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Abstract

Lakes are ecologically, economically, and culturally significant resources that are,

at the same time, very fragile and sensitive to human disturbances. During the last

decades, intensified urbanization and discharge of nutrients lead to the increase of lake

eutrophication in many regions of the world. Moreover, biogeochemical cycles within

the lakes are changing due to climate warming, which increases water temperature and

affects physical and hydrological lake regimes. In this thesis, I investigate a vast scope

of the natural and anthropogenic processes affecting the biogeochemical cycles in lakes

at different scales. In particular, I examine the cascading effect of the climate, regional

weather, human interventions, and microbial control on phosphorus dynamics in lakes.

In Chapter 2, I demonstrate that on the lake scale, phosphorus cycle is driven by

internal loading and iron recycling, while it is vulnerable to the reduction of ice cover. To

achieve that, I expand the existing MyLake model by incorporating a sediment diagenesis

module. Moreover, I develop the continuous reaction network that couples biogeochemical

reactions taking place both in water column and sediment. In the modeling scenarios, I

assess the importance of the sediment processes and the effects of the climatic and anthro-

pogenic drivers on water quality in Lake Vansjø, Norway. I also highlight the importance

of phosphorus accumulation within the lake that controls timing and magnitude of bio-

geochemical lake responses to external forcing. This includes projected changes in the air

temperature, absence of ice cover, and potential management practices.

In Chapter 3, I contribute to the long-standing understanding that on the scales

of microbial systems, the respiration reactions exert substantial control on biogeochemi-

cal cycles by regulating the availability of the electron donors and acceptors, secondary

minerals, adsorption sites, and alkalinity. Moreover, I develop a new conceptual model

to simulate the preferential catabolic reaction pathways based on power produced in

reactions. In contrast to common kinetic rate expressions, I demonstrate that new ther-

modynamically based formulations can be applied to describe the microbial respiration of

arbitrary large reaction networks. New approach substantially improves the robustness,

transferability, and allows the generalization of the model-derived parameters.
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In Chapter 4, I show that on the regional scale, weather defines hydrodynamic flush

rates and water circulation patterns, which, in turn, control the phosphorus transport in

Lake Erie, Canada. Specifically, precipitation controls the release of phosphorus from the

watershed in the spring, while wind governs the water circulation and transport of the

phosphorus released from sediment in the central basin during summer. I also illustrate

that climate and weather in the upper Laurentian Great Lakes regulate changes in the

water level of Lake Erie.

Overall, this thesis improves the fundamental understanding of the phosphorus cycle

in lakes, which is being controlled by numerous biogeochemical and physical processes

at various scales. In particular, I show that the climate has a cascading effect on the

phosphorus cycle in lakes. First, climate controls regional precipitation, wind, and air

temperature, which in turn control phosphorus supply from the watershed and basin-

wide phosphorus transport. Second, being vulnerable to climate warming, the duration

of ice cover impacts the phosphorus cycle through changes in light attenuation, water

temperature, mixing regimes, and water column ventilation. Lastly, local environmental

perturbations (e.g., pH, temperature, or redox state) define thermodynamic properties of

the sediment, which control microbial metabolism and, therefore, the internal phosphorus

loading.

Finally, this thesis provides new open-source tools for reactive transport simula-

tions in lakes as well as in saturated media. In addition to the coupled lake-sediment

model developed in Chapter 3, I develop a computer program PorousMediaLab, which

performs biogeochemical simulations in water-saturated media and described In Chapter

5. PorousMediaLab is the core component of the numerical investigations presented in

the thesis. For example, PorousMediaLab is applied in Chapter 2 to design and test the

initial reaction network, calculate fluxes at the sediment-water interface, and estimate re-

action timescales. In Chapter 3, PorousMediaLab is used to simulate the reaction rates of

batch and one-dimensional sediment column using a novel approach based on the thermo-

dynamic switch function. In Chapter 4, PorousMediaLab is used to build a mass balance

model and to improve the current understanding of the inter-basin exchange. Both tools
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are open-source, and they are available online.
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Chapter 1

Introduction

1.1 Human Impact on Biogeochemical Cycles

Industrial revolution, mining and combustion of the planetary resources, distur-

bances of natural landscapes, and fast growth of the population dramatically change the

environment. In the early 20th century, Russian biogeochemist Vernadskiy recognized that

humans had become a “large scale geological force”, and their impact could no longer be

ignored. At present, human activity shapes biological, geochemical, aquatic, and climatic

aspects of the environment.

One of such activities is the increase of one of the green-house gases in the atmo-

sphere, namely carbon dioxide. In particular, 800,000-year-old ice cores extracted from

Antarctic Dome C station indicate that carbon dioxide in the atmosphere has increased

since the industrial revolution to the values never seen during the last millennium (Petit

et al., 1999). Anthropogenic changes of the carbon cycle are responsible for this increase.

More specifically, at the rate of about 0.2◦C per decade, human-induced warming of the

near-surface temperature reached 1◦C above pre-industrial levels in 2017 (IPCC Report,

2018). Warming of the atmosphere resulted in regional weather instability and changes in

hydrological cycles. Particularly, it resulted in heat waves, droughts, and desertification in

the arid zones, and increase of storms with more frequent heavy downpours and floods in

humid zones. As predicted by new generation climate models, further increase of carbon

dioxide in the atmosphere with the “business as usual” will result in the air temperature

rise from 2◦C to 4◦C by 2100 (IPCC Report, 2018).
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The anthropogenic disturbances in the cycles of biogenic elements are also crucial.

Phosphorus and nitrogen are essential elements required for plant growth and crop pro-

duction and thus serve as a basis of the food chain. Therefore, modern phosphorus and

nitrogen cycles are dominated by agricultural needs. Since World War II, fertilizer-based

food production substantially altered global nitrogen and phosphorus cycles, increasing

bioavailability and mobility over the large regions and even continents. Consequently,

agricultural surplus application of the fertilizers increased the runoff of nitrogen and

phosphorus to the land-ocean aquatic continuum by orders of magnitude (Filippelli, 2008,

Mackenzie et al., 2002). Overall, the rise of the carbon dioxide in the atmosphere, in-

crease of air temperature along with phosphorus and nitrogen load boost the biological

productivity in the terrestrial and aquatic environments.

1.2 Impact on Lakes

Lakes are ecologically, economically, and culturally significant resources that play a

vital role in providing habitat for birds, terrestrial and aquatic animals. However, many

factors affect lakes and the temperature among the most influential. Recent studies have

investigated the impact of climate warming on the water temperature of lakes (Living-

stone, 2003, Parry, 2007, Sharma et al., 2015, Woolway et al., 2019). These studies and

references therein provided evidences that water temperatures in the lakes rose rapidly,

strengthened stratification, changed mixings rates, the metabolism and the life cycles of

aquatic organisms. Long-term in-situ measurements in the Canadian Experimental Lakes

Area also confirmed that water temperature is steadily increasing (Schindler et al., 1996,

1990). In high latitude regions, climate warming has the most profound effect on the

lakes. Given the importance of freeze-thaw cycles and permafrost there, lakes experience

significant changes in temperature, geomorphology, and hydrology (Quesada et al., 2006).

In the comprehensive synthesis of in-situ and satellite-derived summer lake temperatures,

O’Reilly et al. (2015) found that between 1985 and 2009, the water temperature rose

0.34◦C per decade (global mean).

Given the impact on light, temperature, and mixing, ice characteristics demonstrate
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the cascading effects on the flora, fauna, and water quality of the lakes (Bertilsson et al.,

2013, Hampton et al., 2015, Lindenschmidt et al., 2018). In lakes with seasonal ice cover,

the timing of ice cover is expected to define some of the most critical biotic and abiotic

changes (Hampton et al., 2017). However, during the last century, the climate warming

significantly reduced the period of ice cover in lakes. For example, in the Northern Hemi-

sphere during the period from 1846 to 1995, the formation and break-up of ice occurred

0.57 days later and 0.63 days earlier per decade, respectively (Magnuson, 2000). The esti-

mated projection for those lakes indicates that the overall rate of decrease of ice duration

accelerates whereas the duration of ice cover is expected to be shorter by about 15–50

days in 2050 (Dibike et al., 2011). Lack of the complete understanding of the effect of ice

cover on aquatic ecosystems highlights an urgent need for research focused on ecosystem

changes in the seasonally ice-covered lakes (Hampton et al., 2017). It still remains unclear

how disappearing ice affects biotic and abiotic systems, what ecological processes are at

stake, as well as what are the potential feedbacks associated with these changes.

In addition to increasing surface water temperatures and shortening ice periods,

climate warming is expected to change recurring global teleconnections and therefore

precipitation patterns in watersheds of lakes (Abtew and Trimble, 2010). For example, El

Nino – Southern Oscillation (ENSO) is responsible for the intensity of the precipitation

across Canada and USA (Shabbar et al., 1996). Therefore, it is expected that ENSO

has a major effect on hydrology and biology of lakes in North America. As such, cyclic

variations in the rainfalls and increased droughts may stimulate the increase of harmful

algae growth driven by weak dilution and therefore greater availability of the nutrients

(Schaus et al., 2003). Moreover, modulated by global circulation patterns, water residence

times define the retention of nutrients in lakes (Vollenweider, 1976). However, climate-

related atmospheric circulation variability and its effect on the hydrology and biology of

lakes has received little attention in the literature to date.
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1.3 Lakes and Phosphorus Cycling

Lakes are crucial reservoirs in the regulation and maintenance of global biogeo-

chemical cycles of carbon, nitrogen, and phosphorus. Synergistic effects of warming lake

water, disappearing ice and increasing nutrient loads enhance the reproduction of algae

and potentially could lead to anoxic conditions, fish stock changes, loss of biodiversity,

and decrease of zooplankton which, in turn, intensify algal blooms (Conley et al., 2009,

Havens and Paerl, 2015, Jeppesen et al., 2014, Paerl and Huisman, 2008, Sondergaard

et al., 2003). In most lakes, phosphorus is the limiting nutrient for biological productivity

(Correll, 1999, Dillon and Rigler, 1974). In turn, phosphorus behavior in the lakes is

very dynamic, as it is extensively involved in biological cycles. Once it reaches the lake

water, it is retained efficiently via uptake and incorporation by plants and subsequently

deposited to the sediment in the organic form.

In the lakes, sediment accumulate allochthonous and autochthonous organic matter

and solid inorganic particles that settle from the water column. Depending on geomor-

phology of the lake and wind exposure, the sediment could be resuspended back into water

column, and therefore the sedimentation rates differ spatially and temporally (Håkanson,

1986). In nutrient rich lakes, the accumulation of the sediment typically happens in the

deep parts with the rate of several millimeters per year (Sondergaard, 2007).

Sediments play an important role in the phosphorus cycle of the lakes and can be

both sink and source of phosphorus. Phosphorus accumulated in the sediment can occur

in dissolved and solid forms, as well as in a number of organic and inorganic species

(Tables 1.1, 1.2). However, most of the phosphorus in the sediment is stored in the

solid phase. Phosphorus mobilization from sediment into water column, termed “internal

phosphorus loading”, plays an important role in phosphorus availability (Boström et al.,

1988). Various mechanisms, such as oscillating redox conditions, mineralization, microbial

processes, and temperature control the release of phosphorus from the sediment (Boström

et al., 1988, Gudasz et al., 2010, Jöhnk et al., 2008, Penn et al., 2000).

Redox conditions play an important role on phosphorus retention in the sediment.

4



Table 1.1: Reactions describing the transformation of organic phosphorus in water
columns and sediments of lakes. R0a and R0b– algal growth dynamics; R1-R6 – typ-
ical redox sequence of organic matter degradation; x, y, z – define the C:N:P elemental
composition of the organic matter produced or degraded in reactions R0-R6.

no. Reaction

Algae growth

R0a
(x− y + 2 z)CO2 + (y− 2z)HCO –

3 + yNH +
4 + zHPO 2–

4 + (x− y + 2 z)H2O

−−→ (CH2O)x(NH3)y(H3PO4)z + xO2

R0b
(x + y + 2 z)CO2 + yNO –

3 + zHPO 2–
4 + (x + 2 y + 2 z)H2O

−−→ (CH2O)x(NH3)y(H3PO4)z + (y + 2z)HCO –
3 + (x + 2 y + 2 z)O2

Organic matter degradation

R1
(CH2O)x(NH3)y(H3PO4)z + xO2 −−→ (x− y + 2 z)CO2 + (y− 2z)HCO –

3 +

+ yNH +
4 + zHPO 2–

4 + (x− y + 2 z)H2O

R2
(CH2O)x(NH3)y(H3PO4)z + 0.5xNO –

3 + (y− 2 z)CO2 + (0.5x + y− 2 z)H2O −−→

0.5xN2(g) + (x + y− 2z)HCO –
3 + yNH +

4 + zHPO 2–
4

R3
(CH2O)x(NH3)y(H3PO4)z + 4xFe(OH)3 + (7x + y− 2z)CO2 −−→

4xFe2+ + (8 x + y− 2 z)HCO –
3 + yNH +

4 + zHPO 2–
4 + (3 x− y + 2 z)H2O

R4
(CH2O)x(NH3)y(H3PO4)z + 4xFeOOH + (7x + y− 2z)CO2 + (x + y− 2 z)H2O −−→

4xFe2+ + (8 x + y− 2 z)HCO –
3 + yNH +

4 + zHPO 2–
4

R5
(CH2O)x(NH3)y(H3PO4)z + 0.5xSO 2–

4 −−→ 0.5xHS– + (0.5 x− y + 2z)CO2 +

+ (0.5 x + y− 2 z)HCO –
3 + yNH +

4 + zHPO 2–
4 + (0.5 x− y + 2z)H2O

R6
(CH2O)x(NH3)y(H3PO4)z + (y− 2z)H2O −−→

0.5xCH4(aq) + (0.5 x− y + 2 z)CO2 + (y− 2 z)HCO –
3 + yNH +

4 + zHPO 2–
4
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Table 1.2: Reactions that have direct and indirect effects on the phosphorus cycle in lakes.
R11-R16 — secondary redox reactions, R21-R28 — mineral precipitation–dissolution re-
actions, R31-R36 — phosphorus sorption and precipitation reactions, and R41-R45 —
equilibrium reactions.

no. Reaction

Secondary redox reactions

R11 HS– + 2O2 −−→ H+ + SO 2–
4

R12 HS– + 2Fe(OH)3 + 5H+ −−→ 2Fe2+ + S(0) + 6H2O
R13 Fe2+ + 1

4 O2 + 2HCO –
3 + 1

2H2O −−→ Fe(OH)3 + 2CO2
R14 2O2 + NH +

4 + 2HCO –
3 −−→ NO –

3 + 2CO2 + 3H2O
R15 CH4 + O2 −−→ CO2 + H2O
R16 CH4 + SO 2–

4 + CO2 −−→ H2S + 2HCO –
3

Mineral precipitation—dissolution reactions

R21 S(0)←−→ S8
R22 FeS2 + 5O2 + H+ −−→ FeOOH + 2SO 2–

4
R23 FeS + S(0) −−→ FeS2
R24 4FeS + 3O2 + 2H2O −−→ 4 S8 + FeOOH
R25 FeS + HS– + H+ −−→ FeS2 + H2
R26 Fe2+ + HS– ←−→ FeS + H+

R27 Ca2+ + CO 2–
3 ←−→ CaCO3

R28 Fe2+ + CO 2–
3 ←−→ FeCO3

Phosphorus sorption and precipitation reactions

R31 HPO 2–
4 + Fe(OH)3 ←−→ PO4−−−Fe(OH)3 + H+

R32 HPO 2–
4 + FeOOH←−→ PO4−−−FeOOH + H+

R33 HPO 2–
4 + Al(OH)3 ←−→ PO4−−−Al(OH)3 + H+

R34 HPO 2–
4 + CaCO3 ←−→ PO4−−−CaCO3 + H+

R35 3Fe2+ + 2HPO 2–
4 ←−→ Fe3(PO4)2 + 2H+

R36 3Ca2+ + 2HPO 2–
4 ←−→ Ca3(PO4)2 + 2H+

Equilibrium reactions

R41 CO2(aq) + H2O=H2CO3=HCO –
3 + H+=CO 2–

3 + 2H+

R42 H3PO4=H2PO –
4 + H+=HPO 2–

4 + 2H+=PO 3–
4 + 3H+

R43 H2S=HS– + H+

R44 NH +
4 =NH3 + H+

R45 H2O=H+ + OH–
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For example, the concentration of iron has a strong influence on the mobilization and

deposition of phosphorus to the sediment (Katsev and Dittrich, 2013, Orihel et al., 2016).

The availability of iron-bearing minerals in the water column of a lake may result in

the adsorption of phosphorus (R31, R32 in Table 1.2) and subsequent sedimentation in

an inorganic form. Moreover, due to the redox control of phosphorus sorption on iron

minerals, iron-bound phosphorus is a dynamic component of the sediment pool. That

is, oxidized micro-layer at the sediment-water interface inhibits the release of sediment

phosphorus due to the high affinity between particulate iron minerals Fe(III) and dissolved

inorganic phosphorus (Penn et al., 2000). That is, under oxic and nitrate-rich conditions,

the iron reduction is inhibited and iron remains in the oxidized form (McAuliffe et al.,

1998). In contrast, under the reducing conditions, the reduction of iron minerals (R3,

R4 in Table 1.1) generates dissolved Fe(II) and releases surface-bound phosphorus (R31,

R32; Boström et al., 1988). As a result, elevated phosphorus concentrations may enhance

internal phosphorus loading.

The release of phosphorus from the sediment also depends on the pH and alkalinity.

With the increase of pH, surface-bound phosphorus may potentially be released from the

surfaces of the oxidized minerals (R31, R32, R33, R34). For example, high microbial pri-

mary production (R0a and R0b) may increase pH and promote release of surface-bound

phosphorus into water column from iron (R31, R32) and aluminum oxides (R33; Boström

et al., 1988; Koski-Vähälä and Hartikainen, 2001). In contrast, in calcareous lakes with

high pH conditions, the decrease of pH may potentially promote the dissolution of phos-

phorus bearing minerals, such as apatite and vivianite (R35, R36). Also, the dissolution

of calcite increases at lower pH, which may release previously adsorbed phosphorus (R34;

Otsuki and Wetzel, 2003).

Other factor that play a crucial role on the phosphorus mobilization is temperature.

Temperature has a strong effect on thermodynamics of mineral formation, rates of abi-

otic reactions, and, most importantly, on the biological processes such as photosynthesis

(Huisman et al., 2005, Jöhnk et al., 2008) and organic matter mineralization (Gudasz

et al., 2010). Microbial processes in the sediments have a direct influence on phosphorus
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mobilization through the degradation of organic matter with various electron acceptors

(R1-R6), the rates of which are exponentially increasing with temperature. That is, the

increase of water temperature during spring season promotes organic matter degradation

in sediment and leads to the release of phosphate into water column.

Overall, the warming climate has the cascading effect on physical, hydrological and

biogeochemical dynamics of lakes. It is expected that in response to warming climate the

biological productivity of lakes will increase and lake water quality will worsen (Mantzouki

et al., 2018). However, what consequences the warming climate cause on phosphorus cycle

in lakes still remain poorly understood.

1.4 Lake and Sediment Models

Management needs and scientific interest in the understanding of fundamental pro-

cesses in aquatic environments have driven development of the large number and wide

variety of the lake models (Table 1.3, Mooij et al., 2010; Jørgensen, 2008; Jørgensen,

2010). Historically, eutrophication of lakes has sparked the development of first input-

output models (Vollenweider, 1976). Later, depending on the relative importance of the

specific process in lakes of interest, several directions of model development were initiated.

These initiatives differ widely and can be broadly divided into three groups: hydrody-

namic, functional, and water quality-focused models. The hydrodynamic models prevail

in the studies focused on the spatial interactions such as lake thermal structure, circu-

lation patterns, effects of transport on the biogeochemical cycles (Hodges, 2009). In the

development of hydrodynamic models, special treatment is given to the accuracy of the

transport processes and underlying model issues of dimensionality, boundary conditions,

grid selection, time and space resolution (Hodges, 2009). Examples of such models in-

clude ELCOM, FVCOM, and MIKE 21 SW (Table 1.3). In contrast, functional aspects

are of interest in the studies on flora and fauna including fish (Sondergaard et al., 2008),

zooplankton (Hülsmann et al., 2005), phytoplankton (Huisman and Weissing, 1999), and

aquatic plants such as macrophytes (Van Nes et al., 2003). Therefore, the functional

models are focused on the accurate representation of the food webs and biological inter-
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actions within lakes with the experiences gained mainly from the biomanipulation studies

(Benndorf, 1995, Gulati et al., 1990, Sondergaard et al., 2008). Examples of such models

include Charisma, SALMO, and RateCon (Table 1.3). Lastly, the models with water

quality focus are of interest in studies of the transformation of chemical elements in the

biogeochemical cycles of lakes (e.g., cycles of phosphorus, nitrogen, or carbon). Due to

biogeochemical cycles controlled by both hydrodynamics and biology, the models of this

group are the synergy of hydrodynamic and functional model groups and therefore the

complexity of such models varies greatly. Examples of such models include Lake Shira

Model, CE-QUAL-W2, ELCOM-CAEDYM, Delft 3D-ECO, and IPH-TRIM3D-PCLAKE

(Table 1.3).

In lakes, a substantial part of the metabolism occurs in sediments (del Giorgio and

Williams, 2005). The respiration of organic matter in sediment recycles phosphorus back

to the inorganic form to support primary production. Respiration and primary produc-

tion define the overall net balance of phosphorus in a lake. Due to the external input

of allochthonous organic matter, the overall rate of respiration often exceeds the primary

production, and sediment serves as the source of the phosphorus supply. Moreover, en-

hanced respiration in the sediment of eutrophic lakes often leads to oxygen depletion and

anoxia. Depending on the geomorphology of a lake, biogeochemical processes in sediments

could have a significant impact on water quality and biogeochemical cycles (Paraska et al.,

2014, Sondergaard, 2007).

Initial development of the early diagenesis models started with the pioneering work

on the analytical transport-reaction models by Berner (1980). Later, with the advance

of the computational power, the numerical reactive-transport models of early diagenesis

were further developed by Boudreau (1996), Soetaert et al. (1996), Van Cappellen and

Wang (1996), Katsev et al. (2006), and Couture et al. (2010). In the extensive review,

Paraska et al. (2014) described processes implemented in dozens of previously developed

early diagenesis models. The authors concluded that the differences in the approach and

complexity are minimal despite the diversity of the investigated environments (Paraska

et al., 2014). Commonly, the transport part of the model accounts for molecular diffusion,
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Table 1.3: Overview of the selected lake models and their components. Columns: Dim –
dimensionality (H – horizontal, V – vertical), Str – stratification, H – hydrodynamics, T
– temperature, L – light attenuation, Ice – ice and snow cover, Sed – sediment fluxes and
dynamics, D – diagenesis, Lit – littoral zone. State variables: B – bacterial dynamics, Phy
– phytoplankton dynamics, Zoo – zooplankton, F – fish , O – oxygen, P – phosphorus,
N – nitrogen, Si – silica, OC – organic carbon, IC – inorganic carbon. In column “sed”
± stands for sediment oxygen demand constant flux, in column “D” ± stands for multi-
layer box model. References: Vollenweider – Vollenweider (1976); BHM – Obenour et al.
(2014); Piscator – Van Nes et al. (2002); ANN – Lam et al. (1987); RateCon – Rucinski
et al. (2014); MyLake – Saloranta and Andersen (2007); Lake Shira Model – Prokopkin
et al. (2010); PROTECH – Reynolds et al. (2001); SALMO – Recknagel et al. (2008);
PCLake+ – Janssen et al. (2019); CLM – Schwab et al. (2009); GLIM (CIOM) – Wang
et al. (2010); Charisma – Van Nes et al. (2003); CE-QUAL-W2 – Cole and Wells (2006);
ICEPOM – Mellor et al. (2002); ELCOM+CAEDYM – Romero et al. (2004); FVCOM +
ICM – Chen et al. (2006); DELFT3D-ECO – Los et al. (2008); MITgcm – Forget et al.
(2015); GETM – Bruggeman and Bolding (2014); IPH-TRIM3D-PCLAKE – Fragoso Jr.
et al. (2009); MIKE 21 SW – Moeini and Etemad-Shahidi (2007).

Model Dim Str H T L Ice Sed D Lit B Phy Zoo F O P N Si OC IC
Vollenweider 0 - - - - - + - - - + - - - + + - - -
BHM 0 - - - - - - - - - + - - - - - - - -
Piscator 0 - - + - - - - - - + + + - - - - - -
ANN 0+ - - - - - ± - - - + - - + + - - - -
RateCon 1V + + + - - ± - - - + + - + + - - + -
MyLake 1V + + + + + + - - - + - - + + - - + +
Lake Shira Model 1V + + + + - - - - + + + - + + + - + -
PROTECH 1V - + + - - + - - - + + - - + + - - -
SALMO 1V + + + + + + - - - + + - + + + - + -
PCLake+ 1V+ - + + + - + - + + + + + + + + + + -
CLM 2H + + + - - - - - - - - - - + - - - -
GLIM (CIOM) 2H - - + + + - - - - - - - - - - - - -
Charisma 2H - - + - - + - - - - - + - - - - - -
CE-QUAL-W2 2HV + + + + - - - - - + + - + + + + + +
ICEPOM 3 + + + + + - - - - - - - - - - - - -
ELCOM + CAEDYM 3 + + + + + ± - + - + + - + + + + - -
FVCOM + ICM 3 + + + + - ± - + - + + - + + + + + +
DELFT3D-ECO 3 + + + + + + ± + + + + - + + + + + +
MITgcm 3 + + + + - - - - - - - - - - - - - -
GETM 3 + + + + - - - - - - - - - - - - - -
IPH-TRIM3D-PCLAKE 3 + + + + - ± - - + + + + + + + + + -
MIKE 21 SW 3 - + - - - - - - - - - - - - - - - -
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bioturbation, irrigation, and burial. The reaction part of the models describes the oxygen

consumption pathways and the cycling of carbon, nitrogen, phosphorus, manganese, iron,

and sulfur. Phosphorus transformation in the sediment is described by organic matter

degradation, adsorption on mineral surfaces, formation of phosphorus-bearing minerals,

and acid-base speciation (R1-R6, R31-R36, and R42 in Tables 1.1 and 1.2). However, out

of 83 reviewed models published since 1996, only five models examine phosphorus cycle

as their primary focus of the study (Dale et al., 2013, Katsev and Dittrich, 2013, Katsev

et al., 2006, McCulloch et al., 2013, Tromp et al., 1995).

The microbial respiration of organic phosphorus in the sediment determines if it will

be converted into inorganic phosphorus or get buried. Thus, the microbial respiration de-

fines the phosphorus cycle, controls oxygen levels and ecological conditions of lakes. The

typical sequence of electron acceptors’ consumption during organic matter degradation

is shown in Table 1.1 (R1 to R6). This sequence of electron acceptor consumption runs

from oxygen reduction through nitrate to iron and sulfate reductions to methanogene-

sis. Commonly, mathematical models of organic matter degradation are based on mass

conservation principle where the redox sequences are described by Monod type equations

with number of kinetic parameters and inhibition terms:

R = rmax ·X ·
[ED]

KED
m + [ED] ·

[EA]
KEA
m + [EA] · FT ·

∏ Kin

Kin + [EA] (1.1)

where R – is the rate of the specific redox reaction, rmax – is the maximum rate per unit of

biomass, X – is the biomass concentration, rmax – is the maximum rate constant per unit

of biomass, [ED] – is the concentration of electron donor, [EA] – is the concentration of

electron acceptor, KED
m and KEA

m – are the limiting half-saturation constants of electron

donor and electron acceptor, respectively, FT – is the dimensionless thermodynamic factor

of LaRowe et al. (2012) or Bethke et al. (2008), KEA
in – are the inhibition constants for

higher energy-yielding electron acceptors.

In this approach, the biogeochemical sequence of redox reactions (e.g., R1-R6 in

Table 1.1) is represented by manually picked inhibition terms to prioritize one reaction
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over another. However, multiplicative inhibition terms in eq. 1.1 do not take into account

the dynamic nature of aquatic systems, such as changes in pH, temperature, ionic strength

and redox state. These changes affect the thermodynamic driving force of energy-yielding

reactions with the potential of shuffling the favorability of the specific elements and, thus,

redox sequences. Therefore, the calibrated inhibition constants used to define the sequence

of the redox reactions are usually site-specific and may lack general validity.

In summary, mechanistic lake models are useful tools for guiding and assessing

long-term management strategies. The crucial requirement of such models is the ability

to accurately represent biogeochemical cycles and their response to the external forcing.

To achieve accurate representation of biogeochemical cycles, the dynamic model of the

water column should be coupled with the dynamic vertically resolved biogeochemical

model of the sediment (Soetaert et al., 2000). Although the diagenetic models reached

their maturity, representation of sediment-water interactions is not a standard feature of

lake models and is often greatly simplified (columns “Sed” and “D” in Table 1.3, Soetaert

et al., 2000; Mooij et al., 2010; Jørgensen, 2008; Jørgensen, 2010).

1.5 Restoration of the Lakes

Eutrophication of the lakes is recognized world-wide problem which has implica-

tions on water quality and ecosystem services. The majority of restoration measures and

practices focus on reducing external phosphorus loads to improve water quality in lakes.

Unfortunately, external load reduction rarely led to the desired improvement of water

quality (Jeppesen et al., 1991, Lürling et al., 2016, Sondergaard, 2007). Therefore, al-

ternative chemical restoration practices have been applied. Some of them rely on the

addition of reactive materials to the water column to sequester phosphorus in the sedi-

ments and reduce internal loading (Mackay et al., 2014). Because of the strong coupling

of the early diagenetic cycling of phosphorus and iron (Doolittle et al., 2018, Molot et al.,

2014, Verschoor et al., 2017), materials that have been used include salts of ferric iron

(Engstrom, 2005, Orihel et al., 2016, Wilfert et al., 2015), but also aluminum (Huser et al.,

2016, Schutz et al., 2017) and calcium phases (Gulati et al., 2012), as well as lanthanum
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clays (Dithmer et al., 2015).

The comprehensive modelling studies of the restoration practices in lakes are barely

(if at all) present. The complexity of the sediment water interactions complicates the

building of the reliable models that can simulate the response of the water quality after

the addition of reactive material. As a result, substantial uncertainties remains in terms

of the scientific understanding of the restoration practices and their integration with

other management measures. Therefore, often the most effective course of action for the

particular lake remains unclear (Lürling et al., 2016).

1.6 Structure of the Thesis

The specific aims of this thesis are as follows:

1. Couple water column and sediment models in order to elucidate the specific physical,

chemical and/or biological processes that govern phosphorus cycle in lakes;

2. Quantify and assess the effect of the climate warming and potential restoration

measures on the phosphorus cycle and algal blooms in lakes;

3. Identify shortcomings and improve existing models of microbial reaction systems

present in lakes;

The research portion of the thesis is organized into four chapters. In Chapter 2, I

address my research question by expanding the existing one-dimensional MyLake model by

introducing a vertically resolved sediment diagenesis module and integrate the continuous

reaction network that couple the water column and sediment biogeochemistry. I use the

coupled model to simulate the potential impacts of climate warming, shortening periods

of ice cover, and restoration measures on the phosphorus cycle in Lake Vansjø, Norway.

During the development and testing of the coupled model, I identify the shortcomings

present in the models of microbial reaction systems.

Building on findings of Chapter 2, I suggest a new model that represents microbial

respiration in aquatic environments (Chapter 3). I stress that commonly used inhibition
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terms present in the reactions network of lake and sediment models are incapable of dealing

with dynamically changing conditions. Therefore, I replace the inhibition terms with the

thermodynamic switch function. I show that the model can simulate arbitrary large

reaction networks, and it accounts for dynamic changes in the environmental conditions.

Also, I show the example of how the new model can be applied to simulate early diagenetic

processes in sediment.

In the study of Chapter 4, I show that on the regional scale, weather defines hydro-

dynamic flush rates and water circulation patterns, which, in turn, control the phosphorus

transport in Lake Erie, Canada. Specifically, precipitation controls the release of phos-

phorus from the watershed in the spring, while wind governs the water circulation and

transport of the phosphorus released from sediment in the central basin during summer.

I also show that during the last century, the ratio of land runoff to precipitation in Lake

Erie is increasing due to deforestation and urbanization of the watershed.

Finally, in Chapter 5, I develop PorousMediaLab, a tool for designing, developing,

and quantifying the mechanisms of reactive transport within the aquatic environments.

PorousMediaLab is the core component of the numerical investigations presented in the

thesis. In Chapter 4, PorousMediaLab is used to build a mass balance model and to

improve the current understanding of the inter-basin exchange. In Chapter 2, PorousMe-

diaLab is applied to design and test the reaction network, estimate fluxes at the sediment-

water interface, and reaction timescales. Lastly, PorousMediaLab is used in Chapter 3 to

simulate the reaction rates using a novel approach based on the thermodynamic switch

function.

Chapter 6 summarizes the major conclusions to the four Research Questions and

elaborates on the research directions that should be pursued following the work in this

thesis. In particular, I discuss the need for an improvement of the reactive modelling in

lakes, simulation of alternative lake restoration measures, and modelling of the greenhouse

gas fluxes from large and small lakes.

14



Chapter 2

Coupling Water Column and Sediment Biogeochemical Dynam-

ics: Modelling Internal Phosphorus Loading, Climate Change

Responses and Mitigation Measures in Lake Vansjø, Norway

Igor Markelov
Raoul-Marie Couture
Rachel Fisher
Sigrid Haande
Philippe Van Cappellen
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Summary

We expanded the existing one-dimensional MyLake model by incorporating a verti-

cally resolved sediment diagenesis module and developing a reaction network that seam-

lessly couples the water column and sediment biogeochemistry. The application of the

MyLake-Sediment model to boreal Lake Vansjø illustrates the model’s ability to repro-

duce daily water quality variables and predict sediment-water column exchange fluxes

over a 20-year historical period. In prognostic scenarios, we assessed the importance of

sediment processes and the effects of various climatic and anthropogenic drivers on the

lake’s biogeochemistry and phytoplankton dynamics. First, MyLake-Sediment was used

to simulate the potential impacts of increasing air temperature on algal growth and wa-

ter quality. Second, the key role of ice cover in controlling water column mixing and

biogeochemical cycles was analyzed in a series of scenarios that included a fully ice-free

end-member. Third, in another end-member scenario P loading from the watershed to

the lake was abruptly halted. The model results suggest that remobilization of legacy P

stored in the bottom sediments could sustain the lake’s primary productivity on a time

scale of several centuries. Finally, while the majority of management practices to reduce

excessive algal growth in lakes focus on reducing external P loads, other efforts rely on the

addition of reactive materials that sequester P in the sediment. Therefore, we investigated

the effectiveness of ferric iron additions in decreasing the dissolved phosphate efflux from

the sediment and, consequently, limit phytoplankton growth in Lake Vansjø.

2.1 Introduction

Lakes play a crucial role in water supply, food production, recreation, and climate

regulation (Franz et al., 2018, Mueller et al., 2016, Tranvik et al., 2009). During the last

century, changing climate, intensified agriculture and urbanization have been exerting

increasing pressures on lake ecosystem functioning and services (Adrian et al., 2009, Car-

valho et al., 2013, Shimoda et al., 2011). Rising air temperatures and nutrient loadings

have direct effects on lake physical and ecological properties (Ludsin et al., 2001, Schmid
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et al., 2014, Stefan et al., 2001, Winder and Sommer, 2012, Woolway and Merchant,

2019). Air and water temperatures are the key controlling factors of lake thermal regimes

(Dibike et al., 2011, Livingstone, 2008), ice characteristics (Couture et al., 2015, Magnu-

son et al., 2000), and ecosystem metabolism (Winder and Sommer, 2012, Yvon-Durocher

et al., 2012). Along with the meteorological drivers, increased P loading degrades lake

water quality by intensifying primary production, potentially resulting in nuisance algal

blooms and deoxygenation of bottom waters (Carvalho et al., 2013, Smith et al., 1999). A

fraction of particulate inorganic and organic P, either externally derived (allochthonous)

or produced in the lake (autochthonous), ultimately settles at the sediment-water inter-

face (SWI), where a host of early diagenetic processes cycles P, leading either to the return

of dissolved P to the hypolimnion or to permanent burial in the sediments. The fate of

deposited P is highly variable as it depends on many different physical, biological and

geochemical properties and processes of the sedimentary reservoir (Dittrich et al., 2009,

Katsev and Dittrich, 2013, Xiong et al., 2019).

After decades of sustained external P inputs, lakes have been shown to accumulate

legacy P and experience mobilization of P from the sediment (i.e., internal loading), a

phenomenon extensively reviewed in the literature (e.g., Orihel et al. (2017)). Internal P

load is a significant concern for stakeholders due to continued water quality deterioration,

with associated social and economic costs, and despite measures put in place to reduce

external P loads (Matisoff et al., 2016, Mueller et al., 2016). Therefore, a predictive

understanding of nutrient cycles within lake systems, and internal P loads in particular,

is a primary research focus for maintaining and restoring healthy lake ecosystems.

Process-oriented lake modelling is a useful tool for guiding and assessing long-term

management strategies and governance models. The crucial requirement of such modelling

is the ability to accurately represent biogeochemical cycles in lakes and their response to

the external drivers. Such models often rely on the assumption of lateral homogeneity,

suitable in a vertically stratified environment, and are thus underpinned by 1D hydro-

dynamic simulations coupled with ecological and biogeochemical modules of appropriate

complexity (Janssen et al., 2015). However, representation of sediment-water interactions
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is not a standard feature of lake models and is often greatly simplified (Mooij et al., 2010,

Soetaert et al., 2000).

Lacustrine sediments are a hotspot of enhanced biological activity. Multiple studies

stress the vital importance of early diagenetic processes in controlling internal P loading

in a variety of lake systems (Amirbahman et al., 2012, James, 2017, Loh, 2013, Nurn-

berg et al., 2013). While early diagenetic models can capture the drivers and timing of

P release from sediment (Katsev, 2017, Katsev and Dittrich, 2013, Katsev et al., 2006,

Li et al., 2018, McCulloch et al., 2013), these detailed models are not routinely cou-

pled to lake water column models (Janssen et al., 2015, Paraska et al., 2014, Robson,

2014). Computational expense, complexity and, possibly, the underestimated importance

of early diagenetic processes have led model designers to simplify interactions between the

sediment and the overlying water. Numerous empirical lake models have been developed

for internal P loading (e.g., Schauser et al. (2006), Bryhn and Haakanson (2007)), but

their generalization is unlikely as their applicability tends to be site-specific. Popular

approaches to couple sediment processes to lake water column models have included the

incorporation of an empirical bottom flux boundary (Schmid et al., 2017), and vertically

integrated sub-modules (e.g., oxic and anoxic layers) (Janssen et al., 2015, Matzinger

et al., 2010, Mooij et al., 2010, Schmid et al., 2017). Several well-established lake mod-

els, such as FABM-PCLake (Hu et al., 2016), DYRESM-CAEDYM (Trolle et al., 2008),

CE-QUAL-W2 (Zhang et al., 2015), GLM (Hipsey et al., 2017), and DELWAQ (Smits

and van Beek, 2013) were built on variations of those approaches in order to represent

sediment-water interactions.

Here, we build upon two existing Matlab-based models: MyLake focuses on the

reactions of P (Saloranta and Andersen, 2007), oxygen (O) (Couture et al., 2015), and

carbon (C) (de Wit et al., 2018, Kiuru et al., 2018), while Matsedlab focuses on the

reactions of O, C, iron (Fe) (Couture et al., 2010), sulphur (S) (Couture et al., 2016) and

nitrogen (N) (Akbarzadeh et al., 2018). In order to couple the two individual models

into the 1.5-dimensional Lake-Sediment model, we integrated their reactions networks.

The goal is to deliver an open-access tool for the combined modelling of water column
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and sediment that uses a consistent biogeochemical reaction network. Consequently, we

updated Matsetlab with reactions of Al, Ca and P and MyLake with reactions of N, Fe,

S, Al and Ca (Ahlgren et al., 2011, Canavan et al., 2006, Couture et al., 2010, Dijkstra

et al., 2018, Dittrich et al., 2009, Doan et al., 2018, Gudimov et al., 2016, Katsev and

Dittrich, 2013, Katsev et al., 2006, Li et al., 2018, Parsons et al., 2017, Testa et al., 2013,

Van Cappellen and Wang, 1996).

We evaluate the coupled Lake-Sediment model against both time-series and vertical

water column, solid-phase sediment and sediment pore water profiles of eutrophied Lake

Vansjø in Norway. We simulate the responses to: (1) variable climate (air temperature);

(2) absence of ice cover; and (3) external P load cut-off. We further showcase the use of

the model to assess a management practice aimed at reducing internal P loads via the

addition of reactive iron to the water column.

2.2 Model Development, Study Site and Methods

2.2.1 Model Formulation

MyLake is a one-dimensional, process-based model that simulates daily vertical dis-

tributions of lake water temperature, density stratification and mixing, and accounts for

seasonal lake ice and snow cover. It further represents simplified phosphorus-phytoplankton

dynamics where growth is limited by temperature, light and nutrient availability (Salo-

ranta and Andersen, 2007). In the current study, the existing physical hydrodynamic,

ice and snow cover modules of MyLake were used, and the phosphorus-phytoplankton

module was reformulated for direct coupling to the reaction network in the sediment.

Biogeochemical reactions involving oxygen (Couture et al., 2015) and carbon (de Wit

et al., 2018, Kiuru et al., 2018), as well as reactions of iron (Fe), manganese (Mn), alu-

minum (Al), calcium (Ca) and sulfur (S) were similarly coupled between sediment and

water column (Figure 2.1, Table 2.1 and 2.2).

The sediment module is a modified and adapted version of Matsetlab (Couture

et al., 2016) rewritten specifically for coupling to the water column module. The math-
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Table 2.1: Algal dynamics and organic matter (OM) degradation reactions (primary
reactions) included in the MyLake-Sediment model. x, y, z – define the C:N:P elemental
composition of the organic matter produced or degraded in reactions R0-R6, µ(20) – is
the specific growth rate of algae at 20◦C, Q10 – the Q10 temperature coefficient, [A] –
is the concentration of algae, λ – is the fractional day length, εi – is the attenuation
coefficient for layer i, ∆zi – is the thickness of the layer i, H – is the light limitation
function (Saloranta and Andersen, 2007), I ′zi – is the photosynthetically active irradiance
at noon at the depth level zi, I ′ – is the light saturation level of photosynthesis, N?

stands for NH +
4 in the rate equation of reaction R0a and for NO –

3 in R0b, N ′ – is the
limiting concentration of nitrogen for algal growth (NH +

4 in the rate equation of reaction
R0a and NO –

3 in that of R0b), P ′ – is the limiting concentration of HPO 2–
4 , m(20) –

is the algae loss rate at 20◦C, k(5) – is the degradation rate constant at 5◦C, [OM ] – is
the concentration of organic matter (i.e., POP, DOP, POC, and DOC), [EA]i – is the
concentration of the electron acceptor (i.e., O2, NO –

3 , Fe(OH)3, FeOOH, and SO 2–
4 ),

KEA
mi – is the half-saturation constant. Parameter values used in the simulation are listed

in Tables S2 and S4.

no. Reaction Equation

Algae dynamics

R0a (x− y + 2 z)CO2 + (y− 2z)HCO –
3 + yNH +

4 + zHPO 2–
4 + (x− y + 2 z)H2O µ(20)Q(T−20)/10

10 [A] λ
εi∆zi

×

←−→ (CH2O)x(NH3)y(H3PO4)z + xO2

[
H

(
I′zi
I′

)
−H

(
I′zi+1
I′

)]
×

R0b (x + y + 2 z)CO2 + yNO –
3 + zHPO 2–

4 + (x + 2y + 2 z)H2O
[HPO 2−

4 ]
[HPO 2−

4 ]+P ′
[N?]

[N?]+N′

←−→ (CH2O)x(NH3)y(H3PO4)z + (y + 2z)HCO –
3 + (x + 2y + 2 z)O2 −m(20)Q(T−20)/10

10 [A]

Primary redox reactions

R1 OM + xO2 −−→ (x− y + 2 z)CO2 + (y− 2z)HCO –
3 +

+ yNH +
4 + zHPO 2–

4 + (x− y + 2 z)H2O

R2 OM + 0.5xNO –
3 + (y− 2 z)CO2 + (0.5x + y− 2 z)H2O −−→ k(5)[OM ]fiQ(T−5)/10

10
0.5xN2(g) + (x + y− 2z)HCO –

3 + yNH +
4 + zHPO 2–

4

R3 OM + 4xFe(OH)3 + (7x + y− 2z)CO2 −−→ where
4xFe2+ + (8 x + y− 2 z)HCO –

3 + yNH +
4 + zHPO 2–

4 + (3 x− y + 2 z)H2O

R4 OM + 4xFeOOH + (7x + y− 2z)CO2 + (x + y− 2 z)H2O −−→ fi = [EA]i
[EA]i+KEA

mi

×

4xFe2+ + (8 x + y− 2 z)HCO –
3 + yNH +

4 + zHPO 2–
4

R5 OM + 0.5xSO 2–
4 −−→ 0.5xHS– + (0.5 x− y + 2z)CO2 + ×

N−1∏
j=1

KEA
mj

[EA]j+KEA
mj

+ (0.5 x + y− 2 z)HCO –
3 + yNH +

4 + zHPO 2–
4 + (0.5 x− y + 2z)H2O

R6 OM + (y− 2z)H2O −−→
0.5xCH4(aq) + (0.5 x− y + 2 z)CO2 + (y− 2 z)HCO –

3 + yNH +
4 + zHPO 2–

4
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Table 2.2: Secondary redox reactions, mineral precipitation - dissolution reactions, phos-
phorus sorption and precipitation reactions, and equilibrium reactions in the coupled
MyLake-Sediment model. Two pools of Fe(III) are used to represent two pathways of Fe
(oxy)hydroxide formation that yield minerals with different reactivities (Couture et al.,
2016).The first pathway produces reactive Fe(OH)3 upon oxidation of ferrous Fe (R13);
the second pathway yields less reactive FeOOH through the oxidation of pyrite and mack-
inawite (R23, R25). Parameter values used in the simulation are listed in Table A4.

no. Reaction Kinetic or Equilibrium

Secondary redox reactions
R11 HS– + 2O2 −−→ H+ + SO 2–

4 ktsox[O2][
∑

S(−II)]
R12 HS– + 2Fe(OH)3 + 5H+ −−→ 2Fe2+ + S(0) + 6H2O ktsfe[Fe(OH)3][

∑
S(−II)]

R13 Fe2+ + 1
4 O2 + 2HCO –

3 + 1
2H2O −−→ Fe(OH)3 + 2CO2 kfeox[Fe2+][O2]

R14 2O2 + NH +
4 + 2HCO –

3 −−→ NO –
3 + 2CO2 + 3H2O kamox[O2][NH +

4 ]
R15 CH4 + O2 −−→ CO2 + H2O kch4o2[CH4][O2]
R16 CH4 + SO 2–

4 + CO2 −−→ H2S + 2HCO –
3 kch4so4[CH4][SO 2−

4 ]

Mineral precipitation - dissolution reactions
R21 OM + HS– −−→ OMS koms[

∑
OM][

∑
S(−II)]

R22a S(0) −−→ S8 kspre[S(0)]
R22b S8 −−→ S(0) ksdis[S8]
R23 FeS2 + 5O2 + H+ −−→ FeOOH + 2SO 2–

4 kfes2ox[FeS2][O2]
R24 FeS + S(0) −−→ FeS2 kfespre[FeS][S(0)]
R25 4FeS + 3O2 + 2H2O −−→ 4 S8 + FeOOH kfesox[FeS][O2]
R26 FeS + HS– + H+ −−→ FeS2 + H2 kfes2pre[FeS][

∑
S(−II)]

R27a Fe2+ + HS– −−→ FeS + H+ kfepre(ΩFeS − 1)
R27b FeS + H+ −−→ Fe2+ + HS– kfedis[FeS](1− ΩFeS)
R28a Ca2+ + CO 2–

3 −−→ CaCO3 kCCpre(ΩCC − 1)
R28b CaCO3 −−→ Ca2+ + CO 2–

3 kCCdis[CaCO3](1− ΩCC)
R29a Fe2+ + CO 2–

3 −−→ FeCO3 kFCpre(ΩFC − 1)
R29b FeCO3 −−→ Fe2+ + CO 2–

3 kFCdis[FeCO3](1− ΩFC)

Phosphorus sorption and precipitation reactions
R31a HPO 2–

4 + Fe(OH)3 −−→ PO4−−−Fe(OH)3 + H+ k
Fe(IIIa)
psorb

[Fe(OH)3][HPO 2−
4 ]

R31b PO4−−−Fe(OH)3 + H+ −−→ HPO 2–
4 + Fe(OH)3 4R3 + 2R12

R32a HPO 2–
4 + FeOOH −−→ PO4−−−FeOOH + H+ k

Fe(IIIb)
psorb

[FeOOH][HPO 2−
4 ]

R32b PO4−−−FeOOH + H+ −−→ HPO 2–
4 + FeOOH 4R4

R33a 3Fe2+ + 2HPO 2–
4 −−→ Fe3(PO4)2 + 2H+ kV pre(ΩV − 1)

R33b Fe3(PO4)2 + 2H+ −−→ 3Fe2+ + 2HPO 2–
4 kV dis[Fe3(PO4)2](1− ΩV )

R34a 3Ca2+ + 2HPO 2–
4 −−→ Ca3(PO4)2 + 2H+ kApre(ΩA − 1)

R34b Ca3(PO4)2 + 2H+ −−→ 3Ca2+ + 2HPO 2–
4 kAdis[Ca3(PO4)2](1− ΩA)

R35a HPO 2–
4 + Al(OH)3 −−→ H+ + PO4−−−Al(OH)3 kAlpsorb[Al(OH)3][HPO 2−

4 ]

Equilibrium reactions
R41 CO2(aq) + H2O=H2CO3=HCO –

3 + H+=CO 2–
3 + 2H+ KC0 KC1 KC2

R42 H3PO4=H2PO –
4 + H+=HPO 2–

4 + 2H+=PO 3–
4 + 3H+ KP1 KP2 KP3 KP4

R43 H2S=HS– + H+ KH2S
R44 NH +

4 =NH3 + H+ KNH4
R45 H2O=H+ + OH– KH2O
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Figure 2.1: Reaction network in water column and bottom sediment. Squared boxes
represent particulate organic and mineral phases, boxes with rounded corners are aqueous
species and polygons indicate phosphorus sorbed onto ferric Fe and Al (hydr)oxides.

ematical representation of the sediment module consists of coupled nonlinear advection-

diffusion-reaction equations which represent reactive transport processes of solid and aque-

ous species in the sediment. Transport processes such as bioturbation, molecular diffusion,

burial of solids, solute irrigation, and compaction are implemented according to Boudreau

(1997). Finally, MATLAB’s pdepe solver used in Matsedlab has been replaced by operator

splitting algorithm with the Crank-Nicolson method for the transport step and Butcher’s

Fifth-Order Runge-Kutta method for the reaction step.

In addition to P, the continuous (i.e., in water column and sediment) reaction net-

work takes into account the coupled cycles of key biogeochemical elements (Fe, Mn, Al,

Ca, and S), which play important roles in controlling P cycling in the water column and

sediments (Hadley et al., 2012, Iho et al., 2017, Lehtoranta et al., 2009, Verschoor et al.,

2017). The model has been designed to study P partitioning among major P-binding

forms commonly quantified by operational P-fractionation schemes (Doan et al., 2018).

The reaction network includes microbially mediated primary and secondary redox reac-

tions, aqueous speciation, mineral dissolution and precipitation (Figure 2.1, Tables 2.1,

2.2 and A.1). Microbially mediated organic matter degradation (i.e., aerobic respira-
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tion, denitrification, iron and sulphate reduction, methanogenesis) are implemented using

Michaelis-Menten rate laws. Bimolecular reaction rate laws are used for secondary redox

reactions (e.g., oxidation of Fe2+, NH +
4 , and HS– ), whereas precipitation and dissolution

kinetics of the minerals depend on the corresponding degree of saturation and pH. In

MyLake-Sediment, pH can be either a) fixed by the user, as was done here, or calcu-

lated via b) the electroneutrality equation, or c) by calling a compiled version of PhreeqC

(Parkhurst and Appelo, 2013). The majority of the reaction network parameters are set

according to previous studies (Atkin and Tjoelker, 2003, Canavan et al., 2006, Couture

et al., 2016, Dijkstra et al., 2018, Katsev and Dittrich, 2013, Parkhurst and Appelo, 2013,

Van Cappellen and Wang, 1996), while others were either calibrated using the global opti-

mization toolbox in MATLAB which relies on a genetic algorithm or manually fine-tuned

to obtain the best overall fit to the observations.

Coupling of the water column and sediment across the SWI accounts for fluxes of

dissolved and solid species. Each time step of the two-way coupled model involves the

following three sequential operations: (i) MyLake provides boundary conditions for solid

(Neumann type) and aqueous (Dirichlet type) species to the sediment module; (ii) results

of the sediment module run are used to estimate the diffusive and nonlocal transport

fluxes of dissolved species across the SWI; (iii) these fluxes across the SWI are used to

update the concentrations of dissolved species in the benthic boundary layer of the water

column; (iv) MyLake then proceeds to the next time step.

Specifically, MyLake provides boundary conditions for the sediment solid and aque-

ous species. The settling (advective) flux of a solid constituent from the water column

to the sediment is proportional to its concentration in the water column Cs
i times its

settling velocity ws. Additionally, in the coupled model, significant accumulation of sed-

iment is assumed to be restricted to water depths exceeding a user-specified “sediment

effective depth” (Figure 2.2). Thus, for the solid s, the one-dimensional, sediment surface

area-weighted deposition flux at the SWI is estimated as follows:

F s
j =

n∑
1
ωs · Cs

i,j ·
Ai − Ai−1

Ased
(2.1)
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Figure 2.2: Representation of sediment in the model. Due to sediment focusing toward
the deeper parts of the lake, significant accumulation of sediment is assumed to only
occur below a user-defined “sediment effective depth”, dsed. If Ai is the surface area of
the water column layer that intersects the SWI at depth dsed and Ai−1 that of the water
column layer below it, then Ai−Ai−1 is the area of the SWI that captures the particulate
matter deposited at water depth dsed and across which solutes are exchanged between the
sediment pore water and the ith water layer. The SWI is similarly divided until the lowest
water depth is reached where A0 = 0. Thus, the model calculations can be considered to
be 1.5 dimensional as the horizontal two-dimensional morphology of the lake is taken into
account.

where spatial and temporal grids points are represented by indices i and j respectively,

ωs — is the settling velocity of the solid particles in the water column, Cs
i,j – is the

concentration of the solid constituent in the water column, Ai – is the area of the sediment

below ith layer of water column, Ai−1 – is the area of the sediment below (i − 1)th layer

of water column, Ased – is the total area of the sediment below the “sediment effective

depth”. The numbering of the layers starts at the deepest point of the lake with A0 = 0.

The sediment boundary condition for solute a is the area weighted mean concentration in

the water column below the “sediment effective depth”:

Ca
j =

n∑
1
Ca
i,j ·

Ai − Ai−1

Ased
(2.2)

Pore water profiles modelled in the sediment are used to estimate fluxes at the SWI.

Thus, the flux of solute a at the SWI is estimated as the sum of diffusive and nonlocal

bioirrigation fluxes:

F a
j = −ϕD

a
o

θ2
∂Ca

i,j

∂z
+ α

L∫
0

(Ca
i,j(z)− Ca

0,j)dz (2.3)

where ϕ – is the porosity, Da
o – is the temperature corrected molecular diffusion coefficient
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of solute a, θ – is the tortuosity, Ca
i,j – is the concentration of dissolved species, Ca

0,j –

is the concentration of dissolved species at the SWI (i.e., bottom water concentration),

z – is depth in the sediment with z = 0 at the SWI, α – is the irrigation coefficient,

L – is the the depth of irrigation. The diffusive flux is estimated using a fourth-order

finite-difference approximation. The integral is estimated using the trapezoidal method.

Finally, the flux of solute a across the SWI leads to a change of the water column

concentration, which is estimated at each time step for each layer below the “sediment

effective depth”:

Ca
i,j+1 = Ca

i,j + F a
j

Ai − Ai−1

Vi
∆t (2.4)

where Vi – is the volume of ith layer of water column, ∆t – is the time-step of the coupled

model. A mass balance check of the coupled model revealed less than 1% error in fluxes

across SWI for a ten-year simulation.

The model’s short execution time and its execution as a Matlab function (taking

parameter values as input and returning performance metrics as output) make it suitable

for sensitivity and uncertainty analyses. It enables users to evaluate if parameter values

found after optimization are unique and determine if the parameters agree with field data

and process knowledge (Jackson-Blake and Starrfelt, 2015). Low model sensitivity to a

given parameter or the response of the parameter value to changes in other parameters

may lower confidence in the values emerging from the optimization (Dittrich et al., 2009).

2.2.2 Study Site

Lake Vansjø (59◦23′N, 10◦50′E) is located in the southeastern part of Norway. Its

catchment was formed during the last ice-age and consists of an accumulation of un-

consolidated glacial debris (coarse moraines). The area surrounding the lake presently

comprises mainly forest (78%), agricultural area (15%) and open-water (7%) (Skarbøvik

et al., 2019). Lake Vansjø has a surface area of 36 km2 and comprises several sub-basins,

the two largest being Storefjorden (eastern basin, draining a catchment of 244 km2) and
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Vanemfjorden (western basin, draining a catchment of 58 km2). The water column of both

basins remains oxygenated throughout the year. In this study, we focus on the deeper

Storefjorden basin (max depth 41 m, mean depth 8.7 m, residence time 10 months) which

drains into the Vanemfjorden basin through a shallow channel. The hydraulic residence

time for the two basins together is estimated at 13 months.

The lake is an important drinking water source for three surrounding municipalities

and is used for fishing and recreation. It has a long history of eutrophication from, at

least, the 1970s when the systematic monitoring of the lake began. Total P concentrations

in Storefjorden typically vary between 20 and 40 µg-P L−1 (Skarbøvik et al., 2019), that

is above the threshold of good ecological status set by the European Water Framework

Directive. Lake Vansjø has experienced blooms of cyanobacteria causing beach closures

(Moe et al., 2016). Measures to reduce inputs of phosphorus have not been met with a

proportionate level of success (Skarbøvik et al., 2019).

2.2.3 Sampling, Analysis and Data Sources

Historical precipitation, temperature, insolation and wind records for Lake Vansjø

were obtained from daily weather data at the Norwegian Meteorological Institute stations

1715 (Rygge), 1750 (Floter), and 378 (Igsi), located between the two lake basins (59◦38′N,

10◦79′E). Future climatic conditions were obtained from an ensemble of models used by the

Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), and downloaded from the

Centre for Environmental Data Analysis database (Warszawski et al., 2014). The Institute

Pierre Simon Laplace General Circulation Model (Dufresne et al., 2013), Geophysical

Fluid Dynamics Laboratory Climate Model (Delworth et al., 2012), and Norwegian Earth

System Model (Bentsen et al., 2013) provided air temperature projections for the period

from 2018 to 2100. We retrieved the results of two representative concentration pathways

(RCP) of radiative forcing, 4.5 and 8.5 W m−2, for each model. The data were linearly

interpolated over Lake Vansjø using the nearest 3 grid-points. For weather projections

without climate change, the statistically consistent future weather was generated after

Chen et al. (2010).
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Catchment hydrology and loads of suspended sediments, particulate P and dissolved

species were compiled previously (Couture et al., 2018), using daily measurements of flow

and bi-weekly measurements of water chemistry over a 30-yr period (01/01/1983–31/12/2013)

measured at the gauging station at Hogfoss (Station 3.22.0.1000.1; Norwegian Water Re-

sources and Energy Directorate, NVE). Lake water chemistry and temperature data were

provided by the Vansjø-Hobøl monitoring programme, conducted by the Norwegian Insti-

tute for Bioeconomy Research (NIBIO) and by the Norwegian Institute for Water Research

(NIVA) (Haande et al., 2016). The measurements include temperature, concentrations of

dissolved oxygen (DO), total P (TP), orthophosphate-P (DIP), particulate organic phos-

phorus (POP), and chlorophyll a (Chl-a). These data are available freely through NIVA’s

online database (http://www.aquamonitor.no) until 2015 and on the Norwegian national

database (https://vannmiljo.miljodirektoratet.no).

An undisturbed sediment core was collected at the deepest point of the Storefjorden

basin using a modified Kajak-Brinkhurst gravity-type corer with an inner diameter of 8.3

cm. The core was sectioned anaerobically at 1 cm intervals from the SWI down to 5

cm, at 2 cm intervals from 5 to 15 cm depth and at 5 cm intervals from 15 to 30 cm

depth. Samples were transported at 4◦C before centrifugation at 500 g under nitrogen

atmosphere (N2:H2 97:3%, O2 < 1 ppmv). The supernatant, hereafter referred to as the

pore water fraction, was filtered through a 0.2 µm pore size polypropylene membrane

filter (Whatman).

Phosphorus partitioning within the sediment was evaluated using the 5-step sequen-

tial extraction scheme from Hieltjes and Lijklema (1980), Paludan and Jensen (1995) and

Reitzel et al. (2006), where steps 1 and 2 were carried out under an N2 atmosphere. Briefly,

samples were treated, at a 1:25 sediment:solution ratio, with 1) deionized water for 16 h at

40◦C, 2) bicarbonate buffered dithionite (BD) solution for 1 hour at 40 ◦C, 3) 0.1M NaOH

for 16 h at 40◦C, 4) 0.5M HCl for 16 h at 40◦C, 5) ashed for 8 h at 520◦C and 1.0M HCl

for 16 h at 120◦C. Between steps, the supernatant was recovered and filtered through a

0.2 µm pore size polypropylene membrane filter. The following operationally defined frac-

tions are associated with the corresponding sequential extraction steps: loosely bound-P,
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Fe-P, Al-P, Ca-P, and unreactive-P. Particulate organic phosphorus (POP) is estimated

by subtracting the molybdate-reactive phosphorus from total phosphorus measured in

the NaOH extract (Ahlgren et al., 2011). All solutions were prepared using analytical

grade reagents from Fluka, Sigma-Aldrich or Merck and prepared with 18 Ohm water

(Millipore) deoxygenated by cooling boiled water using a N2 stream. Total Fe, Al, Ca, P

and Si concentrations of the pore water samples and extracts were measured by ICP-OES

(Thermo Scientific iCAP 6300) after acidification with HNO3 to pH < 2. Total P and

soluble reactive P (SRP) were measured by the molybdenum blue/ascorbic acid method

on a LaChat QuickChem 8500 flow injection analyzer system. Matrix-matched standards

were used for all calibrations, and NIST validated multi-elemental solutions were used as

controls.

2.3 Results and Discussion

2.3.1 Water Column Temperature and Chemistry

Because of the relatively short hydraulic residence time of the lake, initial condi-

tions in the water column only affect the result during the first 10 years of simulation.

In contrast to the water column, the sediment contains slowly reacting solid phases and

the module could not be spinned up with measured data only. Instead, the 1983-1995

cycle was repeated until the sediment column reached steady-state, at which point the

concentration distributions were saved and used as initial conditions in the further sim-

ulations of the historical period (1995-2015), open water scenario (1995-2015), climate

warming (1995-2070), external P reduction scenario (1995-2200), Fe amendment scenario

(1995-2070).

Six model parameters were necessary to fit the simulated temperatures to observa-

tions in the water column of the lake: the open water diffusion ak, the ice covered period

diffusion parameter aicek , the minimum stability frequency N2, the light attenuation coef-

ficients (photosynthetically ε̂ and non-photosynthetically active ¯̂ε), and the win sheltering

coefficient Wstr (Supplemental material, Table A.2). These parameters were taken from

28



0

10

20
5 m

0

10

20
10 m

0

10

20
20 m

0

10

20
30 m

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0

10

20
40 m

T
em

p
er

at
u

re
,

[C
]

Figure 2.3: Observed temperatures (symbols) at different depths in Lake Vansjø compared
to simulations (lines) with the calibrated physical model for the period from 2005 to 2014.

previous modelling studies on Lake Vansjø Couture et al. (2014), Saloranta and Andersen

(2007). Details on the description of the parameters can be obtained from Saloranta and

Andersen (2007).

Figure 2.3 highlights the good agreement between simulated and observed temper-

atures. The mean absolute error (MAE) for all depths was 1.07◦C, RMSE was 1.34◦C,

the correlation coefficient (r) was 0.91, the coefficient of determination (R2) was 0.7, and

the bias was -0.6◦C (supplemental material, Table A3). In general, the model tended to

slightly underestimate the warming of the hypolimnion during summer periods.

Of the 43 parameters values needed for the reaction network, 30 were taken from the

literature (Atkin and Tjoelker, 2003, Canavan et al., 2006, Couture et al., 2016, Dijkstra

et al., 2018, Katsev and Dittrich, 2013, Parkhurst and Appelo, 2013, Van Cappellen and

Wang, 1996) and 13 were fitted to reproduce the observations. The calibrated parameters

relate to organic matter degradation, the half-saturation constants of microbial Fe reduc-

tion, and P sorption and mineral precipitation parameters. The values remained within

the range of previously reported values, as shown in the supplemental material (Table

A4).

The dissolved oxygen (DO) concentration in the water column declined throughout
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Figure 2.4: Observed dissolved oxygen concentrations (symbols) at different depths in
Lake Vansjø compared to simulations (lines) of calibrated model for the period from 2005
to 2014.

annual periods of high productivity, reaching minimum values in the hypolimnion at about

0.1 mmol L−1 (Figure 2.4). The measurements are more scattered before the year 2010

than afterwards, likely reflecting the improved DO measurement protocols introduced in

2010. As can be seen in Figure 2.4, the model was able to reproduce the observed DO

concentration time-series in the water column with a bias of less than 9% for the DO

concentrations in the hypolimnion. The RMSE gradually increased with the depth, from

0.03 mmol L−1 at the surface to 0.1 mmol L−1 at 40 m (Table A3). Although the timing

and magnitude of the DO peaks are well captured, in the specific case of DO at 40 m

depth, the model struggles to fully capture the trends, which results in the low statistical

correlation metrics (Table A3). The model satisfactorily captured the seasonal variations

of total phosphorus (TP), phytoplankton (Phy-P), DIP and particulate phosphorus (PP)

in the mixed layer of the lake (Figure 2.5). The simulated P dynamics in the lake re-

produced the observed strong seasonal features, with Phy-P reaching maximum values

during the summer when the lake is most productive. By contrast, surface DIP is at a

minimum during the summer, consistent with its uptake by phytoplankton. Discrepan-

cies between measured and model P distributions in the water column may be due to the

simplicity of the algal dynamics in MyLake. The current version of MyLake does not yet
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Figure 2.5: Observed concentrations (symbols) of total phosphorus (Total P) in surface
water (0-4 m), phosphorus in phytoplankton (Phy-P) in surface water (0-4 m), dissolved
inorganic phosphorus (DIP) in surface and bottom water (36-40 m), and particulate phos-
phorus (PP) in surface water (0-4 m) compared to simulations (lines) of the calibrated
model for the period from 2005 to 2014. Total P is the sum of all phosphorus compounds,
i.e., Phy-P, DIP, and particulate organic and inorganic P. Measured Phy-P concentrations
are derived from Chl-a measurements using C:Chl-a=40:1 (g/g) and C:P=106:1(mol/mol)
ratios (Cloern et al., 1995). PP is the sum of allochthonous particulate organic phosphorus
and solid inorganic phosphorus.

simulate phytoplankton community dynamics or N-limitation to algal growth, as is done

in other models such as PROTECH (Reynolds et al., 2001), thus community shifts due to

changing climate and N recycling from the sediments are not captured. Other processes,

such as cell buoyancy effects (Gemmell et al., 2016) and grazing by zooplankton (George

and Reynolds, 1997), are also not included.

2.3.2 Sediment Pore Water and Solid Phase Geochemistry

In the sediment, the pore water concentration of DIP gradually increased with depth

from near 0 mM at SWI to about 0.06 mM at 16 cm, then steadily decreased to 0.04 mM

at 30 cm (Figure 2.6.1). In the upper 10 cm, the concentrations of dissolved Fe and Ca

increased steadily with depth to their highest values of 0.5mM and 0.27mM , respectively,

remaining fairly constant at greater depths. The model captured the main features of

the pore water profiles, both the depth of the phosphate and calcium peaks and the
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magnitudes of the concentrations. The total solid fraction of P in the sediment was about

0.7 mmol g−1 of dry sediment (2% by weight). Solid phase P speciation was dominated

by iron-bound phosphorus (Fe-P), followed by aluminum bound (Al-P), POP and calcium

bound phosphorus (Ca-P). In the model, Fe-P is represented by P sorbed on iron minerals

and vivianite, Al-P by P sorbed on Al, POP by allochthonous particulate P and Phy-P,

and Ca-P by calcium phosphate precipitate. By adjusting the parameters of first-order

rate constants of organic matter degradation, dissolution and precipitation constants of

apatite and vivianite, and phosphate adsorption constants on aluminum and iron oxides,

the model also captured the distribution of P in the operationally-defined pools (Figure

2.6.2). The modelling results indicate that the most significant parameters, with respect

to P release from the sediment to the water column, are the parameters values describing

organic matter lability (first-order rate constants of organic matter degradation), the

reductive dissolution of Fe (oxy)hydroxides (half-saturation constants of the terminal

electron acceptors), and the sorption of P onto Fe and Al oxides (Table A4). The model

consistent average sediment burial rate of 0.1 cm · y−1 agrees with the estimations of 0.17

cm · y−1 at 14 cm depth for the previously collected cores (Solheim et al., 2006). Thus,

the burial rate suggests that the top 15 cm of the sediment represent about 100-150 years

of sediment deposition. Finally, although the pore water DO was not measured in the

sediment cores, modelling results predict that it was depleted within the uppermost 0.3

cm of sediment. Such DO penetration depth is consistent with high rates of organic

matter degradation following the season of high biological productivity (Maerki et al.,

2009).

2.3.3 Baseline Simulation

Depth-integrated P reaction rates, fluxes and inventories are shown in Figure 2.7.

The simulation results for the historical 1995-2015 period, hereafter referred to as the

baseline, indicate that about one-third of P deposited at the SWI is sorbed to ferric Fe

(oxy)hydroxides and the remaining consists of POP. Upon reductive dissolution of the Fe

oxides and microbial degradation of POP, on average 60% of the deposited P is returned
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Figure 2.6: Sediment geochemistry. Panel (1) compares the simulated and measured pore
water profiles of DIP, ferrous iron and calcium; panel (2) compares the simulated and
measured average concentrations of the solid-phase pools of phosphorus in depth interval
0-30 cm. The pore water and solid-phase data were measured on sediment cores collected
in October 2014 in the deepest part of Lake Vansjø.

as DIP to the overlying water, while 40% remains trapped in the iron redox cycle or

precipitates as mineral Ca phosphate. Below the upper (0-15 cm) sediment interval of P

recycling associated with the reductive dissolution and oxidative precipitation of ferric Fe

(oxy)hydroxides, P is permanently removed via the burial of Ca and Fe phosphate mineral

phases and P sorbed to Al oxides. Over the historical period, the bottom sediments act

as a net sink for P. The P exchanges between the sediments and the overlying water vary

significantly along a single year, however. In particular, the sediments become a more

pronounced source of P to the water column during the growing season (Figure 2.8). In

the following sections, the baseline serves as the starting point of additional simulations in

which various perturbations are imposed on the lake-sediment system, namely 1) projected

future changes in air temperature, 2) disappearing ice-cover, 3) stoppage of external P

input, and 4) Fe-amendments as a remediation strategy.
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Figure 2.7: Calculated 20-year average values of phosphorus fluxes (µmol-P · cm−2 · y−1)
and depth-integrated P inventories (µmol-P ·cm−2) in the water-column and sediment: (1)
historical 1995-2015 simulation, (2) no ice cover 1995-2015, (3) increasing air temperatures
2050-2070, and (4) iron amendment scenario 2030-2050. IPSL, GFDL, and NorESM
climate models provided the atmospheric forcing for scenario 3 and 4. Dashed zigzag
lines represents fluxes in and out of the water column due to lake inflows and outflows as
well as transfers across the SWI. Red and green colors represent relative change in values
compared to the historical 1995-2015 simulated values. Percentage change within 1% of
the original values are noted with dash (no change). OP stands for the sum of particulate
and dissolved organic phosphorus.

2.3.4 Climate Warming Scenarios

Lakes are warming under climate change worldwide (Woolway and Merchant, 2019).

Surface temperatures in seasonally ice-covered lakes have been reported to increase faster

than in ice-free lakes (O’Reilly et al., 2015, Winslow et al., 2018). At the same time,

significant decreases in the duration of ice cover have been observed and are projected to

continue (Austin and Colman, 2008, Butcher et al., 2015, Fang and Stefan, 2009), with

profound impacts on water-column processes, as summarized in Lindenschmidt et al.
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Figure 2.8: Weekly total P loading (external plus internal) to the water column of Lake
Vansjø (blue line), and relative contributions (in %) of P supplied from the catchment
(white bars) and from the sediments (gray bars). The results shown are average values
for the period 1995-2015.

(2018). Lake water quality and harmful algal blooms are expected to worsen as a result

of higher water temperatures (Mantzouki et al., 2018), droughts and longer hydraulic

residence times (Mosley, 2015, Visser et al., 2016).

Here we analyze how Lake Vansjø may respond to changing air temperatures and, in

particular, how this may affect P exchanges between the bottom sediments and the water

column. Historical air temperatures for the period 1995-2015 and those from the climate

models described in section 2.2.3 for the period from 2015 to 2070 were imposed to the

model. The largest differences in the projected air temperatures are between the climate

models rather than between RCPs: IPSL and GFDL both predict warmer winters (+7◦C

for IPSL and +3◦C for GFDL) and summers (+3◦C for IPSL and +0.5◦C for GFDL),

while NorESM predicts warmer winters (+3◦C) but colder summers (−3◦C) compared to

the historical period (Figure A.3). Trends of selected model variables under the climate

warming scenarios are summarized in Figure 2.9 (Note that seasonal ice formation is still

taking place in the warming scenarios, in contrast to the open water scenario discussed

in section 2.3.5).

In agreement with previous studies (Gebre et al., 2014), the model results predict

that, on an annual basis, with every degree of air temperature increase the duration of

lake ice shortens by about 21 day (Figure A4). In the ”warmest” IPSL RCP 8.5 scenario,
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Figure 2.9: Trends of selected MyLake-Sediment variables in the climate warming scenar-
ios, according to the projections of the climate models for RCP 4.5 and RCP 8.5, over
the period of 2050-2070 relative to average historical values for the period 1995-2015.

the model yields a reduction in ice cover duration from 105 days during the historical

period (1995-2015) to less than 20 days for the 2050-2070 period.

Increasing air temperature and decreasing ice cover have antagonistic effects on

water column stability. As summarized in Obertegger et al. (2017), decreasing ice cover

duration enhances spring mixing as a result of prolonged periods of open water and

subsequent wind exposure, an effect that is offset by earlier stratification due to warming

air temperatures (Adrian et al., 2009), which in turn slows down DO replenishment of

the lower lake waters. Despite a more extended period of water stratification by up

to 10 days, compared to the historical 1995-2015 period, the cumulative effect of both

imposed environmental variations is the gradual deepening of the thermocline, together

with increasing vertical mixing (on average) and decreasing duration of hypoxia (Figures

2.7 and 2.9). These results are in line with a previous study where shorter ice cover

duration is the governing factor driving increasing dissolved oxygen concentrations in the

water column (Couture et al., 2015, Fang and Stefan, 2009).

The model results suggest that earlier water column ventilation and late-season

warming of the hypolimnion have cascading effects on the biogeochemical dynamics in

the sediments. First, increased bottom DO concentration favors both the degradation of

organic matter in the sediment and the oxidation of Fe(II). The former releases DIP to the
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porewater, while the latter forms Fe(III) (oxy)hydroxides that sequester DIP. The model

predicts that DIP release exceeds DIP sorption by newly formed Fe (oxy)hydroxides. The

net result is a decrease of the Fe(II) and an increase of the DIP flux from the sediment

(Figure 2.9). Next, phytoplankton growth and abundance respond to the increasing in-

ternal P loading and the warming water temperature yielding a summer bloom that lasts

about 10 days longer by the end of the simulation period (not shown).

2.3.5 Open Water Scenario

Given the key role of ice cover in controlling water column stability and the bio-

geochemical dynamics of the lake, we simulate the response to a complete absence of ice

cover. This is done by imposing open water conditions throughout the entire simulation

period, hence allowing for enhanced gas exchange and wind-induced mixing during the

otherwise ice-covered time of the year. The integrated P fluxes and inventories for the

open water scenario during the 1995-2015 period, compared to the baseline values, are

shown in Figure 2.7.2.

The model results yield averaged vertical diffusivity coefficients that are up to 41%

higher without ice than with ice as a result of the enhanced wind-induced mixing. During

the course of year, the durations of stratification and hypoxia decrease at first stepwise

by about 20% and 50%, respectively (Figure A4), until increasing temperature gradually

reverts the trend causing the extension of the period of stratification. As also seen for the

shorter ice-covered durations in the climate warming scenarios, the complete absence of

ice cover leads to higher dissolved oxygen concentrations in the water column and a 23%

rise in the oxygen influx to the sediment. The enhanced mixing and more oxygenated

water column further result in more P to be deposited at the SWI in the form of P

sorbed to ferric Fe (oxy)hydroxides, and less as POP. The increased efflux of DIP from

the sediments in the year-round open water scenario, however, is mostly supported by

the faster early diagenetic mineralization of POP under the more oxic conditions. The

enhanced upward vertical mixing of DIP also increases P export via the lake outflow.

That is, overall, the lake’s sediments become less efficient at retaining P. Nonetheless,
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despite the profound reorganization of P cycling in the lake, the complete absence of ice

cover has only a relatively small impact on the phytoplankton biomass (4% decrease).

2.3.6 External P Reduction Scenario

To further evaluate the role of internal P loading in the biogeochemical functioning of

Lake Vansjø, a simulation is performed where the external loads of all P-containing species

are set to zero after 2015, all other conditions remaining unchanged (Figure A5). The

simulation is run until 2195, that is, the 20-year historical cycle (1995-2015) is repeated

ten times but without any new addition of P to the lake. Thus, all phytoplankton biomass

growth after 2015 is supported by P recycling within the lake-sediment system.

The results indicate that after the external P cutoff internal loading from the sed-

iments provides a long-term source of P to the water column (Figure A5). Prior to the

external P cutoff, the efflux of DIP from the sediments represents 25-75% of the total P

loading to the water column (Figure 2.8). After the external P cutoff, it becomes 100%

of the total loading. From 2015 onwards, the magnitude of the internal DIP loading is

predicted to decay exponentially. Such decay can be also simulated with a half-life of

229 years according to the best-fit equation: F0 · exp(−t/330), where F0 is the DIP efflux

before the cutoff and t is the number of years after 2015. The long decay period reflects

the slow depletion of the large solid-phase P pools accumulated in the sediment, mainly

via DIP production by the degradation of refractory POP, P desorption from Fe and Al

mineral phases and dissolution of vivianite (Figure A5).

The important role of legacy P stored in the sediments is further illustrated by

conducting the same simulation but with the sediment module turned off (Figure A5,

panel 3). In the absence of internal DIP loading, the lake’s temporal response to the

external P cutoff is instead driven by the water residence time. The depletion of water

column DIP can be approximated by the following fitted curve: P0 · exp(−t/3τ), where

P0 is the concentration of DIP before the cutoff and τ is the hydraulic residence time

(0.85 years). The factor 3 in the denominator of the exponent indicates that the decay of

the DIP concentration is slower than that expected for an unreactive tracer, because the
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biological cycling of P in the water column increases the residence time of DIP. That is,

nine hydraulic residence times are needed to flush out 95% of DIP. Thus, overall, internal

DIP loading extends the response time scale of Lake Vansjø with respect to the cessation

of external P loading by more than two orders of magnitude relative to the no-sediment

scenario.

Under the current climate conditions, the modelled P concentration time series can

be used to derive the following predictive model emulator of the average annual TP

concentration in the water column of Lake Vansjø, as a function of the external and

internal P loadings:

TP = 3 · τ · (Fext + Fsed)− (3 · τ · (Fext + Fsed)− P0) · exp(−t/3τ) (2.5)

where TP is expressed in units of µmol L−1, and Fext and Fsed are the P fluxes to the

water column from the catchment and from the sediments, respectively, both expressed

in units of µmol L−1 y−1. This lake-specific equation would predict, for instance, that

best management practices that would reduce the external P load by half would decrease

the water column TP concentration by about 20% over a 10-year period.

2.3.7 Iron Amendment Scenario

While the majority of management measures and practices focus on reducing exter-

nal P loads to improve water quality in lakes, alternative mitigation approaches rely on

the addition of reactive materials to the water column to sequester P in the sediments

(Mackay et al., 2014). Because of the strong coupling of the early diagenetic cycling of

P and Fe (Doolittle et al., 2018, Molot et al., 2014, Verschoor et al., 2017), materials

that have been used include salts of ferric Fe (Engstrom, 2005, Orihel et al., 2016, Wilfert

et al., 2015), but also Al (Huser et al., 2016, Schutz et al., 2017) and Ca phases (Gulati

et al., 2012), as well as lanthanum clays (Dithmer et al., 2015).

Here, we simulate the outcomes of a ferric Fe addition to Lake Vansjø. The imposed

scenario consists of yearly additions, from 2030 to 2050, of 200 g m−2 (0.3 mmol cm−2)
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Figure 2.10: Response of the benthic DIP flux (thin red line), water-column phytoplankton
biomass (thick green line) and sediment Fe inventory (dashed blue line) to the addition of
200 g-Fe·m−2 ·y−1, starting in 2030 and continuing until 2050. The shaded areas represent
the ranges obtained for the different air temperature projections from the GFDL, IPSL
and NorESM models shown in Figure A.3. Dark and light shaded areas represent 68 and
95 confidence intervals, respectively.

of Fe(III) added via the lake inlet just before ice breakup. The resulting 20-year averaged

fluxes and inventories of the P cycle during the iron treatment are compared to the his-

torical 1995-2015 values in Figure 2.7, while Figure 2.10 shows the timing and magnitude

of the changes in the DIP efflux from the SWI, phytoplankton biomass, and Fe inventory

of the sediments. Figure 2.11 further shows the relationship between benthic DIP fluxes

and annual iron loads before, during and after iron treatment. The figure illustrates the

hysteresis in the internal DIP loading response after the amendment is terminated in 2050.

During the first 10 years of iron amendment, the model predicts that the DIP

flux from the sediments decreases by 43% from an average annual value of 1.75 to

1 µmol cm−2 y−1 (Figure 2.10). This decline in internal P loading is due to enhanced P

retention in the sediments by Fe(III) (oxy)hydroxide minerals in the upper oxic layer and

by ferrous Fe minerals, such as vivianite, in the deeper anoxic layer (Bostrom et al., 1988,

Smolders et al., 2006). The decreased internal P loading in turn results in lower phyto-

plankton biomass, which decreases by 30% from 85 to 60 nmol−P L−1 during the period

of amendment (Figure 2.10). Once the treatment is terminated (i.e., from 2050 onward)
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the lake’s phytoplankton biomass returns to its pre-treatment level within about 15 years

(Figure 2.10). The imposed Fe treatment and the predicted responses are consistent with

observations reported for 15 actual treatments worldwide (Orihel et al., 2016), in which

lakes with low natural Fe levels show stronger responses than Fe-rich lakes.

The efficiency with which Fe amendments are likely to decrease algal growth depends

on the existing Fe inventory in the sediments, and on whether or not internal loading is a

major source of DIP to the water column. For example, in Lake Simcoe (Ontario, Canada),

similar to Lake Vansjø, internal loading supplies between a third to one half of P to the

water column (Loh, 2013). In contrast, the estimated internal loading in the eastern

basin of Lake Erie (Ontario, Canada) only accounts for 3-7% of the total phosphorus load

(Matisoff et al., 2016). In such a case, even if the addition of iron reduces the internal

loading by half, the overall effect will be insignificant.

Finally, internal P loading has been shown to be naturally supressed in lakes with

sediments containing high concentrations of Al (Kopáček et al., 2005, Lake et al., 2007,

Ostrofsky, 2019). Additions of Al have been used as a lake remediation measure, and

41



studies of Al-treated lakes show that Al enhances P sorption in sediments and prevent P

release to the water column during the reductive dissolution of Fe(III) minerals (Huser

et al., 2016). The use of MyLake-Sediment model to simulate a lake’s response to Al

addition will require careful modelling of lake and porewater pH in order to capture pH

dependent P sorption to Al mineral phases (Reitzel et al., 2013).

2.4 Concluding Remarks

Internal nutrient recycling from sediments plays a key role in the biogeochemical

cycling and biological productivity of lakes. Here, we present a Lake-Sediment model

meant to diagnose the processes driving internal P loading in lakes and predict how these

processes respond to changes in climate conditions, inputs from the catchment, and lake

restoration measures. The model directly couples the biogeochemical reaction networks

of water column and sediments in order to simulate P exchanges across the SWI. We use

the model to assess the effectiveness of P loading targets and other mitigation strategies

aimed at controlling excessive algal growth in a eutrophic lake in Norway, Lake Vansjø.

The results clearly illustrate the importance of the accumulated legacy P in the lake’s

sediments in controlling the timing and magnitude of the response of internal P loading

to external forcings, including projected changes in air temperature and ice cover, as well

as management interventions.

With a strong focus on coupled biogeochemical processes across the SWI, this code

can serve as a stepping stone to generate lake restoration scenarios (Lürling et al., 2016),

test hypotheses on the response of algal biomass to external and internal fluxes of P and

Fe (Verschoor et al., 2017), and help with “climate-proofing” remediation measures, whose

effectiveness will likely be modulated by ongoing climate change (Trolle et al., 2011). To

this end, further model development and evaluation avenues should focus on capturing the

temporal (e.g., Amirbahman et al. (2012), Katsev and Dittrich (2013)) and, in particular,

spatial heterogeneity in sediment P distributions and recycling efficiencies (e.g., Dittrich

et al. (2013), Doan et al. (2018), Gudimov et al. (2015), Matisoff et al. (2016, 2017)).
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Summary

We present a new conceptual model of microbial functioning by describing redox

cascades that are commonly observed in the aquatic environments. In a classical ap-

proach, the biogeochemical sequence of nutrients in redox fluctuating environments (e.g.,

sediments, riparian zones) is represented by the Monod equation supplemented by the in-

hibition terms. Such terms involve a wide range of assumptions to prioritize one reaction

over another, whereas they lack generalization and are limited to particular case-studies.

To decrease the number of subjective assumptions and improve model robustness, we

replace the inhibition terms by introducing a thermodynamic switch function. The ther-

modynamic switch function accounts for the overall energy supply rate (power) of each

individual microbial reaction in the reaction network. The thermodynamic switch func-

tion does not require any calibrated parameters and provides a unique feature for the

continuous simulation of ecosystem evolution in time and space. The model demonstrates

the ability to reproduce the experimental data of highly complex redox systems com-

prising numerous electron acceptors (O2, NO –
3 , MnO2, Fe(OH)3, SO 2–

4 , HCO –
3 ) and

electron donors (C6H12O, CH3COO– , H2) at once. Such abundance and variability of

nutrients are expected in the microbial aquatic models. With the recent growth of the

genomics, transcriptomics, proteomics, and metabolomics data, the complexity of such

models will likely expand. The thermodynamic switch function is an ideal candidate to

model the sequence of less-known reactions for which microbial redox sequence has not

been defined experimentally yet. Since the model incorporates the real values of major

geochemical parameters (temperature, pH, ionic strength, solute concentrations), it could

be well integrated into more sophisticated simulations of the aquatic environments where

the environmental changes are expected to occur.

3.1 Introduction

Natural waters are dynamic systems with a continuous flow of mass and energy. By

breaking down organic matter from dead plants and animals, many microorganisms har-
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vest energy stored in reduced compounds and release nutrients to the ecosystem’s food

chain. Therefore, aquatic microorganisms play crucial roles in the cycling of nutrients

within their environment, imposing the ultimate control on water quality and ecosystem

sustainability. Vigorous microbial activity is often found at the environmental interfaces

that are rich in nutrients and span over large redox gradients (Megonigal et al., 2003).

A variety of redox-sensitive compounds imposes microbial competition for the most en-

ergy gaining reactions that result in the spatial and temporal distribution of nutrient

concentrations.

The global cycles of major nutrients (i.e., carbon, nitrogen, phosphorus, iron, sulfur)

are interconnected with one another. Understanding of the mechanisms and regulatory

factors of such complex biogeochemical systems requires laboratory investigations and

numerical simulations. Never in equilibrium and orchestrated by microbial metabolism,

the nutrient cycles are driven by the dissipation of energy from high-energy to low-energy

state (Canfield et al., 2005). It translates to the ecosystems in a way that the overall

metabolism with the largest free energy yield outcompetes less thermodynamically favored

processes.

The typical redox sequence is schematically demonstrated in Figure 3.1. The se-

quence runs from oxygen reduction through nitrate and manganese to iron and sulfate

and

OM

Oxygen
reduction

Nitrate reduction

Manganeese reduction

Iron reduction

Sulfate reduction

Methanogenesis

RE
LA

TI
VE

 C
O

N
CE

N
TR

AT
IO

N

TIME or SPACE

Figure 3.1: Transitional environments show a distinct redox zones in space or time with
sequential reduction of oxygen, nitrate, manganese, iron and sulfate followed by methano-
genesis.
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reductions being coupled to organic matter oxidation and finishes by methanogenesis.

So-called, redox cascades are often observed in wetlands (Achtnich and Schuhmann, 1995,

Ponnamperuma, 1972, Yao et al., 1999) and upland soils (Peters and Conrad, 1996), in

sediments (Froelich et al., 1979, Reeburgh, 1983) and stratified water bodies (Canfield and

Thamdrup, 2009), in groundwater (Lovley et al., 1994) and contaminant plumes (Watson

et al., 2005) in vadose zones (Rezanezhad et al., 2014) and hyporheic zones (Stegen et al.,

2016, Van Cappellen and Slomp, 2004).

The rate of organic matter utilization is commonly modeled as a function of microbial

growth rate. The empirical formulation of this model was first introduced in 1950 by

Jacques Monod (Monod, 1950). Since then, for about 70 years, Monod type kinetics is

being widely applied to simulate nutrient fluxes in biogeochemical systems. This model

was initially developed to reproduce the maximum growth of a specific microbial culture by

accounting for a single reaction. It explains the major limitation of the Monod equation,

which does not allow its application for natural ecosystems full of simultaneous microbially

mediated reactions.

The drawback of the Monod equation is in its failure to account for more than one

redox reaction at a time when numerous electron acceptors (e.g., oxygen, nitrate, sulfate)

are present in the aquatic environment. Based on the laboratory and field observations,

the oxidants are often consumed stepwise, creating the redox cascade of biogeochemical

reactions. So that an additional multiplier is generally added to the Monod equation to

limit the reaction as long as the other stronger oxidant is present in the system. It is done

by introducing either conditional switches or inhibition terms that artificially prioritize

one reaction over another (Arndt et al., 2013, Roden, 2008). Blanch (1981) summarized

a wide variety of equations to describe the inhibition of metabolic pathways (Aiba et al.,

1968, Boon and Laudelout, 1962, Humphrey, 1972, Yano et al., 1966). The inhibition

constants are commonly used to represent the suppression of a given electron acceptor by

a more favorable one (Aguilera et al., 2005, Haeckel et al., 2007, Jourabchi, 2007, Katsev

and Dittrich, 2013, Markelova et al., 2018, Regnier et al., 2003, Thullner et al., 2009,

Wang and Van Cappellen, 1996).
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All biogeochemical models always represent significant simplifications of complex

natural ecosystems that are coupled with a set of conceptual assumptions. The assump-

tions of the Monod equations with the multiplicative inhibition terms are simple, but

at the same time, they lack general validity. In most cases, such models rely on the

chain of kinetic switches to find the best fit to the experimental data without substan-

tial fundamental justification. The model becomes highly specific to the physicochemical

parameters of the system and cannot be applied for alternative conditions. Such models

cannot be easily translated to other case studies. Moreover, purely kinetic representations

of inhibition terms do not take into account the dynamic nature of environmental sys-

tems, such as changes in pH, temperature, ionic strength or redox state. These changes

affect the thermodynamic driving force of energy-yielding reactions with the potential of

shuffling the favorability of the specific elements and, thus, biogeochemical sequences.

Another common assumption of biogeochemical models is based on the constant

(not-changing) conditions of the systems. Although laboratory studies aim to control

system conditions manually, the environmental conditions in nature are highly dynamic.

Therefore, most of the biogeochemical models remain study-specific and are incapable of

reproducing high dynamic variability of the ecosystem in space and time. In order to

scale-up model application from the laboratory to the field investigations, biogeochemical

models should be able to account for the evolution of modelling parameters. Overall, the

number of assumptions and calibrated parameters become rather formidable, and models

seem to lose the sense of ecosystem functioning as a whole. A systematic understanding

of how the sequence of redox reactions operates in the environment is still lacking.

Due to the high complexity of natural systems, observed redox sequences are sel-

dom backed up with thermodynamic calculations. One of the most striking observations

accounting for thermodynamic driving force was demonstrated by Lovley and Goodwin

(1988) and Hoehler et al. (1998). In their separate studies, they noticed that in the par-

ticular cases, H2 concentration can serve as a proxy to define the predominant terminal

electron-accepting reactions in anoxic sediments. They conclude that “this close link de-

rives from a competition-induced necessity for terminal metabolic bacteria to maintain H2
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concentrations as low as possible”, i.e., operate at their thermodynamic or physiological

feasibility boundaries.

Depending on the dominant process consuming terminal electron acceptors, redox

gradient zones have specific concentrations of electron donors, such as hydrogen gas and

low-molecular-weight organic acids (Lovley and Goodwin, 1988). The observed pattern

is attributed to the competitive exclusion process, whereby a microbial community out-

competes other contenders by maintaining the concentrations of electron donors near the

threshold of the thermodynamic or kinetic feasibility (Lovley and Goodwin, 1988). To

take into account these findings, Bethke et al. (2011) and LaRowe et al. (2012) have

proposed factors to expand the Monod equation for the use in the energy-limited environ-

ments. The equation incorporate thermodynamic potential factor (FT term), describing

how rates may vary depending on the Gibbs Free Energy available in the environment.

When the thermodynamic limiting term supplements the Monod equation, the

model becomes capable of calculating nutrient concentrations in low-energy environments.

This expands the capacity of the Monod equation, which now can be applied in the

energy-limited environment, such as pristine freshwater aquifers (Bethke et al., 2008) or

deep marine sediments (LaRowe and Amend, 2015). Although, the FT term suppress

the reaction on the lower end, but it is careless for the simultaneous presence of other

nutrients with higher energy yields under the non-limiting conditions. This motivated

several scientific groups to investigate the application of the maximum entropy produc-

tion principle to describe the internal organizations of the ecosystems (Vallino and Algar,

2016).

Vallino (2010) and Algar and Vallino (2014) examined the application of the maxi-

mum entropy production principle for describing ecosystem biogeochemistry. The authors

introduced the novel rate expressions with new, although hard to justify, parameters, such

as the characteristic timescale over which the optimization is performed and weighting

term accounting for how much the optimization considers future events. They showed

the modelling results for microbial community utilizing methanogenesis (Vallino, 2010)

and three nitrate reduction pathways (Algar and Vallino, 2014). The authors concluded
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that the regulation of biogeochemical reactions could be determined via the solution of

an optimal control problem. Although the approach looks promising, an implementation

of the numerically efficient optimization problem in ecological models along with a pri-

ori determination of the additional new parameters for the receding horizon functions of

different biological systems are quite challenging tasks.

Our objective was to create a new model that would represent not only energy-

limited systems, but also nutrient rich conditions, while avoiding numerous artificial as-

sumptions. A new concept presented here accounts for dynamic conditions and provides

a convenient and numerically efficient way to model the temporal and spatial sequencing

of electron donors and acceptors based on energy supply rate. Below, we show three

examples to illustrate it. First, we simulate the batch system of anoxic wetland sediment

(Figure 3.31). Second, we simulate batch reactor of the syntrophic biodegradation in

an anaerobic laboratory system of contaminant plume derived from sandstone material

(Figure 3.32). Finally, we simulate reactions and transport in one-dimensional column of

the lacustrine sediment (Figure 3.33).

3.2 Model Formulation

Microorganisms maintain their organized structure by harvesting energy from the

low-entropy substrates while discarding high-entropy waste (Schrödinger, 1944). Although

metabolic functioning is controlled by the laws of thermodynamics, it is rather impractical

to measure the thermodynamic properties of the living organism due to the complexity of

its structure. Thus, one may estimate the activity of a given microbial community by the

net flow of chemical compounds (nutrients) and energy it consumes to grow and maintain

their structure. In particular, by calculating the amount of energy that microorganisms

harvest via the net flow of nutrients for the growth and maintenance:

∆Gi = ∆G◦i +R · T · ln
∏
j

(aj)νj (3.1)
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where ∆G◦i – Gibbs energy of reaction at standard conditions (J ·mol−e−1), aj – activity

of products and reactants, νj – stoichiometric coefficients, R – is the gas constant (J ·

mol−1 ·K−1), T – is the temperature (K).

As reviewed in the introduction, dual-Monod equation provides state of the art for

the calculation of reaction rates driven by microbial activity, which can be generalized as

follows:

R = r ·X = rmax ·
[ED]

KED
m + [ED] ·

[EA]
KEA
m + [EA] ·X = rmax · FK ·X (3.2)

where R – is the substrate utilization rate (mol ·L−1 · s−1), r – is the substrate utilization

rate per unit of biomass (mol ·mol−C−1 · s−1), X – is the biomass concentration (mol−

C ·L−1), rmax – is the maximum rate constant per unit of biomass (mol ·mol−C−1 · s−1),

[ED] – is the concentration of electron donor (mol · L−1), [EA] – is the concentration of

electron acceptor (mol · L−1), KED
m and KEA

m – are the limiting half-saturation constants

of ED and EA respectively (mol ·L−1). FK – is the dimensionless kinetic limitation factor.

In order to apply Monod equation to oligotrophic environments, a thermodynamic

limiting factor FT needs to be taken into account:

R = rmax · FK · FT ·X (3.3)

where FT – is the dimensionless thermodynamic factor of LaRowe et al. (2012) or Bethke

et al. (2011). In turn, the FT accounts for specific parameters, such as the membrane

potential and Gibbs Free Energy, and in LaRowe et al. (2012) form it is expressed as

follows:

FT = 1
exp

(
∆Gi+F∆Ψ

RT

)
+ 1

(3.4)

where F – is the Faraday constant (J · V −1 ·mol− e−1), ∆Ψ – is the membrane potential

(V ).

In order to take into account the presence of other nutrients with higher energy yield

and dynamic nature of the reactive systems, we suggest modelling competitive catabolic
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Figure 3.2: Microbial consumption of: a) the most energetic electron acceptor, b) the
most energetic electron donor, and c) combination of both.

reactions using thermodynamic switch function, FE. Then the overall generalized equation

that accounts for multicomponent systems is as follows:

R = rmax · FK · FT · FE ·X (3.5)

Dimensionless thermodynamic switch function is estimated for every catabolic re-

action as a fraction of potential power produced via this reaction pathway to the total

potential power available in the system where this specific function group is involved in

the given moment of time:

FEi = Pi
M∑
j=1

Pj

(3.6)

where Pi – is the potential energy supply rate, or power, per unit of biomass of the

catabolic reaction and presented as follows:

Pi = ∆Gi · ri (3.7)

As an example, consider a simple case with one electron donor and three electron

acceptors (Figure 3.2a). Possible reaction pathways are R1, R2, and R3. Thus, the

thermodynamic switch function of the reaction pathway R2 could be estimated as the

fraction of the potential energy supply by reaction R2 to the sum of potential energy
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supplies by all possible reaction pathways with the given electron donor, ED:

Fe2 = P2

P1 + P2 + P3
= ∆G2 · r2

∆G1 · r1 + ∆G2 · r2 + ∆G3 · r3
(3.8)

where ri – is the electron transfer rate per unit of biomass for ith reaction eE.n 3.2),

∆Gi – is the Gibbs Free Energy of the reaction (eq. 3.1). Then, the overall reaction rate

equation becomes:

R2 = r2 ·X2 ·
∆G2 · r2

∆G1 · r1 + ∆G2 · r2 + ∆G3 · r3
(3.9)

The second example demonstrates the modelling of the rate of the preferential

catabolic reaction between two electron donors and a sole electron acceptor (Figure 3.2b).

Then, the energy supply term for the reaction pathway R1 becomes the following:

Fe1 = P1

P1 + P2
= ∆G1 · r1

∆G1 · r1 + ∆G2 · r2
(3.10)

As for more complex example, consider the case when microbially mediated reaction

network consists of two electron donors and three electron acceptors (Figure 3.2c). In this

case, the energy supply term for the reaction pathway R2b, for example, is the product of

the energy supply terms of the reactions involving both electron donor ED2 and electron

acceptor EA2:

Fe2b = P2b

P2a + P2b
× P2b

P1b + P2b + P3b
=

= ∆G2b · r2b

∆G2b · r2b + ∆G2a · r2a
× ∆G2b · r2b

∆G1b · r1b + ∆G2b · r2b + ∆G3b · r3b

(3.11)

The primary advantage of the thermodynamic switch function is that it takes into

account the dynamics of the system that can change the energetics of the reactions and
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produce tipping points. Below, we show several examples to demonstrate the capabilities

of the thermodynamic switch function.

3.3 Model Application and Discussion

The model of microbial functioning under dynamic conditions is represented by a

set of differential equations that can be solved in any simulation program (e.g., Com-

sol, PHREEQC etc.). The Gibbs Free Energy values of reactions shall be calculated

based on the thermodynamic databases. In this study, we calculated dynamic Gibbs Free

Energy values by using a comprehensive database and numerical solver implemented in

PorousMediaLab. PorousMediaLab is a computer program written in Python program-

ming language that is designed to perform a wide variety of kinetic and thermodynamic

biogeochemical simulations in the aquatic environment (Markelov, 2019). By automatic

calculation of dynamic Gibbs Free Energy values, we derived the thermodynamic switch

function at every simulation timestep.

Although the results of laboratory studies could not be simply extrapolated to the

natural complexity of aquatic systems, they provide advantages to compare our under-

standing of the real systems with their idealized counterparts. Below, we test the model

against measured data acquired from the laboratory experiments of the batch system with

N S CFe

POM

A

(1) Roden (2008)

N S C

A

Mn Fe

H

P

(2) Watson et al. (2003)

N S CFe

A H

O

POM G

(3) Sediment example

Figure 3.3: Competitive reaction pathways considered in the experimental work of (1)
Roden (2008), (2) Watson et al. (2003) as well as (3) sediment example, where POM
stands for particulate organic matter, P - phenol, G - glucose, A - acetate, H - hydrogen,
O - oxygen, N - nitrogen, Mn - manganese, Fe - iron, S - sulfur, and C - carbon. Dashed
arrows represent hydrolysis, solid lines - catabolic (fermentation and respiration) reaction
pathways. Preference of the particular reaction pathway is defined by the energy supply
term.
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Table 3.1: Stoichiometry and standard Gibbs Free Energy of microbially mediated re-
actions considered in 1 - example 1: wetland sediment (Roden, 2008), 2 - example 2:
contaminant degradation in sandstone material (Watson et al., 2003), and 3 - example 3:
freshwater sediment example. The units of Gibbs Free Energy are kJ per mol · e.

no. 1 2 3 Stoichiometry ∆G0

R1G • C6H12O6 + 6O2 −−→ 6HCO –
3 + 6H+ -112.6

R2G • C6H12O6 + 4.8NO –
3 + −−→ 6HCO –

3 + 1.2H+ + 2.4N2(aq) + 2.4H2O -107.9
R3G • C6H12O6 + 4H2O −−→ 2CH3COO– + 2HCO –

3 + 4H+ + 4H2 3
R1P • C6H6O + 5H2O −−→ 3CH3COO– + 2H2 + 3H+ 20.3
R1A • CH3COO– + 2O2 −−→ 2HCO –

3 + 8H+ -104.7
R2A • • • CH3COO– + 1.6NO –

3 + 0.6H+ −−→ 0.8N2 + 2HCO –
3 + 0.8H2O -100

R3A • CH3COO– + 4MnO2 + 5H+ −−→ 4Mn2+ + 2HCO –
3 + 4H2O -100.7

R4A1 • CH3COO– + 8Fe(OH)3 + 15H+ −−→ 8Fe2+ + 2HCO –
3 + 20H2O -84.5?

R4A2 • • CH3COO– + 8FeOOH + 15H+ −−→ 8Fe2+ + 2HCO –
3 + 12H2O -55.5?

R5A • • • CH3COO– + SO 2–
4 −−→ 2HCO –

3 + HS– -5.9
R6A • • • CH3COO– + H2O −−→ HCO –

3 + CH4 -1.8
R1H • H2 + 0.5O2 −−→ H2O -131.6
R2H • • H2 + 0.4NO –

3 + 0.4H+ −−→ 1.2H2O + 0.2N2 -126.9
R3H • H2 + MnO2 + 2H+ −−→ 2H2O + Mn2+ -127.6
R4H • • H2 + 2FeOOH + 4H+ −−→ 4H2O + 2Fe2+ -82.4?
R5H • • H2 + 0.25 SO 2–

4 + 0.25H+ −−→ H2O + 0.25HS– -32.7
R6H • • H2 + 0.25HCO –

3 + 0.25H+ −−→ 0.75H2O + 0.25CH4 -28.7

anoxic wetland sediment, a batch reactor with contaminant derived from sandstone ma-

terial. Finally, we showcase an example of reactions and transport in a one-dimensional

column of the lacustrine sediment.

3.3.1 Example 1: Batch Reactor with Wetland Sediment

In the first example, we demonstrate the application of thermodynamic switch func-

tion to reproduce the experimental results of organic matter degradation with a set of

terminal electron acceptors present in the slurry of wetland sediments published by Ro-

den (2008). In the experimental work, organic-rich (20-30% dry weight) and iron-rich

(5% dry weight) sediments were obtained from an artificially flooded freshwater wetland

located in the Talladega National Forest, USA (Roden and Wetzel, 2002). Batch reactor

experiments were performed in homogenized anaerobic sediments mixed with synthetic

groundwater to provide nitrate (NO –
3 ) and sulfate (SO 2–

4 ). Concentrations of NO –
3 ,

SO 2–
4 , HCl-extractable amorphous Fe(III) and Fe(II), total CO2 and CH4 were measured

using methods described in Roden and Wetzel (1996). Experimental data shows a typical
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case when electron acceptors are consumed sequentially from the most energy-yielding

NO –
3 to a less energy-yielding SO 2–

4 , followed by methanogenesis (Figure 3.4).

In the original paper, Roden (2008) created three models representing experimen-

tal results. The author increased the complexity of the models to showcase different

approaches for imposing the segregation of microbial redox processes. In the first and

second modelling examples, the author used first-order kinetics with conditional switches

and inhibition constants to artificially impose the separation of redox processes. In the

third model, the degradation of organic matter was model through two sequential steps:

hydrolysis of particulate organic matter and respiration of acetate. The author used

a dual-Monod equation without inhibition terms but imposed the reaction sequence by

limiting the concentration of the acetate produced during hydrolysis. Additionally, the

parameters of the initial population densities of microorganisms capable of nitrate, sul-

fate, and iron reduction, as well as methanogenesis, were calibrated to fit the experimental

data. That is, by setting low initial value of the particulate microbial community, the

corresponding redox reaction was artificially delayed due to the slow microbial growth in

the initial phase. Overall, all models presented in the original work were able to reproduce

the reaction sequence quite well. However, it required numerous calibrated and kinetic

parameters. In the third model, for instance, 21 kinetic parameters were supplemented

by 4 adusted initial microbial population densities (Table 8.6 in Roden, 2008).

In the model presented here, the degradation of organic matter is considered in

two sequential steps (Figure 3.31). In the first step, the hydrolysis of the organic matter

produces acetate, which is being oxidized at the second step. The hydrolysis reaction is

modeled as a first-order rate law with a hydrolysis constant of 0.1 d−1, which was derived in

the original work of the experimental study. The oxidation of acetate is coupled to a set of

the reduction reactions with nitrate (reaction R2A in Table 3.1), iron oxide (R4A1), sulfate

(R5A) and carbon dioxide (R6A). At this step, the dual-Monod equation supplemented by

thermodynamic term FT and thermodynamic switch function FE was applied to reproduce

catabolic reaction pathways. The thermodynamic term was calculated with the membrane

voltage potential, ∆Ψ, of 160mV for all reactions. For simplicity, the concentration of the
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Figure 3.4: Experimental data of organic matter degradation with a set of terminal elec-
tron acceptors in slurry of anoxic wetland sediment (Roden, 2008) and simulation using
thermodynamic switch function. The experiment . a) Simulated (solid lines) and mea-
sured (symbols) concentrations of NO –

3 , SO 2–
4 , Fe(II),∑CO2, and CH4(g). b) Simulated

rates of carbon metabolism in the reactions of denitrification R2A, iron reduction R4A1,
sulfate reduction R5A and methanogenesis R6A (Table 3.1). The experimental data were
taken from the original work (Roden, 2008).

biomass concentration was kept constant incorporated in the maximum rate constants,

i.e., r̂max = rmax · X. The maximum rate constants r̂max of nitrate, iron, and sulfate

reduction as well as of methanogenesis equal to 2.6, 1.7, 0.7, 0.2 d−1, respectively. Limiting

concentrations of 0.2, 0.01, 3, and 0.006 mmol ·L−1 were assumed for CH3COO– , NO –
3 ,

Fe(III) oxide surface sites, and SO 2–
4 , respectively. Parameters used in the simulation

are in the ranges of the values reported in the literature (Supplemental information,

Table C1). Overall, the application of the thermodynamic switch function decreases the

number of calibrated parameters from 25 in the original model to 10 used in our model.

Our model with the thermodynamic switch funciton represents experimental data quite

well and eliminates unnecessary assumptions.

3.3.2 Example 2: Batch Reactor with Sandstone Material

In the second example, the thermodynamic switch function is applied to simulate

the 600-day experiment of phenol degradation in the sandstone suspension (Watson et al.,

2003). The rock sample was acquired from the aqueous plume area of the Four Ashes

site (Thornton et al., 2001). A batch study was set with the sandstone material serving

as a source of microbial community nourishing in iron- and manganese-bearing minerals.
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Additionally, to the solid electron acceptors, natural sandstone was dispersed in sterile

synthetic groundwater carrying aqueous electron acceptors (NO –
3 and SO 2–

4 ) to empower

microbial phenol oxidation.

We applied the thermodynamic switch function not only to reproduce the experi-

mental results of this study, but also to improve fundamental system understanding. In

the original model of this study, a number of kinetic parameters were chosen arbitrarily

to obtain the best fit between the model and the measurements. At least six parameters

were based on manually imposed inhibition terms, which were applied non-consistently

thought the model.

For example, different inhibition terms defining microbial preferences were assumed

for different electron donors. So that, acetate oxidation incorporated two inhibitors (NO –
3

and SO 2–
4 ), while neglected two other possible inhibitors (manganese- and iron-bearing

minerals). Meanwhile, in the reactions of hydrogen oxidation, the inhibitors were iron

minerals and sulfate. Moreover, in reactions with hydrogen, the availability of Fe was

constrained by the implementation two artificial pools: highly and slowly reactive mineral

phases (Table 2 in Watson et al., 2003). The definition of the inhibition constants was

rather complicated and non-straightforward most likely due to the absence of experimental

evidence of such complex biogeochemical interplay.

Therefore, our goal was to represent experimental data by closely following the

original model formulation and at the same time, minimizing a number of assumptions

and calibrated parameters. The key concept of syntrophic phenol biodegradation via fer-

mentation and respiration is preserved in our model (Christensen et al., 2000). Whereas,

dual-Monod kinetic formulation coupled with thermodynamic switch FE (eq. 3.5) replaces

a number of calibrated inhibition terms. Moreover, in order to keep the consistency of

modelling assumptions, we apply the same parameters for both electron donors, i.e., ac-

etate and hydrogen. The overall Gibbs Free energies of the reactions are summarized

in Table 3.1 and detailed parameters are provided in the supplemental information (Ta-

ble C1).

By decreasing a number of calibrated parameters and assumptions, the model be-
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Figure 3.5: Results of microcosm simulation of the experimental work of Watson et al.
(2003). a) Concentrations of selected species reported in the original work. Symbols
represent digitalized experimental data, lines are simulated by the model with thermody-
namic switch function. b) Overall respiration rates utilizing both acetate and hydrogen
of nitrate reduction (NR), manganese reduction (MR), iron reduction (IR), sulfate reduc-
tion (SR), and methanogenesis (M). The experimental data were taken from the original
paper.

came robust and was able to closely reproduce experimental results. The application of

the thermodynamic switch function indicated that there is no need to artificially increase

complexity of the modeled system for understanding the consumption of Fe, as it can

be modeled as a homogeneous mineral phase. Moreover, it is evident from the model,

that both iron and nitrate reductions start at the beginning of the experiment, but are

suppressed by manganese reduction, which is in agreement with other studies with ac-

etate and hydrogen (DiChristina, 1992). The most striking outcome of the model is that

iron and sulfate reductions are found to occur simultaneously from day 100 to 200. Such

complex interplay of reaction power and kinetics implies that simplified inhibition terms

are of no use for data interpretation. A more detailed comparison of the original model

Watson et al. (2003) with the modified model of this study is provided in the supplemental

information (Figure C1).

3.3.3 Example 3: Freshwater Sediment Column

In the third example, the model is tested for the complex multi-component system,

that is more likely to better represent the natural diversity of aquifers. However, most

of the experimental studies employ limited number of redox-active species. Therefore,
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the biogeochemical system of organic matter degradation in aquatic sediment used in this

example is a hypothetical, rather than experimentally derived one. As a typical case-

study, we assume one-dimensional sediment column that consists of the organic material

and iron minerals providing suitable conditions for microbial activity. Physical properties

of the sediment column, system boundary conditions, transport and reaction parameters

used in the simulation are listed in (Tables C1, C2, and C3).

The model assumes that aqueous electron acceptors (oxygen, nitrate and sulfate)

diffuse from the top of the sediment column, where a constant flux of solid settling ma-

terial is imposed. The fate of organic matter is assumed to be driven by an interplay of

hydrolysis, fermentation, and oxidation reactions coupled to all available electron donors

and acceptors (Figure 3.33 and Table 3.1). Overall, the model is tested to predict the

biogeochemical interplay and sequence of 13 redox reactions comprising 3 electron donors

and 5 electron acceptors. The simulations address two scenarios of environmental con-

ditions, such as pH 6.5 and 7.5, to demonstrate that the model is capable of reflecting

natural dynamics.

The modelling results at steady-states demonstrate the increase of pH from 6.5 to

7.5 causes the decrease of thermodynamic favorability for 9 biogeochemical reactions (Ta-

ble 3.1). However, the kinetic rates of only five catabolic reactions are decreasing and that

ultimately defines the system overall behavior. Significant thermodynamic suppression of

the iron reduction has led to excess availability of the acetate and hydrogen for other

respiration pathways. As a result, seven different catabolic reaction rates are increased

(Table 3.2). The highest increase in the overall rate is estimated for the aerobic respiration

of acetate (more than five times of growth). Although the total sediment oxygen demand

Table 3.2: Integrated over the depth steady state rates of two microcosm simulations in
sediment with fixed pH of 6.5 and pH 7.5. The units of the rates are mM · cm−2 · d−1.

no. R1G R2G R3G R1A R2A R4A2 R5A R6A R1H R2H R4H R5H R6H

pH 6.5 0.09 0.12 0.94 0.01 0.02 0.55 0.05 0.046 0.002 0.005 0.147 0.046 0.102
pH 7.5 0.12 0.08 0.89 0.07 0.05 0.22 0.08 0.039 0.002 0.009 0.152 0.048 0.073
∆, % 18 -35 -5 580 181 -60 58 -15 0 80 4 4 -28
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stays about the same (not shown), there is a re-distribution of the oxygen consumption

from the oxidation of less produced Fe (II) to oxidation of the building acetate (Table 3.2).

At the same time, the increase of pH makes the reaction iron reduction with acetate R4A2

less favorable, and, as a result, an integrated over the depth rate drops significantly (Ta-

ble 3.2). The potential energy supply rate of the reaction becomes comparable with that

of the sulfate reducing reaction R5A, and, as a result, the reactions co-occur and overlap

at the depths from 2 to 12 cm (Figure 3.6). In contrast, there is an overlap of the sulfate

reduction with methanogenesis at pH 6.5, whereas, the reductive pathway zones are more

distinct at pH 7.5.

Although it is out of the scope of this study, suppressed Fe(II) recycling in the

lacustrine sediment may potentially result in harmful effects to the lake. Firstly, lower

concentrations Fe(II) may lead to an increase of the internal P load in the water column of

the lake from the sediment due to the decrease of the co-precipitation and formation of Fe

and P bearing minerals (Markelov et al., in review). Likewise, the absence of ferrous iron

and formation of fresh iron minerals in sediment could result in the increased efflux of the

toxic sulfide to the bottom waters due to i) enchased reduction of sulfate in the deficiency

of iron reduction (as shown here), and ii) decreased precipitation of the secondary minerals

such as mackinawite and pyrite in the lack of ferrous iron (Smolders et al., 1995). Those

simulations would not be possible using standard kinetic approaches with inhibition or
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conditional switches.

3.4 Concluding Remarks

Presently, redox sequences are mainly described by number of calibrated kinetic

parameters and are seldom backed up with thermodynamic calculations. Previously de-

veloped conditional switches or inhibition terms would work in relatively simple systems,

however, they are incapable of dealing with dynamic changing conditions and multiple

reactions taking place in parallel. In this study, we provide a new concept that goes

beyond the kinetic calibrations and accounts for thermodynamics of the whole reaction

network. We created a new model which is able to reproduce segregation of microbial

redox processes while avoiding numerous artificial assumptions and calibrated parame-

ters. In particular, by introducing the thermodynamic switch function to Monod kinetics,

the model becomes a powerful tool in predicting future system behavior accounting for

dynamic environmental conditions. Potentially, the model could become useful not only

for the description of experimental results, but also for providing fruitful generalizations

and valuable insights from laboratory to field scale observations.

The thermodynamic switch function can be applied for the systems with other less-

known redox reactions for which the redox sequence has not been evaluated experimentally

yet. As Gallagher et al. (2014) noted, using a generalized formula for electron donors can

miss the potentially important link between electron donors and alkalinity. Depending

on the available electron donor such as hydrogen, formate, acetate, propionate, butyrate,

ethanol, methanol, and lactate, net community metabolism may differently change pH,

and therefore, shuffle redox sequences and change saturation states of the minerals. As a

result, the use of the generalized formula for electron donors may undervalue the role of

net community metabolism on environmental conditions and misinterpret the direction

of the ecosystem change.

Moreover, presently, in state of the art diagenetic models, the microbial oxidation of

the methane, sulfide, ferrous iron, and ammonia are entirely disregarded. Instead, these
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reactions are usually represented by the abiotic second order rates. An interplay of micro-

bial oxidation reactions with organic matter degradation under changing environmental

conditions may have substantial implications on ecosystem functioning. In these cases,

the model with the thermodynamic switch function can be applied as a predictive tool

with an arbitrary large reactive networks to guide long-term management strategies and

governance of aquatic environments.

Finally, with the expansion of the “omics” data (Perez-Riverol et al., 2017), new

previously unknown reaction pathways will likely emerge, and the parameterization of

the microbial redox models will be impractical or even impossible task. Instead, model

representation with the thermodynamic switch function where each reaction is coupled to

the specific groups of functional genes can directly link the “omics” measurements with

simulated results. All of the above let us conclude that models such as ours will be well

suited not only to compare with the data but also to make predictions for scenarios of

the evolving natural ecosystems.
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Chapter 4

Variations of the Water Balance of a Large Temperate Lake (Lake

Erie, Canada-USA) from 1917 to 2017
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Summary

We analyzed and constrained the water budget of Lake Erie using a century-long

data of separate hydrological components, such as river discharges, over-lake precipitation,

evaporation, consumptive use, and diversions. Our water budget estimates indicate that

(i) ratio of land runoff to precipitation is steadily increasing since the early 20th century,

(ii) surface water elevation dynamics is driven by the outflow from the upper Laurentian

Great Lakes, and (iii) variations in annual water budgets of Lake Erie are influenced by El

Niño-Southern Oscillation cycle and weather in the upper Laurentian Great Lakes. Our

study confirms that spring precipitation and runoff are significant additional contributing

factors in the resurgence of algal blooms. In addition, summer circulation patterns in Lake

Erie simulated by 3D hydrodynamic models (Beletsky et al., 2013, Niu et al., 2015) and

wave direction measurements from buoy 45005 (West of Lake Erie) suggest that recent

resurgence of the algal blooms can be attributed to the westward transport of the DRP

from the central basin accumulated during the extended periods of the summer hypoxia.

4.1 Introduction

Accurate estimates of the water balance of lakes are required for formulation of reg-

ulatory plans, operational regulation, and forecasting of water level. Rising and falling

water levels may affect navigation, water supply, and intensify of the erosion of the coastal

areas. Lake Erie, the fourth largest lake by surface area shared by two countries, spans

three United-States states and one Canadian province. It is an economically and ecolog-

ically important lake within the Laurentian Great Lakes (LGLs). Quantifying the mass

water balance of Lake Erie is one of the preliminary steps for developing hydrological and

lake water quality models, maintaining the quality of the ecosystem services. The first

estimates of the water budget of Lake Erie dates back as early as 1927 (Horton, 1927).

Previous studies focused either on the Lake Erie water budget (Derecki, 1976b, Quinn

and Guerra, 1986) or on the lake as a part of Great Lakes system (Bengtsson et al., 2012,

Chapra and Dolan, 2012, Gronewold et al., 2016).
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Human activities and an increasing rate of urbanization have resulted in more fre-

quent floods and faster over-land flow regimes (Burns et al., 2005, Nirupama and Si-

monovic, 2006, Poff et al., 2006). The long-term human activities in the Lake Erie basin,

such as deforestation, including all other types of land clearing, and urbanization, con-

tribute to the increase of the runoff coefficient, i.e., the ratio between surface runoff and

precipitation. However, minimal attempts have been made to show the long-term effects

of land-use on surface runoff and differentiate them from hydrological responses of climate

change.

There have been a number of studies focusing on the water budget of Lake Erie,

however, large uncertainty still remains as corresponding role of the upstream LGLs sys-

tem has not been clearly demonstrated (Bengtsson et al., 2012, Chapra and Dolan, 2012,

Derecki, 1976b, Quinn and Guerra, 1986). The upper LGLs (Superior, Michigan and

Huron), located upstream of Lake Erie, have a total watershed area of five times that of

Lake Erie. Therefore, it is reasonable to expect that the water budget of Lake Erie could

be responsive to the inflow water volume from connecting (upstream) channels, which

are comparable to that from the lake’s own watershed. Nevertheless, the relative roles of

Lake Erie’s precipitation and inflow from the upstream lakes have not been sufficiently

demonstrated with regard to observed fluctuations in lake water levels.

An additional factor influencing water budget of lakes with large basin area is at-

mospheric circulation (Scott and Huff, 1996, Winter, 1995). The basin area of LGLs is

more than 500,000 km2 (Neff and Nicholas, 2004). Large-scale atmospheric circulations

and decadal land-ocean variability operates over similar or larger spatial scales (>1000

km). For example, the east-central Equatorial Pacific Circulation (El Niño-Southern Os-

cillation cycle: ENSO) affects over-land precipitation, temperature and it is responsible

for warmer (El Niño) and colder (La Niña) weather conditions across Canada and USA.

However, climate-related atmospheric circulation variability and its effect on the water

budget of LGLs has received little attention in the literature to date.

Lake Erie suffered from deteriorating quality of the ecosystem services that it pro-

vides, mainly due to intense algal blooms since the 1970s. Two decades ago, after changing
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the policy on using phosphorus in detergent and setting up the target on total phosphorus

(TP) load stemming from fertilizer applications, the blooms disappeared (Scavia et al.,

2014). Nevertheless, Lake Erie experienced a revival of the algal blooms since 2008. Pre-

vious studies suggest that causes for the recent events include an increase of bioavailable

phosphorus (Jarvie et al., 2017), internal phosphorus loading (Matisoff et al., 2016), in-

vasive mussel species (Karatayev et al., 2014), and meteorological conditions (Michalak

et al., 2013). Systematic identification and quantification of the drivers of the algal blooms

are essential for regulators, stakeholders, and the scientific community. Therefore, statis-

tical, probabilistic, and mechanistic model forecasts are active fields of the research for

water quality forecasting and bloom predictions in Lake Erie. The water mass balance is

the essential preliminary step for the building of such models.

Herein, we hypothesize that: (i) the ratio of land runoff to precipitation (runoff co-

efficient) in Lake Erie basin should be increasing over the historical period of observations

since the early 20th century due to deforestation and urbanization of the watershed; (ii)

the outflow from the upper LGLs is significant factor that drives variations in the annual

water budget of Lake Erie; and (iii) the long-term water budgets of Lake Erie are corre-

lated with the modes of large-scale atmospheric ENSO cycle. To check our hypotheses,

first, we examine the century-long (1917-2003) variations of water level, precipitation,

evaporation, and runoff to study the effect of climate forcing on the water budget of Lake

Erie. For that, we perform statistical as well as time-frequency analyses. Secondly, this

paper estimates the net basin-wide water mass balance of Lake Erie that covers 15 years,

from 2003 to 2017. Based on previous estimates of Michalak et al. (2013) for 2011, we

hypothesize that timings and magnitude of precipitation and runoff are significant con-

tributing factors in algal blooms during the recent decade. Moreover, we suggest that

future bloom forecast models should give special attention to inter-basin and basin-wide

circulation, emphasizing the importance of the spatial hydrodynamic circulation.
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4.2 Methods

4.2.1 Site Description

The LGLs constitute the largest amount of fresh surface water in the western hemi-

sphere. Out of five lakes, Lake Erie is the fourth-largest, southernmost, shallowest, and

most biologically productive. The lake serves as a water source for public water supply,

and supports recreation and fishing activities, industrial and agricultural needs. It is 400

km long, about 90 km wide, it covers 25,700 km2 and contains approx. 484 km3 of wa-

ter (Figure 4.1). Lake Erie consists of three different basins: the western (WB), central

(CB), and eastern (EB). The western basin is the shallowest basin (mean depth = 7.3

m, volume = 24 km3) with a water residence time of 0.13 years (Matisoff et al., 2016).

The central basin is the intermediate by depth and the largest by volume (mean depth =

18.5 m; volume = 305 km3) with a water residence time of 1.74 years (Bocaniov et al.,

2016). The eastern basin is the deepest basin and intermediate by volume (mean depth

= 24.4 m; volume = 154 km3), and a water residence time of 0.89 years (Bocaniov et al.,

2016). Lake Erie basin also includes Lake St. Clair, a large shallow lake (mean depth =

3.8 m, volume 4.25 km3; Bocaniov et al., 2018) with two connecting channels, St. Clair

and Detroit rivers (Figure 4.1).

The total drainage area of Lake Erie including the Huron-Erie corridor (HEC), which

itself consists of the St. Clair and Detroit Rivers and Lake St. Clair sub-watersheds has

an area of 77,213 km2 with 71% and 29% of the watershed area located in the USA and

Canada, respectively (Figure 4.1, Table 4.1).

4.2.2 Water Mass Balance

Here, the water mass balance (Equation 4.1) has been estimated for the period from

2003 to 2017 as the difference between the inflows and the outflows of the hydrological

components such as over-lake precipitation (P), surface runoff (R), inflow and outflow via

the connecting channels (Cin and Cout), over-lake evaporation (E), consumptive use (W ),
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Figure 4.1: Bathymetry of Lake Erie and Lake St. Clair with the largest rivers and their
corresponding watersheds (thin dashed lines). Triangles represent the locations of gauging
stations (Table C1, supporting information).

and outflow via lake diversions (D):

dV/dt = P +R + Cin − E − Cout −W −D (4.1)

Previous studies suggest that groundwater inputs to the Lake Erie and Lake St. Clair

are not likely to be a significant component of the total water budget with varying fluxes in

the range from 0.9 to 3.7 cubic meters per second (cms) per 100 km of the shoreline (Neff

and Nicholas, 2004). Isostatic rebound and thermal expansion are considered to have

relatively negligible contributions to the water budget (Derecki, 1976a, Mainville and

Craymer, 2005, Meredith, 1975, Quinn and Guerra, 1986). The annual water balance is

calculated for the standard water year (October 1 to September 30). Below, we discuss the

potential uncertainties associated with each hydrological component used in this study.
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4.2.3 Data

Due to the unavailability of the high-resolution historical data, hydrological com-

ponents of Lake Erie were analyzed for two periods: from 1900 to 2017 and from 2003

to 2017. We analyzed hydrological components during the historical period (1917-2017)

using monthly average values. Meanwhile, detailed water mass balance was evaluated for

the period from 2003 to 2017 using the daily values of hydrological components.

Precipitation

The precipitation data were acquired from the National Oceanic and Atmospheric

Administration (NOAA), from gage measurements collected at the inland weather stations

(https://www.glerl.noaa.gov/data/dashboard/data). IN the database, monthly values of

over-lake precipitation are available starting from 1900. Daily values of the recent pre-

cipitation for 2003 to 2017 were obtained via personal communication with Tim Hunter

(Great Lakes Environmental Research Laboratory, GLERL). There is a potential bias

in the precipitation measurements caused by instrumental shortcomings, which has been

estimated to vary from 5% to up to 45%, reportedly inconsistent from year to year (De-

Marchi et al., 2009, Groisman and Legates, 1994, Neff and Nicholas, 2004, Winter, 1981).

An additional source of uncertainty could arise from data interpolation between land

gages, which may inaccurately represent meteorological conditions at the lake surface it-

self (Eichenlaub, 1979, Neff and Nicholas, 2004). However, the overall data uncertainty

remains unknown due to the lack of precipitation measurements on the water surface.

Runoff and Streamflow

The precipitation that falls into the drainage basin of Lake Erie is collected into more

than 60 large rivers and small creeks, which eventually discharge into the lake (Table C1).

Monthly values of the runoff collected by NOAA (https://www.glerl.noaa.gov/data/dashboard/data)

partially cover the period from 1900 to 2017. Daily data of streamflow measurements for

2003-2017 for the US tributaries were retrieved from the United States Geological Survey
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Table 4.1: Characterization of the sub-watersheds in Lake Erie basin. Abbreviations:
Huron-Erie Corridor (HEC), Lake Erie (LE), watershed area (WA).

Total WA (TA) Monitored WA (MA) MA as % of TA
# System [km2] [km2] [%]

Canada USA Total Canada USA Total Canada USA Total

1 HEC, including: 10469 7242 17711 6854 4936 11790 65.5 68.2 66.6
1.1 St. Clair River 502 2997 3499 0 2031 2031 0 67.8 58
1.2 Lake St. Clair 9499 2727 12226 6625 1901 8526 69.7 69.7 69.7
1.3 Detroit River 468 1518 1986 229 1005 1234 48.9 66.2 62.1

2 LE, including: 12174 47327 59501 8724 36594 45318 70.4 77.3 75.9
2.1 West Basin 431 26467 26898 0 22742 22742 0 85.9 84.5
2.2 Central Basin 2710 14764 17474 1331 11748 13079 49.1 79.6 74.8
2.3 East Basin 9033 6096 15129 7239 2104 9497 80.1 34.5 61.8

Total (HEC + LE) 22643 54570 77213 15424 41531 56955 68.1 76.1 73.8

(USGS) service (https://maps.waterdata.usgs.gov) and for the Canadian tributaries from

Water Survey of Canada (WSC) hydrometric database (http://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/).

Briefly, the daily runoff was estimated at gauged stations for the watershed for Canadian

and US datasets, and then extrapolated to account for the ungauged area of the wa-

tershed using the area-to-runoff ratios (Table 4.1, Table C1). The uncertainty in the

streamflow measurements arises from the two main constituents: procedural inaccuracies

and errors associated with extreme events such as flooding (Neff and Nicholas, 2004). Pre-

vious studies estimated that the uncertainty on average is between 5 and 15%, depending

on the vegetation and ice dynamics (Herschy, 1971, Neff and Nicholas, 2004, Pelletier,

1988, Quinn, 1979, Sauer and Meyer, 1992). However, the flooding increases estimation

inaccuracies drastically when the stream overflows the river banks and the established

stage-discharge or velocity-discharge relations become inadequate.

Evaporation

The evaporation data of NOAA is estimated using the Great Lakes Evaporation

Model (GLEM; Croley, 1989, 2005). The model relies on meteorological data from the lake
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shoreline and inherently carries error percentages similar to precipitation data. Moreover,

GLEM was initially created for deep lakes and, thus, may provide more reasonable data for

Lake Erie than for shallow Lake St Clair. Thus, errors in evaporation can also vary widely

and are assumed to be in 10 – 15% range on par with previous studies (Croley, 1989, 2005,

Quinn and Guerra, 1986, Winter, 1981). Model derived monthly average values since 1950

were obtained from NOAA website (https://www.glerl.noaa.gov/data/dashboard/data),

while daily values for 2003-2017 via personal communication with Tim Hunter (GLERL).

Connecting Channels and Diversions

In the Huron-Erie corridor (HEC) and Lake Erie, there are three connecting chan-

nels (Figure 4.1). The first channel, the outflow of the Lake Huron, is connected with

the relatively shallow Lake St. Clair via the St. Clair River. The second channel, the

Detroit River, flows from Lake St. Clair into Lake Erie. Finally, the third channel sup-

plies water from Lake Erie into Lake Ontario via the Niagara River. For the St. Clair

and Detroit rivers, estimated flows were taken from the previous work on Lake St. Clair,

where partially missing daily flows were calculated using daily mean water levels (Scavia

et al., 2018). For the Niagara River, flows for station USGS-04216000 at Buffalo, New

York are available in the National Water Information System (NWIS) database for the

period from 1926 to 2017.

The connecting channels have the most significant contribution to the water bal-

ance of Lake St. Clair and Lake Erie. Therefore, accurate measurements of the con-

necting channels are critical for correct water balance. An average range of uncertainty

in monthly non-ice-affected-flow is estimated within 3.5–4% (Neff and Nicholas, 2004).

However, during the winter period, ice accumulation affects the accuracy of the discharge

measurements, and it falls in the range from 5 to 15%.

The Welland Canal diverts water from Lake Erie to Lake Ontario to allow navigation

of ships between the lakes. It was taken into service in 1829 and records have been kept

since 1860. As described above, the uncertainty of streamflow estimation is likely to be

in the range from 5 to 15%. On average, the diversion through the canal is 191 cms or
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about 3% of Niagara River flow (Quinn and Edstrom, 2000). Hence, the contribution of

the Welland Canal uncertainty is likely below 1 percent of the total mass balance.

Statistical data on withdrawals from Lake Erie is available in the Great Lakes Re-

gional Water Use Database reports (https://waterusedata.glc.org), starting in year 1987.

The reports include annual average consumptive use for the industrial, commercial, in-

stitutional, power production and public water supply, self-supply for irrigation and live-

stock. However, data uncertainty is not reported.

El Niño–Southern Oscillation Index

To study the effect of the climate on the water budget of Lake Erie, we analyzed

irregular, periodic variation patterns of winds and sea surface temperatures over the Pa-

cific Ocean. One such standardized measure of variation is El Niño–Southern Oscillation

Index (ENSO). The index is based on the observed water temperature and air pressure

differences in the western and eastern tropical Pacific (Shabbar et al., 1996). The oscil-

lating pattern of ENSO has a direct effect on the wind across the Pacific, which results

in the rainfalls and weather changes in Canada and the United States (Shabbar et al.,

1996). The impact of ENSO on the air temperatures in Canada has the most substantial

effect between the late fall and early spring (November to May). Throughout the positive

phase of ENSO (warm El Niño event), Manitoba and Ontario experience the most signifi-

cant positive air temperature anomalies (up to 3◦C higher), while the maximum negative

anomalies in the air temperature over the south and central Canada are reported in the

case of the negative and cold La Niña event (Shabbar et al., 1996, 1997). Monthly values of

the historical time series (1900-2017) of El Niño 4 sea surface temperature index were ob-

tained from the NOAA website (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries).
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4.3 Results and Discussion

4.3.1 Historical Trends (1917-2017)

Figure 4.2 shows yearly average values of precipitation, runoff, and the ratio of

runoff to precipitation for the entire Lake Erie from 1900 to 2017. Linear regression of the

precipitation shows a slightly increasing trend of about 0.5 mm per year with an average

value of 840 mm in 1900, increasing up to 898 mm in 2017. Not only did the average value

rise, but the amplitude of the variations in precipitation increased. Increased variations

could be attributed to improved measurement techniques and/or increased frequency of

extreme weather events. An additional interesting feature in the historical precipitation

is the 30-year periodicity that is seen in the ten-year moving average (solid black line,

Figure 4.2). Relatively “wet” 15-year intervals are succeeded by relatively “dry” 15 year

periods. The last “dry” period started in the late 1990s, and currently, Lake Erie is

undergoing a “wet” period. During the current period, the average annual precipitation

is from 10% to 20% higher compared to the previous “dry” period (1990-2005). As

reported by Quinn and Guerra (1986), the mean precipitation of Lake Erie for the period

1940-79 (900 mm) was about 5% higher than that during 1900-39 (850 mm). The average

precipitation for the period 1980-2017 is 875 mm, the lowest value of 565 mm was observed

in 1988 whereas the year 2011 set a new historical high of 1330 mm.

The central panel of Figure 4.2 shows the total runoff. In general, the runoff repli-
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Figure 4.2: a) Historical 1900-2017 precipitation over the Lake Erie, b) runoff to the
Lake Erie, c) runoff to precipitation ratio. Black circles represent actual measured values
using methods described in section section 4.2, dot-dashed lines – linear regression trends
estimated using ordinary least squares method, and solid lines – 10-year moving averages.
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cates the same 30-year patterns found in the precipitation estimates, however, there are

some differences. Firstly, the runoff has a steeper regression line than that of precipita-

tion with an average increase of 3.8 mm per year. As a result, the mean value estimated

by the regression in 1917 (598 mm) almost doubled by the year 2017 (980 mm). As

for absolute values, the value of 259 mm estimated for runoff in 1934 is six-fold lower

than the highest value of 1564 mm recorded in 2011. Additionally, in contrast to the

years before 1980, the runoff in the recent 3 decades delivers about the same volume of

water as precipitation. Quinn and Guerra (1986) reported that the mean runoff during

1940-79 (763 mm) was considerably higher than that of 1900-39. The same could be said

about the period from 1980 through 2017: the average runoff (893 mm) is considerably

higher than that of 1940-79. Changes in land-use with the urbanization of surrounding

watersheds, as well as changes in seasonal precipitation patterns, therefore increased the

average runoff-precipitation ratio from 0.6 at the beginning of the 20th century to 1.01 in

2018 (Figure 4.2). In other words, due to land-use changes during the last century, about

the same precipitation produces substantially higher runoff and increases the risk of the

flooding.

Quinn and Guerra (1986) estimated annual average evaporation as a separate hy-

drological component for the 1940-79 period to be 687 mm and reported an error within

the 10-20% range. In contrast, through the continuous historical estimates from 1950

to 2017, NOAA reports a 25% larger average value of 872 mm, highlighting a slightly

increasing trend of 1 mm per year (Figure C1, supplemental material).

During the last century, St. Clair River delivers about 74% of the total water supply

to Lake Erie. Consequently, water level changes in Lake Erie strongly correlate with the

water level variations of St. Clair River (Figure C2; r = 0.95, p � 0.001), water level of

Lakes Michigan and Huron (Figure C2; r = 0.82, p � 0.001), and somewhat with water

level Lake Superior (Figure C2; r = 0.38, p � 0.001). Therefore, it is expected that the

water level of Lake Erie strongly depends on large-scale atmospheric circulation over the

upper LGLs. Moreover, the signals of ENSO should be reflected in the patterns of the

level fluctuations, which we discuss below.
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The wavelet transform is used to analyze time series of Lake Erie water level, runoff,

precipitation along with ENSO (Figure 4.3). By decomposing a one-dimensional time

series into two-dimensional time-frequency space, one can determine both the dominant

modes of variation and how they evolve in time. Here, time series of water level contain

modes at many different time scales (Figure 4.3). That is, in contrast to precipitation and

runoff where the spectrum values are dominant on annual and seasonal time scales, the

spectrum values of water level over the synoptic time scales are comparable to those on

the annual time scales. Moreover, ENSO shows synoptic time scale dominance, and some

of its power spectrum peaks match those of the water level (Figure 4.3, white ellipses). As

Figure 4.3: Wavelet power spectrums for the period from 1917 to 2017 of a) water level
in Lake Erie, b) over-lake precipitation, c) runoff, d) El Niño - Southern Oscillation Index
(ENSO). Plots on the right side represent the normalized unitless global wavelet power
spectra. The cross-hatched area shows the regions where the boundary effects of the
time series are significant. The black contour indicates 90% confidence regions. White
ellipses show matching power spectrum peaks. More detailed frequency analysis is in the
supplemental information.
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Figure 4.4: Categorical kernel density estimations of a) ENSO through the historical
period, b) Lake Erie monthly precipitation, c) Lake Erie monthly runoff, and d) the
water level in Lake Erie. Colours represent categories when ENSO is either positive
(orange colour) or negative (blue colour).

a result, the annual change of water level also slightly correlates with ENSO (Figure C3,

r = 0.23, p = 0.01).

Categorical kernel density estimations of ENSO as well as of precipitation, runoff

and water level of Lake Erie support these findings (Figure 4.4). During recent years,

the positive phase of ENSO was more frequent than the negative phase. Although the

precipitation over the lake has a generally increasing trend, during the negative phase it

is slightly lower than that of throughout the positive phase. Additionally, the water level

in Lake Erie has two distinguishable peaks depending on the phase of ENSO. When the

phase is negative, the mean water level is 174 m, while the average water level during the

positive phase is 174.3 m.

Together, the evidences suggest that during the historical 1900-2003 period, the

ratio of runoff to direct precipitation is steadily increasing. Also, surface water elevation

dynamics in Lake Erie are driven by the outflow from the upper LGLs with St. Clair

River being the largest contributor in water balance of Lake Erie. As a result, variations

in the annual water level of Lake Erie depends on climate and weather in the upper LGLs.

4.3.2 Recent Trends (2003-2017)

During the 2003-2017 period, the average year of St. Clair River delivers 5081 cms

of water to Lake St Clair (Figure 4.5, Table 4.2). This channel transfers 96% of the total

water supply of the lake (Figure C4). Since 2003 the discharge of St. Clair River has

fluctuated below the average value (except the year 2009). Following 2013, St. Clair
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River discharge increased, and by 2017, it was 15% higher than average. High discharge

of the channel and a relatively small volume of Lake St. Clair (4.17 km3) result in a short

residence time of 9 days (Bocaniov et al., 2018).

The second-largest water source of Lake St. Clair is the runoff. The runoff has the

most significant annual variations and brings 174 cms with the Thames and Sydenham

rivers being the most substantial contributors (but less than 3% of the total water supply).

Lastly, precipitation brings 32 cms on average with the highest amount of 46 cms recorded

in 2011 (less than 1%). In contrary, evaporation stayed close to the average value of 31

cms with the lowest values of 27 cms in 2003 and the highest of 37 cms in 2016 (<1%

of total water loss). Thus, the net basin supply of Lake St. Clair is 5287 cms, and the

Lake St. ClairWestern Basin

Central Basin Eastern Basin

50815256

5567

5872 6101

391 80 206 31

423 194756 450

Figure 4.5: Average water balance of Lake Erie and Lake St. Clair for the period 2003-
2017. The boxes represent three basins of Lake Erie and one basin of Lake St. Clair (top
right box). The two numbers on top of each box represent water gained of water via runoff
and precipitation (downward arrows) or lost via evaporation (upward arrow). Graphs
inside the boxes indicate changes in US runoff (US), Canadian runoff (CA), precipitation
(P) and evaporation (E) relative to the average value over the time period 2003-2017.
The numbers on the right side of each graph show the average value for the period from
2003 to 2017. The arrows connecting the boxes represent the flows through connecting
channels or inter- basin water transfer. Yearly average values could be found in Table 4.2.
The units are cms.
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St. Clair River is the most significant contributor to the Lake St. Clair water budget.

As a result, Detroit River, the outflow of Lake St. Clair and connecting channel with the

WB of Lake Erie, has the same pattern of the discharge as the St. Clair River (r = 0.82,

p� 0.001).

Detroit River flows into the WB and delivers 94% (5256 cms) of the total water

supply of WB (Table 4.2). In addition, 5% (305 cms) is delivered through the runoff, and

less than 1% (86 cms) via the precipitation. Increased discharge from St Clair River and,

as a result, Detroit River, after 2013, resulted in the increased the water level of Lake

Erie by 64 cm (Table 4.2).

Due to the large surface area of the CB, the precipitation and evaporation constitute

the substantial part of its water balance. Precipitation delivers 8% (486 cms) of water

annually, while runoff delivers only 5% (270 cms). The rest of the water comes from the

WB through the net inter-basin exchange (5567 cms, 87%). CB delivers 94% (5872 cms)

of water annually to EB via the net inter-basin exchange. In contrast to the CB, EB has

a smaller surface area, therefore, precipitation and runoff together deliver only 6% of the

total water supply (210 cms and 213 cms, respectively).

In summary, the overall water mass balance, essential for building mechanistic mod-

els, is reasonably well satisfied with the average absolute residual of less than 3%. St.

Clair River, connecting channel with Lake Huron, delivers 74% (5081 cms) of total water

supply for both lakes (6857 cms) while precipitation and runoff deliver only 11% (808

cms) and 14% (961 cms), respectively. In 2011, precipitation and runoff reached the

maximum values of 1073 and 1143 cms, respectively. During the last 15 years both Lake

St. Clair and Lake Erie have very high input of water from the connecting channels, and

relatively low inputs from precipitation and runoff. Our estimates stress the importance

of climate and meteorological conditions in the upstream LGLs.

78



Table 4.2: Annual water budget of Lake Erie and Lake St. Clair for the period from 2003 to 2017. The residual represents the difference
between the inflow and the outflow. WB? stands for the water body, † the mean and ‡ the sum of absolute values of the residuals. All
units are in cms except for the last two rows of the table.

WB? Component 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean

SC
R

Outflow LH 4845 4991 5059 4989 4825 4794 5125 5083 4751 4910 4739 4971 5436 5856 5847 5081
US Runoff 4 10 10 9 11 9 16 6 12 7 9 7 7 9 9 9
CA Runoff 1 2 2 2 2 1 3 1 2 1 2 1 1 2 1 2
Outflow 4849 5003 5071 4999 4837 4804 5144 5091 4765 4918 4750 4979 5444 5867 5857 5092

LS
C

US Runoff 19 33 30 35 36 36 58 30 44 32 33 33 29 29 38 34
CA Runoff 65 134 112 121 147 136 199 79 165 122 142 165 108 112 129 129
Precipitation 21 32 27 38 27 39 53 24 49 21 32 35 25 28 35 32
Evaporation 27 31 31 31 31 31 28 32 31 36 33 28 31 37 31 31
Outflow 4928 5171 5209 5162 5017 4984 5426 5191 4992 5056 4923 5184 5575 5998 6029 5256

D
R

US Runoff 11 16 15 18 19 17 16 10 15 11 14 15 15 14 17 15
CA Runoff 3 6 6 5 7 7 7 4 9 7 4 5 4 6 6 6
Outflow 4941 5193 5230 5184 5043 5009 5450 5205 5016 5074 4941 5204 5594 6018 6051 5277

W
B

US Runoff 253 256 278 259 358 391 271 231 320 298 241 280 305 195 324 284
CA Runoff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Precipitation 66 80 70 85 82 91 93 80 113 89 97 93 80 81 97 86
Evaporation 69 80 79 80 79 78 71 82 80 92 85 71 79 95 80 80
Outflow 5191 5449 5499 5447 5404 5413 5743 5433 5368 5369 5194 5506 5900 6200 6392 5567

C
B

US Runoff 206 271 268 204 276 295 215 146 304 237 243 251 191 156 223 233
CA Runoff 19 40 34 34 41 38 53 24 49 38 41 46 30 28 34 37
Precipitation 369 451 395 476 462 510 521 450 636 499 543 524 450 455 545 486
Evaporation 388 449 447 450 445 438 397 461 452 518 479 398 444 533 450 450
Outflow 5397 5762 5748 5711 5737 5817 6136 5592 5905 5625 5543 5929 6127 6307 6745 5872

E
B

US Runoff 112 151 120 114 139 100 125 87 118 88 108 122 106 86 136 114
CA Runoff 59 111 90 99 100 113 129 71 105 85 112 134 85 92 107 99
Precipitation 159 195 171 206 199 220 225 194 275 216 235 226 195 197 236 210
Evaporation 168 194 193 194 192 189 172 199 195 224 207 172 192 230 194 194
Outflow 5560 6025 5935 5936 5983 6060 6442 5746 6207 5789 5790 6239 6321 6452 7029 6101

O
ut
flo

w Niagara River 5255 5575 5788 5544 5747 5642 5836 5628 5700 5944 5439 5773 6114 6356 6660 5800
Welland Canal 200 201 223 171 175 205 195 187 132 218 166 193 226 221 146 191
Consumptive Use 22 21 22 21 23 22 22 23 19 19 19 19 19 20 20 21
Total 5477 5797 6033 5737 5945 5869 6053 5837 5852 6181 5625 5985 6359 6597 6826 6011

∆ (In-Out) 83 228 -97 199 38 192 389 -92 356 -392 166 254 -38 -145 203 90†| 191‡
∆ WL SC, cm -14 25 -17 2 -9 18 12 -21 16 -33 21 30 16 -1 17 4
∆ WL LE, cm 0 21 -17 6 -6 4 12 -22 28 -35 21 15 19 -11 20 4
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4.3.3 Remarks on Building Mechanistic Models

Local and upstream LGL meteorological conditions not only play essential roles in

the water budget of Lake Erie but also control the algal bloom by i) flashing out dissolved

reactive phosphorus (DRP) from the agricultural fields in spring, and by ii) modifying the

circulation in the CB. With regard to former, in the analysis of the severe algal blooms of

2011, Michalak et al. (2013) conclude that high precipitation from March to June (75%

above the prior 20-year average) had the most substantial influence on DRP release from

the Maumee watershed in spring, the vital period for incubating algal blooms (Michalak

et al., 2013, Stumpf et al., 2012). Moreover, weaker circulation in WB in summer of 2011

has led to the longer water residence times that prevented from the flushing of nutrients

from shallow WB, led to the minimal dilution of the nutrient-rich Maumee River, and

therefore incubated the bloom (Michalak et al., 2013). As a result, during 2003-2017

period, the severity of algal blooms strongly correlates with the late spring over the lake

precipitation (r = 0.84, p � 0.001; Figure 4.6a) and the runoff (r = 0.71, p = 0.005;

Figure 4.6b). In other words, timing and intensity of precipitation in Lake Erie and

upstream LGLs modify the magnitude of the bloom by flashing rate of the DRP from the

fields and by varying the circulation in WB.

Likewise, circulation in CB has direct control on the algal blooms as it could deliver
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Figure 4.6: Correlations of bloom severity index (BSI) with a) precipitation, b) runoff,
and c) dominant wave direction. Wave direction is the direction from which the highest
energetic waves at the dominant period are coming. Three-month average values for
precipitation and runoff are estimated for April, May and June, while three-month average
values of dominant wave direction are estimated for August, September, and October.
Wave direction measurements are taken from buoy 45005, West of Lake Erie. Bloom
severity index is obtained from NOAA website.
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a)  2002 b)  2008 

Figure 4.7: The depth-averaged circulation in Lake Erie during a) summer of 2002 and
b) summer of 2008. The images are taken from Niu et al. (2015). The star represents
the location of the station 450005, West of Lake Erie. In 2002, Lake Erie experienced the
lowest algal blooms during the last two decades. In contrast, 2008 was the first year in
the sequence of large and continuous algal blooms during the last 15 years (Figure C5).

westwards DRP released from the sediment during hypoxia in CB (Scavia et al., 2014).

The summer circulation patterns in the CB vary significantly year by year (Niu et al.,

2015). For instance, in 2002 and 2005, weak anticyclonic gyres were formed in the CB

(Figure 4.7b; Niu et al., 2015; Beletsky et al., 2013). At the same time, in 2002 and 2005,

Lake Erie had the lowest algal blooms throughout the recent two decades as reported by

NOAA (Supplemental information, Figure C5). In contrast, during severe algal bloom of

2008, the summer circulation of the CB had a two-gyre pattern, with a powerful cyclonic

gyre, which delivers water and nutrients from the middle of the CB to the boundary with

the WB (Figure 4.7b; Niu et al., 2015. Such distinct inter-annual variability of circulation

dynamics in the CB is induced by the variation of the surface wind stress (Beletsky et al.,

2013, Niu et al., 2015). Also, measurements of the average direction of the dominant wave

in August, September, and October at Station 45005, located on the border of the WB

and CB (Figure 4.7), show a strong correlation with the severity of algal blooms (r = 0.75,

p = 0.003; Figures 4.6c). Thus, when the most energetic waves formed by the summer

winds come from the North-East, then there is an increase in the intensity of algal bloom

that year. That is, the results indirectly suggest that, in addition to the phosphorus load

from the watershed, algal blooms could be fueled by the westward transport of the DRP

from the CB accumulated during the extended periods of the summer hypoxia.

Thus, basin-wide circulation and inter-basin exchange are significant factors in the

spatial transport of water and nutrients in Lake Erie. Michalak et al. (2013) reported that
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weaker WB circulation in summer of 2011 has prevented from the flushing of nutrients and

drove to the minimum dilution of the phosphorus-rich Maumee River waters. Currently

it seems that algal blooms are sustained by the DRP delivered from the central basin

that accumulated during the extended period of summer hypoxia. Therefore, one- and

two-dimensional ecological models of Lake Erie will not likely provide the robust results

in water quality and bloom forecasting.

4.4 Summary and Conclusions

We have demonstrated that along with strong seasonal and annual patterns, precip-

itation and runoff in the Lake Erie basin exhibit 30 years cycles. These cycles correlate

with the water level of Lake Erie. Since the early 20th century deforestation and urban-

ization of the Lake Erie watershed, as well as changes in seasonal precipitation patterns

increased the land runoff to precipitation ratio, i.e., the same precipitation produces sub-

stantially higher runoff. From 2003 to 2013, the water level fluctuated around its average

values. The year 2011 saw the delivery of record volumes of waters through precipitation

and runoffs and increased the water level of Lake Erie by 28 cm.

Predominantly, the water level of Lake Erie depends on the supply of water via

connecting channels from Lake Huron and Lake Superior with large corresponding water-

sheds. In those lakes, the water rise during the recent years was due to changes in weather

patterns: persistent over-lake precipitation and above-average spring runoff (Gronewold

et al., 2016). As a result, the water level of Lake Erie reflects signals of the large scale

atmospheric circulation modes of ENSO. During recent years, the warm El Niño occurred

more often than cold La Niña, and the positive phase of ENSO also contributed to the

increase of the water supply from the upper LGLs. From 2013 onwards, all of the above in-

creased the inflow of water into the Lake Erie and the water level rose by 64 cm increasing

the outflow by 16% (more than 1000 cms).

Basin-wide water budget estimated for the 2003-2017 period will be used for building

the hydrodynamic model of Lake Erie to advance the predictive understanding of the bio-
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geochemical responses of large lakes to climate warming. Basin-wide daily measurements,

source code, and our estimates are publicly available in the open GitHub repository:

https://github.com/pycckuu/Great-Lakes-Data.
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Chapter 5

PorousMediaLab: The Toolbox For Batch And 1-D Reactive

Transport Modelling

Igor Markelov
Raoul-Marie Couture
Philippe Van Cappellen
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Summary

PorousMediaLab is a computer program written in Python programming language

that is designed to perform a wide variety of biogeochemical modelling in the aquatic

environment. PorousMediaLab is designed for batch reactions and one-dimensional satu-

rated transport calculation with transient boundary conditions involving equilibrium and

kinetically controlled aqueous and mineral reactions with user-defined rate expressions.

Automated code generation and parameter estimation allow for the development and eval-

uation of mechanistic process models with an arbitrary number of user-defined reactions

and species. Having a text user interface, PorousMediaLab makes new model applica-

tions effortless, very flexible, less error-prone, and less time-demanding. In the examples

below, the application of PorousMediaLab demonstrates capabilities of the program to

simulate (1) titration of a strong acid with the base, (2) simulation of anoxic freshwater

wetland sediment, (3) freeze-thaw cycles of saturated soil column with transient temper-

ature boundary conditions. Built on top of the robust, efficient and tested mathematical

frameworks, PorousMediaLab is an ideal candidate for solving scientific and practical

applications related to aquatic chemistry.

5.1 Introduction

All biogeochemical transformations on the Earth are the result of the complex natu-

ral processes and anthropogenic influence. Transport, chemical, mechanical, and biologi-

cal processes in Earth systems are coupled, and often individual features and mechanisms

play a crucial role in the overall system functioning (Steefel et al., 2005). Growing sci-

entific knowledge of those systems and the necessity of connecting laboratory and field

observations creates a need for development and application of flexible and efficient reac-

tive transport models (RTMs). RMTs are powerful tools for capturing interplay between

physical, chemical, and biological processes (Steefel and Van Cappellen, 1998). RTMs

have been widely applied to study contaminant reactive transport in groundwater (e.g.,

Saaltink et al. 2004), rock and soil weathering (e.g., Ayora et al. 1998, Lawrence et al.
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2014), greenhouse gas emissions from peat soils (e.g., Rezanezhad et al. 2016), early di-

agenetic transformations in sediments (e.g., Van Cappellen and Wang 1996 and Couture

et al. 2016), nutrient dynamics in rivers and lakes (e.g., Vanderborght et al. 2007 and

Schmid et al. 2017).

Conventional RTMs perform model simulation based on the transport and processes

pre-defined by the developer of the program. In such cases, a user makes use of an already

defined reaction network or can select reactions from the available ones in the program

database. On the one hand, such approach offers the robustness and efficiency of numerical

computation (e.g., the Jacobians are already defined for equilibrium reactions), but, on

the other hand, the approach does not provide flexibility for the scientists to test new

theories and identify novel reaction pathways.

Here, a modelling program PorousMediaLab is presented. PorousMediaLab is a com-

puter program designed to simulate a wide variety of biogeochemical systems in aquatic

environments. The flexibility of PorousMediaLab is a critical feature since the tool is de-

signed for scientists or students who wish to assess interplays between biotic and abiotic

processes, describe biological community structures, identify novel reaction pathways, or

simply quantify reaction rates. PorousMediaLab is designed for simulation of reactor or

batch experiments as well as a reactive system with one-dimensional transport and tran-

sient boundary conditions. General representation of processes in PorousMediaLab allows

(i) to deal with arbitrary large reaction networks defined by a user, (ii) it can be used

for predictive modelling to design experiments, (iii) it can be used for inverse modelling

and parameter identification problems. PorousMediaLab has been used in the design and

analysis of the laboratory experiments to study the effect of reactive transport on biotic

and abiotic geochemical systems. PorousMediaLab is written in Python, and its modu-

lar structure makes it relatively easy to use and expand. The following chapters briefly

discuss the computational approach as well as show three examples demonstrating the

capabilities of the program.
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Figure 5.1: Generic program flow for a reactive transport simulator using operator split-
ting.

5.2 Overview of PorousMediaLab

PorousMediaLab is a general-purpose numerical simulator that solves mass balance

equations in aquatic chemistry applications. The mathematical representation of the

model consist of the coupled nonlinear partial differential equations representing transport

and reactions processes of solid and aqueous species:

∂(θCi)
∂t

= ∂

∂x

(
θDi

∂Ci
∂x

)
− ∂

∂x
(ωθCi) + θ

∑
R(x, t, Ci, ...) (5.1)

where Ci is concentration of ith reactant; θ is the porosity ϕ for dissolved species and

(1 − ϕ) for solid species; Di is effective diffusion; ω is advective term; ∑R(x, t, Ci, ...)

represents mass-conservation of the reaction term, i.e. sum of all sources and sinks of

particular reactant. The computational results of transport and reaction modules have

been tested against analytical solutions (appendix D.1).

Figure 5.1 shows the main program flow. Using the operator splitting technique,

the transport and reactive terms are decoupled and solved sequentially. If no transport

present in the simulation, i.e., the simulation of batch or well-mixed reactor, then the
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transport module is skipped in the time loop, and only the reaction module is executed.

Otherwise, when reactions are absent, then the program estimates only the transport.

In PorousMediLab one-dimensional advective-diffusive transport can be solved using

either finite volume or finite difference discretization schemes. By default, the transport

integration of Crank-Nicolson finite difference scheme is applied. A Finite volume partial

differential equation solver FiPy (Guyer et al., 2009) is used for the cases when the trans-

port part of equations is non-linear (e.g., a diffusivity that depends on concentration) or

when multiple transport equations are coupled (e.g., if diffusivity depends on tempera-

ture and thermal conductivity depends on concentration). Kinetic reactions are solved

using Fortran solver LSODA from scipy.integrate package (Jones et al., 2001). To ensure

the stability of the solution, a robust numerical Nelder-Mead method from scipy.optimize

package is used to find a solution to the non-linear algebraic equations in equilibrium

reactions. The approach of solving equilibrium reactions is taken from Aquatic Chemistry

(Stuum and Morgan, 1996) and it involves several steps: (1) the establishment of the

system in the equilibrium, (2) selection of the unknowns, (3) writing expressions for other

species based on the equilibrium expressions, (4) the minimization of the balance squared

error until a charge balance is achieved. When the numerical methods do not converge,

the PorousMediaLab alerts the user to make the corresponding changes in spatial or tem-

poral discretization; a user may also change the solvers in kinetic and equilibrium modules

to any of those available in scipy package.

PorousMediaLab has a modular architectural design, which makes the structure of

the code clearer and provides the flexibility for users to modify submodules according to

their own needs. The computer code for PorousMediaLab is divided into seven files of

Python code. Each file corresponds to a different task. Main class and definitions of all

shared between subclasses methods are contained in lab.py. The codes for simulation of

the well-mixed reactor and 1-dimensional reactive transport are located in batch.py and

column.py, respectively. Files desolver.py and equilibriumsolver.py contain methods for

computation of kinetic and equilibrium reactions. Additional calibrator.py and plotter.py

files contain methods for calibration based on measured data and plotting of the modelling
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results.

PorousMediaLab is distributed through Python package manager pip and requires

Python version 3.5 or higher. The user can install Python via official website (python.

org) or as a part of Python Data Science Distribution package Anaconda (anaconda.com).

When the requirements are met, the user can install the toolbox by running the following

command in the terminal: pip install porousmedialab. After successful installation porous-

medialab package will be available as any other Python package, (e.g., numpy, scipy) via

import command. The model can be executed on Windows, Linux, and Mac OS machines,

and is open source and freely available under GNU General Public License (GPL). Source

code, Jupyter notebooks with examples presented here and many others can be downloaded

from git repository of the project (github.com/biogeochemistry/PorousMediaLab).

5.3 Examples

In this section three example calculations using PorousMediaLab are presented that

demonstrate capabilities of the program: (1) titration of strong acid with the base, (2)

simulation of anoxic freshwater wetland sediment (batch reactor) with measurements and

parameters reported by Roden (2008), (3) freeze-thaw cycles of saturated soil column

with transient temperature boundary conditions. Examples (1) and (2) demonstrate the

reaction module with a simulation of the well-mixed reactor, whereas example (3) present

the reactive modelling with 1-dimensional transport. In all examples, complete required

input and only selected output are presented. Scripts for plotting graphs shown in the

text can be found in the official GitHub repository of the project.

5.3.1 Acid Titration

This examples calculates distribution of aqueous species of phosphoric acid H3PO4

titrated with base NaOH (fig. 5.2a). In this numerical experiment, during the period of

titration (30 hours) we add NaOH with the rate of 10 mM per hour. The essential data

needed for a speciation calculation are the initial concentration of H3PO4 and pKa values
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(table 5.1).

The input file for this example calculation is as follows:
1 from porousmedialab . batch import Batch

2 bl = Batch ( tend=30, dt=0.1)

3 b l . add_species (name=’H3PO4’ , in i t_conc =0.1)

4 bl . add_species (name=’H2PO4’ , in i t_conc=0)

5 bl . add_species (name=’HPO4’ , in i t_conc=0)

6 bl . add_species (name=’PO4’ , in i t_conc=0)

7 bl . add_species (name=’Na ’ , in i t_conc=0)

8 bl . add_species (name=’NaOH’ , in i t_conc=0)

9 bl . add_acid ( s p e c i e s =[ ’H3PO4’ , ’H2PO4’ , ’HPO4’ , ’PO4 ’ ] , pKa=[2 .15 , 7 . 20 , 1 2 . 3 8 ] )

10 bl . add_acid ( s p e c i e s =[ ’Na ’ , ’NaOH’ ] , charge=1, pKa=[13 . 8 ] )

11 bl . dcdt [ ’NaOH’ ] = ’0 . 01 ’

12 bl . s o l v e ( )

13

In the first line of the code (LOC 1), required Batch class is imported from porous-

medialab library, and an instance of Batch is created with the total time of simulation tend

and the time-step dt (LOC 2). All necessary species with corresponding initial concentra-

tions are introduced using method add_species (LOC 3-8). Here, the user should give the

element name and an initial concentration, and it is up to the user to choose the names for

the species as they are not strictly defined. In this example, H+ and OH– are not explicitly

specified, H+ is calculated using equilibrium solver and OH– is estimated internally using

Kw. The corresponding pKs of the H3PO4 are provided in LOC 9. It should be noted

that base reaction was written as an acid reaction (i.e., Na+ + H2O ←−→ NaOH + H+)

and added NaOH as an acid with charge keyword argument, which is the charge of the

fully protonated species (LOC 10). Furthermore, due to NaOH is the strong base with

pKb 0.2, the user could define Na+ as a sole ion via command bl.add_ion(name=’Na’,

charge=1) without considering dissociation of NaOH. Later, the rate of change 10 mM of

NaOH per hour is set (LOC 10). Finally, LOC 11 starts the computation of the numerical

no. Equilibrium Reaction log K

R1 H3PO4 ←−→ H2PO –
4 + H+ 2.15

R2 H2PO –
4 ←−→ HPO 2–

4 + H+ 7.20
R3 HPO 2–

4 ←−→ PO 3–
4 + H+ 12.38

R4 NaOH←−→ Na+ + OH– 0.2
R5 H2O←−→ H+ + OH– 14

Table 5.1: Reactions considered in the example of acid titration with the base.
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Figure 5.2: The output generated by the the program in the example (a) titration of
strong acid with base, (b) simulation of anoxic freshwater sediment as reported by Roden
(2008). The parameters used in (b) are from the original work.

experiment.

By solving the electroneutrality equation at each time step, PorousMediaLab esti-

mates pH and corresponding ionization fractions of acids. The titration curve relating

pH and quantity of acid fractions during the numerical experiment can be constructed

(Figure 5.2a).

Plotting methods and other useful keywords can be found in the supplemental in-

formation (Appendix D.2) or in the GitHub repository of the project. Current and many

other examples are available there.

5.3.2 Organic Matter Degradation in Batch Reactor

Here, we demonstrate the application of the kinetic rate laws in PorousMediaLab

throughout the simulation of the particulate organic carbon (POC) degradation with a

set of terminal electron acceptors in the slurry of anoxic wetland sediment (Roden, 2008).

No. Reaction

R1 CH2O + 4
5NO

–
3 −−→ 2

5N2(aq) + 2
5H2O + HCO –

3 + 1
5H

+

R2 CH2O + 4Fe(OH)3 + 7H+ −−→ HCO –
3 + 4Fe +

2 + 10H2O
R3 CH2O + 1

2SO
2–
4 −−→ 1

2HS
– + HCO –

3 + 1
2H

+

R4 CH2O −−→ 1
2CH4 + 1

2CO2

Table 5.2: Reactions in a slurry (batch reactor) of anoxic freshwater wetland sediment
with sequential consumption of electron acceptors considered by Roden (2008).

91



In the original work, the slurry in the batch reactor was amended with 1 wt % of POC

(heat-killed yeast), and organic matter decay was modelled according to first-order rate

law using Monod rate equation:

Ri = k1[POC] [EA]i
[EA]i +Km

N∏
j=1

Kin

[EA]j +Kin

(5.2)

where k1 – first-order rate constant, [POC] – concentration of organic matter, [EA]

concentration of electron acceptor (e.g., nitrate, iron oxyhydroxide, or sulphate), Km –

half saturation constant. Inhibition terms Kin are used for simulation of the sequential

oxidation of the organic matter degradation with nitrate, iron oxyhydroxide, and sulphate,

followed by methanogenesis (Table 5.2). The experimental data and results of simulation

are shown in Figure 5.2b.

The code of the simulation is the following:
1 from porousmedialab . batch import Batch

2 bl = Batch ( tend=25, dt=1)

3 bl . add_species (name=’POC’ , in i t_conc=12e−3)

4 bl . add_species (name=’CO2’ , in i t_conc=2e−3)

5 bl . add_species (name=’Fe2 ’ , in i t_conc=0)

6 bl . add_species (name=’NO3’ , in i t_conc =1.5e−3)

7 bl . add_species (name=’Fe3 ’ , in i t_conc=2e−2)

8 bl . add_species (name=’SO4 ’ , in i t_conc =1.7e−3)

9 bl . add_species (name=’CH4’ , in i t_conc=0)

10 bl . constants [ ’Km_NO3’ ] = 1e−6

11 bl . constants [ ’Km_Fe3 ’ ] = 2e−3

12 bl . constants [ ’Km_SO4’ ] = 3e−5

13 bl . constants [ ’ k1 ’ ] = 0 .1

14 bl . r a t e s [ ’ r1 ’ ] = ’ k1 ∗ POC ∗ NO3 / (Km_NO3 + NO3) ’

15 bl . r a t e s [ ’ r2 ’ ] = ’ k1 ∗ POC ∗Fe3 / (Km_Fe3 +Fe3 ) ∗ Km_NO3 / (Km_NO3 + NO3) ’

16 bl . r a t e s [ ’ r3 ’ ] = ’ k1 ∗ POC ∗ SO4 / (Km_SO4 + SO4) ∗ Km_Fe3 / (Km_Fe3 +Fe3 ) ∗ Km_NO3 / (Km_NO3 + NO3

) ’

17 bl . r a t e s [ ’ r4 ’ ] = ’ k1 ∗ POC ∗ Km_SO4 / (Km_SO4 + SO4) ∗ Km_Fe3 / (Km_Fe3 +Fe3 ) ∗ Km_NO3 / (Km_NO3 +

NO3) ’

18 bl . dcdt [ ’POC’ ] = ’− r1 − r2 − r3 − r4 ’

19 bl . dcdt [ ’NO3 ’ ] = ’− 0 .8 ∗ r1 ’

20 bl . dcdt [ ’ Fe3 ’ ] = ’− 4 ∗ r2 ’

21 bl . dcdt [ ’ Fe2 ’ ] = ’4 ∗ r2 ’

22 bl . dcdt [ ’ SO4 ’ ] = ’− 0 .5 ∗ r3 ’

23 bl . dcdt [ ’CO2 ’ ] = ’ r1 + r2 + r3 + 0.5 ∗ r4 ’

24 bl . dcdt [ ’CH4 ’ ] = ’0 . 5 ∗ r4 ’

25 bl . s o l v e ( )

26

In LOC 1, the Batch class is imported from the porousmedialab library, and an

instance of Batch is created with the total time of the simulation of 40 days and with the
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time-step of one day. In LOC from 3 to 10, the species are added using instance method

add_species with keyword arguments name and init_conc introducing desired names and

initial concentrations. In LOC 10-13, half-saturation constants of electron acceptors and a

first-order rate constant of the organic matter degradation are set using instance method

constants. In LOC 14-17, the rate laws of the reactions are introduced with instance

method rates using the names of species and constants defined in the previous lines.

Rate expressions of reaction equations for each species are written in LOC 18-24, where

coefficients in front of the rates are defined in the stoichiometry of the corresponding

reactions (Table 5.2). Finally, LOC 25 starts the simulation.

In this example, PorousMediaLab simulates the sequential consumption with the

aid of inhibition terms imposed in the kinetic rate laws (Equation 5.2, and LOC 15-

17). Simulation shows the typical pattern of the sequential consumption of the terminal

electron acceptors, from the most energy-yielding nitrate to the least favorable sulphate,

followed by methanogenesis.

5.3.3 Freeze-Thaw Cycles in the Soil Column

The example demonstrates an implementation of one-dimensional transport in the

saturated soil column with transient boundary conditions. Vertical soil column consists

of the organic matter and two layers of the iron inclusions, where oxygen penetrates

only from the top of the column via molecular diffusion. Organic matter is degraded via

two pathways, aerobic degradation and oxidation with iron, producing inorganic carbon

(Table 5.3). In the model, organic matter degradation rates are simulated via first-order

rate law using Monod-type rate equation with temperature dependence factor Q10:

RT = R◦ ·Q
(T−T◦10 )
10 (5.3)

where R◦ – rate of the reaction at the reference temperature T◦ (Equation 5.2), RT – rate

of the reaction at the temperature T . Conversion of dissolved carbon dioxide CO2(aq) to

gas CO2(g) is calculated with Henry law equilibrium expression.
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no. Reaction

R1 CH2O + O2 −−→ CO2(aq) + H2O
R2 CH2O + 4Fe(OH)3 + 7H+ −−→ 4Fe +

2 + CO2(aq) + 11H2O
R3 Fe2+ + 1

4O2 + 2HCO –
3 + 1

2H2O −−→ Fe(OH)3 + 2CO2(aq)
R4 CO(aq)←−→ CO2(g)

Table 5.3: Reactions considered during freeze-thaw cycles in the soil column: (1) and (2)
organic matter degradation with oxygen and iron are modelled via first-order rate law
using Monod rate equation, (3) oxidation of reduced Fe(II) is modelled via bi-molecular
rate expression, (4) conversion of inorganic carbon to CO2(g) is calculated with Henry
law equilibrium expression.

In our example, freeze-thaw cycles are simulated by changing the temperature at the

top of the soil column. During the freezing period, the temperature at the top fluctuates

between -15◦C and -5◦C, and it is assumed that the formation of ice restricts oxygen

diffusion into the soil column and bocks escape of carbon dioxide (gas). Thus, using zero

flux boundary condition, we simulate a non-permeable physical barrier to gas exchange

on the top of the soil column. During the thaw period, the temperature at the top of the

soil column fluctuates from 0◦C to 10◦C simulating daily temperature change. During

this period, the top of the soil column is permeable, and the absence of a physical barrier

promotes gas exchange.

The input file for this example simulation is as follows:
1 from porousmedialab . column import Column

2 L = 40

3 phi = 0 .8

4 t = 27 / 365

5 dx = 0.2

6 dt = 1e−5

7 f t c = Column(L , dx , t , dt )

8 import numpy as np

9 x = np . l i n s pa c e (0 , L , L / dx + 1)

10 Fe3_init = np . z e ro s (x . s i z e )

11 Fe3_init [ x > 5 ] = 75 ; Fe3_init [ x > 15 ] = 0 ; Fe3_init [ x > 25 ] = 75 ; Fe3_init [ x > 35 ] = 0

12 f t c . add_species ( theta=1−phi , name=’FeOH3’ , D=1, in i t_conc=Fe3_init , bc_top_value=0, bc_top_type=’

f lux ’ , bc_bot_value=0, bc_bot_type=’ f lux ’ )

13 f t c . add_species ( theta=phi , name=’O2’ , D=368 , in i t_conc=0, bc_top_value=0.231 , bc_top_type=’

d i r i c h l e t ’ , bc_bot_value=0, bc_bot_type=’ f lux ’ )

14 f t c . add_species ( theta=phi , name=’TIC ’ , D=320 , in i t_conc=0, bc_top_value=0, bc_top_type=’ f lux ’ ,

bc_bot_value=0, bc_bot_type=’ f lux ’ )

15 f t c . add_species ( theta=phi , name=’Fe2 ’ , D=127 , in i t_conc=0, bc_top_value=0, bc_top_type=’ f lux ’ ,

bc_bot_value=0, bc_bot_type=’ f lux ’ )

16 f t c . add_species ( theta=1−phi , name=’OM’ , D=1, in i t_conc=15, bc_top_value=0, bc_top_type=’ f lux ’ ,

bc_bot_value=0, bc_bot_type=’ f lux ’ )

17 f t c . add_species ( theta=phi , name=’CO2g ’ , D=320 , in i t_conc=0, bc_top_value=0, bc_top_type=’ f lux ’ ,

bc_bot_value=0, bc_bot_type=’ f lux ’ )
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18 f t c . add_species ( theta=phi , name=’Temperature ’ , D=281000 , in i t_conc=5, bc_top_value=5. , bc_top_type

=’ constant ’ , bc_bot_value=0, bc_bot_type=’ f lux ’ )

19 f t c . henry_equi l ibr ium ( ’TIC ’ , ’CO2g ’ , Hcc=0.166)

20 f t c . constants [ ’k_OM’ ] = 1

21 f t c . constants [ ’Km_O2’ ] = 20e−3

22 f t c . constants [ ’Km_FeOH3’ ] = 10

23 f t c . constants [ ’ k8 ’ ] = 1 .4 e+5

24 f t c . constants [ ’Q10 ’ ] = 4

25 f t c . constants [ ’CF’ ] = (1−phi ) / phi

26 f t c . r a t e s [ ’ r1 ’ ] = ’Q10∗∗(( Temperature−5)/10) ∗ k_OM ∗ OM ∗ O2 / (Km_O2 + O2) ’

27 f t c . r a t e s [ ’ r2 ’ ] = ’Q10∗∗(( Temperature−5)/10) ∗ k_OM ∗ OM ∗ FeOH3 / (Km_FeOH3 + FeOH3) ∗ Km_O2 / (

Km_O2 + O2) ’

28 f t c . r a t e s [ ’ r3 ’ ] = ’ k8 ∗ O2 ∗ Fe2 ’

29 f t c . dcdt [ ’OM’ ] = ’−r1−r2 ’

30 f t c . dcdt [ ’O2 ’ ] = ’−r1−0.25∗ r3 ’

31 f t c . dcdt [ ’FeOH3 ’ ] = ’−4∗ r2+r3 /CF’

32 f t c . dcdt [ ’ Fe2 ’ ] = ’− r3+4∗r2∗CF’

33 f t c . dcdt [ ’ TIC ’ ] = ’ r1+r2∗CF’

34 f o r i in range (1 , l en ( f t c . time ) ) :

35 day_of_bi_week = ( f t c . time [ i ]∗365) % 14

36 i f day_of_bi_week < 7 :

37 f t c . change_boundary_conditions ( ’ Temperature ’ , i , bc_top_value=5 + 5 ∗ np . s i n (np . p i ∗ 2 ∗

f t c . time [ i ] ∗ 365) , bc_top_type=’ constant ’ , bc_bot_value=0, bc_bot_type=’ f lux ’ )

38 e l s e :

39 f t c . change_boundary_conditions ( ’ Temperature ’ , i , bc_top_value=−10 + 5 ∗ np . s i n (np . p i ∗ 2

∗ f t c . time [ i ] ∗ 365) , bc_top_type=’ constant ’ , bc_bot_value=0, bc_bot_type=’ f lux ’ )

40 i f f t c . Temperature . bc_top_value < 0 :

41 f t c . change_boundary_conditions ( ’O2 ’ , i , bc_top_value=0, bc_top_type=’ f lux ’ , bc_bot_value=0,

bc_bot_type=’ f lux ’ )

42 f t c . change_boundary_conditions ( ’CO2g ’ , i , bc_top_value=0, bc_top_type=’ f lux ’ , bc_bot_value

=0, bc_bot_type=’ f lux ’ )

43 e l s e :

44 f t c . change_boundary_conditions ( ’O2 ’ , i , bc_top_value=0.231 , bc_top_type=’ constant ’ ,

bc_bot_value=0, bc_bot_type=’ f lux ’ )

45 f t c . change_boundary_conditions ( ’CO2g ’ , i , bc_top_value=0, bc_top_type=’ constant ’ ,

bc_bot_value=0, bc_bot_type=’ f lux ’ )

46 f t c . integrate_one_timestep ( i )

47
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Figure 5.3: Results of the freeze-thaw cycles simulation of the saturated soil column: (a)
carbon dioxide flux at the top of the soil column, temperature at the top and in the middle
of the soil column, (b) rate of Fe(II) concentration change in time the soil column. The
plots are produced using built-in commands (Appendix D.2).
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In LOC 1, class Column is imported from the porousmedialab library. In LOC 2-

6, the length of the column L, porosity of the soil phi, the total time of simulation t,

spatial dx and temporal dt resolution are assigned. In LOC 7, an instance of Column is

created. In LOC 8-11, the vector of the initial Fe(OH)3 profile Fe3_init is created with

iron inclusions at the depths from 5 to 15 cm and from 25 to 35 cm. In LOC 12-17, all

required for simulation species are created and added in the Column. When species are

introduced, the user should provide the porosity phi for dissolved species and (1−phi) for

solid species, name, initial concentration value or profile, types and values for the top and

bottom boundary conditions. The keyword argument name gives a reactant desired name,

init_conc – an initial concentration profile. The profile of init_conc can be either scalar

which specifies flat concentration profile with a given value or a vector (e.g., see initial

profile of Fe3_init). The boundary bc_top_type and bc_bot_type condition type can have

either Dirichlet (constant value) or Neumann (flux) type. Using keyword bc_top_value

and bc_bot_value, the user provides the values of the concentration or flux at the top and

bottom boundaries, respectively. In LOC 19, using henry_equilibrium instance method,

the user specifies partitioning of carbon dioxide using Henry’s law constant Hcc. In

LOC 20-24, half-saturation constants of electron acceptors and first-order rate constant of

organic matter degradation, second-order rate constant of iron oxidation, and temperature

dependence factor are set using instant method constants. In LOC 25, conversion factor

CF is introduced in order to account for interface dissolution-precipitation reactions. The

rate laws of reactions 1-3 (Table 5.3) are introduced with instance method rates using the

names of species and constants defined in the previous lines (LOC 26-28). Then, in LOC

from 28 to 33, the mass conservation equations are written for all species of interest

using instance method dcdt. Now, all the information required to start the simulation is

provided, yet the user needs to define conditions of the top boundary changes to simulate

freeze-thaw cycles.

The code written in LOC 33-46 accounts for the freeze-thaw cycles and changing

boundary conditions. First, in order to provide the user access to variables at each time-

step, the for-loop with ftc.time is introduced (LOC 34). In LOC 35 and 36, the program
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Figure 5.4: Results of the freeze-thaw cycles simulation of the saturated soil column:
(a) temperature dependent rate of organic matter degradation with iron (table 5.3), (b)
Fe(III) accumulation rate in the saturated soil column. The source of Fe (III) is oxidation
of ferrous Fe with oxygen (R3) while the sink is the reduction of Fe(III) with organic
matter (R2).

checks if the current time-step is the first or second week of bi-weekly simulation. During

the first week, the top boundary temperature follows the daily sinusoidal change from

0◦C to 10◦C (LOC 37); if it is a second week (LOC 39), then the temperature at the

top boundary fluctuates from -15◦C to -5◦C (Figure 5.3a). In LOC 40-45, the program

routinely checks if the top boundary temperature is below 0◦, then the boundary condition

for oxygen and carbon dioxide (gas) are changed to no flux boundary. Otherwise, if the

temperature is above 0◦C, then the boundary conditions are changed to constant values

and assigned corresponding concentrations of oxygen and carbon dioxide (LOC 44-45).

In LOC 46, the program executes one time-step in the ftc.time loop.

During the first seven days of the numerical experiment, the temperature at the

top of the soil column fluctuates between 0◦C to 10◦C (Figure 5.3a). Due to the limited

conductivity of soil saturated with water, the temperature at the deeper depths fluctuates

to a less extent. As a result, the rates of organic matter degradation R1 (not shown) and

R2 also varies (Figure 5.4a). Furthermore, freezing and thawing periods result in the

stepwise accumulation of ferrous Fe (Figure 5.4b). Thus, after the first freezing period

(day 14), oxygen diffusively penetrates in the column and oxidizes accumulated ferrous

Fe forming iron oxyhydroxide (Figure 5.3b). Moreover, the effect of the impermeable top

boundary during the freezing period (day 7-13) results in carbon dioxide (gas) flux spike
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on day 14 (Figure 5.3a).

5.4 PorousMediaLab Applicability, Limitations And Perspectives

PorousMediaLab can simulate zero-dimensional (e.g., batch and flow-through re-

actors, and mass balance models) and one-dimensional (e.g., soil and sediment columns,

contaminant groundwater flow) systems with equilibrium and kinetic reaction terms. The

tool will be useful for scientists and students who are going in the laboratory to test their

hypotheses and obtain qualitative information before the actual experiments. The options

of PorousMediaLab to define the kinetic rate laws of reactions and identify the parameters

present the possibility to gain quantitative knowledge after the experiments.

The inventory of PorousMediaLab functionalities is planned to be expanded to per-

form a sensitivity analysis of the input parameters. Preliminary work is already initiated,

and implementation of the Fourier Amplitude Sensitivity Test (Saltelli and Bolado, 1998)

is under development. Moreover, a large number of sensitivity test simulations would

require extensive computational power. Therefore, it is planned to introduce parallel

computation by using multiprocessing libraries on distributed and shared memory sys-

tems. The other important milestone in the development of the PorousMediaLab library

is to include unsaturated flow transport for simulation of water table fluctuations in the

soil column. Possibility of the unsaturated flow transport calculations will significantly

expand the application domain of the framework.

5.5 Summary

Tested against analytical solutions, PorousMediaLab is a robust and efficient suite

of simulators for solving diverse scientific and practical applications related to aquatic

chemistry. PorousMediaLab is a core component of the numerical experiments presented

in this thesis. In the preliminary design of the coupled MyLake-Sediment model of Chap-

ter 2, PorousMediaLab was applied to design reaction network, estimate fluxes, reaction

time-scales, and internal nutrient load in the sediment. Also, PorousMediaLab is used in
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Chapter 3 to simulate the reaction rates using a novel approach based on the thermody-

namic switch function. By incorporating dynamic estimations of Gibbs Free Energy of

particular reactions that are accessible in PorousMediLab (Appendix D.3), it was possible

to estimate the power of the catabolic reactions presented in the chapter. In Chapter 4,

the PorousMediaLab is used to simulate water and chloride mass balance of Lake Erie

to estimate inter-basin exchange rates. Thus, the capabilities of performing simulations,

analysis, and parameter estimations make PorousMediaLab useful as a flexible research

tool in designing, developing, and quantifying mechanistic reaction models of aquatic

environments.
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Chapter 6

Conclusions and Perspectives

6.1 Synthesis of Major Findings

The primary aim of this thesis was to investigate the impact of the different processes

at the different scales on the phosphorus cycle in lakes. In Chapter 2, I showed that

in Lake Vansjø, phosphorus dynamics is driven by internal loading and iron recycling,

while vulnerable to the reduction of ice cover. To achieve that, I expanded the existing

MyLake model by incorporating a sediment diagenesis module. I developed the continuous

reaction network that couples the water column and sediment biogeochemistry. In the

modelling scenarios, I assessed the importance of the sediment processes and the effects

of the climatic and anthropogenic drivers on water quality in Lake Vansjø. I stressed

the importance of the accumulated phosphorus in controlling timing and magnitude of

the biogeochemical lake response to external forcing, including projected changes in the

air temperature, disappearing ice cover, and potential management interventions. The

code of the new coupled model is open-source, and it is available for lake and sediment

modelers.

In Chapter 3, I showed that on the scales of microbial systems, the respiration

reactions can adequately be described by the power produced in catabolic reactions. I

demonstrated that the intensity of the specific catabolic reaction pathways may exert

substantial control on biogeochemical cycles by regulating the availability of the electron

donors and acceptors, adsorption sites, secondary minerals, and alkalinity. To achieve

that, I developed a new conceptual model to simulate the preferential catabolic reaction
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pathways in the microbial reaction networks. In the presented model, I substantially

decreased the number of assumptions that are often subjective to specific case studies.

It allowed significantly improve the robustness, transferability, and generalization of the

model-derived parameters. In contrast to efforts to simulate biogeochemical reaction

pathways by kinetic formulations, I demonstrate that new thermodynamically based for-

mulations can be applied to describe the microbial respiration. Those findings are crucial

for the accurate prediction of biogeochemical cycles in aquatic environments driven by

microbial metabolism.

In Chapter 4, I showed that on the regional scale, weather defines hydrodynamic

flush rates and water circulation patterns, which in turn controls the phosphorus transport

in Lake Erie. That is, precipitation controls the release of phosphorus from the watershed

in the spring, while wind governs the water circulation and transport of the phosphorus

released from sediment in the central basin. Both have an impact on algal blooms. Also,

I showed that due to the large surface area of the Laurentian Great Lakes watershed,

climate and weather in the upper Laurentian Great Lakes regulates changes in the water

level of Lake Erie. Daily estimates of all hydrological components of the Lake Erie water

balance for the period from 1996 to 2017 are uploaded for the open access.

Finally, I developed PorousMediaLab, a tool for designing, developing, and quanti-

fying the mechanisms of reactive transport within the aquatic environments (Chapter 5).

PorousMediaLab is the core component of the numerical investigations presented in the

thesis. in Chapter 2, PorousMediaLab was applied to design and test the reaction net-

work, estimate fluxes at the sediment-water interface, and reaction timescales. In Chapter

3, PorousMediaLab was used to simulate the reaction rates using a novel approach based

on the thermodynamic switch function. With the thermodynamic library that is acces-

sible in PorousMediaLab, I estimated the energy supply rate of the catabolic reactions.

Furthermore, in Chapter 4, PorousMediaLab was used to build a mass balance model and

to improve the current understanding of the inter-basin exchange. Overall, within this

thesis, the PorousMediaLab framework has been tested with analytical solutions and by

reproducing experimental results. The open-source framework is publicly available, and

101



it is used in various projects by Ecohydrology research group members.
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6.2 Research Perspectives

The immediate continuation of the research should focus on the three following

areas: (1) improving the reactive modelling of microbial system in lakes, (2) estimating

methane fluxes from small lakes, (3) simulation of the lake restoration practices.

6.2.1 Improving the Reactive Modelling of Microbial System in Lakes

The research presented in Chapter 2 in this thesis relies on the use of the inhibition

terms to represent the microbial redox reactions. However, in Chapter 3, I showed that

using inhibition terms involve a wide range of assumptions to prioritize one reaction over

another, whereas they may lack generalization and may underrepresent the environmen-

tal changes. Therefore, incorporating the thermodynamic switch function, developed in

Chapter 3, would improve the predictive capacity and applicability of the coupled-lake

sediment model to wide the range of the environmental conditions.

In state-of-the-art aquatic models, anoxic and aerobic microbial oxidation of the

methane, sulfide, ferrous iron, ammonia, pyrite, and other reduced elements are entirely

disregarded (Barker and Fritz, 1981, Ende and Gemerden, 1993, Jia and Conrad, 2009,

Konhauser et al., 2011). Together these processes have control over the cycling of major

nutrients (e.g., carbon, oxygen, phosphorus, nitrogen, sulfur) in marine and freshwater

environments. An interplay of such reactions under different conditions may have sub-

stantial implications on ecosystem functioning. Thus, modelling of microbial oxidation

reactions based on thermodynamic concepts outlined in Chapter 3 would improve pre-

dicting capacity of the existing process-based lake models.

6.2.2 Lake-Climate Feedback Loop: Methane Fluxes

In lakes, alongside availability and inputs of carbon, nitrogen, and phosphorus from

the catchment, primary production and respiration depend on the geomorphology of the

lake. Specifically, water column depth strongly affects sediment respiration making shal-

low lakes to be the most productive (Duarte and Prairie, 2005, Giorgio et al., 1999, Wetzel,
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2001). Direct contact of the sediment with the upper mixed layer in shallow lakes favors

mineralization over burial, resulting in production and over-saturation of carbon dioxide

and methane, and escape to the atmosphere. Methane emissions from freshwater ecosys-

tems to the atmosphere are comparable in magnitude to the net production of terrestrial

ecosystems (Tranvik et al., 2009). Empirical estimations suggest that freshwater envi-

ronments contribute about one-fifth of the total methane flux to the atmosphere (Khalil

and Shearer, 2000). As such, climate warming and increasing water temperature in lakes

could amplify a feedback loop where warming enhances methane emission contributing

to climate change (Lambrecht et al., 2019).Thus, with addition of rooted vegetation and

ebullition processes that are known to be significant, the coupled Lake-Sediment model de-

scribed in Chapter 2 can be applied to estimate the effect of climate warming on methane

fluxes and suggest management solutions to reduce emissions from lakes.

6.2.3 Modelling Before Actions: Lake Restoration

Most of the lake restoration approaches are very radical, intrusive, and expensive

methods, causing extinctions of organisms (Gołdyn et al., 2014). Even so, in many cases,

the restoration measures have not necessarily led to the desired improvement, and lakes

needed additional protective measures (Jeppesen et al., 1991, Lürling et al., 2016, Son-

dergaard, 2007). The lack of comprehensive studies of the restoration practices using pro-

cessed based-models severely limits our ability to understand what ecological processes

are at stake and what are the potential feedbacks. Moreover, an essential requirement

for obtaining success and long-term effects after restoration measures is understanding

what specific processes in the particular lake govern the degradation of water quality.

Therefore, there is a need for mechanistic simulations of the restoration practices before

actual implementation in place to determine the minimally invasive measures.
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Figure A.1: Simulated water temperature profiles for the period from October, 2009 to
April, 2010.
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Figure A.2: Water temperature profiles observed and simulated for the period from April
to October of 2010.
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A.2 Downscaled Average Air Temperatures
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Figure A.3: Downscaled average air temperature according to IPSL, GFDL and NorESM
climate models and corresponding representative concentration pathways (RCP) for the
period 2050-2070. The historical values are average values over the period from 1995 to
2015.
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A.3 Trends of Selected Model Variables
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Figure A.4: Trends of selected MyLake-Sediment variables as a function of the projected
average annual air temperatures, according to the three climate models, IPSL (red), GFDL
(green), NorESM (blue), and for RCP 4.5 (light) and RCP 8.5 (dark). Dashed lines and
crosses indicate the no-ice scenarios. 147



A.4 Response of The Model to an Abrupt Halt of All External P Loading
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Figure A.5: Response of MyLake-Sediment to an abrupt halt of all external P loading in
2015. Left panels: (1) epilimnetic phytoplankton concentration, and (4) P-fractionation
in the sediment column from 2010 to 2195. Right panel: (3) average DIP in water-column
with and without the sediment module, and (4) benthic DIP flux. Dashed lines indicate
best fit of half-life equation to modelled data as indicated in the text.
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A.5 State Variables Of The Coupled MyLake-Sediment Model

Table A.1: State variables of the coupled MyLake-Sediment model.

Variable Description Units

Physical
T Temperature ◦C
Kz Vertical diffusion m2 · d−1

Hi Ice thickness m
Hsi Snow thickness m
PAR Irradiance mol ·m−2 · d−1

Biological
Phy-I Phytoplankton (group 1) mM − P
Phy-II Phytoplankton (group 2) mM − P

Chemical
POP Particulate organic phosphorus mmol − P · L−1

s

DOP Dissolved organic phosphorus mM − P
POC Particulate organic carbon mmol − C · L−1

s

DOC Dissolved organic carbon mM − C
HPO 2–

4 Phosphate mM
O2 Dissolved oxygen mM
NO –

3 Nitrate mM
Fe(OH)3 First pool of iron oxide mmol · L−1

s

FeOOH Second pool of iron oxide mmol · L−1
s

SO 2–
4 Sulfate mM

NH +
4 Ammonia mM

Fe2+ Ferrous Iron mM
HS– Hydrogen sulfide mM
FeS Mackinawite mmol · L−1

s

FeS2 Pyrite mmol · L−1
s

S0 Sulfur mM
S8 Octasulfur mmol · L−1

s

Al(OH)3 Aluminum hydroxide mmol · L−1
s

PO4−−−Fe(OH)3 Sorbed phosphate on iron pool 1 mmol · L−1
s

PO4−−−FeOOH Sorbed phosphate on iron pool 2 mmol · L−1
s

PO4−−−Al(OH)3 Sorbed phosphate on Aluminum mmol · L−1
s

Ca2+ Calcium mmol · L−1
s

Ca3(PO4)2 Calcium phosphate mmol · L−1
s

CaCO3 Calcite mmol · L−1
s

Fe3(PO4)2 Vivianite mmol · L−1
s

FeCO3 Ferrous carbonate mmol · L−1
s

OMS Sulfurized organic matter mmol · L−1
s

149



A.6 Parameters of The Physical And Phytoplankton Modules

Table A.2: Parameters of the physical and phytoplankton modules. PAR - photosynthet-
ically active radiation with λ ∈ [400, 700] nm, and non-PAR light, where λ /∈ [400, 700]
nm. Source: C - calibrated, 1 - Saloranta and Andersen (2007).

Param. Description Value Units Source

Physical Module
ak Open water diffusion parameter 0.04165 − 1
aicek Under ice diffusion parameter 0.000898 − 1
N2
min Minimum stability frequency 7 · 10−5 s−2 1

Wstr Wind shelter parameter 0.74 − 1
αice Albedo of melting ice 0.3 − 1
αsnow Albedo of melting snow 0.77 − 1
fpar PAR fraction of the total short-wave energy 0.45 − 1
λi PAR light attenuation coefficient for ice 5 m−1 1
λs PAR light attenuation coefficient for snow 15 m−1 1
ε̂ PAR light attenuation coefficient 1.0 m−1 1
¯̂ε non-PAR light attenuation coefficient 2.5 m−1 1
ws Settling velocity for solids 0.1 m · d−1 C
dsed Sediment effective depth 17 m C
ϕ0 Porosity at SWI 0.98 − C
ϕ∞ Deep sediment porosity 0.85 − C
τ Porosity attenuation 0.5 cm−1 C
wsed Sediment accumulation rate 0.1 cm · y−1 C
α Bioirrigation constant 7.2 y−1 C

Phytoplankton Module
µ′(20) Specific growth rate at 20◦C 1.5 d−1 1
P ′ Half saturation P level 12 mg ·m−3 C
N ′ Half saturation N level 12 mg ·m−3 C
β Optical cross-section 0.015 m2 ·mg−1 1
λ′ PAR saturation level 3 · 10−5 mol ·m−2 · s−1 1
m(20) Loss rate at 20◦C 0.2 d−1 1
wp Settling velocity 0.1 m · d−1 C
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A.7 Statistical Metrics of The Coupled Model

Table A.3: Statistical metrics of the coupled model during calibration period of 2005-2010 and
during verification period of 2010-2014: MAE - mean absolute error, Bias - mean percent bias,
RMSE - root mean squared error, r - correlation coefficient, R2 - coefficient of determination.

Variable Depth MAE Bias RMSE r R2

Temperature, ◦C 0 1.11 / 1.03 -6.01 / -6.84 1.34 / 1.26 0.98 / 0.99 0.89 / 0.91
5 0.96 / 1.09 -5.89 / -7.09 1.17 / 1.33 0.98 / 0.98 0.90 / 0.91
10 0.99 / 1.11 -1.17 / -4.10 1.20 / 1.40 0.94 / 0.94 0.85 / 0.86
15 1.11 / 0.96 -0.29 / -0.88 1.35 / 1.15 0.91 / 0.94 0.78 / 0.83
20 1.07 / 0.89 -2.27 / -3.90 1.32 / 1.07 0.90 / 0.95 0.74 / 0.82
25 1.06 / 0.91 -3.99 / -5.91 1.36 / 1.11 0.89 / 0.95 0.69 / 0.79
30 1.11 / 1.00 -4.81 / -7.44 1.40 / 1.19 0.88 / 0.93 0.65 / 0.71
35 1.12 / 1.20 -5.68 / -9.70 1.40 / 1.58 0.88 / 0.86 0.58 / 0.38
40 1.02 / 1.67 -8.83 / -11.68 1.37 / 2.19 0.89 / 0.69 0.59 / -0.16

Oxygen, mg/L 0 1.38 / 0.75 -4.65 / -0.54 1.87 / 1.13 0.41 / 0.47 0.11 / 0.19
5 1.48 / 0.72 -6.23 / -0.97 1.92 / 1.04 0.43 / 0.56 0.09 / 0.30
10 1.77 / 1.15 -6.15 / 1.76 2.24 / 1.41 0.49 / 0.58 0.18 / 0.32
15 1.94 / 1.44 -3.63 / 5.65 2.55 / 1.73 0.54 / 0.62 0.27 / 0.32
20 1.96 / 1.52 -0.13 / 7.52 2.44 / 1.93 0.55 / 0.60 0.30 / 0.28
25 1.95 / 1.57 0.00 / 6.90 2.48 / 2.14 0.56 / 0.53 0.32 / 0.19
30 2.07 / 1.44 -4.03 / 3.25 2.74 / 2.11 0.51 / 0.59 0.24 / 0.30
35 2.33 / 1.53 -10.65 / -4.72 3.04 / 2.18 0.45 / 0.65 0.11 / 0.39
40 2.96 / 2.28 -31.74 / -8.30 3.57 / 3.12 0.60 / 0.51 -0.20 / 0.16

Phosphorus, µg/L
Total 0-4 5.21 / 5.95 3.37 / -13.52 6.54 / 7.20 0.72 / 0.55 0.29 / -0.60
Dissolved 0-4 4.16 / 5.52 -42.05 / -54.49 5.09 / 6.33 0.60 / 0.64 -0.30 / -0.71
Particulate 0-4 4.06 / 2.67 20.67 / -5.50 5.22 / 3.37 0.48 / 0.41 -1.20 / -0.10
Phytoplankton 0-4 8.02 / 4.67 -36.45 / -14.85 11.03 / 5.91 0.49 / 0.44 -0.25 / -0.04
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A.8 Parameters of The Reaction Network

Table A.4: Parameters of the reaction network. Source: C - calibrated or from 1 -
Canavan et al. [2006], 2 - Van Cappellen and Wang [1996]; 3 - Atkin and Tjoelker [2003];
4 - Dijkstra et al. [2018]; 5 - Couture et al. [2016]; 6 - Katsev and Dittrich [2013]; 7 - lnl
PhreeqC database, Parkhurst and Apello [2014].

Parameter Value Units Source Literature Values no.

Primary Redox Reactions

k(5)P OP 2× 10−1 y−1 C 1× 10−2 − 4× 101 R1-R6

k(5)DOP 4× 10−1 y−1 C R1-R6

k(5)P OC 3× 10−3 y−1 C 2× 10−3 − 1.5× 10−1 R1-R6

k(5)DOC 7× 10−3 y−1 C R1-R6

KO
m 8× 10−3 mM 1 8× 10−4 − 2× 10−2 R1-R6

K
N(V)
m 1× 10−2 mM 1 3× 10−3 − 2× 10−1 R2-R6

K
Fe(IIIa)
m 1.5× 103 mmol · L−1

s C 6× 10−1 − 5× 103 R3-R6

K
Fe(IIIb)
m 1× 104 mmol · L−1

s C 5× 101 − 2.3× 104 R4-R6

K
S(VI)
m 1 mM 1 1.1× 10−2 − 1.6 R5, R6

Q10 2 − 3 1.2− 4 R1-R6

accel 3× 102 − C 1− 1× 102 R1, R2

Ψ 1.5× 10−3 − 4 1.5× 10−3 − 7.5× 10−2 R5, R6

Secondary Redox Reactions

ktsox 1× 106 mM−1 · y−1 1 1.6× 102 − 1.6× 106 R11

ktsfe 2.5 mM−1 · y−1 1 2.5− 9.5× 101 R12

kfeox 5× 104 mM−1 · y−1 1 3.5× 102 − 1.6× 107 R13

kamox 2× 104 mM−1 · y−1 1 5× 103 − 7.9× 104 R14

kch4o2 1× 107 mM−1 · y−1 1 1× 107 R15

kch4so4 1× 10−1 mM−1 · y−1 1 1× 10−1 − 107 R16

Mineral precipitation - dissolution reactions

koms 1.6× 10−2 mM−1 · y−1 5 1.6× 10−2 − 7.8× 10−2 R21

kspre 2.5× 103 y−1 5 2.5× 103 − 3.6× 103 R22a

ksdis 1× 10−1 y−1 5 1× 10−1 R22b

kfes2ox 2× 102 Ls ·mmol−1 · y−1 6 2× 102 R23

kfespre 1× 10−1 Ls ·mmol−1 · y−1 5 1× 10−1 − 1× 102 R24

kfesox 2× 104 Ls ·mmol−1 · y−1 1 1× 103 − 2× 104 R25

kfes2pre 1.3 mmol · L−1
s · y−1 1 2× 10−1 − 3.3 R26

kfepre 2.5× 10−3 mmol · L−1
s · y−1 6 2.5× 10−3 − 2.2× 101 R27a

kfedis 1× 10−3 y−1 1 1× 10−3 R27b

KF eS 9.6× 103 − 1 2.5× 103 − 4.9× 104 R27a, R27b

kCCpre 1× 10−1 mmol · L−1
s · y−1 6 1× 10−1 R28a

kCCdis 1.25× 10−1 y−1 6 5× 10−2 − 1.25× 10−1 R28b

KCC 5× 10−15 mM2 7 5× 10−15 R28a, R29b

kF Cpre 1.8× 102 mmol · L−1
s · y−1 2 6.5× 10−2 − 1.8× 102 R29a

kF Cdis 2.5× 10−1 y−1 2 5× 10−2 − 2.5× 10−1 R29b

KF C 3.9× 10−15 mM2 2 3.9× 10−15 R29a, R29b

Phosphorus sorption and precipitation reactions

k
F e(IIIa)
psorb

5 mM−1 · y−1 C − R31a

k
F e(IIIb)
psorb

5 mM−1 · y−1 C − R32a

kAl
psorb

5 mM−1 · y−1 C − R35a

kvivpre 1.1× 10−2 mmol · L−1
s · y−1 C 2.5× 10−4 R33a

kvivdis 5.3× 10−3 y−1 C 1.0 R33b

Kviv 1.9× 10−14 mM3 7 1.9× 10−14 R33a, R33b

kapapre 1.4× 10−6 mmol · L−1
s · y−1 C − R34a

kapadis 3.7× 10−2 y−1 C − R34b

Kapa 6× 10−20 mM3 7 5.9× 10−14 R34a, R34b
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A.9 Physical Transport Properties of The Solute Constituents

Table A.5: Molecular diffusion coefficients at 5◦C for solute constituents used in the
sediment module. Diffusion coefficients for ions were corrected for temperature using
linear regression according to Boudreau [1997], for non-charged species – using empirical
correlation of Wilke and Chang as corrected by Hayduk and Laudie [Boudreau, 1997 ].
Units are cm2 y−1.

Species D◦ Species D◦ Species D◦ Species D◦
DOP 85 NH3 398 HS– 280 CO 2–

3 167
HPO 2–

4 105 NH +
4 363 S0 210 CO2(aq) 310

DOC 85 Fe2+ 127 CH4(aq) 308
O2 369 SO 2+

4 190 Ca2+ 141
NO –

3 359 H2S 294 HCO –
3 202
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Appendix B

Supporting information for Chapter 3

B.1 Parameter values used in the simulations

no r,
[

mol
mol−C·s

]
literature values KS

m literature values KEA
m literature values

R1G 2.8 · 10−6x 5.5 · 10−5 – 1.6 · 10−3r 0.1 mMx 0.2 µM – 0.55 mMp,q 8 µMx 1 µM – 100 µM f,n

R2G 2.8 · 10−6x 5.5 · 10−5 – 1.6 · 10−3r 0.1 mMx 0.2 µM – 0.55 mMp,q 1 µMx 1 µM – 80 µM f,n

R3G 2.8 · 10−6x 5.5 · 10−5 – 1.6 · 10−3r 0.1 mMx 0.2 µM – 0.55 mMp,q - -
R1P 3.1 · 10−6x 3.8 · 10−8i 6.6 µMx 1 µM – 0.11 mMd,j - -

R1A 3.8 · 10−4x 1 · 10−4i 0.2 mMx 60 µM – 0.5 mMo,m 8 µMx 1 µM – 100 µM f,n

R2A 4.0 · 10−4x 2 · 10−5i 0.2 mMx 60 µM – 0.5 mMo,m 1 µMx 1 µM – 80 µM f,n

R3A 1.7 · 10−6x 9 · 10−8i 0.2 mMx 60 µM – 0.5 mMo,m 110 µMx 3 µM – 0.25 mMe,g,h,n

R4A2 2.4 · 10−7x 4 · 10−7 – 1.5 · 10−5i,m 0.2 mMx 60 µM – 0.5 mMo,m 110 µMx 3 µM – 0.25 mMe,g,h,n

R5A 1.3 · 10−5x 10−5 – 10−3i,m 0.2 mMx 60 µM – 0.5 mMo,m 0.2 mMx 60 µM – 1 mMc,h,l,n

R6A 3.8 · 10−7x 8 · 10−7 – 3 · 10−4i,m 0.2 mMx 60 µM – 5 mM o,m - -

R1H 3.8 · 10−4x 10−3i 8 nMx 1 nM – 0.6 mMa,b 8 µMx 1 µM – 100 µM f,n

R2H 3.7 · 10−4x 10−3i 8 nMx 1 nM – 0.6 mMa,b 1 µMx 2 µM – 80 µM f,n

R3H 2.3 · 10−6x 1.1 · 10−4i 8 nMx 1 nM – 0.6 mMa,b 110 µMx 3 µM – 0.25 mMe,g,h,n

R4H 5.4 · 10−7x 5 · 10−4i 8 nMx 1 nM – 0.6 mMa,b 110 µMx 3 µM – 0.25 mMe,g,h,n

R5H 3.5 · 10−5x 9 · 10−4i 8 nMx 1 nM – 0.6 mMa,b 0.2 mMx 60 µM – 1 mMc,h,l,n

R6H 8.0 · 10−6x 10−3i 8 nMx 1 nM – 0.6 mMa,b - -

Table C1: Kinetic parameters of microbial reactions used in the models of contaminant
plume (batch reactor; Watson et al., 2003) and freshwater sediment (column). Biomass
yield coefficients are taken from Watson et al., 2003. Membrane voltage potential, ∆Ψ,
equals 160 mV for all reactions including fermentation. The rate law and parameters
for secondary reactions such as iron oxidation with oxygen and mackinawite formation
are taken from (Couture et al., 2015). Henry constants for H2(aq) and CH4(aq) are
taken from Sander (2015). Range of kinetic parameters are taken from: aAhring and
Westermann (1987), bGiraldo-Gomez et al. (1992), cWang and Van Cappellen (1996),
dMayer et al. (2001), eRoden and Wetzel (2002), fBerg (2003), gFerro (2003), hSchauser
et al. (2004), iWatson et al. (2005, 2003), jVijayagopal and Viruthagiri (2005), kRoden
(2006), lPallud and Van Cappellen (2006), mBethke et al. (2008), nKatsev and Dittrich
(2013), oIngvorsen et al. (1984), pFuechslin et al. (2012), qSenn et al. (1994), rFuhrer et al.
(2005), xcalibrated to match Watson et al. (2003) experimental results.
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Table C2: Initial concentrations and boundary conditions used in the model of lacustrine
sediment. The porosity of the sediment column is assumed to be constant and equal
0.8. The burial rate is 0.2 cm/y. C0 – is the initial concentration, BC(t) and BC(b) –
boundary condition values and types the top (t) and bottom (b), respectively.

name variable C0,
[

mol
L

]
BC(t),

[
mol

cm2·y

]
BC(b),

[
mol

cm2·y

]
Biomass
Aerobs XA 5 · 10−4 0 Flux 0 Flux
Fermenters XF 5 · 10−4 0 Flux 0 Flux
Nitrate reducers XN 5 · 10−4 0 Flux 0 Flux
Iron reducers XI 5 · 10−4 0 Flux 0 Flux
Sulfate reducers XS 5 · 10−4 0 Flux 0 Flux
Methanogens XM 5 · 10−5 0 Flux 0 Flux

Solids
Organic matter OM 10−5 7 · 10−5 Flux 0 Flux
Iron mineral FeOOH 10−3 10−7 Flux 0 Flux
Adsorbed iron =Fe2+ 10−10 0 Flux 0 Flux

Dissolved
Glucose C6H12O6 10−6 0 Flux 0 Flux
Acetate CH3COO– 10−6 0 Flux 0 Flux
Hydrogen H2(aq) 10−6 0 Flux 0 Flux
Oxygen O2 10−6 3 · 10−4 Constant 0 Flux
Nitrate NO –

3 10−6 10−4 Constant 0 Flux
Ferrous iron Fe2+ 10−6 0 Flux 0 Flux
Sulfide HS– 10−6 0 Flux 0 Flux
Sulfate SO 2–

4 10−4 10−4 Constant 0 Flux
Methane CH4(aq) 10−12 10−12 Constant 0 Flux

Table C3: Molecular diffusion coefficients at 10◦C for solute constituents used in the
sediment example. Diffusion coefficients for ions were corrected for temperature using
linear regression according to Boudreau (1997), for non-charged species – using empirical
correlation of Wilke and Chang as corrected by Hayduk and Laudie (Boudreau, 1997).
Units are cm2 y−1.

species D◦ species D◦ species D◦
C6H12O6 85 HS– 280 O2 369
CH3COO– 100 SO 2+

4 190 NO –
3 363

H2(aq) 1132 CH4(aq) 391 Fe2+ 127
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B.2 Results of the reproduced model and the model with the thermodynamic

switch function
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Figure C1: Results of reproduced Watson et al. (2003) model (dashed line) and model with
thermodynamic switch function (solid lines). Symbols are experimental data from Watson
et al. (2003). For the additional information, refer to the original work.
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Appendix C

Supporting Information for Chapter 4

C.1 Characteristics of water gauging stations used for the estimation of the

water runoff for the period 2003-2017
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Table C1: Characteristics of water gauging stations used for the estimation of the water runoff for the period 2003-2017.

Basin Side Name Code
Coordinates

Area, km2 Coverage,
days

Statistical Characteristics of Measurements, cms

Latitude Longitude mean SD min 25% 50% 75% max

SCR US St. Clair River At Port Huron, MI 04159130 42.986974 -82.424637 576014 2765 5090.5 624.9 2452.8 4760 5096 5488 6720
SCR US Black River Near Jeddo, MI 04159492 43.150860 -82.624647 1202 5479 8.6 18.7 0.2 1.1 2.6 7.7 278.9
SCR US Mill Creek Near Avoca, MI 04159900 43.054471 -82.734649 438 5479 3 5.5 0.1 0.4 1 3 95.2
SCR US Belle River At Memphis, MI 04160600 42.900862 -82.769091 391 5479 3.1 5.4 0.2 0.6 1.2 3 72.2
SCR CA St. Clair River At Port Huron, ON 02GG014 42.986939 -82.424721 576013 1507 4971.9 431.7 2890 4790 5010 5240 6340

LSC US Clinton River At Moravian Drive At Mt. Clemens, MI 04165500 42.595867 -82.908810 1901 5479 19.4 21.2 1.6 7.7 12.6 23.5 350
LSC US North Branch Clinton River Near Mt. Clemens, MI 04164500 42.629200 -82.888810 515 5479 4.6 8.3 0 0.7 1.7 4.6 173.6
LSC CA Thames River At Thamesville, ON 02GE003 42.544861 -81.967270 4370 5479 59 80.5 5.9 15.8 28.9 65.5 893
LSC CA Thames River Near Dutton, ON 02GE006 42.730690 -81.577469 3820 4658 53.2 70.8 5.9 15.2 26.2 60 766
LSC CA Thames River At Byron, ON 02GE002 42.962502 -81.331780 3080 5479 44.7 67 4.4 12.4 21.3 48.2 856
LSC CA Sydenham River At Florence, ON 02GG003 42.650612 -82.008392 1150 5479 12.7 21.4 0.2 1.8 4.7 12.4 227
LSC CA Sydenham River Near Alvinston, ON 02GG002 42.830810 -81.851723 701 5479 7.9 13.6 0.5 1.5 3 7.5 174
LSC CA Bear Creek Below Brigden, ON 02GG009 42.812031 -82.298424 536 5479 5.8 12.4 0 0.4 1.4 5.2 206
LSC CA Bear Creek Near Petrolia, ON 02GG006 42.905830 -82.119110 249 5479 2.9 7.6 0 0.2 0.6 2 140
LSC CA Black Creek Near Bradshaw, ON 02GG013 42.762440 -82.259216 213 4262 2.6 6.6 0 0.1 0.3 1.5 109
LSC CA Mcgregor Creek Near Chatham, ON 02GE007 42.383499 -82.095062 204 3945 2.2 5.8 0 0.1 0.4 1.4 81.5
LSC CA Sydenham River At Strathroy, ON 02GG005 42.958859 -81.627136 171 5479 2.1 3.7 0.1 0.6 0.9 2 52.4
LSC CA Ruscom River Near Ruscom Station, ON 02GH002 42.211498 -82.629143 125 5479 1.1 3.1 0 0.1 0.2 0.6 46.4

DR US Detroit River At Fort Wayne At Detroit, MI 04165710 42.298094 -83.092700 592590 1299 5833.3 1016.9 3024 5124 6216 6636 7588
DR US River Rouge At Detroit, MI 04166500 42.373092 -83.254651 484 5479 4.5 6.1 0.5 1.5 2.6 4.8 142.5
DR US Middle River Rouge Near Garden City, MI 04167000 42.348093 -83.311597 259 5479 3 3.6 0.4 1.1 1.8 3.3 72.5
DR US Lower River Rouge At Dearborn, MI 04168400 42.308371 -83.252706 236 2805 3 3.6 0 1.2 1.8 3.1 56.6
DR US Ecorse River At Dearborn Heights, MI 04168580 42.269483 -83.289652 26 5479 0.2 0.5 0 0 0.1 0.2 10.1
DR CA Canard River Near Lukerville, ON 02GH003 42.158970 -83.018890 159 5479 1.9 5 0 0.1 0.2 1.1 84.8
DR CA Little River At Windsor, ON 02GH011 42.309860 -82.928497 55 5052 0.7 1.8 0 0.1 0.1 0.5 28.7
DR CA Turkey Creek At Windsor, ON 02GH004 42.260502 -83.039833 30 3268 0.4 0.6 0 0.1 0.1 0.3 7.7
DR CA Turkey Creek At South Windsor, ON 02GH016 42.264080 -83.032417 15 277 0.4 1.4 0 0.1 0.1 0.2 19.7

WB US Maumee River At Waterville, OH 04193500 41.500053 -83.712715 16395 5479 185.2 291.7 1.5 23.8 65 209 2634.8
WB US River Raisin Near Monroe, MI 04176500 41.960601 -83.531046 2699 5479 24 31.4 1.4 5.8 11.8 28.3 358.4
WB US Huron River At Ann Arbor, MI 04174500 42.286982 -83.733830 1888 5479 15.3 11.6 0.9 7.4 11.9 19.9 91.6
WB US Portage River Near Elmore, OH 04195820 41.491162 -83.224645 1279 5479 16.4 35.9 0.1 1.2 3.9 12.9 366.8
WB US Ottawa River At University Of Toledo, Toledo, OH 04177000 41.659681 -83.612547 388 5479 3.7 7.2 0.1 0.4 1.2 3.4 77.8
WB US Lower River Rouge At Inkster, MI 04168000 42.300593 -83.300208 215 5022 3 3.8 0 1.2 1.7 3.1 58.5
WB US Otter Creek At La Salle, MI 04176605 41.866990 -83.453544 132 3195 1.4 3 0 0.1 0.4 1.4 54
WB US Wolf Creek At Holland, OH 04193999 41.609444 -83.684167 64 1109 0.9 1.5 0 0.2 0.4 0.9 17.9
WB US Malletts Creek At Ann Arbor, MI 04174518 42.264761 -83.688273 28 5479 0.3 0.6 0 0.1 0.1 0.3 21.7
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Table C1: (Continued)

Basin Side Name Code
Coordinates

Area, km2 Coverage,
days

Statistical Characteristics of Measurements, cms

Latitude Longitude mean SD min 25% 50% 75% max

CB US Sandusky River Near Fremont, OH 04198000 41.307831 -83.158809 3240 5479 42.1 79.5 0.7 4.4 12.1 38.4 728
CB US Cuyahoga River Near Newburgh Heights, OH 04208504 41.462552 -81.680963 2041 5103 41 38.3 7.2 17.8 28.3 48.6 448
CB US Grand River Near Painesville, OH 04212100 41.718934 -81.227879 1774 5479 31.7 46.1 0.3 4.5 13.4 39.9 630
CB US Black River At Elyria, OH 04200500 41.380324 -82.104593 1026 5479 13.2 29.5 0.1 1.1 3.5 10.6 341.6
CB US Huron River At Milan, OH 04199000 41.300885 -82.608233 961 5479 12.3 28.4 0.2 1.5 3.7 9.5 411.6
CB US Rocky River Near Berea, OH 04201500 41.407548 -81.882638 692 5479 11.5 23.7 0.3 2 4.2 9.9 417.2
CB US Vermilion River Near Vermilion, OH 04199500 41.381990 -82.316827 679 5479 9.2 21.7 0 0.8 2.6 7.6 322
CB US Chagrin River At Willoughby, OH 04209000 41.630881 -81.403445 637 5479 13.2 22.5 0.9 3 6 12.7 319.2
CB US Conneaut Creek At Conneaut, OH 04213000 41.926999 -80.603966 453 5479 9 15.4 0.1 1.4 4 9.8 253.7
CB US Euclid Creek At Cleveland, OH 04208700 41.582272 -81.558734 60 2332 1.1 2.3 0.1 0.3 0.5 1 39.8
CB US Old Woman Creek At Berlin Rd Near Huron, OH 04199155 41.348383 -82.513782 57 5479 0.7 2 0 0 0.2 0.5 33.3
CB US Abram Creek At Kolthoff Drive At Brook Park, OH 04201526 41.393056 -81.850278 21 1645 0.3 0.6 0 0.1 0.1 0.3 5.6
CB CA Big Otter Creek Near Calton, ON 02GC026 42.710670 -80.840813 665 5479 9.1 11.5 1.6 3.2 5.3 9.8 152
CB CA Big Otter Creek At Tillsonburg, ON 02GC010 42.857311 -80.723579 354 5479 4.5 6.5 0.4 1.4 2.3 4.6 102
CB CA Kettle Creek At St. Thomas, ON 02GC002 42.777691 -81.213997 331 5479 3.9 9.2 0.1 0.4 1 3.1 139
CB CA Catfish Creek Near Sparta, ON 02GC018 42.746078 -81.056938 295 5435 3.5 8.1 0.1 0.4 1.1 2.9 170
CB CA Kettle Creek Above St. Thomas, ON 02GC029 42.835190 -81.134720 134 5479 1.6 3.9 0 0.1 0.4 1.2 64.3
CB CA Catfish Creek At Aylmer, ON 02GC030 42.773750 -80.982674 127 5479 1.5 3.2 0 0.2 0.5 1.3 66.4
CB CA Dodd Creek Below Paynes Mills, ON 02GC031 42.787392 -81.267502 100 5479 1.2 3 0 0.1 0.3 0.9 50.6
CB CA Silver Creek Near Grovesend, ON 02GC036 42.675831 -80.953331 40 3653 0.5 0.7 0.1 0.2 0.3 0.5 17.8

EB US Cattaraugus Creek At Gowanda, NY 04213500 42.463333 -78.934167 1129 5479 23.1 30.1 2 7.7 14.5 26.4 515.2
EB US Buffalo Creek At Gardenville, NY 04214500 42.854722 -78.755000 368 3651 6.4 10.6 0.1 1.4 3.1 6.6 152.9
EB US Cazenovia Creek At Ebenezer, NY 04215500 42.829722 -78.775000 350 5479 7.8 14.1 0.1 1.5 3.6 7.7 250.6
EB US Cayuga Creek Near Lancaster, NY 04215000 42.890000 -78.645000 250 5479 4.5 8.9 0 0.6 1.9 4.3 124.3
EB CA Grand River At Brantford, ON 02GB001 43.132721 -80.267311 5200 5479 65.5 74.8 11.7 26.4 39 73 1000
EB CA Grand River At Galt, ON 02GA003 43.353111 -80.315750 3520 5479 45.1 54.4 6.4 18 25.5 48.5 780
EB CA Big Creek Near Walsingham, ON 02GC007 42.685612 -80.538467 567 5479 7.4 5.5 1.6 4 5.9 8.9 75.4
EB CA Nanticoke Creek At Nanticoke, ON 02GC022 42.809921 -80.076172 177 4765 1.9 2.7 0 0.4 1 2.3 39.8
EB CA Mckenzie Creek Near Caledonia, ON 02GB010 43.033939 -79.949806 173 5479 2.1 3.3 0 0.4 0.9 2.1 38.9
EB CA Lynn River At Simcoe, ON 02GC008 42.823330 -80.289436 144 5479 1.8 1.2 0.6 1.1 1.5 2.2 21.1
EB CA Venison Creek Near Walsingham, ON 02GC021 42.653359 -80.548439 68 3646 1.4 1 0.5 0.8 1.1 1.6 8.4
EB CA Young Creek Near Vittoria, ON 02GC014 42.765751 -80.294579 66 2097 0.8 0.5 0.3 0.5 0.7 1 7

NR US Niagara River At Buffalo, NY 04216000 42.877778 -78.916389 682980 5478 5761.2 551.3 3808 5376 5712 6076 8176
NR US Tonawanda Creek At Rapids, NY 04218000 43.093056 -78.636111 904 5479 13.9 18.2 0.3 2.9 7.6 16.8 159.3
NR US Ellicott Creek Below Williamsville, NY 04218518 42.977778 -78.763611 211 5479 4.3 5.9 0.3 1.3 2.5 4.6 74.8
NR CA Niagara River At Queenston, ON 02HA003 43.156941 -79.047218 686000 5479 5860 568.9 3910 5460 5820 6200 8190
NR CA Niagara River At Fort Erie, ON 02HA013 42.930279 -78.914169 683000 585 5778.8 619.1 3900 5340 5740 6220 8460
NR CA Welland Canal Diversion From Lake Erie, ON 02HA019 42.950001 -79.216667 683000 5386 190.6 51.2 19.1 152 199 234 304
NR CA Welland River Below Caistor Corners, ON 02HA007 43.021778 -79.618019 223 5470 2.6 6.2 0 0.1 0.4 2 82.5
NR CA Oswego Creek At Canborough, ON 02HA024 42.991310 -79.678253 83 2647 1.2 3.1 0 0 0.1 0.8 50
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C.2 Annual and monthly average values of evaporation
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Figure C1: a) Historical 1900-2017 annual and b) 2003-2017 monthly average values of
evaporation in Lake Erie as reported by NOAA (blue lines), as well as the trends estimated
by linear regression (dashed black line) and moving averages (red lines).
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C.3 Water level
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Figure C2: Historical water levels of the LGLs above of Lake Erie and their Pearson
correlation coefficient with respect to the water level of Lake Erie.
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C.4 Correlation of annual change of water level of Lake Erie with El Niño -

Southern Oscillation Index
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Figure C3: Correlation of annual change (derivative) of water level of Lake Erie with El
Niño - Southern Oscillation Index (ENSO).
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C.5 Overall water budget

Figure C4: Pie charts of water budget for the period from 2003 to 2017.
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C.6 Index of bloom severity
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Figure C5: Index of bloom severity of Lake Erie as estimated by NOAA.
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C.7 Comparison of precipitation and evaporation data provided by ERA5

and NOAA
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Figure C6: Comparison of (a) precipitation data and (b) evaporation data provided by
ERA5 and NOAA.

Data on precipitation and evaporation was acquired from National Oceanic and At-

mospheric Administration (NOAA) and European Centre for Medium- Range Weather

Forecasts (ECMWF) ERA5 datasets. ERA5 is hourly gridded reanalysis data using 4D-

Var data assimilation in ECMWF’s Integrated Forecast System available from 1979. How-

ever, each method has unique sources of uncertainty and variability. We compare the

values from these two sources in the supplemental material (fig. C6). As a part of Coper-

nicus Earth observation programme, ECMWF provides estimates of a large number of

oceanic, atmospheric, and land climate variables in 5th ECMWF Re-Analysis (ERA5)

dataset (www.ecmwf.int). With high temporal and spatial resolution (hourly on 31 km

grid), ERA5 combines historical observations into global estimates using modelling and

data assimilation systems. Together with estimates of uncertainty, reanalysis includes

estimate of precipitation and runoff from a Numerical Weather Prediction model, ground

observations and satellite data. The uncertainty of these products are estimated using

“Ensemble Spread” products to calculate daily gridded standard deviation over Lake Erie.

Data used from this source includes main daily precipitation, evaporation, surface runoff,

and cloud cover and the error bound estimates are 0.84 mm, 0.06 mm, 0.17 mm, and 0.2

percent, respectively. At present, ERA5 dataset is starting from 1979, while the entire
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dataset from 1950 is expected to be available in late 2019.
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C.8 Comparison of monthly average values of precipitation and runoff
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Figure C7: Monthly average values for the period 1940-79 compared with average values
for the period from 1980-2017. (a) precipitation and (b) runoff as estimated by NOAA.
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C.9 Average annual water outflow from Lake Erie
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Figure C8: Average annual water outflow from Lake Erie for the period from 1917 to 2017
(black circles). The outflow estimated based on the Niagara River and Welland canal
historical records. The thick black line represents water level obtained from the US Army
Corps of Engineers. The thick dot-dashed black line represents the water level of Lake St.
Clair (WL LSC). The thin dashed black line represents the water level of St. Clair River
(WL SCR). The shaded blue and red areas represent the El Niño–Southern Oscillation
Index (ENSO).
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C.10 Detailed frequency analysis
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(a) Detrended and Normalized Water Level of Lake Erie

Figure C9: The local wavelet power spectrum analysis of Lake Erie water level for the
period from 1917 to 2017. a) water level detrended and normalized to standard deviation,
b) Morlet wavelet power spectrum, c) the global wavelet power spectra, d) the scale
averaged wavelet spectrum.

1920 1940 1960 1980 2000

0.25
0.5
1.0
2.0
4.0
8.0

16.0
32.0

P
er

io
d 

(y
ea

rs
)

(b) Wavelet Power Spectrum

0 1000 2000
Power, mm2

(c) Global

1920 1940 1960 1980 2000

10
2

10
3

10
4

A
ve

ra
ge

 v
ar

ia
nc

e,
 m

m

(d) Scale-averaged Power

Periods
1 - 6 months
8 - 14 months

1920 1940 1960 1980 2000
2

0

2

4

V
ar

ia
nc

e 
in

te
rv

al

(a) Detrended and Normalized Prcipitation of Lake Erie

Figure C10: The local wavelet power spectrum analysis of over-lake precipitation of Lake
Erie for the period from 1917 to 2017. a) precipitation detrended and normalized to stan-
dard deviation, b) Morlet wavelet power spectrum, c) the global wavelet power spectra,
d) the scale averaged wavelet spectrum.
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Figure C11: The local wavelet power spectrum analysis Lake Erie runoff for the period
from 1917 to 2017. a) runoff detrended and normalized to standard deviation, b) Morlet
wavelet power spectrum, c) the global wavelet power spectra, d) the scale averaged wavelet
spectrum.
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Figure C12: The local wavelet power spectrum analysis Lake Erie El Niño - Southern
Oscillation Index (ENSO) for the period from 1917 to 2017. a) ENSO detrended and
normalized to standard deviation, b) Morlet wavelet power spectrum, c) the global wavelet
power spectra, d) the scale averaged wavelet spectrum.
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C.11 Monthly average values of precipitation, evaporation and runoff of Lake

St. Clair and Lake Erie.
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Figure C13: Monthly average values of precipitation, evaporation and runoff of (a) Lake
St. Clair and (b) Lake Erie. The monthly average values are reported for the period from
2003 to 2017.
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C.12 Monthly average values of precipitation, evaporation and runoff of Lake

St. Clair and Lake Erie.

500

750

1000

1250

1500

Pr
ec

ip
ita

tio
n,

 m
m

y
1

Linear Regression
slope = 0.5, intercept = 849

500

1000

1500

R
un

of
f, 

m
m

y
1 Linear Regression

slope = 3.8, intercept = 598

1

0

1

2

EN
SO

 In
de

x

173.40
173.80
174.14
174.60
175.01
175.33
175.80

W
at

er
 L

ev
el

, m

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
4000
5000
5980
7000
8000
9000

W
at

er
 o

ut
flo

w
s, 

cm
s

Outflow of LE WL SCR WL LSC WL LE +ENSO ENSO

Runoff Runoff Trend (Regression) Runoff (10y MA)

Precipitation Precipitation Trend (Regression) Precipitation (10y MA)

Figure C14: (A) Historical 1917-2017 monthly average values of precipitation over the
Lake Erie (black circles), as well as the trend estimated by linear regression (dashed
black line), and moving averages (red line). (B) Historical 1917-2017 monthly average
values of runoff to the Lake Erie (black circles), linear regression trend (dashed black
line), and moving averages (red line). (C) Average annual water outflow from Lake Erie
for the period from 1980 to 2003 (black circles). The outflow estimated based on the
Niagara River and Welland canal historical records. Thick black line represents water level
obtained from the US Army Corps of Engineers. Thick dot-dashed black line represents
the water level of Lake St. Clair (WL LSC). Thin dashed black line represents the
water level of St. Clair River (WL SCR). The shaded blue and red areas represent El
Niño–Southern Oscillation Index (ENSO).
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Appendix D

Supporting Information for Chapter 5

D.1 Analytical Solutions

The numerical scheme results were verified against analytical solutions for transport

and reaction problems. Analytical solutions for transport in 1-D flow field with diffusion

without chemical reaction (Ogata and Banks, 1961):

C(x, t) = Co
2

[
erfc

(
x− wt
2
√
Dt

)
+ exp

(
wx

D

)
erfc

(
x− wt
2
√
Dt

)]
(D.1)

where erfc – is the complimentary error function. Figure D1a compares analytical

and numerical solutions for advective-diffusive transport with constant boundary condi-

tion Co.

Analytical solution for first-order process:

C(t) = C0exp(−kt) (D.2)

where k – is a first-order decay constant. Figure D1b compares analytical and

numerical solutions for the first-order decay reaction.
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Figure D1: Comparison of numerical and analytical solutions for (a) transport and (b)
reaction problems.

D.2 Methods’ Names and Keywords Used in PorousMediaLab

D.2.1 Batch Class

• batch = Batch(tend, dt) – keyword initiates instance batch of master class Batch.

User should provide total time of the simulation and time-step of the desired result.

During the simulation the PorousMediaLab will adjust dt if integration methods do

not converge at the provided time-step. The result will be returned at the time-step

specified by the user. The name of the instance variable batch used in the examples

is not strictly defined, user may chose any other convenient name;

• batch.add_species(name, init_conc) – an instance method that adds elements (re-

active or trace) into the batch system. The user should provide the name of the

element and initial concentration.

D.2.2 Column Class

• column = Column(length, dx, tend, dt, w=0, ode_method=’scipy’) – keyword initi-

ates instance column of master class Column. The user should provide the length

of the domain length, the mesh size dx, the total time of the simulation tend and

time-step of the desired result dt. There are optional argument such as advective
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velocity of all species w and ODE integration method ode_method. During the sim-

ulation, the PorousMediaLab will adjust dt if integration methods do not converge

at the provided time-step. The result will be returned at the time-step specified

by the user. The name of the instance variable column used in the examples is not

strictly defined, the user may choose any other convenient name;

• column.add_species(theta, name, init_conc, bc_top_value, bc_top_type, bc_bot_value,

bc_bot_type, w) – an instance method that adds elements (reactive or trace) into

the column. The user should provide porosity theta, the name of the element name,

initial concentration init_conc, top and bottom boundary conditions bc_top_value,

bc_top_type, bc_bot_value, bc_bot_type. Advective velocity w – is an optional

argument with default value of 0.

D.2.3 Common Methods of Batch and Column Class

• instance.add_acid(species, pKa, charge) – an instance method that adds acid and

create an acid-base system. User should provide list of species (e.g., [’H3PO4’,

’H2PO4’, ’HPO4’, ’PO4’], which were previously added in instance of column or

batch via using method add_speceis), give a list of pKa values (e.g., [2.148, 7.198,

12.375]), and assign the charge of the most protonated element using keyword charge.

Note that instance variable is declared variable during instantiation of the Column

or Batch class and is not strictly defined, so that user may chose any other convenient

name.

• instance.add_ion(name, charge) – an instance method that adds non-dissociative

ion in acid-base system which is participating in the charge balance. Arguments:

name – name of the chemical element, charge – charge of the ion (e.g., -3, -2, -1,

+1, +2, +3, etc.).

• instance.henry_equilibrium(aq, gas, Hcc) – an instance method that adds linear

partitioning between the aqueous and gaseous phase. Arguments: aq – name of

aquatic species, gas – name of gaseous species, Hcc – Henry Law Constant.
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• instance.constants – hash (dictionary-like) variable that assigns the names and val-

ues of constants used in the estimation of reaction rates.

• instance.rates – hash (dictionary-like) variable that assigns the names and values of

rates used in the computation of mass-conservation equations.

• instance.dcdt – hash (dictionary-like) variable that assigns the names and values of

the mass-conservation equations.

• instance.solve() – an instance method that solves the system of the transport and

mass-conversation reaction equations in time from 0 till tend.

• instance.integrate_one_timestep() – an instance method that solves the system the

transport mass-conversation reaction equations in time for one time-step dt. The

method is useful for the numerical systems with transient parameters.

• instance.reconstruct_rates() – an instance method that reconstructs absolute values

of the rates in column.rates.

• instance.time – array of time starting from 0 to tend with the step dt.

• instance.NO3.concentration – after the solution of the numerical equations user

can access the solved variables by using dot notation. This example demonstrates

access to an array of NO3 concentration after the solution of the transport and

mass-conversation reaction equations.

• instance.save_results_in_hdf5() – after the solution of the numerical equations user

can save the results and parameters in HDF5 file ’results.h5’.

D.2.4 Plotting Methods

• instance.plot_profiles() – the method plots resulting concentrations of batch and

1-dimensional simulations (e.g., Figures 5.2b and 5.4a).

• instance.plot_rates() – the method that plots reaction rates in space and time of

batch and 1-dimensional simulations (e.g., Figure 5.3b).

176



• instance.plot_deltas() – the method plots deltas (relative change) of the concentra-

tions in batch and 1-D simulations (e.g., Figure 5.4b).

• instance.plot_fractions() – plots alpha fractions of the acid-base systems (e.g., Fig-

ure 5.2a).

• instance.plot_saturation_index() – plots saturation indices of the minerals defined

in the system.
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D.3 Thermodynamic Library Accessible in PorousMediLab

Table C1: Thermodynamic properties of the chemical compounds. The units of Gibbs
Free Energy and Enthalpy are kJ ·mol−1, the units of Entropy are J ·mol−1 ·K−1

Element ∆G ∆H ∆S Element ∆G ∆H ∆S

C6H12O6 -917.22 -1271 209.2 H2(aq) 17.57 -4.18 57.7

C6H6O -50.42 -165.1 144 H2O -237.18 -285.83 69.91

CH3COO– -369.4 -486 86.6 HCO –
3 -586.85 -692.0 91.2

CH3COOH -389.4 -484.5 159.8 HS– 12.05 -17.6 62.8

CH4(aq) -34.39 -89.04 83.7 Mn2+ -228.1 -220.8 -73.6

CH4(g) -50.79 -74.8 186 MnO2 -465.1 -520 53.1

CO2(aq) -394.37 -393.5 213.6 N2(g) 18.2 -10.4 95.8

CO 2–
3 -527.9 -677.1 -56.9 NO –

3 -111.3 -207.4 146.4

αFeOOH -488.6 -559.3 60.5 O2 16.40 -11.17 111

γFeOOH -480.1 -549.3 65.1 SO 2–
4 -744.6 -909.2 20.1

Fe2+ -78.9 -89.10 138
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Table C2: Gibbs Free Energy of the half-reactions at standard conditions. The units are
kJ ·mol−1 · e−1.

Reaction ∆G◦

Sb(OH) –
6 + 2 e– + 3H+ −−→ Sb(OH)3 + 3H2O -248.13

24MnOOH + 72H+ + 24 e −−→ 24Mn(2 +) + 48H2O -146.27

6O2 + 24H+ + 24 e– −−→ 12H2O -122.98

CrO –
42 + 5H+ + 3 e– −−→ Cr(OH)30 + H2O -120.33

4.8NO –
3 + 28.8H+ + 24 e– −−→ 2.4N2(aq) + 14.4H2O -118.27

2NO –
3 + 12H+ + 10 e– −−→ N20 + 6H2O -118.27

NO –
2 + 8H+ + 6 e– −−→ NH +

4 + 2H2O -86.36

24Fe(OH)3 + 72H+ + 24 e– −−→ 24Fe2+ + 72H2O -84.56

NO –
3 + 2H+ + 2 e– −−→ NO –

2 + H2O -81.14

24γ−FeOOH + 72H+ + 24 e– −−→ 24Fe2+ + 48H2O -65.28

HAsO 2–
4 + 2 e– + 4H+ −−→ H3AsO3 + H2O -55.25

C2H5OH + H2O −−→ 2CO2 + 12H+ + 12 e– -30.76

3 SO 2–
4 + 27H+ + 24 e– −−→ 3HS– + 12H2O -24.13

3HCO –
3 + 27H+ + 24 e– −−→ 3CH4(aq) + 9H2O -20.09

3CO2 + 24H+ + 24 e– −−→ 3CH4 + 6H2O -14.62

12H2 −−→ 24H+ + 24e– -8.6

C6H12O6 + 2H2O −−→ 2CH3COO– + 4H2 + 2CO2 + 2H+ + 8 e– -7.93

3C6H12O6 + 12H2O −−→ 6CH3COO– + 6HCO –
3 + 36H+ + 24 e– -5.6

C6H12O6 + 4H2O −−→ 2CH3COO– + 2HCO –
3 + 4H+ + 4H2 3.0

C6H12O6 + 12H2O −−→ 6HCO –
3 + 30H+ + 24 e– 10.31

C2H5OH + H2O −−→ CH3COO– + 5H+ + 4 e– 12.07

3CH3COO– + 9H2O −−→ 3CO2 + 3HCO –
3 + 24H+ + 24 e– 12.8

3CH3COO– + 12H2O −−→ 6HCO –
3 + 27H+ + 24 e– 18.26
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Table C3: Gibbs Free Energy of the full reactions at standard conditions. The units are
kJ ·mol−1 · e−1.

Reaction ∆G◦

C6H12O6 + 24MnOOH + 42H+ −−→ 6HCO –
3 + 24Mn(2 +) + 36H2O -135.96

3C6H12O6 + 6O2 + 18H+ −−→ 6CH3COO– + 12H2 + 6CO2 + 6H2O -130.91

3C6H12O6 + 6O2 −−→ 6CH3COO– + 6HCO –
3 + 12H+ -128.58

C6H12O6 + 6O2 −−→ 6HCO –
3 + 6H+ -112.67

C6H12O6 + 4.8NO –
3 + −−→ 6HCO –

3 + 1.2H+ + 2.4N2(aq) + 2.4H2O -107.96

C6H12O6 + 24Fe(OH)3 + 42H+ −−→ 24Fe2+ + 6HCO –
3 + 60H2O -74.25

3C6H12O6 + 24FeOOH + 66H+ −−→ 6CH3COO– + 12H2 + 6CO2 + 24Fe2+ + 42H2O -73.21

3C6H12O6 + 24FeOOH + 36H+ −−→ 6CH3COO– + 24Fe2+ + 36H2O + 6HCO –
3 -70.88

C6H12O6 + 24FeOOH + 42H+ −−→ 6HCO –
3 + 24Fe2+ + 36H2O -54.97

3C6H12O6 + 3SO 2–
4 + 21H+ −−→ 6CH3COO– + 12H2 + 6CO2 + 3HS– + 6H2O -32.07

3C6H12O6 + 3SO 2–
4 −−→ 6CH3COO– + 6HCO –

3 + 9H+ + 3HS– -29.73

C6H12O6 + 3SO 2–
4 −−→ 6HCO –

3 + 3HS– + 3H+ -13.82

C6H12O6 + 4H2O −−→ 2CH3COO– + 2HCO –
3 + 4H+ + 4H2 24.02

C6H6O + 5H2O −−→ 3CH3COO + 3H + 2H2(aq) 20.33

C6H6O + 5H2O −−→ 3CH3COOH + 2H2(aq) 103.75

C2H5OH + 2Sb(OH)6−+ H+ −−→ CH3COO−+ 2Sb(OH)3 + 5H2O -236.06

C2H5OH + 3O2 −−→ 2CO2 + 3H2O -153.74

C2H5OH + 4CrO 2–
4 + 8H+ −−→ 2CO2 + 4Cr(OH)3 + 3H2O -151.09

C2H5OH + 2.4NO3−+ 2.4H+ −−→ 2CO2 + 1.2N2 + 4.2H2O -149.02

C2H5OH + O2 −−→ CH3COO– + H+ + H2O -110.91

C2H5OH + (4/3)CrO –
42 + 5

3H
+ −−→ CH3COO– + (4/3)Cr(OH)3 + (1/3)H2O -108.26

C2H5OH + 0.8NO –
3 −−→ CH3COO– + 0.2H+ + 0.4N2 + 1.4H2O -106.2

C2H5OH + 1
3H+ + 2

3NO2− −−→ 1
3H2O + CH3COO−+ 2

3NH4+ -74.29

C2H5OH + 2NO3− −−→ CH3COO−+ 2NO2−+ H2O + H+ -69.07

C2H5OH + 3H+ + 2HAsO42− −−→ H2O + CH3COO−+ 2H3AsO3 -43.18
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Table C3: (Continued)

Reaction ∆G◦

CH3COO– + 8
5NO –

3 + 3
5H

+ −−→ 4
5N2 + 4

5H2O + 2HCO –
3 -100.0

CH3COO– + 4MnO2 + 5H+ −−→ 4Mn2+ + 4H2O + 2HCO –
3 -100.71

3CH3COO– + 6O2 −−→ 6HCO –
3 + 3H+ -104.72

3CH3COO– + 24FeOOH + 45H+ −−→ 24Fe2+ + 6HCO –
3 + 36H2O -47.01

3CH3COO– + 24FeOOH + 45H+ −−→ 24Fe2+ + 6HCO –
3 + 36H2O -47.01

3CH3COO– + 3SO 2–
4 −−→ 6HCO –

3 + 3HS– -5.87

CH3COO– + SO –
42 −−→ HS– + 2HCO –

3 -5.87

3CH3COO– + 3H2O −−→ 3HCO –
3 + 3CH4 -1.82

CH3COO– + H2O −−→ CH4 + HCO3 -1.82

CH3COO– + H2O −−→ CH4 + HCO3 0.63

3CH3COOH + 4NO –
3 −−→ 6HCO3−+ 2N2 + 6H+ -77.84

CH3COOH + 2MnO2 −−→ 2HCO3−+ 2Mn + 2H+ -38.77

6CH2O + 4.8NO –
3 −−→ 2.4N2(aq) + 2.4H2O + 6HCO –

3 + 1.2H+ -104.18

6CH2O + 24Fe(OH)3 + 42H+ −−→ 24Fe2+ + 60H2O + 6HCO –
3 -70.48

6CH2O + 3SO 2–
4 −−→ 3HS– + 6HCO –

3 + 3H+ -10.05

9CH2O + 3H2O −−→ 5CH4 + 4HCO3 -8.23

12H2(aq) + 6O2 −−→ 12H2O -131.58

H2(aq) + MnO2 + 2H+ −−→ 2H2O + Mn2+ -127.58

H2(aq) + 0.4NO –
3 + 0.4H+ −−→ 1.2H2O + 0.2N2 -126.87

H2(aq) + 2FeOOH + 4H+ −−→ 4H2O + 2Fe2+ -82.4

12H2(aq) + 24FeOOH + 48H+ −−→ 24Fe2+ + 48H2O -73.88

H2(aq) + 0.25CO –
32 + 0.5H+ −−→ 0.75H2O + 0.25CH4 -35.96

12H2(aq) + SO 2–
4 + 3H+ −−→ 3HS– + 12H2O -32.74

H2(aq) + 0.25 SO –
42 + 0.25H+ −−→ H2O + 0.25HS– -32.74

12H2(aq) + 3CO2 −−→ 3CH4 + 6H2O -23.22

H2(aq) + 0.25HCO –
32 + 0.25H+ −−→ 0.75H2O + 0.25CH4 -28.69

CO2(aq) + 4H2(aq) −−→ CH4(aq) + 2H2O -185.76

MnO2 + 2Fe2+ + 2H2O −−→ Mn2+ + 2FeOOH + 2H+ -318.32
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