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Age-Related Changes in Vibro-Tactile EEG
Response and Its Implications in BCI
Applications: A Comparison Between

Older and Younger Populations
Mei Lin Chen, Dannie Fu, Jennifer Boger , and Ning Jiang , Senior Member, IEEE

Abstract— The rapid increase in the number of older
adults around the world is accelerating research in
applications to support age-related conditions, such as
brain–computer interface (BCI) applications for post-stroke
neurorehabilitation. The signal processing algorithms for
electroencephalogram (EEG) and other physiological sig-
nals that are currently used in BCI have been developed
on data from much younger populations. It is unclear how
age-relatedchanges may affect the EEG signal and therefore
the use of BCI by older adults. This research investigatedthe
EEG response to vibro-tactile stimulation from 11 younger
(21.7±2.76 years old) and 11 older (72.0±8.07 years old)
subjects. The results showed that: 1) the spatial patterns
of cortical activation in older subjects were significantly
different from those of younger subjects, with markedly
reduced lateralization; 2) there is a general power reduction
of the EEG measured from older subjects. The average
left vs. right BCI performance accuracy of older subjects
was 66.4±5.70%, 15.9% lower than that of the younger sub-
jects (82.3±12.4%) and statistically significantly different
(t(10)= −3.57, p= 0.005). Future research should further
investigate age-differences that may exist in electrophysi-
ology and take these into consideration when developing
applications that target the older population.

Index Terms— Aging, brain–computer interfaces, elec-
troencephalogram (EEG), neuroplasticity, somatosensory,
vibro-tactile stimulation.

I. INTRODUCTION

THE global population of people over the age of 60 num-
bered 962 million in 2017, which was more than twice
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the 382 million older adults that there were in 1980 [1].
The number of older persons is expected to double again by
2050, when it is projected to reach nearly 2.1 billion [1].
Noncommunicable diseases, such as stroke, impose a sig-
nificant burden on global health and is one of the leading
causes of mortality and serious long-term disability [2], [3].
Globally in 2013, there were 6.5 million deaths from stroke,
making it the second-leading cause of death behind ischemic
heart disease [4]. 80% of stroke survivors are left with
residual deficits in fine motor upper limb control [4], and
further recovery after the first months post-stroke is often
slow or non-existent [5]. Physical training techniques, such
as constraint-induced movement therapy (CIMT) or bilateral
arm training, have been shown to be useful strategies to
improve motor function in chronic stroke patients [5]. How-
ever, these options are not applicable for patients with severe
limb weakness because residual movements are required for
therapeutic feedback [6], [7]. New approaches are needed to
provide greater access to effective post-stroke rehabilitation.
Brain-computer interfaces (BCIs; also known as brain-machine
interfaces) are a promising approach for rehabilitation by
either substituting for the loss of normal neuromuscular out-
put or inducing activity-dependent brain-plasticity to restore
normal brain function, both of which have been shown to
support recovery [5], [8]–[11]. BCIs can be used regardless
of the severity of the post-stroke paresis as it is dependent
upon brain activity alone [12].

Much of the research in the field of non-invasive BCI
stroke rehabilitation training leverage the brain’s electroen-
cephalogram (EEG) change in Sensory-Motor Rhythms
(SMR) [9], [13]. SMR refers to the oscillatory activity
observed in somatosensory and motor areas of the brain;
activity in particular body parts causes a decrease in SMR
activity in the respective sensorimotor cortex brain area, which
is called the event-related desynchronization (ERD)[14]. SMR
has been deemed a good fit for stroke rehabilitation because
it is related to motor activity, accessible by EEG, and has
a high signal-to-noise ratio [9], [15]. However, research to
date has shown limited effectiveness with poor performance
when it is applied in stroke rehabilitation [9], [16]. While
this is in part a result of changes in brain function caused
by stroke [17], normal aging may also play a significant
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role. Thus, it is important that we understand the impacts
healthy aging has on neuroelectrophysiology if we are to create
effective BCI applications for older adults, such as BCI-based
stroke rehabilitation.

Healthy aging is often accompanied by changes in the brain
that include declines in processing speed, working memory,
long-term memory, inhibitory functions, brain structure size,
and white matter integrity [18]. The impacts of aging are a
complex interaction of genetics, biology, and environmental
factors [19]. PET and fMRI studies report that compared to
younger adults, older adults show recruitment of brain regions
with reduced lateralization [20], displaying relative overacti-
vation of additional brains regions that are not activated by
younger adults when performing the same tasks [21]. Often,
this additional activated region is the same site that is acti-
vated in younger adults but in the opposite hemisphere [22].
This pattern of reduced asymmetry in older adults has been
referred to as Hemispheric Asymmetry Reduction in Older
Adults (HAROLD) [22]. More generally, this age-related
overactivation is thought of as compensatory, and termed the
compensation-related utilization of neural circuits hypothesis
(CRUNCH) [21].

The average age of BCI stroke rehabilitation clinical studies
stroke populations is above 55 years [9], while the fundamental
algorithms for leveraging SMR as the BMI methodology
have been developed using younger adults and have not
been validated in a senior population [14], [15], [23]. The
change in the location of activation in the brain to be more
bilateral throughout the aging process begs the question of
whether if this fundamentally challenges the basis of stroke
rehabilitation strategies that use SMR and signal enhancement
methods based on spatial information (such as the use of
common spatial pattern and Laplacian filtering) [24]. To this
end, a recent study reported a significant reduction of SMR
lateralization during covert and overt motor tasks in healthy
senior population, comparing with healthy young [25].

In this study, we investigated if the SMR induced by
vibro-tactile stimulation would also exhibit such a difference
between the two healthy populations. The primary motivation
for using the vibro-tactile task paradigm, rather than the more
commonly used motor tasks in BCI research, is to provide a
foundation for future stroke rehabilitation techniques. Tactile
feedback is often used in stroke rehabilitation where the
therapist will provide gentle touch-based stimulation to the
targeted muscle group. Whole-body vibration (WBV) training
has attracted attention in both clinical and research, for it has
significant therapeutic effects on balance, muscle strength, and
mobility in older adults, although the optimal WBV protocol
has yet to be determined.

As WBV have shown clinical effects, we are using
the vibro-tactile task paradigm to further investigate a tar-
geted approach to stroke rehabilitation, specifically through
the application of vibration as well as incorporating
brain-computer interface to provide a close-loop connection
in neurorehabilitation. A secondary reason for our using the
haptic vibro-tactile task paradigm is for the consistency in
application. The expression of motor imagery [2] can be
variable especially in naïve participants, hence applying a

consistent intervention can better help to systematically isolate
age as the factor that’s being investigated. This provides that
vibro-tactile stimulation is an optimal tactic for exploring age-
related brain activation.

II. METHODS

A. Participants

Participants were 11 older adults (over 55 years; 8 female)
and 11 younger adults (18–25 years; 6 female). All participants
were BCI naïve, right-handed, had normal or corrected vision,
with no reports of psychiatric or neurological disorders, vas-
cular diseases, use of psychiatric drugs, or any drugs affecting
the central nervous system. All subjects provided informed
consent prior to participation. This study was approved by
the Office of Research Ethics of the University of Waterloo,
Waterloo, Canada (ORE# 21401).

B. EEG Recording & Mechanical Somatosensory
Stimulation

EEG signals were recorded using a 32-channel wireless
g.Nautilus EEG system (g.tec, Austria). Electrodes were
placed according to the extended 10/20 system. The reference
electrode was located on the right earlobe, and the ground
electrode was located on the forehead. A hardware notch filter
at 60 Hz was used, and signals were digitally sampled at
250 Hz.

Mechanical vibration stimulation was applied to the dorsal
side of left and right wrists using wrist bands with linear
resonance actuators (type C10–100, Precision Microdrivers
Ltd.) sewn inside. Each of the actuator produced a 27 Hz
sine wave for both wrists, modulated with a 175 Hz sine
carrier wave. Different from stead-state somatosensory evoked
potential (SSSEP) [26], where the vibration frequency is the
frequency of interest in EEG, the vibration frequency used
in this study is not within the effective bandwidth of EEG.
Therefore, the sampling rate of EEG is not limited by the
vibration frequency in this case. The normalized amplitude of
the vibration was 1.4G. The two vibration stimulators were
connected to and driven by a Sound Blaster E5, a high-
resolution USB DAC Amplifier (Creative Inc). The vibration
magnitude was adjusted for each subject between the range of
maximum amplitude (11.3 μm) and half maximum amplitude
at the resonant frequency. The optimal amplitude was adjusted
based on feedback from the subjects, such that they could com-
fortably and clearly feel the vibration. The vibration frequency
and the procedure of determining the vibration frequency and
stimulation level was consistent with earlier BCI studies such
as [26]–[29].

C. Experiment Setup & Paradigm

EEG signals were recorded from the subjects before, during,
and after stimulation. The subjects were seated in an armchair
with their forearms and hands relaxed on the armrest. They
faced a computer monitor placed approximately 2m away at
eye level. Prior to EEG recording, subjects were shown their
EEG in real time on the computer screen to demonstrate how
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Fig. 1. Experimental protocol for a single trial.

to avoid motor artifacts caused by eye blinks, jaw clenching,
and body movements. Subjects were asked to limit these
physical movements during the EEG recording.

The experimental session consisted of two runs of continu-
ous EEG recording. In each run, the subject performed 40 trials
for a total of 80 trials. In each trial, subjects were visually
prompted to perceive the feelings on their left or right wrist
while a simultaneous vibration was applied to the respective
wrist. The sequence of events in each trial is illustrated in
Figure 1 and described in detail below. At −3s (the start of
each trial), a white fixation cross (“+”) appeared at the center
of the dark screen and it lasts throughout the entire trial until
rest. At −1s, subjects received a 175 Hz vibration burst lasting
0.2s on the median tendon of both wrists simultaneously, with
equal intensity as a prompt for the task to follow. At 0s,
either left or right wrist vibro-tactile stimulation would be
applied, accompanied by a left or right pointing red visual cue
superimposed the white cross. The vibro-tactile stimulation
lasted for 5s, while the visual cue lasted for 1.5s. At 5s,
the unilateral vibro-tactile stimulator stopped, and the white
cross on the screen disappeared. A rest time of 1.5s was given,
followed by an additional random rest time of 0 to 2s to
prevent subject habituation. Each run contained 20 trials of
both left and right task applied in random order. A 2–4 min
rest was given between runs. The unilateral stimulation is to
induce as clear as possible contra-lateral response.

D. Data Preprocessing & Signal Decomposition

Offline signal processing was performed and the EEG data
was manually corrected for artifacts using EEGLAB toolbox
prior to analyzing event related spectral perturbations (ERSP)
and Event related desynchronization (ERD) / event related
synchronization (ERS) [30]. Artifacts were removed in two
steps: 1) trials containing non-ocular artifacts (i.e. large drifts,
electrode spikes, saturation) were removed; 2) independent
component analysis (ICA) was used to remove ocular artifact
components from the remaining epochs [30]–[32].

E. Event-Related Spectral Perturbations (ERSP)

ERSP visualizes the mean change in spectral power rel-
ative to a baseline [33]. The baseline reference interval for
ERSP calculation was taken from −2 to −1.2s, which is
the 0.8s interval prior to the onset of the bilateral vibra-
tion burst. Each spectral transform of individual response
epochs is normalized by dividing by their respective mean

baseline spectra [34]. After performing the artifact removal
mentioned above, Small-Laplacian (nearest-neighbor) filter-
ing was applied to the EEG as a high-pass spatial filter
to accentuates localized activity and reduces more diffused
activity [35]. The ERSP at channels C3 and C4 were calculated
after small Laplacian filter was applied, to visualize right and
left stimulation, respectively. The resulting ERSP visualizes
the mental processes and cortical responses to left or right
vibro-tactile stimulation.

F. Event-Related Desynchronization/
Synchronization (Erd/S)

ERD and ERS are respectively defined as the percentage
of EEG power decrease or power increase with respect to a
baseline reference. Average ERD/ERS displays the activation
and deactivation of brain regions. It is calculated in a defined
frequency band in relation to a baseline reference interval [36].
The baseline reference interval for the ERD/ERS calculation
was taken from −2 to −1.2s, which is the 0.8s period
prior to the onset of the bilateral vibration burst. Similar
to ERSP calculation, the Small-Laplacian (nearest-neighbor)
was applied to the EEG after artifact rejection. The statistical
significance of the ERD/ERS was verified by applying a
t-percentile bootstrap statistic to calculate confidence intervals
with a significance level of α = 0.05.

The quantification of ERD/ERS was calculated in follow-
ing three steps: 1) Bandpass small Laplacian filtered signals
between alpha-beta (8–26 Hz) frequency band; 2) Band power
calculation, and 3) Epoch averaging to obtain grand average
ERD/ERS. ERD/ERS topoplots sample points were plotted
after averaged over the specified time intervals.

G. Feature Extraction (Common Spatial Filter)

A fourth-order Butterworth filter was applied to the raw
EEG signals prior to further spatial filtering. In this study,
common spatial pattern (CSP) is used prior to the classification
of EEG epochs into either ‘left’ or ‘right’ classes. Mathemat-
ically, CSP is performed by simultaneous diagonalization of
the covariance matrices of the data from two classes (left or
right in the current study) [37].

The kth trial of the EEG signal before CSP filtering is
represented as Ek with dimensions C × N , where C is the
number of EEG channels and N is the number of sample
points of the trial. The normalized spatial covariance of the
EEG can be obtained from

Ck = Ek E
′
k

trace(Ek E
′
k)

(1)

where k is the trial index and ′ denotes the transpose operator
and trace(x) is the sum of the diagonal elements of x [37].
For each of the two classes to be separated, let the spatial
covariance

∈∈ Cl =
∑

kSl

CkCr =
∑

kSr

Ck (2)

where Sl and Sr are the two index sets for the two separate
classes, left and right, respectively.
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Fig. 2. Average ERSP for all younger and older participants, before and during vibro-tactile stimulation (which lasted between 0–5s), during Left-side
stimulation (top row) and Right-side stimulation (middle row). The ERSPs of channels C3 and C4 are on the left and right panel, respectively. The
bottom row is the map for the statistical tests (p-values of pair-wise t-test) comparing Left and Right in each column, where darker color indicates
smaller p-value. The clear discriminative power of the ERSPs of the Younger Adult group is visible following the unilateral stimuli (t=0) and is most
concentrated in the frequency band between � and 26 Hz. This is confirmed by the statistical tests. In contrast, no such clear discriminative pattern
can be found for the Older Adults group.

The projection matrix W is obtained from the augmented
generalized Eigen-decomposition, (Cl + Cr ) W = λCr W .
The rows of W are spatial filters; the column of W−1 are
spatial patterns. The filtered signals Zk = W Ek is uncor-
related between each of the kth trials. The feature vectors
for classification were obtained by taking the log variance
of the first three and last three rows of the spatially filtered
signal Zk , as these correspond to the three largest eigenvalues
for one class and three smallest eigenvalues for the opposite
class [37]. These retained CSP components (rows) were then
used as inputs to linear discriminative analysis (LDA) for
classification.

H. Offline Classification

The raw EEG data was used for analyzing BCI classifica-
tion accuracy to simulate the performance from online BCI.
Therefore, no artifact removal was done for the analysis on
BCI performance. The data set of each subject was divided
into a training and testing set. The training set was used to
obtain the CSP components and the parameters of the LDA
classifier, which were then used to classify the testing set. This
training/testing procedure was repeated 10 times with differ-
ent random partitions into training and testing sets through
10× cross validation [37].

The EEG data from 0 to 2s was used from each epoch
for classification accuracy calculation. No trials were dis-
carded to simulate online classification accuracy. There was
high inter-subject variation for discriminative frequency bands,
hence smaller sub-frequency bands were used in the subse-
quent analysis: theta (θ , 6–8 Hz), low alpha (α−, 8–10 Hz),
alpha (α, 8–13 Hz), upper alpha (α+, 10–13 Hz), low
beta (β−, 13–20 Hz), beta (β, 13–26 Hz), upper beta
(β+, 20–26 Hz), alpha-beta (αβ, 8–26 Hz), and gamma
(η, 30–70 Hz). 10× cross validation was performed for all
sub-frequency band to evaluate BCI performance, and the

frequency band that resulted with the highest classification
accuracy was individually selected for each subject.

I. Statistics

The pair-wise t−test was used to test between statistical
difference between the ERSPs from the left-hand and right-
hand. ERD/ERS data was averaged over segments of 0.2s
and the difference between left and right stimulation was
analyzed via an independent-sample t−test with Bonferroni
correction for each segment. The above tests were performed
using EEGLab [30]. An independent-samples t-test was also
used to compare BCI performance accuracies between younger
and older adult populations. Our null hypotheses are that there
is no difference between C3 and C4 in each of the tasks
performed and that there is no difference between younger and
older adults in BCI classification accuracy. The significance
level of all tests were set at α = 0.05.

III. RESULTS

The age of the older (72.0±8.07 years old) and younger
(21.7±2.76 years old) adult populations were significantly
different (t = 21.8, p < 0.001). The number of years
of education of the younger (16.2±3.0 years) and older
(4.8±2.67 years) adults were not significantly different
(t = −1.25, p= 0.226).

A. Event-Related Spectral Perturbation (Ersp)

A comparison of the older and younger adults’ ERSP
at small-Laplace filtered C3 and C4 channels is shown in
Figure 2. For younger subjects, upon the onset of unilateral
vibration stimulation (on either the left or right hand at 0s),
a prominent bilateral desynchronization is observed in the
alpha-beta frequency band (8–26 Hz) for approximately 0.5s,
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Fig. 3. ERD/ERS (8–26 Hz) topography averaged over −0.4 to −0.1s in
response to the 200 ms bilateral stimulation at −1s. The two topographies
on the left depict the mean of the averaged ERD/ERS from −0.4 to −0.1s
for all older and younger adult subjects, respectively. The right-most
topography is the p-values of the pair-wise t-test.

followed by a sustained contralateral desynchronization cen-
tered in the high-alpha frequency band (10–14 Hz). However,
for older subjects only the bilateral desynchronization was
present; the latter sustained contralateral desynchronization
seen in younger subjects was absent. Another observation is
the ipsilateral synchronization in the alpha frequency band
(7.5–12.5 Hz) that is present in both the younger and older
subjects, appearing approximately from 2 to 4s. However, this
is much more prominent in the younger adults than in the older
adults. The statistical test (bottom row of Figure 2) showed
that in the older adult group, no clear pattern existed for
the region with statistically significant lateralization. In the
contrary, for the younger adult group, regions of significant
lateralization clustered temporally from 0.5s to 4s following
the cue, and within the frequency band of 8–26 Hz, which was
used to determine the optimal frequency band to investigate
for ERD/S.

B. Event-Related Desynchronization/
Synchronization (Erd/S)

The ERD/ERS was plotted within the alpha-beta (8–26 Hz)
frequency because this band is shown to contain the most
discriminative information from the ERSP analysis above
(Figure 2). The ERD/ERS topoplots in response to the 200 ms
bilateral stimulation at −1s (on both left and right wrist) was
averaged over −0.4 to −0.1s (Figure 3). The desynchroniza-
tion at channels C3 and C4 are visually more pronounced in
younger adults, compared with older adults. Specifically, in the
younger adults, there appears to be desynchronization centered
around the central-parietal region and parietal lobe at channels
CP1, CP2 and PZ. In the older adults, this desynchronization
is not as clear. However, pair-wised t-test did not detect any
statistically significant difference between the two groups (the
right-most plot of Figure 3).

For the ERD/S in response to the sustained vibro-tactile
stimulation from 0 to 5s, a distinct contralateral oscillatory
desynchronization was observed for younger adults but was
absent for older adults (Figure 4(a)), where C3 and C4 signal
were processed with small Laplacian filter. For younger adults,
the desynchronization of the channel associated with the
respective wrist being stimulated (C4 for left hand, C3 for
right hand) would reach more than 150% power decrease
compared to baseline and remain more than 100% until

approximately 1.5s. At the end of the 5-s epoch, the ERD
would still be approximately 50% below the baseline. The
ipsilateral side also had clear desynchronization, but were not
as pronounced as the contralateral side, neither in magnitude
and nor in duration. This contrast resulted in statistical dif-
ference between the two channels over a large portion of the
post-stimulation period (0 to 5 s), as indicated by the vertical
shaded areas in the right panel of Figure 4(a). On the other
hand, for older participants, while ERD/S was observed in
all cases, the magnitude was markedly smaller than those
of the younger one, maximized approximately 100% below
baseline. More importantly, no clear lateralization between the
contralateral and ipsilateral side was observed, as indicated by
the lack of regions with statistical difference (few shaded areas
in the left panel of Figure 4(a)). In summary, the lateralization
pattern of ERD/S is distinct and significantly different in the
younger adults but not at all in the older adults. The mean
of ERD/S across the scalp over the period from 0.25 to 1s is
displayed as topographs in Figure 4(b). The desynchronization
of C3 and C4 are distinctly less prominent and diffused in the
older adults compared to the younger adults. This observation
is further confirmed by the pair-wise statistical test, shown as
topographies (the bottom row of Figure 4b).

C. BCI Classification Accuracy

Figure 5 compares the offline BCI classification perfor-
mance for the vibro-tactile sensation task for individual
older adults and younger adult subjects, respectively. The
optimal frequency band was selected for each subject to
maximize the classification accuracy obtained through a 10×
cross-validation procedure. An independent-samples t-test was
conducted to compare BCI performance in younger adults
and older adults. The average left vs. right BCI performance
accuracy of older subjects was 66.4±5.70%, 15.9% lower than
that of the younger subjects (82.3±12.4%) and statistically
significantly different (t(10)= −3.57, p = 0.005).

IV. DISCUSSION

Our results showed that age-related electrophysiological
changes in healthy older adults significantly affected SMR
characteristics in EEG. Such changes have critical implica-
tions for BCI applications such as BCI-based stroke reha-
bilitation, which target at older population but are currently
developed and validated with much younger population. The
significant reduction in activation power spectrum in older
adults (the ERD/ERS pre-cue shown in Figure 3 and the
ERD/ERS post-cue in Figure 4) indicates older adult EEG
signals are more susceptible to noise and interferences than
EEG from younger adults. More importantly, SMR in older
adults demonstrated a statistically significant reduced later-
alization, seen through ERSP (last row in Figure 2) and
ERD/S (Panel B of Figure 4) in the somatosensory cortex
in response to vibro-tactile stimulation, compared to younger
adults. These visibly different characters in EEG resulted in a
significantly lower BCI classification accuracy for the older
adults (Figure 5). For 5 out of 11 of the younger adults,
the frequency α+ band yielded the highest classification result,
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Fig. 4. Comparison of average ERD/ERS of younger and older participants in the alpha-beta frequency band (8–26 Hz). a) denotes the ERD/ERS
change for channels C3 and C4 over time; the center dashed line shows the averaged ERD/ERS while the shading around the dash line indicates
averaged ERD/ERS±SD. The vertical shaded areas superimposing the graph indicate regions of significant difference (averaged over intervals
of 0.2s) between the two channels (p<0.05, with Bonferroni correction); b) displays the ERD/ERS averaged over the interval 0.25 to 1s as a
topography, as well as the topographies of the p-values of the pair-wise t-tests between the Left and Right stimulus.

while that in the older adults is more wide-spread. These
results are in agreement with the findings in [25], where
such a significant reduction of ERD/S lateralization induced
by motor tasks (covert and overt) was observed in an older
adult population. However, the generally weaker and shorter
duration of ERD/S induced by somatosensory stimulation in
senior population was not observed in the motor tasks induced
ERD/S reported in [25], indicating somatosensory ERD/S is
more susceptible to noise than motor-tasks induced ERD/S for
seniors.

A recent study on SSVEP-based BCI by Volosyak et al. [38]
investigated the age-associated difference in BCI performance
by examining the accuracy and speed of SSVEP-based BCI
spelling application. The results showed that older adults had
a significantly lower information transfer rate compared to
younger adults [38]. Volosyak et al. [38] attributed their results
to smaller SSVEP amplitudes for older adults as well as
slower reaction time and learning ability. Different from [38],
we demonstrated the significant reduction of lateralization in
ERD/ERS is likely the key reason for the observed reduction
of BCI algorithm performance.

Our findings may be explained by changes in the physical
structure of the brain including cognition, neurology, and bio-
chemistry, as well as physical features in the body. Structurally,
the brain undergoes an age-related volume reduction that
non-uniformly affects the majority of brain regions [39]. The
greatest shrinkage is usually in the caudate, cerebellum, frontal
cortex, insula, anterior cingulate gyrus, superior temporal
gyrus, and inferior parietal lobule [39], [40]. The areas being
activated in this task (left or right-hand stimulation) is the
somatosensory cortex; its structure may be affected by the
natural aging of the brain. Cognitively, it is established that
aging causes a decrease in processing speed, working memory

capacity, inhibitory functions, and long-term memory [18].
Thus, while changes in the brain because of the stroke likely
play a significant role, physiological changes brought about
by normal aging may be a contributing factor to the poor
performance of BCI algorithms for stroke survivors.

Our results agree with the CRUNCH hypothesis proposed
by Reuter-Lorenz and Cappell [21] and HAROLD theory pro-
posed by Cabeza [22], both of which suggest a compensatory
account of neural circuits that results in a more symmetrical
activation in the senior’s brain compared to younger adults.
This can be observed in our results in the ERSP as well as
ERD/ERS (Figures 2–4). This is a crucial aspect as the change
in the locality and strength of activation can significantly alter
BCI classification accuracy (as seen in Figure 5), especially
when relying on spatial information from CSP and Laplacian
filters.

Other factors that may have played a role in the observed
differences include scalp thickness [41], [42] and skin sensitiv-
ity due to mechanoreceptor loss [43], [44], and there may well
be others. In our research, we noted it takes a noticeably longer
time to set up the EEG electrodes and noticed an increased
scalp impedance for the older adults. We speculate this to
be due to a difference in scalp thickness or dryness, and we
recommend that this be taken into account for future research
and application designs involving older adults. We accounted
for the differing skin sensitivity as much as possible by
adjusting the stimulation intensity such that all participants
perceived a similar level of calibrating all vibration sensation.

Since many EEG processing algorithms for BCI, particu-
larly those based on sensory or motor dynamics, are based on
exploiting the lateralization of SMR (e.g., CSP and Laplacian
methods), our finding that the classification accuracy in elderly
is significantly lower than the younger population by 15.9%
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Fig. 5. BCI classification performance accuracy for younger and older
adults. Error bars indicate one standard deviation. The right-most bar is
the mean and standard deviation across the respective group. For each
participant, the frequency band that yielded the highest classification
result is shown below the x-axis.

indicates that normal aging results in a detrimental impact on
the performance of these classification methods. Our research
suggests that alternative algorithms and approaches, which are
less dependent on lateralization, need to be developed for BCI
applications targeting at older adults such as BCI-based stroke
rehabilitation. User training will also play an important role.
Zich et al. [25] showed that online neurofeedback can enhance
lateralization acutely and such training can be combined with
non-invasive brain stimulation in improving efficiency [45].

Limitations of our research include factors out of our
control, including individual lifestyle and habits such as phys-
ical and cognitive exercise, social status and life experience
that may influence EEG [46]. Moreover, participants were
relatively healthy from a small sample size. We also only
investigated somatosensory related SMR in our study, while a
combination of sensory and motor tasks will likely be more
powerful to practical applications such as stroke rehabilitation.
Future work should include a greater diversity of older adults
over longer periods of time to investigate variability due to
population differences and changes over time.

V. CONCLUSION

The primary findings of our study are that aging appears to
cause a substantial EEG power reduction and diminished corti-
cal lateralization of the somatosensory cortex. This resulted in
a lower BCI performance accuracy in classification based on
spatial activation information. Future BCI research targeting
applications with older adult populations should further inves-
tigate the impact of age and develop appropriate measures to
accommodate age-related differences in EEG. Neurofeedback
training methods to increase lateralization, as well as algo-
rithms that does not only depend on EEG lateralization, should
be investigated.
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