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Abstract

Water management systems such as wastewater treatment plants and water distribu-
tions systems are big systems which include a multitude of variables and performance
indicators that drive the decision making process for controlling the plant. To help water
operators make the right decisions, we provide them with a platform to get quick answers
about the different components of the system that they are controlling in natural language.

In our research, we explore the architecture for building a virtual assistant in the domain
of water systems. Our design focused on developing better semantic inference across the
different stages of the process. We developed a named entity recognizer that is able to infer
the semantics in the water field by leveraging state-of-the art methods for word embeddings.
Our model achieved significant improvements over the baseline Term Frequency - Inverse
Document Frequency (TF-IDF) cosine similarity model.

Additionally, we explore the design of intent classifiers, which involves more challenges
than a traditional classifier due to the small ratio of text length compared to the number
of classes. In our design, we incorporate the results of entity recognition, produced from
previous layers of the Chatbot pipeline to boost the intent classification performance. Our
baseline bidirectional Long Short Term Memory Network (LSTM) model showed signifi-
cant improvements, amounting to 7-10% accuracy boost on augmented input data and we
contrasted its performance with a modified bidirectional LSTM architecture which embeds
information about recognized entities.

In each stage of our architecture, we explored state-of-the-art solutions and how we can
customize them to our problem domain in order to build a production level application. We
additionally leveraged Chatbot frameworks architecture to provide a context aware virtual
assistance experience which is able to infer implicit references from the conversation flow.
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Chapter 1

Introduction

Water management systems are often big systems composed of multiple stages of treatment
or made of complex networks wherein a multitude of variables interact to produce the
overall behaviour of the system.

An example of water management systems is a water distribution system, composed of
water sources, reservoirs, pumps, and piping systems. Piping systems connect reservoirs
to end consumers in a specific area to meet their daily needs of water consumption. End
consumers needs vary from day to day and hour by hour due to a number of factors
including weather, work schedules and whether there are public events being held such as
local games and festivals. Water operators have to make sure enough water is pumped into
reservoirs to make sure water demand in different parts of the city is met.

Water distribution plant operators work to optimize the cost and safety of this process
by choosing the right time and amount to pump water into reservoirs while taking into
consideration the factors affecting water demand. In addition to that, a surplus of per-
formance indicators are continuously being monitored by the system, and presented in a
Supervisory Control and Data Acquisition (SCADA) system.

In a large system where there is an immense amount of information, it becomes a
multi-click and page scan process to get the information that you need. However, process
operators may want to get quick information that would help them in making better
decisions for plant operation.

For that purpose we propose a water systems virtual assistant design where users can
ask questions about system indicators in the most convenient way- in their local language.
Through this application, users are empowered to ask higher complexity questions where



they ask about an indicator in the past or the future (e.g. Pump 1 pressure at 5 pm
yesterday, or Average flow in the past two days). Under that framework, users are
enabled to ask statistical questions as well as get information about forecast values that
would allow them to make better decisions.

Chatbot framework architecture comprises of three different main stages; Intent classi-
fication, named entity recognition and fulfillment. In our work we dissected each of those
sub-tasks in order to customize it to water systems operations queries to get better semantic
inference of text in the domain.

We start our design by a field Assessment (Section 2) where we explore the work
environment of the users to draw conclusions about needed features as well as restrictions
that need to be taken into consideration.

In (Section 3) we provide a history of virtual assistant development and discuss the
overall architecture of the system developed including its sub-components and how they
are connected. In (Section 4), we describe the different approaches for building a Named
Entity Recognizer including rule-based and learning-based approaches, with its variants of
supervised and unsupervised learning approaches. We discuss the suitability of applying
each of the aforementioned approaches and propose a model based on word embeddings
which provides semantic inference capabilities to the system. Our named entity recognition
system also scales up with the size and the domain of the system, allowing our users to
ask about more high level concepts in addition to specific entities without having labelled
data available for training.

In (Section 5), we describe how we developed an intent classifier and boosted its perfor-
mance by incorporating results from the named entity recognition stage. In the section we

propose and report accuracy boosts for two proposed models which improve on a baseline
vanilla biLSTM.

On top of that, we conducted research in a wastewater plant, studied the environment
and identified our users’ needs in order to provide them with a user experience that is
tailored to their needs.



Chapter 2

Field Assessment

This section investigates the design of a virtual assistant in the water process control do-
main, exploring the questions of the user in terms of structure and topics. We hypothesize
that among the basic question structures that our system needs to capture are questions
regarding performance indicators of the system, inquiries about external indicators that
are relevant to process control, and asking for likelihoods on certain events happening.
The study will be limited to the back-end design of the virtual assistant with plans for the
front-end design to be investigated separately in the near future.

The main research queries of the back-end design of the virtual assistant are outlined
as follows:

1. Exploring and establishing the benefit of a virtual assistant for water systems control.

2. Exploring the set of features that can be offered.

2.1 Contextual Design

(Beyer and Holtzblatt, 1999) [6] define Contextual Design as a state-of-the-art approach
to designing products directly from a designer‘s understanding of how the customer works.
They add that contextual inquiry is an effective method to avoid arguments between mem-
bers in the design team where each person hypothesizes what the customer wants based
on their personal preferences. Contextual design unifies design, marketing, delivery and
support while catering to customers needs. Contextual Design is a six-step process: contex-
tual inquiry, work modeling, consolidation, work redesign, actual design, and specification



[6]. We adopt the aforementioned approach focusing in this section on the first two steps;
Contextual inquiry, and work models.

2.1.1 Contextual Inquiry

Contextual Inquiry (CI) is a design research method, centered at finding out the customer's
wants and needs. More specifically, it is carried out to identify customers, know their
habits, and identify how they work on a daily basis through a relaxed personal interaction
with the user. CI is considered as a building block in Contextual Design, which aims to
avoid the common mistake in software design where the user may get what they needed
but not what they wanted. CI is built upon four basic principles: Context, Partnership,
Interpretation, and Focus.

The ”Context” element of contextual inquiry requires that the interviews with users are
to be done in their workspace, where the researcher would be able to note different relevant
aspects that can be included in the design. This may include the physical structure of the
place, or perhaps some artifacts that are being generated or used by the users while they
work. ”Partnership” demands that the researcher collaborates with the user to be able to
clearly define the user needs. The interview alternates between observing the user at work,
and discussing the reasons behind different actions that they make. ”Interpretation” is
concerned with the conversation between the researcher and the user where the researcher
confirms their understanding and insights with the user. The user either confirms the
notion and perhaps expands on it, or they may correct them. ”Focus” states that the
researcher should be mindful of the scope of the work and should guide the conversation
accordingly if it starts to drift away [30]. Contextual inquiry is based on five work models,
from which we apply: physical model, artifacts model, and cultural model [0], following in
the next section.

2.1.2 Physical Model

Physical model is concerned with the physical aspects of the workspace which may be
relevant to our product design. This may include how the desks in the single office of the
users may be aligned, noise, or perhaps the screens setup for each user.

In our visit to the wastewater plant the most prominent feature in the control room
was noise. With noise outside the control room so loud that human speakers need to shout
to let close-by people hear them, inside the control room the noise was barely muffled.
Noise was noted and recorded to be used in testing of the Virtual Assistant (VA), and for
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Figure 2.1: Simple workstation setup with a single screen for water operator

communication with customer facilities about the work-space environment requirements
for our system to work properly. In the same visit it was noted that the operator uses a
single screen desktop, despite having to control multiple sets of variables, and having to
monitor a large set of performance indicators (Figure 2.1).

Our previous notion was that operators always work on multiple screens (typically six)
to be able to monitor all the parameters effectively. This finding confirms the need for
the virtual assistant and may impose some restrictions on the user interface design, which
should consider space limitations while integrating the VA questions, and answers interface.

2.1.3 Artifacts Model

Artifacts model relates to the physical objects that are being used to support the user‘s
work. This may typically include calendars, planners, and pen and paper, among others.
The wastewater treatment utility control room contained two noteworthy artifacts; The
first thing we noted is that the operator seemed to do some summations by hand using
pen and paper (Figure 2.2a). This observation gave us insight that perhaps the user may
be asking the VA about summaries of a specific performance indicator across different
machines in the facility.

Our second observation was a schedule that was hung up on the wall (Figure 2.2b).
When we asked the operator what the schedule was for he said that this is the default
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Figure 2.2: On the left, figure of summation calculations done by pen and paper and on
the right default control schedule hung on the wall

control parameters schedule in case the system crashes and they have to set all parameters
from scratch. This observation helps us in marketing our whole smart water management
solution as opposed to the old system currently in use that does not even keep memory of
the default schedule for the user.

2.1.4 Cultural Model

The cultural model in contextual design entails that the researcher notes the social aspects
of the work environment including any pressures that may exist, or competitiveness, and
how comfortable the working environment is, among others. In our visit to the wastewater
treatment facility the operator started by telling us a brief about himself, and how being
only a part-timer in the facility fitted him well in his lifestyle. First thing we noticed is
that he was not attached to the workplace, and furthermore we sensed a general unease in
his talk about the facility. This aspect was most prominent when we visited the chemical
oxidation room where two containers of very invasive chemicals; Sodium Hypochlorite
(Bleach), and Citric Acid were aligned side by side in a room with no drains (Figure 2.3).
The operator then made the following statement: "having the two next to each other like
that makes me think of the aspect of having a possible bomb on the facility. Nothing is
a 100% right?”. At a different occasion when we were visiting the secondary clarifier, a
member of the group that was touring the facility made a remark about the foul smell at
this spot, to which the operator replied: "Well I grew numb to the smell, but I wouldn’t
like to live here!”. We also noted some specialized mental health postings in the lunch
room, which confirmed our observations about the stress level that may be implied by
working in the facility.



Figure 2.3: Invasive chemicals set next to each other in chemical oxidation room

Those observations indicate the need for integrating a a virtual assistant for compan-
ionship feature wherein we incorporate small talk features, in addition to other features
such as a overviews of the system given at different points in time without a user trigger.

2.2 Summary

Based on our visit to this facility, we conclude that we need to implement features to
answer queries involving system indicators, and the cultural model indicates the need for
personal interaction features, such as small talk and scheduled summaries. We additionally
decided to provide the users with a feature to ask queries in text since some facilities may
be too noisy for a speech-to-text module to interpret words properly. Moreover, in the case
of text queries, spelling mistakes may occur and thus we need to take account of that in
our textual analysis design.



Chapter 3

Solution Architecture

Computer scientists long aspired to build virtual assistants which best emulated human
behaviour, starting from recognition of spoken words and translating it to text, followed
by semantic analysis of the input and finally responding to users in the most intuitive
manner. In this section, we contrast some of the most early developments in the field
of virtual assistant development against the most recent developments. We additionally
describe the architectures of virtual assistant frameworks which inspired the architecture
which encloses different components of our solution.

3.1 History

In the early years of computing, Computer Machinery and Intelligence (Turing, 1950)[41]
laid down some of the main theoretical foundations of modern Artificial Intelligence (AI).
In the paper, Turing posed the question of “can machines think?” and he introduced a
test whereby a machine demonstrates intelligence that is indistinguishable from a human.
The test is formulated such that if a human evaluator communicates through text with two
participants with the knowledge that one participant is a human and the other is not, if
they were not able to reliably distinguish the human from the machine, then the machine
is said to have passed the test. One of the first prominent attempts to pass the test was
ELIZA (Weizenbaum, 1966)[67]. Although ELIZA failed the test, it introduced some sub-
components that are a part of modern chatbot architecture, such as the recognition of
keywords, specific phrases, and pre-programmed responses. Numerous other robots with
comparable performance were introduced in subsequent years (Colby et. al, 1972; Wallace,
1995; Hoffer et. al, 2001)[12][65][20].



One of the rudimentary introductions in the field as well was the IBM Shoebox al-
gorithm [23], introduced in 1961 which could recognize the spoken ten digits as well as
some arithmetic operations to print out the result of those operations. HARPY speech
recognition system [10] was introduced by (Lowerre, 1976). The system could recognize
1000 words- the average number of words learned by a three year old- by exploring the
best acoustic paths in a state transition system.

As virtual assistants always resembled one of the top challenges for the computer in-
dustry and to the Al research community in general, machine learning research continued
to take big strides through the following years. A later major breakthrough in the field
was the IBM Watson system [33], introduced in 2011 which is a deep question answering
system built over multiple layers of recognizing evidence in user questions, generating hy-
potheses and evaluating likeliness of correct answers. In the same year, Apple Inc released
their world renowned virtual assistant, Siri which exhibited a near-human communication
experience, including features for responding to small talk and answering simple questions
over the web. Competitive companies followed in Siri’s footsteps shortly after, as Google,
Microsoft, Amazon and Samsung introduced their own virtual assistants Google Assistant
(2012), Cortana (2014), Alexa (2015) and Bixby (2017) respectively in the following years.

However arguably the greatest breakthrough so far was the introduction of Google
Duplex (2018)[36], where the virtual assistant made live calls with humans to book ap-
pointments, while handling complex situations where the person taking the call would talk
distractedly, or have a non-native accent. In return, the virtual assistant in those calls
displayed seamless human interaction as it hesitated, and kept good context of the conver-
sation to infer ambiguous references. This kind of behaviour and its live test in a call with
a human stirred up a big discussion on whether this interaction passes the Turing test.

3.2 Virtual Assistant Frameworks Architecture

Analysis of natural language in virtual assistants is built over four stages (Figure 3.1);
Tokenization is the preprocessing stage as terms get extracted from the user question based
on some regular expression pattern while getting rid of any unneeded symbols. Next step is
the named entity recognition stage as terms referring to significant subjects and objects in
the problem domain are recognized and labelled appropriately. Intent classification stage
classifies the textual pattern of the query to one of the functionalities that are predefined
in the system. The final stage is fulfillment, where the system responds to the user based
on some behaviour that was previously defined in the system.



Query

Can | get 3 veggie pizzas please?

Tokenization

['Can', ', 'get’, '3', "veggie', 'pizzas', 'please']

Named Entity Recognition

[‘veggie’, ‘pizza’] -> Entity:PizzaType

Intent Classification

Intent:MakeAnOrder

Action: SpecifyToppings Response: "For sure, what toppings would you like to add?"

Figure 3.1: Virtual assistant stages for a pizza ordering virtual assistant

While most commercial Chatbot frameworks are not open for public inspection and
provide a rather opaque view on the wiring between their different components, the stages
of the architecture are still visible to us. We chose an open-source framework (Rasa) to
base our design off it and improve upon its design. Rasa was compared in (Canh, 2018)
against some commercial counterparts such as Google Dialogflow, Microsoft LUIS and IBM
Watson Assistant, on 3 different virtual assistance datasets, and reported a competitive
fl-score on those tasks. It was reported by (Davydova, 2017) that the collection of the
previously mentioned frameworks is generally composed of two main components; Natural
Language Understanding (NLU) and conversation flow control based on context. NLU is
further broken down in the Rasa framework into two main submodules; NER and Intent
Classification, which run independently after the preprocessing step (Figure 3.2).

In section 5, we explain how we modified that hierarchy by passing on information from
the entity recognition stage to the intent classification stage to improve the classification
performance for vague sentence structures.

The architecture of our design (Figure 3.3) demonstrates the connections between the
different stages of the virtual assistant pipeline, some of their sub-components and the input
connections to each of those stages. As shown in the diagram, the Named Entity Recog-
nition stage receives the query and matches it to entities defined in the system ontology
and the database while mitigating non-exact matches using edit distance and lemmati-
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Preprocessing Preprocessing

Intent
classification

Intent Named Entity ‘
classification Recognition
Named Entity
Recognition
Fulfillment Fulfillment

Figure 3.2: Rasa NLU architecture on left, BICERE architecture on right

zation. In the same stage, we leverage word embeddings to make semantic inferences to
extract entities which are similar in meaning to defined entities but have a different lexical
form. Finally we leverage pretrained datetime recognizers to extract information about
time periods mentioned in the user query.

The output of the named entity recognition is then passed to the intent classification,
which leverages that information to make better classifications. The post-processing stage
then retrieves the information needed from the database and triggers the appropriate func-
tions which are detected in the NER stage. Finally the fulfillment stage determines the
action to take and the responds to the user with the information they need.
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Chapter 4

Named Entity Recognition

NER is the task of identifying terms of interest in unstructured text and determining the
classes to which they belong. Typical entity types in general tasks that may be recognized
in text include People, Countries, Organizations, ...etc. In the Chatbot framework, NER
detects and classifies different entities in the user query to be able to respond in a manner
that is specific to the details of the request.

Different approaches have been employed in the NER tasks, mainly split into rule-
based approaches, learning-based approaches and hybrid approaches. While rule-based
approaches rely more on the linguistic structure of text such as syntactic-lexical patterns
to be able to detect entities and compare them to information lists (e.g. gazetteers),
learning-based approaches are built over predictive models that compare the context in
which the words occur and classify them accordingly.

Although learning-based approaches are powerful in the sense that they are able to
address open-domain problems by training the model on a training set for a specific lan-
guage then using the same model for different tasks, they are constrained in the classes of
entities that they support. In order to extend a pretrained NER model to capture an extra
set of classes, we would need to further train the model on new data capturing the extra
classes, but this data is not always available. This restriction applies to the different types
learning-based approaches adopted in NER, including supervised learning, unsupervised
learning and semi-supervised learning.

Rule-based approaches on the other hand are restricted to a single domain, as infor-
mation lists are crafted by domain experts in order to encompass the different entities and
classes that may be significant in the domain. Syntactic-lexical patterns are also language
specific which makes this approach constrained to a specific language. In the absence of

13



training data for NER task in a specific domain, rule-based NER has long posed as the
only viable approach to tackle the problem, but recent advances in unsupervised learning
for textual inference offered significant improvements to that baseline.

4.1 Rule-based NER

Rule-based approaches heavily depend on the language and domain that they are being
applied to. Although rule-based approaches are open for scientists to formulate based on
the language and the domain, historically they have used a finite set of approaches; Such
as lexical rules, contextual rules and morphological rules of terms (Goyal et al, 2018)[24].
Those rules are often complemented by Gazetteers, which serve as a dictionary relating to
a certain concept to capture patterns of interest.

For example, (Rahem and Omar, 2015)[51] applied a set of heuristics to detect names of
drugs, quantities and prices, nationalities and drug hiding methods. The general method
for their approach is a combination of using gazetteers for keywords related to the entity
being extracted and Part of Speech (POS) tag patterns that match the entity of interest.
They additionally use an algorithmic form of regular expression comparison to capture the
more simple patterns such as quantities and prices. For the 5 entities being extracted,
median F-measure was evaluated at 86%, median Recall at 89% and median Precision at
89%. Quimbaya et al. (2016) [50] pre-processed input text by applying stemming and
lemmatization before doing a comparison to knowledge base to capture different forms of
a term that revolve around the same concept. They additionally applied an edit distance
metric to mitigate false negatives occurring due to spelling mistakes.

Low-resource languages have an additional interest in rules-based approach for named
entity recognition. For example, (Riaz, 2010)[52] presented a rule-based approach to entity
recognition in Urdu which heavily relied on lexical aspects of terms to beat a statistical
based model on the same task. In their work, they discussed some of the challenges that
are specific to the language and which make traditional methods incapable of encompassing
the language’s structure including absence of capitalization grammar rules, varying word
order in a sentence and the language’s agglutinative nature where certain suffixes may add
complexity to the meaning of a word. They additionally discuss nested entities which are
a special case of multi-word entity recognition, in addition to word reference ambiguity.

14



4.2 Learning Based NER

Named Entity Recognition became an intrinsic part of many Natural Language Processing
(NLP) tasks in the last few years, including question answering systems [16][59], informa-

tion retrieval[31], relation extraction[27], machine translation[2][10] and text summarization[4][17],
among others. Due to the importance of this task, more data became available to enable
machine learning algorithms to learn patterns capturing specific types of entities in open
domains.

Supervised learning is one of the main approaches for performing NER, avoiding gazetteers
and handcrafted rules that match a defined subset of entities. Instead, classification models
form a feature space capturing the context around words to infer the class to which that
term belongs.

While rule-based approaches are more suited for specialized domain entity recognition,
learning based NER is much more powerful on open domain data as it generalizes its
learning of the context around words to extend that knowledge to unseen data. Examples
of entity classes that are typically captured by learning based approaches include persons,
locations, date and time, organizations, ..etc. Most common classification models used

for NER include Support Vector Machine (SVM) [3][21] , Conditional Random Fields
(CRF) [37][11][7], Hidden Markov Models (HMM) [66], Naive Bayes (NB) and logistic
regression|[(3].

Lample et al. (2016)[35] presented two deep neural architectures for named entity

recognition tested on four different languages, achieving competitive to state of the art
performance on CoNLL-2002 and CoNLL-2003 data sets. In the LSTM-CRF architecture
that they presented, global word embeddings were passed to a biLSTM which produces for
each term encodings of its context from both left to right and vice versa. The encodings
from the previous step are then concatenated and passed to a CRF which performs the
final classification. They additionally enhance word embeddings using a character-based
word embedding in order to avoid language-specific morphological hand-crafted rules.

Speck and Ngomo (2014) [58] compared different ensemble techniques including Ad-
aboostM1 and Bagging with J48 as base classifier as well as Random Forests against ten
other single classifiers to determine the dominance of ensemble learning in NER task. The
results, combined over four different datasets, showed Random Forests, Multi-layer Per-
ceptrons, AdaboostM1 and J48 as the top-tier performers on the NER task. Among the
models that were included in the study are the commonly used Naive Bayes, SVMs and
Logistic regression, however CRFs and HMMs have not been included in the study.

Zhang and Elhadad (2013)[71], took an unsupervised approach to perform NER in
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the biomedical sector. They start with seed terms that are extracted from external ter-
minologies to represent different entity classes. To extract candidate entity expressions
they use an Noun Phrases (NP) chunker followed by document frequency calculation to
select the most common nouns as a filtration step. Finally they calculate cosine similar-
ity between candidate expressions represented by a Term Frequency - Inverse Document
Frequency (TF-IDF) signature of the terms in the expression as well as the context that
they appeared in and the averaged TF-IDF representation of groups of terms representing
different classes.

Guo et.al (2009) [25], introduced a novel topic model dubbed Weakly Supervised Latent
Dirichlet Allocation (WS-LDA) to tag a single named entity in search engine queries. Their
model maximizes the probabilities of the context around possible entities as well as the
probabilities of different classes given a specific entity.

In the context of special domains, usually there is no training data available. We
utilized unsupervised approaches to build our NER system. Starting with seed labeled
entities, we calculated the similarity between those labels and chunks from users queries.
Furthermore, we introduced a new approach in which we leveraged word embeddings’
representative power to provide better semantic comparison between the queries and our
knowledge base. We finally incorporated a hierarchical ontology in order to handle queries
about vague concepts and answer them in more specific terms. Each of the aforementioned
sub-components of our system are discussed in the following subsections.

4.3 NER for Water Systems Operation

Named Entity Recognition is the stage that enables Chatbots to address specific items
in users queries and respond accordingly. For example a Pizza restaurant Chatbot would
need to implement NER to detect food item entities like " Pizza”. The system would need
to recognize provided information about additional entities such as "toppings” and prompt
the user for missing information regarding the entity of interest.

In the context of chatbot design for water systems operation we are faced by a number
of challenges; Firstly, there is no training data for detecting entities specific to water
systems. Consequently, we cannot utilize state of the art supervised models to detect
the entities. Additionally, there are often different ways to refer to the same entity; For
example, different morphological forms of the same term can be used interchangeably,
such as "operational cost” and ”cost of operations”. Technical synonyms also often exist
such as "mixed liquor” and ”biological mass”, and ”flocculating agent” and ”flocculant”
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in wastewater systems. We design our NER solution starting from the finite set of entities
that our system can provide information on and provide extension to unseen synonymous
terms.

4.3.1 Seed Space Representation

Starting from a list of seed terms that were crafted by subject matter experts, we designed
a representation space that user queries would be compared to in order to extract terms of
interest. We used Normalized Term Frequency (NTF)[55] representation space to encode
the seed space of terms, such that the whole space X € R?*! where d represents the
number of documents which map to technical terms for our system and ¢ is the total
number of unique terms across all documents. In Term Frequency (TF) representation, X
is a sparse matrix wherein z; at row ¢ and column j is equal to the number that term j
occurred in document ;.

Normalization is a term weight adjustment step such that a document is represented
by the weight of occurrence of its terms and normalized by the document length, such that
elements of normalized matrix Y are calculated as:

xij

t ..
Zj:l Lij
Normalization offers a fair method to compare occurrences of terms across documents that

have different lengths to eliminate the dominance of term frequencies that comes with
longer documents over shorter documents.

Yij = fori=1,2,...,d (4.1)

Term-frequency is usually coupled with Inverse Document Frequency (IDF) [53] , which
re-balances term weights such that frequent terms, that have high frequency across the
whole corpus get reduced weights. Typical words that get demoted using IDF are stop
words [22] that show no distinguishing properties to different documents. We chose not to
use IDF in our corpus as named entities are concise and rarely include stop words.

4.3.2 Hierarchical Entity Representation

In order to provide reference to more general entities, we represent entities in a hierarchical
manner through an ontology representation, as shown in (Figure 4.1). In this manner we
are able to break down a user’s question to more specific terms such that if they ask about
a parent entity we are able to break it down for them, providing information about its
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Figure 4.1: Named entities ontology hierarchy for water distribution systems
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Figure 4.2: Named Entity Seed Space Representation

children. For example, if the user asks about the ”Pressure”, we give them options to get
information about ”Outlet Pressure”, ”Suction Pressure” or both.

Leaf entities (ontology individuals) are further mapped to tables in the database, con-
taining real-time measurements that relate to the users’ queries. We also do comparisons
between users queries and table names defined in the database to match uniquely named
entities stored in the database (Figure 4.2).

Ontology representation [12] was chosen to represent the hierarchy as it provides fea-
tures to add information about the different classes and individuals, to provide assistance
if the user is confused about a term after a prompt. Ontology representation addition-
ally provides tools to define relationships between classes and individuals. Through the
"owl:sameAs” relationship in the ontology we were able to explicitly assign synonyms when
we do not have data to provide that relationship. This enables us to cater to a wider set
of dialects and technical term conventions that vary from one region to the other.

Through the ontology we were also able to link measurement tables to assets through
a coined relationship "hasAsset”, which connects an asset to different measurements over
time. When the user asks about measurements for a certain asset, we collect data about
different indicators relating to the asset of question to answer the query.
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4.3.3 Similarity Calculation

Different approaches for similarity calculation of text documents were contrasted, while
taking cosine similarity as the benchmark.

Cosine Similarity

Cosine similarity [57] is a method to calculate the similarity, represented as the angle
between two vectors such that if & = [xy,29,...2¢] and § = [y1,¥2,...y, then their
similarity is calculated as:

- g _ Zle ZTilY;

j» —|
RSN S
Similarly, the similarity between two documents in TF form can be calculated using

cosine similarity. In order to extract named entities from users’ queries, and after the users’
input is processed we chunk the input into ngrams of lengths [ =1...g¢.

cos(Z,7) = (4.2)

g = max | ;| fori=1,2,....d (4.3)

Where d is the number of documents defined in the system. The ngrams are then
compared against defined technical terms to match to most similar document. If the top
similarity is greater than a defined cutoff threshold r then the match is kept for further
comparisons, otherwise the ngram is said to have no matches.

Generalized Vector Space Model (GVSM)

In Vector Space Model (VSM), document-document similarity is calculated as XX, where
X is a NTF matrix as defined in 4.1. Wong et. al (1985) [69] criticized the false as-
sumption of orthogonality between terms in this space model and introduced Generalized
Vector Space Model (GVSM) instead which captures the relationships between different
terms. GVSM introduced a term-term correlation matrix for the calculation of document-
document relationship expressed as Simaysy = XGX .

r11 Ti2 .- g11 G912 --. 11 12
Simagyvsm = | ¢+ .. X | X |

Td1 Tt g1 gt L1 Ttd
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G is a term-term correlation matrix whose elements can be calculated using cosine sim-
ilarity calculated between term vectors. Term vectors may be extracted from the original
space X of documents or other open document space using different methods including
term frequency and context space represented in (Zhang and Elhadad, 2013)[71] or using
unsupervised models of word embeddings.

Word Embeddings

Word Embeddings are vector representations for textual terms that sparked a revolution
of natural language processing developments in recent years. Word embeddings represent
words or phrases in a n-dimensional space where similar words would be close to each
other. Word embeddings can also have compositional properties as was showcased in the
introduction of GloVe embeddings (Pennington et al, 2014) [1%], where

King — Man + Woman = Queen (4.4)

Bengio et. al (2003) [5] was first to coin the term ”"Word Embeddings” by referencing
the weights matrix of the Softmax layer in a one-hidden layer feed-forward language model
neural network. i.e. The network predicts the next word w, from the sequence of preceding
words w;_1, ...w;_n1. Taking in a d-dimensional representation for each of the preceding
words in a window of size t, they are fed to a hidden layer of size h and connected to a
final Softmax layer indicating the distributional probability of each of the words wy, ...wy
occurring as the next in sequence. Given a large corpus of text, the network then maximizes
the combined log-likelihood of all words sequence in the dataset as

L(0) = log P(w|w,_1, ...w—p+1) (4.5)
t
ek
where P(wt = k|wt_1, ...wt_n+1) = =N _ (46)
D =1 €
h (n—1)d
and a; = b + Zwkitanh ¢ + Z Vix; (4.7)

i=1 j=1

Bengio et. al (2003) highlighted that the bottleneck for training the network is the nor-
malization calculation performed at the Softmax layer as it is proportional to the number
of words in the vocabulary, which can reach the order of millions.
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Collobert and Weston (2008) [13] used a similar notion to train word embeddings which
are represented as a lookup table in the input of a deep neural structure. The word
embeddings were tuned by consecutively integrating the lookup table to network structures
trained on 5 different supervised NLP tasks, such as Semantically Related Words (SRL)
task, POS tagging, Chunking, NER and Language Modelling. The rest of their network
structure relies on Time Delay Neural Network (TDNN) [64], which behave like modern
Recurrent Neural Network (RNN)s in a manner where at each time ¢ the network only
sees w; while keeping context of previous words. The TDNNs are further stacked in a
convolutional structure to capture local features as well as global features to keep better
context of text.

Mikolov et. al (2013) [11] introduced the landmark Word2vec, which builds upon and
simplifies previous models with two architectures presented; Continuous Bag Of Words
(CBOW) and Skip-grams. In their paper they observe that for the purpose of training word
embeddings, data is available for including context around words from both directions, yet
in previous language model approaches the tuning only relied on the preceding words
under the assumption that the network would be used for next-word predictions. Thus
under their new framework, in the case of CBOW the network is structured to estimate
P(w|w—p, ...wy—1, Wii1, ... Wy ). In the case of Skip-grams, the equation is reversed where
we estimate the surrounding context of a specific word as P(wyy;|w;) for i = 1,..n. The
network additionally does not include a hidden layer, directly connecting the input to the
output which significantly simplifies parameter tuning of the network, represented as the
average log probability of all words wy, ws, ...wr in the network

T c
%Z S log Pluwnilu)

t=1 —c<i<c,i£0

where c is the context size around the word. In analogy with 4.5 and given that the output
layer is directly connected to the input layer, the posterior probability is represented as

T,
wt th+i

T oy
ijEV eXp thij

exp v

P(wiyi|w) =

where v,, and v}, are input and output embeddings of word w, respectively and V' being
the size of the vocabulary.

GloVe embeddings (Pennington et al, 2014) [18] encodes information about the ratio
of co-occurrence probability of different words using a least squares cost function which
minimizes the difference between the dot product of vectors of two words and the logarithm
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of their respective number of co-occurrences

1%
T =) f(Xy)(w/ d; + b+ by — log Xy)
ij=1

where X;; denotes the number of times w; occurs in the context of word w;, w; and w;
being the word vector and context word vectors of word ¢ respectively, and b denoting the
bias for each of the vectors. Function f further down-scales the weights of too low and too
high co-occurrence frequencies. GloVe word embeddings showed superior representation of
words in the new space such that semantically or linguistically similar words would have
a smaller euclidean distance between them and they exhibited the linear substructures as
outlined earlier by 4.4.

FastText (Bojanowski et al, 2016)[3] represented words as ngrams of its substrings,
allowing it to capture information about prefixes, suffixes and morphological subsequences
that tie semantically related words together. For example, the word FastText with ngram
size n = 4 would be represented using ngrams ['Fast’, 'astT’, ’stTe’, 't Tex’, "Text’]. The
ngrams representations are then trained using a Skip-gram model and combined as a bag
of words to represent different words for which they are sub-strings. The word dissection
feature of words in FastText enabled it to infer embeddings for out of vocabulary words.
Misspellings Oblivious Word Embeddings (MOE) (Edizel et al, 2019) [20] utilized FastText
in training on a dataset which maps misspellings to their correct variants producing a word
embedding model which maps incorrect misspellings to the same space as their correct
variants. MOE achieves this by adding a spelling correction loss to FastText’s semantic
loss which is minimized to map similar words which have similar contexts to the same
space as well as their misspelled counterparts.

ELMo (Peters et al, 2018) [19] is a powerful word embedding model which produces
embeddings of a word based on its morphological structure as well as its context such
that it produces different word embeddings for the same word which appears in different
contexts. Using sub-sequence representation of words using character ngrams, they applied
a convolutional neural network, followed by a max-pool layer to be passed to a biLSTM
network. Their model additionally uses a 2-layer highway network as an intermediate
layer to connect the max-pool output to the LSTM input. Highway networks (Srivastava
et al, 2015)[60] form information highways between different layers of a neural network
by using gating mechanisms to regulate information flow. Highway networks have shown
to significantly optimize the network training time allowing us to create deeper network
structures which make better inferences of information. In the biLSTM layer of ELMo, a
residual connection additionally connects the input of the first LSTM layer to the second
layer helping the model train more successfully.
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BERT’s architecture (Devlin et al, 2018) [18] similarly trains the deep bidirectional
transformer encoder architecture introduced by (Vaswani et al, 2017) [62] to produce con-
textualized word embeddings using the widely available open text data. In the training
phase they pass sentences to the model, while masking 15% of the words and let the model
adjust its weights to predict the missing words. The model can further be tuned on the
different NLP supervised tasks by plugging in the model as a word embedding phase in a
larger neural architecture.

Sentence Embeddings

In order to compare entities defined in our system composed of one or more words with
sub-sequences of words from the user’s queries we can represent each word as a word
embedding then combine them to make the comparison. A powerful yet simple baseline is to
simply average the vectors of different words belonging to the sequence of words (Conneau
et al, 2018; Shen et al, 2018) [I5][56]. A simple modification that showed significant
improvements was showcased by (Arora et al, 2016) [1] where they got the weighted average
of the individual vectors then performed common component removal where they removed
their first principal component. That approach, although simple introduced significant
improvements on supervised tasks amounting to 30% in some cases and beat some of the
complex models built using RNN’s and LSTM’s. Ruckle et al. (2018) [51] introduced
another simple aggregation of word embeddings in which they apply the power mean

o+ .+ ak

1/p
. )

(

to produce different power means w®) w®?) ... which are concatenated to represent
the sentence. They additionally concatenate power means of word embeddings taken from
different embedding sources for better representation.

Other model based sentence embeddings include skip-thoughts (Kiros et al, 2015) [32]
which build upon skip grams by using the current sentence s; to predict the surrounding
sentences s;4; for i = 1,..c, where ¢ is the context. A RNN encoder-decoder model is
used to make those predictions. Another model is quick-thoughts (Logeswaran and Lee,
2018) [39] in which the next sentence is chosen from a set of possible next sentences using
a classifier. After the input sentence s; and the candidate following sentences S.,.q are
encoded, they are passed to a classifier which determines the predicted next sentence sy ;.
Let f and g be parametric sentence encoding functions, and k being a scoring function of
a classifier, the probability that s. € S...q is the correct following sentence of s; can be
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written as

exp k(f(s1), 9(sc))
$.ESeana OXP k(f(st),9(s¢))

and the training objective then maximizes the overall probability of correct context sen-
tences for each sentence in training data D as

Z Z 1ng<sclsascand>

SED $c€Scand

p(sc|5t7 Scand) = Z

InferSent (Conneau et al., 2017)[11] built a sentence encoder in the context of the sen-
tence entailment task. The SNLI corpus is a corpus of 570k pairs of sentences labelling
the relationship between a premise sentence p and a hypothesis sentence h as: entailment,
contradiction or neutral relationship. At the input, InferSent encodes h and v using a
biLSTM topped with a max-pool layer. The encoded sentences h’ and v’ are then repre-
sented using a concatenation, an element-wise product between the two, and an absolute
difference between them, to be passed to multiple-layer fully connected neural net and a
3-way Softmax is finally attached to classify the relationship between the sentences.

4.4 Experiments

In our experiments, our focus was to build a NER system which is able to match to entities
that we define in our ontology as well as relate similar concepts in the user’s query to those
entities. To provide the power of semantic inference of text while avoiding hand-crafted
morphological rules, we leveraged the power of word embeddings in textual similarity
calculations.

The benchmark for our experiments is the NTF representation of defined entities, calcu-
lated against token n-grams extracted from the user’s query, represented in the same VSM
space. Similarity is calculated as the cosine similarity between each of the documents and
the token n-gram to extract the top similar entity if the similarity exceeds the threshold
Tmin- We additionally implement the GVSM model, described in 4.3.3, where g;; is repre-
sented as the similarity between the embeddings of term 7 and term j. Another similarity
measure that we used is relative euclidean distance, in which we get the euclidean distance
between d; and d;, divided by the median of distances between all documents d, € D in
the corpus and d;.

Sentence embeddings representing defined entities and token n-grams from user’s queries
are also directly compared for similarity. Sentence embeddings were represented as the av-
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erage of its constituent words and using the power mean representation 4.3.3. Power mean
representations for p = [2,4, 8] were concatenated together to represent the sentence.

We collected 11.2k sentences relating to water operation, scraped from a water and
wastewater operators community (https://www.fluksaqua.com) to be used as training
data for word embeddings. FastText word embeddings were trained on this data to yield
embedding models of 150 and 450 dimensions to be used with the concatenated power
mean sentence representation and the averaging sentence representation modes respec-
tively. Learning rate was empirically tuned between 0.01 and 0.1 and epochs varied in
the range epoch = [5,8,11,15] to yield the best word representation at lr = 0.03 and
epoch = 8. Empirical testing was determined by examining the similarity between groups
of similar words that were expected to be projected close to each other and have a higher
separation from other groups of similar words.

A pretrained BERT embedding model which represented terms in 768 dimensions was
further tuned on the collected data to give a better representation of terms in water systems.
The BERT embedding representation was truncated to 150 and 450 dimensions to be used
in different sentence representation modes as previously described.

Combinations of the described design variants were compared on a hand-labelled dataset
of 103 utterances, which yielded a set of 1764 text chunks to be contrasted against a col-
lection of 119 defined entities.

4.4.1 Evaluation Metrics

For each of the design combinations we report precision, recall and the fl-score represented
using the following equations.

TP
Precision = ———— 4.
recision = s (4.8)
TP
ll = ———F= 4.
Reca TPLFN (4.9)
Precisi [
F1 — score — 9 x Lrecision x Recal (4.10)

Precision + Recall
where TP, FFP, F'N are true positives, false positives and false negatives respectively.

Each of the metrics reported is calculated as the weighted average over the classification
results of different classes in the dataset.
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https://www.fluksaqua.com

Precision | Recall F1-score

NTF cosine 0.748803 | 0.774121 | 0.750800
GVSM BERT cosine 0.939290 | 0.898469 | 0.914171
FastText cosine 0.939290 | 0.898469 | 0.914171

BERT cosine_ 0.939582 | 0.908678 | 0.921063

AVG rel—egchd 0.88247Z 0.838911 0.860143

Fast Text Cosme‘ 0.944107 | 0.908111 | 0.924268

EMBED rel—egchd 0.882703 | 0.842314 | 0.862036
BERT cosme_ 0.936535 | 0.906410 | 0.918599

POW-MEAN rel—egchd 0.883892 | 0.843449 | 0.863197

Fast Text cosine 0.945014 | 0.912649 | 0.926536

rel-euclid | 0.881552 | 0.841747 | 0.861190

Table 4.1: NER experiments benchmarked on Precision, Recall and F1-score

4.4.2 Results

As shown in table 4.1, using word embeddings to encode term semantics shows a consid-
erable improvement over the baseline NTF text representation, with GVSM word space
representation having a significantly high performance and embedding representation hav-
ing a slightly higher performance than GVSM. The results also show that cosine similarity
consistently dominates relative euclidean distance similarity while varying the sentence
representation between averaging and power mean representation had no effect on the
performance.

It is also noteworthy that FastText is at the same level or higher performance as BERT,
considering that FastText is very fast to train, while pretrained BERT had to be tuned
for 10,000 steps over Tensor Processing Unit (TPU)s for several days to reach the perfor-
mance reported. Although embedding results show considerable performance boost over
the baseline, we believe that it can be further improved using a larger dataset that can be
collected over time to capture a wider array of expressions used in the field and scale up
the number of examples seen by the model.
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Chapter 5

Intent Classification

Text classification is a classical problem in natural language processing where input text is
cleaned, features are extracted and represented in a mathematical form- often represented
as vectors or matrices- so classifiers can be applied to identify the corresponding classes.
Traditional methods for feature extraction include Bag-of-Words (BOW), n-grams and
TF-IDF. Linear classifiers were generally used as the topics tend to be easier to separate
in higher dimensions. Since BOW, n-grams and TF-IDF miss the interaction between
the different terms in a sentence, and the implication of one sentence on the next, more
advanced algorithms have been implemented to address the same problem in recent years,
with considerable higher accuracies.

5.1 Literature Review

Miroczuk & Protasiewicz (2018) [15] highlighted the wide breadth of text classification
applications, ranging from industrial domain to medicine, reportedly spanning over 15 dif-
ferent domains. They also dissected the classification tasks into four categories; Binary
classification, multi-class, multi-label, and hierarchical classification. Hierarchical classifi-
cation yields multi-label classification in a way where each node falls into one of the classes
and the multiple nodes in a path represent the multiple labels that can be assigned to an
input.

Vilar (2019) [63] contrasted the performance of Convolutional Neural Network (CNN)s
and RNNs, where CNNs showed better handling of feature extraction around words, while
RNNs were more proficient at capturing the sequential feature patterns of text. They
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further explained that although variants of RNNs (e.g. LSTMs and Gated Recurrent Units
- GRUs ) may be more suited to language modelling, they showed comparable results to
CNN performance for short text, and better performance for long texts. RNNs being more
complex, need more time for training than CNNs.

Zhang et. al (2015) [72] presented a character-level CNN for text classification. The
method contrasted itself against other well-known approaches such as word-level CNNs,
vanilla LSTMs with word embeddings, as well as BOW, n-grams and TF-IDF input rep-
resentation with multinomial logistic regression for large-scale datasets. The proposed
approach had a comparable performance across the 8 datasets presented. Zhou et. al
(2015) [73] introduced the combination of CNNs and LSTMs where CNNs learn high level
representations of text and LSTMs observe the sequence correlation. The proposed model
outperformed separate models of CNNs and LSTMs on text classification tasks.

Joulin et. al (2016) [29] introduced an Artificial Neural Network (ANN) with 10 hidden
units, bigram word representation and hierarchical labelling to be trained on large-scale
datasets, achieving state-of-the-art accuracy while achieving increasing speedup with larger
datasets, amounting up to 15,000 compared to its counterparts. Ding et. al (2018) [19]
adapted the landmark DenseNet architecture (Huang et. al, 2017) [28] to natural lan-
guage processing, proposing an architecture where sequence of hidden states is considered
as reading memory for each layer, and information at input layer and hidden layers are
passed on to all subsequent layers. The architecture allows that memory states accumulate
information with deeper layers and it is bidirectional such that layers at the same level
are connected. Their proposed densely connected architecture reportedly performed better
than its deep stacked counterpart.

Meng & Huang (2017) [13] introduced a double-tiered model for dialogue intent clas-
sification, formed of two LSTMs to hierarchically model user input at sentence level and
conversational context level, while adding an external memory unit to improve dialogue
intent classification, achieving a 2.2% accuracy boost over basic LSTM model.

5.2 NER Augmented Intent Classification

Virtual assistants are faced with a unique challenge in which the input text is short, which
gives classifiers less information to incorporate in its inference. Moreover, users may phrase
questions addressing different intents using the same pattern with a difference in a word
or two. e.g. "Show me homepage” and ”Show me sensor A” would refer to "navigation”
and "sensor data” intents respectively with so little difference in the query pattern. The
core difference between the two queries however are the entities and their classes.
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Figure 5.1: BICERE architecture; Green and orange nodes denote start and end of se-
quences of an LSTM

In this section we explore providing extra information for the intent classification task,
which constitutes of the classes of recognized entities in the query. We contrast two models;
biLSTM+ is the first model where we augment the input to a biLSTM classifier with
recognized entities’ classes. BICERE is the second model where we combine the results of
a biLSTM and an encoding of the recognized entities’ classes to improve the classification.

As shown in (Figure 5.1), BICERE takes in sentences with variable length, denoted as
S = wy,ws, ... w,. After data is cleaned and unique vocabulary is extracted, each sentence
is represented as S’ = iy, is, . . . i,,, where m is the maximum number of terms in a sentence
and 7; points to the index of some term in the vocabulary.

Next we setup our model, such that in the first layer we embed each of the items in
a sentence into a space vector, which is tuned in the training phase of the model. The
embedded sentence, S, = e(i1),e(ia),...e(iy) is then passed to a bidirectional LSTM,
which captures the structure of the sentence and keeps attention of the flow. We chose
biLLSTMs in this layer over unidirectional LSTMs, as they have proved their proficiency
in keeping context of the sentence from start to end and vice versa. They also seem more
suited to the task of text classification as the whole input sequence is known at prediction
time, as opposed to language modelling tasks where only the first part of the sentence may
be known. The output of the biLSTM layer is denoted as hg = hy, ho, ... ho., Where e is
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100 epochs 150 epochs
biLSTM | BICERE | biLSTM+ | biLSTM | BICERE | biLSTM+
Accuracy 0.789 0.812 0.849 0.869 0.882 0.930
Validaton Accuracy | 0.697 0.683 0.798 0.707 0.700 0.778
Loss 1.035 1.032 0.795 1.170 1.122 1.043
Precision 0.71 0.75 0.78 0.71 0.71 0.76
Recall 0.71 0.73 0.80 0.72 0.71 0.76
F1-score 0.71 0.70 0.78 0.71 0.70 0.76
200 epochs
biLSTM | BICERE | biLSTM+

Accuracy 0.913 0.915 0.954

Validation Accuracy | 0.714 0.710 0.781

Loss 1.441 1.239 1.297

Precision 0.73 0.69 0.75

Recall 0.73 0.72 0.76

F1-score 0.73 0.70 0.75

Table 5.1: Performance report for biLSTM, BICERE and biLSTM+ at 100, 150 and 200
epochs.

the embedding size of the input. h, is then passed to a dense layer with a dropout rate of
0.5 to produce qs = q1, G2, - - - Ge-

Meanwhile, a second input entity frequency array fs is passed in, such that fg
[11,T9,...75], where n is the number of entity types predefined in the system, and r; refers
to the number of times entity type ¢ was recognized in the sentence. The final layer takes
as input the concatenation gg|fs and passes the output to a Softmax which produces a
sequence x1, To, . .. Iy, where k is the number of intent classes and z; denotes the probability
of the input being classified into class .

In the next section, we contrast the performance of a vanilla biLSTM, BICERE and
biLSTM+ on an intent classification dataset that we collected in a demo period.

5.3 Experiments

To train our model, we collected 262 utterances as a baseline virtual assistant, built using
Dialogflow framework was presented in a trade show for water technology. The entities
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were defined on Dialogflow platform and users were directed to ask questions relating
to 4 different intent classes. An additional intent class default.fallback was added by the
framework in reference to statements that do not fall into one of the patterns of the defined
classes, and 11 different entity types were found in the dataset. Results of the classification
and entity recognition were manually revised to make sure correct annotations are assigned
to training data.

Throughout our experiments we used embedding size e = 128 , and the longest sentence
size m = 32.

For each of the models, we reported the accuracy, validation accuracy and loss at 100,
150 and 200 epochs. We additionally report precision, recall and fl-score 4.8 which were
calculated using a 7-fold validation scheme. Moreover, the values given for each of the
results at n epochs maps to the average of the n — 5 epochs, as it was observed that
accuracy tends to fluctuate from one epoch to the next.

As reported in (Table 5.1), biLSTM+ exhibits an improvement over baseline biLSTM
in all metrics including a validation accuracy boost of 7-10%, precision boost of 2-7%, recall
boost of 3-9% and fl-score improvement of 2-7%. We attribute this performance boost to
the ability of biLSTM+ to recognize the pattern of different text sequences which have
types of entities following those entities in the input.

BICERE on the other hand shows improvements on accuracy amounting to 2-3% but
shows no improvements on validation accuracy which may suggest that more data is needed
to improve its performance. It is also noteworthy that BICERE shows an immediate
improvement on precision and recall at 100 epochs, but that improvement fades away with
higher epochs. The table also shows that loss generally declines as we go from biLSTM to
BICERE to biLSTM+ models.
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Chapter 6

Conclusion

Our research focused on the design of a virtual assistant for water systems operation. In a
field assessment, we implemented physical, artifacts and cultural work models to help us
determine the priorities for different features to include in the virtual assistant, affirming
the need to support questions about system indicators and inferring the need for personal
interaction features, such as small talk and scheduled summaries of the system.

Our technical design focused on the main stages of virtual assistants pipelines; Named
Entity Recognition and Intent Classification;

We designed a Named Entity Recognition system that is able to make semantic com-
parisons to a knowledge base of defined entities in the absence of training data. For this
task, we leveraged the representative power of word embeddings by integrating it in the
similarity calculations, showcasing significant performance improvements over the baseline
TF-IDF and cosine similarity based method. We contrasted the performance for different
vector space model representations including NTF, GVSM and directly representing the
knowledge base in word embeddings. We also experimented with different types of word
embeddings such as FastText and BERT, and different sentence embedding aggregations
including averaging and power mean. The most notable factor in the performance improve-
ment was the incorporation of word embeddings as precision boost amounted to 14-20%,
recall boost to 6-14% and fl-score boost to 11-17% for word-embedding-based methods over
the baseline.

We additionally demonstrated the improvements of integrating information about rec-
ognized entities in the input of the intent classification task, which amounted to a 10%
accuracy boost, 7% precision boost, 9% recall boost and 7% fl-score boost over the base-
line biLSTM model. We also introduced a new classifier architecture (BICERE), which
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explicitly encapsulates information about recognized entities which showed small improve-
ment in lower epochs, then little or no improvements over the baseline for higher epochs,
which indicates that more data may need to be collected to unlock this model’s potential
for better classifications.

6.1 Future Work

As shown in the (Section 4.4), the NER task has significantly improved by integrating word
embeddings to improve the similarity calculation between parts of queries and curated
entities lists. Word embedding models can be further improved by gathering more data
related to water operation through periodic web scrapes of online water operation forumes,
to be aggregated with the current data and retrain the word embedding models. State
of the art methods for handling expected misspellings in typed-in text including MOE
(Section 4.3.3) should also be contrasted against the currently implemented edit-distance
method.

Furthermore, the dataset collected for intent classification is very limited. We recom-
mend implementing an active learning system to query the user about the correctness of
an inference, while the current model is in production to collect more data.

We additionally recommend implementing small-talk features to address the needs
noted earlier in the field assessment. In advanced stages, question answering features
can be integrated as well, providing answers from water systems operations books and
learning resources to provide a more complete solution to water operators.
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