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Abstract 
 
INTRODUCTION. The findings of exercise trials have shown that women are better able to 
initiate aerobic metabolism and are less reliant on anaerobic energy stores. The effect that 
LL-HR resistance exercise and sex has on substrate oxidation and metabolic species remains 
unknown. PURPOSE. The purpose of this study was to characterize anaerobic fuel 
utilization patterns during a bout of LL-HR resistance exercise and to assess whether sex 
influences fuel utilization during LL-HR. METHODS. Twenty young, healthy participants 
(n=10 men and women) were recruited and matched for VO2peak relative to fat-free mass and 
habitual resistance training. The LL-HR bout consisted of a circuit of chest press, leg 
extension, lat pulldown, hamstring curl, shoulder press, and leg press for 25-35 repetitions at 
30% of 1RM with 30s rest between each exercise and 2 minutes rest between circuits. 
Western blot analysis was completed for relevant metabolic enzymes; GP, PFK, LDH (H and 
M), PDHE1D, PDHK4, CK, AMPD2, MCT (1 and 4), and phosphorylated CK and PDHE1D. 
Content of metabolic species was analyzed before and after the exercise bout and included 
measures of creatine, ATP, lactate, Pi, pyruvate, and glycogen. MHC staining was used to 
determine the distribution of fibre type between men and women. Blood lactate was 
measured and area under the curve (AUC) calculated. RESULTS. Women had a greater type 
I muscle fibre content than men (p=0.007). Baseline content of all enzymes of interest were 
similar between men and women (p>0.05). Men had higher concentrations of muscle 
glycogen, lactate, ATP, and Pi than women (p=0.001, p=0.019, p=0.01, and p=0.007, 
respectively). Phosphorylation of CK and PDHE1D, and content of glycogen and ATP all 
decreased in men and women with exercise (p<0.001). Phosphorylation of CK decreased 
more in women than men (p=0.023); whereas creatine concentration increased during 
exercise to a greater extent in men than women (p=0.026). Blood lactate increased during 
exercise (p=0.023), with no differences between the sexes (p = 0.235). CONCLUSION. 
Men rely to a greater extent on the HEPT system to produce ATP during a bout of LL-HR 
resistance exercise than women. Interestingly, this occurred despite a greater decrease in 
phosphorylated CK in women. Overall these findings are supportive of the hypothesis that 
men rely to a greater extent on anaerobic fuel sources during exercise, which may be in part 
due to their greater content of type II muscle fibres.  
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Chapter One: Literature Review 

1.0 Introduction 
 
 The population of Canada, as well as most industrialized nations, is aging1. Aging is 

associated with the development of numerous diseasese2–4, such as cardiovascular disease, 

type 2 diabetes and sarcopenia. The higher proportion of older adults highlights the need for 

more streamlined interventions to prevent and combat the development of these diseases. 

Exercise has been prescribed to this population as an intervention meant for either the 

prevention or the rehabilitation of age-associated diseases.  

 Of the possible exercise modes prescribed, moderate intensity continuous training 

(MICT) is the most studied and can improve cardiorespiratory fitness5, blood pressure6, lipid 

profile7, and insulin sensitivity8, reducing the risk/severity of cardiovascular disease7 and 

type 2 diabetes9, but as it has little effect on muscle mass and strength10,11, not influencing the 

risk of sarcopenia. Alternatively, heavy resistance training induces gains in muscle mass, 

strength, function and quality12,13, decreasing the risk/severity of sarcopenia13–15. A novel and 

less studied mode of exercise is low-load, high-repetition (LL-HR) resistance training, which 

has been shown to increase muscle mass, strength,  and function to a comparable extent as 

heavy resistance training16–18, thereby possessing the ability to decrease the risk of sarcopenia 

and type 2 diabetes12. However, since the intensity is lower and the sets take longer to 

complete, it is more aerobic in nature and may also induce benefits to the cardiovascular 

system, as well as insulin sensitivity similarly to MICT. Hypothetically, LL-HR may be able 

to slow/reverse sarcopenia to a comparable extent as heavy RE while also providing the 

cardiovascular and insulin sensitizing benefits that are typically associated with aerobic 

exercise. Indeed, this time-efficient exercise modality could hypothetically provide 
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synergistic adaptations and therefore benefits to a number of populations that would 

otherwise be at risk for sarcopenia or metabolic disorders. The first step to understanding the 

potential adaptations induced by LL-HR is to characterize the fuel utilization pattern during 

an acute bout of whole-body LL-HR.  

There are well known sex differences in the prevalence of aging-associated diseases 

such as type II diabetes and sarcopenia19,20. Indeed, prior to menopause women have a lower 

risk of cardiovascular disease and type 2 diabetes than men, due to the protective effects of 

estrogen21,22. Similarly, women have a lower risk of sarcopenia than men20; however, 

whether estrogen plays a role in the etiology of sarcopenia is less understood.  Previous work 

has shown that women and men respond to exercise interventions differently23–25, which 

again may be mediated by estrogen and the effects estrogen has on fuel metabolism. Since 

the fuel utilization pattern during acute bouts of moderate intensity continuous exercise 

(MICE) differs between men and women as a result of estrogen26–28,  it is important to 

characterize fuel utilization during LL-HR in both men and women in order to completely 

understand muscle metabolism during this mode of exercise and to generate hypotheses 

related to long-term benefits of LL-HR in relation to health. Thus, the research conducted in 

this thesis will characterize the anaerobic fuel utilization pattern during an acute bout of LL-

HR resistance exercise and examine whether it differs between men and women.   

 

 

 

 

 



 3 

1.1 Overview of fuel utilization during exercise 

At the onset of exercise energy is supplied first by using stored ATP (enough to 

support ~2s) and then through anaerobic energy pathways – high energy phosphate transfer 

system and glycolysis. However, as exercise progresses the muscle demands energy that is 

provided from macronutrient substrates: carbohydrates, fats, and proteins. Carbohydrates and 

fats, stored as glycogen and triglycerides (TG) respectively, are the principle substrates used 

for energy in human muscle tissue with ~95-98% of energy coming from these two 

sources29,30. Protein plays an integral role in recovery and tissue synthesis following 

exercise31, but only contributes ~2 and 5% of total energy production during exercise in men 

and women respectively30,32. An overall summary of the energy yielding pathways in skeletal 

muscle is found in Figure 1.  The relative contribution of carbohydrate and fat to energy 

metabolism during exercise is dependent on the intensity and duration of the exercise 

bout29,33. Contribution from carbohydrates is highest for exercise bouts that are of high 

intensity and short duration, whereas the relative contribution of fat is highest for exercise 

bouts that are of low intensity and longer duration29,33. Biological sex has also been shown to 

influence fuel utilization during aerobic exercise, with women relying on fat stores to a 

greater extent to produce ATP during exercise at a given intensity as compared with 

men34,35,26,32. Additionally, sex has been demonstrated to influence the utilization of 

anaerobic energy systems, with men relying more heavily on anaerobic energy production36. 

However, while sex differences in metabolism have been well established during aerobic 

exercise, whether sex influences fuel utilization during different modes of exercise where the 

fuel utilization pattern is different than during aerobic exercise remains unexamined.  
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Figure 1: General overview of aerobic and anaerobic glycogen utilization during exercise. 
Additionally, an overview of phosphocreatine breakdown and HEPT system synthesis of 
ATP. 
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1.1 Effects of Exercise Mode on Substrate Utilization During Exercise  

Different modes of exercise induce different patterns of fuel utilization due to 

differences in intensity and duration and whether or not they are continuous or intermittent.  

1.1.1 Substrate Utilization During Moderate Intensity Continuous Exercise (MICE) 

 Much of what we know about the effects of exercise duration and intensity on 

substrate oxidation come from studies employing moderate intensity continuous exercise 

(MICE) protocols of increasing intensity and duration. Substrate utilization during exercise is 

heavily dependent on the intensity at which the exercise is performed33. At low exercise 

intensities fat oxidation predominates, but as exercise intensity increases carbohydrate 

oxidation also increases and becomes the predominant fuel source at higher exercise 

intensities29,33. While the relative contribution of fat stores to energy production decreases 

with increasing exercise intensity, the absolute rate of fat oxidation increases with increasing 

exercise intensity up until ~60-65% VO2peak, at which point fat oxidation is limited29,33. The 

reason for this is that during bouts of high intensity exercise, cardiac output is unable to meet 

the oxygen demands of contracting muscle thereby resulting in an increase in anaerobic 

glycolysis as a means of generating ATP within the muscle37. As a consequence of anaerobic 

glycolysis, lactate and H+ are generated37. The increase in H+ and lactate inhibit the action of 

hormone sensitive lipase (HSL), thereby reducing the breakdown of TG to FFA and therefore 

reducing the availability of FFA as a fuel source as exercise intensity increases38.  

Furthermore, while the oxidation of plasma fuel sources (glucose and FFA) 

predominate at lower exercise intensities29,33, the diversion of cardiac output towards 

contracting skeletal muscle as exercise intensity increases reduces adipose and hepatic blood 

flow, which in turn reduces FFA and glucose release, resulting in a lower contribution from 
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plasma fuel sources as exercise intensity increases37. Indeed, as exercise intensity increases to 

levels >65% VO2 max, fuel utilization begins to shift towards relying predominately on muscle 

sources of energy (glycogen and IMCL) stores29. To summarize, as exercise intensity increases 

there is an increased reliance on CHO, as opposed to FFA, to produce ATP. Furthermore, there 

is an increased reliance on muscle, instead of plasma, fuel stores. 

 Substrate utilization during exercise is also largely dependent on the duration of the 

exercise bout29.  At the onset of exercise, muscle sources of fuel are oxidized primarily as the 

system requires sources of energy that are immediately available29. Muscle glycogen and 

IMCL are present at the site of contraction and are therefore able to be utilized immediately29. 

As exercise duration increases and muscle fuel stores are depleted, there is an increased 

reliance on the plasma sources of fuel that are derived from hepatic glucose release (due to 

increased glycogenolysis and gluconeogenesis) and adipocyte TG breakdown into FFAs29.  

 Additionally as exercise duration increases, there is a shift from a reliance on glucose 

to a dependence on fat oxidation to support energy needs29. This shift occurs as glycogen 

stores in the muscle and liver begin to diminish, and an alternate fuel source must be utilized 

to generate ATP37,39. TG storage in adipocytes offer a much larger energy source that can be 

utilized during exercise bouts of increasing duration29. The increase in fat oxidation as 

exercise duration increases is mediated by decreases in insulin37. Insulin inhibits lipolysis by 

activating PKB/Akt, which in turn phosphorylates phosphodiesterase 3B37,39. 

Phosphodiesterase 3B converts cAMP to AMP, reducing cAMP concentration, which in turn 

reduces HSL activity37,39. As exercise duration increases and glycogen stores diminish, 

plasma glucose levels are lower, and thus insulin levels decrease, reducing the inhibition on 

lipolysis37,39. The shift from carbohydrate to fat oxidation is able to spare glycogen in the 
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muscle and liver, and is thought to prolong an individual’s time to exhaustion40. In summary, 

as exercise duration increases there is a shift from muscle fuel sources to plasma-derived 

substrates as well as a shift away from carbohydrate oxidation to fat oxidation to support 

muscle energy needs. 

As such, we see that with increasing intensity of MICE there is an increased reliance 

on glycogen stores and with increasing duration there is a greater reliance on fat stores29,33. 

Since MICE is performed below VO2peak, the majority of ATP being produced is done so via 

aerobic metabolism. 

1.1.2 Substrate Utilization During Resistance Exercise 

Substrate utilization differs between resistance exercise (RE) and moderate intensity 

continuous exercise (MICE) due to the higher exercise intensity, shorter duration and 

intermittent nature of the RE bout29,33. For heavy RE, defined as lifting a heavy load (~80% 

1RM) for ~ 8 – 12 repetitions, individual sets last approximately 20s with ~ 2-3 minutes of 

rest between sets41. The high energy phosphate transfer (HEPT) system can provide the body 

with ATP for ~20s39, suggesting that for heavy RE, other methods of ATP synthesis are not 

as crucial39 compared to exercises with longer durations. Additionally, the replenishment of 

the PCr pool typically takes ~2-3 minutes which is typically the duration of the rest periods37. 

During heavy RE, glycogen stored in skeletal muscle also serves as a substrate for ATP 

synthesis, albeit to a lesser extent37. The breakdown of glycogen through glycogenolysis will 

allow for anaerobic glycolysis to meet the ATP demand of the muscle37. During heavy RE, 

glycolysis will be second to HEPT for ATP provision, with a lesser dependence on oxidative 

metabolism42. The lesser reliance on oxidative metabolism during heavy RE is due to a 

slower/blunted rise in skeletal muscle blood flow, as well as the higher intensity of the 
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exercise bout, thus the majority of the pyruvate formed during glycolysis will be fluxed 

towards lactate production as a means of synthesizing ATP37,39, thus highlighting the 

anaerobic nature of the exercise bout.  

Interestingly, there is evidence suggesting that lipolysis of IMCL and FFA oxidation 

may also contribute to substrate utilization during heavy RE43. A single study noted the 

increase in muscle FFA and glycerol following heavy resistance exercise, highlighting that 

lipolysis may provide energy during heavy-resistance exercise despite the relatively short 

duration and high intensity43.  

1.1.3 Low Load High Repetition Resistance Exercise (LL-HR) 

 A comparatively unique and less studied exercise mode, low-load, high-repetition 

(LL-HR) RE, is becoming increasingly of interest since it induces lower mechanical strain on 

joints44. LL-HR is described as lifting a load corresponding to ~30% one repetition max 

(1RM) to volitional failure 43.  Recent literature has shown that acute LL-HR resistance 

exercise is able to evoke a greater increase in skeletal muscle hypertrophic factors such as 

myofibrillar protein synthesis (MPS) and phosphorylation of hypertrophic signalling 

molecules as traditional RE18. Furthermore, training trials have shown that LL-HR induces 

comparable increases in muscle mass and strength as traditional RT45,13,17. Given the lower 

mechanical joint strain associated with LL-HR and the fact that it can induce favourable 

effects on muscle mass and strength, this mode of exercise may be particularly beneficial for 

older adults or those who have or are recovering from joint injuries, who are at an increased 

risk of joint instability and injury. 

 With the exception of how LL-HR RE influences muscle protein synthesis, the acute 

effects of this exercise modality on muscle metabolic pathways is largely unknown. As a 
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consequence of the duration of the exercise, the circuit style manner in which it is utilized, 

and the lower intensity compared to heavy RE, substrate utilization during this mode of 

exercise is hypothesized to follow a pattern more similar to MICE, but that anerobic 

metabolism (HEPT, glycolysis) would still be significant contributors.  Indeed, three studies 

that utilized a LL-HR RE protocol consisting of 3 sets of plantarflexion at 20% of 1RM for 

30 repetitions separated by 1 minute of rest in 12 young, healthy males46 and females47,48 

found that there were no changes in PCr or muscle pH during the LL-HR bouts47. This could 

be due to the very low intensity of the exercise, coupled with the fact that they did not 

exercise to volitional failure. These studies suggest that at a very low resistance exercise 

intensity (20% one repetition max) HEPT may not contribute to ATP production. However, 

since exercise was not performed to failure, it is not clear if all muscle fibres were recruited. 

Previous work has shown that LL-HR resistance exercise performed at 30% 1RM to failure 

recruits type II muscle fibres as evidenced by LL-HR training increasing type II muscle fibre 

size45. Since, type II muscle fibres are more anaerobic, it could be that HEPT did not 

contribute to ATP production during LL-HR at 20% 1RM because type II muscle fibres were 

not recruited, due to the lower intensity and/or that the set did not go to failure. As 

recruitment of type II fibres is important to maximizing muscle hypertrophy during training, 

further work is needed to characterize the fuel utilization pattern during a bout of LL-HR 

where type II fibres are recruited to determine the role that the HEPT system plays in 

producing ATP during LL-HR RE.  

Given the lower resistance exercise intensity of LL-HR, it is also speculated that there 

will be a shift towards more oxidative metabolism during LL-HR as the circuit continues 

with glycolysis producing pyruvate that is converted to acetyl CoA, and increased fat 
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oxidation from adipose and muscle TG breakdown. Oxidative metabolism would also be 

greater during LL-HR compared to traditional RE due to the decreased intensity and 

prolonged activation of type I skeletal muscle fibres that contain a higher concentration of 

mitochondria compared to their type II counterparts13. To the best of our knowledge, no 

study has examined the contribution of muscle glycogen, muscle lipids or aerobic 

metabolism to ATP production during LL-HR and this should be an area of future 

investigation.  

1.2  Sex Differences in Muscle Metabolism 

 Numerous studies have shown that fuel utilization during MICE differs between men 

and women49.  Specifically, women have a lower respiratory exchange ratio (RER) than men 

during MICE 50, indicating that women have a lesser reliance on carbohydrates and an 

increased reliance on fat to support muscle energy needs49. These initial findings have 

prompted much research examining the sites of glycogen sparing (hepatic vs. skeletal 

muscle) and increased reliance on lipids (adipose vs intramuscular TG) as well as whether 

there are sex differences in the dependence on anaerobic metabolism for energy production.  

1.2.1 Sex Differences in CHO Metabolism 

 The lower reliance on CHO sources during MICE is supported by findings that 

women have a lower glucose rate of appearance, rate of disappearance and metabolic 

clearance rate during MICE, as compared with men, indicating a decreased reliance on 

hepatic glucose stores34,26,51,27. Whether this decreased reliance on hepatic CHO is due to 

decreased hepatic muscle glycogenolysis and/or gluconeogenesis in humans is unexamined 

due to ethical concerns regarding liver biopsies in humans. However, studies conducted in 

animals have shown that males have an increased dependence on hepatic glycogen to meet 
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exercise demands52. Additionally, a study in oophorectomized female rats found a dose 

dependant effect of estradiol to decrease liver and muscle glycogen utilization during 

exercise53. Together, these findings suggest that the decreased reliance on CHO during 

exercise in women is, at least in part, due to a decreased reliance on liver CHO stores, with 

animal studies suggesting that this is due to decreased hepatic glycogenolysis. 

In skeletal muscle whether sex influences muscle glycogen utilization during MICE is 

contentious. Numerous studies have reported no effect of sex on skeletal muscle glycogen 

utilization26,23,27,54,55 while other studies have reported a glycogen sparing effect in 

women34,49,56. There is a multitude of possibilities for the discrepancies between these studies 

including exercise intensity, exercise mode, training status of the participants, and failing to 

control for menstrual cycle phase. For instance, it has been reported that no difference in 

muscle glycogen utilization exists between men and women during cycling at 75% 

VO2peak26,23. This may be explained by the intensity being too high during this exercise bout 

that thus prevented lipid breakdown and glycogen sparing in women51, since maximal fat 

oxidation has been show to occur at ~60-65% VO2peak51. However, amongst the trials 

conducted at 65% VO2peak26,54,55 where fat oxidation should be at or near its maximal rate, 

only one study49 involving a 15.5km (90-101minutes) running protocol found that women 

used less muscle glycogen (25%) than men49. All of the other trials conducted at 65% 

VO2peak22,32,52,55  involved cycling and thus these findings could provide insight into the role 

exercise mode could have on muscle glycogen utilization, as a running protocol forces the 

recruitment of more muscle mass as the participant has to carry their body weight. 

Furthermore, running protocols are shown to recruit the vastus lateralis muscle to a greater 
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extent than cycling as well as using both concentric and eccentric contractions to perform the 

activity58.  

Alternatively, differences in the training status of the participants in the cycling trials 

as compared with the running trial could also contribute to the differential findings. The trial 

that utilized the running protocol involved highly trained individuals as participants [VO2peak 

(ml*kg FFM-1* min-1): men = 75.5±5.1, women =  65.2±4.9]49, whereas the cycling 

protocols involved recreationally active participants [VO2peak (ml*kg FFM-1* min-1): men = 

52.4±1.7, women =  49.8±2.1]26,55,57,59. A higher training status would mean that the runners 

would rely to a lesser extent on carbohydrate stores during exercise at a given intensity59 and 

would spare glycogen, thus despite being of similar duration to the cycling protocols sex-

based differences were still evident because muscle glycogen stores were less depleted60. 

The duration of the exercise bout could be one of the main reasons that sex 

differences in muscle glycogen (and IMCL) utilization are hard to detect. While both muscle 

and hepatic/adipose fuel stores support ATP production throughout a bout of MICE, muscle 

fuel store breakdown predominates at the onset of exercise29,59, with plasma sources taking 

over once muscle stores have significantly diminished29,59. Therefore, the effects of sex on 

muscle substrate utilization may be masked by the long duration of the exercise bout since 

reliance on muscle sources to produce ATP decreases as exercise duration increases29,59.  

Thus, to examine whether there are inherent differences in the reliance on muscle fuel stores 

during exercise, shorter bouts of exercise should be employed. 

Additionally, inconsistencies in the effects of sex on muscle glycogen utilization 

during exercise are likely due to failing to control for sex hormone fluctuations throughout 

the menstrual cycle, as studies comparing fuel utilization in women during the follicular 
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phase (FP) to that in the luteal phase (LP) have shown that in the LP there is a lesser reliance 

on muscle glycogen during exercisen26. Furthermore, while not significant, there was a trend 

(p = 0.1) for LP women to use less muscle glycogen during exercise as compared with men26. 

However, there was no difference in muscle glycogen utilization during exercise between FP 

women and men26. These findings suggest that muscle glycogen utilization can vary across 

the menstrual cycle and highlights the importance of controlling for menstrual phase when 

conducting sex comparative trials. However, controlling for phase of the menstrual cycle has 

inherent problems as well since the concentration of estradiol and progesterone can 

significantly vary between women during the same period of the menstrual cycle61,62. Of the 

studies that did control for menstrual cycle25,53, only one27 reported estrogen concentrations. 

 Sex differences in CHO metabolism are underpinned by sex differences in mRNA, 

protein content and enzyme activities of enzymes involved in CHO metabolism. Muscle 

glycogen breakdown is facilitated by the enzyme glycogen phosphorylase26. It has been 

shown that glycogen phosphorylase has a lower maximal activity in women compared to 

men suggesting that the process of glycogenolysis is reduced in women39. Additionally, 

phosphofructokinase (PFK) activity, the rate-limiting enzyme of glycolysis that converts 

fructose-6-phosphate to fructose-1,6-bisphosphate, is lower in women compared to men35. 

Together these findings demonstrate that women have a dampened capacity to breakdown 

and oxidize CHO within the muscle. However, women do produce ATP through glycolysis 

during high intensity exercise without compromise, suggesting that the decreased glycolytic 

enzyme activity in women is not a performance detriment, but that women are simply less 

dependent on carbohydrate sources to meet energy demands during moderate intensity 

exercise. 
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1.2.2 Sex Differences in High Energy Phosphate Transfer 

To the best of my knowledge, only three trials have examined sex differences in 

HEPT metabolism.  In one study, young, healthy, untrained participants’ forearm flexor 

muscles underwent a rest-exercise-recovery protocol until exhaustion, which was meant to 

mimic a bout of resistance exercise to failure. It was reported that men utilized more of their 

phosphocreatine (PCr) stores during exercise, however when this usage was normalized to 

power output it was shown that women had a greater PCr breakdown per unit of power63. 

This study also found that at the end of exercise, women preferentially produced ATP using 

aerobic pathways as evidenced by a higher amount of ATP produced by aerobic 

phosphorylation, whereas men relied more heavily on anaerobic energy production as 

evidenced by greater depletion of PCr stores and a lesser increase of ATP produced by 

aerobic phosphorylation63. It is unclear, however, whether men and women were equally 

trained, and the exercise protocol employed is not reflective of a typical exercise bout, and 

thus the results are difficult to interpret and require verification. However, these findings 

suggest that women are better able to switch from anaerobic to aerobic energy production 

and are better able to use aerobic cellular respiration to meet energy demands. Consequently, 

women exhibit an inefficient anaerobic fuel utilization through the depletion of PCr stores, 

which could explain the lower maximal power output produced by women compared to 

men63. These findings suggest that women have a lesser ability to perform single bouts of 

movements requiring high power outputs such as a one repetition max. However, it also 

implies that for exercise bouts requiring a lesser load for a longer time (i.e. LL-HR resistance 

exercise) women may be able to perform more repetitions than males before reaching 

muscular fatigue, a hypothesis supported by several trials64–69. 
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To the best of our knowledge, no other studies have examined sex-based differences 

in HEPT metabolism during resistance exercise. However, two studies have investigated 

these differences during sprint interval training (SIT). While SIT differs from RE due to its 

mode of exercise and relative intensity, it is similar to RE in terms of duration. Therefore, 

understanding how sex influences HEPT metabolism during SIT can help in our 

understanding of how exercise mode and duration influence sex differences in metabolism. 

The two SIT studies were conducted to examine anaerobic metabolism during either a single 

30s Wingate56 or repeated 30s Wingates (3 sprints separated by 20 minutes rest)57. Both 

studies found that glycogen utilization in type I, but not type II, muscle fibres was less in 

women than men during the exercise bout56,57. Additionally, while there was no effect of sex 

on changes in ATP or ATP by-products during exercise56,57,  the study involving repeated 

Wingates found that ATP was higher and IMP was lower in women, as compared with men 

at the onset of the 3rd, but not the 1st sprint57. These differences were the result of sex-based 

differences in the recovery response as during the 20-minute recovery period there was a 

greater decrease in IMP in women, suggesting that women were better able to resynthesize 

ATP from the reanimation of IMP during recovery. Collectively, the findings of these two 

studies suggest that women rely to a lesser extent on glycolysis, further supporting the 

hypothesis that women are better able to initiate aerobic metabolism during exercise. 

Additionally, these findings highlight that the sex-based differences in glycolysis during 

HIIT are not solely due to differences in muscle fibre type distribution as absolute differences 

in metabolism were seen within type I fibres. Furthermore, while men and women rely to a 

similar extent on HEPT during sprint exercise, women have a greater capacity to remove 
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ATP by-products during rest, allowing them to maintain peak power output during 

subsequent sprints, whereas peak power declines in men57. 

1.2.3 Estrogen-Mediated Differences in Metabolism 

Sex differences in substrate utilization during exercise are at least partly due to 

differences in estrogen (E2) between men and women. Animal studies have reported that 

male rats have higher storage and utilization of liver glycogen as compared with female 

rats52. Furthermore, in oophorectomized female rats there is a dose-dependent response of E2 

on the extent of glycogen sparing in both muscle and liver, peaking at 10Pg E270. Moreover a 

10Pg dose of E2 in male rats induced glycogen sparing in muscle, liver, and heart, while 

consequently they were able to run longer while completing more work53. The decrease in 

glucose oxidation for total energy demands must be compensated from another oxidative 

source in order to meet metabolic demands. To accompany the sparing in glycogen, the 

supplemented rats demonstrated a greater affinity for fat oxidation to meet energy demands. 

Male rats supplemented with 10Pg of E2 demonstrated an increase in circulating plasma FA 

as well as a decrease in blood lactate53. These findings, coupled with the evidence 

surrounding glycogen utilization, indicate that E2 treatment shifts the dependence of fuel 

utilization from glycolysis to FFA oxidation to meet exercise energy demands. 

Estrogen supplementation trials have also been conducted in humans with conflicting 

findings27,32,71–73. Differences in findings may be related to differences in dosing strategies 

(low dose to mimic the follicular phase vs high dose to mimic the luteal phase of the 

menstrual cycle) or participants (men vs amenorrhoeic women). In a study where men were 

supplemented with luteal phase equivalents (2 mg/d) of E2 for 8 days 71, CHO oxidation 

decreased by 5-16%, leucine oxidation decreased by 16% and lipid oxidation increased by 22 
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– 44% at rest and during exercise at 65%VO2peak72. Correspondingly, there was a decrease in 

glucose Ra and Rd during exercise compared to placebo27. The trial also noted that E2 

lowered proglycogen and total glycogen concentration compared to placebo, without an 

associated effect on net muscle glycogen use during exercise27. A similar trial administered 

3mg/day of E2 to men for 8 days and found a reduction of glucose Ra and MCR, as well as 

an increase in circulating plasma glucose following 90-minutes of cycling at 65%VO2peak, 

suggestive of a lesser dependence on glucose for oxidation27; however, there was no 

difference in whole-body carbohydrate or fat oxidation during exercise. Furthermore, lower 

dose estrogen supplementation, meant to mimic levels seen in the follicular phase, to men for 

11 days did not influence whole body substrate utilization or muscle glycogen utilization 

during exercise73. However, when low-dose E2 was given to amenorrhoeic females it was 

determined that, although the contribution of plasma glucose and muscle glycogen to total 

energy expenditure was similar across all groups, there was a decrease in glucose rate of 

appearance and rate of disappearance71. The study noted that a decrease of gluconeogenesis, 

epinephrine secretion, and glucose transport were some of the variables that would account 

for the effect of E2 on glucose metabolism71. Together, these findings indicate that E2 can 

modulate fuel utilization during exercise, but that consideration must be given to the dose 

administered as well as the sex of the participants.  

Importantly, the findings of the E2 supplementation trials are unable to determine 

whether it is the increase in E2 or the corresponding decrease in testosterone induced by E2 

that is causing changes in muscle metabolism. Braun et al28 was able to determine that it is 

indeed estrogen that is mediating these effects by conducting a trial where they tested 

exercise substrate metabolism in young men at physiological, low (pharmacological 
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testosterone ablation), and high (testosterone treatment) concentrations32. The study found 

that testosterone had very little effect on substrate utilization during exercise in young men28. 

Therefore, these findings confirm that it is indeed estrogen that is mediating the observed sex 

differences in metabolism during exercise.  

Estrogen has also been found to influence the mRNA and protein content of key 

metabolic enzymes involved in lipid and glucose metabolism28. E2 supplementation to men 

has been shown to increase both PPARD and PPARG compared to baseline35. An increase in 

both these nuclear hormone transcription factors will upregulate enzymatic species related to 

metabolic function and will therefore enhance fatty acid oxidation39. E2 has also been shown 

to increase E-oxidation through increasing the expression of TFP-D35. Mitochondrial FA 

transport has also been increased in men with administration of E2, through an increase in the 

expression of CPTI35. IMCL synthesis is also affected by E2, through an increase in the 

expression of SREBP-1c and mtGPAT35. Finally, cellular glucose uptake is thought to 

increase with E2 through the increased expression of GLUT435. Additional studies are 

needed to elucidate the full extent that E2 is responsible for sex-based differences in 

metabolism, as well as uncover potential sex based-differences that are mediated by E2. 

In summary, the findings of sex comparative trials have shown that women are more 

reliant on fat oxidation during exercise, as compared with men, which results in a sparing of 

endogenous CHO stores. Additionally, women are better able to metabolize fuels through 

aerobic metabolism at the onset of exercise as compared with men and are thus less reliant on 

anaerobic energy production. Whether sex differences in fuel utilization persist during 

resistance exercise, particularly LL-HR exercise, has yet to be examined. 
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Chapter Two: Rationale, Purpose and Hypotheses 

2.0 Study Rationale 

 The population of Canada, as well as most industrialized nations, is aging1. Aging is 

associated with the development of numerous diseasese2–4, such as cardiovascular disease, 

type 2 diabetes and sarcopenia. The higher proportion of older adults highlights the need for 

more streamlined interventions to prevent and combat the development of these diseases. 

Exercise has been prescribed to this population as an intervention meant for either the 

prevention or the rehabilitation of age-associated diseases; however, different modes of 

exercise are needed to induce specific adaptations. For example, MICT is known to improve 

cardiorespiratory fitness5 and insulin sensitivity8, decreasing the risk for cardiovascular 

disease and type 2 diabetes74; however, MICT has little effect on muscle mass, strength and 

function. Alternatively, heavy resistance training can increase muscle mass, strength and 

function17,18,31, but is less effective at improving insulin sensitivity and cardiorespiratory 

fitness. Thus, in order for older adults to prevent/ameliorate aging-associated diseases they 

have to perform multiple modes of exercise, which is time consuming and may decrease 

participation.  

A relatively novel resistance exercise mode, LL-HR resistance exercise, has been an 

area of active interest and it has been shown to induce greater increases in skeletal muscle 

hypertrophic factors20, comparable increases in muscle mass and strength21-23, and impart less 

mechanical strain on joints19 compared to heavy RE. Therefore, this mode of exercise may be 

especially beneficial for older adults as it may prevent/attenuate the development of 

sarcopenia13. Additionally, given that LL-HR requires sets that are longer in duration along 

with less rest and lower intensity, it is likely more aerobic in nature. Aerobic adaptations may 
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be able to manifest during LL-HR to a comparable extent as MICT. Since aging is associated 

with the development of sarcopenia75, T2D76, and CVDs77, LL-HR may represent an optimal 

mode of exercise to prevent “aging-associated” diseases.  Physical activity recommendations 

for older adults include doing both aerobic and resistance exercise74, and LL-HR may allow 

for both modes of exercise to be completed in one, time-efficient session. Since time is one 

of the biggest barriers to physical activity, LL-HR could have a profound effect on meeting 

physical activity guidelines.  

There are well-established sex-based differences in fuel utilization during exercise, 

which are thought to underpin some of the sex-based differences in training-induced 

adaptations (i.e. insulin sensitivity)23,27,49,59. In general, women rely to a lesser extent on 

carbohydrate sources to fuel endurance exercise compared to men, as indicated by the finding 

that women have a lower respiratory exchange ratio (RER)49. The lower RER is at least in 

part due to the finding that women have a lower glucose Ra, Rd, and MCR, suggestive of a 

lesser reliance on hepatic glucose stores26,27,49,51,52. The lower RER may also be due to sex-

based differences in muscle glycogen utilization; however, sex differences in muscle 

glycogen utilization is contentious as some 8,30,33-35, but not all49, studies have found no 

difference in muscle glycogen utilization between men and women during exercise 

Differential findings with respect to muscle glycogen utilization may be due to differences in 

the menstrual phase women were tested8,60-62, the mode of exercise employed8,29,30,33-35, and 

the training status of the participants.  

Anaerobic sources also contribute substantially at the onset of exercise and during 

exercise bouts that are of higher intensity and/or are intermittent in nature9,10. During forearm 

flexor exercise performed to failure, meant to mimic resistance exercise, men used a greater 



 21 

amount of PCr than women36. Although when expressed relative to the unit of power 

produced, women used a greater amount of PCr than men63. These findings suggest that 

during resistance-type exercise women require more PCr to perform identical feats of power, 

thereby suggesting an inefficient utilization of the stored energy source compared to men63.  

Alternatively, studies examining sex differences in  anaerobic metabolism during sprint 

interval exercise found that while men had a greater decrease in muscle glycogen and a 

greater increase in muscle lactate in type I muscle fibres than women, there were no 

differences in HEPT metabolism during spring interval exercise56,57. While collectively these 

findings suggest that men are more reliant on anaerobic systems during exercise irrespective 

of exercise mode, while women are better able to initiate aerobic metabolism, the differential 

findings between studies suggest that sex differences in fuel utilization during exercise may 

be related to exercise mode.  

Men and women do not always respond similarly to exercise training. Indeed, sprint 

interval exercise robustly improves insulin sensitivity in men78, this response is blunted or 

absent in women79. As sex differences in metabolism may underpin differences in training 

adaptations between the sexes, and exercise mode may influence the extent of sex differences 

in metabolism during the exercise bout, it is important that we characterize the fuel 

utilization pattern during LL-HR RE in both men and women to get an understanding of 

potential adaptations this mode of exercise may induce. Therefore, the research conducted in 

this thesis will serve to 1) identify the anaerobic fuel utilization pattern during an acute bout 

of LL-HR resistance exercise and 2) examine the differences in substrate utilization during 

LL-HR resistance exercise between men and women. 
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2.1 Purpose 

 The purpose of the research conducted in this thesis was to characterize the anaerobic 

fuel utilization pattern during an acute bout of LL-HR resistance exercise and determine 

whether sex influenced the fuel utilization pattern. 

2.2 Objectives 

1. To determine the contribution of the HEPT and glycolytic systems to energy 

production during LL-HR RE. 

2. To identify how LL-HR RE influences the phosphorylation status of enzymes 

involved in aerobic and anaerobic metabolism. 

3. To examine whether sex influences the contribution of the HEPT and glycolytic 

systems during LL-HR RE. 

4. To determine if sex differences in HEPT and glycolysis are underpinned by 

differences in protein content of relevant enzymes. 

2.3 Hypotheses  

1. The concentration of creatine, inorganic phosphate, and lactate will increase, and 

muscle glycogen will decrease during LL-HR resistance exercise.  

2. Phosphorylated CK and phosphorylated PDHe1D will decrease during LL-HR RE. 

3. Glycogen will decrease and creatine, inorganic phosphate, and lactate will increase to 

a greater extent in men than women during LL-HR RE. ATP will decrease to a lesser 

extent in men than women during LL-HR RE. 

4. Men will have a higher content of anaerobic glycolytic enzymes (GP, PFK, LDH-M, 

PDHe1D, and PDHK4) as well as HEPT enzymes (CK, and AMPD2) compared to 

women. Men will also have a greater content of transporters responsible for lactate 
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expulsion (MCT4) while women will have a higher content of transporters 

responsible for lactate uptake (MCT1) as well as the ability to convert that lactate to 

pyruvate (LDH-H). 
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Chapter Three: Methods 

3.0 Participants 

Young, healthy men and women (n = 10/sex) participants were recruited. Men and 

women were appropriately matched for habitual training status and maximum aerobic 

capacity relative to fat-free mass [VO2 peak (mL kgFFM-1 min-1)]. Men were excluded if they 

have a VO2peak of 51mLkg-1min-1 or higher. Women were excluded if they have a VO2peak of 

44mLkg-1min-1 or were pregnant or suspected they may be pregnant. The VO2peak limits 

excluded people with excellent VO2peak scores.  Exclusion criteria pertaining to both sexes 

included the presence of chronic health conditions, the inability to complete the single 

exercise session, regular participation in cardiovascular (>3 session week-1) or resistance (>2 

sessions week-1) exercise, having an allergy to local anesthetic, having undergone a barium 

swallow or an infusion of contrast agent in the past 3 weeks, taking prescription anti-

coagulant or anti-platelet medications, the inability to exercise as dictated by the Get Active 

Questionnaire, or having a body mass index of >27kgm-2. Prior to commencing the trial all 

participants had the study explained to them, including advisement of the risks and benefits 

of participation. This study received ethics approval by the University of Waterloo Research 

Ethics Board (REB# 2277) and conformed to all standards for ethical engagement of human 

subjects in research set out in the Canadian tricouncil research policy 

(http://www.pre.ethics.gc.ca/pdf/eng/tcps2/TCPS_2_FINAL_Web.pdf). 

 

 

  

http://www.pre.ethics.gc.ca/pdf/eng/tcps2/TCPS_2_FINAL_Web.pdf
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3.1 Study Design 

 
Figure 2: General chronological overview of study design 

3.1.1 General Study Outline 

Upon enrollment into the study, participants underwent a VO2peak test on a cycle 

ergometer. This test served as a normative value to appropriately match men and women 

with respect to aerobic power and thus enable the ability to elucidate sex-based differences. 

In order to appropriately match men and women based on training status the VO2peak data was 

normalized relative to fat-free mass80. In order to determine fat-free mass participants 

underwent a measure of body composition using a full-body dual energy x-ray 

absorptiometry (DXA) scan using a Hologic Discovery W (Hologic, Mississauga, ON, CA). 

Once the scan was completed, the image was analyzed using QDR APEX software (Version 

4.5.3, Hologic, Mississauga, ON, CA) by a trained technician. Upon completion of the 

VO2peak test, participants were given 3-day food logs, as well as in depth physical activity log 

for seven days along with a pedometer to track steps within the day. The physical activity 

logs allowed for assessment of habitual physical activity. The food logs allowed for 

comparison of habitual dietary intake between the sexes, by comparing macro and 

micronutrient profiles.  

On two separate occasions participants underwent assessment of their one repetition 

maximum (1-RM) with each session separated by at least 72 hours. 1-RM was assessed for 
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bench press, leg extension, lat pulldown, hamstring curl, shoulder press, and leg press. 

Official 1RMs were the maximal lift between the 2 attempts. These values served to 

determine the appropriate load for the low-load, high-repetition exercise bout.  

On the morning of testing, at least 72 hours after performing any moderate-vigourous 

physical activity, participants arrived at the lab following an overnight fast (12 h). A muscle 

biopsy was taken from the vastus lateralis and a blood sample collected from the antecubital 

vein. After a general aerobic warmup of five minutes, the low-load high repetition exercise 

began. Once the exercise culminated, the participant immediately had another muscle and 

blood sample collected. 

3.1.2 Detailed study procedures 

3.1.2.1 VO2peak 

Maximal oxygen uptake was measured using a Vmax system (Vyaire Medical, 

Mettawa, IL, USA) on a cycle ergometer (Ergoline, Bitz, Germany). Participants began by 

warming up at 50W for 2 minutes. A finger prick was administered using a lancet and lactate 

was analyzed every minute throughout the test using a Lactate Scout Plus (EKF, Penarth, 

England). Heart Rate was collected every 30 seconds using a Polar Heart Rate monitor 

(Polar, Lachine, QC, CA). A rating of perceived exertion (RPE), using a Borg scale (6-20) 

was also collected every minute of the test. Programmed into the ergometer was our ramp 

protocol consisting of a 1W increase every 2 seconds, beginning at 50W and ongoing until 

the participant reached volitional failure. Breathe-by-breathe analysis was collected by the 

Vmax system and averaged for every 30 seconds in order to determine VO2peak.  
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3.1.2.2 One Repetition Max Testing 

Each participant completed the 1-RM testing on 2 separate occasions separated by at 

least 72 hours, and the highest weight achieved between the attempts was used to calculate 

the exercise weight.  Participants underwent 1-RM testing for the following resistance 

exercises; bench press, leg extension, lat pulldown, hamstring curl, shoulder press, and leg 

press (Life Fitness, Rosemont, IL, USA). The session began with a five-minute general 

aerobic warmup before transitioning into the resistance exercises. Heart rate was gathered 

after every set of resistance exercise, using a polar heart rate monitor. RPE was determined at 

the same time intervals. Each exercise began with a conservatively chosen warmup weight, 

based on the participant’s training familiarity, for a 10-repetition warmup. Based on the RPE 

following the first warm up set, 10-20% of weight was added for the subsequent set, which 

served as a second warmup and consisted of 3-5 repetitions. Following this final warmup set, 

additional weight was added as the participant worked towards their 1-repetition max. There 

was 2 minutes of rest between each of the sets to ensure PCr pool replenishment. A qualified 

spotter was present to ensure the safety of the participant as well as the quality of the 

repetitions being performed. 1-RM was determined within 5 attempts and was used to 

determine the load for each exercise that was performed during the low-load high-repetition 

exercise bout.  

3.1.2.3 LL-HR Protocol 

The low-load high repetition resistance exercise bout consisted of lifting a load 

corresponding to 30% 1-RM for 20-25 repetitions for each exercise in a circuit format. 

Participants completed 3 sets of every given exercise in a circuit format (Chest Press, Leg 

Extension, Lat Pulldown, Hamstring Curl, Shoulder Press, Leg Press), with each exercise 
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being separated by 30 seconds of rest and each round of the circuit separated by 2 minutes of 

rest. The final set of each exercise continued to volitional failure. At rest and throughout the 

exercise session a finger prick blood sample was taken every 3 minutes for determination of 

blood lactate concentration using a Lactate Scout Plus (EKF, Penarth, England).  

3.1.2.4 Muscle Sample Collection 

Before and after the LL-HR protocol participants underwent a muscle biopsy of the 

vastus lateralis using a custom suction-modified Bergstrom needle. The first sample obtained 

was immediately placed in liquid nitrogen prior to removing the sample from the needle to 

allow for determination of muscle glycogen and metabolite concentrations. The second 

sample collected was dissected free of fat and connective tissue and one piece was snap 

frozen in liquid nitrogen and stored at -80o C for analysis of protein content of enzymes 

related to anaerobic and aerobic energy metabolism. The other piece was mounted for 

determination of muscle fibre type. 

3.2  Analysis 

3.2.1 Western Blot Analysis  

 Muscle samples for Western Blot analyses were homogenized in ice cold 25mM Tris 

buffer (25mM Tris, 0.5% (v/v) Triton X-100, and protease/phosphatase inhibitor tablets 

(Roche Diagnostics, Laval, QC, Canada)). Muscle samples were transferred into a prechilled 

homogenization Biopur Eppendorf (Eppendorf, Mississauga, ON, Canada) and 

homogenization buffer was added at a ratio of 10PL buffer to 1mg of muscle. A 

homogenization bead (Qiagen, Toronto, ON, Canada) was added to the Eppendorf, and 

samples were homogenized using TissueLyser II (Qiagen, Toronto, ON, Canada) run at 20 

cycles seconds-1 for 40 seconds. Once the sample were sufficiently homogenized, samples 
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were spun at 10,000G for 10 minutes at 4oC. Supernatant was separated and allocated into a 

prechilled Eppendorf, while the pellet was frozen for potential use in analyses. A 

bicinchoninic acid (BCA) assay was used to determine the total protein content of each 

sample. Subsequently, samples were prepared in Laemmli buffer (0.5M Tris-HCl, glycerol, 

10% SDS, 1% bromophenol blue, E-mercaptoethanol, and ddH2O) and stored at -80oC until 

western blotting analysis began. 

Using SDS-PAGE and western blotting, principle metabolic proteins were analyzed. 

An equal amount of protein (10 Pg) of each sample was run on 4-15 % Criterion TGX Stain-

Free protein gels (BioRad, Hercules, CA, USA) for 45 minutes at 200 volts. Protein ladders 

(Precision Plus Protein Standard, BioRad, Hercules, CA, USA) and a standard curve (pooled 

from all samples) were run on every gel to induce comparative power. Proteins were 

transferred to a PVDF membrane using the Trans-Blot Turbo Transfer System (BioRad, 

Hercules, CA, USA). Total protein and visual confirmation of protein transfer was done pre 

and post membrane transfer, respectively, using a Chemidoc MP (BioRad, Hercules, CA, 

USA). Blocking of the membranes was done for 2 hours in either 5% bovine serum albumin 

(BSA) in 1X Tris-buffered saline and Tween 20 (TBST) or 5% skim milk in 1X TBST to 

ensure the optimization of the blocking, detailed in Table 1. Membranes were kept at 4qC for 

12 hours in primary antibody at 1:1 000 – 10 000 dilutions as optimal for each antibody in 

1X TBST (Table 1). After the 12-hour period, the membranes were washed 5 times for 3 min 

with 1X TBST to remove excess primary antibody before the appropriate secondary antibody 

(1: 20,000) was added. Secondary antibody was incubated with the membrane at room 

temperature for 1 hour. Afterwards, the membrane was imaged one more time using 

chemiluminescence Super-Signal West Dura Extended Duration Substrate (Thermo Fisher, 
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Scientific, Waltham, MA, USA) on the Chemidoc imaging system (BioRad, Hercules, CA, 

USA). Bands were quantified using ImageJ (Version 1.51a, National Institute of Health, 

USA) and protein content was normalized using the standard curve obtained from the gel. 

The list of antibodies and their specific information can be found in Table 1. 

Table 1. Antibodies for western blot analysis with the specifics for blocking, primary 
antibody, and secondary antibody incubations. 

Antibody  Provider Blocking 
Agent 

Primary 
Antibody 
Dilution 

Secondary 
Antibody 
Dilution  

GP Invitrogen 

5% Skim Milk 
in 1X TBST 

1:2 000 1:5 000 
PFK Abcam 1:10 000 1:10 000 
LDH-H Abcam 1:1 000 1:5 000 
LDH-M Abcam 1:4 000 1:5 000 
PDH-E1D Invitrogen 1:1 000 1:5 000 
PDHK4 Abcam 1:1 000 1:5 000 
CK Abcam 1:1 000 1:5 000 
AMPD2 Santa Cruz 1:2 000 1:10 000 
MCT1 Abcam 1:1 000 1:5 000 
MCT4 Abcam 1:2 000 1:5 000 

Phospho-CK Abcam 
5% BSA in 1X 

TBST 

1:4 000 1:10 000 

Phospho-
PDHE1D Abcam 1:3 000 1:10 000 

 
3.2.2 Muscle Glycogen and Metabolite Assays 

 Muscle glycogen and metabolite concentrations were determined using commercially 

available kits (Table 2). In order to determine muscle metabolite and glycogen 

concentrations, muscle samples were homogenized in 25mM Tris buffer with 0.05% Triton 

X using TissueLyser II (Qiagen, Toronto, ON, Canada). Immediately after homogenization, 

samples were centrifuged for 10 minutes at 15,000g at 4oC, and the supernatant was 

separated. A deproteinization procedure was then completed. 4M PCA was added to each 

sample until a concentration of 1M PCA was achieved, samples were centrifuged for 5 
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minutes at 15,000g at 4oc, and the supernatant removed. 2M KOH was added to each sample 

until the KOH was 34% of the final volume of the supernatant, samples were centrifuged for 

3 minutes at 15,000g at 4oc and the supernatant successfully deproteinized.  

 Each metabolite assay was done in an identical manner with the differences being the 

enzyme reagent mix and the enzyme reaction mix that was used. The composition of each of 

these mixes remains unknown, as the proprietary blends are the creation of the manufacturer. 

Each sample well was loaded with 10Pl of processed muscle sample and brought to volume 

with 40Pl of enzyme reagent mix. 50Pl of enzyme reaction mix was added to each of the 

wells to begin their respective reactions. After a 30-minute incubation period, each plate was 

read at their respective wavelength and metabolite concentration analyzed. Each metabolite 

kit, and their respective wavelength is summarized in table 2. 

Table 2. Metabolite of interest, assay kit utilized, and wavelength used for reading 

Metabolite of Interest Colourimetric Assay Kit Used Wavelength 

Glycogen Glycogen Assay Kit II (ab169558) 450nm 

Pyruvate Pyruvate Assay Kit (ab65342) 570nm 

Lactate L-Lactate Assay Kit (ab65331) 450nm 

Creatine Creatine Assay Kit (ab65339) 570nm 

ATP ATP Assay Kit (ab83355) 570nm 

Phosphate Phosphate Assay Kit (ab65622) 650nm 
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3.2.3 – Immunohistochemical Staining 
 

Using muscle samples preserved in OCT, serial sections of 10µm thick samples were 

cut using a cryostat (Thermo Electronic, MA, USA) and mounted on slides to be analyzed. 

Blocking solution (10% goat serum, 90% 1X PBS) was aliquoted over the sections (100µl) 

and allowed to incubate at room temperature for 1 hour. After the incubation, 100µl of each 

1o antibody (table 3) was aliquoted to cover the cross sections. Muscle samples with 1o 

antibody were allowed to incubate overnight in the dark (~18hours). Samples underwent 3 x 

5-minute washes using 1X PBS in the dark. Samples were allowed to dry and subsequently 

incubated with the appropriate 2o antibodies diluted 1:500 in 10% goat serum and 1x PBS for 

1 hour in the dark. At the end of the incubation, slides were once again washed using 3 x 5-

minute washes using 1X PBS in the dark. Slides were allowed to dry, and 15µl of Prolong 

was applied over all of the sections and mounted with a #1 coverslip. In order to reach peak 

fluorescence, slides were allowed to sit in the dark for 18 hours. The slides were imaged in 

the dark under the microscope (Zeiss, Oberkochen, Germany) on the highest intensity setting 

and were captured using the Zen System (Zeiss, Oberkochen, Germany) computer program 

using the ‘Image Processing’ tab for analysis. Muscle fibre type and cross-sectional area 

were determined using Image J with an average of 500 fibres/sample analyzed. 

Table 3. Antibodies, dilution factors, volumes to be added and the immunofluorescent colour 
of each antibody for the fibre typing protocol 

MHC 1˚ 
Antibody 

1˚ 
Dilution 
Factor 

2˚ 
Antibody 

2˚ 
Dilution 
Factor 

Colour 

I BA-F8 1:50 IgG2b 1:500 Blue 

IIa SC-71 1:600 IgG1 1:500 Absence of Colour 

IIx 6H1 1:100 IgM 1:500 Red 



 33 

3.3 Statistical Analyses 
 

Baseline differences between groups was assessed using a non-paired t-test in SPSS 

(version 25, IBM, Armonk, NY, USA). 2-way mixed model ANOVA with sex as the 

between variable (2 levels, male/female) and time (2 levels, pre/post exercise) as the within 

variables were used to determine the effects of sex and exercise on all other experimental 

variables using SPSS. Post-hoc analyses were conducted using a Tukey’s HAD test where 

appropriate. Linear regression analysis was used to determine the influence that muscle fibre 

type distribution had on the metabolic changes found in the study using GraphPad Prism 

(version 8.3.0, San Diego, CA, USA). Significance was set at P < 0.05.  
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Chapter Four: Results 
 
4.1 Participant Characteristics 
 
 Baseline characteristics were different between the two groups with men having a 

greater height (p=0.0014, table 4), weight (p=0.0169, table 4), and VO2 peak relative to total 

body mass (p=0.0017, table 4) compared to women. Women had a body fat percentage 

compared to men (p=0.0002, table 4). Importantly, when expressed relative to fat-free mass, 

men and women had comparable VO2 peak values (p=0.2839, table 4). 

Table 4. Participant characteristics 
  Men Women p Value 

Age (y) 22 + 1 21 + 1 0.68 
Height (cm) 178.4 + 2.40 164.3 + 2.90 0.001 
Weight (kg) 74.7 + 3.2 62.6 + 3.2 0.017 
BMI (kg/cm2) 23.8 + 1.0 23.7 + 10 0.926 
% BF 22.2 + 1.6 33.5 + 1.7 0.001 
VO2peak (ml O2/min/kg) 43.7 + 1.8 35.6 + 1.2 0.002 
VO2peak (ml O2/min/kg FFM) 59.7 + 1.7 56.8 + 2.0 0.284 

Data are means ± SEM. BMI - body mass index, % BF - percent body fat, FFM – fat free 
mass. 
 
 Baseline one repetition max measurements revealed that men had significantly higher 

1RMs than women for chest press (p = 0.002, table 5), shoulder press (p = 0.002, table 5), lat 

pulldown (p < 0.001, table 5), knee extension (p = 0.007, table 5), and hamstring curl (p < 

0.001). Additionally, men had a strong trend to have a higher leg press 1RM (p = 0.062). 

These differences continued to exist when 1RM was normalized to fat free mass for chest 

press (p = 0.008), shoulder press (p = 0.029), and lat pulldown (p = 0.046). However, there 

was no significant difference for 1RM/FFM for leg press (p = 0.621), knee extension (p = 

0.643), and hamstring curl (p = 0.103). 
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Table 5. Average 1 RM values for 10 men and 10 women participants 
    Men Women p Value 

Chest Press 
Absolute (lbs) 147 + 17 76 + 8 0.002 
Relative to (FFM) 1.20 + 0.1 0.89 + 0.1 0.008 

Shoulder Press 
Absolute (lbs) 149 + 18 79 + 7 0.002 
Relative to (FFM) 1.23 + 0.1 0.94 + 0.1 0.029 

Lat Pulldown 
Absolute (lbs) 167 + 12 102 + 10 0.001 
Relative to (FFM) 1.39 + 0.1 1.20 + 0.1 0.046 

Leg Press 
Absolute (lbs) 377 + 37 278 + 33 0.062 
Relative to (FFM) 3.11 + 0.2 3.26 + 0.3 0.621 

Knee Extension 
Absolute (lbs) 209 + 15 143 + 16 0.007 
Relative to (FFM) 1.74 + 0.1 1.67 + 0.1 0.643 

Hamstring Curl 
Absolute (lbs) 160 + 12 103 + 70 0.001 
Relative to (FFM) 1.33 + 0.1 1.22 + 0.1 0.103 

Data are means ± SEM. 
 
Nutritional information from the 3-day food logs revealed no statistical differences between 

men and women for absolute energy and macronutrient intake (table 6). There was a strong 

trend however, for men to consume more energy (p = 0.07) than women. Additionally, there 

was a strong trend for men to consume more protein than women (p = 0.06). However, when 

normalized to % of daily energy intake and to body weight, protein intake was similar 

between men and women (p = 0.41 and p = 0.68, respectively) There was no difference in % 

carbohydrate or fat intake relative to energy intake.  

Table 6. Dietary intake for 10 men and 10 women participants 
    Men Women p Value 

Energy (kcal)    1791 + 104 1550 + 670 0.07 
Protein 
              

Absolute (g) 85 + 9 65 + 3 0.06 
% of Daily Kcal 17 + 1 19 + 2 0.41 

  g/kgBW/d 1.61 + 0.1 1.75 + 0.1 0.68 

Fat 
Absolute (g) 72 + 7 61 + 5 0.18 
% of Daily Kcal 35 + 2 36 + 2 0.71 

Carbs  
Absolute (g) 207 + 16 194 + 11 0.51 
% of Daily Kcal 0.50 + 2.0 47 + 3 0.3 

 
Data are means ± SEM. BW: body weight, d: day 
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4.2 LL-HR Acute Exercise Bout 
 
          During LL-HR there was a trend for women to complete more repetitions during the 

final set of each exercise compared to men (p = 0.094, figure 3). However, when the total 

work of exercise was standardized to fat-free mass, both men and women completed an 

identical volume of work (p = 0.774, figure 3). Lactate at the point of failure did not differ 

between men and women (p=0.183). 
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Figure 3: Representation of A) number of reps to failure during the last set B) exercise 
volume per kg of fat-free mass, and C) lactate concentration at failure during an acute bout of 
low load, high repetition resistance exercise. Data are reported as the mean ± SEM. Analysis 
done by independent T-Test. 



 38 

4.3 Changes during LL-HR Exercise Bout 
 
 As expected, there was an increase in heart rate (p <0.001, figure 4 A), RPE (p < 

0.001, figure 4 B), and lactate (p < 0.001, figure 4 C) over the course of the exercise bout 

with no differences between men and women. Additionally, there was no difference in the 

AUC for heart rate (p = 0.928), RPE (p = 0.445), or lactate (p = 0.235) between men and 

women. The percentage of heart rate max was calculated for each set of the circuit and was 

found that men worked at 65%HRmax, 67%HRmax, and 70%HRmax during sets 1, 2, and 3, 

respectively. With respect to women, they worked at 69%HRmax, 80%HRmax, and 85%HRmax 

during sets 1, 2, and 3, respectively. Therefore, women worked at a significantly higher 

percentage of their heart rate max for set 2 (p = 0.002) and set 3 (p = 0.003), but not set 1 (p 

= 0.26) than men. 
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Figure 4: A) Heart rate, B) rating of perceived exertion, and C) blood lactate over the course 
of a LL-HR exercise bout. Data are reported as the mean ± SEM for 20 participants. Analysis 
done by AUC calculation 
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4.4 Contribution of HEPT to energy production 
 
4.4.1 Sex differences in the change in HEPT metabolites 
 
Creatine 
 

At baseline creatine concentration did not differ between men and women (p = 0.747, 

figure 5 A). Creatine increased during LL-HR in men, but not women (p = 0.026, figure 5 A). 

When expressed relative to baseline creatine content, creatine increased by 22% in men and 

decreased by 3% in women (p = 0.05).  

ATP 

Overall men had a higher ATP concentration than women (p = 0.01, figure 5 B). 

During LL-HR ATP concentration decreased in both men and women (p < 0.001, figure 5 B), 

with no difference in the extent of the decrease between the sexes (p = 0.352, figure 5 B). 

However, when expressed relative to baseline ATP content there was a tendency for the 

percent change in ATP to be greater in women (-39%) than men [-18%, (p = 0.09)].  

Inorganic phosphate 

Inorganic phosphate levels were higher in men than women (p = 0.007, figure 5 C). 

Phosphate levels did not change significantly with exercise in either sex (p=0.492, figure 5 

C).  
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Figure 5: A) Creatine, B) ATP, and C) inorganic phosphate content of skeletal muscle in 
male and female participants prior to and following LL-HR exercise. Data are reported as the 
mean ± SEM for 20 participants. Data analysis by mixed model ANOVA* p = 0.026, ** p < 
0.001, + p = 0.01, and ‡ p = 0.007. 
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4.4.2 Sex differences in protein content of HEPT enzymes 

We also examined whether there were differences in the protein content of enzymes 

involved in HEPT metabolism. At rest there were no differences between men and women in 

the protein content of creatine kinase (p = 0.370, figure 6 A) or AMP deaminase 2 (p = 

0.159, figure 6 B). At baseline phosphorylated CK was similar between men and women (p = 

0.422, figure 6 C). The content of phosphorylated CK decreased following LL-HR in both 

men and women (p<0.001, figure 6 C)., but to a greater extent in women as compared with 

men (p=0.023, figure 6 C).   
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Figure 6: A) CK, B) AMPD2, and C) Phosphorylated CK protein expression of skeletal 
muscle from male and female participants. Data are reported as the mean ± SEM for 20 
participants. Analysis by independent T-test for CK and AMPD2. Analysis by mixed model 
ANOVA for phosphorylated CK. * p < 0.001 and ** p = 0.023. 
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4.5 Contribution of glycolysis to energy production during LL-HR 
 
4.5.1. Sex differences in glycolytic metabolites 
 
Muscle glycogen 

Muscle glycogen content was higher in men than woman (p = 0.001, Figure 7 A). 

With respect to glycogen breakdown, exercise decreased muscle glycogen content in both 

men and women (p < 0.001, figure 7 A), with men tending to utilize more glycogen than 

women (p=0.08, figure 7 A). However, when expressed as a percent change from baseline 

muscle glycogen content there was no difference in glycogen utilization during exercise. 

Muscle pyruvate  

Pyruvate was not different between men and women (p=0.234, figure 7 B), nor was 

there a significant change during LL-HR (p=0.672, figure 7 B). Additionally, there was no 

difference in the change in pyruvate during exercise between men (593%) and women [420% 

(p=0.766)]. 

Muscle lactate 

Muscle lactate was greater in men as compared with women (p = 0.019, figure 7 C). 

There was no overall effect of LL-HR on muscle lactate concentration (p=0.339, figure 7 C); 

however, there was a trend for muscle lactate to increase in men, but not women during LL-

HR (p = 0.09, figure 7 C). Furthermore, when expressed relative to baseline muscle lactate 

content there was a tendency for the percent change in lactate to be greater in men (35%) 

than women [-9%, (p = 0.07)]. 
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Figure 7: Glycogen, pyruvate, and lactate content of skeletal muscle from male and female 
participants from both pre and post LL-HR exercise bout. Data are reported as the mean ± 
SEM for 20 participants. Analysis by mixed model ANOVA. * p = 0.001 and ** p < 0.001. 
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4.5.2 Sex differences in the protein content of glycolytic enzymes 

As with the HEPT system we also probed for differences in protein content of 

enzymes related to glycogen/glucose metabolism (Figure 8). There were no differences in the 

protein content of glycogen phosphorylase (p = 0.517, figure 8 A) or phosphofructokinase (p 

= 0.372, figure 8 B). We also determined the protein content of enzymes related to the 

metabolic fate of pyruvate. There were no differences in the protein content of PDHK4 (p = 

0.180 figure 8, C), PDHE1α (p = 0.741, figure 8 D), LDH-M (p = 0.415, figure 8 E), or 

LDH-H (p = 0.525, figure 8 F), MCT-1 (p = 0.241, figure 8 G) or MCT-4 (p = 0.940, figure 8 

H). Furthermore, there was no difference between men and women in the phosphorylation 

status of PDHE1α (p = 0.72, Figure 8 I), but phosphorylated PDHE1α did decrease during 

LL-HR in both men and women (p < 0.001, figure 8 I) with no difference between the sexes 

(p = 0.45, figure 8 I).  
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Figure 8: A) GP, B) PFK, C) PDHK4, D) PDHE1a, E) LDH-M, F) LDH-H, G) MCT1, H) 
MCT4, and I) Phosphorylated P-PDHE1a protein expression in skeletal muscle from male 
and female participants. Data are reported as the mean ± SEM for 20 participants. Analysis 
by independent T-tests except for P-PDHE1α which was analyzed by mixed model ANOVA. 
* denotes a significance of p < 0.001. 
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4.6 Sex differences in muscle fibre type 
 

Women had a significantly greater percentage of type I muscle fibres as compared 

with men p = 0.07, figure 9 A). Men had a significantly greater percentage of type II muscle 

fibres as compared with women (p = 0.09, figure 9 A); however, this was not due to a 

specifically greater amount of type IIa (p = 0.10, figure 9 B) or type IIx fibres (p = 0.19, 

figure 9 B). A representative image is seen in figure 9, C.  

Correlational analyses was conducted to examine the influence of fibre type 

distribution on muscle metabolism during LL-HR The absolute  (r = -0.50, p = 0.02 , figure 

10 A)  and relative  (r = -0.53, p = 0.02, figure 10 B) changes in lactate were negatively 

correlated with type I fibre content. Additionally, the absolute (r = -0.52, p = 0.02, figure 10 

C) relative (r = -0.48, p = 0.03, figure 10 D) decreases in P-CK were also negatively 

correlated with type I fibre content. Finally, the absolute change (r = -0.53, p = 0.02, Figure 

10 E), but not the relative change in pyruvate was negatively correlated with type I fibre 

content. Additionally, there was a negative relationship between type I fibre content and the 

content of PDHK4 (r = -0.49, p = 0.02, figure 10 F) and the content of MCT1 (r = -0.47, p = 

0.04, figure 10 G). There was no relationship between type I fibre content and any of the 

other metabolites (Figure 11 A-D) or proteins measured in the current trial (Figure 11 E-N). 
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Figure 9: A) Relative distribution of type I and II muscle fibers expressed as a percentage of 
total number, B) Relative distribution of type I, IIa and IIx muscle fibres expressed as a 
percentage of total number. Data are reported as the mean ± SEM for 20 participants. 
Analysis by independent T-test. C) Representative image of muscle cross section. *  p = 
0.007 ** p = 0.009. 
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Figure 10: Linear regression analysis showing the relationship between type I muscle fibre 
content and A) Absolute change in lactate concentration (r = -0.50, p = 0.02), B) relative 
change in lactate concentration (r = -0.53, p = 0.02), C) absolute changes in P-CK content (r = 
-0.52, p = 0.02), D) relative changes in P-CK content (r = -0.48, p = 0.03), and E) absolute 
changes in pyruvate concentration (r = -0.53,p = 0.02). 
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Figure 11: Depiction of linear regression analysis. Relative changes in A) creatine (r = -0.27, 
p = 0.25), B) ATP (r = -0.28, p = 0.24), C) phosphate (r = -0.37, p = 0.11), D) glycogen (r = -
0.23, p = 0.13), E) AMPD2 (r = -0.32, p = 0.17), F) PFK (r = 0.20, p = 0.40), G) CK (r = 
0.08, p = 0.73), H) GP (r = 0.04, p = 0.85), I) PDHE1a (r = 0.02, p = 0.95), J) LDH-M (r = -
0.18, p = 0.45), K) LDH-H (r = 0.02, p = 0.94), L) MCT4 (r = -0.09, p = 0.69), M) P-CK (r = 
0.30, p = 0.21), and N) P-PDHE1a (r = 0.34, p = 0.15). 
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Chapter Five: Discussion 

5.1 Overall Summary 
 

We found that after an acute bout of LL-HR resistance exercise creatine increased in 

men, but not women, and muscle glycogen decreased in both men and women with a 

tendency for this decrease to be greater in men. Furthermore, muscle lactate was higher in 

men than women.  Additionally, the phosphorylation status of both CK and PDHe1D 

decreased during LL-HR, with women having a greater decrease in the phosphorylation of 

CK. Together these findings suggest that men had a greater reliance on anaerobic energy 

systems while women were able to initiate aerobic metabolism to meet the demands of this 

exercise. 

5.2 Reliance on HEPT and glycolysis during LL-HR resistance exercise 
 
5.2.1. Reliance on the HEPT system during LL-HR resistance exercise  
 

Creatine concentration increased in men during LL-HR, suggestive of the utilization 

of phosphocreatine stores to meet energy demands. This is in disagreement with previous 

work done in the field that found no changes in creatine or phosphocreatine concentration 

during LL-HR resistance exercise performed at 20% 1RM46–48, suggesting minimal 

contribution from the HEPT system. Importantly, these three studies all involved protocols 

at a lower exercise intensity (20% 1RM) and did not go to volitional failure, thus the exercise 

stimulus may have been too low to induce meaningful changes in HEPT metabolite 

concentrations. We also found that LL-HR RE a reduction of the phosphorylation status of 

creatine kinase, which further indicates that the HEPT system was upregulated during LL-HR 

resistance exercise at 30% 1RM. Thus, while the HEPT system does not seem to contribute 
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to energy production during LL-HR resistance exercise performed at 20% 1RM, it does 

contribute significantly, at least in men, at 30% 1RM. Thus 30% 1RM may represent an 

intensity threshold whereby HEPT contributes to exercise energy production during 

resistance exercise.  

Alternatively, it may be that RE needs to be performed to volitional failure in order 

for the HEPT system to contribute to energy production during LL-HR resistance exercise. 

The Henneman size principle highlights the sequential recruitment of skeletal muscle fibers 

to complete a given task, with smaller motor units being recruited first and larger motor 

units being recruited as the force requirement to complete a task increases81–84.  At the 

onset of LL-HR resistance exercise type I muscle fibers are recruited first as they are the 

smallest84. Type I fibres are fatigue resistant but will fatigue over time. Thus, as the set 

progresses and type I fibres begin to fatigue, type II fibres will be recruited. While the HEPT 

system produces ATP in both type I and type II fibres, the contribution of HEPT may be more 

readily observed when type II muscle fibers are recruited. In the current study since the 

bout went to volitional failure it can be assumed that type II muscle fibres were recruited45. 

Indeed, findings from a training study using the same training regime (30% 1RM to failure) 

that was used in the current trial found that there was hypertrophy of both type I and type 

II muscle fibers thereby suggesting that both types of muscle fiber were recruited for the 

completion of the exercise bout17,45. Since type II muscle fibers are more anaerobic, it 

follows logic that their recruitment may be necessary to observe the contribution of the 

HEPT system. Using an exercise protocol that had a slightly higher intensity coupled with 
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exercising to volitional failure are likely the factors that lead to us observing an effect of LL-

HR RE on HEPT metabolites; whereas this was not found in the previous trials46–48. 

5.2.2. Reliance on muscle glycogen during LL-HR resistance exercise 
 
 Muscle glycogen also contributed substantially during the LL-HR resistance exercise 

bout. Studies investigating muscle glycogen utilization during MICE23,26,49,54,55,57,85 and heavy 

RE42,43,86 have found that glycogen is significantly diminished after the exercise bout. 

Interestingly, MICE studies have found that the extent of glycogen depletion appears to 

reach a plateau at approximately 30-50% of its initial concentration23,26,49,54,55,57,85. This is 

likely a function of substrate utilization changing from myocellular stores of substrate 

(skeletal muscle glycogen) to peripheral sources of substrate (liver glycogen) as the muscle 

sources are significantly lowered29,59. In fact, our study found that during our ~30-minute 

resistance exercise bout, skeletal muscle glycogen stores were decreased by an average of 

54%. Therefore, although studies using MICE protocols were longer (~90 minutes) than the 

exercise bout employed in the current study, muscle glycogen stores were similarly 

depleted. The similar utilization of muscle glycogen in our 30-minute protocol as compared 

to 90 minutes of MICE suggests that this mode of exercise is more glycolytic than MICE.  

 With respect to glycogen utilization during heavy RE, studies have found that 

glycogen utilization ranges from 26-33% of initial glycogen stores42,43,86. Interestingly heavy 

RE appears to have a lesser reliance on muscle glycogen than LL-HR as in our study we 

found that participants used ~54% of initial muscle glycogen content. It is likely that the 

reason for the lesser reliance on muscle glycogen during heavy RE pertains to differences in 

the amount of rest between sets employed in our study as compared with the 
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aforementioned heavy RE studies. The heavy RE protocols employed in these trials had 

participants lift ~75% of their 1RM for 8-12 repetitions with 60-90 seconds of rest between 

bouts for 30 minutes42,43,86. It is likely that participants reached volitional failure during 

these exercises, but rest times were significantly longer than what was employed in our 

trial, thus it is likely that more PCr replenishment occurred between sets and that HEPT was 

relied on to a greater extent to produce ATP. Moreover, total body exercise volume was 

greater during the LL-HR bout performed in the current trial compared with the heavy RE 

trials. Therefore, due to the continuous nature and greater exercise volume, LL-HR appears 

to induce greater muscle glycogen utilization than heavy RE. Although, it would be 

interesting for further studies to compare glycogen utilization per set between LL-HR and 

heavy RE.  

 The LL-HR resistance exercise bout is aerobic in nature as evidenced by the finding 

that the content of phosphorylated PDHe1D was significantly lower after the exercise bout. 

To the best of my knowledge, the phosphorylation status of PDHe1D has not been 

investigated during heavy RT therefore we are unable to draw comparisons between LL-HR 

and heavy RE in this regard. When dephosphorylated, PDHe1D removes its inhibition on the 

PDH thereby allowing for more pyruvate to flux to acetyl-CoA where it can undergo 

complete oxidation. Therefore, since there was an increase in the content of 

dephosphorylated PDHe1D, more pyruvate could flux towards aerobic metabolism. These 

findings further support the aerobic nature of LL-HR. However, since lactate concentration 

tended to increase in both muscle and blood, it is apparent that this mode of exercise was 

not completely aerobic. Interestingly, heavy RE results in an on average 7-fold increase in 
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muscle lactate concentrations42,43,86, while MICE results in an on average 1.5-fold increase in 

muscle lactate23,26,49,54,55,57,85. Our findings using LL-HR RE resulted in an average 1.2-fold 

increase in muscle lactate, therefore LL-HR may be as aerobic an exercise mode as MICE. 

Given these findings it is apparent that future trials need to examine aerobic metabolism 

during LL-HR to test this hypothesis.  

5.3 Sex Based Differences in Metabolism 
 
5.3.1 High Energy Phosphate Transfer System 
 

With respect to the reliance on the HEPT system, we found that men had a greater 

increase in Cr during exercise than women, suggesting that they utilized more PCr than 

women. This is in agreement with two other studies that investigated sex-based differences in 

anaerobic energy systems36,56 and found that men are more reliant on PCr to meet the 

demands of the exercise than women. However, our findings are in contrast with two studies 

involving sprint exercise that found no sex differences in the extent of PCr utilization during 

exercise56,57. Taken together the findings of these studies suggest that exercise mode may 

influence whether sex affects HEPT metabolism as both studies that involved resistance 

exercise protocols found a sex difference; whereas the two studies that involved sprint 

cycling did not.   

Interestingly, while phosphorylated CK decreased in both men and women during 

exercise, it decreased to a greater extent in women. When dephosphorylated, CK prefers to 

use PCr to produce Cr and ATP87, thus the finding that phosphorylated CK decreased to a 

greater extent in women suggests that women have a greater capacity to utilize PCr to 

produce ATP during exercise than men. This finding is in direct contrast with the finding that 

Cr increased to a greater extent in men than women. However, the attenuated decline in 
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phosphorylated CK in men may be related to their greater reliance on the HEPT system 

during LL-HR, as the increase in dephosphorylated CK would permit increased ATP 

production, while the preservation of phosphorylated CK would allow for more rapid 

synthesis of PCr during rest periods. A single study found no difference in the rate of PCr 

synthesis between bouts of sprint cycling56, however, in this study there were no differences 

in fibre type distribution between men and women. This is important to consider since in our 

study women had a greater % of type I muscle fibres than men and P-CK was negatively 

associated with type I muscle fibre content. Thus, while no difference in PCr synthesis was 

observed in the previously conducted trial, this may be due to the fact that muscle fibre type 

did not differ between the sexes.  Overall, the greater increase in Cr concentration following 

LL-HR suggests that men are more reliant on the HEPT system to produce ATP than women. 

Further work examining sex differences in the kinetics of these reactions and the rate of 

replenishment of PCr is needed.  

5.3.2 Glycogen Utilization 
 

Men had greater muscle glycogen content than women, a finding that is in agreement 

with previous literature27,71,72. Accompanying this finding, there was a strong tendency for 

men to utilize more glycogen than women during the exercise bout. This is in agreement with 

findings from sprint interval56 and running34 trials which found that men utilize more 

glycogen than women57. The tendency for men to rely to a greater extent on muscle glycogen 

during exercise in the current trial is not surprising given that men had a greater muscle 

glycogen content at rest. During exercise at a given intensity, the extent of muscle glycogen 

depletion is a function of initial glycogen storage. The literature is clear that men store more 

glycogen than women27,71,72. Therefore, sex differences in glycogen utilization could be 



 58 

explained by men simply having higher muscle glycogen stores than women and thus using 

more of it during exercise. 

Another potential reason that men may rely to a greater extent on muscle glycogen 

during exercise is due to them having a greater proportion of type II muscle fibres, which are 

more glycolytic in nature. However, correlational analyses in the current study did not find a 

relationship between muscle glycogen utilization and muscle fibre type. Furthermore, 

previous work has shown that muscle glycogen utilization in type I fibres is greater in men 

than women during sprint exercise56, suggesting that it is inherent differences in the aerobic 

capacity of skeletal muscle that is contributing to sex differences in muscle glycogen 

utilization.  

While not directly measured, of the muscle glycogen that was utilized, it is likely that 

more of it was directed towards aerobic metabolism in women as compared with men. While 

phosphorylation of PDHe1D decreased similarly in men and women, indicating removal of 

the inhibition on PDH and thus a greater capacity to synthesize acetyl-CoA from pyruvate, 

the finding that muscle lactate was lower in women as compared with men suggests that 

women were better able to flux the pyruvate produced during glycolysis towards aerobic 

metabolism. The mechanism for women being able to flux more substrate towards aerobic 

metabolism is likely 2-fold. Pre-menopausal women possess a greater endothelial cell 

function than men88, meaning that oxygenated blood flow can reach the working muscle 

faster89. Indeed, occluding tension is higher in women than men and thus blood flow to 

muscle is maintained to a greater extent in women than men, which is at least in part 

responsible for the increased fatigue-resistance in women90–93. Maintenance of blood flow 

during resistance exercise it thought to be, at least in part, responsible for the greater reliance 
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on aerobic metabolism by women94. Additionally, women have a greater amount of type I 

muscle fibres for a given level of fitness and therefore have a greater inherent aerobic 

capacity of skeletal muscle. Thus, at a given exercise intensity women have greater blood 

flow to the muscle, thus greater oxygen delivery, as well as, a greater capacity to utilize the 

delivered oxygen due to the greater proportion of type I muscle fibres.  

5.3.3 ATP Preservation  
 

Interestingly, women had a tendency to lower their ATP stores to a greater extent 

than men. This could suggest that since men were able to utilize anaerobic energy stores 

more efficiently than women that they were able to prevent a disturbance in the metabolic 

concentrations of ATP since the HEPT and glycolytic systems have a greater power to 

produce ATP than aerobic metabolism63. The energy disturbance caused by the decrease of 

ATP in women would then serve to upregulate aerobic metabolism by removing inhibition 

on PFK, pyruvate dehydrogenase, isocitrate dehydrogenase, and α ketoglutarate 

dehydrogenase37,39. Thus, the greater decline in ATP during exercise in women may be one 

of the mechanisms by which women are better able to initiate aerobic metabolism at the 

onset of exercise. 

According to the data, men were able to produce more ATP by means of HEPT 

system as well as from glycogen than women. This finding uncovers the possibility that 

women were able to produce their ATP from a different substrate, and the potential for an 

increased reliance on fat oxidation could be the missing link in explaining where women 

receive additional ATP compared to men. As women rely to a greater extent on lipid during 

aerobic exercise27,51,72 it would not be surprising to find that they also rely to a greater extent 

on lipid during resistance exercise. Importantly, during heavy resistance exercise IMCL 
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breakdown occurs43 and fatty acid oxidation is upregulated95. Furthermore, comparable 24 h 

nutrient oxidation has been reported following acute bouts of heavy RE and aerobic 

exercise96. Future investigations should determine how fat metabolism differs between men 

and women during LL-HR RE in order to determine whether there is a greater reliance on 

IMCL and/or plasma fatty acids by women during this mode of exercise.  

5.3.4 Differences in Fiber Type Distribution 
 

Our findings in relation to muscle fibre distribution are consistent with the findings in 

the literature97,98. Women had a higher proportion of type I fibres while men had a higher 

proportion of type II fibres. These differences in fibre type distribution could explain the sex 

differences in substrate oxidation that were observed in this study. However, correlational 

analyses suggest that sex differences in muscle fibre type are only partially responsible for 

the observed sex differences in metabolism.  For example, the negative relationship between 

type I muscle fibre content and lactate can explain the finding that lactate was higher in men 

than women and is supportive of men having a greater reliance on the anaerobic metabolism 

by fluxing pyruvate to lactate. Furthermore, P-CK was also negatively related with type I 

fibre content, suggesting that the observed differences in HEPT metabolism are related to 

differences in muscle fibre type distribution. Interestingly, muscle glycogen utilization was 

not related to fibre type composition. While the implications of this finding are discussed 

more fulsomely above, it is important to note that since muscle lactate accumulation was 

associated with muscle fibre type distribution, but muscle glycogen was not, it appears as 

though sex differences in muscle glycogenolysis and glycolysis are independent of muscle 

fibre type distribution, but that the metabolic fate of pyruvate is dependent on muscle fibre 

type distribution. 
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Since men have a higher amount of type II fibres, it would carry that men also have a 

higher power for anaerobic systems to meet the demands of working muscle. Indeed, men 

had a greater increase in Cr content following the exercise bout, suggestive of a greater 

decrease in PCr stores. Furthermore, while glycogen utilization only tended to be higher in 

men, muscle lactate was higher in men than women, suggesting that the glycogen that was 

utilized by men tended to flux towards the production of lactate while women tended to flux 

towards the synthesis of acetyl-CoA. This is in line with women having more type I fibres, 

which are more oxidative, and previous studies showing that women have shown a greater 

capacity for oxidative metabolism than men23,26,80.  

5.3.5 Sex Differences in the Physiological Response to LL-HR Resistance Exercise 
 

Men and women had a similar response in both heart rate and rating of perceived 

exertion during the LL-HR resistance exercise bout, suggesting that the bout was both 

physiologically and perceptually of similar intensity. Interestingly, despite a similar heart rate 

response to the exercise bout, women were working at a higher percentage of their heart rate 

max and heart rate reserve compared to men during the second and third round of the circuit. 

A linear relationship between VO2 and heart rate has been established99, meaning that 

working at a higher percentage of one’s heart rate max would correspond to working at a 

higher percentage of one’s VO2max. Indeed, this would suggest that women were working at a 

higher relative VO2 than men in the current study, which may be another reason that we did 

not observe a sex difference in muscle glycogen utilization as glycogen utilization increases 

with increasing exercise intensity.  However this assumption has only been shown to be true 

during steady-state aerobic exercises, and the assumptions may not be able to be carried over 
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to resistance exercise77. For this reason, it is difficult to offer a meaningful interpretation of 

these findings as they relate to the relative oxygen consumption of the participants.  

Men and women have been shown to deliver blood differently to skeletal muscle 

during resistance exercise. Men have  a greater amount of hemoglobin than women100, 

therefore they are able to deliver the same amount of oxygen to the muscle with a lesser 

increase in blood flow. Conversely, since women have less hemoglobin100 they must increase 

blood flow to a greater extent than men as a means of providing the muscle with sufficient 

oxygen during exercise. A mechanism that allows for this to occur is women’s ability to 

dilate their smooth muscle101,102, thus allowing more blood to be supplied. However, the 

decrease in the peripheral resistance of the arterioles would cause a hypotensive state in 

women77 therefore causing a cascade of negative performance outcomes. As a compensatory 

mechanism to prevent this hypotension, women increase their heart rate to a greater extent77. 

Therefore, although women were working at a higher percentage of heart rate max/reserve, 

there is not necessarily a difference in the %VO2max that they were working at during this 

mode of exercise. Future work should measure oxygen consumption during the LL-HR 

resistance exercise bout in order to compare the aerobic intensity of LL-HR resistance 

exercise between men and women. Furthermore, examining how blood flow is altered during 

LL-HR resistance exercise in both men and women should also be examined.  Given the 

information available, the physiological response to LL-HR seems to be similar between men 

and women although direct measure of oxygen uptake would be needed to solidify the 

aerobic intensity at which men and women were working. 

During the exercise bout, we observed that women were able to complete a higher 

number of repetitions during the last set of each exercise, which went to volitional failure. 
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This is likely due to the fact that women had a higher amount of type I muscle fibres as 

compared with men, that would therefore enable them to initiate and rely on aerobic energy 

systems to a greater extent and thus fatigue less rapidly, particularly during resistance 

exercise that involves lifting a lighter load. Indeed, correlational analysis demonstrated that 

repetitions to failure tended to be related to the abundance of type I muscle fibers. 

Furthermore, while not significant, muscle lactate concentration tended to increase in men, 

but not women, during the LL-HR bout, suggesting that men were relying to a greater extent 

on anaerobic glycolysis than women. The literature has consistently shown that women are 

more fatigue resistant during dynamic exercise64–69, which is true for both upper and lower 

body muscle groups. Collectively, the studies suggest that it is the larger accumulation of 

metabolic products in men that interferes with contractile processes and induces clear sex-

based differences in the fatigue. Our findings are in agreement with the literature as the men 

in our study had a greater concentration of creatine, ATP, inorganic phosphate, and a trend 

for a greater concentration of lactate than women, which lead to a greater fatigability of the 

muscle in men. This was manifested as men completing fewer repetitions than women during 

the final exercise set to failure. However, even though women completed more repetitions 

during the final set, the total volume of work throughout the exercise bout per unit of fat free 

mass was the same between men and women. This is likely a consequence of men having 

significantly higher 1RM/FFM than women for upper body exercises, therefore the total 

volume of the exercise balances out with men lifting more weight for less reps and women 

lifting lower weight for more reps. Although, this is only true for the upper body exercises. 

Therefore, the exercise volume is the same between men and women but the means of 

achieving that volume is marginally different.  
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5.3.6 Participant Matching 
 

Importantly the sex differences in metabolism observed in this study were found 

when men and women were appropriately matched for training status80. The training status of 

an individual greatly influences their pattern of substrate utilization during exercise54,60,103, 

with greater rates of fat oxidation occurring in the trained state.  Since women have a greater 

amount of fat mass than men it is not appropriate to match men and women based on VO2peak 

relative to total body weight. Instead men and women should be matched for training status 

based on VO2peak relative to fat-free mass, the metabolically active tissue. Previous work has 

shown that when men and women are matched in this manner that training histories align and 

the lactate threshold occurs at the same % of VO2peak80. Furthermore, matching men and 

women for VO2peak/FFM has been utilized and verified in numerous trials26,34,51,103–105. As 

men and women were matched in this manner in the current trial, we are confident that any 

differences seen between men and women are the result of sex-based differences and not 

differences in training status.  

Baseline strength measurements showed that men had a higher 1RM for all exercises 

utilized in the LL-HR bout, which is to be expected. However, when normalized to FFM, the 

strength differences were eliminated for the lower body exercises but maintained for the 

upper body exercises. Again this is to be expected as population-based data has shown that 

for a given level of resistance training strength relative to mass is similar between the sexes 

for lower body exercises, but greater in men for upper body exercises106. From a resistance 

training perspective, the pattern of upper and lower body strength between the men and 

women in this study suggests that our participants were equally resistance trained, which is 
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an important consideration as the influence of resistance training on muscle metabolism has 

not been extensively investigated.  

In addition to accounting for training status of the participants, women were tested 

during the mid-follicular phase (FP) of their menstrual cycle when circulating estrogen levels 

are at their lowest and therefore the sex differences we observed likely represent a minimum 

difference in fuel utilization between the sexes27. Estrogen fluctuations across the menstrual 

cycle are known to influence fuel utilization during exercise26,32,107. Therefore, differences in 

metabolism between men and women may be greater in the luteal phase (LP) of the 

menstrual cycle when women have higher levels of estrogen26,27. Indeed previous research 

has shown that women in the LP have a decreased reliance on carbohydrate stores than both 

women in the FP and men26,27. However, irrespective of phase, women have a lower reliance 

on carbohydrate stores during exercise than men26.  

Nutritional analyses revealed no differences in energy or macronutrient intake 

between men and women, which is important since macronutrient intake can influence the 

fuel utilization pattern during exercise108,109.  While, there was a strong trend for men to have 

ingested more protein and energy as compared with women, this would be expected given 

their higher body weight.  However, when protein intake was normalized to body weight the 

trend was eliminated. In addition, macronutrient intake normalized to total energy intake was 

identical between men and women. Therefore, we can confidentially conclude that since 

macronutrient profiles were the same between men and women, there was negligible 

influence of habitual dietary intake on the findings of the study. 
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5.4 Limitations 
 

The main limitation of this study was the inability to determine the activity of 

relevant enzymes in both the HEPT and glycolytic systems. The literature has demonstrated 

that men have increased activity and content of glycogen phosphorylase39 as well as 

phosphofructokinase35. These findings, as they relate to the protein content of the enzymes 

were not found in our study. While enzyme activity has been found to be greater in men than 

women110, other studies have found no difference in the expression or content of these 

species107,111. Unfortunately, due to tissue constraints we were unable to determine whether 

sex differences in the activity of these enzymes existed during LL-HR resistance exercise. 

Further work should be conducted to examine this potential difference as it could be that, 

despite there not being a difference in protein content, there is a difference in the metabolic 

activity of these enzymes between the sexes. Lower activities of glycolytic enzymes suggest 

that women have a lower capacity to breakdown carbohydrate within the muscle. However, 

women do produce ATP through glycolysis during high intensity exercise without 

compromise suggesting that the decreased glycolytic enzyme activity in women is not a 

performance detriment, but that women are simply less dependent on carbohydrate sources to 

meet energy demands during moderate intensity exercise. 

We were also unable to measure oxygen consumption during the exercise bout and 

thus were unable to determine whether men and women were working at the same percentage 

of VO2peak.  By design our trial wanted to examine fuel utilization during a bout of LL-HR 

resistance exercise at 30% of 1RM, thus it was not necessarily expected that this load would 

correspond to the same %VO2peak. However, it would have been interesting to utilize 

metabolic measures in order to determine oxygen consumption and whether 30% 1RM 
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equates to a similar %VO2peak in men and women. Furthermore, using metabolic 

measurements would have also allowed us to determine whole body fuel utilization to 

determine the contribution of carbohydrates and fats during the LL-HR bout, as well as 

determine whether the fuel utilization pattern differed between men and women. While 

systems that allow for portable measurements of VO2 do exist, there are discrepancies in 

their reportings112,113 and therefore could cause erroneous findings within our study. New, 

more valid, technology114 is becoming available and could serve as a beneficial addition to 

future studies within this area. 

Finally, our study would have benefitted from recruiting a larger sample size. Power 

calculations revealed that we had 50% power to detect a difference in muscle glycogen 

utilization between men and women and indicated that we would have needed n=17 

participants per group to detect a significant difference. Importantly, while our findings 

related to sex differences in muscle glycogen utilization were not statistically significant, 

they may be physiologically significant as we found men to utilized 41% more muscle 

glycogen than women. A larger sample would have served to better validate these findings.  

5.5 Future Directions 
 
 Additional areas of investigation are needed to completely uncover the mechanisms 

that underpin sex-based differences in metabolism during LL-HR resistance exercise. Future 

studies would benefit from employing a training model, so that changes over a longer period 

of time can be tracked and adaptations that may be induced during this type of training would 

have sufficient time to manifest themselves. Furthermore, investigating aerobic sources of 

fuel utilization as well as anaerobic would serve to achieve a more complete idea of the fuel 

utilization patterns during LL-HR exercise, as fat seems to play an important role43. 
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Moreover, given the more aerobic nature of LL-HR, as compared with heavy resistance 

exercise, studying the cardiorespiratory effects of LL-HR training in comparison to aerobic 

training could provide additional evidence of LL-HR’s ability to elicit synergistic effects to 

both resistance and aerobic training. Additionally, comparing men to women in both the 

luteal phase and follicular phase could serve to identify the influence of estrogen on 

metabolism during LL-HR. Finally, investigation into the activity of the enzymes involved 

would identify the metabolic processes that underpin these differences. Although there is still 

a paucity of data in the literature surrounding LL-HR, specifically surrounding substrate 

utilization, we believe that our findings have helped open up the area for additional research.  

5.6 Conclusion  
 

Much of the previous work in the area has shown that sex-based differences do exist, 

but this work has predominately occurred during MICE23,26,29,33,80. Additionally, they have 

predominantly focused on carbohydrate and fat metabolism during bouts of exercise that are 

longer in duration23,26,29,33,80. Here, we have focused on anaerobic metabolism during a more 

aerobic form of resistance exercise to characterize whether LL-HR relied heavily on HEPT 

and anaerobic glycolysis and whether these patterns differentiated between the sexes. Our 

findings appear to be in agreement with the findings of sex-based differences during MICE in 

that men relied more heavily on glycogen stores and the HEPT system to meet the energy 

demands of working muscle. It is difficult to comment on the aerobic utilization of substrates 

as that was outside the scope of our study, however accounting for the lesser synthesis of 

ATP from anaerobic sources in women we are able to speculate that women were more 

readily able to initiate aerobic metabolism. The extent of aerobic carbohydrate and fat 

utilization remains to be investigated.  
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In conclusion, both the HEPT and glycolytic pathways contributed to energy 

production during LL-HR resistance exercise. Interestingly, the extent of muscle glycogen 

breakdown and lactate accumulation during LL-HR resistance exercise suggest that it is more 

similar metabolically to MICE than heavy RE. There were clear sex-based differences in 

metabolism during LL-HR resistance exercise with men relying to a greater extent on PCr, as 

evidenced by a greater increase in Cr, and tending to utilize more muscle glycogen than 

women. While these differences may be in part due to the greater type I fibre content in 

women, correlational analyses suggest that inherent differences in metabolism must exist as 

there was no correlation between muscle fibre type content and the extent of glycogen 

depletion. Overall, these findings suggest that men rely to a greater extent on anaerobic 

metabolism during LL-HR RE than women.   
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Chapter Six: Significance of the research 
 
 The main allure of LL-HR is its potential to induce similar adaptations as both 

aerobic and resistance exercise, without the practicality issues of adding more time to each 

exercise session. Previous research has shown that despite its lower load, LL-HR RE can 

acutely induce similar or greater increases in muscle protein synthesis as ‘traditional’ heavy-

load resistance exercise18, which overtime leads to similar gains in muscle mass and 

strength17. In the current study we wanted to characterize the anaerobic fuel utilization 

pattern and determine whether it was similar between men and women. Understanding the 

utilization patterns of this mode of exercise would allow us to characterize the normal 

physiological response, which can then be compared to the influence that LL-HR resistance 

exercise/training has when it is employed in other populations. Additionally, since men and 

women do not respond to interventions identically23,26,80, a finding which may be due to 

differences in the metabolic response to exercise; it is important to characterize metabolism 

during this exercise mode in both sexes. Furthermore, with an enhanced understanding of 

LL-HR RE, we can begin to employ training trials to examine long term effects and 

determine whether LL-HR RE can act as an optimal mode of exercise that can induce both 

RT and aerobic adaptations. 

 It is important to understand the basic anaerobic fuel utilization patterns during LL-

HR resistance exercise because it can allude to the potential adaptations that would occur 

during LL-HR RE training in a healthy population. Furthermore, by characterizing the fuel 

utilization pattern in young, healthy individuals we now understand the normal physiological 

response to this mode of exercise, which can then be compared to that of other populations 

(i.e. aging, metabolic disorders) to understand how these disturbances influence metabolism 
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during LL-HR RE. These findings can then be used to improve our understanding of how 

LL-HR training can improve various health outcomes in different populations. Moreover, 

this study served to characterize the anaerobic utilization patterns as well as investigate the 

influence that sex has on these findings. It has been consistently shown that men and women 

do not respond to exercise interventions in the same way24,25,51, which may be due to 

differences in metabolism. Thus, should future trials examine the effects of LL-HR resistance 

training in men and women and find a differential response, differences in metabolism during 

LL-HR may be able to explain these differences.   

 One population in which LL-HR may be especially beneficial is aging adults. Due to 

its lesser strain on joints44, LL-HR resistance exercise may be a preferential mode of 

resistance exercise that older adults can use to slow or potentially reverse sarcopenia16–18. 

Aging is also associated with the development of insulin resistance, type II diabetes and  

cardiovascular disease2–4. Given the more aerobic nature of LL-HR, this mode of exercise 

may also induce favourable adaptations in insulin sensitivity and cardiorespiratory fitness, 

thus combating three of the most common aging-associated conditions with one concise 

mode of exercise. Given that insulin resistance speeds the loss of muscle mass115, improving 

insulin sensitivity would also slow/prevent the loss of muscle mass75,116, therefore LL-HR RE 

may be particularly beneficial because it can improve muscle mass and insulin sensitivity 

together. Therefore, this exercise mode could be ideal for populations afflicted with 

sarcopenia, T2D/CVD, and aging. Essentially, LL-HR resistance training could provide a 

more streamlined intervention to populations afflicted by multiple health disorders by 

attempting to correct for multiple underlying issues simultaneously.  
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 In order to fully understand the potential applications of LL-HR resistance exercise, 

further investigations must be done. Particularly, employing a training study over a much 

longer course of time would allow for determination of the effects of LL-HR on insulin 

sensitivity, cardiorespiratory fitness and other metabolic markers of disease and disease risk 

(i.e. CRP, cholesterol, etc.). Investigating the aerobic substrate oxidation pattern, as well as 

the influence of LL-HR on the cardiovascular system would help substantiate the claims of 

LL-HR truly being able to elicit the adaptations that are typically seen with aerobic exercise. 

Ultimately, LL-HR may be able to induce the greatest health benefit for numerous 

populations in a time-efficient manner. 
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