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Abstract 

We investigate efficient plans to assess the misclassification error rates of a binary measurement system 

used as an in-line inspection protocol. We assume that parts can be inspected repeatedly and that each 

part has its own (latent) misclassification rate. We propose a three-phase assessment plan. Phase I 

consists of data from recent inspection history. In Phase II, we select a sample of failed parts that we re-

measure multiple times with the binary measurement system of interest. In Phase III, we verify a 

carefully selected subsample of the parts from Phase II with the aid of a binary gold standard 

measurement system. We show that the proposed plan is a substantial improvement over existing 

assessment plans in terms of cost and/or precision. 

Key words: baseline data, binary measurement system assessment, conditional sampling, targeted 

verification 

1. Introduction 

Binary measurement systems (BMS) with two possible outcomes (pass or fail) are important 

components of inspection schemes designed to protect the customer by determining whether or not 

measured units, here called parts, meet specifications (conforming or non-conforming). In this article, 

we consider the situation where we assume both the underlying measurand and the realized quantity 

are binary. This differs from the commonly considered situation [1], [2], [3] where the measurand is 

continuous and compared to tolerance limits. We also assume that we have access to a gold standard 

measurement system, but that gold standard measurements are either expensive, destructive or both 

and so the gold standard is not used for regular production. There are many examples involving 100% 

final inspection where assuming a binary measurand makes sense. For instance, in the production of 

crankshafts, at the final inspection, we measure 50+ characteristics, including journal diameters, crank 

balance, various run-outs, etc. and each crankshaft either passes or fails the final inspection. In this case, 

the final decision on the conformance of each individual crankshaft is based on a large number of 

individual continuous characteristics and it is untenable to model the relationship between all the 

characteristics and the final binary assessment. Instead we proceed by considering a binary measurand. 

In the crankshaft example the gold standard measurement system is a coordinate measurement 
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machine. There are many other similar example situations. In Section 2.3, we consider the inspection of 

an electronic device. Here, as in the crankshaft example, each device passes the final inspection only if it 

passes a large number of individual performance tests. In this example, a gold standard measurement 

involves an engineer checking each functional test for a device one by one. Another example where the 

methodology presented in this paper is relevant arises in the inspection of train rails. In this application, 

the inspection process is looking for cracks and other types of defects using an ultrasound system. Here, 

the gold standard measurement is destructive as it involves sectioning the rail. 

A BMS makes errors; specifically, a non-conforming part may pass inspection and a conforming part may 

fail inspection. We can quantify the performance of the measurement system by modeling and 

estimating the frequency of misclassifications. If we select a part at random from the process, let 1mY   

indicate that the part passes a single inspection and 0mY   that it fails. Also, let the measurand 1Y   

indicate that the part is truly conforming and 0Y   that it is not. Then,  

( 1| 0)C mR P Y Y     and  ( 0 | 1)P mR P Y Y       

are the probabilities of misclassification. The parameters CR  and PR  are respectively the customer’s 

and producer’s risk. Note that in assessing a diagnostic test in a medical context with diseased replacing 

non-conforming, 1 CR  and 1 PR  are the sensitivity and specificity respectively. We assess the 

measurement system by estimating CR  and PR . We also quantify the performance of the production 

process by estimating the probability that a randomly selected part is conforming, i.e. ( 1)CP P Y   .  

We start with several conditions:  

 Any part can be measured repeatedly (i.e. the BMS is non-destructive) and the variability in the 

use of the BMS may result in different outcomes when measuring the same part. 

 The measurand (Y) is binary, i.e. conforming/non-conforming  

 The inspection system is automated so that there are no operator effects. 

 Some parts are more difficult to classify correctly than others. That is, we suppose the 

misclassification rate is part specific. The parameters CR  and PR  are the mean misclassification 

rates over all the parts (also called the global consumer and producer’s risks). 

 The process quality CP  is close to 1 and the measurement system has high quality, i.e. CR  and 

PR  are small. 

 There is a binary gold standard measurement system available that can verify without error 

whether any part is conforming or not. Gold standard measurements are expensive and/or time 

consuming.  

 The production process has high volume and the inspection system is inline so that we have 

many parts segregated by passing or failing inspection. The records from recent inspections are 

called the baseline data and are freely available. 
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There are many assessment plans discussed in the literature for estimating the misclassification 

probabilities under some or all of these assumptions. All require a large number of parts and many 

measurements to get estimates of CR  and PR  (assumed small) with sufficient precision to be useful. 

Hence the interest is in developing more efficient assessment plans. 

One way to categorize assessment plans is in terms of the use of the gold standard system. In a full 

verification plan, all parts in the study are measured with the gold standard. Full verification plans are 

widely recommended [2]. In contrast, for a no verification plan, we do not use a gold standard at all, 

while with a partial or targeted verification plan, the gold standard system is used to verify the status of 

a selected subset of the parts. Full verification requires the most effort, no-verification the least, and 

targeted verification is somewhere in between. 

Models used for data from plans with no verification, treat Y as a latent variable for each part in the 

study. See, for example, Danila et al. [4], Van Wieringen and de Mast [5], and Boyles [6]. However, as 

shown by Akkerhuis et al. [7] and Albert and Dodd [8] among other, the estimates of CR  and PR  from 

the latent class model are highly sensitive to untestable underlying assumptions. Unless necessary, we 

cannot recommend a no-verification plan because of the lack of robustness. Boyles [6] provides an 

alternative plan that uses an imperfect reference measurement system in lieu of a gold standard system. 

Full verification plans in an industrial context have been studied by Danila et al. [9] and Burke et al. [10] 

and many authors in the diagnostic testing literature. See Pepe [11]. Note that, to the authors’ 

knowledge, existing standards, such as [2], [3], do not consider the case where we assume both the 

measurand and the measured characteristics are binary. Instead, they assume an observable continuous 

measurand that can be discretized. Assuming a continuous measurand changes the problem 

considerably. De Mast et al. [12] consider the case of assessing a BMS under four scenarios defined by 

whether a gold standard measurement system is available or not and whether the underlying 

measurand is binary or continuous. They discuss various plans and the possibility of bias in estimation. 

For the gold standard available and binary measurand case we consider in this paper, they present three 

plans. The plan proposed by Farnum [13] that requires parts sampled at random from populations of 

conforming/non-conforming parts is rejected as too difficult and expensive to implement. The other two 

plans discussed in de Mast et al. [12] are plans from Danila et al. [4] and an extension of what is 

proposed in Danila et al. [14]. We compare the proposed targeted verification plan to these plans in 

Section 3. 

There is little literature regarding targeted verification where only a sample of parts in the study are 

verified with the gold standard measurement system. Severn et al. [15] showed that a targeted 

verification plan using a random sample of parts could have performance close to that of the 

corresponding full verification plan with effort close to the no verification plan. Albert and Dodd [16] 

explored a similar concept in the medical context that they called over-sampling for assessing a 

diagnostic test with multiple raters. When only some of the units in the study are verified, there is 

discussion of bias in the estimates of CR  and PR  from naïve analysis that does not account for the 

selection mechanism. See Begg and Greenes [17].  
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We can also categorize plans by the use or not of the available baseline data. For example, a standard 

R&R study, see Burdick et al. [18], for the assessment of a continuous measurement system makes no 

use of available data from recently (once) measured parts. In this paper we have assumed that there are 

pass/fail data (baseline data) from the BMS freely available on a large number of parts. Danila et al. [14] 

showed the substantial gain in efficiency using these freely available data in the full and no-verification 

plan cases.  

We can also use the baseline to select parts for inclusion in the assessment study. Because we are 

dealing with a high quality process ( CP  near 1), a random sample of parts from the process will contain 

relatively few non-conforming parts making the precise estimation of CR  difficult. We can increase the 

number of non-conforming parts in the study by sampling from the population of parts that failed initial 

inspection. We call this approach conditional sampling. Figure 1 shows the probability of selecting (with 

conditional and random sampling) a non-conforming part as the proportion of conforming parts  

( Cp ) increases. The concept of conditional sampling was first proposed in Haitovsky and Rapp [19] as an 

extension of Tenenbein [20]. Both papers focus on using the BMS to improve the estimation of CP , the 

process quality.  

The goal of this paper is to extend the work of Severn et al. [15] by showing the advantages of an 

assessment plan that uses all three ideas: targeted verification, conditional sampling and the inclusion of 

baseline data. The plan has three phases. First, we specify a baseline set of parts that have already been 

inspected. Second, we select a random sample of parts from those that initially failed the inspection and 

measure each selected part r times with the BMS. Finally, we verify the conforming/nonconforming 

status of a stratified sample of these parts where the strata are defined by the number times a part 

passed in Phase II.  

In the next section, we fully describe the three-phase plan and associated data. We derive the likelihood 

and explain how to get the maximum likelihood estimates and approximate standard errors. We use an 

example to show the value of conditional sampling, baseline data and targeted verification. 

Subsequently, we recommend a specific targeted verification plan. Then, in Section 3, we demonstrate 

the advantages of the recommended plan compared to full or no-verification plans (as proposed by 

Danila et al. [4, 9]), to population sampling plans (i.e. plans based on a random sample of parts in Phase 

II with no baseline data, as proposed by Severn et al. [15]) and to a naïve plan without baseline data and 

repeated measurements as described by Pepe [11]). We end with a brief discussion in Section 4 and a 

conclusion in Section 5.  
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Figure 1 – Comparison of the Probability of Sampling a Nonconforming Part as a Function of the 

Probability a Randomly Selected Part is Conforming and the Sampling Approach 

2. Proposed Three-Phase BMS Assessment Plan 
This section details how to assess a BMS with our proposed three-phased plan that allows for targeted 

verification. It also provides an example and gives a recommended plan with some justification. 

2.1 Plan Overview and Notation 

In the baseline (Phase I), Bn  parts are measured once with the BMS. Failed parts are set aside for future 

use. Let By  denote the number of parts that passed inspection. In the repeated measurement phase 

(Phase II), RMn  parts are selected randomly from the B Bn y  parts that failed initial inspection and each 

are measured r  additional times. These parts are then separated into bins, indexed by {0,1,... }s r , 

which represents the number of times parts in the bin passed inspection. Let sn  denote the number of 

parts in bin s . The proposed plan is summarized in Table 1 and Section 2.4. 

In the verification (Phase III), the experimenter decides how many parts to verify (i.e. measure with the 

gold standard system) from each bin. Let sv  denote the number of parts verified from bin s  where 

0 s sv n  . Setting sv  equal to zero indicates no parts are verified from bin s , whereas setting sv  equal 

to sn  indicates all parts from that bin are verified. For other choice of sv , parts are selected at random 

from bin s. After determining the parts to verify, the experimenter measures those parts with the gold 
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standard and records su , the number from each bin that conform to specification. If no parts are 

verified in bin s , then su is set to zero.  

We summarize the plan phases and the resulting data as in Table 1. 

Table 1 – Three Phase Plan Data and Notation Summary 

Phase I: Baseline (0 B By n  ) 

Select Bn  parts (at random) from the production process and 

measure them each once 

Number of Parts Measured in Baseline 
Bn  

Number of Parts Passing Inspection in Baseline 
By  

 

Phase II: Repeated Measurements ( 0 1 ... r RMn n n n    ) 

Select RMn  parts (at random) from the baseline rejects and measure 

each r times 
Number of Passes (bin #, s) 0  1   ...   r   

Number of Parts  
0n   1n   ...  rn   

 

Phase III: Verification (0 s sv n  , 0 s su v  ) 

Select s  parts (at random) from bin s and measure them with the gold 

standard 
Bin # 0 1 … r 
Number of Parts Verified from Each Bin 

0v  1v  ...  rv  

Number of Conforming Parts among those 

Verified  
0u  1u  ...  ru  

 

2.2 Beta Binomial Model and Likelihood Derivation 

Below we present the likelihoods for each of the three phases. In the baseline phase, we model the data 

using a binomial distribution where we give the probability of By  passes from Bn  parts each measured 

once. In the repeated measurement phase, we model the data using a multinomial distribution that 

gives the probability of obtaining in , 0,1,...,i r , parts with i passes from the RMn  parts each 

measured r times. Finally, the verification phase data are modeled using a series of binomial 

distributions, one for each of the 1r   bins. The likelihood expressions for the three phases are  

      1 0B B By n yB

I m m

B

n
P Y P Y

y


 
   
 

, 
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where   represents the model parameters. The overall likelihood is the product of the likelihoods for 

each phase. 

 

We use a beta-binomial based model developed in Danila et al. [4] to give expressions for each factor in 

I , II  and III  in terms of five model parameters. The model parameters are the attributes of interest 

CR , PR  and CP  as well as two nuisance parameters, denoted by C , P . In the model, each part may 

have a different rate of misclassification if measured repeatedly. The model we propose assumes the 

misclassification rates for non-conforming parts are independently and identically distributed according 

to a Beta distribution with parameters C CR   and  1 C CR  . Similarly, the misclassification rates for 

conforming parts follow a Beta distribution with parameters P PR   and  1 P PR  . The parameters 

CR  and PR  represent the mean of the misclassification rates over all non-conforming and conforming 

parts. The parameters C  and P  control the variation of the misclassification rates. These assumptions 

can be used to derive expressions for ( , 0 | 0)mP S s Y Y    and ( , 0 | 1)mP S s Y Y    in terms of the 

five model parameters. For non-conforming parts (i.e. 0Y  ), we have, 
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where   represents the part specific misclassification rate and fA  is the corresponding Beta density 

function. Similarly, for conforming parts, 

 

1
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We used these expressions along with the definitions of the attributes of interest and applications of 

Bayes’ rule to derive expressions for all of the factors in the likelihoods from each of the three phases. 

Doing so and combining the likelihoods in Equation (1) from the different phases, yields the following 

overall log-likelihood function, 

 

     

    

0

log (1 )(1 )

( ) log 1 1

( )log( ) log ( ) log

B B RM C P C C

B C P C C

r

s s s s s s s s s

s

k n y n p R p R

y p R p R

n v f g u f v u g





      

   

     

 (2) 

where  ( , 0 | 0) 1s m Cg P S s Y Y p     , ( , 0 | 1)s m Cf P S s Y Y p    , and k  is a constant which 

does not depend on any of the five model parameters.  

The log-likelihood expression in Equation (2) is used with data recorded as in Table 1 to calculate 

maximum likelihood estimates and asymptotic standard errors based Fisher’s [21] asymptotic theory. In 

the appendix we provide evidence through a simulation study that the Fisher information based 

approximation to the standard errors is reasonable in this context. MATLAB code is available upon 

request. Equation (2) is the log-likelihood function for the general three phase plan regardless of the 

outcomes of the various phases and the experimenter’s choices for sv , 0,1,...,s r . 

2.3 Example 

In order to give a tangible example, we calculate estimates from the example in Danila et al. [9]. That 

paper used a data set from a hypothetical but realistic situation involving a functional test stand in a 

100% inspection scheme for an electronic device. The test stand simultaneously evaluates a number of 

characteristics of the device. As a result, we assume the measurand is binary. Many of the features 

depend on underlying latent variables, and thus we expect that the misclassification rates will vary from 

device to device. The gold standard inspection is an exhaustive manual check of all the device 

characteristics. 

 

The test stand was used to measure 100 parts that previously failed inspection. The parts were re-

measured five times each and separated into six bins according to the number of passed inspections. All 

parts were then verified with the gold standard as conforming or not. This plan is a full verification plan. 

From the data set, we calculate estimates of the parameters of interest for the full, targeted and no-

verification plans. To calculate targeted verification plan estimates, we discard the verification 

information from all bins except 2 and 3. For the no-verification plan estimates, we discard all 

verification information from all bins except 2 and 3. For the no-verification plan estimates, we discard 

all verification information. Table 2 gives the data and the corresponding estimates are given in Table 3. 
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Table 2 – Electronics Testing Example Data 

Phase I: Baseline 

Number of Parts Measured in Baseline ( Bn ) 1243 

Number of Parts Passing Inspection in Baseline ( By  ) 960 

 

Phase II: Repeated Measurements 

Select RMn  = 100 parts from rejects and measure each r = 5 times 

Number of Passes (bin #, s) 0  1   2 3 4 5 

Number of Parts ( sn ) 41 18 5 9 5 22 

 

Phase III: Verification 

Bin # 0 1 2 3 4 5 

Full Verification Plan 

Number Verified ( s ) 41 18 5 9 5 22 

Number Conforming among Verified ( su ) 0 0 0 5 5 22 

Targeted Verification Plan 

Number Verified ( s ) 0 0 5 9 0 0 

Number Conforming among Verified ( su ) 0 0 0 5 0 0 

 

To help understand the data, consider the following. In Table 2, the data from Phase II show that of the 

100 previously failed parts 41 passed zero times when measured five additional times with the BMS. In 

Phase III with the full verification plan these 41 parts were measured with the gold standard and all were 

found to be conforming. With the targeted verification plan, the Phase III likelihood uses only the 14 

gold standard measurements from bins 2 and 3. 
 

Table 3 – Parameter Estimates for the Example from Each of the Three Plans: Full Verification, 
Targeted Verification and No Verification 

Parameter 
CR  PR  CP  

Full Verification Plan 

Estimate 0.134 0.086 0.820 

Standard Error 0.029 0.013 0.016 

Targeted Verification Plan  

Estimate 0.146 0.085 0.816 

Standard Error 0.040 0.013 0.019 

No Verification Plan (no Phase III) 

Estimate 0.235 0.072 0.778 

Standard Error 0.128 0.0162 0.052 

 

Table 3 shows that the standard errors for ˆ ˆ,C PR R  and ˆ
CP in the targeted verification case increased by 

38%, 0% and 19% compared to the full verification plan. However, the targeted verification plan only 

uses 14 gold standard measurements as compared to 100 for the full verification plan. The no- 
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verification plan has much worse performance with standard errors for ˆ ˆ,C PR R  and ˆ
CP  being 3-4 times 

greater than those of the full verification plan.  

2.4 Recommended Three Phase BMS Assessment Plan 

The Three-Phase Plan as outlined in Section 2.1 leaves many design decisions open, including the 

number of parts in the repeated measurement phase ( RMn ), how many repeated measurements are 

used ( r ) as well as how many and which parts are verified ( 0 1, ,..., r   ). In Table 4 we describe a 

recommended three-phase plan that uses targeted verification and specific choices for the general 

design parameters. A brief justification of the design choices is given in Section 2.5. The recommended 

plan is not optimal for all parameter combinations but is close to optimal for parameter values thought 

to be plausible in practice. There are two design parameters left open. The first, Bn , is not specified, but 

rather the experimenter should use all relevant baseline data available. The second, RMn , the number 

of parts selected for phase II and is left open to the experimenter to adjust in order to meet the 

precision requirements of the study. 

 

Table 4: Recommended Targeted Verification Plan with Suggested Design Parameters  

Baseline Phase 
 

• Measure Bn  parts once and record the number of parts that 

passed inspection as By . 

 
Repeated Measurement 
Phase 
 

• Randomly select RMn  parts that failed inspection in the 

baseline phase and measure them (r =) 7 additional times. 
Separate the parts into eight bins based upon the total 
number of times each part passed inspection 

• Record the total number of parts in each bin as  

sn , s = 0, 1 ,…,7 

 
Verification Phase • Measure all parts with the gold standard in the bins 

representing 3 or 4 passes, i.e. select

0 1 2 5 6 7 0           , 3 3n   and 4 4n    

• For each bin, record the number of parts that were 

measured by the gold standard to be conforming as su   

 

2.5 Justification for the Recommended Plan 

Notice that in the example from Section 2.3, the targeted verification plan only verifies parts in the 

middle bins, and yet obtains performance not much worse than that of the full verification plan. To 

visualize how standard errors are reduced as the number of parts verified increases, we present an 

illustration where parts are verified one by one in a given order, and standard errors are calculated at 

each point using Fisher’s asymptotic theory. The illustration uses seven repeated measurements as we 

recommend in Section 2.4. We start by verifying parts one-by-one from bin 4. When all parts in bin 4 are 
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verified, we next start verifying parts from bin 3. When bin 3 is exhausted we start with parts in bin 5, 

then bin 2, then 6, then 1, then 7, and finally bin 0.  

 

Figure 2 – Reduction in Standard Error as the Proportion of Verification (starting in middle bins) 
Increases 

500, 7, 10000,RM Bn r n   0.075, 0.075, 0.925, 0.125, 0.125C P C C PR R p        

Vertical dashed lines represent when each of the first 5 bins are exhausted (Bin order: 4,3,5,2,6,1,7,0) 

Figure 2 shows that the standard errors (displayed relative to the standard error of the no-verification 

plan) decrease rapidly and then flatten out. Additionally, we see that verifying parts in the middle bins 

provides tremendous benefit while verifying parts in non-central bins provides almost no benefit. The 

dashed lines represent when each of the first 5 bins is exhausted. We note that the reduction in 

standard error dramatically slows down after all the parts in bins 3 and 4 are verified. We investigated 

other parameter values combinations and found similar results.  

We used a factorial experiment with two levels (see Table 5) for each of the five parameters to assess 

properties of the recommended plan. We chose the levels to represent realistic values for inspection 

systems used in industry.  

Table 5 - Factorial Experiment Parameter Levels 

Factor 
CR   PR   Cp   C   P   

Levels 0.05 

0.10 

0.05 

0.10 

0.90 

0.95 

0.05 

0.20 

0.05 

0.20 

 

Chapter 4 of the PhD thesis Severn [22] gives a more detailed justification for the recommended plan. 

Next, we summarize some of the results from Severn [22] without providing all the details. 

To justify the choice 7r  , the total number of BMS measurements was fixed at 2500, i.e. 

* 2500RMr n  , and r  was varied from 3 through 11. Then, using the same order of verification used to 

create  Figure 2, we calculated the trajectory of standard errors as the proportion of verification 
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increased, for each value of r and all 32 combinations of factor levels found in Table 5. We then plotted 

the average trajectory over the 32 combinations for each value of r. No trajectory was uniformly the 

lowest; rather the best value of r  depended on the proportion of verifications. However at the point in 

the trajectory where most of the decrease had been obtained, and the reduction slowed down 

thereafter, 7r   had the lowest standard error.  

For 7r  , to give a fuller justification for the choice of verifying the two central bins, we consider 

verifying whole bins one after the other. We find that the reduction in standard error, computed as an 

average over the 32 parameter combinations in Table 5, is greatest when bin 4 is verified. Next, we 

repeat the calculation for the remaining unverified bins and find that verifying bin 3 reduces the 

standard errors the most. Third, repeating the calculation for the remaining six bins, we find that the 

reductions in the standard errors are negligible and the number of verifications is greatly increased. 

Thus, we conclude that verifying parts from bins 3 and 4 alone was ideal.  

3. Comparisons of Plans 

3.1 Comparative Study of Targeted Verification Performance  

We now assess the performance of the recommended plan in comparison to the full and no-verification 

plans as proposed by Danila et al. [4, 9]. Note that all plans have the same baseline and repeated 

measurement phases. The performance comparisons make use of the results from a full factorial 

experiment with factors defined by the five parameters using the levels given in Table 5. Each 

experiment has 32 runs and the results are summarized by box plots. The design parameters for the 

experiment are 10000, 500, 7B RMn n r   . For each run, ten thousand full verification data sets were 

generated, then full verification, targeted verification and no-verification estimates were calculated. The 

full verification plan used the full data set, while the targeted and no verification plans used the same 

data set but with the appropriate verification information removed.  

We know that the full verification must result in the smallest standard errors, no verification the largest 

and targeted verification somewhere in-between. Thus, to compare the three plans, we use two 

performance measures that quantify how close the standard error from targeted verification is to the 

two extremes. The performance measures are the percent reduction in standard error and percent 

possible reduction attained. Figure 3 provides a pictorial explanation of these two performance 

measures where we denote the standard errors for the no-verification, the proposed plan and the full 

verification as A, B and C (A ≥ B ≥ C) respectively. 
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Figure 3 – Definition of the Two Performance Measures  

 

Figure 4 shows the great improvement obtained by verifying bins 3 and 4, which, on average, represent 

only 8.4% of the parts repeatedly measured. The reduction in the standard error of ˆ
CR  compared to the 

no verification plan is, on average, about 60% and represents 90% of the reduction possible through 

verification. This is a dramatic improvement for very little work. Targeted verification also reduces the 

standard errors of ˆ
PR  and ˆ

CP  by 18% and 41% respectively, which in both cases, represents, on 

average, 90% of the reduction possible. 

 
Figure 4 – Comparison of Full, Targeted and No Verification on the Standard Error of the Estimates 

Results of Factorial Experiment (See Table 5) using performance measures defined in Figure 4 

Left panel shows the % reduction, right panel shows the % of possible reduction  

In Figure 5 we compare the bias of the estimates from the recommended targeted verification plan to 

that of the full and no verification plans. Relative bias is the bias of the estimate for a parameter divided 

by the true parameter value.  
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Figure 5 – Relative Bias of the Conditional Plan with Full, Targeted and No Verification 

Results show bias divided by true parameter value (times 100) for the factorial experiment (See Table 5) 

 

Figure 5 shows a dramatic reduction in the bias of the estimates from the targeted verification plan for 

all three quantities of interest when compared to the no verification plan. The reduction in biases of the 

targeted verification plan compared to the no verification plan for ˆ
CR , ˆ

PR and ˆ
CP  are 84%, 70% and 

83% on average respectively, which represents around 90% of the possible reduction possible through 

verification. We attain this improvement through verifying, on average, only 8.4% of the parts in the 

repeated measurement phase. 

We conclude that when using conditional sampling, the targeted verification plan has superior 

performance compared to the no-verification plan. The performance is close to full verification while 

requiring only a small number of gold standard measurements. 

 

3.2 Comparison of Conditional and Population Sampling Plans 

In Phase II, we select RMn  parts for repeated measurement. In this subsection we compare a targeted 

verification plan that uses a random sample of parts (population sampling) and no baseline 

measurements (as proposed by Severn et al. [15]) versus a plan that uses parts selected at random from 

those that fail initial inspection (conditional sampling – as recommended in Section 2). Sampling parts 

that failed inspection is easy because these parts are collected for scrap or rework. Sampling rejected 

parts is also less intrusive to the manufacturing process because it does not interfere with production 

goals. To make a quantitative comparison, we conducted a comparison using ten thousand simulated 

data sets generated for each of the 32 sets of parameter values found in Table 5. The design parameters 

for the experiment are 10000Bn  (used for the conditional sampling plan), 500RMn   and 7r  . The 

simulations were run for the population sampling plan and separately for the conditional plan. The 

number of repeated measurements in Phase II and the number of verifications in Phase III is the same. 

To keep the number of verifications the same, we used a fixed number of verifications for each set of 

parameter values. That number was equal to the expected number of parts (rounded to the nearest 

integer) that would fall in the two central bins in the population sampling case, assuming the beta-

binomial model. This slightly favours the population sampling approach because the number of 
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verifications is better adapted to that plan. The verifications were done in the order described earlier, 

starting with middle bins and, as they are exhausted moving outwards. Figures 6 and 7 are based on the 

results of these simulations. These figures use relative measures, meaning that they are expressed as a 

percentage of the parameter value being estimated.  

 

Figure 6 – Relative Standard Error Comparison of Population and Conditional Sampling  

Results show standard errors divided by true parameter value (times 100) for the factorial experiment 

(See Table 5) 

 

Figure 6 shows dramatic improvements in the estimates for all three quantities of interest when using 

the conditional plan rather than the population plan. Using the conditional sampling plan instead of the 

population plan yields reductions in the standard errors of ˆ
CR , ˆ

PR and ˆCp  of 53%, 39% and 60% on 

average respectively. Note that although the boxplots for population and conditional sampling overlap 

somewhat in Figure 6, the conditional sampling plan always provides an improvement over the 

population sampling plan in each of the 32 parameter value combinations. 

 

 
Figure 7 – Relative Bias Comparison of Population and Conditional Sampling 

Results show bias divided by true parameter value (times 100) for the factorial experiment (See Table 5) 

 

Figure 7 shows that the bias is also reduced for each of the quantities of interest. The reduction in the 

average bias for ˆ
CR , ˆ

PR and ˆCp  is 65%, 75% and 59%, respectively. In conclusion, the targeted 

verification conditional sampling plan greatly outperforms the comparable targeted verification 

population sampling plan. Therefore, wherever possible, we recommend using the conditional sampling 

plan. This is particularly easy to do when a BMS is currently used in a manufacturing environment.  
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In summary, in Phase II, conditional sampling is substantially more efficient than selecting the parts to 

be repeatedly measured at random from the population. 

3.3 Comparison to a Naïve Plan 

Under the assumptions given in the bulleted list in Section 1, we require hundreds of parts and 

measurements to assess reliably the misclassification rates of a binary measurement system. Consider 

using a naïve plan where we sample at random from the stream of parts and then measure each 

selected part with the BMS (r=1) and the gold standard. Pepe [11] calls this a cohort study. In a medical 

context, it is likely that baseline data are not available and that subjects cannot be measured repeatedly. 

In a cohort study we ignore baseline data and repeated measurement of the selected parts in Phase II 

and use full verification in Phase III. Suppose we want to obtain a relative standard error of, at most, 

0.25 for each of the three parameters of interest for each of the 32 combination of parameters given in 

Table 5. The average sample size needed for the naïve plan is 3,360 parts with a range of 1,440 to 6,080. 

Compare this to the recommended plan where on average only 243 failed parts are needed for repeated 

measurement ( 7r  ) with a range of 52 to 740. In this case the number of BMS measurements is on 

average 1701 with range 364 to 5189. Furthermore, in the recommended plan on average only 22 parts 

need to be measured with the gold standard with a range of 2 to 115. The naïve plan not only requires 

more measurements with the BMS, but many more measurements with the gold standard. The standard 

error calculations are based on Fisher’s asymptotic theory; they follow an inverse squared relationship 

with sample size. The recommended plan was run with baseline size equal to twenty times RMn  the 

Phase II sample size.  In summary, the proposed plan is far superior to the naïve plan under the assumed 

conditions listed in Section 1. 

4. Discussion 

We have assumed throughout that we are dealing with an inspection system currently in use so that 

baseline data are available. If we are dealing with a new system we can use targeted verification without 

the baseline and conditional sampling.  

The results in this paper are based on the assumption that the part specific misclassification rates follow 

beta distributions. Estimates from no- verification plans are sensitive to this assumption; see Akkerhuis 

et al. [7], Albert and Dodd [13]. The recommended plan is more robust to model misspecification, and 

although we have not investigated thoroughly, verifying a few additional parts, say 5, from each of the 

non-central bins improves robustness further. Additionally, with these extra verifications, we can 

construct estimates that are nearly as efficient as those from the beta-binomial model and that make no 

assumptions about the underlying distribution of misclassification rates. See Severn [22]. 

There are other possible applications of targeted verification. For example, we may want to compare 

two BMSs using the same set of parts or to include operator effects in the analysis.  

5. Conclusions 
We have assumed throughout that we are dealing with an inspection system currently in use so that 

baseline data are available. The BMS is not destructive and parts can be measured more than once. 
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Assessing a BMS requires much larger sample sizes than assessing a continuous measurement system. 

To control the cost, we need sophisticated plans and analysis. In general, we recommend  

 Use as much baseline data as possible, subject to the assumption that the inspection system has 

been stable over the collection period. 

 Sample several hundred parts that failed an initial inspection. With larger
C

P , i.e. a higher quality 

process, we need more parts in Phase II. 

 Measure each selected failed part 7r   times.  

 Verify all of the parts in the middle bins, i.e. for 7r   from bins corresponding to 3s  or 4.  

We showed that the precision and bias of the estimated mean error rates obtained using the 

recommended three-phase plan are much better than those without the Phase III data, i.e. when we do 

not use gold standard measurements. We also showed that the performance of the recommended plan 

is similar to much more costly plans that measure all parts in Phase III with the gold standard. In 

addition, we quantified the substantial improvement in precision for estimating CR  and PR  when using 

the proposed plan with conditional sampling rather than population sampling, as recommended in 

earlier work.  Finally, we showed that the proposed assessment plan is vastly superior to a cohort study 

that ignores baseline data and does not repeatedly measure parts with the BMS. 

Appendix: Asymptotic Variance Justification 
It is not possible to find an analytic expression for the maximum likelihood estimates or the associated 

standard errors. Therefore in Sections 2 and 3, asymptotic variance results due to Fisher [22] are used to 

estimate the standard errors. Here we assess the accuracy of these estimates for different sets of 

parameter values using a factorial experiment structure. There are 32 different treatments which are 

made up by varying the five model parameters, see Table 5. For each treatment, ten thousand datasets 

were simulated from the beta-binomial model, parts were selected and verified according the 

recommended conditional sampling plan and the maximum likelihood estimates were calculated. The 

standard errors of these estimates were calculated over the 10,000 simulation runs. We also calculated 

the asymptotic standard error approximation for each set of parameter values.  Figure 8 shows the ratio 

of the simulated and the asymptotic standard errors for each combination of parameter values. The 

design parameters were kept the same for all treatments with 10000Bn  , 500Fn   and 7r  . 
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Figure 8 – Boxplots of the Ratio of Simulated and Asymptotic Standard Errors  

Results of Factorial Experiment (See Table 5) 

Figure 8 shows that the ratios of simulated standard errors and asymptotic standard errors are very 

close to one, and thus the asymptotic approximation are sufficiently accurate for the manner in which 

they are used.  
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Highlights 

 Estimate misclassification rates for non-destructive pass/fail inspection system 

 Efficient plans using available data, repeated measurement & conditional sampling 

 Demonstrated improvement to existing assessment plans 

 

 


