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Abstract

Adiabatic quantum operations are ubiquitous in fields such as quantum information pro-
cessing, quantum control, and magnetic resonance, where their high fidelity and general
robustness renders them an essential tool for various applications. This inherent robustness
due to adiabaticity can, however, be impaired in cases where the experimental conditions
strictly require very fast evolution times. In this thesis, we provide a gradient-based nu-
merical optimization protocol for efficiently engineering adiabatic operations, allowing for
the systematic inclusion of robustness criteria against various experimental non-idealities,
including inhomogeneities and uncertainties in system parameters, as well as perturbations
in the Hamiltonian such as spin-spin interactions.

The protocol is implemented in the context of adiabatic passages for magnetic reso-
nance, and it is shown that in addition to conventional adiabatic pulses, it can also gener-
ate exceptionally fast operations that although slightly deviate from adiabaticity in limited
instances, still lead to a high fidelity. The effectiveness of our method for addressing per-
turbations is also demonstrated by designing a fast adiabatic passage for dipolar-coupled
electrons, and numerically comparing its performance with a pulse without such consider-
ations.

iii



Acknowledgements

First and foremost, I would like to express my deep appreciation to my supervisor Professor
Raffi Budakian, whose guidance and invaluable insights have made this project possible. I
would not have learned so much if it was not for his enthusiasm and continuous willingness
to devote his time to his students.

The last two years in the Budakian group have truly been some of the most intellec-
tually stimulating times of my life. This would not have been the case if it was not for
my brilliant colleagues (and friends) Andrew Jordan, Pardis Sahafi, Ben Yager, Michèle
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Chapter 1

Introduction and Background

The concept of adiabatic quantum evolution dates back to Born and Fock [1] at the very
early stages of quantum theory, with further development by Kato [2] and Berry [3]. The
main question addressed throughout this development was simply ”how does a quantum
system evolve under an infinitely slow excitation?”. It was established that in this limit,
eigenstates of the initial system Hamiltonian stay instantaneous eigenstates throughout
the evolution. Over time, this simple concept has brought about a plethora of applications
in various parts of physics, chemistry, and quantum information science.

One notable application can be found in magnetic resonance [4, 5], where adiabatic
operations have become a well-established method for robust, high fidelity manipulation
and control of both nuclear and electronic spins, such that they are now important tools in
nuclear magnetic resonance (NMR) spectroscopy, magnetic resonance imaging (MRI) and
NMR quantum information processing. Adiabatic operations have also found their way
into ion traps [6,7], superconducting circuits [8,9] and experimental atomic and molecular
physics in general [10,11].

Another, more recent development, has been the field of adiabatic quantum computa-
tion (AQC) [12,13], where the system is initialized in a specific eigenstate of the Hamilto-
nian (usually the ground state), and then the Hamiltonian is slowly evolved into a more
complicated one, the ground state of which contains the solution to the computational
problem at hand. It has been shown that AQC is universal, and mathematically equiv-
alent to the standard circuit model of quantum computing, in the sense that one can
simulate the other in polynomial overhead time [14]. Various quantum algorithms, such
as factorization [15] and quantum optimization algorithms [16], have been experimentally
implemented with AQC.
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In this work, we present a novel numerical method for engineering fast adiabatic opera-
tions on two-level systems, utilizing a gradient-based optimization algorithm. The method
allows for the explicit inclusion of various robustness criteria against different perturba-
tions, such as spin-spin interactions, as it naturally fits into the Van Loan auxiliary matrix
formalism developed in [17] to perturbatively account for experimental imperfections. It
can also be extended in special cases to multi-level systems, such as designing adiabatic
passages for spin I > 1/2 nuclei in NMR.

Moreover, we observe an interesting regime in which the protocol results in very fast
pulses (with lengths as short as 2.5 Rabi cycles), that while slightly deviating from adia-
baticity at limited times, still exhibit the high fidelity of conventional adiabatic operations.
Even in cases where the inherent adiabatic robustness is compromised because of the con-
trol speed, the ability to directly tailor the system’s Hilbert space trajectory to the existing
perturbations renders our method a key candidate for applications that require short evo-
lution times, along with the performance that comes from adiabaticity.

For the sake of concreteness, we will mostly focus our attention to adiabatic operations
in the context of magnetic resonance. Our protocol is, however, not at all limited to this
specific application1.

1.1 Thesis Outline

The outline of this thesis is as follows:

• Chapter 1

In the first chapter, we discuss the background required for developing our adiabatic
control protocol. First, we review the fundamentals of time dependent perturbation
theory, in a slightly more general setting than usual, where, unlike the time evolution
of a (closed) quantum system, the generator of the dynamics is not necessarily anti-
Hermitian. This will later be needed in the theoretical description of our control
searches. Subsequently, we discuss the Van Loan auxiliary matrix formalism used for
the efficient numerical calculation of the integral expressions frequently encountered
in various parts of our control protocol, such as perturbation theory terms.

We then turn to the adiabatic theorem, which is the basis for all adiabatic op-
erations in physics. This is followed by an overview of adiabatic operations in the
context of magnetic resonance, and the secant hyperbolic pulse as a standard pulse

1This project was done in collaboration with Holger Haas.
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shape commonly utilized in an experimental setting. At the end of the chapter,
we briefly review some of the previously established numerical protocols used for
engineering adiabatic quantum operations.

• Chapter 2

Chapter 2 is devoted to laying the theoretical foundations of the adiabatic control
protocol for general two-level systems, including a discussion of the adiabatic con-
trol problem, the metrics used for quantifying control performance, and the efficient
evaluation of these metrics along with their gradients with respect to the control
parameters.

Having established the basics of the protocol, we turn to the methods used in
the optimization for the explicit inclusion of robustness criteria, such as robustness
against inhomogeneities and perturbations in the Hamiltonian.

We conclude the chapter by briefly presenting a generalization of the two-level prob-
lem to a special case of a multi-level system; engineering NMR adiabatic pulses for
general spin I > 1/2 systems.

• Chapter 3

Here we demonstrate the discussed control search method by presenting engineered
adiabatic full passages for NMR applications, along with a pulse with built-in ro-
bustness against dipolar coupling, for magnetic resonance on interacting electrons.
The performance of these pulses and the effectiveness of our perturbative treatment
of the dipolar coupling are studied in multi-spin simulations. We also give a brief
demonstration of an adiabatic operation connecting two arbitrary points on the Bloch
sphere. The chapter ends with a study of the sensitivity of the pulses against stochas-
tic noise, as a function of noise amplitude and characteristic fluctuation time.

• Chapter 4

We summarize the results of the thesis, along with giving an outlook for future
research directions.

1.2 Review of Time Dependent Perturbation Theory

Recall that the evolution of a closed quantum system with a Hamiltonian H(t) and the
initial (pure) state |ψ0〉 is determined by the Schrodinger equation i~ d

dt
|ψ(t)〉 = H(t)|ψ(t)〉,

together with the initial condition |ψ(0)〉 = |ψ0〉 [18]. This dynamics can equivalently be
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described in terms of a unitary operator U(t), called the time-evolution operator, which
maps the initial state to the state at any time t by U(t)|ψ0〉 = |ψ(t)〉, where U(t) is
determined by the initial value problem (IVP)

d

dt
U(t) = −iH(t)U(t)

U(0) = 1
, (1.1)

with 1 being the identity operator. Eq.(1.1) is written in a unit system in which energies
are measured in units of angular frequency, i.e. ~ = 1. We will consistently use this unit
system throughout this thesis.

The main problem in perturbation theory, first introduced by Dirac [19], discusses how
the propagator changes when the Hamiltonian is varied by a small perturbation δH(t),
such that1 ‖δH(t)‖ ≤ ‖H(t)‖ for all t. We here review the main results of perturbation
theory in a slightly more general setting compared to most treatments, as this will prove
useful in the control search algorithm. This review somewhat closely follows the first few
sections of [17].

Let G : [0, T ]→ L(H) be an operator-valued function on an interval [0, T ]; with L(H)
being the space of linear operators acting on a d-dimensional2 complex Hilbert space H.
We will call G the time-evolution generator of the system. Now consider the following
IVP: 

∂

∂t
Ut[G] = G(t)Ut[G]

U0[G] = 1
t ∈ [0, T ], (1.2)

where Ut[G], the solution to the IVP, is called the propagator of the system. In the case
of a (closed) quantum system, Ut[−iH] would be the time-evolution operator, with H(t)
being the Hamiltonian. Then, G(t) = −iH(t) and Ut[−iH] would be anti-Hermitian and
unitary, respectively. We will not, however, impose any such constraints on the operators
in this discussion.

The unique [20] solution of the above IVP is usually referred to as a time-ordered
exponential, which we denote by

Ut[G] ≡ Texp
[ ∫ t

0

dt′G(t′)
]
. (1.3)

1We use the Hilbert Schmidt inner product 〈A,B〉 ≡ Tr(A†B) , and its associated norm ‖A‖ =
√
〈A,A〉

throughout this thesis, unless otherwise specified.
2We will always assume d <∞ for simplicity.
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In the case of a constant generator G(t) ≡ G0, one can easily show by direct substitution
that this reduces to the operator exponential Ut[G0] = exp(tG0). In the slightly more
general case of a generator that commutes with itself at all times1, the solution to the IVP
becomes Ut[G] = exp[

∫ t
0
dt′G(t′)], which can also be verified by directly checking that it

satisfies Eq.(1.2).

As can be seen from Eq.(1.3), at any time t, Ut[G] depends on the whole history of
the generator before that time, i.e. the set {G(t′)| 0 ≤ t′ ≤ t}. In other words, Ut is a
functional of the generator. To emphasize this functional relationship, we use the notation
Ut[G] instead of the more common U(t) in this thesis; unless in cases where such emphasis
is not needed.

Now consider the case where the solution Ut[G] to Eq.(1.2) is known for a specific G,
and we wish to calculate the solution Ut[G + δG] for a perturbed generator G + δG. We
discuss two different expansions for calculating the perturbed solution, the Dyson series [21]
and the Magnus series [22].

The Dyson Series

To derive the Dyson series, first note that since ∂
∂t

[
U−1
t [G] × Ut[G]

]
= ∂

∂t
1 = 0, one can

easily use Eq.(1.2) to show that U−1
t [G] satisfies the following IVP:

∂

∂t
U−1
t [G] = −U−1

t [G] G(t)

U−1
0 [G] = 1

t ∈ [0, T ]. (1.4)

Now to calculate the perturbed Ut[G+ δG], we look at the time derivative of the product
U−1
t [G]× Ut[G+ δG],

∂

∂t

[
U−1
t [G]× Ut[G+ δG]

]
=

(
∂

∂t
U−1
t [G]

)
Ut[G+ δG] + U−1

t [G]
∂

∂t
Ut[G+ δG]

= −U−1
t [G] G(t) Ut[G+ δG]

+ U−1
t [G]

(
G(t) + δG(t)

)
Ut[G+ δG]

= U−1
t [G] δG(t) Ut[G+ δG], (1.5)

1i.e. [G(t1), G(t2)] = 0 for all t1, t2 ∈ [0, T ].
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where we used Eq.(1.2) and Eq.(1.4). Integrating Eq.(1.5) and applying Ut[G] from the
left gives

Ut[G+ δG] = Ut[G]

∫ t

0

dt′ U−1
t′ [G] δG(t′) Ut′ [G+ δG]. (1.6)

This is a linear Volterra integral equation of the second kind for Ut[G+ δG], which can be
solved by iteration (i.e. a Neumann series) [23]. The result is the Dyson series,

Ut[G+ δG] = Ut[G]
∞∑
n=0

∫ t

0

dt1...

∫ tn−1

0

dtn

n∏
i=1

U−1
ti

[G] δG(ti) Uti [G]. (1.7)

The order of the product in Eq.(1.7) is understood to be in increasing value of i, from
left to right. Eq.(1.7) may also be written in its more conventional form by utilizing the
interaction picture of G,

Ũt[δG̃] =
∞∑
n=0

∫ t

0

dt1...

∫ tn−1

0

dtn

n∏
i=1

δG̃(ti), (1.8)

with {
δG̃(t) ≡ U−1

t [G] δG(t) Ut[G]

Ũt[δG̃] ≡ U−1
t [G] Ut[G+ δG]

(1.9)

being the interaction picture operators.

Since the Dyson series of Eq.(1.7) involves reoccurring integrals of a particular form,
we use the following shorthand notation for these Dyson terms :

DU(A; t) ≡ Ut[G]

∫ t

0

dt1...

∫ tM−1

0

dtM

M∏
i=1

U−1
ti

[G] Ai(ti) Uti [G], (1.10)

with A ≡ (A1, ..., AM). This notation allows us to write the Dyson series in a more
condensed form

Ut[G+ δG] =
∞∑
n=0

DU(δG, ...δG︸ ︷︷ ︸
n times

; t). (1.11)

As a side note, these Dyson terms can also be related to directional derivatives of Ut[G].
For example, when G is varied in the direction of some operator-valued function A, the nth

order directional derivative is

∂n

∂εn
Ut[G+ εA]

∣∣∣∣
ε=0

= n! DU(A, ..., A︸ ︷︷ ︸
n times

; t). (1.12)
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This can be easily verified by setting δG = εA in Eq.(1.7) and taking the partial derivative
∂n/∂εn|ε=0. Interestingly, a comparison of Eq.(1.12) and Eq.(1.11) shows that the Dyson
series is nothing but the Taylor series of the propagator around the unperturbed generator
G. It is worth noting that even though Eq.(1.7) is exact for any G and δG, an approx-
imation using a truncation of the Dyson series requires that ‖δG(t)‖ � ‖G(t)‖ for all
t ∈ [0, T ]; i.e. G is the ”large” solvable generator and δG is the perturbation.

Note that in the special case of G(t) being the anti-Hermitian generator of a quantum
system’s time evolution, approximating the perturbed propagator by truncating the Dyson
series can generally result in a non-unitary operator. One way of alleviating this problem
is by using the exponential of an infinite series instead to represent the propagator; a
technique called the Magnus expansion.

The Magnus Expansion

The idea behind the Magnus expansion [22, 24] is to write the interaction picture IVP
solution Ũt[δG̃] of Eq.(1.9) as the exponential of another operator. There are two advan-
tages to this approach: 1- It allows for studying the system dynamics through an average
generator at any specific time. 2- As we will see later, in contrast to the Dyson series,
truncation of the resulting expansion still results in a unitary evolution when the generator
is anti-Hermitian.

Consider the case where one is interested in the perturbed propagator Ut0 [G + δG]
at a specific time t0. This can be, for example, the end of a control sequence. Recall
that the operator exponential is surjective as a map from L(H) to the set of invertible
operators on1 H [25]. This implies that any invertible operator, such as the interaction
picture propagator Ũt0 [δG̃], can be written as an exponential

Ũt0 [δG̃] = et0δG̃(t0), (1.13)

where the exponent is written as t0 × δG̃(t0) without loss of generality. Note that the
operator Ũt0 [δG̃] is indeed invertible since its inverse is the unique solution of an IVP
analogous to Eq.(1.4). On the other hand, we know that the solution to the Eq.(1.2)
IVP for a constant generator G0 is simply exp(tG0), which has the exact same form as
Eq.(1.13) as long as we restrict ourselves to the specific, fixed time t0. In other words,
for any specific t0, the time-independent generator δG̃(t0), called the average generator,
simulates the original system δG̃(t) at t = t0. Note, however, that the propagators of the

1i.e. the general linear group of H.
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two systems can in principle follow completely different trajectories in L(H); only needing
to coincide at t = t0.

In most cases, the time t0 is taken to be the end of the applied controls (e.g. the pulse
sequence) t0 = T . In the case of unitary evolution, Eq.(1.13) allows for the definition
of an average Hamiltonian H̃ (t0) := i δG̃(t0), which is the focus of average Hamiltonian
theory [26, 27]; with various applications in the design and analysis of pulse sequences for
magnetic resonance.

With that in mind, we turn to the actual calculation of the average generator δG̃(t0).
To this end, we make the transformation δG̃ → λδG̃ with λ ∈ R being an auxiliary
bookkeeping parameter that is set to 1 at the end. We then use the ansatz

δG̃(t0) ≡
∞∑
i=1

λiδG̃i(t0), (1.14)

and equate exp[t0δG̃(t0)] = exp[t0
∑∞

i=0 λ
iδG̃i(t0)] =

∑∞
j=0

tj0
j!

(∑∞
i=1 λ

iδG̃i(t0)]
)j

with the

interaction picture Dyson series Eq.(1.8). Equating corresponding powers of λ and then
setting λ = 1 at the end gives the Magnus expansion,

Ũt0 [δG̃] = exp
[
t0

∞∑
i=1

δG̃i(t0)
]
, (1.15)

with the first few terms being

δG̃1(t0) =
1

t0

∫ t0

0

dt1δG̃(t1)

δG̃2(t0) =
1

2t0

∫ t0

0

dt1

∫ t1

0

dt2[δG̃(t1), δG̃(t2)]

δG̃3(t0) =
1

6t0

∫ t0

0

dt1

∫ t1

0

dt2

∫ t3

0

dt3

([
δG̃(t1), [δG̃(t2), δG̃(t3)]

]
+
[
δG̃(t3), [δG̃(t2), δG̃(t1)]

])
...

. (1.16)

A general formula for the nth term of the Magnus expansion is rather complicated, and
involves the Bernoulli numbers and n nested commutators of δG̃ [24].

Note that even though we could have written Eq.(1.13) directly for Ut0 [G+ δG] instead
of Ũt0 [δG̃], the advantage of using the interaction picture is that the expansion terms of
Eq.(1.16) are ”small”, as ‖δG̃(t)‖ = ‖U−1

t [G] δG(t) Ut[G]‖ = ‖δG(t)‖ � ‖G(t)‖. Since the
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nth Magnus term is of order ‖δG̃‖n, this allows for an approximation of the average gener-
ator δG̃(t0) by truncation of the infinite series in Eq.(1.15). We also make the observation
that since the (Lie) algebra of anti-Hermitian operators is closed under commutation, in
the case of an anti-Hermitian generator δG̃, each Magnus term δG̃i is also anti-Hermitian,
and truncation will always result in a unitary propagator.

In our review of perturbation theory, we have thus far encountered integral expressions
such as the Dyson and Magnus terms Eq.(1.10,1.16), for which direct numerical integration
can be time consuming; especially since the propagator would need to be calculated by
numerically solving the IVP Eq.(1.2) beforehand. In the next section, we will discuss the
block matrix methods that can substantially speed up the computations by calculating
these reoccurring integral expressions alongside the propagator, through only a single IVP.

1.3 Calculating Dyson Terms Using Van Loan

Relations

The efficient calculation of the propagator and its properties is a crucial component of any
numerical control method. Many such properties are integrals of the form

Ut[G]

∫ t

0

dt1...

∫ tn−1

0

dtn f(t1, ..., tn)
n∏

m=1

U−1
tm [G] Am(tm) Utm [G], (1.17)

for some scalar function f : [0, T ]n → C, and operator-valued functions Am : [0, T ]→ L(H),
with m ∈ {1, ..., n}. An important example of such expressions are the Dyson terms

DU(A; t) = Ut[G]

∫ t

0

dt1...

∫ tn−1

0

dtn

n∏
m=1

U−1
tm [G] Am(tm) Utm [G], (1.18)

that as established in Section 1.2, appear in perturbation theory, as well as the directional
derivatives of the propagator. Note that Magnus terms can also be written in terms of the
Dyson terms DU(A; t) [24]. Another example of such integrals is expressions in stochastic
Liouville theory [28] for evaluating the ensemble average of a quantum system subject to
stochastic operators.

In this section, we will only focus on the method used to efficiently calculate integrals of
the above form in the special case of f(t1, .., tn) = 1, i.e. the Dyson terms Eq.(1.18), as the
more general expression is not needed for our adiabatic control protocol 1. The main idea

1A more general discussion for the f(t1, .., tn) 6= 1 case is given in [17,29].
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behind this method is that computations are significantly faster if instead of solving the
IVP for the propagator Ut[G] and then using it to evaluate the Dyson terms, one constructs
a larger auxiliary matrix for which the IVP of Eq.(1.2) can give both the propagator and
the Dyson terms simultaneously. This capability is especially vital in applications such as
numerical control optimization, where hundreds, if not thousands of computations may be
required in order to find the parameters satisfying the design criteria.

The backbone of this auxiliary matrix formalism is a relation first discovered by Van
Loan [30] involving the time-ordered exponentials of block triangular matrices, which was
then further generalized in [17,31,32]. In this thesis, we only need to use a special case of
these Van Loan relations. In particular, for any square-matrix valued function G, and its

associated propagator Ut[G] ≡ Texp
[ ∫ t

0
dt′G(t′)

]
, we have the identity

Texp

(∫ t

0

dt′



G(t′) A1(t′) 0 . . . 0 0
0 G(t′) A2(t′) . . . 0 0
0 0 G(t′) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . G(t′) An(t′)
0 0 0 . . . 0 G(t′)


)

=



Ut[G] DU(A1; t) DU(A1, A2; t) . . . DU(A1, ..., An−1; t) DU(A1, ..., An; t)
0 Ut[G] DU(A2; t) . . . DU(A2, ..., An−1; t) DU(A2, ..., An; t)
0 0 Ut[G] . . . DU(A3, ..., An−1; t) DU(A3, ..., An; t)
...

...
...

. . .
...

...
0 0 0 . . . Ut[G] DU(An; t)
0 0 0 . . . 0 Ut[G]


, (1.19)

the right-hand side of which contains both the propagator and the Dyson terms (see Ap-
pendix A for a proof). Eq.(1.19) can thus be used to construct an auxiliary matrix that
when used as the generator of Eq.(1.2), facilitates the calculation of the propagator and
Dyson terms.

This strategy has been previously utilized to engineer unitary operations robust to
various perturbations and stochastic noise [17], calculate gradients and Hessians of the
propagator for gradient-based optimization algorithms [33,34], and further develop numer-
ical calculations in spin relaxation theories [32]. In this work, we will show that one can
construct a metric for the adiabaticity of a quantum operation which can be written in
the form of a Dyson term, and hence efficiently calculated through the Van Loan auxiliary
matrix formalism.
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This concludes our review of time dependent perturbation theory, and the Van Loan
formalism for calculating the expressions therein. We will now move on to discuss the
basics of adiabatic quantum evolution, and its applications, particularly in the field of
magnetic resonance.

1.4 Adiabatic Quantum Evolution

In this section, we give a brief overview of the concept of adiabatic evolution in quantum
mechanics, starting with the central result on which adiabatic operations stand; the adia-
batic theorem. We then turn to adiabatic operations in the context of magnetic resonance,
as that is the primary (although not the only) focus of the present work. We end our
review by discussing the secant hyperbolic pulse as one of the commonly used adiabatic
inversion pulses in magnetic resonance experiments. This standardized pulse shape is later
utilized in Chapter 3 as a reference for benchmarking our numerically derived adiabatic
pulses.

1.4.1 The Adiabatic Theorem

Consider a quantum system with a Hamiltonian H(t) acting on a finite-dimensional Hilbert
space H. In accordance with the standard treatment of the adiabatic theorem, we will as-
sume that the spectrum of H(t) is non-degenerate at all times, such that we can unambigu-
ously label each eigenstate and keep track of it throughout the evolution. We denote these
instantaneous energy eigenstates in the relevant time interval [0, T ] by |En(t)〉. Generaliza-
tions to the case of degenerate [35–37] and continuous [38] spectra exist in the literature,
and are outside the scope of this work.

Roughly speaking, the adiabatic theorem states that if the time variation of the Hamil-
tonian is much slower than the intrinsic dynamical time scale of the system, an energy
eigenstate |En(0)〉 at some time t = 0 stays in the corresponding instantaneous eigenspace
during the evolution. In other words, if the system starts from an energy eigenstate, it
stays an instantaneous eigenstate under the dynamics.

More precisely, the adiabatic theorem states that provided the adiabatic condition

Max
n,m∈{1,..,d}
t∈[0,T ]

|〈Em(t)| d
dt
H(t)|En(t)〉|

|En(t)− Em(t)|2
� 1, (1.20)
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is satisfied, initial eigenstates evolve as

U(t)|Ek(0)〉 ' eiφk(t)|Ek(t)〉 t ∈ [0, T ], (1.21)

with U(t) being the propagator1, and the phase φk being

φk(t) ≡ −
∫ t

0

dt′Ek(t
′)︸ ︷︷ ︸

dynamic phase

+

∫ t

0

dt′i〈Ek(t′)|
d

dt′
|Ek(t′)〉︸ ︷︷ ︸

geometric phase

. (1.22)

The first term in Eq.(1.22) is the dynamic phase, which is the extension of the static-
Hamiltonian e−iEt oscillatory phase. The second term is called the geometric, or Berry
phase, which leads to a wide range of interesting effects in various parts of modern physics
[39–41].

Observe that the adiabatic condition Eq.(1.20) depends on two factors, the numerator
measures the rate of the Hamiltonian’s time variation, while the denominator is the squared
inverse of the energy level spacing. Consequently, systems with larger energy gaps can
evolve adiabatically even under faster Hamiltonians.

An essential property of adiabatic operations is their inherent robustness against both
errors in the applied controls and decoherence [42]. Errors in the controls, such as imperfect
pulse amplitudes, can be modeled using an error Hamiltonian δH(t); with the actual
Hamiltonian of the system now being H(t) + δH(t). Interestingly, Eq.(1.20) implies that
the error Hamiltonian δH(t) need not be that much smaller than the ideal Hamiltonian
H(t). Provided δH(t) varies sufficiently slowly, and its start and end values are small
enough, the operation will still result in the same final state, even though the eigenstate
trajectories may, in principle, be very different. Conversely, errors that vary much faster
than the energy scale of H(t) are also not detrimental to the performance, as the system
response is not fast enough to be affected by them. Therefore, only control errors in the
intermediate speed regime are able to harm the performance of adiabatic operations.

Regarding robustness against decoherence, environmental interactions that couple the
eigenstates of the Hamiltonian may induce unwanted transitions and impair the perfor-
mance of the operation. This, however, is not problematic, as long as the associated tem-
perature is much smaller than the minimum energy gap of H(t). And since the adiabatic
condition Eq.(1.20) actually favors larger gaps, and hence less stringent temperature re-
quirements, adiabatic operations are usually not very susceptible to decoherence at typical
operating conditions [42–44].

1We use the simplified notation U(t) instead of Ut[G] for the propagator, since, in this section, there
will be no need for emphasizing its functional relationship with the generator.
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We here conclude our discussion of the adiabatic theorem. A more extensive review of
the adiabatic theorem and its derivation is provided in Appendix B for completeness. In
the following section, we will discuss how adiabatic operations can be implemented in the
context of magnetic resonance experiments.

1.4.2 Adiabatic Operations in Magnetic Resonance

Here we first review the basic setting of a magnetic resonance experiment, and how
frequency-modulated (FM) radio-frequency (RF) pulses can lead to a reliable method for
the adiabatic manipulation of spins [45]. This is followed by a brief overview of the hyper-
bolic secant pulse as one of the standard waveforms utilized in many magnetic resonance
experiments.

Frequency-Modulated RF Pulses as Adiabatic Operations

The simplified description of a typical magnetic resonance system is as follows [4, 5, 46].
A spin I particle, e.g. a nucleus or electron, is placed inside a static magnetic field B0 ≡
B0ẑ, with an inductive coil generating an orthogonal RF field B1(t). The Hamiltonian of
the system is simply given by the classical magnetic dipole interaction −µ · B, with the
magnetic dipole moment µ being proportional to the particle spin, i.e. µ = γI, and the
proportionality constant γ being the gyromagnetic ratio of the particle. The Hamiltonian
of the system then is

H(t) = −γ(B0ẑ + B1(t)) · I. (1.23)

Now consider the case where the RF field is linearly polarized, and both amplitude and
frequency modulated, such that B1(t) = 2[B1I(t) cosϕ(t) + B1Q(t) sinϕ(t)]x̂, with B1I(t)
and B1Q(t) being the in-phase and quadrature envelope functions, and the instantaneous
(angular) frequency being ϕ̇(t) ≡ d

dt
ϕ(t). With this in mind, Eq.(1.23) becomes

H(t) = −ω0Iz − 2
[
ω1I(t) cosϕ(t) + ω1Q(t) sinϕ(t)

]
Ix, (1.24)

where ω0 ≡ γB0 is the Larmor frequency, ω1I(t) ≡ γB1I(t), and ω1Q(t) ≡ γB1Q(t). To
see how one can create adiabatic operations in this setting, it is convenient to change to a
reference frame rotating around the static field axis at the instantaneous RF frequency ϕ̇(t).
We will call this new reference frame, defined by the unitary transformation exp[−iϕ(t)Iz],
the FM frame.
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Before we proceed with the reference frame transformation, we note that in most mag-
netic resonance experiments, the static field is on the order of a few Tesla, while the RF
field is not higher than a few hundred Gauss at most. We therefore restrict our analysis
to a regime in which |ω1I(t)|, |ω1Q(t)| � ω0. We also assume that the instantaneous fre-
quency ϕ̇(t) is close to the Larmor frequency throughout the evolution, in the sense that
the instantaneous resonance offset ∆ω(t) ≡ ω0 − ϕ̇(t) is much smaller than the Larmor
frequency at all times.

We now rewrite Eq.(1.24) as

H(t) = −ϕ̇(t)Iz︸ ︷︷ ︸
H0(t)

−∆ω(t)Iz − 2
[
ω1I(t) cos(ϕ(t)) + ω1Q(t) sin(ϕ(t))

]
Ix︸ ︷︷ ︸

δH(t)

, (1.25)

with ‖δH(t)‖ � ‖H0(t)‖ because of the above assumptions. Realizing that the FM frame is
nothing but the interaction frame of H0(t), the Magnus expansion can be used to calculate
an effective FM-frame Hamiltonian. To do this, we partition the time interval [0, T ] into
smaller windows of length δt, and then use the Magnus expansion to first order in order to
derive an average Hamiltonian for each time frame. δt is chosen to be much longer than
the Larmor period 2π/ω0, and much smaller than the time scale for the variation of the
envelope functions ω1I(t), ω1Q(t), and also the resonance offset function ∆ω(t).

The first order average Hamiltonian for the window [t, t+ δt] is

H̃(t) ' 1

δt

∫ t+δt

t

dt′ e−iϕ(t′)IzδH(t′)eiϕ(t′)Iz

=
1

δt

∫ t+δt

t

dt′

(
−∆ω(t′)Iz − 2

[
ω1I(t

′) cosϕ(t′)

+ ω1Q(t′) sinϕ(t′)
][
Ix cosϕ(t′) + Iy sinϕ(t′)

])

= − 1

δt

∫ t+δt

t

dt′

(
∆ω(t′)Iz + ω1I(t

′)Ix + ω1Q(t′)Iy

+
(
ω1I(t

′)Iy + ω1Q(t′)Ix
)

sin(2ϕ(t′))

−
(
ω1I(t

′)Ix − ω1Q(t′)Iy
)

cos(2ϕ(t′))

)
. (1.26)

Now since δt is much larger than the Larmor period, the sin(2ϕ(t′)), cos(2ϕ(t′)) average
out, as they oscillate with a frequency ϕ̇(t) ∼ ω0. The remaining terms can be taken out
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of the integral, since δt is much smaller than their variational time scale. This leads to the
following effective Hamiltonian in the FM frame:

H̃(t) ' −∆ω(t)Iz − ω1I(t)Ix − ω1Q(t)Iy, (1.27)

or

H̃(t) ' −b(t) · I, (1.28)

with b(t) ≡ (ω1I(t), ω1Q(t),∆ω(t)) being the effective field. The coarse-graining approach
used here to derive this effective Hamiltonian is usually referred to as the rotating wave
approximation (RWA) [47], as it is equivalent to decomposing the linearly polarized B1

into two counter-rotating circularly polarized fields, and neglecting the one that rotates
opposite to the spin’s Larmor precession. In this thesis, we will always work in the FM
frame, assuming that the conditions required for the RWA are satisfied.

The FM frame Hamiltonian Eq.(1.28) clearly shows that one can engineer a specific
trajectory for the effective field, and hence the Hamiltonian, by varying the envelope func-
tions and the resonance offset signal in the experiment. In particular, adiabatic evolution
can be achieved provided this is done sufficiently slowly, in the sense that the adiabatic
condition Eq.(1.20) is satisfied.

We now spend some time examining the eigenstate structure of Eq.(1.28), as it will
be useful for later extending our adiabatic control protocol to the case of I > 1/2 spins.
Denoting the eigenbasis of the Iz operator1 by {|m〉}Im=−I , we can derive the eigenstates

of H̃(t) by rotating the coordinate frame into one in which the effective field coincides
with the z axis. Writing the effective field b(t) in spherical coordinates according to
Fig.(1.1), this coordinate transformation corresponds to a rotation around the y axis by
the polar angle ϑ(t), followed by a rotation around the (old) z axis by the azimuthal angle
ψ(t). Indicating the associated rotation operator by R(t) ≡ e−iψ(t)Ize−iϑ(t)Iy , we have the
following transformation property for the Hamiltonian:

R†(t)H̃(t)R(t) = −|b(t)|Iz, (1.29)

or equivalently H̃(t)R(t) = −|b(t)|R(t)Iz. Acting both sides on a Zeeman state |m〉 gives

H̃(t)
(
R(t)|m〉

)
= −m|b(t)|

(
R(t)|m〉

)
, (1.30)

meaning that the eigenvectors of the FM frame Hamiltonian are |Em(t)〉 ≡ R(t)|m〉, with
the associated eigenvalues being −m|b(t)|, for m ∈ {−I, ..., I}. Note that as required

1We will call this the Zeeman basis throughout this thesis.
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Figure 1.1: The effective field in the FM frame.

by the adiabatic theorem, the spectrum is always non-degenerate provided b(t) 6= 0 at all
times. The eigenstates can be explicitly written in the Zeeman basis using the Wigner small
d-matrices [18] defined by d

(I)
m′m(ϑ) ≡ 〈m′|e−iϑIy |m〉, the values of which are summarized in

Appendix C. This can be done by writing

|Em(t)〉 = e−iψ(t)Ize−iϑ(t)Iy |m〉

= e−iψ(t)Iz

I∑
m′=−I

|m′〉〈m′|e−iϑ(t)Iy |m〉, (1.31)

which gives

|Em(t)〉 =
I∑

m′=−I

e−im
′ψ(t)d

(I)
m′m(ϑ(t))|m′〉. (1.32)

Another important property of adiabatic evolution can be deduced by examining the
dynamics of the total magnetization. Assuming that the system starts in the eigenstate
|ψ(0)〉 = |Em(0)〉, and the evolution is adiabatic so that |ψ(t)〉 ' eiφm(t)|Em(t)〉, the mag-
netization evolves as

M(t) = 〈ψ(t)|I|ψ(t)〉
= 〈Em(t)|I|Em(t)〉
= 〈m|R†(t)IR(t)|m〉. (1.33)
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An explicit calculation of Eq.(1.33) using R(t) = e−iψ(t)Ize−iϑ(t)Iy results in

M(t) = m
(

cosψ(t) sinϑ(t), sinψ(t) sinϑ(t), cosϑ(t)
)

= m
b(t)

|b(t)|
, (1.34)

i.e. the magnetization follows the effective field direction during adiabatic evolution. Note
that this also applies when the initial state is a statistical mixture of the eigenstates, such
as the high temperature thermal state frequently encountered in magnetic resonance.

As a final remark, we briefly mention that the adiabatic condition Eq.(1.20) for the FM
Hamiltonian of a spin I particle simplifies to (see Appendix D)

2I + 1

4
Max
t∈[0,T ]

Ω(t)

|b(t)|
� 1, (1.35)

with Ω(t) being the instantaneous angular velocity associated with the motion of the effec-
tive field direction b(t)/|b(t)|. This implies that in order for the evolution to be adiabatic,
the direction of the effective field needs to vary slowly relative to the its magnitude, which
is in turn determined by the magnitude of the Rabi field ω1I(t), ω1Q(t), as well as the
resonance offset ∆ω(t).

We will now discuss one of the most common types of adiabatic operations, the adiabatic
inversion pulse.

Adiabatic Inversion Pulses in Magnetic Resonance

The ability for high fidelity population inversion is an essential component of many tech-
niques in magnetic resonance spectroscopy and imaging. Adiabatic inversion pulses [45,
48, 49], also known as adiabatic full passages (AFP), have become a reliable method for
population inversion in the presence of static and RF field inhomogeneities, where normal
resonant π pulses become problematic.

In an AFP, the spin starts out pointing in the ẑ direction in one of the Zeeman states
|m〉 (or a mixture of them). With the resonance offset being set to its maximum value
∆ωmax, and the Rabi strength being zero, the initial effective field Ω(0) = ∆ωmaxẑ points in
the same direction as the magnetization. As depicted in Fig.(1.2), by gradually increasing
the Rabi strength and sweeping the frequency through resonance (∆ω = 0), the effective
field is rotated into the transverse plane and then into the −ẑ direction, with the Rabi
strength and resonance offset going back to zero and −∆ωmax at the very end, respectively.
Provided the effective field varies sufficiently slowly, in the sense that it satisfies Eq.(1.35),
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Figure 1.2: Typical adiabatic full passage pulse, along with its associated magnetization
and effective field trajectories.

the magnetization will follow its trajectory and undergo an adiabatic inversion from ẑ to
−ẑ.

One of the established waveforms for the modulation functions ω1I , ω1Q,∆ω of an AFP
is the hyperbolic secant pulse, which was first introduced in the field of coherent optics,
and later utilized in magnetic resonance experiments [49,50]. The hyperbolic secant pulse
is defined with the modulation functions

ω1I(t) = ω1max sech
[
(1− 2t

T
) sech−1κ

]
ω1Q(t) = 0

∆ω(t) = ∆ωmax tanh
[
(1− 2t

T
) sech−1κ

] , (1.36)

where ω1max and ∆ωmax are the maximum Rabi field and resonance offset, respectively,
and κ = ω1I(T )/ω1max is a truncation factor indicating the fractional amplitude of the RF
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field at the end of the pulse. It is worth mentioning that other common standardized AFP
pulse shapes, such as the tangent hyperbolic, Gaussian, and Lorentz waveforms also exist
in the literature1.

Although these pulses are adequate for less stringent practical conditions, optimization
of the modulation functions is essential for adiabatic operations that are fast, high fidelity,
and robust to the experimental imperfections of a specific setup. In the following section,
we will provide a brief overview of some previously established methods for the numerical
optimization of adiabatic operations.

1.5 Previous Work on Numerical Adiabatic Control

There have been various numerical techniques applied to the design of adiabatic quantum
operations in the literature. In some works, the proposed method is formulated such that
the adiabatic condition is enforced without direct knowledge of the Hamiltonian’s spec-
trum, either indirectly, by penalizing fast control variations [51], or by using a temporally
local probe for adiabaticity [52]. There has also been a time-optimal variational approach
utilizing concepts from differential geometry [53]. More recently, progress has been made
on the numerical design of so-called superadiabatic operations [54], where the controls are
engineered such that the adiabatic condition can hold in a frame different from the original
frame of reference [55]. In the context of NMR, the magnetization follows the effective field
in this superadiabatic frame, instead of the original one.

A gradient-based optimization protocol, such as the one presented here, has also been
devised for adiabatic control [56]; with the differing factor in our work being the use of
the Van Loan auxiliary matrix formalism for facilitating the calculation of the adiabaticity
metric, as well as allowing for the efficient inclusion of robustness against various perturba-
tions directly in the optimization. This ability to directly account for perturbations, which
is also absent from the other aforementioned schemes, renders our protocol a unique tool for
engineering adiabatic operations in cases where the intrinsic robustness due to adiabaticity
may be insufficient, e.g. because of stringent requirements on the control duration.

We have thus far reviewed the necessary background for this thesis, including an
overview of time dependent perturbation theory, the adiabatic theorem, and its appli-
cation to magnetic resonance. These will be utilized in the subsequent chapter to lay the
theoretical foundations of our adiabatic control method.

1See table 1 in [45] for a list and comparison.
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Chapter 2

Theoretical Description of the
Control Search Protocol

In this chapter, we develop the theory behind the adiabatic control protocol for a general
two-level system. First, we present the statement of the adiabatic control problem, followed
by defining the metrics required to quantify the performance of an adiabatic operation.
In particular, we describe an adiabaticity metric that naturally fits into the Van Loan
formalism of Section 1.3, allowing for the efficient calculation of the metric and its gradient.

We then turn to the methods used for enforcing robustness criteria in the control
searches, including robustness against inhomogeneities and uncertainties in system param-
eters, as well as perturbations in the Hamiltonian such as spin-spin interactions. Addi-
tionally, an extension of the protocol is briefly discussed for a special case of a multi-level
system; the adiabatic control of a spin I > 1/2 particle in magnetic resonance.

The rest of the chapter is devoted to some of the tools for utilizing our protocol for
adiabatic pulse design in magnetic resonance. In particular, we discuss different ways of
parametrizing adiabatic pulse shapes, and how constraints such as amplitude and band-
width limitations can be accounted for in the optimization.

2.1 Setup of the Adiabatic Control Problem

Let G(x, t) be the time-evolution generator for a two-level system1, which depends on a
set of control parameters x = (x1, ..., xN) ∈ RN , that indicate the experimenter’s ability

1For consistency with our discussion in Section 1.2, we formulate the protocol using the (anti-
Hermitian) time-evolution generator G = −iH instead of the Hamiltonian H.
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to control the dynamics of the system. These can be a particular parametrization of an
electromagnetic waveform, such as a set of its piecewise constant amplitudes, which can
be experimentally implemented on an arbitrary waveform generator. Any such generator
can be written in the orthogonal basis of Pauli matrices {1

2
1, 1

2
σx,

1
2
σy,

1
2
σz} as

G(x, t) =
i

2

(
b0(x, t)1 + b(x, t) · σ

)
, (2.1)

where σ ≡ (σx, σy, σz), and b0 : RN × [0, T ] → R and b : RN × [0, T ] → R3 are real (and
real vector)-valued functions, since G(x, t) is anti-Hermitian. The explicit functional form
of b0 and b in this expansion depends on the particular system in question. For example, in
the case of adiabatic pulses in magnetic resonance, b0(x, t) ≡ 0 and b(x, t) is the effective
field in the FM frame Hamiltonian of Eq.(1.28). In that case, the control parameters x
can be a particular parametrization of the frequency and amplitude modulation functions.
We will assume in this section that the functional relationship between b0, b and the
parameters x is known. A concrete discussion of what these mappings are in the context
of magnetic resonance will be given in Section 2.8. We will also assume that b0, b, and
hence the generator G are differentiable functions of x, as is necessary for a gradient-based
optimization algorithm.

The propagator generated by G at time t is given by Eq.(1.3), in other words

U(x, t) = Texp
[ ∫ t

0

dt′G(x, t′)
]
. (2.2)

Before stating the adiabatic control problem, it is beneficial to first examine the general
form of Eq.(2.1) in more detail. We observe that the eigenvalues of G(x, t) are given by

Λ±(x, t) =
i

2
b0(x, t)± i

2
|b(x, t)|. (2.3)

This implies that as long as b(x, t) 6= 0 for all t ∈ [0, T ], which we will assume from now
on, the spectrum of G(x, t) is non-degenerate, as required by the adiabatic theorem.

The adiabatic control problem is now stated as follows. Given some initial state |ψ0〉
and target state |ψT 〉, what is the set of controls xopt (if it exists), that:

1. Evolves |ψ0〉 to |ψT 〉 at time t = T , up to a constant phase.

2. Produces a state |ψ(x, t)〉 that follows a specific instantaneous eigenstate of G(x, t),
up to an arbitrary phase, as closely as possible.
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Naturally, condition (2) also immediately implies that b(xopt, 0) and b(xopt, T ) are con-
strained such that |ψ0〉 and |ψT 〉 are eigenvectors of G(xopt, 0) and G(xopt, T ), respectively.

It is worth noting that the b01 term in G of Eq.(2.1) has no effect on the above con-
ditions. More precisely, if the conditions are satisfied for a specific set of controls, they
are also satisfied for the system described by G

(
b(x, t)

)
≡ ib(x, t) · σ/2, and vice-versa.

This is simply because the propagators U(x, t) ≡ Texp
[ ∫ t

0
dt′G

(
b(x, t′)

)]
and U(x, t) are

related by a phase

U(x, t) = e
i
2

∫ t
0 dt
′b0(x,t′)U(x, t). (2.4)

Therefore, the states of the two systems G and G at any time are also related by the
same phase factor, implying that conditions (1), (2) are also satisfied for G. With this
in mind, without loss of generality, we will restrict our attention to generators of the
form G(b) = ib · σ/2 from now on. The eigenvalues of this generator are then simply
λ±(b) = ±i|b|/2.

The eigenvectors of the G(b) are a special case of the FM-frame magnetic resonance
Hamiltonian examined in Section 1.4.2 for spin I = 1/2. Using Eq.(1.32), along with the
Wigner d-matrix values from Appendix C, the eigenvectors are

|E+(b)〉 = cos
ϑ

2
|↑〉+ eiψ sin

ϑ

2
|↓〉

|E−(b)〉 = sin
ϑ

2
|↑〉 − eiψ cos

ϑ

2
|↓〉

, (2.5)

with ϑ, ψ being the polar and azimuthal angles of b, respectively. These also obtain a
simple geometric interpretation: they point along the ±b/|b| directions in the Bloch sphere
representation. Therefore, condition (2) can be reformulated geometrically, by requiring
that the instantaneous state follows ±b/|b| on the Bloch sphere throughout its evolution;
with the ± sign chosen according to the initial state. In light of this, following NMR
terminology, we will call b(x, t) the effective field from now on.

2.2 Overview of the Control Protocol

A schematic of our proposed adiabatic control protocol is depicted in Fig.(2.1). Consider
an ensemble of two-level systems, represented by the set Γ, each with its own effective
field b(λ)(x, t) and consequently generator G

(
b(λ)(x, t)

)
= ib(λ)(x, t) · σ/2. For the sake

of concreteness and without loss of generality, we will refer to these two-level systems as
spins from now on. The ensemble Γ can either be a representative subset of spins that
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experience inhomogeneities in the system parameters, such as Larmor and Rabi dispersion,
or an abstract ensemble constructed to account for any uncertainties in system character-
ization. The protocol starts with a seed x0 for the control parameters that is chosen from
a random distribution, and is then used to calculate the time evolution generators of the
ensemble G

(
b(λ)(x0, t)

)
. For every element in the ensemble λ ∈ Γ, the generator G(b(λ))

is used to define an auxiliary matrix L(b(λ)), called the Van Loan generator, based on the
block matrix method of Section 1.3. A numerical differential equation solver, such as a
Runge-Kutta algorithm [57], is then used to calculate the time-ordered exponential of the
auxiliary matrix, called the Van Loan propagator Vt[b

(λ)], from which we calculate metrics
quantifying the performance of the controls in three aspects: the final state condition,
adiabaticity, and robustness to a perturbation (if applicable). These metrics are then com-
bined to define a final target function Φ(x) that is fed to a gradient ascent optimizer which
searches the control landscape for the optimum adiabatic operation.

On the other hand, as we will show in future sections, the functional derivative of
the metrics with respect to the effective field can also be calculated using the Van Loan
propagator. This allows for the efficient calculation of the target function gradient ∇Φ(x),
which is also provided to the optimizer for increased optimization speed.

In the following sections, we will first describe the details of the control protocol for
a single-spin ensemble, without any robustness considerations. We then discuss how this
can be extended to an arbitrary ensemble, along with the inclusion of perturbation Hamil-
tonians.

2.3 Metrics for Control Performance

In order to gauge the performance of any set of controls, metrics are needed to quantify
how much the conditions (1) and (2) are satisfied. For (1), we use the final state fidelity
function

Φ0(x) ≡ |〈ψT |U(x, T )|ψ0〉|2. (2.6)

Clearly, 0 ≤ Φ0(x) ≤ 1, with Φ0(x) = 1 occurring if and only if |ψ(x, T )〉 = U(x, T )|ψ0〉
equals |ψT 〉 up to an arbitrary phase.

For the adiabaticity metric, satisfying condition (2) ideally requires that the overlap
between the state |ψ(x, t)〉 = U(x, t)|ψ0〉 and the instantaneous eigenstate |E±(b(x, t))〉 is
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Figure 2.1: Schematic of the adiabatic control protocol. a) General overview of the opti-
mization process. b) Target function value and gradient calculation using the Van Loan
auxiliary matrix formalism.
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one, for all t ∈ [0, T ]. 1 We therefore define the adiabaticity metric as

Φad(x) ≡ 1

T

∫ T

0

dt
∣∣〈E±(b(x, t))

∣∣U(x, t)
∣∣ψ0

〉∣∣2, (2.7)

for which we have 0 ≤ Φad(x) ≤ 1, with Φad(x) = 1 if and only if the state is equal to
the instantaneous eigenstate throughout the evolution. The ± sign in Eq.(2.7) should be
chosen such that the state at time t remains the same eigenstate that it was at t = 0.

To see how this metric fits into the Van Loan formalism, Eq.(2.7) can be rewritten as

Φad(x) =
1

T
〈ψ0|

∫ T

0

dt U †(x, t)
∣∣E±(b(x, t))

〉〈
E±(b(x, t))

∣∣ U(x, t)
∣∣ψ0

〉
, (2.8)

or, using Eq.(1.10),

Φad(x) =
1

T
〈ψ0|U †(x, T )DU(P ;T )|ψ0〉, (2.9)

with P±(b) ≡ |E±(b)〉〈E±(b)| being the projectors onto the two eigenspaces of G(b). The
above Dyson term DU(P ;T ) can clearly be evaluated using Eq.(1.19), rendering the Van
Loan block matrix methods an efficient means of calculating Φad(x). Furthermore, it can
be shown that the above eigenprojector can be simplified to (see Appendix E)

P
(
b(x, t)

)
=

1

2

(
1 + ξ(x)

b(x, t)

|b(x, t)|
· σ
)
, (2.10)

with ξ : RN → {−1, 1} being a function that determines which eigenstate of G(x, t)
the system starts out on, i.e.

ξ(x) ≡ sgn
[
Im
(
〈ψ0|G(x, 0)|ψ0〉

)]
, (2.11)

where sgn is the sign function defined as sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for x < 0.

As an aside, it is worth mentioning that the presented adiabaticity metric can be
shown to have a convenient geometric interpretation in terms of the angle α(x, t) between
the effective field and the representation of the instantaneous state on the Bloch sphere,
or equivalently, the magnetization in the context of NMR. This is (see Appendix F)

Φad(x) =
1

2T

∫ T

0

dt
(
1 + cosα(x, t)

)
, (2.12)

1Note that by the Cauchy-Schwarz inequality 0 ≤
∣∣〈E±(b(x, t)

)∣∣ψ(x, t)
〉∣∣ ≤ 1 for all t ∈ [0, T ].
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i.e. the metric measures the normalized time-average of the cosine of the effective field-
magnetization angle.

Combining both metrics of Eq.(2.6) and Eq.(2.9), the total target function for the
adiabatic control problem is defined as

Φ(x) ≡ p Φ0(x) + (1− p) Φad(x), (2.13)

with 0 ≤ p ≤ 1 indicating the relative weight of the two targets in the optimization. We
will address the choice of these weighting coefficients in the next chapter. The control
problem thus boils down to finding the right set of controls xopt that globally maximize
the above target function.

Having discussed the appropriate metrics for evaluating control performance, we now
turn to the problem of how to optimize Φ. Specifically, we will discuss the calculation
of the target functions, as well as their derivatives, using the Van Loan auxiliary matrix
formalism. These can then be used for the gradient ascent algorithm to find the optimum
solution.

2.4 Evaluating Target Functions via Van Loan

Relations

To efficiently calculate the integral in Eq.(2.9) for Φad, we utilize the Van Loan formalism
reviewed in Chapter 1. To this end, we define the Van Loan generator L as

L(b) ≡
[
G(b) P (b)

0 G(b)

]
. (2.14)

Utilizing the Van Loan relation Eq.(1.19), we have

Vt[b] ≡ Texp
[ ∫ t

0

dt′ L(b(x, t′))
]

=

[
U(x, t) DU(P ;T )

0 U(x, t)

]
, (2.15)

with Vt[b] being the Van Loan propagator, which is a matrix-valued functional of the
effective field b(x, t) for any specific set of controls x. Comparing the upper right block
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of Eq.(2.15) with the integral in Eq.(2.9), we can immediately write down the two target
functions Φ0 and Φad as

Φ0(x) = |〈ψT |V (11)
T [b]|ψ0〉|2

Φad(x) =
1

T
〈ψ0|V (11)

T [b]† V
(12)
T [b]|ψ0〉

, (2.16)

where V
(ij)
t [b] refers to block (i, j) in our block matrix representation of Eq.(2.15). The

Van Loan generator can therefore be used to evaluate both target functions without the
need to compute the complicated integral of Eq.(2.9) directly. To calculate Vt[b] from
L(b), by the definition of the time-ordered exponential, we need to solve the IVP

∂

∂t
Vt[b] = L

(
b(x, t)

)
Vt[b]

V0[b] = 1

. (2.17)

This can either be done by dividing the interval [0, T ] into small sub-intervals, and mul-
tiplying the associated matrix exponentials, or by using a numerical differential equation
solver; the latter of which is the method used in this work.

2.5 Target Function Gradient Calculation

Access to the derivatives of the target function with respect to the control parameters is
essential for the computational efficiency of the optimization. The most non-trivial step
in determining the target function gradient is computing the variation of the Van Loan
propagator due to changes in the effective field; i.e. the functional derivative [58] of VT [b]
with respect to the three components of b(x, t0) at some time t0,

δVT [b]

δbi(x, t0)
≡ ∂

∂ε

∣∣∣
ε=0
VT

[
b(x, t) + εδ(t− t0)êi

]
i ∈ {x, y, z}, (2.18)

where êi is the unit vector in the ith direction.

Since the Van Loan generator and propagator are related by the IVP Eq.(2.17), we can
use the results of Section 1.2 for the directional derivatives of a time-ordered exponential.
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In particular, we can use Eq.(1.12) to write1

δ

δbi(x, t0)
VT [b] =

∂

∂ε

∣∣∣
ε=0
VT

[
b(x, t) + εδ(t− t0)êi

]
=

∂

∂ε

∣∣∣
ε=0

Texp
[ ∫ T

0

dt L
(
b(x, t) + εδ(t− t0)êi

)]
=

∂

∂ε

∣∣∣
ε=0

Texp
[ ∫ T

0

dt
[
L
(
b(x, t)

)
+ εδ(t− t0)

∂L(b)

∂bi
êi + O(ε2)

]]
= VT [b]

∫ T

0

dt V −1
t [b] δ(t− t0)

∂L(b)

∂bi
Vt[b]

= VT [b] V −1
t0

[b]
∂L(b)

∂bi
Vt0 [b], (2.19)

or using the notation δ
δb
≡ ( δ

δbx
, δ
δby
, δ
δbz

) and changing t0 → t for simplicity,

δ

δb(x, t)
VT [b] = VT [b] V −1

t [b] ∇bL(b) Vt[b]. (2.20)

The above expression requires the values of Vt[b], which have already been calculated
from the IVP Eq.(2.17) to determine the control metrics. The components of the generator
gradient ∇bL(b) can be analytically calculated as

∂L(b)

bk
=


∂G(b)

bk

∂P (b)

bk

0
∂G(b)

bk



=
1

2

iσk 1

|b|
σk −

bk
|b|3

b · σ

0 iσk

 , (2.21)

where ∂P (b)/∂bk was calculated using Eq.(2.10). The only quantity left in Eq.(2.20) for
calculating the functional derivative is the inverse of the Van Loan propagator V −1

t [b],
which can be analytically calculated due to its block triangular structure. The result is
(see Appendix G)

V −1
t [b] =

V (11)
t [b]† −V (11)

t [b]† V
(12)
t [b] V

(11)
t [b]†

0 V
(11)
t [b]†

 . (2.22)

1The following is a generalization of the propagator functional derivative derived in [59,60].
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Hence, V −1
t [b] can be directly calculated from Vt[b] itself, without any need numerical

matrix inversions.

Knowing how the Van Loan propagator varies with the effective field, the functional
derivative of the two control metrics Φ0,Φad can now be calculated using Eq.(2.16) and
the chain rule.

δΦ0

δb(x, t)
= 2 Re

[
〈ψT |V (11)

T [b]|ψ0〉 〈ψT |
δV

(11)
T [b]

δb(x, t)
|ψ0〉

]
δΦad

δb(x, t)
=

1

T
〈ψ0|

[(δV (11)
T [b]

δb(x, t)

)†
V

(12)
T [b] + V

(11)
T [b]†

(δV (12)
T [b]

δb(x, t)

)]
|ψ0〉

. (2.23)

The total target function derivative is then simply

δΦ

δb(x, t)
= p

δΦ0

δb(x, t)
+ (1− p) δΦad

δb(x, t)
. (2.24)

The gradient of the target function with respect to the control parameters x is now
evaluated using the continuum analog of the chain rule

∇Φ(x) =

∫ T

0

dt
δΦ

δb(x, t)
· ∂b(x, t)

∂x
, (2.25)

with ∂b(x, t)/∂x being the 3×N Jacobian matrix of the effective field, which depends on
the particular set of control knobs available to the experimenter, as well as the way they
couple into the system Hamiltonian. In the case of electromagnetic waveforms, such as in
magnetic resonance, it also depends on the particular ansatz used to parametrize the pulse
shapes.

For calculating the integral in Eq.(2.25), we note that for the effectiveness of the
gradient-ascent optimization, numerical precision in the calculation of the gradient is not
very crucial; just an estimate of the gradient’s direction and value at each point x provides
sufficient information to the optimizer about the behavior of Φ in the immediate neighbor-
hood of x in the parameter space. With that in mind, the above integral can simply be
approximated by a finite sum to speedup the computations.

Having developed the core procedure for the control searches, the next section will
discuss how various robustness criteria can be perturbatively included in the optimization.
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2.6 Including Robustness Criteria in the

Optimization

The robustness of adiabatic operations is one of the key aspects that makes them such
versatile tools in various fields of physics. As discussed in the previous chapter, adiabatic
evolution can be susceptible to errors in the intermediate regime where the control fluc-
tuations are neither too slow to respect adiabaticity, nor much faster than the system’s
characteristic response time. Additionally, in cases where very fast adiabatic operations
are required, the inherent robustness due to adiabaticity may not be sufficient for some
particular applications. It is in these situations that the ability to include explicit robust-
ness requirements can be a valuable tool for adding flexibility to the design of adiabatic
operations. In this section, we describe the method used in combination with our adiabatic
control protocol in order to efficiently enforce such robustness in the optimization.

2.6.1 Against Inhomogeneities and Uncertainties

We now present how inhomogeneities in the parameters of the Hamiltonian can be ad-
dressed for an ensemble of spins. This also applies to cases where there are uncertainties
in the characterization of the Hamiltonian, and the controls would need to be optimized
for a range of parameters to ensure satisfactory performance. The idea is essentially doing
the control searches for an ensemble of spins Γ, with the generator of the spin λ ∈ Γ being

G
(
b(λ)(x, t)

)
=
i

2
b(λ)(x, t) · σ. (2.26)

The ensemble Γ is a representative subset of the range of parameters needed to address
the inhomogeneity, or it represents the uncertainty in the knowledge of the parameters in
a single-spin Hamiltonian.

For any spin λ in the ensemble, all steps of sections 2.3 to 2.5 can be carried out to
define and calculate the target functions Φ

(λ)
0 (x), Φ

(λ)
ad (x) and their derivatives. We can

then define a compound target function for the whole ensemble as

Φ(x) ≡ 1

|Γ|
∑
λ∈Γ

[
p(λ)Φ

(λ)
0 (x) + (1− p(λ))Φ

(λ)
ad (x)

]
, (2.27)

with |Γ| being the total number of spins in the ensemble. The optimization can now
be carried out as before. The calculation for different members of the ensemble can be
parallelized on a multi-core processor for a significant speedup in the computations.

30



2.6.2 Against Perturbations in the Hamiltonian

Consider the case where we wish to build robustness against some perturbation Hamilto-
nian (or equivalently generator) in the control searches. This could be a single-spin per-
turbation, or an unwanted many-body interaction between the spins in an ensemble. The
idea behind our treatment of these perturbations is essentially the one developed in [17];
we construct an additional metric based on the the leading order perturbative correction
to the final state, and combine it with our previous metrics to minimize the effect of the
perturbation. Similar to the previous control metrics, the new perturbation metric will
also be evaluated through defining an auxiliary matrix and utilizing a Van Loan relation.

We will restrict our discussion of the perturbative treatment to single and two-body
perturbations. Generalization to arbitrary many-body perturbations is, however, straight-
forward.

Single-Body Perturbation

Let δG(t) ∈ L(H) be the unwanted perturbation we require robustness against. Assuming
‖δG(t)‖ � ‖G

(
b(x, t)

)
‖, the first order correction to the final propagator in the Dyson

series of Eq.(1.11)1 is given by

DU(δG;T ) = U(x, T )

∫ T

0

dt U †(x, t)δG(t)U(x, t). (2.28)

Therefore, the correction to the final state is |δψ(x, T )〉 = DU(δG;T )|ψ0〉. We now define
an additional metric based on the norm of |δψ(x, T )〉, and combine it with the previous
final state and adiabaticity metrics. In light of this, consider the norm∥∥|δψ(x, T )〉

∥∥2
= 〈ψ0|D†U(δG;T )DU(δG;T )|ψ0〉, (2.29)

which has an upper bound (see Appendix H)∥∥|δψ(x, T )〉
∥∥2 ≤

(∫ T

0

dt
∣∣λmax

(
δG(t)

)∣∣)2

, (2.30)

with λmax(δG) being the largest (magnitude) eigenvalue of δG. A suitably normalized
perturbation metric can therefore be constructed as

Φper(x) ≡ 1− 1

N
〈ψ0|D†U(δG;T )DU(δG;T )|ψ0〉, (2.31)

1This is equivalent to the zeroth-order average Hamiltonian due to δG [24].
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with N =
( ∫ T

0
dt
∣∣λmax

(
δG(t)

)∣∣)2
being the normalization integral, which, depending on

the specific functional form of δG(t), can either be analytically or numerically calculated
before the optimization. In the special case of time-independent perturbations, such as
the dipolar coupling discussed in Chapter 3, the normalization integral simply reduces
to N = T 2|λmax(δG)|2. Note that 0 ≤ Φper(x) ≤ 1 with Φper(x) = 1 if and only if
|δψ(x, T )〉 = 0, as expected. This can now be combined with the other metrics similar to
Eq.(2.13), in other words

Φ(x) ≡ p0Φ0(x) + padΦad(x) + pperΦper(x), (2.32)

with the relative weights satisfying p0 + pad + pper = 1 and p0, pad, pper ∈ [0, 1].

To calculate Φper(x), we can define the Van Loan generator

L(b, t) ≡


G(b) P (b) 0

0 G(b) δG(t)

0 0 G(b)

 , (2.33)

with the corresponding Van Loan propagator Vt[b] ≡ Texp
[ ∫ t

0
dt′L

(
b(x, t′), t′

)]
being

Vt[b] =


U(x, t) DU(P ; t) DU

(
P, δG; t

)
0 U(x, t) DU(δG; t)

0 0 U(x, t)

 . (2.34)

Hence, the perturbation metric is

Φper(x) = 1− 1

N
〈ψ0| V (23)

T [b]† V
(23)
T [b] |ψ0〉, (2.35)

while the other metrics still obey Eq.(2.16).

For the gradient calculation, the functional derivative of the Van Loan Propagator still
obeys Eq.(2.20), with the matrix inverse V −1

t [b] given by

V −1
t [b] =
V

(11)
t [b]† −V (11)

t [b]† V
(12)
t [b] V

(11)
t [b]† V

(11)
t [b]† V

(12)
t [b] V

(11)
t [b]† V

(23)
t [b] V

(11)
t [b]†

0 V
(11)
t [b]† −V (11)

t [b]† V
(23)
t [b] V

(11)
t [b]†

0 0 V
(11)
t [b]†

 ,
(2.36)
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which was derived using the method outlined in Appendix G. The functional derivative of
the perturbation metric is now evaluated using Eq.(2.35) and the chain rule,

δΦper

δb(x, t)
= − 1

N
〈ψ0|

[(δV (23)
T [b]

δb(x, t)

)†
V

(23)
T [b] + V

(23)
T [b]†

(δV (23)
T [b]

δb(x, t)

)]
|ψ0〉. (2.37)

This can then be combined with the gradient of the other metrics using Eq.(2.32) and the
chain rule integral Eq.(2.25), to compute the gradient of the total target function.

Two-Body Perturbation

The same method can be utilized for a many-body perturbation such as spin-spin inter-
actions. For example, robustness against a two-body perturbation δG(t) ∈ L(H⊗H)
would require minimizing ‖DU⊗U(δG;T )|ψ0〉⊗2‖, which, similar to Eq.(2.31), can be done
by maximizing the metric

Φper(x) ≡ 1− 1

N
〈ψ0|⊗2 D†U⊗U(δG;T )DU⊗U(δG;T ) |ψ0〉⊗2, (2.38)

which is calculated by constructing the following Van Loan generator using a direct sum.

L(b, t) ≡

[
G(b) P (b)

0 G(b)

]
⊕

[
G2(b) δG(t)

0 G2(b)

]
(2.39)

=


G(b) P (b) 0 0

0 G(b) 0 0

0 0 G2(b) δG(t)

0 0 0 G2(b)

 , (2.40)

where G2(b) ≡ G(b)⊗ 1 + 1⊗G(b). The associated Van Loan propagator is

Vt[b] =


U(x, t) DU(P ; t) 0 0

0 U(x, t) 0 0

0 0 U⊗2(x, t) DU⊗U(δG; t)

0 0 0 U⊗2(x, t)

 . (2.41)
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This is due to the fact that time-ordered exponentials respect the direct sum operation, in
the sense that for any A and B,

Texp
[ ∫ t

0

dt′A(t′)⊕B(t′)
]

= Texp
[ ∫ t

0

dt′A(t′)
]
⊕ Texp

[ ∫ t

0

dt′B(t′)
]
, (2.42)

which can easily be derived by writing the defining IVP Eq.(1.2) for A and B, and showing
that the direct sum of their solutions satisfies a similar IVP with A(t) ⊕ B(t) as the
generator.

With that in mind, the perturbation metric Eq.(2.38) can be evaluated using the (3, 4)
block of VT [b], similar to Eq.(2.35). The gradient calculation also follows the exact same
steps, with the exception of the inverse V −1

t [b], which may be determined using the fact
that the inverse of a direct sum is the direct sum of the inverses (see Appendix G).

Note that in the case of having more than one perturbation, several perturbation metrics
can be similarly constructed and combined for the optimization, with a larger Van Loan
generator facilitating their calculation. Our method can also be extended to general M -
body perturbation terms by using the same direct sum treatment on an M -spin Hilbert
space, as opposed to the 2-spin generator used in Eq.(2.39).

We here conclude our theoretical discussion of the adiabatic control protocol for two-
level systems. The next section is devoted to a brief overview of how the protocol can
be extended to some special multi-level systems, including the adiabatic control of spin
I > 1/2 particles for magnetic resonance.

2.7 Generalization to Multi-Level Systems:

An Example

Thus far we have described the theoretical underpinnings of the adiabatic control protocol
for a two-level system. To extend this to a multi-level system, observe that our defini-
tion of the adiabaticity and final state metrics Eq.(2.6, 2.7), as well as the required Van
Loan generator Eq.(2.14), are also applicable to a multi-level system, provided that the
eigenprojection operators Pm = |Em〉〈Em| are exactly known as a function of time and the
controls. In other words, a generalization to any multi-level system would require exact
knowledge of the eigenstate structure of its Hamiltonian.

An important example of such a problem is the adiabatic control of a general spin I
particle in a magnetic resonance setting, for which the energy eigenstates were derived in
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Section 1.4.2. In this case, the system generator in the FM frame, as a function of the
effective field b(x, t), is Eq.(1.28),

G
(
b(x, t)

)
= ib(x, t) · I. (2.43)

We note that Eq.(2.43) is written with the assumption that the spin does not experience
quadrupolar coupling due to an electric field gradient [46], which is possible in cases where it
is suppressed due to the crystal symmetries of the sample. This treatment is also applicable
to systems with a small quadrupolar coupling relative to the effective field, such that it
can be incorporated using the perturbative method of Section 2.6.2.

The adiabaticity metric we construct in this case is essentially the same as before; it is
the time-average of the overlap between the specific instantaneous eigenstate the system
started in, and the evolved state. In other words,

Φad(x) ≡ 1

T

∫ T

0

dt
∣∣〈Em(b(x, t))

∣∣U(x, t)
∣∣ψ0

〉∣∣2, (2.44)

with|ψ0〉 being the initial state, and m being chosen such that |ψ0〉 ∝ |Em(b(x, 0))〉. Similar
to our treatment of the two-level system, this can be rewritten in terms of the eigenpro-
jection operator Pm(b) ≡ |Em(b)〉〈Em(b)| as

Φad(x) =
1

T
〈ψ0|U †(x, T )DU(Pm;T )|ψ0〉, (2.45)

which can be calculated with a Van Loan generator of the exact same form as Eq.(2.14).
Gradient calculations also follow the exact same method; calculating functional derivatives
of the Van Loan propagator with Eq.(2.20), the functional derivatives of the metrics with
Eq.(2.23), and finally, the gradient of the target function with the chain rule of Eq.(2.25).

The eigenprojector Pm(b) itself can be calculated using the eigenstates of the FM frame
Hamiltonian Eq.(1.32). The mth eigenprojector is

Pm(b) = |Em(b)〉〈Em(b)| (2.46)

=
I∑

m1=−I

I∑
m2=−I

e−i(m1−m2)ψ d(I)
m1,m

(ϑ)
(
d(I)
m2,m

(ϑ)
)∗
|m1〉〈m2|, (2.47)

where the polar and azimuthal angles ϑ, ψ are
ϑ = cos−1

(
bz
|b|

)
ψ = cos−1

(
bx√
b2
x + b2

y

) . (2.48)
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As can be seen from Eq.(2.20, 2.21), the functional derivative of the Van Loan propagator
requires ∂Pm(b)/∂bk for k ∈ {x, y, z}. This can simply be calculated using the chain rule

∂Pm(b)

∂bk
=
∂ϑ

∂bk

∂Pm(b)

∂ϑ
+
∂ψ

∂bk

∂Pm(b)

∂ψ

=



bxbz

|b|2
√
b2
x + b2

y

∂Pm(b)

∂ϑ
− by
b2
x + b2

y

∂Pm(b)

∂ψ
k = x

bybz

|b|2
√
b2
x + b2

y

∂Pm(b)

∂ϑ
+

bxby
|by|(b2

x + b2
y)

∂Pm(b)

∂ψ
k = y

−
√
b2
x + b2

y

|b|2
∂Pm(b)

∂ϑ
k = z

. (2.49)

Eq.(2.47, 2.48) can be used to construct the Van Loan generator Eq.(2.14), and hence
derive the metrics and their derivatives for the optimization. We have thus generalized the
control protocol to a special case of a multi-level system. As previously mentioned, this
generalization can be applied to any multi-level Hamiltonian for which the eigenstates are
exactly known as a function of control parameters and time.

So far we have discussed the adiabatic control protocol assuming that the dependence
of the effective field b(x, t) to the control parameters is known. Although this functional
relationship depends on the particular system in question, in some cases, such as the design
of adiabatic pulses in magnetic resonance, there is a freedom in the definition of the control
parameters x. In particular, their is a choice in the way the continuous pulse shapes can
be parametrized in terms of a finite set of numbers. For example, they could be taken as
piecewise constant waveforms, with the finite set of amplitudes acting as the optimization
parameters. In the next section, we focus on the problem of designing adiabatic pulses
for magnetic resonance, and present suitable pulse parametrizations, as well as a method
to account for experimental constraints without the need for constrained optimization
algorithms.

2.8 Adiabatic Operations for Magnetic Resonance

As explained in our review of NMR adiabatic operations (Section 1.4.2), an AFP can be
performed in the FM frame, using an amplitude- and frequency-modulated pulse with
in-phase and quadrature envelope functions ω1I(t), ω1Q(t), and instantaneous resonance
offset ∆ω(t). Assuming a spin 1/2 particle, the time-evolution generator in this frame is
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G
(
b(t)

)
= ib(t) · σ/2, with b(t) =

(
ω1I(t), ω1Q(t), ∆ω(t)

)
being the effective field. The

adiabatic control problem in this case then corresponds to finding the optimal envelope
and resonance offset waveforms that maximize the target function discussed in Section 2.3.

In order to formulate the protocol in terms of a finite set of optimization parameters
x ∈ RN , we need to parametrize the above three waveforms using an ansatz suitable for
the desired kind of operation. An educated choice for this parametrization can allow for a
smaller number of unknowns in the optimization, and hence faster pulse searches.

2.8.1 Parametrization of Adiabatic Pulse Shapes

We here suggest two parametrizations of the effective field waveforms, one specifically
for AFPs, and the other for operations connecting arbitrary points on the Bloch sphere.
Both of these ansatz choices are polynomial functions, for which the built-in smoothness
facilitates adiabatic evolution. This is in contrast to some other common parametrization
schemes, such as piecewise constant amplitudes [56], which are discontinuous by nature
and hence may not be favorable in terms of adiabaticity.

We will assume that there are no pulse amplitude and bandwidth limitations in this dis-
cussion. The problem of adding these constraints to the adiabatic pulses will be addressed
in the subsequent section.

Ansatz for AFPs

For the adiabatic inversion pulses, we define the following polynomial functions:
Am(x, t) ≡

m∑
n=1

Xn

[
1−

(
2
t

T
− 1
)2n
]

Bm(x, t) ≡
N∑

n=m+1

Xn

(
1− 2

t

T

)2(n−m)−1
. (2.50)

Observe that Am and Bm have even and odd symmetry around the middle of the pulse
t = T/2, respectively.

Our AFP ansatz for the effective field is (ansatz I)

a(I)(x, t) ≡
(
Am(x, t), 0, Bm(x, t)

)
, (2.51)
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with m determining the number of optimization parameters in each individual waveform.
It can be seen that for any x ∈ RN , Eq.(2.50) forces the effective field to start from the
±ẑ direction1 , go through the x̂ direction at t = T/2, and point along ∓ẑ at the end of
the pulse; rendering it an appropriate choice for the design of AFPs.

The derivatives of Eq.(2.50) will also be needed for calculating the target function
gradient Eq.(2.25). These are

∇Am(x, t) ≡
m∑
n=1

ên

[
1−

(
2
t

T
− 1
)2n
]

∇Bm(x, t) ≡
N∑

n=m+1

ên

(
1− 2

t

T

)2(n−m)−1
, (2.52)

with ên being the unit vector in the nth direction in RN . The Jacobian ∂a(I)(x, t)/∂x then
is

∂

∂x
a(I)(x, t) =


∇Am(x, t)

0

∇Bm(x, t)

 (2.53)

Ansatz for General Operations

With ansatz I being specifically tailored for AFPs, a more general parametrization is needed
for operations connecting arbitrary states. To this end, we need a polynomial function that
connects the arbitrary points (0, a) and (T, a′). One solution is to use the line connecting
these two points, and add it to the most general polynomial with roots at t ∈ {0, T}.
Therefore, we define the function

faa
′

mm′(x, t) ≡
t

T
(1− t

T
)

m′∑
n=m+1

Xn

(
1− 2

t

T

)n−m−1
+
t

T
(a′ − a) + a, (2.54)

with a = faa
′

mm′(x, 0) and a′ = faa
′

mm′(x, T ). Denoting the Bloch sphere representation of the
initial and final states by (α, β, γ) and (α′, β′, γ′) respectively2, an ansatz for engineering

1with the sign depending on
∑N

n=m+1Xn.
2As explained in Section 2.1, for adiabatic evolution, the initial and final effective field directions are

required to coincide with the Bloch sphere representation of the state at the corresponding times.
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arbitrary operations can be constructed with the above function (ansatz II).

a(II)(x, t) ≡
(
fαα

′

0,Nx
(x, t), fββ

′

Nx,Nx+Ny
(x, t), fγγ

′

Nx+Ny ,N
(x, t)

)
, (2.55)

where Nx, Ny, N − Nx − Ny are the number of optimization parameters given to each
waveform.

The derivatives of ansatz II depend on ∇faa
′

mm′(x, t), for which the calculation is straight-
forward.

∇faa
′

mm′(x, t) =
t

T
(1− t

T
)

m′∑
n=m+1

ên
(
1− 2

t

T

)n−m−1
. (2.56)

This results in the following Jacobian:

∂

∂x
a(II)(x, t) =


∇fαα

′
0,Nx

(x, t)

∇fββ
′

Nx,Nx+Ny
(x, t)

∇fγγ
′

Nx+Ny ,N
(x, t)

 , (2.57)

which can be used in the target function gradient calculation.

So far we have always assumed that there are no constraints on either pulse amplitudes,
or the bandwidth, even though enforcing such experimental limitations is crucial for a pulse
design protocol to be applicable to a practical setting. We will discuss how this can be
implemented in the next section.

2.8.2 Implementing Constraints with Optimization
Transfer Functions

To take constraints into account, we utilize an optimization transfer function [17], a map
Ξ : R3 → R3, for which the range R(Ξ) ⊆ R3 is the set of effective fields satisfying the
limitations in question. In other words, the restrictions can be enforced without the need
for constrained optimization algorithms by setting the effective field to b ≡ Ξ(a) ∈ R(Ξ),
with a being an unconstrained ansatz from the previous section.

In the case of our adiabatic passages, we define two different optimization transfer
functions depending on the ansatz chosen from the previous section. For ansatz I, we use
the function

ΞI(a) ≡
(
ω1max tanh(ax), 0, ∆ωmax tanh(az)

)
. (2.58)
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And for ansatz II we define

ΞII(a) ≡
(ω1max√

2
tanh(ax),

ω1max√
2

tanh(ay), ∆ωmax tanh(az)
)
, (2.59)

where ω1max and ∆ωmax are the maximum Rabi strength and resonance offset, respectively.
Note that limiting the resonance offset waveform effectively restricts the bandwidth of
the pulse, which is roughly estimated as 2∆ωmax. The tangent hyperbolic function in
Eq.(2.58, 2.59) essentially acts as a soft clipping function, keeping the effective field inside
the square R(ΞI) =

(
−ω1max, ω1max

)
×{0}×

(
−∆ωmax,∆ωmax

)
for ansatz I, and the cube

R(ΞII) =
(
− ω1max/

√
2, ω1max/

√
2
)2 ×

(
−∆ωmax,∆ωmax

)
, ensuring that the constraints

are satisfied.

Note that the start and end points of ansatz II now require special attention, since they
need to be chosen with ΞII(a) in mind. Instead of setting the start and end points of the
polynomial functions to b(0) and b(T ), they need to be chosen such that the output of
the optimization transfer function results in the correct initial and final effective field, i.e.
ΞII

(
a(0)

)
= b(0) and ΞII

(
a(T )

)
= b(T ). In the case of amplitude and bandwidth con-

straints, since the transfer function of Eq.(2.59) is invertible, we can use a(0) = Ξ−1
II

(
b(0)

)
and a(T ) = Ξ−1

II

(
b(T )

)
as the boundary points of the polynomials, with Ξ−1

II (b) being

Ξ−1
II (b) =

( √2

ω1max

tanh−1(bx),

√
2

ω1max

tanh−1(by),
1

∆ωmax

tanh−1(bz)
)
. (2.60)

This guarantees that the initial and final effective fields are locked to the direction of the
spin magnetization, in the presence of the optimization transfer function.

For the gradient calculations, since the Jacobian matrix of the effective field ∂b(x, t)/∂x
is required in the target function gradient Eq.(2.25), we use the chain rule to link it to the
Jacobian of the ansatz ∂a(x, t)/∂x chosen in the previous section:

∂b(x, t)

∂x︸ ︷︷ ︸
3×N

=
∂Ξ
(
a(x, t)

)
∂a︸ ︷︷ ︸
3×3

· ∂a(x, t)

∂x︸ ︷︷ ︸
3×N

, (2.61)

where ∂a(x, t)/∂x is evaluated as discussed in Section 2.8.1. For the optimization transfer
function of Eq.(2.58), the Jacobian ∂ΞI(a)/∂a is

∂ΞI(a)

∂a
=

ω1max sech2(ax) 0 0
0 0 0
0 0 ∆ωmax sech2(az)

 . (2.62)
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Similarly, the Jacobian for for Eq.(2.59) is

∂ΞII(a)

∂a
=

ω1max√
2

sech2(ax) 0 0

0 ω1max√
2

sech2(ay) 0

0 0 ∆ωmax sech2(az)

 . (2.63)

We thus use this additional piece in the protocol to design adiabatic operations subject
to the limitations of an actual experimental setup. As depicted in Fig.(2.2), in cases where
the optimization is done over an ensemble, an optimization transfer function Ξ(λ) can be
assigned to each member to impose its associated constraints. For instance, in a setup
that contains Rabi dispersion, i.e. RF field inhomogeneities, Ξ(λ) is set to Eq.(2.59), with

ω
(λ)
1max = γB1max(r(λ)) depending on the location of the λth member r(λ), and the RF field

distribution. The same principle applies to Larmor dispersion, for which ∆ω
(λ)
max depends

on the spatial distribution of the static field, and hence the resonance frequency.

Figure 2.2: Block diagram of constraint implementation using optimization transfer func-
tions. The control parameters are first used to determine the unconstrained waveforms
a(x, t) using one of the ansatz choices of Section 2.8.1, which are then fed to a set of op-
timization transfer functions, enforcing the constraints for every ensemble member. The
resulting effective fields are subsequently provided to the rest of the adiabatic control pro-
tocol.

We have thus completed the mathematical description of the adiabatic control protocol.
In the following chapter, we present the results of implementing these methods for the
design of fast adiabatic passages in an NMR setting.
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Chapter 3

NMR Pulse Design and Validation

In the previous chapters, we have described the background and theoretical formulation
of our adiabatic control protocol. We are now in a place where we can implement these
methods to engineer frequency-modulated adiabatic pulses for magnetic resonance. First,
we present some numerically engineered adiabatic full passages (AFP) and compare their
performance with the standardized secant hyperbolic pulses discussed in Section 1.4.2.
These AFPs are then validated in a multi-spin simulation in the context of our group’s
nano-MRI experiments on the phosphorus-31 nuclei in an indium phospide sample.

This is followed by a discussion of an AFP for highly interacting electrons, as an ex-
ample of a pulse with built-in robustness against the dipolar coupling Hamiltonian. The
effectiveness of the dipolar decoupling is then examined in a multi-spin simulation. The
rest of the chapter is dedicated to a brief example of an adiabatic operation connecting
arbitrary states, and tests on the sensitivity of an engineered AFP to noise, as a function
of noise amplitude and characteristic correlation time.

3.1 Engineered NMR Adiabatic Full Passages

The first set of pulses are example AFPs designed for spins experiencing Rabi dispersion,
such that the maximum available Rabi strength varies in the range [Ω1, 2Ω1], for some Ω1.
We will normalize frequency and time variables by measuring them in units of the smallest
Rabi frequency Ω1, and its associated Rabi cycle Tmax

Rabi = 2π/Ω1, respectively.

The optimization is done using Wolfram Mathematica’s FindMaximum conjugate gradi-
ent ascent algorithm [61], over a |Γ| = 7 spin ensemble, utilizing the optimization transfer
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function of Eq.(2.58) to enforce maximum amplitude and bandwidth constraints. The

maximum Rabi strengths in the representative ensemble are chosen to be ω
(λ)
1max/Ω1 ∈

{1, 1.17, 1.33, 1.5, 1.67, 1.83, 2}, while the maximum resonance offset is restricted to

∆ω
(λ)
max/Ω1 = 10 to impose bandwidth constraints. The final state and adiabaticity metric

coefficients are set to p0 = 0.2 and pad = 0.8, with no perturbation Hamiltonian in mind.
This particular choice of weights is motivated by the fact that a fully adiabatic operation
should result in a spin trajectory that exactly follows the effective field, and therefore also
ensures that the final state of the system is indeed the target state. However, not including
the final state metric altogether could result in the trivial solution b = 0, which is undesir-
able. Therefore, a small but non-zero final state coefficient is chosen in the optimization.

To parametrize the pulse, we use ansatz I from Section 2.8.1 with 20 coefficients
parametrizing each waveform. The IVP of Eq.(2.17) was solved using the explicit Runge-
Kutta algorithm of Mathematica’s ParametricNDSolve function on each iteration of the
optimization loop. The chain rule integral of Eq.(2.25) was also approximated by a finite
sum of 100 terms. Initialization of the optimizer was done by taking the seed from a uni-
form random distribution over the hypercube [−1/2, 1/2]40, resetting the optimizer with a
new seed if the target function value did not exceed 0.99 after 100 steps.

We conducted three pulse searches of different durations: T/Tmax
Rabi ∈ {2.5, 5, 15}.

To benchmark the performance of these pulses, three secant hyperbolic AFPs were also
designed with the same pulse lengths by optimizing the maximum resonance offset and
truncation factor over the intervals ∆ω/Ω1 ∈ [0, 10] and κ ∈ [0, 0.1], respectively, using the
exact same target function1. The resulting optimum secant hyperbolic pulse parameters
are:

T/Tmax
Rabi 2.5 5 15

∆ωopt
max/Ω1 0.93 1.09 1.31

κopt 0.073 0.031 0.009

The numerically derived AFPs along with these reference pulses are depicted in Fig.(3.1-
a). The logarithmic infidelity of both the final state metric log10(1 − Φ0) and the adia-
baticity metric log10(1−Φad) are shown in Fig.(3.1-b) as a function of the maximum Rabi
strength, for both the optimal and secant hyperbolic pulses. It can be seen that the final
state infidelity of the optimal pulses exceed the reference pulses by at least two orders of
magnitude for all three pulse durations. The adiabatic infidelity is also consistently an

1The optimization of the secant hyperbolic AFPs was done using the (gradient-free) Nelder-Mead
algorithm of Mathematica’s NMaximize function.
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order of magnitude better across the Rabi strength range for the three pulses. Addition-
ally, observe that both metrics significantly increase when going to longer pulse lengths,
as expected from an adiabatic pulse.

As a more intuitive measure of adiabaticity, consider the instantaneous angle between
the effective field and the magnetization:

α(t) = cos−1

(
b(xopt, t) ·M(xopt, t)∣∣b(xopt, t)

∣∣∣∣M(xopt, t)
∣∣
)
, (3.1)

with xopt being the optimal control parameters, and

M(xopt, t) = 〈↑|U †(xopt, t)σU(xopt, t) |↑〉 (3.2)

being the magnetization. The maximum angle αmax = Maxt∈[0,T ] α(t) for all pulses has been
plotted in Fig.(3.2-a) as a function of Rabi strength, indicating a substantial improvement
to the adiabaticity for the numerically derived waveforms compared to the reference ones.
For instance, in the case of the shortest AFPs, the instantaneous angle is smaller than 8.5◦

throughout the relevant Rabi frequency range ω1max/Ω1 ∈ [1, 2], while the corresponding
secant hyperbolic pulse reaches a 30◦ angle. A 2D color plot of the angle as a function of the
evolution time and Rabi strength is also provided in Fig.(3.2-b) for the short T/Tmax

Rabi = 2.5
AFP. It can be seen that in the relevant Rabi range, the maximum angle throughout the
evolution mostly occurs in the middle of the pulse, where the spin has reached the transverse
plane on the Bloch sphere. Although the shortest pulse exhibits evolution that may not
be considered completely adiabatic in these instances, note that the AFP still has a high
fidelity, as can be seen in Fig.(3.1-b).

To further validate the numerically designed AFPs, a 7-spin simulation was conducted
on the three pulses for the phosphorus-31 (31P) nuclei in an indium phosphide (InP) sample
with a Wurtzite structure, which is to be used in a nano-MRI experiment in our research
group. The Rabi field in this setup is generated by passing current through a narrow
metallic constriction that results in very large, non-uniform fields, roughly in the range
2B1 ∈ [480, 1060] G, corresponding to ω1/2π ∈ [0.414, 0.913] MHz, in the effective sample
volume. The static field in this experiment is B0 ∼ 2.9 T corresponding to a 31P Larmor
frequency of ∼ 50 MHz; far greater than the mentioned Rabi range, meaning that the
rotating wave approximation is valid. The simulation is therefore done in the FM frame,
which is computationally more efficient, since there is no need to resolve the rapid Larmor
oscillations of the spins.

We utilize our numerically designed AFPs for the maximum Rabi field range B1max ∈
[250, 500] G, which with the gyromagnetic ratio γP/2π = 17.235 MHz/T translates to a
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Figure 3.1: a) Numerically designed adiabatic full passages and the reference pulses used for
benchmarking. b) Logarithmic infidelities of the final state and adiabaticity metrics for the
numerical and secant hyperbolic pulses. The dots indicate the 7 spins in the optimization
ensemble, and Ω1 = Min

λ∈Γ
ω

(λ)
1max is the smallest Rabi strength between the spins.
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Figure 3.2: a) The maximum effective field-magnetization angle throughout the evolution,
as a function of Rabi frequency, for the designed adiabatic full passages. b) 2D plot of the
angle as a function of time and Rabi strength for the T/Tmax

Rabi = 2.5 AFP, with a schematic
of the associated magnetization trajectory on the Bloch sphere.

Rabi range of ω1max ∈ [Ω1, 2Ω1] with Ω1/2π = 0.431 MHz. The maximum resonance offset
of the pulse is then accordingly ∆ωmax/2π = 10 Ω1/2π = 4.309 MHz.

The spatial distribution of the 7 spins, depicted in Fig.(3.3-d) is taken from part of
the Wurtzite structure unit cell, with the B1 distribution chosen to effectively represent
the Rabi inhomogeneity of the setup. The spins experience homonuclear dipole-dipole
interaction, which, under the secular approximation, is described by the Hamiltonian [4]

HD =
∑
j 6=k

Djk

(
3Izj I

z
k − Ij · Ik

)
, (3.3)

where

Djk =
µ0~γ2

4π

1− 3 cos2 θjk
|rj − rk|3

, (3.4)

are the dipolar coefficients, µ0 = 4π× 10−7 m.kg.s−2.A−2 is the vacuum permeability, rj is
the position of the jth spin, θjk is the angle between the static field and the line connecting
the spins j and k, and Iαj = 1⊗(j−1)⊗ σα/2⊗ 1⊗(7−j) is the α ∈ {x, y, z} component of the
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spin in the 7-particle Hilbert space. Note that the secular dipolar Hamiltonian is the same
in both the lab frame and the FM frame, as it commutes with the z component of the
total spin, and hence the reference frame transformation. This interaction Hamiltonian is
calculated using Eq.(3.3, 3.4) according to the spin distribution. The resulting coefficients
are all on the order of a few hundred hertz, with the largest one being 479 Hz, corresponding
to the closest spins distanced 3.4Å apart. Adding HD to the FM-frame RF Hamiltonian
HRF = −

∑7
j=1 bj(t) · Ij gives the total Hamiltonian of the system H(t) = HD + HRF(t),

with bj(t) being the effective field of the jth spin. This total Hamiltonian is then given
to the Runge-Kutta algorithm to calculate the propagator of the system according to the
IVP U̇(t) = −iH(t)U(t) and U(0) = 1.

The final reduced density matrix for the jth spin ρj(T ) is then calculated by taking the
partial trace of the total system’s density matrix ρ(T ) = U(T ) |↑〉⊗7 〈↑|⊗7 U †(T ) over the
subspace of the remaining 6 spins. The fidelity of the operation for this spin can then be
calculated as:

Φj = Tr
[
ρj(T ) |↓〉 〈↓|

]
. (3.5)

Eq.(3.5) is used for the optimized AFPs, the result of which is shown in Fig.(3.3-a-c)
alongside the single-spin fidelities derived before. All three pulses essentially exhibit the
same favorable performance observed in the single-spin case.

3.2 Dipolar-Decoupled Adiabatic Passages for

Electrons

We have thus far used the basic form of the adiabatic control protocol to engineer fast
adiabatic inversion pulses that far out-perform the standardized secant hyperbolic pulse
shape commonly used in many experiments. In the case of the phosphorus spins, the
dipolar coupling was not nearly large enough to deteriorate the fidelity of the AFPs. We
now discuss the design of inversion pulses for electrons, which can experience much larger
dipolar interactions due to their much higher gyromagnetic ratio 1. We engineer two
adiabatic passages, one of which has built-in robustness against dipolar couplings using the
perturbative method of Section 2.6.2. The performance of the two pulses are then compared
in a multi-spin simulation of highly coupled electrons to investigate the effectiveness of the
perturbation metric.

1As can be seen in Eq.(3.4), the dipolar coefficients are proportional to γ2.
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Figure 3.3: Seven-spin simulation of the engineered adiabatic full passages, with the single-
spin (line) and 7 spin (dots) final state infidelities of the a) T/Tmax

Rabi = 2.5, b) T/Tmax
Rabi =

5 and c) T/Tmax
Rabi = 15 pulses. c) The spatial distribution of the spins along with the

maximum Rabi distribution.

The pulse optimizations are again done on an ensemble of 7 electron spins with gy-
romagnetic ratios γe/2π = 28.024 GHz/T, in the maximum Rabi field range B

(λ)
1max ∈

{2.7, 3., 3.2, 3.5, 3.8, 4., 4.3} G, corresponding to the Rabi frequencies ω
(λ)
1max/2π ∈

{7.57, 8.41 , 8.97, 9.81, 10.65, 11.21, 12.05} MHz. The maximum resonance offset of

the pulses is set to ∆ω
(λ)
max/2π = 50 MHz, and the duration is chosen as T = 1 µs, which

correspond to ∆ω
(λ)
max/Minλ∈Γ ω

(λ)
1max = 6.6 and T/Tmax

Rabi = 7.57, as measured in units of the
longest Rabi cycle.

Similar to the previous section, both pulses were parametrized using ansatz I with
20 optimization parameters per waveform. For one of the pulses, which we will call the
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reference pulse, we only use final state and adiabaticity metrics with relative weights p0 =
0.2 and pad = 0.8. For the other pulse, we use the methods of Section 2.6.2 to construct
and calculate a perturbation metric for the two-spin (normalized) dipolar Hamiltonian
Hd = 2σz⊗σz−σx⊗σx−σy⊗σy. The weights for the three metrics are chosen as p0 = 0.2,
pad = 0.5 and pper = 0.3, and the rest of the optimization is exactly conducted in the same
way as before.

The resulting pulses, the control metrics, and the maximum magnetization-effective
field angle are shown in Fig.(3.4), indicating a better fidelity for the reference pulse for
isolated spins in the relevant Rabi range. Fig.(3.4-c) also seems to favor the reference pulse
over the dipolar one, as it exhibits a lower α(t) ≤ 6.5◦ angle throughout the optimized
B1 ∈ [2.7, 4.3] G range, relative to the α(t) ≤ 8◦ angle of the dipolar pulse. Interestingly,
it can be seen in Fig.(3.4-d) that including the dipolar interactions seems to suppress the
α(t) angle in the middle of the pulse, where the spin is in the transverse plane, and most
susceptible to dephasing.

So far we have seen that in general, the reference pulse shows better performance for
isolated spins. The pulses are now simulated for 7 interacting electrons, distributed in
space according to Fig.(3.5-b). The distribution was chosen by arranging the spins on the
faces of a 4 nm-sided cube (and one on the center), and then perturbing the order by adding
a random vector to each spin’s position from a uniform distribution on the set [−0.5, 0.5]3

nm. The corresponding dipolar Hamiltonian HD was then calculated from Eq.(3.3, 3.4), the
largest coefficient of which was 6.5 MHz. Considering that the magnitude of the effective
field, and hence the RF Hamiltonian HRF(t), is roughly of order

√
ω2

1max + ∆ω2/2π ∼ 50
MHz, ‖HD‖ is approximately an order of magnitude smaller than ‖HRF(t)‖, meaning that
our perturbative treatment of the interactions is valid.

The calculation of the propagator and the fidelities are done exactly in the same manner
as the previous section. The result, depicted in Fig.(3.5-a), clearly shows that despite the
better performance of the reference AFP for single spins, the infidelity of the dipolar AFP
is approximately two orders of magnitude smaller in the multi-spin case; indicating that
our treatment of perturbations in the adiabatic control protocol can be an essential tool
for engineering fast and robust adiabatic operations.

3.3 Adiabatic Operation for Arbitrary Points on the

Bloch Sphere

Having addressed the problem of engineering adiabatic inversion pulses, we now give a brief
example of an operation that evolves an arbitrary point on the Bloch sphere to another
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Figure 3.4: Adiabatic full passage designed with the explicit inclusion of dipolar interac-
tions. a) The dipolar and non-dipolar reference pulse. b) Logarithmic infidelities of the
control metrics for the dipolar and reference pulses. The dipolar metric plotted for the ref-
erence pulse was not accounted for in its optimization. The dots indicate the optimization
ensemble. c) The maximum effective field-magnetization angle throughout the evolution
as a function of Rabi frequency, and d) 2D plot of the angle as a function of time and
maximum Rabi field.
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Figure 3.5: Seven-spin simulation of the dipolar adiabatic full passage. a) Multi-spin and
single-spin fidelity of the dipolar and reference inversion pulses, indicating a significantly
higher robustness to dipolar couplings in the dipolar pulse. b) The 7 spins used in the
simulation and the associated Rabi field distribution.

state. For this we design a T = 13 µs pulse for 31P spins, using ansatz II from Section 2.8.1
with 10 coefficients per waveform as the control parameters. The optimization transfer
function of Eq.(2.59) is used to enforce the bandwidth and amplitude constraints on a
single-spin ensemble, which are chosen as ∆ωmax/2π = 7.4 MHz and B1max = 260 G (or
ω1max/2π = 0.466 MHz for 31P spins), respectively. The utilized target function coefficients
are p0 = 0.2 and pad = 0.8. The initial and final states for the pulse design are set to
(θi, ϕi) = (π/3, 0) and (θf , ϕf ) = (2π/3, π/2), respectively, in spherical coordinates, from
which the state vectors |ψ0〉 and |ψT 〉 are calculated using |ψ〉 = cos θ

2
|↑〉+ eiϕ sin θ

2
|↓〉.

The resulting pulse, along with its associated performance metrics, effective field-
magnetization angle α(t), and calculated Bloch sphere trajectory are presented in Fig.(3.6).
The results show that the spin follows the effective field with an angle α(t) ≤ 5◦, and reach
the final state with a fidelity higher than 0.99999. Observe that the engineered pulse works
on a narrower B1 range than before, since the effective field changes direction when the
Rabi strength is varied, meaning that for a fixed resonance offset, it is impossible to have
the effective fields for different Rabi strengths point along the same initial magnetization.

The implementation of the adiabatic control protocol has thus far been demonstrated
in this chapter by presenting several numerically engineered adiabatic pulses in various
settings. We conclude this chapter by studying the robustness of a pulse designed with
our protocol against stochastic noise, and investigating the effect of noise amplitude and
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Figure 3.6: a) Adiabatic pulse designed for evolving the (θi, ϕi) = (π/3, 0) point to
(θf , ϕf ) = (2π/3, π/2) on the Bloch sphere, b) the associated final state and adiabatic-
ity metrics as a function of Rabi strength, c) the magnetization-effective field angle for
B1max = 260 G throughout the evolution, and d) the corresponding Bloch sphere trajec-
tory of the magnetization and effective field.

perhaps more interestingly, its fluctuation time scale, on the fidelity.

3.4 Sensitivity Against Stochastic Noise

To examine the sensitivity of our adiabatic operations, we choose the shortest pulse pre-
sented in this work, namely the T/Tmax

Rabi = 2.5 inversion pulse of Section 3.1. This is
because in principle, shorter operations are less robust to imperfections due to their infe-
rior adiabaticity. Our study is done by disturbing the spin with a noise signal W (t), which
is a zero-mean wide-sense stationary (WSS) Gaussian random process [62] that couples to
the Hamiltonian via one of the Pauli operators σi, for i ∈ {x, y, z}. In other words, the
total Hamiltonian is taken to be

H(t) = −b(t) · σ
2

+W (t)
σi
2
, (3.6)
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with b(t) being the effective field of the pulse. Since W is a Gaussian process, is it
fully characterized by its mean, which is zero, and its autocorrelation function RW (τ) =
E
[
W (t)W (t+τ)

]
(or equivalently the power spectral density)1. Evaluating the effect of the

fluctuation time scale on the pulse performance requires an appropriate functional form
for RW (τ) that allows for the tuning of the characteristic correlation time of the process.
One such function is the Gaussian autocorrelation

RW (τ) = A2e−(τ/τc)2 , (3.7)

or equivalently, the power spectral densty

SW (f) ≡
∫ ∞
−∞

dτ RW (τ)e−i2πfτ = τc
√
πe−π

2τ2c f
2

, (3.8)

with A and τc being the standard deviation and correlation time of the process, respectively.
Note that in the limits τc → 0 and τc →∞, the above process corresponds to white noise
and a constant random shift, respectively. We can thus vary A and τc to change the
noise amplitude and fluctuation rate, and compute the ensemble-averaged fidelity Φ0 ≡
E
[
| 〈↓|U(t) |↑〉 |2

]
at every point (A, τc) to quantify the effect of the noise.

In order to generate realizations for the random process W , we utilize the fact that
the output of a linear time-invariant system with frequency response H(f) to a WSS
Gaussian process is also a Gaussian process characterized with the power spectral density
|H(f)|2SW (f) [62]. We therefore first generate a white process W̃ in which all time samples
are uncorrelated, i.e. RW̃ (τ) = A2δ(τ), and filter it with the frequency response H(f) =
τc
√
π exp(−π2τ 2

c f
2) to create the desired noise.

To simulate the white process W̃ , we partition the time interval2 [0, 2T ] into m = 1000
time samples of length ∆t = 2T/(m − 1), and generate a set of independent identically-
distributed (IID) Gaussian random variables {W̃ (n∆t)}mn=1 with zero mean and variance
A2/∆t. As is shown in Appendix I, the continuum limit m → ∞ of such a sequence is
a continuous Gaussian process W̃ with constant power spectral density SW̃ (f) = A2, as
required. The discrete Fourier transform of this IID process is then calculated, multiplied
by |H(f)|2, transformed back into the time domain, and interpolated between the samples
to generate the desired noise W with the Gaussian autocorrelation function RW (τ).

To validate the noise generation process, we measure the autocorrelation function by
averaging the product W (0)W (τ) over 5000 noise realizations, for each τ/T ∈ [−1, 1].
Examples of this are depicted in Fig.(3.7), showing excellent agreement with the desired
Gaussian autocorrelation.

1We use E[X] to denote the ensemble average of the random variable X.
2The noise generation window was picked longer than T in order to prevent boundary effects.
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Figure 3.7: a) Measured autocorrelation function of the generated noise for the minimum
and maximum correlation time in the sweep. b) Example σx noise realizations with the
above correlation times added to the pulse.

Our AFP pulse is now simulated on a single spin for different noise parameters τc/T ∈
[0.001, 0.5] and A/ω1max ∈ [0, 0.25], with 100 points allocated for each sweep direction.
The final state fidelity at each (A, τc) point is then measured and averaged over 100 noise
realizations to estimate Φ0 in three cases where the noise couples to the Hamiltonian
through the σx, σy and σz operators. Examples of the noisy pulse shapes are given in
Fig.(3.7) for both short and long correlation times.

The resulting fidelity plots are depicted in Fig.(3.8), indicating that the sensitivity of
the pulse is roughly the same for noise in the three Pauli operators. It can be seen that
the pulse is most robust for very long and very short correlation times, even tolerating
noise amplitudes as big as 15% of the maximum Rabi strength. This is in contrast with
the intermediate time scale τc/T ∼ 0.1 or equivalently τc/T

max
Rabi ∼ 0.25, for which the

performance is more susceptible to deterioration for noise amplitudes of order A/ω1max &
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3%. Note that this behavior on fluctuation time scales was expected from our previous
discussion about the robustness of adiabatic operations in Section 1.4.1.
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Figure 3.8: Final state infidelities as a function of noise standard deviation and corre-
lation time. The red dots indicate the simulated parameters while all other points are
interpolated.
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Chapter 4

Conclusion and Outlook

In this thesis, we have developed an efficient numerical adiabatic control protocol which
uses gradient-based optimization to engineer fast adiabatic operations on a general two-
level system, as well as special cases of multi-level systems such as the important example
of NMR adiabatic operations on spin I > 1/2 systems. It was demonstrated that a diverse
set of imperfections, such as inhomogeneities and unwanted interactions, can be directly
and efficiently accounted for in the control searches by including metrics that quantify the
robustness of the operation, and fit into the Van Loan block matrix formalism. Since the
Hilbert space trajectory of the system is then tailored to the specific perturbations at hand,
this added capability can lead to much higher flexibility in adiabatic control, as it lessens
the need to compromise the speed of the operation for its robustness.

The control protocol was then utilized to design adiabatic inversion pulses in the context
of magnetic resonance, where we showed that it can be used to engineer exceptionally fast
pulses, as short as 2.5 Rabi cycles. It was shown that although these pulses deviate from
adiabaticity by an angle α . 8◦ in limited instances, they still exhibit the high fidelities
expected from adiabatic evolution. These designed AFPs were compared with common
standardized NMR AFPs of the same duration, and were shown to greatly out-perform
them in terms of both the final state fidelity, as well as adiabaticity. We then presented an
AFP designed with built-in dipolar decoupling capabilities, and showed the effectiveness
of this perturbative treatment by comparing the performance with a non-dipolar reference
pulse in a multi-spin simulation of interacting electrons. A brief example was also provided
for a pulse connecting arbitrary points on the Bloch sphere, and a numerical study of the
sensitivity of the pulses to stochastic fluctuations with different amplitudes and correlation
times.

The flexibility of our method in terms of addressing practical imperfections and con-
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straints can render it an important tool for a wide variety of applications. For future
research, it would be interesting to examine pulses that exhibit deliberate selective behav-
ior to uncertainties and inhomogeneities in system parameters. In particular, the large
Rabi dispersion in settings like nano-MRI experiments may be exploited to engineer spa-
tially selective operations such as slice selection pulses, for which the usual techniques are
generally inaccessible. In the case of uncertainties, selectivity in the performance of the
pulses may provide a method for experimentally probing a quantum system’s parameters.

Furthermore, an experimental demonstration of the numerically engineered pulses would
be invaluable. Work on this has already started in our research group, and is anticipated
to reach a conclusion in the coming months.
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Appendix A

Proof of the Van Loan Relations

In this appendix, we prove the Van Loan relation

Texp

(∫ t

0

dt′



G(t′) A1(t′) 0 . . . 0 0
0 G(t′) A2(t′) . . . 0 0
0 0 G(t′) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . G(t′) An(t′)
0 0 0 . . . 0 G(t′)


)

=



Ut[G] DU(A1; t) DU(A1, A2; t) . . . DU(A1, ..., An−1; t) DU(A1, ..., An; t)
0 Ut[G] DU(A2; t) . . . DU(A2, ..., An−1; t) DU(A2, ..., An; t)
0 0 Ut[G] . . . DU(A3, ..., An−1; t) DU(A3, ..., An; t)
...

...
...

. . .
...

...
0 0 0 . . . Ut[G] DU(An; t)
0 0 0 . . . 0 Ut[G]


, (A.1)

for any set of square-matrix valued functions G,A1, ..., An, and the propagator associated
with the generator G,

Ut[G] ≡ Texp
[ ∫ t

0

dt′G(t′)
]
. (A.2)

To derive Eq.(A.1), we call the matrix inside the left-hand side integral L(t), and we
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use the ansatz

Texp
[ ∫ t

0

dt′ L(t)
]
≡ V (t) ≡


B11(t) B12(t) . . . B1,n−1(t) B1n(t)

0 B22(t) . . . B2,n−1(t) B2n(t)
0 0 . . . B3,n−1(t) B3n(t)
...

...
. . .

...
...

0 0 . . . 0 Bnn(t)

 . (A.3)

Substituting this in the defining IVP of the time-ordered exponential d
dt
V (t) = L(t)V (t),

with V (0) = 1, and equating the two sides gives

d

dt
Bij(t) =

{
G(t)Bii(t) i = j

G(t)Bij(t) + Ai(t)Bi+1,j(t) j > i
, (A.4)

for which using the change of variables B̃ij(t) ≡ U−1
t [G]Bij(t), along with Eq.(1.4), results

in

d

dt
B̃ij(t) =

{
0 i = j(
U−1
t [G]Ai(t)Ut[G]

)
B̃i+1,j(t) j > i

, (A.5)

or, 

d

dt
B̃ii(t) = 0

d

dt
B̃i−1,i(t) =

(
U−1
t [G]Ai−1(t)Ut[G]

)
B̃ii(t)

d

dt
B̃i−2,i(t) =

(
U−1
t [G]Ai−2(t)Ut[G]

)
B̃i−1,i(t)

...
d

dt
B̃1,i(t) =

(
U−1
t [G]A1(t)Ut[G]

)
B̃2,i(t)

. (A.6)

The solution to Eq.(A.6) is found by solving the top equation, using its solution in the
subsequent one, and continuing this process until all B̃ij(t) have been found. Switching
back to the original variables Bij(t) gives

Bij(t) =


Ut[G] j = i

Ut[G]

∫ t

0

dt0...

∫ tj−i−1

0

dtj−i

j−i∏
m=0

U−1
tm [G] Ai+m(tm) Utm [G] j > i

, (A.7)

which in conjuction with Eq.(A.3, 1.18) results in Eq.(A.1), as desired.
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Appendix B

Review of the Adiabatic Theorem

This appendix is a review of the adiabatic theorem and its derivation.

There are various versions of the adiabatic theorem in the literature, in varying degrees
of rigor (see [12] for a comprehensive list). Here we follow the approach suggested in [24],
and also parts of [66, 67].

To study the system in the limit of a slowly-varying excitation, we write the Hamiltonian
as a function of the scaled time t/T , i.e. H(t/T ). This allows for a controlled way to make
the Hamiltonian vary more slowly by increasing T . With this in mind, the IVP of Eq.(1.2)
for the propagator is 

d

dt
U(t) = −iH

( t
T

)
U(t)

U(0) = 1
t ∈ [0, T ]. (B.1)

Changing variables to the normalized time s ≡ t/T gives
d

ds
U(s) = −i TH(s) U(s)

U(0) = 1
s ∈ [0, 1], (B.2)

with U(s) ≡ U(Ts). Denoting the eigenbasis of H(s) by {|En(s)〉}dn=1,1 we now transform
into a reference frame in which these eigenvectors are stationary, i.e. a reference frame
defined by

W (s) ≡
d∑

n=1

|En(0)〉〈En(s)|, (B.3)

1Clearly |En(s)〉 = |En(Ts)〉 = |En(t)〉.
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with pure states being transformed as |ψ̃(s)〉 = W (s)|ψ(s)〉 = W (s) U(s)|ψ(0)〉, meaning
that the propagator in the new frame is Ũ(s) ≡ W (s) U(s). Calculating the time derivative
of Ũ(s) and using Eq.(B.2) gives the equivalent IVP for the propagator in the new reference
frame:

d

ds
Ũ(s) =

d

ds

[
W (s) U(s)

]
=
dW (s)

ds
U(s)− iT W (s)H(s) U(s)

= −i
(
i
dW (s)

ds
W †(s) + T W (s)H(s)W †(s)

)
Ũ(s), (B.4)

or equivalently 
d

ds
Ũ(s) = −iH̃(s)Ũ(s)

Ũ(0) = 1

s ∈ [0, 1], (B.5)

with

H̃(s) ≡ T W (s)H(s)W †(s)︸ ︷︷ ︸
H̃0(s)

+ i
dW (s)

ds
W †(s)︸ ︷︷ ︸

δH̃(s)

, (B.6)

being the new Hamiltonian. The advantage of the new reference frame can already be seen
from Eq.(B.5); the problem of a slowly varying Hamiltonian has now been mapped onto
a problem in perturbation theory, since ‖H̃0(s)‖ � ‖δH̃(s)‖ for sufficiently large T . This
will also give us a more precise measure of how slow the Hamiltonian needs to be for it to
undergo adiabatic evolution.

We now calculate the two terms in the new Hamiltonian Eq.(B.6), using Eq.(B.3):

H̃0(s) = T W (s)H(s)W †(s)

= T W (s)
( d∑
n=1

En(s)|En(s)〉〈En(s)|
)
W †(s)

= T
d∑

n=1

En(s)W (s)|En(s)〉〈En(s)|W †(s)

= T

d∑
n=1

En(s)|En(0)〉〈En(0)|, (B.7)
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and

δH̃(s) = i
dW (s)

ds
W †(s)

= i
d∑

n=1

|En(0)〉 d
ds
〈En(s)|

d∑
m=1

|Em(s)〉〈Em(0)|

= i

d∑
n=1

d∑
m=1

〈Em(s)| d
ds
|En(s)〉∗ |En(0)〉〈Em(0)|. (B.8)

With this in mind, we can use perturbation theory to derive an expansion for the propagator
Ũ in powers of 1/T . First note that since H̃0(s) commutes with itself at all times, the
propagator for the unperturbed Hamiltonian is

Ũ0(s) =
d∑

n=1

e−iT
∫ s
0 ds

′En(s′)|En(0)〉〈En(0)|. (B.9)

We can now use the Magnus expansion Eq.(1.15,1.16) on the interaction picture gener-
ator −i Ũ †0(s)δH̃(s)Ũ0(s) to compute the perturbed propagator. The interaction picture
generator is

−i Ũ †0(s)δH̃(s)Ũ0(s) =

d∑
n=1

d∑
m=1

e−iT
∫ s
0 ds

′(Em(s′)−En(s′))〈Em(s)| d
ds
|En(s)〉∗ |En(0)〉〈Em(0)|. (B.10)

This can be rewritten by realizing that since the instantaneous eigenvectors are normal-
ized, d

ds
〈En(s)|En(s)〉 = d

ds
1 = 0. This gives 〈En(s)| d

ds
|En(s)〉∗ = −〈En(s)| d

ds
|En(s)〉. In

other words, the quantity −i〈En(s)| d
ds
|En(s)〉 is real for all s ∈ [0, 1]. Also, since |En(s)〉

is an eigenvector, H(s)|En(s)〉 = En(s)|En(s)〉. Taking a derivative from both sides and
multiplying by 〈Em(s)| from the left results in

〈Em(s)| d
ds
|En(s)〉 =

〈Em(s)| d
ds
H(s)|En(s)〉

En(s)− Em(s)
m 6= n. (B.11)

For future convenience, we define the following notations:

Anm(s) ≡
〈Em(s)| d

ds
H(s)|En(s)〉(

En(s)− Em(s)
)2

θm(s) ≡
∫ s

0

ds′Em(s′)

γm(s) ≡ −i
∫ s

0

ds′〈Em(s)| d
ds
|Em(s)〉

. (B.12)
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Rewriting Eq.(B.10) using Eq.(B.11, B.12) results in

−i Ũ †0(s)δH̃(s)Ũ0(s) =

− i
d∑

n=1

dγn(s)

ds
|En(0)〉〈En(0)|

+
∑
n 6=m

eiT (θn(s)−θm(s))
(
En(s)− Em(s)

)
Anm(s) |En(0)〉〈Em(0)|, (B.13)

where we separated the T -dependent and T -independent parts of the operator. The first
order Magnus term is

δG̃1(s) = −i
∫ s

0

ds′ Ũ †0(s′)δH̃(s′)Ũ0(s′)

= −i
d∑

n=1

γn(s) |En(0)〉〈En(0)|

+
∑
n 6=m

∫ s

0

ds′ eiT (θn(s′)−θm(s′))
(
En(s′)− Em(s′)

)
Anm(s′)

× |En(0)〉〈Em(0)|. (B.14)

We can expand the T -dependent integral in Eq.(B.14) in powers of 1/T by successive
integration by parts. In this case, we will only need terms up to order T−1.∫ s

0

ds′ eiT (θn(s′)−θm(s′))
(
En(s′)− Em(s′)

)
Anm(s′) =

1

iT
Anm(s′)eiT (θn(s′)−θm(s′))

∣∣∣∣∣
s

0

− 1

iT

∫ s

0

ds′eiT (θn(s′)−θm(s′)) d

ds′
Anm(s′)

=
i

T

(
Anm(0)− Anm(s)eiT (θn(s)−θm(s))

)
+ O(T−2), (B.15)

where we used the fact that En(s) = d
ds
θn(s), because of Eq.(B.12). All higher Magnus

expansion terms are of order T−2 and above.
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Putting Eq.(B.15, B.14) together, the propagator in our W (s) frame, Ũ(s), is

Ũ(s) = Ũ0(s) exp
[
− i

d∑
n=1

γn(s)|En(0)〉〈En(0)|

+
i

T

∑
n 6=m

(
Anm(0)− Anm(s)eiT (θn(s)−θm(s))

)
|En(0)〉〈Em(0)|

+ O(T−2)
]
. (B.16)

Now consider the case in which the T−1 term is much smaller than the T 0 term. One way
of achieving this is by having |Anm(s)|/T � 1 for all s ∈ [0, 1]. In other words, by the
evolution duration having a lower bound,

T � Max
n,m∈{1,..,d}
s∈[0,1]

|〈Em(s)| d
ds
H(s)|En(s)〉|

|En(s)− Em(s)|2
, (B.17)

which is the adiabatic condition. Under this assumption, we can use Eq.(B.16, B.9) to get,

Ũ(s) '
d∑

n=1

e−iT θn(s)|En(0)〉〈En(0)| exp
[
− i

d∑
m=1

γm(s)|Em(0)〉〈Em(0)|
]

=
d∑

n=1

e−iT θn(s)e−iγn(s)|En(0)〉〈En(0)|. (B.18)

Reverting back from the W (s) frame using U(s) = W †(s)Ũ(s), and using the original time
variable t = Ts, the propagator under the adiabatic condition reduces to

U(t) '
d∑

n=1

e−i
∫ t
0 dt
′En(t′)ei

∫ t
0 dt
′i〈En(t′)| d

dt′ |En(t′)〉|En(t)〉〈En(0)|. (B.19)

Acting this propagator on an initial eigenstate |Ek(0)〉 results in our original statement
of the adiabatic approximation U(t)|Ek(0)〉 ' exp(iφk(t))|Ek(t)〉, with the phase φk(t)
satisfying Eq.(1.22).

Therefore, an energy eigenstate stays an eigenstate throughout the evolution if the
adiabatic condition of Eq.(B.17) is satisfied; we have reached the adiabatic theorem. The
adiabatic condition Eq.(B.17) can also be written in terms of the original time variable
t = Ts, which leads to the adiabatic condition Eq.(1.20) given in the main text.
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Appendix C

Wigner d-Matrix Elements

An explicit formula for Wigner d-matrix elements was derived by Schwinger [68] through
connecting the angular momentum algebra with the algebra of two independent harmonic
oscillators. The general expression is [18,68]

d
(I)
m′m(ϑ) =

k2∑
k=k1

(−1)k−m+m′

√
(I +m)!(I −m)!(I +m′)!(I −m′)!

(I +m− k)!(I − k −m′)!(k −m+m′)!k!

×
(

cos
ϑ

2

)2I−2k+m−m′(
sin

ϑ

2

)2k−m+m′

, (C.1)

with the sum going through all integer values of k that result in a non-negative argument
in the factorial terms, in other words

k1 = Min{0,m−m′}, k2 = Max{0, I +m, I −m′}. (C.2)

The Wigner d-matrix elements for the first few spin numbers are listed below for con-
venience.

• I = 1/2:

d
1
2
1
2
, 1
2

(ϑ) = cos
ϑ

2
d

1
2
1
2
,− 1

2

(ϑ) = − sin
ϑ

2
(C.3)

• I = 1:

d1
1,1(ϑ) =

1

2
(1 + cosϑ) d1

1,0(ϑ) = − 1√
2

sinϑ

d1
1,−1(ϑ) =

1

2
(1− cosϑ) d1

0,0(ϑ) = cosϑ (C.4)
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• I = 3/2:

d
3
2
3
2
, 3
2

(ϑ) =
1

2
(1 + cosϑ) cos

ϑ

2
d

3
2
3
2
, 1
2

(ϑ) = −
√

3

2
(1 + cosϑ) sin

ϑ

2

d
3
2
3
2
,− 1

2

(ϑ) =

√
3

2
(1− cosϑ) cos

ϑ

2
d

3
2
3
2
,− 3

2

(ϑ) = −1

2
(1− cosϑ) sin

ϑ

2

d
3
2
1
2
, 1
2

(ϑ) =
1

2
(3 cosϑ− 1) cos

ϑ

2
d

3
2
1
2
,− 1

2

(ϑ) = −1

2
(3 cosϑ+ 1) sin

ϑ

2
(C.5)

The matrix elements not listed here can be calculated by using the fact that d
(I)
m′m(ϑ) =

(−1)m−m
′
d

(I)
mm′(ϑ) [18].
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Appendix D

The Adiabatic Condition for the FM
Frame Hamiltonian

Here we examine the adiabatic condition for the FM frame magnetic resonance Hamiltonian
H(t) = −b(t) · I. This requires the evaluation of the left-hand side of Eq.(1.20), which is

|Anm(t)| =
|〈Em(t)| d

dt
H(t)|En(t)〉|

|En(t)− Em(t)|2
m 6= n. (D.1)

In order to calculate the numerator |〈Em(t)| d
dt
H(t)|En(t)〉| = |〈Em(t)|ḃ(t) · I|En(t)〉|, note

that for any vector v, the expression |〈m|v · I|n〉| can only be non-zero if m = n ± 1 or
m = n, because v · I is a linear combination of the ladder operators I+, I− and Iz. Since
Eq.(D.1) requires the m 6= n case, the relevant terms are simply |〈m ± 1|v · I|m〉|. These
can be explicitly calculated using ladder operators, resulting in

|〈m± 1|v · I|m〉| = 1

2

√
I(I + 1)−m(m± 1)

√
v2
x + v2

y

=
1

2

√
I(I + 1)−m(m± 1)

∣∣(v · ẑ)ẑ− v
∣∣, (D.2)

i.e. |〈m ± 1|v · I|m〉| is proportional to the component of v that is transverse to the
quantization axis. This can be used to evaluate the numerator of Eq.(D.1) by picking the
quantization axis to be along the effective field, and writing

|〈Em±1(t)|ḃ(t)|Em(t)〉| = 1

2

√
I(I + 1)−m(m± 1)

∣∣∣(ḃ(t) · b̂(t)
)
b̂(t)− ḃ(t)

∣∣∣, (D.3)
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with b̂(t) ≡ b(t)/|b(t)| being the unit vector along the quantization axis, and
(
ḃ(t) ·

b̂(t)
)
b̂(t) − ḃ(t) being the component of ḃ(t) transverse to it. Eq.(D.3) can be further

simplified by observing that

d

dt
b̂(t) =

d

dt

( b(t)

|b(t)|
)

=
1

|b(t)|2
[
|b(t)|ḃ(t)− b(t)

d

dt
|b(t)|

]
, (D.4)

which together with d
dt
|b(t)| = d

dt

√
b(t) · b(t) = ḃ(t) · b̂(t) gives

ḃ(t)−
(
ḃ(t) · b̂(t)

)
b̂(t) = |b(t)| d

dt
b̂(t). (D.5)

Furthermore, the quantity d
dt

b̂(t) can be related to the instantaneous angular velocity
associated with the motion of the effective field. By comparing the effective field at two
instances t, t+ δt. For sufficiently small δt, the difference between b̂(t+ δt) and b̂(t) can
be calculated from Fig.(D.1),

| d
dt

b̂(t)|δt = |b̂(t+ δt)− b̂(t)| = δβ(t), (D.6)

where δβ(t) is the angle between b̂(t + δt) and b̂(t). Therefore, the angular velocity
Ω(t) = d

dt
β(t) is

Ω(t) = | d
dt

b̂(t)|. (D.7)

Figure D.1: Calculating the angular velocity of the effective field.

Combining Eq.(D.1, D.3, D.5, D.1) with the fact that |Em±1(t)−Em(t)| = |b(t)| gives

|Am,m±1(t)| = 1

2

√
I(I + 1)−m(m± 1)

Ω(t)

|b(t)|
, (D.8)
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with the adiabatic condition Maxt,m,n|Anm(t)| � 1 simplifying to

1

2
Max

m∈{−I,...I}

√
I(I + 1)−m(m± 1) Max

t∈[0,T ]

Ω(t)

|b(t)|
� 1, (D.9)

and since the maximum of
√
I(I + 1)−m(m± 1) occurs for m = ∓1/2, with the value√

I(I + 1) + 1/4 = I + 1/2, the final adiabatic condition for the FM Hamiltonian is

2I + 1

4
Max
t∈[0,T ]

Ω(t)

|b(t)|
� 1, (D.10)

as desired.
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Appendix E

Eigenprojection operators for
two-level systems

In this appendix, we derive Eq.(2.10) for the projection operators P± onto the eigenspaces
of a general Hamiltonian H = −

(
b01+b ·σ

)
/2 acting on a two-dimensional Hilbert space.

This is done by using Eq.(2.5) for the eigenvectors |E±〉 in terms of the spherical coordinate
representation of b,

b = (cosψ sinϑ, sinψ sinϑ, cosϑ), (E.1)

and calculating P± = |E±〉〈E±|. For example, P+ is

P+ =
(

cos
ϑ

2
|↑〉+ eiψ sin

ϑ

2
|↓〉
)(

cos
ϑ

2
〈↑|+ e−iψ sin

ϑ

2
〈↓|
)

=
1 + cosϑ

2
|↑〉 〈↑|+ 1− cosϑ

2
|↓〉 〈↓|+ sinϑ

2

(
eiψ |↓〉 〈↑|+ eiψ |↑〉 〈↓|

)
=

1

2

(
1 + sinϑ cosψ σx + sinϑ sinψ σy + cosϑ σz

)
, (E.2)

where we used the double angle formulas, and the fact that σz = |↑〉 〈↑| − |↓〉 〈↓|, σx =
|↑〉 〈↓|+ |↓〉 〈↑| and σy = i |↑〉 〈↓| − i |↓〉 〈↑|.

Using Eq.(E.1) and repeating this calculation for the other eigenstate gives

P± =
1

2

(
1± b

|b|
· σ
)
. (E.3)

as desired.
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Appendix F

Geometric Interpretation of the
Adiabaticity Metric

This appendix derives a formula for the adiabaticity metric of Eq.(2.7), in terms of the
angle between the effective field and the Bloch sphere representation of the instantaneous
state, or in other words, the magnetization.

First we derive a convenient interpretation for the inner product of states in a two-
dimensional Hilbert space in terms of the angle between their representations on the Bloch
sphere. This is then used on the adiabaticity metric to show the desired result.

F.1 Geometry of Inner Products on the Bloch Sphere

Here we show that for any two states |ψ〉, |ψ′〉 in a two-dimensional Hilbert space H, the
(squared) magnitude of the inner product |〈ψ|ψ′〉|2 is equal to

|〈ψ|ψ′〉|2 =
1

2
(1 + cosα), (F.1)

with α being the angle between the Bloch sphere representation of the two states, as
depicted in Fig.(F.1). To show this, we utilize the Bloch sphere representation [69]

|ψ〉 = cos
θ

2
|↑〉+ eiϕ sin

θ

2
|↓〉

|ψ′〉 = cos
θ′

2
|↑〉+ eiϕ

′
sin

θ′

2
|↓〉

, (F.2)
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with (θ, ϕ) and (θ′, ϕ′) being the polar and azimuthal angles of the two states. Direct
calculation of the inner product using Eq.(F.2) gives

|〈ψ|ψ′〉|2 =
∣∣ cos

θ

2
cos

θ′

2
+ ei(ϕ−ϕ

′) sin
θ

2
sin

θ′

2

∣∣2
= cos2 θ

2
cos2 θ

′

2
+ sin2 θ

2
sin2 θ

′

2
+ 2 sin

θ

2
sin

θ′

2
cos

θ

2
cos

θ′

2
cos(ϕ− ϕ′)

=
1 + cos θ

2

1 + cos θ′

2
+

1− cos θ

2

1− cos θ

2
+

1

2
sin θ sin θ′ cos(ϕ− ϕ′)

=
1

2

(
1 + cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′)

)
. (F.3)

On the other hand, cosα = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′) because

cosα = (cosϕ sin θ, sinϕ sin θ, cos θ) · (cosϕ′ sin θ′, sinϕ′ sin θ′, cos θ′)

= sin θ sin θ′
(

cosϕ cosϕ′ + sinϕ sinϕ′
)

+ cos θ cos θ′

= cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′). (F.4)

Combining Eq.(F.3, F.4) results in Eq.(F.1), as desired.

Figure F.1: Geometric interpretation of the Hilbert-space inner product on the Bloch
sphere
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F.2 Interpretation of the Adiabaticity Metric

Utilizing the above lemma, the inner product |〈E±(x, t)|U(x, t)|ψ0〉|2 used in the adiabatic-
ity metric of Eq.(2.7) is

|〈E±(x, t)|U(x, t)|ψ0〉|2 = |〈E±(x, t)|ψ(x, t)〉〉|2

=
1

2

(
1 + cosα(x, t)

)
, (F.5)

with α(x, t) being the angle between the effective field and |ψ(x, t)〉 on the Bloch sphere.
Combining Eq.(F.5,2.7) results in

Φad(x) =
1

2T

∫ T

0

dt
(
1 + cosα(x, t)

)
. (F.6)

In other words, the adiabaticity metric is related to the normalized time-average of the
cosine of the instantaneous angle between the effective field and the magnetization.
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Appendix G

Inverse of Block Triangular Matrices

Analytical expressions for the inverse of block triangular matrices such as Eq.(2.22) are
crucial for the computational efficiency of the target function gradient calculations. For
this reason, we look for the inverse of the general block-triangular matrix

A =


A11 A12 . . . A1,n−1 A1n

0 A22 . . . A2,n−1 A2n

0 0 . . . A3,n−1 A3n
...

...
. . .

...
...

0 0 . . . 0 Ann

 , (G.1)

with the individual blocks Aij all being invertible square matrices of the same dimension.
To calculate the inverse, we use the ansatz

A−1 =


B11 B12 . . . B1,n−1 B1n

0 B22 . . . B2,n−1 B2n

0 0 . . . B3,n−1 B3n
...

...
. . .

...
...

0 0 . . . 0 Bnn

 . (G.2)

Setting A−1A = 1, explicit multiplication of the two matrices results in

j−i∑
k=0

Bi,i+kAi+k,j = δij1. (G.3)

The above equation can be used to find analytical expressions for the various blocks Bij

recursively, starting from j = i, which gives BiiAii = 1, meaning that

Bii = A−1
ii . (G.4)
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With this in mind, for j = i + 1, we have BiiAi,i+1 + Bi,i+1Ai+1,i+1 = 0, which together
with Eq.(G.3), gives

Bi,i+1 = −A−1
ii Ai,i+1 A

−1
i+1,i+1. (G.5)

This procedure can be continued until all blocks of A−1 are found. In most cases in
this work, such as Eq.(2.22), the individual blocks are unitary matrices, facilitating the
calculation of the inverse since A−1

ij = A†ij.

In cases where matrices were combined with direct sums, such as Eq.(2.41), inverses
can be calculated by realizing that (A⊕B)−1 = A−1 ⊕B−1, this is simply because

(A⊕B)(A−1 ⊕B−1) =

[
A 0
0 B

] [
A−1 0

0 B−1

]
=

[
AA−1 0

0 BB−1

]
= 1, (G.6)

i.e. the inverse of a direct sum is the direct sum of the inverses.
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Appendix H

Normalization of the Perturbation
Metric

In this appendix, we derive Eq.(2.30), used for the normalization of the perturbation metric
in Section 2.6.2. To this end, we need to calculate an upper bound for the general expression∥∥DU(A;T )|ψ〉

∥∥2
, (H.1)

for an anti-Hermitian operator-valued function A : [0, T ] → L(H). This is done by ex-
panding it using the definition of the Dyson term, Eq.(1.10), which gives

∥∥DU(A;T )|ψ〉
∥∥2

=

∫ T

0

dt1

∫ T

0

dt2〈ψ| U †(t1)A†(t1)U(t1) U †(t2)A(t2)U(t2) |ψ〉

=
∣∣∣ ∫ T

0

dt1

∫ T

0

dt2

〈
U †(t1)A(t1)U(t1)|ψ〉 , U †(t2)A(t2)U(t2)|ψ〉

〉∣∣∣
≤
∫ T

0

dt1

∫ T

0

dt2

∣∣∣〈U †(t1)A(t1)U(t1)|ψ〉 , U †(t2)A(t2)U(t2)|ψ〉
〉∣∣∣ (H.2)

≤
∫ T

0

dt1

∫ T

0

dt2

∥∥∥U †(t1)A(t1)U(t1)|ψ〉
∥∥∥× ∥∥∥U †(t2)A(t2)U(t2)|ψ〉

∥∥∥ (H.3)

=

(∫ T

0

dt
∥∥∥U †(t)A(t)U(t)|ψ〉

∥∥∥)2

, (H.4)
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where we used the triangle and Cauchy-Schwarz inequalities in Eq.(H.2, H.3), respectively.
On the other hand, the norm inside the integral satisfies∥∥U †(t)A(t)U(t)|ψ〉

∥∥ ≤ ∥∥U †(t)A(t)U(t)
∥∥

op
× ‖ψ‖︸︷︷︸

1

=
∥∥A(t)

∥∥
op
, (H.5)

where

‖A(t)‖op ≡ Max
|v〉∈H

∥∥A(t)|v〉
∥∥

‖v‖
, (H.6)

is the operator norm, which is equal to the largest singular value of A(t) [58]. Since
A(t) is anti-Hermitian, and hence normal, the largest singular value is simply the largest
magnitude between its eigenvalues |λmax

(
A(t)

)
|. With that in mind, combining Eq.(H.5

,H.4) results in our final upper bound

∥∥DU(A;T )|ψ〉
∥∥2 ≤

(∫ T

0

dt
∣∣λmax

(
A(t)

)∣∣)2

, (H.7)

as desired.
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Appendix I

Simulating White Gaussian Noise
with Discrete Samples

Here we show that a discrete IID zero-mean random process {Xn}bT/∆tcn=1 with variance
σ2 = A2/∆t approaches a continuous-time process with constant spectral density A2 in
the continuum limit ∆t→ 0. To this end, we define the continuous-time process

X̃(t; ∆t) ≡
bT/∆tc∑
n=1

Xn p
(t− (n− 1)∆t

∆t

)
, (I.1)

where

p(x) =

{
1 x ∈ [0, 1]

0 x ∈ R \ [0, 1]
, (I.2)

is a function that interpolates the samples Xn with a piecewise constant waveform. To
determine the spectral density of the continuum limit X(t) ≡ lim∆t→0 X̃(t; ∆t), we use the
fact that the power spectral density of a process of the form

∑
nXng(t− n∆t) is equal to

σ2|G(f)|2/∆t, with G(f) ≡
∫∞
−∞ dt g(t)e−i2πft being the Fourier transform of g [62]. This

lemma, combined with Eq.(I.1) and the scaling property of the Fourier transform, results
in the spectral density

SX̃(f ; ∆t) =
σ2

∆t
×∆t2|P (f∆t)|2

= σ2∆t|P (f∆t)|2. (I.3)
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Substituting σ2 = A2/∆t, taking the ∆t→ 0 limit, and realizing that by Eq.(I.2), P (0) =∫∞
−∞ dx p(x) = 1, gives the final result

SX(f) ≡ lim
∆t→0

SX̃(f ; ∆t) = A2, (I.4)

as desired.
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