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Abstract

We investigate an adaptive path following problem for an underactuated nonholonomic
mobile manipulator system and closed planar curves. As opposed to adapting to uncertain
or unknown dynamics in the plant, we apply an adaptation approach with respect to an
unknown geometric path. First, we present a solution to the non-adaptive path following
problem using the concept of a path following output and apply it to circular and elliptical
paths. To overcome a drawback associated with our first proposed solution and set the
stage for our approach to the adaptive case, we apply an approximation approach based
on osculating circles for strictly convex closed curves.

We transition to the adaptive path following case by first presenting an algorithm to
estimate unknown path parameters in the case of a circular path. We use our estimation
algorithm and our path following solution for circular paths in an indirect adaptive control
scheme. Thereafter, again using the osculating circle of a curve and the approximation
technique of our second non-adaptive path following solution, we extend our adaptive
solution, under some mild assumptions, for unknown strictly convex closed curves in the
plane.
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Chapter 1

Introduction

In this thesis, we study the adaptive path following problem for an underactuated non-
holonomic mobile manipulator. In robotic applications, path following problems involve
the design of feedback controllers that drive a certain physical feature of a robotic system
(output) towards a known geometric path with a predetermined desired motion about the
path [2, 14]. An advantageous property that differentiates path following from trajectory
tracking is that path following controllers guarantee path invariance [1]. Essentially, this
means that if the output of a system is initialized on the desired path with a velocity
tangent to the path, it will stay on the path for all time. Trajectory tracking controllers
cannot guarantee this property, therefore if the output is initialized on the path but is not
consistent with the reference, the output may leave the desired path in order to match the
reference [29].

On the other hand, adaptive control is the combination of control laws and parameter
estimation to control classes of systems whose parameters are unknown or time-varying [7,
17, 18, 20]. The choice of estimation method and control law as well as the manner in
which these two are combined leads to different classes of adaptive control schemes [18];
in this thesis we will use an indirect adaptive control approach. With this approach the
unknown parameters are first estimated online and then fed into the control law to update
in real time the corresponding control input.

In this thesis we combine the ideas of path following and adaptive control. Our goal
is to design a path following controller that adapts to unknown and strictly convex paths
for an underactuated nonholonomic mobile manipulator. This stands in contrast to the
classical adaptive motion control approach of designing controllers that adapt to uncertain
parameters present in the system’s model [23, 24, 28, 40], i.e., in our case we assume the
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plant’s dynamics are known but take the path to be unknown in a sense to be made precise
later in this thesis. In general, path following applications require complete knowledge of
the path to be followed, while this requirement is fine in a context where there are no path
uncertainties, it is not desirable in a context where the path to be followed is uncertain or
not fully known. To account for situations where a lack of complete global knowledge of the
desired path exists, we take on the adaptive path following problem and design a control
algorithm that only requires local information about the desired path, namely about the
closest point on the path to the robot’s output.

We begin by proposing a solution to the non-adaptive path following problem using the
notion of a path following output [22, 38] to design an input-output feedback linearizing
controller with its associated normal form [19] for arbitrary, smooth, closed paths and we
apply it to circular and elliptical paths. There is a drawback associated with our proposed
controller when applied to arbitrary closed paths which will be explained later in the thesis;
to overcome this drawback for strictly convex paths we apply a circular approximation to
the path by means of the osculating circle and under some mild assumptions propose a
second solution to the path following problem of strictly convex paths by using a modified
version of the circular path following controller.

Then we transition into the adaptive path following problem. We start by presenting
an algorithm for circular path parameter estimation that in addition to estimating the
center of a desired target circle [8, 9, 11], estimates its radius. Thereafter, we design a path
following controller with an indirect adaptive control approach [18] for unknown circular
paths. Lastly, we extend our results to the path following adaptation of unknown strictly
convex paths by estimating the osculating circle of the path at a point on the path and
apply an indirect adaptive path following control approach similar to the previous one,
however, this time with respect to the estimated osculating circle.

1.1 Motivating Applications

A robotic manipulator in its classical representation has a fixed base, which constrains its
access to a limited static workspace that depends on the kinematic configuration of its
joints [21, 35, 37]. The workspace of a mobile manipulator is dynamic in the sense that it
depends on the location of the mobile base [15, 27], i.e., the mobile manipulator has the
ability to change its workspace as a function of the task’s requirements. Because of this,
mobile manipulators open a whole new realm of opportunities in terms of manipulability.
One example is the building and construction industry; in the recent years interest in
3D printing has greatly increased due to its promises of labour-intensity reduction and
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safety [39]. The problem of scalability in this area has been researched and some solutions
involve the use of teams of mobile manipulators that work together to achieve goals [41].
Another example, is the use of mobile manipulators in warehouse or factory environments
for the automation of repetitive tasks such as material handling [31] and Industry 4.0 [42].
There exists an obvious benefit to the research and development of motion control of mobile
manipulators to automate simple repetitive tasks in industry and life in general.

In the above scenarios one could imagine a situation where the desired path to be
followed by the mobile manipulator changes in real-time and our mobile manipulator needs
to adapt to the new and unknown desired path automatically. For example, in a warehouse
environment one could imagine a situation where the floor plan changes and the desired
path changes as a function of the free available space to navigate, thus forcing our mobile
manipulator to adapt to said changes. Motivated by this context we take take on the
problem of designing path following controllers with the ability to adapt to unknown strictly
convex closed paths in the plane.

1.2 Literature Review

1.2.1 Motion Control of Mobile Manipulators

The motion control problem of mobile manipulators has gathered large interest in the re-
search community in the last 20 years [34]; it is usually solved in one of two ways, by either
using a path following or trajectory tracking approach. The latter consisting of asymptot-
ically driving the output of a system to a curve with an assigned time parametrization [3].
In [33] a unifying trajectory tracking control approach is proposed for a wide class of mobile
manipulator systems at a kinematic level. In [27] a solution is presented at the dynamic
level for a class of nonholonomic mobile manipulators.

As we already mentioned, while trajectory tracking is a viable approach to the motion
control problem of mobile manipulators, it can’t guarantee path invariance. In this thesis
we would like to go a step further and present a path following solution to the motion
control problem of an underactuated nonholonomic mobile manipulator that guarantees
path invariance for the non-adaptive case.
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1.2.2 Path Following for Mobile Manipulators

In [26] the path following problem for a class of nonholonomic mobile manipulators is
broken down into two separate path following problems, i.e., the mounted manipulator
follows a geometric path in space while the nonholonomic base follows a desired curve
lying on the plane. In [22] the synchronized path following problem is solved locally for a
multi-agent system consisting of a differential drive mobile base and a manipulator (i.e.,
mobile manipulator) both agents are given curves to follow and the task of synchronizing
their motions about their given paths. In [12] a robust path following controller is presented
using a set stabilization approach [30] for a class mobile manipulators; the manipulator
and mobile base are assumed to be dynamically decoupled.

In this thesis, we present two solutions to the non-adaptive path following problem for
an underactuated nonholonomic mobile manipulator; we take our system’s dynamics to
be coupled. The problem is not broken down into two path following problems for both
manipulator and mobile base, but instead we are given one curve to follow with the end-
effector of the mobile manipulator and our path following controllers automatically control
both subsystems to achieve control objectives.

1.2.3 Adaptive Path Following

The adaptive path following problem has been thoroughly investigated in the literature
and as in classical adaptive control, the goal remains to design controllers that adapt to
uncertainties present in the plant model. The authors of [28] present a robust adaptive
path following controller for uncertain parameters and environmental disturbances for a
surface vessel. In [10] another robust adaptive path following controller is presented for an
underactuated surface ship.

The adaptive path following problem has also been investigated in the context of
robotics systems, in [4] the authors propose an adaptive path following controller for a
unicycle-like mobile robot with a cascaded structure; specifically, a kinematic controller
cascaded with an adaptive dynamic controller, the latter compensating for uncertainties
present in the dynamic level. Adaptive path following control for nonholonomic mobile
manipulators was proposed in [25] for both kinematic and dynamic levels given parametric
uncertainties present in the system’s model.

While all the literature mentioned above takes the approach of adapting to parametric
uncertainties present in a system’s model, in this thesis, we present an adaptive approach
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with respect to an unknown path. That is, we consider our model to be set or known but
take the path to be unknown.

1.3 Notation

In this thesis, R denotes the set of real numbers and C denotes the complex numbers. Let
〈x, y〉 denote the inner product of the vectors x and y in Rn. The symbol := means equal
by definition and ‖ · ‖ denotes the Euclidean norm of a vector. The composition of maps
s and h is written s ◦ h. The function arg : C\{0} → (−π, π] maps complex numbers to
their principal argument. The unit circle is denoted S1 (see Appendix A). The differential
of a function f evaluated at x is written dfx.

1.4 Contributions and Organization

As already mentioned, the goal of this thesis and its main contribution is to propose an
adaptive path following control for an underactuated mobile manipulator with the objective
of adapting to unknown strictly convex closed paths in the plane. We build up to the
solution of this problem throughout this thesis.

In Chapter 2, we review the Lagrangian approach for deriving the governing equations
of motion for mechanical systems subject to nonholonomic constraints and apply this
approach to derive the mathematical model of the underactuated nonholonomic mobile
manipulator. In Chapter 3, we propose two solutions to the path following problem; our
first solution seeks to make the end-effector of the robot follow closed paths with no self-
intersections; we apply this solution to the circular and elliptical path case; our second
solution uses a novel approximation method and our circular path following controller to
follow strictly convex paths in the plane. Lastly, Chapter 4 eases the assumption that the
path to be followed is known and we propose an indirect adaptive path following control
approach to follow and entirely traverse unknown circular and strictly convex paths.
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Chapter 2

Mathematical Modelling of a Mobile
Manipulator

The objective of this chapter is to derive a mathematical model of a mobile manipulator.
More specifically, we consider a mobile manipulator comprising of a two degree-of-freedom
manipulator arm mounted on a differential drive mobile base. To do so, we first review the
Lagrangian approach for deriving the governing equations of mechanical systems subject to
nonholonomic constraints, our exposition is based on [6, 35]. We then apply this approach
to the aforementioned mobile manipulator.

2.1 Underactuated Nonholonomic Mechanical

Systems

The dynamic model of a Lagrangian mechanical system provides a mathematical relation-
ship between its control inputs and the evolution of its configuration variables over time.
We consider a Lagrangian mechanical system whose configuration variables belong to an
n-dimensional smooth manifold Q. We restrict ourselves to the case where Q is the Carte-
sian product of r copies of R and n − r copies of the circle S1. This corresponds to a
robot whose joints are either revolute or prismatic. In this case, the elements of Q can
be represented as an n-tuple (q1, . . . , qn) where each qi is either in R if the ith joint is
prismatic, or in S1 if the ith joint is revolute. A mechanical system with an n-dimensional
configuration manifold Q is said to have n degrees-of-freedom.
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A Lagrangian mechanical system [37] with an n-dimensional configuration manifold Q
can be described in terms of a symmetric, positive definite inertia matrix D : Q → Rn×n

and a potential function P : Q → R which assigns, to each q ∈ Q, a value of potential
energy. The Lagrangian L : TQ → R of this system is defined as1

L(q, q̇) =
1

2
q̇>D(q)q̇ − P (q) (2.1)

and equals the difference between the system’s kinetic energy and its potential energy. In
the absence of external forces, the Euler-Lagrange equations are

d

dt

∂L

∂q̇i
(q(t), q̇(t))− ∂L

∂qi
(q(t), q̇(t)) = 0, i = 1, . . . , n, (2.2)

or, in short
d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (2.3)

where
∂L

∂q̇
=
[
∂L
∂q̇1

· · · ∂L
∂q̇n

]
,

∂L

∂q
=
[
∂L
∂q1

· · · ∂L
∂qn

]
. (2.4)

Curves (q(t), q̇(t)) which satisfy Euler-Lagrange equation (2.3) have the property of being
extremizers of the action functional

∫
I
L(q(t), q̇(t))dt, I ⊂ R and, by “Hamilton’s principle

of least action,” describe the evolution of the Lagrangian system.

External (control) inputs u> =
[
u1, . . . , um

]
enter Euler-Lagrange equations via a map

B : Q → Rn×m which transforms the external input u into generalized forces. We assume
that for every q ∈ Q, the matrix B(q) has rank m. In the presence of control inputs, the
Euler-Lagrange equation (2.3) becomes

d

dt

∂L

∂q̇
− ∂L

∂q
= u>B>(q). (2.5)

Definition 2.1.1. A Lagrangian control system is underactuated if n > m.

Using the expression (2.1) for the Lagrangian, (2.5) can be expressed in the standard
vector form as

D(q)q̈ + C(q, q̇)q̇ +∇qP = B(q)u. (2.6)

1Here TQ is tangent bundle of Q. This set, which is itself a manifold, can intuitively be thought of
as pairs (q, vq) with q ∈ Q and vq a tangent vector to Q at q.
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Here q̈ is viewed as an n× 1 column vector, ∇qP = (dPq)
> is the gradient of the potential

function P , viewed as a column vector, and the (i, j)th entry of the matrix C(q, q̇) ∈ Rn×n

is given by

cij(q, q̇) =
n∑
k=1

1

2

(
∂dij
∂qj

+
∂dik
∂qj
− ∂dkj

∂qi

)
, i, j ∈ {1, . . . , n}, (2.7)

where dij(q) is the (i, j)th entry of the inertia matrix D(q).

The dynamic model (2.6) is an unconstrained Euler-Lagrange system. In order to model
the system to be studied in this thesis, we must introduce the notion of nonholonomic
constraints. Let us begin by considering a mechanical system subject to a linear velocity
constraint that can be expressed as[

a1(q) a2(q) · · · an(q)
]
q̇ = 0

where q̇ is regarded as an n× 1 column vector and ai : Q → R are smooth functions. The
constraint is said to be holonomic or integrable if (locally) there exists a real-valued
function h of q such that the constraint can be expressed in the form h(q) = 0 or, in
differential form,

dhq q̇ = 0.

If no such function h exists, then the constraint is said to be nonintegrable or nonholo-
nomic. Now suppose that the mechanical system is subject to k nonintegrable velocity
constraints represented by the equation

A(q)q̇ = 0, (2.8)

where A(q) is an k × n matrix with rank k for all q ∈ Q. In the presence of such noninte-
grable constraints, the Euler-Lagrange equation takes the form

d

dt

∂L

∂q̇
− ∂L

∂q
= u>B>(q) + λ>A(q), A(q)q̇ = 0. (2.9)

In this model we have n second order differential equations and k constraint equations. The
vector λ ∈ Rk is called the vector of Lagrange multipliers. Using the expression (2.1)
for the Lagrangian, the above equation (2.9) can be expressed in the standard vector form
as

D(q)q̈ + C(q, q̇)q̇ +∇qP = B(q)u+ A>(q)λ (2.10a)

A(q)q̇ = 0. (2.10b)
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Reduced Dynamic Model

While the equations of motion (2.10) are a valid representation of the class of systems
studied in this thesis, it is convenient [5, 16] to derive a model in which the Lagrange
multipliers are eliminated.

Let G : Q → Rn×(n−k) be a smooth matrix valued function with the property that, for
every q ∈ Q, the image of G(q) equals the kernel of A(q), that is, the columns gi(q) of G(q)
constitute a basis for the kernel of A(q) at each q ∈ Q. In this case, one can replace the
constraint (2.10b) with the kinematic model

q̇ = G(q)v =
n−k∑
i=1

gi(q)vi (2.11)

where the terms vi are usually called pseudo-velocities [35] to distinguish them from the
generalized velocities q̇i. To eliminate the Lagrange multipliers, we can left multiply (2.10a)
by G>(q) to obtain the reduced dynamic model

G>(q)D(q)q̈ +G>(q)C(q, q̇)q̇ +G>(q)∇qP = G>(q)B(q)u, (2.12)

which is a system of n− k second order differential equations.

Differentiation of (2.11) with respect to time gives

q̈ = G(q)v̇ + Ġ(q)v.

Left multiplying this expression by G>(q)D(q) and then using the reduced dynamics (2.12)
lead to

G>(q)D(q)G(q)v̇+G>(q)D(q)Ġ(q)v = −G>(q)C(q, q̇)q̇−G>(q)∇qP+G>(q)B(q)u (2.13)

Define

M(q) := G>(q)D(q)G(q), (2.14)

m(q, v) := G>(q)D(q)Ġ(q)v +G>(q)C(q,G(q)v)G(q)v +G>(q)∇qP, (2.15)

and use (2.11), (2.13), (2.14) and (2.15), to express the constrained model (2.10) as

q̇ = G(q)v (2.16a)

M(q)v̇ +m(q, v) = G>(q)B(q)u. (2.16b)
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Equation (2.16) is a system of 2n − k first order differential equations. Since the inertia
matrix D(q) is positive definite and since G(q) is one-to-one, it follows that M(q) is positive
definite for every q ∈ Q and therefore we can express (2.16) in state-space form

q̇ = G(q)v

v̇ = −M−1(q)m(q, v) +M−1(q)G>(q)B(q)u.
(2.17)

Assumption 2.1. The number k of nonholonomic constraints in the mechanical sys-
tem (2.17) equals its degree of underactuation n − m. Furthermore, for all q ∈ Q, the
m×m matrix G>(q)B(q) is non-singular. �

Under Assumption 2.1, the preliminary feedback control law

u =
(
G>(q)B(q)

)−1
(m(q, v) +M(q)τ) , (2.18)

where τ ∈ Rm is an auxiliary control input yet to be specified, is well-defined for all q ∈ Q;
the partially compensated system under the feedback (2.18) is

q̇ = G(q)v

v̇ = τ.
(2.19)

Finally, for future use, let x :=
[
q> v>

]> ∈ Q× Rm denote the state vector.

In control we are interested in making the output of a system do something useful.
For the system (2.19) we will only consider outputs y that are functions of the generalized
coordinates q, i.e., y = h(q). This includes, as an important special case, the forward
kinematics of a kinematic chain. We’ll write this function as h : Q → Y and refer to the
codomain Y of the output function h as the task space.

2.2 Modelling of a SCARA Mobile Manipulator

In this section we apply the general modelling technique of Section 2.1 to a mobile ma-
nipulator consisting of a SCARA manipulator mounted on a differential drive mobile base;
Figure 2.1 shows a schematic diagram of this system. This mobile manipulator will be the
object of study for the remainder of this thesis.
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Figure 2.1: Schematic diagram of mobile manipulator.

In what follows, we ignore the vertical motion of the end-effector and instead focus
on the first two links of the SCARA manipulator. In particular, we will assume that the
prismatic joint variable d3 ∈ R and the revolute joint variable θ4 ∈ S1 equal zero at all
times. As a result, our system’s schematic diagram in Figure 2.1 simplifies to the planar
one shown in Figure 2.2.

Figure 2.2: Simplified schematic diagram of mobile manipulator.
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We further assume that manipulator links have their masses concentrated at their end-
points. While this assumption simplifies the mathematical expressions, the resulting model
still captures the dynamic coupling between the base and the manipulator. Furthermore,
the control approaches presented in this thesis are still applicable for other link mass dis-
tributions.

We begin our modelling by choosing generalized coordinates. Fix an inertial frame in
R2 and denote it by O as shown in Figure 2.2. Next, let us fix a body frame B which

moves with mobile base. Two of our generalized coordinates are
[
xb yb

]> ∈ R2 which
represent the location of the origin of B in O coordinates. The variable θh ∈ S1 represents
the angle of the rotation that aligns the coordinate axes of O with those of B. Finally,
θ1 ∈ S1 represents the angle that link 1 makes with the xb-axis and θ2 ∈ S1 is the rotation
which takes link 1 and makes it parallel to link 2. Thus we have Q = S1 × S1 × R2 × S1,

n = dim (Q) = 5, and q :=
[
θ1 θ2 xb yb θh

]>
.

To compute this system’s Langrangian (2.1) we denote the centre of mass locations for
the base, link 1 and link 2 in the inertial frame O in terms of our generalized coordinates
by, respectively,

p0(q) =

[
xb
yb

]
, p1(q) = p0(q) + `1

[
cos(θ1)
sin(θ1)

]
, p2(q) = p1(q) + `2

[
cos(θ1 + θ2)
sin(θ1 + θ2)

]
. (2.20)

Let mb, m1 and m2 denote the masses of, respectively, the base, link 1 and link 2, and let
Iz be the moment of inertia of the mobile base about the axis of rotation at its centre of
mass. Then the kinetic energy of the system is given by

K(q, q̇) =
2∑
i=1

mi

2
‖ṗi(q)‖2

2︸ ︷︷ ︸
Manipulator

+
1

2
mb(ẋ

2
b + ẏ2

b ) +
1

2
Iz θ̇

2
h︸ ︷︷ ︸

Mobile Base

.

After some straightforward computations the kinetic energy can be written in the form
K(q, q̇) = 1

2
q̇>D(q)q̇ discussed in Section 2.1 with D : Q → R5×5 given by

D(q) =


d11(q) d12(q) d13(q) d14(q) 0
d21(q) `2

2m2 d23(q) d24(q) 0
d31(q) d32(q) mb +m1 +m2 0 0
d41(q) d42(q) 0 mb +m1 +m2 0

0 0 0 0 Iz

 (2.21)
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where
d11(q) = `2

1m1 + `2
1m2 + 2`1`2m2 cos(θ2),

d21(q) = d12(q) = `2
2m2 + `1`2m2 cos(θ2),

d31(q) = d13(q) = −`1m1 sin(θ1)− `1m2 sin(θ1)− `2m2 sin(θ1 + θ2),
d41(q) = d14(q) = `1m1 cos(θ1) + `1m2 cos(θ1) + `2m2 cos(θ1 + θ2),
d32(q) = d23(q) = −`2m2 sin(θ1 + θ2),
d42(q) = d24(q) = `2m2 cos(θ1 + θ2).

Since we are ignoring the vertical motion of the SCARA manipulator, the robot is planar
and therefore this system has constant, and without loss of generality zero, potential energy
P (q) = 0 and thus the Lagrangian of the mobile manipulator is simply L(q, q̇) = 1

2
q̇>D(q)q̇.

We assume that the mobile base rolls without slipping; this constraint can be written
in the form (2.8) with

A(q) =
[
0 0 sin (θh) − cos (θh) 0

]
. (2.22)

This constraint is known to be nonintegrable and so this system has k = 1 nonholonimic
constraints. The control inputs to our system are taken to be torques τ1 and τ2 applied
at joints 1 and 2 respectively; the translational acceleration a of the base and the angular

acceleration α of the base’s heading angle θh. This results in u :=
[
τ1 τ2 a α

]> ∈ R4,
m = 4, and B : Q → R5×4 defined as

B(q) =


1 0 0 0
0 1 0 0
0 0 cos(θh) 0
0 0 sin(θh) 0
0 0 0 1

 . (2.23)

Equations (2.21), (2.22), (2.23) with L(q, q̇) = 1
2
q̇>D(q)q̇ provide all the expressions needed

to establish the constrained Euler-Lagrange equation (2.9) for the mobile manipulator
system. In terms of the vector form of these equations (2.10), we have that ∇qP = 0 and

C(q, q̇) =


−2`1`2m2 sin(θ2) θ̇2 −`1`2m2 sin(θ2) θ̇2 0 0 0

`1`2m2 sin(θ2) θ̇1 0 0 0 0

c31(q, q̇) −`2m2 cos(θ1 + θ2) θ̇2 0 0 0

c41(q, q̇) −`2m2 sin(θ1 + θ2) θ̇2 0 0 0
0 0 0 0 0

 (2.24)

where

c31(q, q̇) = −(`1m1 cos(θ1) + `1m2 cos(θ1) + `2m2 cos(θ1 + θ2))θ̇1 − 2`2m2 cos(θ1 + θ2) θ̇2,

c41(q, q̇) = −(`1m1 sin(θ1) + `1m2 sin(θ1) + `2m2 sin(θ1 + θ2))θ̇1 − 2`2m2 sin(θ1 + θ2) θ̇2.
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Reduced Dynamic Model

To obtain the reduced dynamic model we start by finding the matrix valued function
G : Q → R5×4 whose columns for a basis for the constraint A(q) in (2.22). In the case
of the mobile manipulator it turns out that G(q) = B(q) and that the vector of pseudo-

velocities is given by v =
[
θ̇1 θ̇2 v θ̇h

]> ∈ R4 where v is the translational velocity of the
base; this gives the kinematic model (2.11) as

q̇ =


1 0 0 0
0 1 0 0
0 0 cos(θh) 0
0 0 sin(θh) 0
0 0 0 1

 v.
Once again simple calculations give that the expressions (2.14) and (2.15) evaluate to

M(q) =


M11(q) M12(q) M13(q) 0
M21(q) `2

2m2 M23(q) 0
M31(q) M32(q) mb +m1 +m2 0

0 0 0 Iz

 (2.25)

where

M11(q) = `2
1m1 + `2

1m2 + `2
2m2 + 2`1`2m2 cos(θ2),

M21(q) = M12(q) = `2
2m2 + `1`2m2 cos(θ2),

M31(q) = M13(q) = −`1m1 sin(θ1 − θh)− `1m2 sin(θ1 − θh)− `2m2 sin(θ1 + θ2 − θh),
M32(q) = M23(q) = −`2m2 sin(θ1 + θ2 − θh).

and

m(q, v) =


m1(q, v)
m2(q, v)
m3(q, v)

0

 (2.26)

where

m1(q, v) = −`1`2m2 sin(θ2)(θ̇2
2 + θ̇1θ̇2) + (`1m1 cos(θ1 − θh) + `1m2 cos(θ1 − θh)+

`2m2 cos(θ1 + θ2 − θh))vθ̇h,
m2(q, v) = `1`2m2 sin(θ2)θ̇2

1 + `2m2 cos(θ1 + θ2 − θh)vθ̇h,
m3(q, v) = −(`1m1 cos(θ1 − θh) + `1m2 cos(θ1 − θh))θ̇2

1 − (`2m2 cos(θ1 + θ2 − θh))(θ̇2
1 + θ̇2

2)

−2`2m2 cos(θ1 + θ2 − θh)θ̇1θ̇2.
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As we have outlined, for the mobile manipulator system we have n = 5, m = 4 and
k = 1 and therefore the first part of Assumption 2.1 holds. Since G>(q)B(q) = I4, the
second part of Assumption 2.1 also holds. Therefore, we can apply the preliminary feedback
control law (2.18), which in this case simplifies to

u = m(q, v) +M(q)τ, (2.27)

where m(q, v) and M(q) are given by, respectively, (2.25) and (2.26) and τ ∈ R4 an auxiliary
input that we will design in the next chapter. Under this feedback control law the partially
compensated mobile manipulator system dynamics has the form (2.19), which we re-write
here for convenience:

q̇ = G(q)v

v̇ = τ.
(2.28)

The output is taken to be

y =


y1

y2

y3

y4

 = h(q) :=


xb + `1 cos(θ1) + `2 cos(θ1 + θ2)
yb + `1 sin(θ1) + `2 sin(θ1 + θ2)

θ2

arg (exp(j(θ1 − θh)))

 , (2.29)

where h : Q → Y , Y := R2 × S1 × S1. In (2.29),
[
y1 y2

]>
equals the position of the

end of link 2, i.e., the end-effector position in the inertial frame O while the third and
fourth components are user defined functions, or virtual holonomic constraints, that serve
to restrict the motion our system in task space. In particular, when y3 ≡ 0 link 2 is
constrained to be aligned with link 1 and when y4 ≡ 0, link 1 is restricted to be aligned
with the heading vector of the mobile base. Note that, for y4 we use arg(exp (j(θ1 − θh)))
instead of θ1 − θh to avoid “unwinding” issues.
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Chapter 3

Path Following for Closed Paths

In this chapter we use the model of the mobile manipulator derived in Chapter 2 to present
a control solution to the path following problem; we seek to make the end-effector of the
robot follow closed paths with no self-intersections. We then specialize our controller to
the computationally simple case of circular paths as well as elliptical paths. Finally, we
demonstrate that this simple circular controller can be used to follow strictly convex closed
paths by using a novel approximation method.

3.1 Problem Formulation

The dynamic model of the simplified SCARA mobile manipulator considered in Chapter 2,
after application of the preliminary feedback defined by (2.25), (2.26) and (2.27) is given
by

q̇ = G(q)v

v̇ = τ,
(3.1)

where the configuration variables are q :=
[
θ1 θ2 xb yb θh

]> ∈ Q, the pseudo-velocities

are v =
[
θ̇1 θ̇2 v θ̇h

]> ∈ R4, τ ∈ R4 is an auxiliary input yet to be specified and

G(q) =


1 0 0 0
0 1 0 0
0 0 cos(θh) 0
0 0 sin(θh) 0
0 0 0 1

 , (3.2)
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and the system output is taken to be (2.29).

3.1.1 Admissible Paths

In this chapter we assume that we are given a known1, smooth, closed and regular path,
with no self intersections in the inertial frame O that is represented parametrically as

σ : S1 → R2, σ′(λ) 6= 0 for all λ ∈ S1. (3.3)

Let C := σ(S1) denote the closed curve which is the image of σ.

Assumption 3.1. In addition to the parametric representation (3.3), there exists a known
smooth function s : U ⊆ R2 → R, whose domain is an open and connected set, such that

C = {(y1, y2) ∈ R2 : s(y1, y2) = 0} (3.4)

and, for all (y1, y2) ∈ C, ds(y1,y2) 6= 0. �

Assumption 3.1 asks that the path C also be represented as the zero level set of a
smooth function and that the Jacobian of said function have full rank at each point on
the curve. The “path” assigned to the remaining outputs y3 and y4 of our system (2.29),
corresponding to the user defined virtual holonomic constraints, is simply a point, i.e., we
seek to regulate y3 and y4 to zero. As discussed at the end of Chapter 2, when y3 ≡ 0 the
second link is constrained to be aligned with the first and when y4 ≡ 0, the first link is
restricted to be aligned with the base’s heading.

With these assumptions, the path in the task space Y = R2 × S1 × S1 of the SCARA
mobile manipulator equals the set

γ := {y ∈ Y : s(y1, y2) = y3 = y4 = 0} =
{
y =

[
σ(λ)

0
0

]
: λ ∈ S1

}
⊂ Y , (3.5)

the set γ is an embedded submanifold of R2 × S1 × S1.

3.1.2 Desired Motion Along the Assigned Path

In the path following problem we seek to drive the output y of the mobile manipulator
towards the target set γ; this is sometimes called the geometric task [36]. Additionally,

1This stands in contrast to Chapter 4 where we consider adaptive control and ease this assumption.
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many applications also require that the output move along γ in a useful way, e.g., we may
want that the end-effector traverse the entire curve C; such specifications are sometimes
called the dynamic task [36]. To model this desired motion along C, we invoke the notion
of a timing law generated by an exosystem which we assume has linear dynamics.

Assumption 3.2. The desired motion along the assigned path (3.3) is described by a
timing law λref : R→ S1 so that at each moment in time, σ(λref(t)) represents the desired
location along the path. The timing law is produced by a known exogenous system

ẇ(t) = Sw(t), w(0) ∈ Rr, (3.6a)

λref(t) = arg (exp(jQw(t)) (3.6b)

with S ∈ Rr×r, Q ∈ R1×r and where arg : C\{0} → (−π, π] is the principle argument. �

We present an example to illustrate the utility of the timing law.

Example 3.1.1. Consider the case of a unit circle centred at the origin of the inertial
frame O; in this case the parameterized representation (3.3) is given by

σ(λ) =

[
cos (λ)
sin (λ)

]
and the zero level set representation in Assumption 3.1 is given by, say, s(y1, y2) =√
y2

1 + y2
2 − 1. If our application asks that the robot’s end-effector move periodically

between the “north pole” and the “south pole” of the circle, then one choice of timing law
might be

ẇ(t) =

[
0 1
−1 0

]
w(t), w(0) = (1, 0),

λref(t) = arg
(
exp

(
j
[
π
2

0
]
w(t)

))
.

If instead we want the robot’s end-effector to traverse the entire circle in a counter-clockwise
direction, then the timing law might be

ẇ(t) =

[
0 1
0 0

]
w(t), w(0) = (0, 1),

λref(t) = arg
(
exp

(
j
[
1 0

]
w(t)

))
.

N
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3.1.3 Problem Statement

We are now ready to state the two main problems considered in this thesis.

Problem 1 (Path following). Consider the mobile manipulator model (3.1) with out-
put (2.29). Suppose we are given a closed parametric path (3.3) that satisfies Assump-
tion 3.1 and a desired motion along the path that satisfies Assumption 3.2. Find, if pos-
sible, a state-feedback controller τ : Q× R4 → R4 such that the closed-loop system enjoys
the following properties:

(i) The output is driven towards the path (3.5). In particular, there exists an open set
in Q× R4 such that any initial condition in this set results in

y(t)→ γ as t→∞ (attractivity)

with (q(t), v(t)) bounded.

(ii) The path (3.5) is output invariant. In particular, for every (q(0), v(0)) ∈ Q × R4,
and for every λ0 ∈ S1, α ∈ R, such

– y(0) = h(q(0)) =
[
σ(λ0)

0
0

]
, (output is initialized on path)

– dy
dt

∣∣
t=0
∈ Ty(0)γ, (output is initially moving tangent to the path)

the output y(t) belongs to γ for all t ≥ 0.

(iii) The output asymptotically converges to the desired motion along the path

lim
t→∞

∥∥∥y(t)−
[
σ(λref(t))

0
0

]∥∥∥ = 0.

In Chapter 4 we will consider an adaptive version of this problem in the special case
where the path is given by a circle.

Problem 2 (Adaptive path following). Consider the mobile manipulator model (3.1)
with output (2.29). Suppose we are given a curve C, which is a circle of unknown radius
and unknown location in the plane. Further suppose that the controller has access to the
entire state (q, v) ∈ Q × R4 and access to, at all times, the signed distance from the end-
effector to the circular path as well as the rate of change of this distance. Find, if possible,
a dynamic control law τ such that the closed-loop system enjoys the following properties:
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(i) The output is driven towards the path (3.5). In particular, there exists an open set
in Q× R4 such that, for any initial condition in the set results in

y(t)→ γ as t→∞ (attractivity)

with (q(t), v(t)) bounded.

(ii) The output traverses the entirety of the circular path in a user defined direction, i.e.,
either the clockwise or counterclockwise direction.

3.2 Path Following Output and Control Design

To solve the aforementioned problems, it is convenient to define the so-called path following
output [22, 38] for the mobile manipulator. Let U ⊆ R2 be an open set containing the
curve C with the property that if (y1, y2) ∈ U , then there exists a (unique) closest point on
C. Without loss of generality, we assume that U equals the previously defined open set U
discussed in Assumption 3.1. Next, define a function $ : U ⊂ R2 → S1

$(y1, y2) = arg min
λ∈S1

∥∥∥∥[y1

y2

]
− σ(λ)

∥∥∥∥ . (3.7)

Intuitively, $ returns the parameter λ∗ ∈ S1 with the property that σ(λ∗) is the closest
point on the curve C to (y1, y2). Combining the function (3.7) with the function (3.4)
from Assumption 3.1, we define the path following output yPF using the map hPF :
U × S1 × S1 ⊆ Y → R× S1 × S1 × S1

yPF = hPF(y) =


s(y1, y2)
$(y1, y2)

y3

y4

 . (3.8)

We write yPF = hPF(y) = hPF ◦ h(q) to distinguish the value of the path following out-
put (3.8) from the output y given by (2.29). The function hPF is a diffeomorphism onto
its image and so it can be viewed as a coordinate change on an open set of the task-space
Y containing the set (3.5).

To understand why the path following output (3.8) is useful for solving Problem 1,
observe that driving the robot’s physical output (2.29) to the path (3.5) is equivalent,
under mild technical conditions, to driving the 1st, 3rd and 4th components of the path
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following output (3.8) to zero. Furthermore, converging to the desired motion along the
path is equivalent to driving the second component of the path following output (3.8) to
λref(t).

Consider the mobile manipulator (3.1) with the path following output

q̇ = G(q)v

v̇ = τ

yPF = hPF ◦ h(q).

(3.9)

First we show that this system can be input-output feedback linearized in an open set
containing the path. Observe that

ÿPF =
∂

∂q

(
dhPF|h(q) dhq G(q)v

)
G(q)v + dhPF|h(q) dhq G(q)τ.

Turning to the expression multiplying the input τ ∈ R4, usually called the decoupling
matrix, we have

dhPF|h(q) =


ds(y1,y2)

d$(y1,y2)

0 0
0 0

0 0
0 0

1 0
0 1


h(q)

∈ R4×4.

By [14, Lemma 3.1], the differentials ds(y1,y2) and d$(y1,y2) are non-zero and linearly inde-
pendent for all (y1, y2) ∈ C and therefore this 4 × 4 matrix is non-singular, without loss
of generality by shrinking U if necessary, on the set U × S1 × S1 ⊂ Y . Next using (3.2)
and (2.29) we directly compute

det (dhq G(q)) = −`1 cos(θ1 − θh)− `2 cos(θ1 + θ2 − θh).

On the path (3.5), θ1 − θh = 0 and θ2 = 0 and so det (dhq G(q))|γ = −`1 − `2 6= 0. These

arguments show that, for all q such that h(q) ∈ γ, dhPF|h(q) dhq G(q) ∈ R4×4 is non-
singular. Thus, we have shown that the system (3.9) has vector relative degree {2, 2, 2, 2}
at each q ∈ h−1(γ). This means that there is an open set in the configuration space Q
containing h−1(γ), which we take without loss of generality to be h−1(U × S1 × S1), in
which the input-output feedback linearizing controller

τ :=
(

dhPF|h(q) dhq G(q)
)−1

(
∂

∂q

(
dhPF|h(q) dhq G(q)v

)
G(q)v + vaux

)
, (3.10)

where vaux ∈ R4 is yet another auxiliary input to be designed, is well-defined.

A natural question to ask is whether or not the system (3.9) is minimum phase. The
next result shows that (3.9) is minimum phase but not strictly minimum phase.
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Lemma 3.2.1. The zero dynamics manifold of

q̇ = G(q)v,

v̇ = τ,

yPF = hPF ◦ h(q),

(3.11)

is diffeomorphic to S1 and consists solely of equilibria.

Proof. Let
Z :=

{
(q, v) ∈ Q× R4 : yPF = 0

}
,

= {q ∈ Q : hPF ◦ h(q) = 0} × R4,
(3.12)

be the output zeroing manifold, we proceed to find the zero dynamics manifold2 Z? by
computing the largest controlled invariant set contained in Z.

First, we have that Z? ⊆ {(q, v) ∈ Z : ẏPF = 0} and by chain rule

ẏPF = dhPF|h(q) dhq G(q)v,

where dhPF is non-singular on γ, so it is non-singular on Z. Also

det(dhq G(q)) = −`1 cos(θ1 − θh)− `2 cos(θ1 + θ2 − θh),

therefore when (q, v) ∈ Z, θ1 − θ = 0 and θ2 = 0 and so

det(dhq G(q))

∣∣∣∣
Z

= −`1 − `2 6= 0.

Therefore, since dhPF|h(q) dhq G(q) is non-singular on Z, this implies ẏPF |Z = 0 if, and
only if, v = 0, thus

Z? ⊆ {(q, v) ∈ Q× R4 : yPF = 0, v = 0}. (3.13)

Finally the set to the right of (3.13) can be made controlled invariant since v̇ = τ and we
can pick τ ?(q, v) = 0, so that

Z? = {(q, v) ∈ Q× R4 : yPF = 0, v = 0},

from the above we immediately see that

q̇
∣∣
Z? = 0

v̇
∣∣
Z? = 0

2See Appendix B for the definition.
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so that Z? is a set consisting of equilibria as claimed in Lemma 3.2.1.

Note that dim(Z?) = 1 and the remaining degree of freedom is the particular values of
θ1 and θh that satisfy y4. Therefore the value of, say θh, is not unique on Z?. It follows
that Z? is diffeomorphic to S1.

It is well-known that if a nonlinear control system has a well-defined relative degree at
a point, then there exists a local coordinate transformation which puts the system into the
Byrnes-Isidori normal form in a neighbourhood of that point [19]. We now show that, in
the case of the mobile manipulator with path following output (3.9), the system can be
put into the Byrnes-Isidori normal form on an open set of its state-space Q × R4 whose
image under h includes the path (3.5), i.e., the normal form is valid in a neighbourhood of
the entire path, not just a neighbourhood of a point on the path.

We begin by defining the candidate coordinate transformation

T (q, v) :=

 θh
hPF ◦ h(q)

dhPF|h(q) dhq G(q)v

 . (3.14)

The last 8 components of the candidate transformation (3.14) are simply yPF and ẏPF while
the first component is the heading angle of the mobile base. We need two technical results
before proving the main result of this section.

Lemma 3.2.2. The function

F (y1, y2) =

[
s(y1, y2)
$(y1, y2)

]
maps an open subset of R2 containing the curve C diffeomorphically onto its image.

Proof. By [14, Lemma 3.1], dF(y1,y2) is non-singular at each (y1, y2) ∈ C. The result now
follows from the Generalized Inverse Function Theorem [13, Exercise 3.10].

Lemma 3.2.3. If q ∈ {q ∈ Q : |θ1 − θh| < π/2, |θ2 + θ1 − θh| < π/2}, then dhq · G(q) ∈
R4×4 is non-singular.

Proof. This results follows the previously discussed fact that

det (dhq G(q)) = −`1 cos(θ1 − θh)− `2 cos(θ1 + θ2 − θh).
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Proposition 3.2.1. Let

W := h−1(U × S1 × S1) ∩ {q ∈ Q : |θ1 − θh| < π/2, |θ2 + θ1 − θh| < π/2} .

The function (3.14) maps the set W × R4 ⊂ Q× R4 diffeomorphically onto its image.

Proof. We prove this result by explicitly constructing a smooth inverse to (3.14) on W×R4.

Let ξ :=
[
ξ1 ξ2

]>
, η =

[
η1 η2

]>
, ζ =

[
ζ1 ζ2 ζ3 ζ4

]>
and write

z
ξ1

η1

ζ1

ζ2

ξ2

η2

ζ3

ζ4


= T (q, v) =

 θh
hPF ◦ h(q)

dhPF|h(q) dhq G(q)v

 .

If (z, ξ, η, ζ) ∈ T (W,R4), then

θ2 = ζ1, θh = z, θ1 = arg (exp(j(ζ2 + z))) . (3.15)

By construction ξ1 = s(h1(q), h2(q)), η1 = $(h1(q), h2(q)) with (h1(q), h2(q)) ∈ U . Thus,
using the notation from Lemma 3.2.2,[

h1(q)
h2(q)

]
= F−1(ξ1, η1)

from which we deduce, using the definition (2.29) of h, that[
xb
yb

]
= F−1(ξ1, η1)−

[
`1 cos(ζ2 + z) + `2 cos(ζ1 + ζ2 + z)
`1 sin(ζ2 + z) + `2 sin(ζ1 + ζ2 + z)

]
. (3.16)

Together (3.15) and (3.16) show that we can compute q ∈ W as a smooth function T̃ of
ξ1, η2, z, ζ1, ζ2.

By Lemma 3.2.3, if q ∈ W , the decoupling matrix dhPF|h(q) dhq G(q) is non-singular
and therefore

v =
(

dhPF|h(q) dhq G(q)
)−1

q=T̃


ξ2

η2

ζ3

ζ4

 (3.17)
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is a smooth function on T (W,R4). In conclusion, the functions (3.15), (3.16), and (3.17)
define T−1(ξ, η, ζ, z) on the set T (W,R4).

Proposition 3.2.1 together with the feedback (3.10) show that on the set W × R4, the
mobile manipulator with path following output (3.9) is feedback equivalent to the input-
output feedback linearized system

ż = v4

∣∣∣∣
T−1(ξ,η,ζ,z)

=
[
0 0 0 1

] (
dhPF|h(q) dhq G(q)

)−1


ξ2

η2

ζ3

ζ4

 (3.18a)

ξ̇ =

[
0 1
0 0

]
ξ +

[
0
1

]
vt (3.18b)

η̇ =

[
0 1
0 0

]
η +

[
0
1

]
v‖ (3.18c)

ζ̇ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ζ +


0 0
0 0
1 0
0 1

 vζ (3.18d)

where we have expressed the auxiliary input as

vaux :=

vtv‖
vζ

 .
The path following output is given, in (ξ, η, ζ, z)-coordinates, by

yPF =


1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0



ξ
η
ζ
z

 .
Returning to the problem statement from Section 3.1.3, we have that property (i) is equiv-
alent to stabilizing ξ = 0, ζ = 0. Property (ii) is satisfied if ξ = 0 is an equilibrium point
of the ξ-subsystem (3.18b) and ζ = 0 is an equilibrium point of the ζ-subsystem (3.18d).

The η-subsystem (3.18c) is sometimes called the tangential subsystem with respect
to the path because it governs the portion of the manipulator’s dynamics that produce
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observable motion along the path. The tangential dynamics can be used to frame the
desired motion along the path, property (iii), in (ξ, η, ζ, z)-coordinates. Define the tracking
error

e1 := arg
(
exp

(
j(η1 − λref)

))
. (3.19)

Simple calculations using (3.18c) and the exosystem model (3.6) give that ė1 = η2−QSw.

Thus letting e =
[
e1 e2

]>
:=
[
e1 ė1

]> ∈ S1 × R, the full system model becomes

ż =
[
0 0 0 1

] (
dhPF|h(q) dhq G(q)

)−1


ξ2

e2 +QSw
ζ3

ζ4


ξ̇ =

[
0 1
0 0

]
ξ +

[
0
1

]
vt

ė =

[
0 1
0 0

]
e+

[
0
1

]
v‖ −

[
0

QS2

]
w

ζ̇ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ζ +


0 0
0 0
1 0
0 1

 vζ
ẇ = Sw (exosystem).

(3.20)

Driving e(t) to zero is equivalent to tracking the desired motion along the path and therefore
meeting objective (iii).

Remark 3.2.1. When on the path, i.e., ξ = 0, ζ = 0 and when tracking the timing law,
i.e., e = 0, the system’s dynamics reduce to

ż =
[
0 0 0 1

] (
dhPF|h(q) dhq G(q)

)−1


ξ2

QSw
ζ3

ζ4

 .
Since z(t) ∈ S1 and since S1 is compact, the internal state z(t) doesn’t exhibit finite escape
time and the control signal produced by (3.10) is bounded whenever vaux is bounded.

Remark 3.2.2. The transformed manipulator system (3.18) also allows us to consider
other types of desired motions along the path than just those described in Section 3.1.2.
For example, if we want the manipulator to move along its assigned path with a particular
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speed, but there is no particular location on the path where the robot should be, then we can
allow exosystems of the form

ẇ(t) = Sw(t), w(0) ∈ Rr, (3.21a)

ηref
2 (t) = Qw(t). (3.21b)

In this case, when on the path, i.e., ξ = 0, ζ = 0 and when tracking the desired speed, i.e.,
η2 = ηref

2 , the system’s dynamics reduce to

ż =
[
0 0 0 1

] (
dhPF|h(q) dhq G(q)

)−1


ξ2

Qw
ζ3

ζ4


η̇1 = Qw(t).

In this case, since (z, η1) ∈ S1 × S1, the comments from Remark 3.2.1 regarding finite
escape time and boundedness also apply.

The transformed mobile manipulator system (3.18) dynamics suggest the linear control
laws

vt = Ftξ, (3.22a)

v‖ = F‖e+QS2w, (3.22b)

vζ = Fζζ, (3.22c)

where Ft : R2 → R, F‖ : R2 → R and Fζ : R4 → R2 are chosen so that, respectively, the
three linear subsystems in (3.18) are exponentially stable.

Remark 3.2.3. When considering velocity tracking using an exosystem of the form (3.21),
the tangential controller is modified to equal

v‖ = F‖(η2 − ηref
2 ) +QSw, F‖ < 0. (3.23)

In summary, our proposed path following controller consists of Equations (2.25), (2.26)
and (2.18) which define the preliminary feedback u, Equation (3.6) which produces the
desired motion along the path, Equation (3.10) which input-output feedback linearizes
system (3.9), and the coordinate transformation (3.14) which is needed to implement the
linear feedbacks in Equation (3.22). The block diagram of the proposed controller is shown
in Figure 3.1.
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Input-Output
Feedback

Linearizing
Control
(3.10)

Preliminary
State

Feedback
Control
(2.27)

Mobile
Manipulator
Dynamics

(2.28)

Output
(2.29)

τ u x h(q)

Transversal
Control
(3.22a)

Tangential
Control

(3.22b), (3.23)

User-Defined
Control
(3.22c)

vt

v‖

vζ

vaux

Exogenous
System

(3.6), (3.21)

ξ
η
ζ

Coordinate
Transformation

(3.14)

Figure 3.1: Block diagram of non-adaptive path following control.
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3.3 Examples

3.3.1 Circular Path

To illustrate the general design procedure of Section 3.2, we now consider the problem of
making the end-effector of the mobile manipulator system follow a circle in the counter
clockwise direction. The circle has parametric representation

σ(λ) = r

[
cos(λ)
sin(λ)

]
+ c, (3.24)

where r > 0 and c =
[
c1 c2

]> ∈ R2 are, respectively, the radius and center of the circle.
In addition to (3.24), the implicit representation of the path satisfying Assumption 3.1 is

s(y1, y2) =
∥∥∥[y1 y2

]> − c∥∥∥− r, (3.25)

with U = R2\ {c}. In order to have the end-effector move in the counter clockwise direction
about the circle, we take the exogenous system (3.6) to be

ẇ(t) =

[
0 1
0 0

]
w(t), w(0) = (0, 1),

λref(t) = arg
(
exp

(
j
[
1 0

]
w(t)

))
.

To implement our proposed controller, we must define the path following output (3.8) in
the case of a circular path. The implicit representation (3.4) is given by (3.25) and, in the
case of a circle, the projection (3.7) can be written in closed-form as

$(y1, y2) = arctan2(y2 − c2, y1 − c1). (3.26)

Equations (3.25) and (3.26) complete the definition of the path following output (3.8) for
a circular path. With the path following output in hand, it is straightforward to compute
the controller given by (2.27), (3.10). The linear feedback laws in Equation (3.22) can be
computed, for example, using pole-placement or LQR optimal control.

Simulation Results

To illustrate the effectiveness of our control scheme from Section 3.3.1, we present a simu-

lation for a circle of radius r = 1.9 and center c =
[
0 0

]>
, where the initial conditions of
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the mobile manipulator are

q(0) =

[
0
π/4
1
−3
0

]
, v(0) =

[
0
0
0
0

]
,

and the gains of our linear controls (3.22) are

Ft =
[
−25 −10

]
, F‖ =

[
−12 −7

]
, Fζ =

[
−9 −6 0 0
0 0 −9 −6

]
,

see Figure 3.2 and 3.3.
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t = 60.60 sec

t = 80.17 sec

Figure 3.2: End-effector and mobile base trajectories for known circle.
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Figure 3.3: ξ1 =
∥∥∥[y1 y2

]>∥∥∥− 1.9 and η1 = arctan2(y2, y1) for known circle.

3.3.2 Elliptical Path

Next we consider the problem of making the end-effector of our robot follow an ellipse in
the counter clockwise direction. We are given an ellipse C, with parametric representation

σ(λ) =

[
a cos(λ)
b sin(λ)

]
+ c. (3.27)

where a, b > 0 and c =
[
c1 c2

]> ∈ R2 is the center of the ellipse. In addition to (3.27),
the implicit representation of the path satisfying Assumption 3.1 is

s(y1, y2) =
(y1 − c1)2

a2
+

(y2 − c2)2

b2
− 1, (3.28)

with U = R2\{c}. In order to implement our path following controller from Section 3.2,
the input-output feedback linearizing input (3.10), the coordinate transformation (3.14)
and linear feedbacks (3.22) need to be computed. However, in general and for the case
of the ellipse, the projection (3.7) that partially defines our path following output (3.8)
does not have a closed-form solution [2]. Because of this we compute the value of λ∗ ∈ S1

numerically using a line search algorithm over the compact set S1 [2] and set the first
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tangential state η1 := λ∗. Therefore since, η1 = $(y1, y2), to compute η2 we have

η2 =
∂($ ◦ h)

∂q
q̇ =

∂($ ◦ h)

∂q
G(q) v,

=

(
∂$

∂(y1, y2)

) ∣∣∣∣∣ y1=h1(q)
y2=h2(q)

[
I2 02

]
dhq G(q) v.

(3.29)

Simple geometric arguments give that (3.29) equals

η2 = (σ′(λ∗))>
[
I2 02

]
dhq G(q) v,

=

〈
σ′(λ∗),

[
ẏ1

ẏ2

]〉
.

(3.30)

Therefore differentiating (3.30), we get

η̇2 =

〈
σ′′(λ∗)η2,

[
ẏ1

ẏ2

]〉
+

〈
σ′(λ∗),

[
ÿ1

ÿ2

]〉
, (3.31)

where [
ÿ1

ÿ2

]
=

d

dt

([
ẏ1

ẏ2

])
,

=
∂

∂q

([
ẏ1

ẏ2

])
q̇ +

∂

∂v

([
ẏ1

ẏ2

])
v̇,

=
∂

∂q

([
ẏ1

ẏ2

])
G(q)v +

∂

∂v

([
ẏ1

ẏ2

])
v̇,

(3.32)

and v̇ is given by (2.17). The expressions (3.30), (3.31) and (3.32) provide us closed-
from expressions that we can use in the computation of input-output feedback linearizing
controller (3.10).

In order to have the end-effector move in the counter clockwise direction about the
ellipse, we take the desired motion along the path to be generated by an exosystem of the
form (3.21)

ẇ(t) = 0, w(0) = w0 ∈ R,
ηref

2 (t) = w(t).
(3.33)

If w0 > 0, the desired motion is in the same direction as increasing λ in the parametrized
ellipse (3.27). We apply the linear controllers from (3.22), however, cf. Remark 3.2.3, we
take the tangential controller to be v‖ = F‖(η2 − w(t)).
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Simulations Results

To illustrate the effectiveness of our control scheme from Subsection 3.3.2, we present a
simulation for the ellipse

σ(λ) =

[
2 cos(λ) + 1
sin(λ) + 1

]
.

with implicit representation

s(y1, y2) =
(y1 − 1)2

4
+ (y2 − 1)2 − 1.

The robot is initialized

q(0) =

[
0
π/4
2
−2
0

]
, v(0) =

[
0
0
0
0

]
.

We take the reference signal to be ηref
2 (t) = 1. We use the velocity tracking controller for

the tangential controller described in Remark 3.2.3 and the linear feedback matrices (3.22)
are

Ft =
[
−25 −10

]
, F‖ = −28, Fζ =

[
−9 −6 0 0
0 0 −9 −6

]
,

the resulting motion of the end-effector and mobile base are shown in Figure 3.4 with ξ1

and η1 in Figure 3.5.
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Figure 3.4: End-effector and mobile base trajectories for known ellipse.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

Figure 3.5: ξ1 = (y1−1)2

4
+ (y2 − 1)2 − 1 and η1 = λ∗ for known ellipse.
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3.4 Circular Approximation of Closed Paths

A drawback of the proposed path following controller is that the functions s(y1, y2) and
$(y1, y2) that appear in the path following output (3.8) do not, in general, have closed-form
expressions. Furthermore, even when closed-form expressions are available, the expressions
in the coordinate transformation (3.14), which are needed in order to implement the linear
feedback laws (3.22), can be complicated. In this subsection we propose a path following
controller for arbitrary closed curves that applies the circular path following controller from
Subsection 3.3.1 to the osculating circle [32] associated to the closest point of the closed
curve.

Given a strictly convex curve C with parametric representation (3.3), its signed curva-
ture at λ ∈ S1 is

κ(λ) =
σ′′1(λ)σ′2(λ)− σ′′2(λ)σ′1(λ)

‖σ′(λ)‖3
. (3.34)

The centre of curvature ε(λ) of σ at the point σ(λ) is defined to be

ε(λ) = σ(λ) +
1

κ(λ)

[
0 −1
1 0

]
σ′(λ)

‖σ′(λ)‖
. (3.35)

Since C is strictly convex (∀λ ∈ S1) κ(λ∗) > 0. The circle with centre ε(λ) and radius
1/|κ(λ)| is called the osculating circle to σ at the point σ(λ). It is the unique circle which
is tangent to σ at σ(λ) and has the same (unsigned) curvature as σ at that point.

Therefore, to each λ ∈ S1, we can uniquely associate a circle in the plane given para-
metrically by

σλ(s) :=
1

|κ(λ)|

[
cos (s)
sin (s)

]
+ ε(λ) (3.36)

and implicitly by

sλ(y1, y2) := ‖
[
y1 y2

]> − ε(λ)‖ − 1

|κ(λ)|
. (3.37)

The idea proposed in this section is to first compute the parameter λ? returned by the
function (3.7) for the given curve C. As mentioned earlier, in general the function $(y1, y2)
doesn’t have a closed-form expression; therefore the calculation of λ∗ ∈ S1 will normally
be done numerically and it can be done efficiently using a line search algorithm over the
compact set S1. The parameter λ?(t) = $(y1(t), y2(t)) defines a circle with parametric
representation (3.36) and implicit representation (3.37). To this circle we associate a path
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following output

yPF = hPF(y) =


‖
[
y1 y2

]> − ε(λ?)‖ − 1
|κ(λ?)|

arctan2(y2 − ε2(λ?), y1 − ε1(λ?))
y3

y4

 . (3.38)

In (3.38), λ? is a function of (y1, y2) but in applying the circular path following controller
from Subsection 3.3.1 we neglect this fact. More specifically, when we compute the differ-
ential of hPF we treat κ and ε as being constant. This results in a simplified expression
for the input-output feedback linearizing controller (3.10) and the coordinate transforma-
tion (3.14).

We also modify the definition of the desired motion along the path because the second
component in (3.38) doesn’t return a value for the parameter of the actual path σ. In
particular, at each moment in time, yPF,2(t)/|κ(λ?(t))| equals the arc-length along the
osculating circle from σλ?(0) to σλ?(yPF,2(t)). Thus, in order to get close to unit-speed
traversal along the path, we take the reference for η2 ≈ ẏPF,2 to be ηref

2 (t) = κ(λ?(t)).
Therefore, the tangential linear control is set to

v‖ = F‖(η2 − κ(λ?(t))), (3.39)

the block diagram of the proposed controller is shown in Figure 3.6.

3.4.1 Simulation Results

To illustrate the effectiveness of our control scheme from Section 3.4, we present a simula-
tion using the circle approximation approach for the ellipse

σ(λ) =

[
2 cos(λ) + 1
sin(λ) + 1

]
. (3.40)

with implicit representation

s(y1, y2) =
(y1 − 1)2

4
+ (y2 − 1)2 − 1.

The robot is initialized as

q(0) =

[
0
π/4
2
−2
0

]
, v(0) =

[
0
0
0
0

]
.
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Figure 3.6: Block diagram of non-adaptive path following control using circular approxi-
mation.
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Figure 3.7: End-effector and mobile base trajectories for known osculating circle.

We take the reference signal to be ηref
2 (t) = κ(λ?(t)). We use the velocity tracking con-

troller for the tangential controller described in Remark 3.2.3 and the linear feedback
matrices (3.22) are

Ft =
[
−25 −10

]
, F‖ = −28, Fζ =

[
−9 −6 0 0
0 0 −9 −6

]
, (3.41)

the resulting motion of the end-effector and mobile base are shown in Figure 3.7 with ξ1

and the arc-length in Figure 3.8.

3.4.2 Comparison

Given the path following controllers from Subsection 3.3.2 and Section 3.4, we simulated
for the ellipse from (3.40), with linear feedback gains (3.41) and initial conditions as listed
in Table 3.1 and computed the integral of the error of distance to path, defined as follows

ePF =

∫ T

0

∥∥∥[y1(t) y2(t)
]> − σ(λ?(t))

∥∥∥ dt, (3.42)

38



0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

Figure 3.8: ξ1 =
∥∥∥[y1 y2

]> − ε(λ?)∥∥∥− 1
|κ(λ?)| and η2 tracking κ(λ?).

to compare the difference in accuracy between our two proposed solutions, given that one
solution uses an local approximation of the path.

Table 3.1: Comparison of the integral of error of dis-
tance to path (3.42) for path following simulation of el-
lipse (3.40).

Initial conditions PF1 PF2

θ1(0) θ2(0) xb(0) yb(0) θh(0) θ̇1(0) θ̇2(0) v(0) θ̇h(0) (3.42) (3.42)
0 0 -1 -0.1 0 0 0 0 0 0.6825 0.6745
0 0 -1 2.1 0 0 0 0 0 0.6822 0.6747
π/2 0 3.1 -1 π/2 0 0 0 0 0.6221 0.6945
π/2 0 -1.1 -1 π/2 0 0 0 0 0.6228 0.6946
π 0 3 3 π 0 0 0 0 7.5958 6.9519

In Table 3.1, entry PF1 references our proposed solution from Subsection 3.3.1, while
PF2 references controller from Section 3.4. From Table 3.1 we can observe that the differ-
ence in error of distance to path between the two control schemes is quite negligible and
that depending on the initial conditions that the robot is initialized in, one controller may
perform better than the other.
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Chapter 4

Adaptive Path Following for Circular
and Strictly Convex Paths

In this chapter we ease the assumption that we are given a known path from Chapter 3 and
present two solutions for the design of path following controllers that adapt to unknown
paths. Specifically, we design an indirect adaptive path following controller that achieves
control objectives from Problem 2. Thereafter, we extend these results to unknown, strictly
convex1, closed paths by again designing an indirect adaptive path following controller that
also achieves control objectives from Problem 2.

4.1 Circular Path Parameter Estimation

Consider an unknown circular path C with radius r ∈ R and origin c ∈ R2. We start
by describing a method to estimate r and c given an agent whose location p(t) ∈ R2 and
velocity ṗ(t) are known for all t.

Assumption 4.1. The agent’s trajectory p(t) ∈ R2 is a smooth function of t and the
quantities

ξ1(t) := ||p(t)− c|| − r, (4.1)

ξ2(t) := ξ̇1(t). (4.2)

are measurable. �
1 A curve σ is strictly convex, if and only if, (∀λ ∈ S1) it’s signed curvature is always positive, i.e.,

κ(λ) > 0.
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Here ξ1(t) is the distance from p(t) to the closest point on the circle C, and ξ2(t) is the
rate of change of this distance at time t.

4.1.1 Parametric Model

Under Assumption 4.1, we now derive a parametric model for our circular path parameter
estimation algorithm. Differentiating the identity

(ξ1(t) + r)2 = (p(t)− c)>(p(t)− c) (4.3)

with respect to time

d

dt
(ξ1(t) + r)2 = 2 (ξ1(t) + r) ξ2(t) = 2 (p(t)− c)> ṗ(t) (4.4)

and re-arranging (4.4) we get

p>(t)ṗ(t)− ξ1(t)ξ2(t) = rξ2(t) + c>ṗ(t). (4.5)

Since the only unknowns in (4.5) are r and c, it is in linear parametric model form [18].
Define

µ(t) := p>(t)ṗ(t)− ξ1(t)ξ2(t) ∈ R,

Ω? :=

[
r
c

]
∈ R3,

φ(t) :=

[
ξ2(t)
ṗ(t)

]
∈ R3,

(4.6)

so that (4.5) can be expressed as

µ(t) = Ω?>φ(t). (4.7)

4.1.2 Estimation Model and Estimation Error

The estimation model has the same form as the linear parametric model (4.7), with the
only exception that the unknown parameters Ω? are replaced with their estimates at time
t. These estimates will be denoted by Ω(t) and the estimation model will be defined as
follows

µ̂(t) := Ω>(t)φ(t). (4.8)
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Given (4.7) and (4.8), observe that if Ω(t)→ Ω? as t→∞, then µ̂(t)→ µ(t); the converse
is false. With this in mind, define the estimation error to be

ε(t) :=
µ(t)− µ̂(t)

1 + β‖φ(t)‖2
, β > 0. (4.9)

Equation (4.9) essentially defines a signal that indirectly reflects the difference between
Ω(t) and Ω?.

4.1.3 Adaptive Law

Using (4.8) and (4.9) we can now derive an adaptive law to update the estimate Ω(t), first
we define an instantaneous cost criterion [18] for the estimation error (4.9) as

J(Ω) :=
ε2(t)

2
=

1

2

(µ(t)− Ω>φ(t))2

1 + β‖φ(t)‖2
. (4.10)

The approach is to update Ω(t) such that (4.10) is minimized so that ε(t)→ 0 as t→∞;
we use gradient descent

Ω̇(t) = −Γ∇J(Ω) (4.11)

where Γ = Γ> ∈ R3×3 is a positive definite scaling matrix called the adaptive gain and
∇J(Ω) is the gradient of (4.10) with respect to Ω

∇J(Ω) = (dJΓ)> = −ε(t)φ(t). (4.12)

Substituting (4.12) into (4.11) leads to the adaptive law

Ω̇(t) = Γε(t)φ(t), Ω(0) = Ω0, (4.13)

for updating the estimate Ω(t) starting from an arbitrary initial estimate Ω(0) = Ω0.

The algorithm (4.13) ensures that estimation error ε(t) → 0 as t → ∞, but it does
not necessarily guarantee that Ω(t)→ Ω? with time. However in the next sections we will
observe that such law will prove to be enough to satisfy control objectives from Problem 2
in an indirect adaptive path following control approach.
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4.2 Adaptive Path Following of Circular Paths

Returning to the path following problem, consider a circle C in the inertial frame O,
represented parametrically by (3.24), where r and c are unknown. To apply the estimation
algorithm from Section 4.1 the role of p(t) will be played by the mobile manipulator’s
end-effector location, i.e., the first two components of the output (2.29),[

y1

y2

]
=

[
xb + `1 cos(θ1) + `2 cos(θ1 + θ2)
yb + `1 sin(θ1) + `2 sin(θ1 + θ2)

]
. (4.14)

Note from (4.14) that the agent’s trajectory p(t) will be a function of the evolution of the
configuration variables q ∈ Q, under the system’s partially compensated dynamics (3.1).
Furthermore, since we’ve assumed that q and v are measurable, ṗ(t) is also available

ṗ(t) =

[
1 0 0 0
0 1 0 0

]
dhq G(q) v,

=

[
− (`1 sin (θ1) + `2 sin (θ1 + θ2)) θ̇1 − `2 sin (θ1 + θ2)θ̇2 + v cos (θ)

(`1 cos (θ1) + `2 cos (θ1 + θ2)) θ̇1 + `2 cos (θ1 + θ2)θ̇2 + v sin (θ)

]
,

(4.15)

with both (4.14) and (4.15), we also assume that sensors provide the signals (4.1) and (4.2).
Therefore, the design of the so called indirect adaptive path following controller for circular
paths, in short, will consist of a combination of our circular path parameter estimator from
Section 4.1 and a modified version of our path following control from Subsection 3.3.1.

4.2.1 Path Following Output and Control Design

The basic idea is to use the path following controller from Subsection 3.3.1 but with
an estimate of the circle’s radius r and centre c. We run the adaptive law described
by (4.6), (4.8), (4.9) and (4.13). The path following output is taken to be

yPF = hPF(y, t) :=


∥∥∥[y1 y2

]> − ĉ(t)∥∥∥− r̂(t)
arctan2(y2 − ĉ2(t), y1 − ĉ1(t))

y3

y4

 .
As in Section 3.4, we neglect the time-varying nature of hPF. Specifically, when we compute
the differential dhPF, the estimates r̂(t) and ĉ(t) are treated as constants. This results in
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a simplified expression for the input-output feedback linearizing controller (3.10) and for
the tangential η states in the coordinate transformation (3.14).

In order to satisfy property (ii) in Problem 2, we take the desired motion along the
path to be generated by an exosystem of the form (3.33). If w0 > 0, the desired motion
is in the same direction as increasing λ in the parameterized circle (3.24). We apply the
linear controllers (3.22) however, cf. Remark 3.2.3, we take the tangential controller to be

v‖ = F‖(η2 − ηref
2 ). (4.16)

We emphasize that in the linear feedback law vt from (3.22), the true values of ξ (see
Assumption 4.1) are used. Refer to Figure 4.1 for a block diagram of the control scheme
presented in this section.

4.2.2 Simulation Results

To illustrate the effectiveness of our adaptive path following controller for circular paths,

we simulate for an unknown target circle of radius r = 1.9 and origin c =
[
1 1

]>
. The

robot and adaptive law are initialized respectively at

q(0) =

[
0
π/4
3
3
0

]
, v(0) =

[
0
0
0
0

]
, Ω(0) =

[
1

0.2
0

]
.

with β = 0.8, Γ = 20I3, we again use a velocity tracking controller for the tangential control
and we take the reference signal to be ηref

2 (t) = 0.5 and the linear feedback matrices (3.22)
are

Ft =
[
−81 −18

]
, F‖ = −28, Fζ =

[
−9 −6 0 0
0 0 −9 −6

]
.

Figures 4.2, 4.3 and 4.4 reveal that while ĉ(t) converges to c, r̂(t) does not converge
to r. Furthermore, even though we assumed our estimated circular path parameters r̂(t)
and ĉ(t) to be constant in our control design our adaptive algorithm still achieves control
objectives of Problem 2.

4.3 Adaptive Path Following of Strictly Convex Paths

Next, we extend the adaptive path following controller of Section 4.2 to a more general
class of paths. Given an unknown curve C with parametric representation (3.3) that is
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Figure 4.1: Block diagram of indirect adaptive path following controller for unknown cir-
cular paths.
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Figure 4.2: End-effector and mobile base trajectories for unknown circle.

strictly convex, i.e., its signed curvature (3.34) is strictly positive, we make the following
assumption.

Assumption 4.2. Sensors provide the values s(y1(t), y2(t)) from (3.8) and ṡ(y1(t), y2(t))
for the unknown, strictly convex, path C. �

Assumption 4.2 essentially asks that a signed distance s(y1(t), y2(t)) from the mobile
manipulator’s end-effector to C be available for feedback, as well as its time-derivative
ṡ. Under Assumption 4.2, and following the discussion from Section 3.4, to each λ?(t) =
$(y1(t), y2(t)) we associate the osculating circle to C at the point σ(λ?(t)). It has a para-
metric representation σλ?(t)(s) given by (3.36) and an implicit representation sλ?(t)(y1, y2)
given by (3.37) where the curvature κ(λ?(t)) and centre of curvature ε(λ?(t)) are unknown.
Let r(λ) := 1/|κ(λ)| denote the radius of the osculating circle at σ(λ).

Under Assumption 4.2, we equate the value of s(y1(t), y2(t)) to the distance of the
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unknown circle.

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Figure 4.4: Circular path parameter convergence from adaptive law.
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end-effector to the osculating circle

ξ1(t) :=
∥∥∥[y1(t) y2(t)

]> − ε(λ?(t))∥∥∥− r(λ?(t)).
Similarly we identify ṡ(y1(t), y2(t)) to equal the rate of change of the distance to the
osculating circle

ξ2 :=

([
y1(t) y2(t)

]> − ε(λ?(t)))>∥∥∥[y1(t) y2(t)
]> − ε(λ?(t))∥∥∥

([
ẏ1(t)
ẏ2(t)

]
− ε̇(λ?(t))

)
− ṙ(λ?(t)), (4.17)

not the curve C. Next we attempt to apply the parameter estimator from Section 4.1
keeping in mind that in the current scenario the unknown parameters Ω?(t) are no longer
constant. Given the above ξ1 and ξ2 we proceed to derive the new linear parametric model
by considering the same expression (4.3)

(ξ1(t) + r(λ?))2 = (p(t)− ε(λ?))>(p(t)− ε(λ?))

differentiating the left side of (4.3) with respect to time (we will drop the t and λ? param-
eters in the interest of space), we obtain

d

dt
(ξ1 + r)2 = 2(ξ1 + r)(ξ̇1 + ṙ)

= 2(ξ1 + r)

(
ξ2 +

dr(λ)

dλ?

∣∣∣∣
λ?(t)

dλ?

dt

)

= 2 ‖p− ε‖ ξ2 + 2 ‖p− ε‖ dr(λ)

dλ?

∣∣∣∣
λ?(t)

dλ?

dt︸ ︷︷ ︸
:=ε1

= 2 ‖p− ε‖ ξ2 + ε1

= 2(ξ1 + r) ξ2 + ε1 (4.18)

substituting (4.17) into (4.18) and rearranging

2(ξ1 + r)ξ2 + ε1 =2 ‖p− ε‖ . . .(
(p− ε)>

‖p− ε‖
ṗ− (p− ε)>

‖p− ε‖
dε(λ)

dλ

∣∣∣∣
λ?(t)

dλ?(t)

dt
− dr(λ)

dλ?

∣∣∣∣
λ?(t)

dλ?

dt

)
+ ε1
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=2(p− ε)>ṗ− 2(p− ε)> dε(λ)

dλ

∣∣∣∣
λ?(t)

dλ?(t)

dt︸ ︷︷ ︸
:=ε2

. . .

− 2 ‖p− ε‖ dr(λ)

dλ?

∣∣∣∣
λ?(t)

dλ?

dt︸ ︷︷ ︸
=ε1

+ε1

=2(p− ε)>ṗ− ε2. (4.19)

Therefore from (4.18) and (4.19) we obtain

2(ξ1(t) + r(λ?))ξ2(t) + ε1(t) = 2(p(t)− ε(λ?))>ṗ(t)− ε2(t) (4.20)

further rearranging (4.20), we get

p>(t)ṗ(t)− ξ1(t)ξ2(t) = r(λ?)ξ2(t) + ε>(λ?)ṗ(t) + ε1(t) + ε2(t). (4.21)

From (4.21) we are led to the linear parametric model (cf. (4.7))

µ(t) = Ω?>(t)φ(t) + ε1(t) + ε2(t) (4.22)

where

µ(t) :=
[
y1(t) y2(t)

] [ẏ1(t)
ẏ2(t)

]
− ξ1(t)ξ2(t) ∈ R,

Ω?(t) :=

[
r(λ?(t))
ε(λ?(t))

]
∈ R3,

φ(t) :=

ξ2(t)
ẏ1(t)
ẏ2(t)

 ∈ R3.

Again the perturbations ε1(t) and ε2(t) in (4.22) are given by

ε1(t) = 2
∥∥∥[y1 y2

]> − ε(λ?(t))∥∥∥ dr(λ)

dλ

∣∣∣∣
λ?(t)

dλ?(t)

dt
, (4.23)

ε2(t) = 2
([
y1 y2

]> − ε(λ?(t)))> dε(λ)

dλ

∣∣∣∣
λ?(t)

dλ?(t)

dt
. (4.24)

The expressions (4.23), (4.24) show that if r(λ?(t)) and ε(λ?(t)) are slowly time-varying,
then ε1(t) ≈ 0, ε2(t) ≈ 0 and it is reasonable to expect that the estimation algorithm from
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Section 4.1 will still work. In this context, slow time variation means that the curve C
has almost constant curvature r′(λ) ≈ 0 and that the closest point on C to the robot’s
end-effector doesn’t change too quickly, λ̇?(t) ≈ 0. In other words, C can be slightly
deformed from a circle and the robot shouldn’t move too fast. The estimation algorithm
for Ω(t) := [r̂(t) ε̂>(t)]> is therefore

Ω̇(t) = Γ

(
µ(t)− Ω>(t)φ(t)

1 + β‖φ(t)‖2

)
φ(t), Ω(0) = Ω0, β > 0. (4.25)

4.3.1 Path Following Output and Control Design

With equation 4.25 as our osculating circle parameter estimator, we proceed to use the
same path following controller proposed in Section 4.2. The path following output is taken
to be

yPF = hPF(y, t) :=


∥∥∥[y1 y2

]> − ε̂(t)∥∥∥− r̂(t)
arctan2(y2 − ε̂2(t), y1 − ε̂1(t))

y3

y4

 .
As in Section 4.2, we neglect the time-varying nature of hPF. Specifically, when we compute
the differential dhPF, the estimates r̂(t) and ε̂(t) are treated as constants. This results in
the same simplifications to the path following controller discussed in Section 4.2 for the
input-output feedback linearizing controller (3.10) and for the tangential η states in the
coordinate transformation (3.14).

To enforce that the closest-point on the path C to the end-effector does not change too
rapidly, we choose the reference for the tangential velocity η2 in much the same way as in
Section 3.4. Specifically, we take ηref

2 (t) = c‖κ̂(t) where |c‖| is chosen to be small. We apply
the linear controllers (3.22) however, since we are doing velocity tracking in the tangential
subsystem, we apply the tangential controller

v‖ = F‖(η2 − c‖κ̂(t)). (4.26)

We emphasize that in the linear feedback law vt from (3.22), the values of s and ṡ from
Assumption 4.2 are used in place of ξ1 and ξ2. Refer to Figure 4.5 for a block diagram of
the control scheme presented in this section.
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Figure 4.5: Block diagram of indirect adaptive path following controller for unknown
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4.3.2 Simulation Results

To illustrate the effectiveness of our adaptive path following controller for strictly convex
paths here we present a simulation of out adaptive path following system for and unknown
ellipse

σ(λ) =

[
3 cos(λ)
sin(λ)

]
(4.27)

The robot is initialized at

q(0) =

[
0
π/4
3
3
0

]
, v(0) =

[
0
0
0
0

]
, Ω(0) =

[
1

0.2
0

]
.

with β = 0.8, Γ = 700I3, we take the reference signal to be ηref2 (t) = c‖κ̂(λ?(t)) with
c‖ = 0.5. We again use a velocity tracking controller for the tangential control and the
linear feedback matrices (3.22) are

Ft =
[
−81 −18

]
, F‖ = −28, Fζ =

[
−9 −6 0 0
0 0 −9 −6

]
.

The resulting motion of the end-effector and mobile base are shown in Figure 4.6 and
the osculating circle parameter estimates are shown in Figure 4.8. Figures 4.6, 4.7 and
4.8 reveal that while our approach does not deliver online parameter convergence of the
osculating circle, our indirect adaptive path following control approach still achieves control
objectives of Problem 2 for the unknown ellipse.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis we proposed a solution to the adaptive path following problem and designed
path following controllers that adapt to unknown circular and strictly convex closed curves
in the plane. In terms of design, we used an indirect adaptive control approach, i.e., given
parameter estimates of an unknown path, we update our control in real-time.

We began by presenting a solution to the path following problem of general known
closed curves and applied it to the case of known circular and elliptical paths. We also
presented a second solution by means of a circular approximation of closed paths via
osculating circle. We then proposed a solution to the adaptive path following problem
for the case of unknown circular and strictly convex paths. First, we derived an adaptive
law that estimates circular path parameters in real-time. Given the estimates from our
adaptive law, we used our previously defined path following controller for circular paths
and at each time instant updated the path following controller accordingly. We found that
our path following controller that uses the circle approximation allowed us to extend our
results to the case of unknown strictly convex closed curves.

5.2 Future work

Future work of the research presented in this thesis include the derivation of stability
proofs of the control schemes for path following discussed in Chapter 3 and Chapter 4,
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simulation suggests that an extension to the non-convex case is possible for controller from
Section 3.4. The adaptive path following problem could also benefit from an extension and
stability proofs to the adaptation of unknown non-convex paths with no line segments. All
the proposed controllers in this thesis could be further validated via implementation on a
physical nonholonomic mobile manipulator. Lastly the adaptive path following controllers
of this thesis and any future work could be applied for obstacle avoidance.
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Appendix A

Angular variables, the circle

For an angular variable θ, the quantities θ and θ + 2π represent the same position on the
unit circle. Thus, geometrically, we can view angular variables as belong to a set that is
diffeomorphic to a circle. Consider the unit circle in R2

S1 :=
{
x ∈ R2 : ‖x‖2

2 = 1
}
. (A.1)

This set is example of a manifold, more specifically, we’ve expressed the manifold S1 as
being embedded in the plane. In this thesis we write θ ∈ S1 for angular variables. The
manifold S1 is compact and one-dimensional. Thus, when we write θ ∈ S1 what we actually
mean is that some local choice of coordinates has been made and the quantity θ can be
treated as a scalar, i.e., an angle. This is because the set S1 can almost be covered with a
single coordinate chart (U,ϕ) with

U := S1\ {(−1, 0)}

and ϕ : U → (−π, π) defined as ϕ(x) = arctan(x2, x1), i.e., the four quadrant arctangent.
It’s clear that U 6= S1 so this coordinate chart doesn’t cover all of S1, however, in this
thesis we will ignore this fact. In summary, when we write θ ∈ S1 we should think of θ
taking values in the open interval (−π, π) even though this doesn’t incude all the points
on the unit circle S1.
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Appendix B

Zero dynamics

Recall a definition from nonlinear control systems. Consider the nonlinear control system

ẋ(t) = f(x(t), u(t)) (B.1a)

y(t) = h(x(t)) (B.1b)

with state x(t) ∈ Rn, input u(t) ∈ Rm and output y(t) ∈ Rp. We assume that f(0, 0) = 0
and h(0) = 0. Let

Z := {x ∈ Rn : h(x) = 0} (output zeroing set).

Under the assumption that, for all x ∈ Z, dhx has full rank, this set is an (embedded)
submanifold of the state-space Rn. Let Z0 ⊆ Z denote the connected component of Z
which contains x = 0.

Example B.0.1. If h : R2 → R, (x1, x2) 7→ x2(x2
1 + x2

2 − 1), then

Z =
{
x ∈ R2 : x2 = 0 or x2

1 + x2
2 − 1 = 0

}
and Z0 = {x ∈ R2 : x2 = 0}. In this case

dhx =
[
2x1x2 3x2

2

]
isn’t full rank on all of Z, but, nevertheless, Z0 is an embedded submanifold of R2. N

Now let Z? ⊆ Z0 denote the largest, in terms of set inclusion, controlled invariant set
contained in Z0 which contains x = 0. Then Z? is called the zero dynamics manifold
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of (B.1) near x = 0. This set has the property that, if x(0) ∈ Z?, there exists a control law
u? : Z? → Rm such that the state remains on Z? for all t on an open interval containing
0 and that the corresponding output on over this time interval is identically equal to zero.
The dynamics of (B.1) restricted to Z? are called the zero dynamics of (B.1).

Example B.0.2. To illustrate these ideas in the special case when (B.1) happens to be
linear, consider

ẋ(t) =

[
0 1
−2 −3

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
c1 1

]
where c1 6= 0. In this case it is easy to check that

Z = Z0 = Ker
[
c1 1

]
= span

[
1
−c1

]
.

In this case the set Z itself can be made invariant through (linear) state feedback since it’s
an (A,B)-invariant subspace, i.e., AZ ⊆ Z + Im (B). Thus, in this example, Z = Z? and
one choice of u? : Z? → R to make Z? invariant is

u?(x) = Fx =
[
−3c1 + 2 + c2

1 0
]
.

If we let AF := A+BF , then Z? is an AF -invariant subspace. To obtain the system’s zero
dynamics we need to restrict the system to Z?. If V : Z? → R2 is the insertion map, then
the restriction of AF to Z? is the map which makes the following diagram commute

R2 R2

Z? Z?.

AF

A|Z?

V V

Solving the equation AFV = V A|Z? yields A|Z? = −c1 and the system’s zero dynamcis
are

ż(t) = −c1z(t).

These dynamics are exponentially stable if c1 > 0; unstable if c1 < 0 and stable in the
sense of Lyapunov if c1 = 0.

In this example it is interesting to note that the zero dynamics are independent of
the choice of u? and that the eigenvalues of A|Z? equal the zeros of the transfer function
C(sI − A)−1B. N
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