preparation is critical 320 

in producing reliable surface analysis results with AFM. 321 

 322 

Method 1 has been previously employed in AFM surface analysis of GP lenses (Bruinsma et al., 2003). 323 

The Ra values produced in this study are similar to those produced by Bruinsma et al. (2003); where 324 

Ra was found to be 9±4nm in worn lenses. Both studies investigated worn lens (ninety days in this 325 

study compared with fifty days in Bruinsma et al. (2003)), although the materials tested were different. 326 

However, this study found that it was not advisable to rinse the sample in saline prior to measurement 327 

because, when the lens dries, sodium crystals contaminate the lens surface. For this reason, Methods 328 

1 and 3 should both be considered unsuitable. 329 

 330 

In Method 2, AFM was performed on a lens coated with Menicare Plus solution. Menicare Plus is a 331 

multi-purpose cleaning and conditioning agent. It contains lubricating factors to coat the lens surface 332 
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and so improve on-eye comfort and wetting. However, since AFM investigates only the most anterior 333 

layers of the sample, this may mean that any overlying dried lens solution masks the true lens surface, 334 

making this preparation method also unsuitable prior to AFM. 335 

 336 

In Method 4, where the lens is stored in Menicare Plus solution, rinsed in ultra-purified, distilled water 337 

and then dried with a nitrogen hose, there is the least likelihood of contamination of the sample via 338 

care solution or air-borne contaminants. This methodology is similar to that used in sample preparation 339 

in other biological AFM research (Thundat et al., 1994). Air-drying the sample may permit air born 340 

particles to adhere to the lens surface, therefore drying with dry nitrogen after rinsing is a superior 341 

preparation technique (Thundat et al., 1994). Interestingly, when using Method 4, the RMS and Ra 342 

results were higher, though not significantly, than with Methods 1 and 3. This suggests that the Method 343 

enables the true surface roughness quality to be assessed. Further study using this method is needed to 344 

confirm this finding. It would appear that Method 4 preparation poses the least risk of lens 345 

contamination and should be used when preparing GP samples for AFM. 346 

 347 

Measures of surface roughness using a standard protocol appear repeatable within a single sample, 348 

implying that any portion of the lens is representative of its surface topography. This is important 349 

because examination of an entire lens surface is impractical with this method of AFM. The results 350 

demonstrate that values for Ra and RMS vary both within-sample and between-sample, indicating that 351 

surface topography varies across the lens. This concurs with studies which have found that the 352 

manufacturing process is responsible for surface topography variations (Fourny et al., 1989; 353 

Merindano et al., 1998). All GP lenses are made by lathe-cut technology and this has been attributed 354 

to linear surface scratches detected on unworn GP lenses when examined by SEM (Merindano et al., 355 

1998). 356 

 357 

One limitation of this study arises from having investigated only one lens at two locations with five 358 

readings at each location, and reproducibility over time was not examined in this study. A further 359 

investigation of repeatability following prolonged storage and involving a larger sample would be 360 

interesting for future work. 361 

 362 

 363 

 364 
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Unworn/worn lenses 365 

In this study, as anticipated, unworn PST GP lenses had lower Ra and RMS values compared with 366 

unworn UT GP lenses. This finding agrees with the findings of Valsesia et al. (2004) who investigated 367 

the surface topography and characterisation of PMMA co-polymer films with and without PST. Since 368 

surface roughness has been found to increase bacterial adhesion and may adversely affect contact lens 369 

comfort, the findings of this study suggest that there is a clinical benefit associated with PST of GP 370 

lenses. 371 

 372 

Interestingly, unworn UT lenses in this investigation had the highest roughness scores, higher even 373 

than worn UT lenses, and they had a greater variability in the measurement. This may be because 374 

factory-new lenses have many surface contaminant residues from the manufacturing process, whereas 375 

worn lenses are ‘cleaned’ by wear and the daily cleaning regimen. However, this trend may be 376 

dampened by increasing the sample size. 377 

 378 

PST lenses that had been worn for 3 months were also smoother than worn UT lenses. This confirms 379 

that PST of GP lenses can reduce surface roughness initially, and that the benefits of treatment, 380 

improved hydrophilicity and resistance to protein deposition, are maintained with lens wear. It has 381 

been suggested that contact lens PST ages and wear off over a period of months (Sanchis et al., 2008). 382 

In this study it was found that, after 3 months wear, PST was still evident, although surface roughness 383 

scores were lower than unworn PST. 384 

 385 

The reduction in surface smoothness of the worn PST lenses may be due to several reasons, but the 386 

most obvious and logical one is that the PST has diminished over time and lost some of its smoothing 387 

properties. This idea is supported by Young et al. (2007), who suggested that PST wears off with 388 

cleaning and wear. In addition, the variability of results may be due to inter-subject differences such 389 

as variation in hygiene, differences in wear schedule, lifestyle and patients’ tear physiology. Where 390 

possible, these factors have been controlled; for example, patients were instructed to follow the same 391 

care procedure and use the same contact lens solutions, and all were advised to wear lenses on a full-392 

time basis for 12 weeks. However, non-compliance issues are commonplace in contact lens patients 393 

(Polse et al., 1999). The random allocation of subjects should ensure that non-compliance with lens 394 

care had a similar influence on both lens groups, but it is possible that poor lens care had less influence 395 

on the PST lens surfaces than UT. 396 
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Any measured surface roughness of a brand-new lens has two possible origins: material properties or 397 

manufacturing method. Scanning electron microscopy (SEM) and interferential shifting phase 398 

microscopy (ISPM) results indicate that, in general, GP surface roughness values tend to increase with 399 

increasing Dk (Merindano et al., 1998). Using ISPM, Merindano et al. (1998) found linear marks on 400 

the anterior lens surface of factory-new GP lenses (González-Méijome et al., 2006), which may be 401 

explained by the lathe-cutting technology used to produce them. An AFM study of unworn SCLs found 402 

magnification also significantly affects roughness analysis values, noting that surface roughness 403 

increases as observation area is increased (Young and Tapper, 2007; Sanchis et al., 2008). 404 

 405 

It should be noted that the samples used in this study will have varied in time since manufacture, as 406 

well as on which lathe the lens was made, since it has been found that exposure to atmospheric 407 

conditions may contaminate lens surface and impact on AFM results (Shakesheff, 1995). Another 408 

possible influence on the results could be that, following lens harvesting, the lenses were stored in 409 

Menicare Plus solution for varying periods (<3 weeks) before examination with AFM. Local variations 410 

in topography in single samples were found, as anticipated. However, by measuring surface roughness 411 

at five separate areas within each sample, the median values could be calculated, which improved 412 

repeatability. 413 

 414 

To establish whether the results seen here are a direct result of lens aging, it would be interesting to 415 

investigate how PST lenses are affected over longer periods, e.g. 6 or 12 months. Also, it has been 416 

indicated that solutions play a pivotal role in contact lens comfort and lens hygiene, and some solutions, 417 

when digitally rubbed onto the lens surface, may scratch or alter the PST surfaces. 418 

 419 

Comfort 420 

This study also aimed to investigate whether the differences between surface topography in PST and 421 

UT lenses, both worn and unworn, had any influence on in vivo comfort. It was hypothesised that 422 

comfort would be improved with reduced surface roughness, as a result of PST. However, although 423 

surface roughness was reduced by PST, subjective comfort was not improved. This finding may be 424 

because the surface analysis results are at microscopic levels and therefore do not significantly impact 425 

on ocular comfort. Alternatively, the comfort responses may be affected by other factors such as edge 426 

finish, lens fit, tear stability, lens lid interaction or corneal sensitivity. These differences will vary 427 

between subjects, independently of surface roughness, and will impact on subjective comfort. The 3 428 
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months wearing period may also have been insufficient time for surface roughness to have changed 429 

significantly, and to start affecting lens wear comfort. 430 

 431 

The measurement of surface roughness before and after wear would allow the measurement of change 432 

in roughness over time, but the preparation technique used involved cutting the lens into smaller pieces 433 

before mounting on the microscope stage. This destructive technique currently prevents AFM 434 

measurement prior to wear. However, if a curved body for mounting the lens were produced, it may 435 

be possible to mount the entire lens for investigation. Care would be needed in securing the lens to the 436 

mount, as use of an adhesive (as in this study) may leave residues on the back surface of the lens. 437 

 438 

A limitation of AFM is that is does not investigate the surface chemistry. Future work might involve 439 

further analysis of the lens samples using X-ray photoelectron spectroscopy (XPS). This technique 440 

may lead to better surface characterisation and a clearer understanding of correlation between lens 441 

surface effects on lens performance following PST. 442 

 443 

Conclusions 444 

The work was successful in designing a sample preparation protocol capable of producing repeatable 445 

AFM results. It confirmed the initial hypothesis that sample preparation impacts the AFM results. 446 

Thus, it is critical to consistently use a specific preparation methodology to minimise surface damage 447 

or sample contamination and to produce accurate, repeatable AFM results. 448 

 449 

The protocol recommended for GP lens preparation prior to AFM is as follows: 450 

After harvesting, the lenses should be stored in a clean lens case filled with Menicare Plus solution 451 

and transported immediately to the laboratory. The lens should be transferred to fresh Menicare Plus 452 

solution in a sterile well, using sterile stainless-steel tweezers. The lens should be cut into smaller parts 453 

using a sterile surgical knife. The sample should then be dipped five times in, distilled, ultra-purified 454 

water and dried with a nitrogen hose. Finally, the lens is secured onto an adhesive mount for AFM 455 

measurement. 456 

 457 

Unworn PST GP lenses had lower Ra and RMS values compared with unworn UT GP lenses. After 3 458 

months wear, PST lenses have smoother surface topographies than UT lenses, suggesting a clinical 459 
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benefit of coating, since increased surface roughness has been found to increase bacterial adhesion. 460 

However, no relationship was found between surface topography and lens wear comfort. 461 

 462 
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