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Abstract 

Understanding the effects of interfacial additives such as surface-active nanoparticles on phase 

inversion of Pickering emulsions is important from a practical point of view. In this work, we 

studied the effects of surface-active starch nanoparticles on catastrophic phase inversion of 

Pickering emulsions by continuous addition of a dispersed phase. Two types of experimental 

grade starch nanoparticles were used: hydrophilic starch nanoparticles (HSNP) and hydrophobic 

starch nanoparticles (HOSNP). The dynamic oil-water interfacial tension was measured using the 

pendant drop method at varying starch concentrations in the aqueous phase while the contact 

angles were measured using the sessile drop method of the Axisymmetric Drop Shape Analysis-

Profile (ADSA-P). Both types of starch nanoparticles (HSNP and HOSNP) were effective in 

delaying the phase inversion of emulsions from water-in-oil (W/O) type to oil-in-water (O/W) 

type. This delay in phase inversion was directly correlated with the concentration of starch 

nanoparticles. The interfacial tension decreased as the drop aged at a given starch nanoparticle 

concentration. The contact angles for both types of starch nanoparticles were within the 

intermediate wettability range that confirmed the irreversible adsorption of starch nanoparticles 

at the oil/water interface leading to increased stability of the emulsions.  

The stabilization effects of HSNP and HSNP/hydrophilic nanoclay hybrid in non-electrolyte 

medium was investigated. An interesting inversion behaviour was noticed at HSNP 

concentrations of 0.2, 0.4 and 1wt.% for pure HSNP only and all HSNP: Nanoclay hybrids. 

Inversions from W/O to O/W emulsions for these systems seem to occur twice. It was observed 

that the higher the concentration of the HSNP, the longer the emulsion stayed in the mid-O/W 

phase. This signifies that the concentrations of the HSNP, the medium in which they are 
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dispersed and the hybrid formations affect the behaviour of the phase inversion from W/O to 

O/W.   

The effects of unmodified and modified bentonite nanoclays (with various degrees of surfactant 

modification) on the catastrophic phase inversion of water-in-oil (W/O) emulsion to oil-in-water 

(O/W) emulsion were determined experimentally. The bentonite nanoclay (NC-Bt) was 

suspended in the aqueous phase and the critical volume fraction of water where phase inversion 

of W/O to O/W emulsion took place was determined through conductivity measurements. Cetyl 

trimethyl ammonium bromide (CTAB) was used as a surfactant to modify the nanoclay. The 

adsorption of CTAB on nanoclay had a strong influence on the contact angle and the critical 

volume fraction of water where phase inversion took place. The modification of the nanoclay 

brought about by the adsorption of CTAB increased the three-phase contact angle (measured 

through the aqueous phase), thereby making it more hydrophobic, and prolonged the phase 

inversion point. CTAB alone and CTAB-modified nanoclay delayed the phase inversion process 

in a similar manner, showing a strong dependence on the CTAB concentration. 

The effects of starch nanoparticles (SNPs) in oil recovery from oil sands was investigated using 

experimental-grade starch nanoparticles in the presence of trace quantities of octanol. Increasing 

starch concentration from 0.01wt.% to 1wt.% seems to have an effect on the percent oil recovery 

from oil sand, suggesting a direct relationship between the starch solution concentrations and the 

percent oil recovered. The presence of octanol as a co-solvent enhanced the oil recovery from oil 

sands. These results show that there is a potential for the use of these naturally occurring starch 

nanoparticles in oil recovery. The modification of these biodegradable nanoparticles to replace 

currently used petroleum-based polymers in the oil industry will further extend its applicability 

and the promotion of less toxic options in the enhancement of oil recovery from oil sands. 
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During the experimental procedure to establish a basis for the use of HSNPs for oil recovery 

from oil sands, mechanisms such as mixing, incubated shaking and temperature variation were 

explored to enhance oil recovery. In the presence of HSNPs, it was hypothesized that Pickering 

emulsion will be formed, hence the need to further explore the phase inversion phenomenon and 

separation behaviour of Pickering emulsion using HSNPs. The relevance of investigating the 

interfacial characteristics and separation behaviour of Pickering emulsions was further 

strengthened by the trends observed during the preliminary investigations.  Understanding the 

interfacial behaviour of starch nanoparticle stabilized systems extend beyond the oil sand 

industry with potential application in other industries such as food, agriculture, pharmaceuticals, 

and cosmetics.  
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Chapter 1: Introduction 

1.1 Background 

An emulsion is formed by two immiscible liquid phases, a dispersed phase as droplets within a 

continuous phase of the other liquid.  Examples of emulsions include vinaigrette – an emulsion 

of vegetable oil in vinegar, milk, cod liver oil and polyspirin. There are three different types of 

emulsions, oil-in-water - when oil droplets are formed in an aqueous phase, water-in-oil - when 

the dispersed phase is water and complex or multiple emulsion - when the droplets themselves 

contain an emulsion.  

When droplets coalesce spontaneously in an emulsion, it is said to be unstable. For an emulsion 

to be stable, the droplets of the dispersed phase must be prevented from coalescing. In order to 

make droplets resistant to coalescence, interfacial additives which act as a barrier at the interface 

between the two liquids are used to promote stabilization. Interfacial particles have been known 

to enhance emulsion stability by providing steric hindrance, influencing the contact area of the 

emulsion droplet and interfacial hydrodynamic properties. Characteristics of interfacial particles 

such as size, shape, concentration, wettability, and inter-particle interactions affect their 

effectiveness in stabilizing emulsions[1]. 

Process operations in the pharmaceutical industry, oil sand industry, hydrometallurgy, 

wastewater treatment, and bio remedial processes encounter intended or fortuitous solid-

stabilized emulsions. The stability of water-in-oil emulsions stabilized with particles depends on 

the formation of complex structures at the oil-water interface[2]–[4]. Such structures have been 

known to effectively sustain the particles in the aforementioned industrial fields. They give rise 

to complex systems that have been known to undergo increased difficulty in achieving the 
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desired phase separation due to the unpredictable nature of the embedding solids [5]. Several 

investigations have indicated that fine solids and surface-active species have a complex effect on 

the interfacial activity of water-in-oil emulsion[6]–[9]. Various studies have also reported on the 

roles of charged fine solids in interfacial transfer enhanced by the adsorption of surface-active 

agents at the interfaces[6]–[10]. The overall effect of solids on the surface and emulsion stability 

depends on the type of chemical or combination of the chemical species present [11], [12]. 

Hence, investigating the phase inversion and interfacial behaviour of particle-stabilized 

emulsions will add to the literature knowledge base with respect to these systems. 

Several surfactants have been used to stabilize emulsions, including amphiphilic surfactants, 

commonly used in biological systems[13]. The wettability of particulate interfacial additives has 

been altered by the adsorption of suitable surfactants [12]. Quaternary ammonium surfactants 

have a high affinity for clay surfaces and treatment with a surfactant can render clay surfaces 

very hydrophobic [13]. A recent study compared the behaviour of three hydrophilic quaternary 

amine surfactants pre-treated clay minerals to stabilize emulsions[13][14]. Examples of these 

surfactants previously used in the literature are cetyltrimethylammonium bromide (CTAB), 

quaternary C12–14 alkylamine ethoxylate chloride (Berol R648) and cocobis (2-hydroxyethyl) 

methylammonium chloride (Ethoquad C12).  

A Pickering emulsion, which is an emulsion stabilized by solid particles located at the interface 

of oil and water, was discovered over a century ago[15]. The term “Pickering” was the name of 

the author considered to be the first to report on oil-in-water emulsion stabilized by solid 

particles adsorbed at the surface of oil droplets. The re-emergence of interest in Pickering 

emulsions within the last decade has been significant due to their wide applicability in 

pharmaceutical, food and energy industries. Some of the advantages of Pickering emulsion 
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include providing superior stability, low toxicity, and wide applicability in terms of modification 

possibilities of various solid particles of interest. Over the years, scientific progress has been 

made in the world of Pickering emulsions and these cut across disciplines and areas of research 

including but not limited to chemistry, chemical engineering, material science, physics, 

metallurgy, pharmaceutical, and medicine[16]-[18].  

Pickering emulsions have been a focus of a wide range of research in recent years and most of 

the particles or interfacial additives used are synthetic or not biodegradable[19], [20]. The main 

focus of this thesis involves the investigation of Pickering emulsions and the effects of selected 

particulate interfacial additives such as starch nanoparticles and nanoclay, as well as a non-

particulate interfacial additive, cetyltrimethylammonium bromide (CTAB). The uniqueness of 

this work is the biodegradability of the starch nanoparticles (SNPs) and the natural occurrence of 

the clays used as emulsion stabilizers.  Specifically, this research work was conducted in two 

phases. Phase I investigated the effect of starch nanoparticles, while Phase II investigated the 

effects of clay and surfactant-modified nanoclay, in stabilizing a model water-in-oil emulsion 

system consisting of mineral oil as the oil phase and water as the aqueous phase. 

When an oil-water system is agitated, the oil becomes dispersed as oil drops that form an oil-in-

water (O/W) dispersion. Further addition of oil to the resultant emulsion leads to the instability 

of the system at a certain high concentration of oil. This instability results in the formation of a 

water-in-oil emulsion (W/O), a process called phase inversion. Conversely, dispersion of water 

in oil phase eventually leads to the opposite inversion, that is, initial W/O emulsion inverts to 

form O/W emulsion. Another area of focus of this work involves the investigation of how starch 

nanoparticle, nanoclays, and surfactants delay or enhance the phenomenon of phase inversion.  
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1.2 Research Aims and Objectives  

The aims of this research work are: 

1. To investigate the effects of hydrophilic starch nanoparticles (HSNP) and hydrophobic 

starch nanoparticles (HOSNP) on the interfacial properties and catastrophic phase 

inversion of W/O to O/W Pickering emulsions. 

2. To investigate the synergistic effects of HSNP and surfactant on phase inversion of W/O 

to O/W Pickering emulsions. 

3. To investigate the effects of nanoclay on the phase inversion of W/O to O/W Pickering 

emulsions. 

4. To investigate the effect of CTAB on the phase inversion of W/O to O/W Pickering 

emulsions. 

5. To investigate the synergistic effects of nanoclay and CTAB on phase inversion of W/O 

to O/W Pickering emulsions. 

6. To investigate the synergistic effects of HSNP and nanoclay on phase inversion of W/O 

to O/W Pickering emulsions. 

7. To investigate the effects of HSNP in oil recovery from oil sands. 

The primary objective of this study is to investigate the effects of different concentrations of 

selected nanoparticulate additives on the catastrophic phase inversion points and to identify the 

triggering factors for the phase inversion. Examining the effects of nanoparticles on phase 

inversion illuminates their role in the stabilization of water-in-oil emulsions which helps to 

explain their stability mechanisms and interfacial behaviours, thereby contributing to the body of 

knowledge for potential application in pharmaceutical, food and oil and gas industries. 
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1.3 Dissertation Outline 

This dissertation is written in chapters as described below; 

a) Chapter 2 presents a general literature review on Pickering emulsions, emulsion stability, and 

phase inversion. 

b) Chapter 3 presents the materials and experimental methodologies employed in this work. 

c) Chapter 4, written in a paper format (abridged version) as published in the Canadian Journal 

of Chemical Engineering. 

d) Chapter 5, written in a paper format (abridged version) as published in the Colloids and 

Interfaces journal. 

e) Chapter 6 presents the preliminary investigation of the effects of starch nanoparticles in oil 

recovery from oil sands. 

f) Chapter 7 presents the overall conclusions and recommendations for future work.
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Chapter 2: Literature Review 

2.1 Emulsions 

An emulsion is formed when there is a colloidal dispersion of one liquid in another liquid. Pure 

liquids cannot form a stable emulsion because of the interfacial area between the two liquid [21]. 

Hence, an emulsion is a heterogeneous system in which one immiscible liquid is dispersed in 

another in the form of droplets [14], [15]. Such a system possesses minimum stability which can 

be enhanced by additives that form a film around the dispersed droplets such as surface-active 

agents including particles and surfactants[13], [22].  

Two phases are present in an emulsion, the phase that forms the finely divided droplets, called 

the dispersed phase and the phase forming the medium in which the droplets are suspended, 

referred to as the continuous phase[21]. Upon the formation of the droplets, the coalescence of 

the dispersed phase tends to occur, leading to macroscopic phase separation. Hence, the two 

liquids will separate into their minimum energy state[23]. 

2.1.1 Emulsion Stability 

Emulsions are stabilized to prevent coalescence using interfacial additives such as amphiphilic 

solid particles and molecular surfactants. The stability of an emulsion is determined by the 

interfacial additives used because some additives are often affected by factors such as 

temperature, which in turn affects the emulsion properties. The stability of an emulsion is the 

resistance to physical changes over time. Some conditions that lead to emulsion instability as 

described in the next section are flocculation, coalescence, sedimentation, and creaming of the 

emulsion drops. These conditions can affect an emulsion’s stability and can occur 

simultaneously or consecutively in the emulsion.  
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2.1.2 Emulsion Destabilization Pathways 

There are several physical processes that can induce the destabilization of emulsions. Some of 

these mechanisms are presented in Figure 2-1. Several factors that affect the stability of 

emulsions have previously been discussed in the literature [15]. These factors include oil to 

water ratio, the concentration of particles and the particle wettability. Additional effects such as 

oil polarity and sample pH impact the dispersion of particles in either the continuous or dispersed 

fluid phase, [24], [25]. It is believed that the main stabilization mechanism for particle-stabilized 

emulsions happens through the formation of a steric barrier, created by the organization of the 

particles in a closely packed network at the interface[26], [27].  

 

Figure 2-1: Processes involved in the breakdown of an unstable emulsion. Reproduced with 

permission of [28] through PLSclear. 

  

Breakdown of an emulsion that occurs by the merging of two droplets to form a larger droplet is 

referred to as coalescence. Particle layers residing on droplets prevent coalescence of the two 
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colliding droplets. The formation of inter droplet networks can also slow down or prevent the 

destabilization of the emulsion by changing its rheological properties[17].  

Destabilization by flocculation occurs when attractive interactions occur between droplets. This 

is a reversible process that can be easily restored upon shaking. Flocculation is sometimes 

referred to as aggregation or coagulation. In aggregation, two or more droplets clump together, 

touching only at certain points, and with virtually no change in the total surface area[29].  

In coalescence, two or more droplets fuse together to form a single larger unit with a reduced 

total surface area. In aggregation, the species retain their identity but lose their kinetic 

independence because the aggregates move as a single unit. Aggregation of droplets may lead to 

coalescence and the formation of larger droplets until the phases become separated. In 

coalescence, on the other hand, the original droplet loses their identity and become part of a 

larger droplet[29]. Ostwald ripening involves the growth of a large droplet at the expense of a 

smaller one until the latter disappears completely[30]. 

Creaming and sedimentation are due to gravitational separations usually indicated by the 

emergence of a distinct clearer phase at the top or the bottom of the system. The term creaming 

comes from the familiar separation of cream from raw milk. The density difference between the 

dispersed and continuous phases causes a vertical concentration gradient in the system. Although 

the two separate layers produced have different dispersed phase concentrations, gravitation 

separation is not necessarily destabilization of the emulsion as a gentle agitation of the system 

totally reverses the separation. However high levels of sedimentation or creaming can be 

promoted by flocculation and coalescence[31]. 

Mathematical models applying Stokes' Law (Equation 2.1) can be used to predict the rate at 

which an isolated drop (described as a rigid spherical particle) creams in an ideal liquid[29]:  
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---------------------------- (2.1) 

where Vs is the creaming velocity in m/s, r is the radius of the particle in m, g is the acceleration 

due to gravity in m/s2, ρ is the density of fluid in kg/m3, 1 and 2 refer to the continuous and 

dispersed fluid, respectively, η is the shear viscosity of fluid in kg/s.m. The sign of Vs establishes 

the movement of the drop in the surrounding fluid: the drop creams for positive values and 

sediments for negative values. Equation 2.1 highlights that gravitational separation can be 

retarded in an emulsion by reducing the density difference between the oil and water phases, 

decreasing the size of the droplets or increasing the viscosity of the continuous phase.  Recently, 

a model was proposed identifying factors that contribute to the creaming and sedimentation of 

droplets in Pickering emulsions[32].  

2.2 Pickering Emulsion 

Emulsions stabilized by solid particles are referred to as Pickering emulsions. The first paper that 

reported the adsorption of solid particles at the air-water interface was published by 

Ramsden[33]. However, the paper published by Pickering[15]  was considered the first report of 

oil-in-water emulsion stabilized by solid particles adsorbed at the surface of oil droplets, hence 

the term Pickering emulsion. In a two-phase liquid system, these Pickering emulsions are formed 

by the self-assembly of colloidal particles at the fluid-fluid interface as shown as the densely 

packed layer in Figure 2.2 [34]. Pickering sought a new emulsifier and an understanding of the 

nature of emulsification for insecticidal purposes. He discovered that a solid particulate 

emulsifier from sulphates of iron and copper brought about paraffin-in-oil emulsions that are 

stable to coalescence and creaming[15].  
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Studies investigating Pickering emulsions continue to receive attention, despite being known 

about for over a century[25][9][10] due to its wide applicability to industries such as food, 

agriculture, environmental e.t.c in which emulsions play an important role.  Over the years, the 

work of Ramsden and Pickering on solid stabilization of Pickering emulsions has continued to 

expand especially in the area of the alteration of wettability of surfaces of solid particles with 

wide applications [28], [35], [36]. Pickering emulsions research has been relevant in the world of 

medicine, pharmaceuticals, cosmetics, food, agricultural, environmental remediation, climate 

change, to mention a few. This is due in part to its ease of application, high levels of stability, 

simplicity, and bioavailability[37].         

  

 

Figure 2-2: Schematic of nanoparticle self-assembly at the water-oil interface[34]. Reproduced 

by permission of the Royal Society of Chemistry. 

 

2.3 Roles of Particles as Pickering Emulsion Stabilizer 

Some advantages of emulsion stabilization by solid particles, instead of surfactants, is the high 

resistance to coalescence and the elimination of adverse side effects contributed by the 
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surfactants. For example, in the pharmaceutical and cosmetic applications, surfactants have been 

known to show adverse effects such as irritancy and hemolytic behaviour [38]. Due to these 

disadvantages, a wide variety of micro- and nanoscale particles with different sizes and shapes 

have been used as additives to stabilize emulsions[4]-[8]. 

Until recent years, most research in the area of Pickering emulsions using particles of 

intermediate hydrophobicity has been performed with chemically synthesized particles or 

materials. Some monodispersed nano- or microparticles such as silica, latex particle has also 

been employed in Pickering emulsions. In this study, naturally occurring compounds such as 

starch and clay were used as the main interfacial additives. 

Some important factors that affect the performance of particles as Pickering emulsion stabilizers 

are presented in the subsequent sub-sections. Some of these factors include inter-particle 

interaction, particle size, particle type, concentration, surface charge and wettability of the solid 

particles.  

2.3.1 Colloidal Stabilization Basics 

Colloidal systems are two-phase systems in which one phase (dispersed phase) is dispersed in a 

second phase (continuous phase). Emulsions, aerosols, foams, smokes, and sols are kinds of such 

colloidal systems. Colloidal particles, varying in types, shapes and size of a few nanometres to 

several micrometre range may assemble between two fluids as emulsifiers[40]. Stokes and Evan 

described particle sizes that exhibit colloidal behaviour as dispersed particles which are larger 

than 1nm in at least one dimension; particles in colloidal systems that are smaller than this 

cannot be differentiated from true solutions [41].  

Stabilization of many industrial processes is largely influenced by liquid-solid colloidal systems, 

e.g clay dispersions in ceramics or latex in paint industries[11], [42]. Colloidal particles 
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continually move around in dispersions due to Brownian motion.  In 1940, Derjaguin and 

Landau, and Verwey and Overbeek in 1940 developed the DLVO theory, which relates the 

stability of a colloidal system to the sum of Van der Waals attraction and electrostatic repulsive 

forces exerted between particles, as they approach each other while undergoing Brownian 

motion[23][43].  

The DLVO theory takes into account the attractive and repulsive forces between charged 

particles as they approach each other and proposes that an energy barrier exists as a result of the 

repulsive forces hindering the two particles from adhering to each other [44][45]. It suggests that 

the stability of the particles in the solution depends on the total interaction energy, VT , which is 

the sum of van der Waals attraction potential (VVA) and electrostatic repulsion potential (VER), 

between two particles dependent on their separation distance, as shown in Equation 2.2.  

 ---------------------------- (2.2) 

VVA is the short-range attractive potential between the particles, while VER, describes the repulsion 

that exists between charged particles as a result of the electric double layer overlap. If VER > VVA, 

the net potential is repulsive, a stable colloidal system exists. If VVA > VER, the net potential is 

attractive, and an unstable colloidal system exists, particles aggregate. Figure 2-3 shows the 

plots of the interaction potential between colloidal particles as a function of particle distance[23].  
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Figure 2-3: Diagram of the DLVO interaction showing the interaction energy versus 

interparticle separation distance. Reprinted with permission[23] Copyright John Wiley & Sons. 

 

The surface charge is pH and ionic strength dependent and is acquired by a particle in the 

dispersing medium by either dissociation of surface groups or by the adsorption of ions from the 

surrounding solution[46]. The particle surface hence attracts oppositely charged ions to form an 

electrical double layer as shown in Figure 2-4. The electrical double layer consists of the Stern 

layer (has ions strongly bound to the surface), characterized by decreased electric potential with 

increasing distance from the particle surface[47]. Counterions are freely distributed in the diffuse 

layer surrounding the particles where they are less firmly associated and bound by a slipping 

plane. The slipping plane is an imaginary boundary inside which the particles and ions exist as a 
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stable entity that moves as a unit upon the application of an electric field in the solution [47]. The 

potential at the slipping plane is the Zeta potential and it is a suitable measure of the magnitude 

of repulsive interaction between colloidal particles. A key stabilizing mechanism for particle 

dispersions in aqueous solutions is the electrical repulsion arising as a result of the overlap of the 

electric double layers of the particles.  

 

 

Figure 2-4: Schematic of zeta potential definition. Reprinted with permission[48] from Particle 

Technology Labs 

 

The above DLVO theory often fails when particles are in close proximity to each other, closer 

than a few nanometers apart. Other interactions such as structural/steric stabilization and 

hydration forces that may exist between particles (called non-DLVO forces) are excluded from 
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the classical DLVO theory are explored in-depth elsewhere[49]. Repulsion as a result of steric 

stabilization is usually achieved by the adsorption of long-chain polymers onto the surface of the 

particles. If the thickness of the adsorbed coating is sufficient, there will be enough steric 

repulsion between the polymer layers such that the van der Waals forces become too weak to 

lead to an adhesion.[23] 

2.3.2 Particle type and size 

Solid particles of colloidal dimension can adsorb at air-liquid or liquid-liquid interfaces and 

change their physical property. The properties of Pickering emulsions are impacted by the type, 

size of the particle and the interaction between the particles at the water-oil interface. These 

particles are sufficient to stabilize emulsions[24], [50], classifying them as surface-active 

particles. A wide variety of particle types have been used as emulsion stabilizers to date: silica, 

polystyrene latex particles, metal oxides and sulphates, disk-like clays and carbon, waxes and 

microgels[36], [51], [52]. The effectiveness of these particles as emulsion stabilizer depends on 

their shape, size, wettability, inter-particle interactions, as well as the emulsion medium[25]. 

Particles that act as Pickering stabilizers are smaller than emulsion droplets. Nanometric sized 

solid particles of the sub-micron range around ∼100 nm allow the stabilization of larger droplets 

with diameters approaching a few microns[38]. 

2.3.3 Particle concentration  

Particle concentration in a system will significantly affect the characteristics and stability of 

Pickering emulsions [21][29]. Apart from a few recent studies, which showed stable emulsions 

with a low surface coverage of the droplets by particles, increasing the particle concentration will 

reduce the drop diameter[55]. Particles in a dispersion interact frequently as a result of the 

agitation of the system, Brownian motion, and sedimentation. This interaction is influenced by 
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particle concentration and impacts the stability of the dispersion and hence, properties of the 

Pickering emulsion. 

The oil-water interface has been probed in several studies to investigate the interactions between 

particles that exist in a monolayer, properties of a monolayer of particles and those particles that 

reside in the bulk phase. The studies span from the use of Langmuir trough to measure surface 

pressure as a function of 2D-density of interfacial particles[56] to the measurement of 

interparticle long-range interactions at an oil-water interface[57]. 

If particles readily adsorb at the oil-water interface, the coalescence of droplets will be limited, 

and stability enhanced. If the particles do not aggregate, a monolayer is formed as a film 

surrounding the droplet. Particle aggregation leads to a dense layer formation around the drops 

which govern droplet size and stability of the system[58].  

2.3.4 Particle wettability 

Particle wettability is a key parameter in understanding particle behaviour at liquid interfaces. 

The contact angle describes the wettability between the solid and the oil/water interface. The 

contact angle is the angle at which a fluid-fluid interface meets the solid surface. Measured 

through the most polar of the two fluids, θow exists at each point of the three-phase contact line 

where the solid and the two fluids meet[59]. Figure 2-5: shows a schematic diagram of a single 

solid particle(s) located at the oil (o)-water (w) interface. The three interfacial tensions (γ) are 

related to the contact angle θow by the Young equation, presented in equation 2.3.  
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Figure 2-5: Schematic diagram of a spherical solid particle at an oil-water interface showing the 

various interfacial energies and the three-phase contact angle measured into the water phase. 

Adapted with permission from [59] Copyright 2002 American Chemical Society. 

 

 

-------------------(2.3) 

 

The energy of attachment of adsorption of a single spherical nanoparticle to the oil-water 

interface E is shown in equation 2.4. The energy has been shown to relate to the stability of 

emulsions containing adsorbed particles. 

-------------------(2.4) 

 

For a particle-stabilized emulsion, solid particles that exhibit partial wettability with both fluid 

phases of the emulsion are required. Cos θow is negative when the particle is removed into water. 

Previous studies have shown that the use of highly hydrophobic or hydrophilic particles results in 

less stable emulsions while the most stable emulsions are obtained with the use of particles with 

intermediate wettability[11], [24], [60], [61]. Surfaces of solid particles can be modified to alter 

their hydrophobicity in order to satisfy the conditions of partial wettability. The energy of 
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attachment of the particles at the fluid interface depends on the contact angle (θow) the particles 

make with the fluid-fluid interface[24] and the interfacial tension, γow[62]. Thus, Pickering 

emulsions can be stable to coalescence depending on the hydrophobicity of the particles. 

Hydrophilic particles exhibit low contact angle (measured into the aqueous phase) and 

preferentially stabilize oil-in-water (o/w) emulsions. More hydrophobic particles with 

substantially higher contact angle can stabilize water-in-oil (w/o) emulsions. The changeover in 

this behaviour occurs at θow= 90°. The energy of attachment of a single particle to an oil-water 

interface passes through a maximum also at θow = 90°, and it has been shown that this 

consideration links directly to the stability of both types of emulsions[24]. This energy can be of 

several orders of magnitude higher than thermal energy which gives rise to irreversible 

interfacial adsorption[51], [63]. 

Several studies have established that certain particles can stabilize emulsions depending on 

several parameters such as particle size, particle shape, wetting behaviour, aggregation of 

particles at the interface, etc.[15], [33], [35], [54], [64], [65]. Of these parameters, the stabilizing 

effect of particles is accomplished by the contribution of the formation of the interfacial layer 

which is influenced by their wetting behaviour of the particles between phases. Figure 2-4 

shows the varying wettability of a solid particle at the oil-water interface[34].  

 

Figure 2-6: Variation in wettability of solid particle at the oil-water interface at contact angles ˃ 

90o and ˂90o respectively[34]. Reproduced by permission of the Royal Society of Chemistry. 

  



19 

 

It depicts the favorability of the stability of water-in-oil and oil-in-water emulsions at contact 

angles greater or less than 90o respectively[66]. 

Particles that are equivalently wetted in both the aqueous and oil phases are known to form an 

interfacial layer between the droplets that stabilize either oil-in-water or water-in-oil emulsions 

against coalescence[15], [17], [54], [64], [67]. Strongly hydrophilic or hydrophobic particles 

prefer to remain dispersed in the aqueous or lipophilic phase. Hence, they cannot act as emulsion 

stabilizers against coalescence. On the contrary, particles of colloidal dimensions that are more 

wetted in the aqueous phase than in the lipophilic phase can act as a stabilizing agent for oil-in-

water emulsions. For particles that have the opposite wetting behaviour, they stabilize water-in-

oil emulsions[33], [54], [64]. 

2.4 Phase Inversion of Emulsions 

When one aqueous liquid (water) mixes with another immiscible liquid (oil), and the system is 

agitated, the water disperses as the water drops form a water-in-oil emulsion (W/O). Continuous 

addition of the water eventually leads to an unstable system at a certain high concentration of 

water; this instability results in an oil-in-water (O/W) emulsion. The phenomenon, by which the 

morphology of the emulsion transforms from W/O to O/W, or vice versa, is called “phase 

inversion”. 

2.4.1 Phase Inversion Phenomenon 

Some of the factors that influences phase inversion includes change in the volume fraction of the 

dispersed phase, viscosities of the dispersed and continuous phases[68], change of pH or 

temperature[69], induction as a result of destabilization due to the application of external 
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magnetic fields[70] and variation in the volume fraction of the dispersed phase[53], the 

hydrophobicity of the emulsifier used and the density difference of the two fluid phases. 

The right particle surface chemical nature is essential to obtain emulsions with optimum stability 

because it determines its wettability. With a change in nature, pH or salt concentration, some 

particles can invert the type of emulsions which they stabilize from oil-in-water to water-in-oil at 

fixed water-oil volume ratio; this is known as “transitional” phase inversion[59], [64]. 

Another type of emulsion inversion experienced when varying the oil-water volume ratio of an 

emulsion is called "catastrophic" phase inversion [64]. Catastrophic phase inversion has the 

characteristic of a catastrophe; it implies a sudden change in the behaviour of a system resulting 

from gradual changes in its conditions. Catastrophic phase inversion is induced by increasing the 

fraction of the dispersed phase.  

For particles of intermediate hydrophobicity, catastrophic inversion of emulsions typically 

occurs upon increasing the volume fraction of water, and emulsion stability to sedimentation or 

creaming increases as inversion point is approached. This inversion seems to occur through 

multiple emulsion formation, where some of the continuous phases are enclosed in the dispersed 

phase. Ultimately, the continuous phase becomes entirely enveloped within the disperse droplets 

and hence phase inversion occurs[71]. 

In a traditional surfactant system, an emulsion inversion at a fixed oil-water ratio is affected by 

the surfactant hydrophilic-lypophilic balance (HLB) number, by changing the electrolyte 

concentration or the ratio of surfactants in a mixture[72]. For particulate emulsifiers, the 

equivalent of the HLB number is θow, the contact angle of the particle at the oil-water interface, 

which corresponds to the particle wettability. The particle’s wettability can be varied by 
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modifying the particle surface chemistry by adding a surfactant, chemically grafting different 

groups[73]–[75] or changing the pH of the system[69]. These factors will affect the degree of 

charge on the particles if the particles have ionizable groups on their surface. Increasing or 

decreasing the particle surface charge will either make the particles more hydrophilic or 

hydrophobic[71].  

2.4.2 Phase Inversion Occurrence 

The onset of phase inversion was monitored using a conductivity probe for the first time by 

Quinn and Sigloh [76]. It has been widely used ever since as a means to monitor dispersions 

conductivity and indicates the continuous phase during phase inversion experiments. 

Catastrophic phase inversion (the only type considered in this thesis), is characterized by a 

significant increase in conductivity fluctuations and the electrical conductivity measurements are 

used to distinguish between W/O and O/W emulsions. Figure 2-7 shows a typical W/O to O/W 

phase inversion process indicating the change in electrical conductivity of the emulsions[77].   

 

Figure 2-7 Diagrammatic representation of W/O to O/W phase inversion process. Reprinted with 

permission of [77] Copyright Elsevier. 
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The conductivity of W/O emulsions is extremely low at the beginning of the phase inversion 

experiment and suddenly increases at the critical volume fraction of the dispersed phase at which 

phase inversion occurs. A corresponding viscosity change is known to accompany the reported 

phase change. For water-in-oil type Pickering emulsion, viscosity increases with an increase in 

contact angle as described by the proposed viscosity model by Pal[54]. 
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Chapter 3: Materials and Experimental Methodology 

3.1 Introduction 

This chapter presents the materials and the experimental methodologies that were employed in 

this study. The chapter augments the materials and methodologies presented in the subsequent 

chapters which were written in manuscript form.   

3.2 Materials 

3.2.1 Interfacial Additives - Starch 

Starch is a natural, renewable, biocompatible, biodegradable, non-toxic polymer, existing in 

nature as the major storage polysaccharide in plants[78] and it is advantageous for use as 

interfacial additives.  The two types of starch nanoparticles used in this work were experimental 

grade, supplied by EcoSynthetix. These were hydrophilic starch nanoparticles (HSNP) and 

hydrophobic starch nanoparticles (HOSNP).  A variety of plants can be processed to extract 

starch granules. Ecosynthetix starch nanoparticle is produced via a patented reactive extrusion 

process[79] and has been widely used in industrial applications such as a binder in paper 

coating[80], in production of bio-based latexes for adhesive applications[81] and particulate 

stabilizers in the food industry[82].  

3.2.2 Interfacial Additives - Nanoclay 

Inorganic solid particles that exist in nature, such as clay mineral are inherently hydrophilic, 

adsorbing at the interface due to ionic surface characteristics.  Clay is a tactoid of layered silicate 

platelets in which each layer is of a few nanometers in thickness and about a hundred nanometers 

in diameter[83]. A silicate layer has cationic surface characteristics of an alkaline metal on the 

surface, such as Mg, Ca, and Na, which leads to hydrophilic surface characteristics. If the layered 
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tactoids are fully exfoliated, individual platelets disperse as nano- or micron scale-sized, non-

uniform plates with a high aspect ratio and form a temporary network structure due to the 

charged surface of the platelet[68]. Depending on exfoliation or dispersion of the clay, the size of 

the clay varies from sub-micrometre to nanometer, and therefore colloidal and interfacial 

localization can be expected in an emulsion [84]. Figure 3-1 shows the structure of 

montmorillonite. 

 

 

Figure 3-1: Montmorillonite Layered Structure. Reprinted with permission [83] from Elsevier. 

 

To obtain the stabilizing behaviour with clay, particles have been applied to emulsions, together 

with surfactants, electrolytes, organic compounds like oppositely charged layered double 

hydroxides[73], [85]–[87] and have recently been easily modified to alter their hydrophobicity in 

order to enhance its role as colloidal stabilizers. Examples of clay modifications for emulsion 

stabilization are by adsorption of Asphaltenes, resins or other hydrocarbons which renders the 
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clay minerals hydrophobic, a crucial factor in the stabilization of water-in-crude oil 

emulsions[60], [88] using commercially available organically modified clay minerals[84].  

Clays are very important in the oil sands industry. A typical ore in the Athabasca oil sands 

contains between 8 to 14 weight percent bitumen and 3 to 5 weight percent water. The balance is 

solids, mainly coarse sands, and fine silts and clays, which are in an unconsolidated form and 

impregnated with bitumen[89].  

The major clay components of the Ft. McMurray oil sands formations are 40–70 wt. % kaolinite 

(K); 28–45 wt. % illite (I) and 1–15 wt. % montmorillonite (M). Among these clays, M clay has 

the highest affinity to water and swells when hydrated, while I have very poor and K does not 

have an affinity to water and has little swelling characteristics[90]. 

These clays are the important cause of fine suspension formation in tailings ponds. They appear 

in fine fraction and have very low settling velocity because of their small size as well as negative 

repulsive charges on their surface-structure. In industry, particles bigger than 44 µm are known 

to settle readily while particle sizes less than 2 µm are termed as fines and sizes less than 0.3 µm 

are termed as ultra-fines. A stable colloidal system is formed by these ultra-fines that strongly 

enhance the stability of the oil sands tailings and mainly hinder settling[91]. Significant 

reduction in bitumen recovery has been linked to high fines content and relatively high 

concentrations of calcium or magnesium[92]. It is therefore imperative that processes that 

enhance the oil recovery despite the presence of these fines or clay particles can benefit bitumen 

extraction[80],[92][93]. This work seeks to broaden the understanding of the microscopic 

properties of the interface between starch nanoparticles, modified nanoclay and O/W emulsions, 

which could potentially lead to an improvement in enhancing oil recovery from bitumen or oil 

sand. 
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3.2.3 Water 

Ultra-pure water with ~18 MΩ·cm was employed as the dispersant for the dispersed phase. 

3.2.4 Oil 

Mineral oil was employed as the continuous phase.  

3.2.5 Surfactant 

Cetyl Trimethyl Ammonium Bromide (CTAB), a quaternary ammonium surfactant, was used as 

one of the surfactants in this study. CTAB is a hydrophilic cationic surfactant with a high affinity 

for negatively charged clay surfaces. The treatment of clay with a CTAB can render clay 

surfaces very hydrophobic. CTAB is a cationic surfactant consisting of a cationic organoamine 

with a 19-carbon tail attached to the amine group (Figure 3-2). The IUPAC name is hexadecyl-

trimethyl-ammonium. Table 3-1 shows the physicochemical properties of CTAB. 

 
Figure 3-2: Molecular Structure of CTAB 

 

 

Table 3-1: Properties of CTAB 

Properties CTAB 

Molecular formula C19H42BrN 

Molar mass 364.45 g/mol 

Appearance White powder 

Purity 99.9% 

Density 1 g/cm3 

3.2.6 Other Materials 

Supplementary materials employed in this study include biocides (Acticide), salts (sodium 

chloride), hydrochloric acid, sodium hydroxide, cleaning agents (ethanol and acetone), 
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fluorescent dyes (Auramine O, Nile Blue, Nile Red), and 1,2-propanediol. The supplier and 

purity of the materials are listed below Table 3-2: 

Table 3-2: Materials and sources 

Material Source  Purity Comment 

Acticide Proprietary  For starch preservation 

Sodium Chloride 

(NaCl) 

Sigma Aldrich 99.9% Employed as supporting electrolyte 

and to prevent clay swelling. 

Hydrochloric Acid 

(HCl) 

Fisher Scientific 98.9% For pH  

Sodium Hydroxide Sigma Aldrich 99.9% For pH  

Ethanol Commercial 

Alcohols 

Analytical 

Grade 

Cleaning solvent 

Toluene Sigma Aldrich Analytical 

Grade 

Dilution solvent 

Acetone Sigma Aldrich Analytical 

Grade 

Cleaning solvent 

Octanol Sigma Aldrich 99% Used for Oil extraction 

1,2 - Propanediol Sigma Aldrich >99.5% For stain preparation 

Auramine O Sigma Aldrich Dye content 

>80% 

For fluorescent microscopy - Nanoclay 

Nile Blue Sigma Aldrich >75% For fluorescent microscopy - Starch 

Nile Red Sigma Aldrich >98% For fluorescent microscopy – Mineral 

Oil 

 

3.3 Experimental Methods 

3.3.1 Sample Preparation-Dispersion 

3.3.1.1 Starch Nanoparticle (SNP) 

For starch nanoparticle dispersion, a known amount of SNP was dispersed into 0.01M NaCl to 

make a 2 wt.% stock solution. The stock solution was used to generate concentrations of 0.1, 0.2, 

0.4 and 1 wt.% SNP by serial dilution. 
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3.3.1.2 Clay 

The types of clay particles were dispersed as follow: 

a) Hydrophilic Clay - MMT 

The clay dispersion method for the experiment was modelled after the method used by 

Michot et al[93].  

Clay dispersion method 

 Disperse approximately 40 g/L MMT clay in water.  

 Continuously stir the suspension for approximately 24 hours to make an aqueous 

dispersion.  

 Exchange the suspension three times against 1 M NaCl to eliminate calcium ions 

(Ca2+ ).  

 Wash the suspension by centrifugation and re-dispersion of the solid in deionized 

water; repeat this cycle until the supernatant is chloride-free as indicated by a 

silver nitrate test[93] and/or the conductivity of the suspension is below 

5µS/cm[94].  

 The final suspension becomes the stock solution. Discard the impurities (such as 

quartz, silica, feldspar, mica, etc.) at the bottom of the centrifuge tube. 

Size Fractionation 

Size fractionation will be used to reduce the polydispersity of the clay platelets as needed.  

 Centrifuge the purified clay suspension at 5000 g for approx. 90 min.  

 Separate the bottom section and categorize it as size class 1.  
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  Re-centrifuge the supernatant at 12,000 g for 90 min to yield a second size class 

2,  

 Re-centrifuge the resultant supernatant at 35,000 g for 90 min to yield a final size 

class 3.  

 Re-dilute the three size classes in MilliQ water, adjusting to a solid concentration 

range of 0.1 to 1 wt %.  

 Measure the size distribution and polydispersity of the suspensions using Malvern 

Zetasizer.  

b) Bentonite Nanoclay - Sigma 

 Add Milli-Q water into a beaker and lower the homogenizer turbine (fully 

submerged) 

 Gradually add a predetermined quantity of nanoclay into 2L of water to make 5 wt.% 

stock solution 

 Disperse for approximately 30 minutes 

 Measure the pH – nanoclay dispersion has a pH of 9.  

 Record the conductivity  

c) Bentonite Nanoclay - Treated with CTAB 

Bentonite nanoclay and CTAB were added to the water phase as follows: 

 To a known volume of clay suspension (1 or 2 wt. %) prepared in (b) above, add 

enough mass of CTAB for the desired surfactant concentration range of 0.01 to 

0.04wt.% 
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 Stir the mixture for 20minutes until fully dispersed 

 Leave stirring while covered using a magnetic stirrer for 24hrs  

Concentrations of nanoclay and surfactants are in reference to the water phase before 

homogenizing with oil.  

3.3.2 Preparation of Emulsions 

The emulsions were prepared as outlined below: 

1) Add a known volume of white mineral oil into a beaker – continuous phase. 

2) Stir using Gifford-Wood homogenizer – this will constitute the continuous phase.  

3) Monitor and record the conductivity of emulsion.  

4) Gradually add aqueous starch, nanoclay or their hybrid solution (dispersed phase) while 

continuously shearing the mixture allowing a minute or two between each addition.  

5) Monitor and record the conductivity readings until phase inversion occurs. 

Figure 3-3 and Figure 3-4 shows the homogenizer and the experimental set up used for the 

preparation of the emulsion. 
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Figure 3-3: Picture showing Gifford-Wood homogenizer used for the experiment 

 

 

Figure 3-4: Picture showing the set-up employed for the phase inversion experiment  
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3.3.3 Measurements 

3.3.3.1 pH 

A Fisher Accumet pH meter to conduct measurements of the pH of dispersed starch 

and nanoclay solutions. 

3.3.3.2 Conductivity 

The conductivity of the samples was performed upon dispersion of interfacial additives and on-

line during experiments to monitor the phase inversion point. A Thermo Orion 3 Star 

conductivity meter equipped with a dual-channel conductivity probe: 013005 MD, 0 – 200 

mS/cm was used to perform electrical conductivity measurements[95]. The conductivity meter 

was calibrated by using a calibration standard of 1413µS/cm conductivity value purchased from 

Thermo-Fisher Scientific. The calibration was carried prior to experimentation on a daily basis. 

The following procedure was used for the calibration: 

A) Adjusted the Thermo Orion conductivity to the calibration mode and selected the units of 

measurements in µS/cm accordingly 

B) “Cond” calibration set-up is selected using the “up” arrow key. Line key is pressed until 

the CELL constant was displayed 

C) A vial containing measurement standard and stir bar is placed on a stirrer plate to stir  

D) Conductivity probe is rinsed with deionized water and placed in the standard while 

stirring 

E) The cell constant and conductivity value of the calibration standards were displayed on 

the screen  

F) Line select key is used to move the icon on the screen. The cell constant is entered 

manually using the up/down arrows to adjust. 

G) Line select key is used to move the icon to the top line and the measurement key is used 

to return to the measurement mode.  
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In literature, electrical conductivity has been used to determine the type of emulsions and predict 

the stability of W/O and O/W emulsions systems[96]. 

3.3.3.3 Dynamic Light Scattering and Zeta Potential 

Sample for DLS measurements was prepared by first diluting the stock suspension to 0.1 wt. % 

and allowing larger particles to settle under gravity for 24 h and using the supernatant as the 

stock suspension. This prevents the time-dependent variations in scattering intensity due to 

particle sedimentation. The size, size distribution, and the zeta potential were measured using the 

Malvern Zetasizer. 

3.3.3.4 Surface/Interfacial Tension 

The spreading and wetting behaviour of the nanoclay and nanoclay-starch solution against oil 

and water will likely differ. This wetting behaviour influences the location of these particles at 

the O/W interface. Depending on the hydrophobicity of the particles, the particle location and the 

extent of coverage of the interface will be examined by the IFT and contact angle measurements. 

The IFT and contact angle measurements will be conducted using the axisymmetric drop shape 

analysis profile (ADSA-P) technique. Figure 3-5 shows the picture of the ADSA-P used for this 

study. 
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Figure 3-5: Axisymmetric Drop Shape Analysis-Profile experimental set-up  

 

3.3.3.5 Contact Angle 

Contact angle measurements provided the information on the degree of hydrophobicity of the 

clay-starch system. The contact angle of pure water, starch solution, and mineral oil drops were 

examined on a clay particle substrate to obtain the wetting behaviour of the clay particles. 

Contact angle measurements were performed using the sessile drop method with the same 

apparatus. 

3.3.3.6 Spin coating  

Interfacial additives particulate dispersions were spin-coated on pre-cut and prewashed 

microscope slides using the SCS G3-8 Spin Coater system. All samples were dried in an oven at 

80oC.  
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3.3.3.7 Microscopy 

Two different microscopy experiments were conducted using Scanning Electron Microscopy 

(SEM) and Confocal Microscopy. 

3.3.3.7.1 Scanning Electron Microscopy (SEM) 

The morphology of nanoclay powder was probed by scanning electron microscopy (SEM) 

equipped with energy dispersive spectroscopy (EDX) using an FEI Quanta Feg 250 ESEM with 

an acceleration voltage of 20 kV and a magnification of 1000× in SE mode (WATLab, 

University of Waterloo). The nano-powders were dried at room temperature and uniformly 

spread over a 1mm X 1mm area. These were attached over a carbon tape and supported by 

aluminum studs. 

3.3.3.7.2 Confocal Microscopy 

Confocal microscopy was used to visualize and confirm the presence and/or organization of both 

HSNP and nanoclay platelets at the oil-water interface. For confocal microscopy, a Leica TCS 

SP5 confocal laser scanning microscope (CLSM) with a Radius 405 nm laser coupled to an 

upright Leica DM 6000B microscope was used in fluorescent mode. Fluorescent dyes were used 

to stain the interfacial additives in the emulsion samples. A 0.01 wt.% Nile Blue solution was 

prepared and used to stain the starch nanoparticles. 0.01wt% of Nile Red solutions were also 

prepared in 1,2-propanediol and was used to stain the mineral oil. Auramine O was used to stain 

the negative nanoclay particles at room temperature. The solutions were stored in a dark place. 

Approximately 5 ml of sample were thoroughly mixed with a 20 µL aliquots of stain. 80µL of 

stained samples were placed on a concave glass slide and covered with a coverslip ensuring that 

all air gap is eliminated before imaging.  
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The fluorescence from the samples was excited by a helium-neon (HeNe) laser for Nile Blue A 

at 633nm, an Argon laser for Nile Red at 488nm and 460nm for Auramine O respectively.  

Images were processed using the image analysis software Image J. 
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Chapter 4: Effects of Starch Nanoparticles on Phase Inversion of 

Pickering Emulsions 

An abridged version of this chapter was published in the Canadian Journal of Chemical 

Engineering and under the authorship of Sileola B Ogunlaja, Rajinder Pal and Kaveh Sarikhani 

4.1 Introduction 

Emulsions are dispersions of oil and water. There could be three different types of emulsions: 

water-in-oil (W/O), oil-in-water (O/W) or multiple emulsion. Emulsions are stabilized against 

coalescence using interfacial additives such as molecular surfactants and amphiphilic solid 

particles. Emulsions stabilized by solid particles are referred to as Pickering emulsions. The first 

paper that reported the adsorption of solid particles at the air-water interface was published by 

Ramsden[97]. However, the paper published by Pickering[98] was considered the first report of 

oil-in-water emulsion stabilized by solid particles adsorbed at the surface of oil droplets, hence 

the term Pickering emulsion. Some advantages of emulsion stabilization by solid particles, 

instead of surfactants, is the high resistance to coalescence and the elimination of adverse side 

effects contributed by the surfactants. For example, in the pharmaceutical and cosmetic 

applications, surfactants have been known to show adverse effects such as irritancy and 

hemolytic behaviour [38]. Due to these advantages, a wide variety of micro- and nanoscale 

particles with different sizes and shapes have been used as additives to stabilize emulsions[39], 

[99]–[102]. 

The process of altering the morphology of an emulsion from W/O to O/W emulsion or vice versa 

is called “phase inversion”. There are two types of phase inversion depending on the type of 

triggering mechanisms: transitional phase inversion triggered by varying the HLB (hydrophilic-

lipophilic balance) of surfactant or wettability of the particles[64] and catastrophic phase 
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inversion triggered by altering the formulation or the mixing conditions, including the W/O ratio, 

phase viscosities, and stirring protocols[103]. Previous studies have shown that factors such as 

inclusion kinetics and duration of stirring before phase inversion could be responsible for the 

relationship between phase inversion and the system parameters such as W/O ratio, surfactant 

concentration and viscosity ratio[103], [104]. Binks and Lumsdon[64] investigated the 

relationship between particle wettability and phase inversion and concluded that the addition of 

particles that prefer the continuous phase or varying the particle ratio by employing particles 

with different wettabilities affect the phase inversion point. In addition to varying particle ratio, it 

has also been reported that the wettability of particles can be modified in response to changes in 

pH and temperature[105], triggering phase inversion.  

The main objective of this study is to investigate the effects of the different concentrations of 

selected nanoparticulate additives on the catastrophic phase inversion point and to identify the 

triggering factors for the phase inversion using different oils. The published studies mostly tend 

to focus on one area at a time to explain the influence of additives whereas our goal is to 

investigate the interplay between phase inversion phenomenon, separation behaviour and 

interfacial properties (interfacial tension and contact angle) to elucidate the role played by the 

interfacial additives in stabilizing Pickering emulsions. The interfacial additives selected for 

investigation are starch-based. Starch is a biocompatible, biodegradable, non-toxic polymer, 

existing in nature as the major storage polysaccharide in higher plants[78]. Two types of 

experimental grade interfacial additives are used: hydrophilic starch nanoparticles (HSNP) and 

hydrophobic starch nanoparticles (HOSNP). The phase inversion experiments in this work are 

conducted using a continuous injection of aqueous phase (dispersed phase before inversion) to 
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oil, in contrast, to simply preparing a series of emulsions with different compositions and 

determining their phase continuity. 

Our results indicate that increasing the volume fraction of the dispersed phase induces 

catastrophic phase inversion of W/O emulsion to O/W emulsion. The HSNPs are effective in 

delaying the phase inversion of emulsions from W/O to O/W type. A direct correlation exists 

between the delay in phase inversion and an increase in the concentration of the HSNPs. For 

HOSNP, phase inversion from W/O to O/W emulsion is delayed further due to an increase in the 

hydrophobicity of the nanoparticles. The interfacial tension decreases as the drop ages at a given 

starch concentration. The contact angles for both HSNP and HOSNP are within the intermediate 

wettability range that confirms the irreversible adsorption of nanoparticles at the oil/water 

interface leading to increased stability of emulsions.  

This study broadens our fundamental understanding of the stability and phase inversion 

behaviour of Pickering emulsions in the presence of starch nanoparticles using continuous 

injection experiments. Such studies are necessary for the improvement of the processing 

conditions required for the production of industrial Pickering emulsions. 

4.2 Materials and Methodology 

4.2.1 Materials 

4.2.1.1 Ultra-pure Water 

Ultra-pure water was obtained by passing deionized water through a GE Osmonics E4 water 

purification system that uses a combination of UV irradiation, ultrafiltration, and ion exchange to 

remove bacteria, organic impurities, and residual particles. The resultant ultra-pure water 
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employed for the experiment had a consistent resistivity of approximately 18 MΩ·cm and a 

surface tension of ~72.9 mN/m at 25oC. 

4.2.1.2 Oil 

The characteristics of the oils which were used in the experiments are presented in Table 4-1.  

  Table 4-1: Source and Purity of Mineral Oil Used. 

White Mineral Oil Purity FG 
Density           

 (kg/L @ 15oC) 

Viscosity  

(mPa.s @ 25oC) Purity Supplier 

Oil A WO 15 0.847 22.9 99% 

Petro-Canada 
 

Oil B WO 35 0.855 64.5 99% 

 

4.2.1.3 Interfacial Additives 

The additives of primary interest in this work were two different types of experimental grade 

starch nanoparticles: Hydrophilic starch nanoparticles (HSNPs) and hydrophobic starch 

nanoparticles (HOSNPs). These experimental grade biobased samples are unique insoluble 

discrete particles which form colloidal dispersions in water. Further characteristics of HSNP and 

HOSNPs are presented in Table 4-2. 

 

Table 4-2: Characteristics of Hydrophilic and Hydrophobic Starch Nanoparticles 

Particle type 
Mean Size 

(nm) 
PDI 

Zeta potential/mV 

(0.1 wt.% at 25oC) 
Contact angle, Ɵow                           

(o) 

HSNP 20.9 ± 1.8 0.53 ± 0.08 -12.5 ± 1.0 46 ± 2.2 

HOSNP 52.9 ± 5.8 0.46 ± 0.05 -8.0 ± 0.8 120 ± 3.1 
The DLS (dynamic light scattering) measurements were used to determine the size, polydispersity index (PDI) and zeta potential. 

The three-phase contact angle, θOW was obtained from the sessile drop method 
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4.2.1.4 Other Chemicals Used 

High purity NaCl (> 99.8%, Sigma) was used as an electrolyte and a biocide (Thor Chemicals) 

was used as a preservative for the starch solution. HPLC grade acetone (Aldrich) and distilled 

absolute ethanol were used as cleaning solvents. Nitrogen (Praxair ultrapure 5.0) was used as a 

drying agent throughout the experiments. 

4.3 Experimental Methodology 

4.3.1 Preparation of nanoparticle dispersion 

The HSNP was dispersed using a variable speed Gifford-Wood homogenizer (Model 1-L; rotor-

stator Type) by adding a known amount of starch into a 0.01 M NaCl solution, with 0.15% 

biocide. The NaCl was added to increase the conductivity of the starch solution, while the 

addition of the biocide was necessary to prevent bacterial growth in the starch solution. For the 

HOSNP, the aqueous phase was initially heated to 52oC, while continuously stirring to enhance a 

complete dispersion. Various concentrations of the additive were mechanically agitated using the 

homogenizer at high speed for approximately 30 minutes of shearing until the starch was fully 

dispersed and completely lump-free[106]. Conductivity measurements were recorded pre-

dispersion (aqueous phase only) and post-dispersion (starch solution). Both HSNP and HOSNP 

concentrations were varied from 0 to 2% by weight based on the aqueous phase. The dispersed 

solutions were cooled to room temperature before they were employed for the emulsification 

experiments as the dispersed phase.  

4.3.2 Emulsion preparation and characterization 

Emulsification of the oil-water-particle mixture was achieved using the homogenizer described 

above. Two different methods were used to prepare the emulsion depending on whether it was 

used for phase inversion experiment or emulsion stability experiment.   
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4.3.3 Phase inversion experiments 

The emulsions were prepared by sequentially adding the aqueous phase to a known amount of 

the agitated oil (continuous) phase. A time interval of between 1 - 2 minutes was allowed 

between each addition while mixing continued until phase inversion occurred as shown 

schematically in Figure 4-1. The conductivity and temperature readings were recorded on-line 

per addition. The conductivity measurement was determined by using a Thermo Orion 3 Star 

conductivity meter equipped with a dual-channel conductivity probe: 013005 MD, 0 – 200 

mS/cm. The volume fraction of water was varied at constant interfacial additive (nanoparticles) 

concentration. The phase inversion point was signified by a sudden spike in the observed 

conductivity. A drop test was also used to determine the emulsion type by introducing a sample 

of the emulsion into a beaker of pure water and pure oil[64]. According to the drop test, the 

continuous phase is indicated by the bulk fluid in which the emulsion sample is readily 

dispersed.  

 

Figure 4-1: Schematic representation of the catastrophic phase inversion by emulsification. The 

starch solution is sequentially added to the W/O emulsion until a phase inversion occurs with the 

formation of an O/W emulsion 
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4.3.4 Stability experiments 

The W/O emulsions were prepared using a direct route by shearing the known amounts of the 

aqueous phase (25%) and the oil phase (75%) in the homogenizer at high speed for about 5 

minutes, to provide sufficient emulsification time. After the 5 minutes mixing, the emulsion was 

quickly transferred into a 500 mL graduated cylinder. Then, a camera was employed to record 

the coalescence of the aqueous-phase droplets for all the varying concentrations of interfacial 

additive. The stability of the W/O emulsion was assessed by observing the destabilization rate of 

the emulsion as depicted by the increase in the volume of the aqueous phase, separated from the 

emulsion. 

4.3.4.1 Dynamic Light Scattering (DLS) and Zeta Potential Measurements 

The size and size distribution of 1mg/mL aqueous dispersions of HSNP and HOSNP were 

determined by dynamic light scattering (DLS) using a Zetasizer Nano-ZS (Malvern Instruments 

Ltd. Worcestershire, U.K.) with a He−Ne laser operating at 633nm frequency. At that low 

concentration, HSNP size distribution can be seen in Figure 4-2 to exhibit a narrow size 

distribution with a number based nanoparticle diameter of approximately 20.9 nm. The HOSNP 

size distribution is shown in Figure 4-3, the number based nanoparticle diameter of HOSNP is 

approximately 52.9 nm. Electrophoretic mobility was also measured using the Zetasizer Nano-

ZS at 25oC with an equilibration time of 120 seconds. The starch dispersions were analyzed 

using three measurement cycles of 20 runs each. The zeta potentials were obtained to be -12.5 ± 

1.0 mV for HSNPs and -8.0 ± 0.8 mV for HOSNP. 
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Figure 4-2: Size and distribution of Hydrophilic Starch Nanoparticles determined using DLS 

 

Figure 4-3: Size and distribution of Hydrophobic Starch Nanoparticles determined using DLS 

 

4.3.5 Interfacial tension measurements 

The drop shape method (pendant drop) is the most commonly used method to determine the 

interfacial tension as it offers many advantages over other methods. Some of the advantages of 

using the drop shape method for measuring the interfacial tension include the ability to use a 

small volume of liquid; its applicability to liquid-vapour and liquid-liquid interfaces; and broad 
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ranges of temperature and pressure. A detailed procedure of this method can be found 

elsewhere[107]–[110]. In the interfacial tension experiments, a pendant drop of suitable size was 

formed at the end of a stainless-steel holder that was connected to a 500 µL syringe (Gastight, 

Hamilton Co Model 1750 TLLX) with a blunt needle of diameter 1.8 mm. The drop was formed 

inside a sealed quartz cuvette (Hellma 330984) containing the mineral oil as shown in Figure 

4-4. The starch solution was loaded onto a syringe and lowered into a cuvette filled with the 

lower density oil phase. Measurements were taken upon the insertion of the aqueous droplet into 

the oil. The dynamic oil-water interfacial tension was measured for varying starch nanoparticle 

concentrations in the aqueous phase. 

 

Figure 4-4: A typical pendant drop image of the aqueous phase in mineral oil 

The cuvette containing the drop was housed in an optical viewing cell[111] through which the 

pendant drop was monitored during the experiment. A magnified image of the pendant drop was 

acquired by a charged coupled device (CCD) monochrome camera and a microscope. The digital 

image was transferred to a computer and the resulting interfacial properties of the drop were 
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obtained. A simplified schematic of the experimental set-up using digital image processing from 

a pendant drop is shown in.  

 

Figure 4-5: Schematic of the Pendant Drop Method for Measuring Interfacial Tension  

4.3.6 Contact Angle measurements 

The contact angles of HSNP and HOSNP were measured using the sessile drop method of the 

ADSA-P. The particles were pelletized using a hydraulic press to obtain a suitable surface of the 

substrate on which the contact angles of water, oil and starch nanoparticles were determined. The 

pellets were placed in an oven at 55oC overnight to get rid of any moisture. The pelletized 

particles were placed in a rectangular optical glass cell, into which the oil phase was already 

added, and the advancing contact angles of water drops of volume, approximately 50 µL under 

oil were measured. A simplified schematic of the experimental set-up for contact angle 

measurement from a sessile drop is shown in Figure 4-6.  
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Figure 4-6: Schematic of the Sessile Drop Method for Measuring Contact Angle 

 

4.4 Statistical Analysis  

The experimental data was conditioned by using Grubb’s test to determine any outliers which 

were removed before conducting other statistical analysis. All the experiments were conducted in 

triplicates.  

4.5 Results and Discussions 

4.5.1 Phase Inversion 

4.5.1.1 Effect of Interfacial Additive Concentration on Phase Inversion 

Hydrophilic Starch Nanoparticles: The type of emulsion (W/O or O/W) can be determined by its 

electrical conductivity. The W/O emulsion has a very low conductivity as the continuous phase 

(oil) of the emulsion is nearly non-conductive. The O/W emulsion, on the other hand, is highly 

conductive due to the high electrical conductivity of the continuous phase (water). Figure 4-7 

shows the variation in conductivity with the addition of the aqueous phase (HSNP dispersion in 
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water) to the oil. The emulsions formed at water volume fractions with very low conductivity are 

W/O type emulsions. The phase inversion of W/O type emulsion to O/W type emulsion is 

depicted by a sharp increase in the conductivity. The drop test was also employed to further 

verify the occurrence of phase inversion from W/O to O/W emulsion.  Figure 4-7 shows that the 

phase inversion point is delayed with increasing HSNP concentration. Without the addition of 

HSNP, the phase inversion of W/O to O/W occurred at a lower volume fraction of water of 0.31. 

This result is consistent with values obtained by Varun et al[96] who obtained a water volume 

fraction of 0.329 with the use of similar low viscosity oil. These values obtained in the absence 

of additives are, however, inconsistent with those predicted by Ostwald[112] in which he 

reported 0.74 value of water volume fraction. 

At 0.1 wt% of HSNP dispersed in the aqueous phase, catastrophic phase inversion of emulsion 

from W/O to O/W occurs at a water volume fraction of approximately 0.44 whereas at 2 wt% of 

HSNP dispersed in the aqueous phase, the catastrophic phase inversion of emulsion from W/O to 

O/W type occurs at a water volume fraction of approximately 0.7. This implies that at high 

HSNP concentrations, the W/O emulsion is more stable in comparison with the W/O emulsion at 

low HSNP concentration.  
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Figure 4-7: Conductivity of water-mineral oil emulsions stabilized by hydrophilic starch 

nanoparticles as a function of the volume fraction of water; The [HSNP] are 0 (filled circle), 0.1 

(filled square), 0.2 (filled diamond), 0.4 (open circle), 1 (open diamond) and 2 (filled triangle) % 

by weight based on the aqueous phase. 

 

Figure 4-8 shows the plots of conductivity against volume fraction for varying concentrations of 

HOSNP. Phase inversion from low electrical conductivity W/O emulsion to highly conductive 

O/W occurs at a higher water volume fraction upon increasing the HOSNP concentration in the 

aqueous phase. For example, phase inversion took place at volume fractions of about 0.48 and 

0.73 for 0.1 and 2 wt.% HOSNP respectively. These delay observed is also consistent with the 

findings by Varun et al[96] increase in hydrophobicity of nanoparticles lead to prolonged 

catastrophic phase inversion from W/O to O/W emulsions. These results further indicate that 

HOSNP is more effective in producing stable W/O emulsions as compared with HSNP at the 

same starch concentration.  
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Figure 4-8: Conductivity of water-mineral oil emulsions stabilized by hydrophobic starch 

nanoparticle as a function of the volume fraction of water; The [HOSNP] are 0 (filled circle), 0.1 

(filled square), 0.2 (filled diamond), 0.4 (open circle), 0.6 (open square), 0.8 (filled triangle), 1 

(open diamond) and 2 (open triangle) % by weight based on the aqueous phase. 

  

4.5.1.2 Effect of Oil Viscosity on phase inversion 

The effect of oil viscosity on phase inversion was investigated using hydrophilic starch 

nanoparticles. Figure 4-9 shows the plots of electrical conductivity against volume fraction for 

varying concentrations of HSNP. For the high viscosity oil (oil B), phase inversion occurs at low 

water volume fractions of 0.26 and 0.57 at 0 and 2 wt% HSNP respectively whereas for low 

viscosity oil (oil A), phase inversion occurs at higher volume fractions of water of 0.31 and 0.70 

at 0 and 2 wt% HSNP respectively. These results further show that the effect of viscosity is more 

pronounced at higher concentrations of HSNP. Similar trends have been reported in surfactant-

based systems[96] in that the inversion of W/O to O/W emulsion occurs early upon increasing 

the viscosity of the oil phase. 
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Figure 4-9: Comparison between conductivity data for catastrophic phase inversion from W/O to 

O/W emulsion as a function of the volume fraction of water by the addition of water to the oil 

phase. Emulsions are stabilized by hydrophilic starch nanoparticles (HSNP) in (a) Oil A – 15 cSt 

@ 40oC/104oF and (b) Oil B – 36.1 cSt @ 40oC/104oF. Particle concentrations are 0 (filled 

circle), 0.1 (filled square), 0.2 (filled diamond), 0.4 (open circle), 1 (open diamond) and 2 (filled 

triangle) % by weight based on the aqueous phase. 

 

In summary, the phase inversion of W/O emulsion to O/W emulsion was delayed to higher water 

volume fractions as the concentrations of HSNP and HOSNP dispersed in the aqueous phase 

were increased. The critical volume fraction of water increased from 31% to 70 % due to an 

increase in HSNP concentration from 0 to 2 wt.%. Similarly, the critical volume fraction of water 

increased from approximately 33% to 73% due to an increase in the HOSNP concentration from 

0 to 2 wt. %. As an example, Figure 4-10 depicts the relationship between the critical volume 

fraction and the HSNP concentration in weight percent. The volume fraction of water that is 

required for phase inversion increases with increasing HSNP concentrations and nearly plateaus 

at about 0.7. Regarding the effect of oil viscosity on phase inversion, it is observed to be more 

pronounced at high concentrations of nanoparticles. 
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Figure 4-10: Critical Volume Fraction of Water vs HSNP concentration. 

4.5.2 Separation Behaviour  

The stability of W/O emulsions against coalescence was investigated as a function of starch 

concentration (varying concentrations of HSNP and HOSNP in the aqueous phase) at a fixed 

water volume fraction of 0.25. The coalescence of water droplets was monitored by measuring 

the volume of the aqueous phase separated from the emulsion as a function of time. Figure 4-11 

and Figure 4-12 show the volume of aqueous phase separated from the emulsion as a function of 

time for HSNP and HOSNP respectively. In the case of HSNP, the relative instability of the W/O 

emulsion is evident from Figure 4-11 as almost all of the aqueous phase is recovered within 400 

s, regardless of the starch concentrations used. 
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Figure 4-11: Normalized volume of coalesced aqueous phase against time for W/O Emulsion 

using HSNP. The [HSNP] are 0 (filled circle), 0.1 (filled square), 0.2 (filled diamond), 0.4 (open 

circle), 1 (open diamond) and 2 (filled triangle) % by weight based on the aqueous phase. 

 

In the case of HOSNP, the W/O emulsion is relatively more stable as the coalescence rate of the 

aqueous phase droplets decreases with increasing starch concentration (see Figure 4-12).  The 

time required for 50% of the aqueous phase to coalesce and separate from emulsion (t50) is 

shown in Figure 4-13 for both interfacial additives (HOSNP and HSNP). The rate at which the 

aqueous phase coalesces and separates from the W/O emulsion is indicative of emulsion 

stability. The higher the stability of water droplets against coalescence, the slower is the rate of 

coalescence of the aqueous phase and hence prolonged phase separation. The W/O emulsions 

stabilized by HSNP were observed to coalesce faster. The time needed to separate 50% of the 

aqueous phase from the emulsion (t50) was relatively small (162s at 0.1 wt%). The W/O 

emulsions stabilized by HOSNP exhibited higher stability (t50 =230 s at 0.1 wt%) due to higher 

hydrophobic content. Interestingly both HSNP and HOSNP stabilized emulsions exhibit peaks in 
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t50 at 0.1 and 1 wt% (see Figure 4-13) starch nanoparticle concentrations. At about 0.2 wt% 

starch, t50 plots exhibit a minimum. The exact reasons for maxima and minima observed in t50 

plots are not clear.  

 

Figure 4-12: Normalized volume of coalesced aqueous phase against time for W/O Emulsion 

using HOSNP. The [HOSNP] are 0 (filled circle), 0.1 (filled square), 0.2 (filled diamond), 0.4 

(open circle), 0.6 (open square), 0.8 (filled triangle), 1 (open diamond) and 2 (open triangle) % 

by weight based on the aqueous phase. 
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Figure 4-13: Time at 50% phase separation as a function of starch concentration for 0, 0.1, 0.2, 

0.4, 1 and 2% by weight based on the aqueous phase (pre-inversion) respectively. [HOSNP] - 

Filled circle and [HSNP] - filled square. 

 

4.5.3 Interfacial Tension (IFT) 

The effects of HSNP and HOSNP on interfacial tension at the oil-water interface were 

investigated to confirm the stability behaviour of starch-stabilized W/O emulsions. The surface 

tensions of pure mineral oil and water, measured at room temperature, were 30 ± 0.2 mN/m and 

72.89 ± 0.11 mN/m, respectively in agreement with the literature[113]. 

Figure 4-14 shows the dynamic interfacial tension measurements at the mineral oil-water 

interface during the adsorption of HSNP on a pendant drop of water in oil. The results presented 

elucidate the dependence of the oil-water interfacial tension on the starch concentration of the 

aqueous phase with and without 0.01M sodium chloride and 0.15% biocide present in the 
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aqueous phase. As can be seen in the plots, the interfacial tension decreases with the ageing of 

the droplet due to gradual adsorption of HSNP at the droplet-oil interface. The interfacial tension 

also decreases with an increase in the concentration of HSNP (0.1 and 1% by weight in the 

aqueous phase). This observation is consistent with the reduction in interfacial tension of oil-

water systems reported in the literature[114] upon the adsorption of nanoparticles at the droplet 

surface. To ascertain the influence of salt and biocide on the interfacial tension, the experiments 

were repeated with HSNP dispersed in ultra-pure water. The results are shown in Figure 4-14b. 

The observed dynamic interfacial tensions were much higher when salt and biocides were 

present in the aqueous phase. It has been shown in the literature[115] that the presence of salts in 

solution impacts interfacial activity by lessening the solution’s ability to reduce interfacial 

tension. 

 

Figure 4-14: Dynamic interfacial tension measurements at mineral oil-water interface containing 

HSNP solutions in concentrations 0.1 (open circle) and 1 (open square) % by weight dispersed in 

(a) 0.01M NaCl and 0.15% biocide (b) Pure water. 

 

Figure 4-15 shows the variation of the mineral oil-water interfacial tension with the HOSNP 

concentration in water. As observed in the case of HSNP, the interfacial tension decreases with 
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the ageing of the droplet. Interestingly, the interfacial tension now increases with the increase in 

the additive (HOSNP) concentration from 0.1 to 1 wt%. However, with the ageing of the droplet, 

the difference in interfacial tension due to different additive concentrations decreases. It appears 

from the plots shown in Figure 4-15 that the interfacial tension at higher concentrations of 

additive eventually becomes less than that observed at lower additive concentration. This 

behaviour of lower interfacial tension supports the higher stability results obtained at high 

HOSNP concentrations during the phase inversion experiments. Based on the interfacial tension 

measurements, it is likely that aggregates of HOSNP nanoparticles are formed initially, which 

then slowly migrate to the interface as the drop ages. The subsequent much-reduced interfacial 

tension could be due to the rearrangement of the aggregates at the interface. Chevalier and 

Bolzinger [3] explained the possibility of this occurrence when nanoparticles exhibit a tendency 

to aggregate in water.  

 

Figure 4-15: Dynamic Interfacial Tension measurements at mineral oil-water interface 

containing HOSNP solutions in concentrations 0.1 (filled square) and 1 (filled circle) % by 

weight. 
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4.5.4 Contact Angle 

The contact angle (θ) made by the particles with the oil/water interface dictates the stability of 

solid-stabilized emulsions[69]. Hydrophobicity has been shown to depict the preferred emulsion 

type by particles. Hence, the stability of emulsion was evaluated based on the wettability of the 

adsorbed particles as depicted by the θ. The 3-phase contact angle for the HSNP and HOSNP 

was measured using the sessile drop method. Figure 4-16 shows the images of the 3-phase 

contact angle formed by 50 µL water dispensed onto the surface of pelletized HSNP and HOSNP 

immersed in the oil phase respectively. The advancing contact angles for HSNP and HOSNP 

were estimated to be 46 ± 2.2o and 120 ± 3.1o respectively, measured through the water phase. 

The results indicate that HSNP and HOSNP are suitable for Pickering emulsion stabilization. The 

contact angles are within the intermediate wettability range confirming that the particles are 

adsorbed irreversibly at the oil/water interface leading to the formation of stable emulsions. This 

observation is consistent with the literature[63]. 

 

Figure 4-16: Images of Sessile Drop on Pelletized Starch Immersed in the Oil Phase 
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4.5.5 Synergistic effect of HSNP-CTAB system on the phase inversion   

Initial investigation of the phase inversion of W/O to O/W emulsion was explored with varying 

concentrations of CTAB ranging from 0 to 0.5 wt.% in the aqueous phase. This was essential to 

identify the effects of only CTAB on W/O emulsion before investigating the synergistic effects 

of both HSNP and CTAB. CTAB addition impacted the phase inversion of W/O to O/W 

emulsions as shown in Figure 4-17 and Figure 4-18. With the addition of CTAB, an initial 

increase in the critical volume fraction was observed, which peaked at 0.05wt.%, implying a 

delayed inversion. Beyond the CMC region, the critical volume fraction decreased which favours 

the formation of oil-water emulsions.  

 

Figure 4-17: Conductivity data for W/O to O/W phase inversions of CTAB in an electrolyte 

medium (0.01M NaCl/Ac) at varying concentrations.  
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Figure 4-18: Critical Volume Fraction of water versus CTAB concentration (0, 0.01, 0.02, 0.03, 

0.04, 0.05, 0.25 and 0.5 wt%) 

 

Subsequently, the effects of different concentrations of CTAB on HSNP stabilized W/O 

emulsion at constant HSNP concentration were investigated. Figure 4-19 shows the inversion 

point as a function of varying CTAB concentrations (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.25 and 0.5 

wt.%) at constant HSNP concentration of 1wt%. As shown in Figure 4-20, an increase in the 

concentration of CTAB resulted in an initial drop in the phase inversion point. Around the CMC 

concentration (0.01 and 0.05wt%), no significant change was noticed. This observation could be 

due to the formation of micelles in the bulk phase.  After that, the phase inversion point 

eventually decreased beyond the CMC point. Hence, CTAB addition favours early inversion of 

W/O to O/W emulsions.  
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Figure 4-19: Conductivity data for W/O to O/W phase inversions of HSNP-CTAB mixture at 

fixed 1wt.% HSNP concentration and varying CTAB concentrations. 

 

 

Figure 4-20: Critical Volume Fraction of water at fixed 1wt.% HSNP against CTAB 

concentration (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.25, 0.5 and 1wt%). 
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4.5.5.1 Separation Behaviour 

The separation behaviour of the W/O emulsion at a fixed concentration of HSNP in the aqueous 

phase and fixed water volume fraction of 0.25 was investigated as a function of CTAB 

concentration as described by Ogunlaja et al[116]. The volume of the aqueous phase separated 

from the emulsion as a function of time is shown in  Figure 4-21 for HSNP. The time required 

for 50% of the aqueous phase to coalesce and separate from emulsion (t50) is shown in Figure 

4-22. Figure 4-22 shows a faster rate of coalescence of the aqueous phase at low concentrations 

of CTAB; hence O/W emulsions are favoured as a result of CTAB addition. This favorability is 

slowed down around the CMC region. Further data beyond the 0.05wt.% was not possible 

because HSNP-CTAB solutions with CTAB concentrations beyond 0.05wt% foamed 

excessively.  

 

 

Figure 4-21: Volume of coalesced aqueous phase against time for W/O emulsion for HSNP - 

CTAB mixture at fixed 1wt% HSNP and varying CTAB concentration at a fixed φw of 0.25 
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Figure 4-22: Time for 50% phase separation with constant 1wt.% HSNP as a function of CTAB 

concentrations of 0, 0.01, 0.02, 0.03, 0.04 and 0.05wt.% by weight based on the aqueous phase 

(pre-inversion) and a fixed volume fraction of water, ɸw of 0.25 respectively. 

 

Figure 4-23 shows a comparison between the critical volume fraction of HSNP/CTAB hybrid 

(HSNP concentration is fixed at 1wt%) and CTAB only as a function of CTAB concentration in 

weight%. It is observed that the CTAB promotion of O/W emulsion is always enhanced in the 

presence of HSNP. As seen in the orange plot, the presence of CTAB instantly sped up the phase 

inversion phenomenon thereby decreasing the critical volume fraction of water from 69% to 63% 

due to the addition of 0.01 wt.% CTAB. Around the CMC region, the inversion seemed to hover 

around the volume fraction of 55%, beyond this region, O/W is again favoured. Whereas for 

CTAB alone in the electrolyte medium, W/O emulsion was initially favoured with an increase in 

the volume fraction of water from 31% to 49% until the CMC region where the behaviour is 

reversed and O/W is favoured once again.  
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Figure 4-23: Comparison of Critical Volume Fraction of water against CTAB concentration in 

wt.% for HSNP/CTAB (Orange) and CTAB only (Blue) W/O emulsions. 

 

4.5.5.2 Surface tension of HSNP/CTAB solutions 

Surface tension experiments were performed to probe the interfacial properties of CTAB mainly 

at lower concentrations around the CMC range observed in phase inversion experiments as 

shown in Figure 4-24. The following observations were realized during the surface tension 

experiments. Using CTAB alone in the lower concentration range of 0.01 to 0.05 wt%, there was 

no significant difference in the observed surface tension with respect to the drop age. For 1wt% 

HSNP, the surface tension was observed to decrease as the drop ages. Thermal degradation of 

drop hindered longer run times as previously presented. Upon the addition of 1wt% HSNP to the 

same CTAB concentration range of CTAB, the surface tension further decreased with increasing 

CTAB concentration, showing the possible effect of HSNP.  
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Figure 4-24: Surface tension measurements of water droplets containing 1wt% HSNP with and 

without CTAB (concentrations of 0.01, 0.03 and 0.05wt%) versus the drop age. 

  

4.5.6 Synergistic effects of HSNP and Nanoclay in Non-electrolyte medium  

The stabilization effect of HSNP/nanoclay hybrids was conducted in a pure non-electrolyte 

aqueous phase without the addition of preservatives. Bentonite nanoclay was chosen as the co-

stabilizer with no addition of acticide and salt. 

4.5.6.1 Effects of Stabilizing water-in-oil emulsion at different concentrations of Hydrophilic 

Starch Nanoparticle (HSNP) in MilliQ  

HSNP concentrations were varied from 0 to 1% by weight based on the aqueous phase. The 

dispersions were allowed to cool down and used as-is for the phase inversion experiment. Figure 
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4-25 shows that the phase inversion point was delayed with increasing HSNP concentration up to 

the critical volume fraction point as observed previously. Catastrophic phase inversion of the 

emulsion from W/O to O/W occurs at a water volume fraction of approximately 0.48, 0.34, 0.26, 

0.33 and 0.52 for 0.1, 0.2, 0.4, 1 and 2 wt.% HSNP respectively.  

However, an interesting inversion behaviour was noticed at all concentrations except for 0.1 and 

2wt%. For 0.2, 0.4 and 1wt.%, the W/O initially inverted to a mid-O/W. At this level, despite the 

continuous addition of the aqueous phase to the emulsion, the conductivity remains relatively the 

same and later drops to a lower conductivity and then proceeded to increase and eventually to a 

final O/W phase. In addition, it was also observed that the higher the concentration of the HSNP, 

the longer the emulsion stays at the mid-O/W phase. This signifies that the different 

concentrations of the HSNP affect the characteristics of the W/O phase inversion. 

 

Figure 4-25: Conductivity of water-mineral oil emulsions stabilized by HSNP as a function of 

the volume fraction of water.  
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4.5.6.2 Confocal Laser Scanning Microscopic Analysis of Emulsions 

To further explain the observed trend in Figure 4-25, it was hypothesized that the starch 

nanoparticles are forming a shell-like nanoparticulate layer on the oil-water interface. Confocal 

laser scanning microscopy (CLSM) was used to explain the stability effect of HSNPs. HSNPs 

and mineral oil are non-fluorescent; Nile blue and Nile red were used as fluorescence dyes to 

visualize them under the microscope respectively. Figure 4-26 shows the bright field and 

confocal laser scanning microscopy images of mineral oil-in-water emulsion stabilized by 1wt% 

HSNP. HSNPs are visualized to coat the surface of the droplets and hindering coalescence. 

 

 

Figure 4-26: Bright-field (BF) and confocal laser scanning microscopy (CLSM) images of 

mineral oil-in-water (1:1 by volume) emulsions stabilized by 1wt.% HSNP. A water-soluble 

fluorescent dye, Nile blue, which binds to HSNP was used to stain the starch and is coded red; 

the oil phase was stained Nile Red and is coded green. The scale bar corresponds to 50µm. 

  

4.5.6.3 Effects of HSNP/Nanoclay Hybrid on phase inversion in MilliQ 

The synergistic effect of HSNP/Nanoclay hybrid on phase inversion of mineral oil-water 

emulsions was investigated. Dispersed solutions of 1wt% HSNP and 1wt% nanoclay, mixed in 

the ratio 20:80, 50:50 and 80:20 respectively were employed as the aqueous phase. The variation 

in the conductivity against the water volume fraction is shown in Figure 4-27. The observed 

behaviour is similar to what was observed for 1wt% HSNP in MilliQ in Figure 4-25 above. The 

W/O inverts to mid-O/W, thereafter, despite the continuous addition of the aqueous phase to the 
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emulsion, the conductivity remains relatively the same and later drops to a lower conductivity 

and then proceeded to increase and eventually to a final O/W phase.  It was seen that as the clay 

fraction of the HSNP/clay mixture increases, the higher the conductivity range at which the mid-

O/W emulsion peaked before reverting to the final O/W emulsion and the length of time spent 

and the volume fraction in this transitioning mid-O/W stage reduced with increasing clay 

content. This signifies that the presence of the nanoclay in the HSNP/nanoclay mixture seems to 

have an effect on the overall behaviour of the W/O emulsion.  
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Figure 4-27: Conductivity of water-mineral oil emulsions stabilized by 1wt% HSNP: 1wt% Clay 

hybrid as a function of the volume function of water 

 

4.6 Conclusions 

The following conclusions can be drawn concerning the effects of HSNP and HOSNP 

nanoparticles on phase inversion and stability of Pickering emulsions: 
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• Both HSNPs and HOSNP are effective in delaying the phase inversion of emulsion from 

W/O type to O/W type. There is a direct correlation between the delay in phase inversion 

and the increasing concentration of the nanoparticles. In the absence of nanoparticles, the 

catastrophic phase inversion of W/O to O/W type emulsion occurs at approximately 0.3 

volume fraction of water. However, this critical volume fraction increases with the 

increase in the nanoparticle concentration in the aqueous phase.  

• The stability of W/O emulsions with respect to the coalescence of droplets increases with 

the increase in nanoparticle concentration and nanoparticle hydrophobicity.  

• With the higher viscosity oil, the phase inversion of W/O to O/W type emulsion occurs 

earlier, depicting relatively less stable emulsions. 

• The interfacial tension between water and mineral oil decreases with time at different 

concentrations of nanoparticles.  

• For HSNPs, the interfacial tension-time plot shifts towards lower values with the increase 

in the nanoparticle concentration.  

• For HOSNP, the interfacial tension decreases as the drop ages like in the case of HSNPs. 

However, the opposite effect is observed with respect to nanoparticle concentration. At a 

high nanoparticle concentration, the interfacial tension values are observed to be higher 

initially due to the aggregation of nanoparticles. The migration of nanoparticles to the 

interface is expected to occur slowly due to the aggregation of nanoparticles. However, 

the steady-state interfacial tension values tend to decrease with the increase in the 

nanoparticle concentration, as expected. 
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• The measured contact angles are within the intermediate wettability range that confirms 

the effectively irreversible adsorption of nanoparticles at the oil/water interface resulting 

in stable emulsions.  

•  Different concentrations of the HSNP and nanoclay, either separately or combined as a 

mixture can affect the characteristics of W/O emulsion phase inversion, following similar 

trends. 
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Chapter 5: Effects of Bentonite Nanoclay and Cetyltrimethyl 

Ammonium Bromide Modified Bentonite on Phase Inversion of 

Water-In-Oil Emulsions 

An abridged version of this chapter was published in the Colloids and Interfaces journal and 

under the authorship of Sileola B Ogunlaja and Rajinder Pal 

 

5.1 Introduction 

Various types of solid materials that have been used as particulate stabilizers for water-in-oil 

(W/O) or oil-in-water (O/W) emulsions include clays, silica, iron oxides, barium sulphate, 

alumina and calcium carbonate [64]. One of the crucial characteristics of these particles that 

impacts their effectiveness in stabilizing emulsions is their wettability[51], [63]. Particles with 

contact angle greater than 90o tend to form stable W/O emulsions whereas particles with contact 

angle smaller than 90o tend to form stable O/W emulsions[117]. The wettability of the solid 

particles has been known to be altered by surface modification using surfactants[64]. The 

trapping of particles at the oil-water interface is controlled by the particle wettability. At the 

interface, the particle experiences a potential energy minimum, which is directly related to the 

contact angle.   Equation (5.1) gives the Gibbs free energy (ΔG) required to remove a particle (of 

radius r) from the interface to the potential energy reduction for attachment of the particle at the 

interface [63]. 

 

ΔG = πr2γow(1 ± cos θow)2                                               (5.1) 

 

where γow is the interfacial tension of the oil-water interface and θow is the three-phase contact 

angle the particle makes with the o/w interface measured through the water phase. The fluid into 
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which the particle is removed dictates the sign on the cos θow. It is negative when the particle is 

removed into water. 

Clays are a broad class of inorganic layered structures. Bentonite is a smectite clay mineral type, 

an absorbent aluminum phyllosilicate clay, also referred to as Montmorillonite (MMT) [118], 

[119]. MMT is commonly used in research studies for the synthesis of organoclays due to its 

abundance, adsorption properties, high cation exchange capacity, nanometric dimensions, high 

aspect ratio and extreme water-swelling characteristics [120]–[122]. The stabilization effect of 

nanoclays in multicomponent systems has attracted interest in a wide range of applications in the 

industry due to its economic and environmental benefits [5], [73], [117], [123], [124].  

The homogenization of a mixture of aqueous and non-aqueous phases by means of high-shear 

mechanical agitation, yielding either a W/O emulsion or an O/W emulsion, is mostly enhanced 

by the addition of particulate modifiers like nanoclays. The particulate modifiers are able to 

migrate to the interface, forming a Pickering interface with a high interfacial shear modulus [84]. 

With the help of a surfactant, poorly hydrophobic nanoclays can be modified such that they can 

be preferentially located at the oil-water interface. The adsorption of cationic surfactants at low 

aqueous concentrations has been shown to alter the wettability of mineral surfaces by making 

them more hydrophobic [125]–[127]. A cationic surfactant such as cetyl trimethyl ammonium 

bromide (CTAB), is hereby expected to readily attach itself to negatively charged clay surfaces 

via columbic attraction [125]. Figure 5-1 shows a schematic diagram illustrating the multiscale 

representation of W/O emulsion stabilized by surfactant-modified nanoclay before the 

occurrence of phase inversion. 
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Figure 5-1: Schematic of a multiscale W/O emulsion system with an emphasis on water droplet 

stabilized by surfactant modified nanoclay.   

The aim of this study is to evaluate the stability of nanoclay stabilized W/O emulsions 

formulated with various degrees of surfactant modification of nanoclay. The effects of 

unmodified and surfactant-modified nanoclay on catastrophic phase inversion of W/O emulsion 

to O/W emulsion are determined experimentally. The adsorption of CTAB on to the nanoclay 

has a strong influence on the three-phase contact angle as well as the critical volume fraction of 

water where phase inversion takes place from W/O to O/W emulsion.  

 

5.2  Materials and Methodology 

5.2.1 Materials 

The hydrophilic bentonite nanoclay powder purchased from Sigma Aldrich consists of 98% 

sodium montmorillonite. The particles of untreated nanoclay powder are approximately 6-micron 

in size. The powder particles are agglomerates of the clay layer stacks, which disperse fully into 

a nano-sized dimension in water due to the strong hydrophilicity of clay. The exfoliated clay has 

a thickness of 1 nm and a lateral dimension of 100-150 nm. The agglomerates of the clay layer 
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stacks disperse fully into a nano-sized dimension in water due to the strong hydrophilicity of 

clay. Cationic surfactant, CTAB was purchased from Sigma Aldrich chemicals. Both nanoclay 

and surfactant were used as received. White mineral oil (PetroCanada) was used to prepare the 

emulsions. Ultrapure water with a resistivity of 18.2 MΩ, surface tension of 71.5 mN/m and pH 

of 6-7 at 25 °C was used for the preparation of emulsions. 

5.2.2 Methodology 

5.2.2.1 Aqueous Dispersions of Nanoclay  

The dispersions of various concentrations of the hydrophilic bentonite nanoclay powder were 

prepared using the Gifford-Wood homogenizer as previously described elsewhere [116]. In brief, 

a known amount of the nanoclay was dispersed into the ultra-pure water at 5wt% without any 

chemical addition. Lower nanoclay concentrations were obtained by serial dilution. The 

emulsions were homogenized using Gifford-Wood homogenizer at 5500 rpm for 45 minutes. 

Conductivity, temperature and pH parameters were recorded immediately after homogenization. 

Care was taken to ensure that the same condition was maintained for all experiments to allow a 

true comparison of data. 

5.2.2.2  Preparation of CTAB-Modified Bentonite Nanoclay 

The aqueous nanoclay-CTAB samples were prepared with a fixed nanoclay concentration of 

1wt% obtained from serial dilution of the stock 5wt.% solution.  While stirring with the 

homogenizer, a measured amount of the cationic surfactant, CTAB is added gradually at room 

temperature in different concentrations ranging from 0.01 to 0.5wt% to impact the 

hydrophobicity of the nanoclay. This mixture which constituted the NC-Bt-CTAB hybrid was 

stirred at 600 rpm for 20 hours using a magnetic stirrer and kept at a temperature of 25±0.9oC. 

To ensure equilibration, an equilibrium time of 20 hours was selected for all experiments. The 



75 

 

NC-Bt-CTAB dispersions showed excessive coagulation beyond CTAB concentrations of 

0.1wt%. Conductivity, pH, and temperature of the solutions were recorded before further 

analysis. 

5.2.2.3  Preparation of Emulsions  

The W/O emulsions were prepared using the Gifford-Wood homogenizer by sequentially adding 

the aqueous phase (solutions of nanoclay, with and without surfactant) to a fixed volume of the 

agitated continuous oil phase. Conductivity, pH, and temperature data of emulsion were taken 

after each addition.  

5.2.2.4  Confocal Microscopy 

The adsorption of the CTAB modified nanoclay particles on the oil droplet surface results in 

increased emulsion stabilization. Figure 5-2 shows the use of a laser-induced confocal scanning 

microscope to confirm the adsorption of particles on the emulsion droplet surfaces. This shows 

the organization of nanoclay platelets at the oil-water interface.  

 

Figure 5-2: Confocal fluorescence microscopy images of mineral oil-water emulsions stabilized 

by 1wt% nanoclay modified with 0.05 wt.%  CTAB Scale Bar = 50µm 
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5.2.2.5  Contact angle measurement  

The contact angle of nanoclay dispersions with varying degrees of surfactant modifications was 

measured at 20 °C using the sessile drop method of the Axisymmetric Drop Shape Analysis-

Profile (ADSA-P). The dispersions containing nanoclay-CTAB were spin-coated onto clean 

glass slides and were left to dry under vacuum at 80 °C. The three-phase contact angle was 

measured through the water phase. The dispersion coated glass slides were placed into a Hellma 

glass cuvette containing mineral oil. A small drop was initially dispensed on the surface of the 

slide, then a continuous injection of water at a rate of 0.5µL/s water was dispensed onto the 

slides using a syringe pump. A simplified schematic of the experimental set-up for contact angle 

measurement from a sessile drop is shown in Figure 5-3. 

 

Figure 5-3: Schematic of the Sessile Drop Method for Measuring Contact Angle 

5.2.2.6  Dynamic Light Scattering and Zeta Potential Measurements 

The particle size and Zeta potential were measured using the Zetasizer Nano-ZS (Malvern 

Instruments Ltd., Worcestershire, UK) with a He-Ne laser operating at 633 nm frequency. A dip 
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cell was used to measure the zeta potentials of nanoclay dispersion in the absence and presence 

of increasing amounts of CTAB, using the Smoluchowski equation for converting measured 

electrophoretic mobilities.  

The lateral dimension of dry exfoliated nanoclay is 100-150 nm. The Dynamic Light Scattering 

(DLS) measurement gave a much larger size of 740 nm. The most likely reason for this 

discrepancy is the solvation of nanoclay particles. The strong attraction between the negatively 

charged nanoparticle surface, stabilized by CTAB, and the matrix fluid in the NC-Bt-CTAB 

system leads to the formation of a film of matrix fluid on the clay surface,  as shown 

schematically in Figure 5-4. The solvation of nanoparticles is a common occurrence [32], [128]. 

However, some aggregation of nanoclay particles cannot be ruled out. 

 

Figure 5-4: Nanoclay coated with immobilized dispersing aqueous film  

 

The effect of CTAB concentration on the electrokinetic property of bentonite nanoclay particles 

was measured at 25ºC, with an equilibration time of 120s and 20 runs of three measurement 

cycles per sample. 
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5.3 Statistical Analysis  

The experimental data was conditioned by using Grubb’s test to determine any outliers which 

were removed before conducting other statistical analysis. All the experiments were conducted in 

triplicates.  

5.4 Results and Discussions 

5.4.1 Material Characterization 

5.4.1.1 Electron Microscopy 

A FEI QUANTA FEG 250 scanning electron microscope (SEM) was used to study the 

morphology of the samples. For analyses, dried aqueous dispersions of NC-Bt and NC-Bt-CTAB 

were mounted onto the equipment platform using carbon tape. Images of the surface morphology 

of the dispersions are shown in Figure 5-5.  
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Figure 5-5: SEM Images of dried 1wt% aqueous dispersions of NC-Bt in the presence of (a) 

0wt%, (b) 0.05wt% and (c) 0.1wt% CTAB. Scale Bar = 40µm. 

 

The SEM images show the variation in the degree of aggregation in the clay morphology with or 

without surfactant. Figure 5-5(a) shows the clay morphology without surfactant, while Figure 

5-5(b) and (c) show the clay morphology in the presence of 0.05wt% CTAB and 0.1wt% CTAB, 

respectively. In the absence of the surfactant, the nanoclay shows a relatively more aggregated 

morphology with a greater surface area. However, in the presence of surfactant, the SEM images 

show a reduction in the aggregation and clay particle size. The variation in concentration of 

CTAB seems to have an effect on the aggregation of clay particles and hence their particle size.  
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5.4.1.2 Dynamic Light Scattering and Zeta Potential Results 

The particle size distribution was measured with at least three separate measurements per 

dispersion. The size distributions are shown in Figure 5-6 for two different nanoclay 

concentrations of 0.1 and 1 wt%. The particle size changes with nanoclay concentration are 

negligible. The average particle diameter is 740nm ± 30nm.  

 

Figure 5-6: Particle size distribution of 0.1wt% and 1wt.% nanoclay dispersion using DLS. 0.1 

(blue circle), 1 (red square) 

 

Figure 5-7 presents the change of zeta potential values of nanoclay–CTAB dispersions as a 

function of CTAB. The zeta potential obtained for NC-Bt dispersion in the absence of CTAB is -

11.4 mV ± 0.9. A slight increase in this value was observed with the addition of a cationic 

surfactant. This can be explained by the adsorption of cationic CTAB onto negatively charged 

nanoclay. An eventual sign change noticed beyond the critical micelle concentration of CTAB is 

likely due to the formation of micelles. 
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Figure 5-7: Variation of zeta potential and 1wt.% nanoclay dispersion as a function of CTAB 

concentration 

 

5.4.1.3 Contact Angle 

The wettability of particles is widely known to be a predictor of the stability of emulsions. To 

further elucidate the stability of surfactant stabilized nanoclay emulsions, the contact angles of 

water drops on the substrates both in air and in oil were measured. The mean of the advancing 

contact angle of approximately 20 drops was taken for each sample. Figure 5-8 shows the 

advancing contact angles of water in air (squares) or in oil (circles) on the substrate coated onto 

the slides. The contact angle data are plotted as a function of the varying concentration of CTAB 

in 1wt% nanoclay concentration. Figure 5-9 shows the selected images of the 3-phase contact 

angle formed by 40 µL of water dispensed onto the surface of the glass slides coated with 1wt% 

nanoclay with various degree of CTAB modification (a) 0 (b) 0.01, (c) 0.03 and (d) 0.05wt%. 
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The advancing contact angle for the dispersion of 1wt% nanoclay in air was estimated to be 15 ± 

1.2º without surfactant and increased to 50 ± 2.6º at the highest concentration of surfactant of 

0.05wt%. Upon immersion in the oil phase, the contact angle further increased from 20 ± 2.9º to 

68 ± 3.2º of pure clay and surfactant modified nanoclay respectively. The increase in the contact 

angle with an increase in the degree of modification of nanoclay with CTAB can be attributed to 

the enhanced hydrophobicity of nanoclay resulting from adsorption of a cationic surfactant 

CTAB. 

 

Figure 5-8: Variation of contact angle measured of a water drop in air (squares) and under oil 

(circles) as a function of the concentrations CTAB concentration in 1wt% nanoclay dispersions  
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Figure 5-9: Images of sessile drop on glass slides coated with 1wt% nanoclay with CTAB 

concentration of (a) 0, (b) 0.01, (c) 0.03 and (d) 0.05 respectively immersed in the oil phase 

5.4.1.4 Emulsions Stabilized by Unmodified Bentonite Nanoclay 

The influence of unmodified bentonite nanoclay dispersed in ultrapure water on the catastrophic 

phase inversion of a W/O emulsion was investigated. Figure 5-10 shows the variation in 

electrical conductivity of the nanoclay-stabilized water-mineral oil emulsions with respect to the 

volume fraction of water. The emulsions formed at the volume fractions with low conductivity 

are W/O type emulsions. As shown in Figure 5-10, the phase inversion of W/O to O/W emulsion 

is depicted by the sharp increase in the electrical conductivity which occurred at water volume 

fractions between 0.22 and 0.31. Further sequential addition of the aqueous phase to the resulting 

O/W emulsion (after the phase inversion has occurred) led to higher conductivity values, which 

becomes more prominent with an increase in the weight % of the added clay. As can be seen in 

Figure 5-10, the slope of the electrical conductivity versus water volume fraction relationship, 
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after phase inversion of W/O to O/W emulsion, increases with the increase in the concentration 

of nanoclay. 

 

Figure 5-10: Conductivity of water-mineral oil emulsions stabilized by Nanoclay Solutions (0, 

0.25, 0.5, 1, 1.75, 2.5 and 5 wt.%) as a function of the volume fraction of water (VF in the legend 

refers to the volume fraction of water where phase inversion is observed) 

 

To expound the relationship between the critical phase inversion volume fraction of water and 

the nanoclay concentration, the volume fraction of water where phase inversion took place was 

plotted against the nanoclay concentration as shown in Figure 5-11. Figure 5-11 shows that the 

critical phase inversion volume fraction is reduced to lower water volume fractions as the 

concentration of the dispersed nanoclay is increased. The critical volume fraction decreases from 

31% to 22% with an increase in the nanoclay concentration from 0 to 5 wt.%. This is not 

unexpected as the incorporation of hydrophilic clay into the emulsion system shifts the 

hydrophilic-lipophilic balance (HLB) of the system towards higher value and hence favouring 

the formation of an O/W emulsion.   
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Figure 5-11: Critical volume fraction of water versus nanoclay concentration 

5.4.1.5 Emulsions Stabilized Solely by CTAB 

The behaviour of cationic surfactant CTAB dispersed in ultrapure water was investigated to 

determine its effect on the catastrophic phase inversion of W/O emulsion to O/W emulsion. 

Figure 5-12 shows the variation in conductivity of the CTAB stabilized water-mineral oil 

emulsions with respect to the volume fraction of water. As shown in Figure 5-12, the phase 

inversion of W/O to O/W emulsion is depicted by the sharp increase in the conductivity which 

occurred at water volume fractions between 0.31 and 0.52. Further sequential addition of the 

aqueous phase to the resulting O/W emulsion after the phase inversion led to higher conductivity 

values, which become more prominent with the increase in the weight % of the added CTAB. As 

shown in Figure 5-12, the slope of the relationship increases with an increase in the 

concentration of CTAB.  This behaviour is similar to that observed when nanoclay was used as 

the emulsion stabilizer.   
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Figure 5-12: Conductivity of water-mineral oil emulsions stabilized by pure CTAB solutions (0, 

0.01, 0.02, 0.03, 0.04, 0.05, 0.25, and 0.5 wt.%) as a function of the volume fraction of water.  

 

To illustrate the relationship between the phase inversion water volume fraction and the CTAB 

concentration, the critical water volume fraction is plotted against CTAB concentration in 

Figure 5-13. The figure shows that the phase inversion of W/O to O/W emulsion is delayed 

initially to higher water volume fractions of 0.52 as the concentrations of the surfactant CTAB is 

increased. The trend of the critical volume fraction against CTAB concentration peaked at a 

CTAB concentration of 0.03 wt.% (the critical micelle concentration of CTAB) and then 

decreased continuously to a critical volume fraction of 0.4 up to a CTAB concentration of 0.25 

wt.%. Higher CTAB concentrations beyond this point (0.25 wt%) had little effect on the critical 

volume fraction of phase inversion. This behaviour is different from what was observed when 

nanoclay was used as the emulsion stabilizer, but it is important to note that the selected CTAB 

concentration range is lower than the nanoclay concentration range by an order of magnitude. 
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When a higher concentration of CTAB was used, significant foaming of the emulsion was 

observed.  

 

Figure 5-13: Critical volume fraction of water versus CTAB concentration  

5.4.1.6 Comparing the effects of CTAB alone and unmodified nanoclay alone on catastrophic 

phase inversion of W/O emulsions 

Figure 5-10 and Figure 5-12 show a similar trend in the behaviour of the stabilized emulsion 

regardless of whether nanoclay or CTAB was used as an emulsion stabilizer. Not only do they 

show a directly proportional relationship between the conductivity of the emulsion and the 

aqueous phase volume fraction for different weight percent of the stabilizer, the slope of the 

relationship increases with an increase in the weight percent of the stabilizer. To further 

investigate the relationship between the critical volume fraction and the concentration of the 

stabilizer, the stabilizer concentrations were normalized and plotted against the critical volume 

fraction of water as depicted in Figure 5-14. C/Co is the normalized stabilizer concentration 

where C, is the actual sample concentration at the nominal concentration of Co. Figure 5-14 

shows that the critical volume fraction of the aqueous phase when CTAB was used as the 

stabilizer was higher when compared to unmodified nanoclay. Although they both follow similar 
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trends, it can be concluded that using nanoclay as the stabilizer speeds up the phase inversion 

process of W/O to O/W emulsion in comparison with  CTAB as the emulsion stabilizer. 

 

Figure 5-14: Aqueous phase critical volume fraction as a function of normalized concentration 

for CTAB and nanoclay. 

5.4.1.7 Emulsions Stabilized by Surfactant-Modified Bentonite Nanoclay (NC-Bt-CTAB) 

The interaction of a clay surface with a polymeric matrix has been commonly enhanced by 

surface modification [129]. Therefore, we investigated the effects of 1 wt.% nanoclay solution 

combined with various concentrations of CTAB on the catastrophic phase inversion of W/O 

emulsion. Figure 5-15 shows the variations in the electrical conductivity of the nanoclay/CTAB 

emulsion mix with respect to the aqueous phase volume fraction. The CTAB concentration was 

increased up to 0.1 wt%. During the experiments, it was observed that the CTAB coagulates the 

nanoclay at CTAB concentrations beyond 0.1wt% in the presence of oil. Hence the phase 

inversion experiments were restricted to using nanoclay solutions containing CTAB in the 

concentration range of 0.01 to 0.1wt.%. 
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As shown in Figure 5-15, the phase inversion of W/O to O/W emulsion is depicted by a sharp 

increase in the electrical conductivity which occurred at water volume fractions in the range of 

0.25 to 0.42. Further sequential addition of the aqueous phase to the resulting O/W emulsion 

after the phase inversion has occurred, led to higher conductivity values, which become more 

prominent with an increase in the weight % of CTAB at a constant concentration of nanoclay. 

This behaviour is similar to what was observed when nanoclay or CTAB alone was used as the 

emulsion stabilizer as shown previously in Figure 5-10 and Figure 5-12. However, it is evident 

that the adsorption of CTAB onto the surface of the nanoclay particles leads to the localization of 

nanoclay particles at the oil-water interface resulting in the delayed inversion process. 

 

Figure 5-15: Conductivity of water-mineral oil emulsions stabilized by 1wt% Nanoclay at 

varying CTAB concentration as a function of the volume fraction of water 

 

Figure 5-16 shows the relationship between the critical volume fraction of water and CTAB 

concentration for emulsions stabilized by CTAB modified nanoclay. The critical water fraction 

increases from 0.24 to 0.41 with increasing CTAB concentration from 0 to 0.05 wt %. Although 
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not shown in the figure, the critical volume fraction plateaued from CTAB concentration of 0.05 

wt % until 0.1 wt %. The linear relationship between the critical water fraction and the CTAB 

concentration shown up to 0.05wt% concentration is seen to follow equation 6.2: 

Y=3.14(C) +0.27              (5.2) 

where Y = critical water volume fraction and  C is CTAB concentration in wt %.  Thus the 

surfactant-modified nanoclay delays the phase inversion of W/O to O/W emulsion up to a CTAB 

concentration of 0.05 wt%. 

 

Figure 5-16: Critical volume fraction of water versus CTAB concentration in 1wt% Nanoclay-

CTAB mixture  

 

To further investigate the effects of nanoclay on the critical volume fraction of phase inversion 

of W/O to O/W emulsion, the critical volume fraction of water at varying CTAB concentrations 

was compared for emulsion stabilized by pure CTAB and emulsion stabilized by 1 wt.% 

nanoclay + CTAB. The comparison plots shown in Figure 5-17 are limited to the dilute CTAB 

concentrations within the Critical Micelle Concentration (CMC) region up to 0.05wt% CTAB. 



91 

 

Figure 5-17 shows that the critical volume fraction of the aqueous phase when pure CTAB was 

employed as the stabilizer was higher in comparison with CTAB modified nano clay as the 

stabilizer. Although they both exhibit the same trends, it can be concluded that using the CTAB-

modified nanoclay as the emulsion stabilizer speeds up the inversion process when compared to 

using CTAB alone as the emulsion stabilizer.  

 

Figure 5-17: Comparison between plots of Critical volume fraction of water versus varying 

CTAB concentration for pure CTAB and 1wt% Nanoclay + CTAB mixture respectively 

 

5.5 Conclusions 

The emulsifying nature of hydrophilic bentonite nanoclay can be enhanced by modification with 

a surfactant such as cationic CTAB. The zeta potential measurements confirm the alteration of 

the surface charge of nanoclay as a result of CTAB adsorption. The contact angle measurement 

confirms increased hydrophobicity of nanoclay particle surfaces due to the formation of a 

monolayer of cationic CTAB molecules. The critical volume fraction of the aqueous phase, 

where phase inversion of W/O to O/W emulsion takes place, was higher when CTAB alone was 

used as the stabilizer as compared with bentonite nanoclay alone. It was evident that the 
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adsorption of CTAB on to the surface of the nanoclay particles led to the localization of clay 

particles at the oil-water interface which resulted in the delayed inversion process of W/O to 

O/W emulsion.   
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Chapter 6: Preliminary Investigation of the Extraction of Oil from 

Oil Sands using Starch Nanoparticles 

6.1 Introduction 

This chapter looks at one area of the potential application of starch nanoparticles in the industry 

is the area of bitumen extraction from mined oil sands.  Oil sands commonly referred to as tar 

sand or bituminous sand consists of layers of sand deposits mixed with highly viscous petroleum 

(bitumen). Alberta’s oil sands consist of approximately 55-80 wt% sands (mainly quartz), 4- 18 

wt% bitumen, 5-34 wt% fine solids (particles smaller than 45 µm), and 2-15 wt% water[130], 

[131].  Alberta’s oil sands reserve accounts for more than 95% of Canada's oil reserves. 

Approximately 84% of all oil production from Alberta in September 2019 was from oil sand, a 

2.1% increase when compared to September 2018[132].  

Due to the increasing growth in world energy demand, Alberta oil sands have now become an 

important source of alternative energy resources[89]. The extraction of oil from oil sand is quite 

challenging when compared to conventional crude oil extraction because of its high viscosity, 

low hydrogen to carbon ratio and natural gas[133]. The two main separation methods employed 

to extract bitumen from oil sands include in-situ and surface mining. The method selected 

depends on the depth of the crude’s deposit. For deposits situated near the surface (< 50 m below 

surface), the oil sands can be mined and directly processed at an extraction plant, while deeper 

bitumen reserves are extracted using in-situ mining methods such as steam-assisted gravity 

drainage (SAGD) and cyclic steam simulation (CSS). 

Nanoparticles are particles with a diameter size between 1 and 100 nm.  When the size of a 

particle reduces to nanoscale (i.e., 1–100 nm) the properties changes dramatically as the 

percentage of atoms at the surface of a material becomes significant, a phenomenon which is 
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attributed to the large surface area to volume ratio[134]. Quantum confinement, surface plasmon 

resonance, high adsorption affinity, enhanced catalytic activity, good dispersion ability, and 

intrinsic reactivity are some of the unique properties associated with nanoparticles[135]. The 

ability to manipulate the surface functionalities of nanoparticles by understanding and tuning its 

physicochemical characteristics makes nanotechnology an attractive option for oil sand 

extraction. 

Nanotechnology is a rapidly growing technology with considerable potential applications and 

benefits[136]. Nanoparticles are used in diverse areas of engineering applications, such as heavy 

oil upgrading[137]–[139], fuel cell technology[140], [141], polymer nanocomposites[142]–

[144], catalysis[145]–[147], and wastewater treatment[37], [148], [149].  The recent interest in 

the application of nanotechnology in oil sand processing stems from the unique physical and 

chemical properties of the nano-scale particles[150], the challenges involved in extracting oil 

from oil sand, the reduction in costs associated with the production and transportation of oil 

sands and the improvement of the crude quality to meet stricter market specifications with less 

environmental footprints. The use of nanoparticles in oil sand recovery provides unique 

opportunities to develop economically and environmentally friendly oil sand extraction 

processes. Further studies are required to illuminate the intricate interfacial uncertainties 

associated with nanoparticles’ applications in oil sand extractions. 

The objective of this phase of this study involves the preliminary investigation of the effects of 

experimental grade hydrophilic starch nanoparticles (HSNPs) in oil recovery from oil sands. The 

key goal of this study is to understand how different concentrations of starch solutions affect the 

recovery of oil from oil sands.  
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6.2 Materials and Methodology 

6.2.1 Materials  

The materials used for this phase of the study is presented below: 

1) Temperature Controlled Shaker 

2) Vacuum pump 

3) Mass balance 

4) Chemicals 

a. Oil Sand 

b. Tetrahydrofuran (THF) 

c. 1-Octanol  

d. Toluene 

e. Starch – Ecosynthetix  

f. Nitrogen gas 

g. Acetone 

5) Scintillation Vials 

6) Pasteur Pipette 

6.2.2 Methodology  

The protocol used for oil extraction was modelled after the methodology of Yang and 

Duhamel[151]. In summary, the extraction protocol was carried out as follows: 

1. 1g of oil sand was placed in a 30 mL vial  

2. 15 mL of aqueous starch dispersions of concentrations 0, 0.01, 0.1, 0.5 and 1wt.% was 

added respectively.  
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3. 60mg of toluene was measured into a 30 mL vial. All measurements were made in 

triplicates. Figure 6-1 shows the triplicate samples prepared for the experiment. 

 

Figure 6-1: Vials containing Oil Sand + Starch Solution + Organic thinner before transfer into 

an Incubated Shaker  

 

4.  The vials were placed in an incubated shaker at 45oC and 250RPM for 24hrs.  Figure 

6-2 shows the vials in the incubated shaker. 

 

Figure 6-2: Vials in the incubated shaker 
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5. After shaking, the vials were left to cool down to room temperature. Figure 6-3 shows 

the picture of the vials after shaking for 24 hours. 

 

Figure 6-3: Vials after incubated shaking for 24hrs 

 

Post incubation bitumen recovery protocol: 

1. Toluene was added to the top oil in the vial as an organic diluent to help solubilize the 

recovered floating oil and around the vial upper wall. The resulting bitumen-in-toluene 

emulsion was retrieved by a Pasteur pipette into a separate vial. A gentle flow of nitrogen 

was used to evaporate the residual toluene. The resulting extract is as shown in Figure 

6-4a. 

2. The mid-layer emulsified solution was transferred into a separate vial as shown in  

Figure 6-4b. 

3. The bottom layer consisting of sand grain and entrained oil (Figure 6-4c) was washed 

with THF to liberate the entrained oil from the sand matrix. 

4. The vials were placed overnight in the vacuum oven to remove remaining co-solvents  
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a) 

 

 b) 

 

c) 

 

d) 

 

Figure 6-4: Post extraction – (a) Top layer of oil extracted (b) Mid-layer emulsion (c) Loose 

bottom oil layer on sand grain (d) Residual sand after extraction 

 

6.3 Statistical Analysis  

The experimental data was conditioned using Grubb’s test to determine any outliers which were 

removed before conducting other statistical analysis. All the experiments were conducted in 

triplicates and the error bars are the standard deviations. A t-test was employed to compare the 

mean of the percent recovery of the blank to the mean of the percent recovery for without 

octanol. This was done to establish the significance of the data obtained. The P-value (0.04) 

shows that there is a significant difference in the percent recovery between the blank and the 
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blank with octanol signifying that the presence of octanol contributed to the increase in percent 

recovery. 

6.4 Results and Discussions  

The mass of recovered oil and sand were compared to the original mass of oil sand processed. 

Results of experiments with differences greater than 10% were discarded. The percentage of oil 

recovered was calculated as the ratio of the mass of oil extracted (top oil) to the total oil as 

shown in Equation 6.1. Where total oil equals the sum of the top and bottom oil recovered.  

 

     (6.1) 

 

This percentage oil recovery is plotted in Figure 6-5 which shows that the blank experiment 

using distilled water yielded a mean percent recovery of approximately 16%. This oil percent 

recovery further increased with the addition of Octanol, a hydrophobic organic solvent, that is 

known to interact well with starch[152]. The oil recovery percentage is then observed to be 

further enhanced with the addition of starch. Hence, it was concluded that the percent oil 

recovery seems to have a direct proportionality with the starch concentration.    
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Figure 6-5: Starch concentration with respect to percent oil recovery 

The observed trend in the percent oil recovery as a function of low starch concentration is similar 

to a previous study that used aqueous solutions of thermoresponsive block copolymer (PEG113-b-

PMEO2MAx) for oil extraction from oil sand[151]. In Figure 6-6, Yang and Duhamel obtained 

bitumen extraction efficiency of up to 100% using a block copolymer.  

 

Figure 6-6: Extraction Efficiency as a function of PEG113-b-PMEO2MA80 concentration when 

the extraction is conducted with 65 mg of toluene. Adapted with permission from [151]. 

Copyright (2015) American Chemical Society. 
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The maximum extraction was obtained at the concentration of 0.4mg/mL and greater as shown in 

Figure 6-6. Their method utilized a water-based extraction process using a thermoresponsive 

block polymer with the aid of toluene and THF as co-solvent. 

In comparison to their results, within experimental error, we obtained a mean percent yield of 

approximately 34% in our preliminary trial. The starch nanoparticle utilized in this extraction 

process was unmodified. Thermos-responsively modified starch used by Zhang[153] for similar 

oil recovery work has been reported in the literature.  

6.5 Conclusion 

It can be concluded from the observed results that increasing starch concentration from 0.01wt% 

to 1wt% has an effect on the percent oil recovery from oil sand. This indicates that there could be 

a direct relationship between the starch solution concentrations from 0.01 wt% to 1wt % and the 

percent oil recovery from oil sands. These preliminary results show that the presence of octanol 

enhances the oil recovery from oil sands. 

6.6  Limitation of study and Future Recommendations 

The preliminary trial presented was limited to sampling in vials, the use of an organic solvent for 

extraction and bench-scale laboratory procedures. A larger-scale pilot plant operation, which 

models the extraction of mined oilsands in tumblers in the oilsands industry is recommended.   
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Chapter 7: Summary and Recommendations 

7.1 Summary 

The effects of HSNP and HOSNP starch nanoparticles on phase inversion and the stability of 

Pickering emulsions were investigated by the continuous addition of the dispersed phase. The 

dynamic oil-water interfacial tension was measured using the pendant drop method at varying 

starch concentrations in the aqueous phase while the contact angles were measured using the 

sessile drop method of the Axisymmetric Drop Shape Analysis-Profile (ADSA-P). Both types of 

starch nanoparticles (HSNP and HOSNP) were effective in delaying the phase inversion of 

emulsions from water-in-oil (W/O) type to oil-in-water (O/W) type. This delay in phase 

inversion was directly correlated with the concentration of the starch nanoparticles. The 

interfacial tension decreased as the drop aged at a given starch nanoparticle concentration. The 

contact angles for both types of starch nanoparticles were within the intermediate wettability 

range which confirmed the irreversible adsorption of starch nanoparticles at the oil/water 

interface leading to increased stability of the emulsions. 

The stability of nanoclay stabilized water-in-oil emulsions formulated with various degrees of 

surfactant modification and its effect on the phase inversion of water-in-oil emulsion was 

investigated. CTAB adsorption to nanoclay was explored by studying how the presence of 

CTAB in an aqueous dispersion of nanoclay affects the critical volume fraction of water. CTAB 

was used to modify hydrophilic bentonite nanoclay (NC-Bt). Phase inversion experiments 

suggested that the modification brought about by the adsorption of CTAB at low concentrations 

improved the wettability of the nanoclay surface, thereby making it more hydrophobic, hence 

prolonging the phase inversion point. Not only did the CTAB prolong the phase inversion point, 

a mixture of CTAB/nanoclay combination equally delayed the phase inversion process, showing 
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a strong dependent relationship on the CTAB concentration (R2 = 0.9). The adsorption of  CTAB 

on nanoclay had a strong influence on the contact angle and the critical volume fraction of water 

where phase inversion took place. The modification of the nanoclay brought about by the 

adsorption of CTAB increased the three-phase contact angle (measured through the aqueous 

phase), thereby making it more hydrophobic, and prolonged the phase inversion point. CTAB 

alone and CTAB-modified nanoclay delayed the phase inversion process in a similar manner, 

showing a strong dependence on the CTAB concentration. 

Although CTAB is known to favor O/W emulsions, in this phase inversion study, it was 

observed that CTAB initially favored W/O emulsion until the micelles were formed. This 

occurrence was seen for CTAB in both electrolyte, non-electrolyte medium and for nanoclay-

CTAB hybrid systems. This behaviour, monitored by the critical volume fraction of the phase 

inversion of the emulsion peaked at the CMC region beyond which the trend was reversed. In the 

end, CTAB favored O/W emulsion. In the case of HSNP-CTAB solutions, O/W was favored 

before and after the CMC region although the net conductivity change around the CMC region 

was negligible. 

The use of nanoparticles in oil sand recovery provides unique opportunities to develop 

economically and environmentally friendly oil sand extraction processes. The effects of starch 

nanoparticles (HSNPs) in oil recovery from oil sands was investigated using starch nanoparticles 

and octanol as the co-solvent. Increasing starch concentration from 0.01wt% to 1wt% seems to 

have an effect on the percent oil recovery from oil sand, suggesting a direct relationship between 

the starch solution concentrations from 0.01 wt% to 1wt % and the percent oil recovery from oil 

sands. The presence of octanol as a co-solvent also enhanced the oil recovery from oil sands. 



104 

 

Hence, these results support the significance of investigating the interfacial characteristics and 

behaviour of  Pickering emulsions in the presence of naturally occurring nanoparticles. 

7.2 Recommendations for Future work 

Future studies are recommended to investigate the effect of temperature on phase inversion using 

thermo-responsive nanoparticles. Understanding the effect of temperature variability in 

stabilizing Pickering emulsion will further expand the applicability of the use of emulsion under 

different thermal conditions.  

Additional studies is recommended to investigate the creaming of oil droplets and the settling 

behaviour of nanoparticles. Furthermore, additional research is recommended to investigate the 

pumping behaviour of starch solutions, especially for large-scale applications. 

A future study on the hysteresis of the catastrophic inversion phenomenon of O/W to W/O 

emulsions is recommended with variation in oil volume fraction in the presence of starch and 

nanoclays as interfacial additives. 

At 1wt% HSNP, the interfacial tension decreased as the drop ages. It is recommended that 

additional interfacial tension measurements should be conducted for the combination of CTAB-

Oil, HSNP-Oil and CTAB/HSNP-Oil systems and investigate how to optimize the system to 

prevent frequent degradation of the drops to enhance the ability to run experiments for longer 

durations until steady state is achieved. 

An extensive study of CTAB behavior at the CMC region is recommended to further probe the 

impact of micelle formation on the behavior of nanoparticles in phase inversion of Pickering 

emulsions. 
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Additional research is recommended to generate more data in order to further validate the 

observed direct relationship between starch nanoparticle concentrations and percent oil recovery 

from oil sands. The direct relationship was observed at low concentrations between 0.01 and 1 

wt%. It will be interesting to investigate any possible relationship at different sets on 

concentrations. It is recommended that a lab-scale pilot plant is established to investigate the 

efficiency of commercial-grade starch nanoparticle on the removal of oil from oil sand. It is 

anticipated that these results will contribute to the available literature data on Pickering 

emulsion. 
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Appendix A 

Table A 1: Physical and chemical properties of materials used-Hydrophilic bentonite nanoclay 

Synonyms Montmorillinite clay 

Bentonite Nanomer® PGV 

Nanomer® clay 

Formula Theoretical Formula for montmorillonite: 

M+
y(Al2-y Mgy)(Si4) O10(OH)2* nH2O 

Molecular weight 180.1 g/mol 

CAS-No 1302-78-9 

EC-No 215-108-5 

 

 

Table A 2: Physical and chemical properties of materials used-Hexadecyl trimethyl ammonium 

bromide 

 
Synonyms Cetrimonium bromide 

Palmityltrimethylammonium bromide 

Cetyltrimethylammonium bromide 

CTAB 

Formula C19H42BrN 

Structure 

 

Molecular weight 364.45 g/mol 

CAS-No 57-09-0 

EC-No 200-311-3 
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Table A 3: Physical and chemical properties of materials used-White Mineral Oil 15 

Synonyms Oil A: White mineral oil (petroleum) 

Product Code PFWO15 

Concentration 100% w/w 

Density 0.85 kg/l (15 °C / 59 °F 

Kinematic Viscosity 15.00 cSt (40 °C / 104 °F) 

 3.43 cSt (100 °C / 212 °F) 

CAS-No 8042-47-5 

 

Table A 4: Physical and chemical properties of materials used-White Mineral Oil 35 

Synonyms Oil B: White mineral oil (petroleum) 

Product Code PFWO35 

Concentration 100% w/w 

Density 0.85 kg/l (15 °C / 59 °F) 

Kinematic Viscosity 36.1 cSt (40 °C / 104 °F)  

5.82 cSt (100 °C / 212 °F)  

 

CAS-No 8042-47-5  
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Appendix B 

Experimental Data 

W/O to O/W Phase Inversion – Electrolyte (NaCl/Acticide) Medium 

Hydrophilic Starch Nanoparticle (HSNP) Phase Inversion in Oil A 

Blank/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0 0.12 

450 80 0 0.15 

450 100 0 0.18 

450 120 0 0.21 

450 140 0 0.24 

450 160 0 0.26 

450 180 16.9 0.29 

450 200 26 0.31 

450 220 163.5 0.33 

450 240 175.9 0.35 

450 260 182.9 0.37 

450 280 203.4 0.38 

450 300 218.7 0.40 

450 320 221.1 0.42 

450 340 252.1 0.43 

450 360 273.2 0.44 

450 380 304 0.46 

450 400 323 0.47 

450 420 333 0.48 

450 440 365 0.49 

450 460 370 0.51 

450 480 404 0.52 

450 520 422 0.54 

450 560 440 0.55 
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450 600 457 0.57 

450 640 484 0.59 

450 680 502 0.60 

450 700 520 0.61 

450 740 539 0.62 

450 780 557 0.63 

450 820 575 0.65 

450 860 580 0.66 

450 900 581 0.67 

450 940 582 0.68 

450 980 595 0.69 

450 1020 605 0.69 

450 1060 601 0.70 

450 1100 614 0.71 

450 1160 626 0.72 

450 1220 643 0.73 

450 1280 653 0.74 

450 1340 671 0.75 

450 1410 682 0.76 

450 1480 693 0.77 

450 1550 705 0.78 

 

0.1wt% HSNP/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction (Water) 

450 0 0 0.00 

450 20 0.04 0.04 

450 40 0.05 0.08 

450 60 0.07 0.12 

450 80 0.19 0.15 

450 100 0.13 0.18 

450 120 0.14 0.21 

450 140 0.53 0.24 

450 160 0.63 0.26 

450 180 0.53 0.29 

450 200 2.33 0.31 

450 220 1.9 0.33 

450 240 1.87 0.35 
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450 260 44.5 0.37 

450 280 4.19 0.38 

450 300 28.72 0.40 

450 320 25.22 0.42 

450 340 29.5 0.43 

450 360 51 0.44 

450 380 202 0.46 

450 400 259.9 0.47 

450 420 354 0.48 

450 440 385 0.49 

450 460 395 0.51 

450 480 407 0.52 

450 500 416 0.53 

450 520 427 0.54 

450 540 437 0.55 

450 560 452 0.55 

450 580 457 0.56 

450 620 477 0.58 

450 660 502 0.59 

450 700 522 0.61 

450 740 541 0.62 

450 780 556 0.63 

450 820 569 0.65 

450 860 579 0.66 

450 910 596 0.67 

450 960 612 0.68 

450 1010 626 0.69 

450 1060 643 0.70 

450 1110 652 0.71 

450 1160 670 0.72 

450 1210 696 0.73 

450 1260 706 0.74 

450 1310 720 0.74 

450 1370 733 0.75 

450 1430 740 0.76 

450 1490 746 0.77 

450 1550 756 0.78 

450 1610 764 0.78 
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0.2wt% HSNP/Oil A Emulsion 

 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0.19 0.12 

450 80 0.14 0.15 

450 100 0.22 0.18 

450 120 0.2 0.21 

450 140 0.23 0.24 

450 160 0.42 0.26 

450 180 0.82 0.29 

450 200 0.7 0.31 

450 220 1.44 0.33 

450 240 3.39 0.35 

450 260 1.15 0.37 

450 280 4.87 0.38 

450 300 3.74 0.40 

450 320 6.23 0.42 

450 340 5.1 0.43 

450 360 4.55 0.44 

450 380 4.19 0.46 

450 400 10.6 0.47 

450 420 14.34 0.48 

450 440 15.7 0.49 

450 460 107.1 0.51 

450 480 411 0.52 

450 500 434 0.53 

450 520 443 0.54 

450 540 453 0.55 

450 560 468 0.55 

450 580 480 0.56 

450 600 489 0.57 

450 640 504 0.59 

450 680 524 0.60 

450 720 542 0.62 
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450 760 555 0.63 

450 800 570 0.64 

450 840 583 0.65 

450 880 596 0.66 

450 920 615 0.67 

450 960 626 0.68 

450 1000 636 0.69 

450 1050 651 0.70 

450 1100 663 0.71 

450 1150 677 0.72 

450 1200 689 0.73 

450 1250 699 0.74 

450 1300 710 0.74 

450 1350 717 0.75 

450 1400 729 0.76 

450 1450 740 0.76 

450 1500 748 0.77 

450 1540 755 0.77 

450 1580 761 0.78 

450 1620 768 0.78 

 

0.4wt% HSNP/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0.03 0.12 

450 80 0.03 0.15 

450 100 0.03 0.18 

450 120 0.04 0.21 

450 140 0.07 0.24 

450 160 0.13 0.26 

450 180 0.39 0.29 

450 200 0.96 0.31 

450 220 1.14 0.33 

450 240 1.77 0.35 

450 260 3.4 0.37 
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450 280 0.85 0.38 

450 300 0.76 0.40 

450 320 1.12 0.42 

450 340 1.43 0.43 

450 360 0.73 0.44 

450 380 0.62 0.46 

450 400 0.82 0.47 

450 420 1.31 0.48 

450 440 0.83 0.49 

450 460 3.15 0.51 

450 480 3.21 0.52 

450 500 4.71 0.53 

450 520 4.56 0.54 

450 540 6.96 0.55 

450 560 1.64 0.55 

450 580 2.46 0.56 

450 600 5.55 0.57 

450 620 7.62 0.58 

450 640 499 0.59 

450 660 515 0.59 

450 680 518 0.60 

450 700 530 0.61 

450 720 541 0.62 

450 760 562 0.63 

450 820 577 0.65 

450 860 595 0.66 

450 900 611 0.67 

450 940 630 0.68 

450 980 643 0.69 

450 1020 656 0.69 

450 1060 673 0.70 

450 1120 686 0.71 

450 1160 703 0.72 

450 1220 719 0.73 

450 1280 733 0.74 

450 1340 748 0.75 

450 1400 761 0.76 
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1wt% HSNP/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0.03 0.08 

450 60 0.06 0.12 

450 80 0.08 0.15 

450 100 0.14 0.18 

450 120 0.58 0.21 

450 140 0.17 0.24 

450 160 0.74 0.26 

450 180 1.16 0.29 

450 200 2.31 0.31 

450 220 2.13 0.33 

450 240 5.45 0.35 

450 260 4.29 0.37 

450 280 5.59 0.38 

450 300 5.93 0.40 

450 320 4.69 0.42 

450 340 5.68 0.43 

450 360 2.91 0.44 

450 380 5.84 0.46 

450 400 4.71 0.47 

450 420 41.9 0.48 

450 440 6.93 0.49 

450 460 9.33 0.51 

450 480 3.15 0.52 

450 500 1.76 0.53 

450 520 4.52 0.54 

450 540 6.44 0.55 

450 560 4.32 0.55 

450 580 4.14 0.56 

450 600 5.1 0.57 

450 620 6.8 0.58 

450 640 7.71 0.59 

450 660 2.84 0.59 

450 680 5.44 0.60 
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450 700 4.67 0.61 

450 720 2.67 0.62 

450 740 4.97 0.62 

450 760 5.22 0.63 

450 780 3.13 0.63 

450 800 4.3 0.64 

450 820 3.7 0.65 

450 840 8.14 0.65 

450 860 8.75 0.66 

450 880 11.41 0.66 

450 900 8.96 0.67 

450 920 49.4 0.67 

450 940 135.2 0.68 

450 960 16.68 0.68 

450 980 614 0.69 

450 1000 644 0.69 

450 1020 648 0.69 

450 1040 655 0.70 

450 1060 664 0.70 

450 1080 669 0.71 

450 1120 684 0.71 

450 1160 697 0.72 

450 1200 706 0.73 

450 1240 718 0.73 

450 1280 728 0.74 

450 1320 739 0.75 

450 1360 747 0.75 

450 1400 758 0.76 

450 1440 766 0.76 

450 1480 775 0.77 

450 1520 784 0.77 

450 1560 791 0.78 

450 1600 799 0.78 

450 1640 803 0.78 
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2wt% HSNP/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction (Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0.03 0.08 

450 60 0.04 0.12 

450 80 0.07 0.15 

450 100 0.12 0.18 

450 120 0.3 0.21 

450 140 0.42 0.24 

450 160 1.67 0.26 

450 180 2.11 0.29 

450 200 5.24 0.31 

450 220 3.88 0.33 

450 240 5.9 0.35 

450 260 7.6 0.37 

450 280 4.5 0.38 

450 300 5.46 0.40 

450 320 4.05 0.42 

450 340 2.08 0.43 

450 360 4.16 0.44 

450 380 4.74 0.46 

450 400 4.89 0.47 

450 420 7.74 0.48 

450 440 8.97 0.49 

450 460 9.12 0.51 

450 480 9.72 0.52 

450 500 6.16 0.53 

450 520 9.67 0.54 

450 540 10.15 0.55 

450 560 7.59 0.55 

450 580 9.73 0.56 

450 600 8.57 0.57 

450 620 9.07 0.58 

450 640 7.94 0.59 

450 660 8.11 0.59 
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450 680 8.88 0.60 

450 700 6.33 0.61 

450 720 6.56 0.62 

450 740 8.59 0.62 

450 760 15.22 0.63 

450 780 15.75 0.63 

450 800 11.47 0.64 

450 820 12.07 0.65 

450 840 11 0.65 

450 860 9.73 0.66 

450 880 11.24 0.66 

450 900 10.75 0.67 

450 920 10.18 0.67 

450 940 10.04 0.68 

450 960 10.13 0.68 

450 980 18.81 0.69 

450 1000 13.24 0.69 

450 1020 11.52 0.69 

450 1040 12.53 0.70 

450 1060 47 0.70 

450 1080 637 0.71 

450 1100 669 0.71 

450 1120 676 0.71 

450 1140 680 0.72 

450 1180 693 0.72 

450 1220 703 0.73 

450 1260 710 0.74 

450 1300 723 0.74 

450 1340 735 0.75 

450 1380 747 0.75 

450 1420 756 0.76 

450 1460 764 0.76 

450 1500 774 0.77 

450 1540 783 0.77 

450 1580 791 0.78 

450 1600 796 0.78 

450 1620 798 0.78 
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Hydrophilic Starch Nanoparticle (HSNP) Phase Inversion in Oil B 

Blank/Oil B Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0.05 0.08 

450 60 0.11 0.12 

450 80 0.16 0.15 

450 100 1.07 0.18 

450 120 14.69 0.21 

450 140 26.44 0.24 

450 160 29.88 0.26 

450 180 142.2 0.29 

450 200 174.2 0.31 

450 220 208.8 0.33 

450 240 231.6 0.35 

450 260 246.6 0.37 

450 280 263.5 0.38 

450 300 282.7 0.40 

450 320 288.9 0.42 

450 360 325.4 0.44 

450 400 362.9 0.47 

450 440 377 0.49 

450 480 403 0.52 

450 540 441 0.55 

450 600 486 0.57 

450 690 502 0.61 

450 780 572 0.63 

450 880 608 0.66 

450 980 631 0.69 

450 1080 660 0.71 

450 1180 681 0.72 

450 1280 695 0.74 

450 1380 710 0.75 

450 1480 724 0.77 

450 1580 732 0.78 
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0.1wt% HSNP/Oil B Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0.02 0.12 

450 80 0.03 0.15 

450 100 0.04 0.18 

450 120 0.06 0.21 

450 140 0.16 0.24 

450 160 0.25 0.26 

450 180 0.3 0.29 

450 200 1.26 0.31 

450 220 3.76 0.33 

450 240 148.8 0.35 

450 260 194.2 0.37 

450 280 223.6 0.38 

450 300 255.1 0.40 

450 320 268.4 0.42 

450 360 275.6 0.44 

450 400 297.6 0.47 

450 440 321 0.49 

450 480 369 0.52 

450 520 408 0.54 

450 560 409 0.55 

450 620 452 0.58 

450 680 491 0.60 

450 740 526 0.62 

450 800 541 0.64 

450 880 540 0.66 

450 960 567 0.68 

450 1040 595 0.70 

450 1120 610 0.71 

450 1200 618 0.73 

450 1300 634 0.74 

450 1400 681 0.76 

450 1500 703 0.77 
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450 1600 718 0.78 

 

0.2wt% HSNP/Oil B Emulsion 

Oil (mL) Water (mL) 

k 

(µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0 0.12 

450 80 0 0.15 

450 100 0 0.18 

450 120 0.05 0.21 

450 140 0.07 0.24 

450 160 0.17 0.26 

450 180 0.26 0.29 

450 200 2.95 0.31 

450 220 3.88 0.33 

450 240 28.02 0.35 

450 260 173.8 0.37 

450 280 205.7 0.38 

450 300 225.6 0.40 

450 320 247.7 0.42 

450 340 269.1 0.43 

450 380 296 0.46 

450 420 326 0.48 

450 460 347 0.51 

450 500 370 0.53 

450 540 390 0.55 

450 580 427 0.56 

450 620 434 0.58 

450 680 474 0.60 

450 740 502 0.62 

450 800 528 0.64 

450 860 558 0.66 

450 920 571 0.67 

450 980 575 0.69 

450 1040 595 0.70 
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450 1120 618 0.71 

450 1200 639 0.73 

450 1280 652 0.74 

450 1360 672 0.75 

450 1440 685 0.76 

450 1520 706 0.77 

450 1600 715 0.78 

 

0.4wt% HSNP/Oil B Emulsion 

Oil Water k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0 0.12 

450 80 0.05 0.15 

450 100 0.06 0.18 

450 120 0.06 0.21 

450 140 0.86 0.24 

450 160 1.05 0.26 

450 180 1.56 0.29 

450 200 1.54 0.31 

450 220 2.28 0.33 

450 240 2.6 0.35 

450 260 2.98 0.37 

450 280 3.65 0.38 

450 300 209.6 0.40 

450 320 232.5 0.42 

450 340 256.2 0.43 

450 360 273.9 0.44 

450 380 294 0.46 

450 400 315 0.47 

450 440 342 0.49 

450 480 365 0.52 

450 520 389 0.54 

450 560 412 0.55 

450 600 433 0.57 

450 640 453 0.59 
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450 680 470 0.60 

450 740 495 0.62 

450 800 518 0.64 

450 860 516 0.66 

450 920 539 0.67 

450 980 540 0.69 

450 1040 559 0.70 

450 1100 578 0.71 

450 1180 603 0.72 

450 1260 626 0.74 

450 1340 650 0.75 

450 1420 659 0.76 

450 1520 682 0.77 

450 1620 712 0.78 

 

1wt% HSNP/Oil B Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0.03 0.08 

450 60 0.11 0.12 

450 80 0.15 0.15 

450 100 0.29 0.18 

450 120 0.2 0.21 

450 140 0.22 0.24 

450 160 0.26 0.26 

450 180 0.29 0.29 

450 200 0.57 0.31 

450 220 0.73 0.33 

450 240 0.63 0.35 

450 260 0.55 0.37 

450 280 1.11 0.38 

450 300 1.68 0.40 

450 320 1.7 0.42 

450 340 2.53 0.43 

450 360 5.47 0.44 
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450 380 7.62 0.46 

450 400 10.11 0.47 

450 420 13.92 0.48 

450 440 8.15 0.49 

450 460 56.4 0.51 

450 480 61.4 0.52 

450 500 67.9 0.53 

450 520 62.8 0.54 

450 540 62.3 0.55 

450 560 55 0.55 

450 580 117.1 0.56 

450 600 373 0.57 

450 620 395 0.58 

450 640 411 0.59 

450 660 425 0.59 

450 700 454 0.61 

450 740 474 0.62 

450 780 489 0.63 

450 820 512 0.65 

450 860 531 0.66 

450 900 552 0.67 

450 940 580 0.68 

450 1000 597 0.69 

450 1060 623 0.70 

450 1120 634 0.71 

450 1200 664 0.73 

450 1280 692 0.74 

450 1360 687 0.75 

450 1440 700 0.76 

450 1500 724 0.77 

 

2wt% HSNP/Oil B Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 



143 

 

450 60 0 0.12 

450 80 0.04 0.15 

450 100 0.05 0.18 

450 120 0.06 0.21 

450 140 0.08 0.24 

450 160 0.1 0.26 

450 180 0.15 0.29 

450 200 0.27 0.31 

450 220 0.39 0.33 

450 240 0.45 0.35 

450 260 0.42 0.37 

450 280 1.75 0.38 

450 300 2.54 0.40 

450 320 3.96 0.42 

450 340 4.94 0.43 

450 360 8.45 0.44 

450 380 9.31 0.46 

450 400 5.32 0.47 

450 420 5.94 0.48 

450 440 8.15 0.49 

450 460 11.31 0.51 

450 480 11.5 0.52 

450 500 16.45 0.53 

450 520 46.2 0.54 

450 540 59.9 0.55 

450 560 60 0.55 

450 580 59.6 0.56 

450 600 60 0.57 

450 620 300 0.58 

450 640 338 0.59 

450 660 351 0.59 

450 680 354 0.60 

450 700 372 0.61 

450 740 392 0.62 

450 780 417 0.63 

450 820 435 0.65 

450 860 458 0.66 

450 900 467 0.67 

450 940 485 0.68 

450 1000 517 0.69 
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450 1060 545 0.70 

450 1120 565 0.71 

450 1200 592 0.73 

450 1280 620 0.74 

450 1360 645 0.75 

450 1440 652 0.76 

450 1540 676 0.77 

450 1640 700 0.78 

 

Hydrophobic Starch Nanoparticle (HOSNP) Phase Inversion in Oil A 

Blank/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0 0.12 

450 80 0 0.15 

450 100 0 0.18 

450 120 0 0.21 

450 140 0 0.24 

450 160 0 0.26 

450 180 16.9 0.29 

450 200 26 0.31 

450 220 163.5 0.33 

450 240 175.9 0.35 

450 260 182.9 0.37 

450 280 203.4 0.38 

450 300 218.7 0.40 

450 320 221.1 0.42 

450 340 252.1 0.43 

450 360 273.2 0.44 

450 380 304 0.46 

450 400 323 0.47 

450 420 333 0.48 

450 440 365 0.49 
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450 460 370 0.51 

450 480 404 0.52 

450 520 422 0.54 

450 560 440 0.55 

450 600 457 0.57 

450 640 484 0.59 

450 680 502 0.60 

450 700 520 0.61 

450 740 539 0.62 

450 780 557 0.63 

450 820 575 0.65 

450 860 580 0.66 

450 900 581 0.67 

450 940 582 0.68 

450 980 595 0.69 

450 1020 605 0.69 

450 1060 601 0.70 

450 1100 614 0.71 

450 1160 626 0.72 

450 1220 643 0.73 

450 1280 653 0.74 

450 1340 671 0.75 

450 1410 682 0.76 

450 1480 693 0.77 

450 1550 705 0.78 

 

0.1wt% HOSNP/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0 0.12 

450 80 0.03 0.15 

450 100 0.06 0.18 

450 120 0.15 0.21 

450 140 3.26 0.24 

450 160 2.68 0.26 
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450 180 4.21 0.29 

450 200 6.09 0.31 

450 220 7.75 0.33 

450 240 6.53 0.35 

450 260 7.51 0.37 

450 280 8.59 0.38 

450 300 8.95 0.40 

450 320 12.76 0.42 

450 340 17.99 0.43 

450 360 19.27 0.44 

450 380 21.05 0.46 

450 400 24.89 0.47 

450 420 24.93 0.48 

450 440 351 0.49 

450 460 384 0.51 

450 480 391 0.52 

450 500 413 0.53 

450 520 431 0.54 

450 545 450 0.55 

450 570 471 0.56 

450 620 501 0.58 

450 670 530 0.60 

450 720 559 0.62 

450 770 583 0.63 

450 820 607 0.65 

450 870 628 0.66 

450 920 646 0.67 

450 970 666 0.68 

450 1020 684 0.69 

450 1070 701 0.70 

450 1140 723 0.72 

450 1210 740 0.73 

450 1290 759 0.74 

450 1370 779 0.75 

450 1450 797 0.76 

450 1520 811 0.77 

 

0.2wt% HOSNP/Oil A Emulsion 
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Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0 0.12 

450 80 0.1 0.15 

450 100 1.91 0.18 

450 120 3.41 0.21 

450 140 3.95 0.24 

450 160 4.58 0.26 

450 180 5.34 0.29 

450 200 6.46 0.31 

450 220 7.67 0.33 

450 240 8.61 0.35 

450 260 12.04 0.37 

450 280 14.36 0.38 

450 300 16.46 0.40 

450 320 18.78 0.42 

450 340 19.89 0.43 

450 360 19.47 0.44 

450 380 21.29 0.46 

450 400 295.6 0.47 

450 420 336 0.48 

450 440 355 0.49 

450 460 373 0.51 

450 480 395 0.52 

450 505 417 0.53 

450 530 435 0.54 

450 555 455 0.55 

450 580 473 0.56 

450 600 487 0.57 

450 640 510 0.59 

450 680 532 0.60 

450 720 553 0.62 

450 780 581 0.63 

450 840 610 0.65 

450 900 632 0.67 

450 960 657 0.68 
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450 1020 678 0.69 

450 1100 704 0.71 

450 1180 728 0.72 

450 1260 750 0.74 

450 1340 771 0.75 

450 1420 790 0.76 

450 1500 807 0.77 

450 1490 837 0.77 

450 1500 838 0.77 

 

0.4wt% HOSNP/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0.11 0.04 

450 40 0.19 0.08 

450 60 1.45 0.12 

450 80 1.73 0.15 

450 100 2.95 0.18 

450 120 4.82 0.21 

450 140 6.05 0.24 

450 160 6.69 0.26 

450 180 8.33 0.29 

450 200 9.31 0.31 

450 220 10.96 0.33 

450 240 12.29 0.35 

450 260 13.47 0.37 

450 280 14.42 0.38 

450 300 14.47 0.40 

450 320 14.98 0.42 

450 340 15.06 0.43 

450 360 14.03 0.44 

450 380 14.32 0.46 

450 400 14.72 0.47 

450 420 16.34 0.48 

450 440 17.01 0.49 

450 460 19.49 0.51 

450 480 18.84 0.52 
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450 500 19.85 0.53 

450 520 19.06 0.54 

450 540 17.9 0.55 

450 560 19.8 0.55 

450 580 17.58 0.56 

450 600 22.17 0.57 

450 620 16.22 0.58 

450 640 22.95 0.59 

450 660 16.79 0.59 

450 680 13.22 0.60 

450 700 316 0.61 

450 720 384 0.62 

450 740 410 0.62 

450 760 441 0.63 

450 780 458 0.63 

450 800 476 0.64 

450 820 491 0.65 

450 840 505 0.65 

450 860 519 0.66 

450 880 532 0.66 

450 900 545 0.67 

450 925 560 0.67 

450 950 573 0.68 

450 975 585 0.68 

450 1000 596 0.69 

450 1040 611 0.70 

450 1080 627 0.71 

450 1120 641 0.71 

450 1180 661 0.72 

450 1240 681 0.73 

450 1300 699 0.74 

450 1360 715 0.75 

450 1440 736 0.76 

450 1520 754 0.77 
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0.6wt% HOSNP/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0 0.12 

450 80 0 0.15 

450 100 0.63 0.18 

450 120 0.71 0.21 

450 140 2.49 0.24 

450 160 3.48 0.26 

450 180 4.17 0.29 

450 200 4.75 0.31 

450 220 5.62 0.33 

450 240 9.15 0.35 

450 260 10.66 0.37 

450 280 7.88 0.38 

450 300 10.83 0.40 

450 320 8.09 0.42 

450 340 9.38 0.43 

450 360 10.49 0.44 

450 380 10.74 0.46 

450 400 12.41 0.47 

450 420 12.56 0.48 

450 440 10.78 0.49 

450 460 10.64 0.51 

450 480 12.41 0.52 

450 500 11.25 0.53 

450 520 11.19 0.54 

450 540 9.75 0.55 

450 560 5.98 0.55 

450 580 10.76 0.56 

450 600 11.75 0.57 

450 620 11.48 0.58 

450 640 11.98 0.59 

450 660 5.19 0.59 
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450 680 4.97 0.60 

450 700 5.41 0.61 

450 720 4.53 0.62 

450 740 8.28 0.62 

450 760 7.41 0.63 

450 780 8.77 0.63 

450 800 13.79 0.64 

450 820 19.05 0.65 

450 840 354 0.65 

450 860 397 0.66 

450 880 425 0.66 

450 900 448 0.67 

450 920 470 0.67 

450 940 487 0.68 

450 965 504 0.68 

450 990 522 0.69 

450 1015 538 0.69 

450 1040 551 0.70 

450 1080 571 0.71 

450 1120 588 0.71 

450 1160 603 0.72 

450 1220 625 0.73 

450 1280 644 0.74 

450 1340 662 0.75 

450 1420 684 0.76 

450 1500 704 0.77 

 

0.8wt% HOSNP/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0 0.12 

450 80 0.74 0.15 

450 100 1.62 0.18 

450 120 2.29 0.21 

450 140 4.46 0.24 
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450 160 3.4 0.26 

450 180 7.46 0.29 

450 200 7.22 0.31 

450 220 9.83 0.33 

450 240 11.23 0.35 

450 260 11.84 0.37 

450 280 12.45 0.38 

450 300 13.47 0.40 

450 320 12.67 0.42 

450 340 11.63 0.43 

450 360 10.95 0.44 

450 380 10.59 0.46 

450 400 7.37 0.47 

450 420 8.85 0.48 

450 440 10.36 0.49 

450 460 8.38 0.51 

450 480 10.42 0.52 

450 500 10.01 0.53 

450 520 8.75 0.54 

450 540 8.57 0.55 

450 560 8.51 0.55 

450 580 9.63 0.56 

450 600 9.97 0.57 

450 620 10.39 0.58 

450 640 10.58 0.59 

450 660 9.94 0.59 

450 680 10.68 0.60 

450 700 10.8 0.61 

450 720 11.83 0.62 

450 740 11.61 0.62 

450 760 10.58 0.63 

450 780 12.73 0.63 

450 800 12.21 0.64 

450 820 10.63 0.65 

450 840 13.51 0.65 

450 860 12.64 0.66 

450 880 352 0.66 

450 900 390 0.67 

450 920 417 0.67 

450 940 440 0.68 
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450 960 458 0.68 

450 980 475 0.69 

450 1000 492 0.69 

450 1025 509 0.69 

450 1050 524 0.70 

450 1075 539 0.70 

450 1100 552 0.71 

450 1140 569 0.72 

450 1180 586 0.72 

450 1220 601 0.73 

450 1260 616 0.74 

450 1320 636 0.75 

450 1380 655 0.75 

450 1440 672 0.76 

450 1500 687 0.77 

 

1wt% HOSNP/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 1.28 0.04 

450 40 1.55 0.08 

450 60 2.23 0.12 

450 80 2.37 0.15 

450 100 2.04 0.18 

450 120 2.06 0.21 

450 140 4.37 0.24 

450 160 3.09 0.26 

450 180 1.64 0.29 

450 200 2.09 0.31 

450 220 4.7 0.33 

450 240 2.63 0.35 

450 260 3.06 0.37 

450 280 4.91 0.38 

450 300 6.58 0.40 

450 320 3.15 0.42 

450 340 4.22 0.43 

450 360 7.45 0.44 
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450 380 4.08 0.46 

450 400 6.78 0.47 

450 420 4.64 0.48 

450 440 2.51 0.49 

450 460 5.95 0.51 

450 480 5.2 0.52 

450 500 5.18 0.53 

450 520 3.07 0.54 

450 540 6.56 0.55 

450 560 4.27 0.55 

450 580 6.88 0.56 

450 600 4.79 0.57 

450 620 4.65 0.58 

450 640 5.25 0.59 

450 660 4.1 0.59 

450 680 4.57 0.60 

450 700 4.21 0.61 

450 720 6.48 0.62 

450 740 4.95 0.62 

450 760 4.1 0.63 

450 780 3.97 0.63 

450 800 4.46 0.64 

450 820 4.57 0.65 

450 840 5.22 0.65 

450 860 6.56 0.66 

450 880 6.23 0.66 

450 900 6.72 0.67 

450 920 6.92 0.67 

450 940 8.04 0.68 

450 960 9 0.68 

450 980 9.26 0.69 

450 1000 360 0.69 

450 1020 389 0.69 

450 1045 416 0.70 

450 1070 430 0.70 

450 1095 451 0.71 

450 1120 468 0.71 

450 1160 496 0.72 

450 1200 514 0.73 

450 1240 537 0.73 
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450 1300 563 0.74 

450 1360 587 0.75 

450 1420 610 0.76 

450 1480 634 0.77 

450 1520 649 0.77 

 

2wt% HOSNP/Oil A Emulsion 

Oil (mL) 

Water 

(mL) 

k 

(µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 20 0 0.04 

450 40 0 0.08 

450 60 0 0.12 

450 80 0 0.15 

450 100 0.66 0.18 

450 120 3.42 0.21 

450 140 5.71 0.24 

450 160 6 0.26 

450 180 6.68 0.29 

450 200 7.43 0.31 

450 220 8.47 0.33 

450 240 9.86 0.35 

450 260 9.25 0.37 

450 280 10.32 0.38 

450 300 9.92 0.40 

450 320 9.66 0.42 

450 340 8.77 0.43 

450 360 9.08 0.44 

450 380 9.89 0.46 

450 400 8.85 0.47 

450 420 8.44 0.48 

450 440 7.96 0.49 

450 460 8.09 0.51 

450 480 7.94 0.52 

450 500 7.73 0.53 

450 520 7.68 0.54 

450 540 9.19 0.55 

450 560 8.63 0.55 
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450 580 8.87 0.56 

450 600 8.06 0.57 

450 620 4.69 0.58 

450 640 7.24 0.59 

450 660 7.53 0.59 

450 680 7.35 0.60 

450 700 7.18 0.61 

450 720 7.03 0.62 

450 740 9.95 0.62 

450 760 5.5 0.63 

450 780 6.59 0.63 

450 800 7.56 0.64 

450 820 7.17 0.65 

450 840 7.7 0.65 

450 860 7.59 0.66 

450 880 6.91 0.66 

450 900 6.32 0.67 

450 920 5.82 0.67 

450 940 7.83 0.68 

450 960 6.24 0.68 

450 980 5.35 0.69 

450 1000 5.86 0.69 

450 1020 6.33 0.69 

450 1040 6.72 0.70 

450 1060 7.18 0.70 

450 1080 7.36 0.71 

450 1100 8.07 0.71 

450 1120 8.28 0.71 

450 1140 8.68 0.72 

450 1160 8.78 0.72 

450 1180 376 0.72 

450 1200 404 0.73 

450 1220 425 0.73 

450 1240 441 0.73 

450 1260 456 0.74 

450 1285 471 0.74 

450 1310 481 0.74 

450 1350 502 0.75 

450 1390 518 0.76 

450 1450 538 0.76 
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450 1510 556 0.77 

 

 

 

Hydrophilic Starch Nanoparticle (HSNP): CTAB Variations Phase Inversion 

in Oil A 

CTAB in Oil A Emulsion 

Blank Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 4.67 0.22 

450 140 31.3 0.24 

450 150 11.88 0.25 

450 160 7.97 0.26 

450 170 11.92 0.27 

450 180 56.4 0.29 

450 190 36.3 0.30 

450 200 49.2 0.31 

450 210 34.2 0.32 

450 220 143.9 0.33 

450 230 231.8 0.34 
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450 240 268.6 0.35 

450 250 280.7 0.36 

450 260 288.2 0.37 

450 270 296.6 0.38 

450 280 308 0.38 

450 290 318 0.39 

450 300 325 0.40 

450 325 343 0.42 

450 350 351 0.44 

450 375 382 0.45 

450 400 409 0.47 

450 425 440 0.49 

450 450 462 0.50 

450 475 491 0.51 

450 500 507 0.53 

450 525 533 0.54 

450 550 542 0.55 

450 575 565 0.56 

450 600 581 0.57 

450 650 621 0.59 

450 700 662 0.61 

450 750 688 0.63 

450 800 715 0.64 

450 850 725 0.65 

450 900 751 0.67 

450 950 758 0.68 

450 1000 775 0.69 

450 1050 800 0.70 

450 1100 807 0.71 

450 1150 814 0.72 

450 1200 820 0.73 

450 1250 831 0.74 

450 1350 857 0.75 

450 1450 871 0.76 

450 1550 939 0.78 
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0.01wt% CTAB/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 0 0.22 

450 140 0 0.24 

450 150 0 0.25 

450 160 0 0.26 

450 170 0 0.27 

450 180 0 0.29 

450 190 0.06 0.30 

450 200 0.2 0.31 

450 210 0.05 0.32 

450 220 0.06 0.33 

450 230 0.08 0.34 

450 240 0.05 0.35 

450 250 0.05 0.36 

450 260 0.06 0.37 

450 270 0.61 0.38 

450 280 2.36 0.38 

450 290 1.74 0.39 

450 300 5.41 0.40 

450 310 241.8 0.41 

450 325 264.9 0.42 

450 350 277 0.44 

450 375 311 0.45 
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450 400 345 0.47 

450 425 353 0.49 

450 450 378 0.50 

450 475 396 0.51 

450 500 409 0.53 

450 525 416 0.54 

450 550 429 0.55 

450 575 446 0.56 

450 600 461 0.57 

450 650 490 0.59 

450 700 517 0.61 

450 750 543 0.63 

450 800 566 0.64 

450 850 588 0.65 

450 900 609 0.67 

450 950 627 0.68 

450 1000 647 0.69 

450 1050 662 0.70 

450 1100 679 0.71 

450 1150 694 0.72 

450 1200 710 0.73 

450 1250 723 0.74 

450 1300 734 0.74 

450 1350 752 0.75 

450 1400 763 0.76 

450 1450 773 0.76 

450 1500 785 0.77 

450 1550 797 0.78 

 

0.02wt% CTAB/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 
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450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 0 0.22 

450 140 0 0.24 

450 150 0 0.25 

450 160 0 0.26 

450 170 0 0.27 

450 180 0 0.29 

450 190 0 0.30 

450 200 0 0.31 

450 210 0.11 0.32 

450 220 0.19 0.33 

450 230 0 0.34 

450 240 0.45 0.35 

450 250 0.23 0.36 

450 260 0.4 0.37 

450 270 0.13 0.38 

450 280 0.31 0.38 

450 290 0.94 0.39 

450 300 1.13 0.40 

450 310 1.27 0.41 

450 325 2.69 0.42 

450 350 10.23 0.44 

450 375 250.4 0.45 

450 400 280.5 0.47 

450 425 303 0.49 

450 450 322 0.50 

450 475 343 0.51 

450 500 362 0.53 

450 525 380 0.54 

450 550 397 0.55 

450 575 417 0.56 

450 600 433 0.57 

450 650 466 0.59 

450 700 503 0.61 
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450 750 532 0.63 

450 800 558 0.64 

450 850 580 0.65 

450 900 600 0.67 

450 950 622 0.68 

450 1000 640 0.69 

450 1050 660 0.70 

450 1100 679 0.71 

450 1150 697 0.72 

450 1200 710 0.73 

450 1250 727 0.74 

450 1300 741 0.74 

450 1350 753 0.75 

450 1400 768 0.76 

450 1450 777 0.76 

450 1500 781 0.77 

450 1550 786 0.78 

 

0.03wt% CTAB/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 0 0.22 

450 140 0 0.24 

450 150 0 0.25 

450 160 0 0.26 
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450 170 0 0.27 

450 180 0 0.29 

450 190 0 0.30 

450 200 0 0.31 

450 210 0 0.32 

450 220 0 0.33 

450 230 0 0.34 

450 240 0 0.35 

450 250 0.03 0.36 

450 260 0.08 0.37 

450 270 0.09 0.38 

450 280 0.05 0.38 

450 290 0.04 0.39 

450 300 0.05 0.40 

450 325 0.11 0.42 

450 350 6.46 0.44 

450 375 4.02 0.45 

450 400 258.2 0.47 

450 425 279.2 0.49 

450 450 310 0.50 

450 475 329 0.51 

450 500 341 0.53 

450 525 357 0.54 

450 550 379 0.55 

450 575 393 0.56 

450 600 407 0.57 

450 650 433 0.59 

450 700 458 0.61 

450 750 481 0.63 

450 800 508 0.64 

450 850 534 0.65 

450 900 554 0.67 

450 950 574 0.68 

450 1000 592 0.69 

450 1050 610 0.70 

450 1100 626 0.71 

450 1150 644 0.72 

450 1200 659 0.73 

450 1250 673 0.74 

450 1300 686 0.74 
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450 1350 701 0.75 

450 1400 714 0.76 

450 1450 725 0.76 

450 1500 738 0.77 

450 1550 750 0.78 

 

 

 

0.04wt% CTAB/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 0 0.22 

450 140 0 0.24 

450 150 0 0.25 

450 160 0 0.26 

450 170 0 0.27 

450 180 0 0.29 

450 190 0 0.30 

450 200 0 0.31 

450 210 0 0.32 

450 220 0 0.33 

450 230 0.09 0.34 

450 240 0.33 0.35 
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450 250 0.51 0.36 

450 260 0.63 0.37 

450 270 0.49 0.38 

450 280 1.17 0.38 

450 290 1.33 0.39 

450 300 1.58 0.40 

450 310 2.15 0.41 

450 325 3.3 0.42 

450 350 5.47 0.44 

450 375 6.77 0.45 

450 400 10.84 0.47 

450 425 284.2 0.49 

450 450 301 0.50 

450 475 318 0.51 

450 500 346 0.53 

450 525 364 0.54 

450 550 383 0.55 

450 575 400 0.56 

450 600 419 0.57 

450 650 450 0.59 

450 700 479 0.61 

450 750 506 0.63 

450 800 529 0.64 

450 850 552 0.65 

450 900 576 0.67 

450 950 596 0.68 

450 1000 616 0.69 

450 1050 634 0.70 

450 1100 654 0.71 

450 1150 670 0.72 

450 1200 690 0.73 

450 1250 705 0.74 

450 1300 719 0.74 

450 1350 733 0.75 

450 1400 746 0.76 

450 1450 758 0.76 

450 1500 770 0.77 

450 1550 783 0.78 
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0.05wt% CTAB/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 0 0.22 

450 140 0 0.24 

450 150 0 0.25 

450 160 0 0.26 

450 170 0 0.27 

450 180 0 0.29 

450 190 0 0.30 

450 200 0 0.31 

450 210 0 0.32 

450 220 0 0.33 

450 230 0 0.34 

450 240 0 0.35 

450 250 0.04 0.36 

450 260 0.33 0.37 

450 270 0.53 0.38 

450 280 0.56 0.38 

450 290 0.65 0.39 

450 300 3.55 0.40 

450 325 5.96 0.42 

450 350 6.01 0.44 

450 375 3.5 0.45 

450 400 6.19 0.47 
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450 425 7.64 0.49 

450 450 296.7 0.50 

450 475 322 0.51 

450 500 342 0.53 

450 525 361 0.54 

450 550 380 0.55 

450 575 397 0.56 

450 600 414 0.57 

450 650 446 0.59 

450 700 475 0.61 

450 750 502 0.63 

450 800 529 0.64 

450 850 552 0.65 

450 900 574 0.67 

450 950 595 0.68 

450 1000 615 0.69 

450 1050 633 0.70 

450 1100 649 0.71 

450 1150 665 0.72 

450 1200 681 0.73 

450 1250 696 0.74 

450 1300 711 0.74 

450 1350 724 0.75 

450 1400 737 0.76 

450 1450 755 0.76 

450 1500 767 0.77 

450 1550 778 0.78 

 

0.25wt% CTAB/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 
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450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 0 0.22 

450 140 0 0.24 

450 150 0 0.25 

450 160 0 0.26 

450 170 0 0.27 

450 180 0 0.29 

450 190 0 0.30 

450 200 0.07 0.31 

450 210 0.13 0.32 

450 220 0.14 0.33 

450 230 0.28 0.34 

450 240 0.32 0.35 

450 250 0.46 0.36 

450 260 0.69 0.37 

450 270 0.89 0.38 

450 280 1.87 0.38 

450 290 2.17 0.39 

450 300 2.57 0.40 

450 315 4.51 0.41 

450 325 4.85 0.42 

450 350 3.87 0.44 

450 375 6.18 0.45 

450 400 13.24 0.47 

450 425 293 0.49 

450 450 320 0.50 

450 475 346 0.51 

450 500 369 0.53 

450 525 390 0.54 

450 550 411 0.55 

450 575 430 0.56 

450 600 449 0.57 

450 650 483 0.59 

450 700 516 0.61 

450 750 546 0.63 



169 

 

450 800 576 0.64 

450 850 602 0.65 

450 900 627 0.67 

450 950 651 0.68 

450 1000 672 0.69 

450 1050 695 0.70 

450 1100 713 0.71 

450 1150 732 0.72 

450 1200 749 0.73 

450 1250 767 0.74 

450 1300 782 0.74 

450 1350 796 0.75 

450 1400 809 0.76 

450 1450 823 0.76 

450 1500 839 0.77 

450 1550 851 0.78 

 

0.5wt% CTAB/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 0 0.22 

450 140 0 0.24 

450 150 0 0.25 

450 160 0.05 0.26 

450 170 0.19 0.27 
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450 180 0.56 0.29 

450 190 0.72 0.30 

450 200 0.75 0.31 

450 210 1.59 0.32 

450 220 1.84 0.33 

450 230 1.93 0.34 

450 240 2.59 0.35 

450 250 3.09 0.36 

450 260 3.16 0.37 

450 270 4.28 0.38 

450 280 5.59 0.38 

450 290 9.74 0.39 

450 300 22.67 0.40 

450 315 271.2 0.41 

450 325 301 0.42 

450 350 334 0.44 

450 375 367 0.45 

450 400 393 0.47 

450 425 418 0.49 

450 450 443 0.50 

450 475 463 0.51 

450 500 485 0.53 

450 525 505 0.54 

450 550 525 0.55 

450 575 540 0.56 

450 600 557 0.57 

450 625 576 0.58 

450 650 593 0.59 

450 675 610 0.60 

450 700 626 0.61 

450 750 655 0.63 

450 800 682 0.64 

450 850 710 0.65 

450 900 734 0.67 

450 950 756 0.68 

450 1000 781 0.69 

450 1050 801 0.70 

450 1100 821 0.71 

450 1150 840 0.72 

450 1200 859 0.73 
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450 1250 875 0.74 

450 1300 891 0.74 

450 1350 908 0.75 

450 1400 923 0.76 

450 1450 937 0.76 

450 1500 949 0.77 

450 1550 964 0.78 

 

 

 

1 wt% HSNP : CTAB in Oil A Emulsion 

1wt% HSNP + 0.02wt% CTAB/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction (Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0.08 0.17 

450 100 0.11 0.18 

450 110 0.79 0.20 

450 120 1.42 0.21 

450 130 2.13 0.22 

450 140 4.43 0.24 

450 150 2.75 0.25 

450 160 2.26 0.26 

450 170 4.8 0.27 

450 180 29.49 0.29 

450 190 8.45 0.30 

450 200 9.21 0.31 

450 210 9.02 0.32 
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450 220 10.32 0.33 

450 230 11.52 0.34 

450 240 9.3 0.35 

450 250 10.63 0.36 

450 270 12.74 0.38 

450 290 13.32 0.39 

450 310 12.09 0.41 

450 330 16.72 0.42 

450 350 17.98 0.44 

450 370 17.3 0.45 

450 390 18.59 0.46 

450 410 25.7 0.48 

450 430 29.51 0.49 

450 450 18.9 0.50 

450 470 22.35 0.51 

450 490 21.23 0.52 

450 510 21.41 0.53 

450 530 337 0.54 

450 550 368 0.55 

450 570 388 0.56 

450 595 412 0.57 

450 620 432 0.58 

450 670 465 0.60 

450 720 498 0.62 

450 770 524 0.63 

450 820 550 0.65 

450 870 572 0.66 

450 920 594 0.67 

450 970 616 0.68 

450 1020 637 0.69 

450 1070 655 0.70 

450 1120 674 0.71 

450 1170 692 0.72 

450 1220 707 0.73 

450 1270 724 0.74 

450 1320 739 0.75 

450 1370 753 0.75 

450 1420 765 0.76 
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1wt% HSNP + 0.02wt% CTAB/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction (Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 0.05 0.22 

450 140 0.12 0.24 

450 150 0.33 0.25 

450 160 0.72 0.26 

450 170 0.63 0.27 

450 180 0.73 0.29 

450 190 0.85 0.30 

450 200 1.7 0.31 

450 210 2.69 0.32 

450 220 4.29 0.33 

450 230 5.71 0.34 

450 240 4.1 0.35 

450 250 4.59 0.36 

450 260 6.31 0.37 

450 270 6.58 0.38 

450 290 8.22 0.39 

450 300 7.18 0.40 

450 320 12.21 0.42 

450 340 17.09 0.43 

450 360 19.14 0.44 

450 380 17.69 0.46 

450 400 17.91 0.47 

450 420 25.63 0.48 
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450 440 39.4 0.49 

450 460 17.9 0.51 

450 480 84.4 0.52 

450 500 35.8 0.53 

450 520 36.4 0.54 

450 540 23.9 0.55 

450 560 36.8 0.55 

450 580 327 0.56 

450 600 350 0.57 

450 620 368 0.58 

450 645 386 0.59 

450 670 404 0.60 

450 695 420 0.61 

450 745 452 0.62 

450 795 480 0.64 

450 845 506 0.65 

450 895 530 0.67 

450 945 555 0.68 

450 995 576 0.69 

450 1045 597 0.70 

450 1095 617 0.71 

450 1145 636 0.72 

450 1195 653 0.73 

450 1245 672 0.73 

450 1295 687 0.74 

450 1345 703 0.75 

450 1395 714 0.76 

450 1410 724 0.76 

 

1wt% HSNP + 0.03wt% CTAB/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 
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450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0.09 0.18 

450 110 0.01 0.20 

450 120 0 0.21 

450 130 0.06 0.22 

450 140 0.12 0.24 

450 150 0.16 0.25 

450 160 0.1 0.26 

450 170 0.32 0.27 

450 180 0.55 0.29 

450 190 3.29 0.30 

450 200 2.28 0.31 

450 210 4.29 0.32 

450 220 3.51 0.33 

450 230 4.01 0.34 

450 240 6.72 0.35 

450 250 4.8 0.36 

450 260 5.34 0.37 

450 270 4.51 0.38 

450 280 3.36 0.38 

450 290 8.47 0.39 

450 310 8.37 0.41 

450 330 9.43 0.42 

450 350 10.74 0.44 

450 370 10.82 0.45 

450 390 16.18 0.46 

450 410 20.79 0.48 

450 430 25.57 0.49 

450 450 23.01 0.50 

450 470 32.4 0.51 

450 490 21.46 0.52 

450 510 34.3 0.53 

450 530 38.1 0.54 

450 550 40.9 0.55 

450 570 358 0.56 

450 590 373 0.57 

450 610 394 0.58 
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450 630 409 0.58 

450 655 423 0.59 

450 680 438 0.60 

450 705 453 0.61 

450 755 480 0.63 

450 805 507 0.64 

450 855 530 0.66 

450 905 556 0.67 

450 955 579 0.68 

450 1005 601 0.69 

450 1055 623 0.70 

450 1105 643 0.71 

450 1155 663 0.72 

450 1205 681 0.73 

450 1255 698 0.74 

450 1305 713 0.74 

450 1355 731 0.75 

450 1405 746 0.76 

450 1455 761 0.76 

 

1wt% HSNP + 0.04wt% CTAB/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0 0.21 

450 130 0.02 0.22 

450 140 0.04 0.24 
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450 150 0.07 0.25 

450 160 0.05 0.26 

450 170 0.06 0.27 

450 180 0.12 0.29 

450 190 0.14 0.30 

450 200 0.19 0.31 

450 210 0.21 0.32 

450 220 0.2 0.33 

450 230 0.45 0.34 

450 240 0.6 0.35 

450 250 0.52 0.36 

450 260 0.52 0.37 

450 270 1.05 0.38 

450 280 0.86 0.38 

450 290 1.57 0.39 

450 300 1.64 0.40 

450 310 3.15 0.41 

450 330 3.78 0.42 

450 350 6.35 0.44 

450 370 16.48 0.45 

450 390 19.45 0.46 

450 410 15.31 0.48 

450 430 24.56 0.49 

450 450 19.3 0.50 

450 470 14.1 0.51 

450 490 17.3 0.52 

450 510 24.54 0.53 

450 530 27.23 0.54 

450 550 25.35 0.55 

450 570 33 0.56 

450 590 350 0.57 

450 610 370 0.58 

450 630 385 0.58 

450 650 400 0.59 

450 670 411 0.60 

450 695 431 0.61 

450 720 449 0.62 

450 745 465 0.62 

450 795 494 0.64 

450 845 517 0.65 
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450 895 552 0.67 

450 945 575 0.68 

450 995 597 0.69 

450 1045 617 0.70 

450 1095 637 0.71 

450 1145 652 0.72 

450 1195 669 0.73 

450 1245 690 0.73 

450 1295 707 0.74 

450 1345 722 0.75 

450 1395 735 0.76 

450 1445 749 0.76 

 

1wt% HSNP + 0.05wt% CTAB/Oil A Emulsion 

Oil (mL) Water (mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0.04 0.21 

450 130 0.04 0.22 

450 140 0.03 0.24 

450 150 0.04 0.25 

450 160 0.05 0.26 

450 170 0.23 0.27 

450 180 1.34 0.29 

450 190 2.49 0.30 

450 200 4.47 0.31 

450 210 3.39 0.32 
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450 220 5.17 0.33 

450 230 4.3 0.34 

450 240 9.89 0.35 

450 250 4.14 0.36 

450 260 9.72 0.37 

450 270 7.15 0.38 

450 280 6.39 0.38 

450 290 6.4 0.39 

450 300 3.04 0.40 

450 325 6.44 0.42 

450 350 8.9 0.44 

450 375 10.1 0.45 

450 400 27.7 0.47 

450 425 32.9 0.49 

450 450 29.09 0.50 

450 475 37.3 0.51 

450 550 32.5 0.55 

450 575 346 0.56 

450 600 371 0.57 

450 625 389 0.58 

450 650 406 0.59 

450 675 423 0.60 

450 700 437 0.61 

450 750 464 0.63 

450 800 494 0.64 

450 850 514 0.65 

450 900 536 0.67 

450 950 558 0.68 

450 1000 579 0.69 

450 1050 597 0.70 

450 1100 619 0.71 

450 1150 637 0.72 

450 1200 654 0.73 

450 1250 670 0.74 

450 1300 687 0.74 

450 1350 702 0.75 

450 1400 716 0.76 

450 1450 732 0.76 
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1wt% HSNP + 0.25wt% CTAB/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0 0.12 

450 70 0 0.13 

450 80 0 0.15 

450 90 0 0.17 

450 100 0 0.18 

450 110 0 0.20 

450 120 0.03 0.21 

450 130 0.05 0.22 

450 140 0.16 0.24 

450 150 0.28 0.25 

450 160 0.43 0.26 

450 170 0.57 0.27 

450 180 0.72 0.29 

450 190 1.26 0.30 

450 200 1.24 0.31 

450 210 1.56 0.32 

450 220 1.81 0.33 

450 230 2.75 0.34 

450 240 2.57 0.35 

450 250 3.49 0.36 

450 260 4.54 0.37 

450 270 5.2 0.38 

450 280 3.28 0.38 

450 290 3.59 0.39 

450 300 6.4 0.40 

450 310 9.44 0.41 

450 325 7.22 0.42 

450 350 14.64 0.44 

450 375 17.17 0.45 

450 400 35.3 0.47 
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450 425 345 0.49 

450 450 374 0.50 

450 475 402 0.51 

450 500 427 0.53 

450 525 451 0.54 

450 550 475 0.55 

450 575 496 0.56 

450 600 516 0.57 

450 625 535 0.58 

450 650 570 0.59 

450 700 604 0.61 

450 750 634 0.63 

450 800 663 0.64 

450 850 688 0.65 

450 900 714 0.67 

450 950 738 0.68 

450 1000 758 0.69 

450 1050 779 0.70 

450 1100 798 0.71 

450 1150 820 0.72 

450 1200 838 0.73 

450 1250 854 0.74 

450 1300 873 0.74 

450 1350 888 0.75 

450 1400 903 0.76 

450 1450 917 0.76 

 

1wt% HSNP + 0.5wt% CTAB/Oil A Emulsion 

Oil (mL) 

Water 

(mL) k (µS/cm) 

Volume 

Fraction 

(Water) 

450 0 0 0.00 

450 10 0 0.02 

450 20 0 0.04 

450 30 0 0.06 

450 40 0 0.08 

450 50 0 0.10 

450 60 0.06 0.12 

450 70 0.07 0.13 
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450 80 0.18 0.15 

450 90 0.32 0.17 

450 100 0.54 0.18 

450 110 0.4 0.20 

450 120 0.47 0.21 

450 130 0.52 0.22 

450 140 0.82 0.24 

450 150 1.38 0.25 

450 160 1.62 0.26 

450 170 1.88 0.27 

450 180 3.97 0.29 

450 190 2.8 0.30 

450 200 3.04 0.31 

450 210 4.24 0.32 

450 220 4.54 0.33 

450 230 6.66 0.34 

450 240 8.83 0.35 

450 250 8.81 0.36 

450 260 15.33 0.37 

450 270 19.58 0.38 

450 280 16.53 0.38 

450 290 297.5 0.39 

450 300 333 0.40 

450 310 352 0.41 

450 325 376 0.42 

450 350 408 0.44 

450 375 437 0.45 

450 400 463 0.47 

450 425 485 0.49 

450 450 509 0.50 

450 475 531 0.51 

450 500 566 0.53 

450 525 584 0.54 

450 550 602 0.55 

450 575 620 0.56 

450 600 637 0.57 

450 625 657 0.58 

450 650 674 0.59 

450 675 689 0.60 

450 700 705 0.61 
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450 725 720 0.62 

450 750 734 0.63 

450 775 748 0.63 

450 800 761 0.64 

450 850 789 0.65 

450 900 813 0.67 

450 950 836 0.68 

450 1000 856 0.69 

450 1050 879 0.70 

450 1100 899 0.71 

450 1150 920 0.72 

450 1200 940 0.73 

450 1250 957 0.74 

450 1300 977 0.74 

450 1350 993 0.75 

450 1400 1007 0.76 

450 1450 1027 0.76 
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Appendix C 

Experimental Data 

W/O to O/W Phase Inversion – Non-Electrolyte Medium 

Hydrophilic Starch Nanoparticle (SNP) Phase Inversion (water) 

0.1wt% SNP in MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.00 

450 20 0.04 0.06 

450 30 0.06 0.05 

450 40 0.08 0.07 

450 50 0.10 0.05 

450 60 0.12 0.15 

450 70 0.13 0.49 

450 80 0.15 0.21 

450 90 0.17 0.54 

450 100 0.18 0.73 

450 110 0.20 0.68 

450 120 0.21 0.54 

450 130 0.22 0.44 

450 140 0.24 1.16 

450 150 0.25 0.45 

450 160 0.26 0.69 

450 170 0.27 0.16 

450 180 0.29 0.35 

450 190 0.30 0.46 

450 200 0.31 0.14 

450 210 0.32 0.04 

450 220 0.33 0.64 

450 230 0.34 0.07 

450 240 0.35 0.06 

450 250 0.36 0.05 

450 260 0.37 0.05 

450 270 0.38 0.06 

450 280 0.38 0.07 

450 290 0.39 0.06 
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450 300 0.40 0.08 

450 310 0.41 0.30 

450 320 0.42 1.34 

450 330 0.42 0.36 

450 340 0.43 1.19 

450 350 0.44 0.47 

450 360 0.44 0.27 

450 370 0.45 0.46 

450 380 0.46 1.74 

450 390 0.46 0.31 

450 400 0.47 1.03 

450 410 0.48 0.97 

450 420 0.48 3.77 

450 430 0.49 3.96 

450 440 0.49 4.11 

450 460 0.51 4.15 

450 480 0.52 4.32 

450 500 0.53 4.44 

450 550 0.55 4.68 

450 600 0.57 4.95 

450 700 0.61 5.32 

450 800 0.64 5.71 

450 900 0.67 6.08 

450 1000 0.69 6.35 

450 1100 0.71 6.63 

450 1200 0.73 6.90 

450 1300 0.74 7.07 

450 1400 0.76 7.25 

450 1500 0.77 7.49 

450 1600 0.78 7.66 

 

0.2wt% SNP in MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.00 

450 20 0.04 0.00 

450 30 0.06 0.00 

450 40 0.08 0.12 

450 50 0.10 0.06 
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450 60 0.12 0.05 

450 70 0.13 0.06 

450 80 0.15 0.26 

450 90 0.17 0.56 

450 100 0.18 2.48 

450 110 0.20 2.60 

450 120 0.21 4.80 

450 130 0.22 1.81 

450 140 0.24 2.16 

450 150 0.25 0.08 

450 160 0.26 0.35 

450 170 0.27 1.52 

450 180 0.29 0.09 

450 190 0.30 0.46 

450 200 0.31 0.30 

450 210 0.32 0.19 

450 220 0.33 0.20 

450 230 0.34 0.15 

450 240 0.35 14.08 

450 250 0.36 15.60 

450 260 0.37 17.14 

450 270 0.38 17.86 

450 280 0.38 17.72 

450 290 0.39 17.93 

450 300 0.40 18.09 

450 310 0.41 18.05 

450 320 0.42 18.18 

450 330 0.42 18.16 

450 340 0.43 17.95 

450 350 0.44 18.22 

450 360 0.44 18.20 

450 370 0.45 18.02 

450 380 0.46 18.15 

450 390 0.46 18.20 

450 400 0.47 18.14 

450 410 0.48 17.95 

450 420 0.48 17.99 

450 430 0.49 2.47 

450 440 0.49 5.79 

450 450 0.50 6.21 

450 460 0.51 6.26 

450 470 0.51 6.42 

450 480 0.52 6.56 
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450 490 0.52 6.77 

450 500 0.53 6.85 

450 550 0.55 7.47 

450 600 0.57 7.97 

450 650 0.59 8.43 

450 700 0.61 8.92 

450 800 0.64 9.68 

450 900 0.67 10.35 

450 1000 0.69 11.01 

450 1100 0.71 11.49 

450 1200 0.73 11.93 

450 1300 0.74 12.40 

450 1400 0.76 12.79 

450 1500 0.77 13.25 

450 1600 0.78 13.56 

 

0.4wt% SNP in MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.04 

450 20 0.04 0.07 

450 30 0.06 0.07 

450 40 0.08 0.10 

450 50 0.10 0.12 

450 60 0.12 0.13 

450 70 0.13 0.14 

450 80 0.15 0.13 

450 90 0.17 0.12 

450 100 0.18 0.22 

450 110 0.20 1.04 

450 120 0.21 1.79 

450 130 0.22 5.32 

450 140 0.24 0.41 

450 150 0.25 1.27 

450 160 0.26 9.62 

450 170 0.27 23.07 

450 180 0.29 27.88 

450 190 0.30 29.36 

450 200 0.31 30.30 
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450 210 0.32 30.90 

450 220 0.33 31.20 

450 230 0.34 31.90 

450 240 0.35 32.60 

450 250 0.36 32.20 

450 260 0.37 33.70 

450 270 0.38 33.80 

450 280 0.38 33.60 

450 290 0.39 33.50 

450 300 0.40 33.70 

450 310 0.41 33.80 

450 320 0.42 33.90 

450 330 0.42 33.80 

450 340 0.43 34.00 

450 350 0.44 34.10 

450 360 0.44 34.20 

450 370 0.45 34.21 

450 380 0.46 34.31 

450 390 0.46 34.66 

450 400 0.47 34.47 

450 410 0.48 34.48 

450 420 0.48 34.38 

450 430 0.49 33.90 

450 440 0.49 34.10 

450 450 0.50 34.00 

450 460 0.51 34.10 

450 470 0.51 34.10 

450 480 0.52 33.90 

450 490 0.52 32.10 

450 500 0.53 33.90 

450 550 0.55 12.68 

450 600 0.57 13.89 

450 650 0.59 14.79 

450 700 0.61 15.63 

450 800 0.64 17.18 

450 900 0.67 18.37 

450 1000 0.69 19.16 

450 1100 0.71 20.30 

450 1200 0.73 21.20 

450 1300 0.74 21.88 

450 1400 0.76 22.62 

450 1500 0.77 23.29 

450 1600 0.78 24.06 
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1wt% SNP in MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.00 

450 20 0.04 0.18 

450 30 0.06 0.61 

450 40 0.08 1.02 

450 50 0.10 1.97 

450 60 0.12 0.52 

450 70 0.13 0.23 

450 80 0.15 0.48 

450 90 0.17 1.84 

450 100 0.18 1.87 

450 110 0.20 1.21 

450 120 0.21 0.36 

450 130 0.22 1.15 

450 140 0.24 5.90 

450 150 0.25 6.17 

450 160 0.26 1.20 

450 170 0.27 1.36 

450 180 0.29 3.31 

450 190 0.30 2.49 

450 200 0.31 2.08 

450 210 0.32 2.20 

450 220 0.33 0.73 

450 230 0.34 25.62 

450 240 0.35 18.39 

450 250 0.36 27.78 

450 260 0.37 27.04 

450 270 0.38 31.01 

450 280 0.38 52.90 

450 290 0.39 57.70 

450 300 0.40 62.40 

450 310 0.41 62.70 

450 320 0.42 63.40 

450 330 0.42 56.20 

450 340 0.43 52.00 

450 350 0.44 59.10 
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450 360 0.44 60.60 

450 370 0.45 62.10 

450 380 0.46 61.90 

450 390 0.46 58.80 

450 400 0.47 60.30 

450 410 0.48 63.40 

450 420 0.48 64.50 

450 430 0.49 63.80 

450 440 0.49 64.20 

450 460 0.51 63.80 

450 480 0.52 66.10 

450 500 0.53 63.80 

450 550 0.55 64.50 

450 600 0.57 63.40 

450 650 0.59 61.44 

450 700 0.61 62.80 

450 750 0.63 63.60 

450 800 0.64 63.42 

450 850 0.65 63.91 

450 900 0.67 63.28 

450 950 0.68 63.86 

450 1000 0.69 33.40 

450 1050 0.70 36.00 

450 1100 0.71 38.10 

450 1200 0.73 39.90 

450 1300 0.74 41.30 

450 1400 0.76 42.80 

450 1500 0.77 43.50 

450 1600 0.78 44.80 

 

2wt% SNP in MilliQ/Oil Emulsion 

 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.00 

450 20 0.04 0.22 

450 30 0.06 0.25 

450 40 0.08 0.29 

450 50 0.10 0.27 
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450 60 0.12 0.33 

450 70 0.13 0.40 

450 80 0.15 0.38 

450 90 0.17 1.06 

450 100 0.18 1.19 

450 110 0.20 1.57 

450 120 0.21 1.52 

450 130 0.22 0.53 

450 140 0.24 0.97 

450 150 0.25 0.83 

450 160 0.26 1.22 

450 170 0.27 0.67 

450 180 0.29 1.55 

450 190 0.30 0.63 

450 200 0.31 0.52 

450 210 0.32 0.63 

450 220 0.33 0.56 

450 230 0.34 0.57 

450 240 0.35 1.11 

450 250 0.36 0.90 

450 260 0.37 0.86 

450 270 0.38 0.85 

450 280 0.38 1.08 

450 290 0.39 2.06 

450 300 0.40 3.05 

450 310 0.41 2.63 

450 320 0.42 2.01 

450 330 0.42 2.14 

450 340 0.43 3.06 

450 350 0.44 2.85 

450 360 0.44 2.82 

450 370 0.45 2.98 

450 380 0.46 3.48 

450 390 0.46 4.25 

450 400 0.47 4.79 

450 410 0.48 2.69 

450 420 0.48 2.94 

450 430 0.49 2.68 

450 440 0.49 3.09 

450 450 0.50 2.17 

450 460 0.51 2.28 

450 470 0.51 3.65 

450 480 0.52 3.17 
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450 490 0.52 26.63 

450 500 0.53 28.96 

450 510 0.53 30.20 

450 520 0.54 31.40 

450 530 0.54 32.40 

450 540 0.55 33.50 

450 560 0.55 35.30 

450 580 0.56 36.50 

450 600 0.57 37.80 

450 650 0.59 40.60 

450 700 0.61 43.50 

450 750 0.63 45.90 

450 800 0.64 48.10 

450 850 0.65 50.10 

450 900 0.67 52.00 

450 1000 0.69 55.10 

450 1100 0.71 58.40 

450 1200 0.73 61.40 

450 1300 0.74 64.30 

450 1400 0.76 66.70 

450 1500 0.77 67.60 

450 1600 0.78 70.00 

 

 

HSNP:Nanoclay Phase Inversion (Water) 

1wt% SNP-1wt% CLAY - 80:20 (Bentonite Clay/MilliQ/Oil) Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.00 

450 20 0.04 0.02 

450 30 0.06 0.05 

450 40 0.08 0.07 

450 50 0.10 0.22 

450 60 0.12 0.41 

450 70 0.13 0.38 

450 80 0.15 0.36 

450 90 0.17 0.23 

450 100 0.18 0.50 
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450 110 0.20 0.38 

450 120 0.21 0.37 

450 130 0.22 0.26 

450 140 0.24 0.33 

450 150 0.25 0.46 

450 160 0.26 0.94 

450 170 0.27 1.18 

450 180 0.29 1.96 

450 190 0.30 2.58 

450 200 0.31 5.17 

450 210 0.32 4.62 

450 220 0.33 4.06 

450 230 0.34 0.45 

450 240 0.35 6.55 

450 250 0.36 9.96 

450 260 0.37 7.62 

450 270 0.38 7.82 

450 280 0.38 28.80 

450 290 0.39 35.20 

450 300 0.40 30.52 

450 310 0.41 30.33 

450 320 0.42 36.44 

450 330 0.42 63.10 

450 340 0.43 61.90 

450 350 0.44 71.90 

450 360 0.44 76.80 

450 370 0.45 71.04 

450 380 0.46 78.80 

450 390 0.46 71.94 

450 400 0.47 80.00 

450 420 0.48 75.60 

450 440 0.49 83.50 

450 460 0.51 83.50 

450 480 0.52 83.60 

450 500 0.53 83.40 

450 550 0.55 83.00 

450 600 0.57 80.58 

450 650 0.59 30.80 

450 700 0.61 42.10 

450 750 0.63 39.60 

450 800 0.64 41.20 

450 850 0.65 42.80 

450 900 0.67 44.70 
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1wt% SNP-1wt% CLAY - 50:50 (Bentonite Clay/MilliQ/Oil) Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.00 

450 20 0.04 1.29 

450 30 0.06 0.36 

450 40 0.08 0.49 

450 50 0.10 0.70 

450 60 0.12 0.43 

450 70 0.13 0.75 

450 80 0.15 0.18 

450 90 0.17 0.46 

450 100 0.18 0.50 

450 110 0.20 1.07 

450 120 0.21 2.99 

450 130 0.22 0.66 

450 140 0.24 3.03 

450 150 0.25 0.60 

450 160 0.26 0.28 

450 170 0.27 1.06 

450 180 0.29 4.18 

450 190 0.30 1.30 

450 200 0.31 3.07 

450 210 0.32 0.74 

450 220 0.33 7.07 

450 230 0.34 4.36 

450 240 0.35 59.70 

450 250 0.36 94.60 

450 260 0.37 72.50 

450 270 0.38 114.80 

450 280 0.38 154.70 

450 290 0.39 159.10 

450 300 0.40 160.60 

450 310 0.41 160.80 

450 320 0.42 160.5 

450 330 0.42 159.80 

450 340 0.43 158.50 

450 350 0.44 159.40 
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450 360 0.44 159.60 

450 370 0.45 158.60 

450 380 0.46 154.10 

450 390 0.46 158.10 

450 400 0.47 157.60 

450 420 0.48 153.28 

450 440 0.49 153.70 

450 460 0.51 158.90 

450 480 0.52 59.70 

450 500 0.53 61.70 

450 550 0.55 66.00 

450 600 0.57 71.20 

450 650 0.59 75.10 

450 700 0.61 78.30 

450 750 0.63 81.40 

450 800 0.64 84.30 

450 850 0.65 87.00 

450 900 0.67 89.60 

 

1wt% SNP-1wt% CLAY - 20:80 (Bentonite Clay/MilliQ/Oil) Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.04 

450 10 0.02 0.09 

450 20 0.04 0.18 

450 30 0.06 0.29 

450 40 0.08 0.34 

450 50 0.10 0.37 

450 60 0.12 0.45 

450 70 0.13 1.02 

450 80 0.15 0.60 

450 90 0.17 0.48 

450 100 0.18 1.26 

450 110 0.20 0.18 

450 120 0.21 0.20 

450 130 0.22 0.23 

450 140 0.24 0.23 

450 150 0.25 0.34 

450 160 0.26 0.38 

450 170 0.27 1.26 
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450 180 0.29 0.64 

450 190 0.30 1.08 

450 200 0.31 1.24 

450 210 0.32 6.13 

450 220 0.33 27.35 

450 230 0.34 49.00 

450 240 0.35 106.20 

450 250 0.36 155.30 

450 260 0.37 178.90 

450 270 0.38 231.80 

450 280 0.38 230.60 

450 290 0.39 230.30 

450 300 0.40 231.10 

450 310 0.41 59.50 

450 320 0.42 62.3 

450 330 0.42 64.00 

450 340 0.43 65.60 

450 350 0.44 67.70 

450 360 0.44 71.40 

450 370 0.45 72.91 

450 380 0.46 74.70 

450 390 0.46 76.10 

450 400 0.47 77.70 

450 420 0.48 81.20 

450 440 0.49 84.00 

450 460 0.51 87.00 

450 480 0.52 90.10 

450 500 0.53 92.30 

450 550 0.55 97.90 

450 600 0.57 104.30 

450 650 0.59 111.20 

450 700 0.61 115.90 

450 750 0.63 120.60 

450 800 0.64 125.30 

450 850 0.65 129.40 

450 900 0.67 133.20 
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Nanoclay Phase Inversion (Water) 

1wt% Bentonite Clay/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.00 

450 20 0.04 0.00 

450 30 0.06 0.36 

450 40 0.08 0.21 

450 50 0.10 0.23 

450 60 0.12 0.27 

450 70 0.13 0.34 

450 80 0.15 0.40 

450 90 0.17 0.52 

450 100 0.18 0.85 

450 110 0.20 1.17 

450 120 0.21 1.93 

450 130 0.22 4.40 

450 140 0.24 5.26 

450 150 0.25 38.40 

450 160 0.26 40.80 

450 170 0.27 42.80 

450 180 0.29 46.50 

450 190 0.30 52.60 

450 200 0.31 56.7 

450 220 0.33 59 

450 240 0.35 62.8 

450 260 0.37 66 

450 280 0.38 70.6 

450 300 0.40 74.4 

450 350 0.44 83.8 

450 400 0.47 92.2 

450 450 0.50 100.1 

450 500 0.53 106.4 

450 550 0.55 113 

450 600 0.57 118.9 

450 650 0.59 124.6 

450 700 0.61 129.5 

450 750 0.63 134.2 

450 800 0.64 138.5 
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450 900 0.67 142.8 

450 1000 0.69 146.6 

450 1100 0.71 153.4 

450 1200 0.73 160 

450 1300 0.74 165.5 

450 1400 0.76 171.1 

450 1500 0.77 175.6 

450 1600 0.78 179.8 

450 1700 0.79 185.3 

 

0.5wt% Bentonite Clay/MilliQ/Oil Emulsion 

 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0 

450 10 0.02 0 

450 20 0.04 0 

450 30 0.06 0 

450 40 0.08 0 

450 50 0.10 8.81 

450 60 0.12 8.75 

450 70 0.13 11.32 

450 80 0.15 10.3 

450 90 0.17 15.12 

450 100 0.18 13.71 

450 110 0.20 11.24 

450 120 0.21 11.51 

450 130 0.22 14.48 

450 140 0.24 8.24 

450 150 0.25 13.49 

450 160 0.26 14.59 

450 170 0.27 12.24 

450 180 0.29 14.5 

450 190 0.30 36.2 

450 200 0.31 38.3 

450 210 0.32 40.3 

450 220 0.33 43.3 

450 230 0.34 44.6 

450 240 0.35 46 

450 250 0.36 47.1 
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450 260 0.37 48.9 

450 270 0.38 50.4 

450 280 0.38 51.8 

450 290 0.39 53.3 

450 310 0.41 56.3 

450 330 0.42 59 

450 350 0.44 61.8 

450 370 0.45 64.6 

450 390 0.46 67 

450 420 0.48 71.2 

450 470 0.51 77.2 

450 520 0.54 83.3 

450 570 0.56 88.3 

450 620 0.58 93.1 

450 670 0.60 97.5 

450 720 0.62 101.3 

450 770 0.63 104.8 

450 820 0.65 108.3 

450 870 0.66 111.6 

450 920 0.67 114.8 

450 970 0.68 117 

 

2.5wt% Bentonite Clay/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0 

450 10 0.02 0.64 

450 20 0.04 1.43 

450 30 0.06 2.29 

450 40 0.08 2.75 

450 50 0.10 2.7 

450 60 0.12 3.7 

450 70 0.13 1.66 

450 80 0.15 4.2 

450 90 0.17 5.85 

450 100 0.18 7.98 

450 110 0.20 13.65 

450 120 0.21 6.82 

450 130 0.22 24.9 

450 140 0.24 37.9 
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450 150 0.25 125.1 

450 160 0.26 132 

450 170 0.27 145.80 

450 180 0.29 156.2 

450 190 0.30 166.1 

450 200 0.31 172.8 

450 210 0.32 192 

450 220 0.33 198.7 

450 230 0.34 210.4 

450 240 0.35 215.3 

450 250 0.36 219.6 

450 260 0.37 223.8 

450 270 0.38 229.4 

450 280 0.38 235.2 

450 300 0.40 249.3 

450 320 0.42 264.1 

450 340 0.43 274.9 

450 360 0.44 285.8 

450 380 0.46 299 

450 400 0.47 313 

450 450 0.50 339 

450 500 0.53 364 

450 550 0.55 387 

450 600 0.57 413 

450 650 0.59 431 

450 700 0.61 452 

450 750 0.63 468 

450 800 0.64 484 

450 850 0.65 502 

450 900 0.67 515 

 

5wt% Bentonite Clay/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) 

k 

(µS/cm) 

450 0 0.00 0 

450 10 0.02 0 

450 20 0.04 0 

450 30 0.06 3.89 

450 40 0.08 0 

450 50 0.10 0 
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450 60 0.12 0 

450 70 0.13 0 

450 80 0.15 3.09 

450 90 0.17 3.38 

450 100 0.18 3.58 

450 110 0.20 8.02 

450 120 0.21 3.19 

450 130 0.22 14.99 

450 140 0.24 159.2 

450 150 0.25 163.2 

450 160 0.26 175.7 

450 170 0.27 179.5 

450 180 0.29 185.1 

450 190 0.30 198.5 

450 200 0.31 229.8 

450 210 0.32 224.3 

450 220 0.33 237.6 

450 230 0.34 240.8 

450 240 0.35 253.9 

450 250 0.36 262.1 

450 260 0.37 268.4 

450 270 0.38 281.9 

450 280 0.38 290.4 

450 300 0.40 302 

450 320 0.42 315 

450 340 0.43 336 

450 360 0.44 352 

450 380 0.46 365 

450 400 0.47 378 

450 450 0.50 416 

450 500 0.53 439 

450 550 0.55 465 

450 600 0.57 492 

450 650 0.59 518 

450 700 0.61 540 

450 750 0.63 559 

450 800 0.64 577 

450 850 0.65 593 

450 900 0.67 612 
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CTAB Phase Inversion (Water) 

0.01wt% CTAB/MilliQ/Oil Emulsion 

 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.00 

450 20 0.04 0.00 

450 30 0.06 0.00 

450 40 0.08 1.00 

450 60 0.12 0.05 

450 70 0.13 0.06 

450 80 0.15 0.05 

450 90 0.17 0.06 

450 100 0.18 0.06 

450 110 0.20 0.11 

450 120 0.21 0.16 

450 130 0.22 0.12 

450 140 0.24 0.78 

450 150 0.25 0.08 

450 160 0.26 0.67 

450 170 0.27 0.15 

450 180 0.29 0.12 

450 190 0.30 0.50 

450 200 0.31 0.77 

450 210 0.32 0.38 

450 220 0.33 1.04 

450 230 0.34 1.64 

450 240 0.35 0.3 

450 250 0.36 1.41 

450 260 0.37 2.52 

450 270 0.38 2.51 

450 280 0.38 2.09 

450 290 0.39 2.08 

450 300 0.40 2.05 

450 310 0.41 2.36 

450 320 0.42 1.82 
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450 330 0.42 1.36 

450 340 0.43 0.85 

450 350 0.44 1.36 

450 360 0.44 1.45 

450 370 0.45 0.34 

450 380 0.46 0.6 

450 390 0.46 0.39 

450 400 0.47 0.69 

450 410 0.48 0.75 

450 420 0.48 0.85 

450 430 0.49 0.6 

450 440 0.49 5.39 

450 450 0.50 5.65 

450 460 0.51 5.8 

450 470 0.51 5.91 

450 480 0.52 6.06 

450 490 0.52 6.23 

450 500 0.53 6.38 

450 520 0.54 6.75 

450 540 0.55 6.94 

450 560 0.55 7.18 

450 580 0.56 7.42 

450 600 0.57 7.66 

450 650 0.59 8.22 

450 700 0.61 8.83 

450 800 0.64 10.03 

450 900 0.67 10.94 

450 1000 0.69 12.06 

450 1100 0.71 12.97 

450 1200 0.73 13.9 

450 1300 0.74 14.66 

450 1400 0.76 15.46 

450 1500 0.77 16.19 

450 1600 0.78 16.7 
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0.02wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.16 

450 20 0.04 0.14 

450 30 0.06 0.05 

450 40 0.08 0.07 

450 50 0.10 0.11 

450 60 0.12 0.14 

450 70 0.13 0.16 

450 80 0.15 0.17 

450 90 0.17 0.11 

450 100 0.18 0.21 

450 110 0.20 0.15 

450 120 0.21 0.15 

450 130 0.22 0.13 

450 140 0.24 0.14 

450 150 0.25 0.21 

450 160 0.26 0.16 

450 170 0.27 0.27 

450 180 0.29 0.22 

450 190 0.30 0.2 

450 200 0.31 0.26 

450 210 0.32 0.13 

450 220 0.33 0.11 

450 230 0.34 0.13 

450 240 0.35 0.16 

450 250 0.36 0.19 

450 260 0.37 0.16 

450 270 0.38 0.31 

450 280 0.38 0.22 

450 290 0.39 0.26 

450 300 0.40 0.31 

450 310 0.41 0.14 

450 320 0.42 0.1 

450 330 0.42 0.2 

450 340 0.43 0.47 
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450 350 0.44 0.28 

450 360 0.44 0.49 

450 370 0.45 0.39 

450 380 0.46 0.4 

450 390 0.46 0.68 

450 400 0.47 0.49 

450 410 0.48 0.39 

450 420 0.48 0.37 

450 430 0.49 0.8 

450 440 0.49 0.68 

450 450 0.50 0.58 

450 460 0.51 0.78 

450 470 0.51 7.37 

450 480 0.52 7.73 

450 490 0.52 8.01 

450 500 0.53 8.24 

450 520 0.54 8.63 

450 540 0.55 9.07 

450 560 0.55 9.53 

450 580 0.56 9.98 

450 600 0.57 10.39 

450 650 0.59 11.52 

450 700 0.61 12.6 

450 750 0.63 13.58 

450 800 0.64 14.58 

450 900 0.67 16.45 

450 1000 0.69 18.28 

450 1100 0.71 19.95 

450 1200 0.73 21.48 

450 1300 0.74 22.91 

450 1400 0.76 24.2 

450 1500 0.77 25.41 

450 1600 0.78 26.47 
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0.03wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.07 

450 20 0.04 0.09 

450 30 0.06 0.11 

450 40 0.08 0.12 

450 50 0.10 0.19 

450 60 0.12 0.20 

450 70 0.13 0.23 

450 80 0.15 0.20 

450 90 0.17 0.23 

450 100 0.18 0.23 

450 110 0.20 0.24 

450 120 0.21 0.13 

450 130 0.22 0.20 

450 140 0.24 0.19 

450 150 0.25 0.14 

450 160 0.26 0.19 

450 170 0.27 0.21 

450 180 0.29 0.34 

450 190 0.30 0.15 

450 200 0.31 0.19 

450 210 0.32 0.18 

450 220 0.33 0.23 

450 230 0.34 0.22 

450 240 0.35 0.31 

450 250 0.36 0.41 

450 260 0.37 0.33 

450 270 0.38 0.36 

450 280 0.38 0.65 

450 290 0.39 0.43 

450 300 0.40 0.45 

450 310 0.41 0.62 

450 320 0.42 0.63 

450 330 0.42 0.91 

450 340 0.43 0.68 
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450 350 0.44 0.69 

450 360 0.44 0.69 

450 370 0.45 0.72 

450 380 0.46 0.64 

450 390 0.46 0.7 

450 400 0.47 0.67 

450 410 0.48 0.59 

450 420 0.48 0.75 

450 430 0.49 0.76 

450 440 0.49 1.21 

450 450 0.50 1.13 

450 460 0.51 1.24 

450 470 0.51 1.13 

450 480 0.52 1.32 

450 490 0.52 11.5 

450 500 0.53 11.91 

450 520 0.54 12.64 

450 540 0.55 13.32 

450 560 0.55 14 

450 580 0.56 14.61 

450 600 0.57 15.28 

450 650 0.59 16.85 

450 700 0.61 18.43 

450 750 0.63 19.97 

450 800 0.64 21.42 

450 900 0.67 24.29 

450 1000 0.69 26.87 

450 1100 0.71 29.39 

450 1200 0.73 31.7 

450 1300 0.74 33.8 

450 1400 0.76 35.7 

450 1500 0.77 37.5 

450 1600 0.78 39.1 
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0.04wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.02 

450 20 0.04 0.06 

450 30 0.06 0.07 

450 40 0.08 0.09 

450 50 0.10 0.10 

450 60 0.12 0.12 

450 70 0.13 0.12 

450 80 0.15 0.23 

450 90 0.17 0.24 

450 100 0.18 0.20 

450 110 0.20 0.16 

450 120 0.21 0.26 

450 130 0.22 0.27 

450 140 0.24 0.37 

450 150 0.25 0.16 

450 160 0.26 0.23 

450 170 0.27 0.18 

450 180 0.29 0.22 

450 190 0.30 0.29 

450 200 0.31 0.22 

450 210 0.32 0.25 

450 220 0.33 0.29 

450 230 0.34 0.3 

450 240 0.35 0.32 

450 250 0.36 0.44 

450 260 0.37 0.57 

450 270 0.38 0.46 

450 280 0.38 0.42 

450 290 0.39 0.43 

450 300 0.40 0.54 

450 310 0.41 0.72 

450 320 0.42 0.77 

450 330 0.42 0.83 

450 340 0.43 0.62 
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450 350 0.44 0.78 

450 360 0.44 0.79 

450 370 0.45 0.86 

450 380 0.46 0.91 

450 390 0.46 0.88 

450 400 0.47 1.06 

450 410 0.48 1.44 

450 420 0.48 1.43 

450 430 0.49 1.65 

450 440 0.49 1.52 

450 450 0.50 1.49 

450 460 0.51 1.69 

450 470 0.51 1.41 

450 480 0.52 2.34 

450 490 0.52 8.84 

450 500 0.53 14.46 

450 520 0.54 15.55 

450 540 0.55 16.57 

450 560 0.55 17.45 

450 580 0.56 18.34 

450 600 0.57 19.25 

450 650 0.59 21.37 

450 700 0.61 23.49 

450 750 0.63 25.5 

450 800 0.64 27.5 

450 900 0.67 31.4 

450 1000 0.69 34.8 

450 1100 0.71 38.1 

450 1200 0.73 41.1 

450 1300 0.74 43.9 

450 1400 0.76 46.5 

450 1500 0.77 48.9 

450 1600 0.78 51.2 
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0.05wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.01 

450 20 0.04 0.03 

450 30 0.06 0.19 

450 40 0.08 0.20 

450 50 0.10 0.14 

450 60 0.12 0.22 

450 70 0.13 0.37 

450 80 0.15 0.35 

450 90 0.17 0.23 

450 100 0.18 0.26 

450 110 0.20 0.30 

450 120 0.21 0.25 

450 130 0.22 0.25 

450 140 0.24 0.31 

450 150 0.25 0.26 

450 160 0.26 0.41 

450 170 0.27 0.24 

450 180 0.29 0.41 

450 190 0.30 0.34 

450 200 0.31 0.36 

450 210 0.32 0.37 

450 220 0.33 0.51 

450 230 0.34 0.42 

450 240 0.35 0.50 

450 250 0.36 0.49 

450 260 0.37 0.74 

450 270 0.38 0.58 

450 280 0.38 0.73 

450 290 0.39 0.79 

450 300 0.40 0.81 

450 310 0.41 0.84 

450 320 0.42 0.89 

450 330 0.42 1.06 

450 340 0.43 0.69 



211 

 

450 350 0.44 0.61 

450 360 0.44 1.07 

450 370 0.45 0.73 

450 380 0.46 0.90 

450 390 0.46 0.98 

450 400 0.47 1.01 

450 410 0.48 1.13 

450 420 0.48 1.27 

450 430 0.49 1.54 

450 440 0.49 1.31 

450 450 0.50 1.59 

450 460 0.51 1.51 

450 470 0.51 16.89 

450 480 0.52 17.70 

450 490 0.52 18.31 

450 500 0.53 18.95 

450 520 0.54 20.05 

450 540 0.55 21.13 

450 560 0.55 22.24 

450 580 0.56 23.28 

450 600 0.57 24.36 

450 650 0.59 27.03 

450 700 0.61 29.60 

450 750 0.63 32.10 

450 800 0.64 34.50 

450 900 0.67 39.10 

450 1000 0.69 43.30 

450 1100 0.71 47.40 

450 1200 0.73 51.50 

450 1300 0.74 54.40 

450 1400 0.76 57.30 

450 1500 0.77 59.80 

450 1600 0.78 61.90 
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0.25wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.02 

450 20 0.04 0.10 

450 30 0.06 0.09 

450 40 0.08 0.08 

450 50 0.10 0.21 

450 60 0.12 0.22 

450 70 0.13 0.34 

450 80 0.15 0.56 

450 90 0.17 0.58 

450 100 0.18 0.51 

450 110 0.20 0.60 

450 120 0.21 0.90 

450 130 0.22 0.50 

450 140 0.24 0.80 

450 150 0.25 0.69 

450 160 0.26 0.84 

450 170 0.27 0.46 

450 180 0.29 0.53 

450 190 0.30 0.65 

450 200 0.31 0.72 

450 210 0.32 0.93 

450 220 0.33 1.04 

450 230 0.34 1.29 

450 240 0.35 1.30 

450 250 0.36 1.37 

450 260 0.37 1.82 

450 270 0.38 2.01 

450 280 0.38 3.30 

450 290 0.39 4.31 

450 300 0.40 6.87 

450 310 0.41 34.80 

450 320 0.42 37.50 

450 330 0.42 39.90 

450 340 0.43 42.20 
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450 350 0.44 44.00 

450 360 0.44 47.40 

450 370 0.45 49.10 

450 380 0.46 51.00 

450 390 0.46 52.70 

450 400 0.47 54.40 

450 410 0.48 56.20 

450 420 0.48 58.30 

450 430 0.49 59.80 

450 440 0.49 61.70 

450 460 0.51 64.80 

450 480 0.52 67.80 

450 500 0.53 70.70 

450 550 0.55 77.00 

450 600 0.57 83.00 

450 650 0.59 88.50 

450 700 0.61 93.90 

450 800 0.64 103.60 

450 900 0.67 111.90 

450 1000 0.69 119.60 

450 1100 0.71 126.70 

450 1200 0.73 132.40 

450 1300 0.74 137.90 

450 1400 0.76 143.30 

450 1500 0.77 148.10 

450 1600 0.78 152.40 

 

0.5wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.18 

450 20 0.04 0.35 

450 30 0.06 0.36 

450 40 0.08 0.28 

450 50 0.10 0.46 

450 60 0.12 0.60 
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450 70 0.13 0.41 

450 80 0.15 0.57 

450 90 0.17 0.49 

450 100 0.18 0.38 

450 110 0.20 0.43 

450 120 0.21 0.53 

450 130 0.22 0.62 

450 140 0.24 0.64 

450 150 0.25 0.55 

450 160 0.26 0.73 

450 170 0.27 1.09 

450 180 0.29 1.28 

450 190 0.30 1.11 

450 200 0.31 1.25 

450 210 0.32 1.01 

450 220 0.33 0.88 

450 230 0.34 1.75 

450 240 0.35 1.94 

450 250 0.36 1.55 

450 260 0.37 1.01 

450 270 0.38 2.26 

450 280 0.38 2.21 

450 290 0.39 2.42 

450 300 0.40 3.37 

450 310 0.41 2.20 

450 320 0.42 2.18 

450 330 0.42 66.80 

450 340 0.43 71.80 

450 350 0.44 75.90 

450 360 0.44 79.30 

450 370 0.45 82.40 

450 380 0.46 85.40 

450 390 0.46 88.50 

450 400 0.47 91.50 

450 420 0.48 97.10 

450 440 0.49 102.20 

450 460 0.51 106.70 

450 480 0.52 111.20 

450 500 0.53 115.80 

450 550 0.55 125.40 
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450 600 0.57 134.60 

450 650 0.59 143.20 

450 700 0.61 151.50 

450 750 0.63 159.50 

450 800 0.64 166.40 

450 900 0.67 179.60 

450 1000 0.69 190.40 

450 1100 0.71 200.80 

 

Nanoclay/CTAB Phase Inversion (Water) 

1wt% Nanoclay/0.01wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.22 

450 20 0.04 0.97 

450 30 0.06 1.84 

450 40 0.08 1.41 

450 50 0.10 1.04 

450 60 0.12 1.07 

450 70 0.13 1.83 

450 80 0.15 1.52 

450 90 0.17 1.22 

450 100 0.18 1.52 

450 110 0.20 2.52 

450 120 0.21 3.77 

450 130 0.22 3.99 

450 140 0.24 3.33 

450 150 0.25 3.71 

450 160 0.26 4.45 

450 170 0.27 5.04 

450 180 0.29 5.37 

450 190 0.30 5.11 

450 200 0.31 5.91 

450 210 0.32 5.29 

450 220 0.33 57.1 
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450 230 0.34 58.8 

450 240 0.35 62.5 

450 250 0.36 69.4 

450 270 0.38 75.1 

450 290 0.39 86.2 

450 310 0.41 91.5 

450 360 0.44 100.2 

450 410 0.48 110.8 

450 460 0.51 120.2 

450 510 0.53 131.7 

450 560 0.55 138.1 

450 610 0.58 146.5 

450 660 0.59 152.5 

450 710 0.61 158.6 

450 760 0.63 164.2 

450 810 0.64 169.5 

450 860 0.66 174.7 

450 910 0.67 179.5 

 

1wt% Nanoclay/0.02wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.04 

450 10 0.02 0.97 

450 20 0.04 1.27 

450 30 0.06 1.95 

450 40 0.08 2.20 

450 50 0.10 1.49 

450 60 0.12 1.53 

450 70 0.13 1.62 

450 80 0.15 1.42 

450 90 0.17 1.76 

450 100 0.18 1.98 

450 110 0.20 2.64 

450 120 0.21 2.75 

450 130 0.22 3.36 

450 140 0.24 3.21 
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450 150 0.25 3.44 

450 160 0.26 4.27 

450 170 0.27 4.10 

450 180 0.29 4.01 

450 190 0.30 4.92 

450 200 0.31 5.19 

450 210 0.32 5.4 

450 220 0.33 5.26 

450 230 0.34 5.5 

450 240 0.35 61.7 

450 250 0.36 72.8 

450 260 0.37 79.5 

450 270 0.38 81.3 

450 280 0.38 85.4 

450 300 0.40 90.4 

450 320 0.42 102.3 

450 340 0.43 106.5 

450 360 0.44 113.6 

450 380 0.46 117.6 

450 430 0.49 128.2 

450 480 0.52 139.3 

450 530 0.54 148.5 

450 580 0.56 156.3 

450 630 0.58 164.1 

450 680 0.60 171.1 

450 730 0.62 177.2 

450 780 0.63 183.4 

450 830 0.65 189.01 

450 880 0.66 194.4 

 

1wt% Nanoclay/0.03wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.06 

450 10 0.02 0.32 

450 20 0.04 1.25 

450 30 0.06 1.05 

450 40 0.08 2.03 
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450 50 0.10 1.78 

450 60 0.12 1.67 

450 70 0.13 1.92 

450 80 0.15 2.16 

450 90 0.17 2.66 

450 100 0.18 2.63 

450 110 0.20 2.49 

450 120 0.21 3.15 

450 130 0.22 3.29 

450 140 0.24 3.37 

450 150 0.25 4.93 

450 160 0.26 4.59 

450 170 0.27 4.67 

450 180 0.29 5.56 

450 190 0.30 4.74 

450 200 0.31 5.49 

450 210 0.32 5.29 

450 220 0.33 4.88 

450 230 0.34 4.48 

450 240 0.35 5.65 

450 250 0.36 6.18 

450 260 0.37 6.06 

450 270 0.38 7.99 

450 280 0.38 81.6 

450 290 0.39 93.8 

450 300 0.40 99 

450 320 0.42 102.8 

450 340 0.43 106.2 

450 360 0.44 118.5 

450 410 0.48 128.2 

450 460 0.51 141.3 

450 510 0.53 151.6 

450 560 0.55 161.4 

450 610 0.58 170 

450 660 0.59 178.2 

450 710 0.61 185.3 

450 760 0.63 191.9 

450 810 0.64 199 

450 860 0.66 204.9 

450 910 0.67 210.2 
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1wt% Nanoclay/0.04wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.75 

450 20 0.04 2.06 

450 30 0.06 2.55 

450 40 0.08 2.12 

450 50 0.10 2.14 

450 60 0.12 2.58 

450 70 0.13 2.63 

450 80 0.15 2.81 

450 90 0.17 2.79 

450 100 0.18 3.36 

450 110 0.20 2.66 

450 120 0.21 3.52 

450 130 0.22 3.98 

450 140 0.24 4.18 

450 150 0.25 3.75 

450 160 0.26 5.91 

450 170 0.27 5.53 

450 180 0.29 5.60 

450 190 0.30 6.51 

450 200 0.31 7.34 

450 210 0.32 8.59 

450 220 0.33 6.33 

450 230 0.34 7.82 

450 240 0.35 8.8 

450 250 0.36 10.21 

450 260 0.37 9.11 

450 270 0.38 12.11 

450 280 0.38 8.42 

450 290 0.39 10.3 

450 300 0.40 99.1 

450 310 0.41 105.4 

450 330 0.42 115.4 

450 350 0.44 121.7 

450 370 0.45 127.8 
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450 420 0.48 133.6 

450 470 0.51 147.7 

450 520 0.54 159.9 

450 570 0.56 171.3 

450 620 0.58 181.8 

450 670 0.60 190.7 

450 720 0.62 199.5 

450 770 0.63 206.3 

450 820 0.65 214.43 

450 870 0.66 222.23 

 

1wt% Nanoclay/0.05wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.00 

450 20 0.04 0.44 

450 30 0.06 0.71 

450 40 0.08 0.85 

450 50 0.10 1.22 

450 60 0.12 1.35 

450 70 0.13 1.85 

450 80 0.15 2.73 

450 90 0.17 3.00 

450 100 0.18 3.84 

450 110 0.20 3.67 

450 120 0.21 4.48 

450 130 0.22 5.48 

450 140 0.24 5.84 

450 150 0.25 5.71 

450 160 0.26 5.19 

450 170 0.27 6.19 

450 180 0.29 5.80 

450 190 0.30 5.38 

450 200 0.31 8.18 

450 210 0.32 4.81 

450 220 0.33 8.37 



221 

 

450 230 0.34 5.33 

450 240 0.35 8.82 

450 250 0.36 11.36 

450 260 0.37 10.12 

450 270 0.38 9.27 

450 280 0.38 11.16 

450 290 0.39 12.68 

450 300 0.40 7.87 

450 310 0.41 9.67 

450 320 0.42 106.8 

450 330 0.42 119.4 

450 350 0.44 128.8 

450 370 0.45 136.1 

450 420 0.48 149.8 

450 470 0.51 162.9 

450 520 0.54 174.6 

450 570 0.56 185.9 

450 620 0.58 196.9 

450 670 0.60 205.7 

450 720 0.62 214.4 

450 770 0.63 222.9 

450 820 0.65 230.8 

450 870 0.66 238 

450 920 0.67 244.6 

 

1wt% Nanoclay/0.1wt% CTAB/MilliQ/Oil Emulsion 

Oil (mL) Water (mL) 

Volume 

Fraction 

(Water) k (µS/cm) 

450 0 0.00 0.00 

450 10 0.02 0.89 

450 20 0.04 1.27 

450 30 0.06 1.84 

450 40 0.08 3.90 

450 50 0.10 4.60 

450 60 0.12 5.84 

450 70 0.13 4.51 

450 80 0.15 4.58 



222 

 

450 90 0.17 6.11 

450 100 0.18 5.84 

450 110 0.20 11.56 

450 120 0.21 12.03 

450 130 0.22 13.30 

450 140 0.24 11.03 

450 150 0.25 11.40 

450 160 0.26 12.87 

450 170 0.27 15.11 

450 180 0.29 13.60 

450 190 0.30 13.28 

450 200 0.31 15.32 

450 210 0.32 18.76 

450 220 0.33 14.89 

450 230 0.34 20.13 

450 240 0.35 16.48 

450 250 0.36 23.1 

450 260 0.37 29.13 

450 270 0.38 38.2 

450 280 0.38 42.2 

450 290 0.39 58.5 

450 300 0.40 62.4 

450 310 0.41 64.4 

450 320 0.42 69.3 

450 330 0.42 178.4 

450 340 0.43 185.1 

450 350 0.44 192.3 

450 370 0.45 203.9 

450 390 0.46 213.5 

450 410 0.48 222 

450 460 0.51 242.1 

450 510 0.53 261.4 

450 560 0.55 278.2 

450 610 0.58 293.7 

450 660 0.59 308 

450 710 0.61 320 

450 760 0.63 333 

450 810 0.64 345 

450 860 0.66 354 

 


