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Summary

There have been many advances in statistical methodology for the analysis of recurrent event
data in recent years. Multiplicative semiparametric rate-based models are widely used in clinical
trials, as are more general partially conditional rate-based models involving event-based strati-
fication. The partially conditional model provides protection against extra-Poisson variation as
well as event-dependent censoring, but conditioning on outcomes post-randomization can in-
duce confounding and compromise causal inference. The purpose of this article is to examine
the consequences of model misspecification in semiparametric marginal and partially conditional
rate-based analysis through omission of prognostic variables. We do so using estimating function
theory and empirical studies.
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1 INTRODUCTION

Much research has been carried out in the past twenty years on statistical methods for the analysis of
recurrent events to better understand chronic disease processes in observational settings and to eval-
uate the effect of experimental interventions in clinical trials. Disease processes in which recurrent
events are manifest are ubiquitous and include, for example, chronic obstructive pulmonary disease
where individuals experience recurrent exacerbations (Grossman et al. 1998), epilepsy where seizures
recur (Musicco et al. 1997), and cancer where skeletal metastases and associated clinical complica-
tions can recur over time (Hortobagyi et al. 1996).
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In clinical trials it is essential that tests for treatment effects be valid such that the rejection rate
under the null hypothesis is at the nominal level. It is also critically important that models and meth-
ods of estimation be formulated so that estimators are consistent for an estimand with a clear causal
interpretation. Finally, standard errors must adequately reflect the sampling variation so that con-
fidence intervals have empirical coverage rates that are compatible with the nominal level in finite
samples. These criteria form the basis for the following investigation which we carry out in both the
clinical trial and observational settings. We confine our attention to marginal rate-based and partially
conditional rate-based analyses since these are frequently applied in practice.

Semiparametric models based on marginal rate functions (Andersen and Gill 1982) are among
the most widely used for assessing treatment effects on recurrent event processes in clinical trials
(Cook and Lawless 2007). Partially conditional models involve time-dependent stratification on the
cumulative number of events; this is formulated like a Markov model and is sometimes referred
to as the Prentice-Williams-Peterson approach, although Prentice et al. (1981) did not advocate its
use in clinical trials. It is also often called the stratified Andersen-Gill approach due to its relation
with the rate-based method of Andersen and Gill (1982). We use the term partially conditional
model to reflect the fact that, in contrast to intensity-based models, here only part of the process
history is conditioned upon. This partially conditional approach has been shown to provide some
protection against extra-Poisson variation when model-based variance estimates are used (Boher and
Cook 2006), and to mitigate biases induced by event-dependent censoring (Cook et al. 2009). We
explore the robustness of the marginal and partially conditional model by evaluating the limiting
value and variance of estimators of covariate effects when a Poisson model is misspecified through
the omission of a covariate; we consider both the observational and clinical trial setting where interest
lies in the effect of a treatment. Performance of these methods when the recurrent events are generated
by a multistate Markov process is also considered empirically.

The remainder of the paper is organized as follows. In Sect. 2 we define and give the associated
estimating equations for the multiplicative model based on the marginal rate function (Andersen and
Gill 1982) as well as the partially conditional model (Prentice et al. 1981). The limiting behaviour of
estimators of treatment effect are given in Sect. 3 for the marginal and partially conditional models
when the events are generated by a Poisson process but a prognostic covariate is omitted. The results
of empirical studies supporting the large sample theory are given in Sect. 4 where the investigation
is broadened to study the setting where events are generated by a Markov process but a covariate
is omitted in the marginal and partially conditional analyses. An application illustrating the various
methods is given in Sect. 5 and concluding remarks are given in Sect. 6.

2 MARGINAL AND PARTIALLY CONDITIONAL RATE-BASED MODELS

2.1 MULTIPLICATIVE MODELS BASED ON MARGINAL RATE FUNCTIONS

LetNi(t) denote the number of events occurring over [0, t] and {Ni(t), 0 ≤ t} be the right-continuous
counting process for individual i in a sample of n independent individuals, i = 1, 2, . . . , n. The
number of events over the interval [t, t + ∆t) for individual i is then ∆Ni(t) = Ni(t + ∆t−) −
Ni(t

−) and dNi(t) = lim∆t↓0 ∆Ni(t). We let Xi(t) = (Xi1(t), . . . , Xip(t))
′ denote a p × 1 vector of

external potentially time-dependent covariates where the process {Xi(t), 0 ≤ t} is left-continuous.
The process history is denoted byHi(t) = {Ni(s), Xi(s) : 0 ≤ s < t}.

The stochastic nature of any point process can be characterized by an intensity function,

lim
∆t↓0

P (∆Ni(t) = 1|Hi(t))

∆t
= λi(t|Hi(t)) , (1)

which represents the instantaneous probability of an event at time t given the process history (Ross
1983, Taylor and Karlin 1984). Of course for a particular setting one must make model assumptions;
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the canonical model for recurrent events with time-dependent covariates is the modulated Poisson
model (Lawless 1987, Cook and Lawless 2007, Chapter 3). The conditionally independent increment
property of the modulated Poisson model implies that given Xi(t) the risk at time t does not depend
on {Ni(s), 0 ≤ s < t}, yielding an intensity of the form λi(t|Hi(t)) = ρi(t|Xi(t)). Multiplicative
models with

ρi(t|Xi(t); θ) = ρ0(t;α)g(Xi(t); β) , (2)

are most common, where ρ0(t;α) is a baseline rate function indexed by α,
g(Xi(t); β) is a positive valued function indexed by β, and θ = (α′, β′)′. Lawless (1987) gives the
partial likelihood and associated estimating equations for the semiparametric setting where ρ0(t, α)
is an arbitrary positive-valued function, and Andersen and Gill (1982) derive the large sample theory;
the semiparametric model (2) is sometimes called the Andersen-Gill model. Lin et al. (2000) provide
a rigorous derivation of the limiting behaviour of estimators with an emphasis on robust variance
estimation.

Individuals are typically followed over a finite period of time to record the occurrence of events of
interest. Let the start of the interval be denoted by 0 andA denote the planned administrative censoring
time. To accommodate early withdrawal we let Ri be a non-negative random variable independent
of the recurrent event and covariate process with survivor function P (Ri ≥ t) = G(t), and let Ci =
min(Ri, A) be the effective right-censoring time for individual i; the function Yi(t) = I(t ≤ Ci)
indicates whether individual i is under observation at time t > 0, i = 1, . . . , n. Under independent
and non-informative censoring (Cook and Lawless 2007), the log partial likelihood contribution for
individual i having ni events at times ti1 < · · · < tini

over [0, Ci] is∫ ∞
0

Yi(t) {log ρi(t|Xi(t); θ)dNi(t)− ρi(t|Xi(t); θ)dt} , i = 1, . . . , n . (3)

In the semiparametric setting of (2) the function g(x; β) = exp(x′β) is used most often. We let
dµ0(t) = ρ0(t)dt (t > 0) so that dµ0(·) can be viewed as an infinite dimensional parameter; differen-
tiating the terms in (3) with respect to dµ0(t) we obtain the estimating equations

n∑
i=1

Yi(t) {dNi(t)− dµ0(t) exp(X ′i(t)β)} = 0 , 0 < t . (4)

The profile Breslow-type estimator dµ̃0(t; β) = dN̄·(t)/
∑n

i=1 Yi(t) exp(X ′i(t)β). is the solution
where dN̄·(t) =

∑n
i=1 Yi(t)dNi(t). Differentiating (3) with respect to β and replacing dµ0(t) with

dµ̃0(t; β) gives the profile partial score equation

U(β) =
n∑
i=1

Ui(β) =
n∑
i=1

∫ ∞
0

Yi(t)

{
Xi(t)−

S(1)(β, t)

S(0)(β, t)

}
dNi(t) = 0 , (5)

where S(r)(β, t) = n−1
∑n

i=1 Yi(t) exp(X ′i(t)β)Xi(t)
⊗r with Xi(t)

⊗0 = 1,
Xi(t)

⊗1 = Xi(t) and Xi(t)
⊗2 = Xi(t)X

′
i(t). Lin et al. (2000) showed that

√
n(β̂ − β†)→ N

(
0,A−1(β†)B(β†)[A−1(β†)]′

)
, (6)

where β̂ is the solution to (5), A(β) = E[−∂Ui(β)/∂β], B(β) = E[Ui(β)U ′i(β)], and β† is the
solution to ∫ ∞

0

E

[
Yi(t)

{
Xi(t)−

s(1)(β, t)

s(0)(β, t)

}
dNi(t)

]
= 0 (7)

where s(r)(β, t) = E[S(r)(β, t)], r = 0, 1, and E[ · ] denotes an expectation taken with respect to the
censoring, recurrent event and covariate processes.
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2.2 MULTIPLICATIVE MODELS BASED ON PARTIALLY CONDITIONAL RATE FUNCTIONS

A common partially conditional model is obtained by specifying

lim
∆t↓0

P (∆Nij(t) = 1|Ni(t
−) = j − 1,Hi(t))

∆t
= ρj0(t)g(Xi(t); β) (8)

where ρj0(t) is an event-specific baseline rate function. The specification in (8) corresponds to a
multiplicative intensity-based model for a Markov process with a common treatment effect (Prentice
et al. 1981), but otherwise should be viewed as a partially conditional model because only part of the
history, namely Ni(t

−) = j − 1, is conditioned upon.
For convenience in what follows we let ρj0(t)g(Xi(t); β) = ρij(t|Xi(t)) and write simply ρij(t)

to suppress its dependence on Xi(t); µij(t) =
∫ t

0
ρij(s)ds. Because {Xi(s), 0 ≤ s} is external we

can conceive of conditioning on the complete covariate path {Xi(s), 0 ≤ s} but we will ultimately
focus primarily on the case of fixed covariates. We let Yij(t) = I(Ni(t

−) = j − 1) indicate that
individual i is at risk for their jth event at t and define Ȳij(t) = Yi(t)Yij(t), i = 1, . . . , n. We let
dNij(t) = 1 indicate the jth event for individual i occurs at time t, and dNij(t) = 0 otherwise;
dN̄ij(t) = Ȳij(t)dNij(t) indicates that the jth event occurs at t and is observed.

If individual i is observed to experience ni events at time ti1 < · · · < tini
over [0, Ci], the estimat-

ing equation for β based on a sample of n independent individuals is

Ũ(β) =
n∑
i=1

Ũi(β) =
n∑
i=1

ni∑
j=1

∫ ∞
0

Ȳij(t)

{
Xi(t)−

S
(1)
j (β, t)

S
(0)
j (β, t)

}
dNij(t) , (9)

where here S(r)
j (β, t) = n−1

∑n
i=1 Ȳij(t) exp(X ′i(t)β)Xi(t)

⊗r; this is the profile pseudo-score func-
tion for the partially conditional model. Solving Ũ(β) = 0 yields the estimate β̃ which has the
asymptotic distribution

√
n(β̃ − β‡)→ N(0, Ã−1(β‡)B̃(β‡)[Ã−1(β‡)]′) , (10)

where Ã(β) = E[−∂Ũi(β)/∂β], B̃(β) = E[Ũi(β)Ũ ′i(β)] and β‡ is the solution to

∞∑
j=1

∫ ∞
0

E

[
Ȳij(t)

(
Xi(t)−

s
(1)
j (β, t)

s
(0)
j (β, t)

)
dNij(t)

]
= 0 (11)

with s(r)
j (β, t) = E[S

(r)
j (β, t)], r = 0, 1. These expressions to calculate the bias and asymptotic robust

variance are very general, and in principle could be used to evaluate the large sample behaviour of
estimators for any underlying recurrent event process. Our interest however, is on the effect of omitted
covariates and we explore this in detail in the next section.

3 INFERENCE REGARDING TREATMENT EFFECTS WITH OMITTED COVARIATES

3.1 ASYMPTOTIC PROPERTIES FOR ESTIMATORS OF TREATMENT EFFECT

Given the general theory reviewed in Sect. 2 we can now explore the limiting behaviour of treatment
effect estimators under misspecified marginal and partially conditional models. Here we consider
modulated Poisson processes with a binary treatment covariate X and an external potentially time-
varying covariate Z(t). The true rate function is assumed to have the form

ρ(t|X,Z(t)) = ρ0(t) exp(ηX + ζZ(t)) , (12)
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where ρ0(t) is a positive-valued baseline rate function. In the setting of a randomized trial X ⊥ Z(t)
since Z(t) is external, but X and Z(t) may be correlated in the observational setting. When we
model just the treatment indicator (i.e. we omit Z(t)), we fit the marginal rate-based model ρ(t|X) =
ρ∗0(t) exp(βX) or the partially conditional model ρj(t|X) = ρ∗j0(t) exp(βX).

From (7) the asymptotic bias of the Andersen-Gill estimator β̂ is (β† − η). To derive the explicit
form we note that in the present setting we can evaluate (7) by first taking the expectation with respect
to dNi(t)|Yi(t), Xi, Zi(t) to obtain EdNi(t){Ui(β)|Yi(t), Xi, Zi(t)} as∫ ∞

0

Yi(t)

{
Xi −

s(1)(β, t)

s(0)(β, t)

}
exp(ηXi + ζZi(t))dµ0(t)

under the assumption of conditionally independent censoring (i.e. Ri ⊥ Hi(t)). Then taking the
expectation with respect to the remaining terms gives∫ A

0

G(t)

{
E[Xi exp(ηXi + ζZi(t))]− E[exp(ηXi + ζZi(t))] ·

s(1)(β, t)

s(0)(β, t)

}
dµ0(t) , (13)

where s(r)(β, t) = E[S(r)(β, t)] = G(t)E[eβXiX⊗ri ]. When Xi is a binary treatment indicator with,
say, P (Xi = 1) = 0.5, then s(1)(β, t)/s(0)(β, t) = exp(β)/(1 + exp(β)) and substituting this into
(13) and solving gives

exp(β†) =

∫ A
0
G(t)E[Xi exp(ηXi + ζZi(t))]dµ0(t)∫ A

0
G(t)E [(1−Xi) exp(ηXi + ζZi(t))] dµ0(t)

. (14)

When Zi(t) is independent of Xi as in a randomized controlled trial, β† = η so a consistent estimate
of the causal effect of treatment (η) is obtained even when an important (external) covariate is omitted.
When Z(t) andX are correlated however, a marginal model omitting Z(t) will yield a biased estimate
of the treatment effect with no easy causal interpretation. Finally note that in the case of a fixed
covariate Zi(t) = Zi which is possibly correlated with Xi, (14) can be simplified to

exp(β†) =
E[Xi exp(ηXi + ζZi)]

E[(1−Xi) exp(ηXi + ζZi)]
. (15)

For the partially conditional model (11) gives

∞∑
j=1

∫ ∞
0

{
E
[
Ȳij(t)Xidµi(t)

]
− E

[
Ȳij(t)dµi(t)

]
·

(
s

(1)
j (β, t)

s
(0)
j (β, t)

)}

which can be written as

∞∑
j=1

∫ ∞
0

{
s

(1)
j (t)− s(0)

j (t) ·

(
s

(1)
j (β, t)

s
(0)
j (β, t)

)}
dt , (16)

where s(r)
j (t) = E[Ȳij(t)ρi(t)X

⊗r
i ]; r = 0, 1. Note that

s
(r)
j (t) = E

[
G(t) · P (Ni(t

−) = j − 1|Xi, Zi(t))ρ0(t) exp(ηXi + ζZi(t))X
⊗r
i

]
= G(t)ρ0(t) · EXi,Zi(t)

[
exp(−µi(t))(µi(t))j−1

(j − 1)!
exp(ηXi + ζZi(t))X

⊗r
i

]
,

which depends on the event number j and time t even if Zi(t) is a time-invariant covariate; the
same is true for s(r)

j (β, t). As Zi(t) is an external covariate we can condition on it and think of
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Figure 1: Limiting bias of estimates of treatment effect under the marginal model (left panel) and
the partially conditional model (right panel) when omitting the covariate Z; X and Z are dependent
binary covariates with odds ratio φ.

µi(t) =
∫ t

0
ρi(s)ds as a mean of Ni(t) given (Xi, {Zi(s), 0 ≤ s < t}). Since there is no solution

in closed-form, one must solve equation E[Ũ(β)] = 0 numerically for β‡. The complexity of the
asymptotic calculation arises because of the extra conditioning on Yij(t) in the partially conditional
model. In general, β‡ 6= η, even when Xi and Zi(t) are independent. This indicates that omitting
the covariate Z(t) in the partially conditional model leads to a biased estimate of the causal treatment
effect, even when Z(t) and X are independent. For the partially conditional model one conditions on
the cumulative event count at t which is responsive to both treatment and other covariate effects, and
hence

Xi 6⊥ Zi(t)|Ni(t
−) = j − 1, t > 0 .

The phenomenon of induced confounding through this conditioning is well-known in causal inference
(Hernán, 2010).

The model-based naive varianceA−1(β†) will underestimate the variability of β̂ under a misspec-
ified marginal model so robust variance estimation is recommended to ensure valid inference (Lin
and Wei 1989, Bernardo and Harrington 2001, Boher and Cook 2006). The explicit forms of the
model-based naive and robust sandwich variances in the current setting are given in Appendix 1 and
2 for the marginal and partially conditional models respectively.

3.2 A CASE-STUDY INVOLVING AN OMITTED FIXED COVARIATE

Here we consider a case study of the effect of omitting covariates in the marginal and partially con-
ditional models by considering a particular setting in detail. We assume a Poisson process with a
Weibull rate function ρ(t) = ρ0(t) exp(ηX + ζZ) with ρ0(t) = λκ(λt)κ−1. We let X be a binary
treatment indicator with P (X = 1) = P (X = 0) = 0.5 as before, and let Z be a fixed binary
covariate with Z ∼ Bin(1, pz); we let

φ =
P (Z = 1|X = 1)/P (Z = 0|X = 1)

P (Z = 1|X = 0)/P (Z = 0|X = 0)

denote the odds ratio characterizing the association between X and Z where X ⊥ Z when φ = 1.
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We let β = log 0.75, which reflects the positive effect of treatment and ζ = 0, log 1.5 or log 3 to
represent the case of no, moderate or strong effects of Z on event occurrence. We let κ = 1.25, and
choose λ such that the expected number of observed events at t = 1 is 2 when X and Z are equal
to 0. Without loss of generality we let the administrative censoring time be A = 1 and we assume
the random censoring time Ri follows an exponential distribution satisfying P (Ri < A) = 0.2; this
gives the effective censoring time Ci = min(Ri, A). Under this setting, when we omit variable Z in
the Andersen-Gill model, then by (15) the limiting bias of β̂ is

β† − η = log

[
eζP (X = 1, Z = 1) + P (X = 1, Z = 0)

eζP (X = 0, Z = 1) + P (X = 0, Z = 0)

]
(17)

which is a function of the effect of Z on the outcome and the extent of the association between Z
and X . Figure 1 plots the limiting bias of the treatment effect estimator under the marginal and
partially conditional models as a function of the association between Z and X and the effect of Z
(i.e. ζ). The bias increases as the association between X and Z increases and as the magnitude
of ζ increases. When X and Z are independent the misspecified marginal model yields consistent
estimates of the treatment effect, supporting the use of this method in randomized trials. The partially
conditional model, however, yields a biased estimate of treatment effect when an important covariate
is omitted even when X and Z are independent. Thus while the partially conditional model appears
to be a more general model than the marginal model, it does not support robust causal inferences
about treatment effects in randomized trials when recurrent event follows Poisson processes. It is
also apparent from (13) and (16) that the limiting values of the marginal and partially conditional
estimators are dependent on the administrative censoring time and the distribution of the random
censoring time. We found there to be only a weak dependence on the random censoring rate in both
frameworks so we do not report the results of these studies here.

The asymptotic naive and robust standard errors under the misspecified marginal model were also
studied using (20) and (22) in Appendix 1, and under the misspecified partially conditional model
using (23) and (24) in Appendix 2. Figure 2 plots the trend of asymptotic naive and robust standard
errors of the treatment effect as a function of P (Z = 1) when φ = 2.0. The robust standard error
is larger than the naive standard error under the marginal model with the differences increasing as
the effect of the covariate Z increases as expected. The robust and naive standard errors are in close
agreement under the partially conditional model, in part because the extra-Poisson variation arising
from the omission of Z is explained by the stratification; Boher and Cook (2006) made a similar
observation based on empirical studies. The plots of the asymptotic naive and robust standard errors
of the treatment effect estimators have a similar pattern for both the marginal and partially conditional
models when φ = 1.0. Similar calculations were carried out for the setting in which Z|X follows a
normal distribution with mean θ0 + θ1X and variance σ2; the results are shown for marginal models
in Online Resource 1.

4 EMPIRICAL STUDIES OF FINITE SAMPLE BEHAVIOUR

Here we consider an empirical study to investigate the finite sample properties of estimators of the
treatment effect under the misspecified marginal and partially conditional rate-based models. In Sect.
4.1 we consider the events as generated by a Poisson process and in Sect. 4.2 we consider the case
where the events are generated according to a Markov model. In both settings we examine the finite
sample properties of estimators from marginal and partially conditional rate-based models in which
an important covariate is omitted.
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Figure 2: Asymptotic naive and robust standard errors of estimates of treatment effect under the
marginal model (left panel) and partially conditional model (right panel) omitting a binary covariate
Z as a function of P (Z = 1); φ is the odds ratio of (X,Z); φ = 2.0.

4.1 MISSPECIFIED RATE-BASED MODELS FOR POISSON PROCESSES

For the setting where events are generated by a Poisson process we use the same illustrative setting
as in Sect. 3.2. We let φ = 0.5, 1.0, 2.0 and 4.0 to reflect varying strengths of the association between
X and Z when Z is binary, and let P (Z = 1) = 0.25 or 0.50. The effect of Z on the event process is
set to be ζ = 0, log 1.5 or log 3.0 to reflect no effect to a strong effect. The other parameter settings
are the same as those in Sect. 3.2. We generated one thousand samples of size n = 1000 each. We
adopt the marginal and partially conditional models with a single covariate reflecting the treatment,
and investigate the empirical properties of the estimators under those misspecified models; see Table
1.

We find that when X and Z are independent there is negligible empirical bias of the estimated
treatment effect under the marginal model, supporting theory that marginal model is robust and so
yields a consistent estimators of the treatment effect in clinical trials. Furthermore, the average robust
standard error is in close agreement with the empirical standard error of the estimates in general, while
the average naive standard error underestimates the variability, especially when the effect of covariate
Z is larger supporting the the need for robust standard errors. This can also be seen by comparing
the empirical coverage probabilities of nominal 95% confidence interval for β̂ based on naive and
robust standard errors. Furthermore, when X and Z are independent, unlike the marginal model, the
partially conditional model yields biased estimates of the treatment effect; this empirical bias is larger
when the effect of Z on the event process increases. This means that the benefit of randomization is
lost when we fit partially conditional models without addressing other covariate effects.

When X and Z are not independent, there is significant bias of the estimates for treatment ef-
fect under both models, and the bias increases when the association between X and Z is stronger
or the effect of the omitted Z on the event process becomes larger. These findings agree with our
theoretical results in Sect. 3.2. Note that under the misspecified marginal model, the robust standard
errors accurately reflect the empirical variation indicating that they provide protection from the mis-
specification to some extent. Due to the significantly large bias of the estimates of treatment effect
under the misspecified model, the empirical coverage probabilities of the 95% confidence intervals
are unacceptably low when X and Z are correlated. We also note that under the misspecified partially
conditional model, there is reasonable agreement between the average model-based standard errors
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...0 1 2 k−1 k

Figure 3: Multistate representation of a recurrent event process.

and the average robust standard errors; this is in alignment with the theoretical results of Sect. 3.2.
The results of additional simulation studies involving normally distributed Z lead to similar conclu-
sions; see Online Resource 2 for results.

4.2 MISSPECIFIED RATE-BASED MODELS FOR MARKOV PROCESSES

We now consider the setting in which the events are generated by a progressive multistate process
with states labeled 0, 1, . . . representing the cumulative number of events and {Ni(t), 0 ≤ t} the
event process as before; the state-space diagram is depicted in Figure 3. We assume that k → k + 1
transitions occur according to a Markov intensity

lim
∆t↓0

P (Ni(t+ ∆t−) = k + 1|Ni(t
−) = k,Xi, Zi)

∆t
= qk(t) exp(ηXi + ζZi) ,

where qk(t) is a baseline transition rate, k = 0, 1, . . .. We let qk+1(t) = qk(t)e
α, k = 0, . . . , K so that

the occurrence of each event increases the baseline rate of the next event up until the (K + 1)st event
and set qk+1(t) = qk(t) for k = K+1, . . . , Km so that the risk does not increase beyond the (K+1)st
event; data are generated for at most Km transition times but this is chosen to be large enough that the
probability of entering the absorbing state over the planned period of observation is essentially zero.

Time-homogeneous transition intensities are obtained by letting q0(t) = q0. We let Q denote
the (Km + 1) × (Km + 1) transition intensity matrix with Qjj = −qj−1 entries on the diagonal
Qj,j+1 = qj−1 above the diagonal and Qjl = 0 for l 6= j or j + 1; j = 1, 2, . . . , Km + 1. The
Chapman-Kolmogorov equations then give,

P (s, s+ t|X = 0, Z = 0) = exp(Qt) , (18)

where P (s, s + t|X = 0, Z = 0) = P (0, t|X = 0, Z = 0) and Pjl(0, t|X = 0, Z = 0) = P (Z(t) =
l|Z(0) = j,X = 0, Z = 0) (Cox and Miller 1965).

As before we consider the case when Z is Bernoulli with P (Z = 1) = pz and the odds ratio
for the association between X and Z is φ. We let α = log 1.05 so there is a 5% increase in the risk
of an event each time an event occurs up to K = 5, and let Km = 20. We determine q0 so that
µ(1|X = 0, Z = 0) = 2 where

µ(t|X = 0, Z = 0) =
Km∑
k=0

k · P (Z(t) = k|Z(0) = 0, X = 0, Z = 0) (19)

is the expected number of events at time t given X = Z = 0; the other parameter settings are the
same as in Sect. 4.1. We generate one thousand samples of size n = 1000 each from this Markov
process. The marginal and partially conditional models are fitted with only a treatment indicator, and
the empirical properties of the resulting estimators are summarized in Table 2.

The partially conditional model is the correct model when ζ = 0 and yields consistent estimators
of treatment effect; see the column of results headed ζ = 0 in Table 2. Although the marginal model
ignores the state-dependent transition intensity, statistical inference for the treatment effect remains
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Table 3: Estimates of treatment effect for cystic fibrosis trial using marginal and partially conditional
models with four strata based on no events, 1 event, 2 events and ≥ 3 events when ignoring or
controlling for the centered forced expiratory volume (FEVC).

β exp(β) Robust S.E. P-value

Marginal Model
Without FEVC -0.271 0.763 0.124 0.029

With FEVC -0.267 0.766 0.120 0.027
Partially Conditional Model

Without FEVC -0.234 0.791 0.108 0.030
With FEVC -0.246 0.782 0.109 0.024

valid if the robust standard error is used when ζ = 0. When ζ 6= 0 however, both the marginal and
partially conditional models omitting Z are misspecified; here the resulting estimators are biased and
the confidence intervals have poor empirical coverage probability. When X ⊥ Z and ζ = log 1.5,
the marginal and partially conditional models yield valid inferences. This does not hold with larger α
or when the covariate Z is normally distributed (see Online Resource 2 for more simulation results).
Therefore, our empirical studies suggest that when the true model is Markov, ignoring the important
confounders or even independent prognostic variables (i.e. X ⊥ Z at t = 0) can yield estimators of
treatment effect which are susceptible to misspecification. Whether valid estimates of the treatment
effect can be obtained in the clinical trial setting under these two models therefore depends on how
large the effect of omitted prognostic variables are as well as their distribution. This can be re-
expressed by stating that inferences based on partially conditional rate-based analysis are sensitive
to departures from the Markov assumption on which it is formally justified. Model assessment has a
particularly useful role here and simulations and sensitivity analyses may be worthwhile to investigate
the impact of model violations on the performance of estimators and tests based on marginal or
partially conditional models.

5 APPLICATION TO A TRIAL IN CYSTIC FIBROSIS

Cystic fibrosis is a respiratory disease with airway obstruction caused by the accumulation of mu-
cus in the lungs due to extracellular DNA; this results in recurrent pulmonary exacerbations. When
delivered to the lungs in an aerosolized form, a highly purified recombinant form of DNase I called
rhDNase cuts extracellular DNA, reducing the viscoelasticity of airway secretions and improving
clearance. In a randomized double-blind trial 321 individuals were assigned to receive rhDNase and
324 we assigned to a placebo treatment (Fuchs et al. 1994). The primary purpose of this study was
to investigate the effect of rhDNase on the suppression of exacerbations so to this end the onset times
of exacerbations were recorded over the study period of approximately 169 days. In the control arm
139 individuals had at least one exacerbation, 42 had at least two exacerbations, and 18 had at least
three exacerbations; in the rhDNase arm these numbers were 104, 39 and 9 respectively. The baseline
forced expiratory volume (FEV) is a measure of lung function known to be highly associated with the
onset of exacerbations; it was centered in the analyses that follow by subtracting the mean value and
we denote it by FEVC. The data are available at the website for Cook and Lawless (2007).

We fit the marginal and partially conditional models with the treatment indicator alone, and when
controlling for the baseline FEVC. Since only a few individuals experienced more than 3 events,
four time-dependent strata were defined based on no events (Ni(t

−) = 0), 1 event (Ni(t
−) = 1),

2 events (Ni(t
−) = 2), and ≥ 3 events (Ni(t

−) ≥ 3). The results summarized in Table 3 reveal
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Figure 4: Estimated cumulative marginal rate functions (top row) and cumulative stratified rate func-
tions (bottom row) for the cystic fibrosis trial.

that the estimates and conclusions are comparable across the four analyses, but we make comments
here related to the findings of the theory and empirical studies of Sections 3 and 4. First there is
very close agreement between the estimates of treatment effect from the marginal analysis whether
FEVC is controlled for or not - this is to be expected based on the results in Sect. 3.2. There is
a slightly smaller standard error for the coefficient in the adjusted analysis as FEVC explains some
of the variation in the event risk across individuals. The estimate of the treatment effect is smaller
from the partially conditional (stratified) analyses decreasing from -0.271 to -0.234 in the models not
adjusting for FEVC for example. This reduction in the estimated treatment effect is accompanied
by a reduction in the robust standard error in the partially conditional analysis, and as a result the
p-values are virtually identical at 0.029 and 0.030 for the Wald tests. Similar findings are observed
when controlling for FEVC.

For completeness we plot the semiparametric estimates of the cumulative baseline rates under
the marginal (top row) and partially conditional baseline rates (bottom row) in Figure 4. While the
plots are provided for each treatment group they are obtained from one fitted model for each analysis.
The effect of treatment is evident graphically from the lower slope of the estimate in the rhDNase
arm (top row). Moreover the estimates of the cumulative stratified baseline transition rates show
the increased risk of event occurrence with each event; this is inferred by the progressively steeper
estimates reflecting higher risks at any time.

Motivated by the suggestions we provide in Sect. 4.2, we carry out a small simulation study
to mimic the cystic fibrosis data and investigate the behaviour of the estimates under the marginal
and partially conditional models. Based on Figure 4, we assume the recurrent event follows a Markov
process as we specified in Sect. 4.2 withK = 2 andKm = 20. We fit the model λi(t) = q0 exp(ηXi+
ζZi + αNi(t

−)) and obtain the estimates η̂ = −0.228, ζ̂ = −0.015 and α̂ = 0.343. The Nelson-
Aalen estimates of the cumulative baseline intensities could be obtained with the slopes providing
a way of selecting q0; here we take q0 = 0.0032. The centered baseline forced expiratory volume
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approximately follows a normal distribution with mean 0 and standard deviation 26. In this simulation
study we took the covariate Z to follow a similar distribution as FEVC, which is normally distributed
with mean 0 and standard deviation σz = 20, 26, or 30; we study settings with slightly lower and
slightly higher variability. We let the effect of FEVC on the event rate be ζ = −0.50, -0.10, -0.01,
0.00, and 0.20. Using these values, we could generate the event times for n = 645 individuals. The
empirical frequency of estimates under the marginal and partially conditional models with only the
treatment indicator are summarized in Table 4. We note that when there is no effect of Z on the event
process, the partially conditional model with only treatment indicator is the correct model and hence
leads to consistent estimation of the treatment effect. Although the marginal model ignores the state-
dependent transition intensity, statistical inference for the treatment effect is still valid when robust
variance estimates are used. When ζ 6= 0, both the marginal and partially conditional models omitting
Z result in biased estimates and the confidence intervals have poor empirical coverage probability.

Table 4: Empirical frequency of estimate for treatment effect, when omitting covariate Z in the as-
sumed rate function under the marginal and partially conditional models for the recurrent event fol-
lowing a Markov process; Z is normally distributed with mean 0 and standard deviation σz, and X
and Z are independent; n = 645 and nsim = 1000; all numbers for BIAS, ESE, ASE and ECP
(×100) in the table.

Marginal Model Partially Conditional Model

ζ BIAS ESE ASE1 ASE2 ECP1 ECP2 BIAS ESE ASE1 ASE2 ECP1 ECP2

σz = 20

0.20 14.47 13.19 3.22 12.89 19.8 79.6 21.61 5.01 3.27 4.92 0.2 0.8
0.00 -3.29 12.14 11.00 12.22 92.2 94.7 -0.68 10.94 11.06 11.03 96.1 96.1
-0.01 -3.00 12.11 10.84 12.27 91.4 94.5 0.02 10.69 10.90 10.88 95.0 94.8
-0.10 6.34 15.41 4.41 15.46 37.0 93.2 18.47 6.96 4.46 6.93 9.0 25.0
-0.50 20.40 12.15 2.74 11.70 8.3 59.9 22.52 4.36 2.83 4.12 0.0 0.0

σz = 26

0.20 16.21 12.30 3.01 12.36 17.6 74.1 21.79 4.83 3.07 4.57 0.0 0.7
0.00 -3.29 12.14 11.00 12.22 92.2 94.7 -0.68 10.94 11.06 11.03 96.1 96.1
-0.01 -3.46 12.54 10.73 12.32 89.8 94.0 -0.03 10.96 10.80 10.77 94.7 94.6
-0.10 10.22 14.12 3.80 14.26 30.4 89.9 20.00 6.14 3.85 5.91 2.3 9.5
-0.50 21.00 11.71 2.68 11.57 8.8 54.6 22.74 4.21 2.80 4.04 0.0 0.0

σz = 30

0.20 18.56 12.25 2.93 12.17 13.7 66.3 22.19 4.62 3.00 4.44 0.0 0.3
0.00 -3.29 12.14 11.00 12.22 92.2 94.7 -0.68 10.94 11.06 11.03 96.1 96.1
-0.01 -2.69 12.50 10.63 12.38 89.5 93.6 0.88 10.82 10.70 10.67 94.8 94.9
-0.10 12.40 13.62 3.56 13.72 28.4 85.6 20.95 5.58 3.61 5.50 0.8 5.1
-0.50 21.40 11.25 2.65 11.48 7.1 53.9 22.42 4.29 2.78 4.01 0.0 0.0

6 DISCUSSION

Marginal and partially conditional semiparametric models have received considerable attention in
recent years as methods for assessing the effect of therapeutic interventions on the basis of recurrent
events. The marginal rate-based model is viewed as offering a robust approach to assessing treatment
effects but it is susceptible to the effects of model misspecification; while we have demonstrated
this when the true event generating process is Markov, this arises whenever the basic multiplicative
assumption of covariate effects is not satisfied. While the partially conditional model represents a
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generalization of the marginal model through the introduction of time-dependent strata, the strata
are defined based on the cumulative number of events which is responsive to treatment and other
risk factors which also having effect on the outcome. Conditioning on time-dependent variables
which are realized post-randomization and potentially responsive to treatment has been known to be
problematic for some time (Kalbfleisch and Prentice 2002). Hernán (2010) points out that analyses
based on Cox regression models incorporate such conditioning implicitly through the comparison
of covariate distributions among those individuals who are uncensored and event-free at each failure
time post-randomization; see also Aalen et al. (2015). Here we investigate in detail the implications of
conditioning on the cumulative number of events in a partially conditional model for recurrent event
analyses. The findings mean that the full marginal model should be used in randomized trials since,
as demonstrated here, it can yield an estimate of treatment effect with a simple causal interpretation.
Careful examination of the multiplicative assumption is warranted however to ensure the assumption
is reasonable.

ACKNOWLEDGEMENTS

This research was financially supported by grants from the UK Medical Research Council [Unit pro-
gramme no. MC UU 00002/2], the Natural Sciences and Engineering Research Council of Canada
(RGPIN 04207) and the Canadian Institutes for Health Research (FRN 13887). R.J. Cook is a Canada
Research Chair in Statistical Methods for Health Research. The authors thank Jiahua Che for helpful
discussions.

APPENDIX 1: ASYMPTOTIC NAIVE AND ROBUST VARIANCE OF TREATMENT

EFFECT ESTIMATE UNDER A MISSPECIFIED MARGINAL MODEL

Under a misspecified marginal model where a covariate Z is omitted from the rate function, the
asymptotic properties of the estimator for the treatment effect are given in Sect. 3. Here we derive the
explicit forms of A(β) and B(β) used to calculate the asymptotic model-based and robust variances
of the estimator. Using the notation of the paper,

A(β) = E [−∂Ui(β)/∂β] = E

∫ ∞
0

Yi(t) ·

s(2)(β, t)

s(0)(β, t)
−

(
s(1)(β, t)

s(0)(β, t)

)2
 · dNi(t)


= EYi(t),Xi,Zi

∫ ∞
0

Yi(t) ·

s(2)(β, t)

s(0)(β, t)
−

(
s(1)(β, t)

s(0)(β, t)

)2
 · eηXi+ζZi · dµ0(t)


=

∫ A

0
G(t) ·

s(2)(β, t)

s(0)(β, t)
−

(
s(1)(β, t)

s(0)(β, t)

)2
 · E (eηXi+ζZi

)
· dµ0(t) ,

where s(2)(β, t) = n−1
∑n

i=1 E[Yi(t)e
βXiX2

i ] = G(t)E[eβXiX2
i ] = s(1)(β, t) for a binary treatment

covariate Xi. Note that

s(2)(β, t)

s(0)(β, t)
=
s(1)(β, t)

s(0)(β, t)
=

exp(β)P (Xi = 1)

exp(β)P (Xi = 1) + P (Xi = 0)
.

We define ∆(β) = s(r)(β, t)/s(0)(β, t), r = 1, 2, to write

A(β) = (∆(β)−∆2(β)) · E
(
eηXi+ζZi

)
·
∫ A

0

G(t) · dµ0(t) . (20)
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Since n−1/2U(β) is asymptotically equivalent to n−1/2
∑n

i=1 wi(β) (Lin and Wei 1989), asymptoti-
cally n−1/2U(β) ∼ N(0,B(β)), where B(β) = E (wi(β)w′i(β)), and

wi(β) =

∫ ∞
0

Yi(t)

(
Xi −

s(1)(β, t)

s(0)(β, t)

)(
dNi(t)−

exp(βXi)

s(0)(β, t)
dF̄ (t)

)
. (21)

Following the same strategy, we derived the explicit form of B(β) under the misspecified marginal
model in Online Resource 3, and obtained that

B(β) =

(∫ A

0
G(t)dµ0(t)

)
· E
[
(Xi −∆(β))2eηXi+ζZi

]
+ Q×

[
E
{

(Xi −∆(β))2 · e2(ηXi+ζZi)
}

− 2× E
{

(Xi −∆(β))2 · eβXi+ηXi+ζZi

}
· E[eηXi+ζZi ]

E[eβXi ]

+ E
{

(Xi −∆(β))2 · e2βXi

}(E[eηXi+ζZi ]

E[eβXi ]

)2
]
, (22)

where Q = 2
A∫
0

G(s)µ0(s)dµ0(s).

Through (20) and (22) we can now obtain the asymptotic naive and robust variance of estimate
for treatment effect under the misspecified marginal model when the recurrent event follows Poisson
processes. If Z has no effect on the outcome (i.e. ζ = 0) then A(β) = B(β), which means when
the marginal model is correctly specified, then the naive variance and robust variance of the treatment
effect estimate are the same.

APPENDIX 2: ASYMPTOTIC NAIVE AND ROBUST VARIANCE OF TREATMENT

EFFECT ESTIMATE UNDER MISSPECIFIED PARTIALLY CONDITIONAL MODEL

Under the misspecified partially conditional model where covariate Z is omitted, the estimating func-
tion for β is given in Sect. 3 and we have

Ã(β) = E
[
−∂Ũi(β)/∂β

]
= E

 ∞∑
k=1

∫ ∞
0

Ȳik(s) ·

s
(2)
k (β, s)

s
(0)
k (β, s)

−

(
s

(1)
k (β, s)

s
(0)
k (β, s)

)2
 · dNik(s)


= E

 ∞∑
k=1

∫ ∞
0

Ȳik(s) ·

s
(2)
k (β, s)

s
(0)
k (β, s)

−

(
s

(1)
k (β, s)

s
(0)
k (β, s)

)2
 dµi(s)


=

∞∑
k=1

∫ ∞
0

s
(0)
k (s) ·

s
(2)
k (β, s)

s
(0)
k (β, s)

−

(
s

(1)
k (β, s)

s
(0)
k (β, s)

)2
 ds , (23)

where s(r)
k (β, s) = E[Ȳik(s)e

βXiX⊗ri ], r = 0, 1, 2, and s(0)
k (s) = E[Ȳik(s)ρi(s)]. Furthermore, since

n−1/2Ũ(β) is asymptotically equivalent to n−1/2
∑n

i=1 w̃i(β), where

w̃i(β) =

∞∑
k=1

w̃ik(β) =

∞∑
k=1

∫ ∞
0

Ȳik(s)

(
Xi −

s
(1)
k (β, s)

s
(0)
k (β, s)

)
·

(
dNik(s)−

eβXi

s
(0)
k (β, s)

dF̄k(s)

)
,
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and dF̄k(s) = E[Ȳik(s)dNik(s)] = E[Ȳik(s)dµi(s)] = s
(0)
k (s)ds. The asymptotic variance of n−1/2Ũ(β)

is B̃(β) = E[w̃i(β)w̃′i(β)]. In Online Resource 3, we derived the explicit form of B̃(β) under the mis-
specified partially conditional model, which can be written as

B̃(β) =
∞∑
j=1

E

[∫ A

0
G(t) · P (Yij(t) = 1) · (Xi −∆j(β, t))

2 dµi(t)

]

+ 2 ∗
∑
j>k

E

{ A∫
0

t∫
0

G(t) · (Xi −∆j(β, t)) · (Xi −∆k(β, s)) · P (Yik(s) = 1)

×

(
ρi(t)−

eβXis
(0)
j (t)

s
(0)
j (β, t)

)
×

(
P (Yij(t) = 1|dNik(s) = 1, Yik(s) = 1)ρi(s)

−
eβXis

(0)
k (s)

s
(0)
k (β, s)

P (Yij(t) = 1|Yik(s) = 1)

)
dsdt

}
, (24)

where ∆j(β, t) = s
(1)
j (β, t)/s

(0)
j (β, t). Therefore, we can obtain the naive variance, Ã−1(β), and

robust variance, Ã−1(β)B̃(β)[Ã−1(β)]′, of the estimate for treatment effect under the partially condi-
tional model where covariate Z is omitted from the model.
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ONLINE RESOURCE 1: LIMITING BEHAVIOUR OF ESTIMATORS OF TREATMENT

EFFECT UNDER MISSPECIFIED MARGINAL MODEL

We assume the recurrent event follows a Poisson process with a Weibull rate function ρ(t) = ρ0(t) exp(ηX+
ζZ) with ρ0(t) = λκ(λt)κ−1. X is a binary treatment indicator and Z is a fixed covariate with
Z|X ∼ N(θ0 + θ1X, σ

2). By equation (15), we could calculate the limiting bias of treatment ef-
fect estimator under the marginal rate-based model with only treatment indicator. The asymptotic
naive and robust standard errors under the misspecified marginal model can also be evaluated using
equations (20) and (22) in Appendix 1. We consider the same parameter settings as in Sect. 3.2
but with conditionally normally distributed confounder Z. Figure ?? shows the limiting bias of esti-
mates of treatment effect under the marginal model when omitting the potential confounder Z and the
asymptotic naive and robust standard errors of the corresponding estimators are shown in Figure ??

We can find that when X and Z are independent, the misspecified marginal model can still yield
consistent estimate of the treatment effect. When X and Z are correlated, the limiting bias increases
as the association between X and Z increases and as the magnitude of ζ increases. But the variability
of Z has little effect on the limiting bias. Furthermore, under the misspecified marginal model, the
robust standard error is larger than the naive standard error with the differences increasing when the
effect of the covariate Z increase and as the variability of Z increases.

ONLINE RESOURCE 2: EMPIRICAL STUDIES OF FINITE SAMPLE BEHAVIOUR UN-
DER MISSPECIFIED RATE-BASED MODELS

2.1 RECURRENT EVENT FOLLOWS A POISSON PROCESS

Here we consider a similar simulation study as in Sect. 4.1 to investigate the finite sample properties of
estimators of the treatment effect under the marginal and partially conditional models when omitting a
normally distributed confounder Z, where Z|X ∼ N(θ0 + θ1X, σ

2). The recurrent event is a Poisson
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Figure S1.1: Limiting bias of estimates of treatment effect under a marginal model when omitting the
covariate Z; Z|X is normally distributed with mean 1 + θ1X and variance 0.5.
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Figure S1.2: Asymptotic naive and robust standard errors of estimates of treatment effect under the
marginal model omitting a conditional normal covariate Z as a function of θ1; Z|X follows a normal
distribution with mean 1 + θ1X and variance σ2.



Yujie Zhong and Richard J. Cook 3

process with a Weibull rate function ρ(t) = λκ(λt)κ−1 exp(ηX + ζZ). We let θ0 = 1, and θ1 = 0.0,
0.5 or 2.0 to reflect the varying strengths of the association between X and Z. The variability of
Z is set to be σ2 = 0.1 or 0.5. We consider ζ = 0, log 1.5, or log 3.0 to reflect the none to strong
effect of covariate Z on the event process. The other parameter settings are same as in Sect. 4.1.
The marginal and partially conditional models with a single treatment indicator are adopted and the
empirical properties of the estimators are summarized in Table ??.

We find that when there is no effect of Z on the event process, both marginal and partially condi-
tional models yield consistent estimates of treatment effect. When X and Z are independent there is
negligible empirical bias of the estimated treatment effect under the marginal model, while the par-
tially conditional model yields biased estimates. This empirical bias is larger when the effect of Z on
the event process increases. This means the marginal model is robust in clinical trials but the benefit
of randomization is lost when we fit partially conditional model without addressing other covariates
effect. Furthermore the robust standard error is in close agreement with the empirical standard error
in general, while the average naive standard error underestimates the variability under the misspeci-
fied marginal model. When X and Z are not independent, there is significant bias of the estimates of
treatment effect under both models, and the bias increases when the association between X and Z is
stronger or the effect of Z on the event process becomes larger.

2.2: RECURRENT EVENT FOLLOWS A MARKOV PROCESS

We now consider the same Markov process as in Sect. 4.2 to govern the recurrent event. The potential
confounder Z is conditionally normally distributed here, and other parameter settings are same as in
Sect. 4.2. The marginal and partially conditional models with only a single treatment indicator
are fitted, and the empirical properties of the resulting estimators are summarized in Table ??. The
partially conditional model is the correct model when ζ = 0 and leads to consistent estimator of
treatment effect. The marginal model can still lead to valid inference when ζ = 0 if the robust
standard error is used. When ζ 6= 0, however, both the marginal and partially conditional models
omitting Z result in biased estimators of the treatment effect.

ONLINE RESOURCE 3: DERIVATION OF B MATRIX UNDER A MISSPECIFIED MARGINAL

AND PARTIALLY CONDITIONAL MODEL

3.1 DERIVATION OF B MATRIX UNDER A MISSPECIFIED MARGINAL MODEL

In Appendix 1, we’ve shown that B(β) = E (wi(β)w′i(β)), and

wi(β) =

∫ ∞
0

Yi(t)

(
Xi −

s(1)(β, t)

s(0)(β, t)

)(
dNi(t)−

exp(βXi)

s(0)(β, t)
dF̄ (t)

)
.
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Therefore

B(β) = E

{∫ ∞
0

Yi(t) (Xi −∆(β))

(
dNi(t)−

exp(βXi)

s(0)(β, t)
dF̄ (t)

)
×
∫ ∞

0
Yi(s) (Xi −∆(β))

(
dNi(s)−

exp(βXi)

s(0)(β, s)
dF̄ (s)

)}
= E

{∫ ∞
0

Yi(t) (Xi −∆(β))2 Var
(
dNi(t)

∣∣Yi(t), Xi, Zi
)}

+E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · E
[
dNi(t)dNi(s)

∣∣Yi(t), Yi(s), Xi, Zi
]

−E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · E
[
dNi(t)

exp(βXi)

s(0)(β, s)
dF̄ (s)

∣∣Yi(t), Yi(s), Xi, Zi

]
−E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · E
[
dNi(s)

exp(βXi)

s(0)(β, t)
dF̄ (t)

∣∣Yi(t), Yi(s), Xi, Zi

]
+E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · exp(2βXi)

s(0)(β, t)s(0)(β, s)
dF̄ (t)dF̄ (s)

 (S3.1)

For the first term in (??),

E

{∫ ∞
0

Yi(t) (Xi −∆(β))2 Var (dNi(t)|Yi(t), Xi, Zi)

}
= E

{∫ ∞
0

Yi(t) (Xi −∆(β))2 eηXi+ζZidµ0(t)

}
=

∫ A

0
G(t)E

{
(Xi −∆(β))2 eηXi+ζZi

}
dµ0(t) . (S3.2)

For the second term in (??), based on the independent increments property of Poisson processes,

E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · E [dNi(t)dNi(s)|Yi(t), Yi(s), Xi, Zi]


= E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · e2(ηXi+ζZi)dµ0(t)dµ0(s)


=

∞∫
0

∞∫
0

E [Yi(t)Yi(s)] · E
{

(Xi −∆(β))2 · e2(ηXi+ζZi)
}
dµ0(t)dµ0(s) . (S3.3)

The third term and the fourth term are actually the same, so

E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · E
[
dNi(t)

exp(βXi)

s(0)(β, s)
dF̄ (s)|Yi(t), Yi(s), Xi, Zi

]
= E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · exp(βXi)

s(0)(β, s)
dF̄ (s) eηXi+ζZidµ0(t)


=

∞∫
0

∞∫
0

E [Yi(t)Yi(s)] · E
{

(Xi −∆(β))2 · eβXi+ηXi+ζZi
}
· E[eηXi+ζZi ]

E[eβXi ]
dµ0(t)dµ0(s) , (S3.4)
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and the last term is

E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · exp(2βXi)

s(0)(β, t)s(0)(β, s)
dF̄ (t)dF̄ (s)


= E


∞∫

0

∞∫
0

Yi(t)Yi(s) · (Xi −∆(β))2 · exp(2βXi)

[E(eβXi)]
2

[
E(eηXi+ζZi)

]2
dµ0(t)dµ0(s)


=

∞∫
0

∞∫
0

E [Yi(t)Yi(s)] · E
[
(Xi −∆(β))2 · e2βXi

](E[eηXi+ζZi ]

E[eβXi ]

)2

dµ0(t)dµ0(s) . (S3.5)

Equations (??) to (??) are all of the form,
∞∫

0

∞∫
0

E[Yi(t)Yi(s)] ·H(β, η, ζ) dµ0(t)dµ0(s) ,

whereH(β, η, ζ) is the corresponding deterministic function of the parameters (β, η, ζ). For example,
in (??),

H(β, η, ζ) = E
{

(Xi −∆(β))2 · e2(ηXi+ζZi)
}
.

In order to evaluate (??) to (??), we need to get the expression for
∞∫

0

∞∫
0

E[Yi(t)Yi(s)] dµ0(t)dµ0(s) .

Note that E[Yi(t)Yi(s)] 6= P (Ci > s)P (Ci > t) because at risk indicator for an individual at different
times are correlated, so

∞∫
0

∞∫
0

E[Yi(t)Yi(s)] dµ0(t)dµ0(s) =

A∫
0

A∫
0

P (Ci > t,Ci > s) dµ0(t)dµ0(s)

=

A∫
0

s∫
0

P (Ci > s) dµ0(t)dµ0(s) +

A∫
0

A∫
s

P (Ci > t) dµ0(t)dµ0(s)

=

A∫
0

G(s)µ0(s)dµ0(s) +

A∫
0

t∫
0

G(t)dµ0(s)dµ0(t)

= 2 ·
A∫

0

G(s)µ0(s)dµ0(s)
def
= Q . (S3.6)

Substituting (??) in (??) to (??), we obtain

B(β) =

(∫ ∞
0
G(t)dµ0(t)

)
· E
[
(Xi −∆(β))2eηXi+ζZi

]
+ Q×

[
E
{

(Xi −∆(β))2 · e2(ηXi+ζZi)
}

− 2× E
{

(Xi −∆(β))2 · eβXi+ηXi+ζZi
}
· E[eηXi+ζZi ]

E[eβXi ]

+ E
{

(Xi −∆(β))2 · e2βXi
}(E[eηXi+ζZi ]

E[eβXi ]

)2
]
. (S3.7)
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3.2 DERIVATION OF B̃ MATRIX UNDER A MISSPECIFIED PARTIALLY CONDITIONAL MODEL

In Appendix 2, we knew that
B̃(β) = E[w̃i(β)w̃′i(β)] ,

where

w̃i(β) =

∞∑
k=1

w̃ik(β) =

∞∑
k=1

∫ ∞
0

Ȳik(s)

(
Xi −

s
(1)
k (β, s)

s
(0)
k (β, s)

)
·

(
dNik(s)−

eβXi

s
(0)
k (β, s)

dF̄k(s)

)
,

and dF̄k(s) = E[Ȳik(s)dNik(s)] = E[Ȳik(s)dµi(s)] = s
(0)
k (s)ds. Therefore,

B̃(β) = E

[∑
j,k

w̃ij(β)w̃ik(β)

]
=
∞∑
j=1

E
[
w̃2
ij(β)

]
+
∑
j 6=k

E [w̃ij(β)w̃ik(β)]
def
= B1 +B2 .

Let ∆j(β, t) = s
(1)
j (β, t)/s

(0)
j (β, t), then B1 can be written as

B1 =

∞∑
j=1

E
[
w2
ij(β)

]
=

∞∑
j=1

E

[∫ ∞
0

Ȳij(t) (Xi −∆j(β, t))
2 (dNij(t))

2

]

=
∞∑
j=1

E

[∫ ∞
0

Ȳij(t) (Xi −∆j(β, t))
2 Var

(
dNij(t)|Ȳij(t), Xi, Zi

)]

=
∞∑
j=1

E

[∫ ∞
0

Ȳij(t) (Xi −∆j(β, t))
2 dµi(t)

]

=
∞∑
j=1

E

[∫ A

0
G(t) · P (Yij(t) = 1) · (Xi −∆j(β, t))

2 dµi(t)

]
. (S3.8)

For the second part of B̃(β),

B2 =
∑
j 6=k

E[w̃ij(β)w̃ik(β)] = 2 ∗
∑
j>k

E[wij(β)wik(β)]

= 2 ∗

{
E

∑
j>k

∞∫
0

∞∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s)) dNij(t)dNik(s)


− E

∑
j>k

∞∫
0

∞∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXi

s
(0)
k (β, s)

dNij(t)dF̄k(s)


− E

∑
j>k

∞∫
0

∞∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXi

s
(0)
j (β, t)

dNik(s)dF̄j(t)


+ E

∑
j>k

∞∫
0

∞∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
e2βXi

s
(0)
j (β, t) · s(0)

k (β, s)
dF̄j(t)dF̄k(s)

} .
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In fact, j > k implies t > s. Recall that dF̄k(s) = s
(0)
k (s)ds, we can write

B2 = 2 ∗

{∑
j>k

E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s)) dNik(s)dNij(t)


−
∑
j>k

E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
k (s)

s
(0)
k (β, s)

dsdNij(t)


−
∑
j>k

E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
j (t)

s
(0)
j (β, t)

dNik(s)dt


+
∑
j>k

E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
e2βXis

(0)
j (t) s

(0)
k (s)

s
(0)
j (β, t) · s(0)

k (β, s)
dsdt

}
def
= 2 ∗

∑
j>k

(b21 − b22 − b23 + b24) .

The (conditional) expectations with respect to {Xi, Zi, Yi(t), Yik(s), Yij(t), dNik(s), dNij(t)}must be
taken in a way that respects the time ordering. Note that

b21 = E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s)) dNik(s)dNij(t)


= E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s)) dNik(s)dµi(t)


= E

 ∞∫
0

t∫
0

Yi(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s)) dNik(s)P (Yij(t) = 1|dNik(s), Ȳik(s))dµi(t)


= E

 ∞∫
0

t∫
0

Yi(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))P (Yij(t) = 1|dNik(s) = 1, Yik(s))dµi(s)dµi(t)


= E

[ A∫
0

t∫
0

G(t) (Xi −∆j(β, t)) (Xi −∆k(β, s))P (Yik(s) = 1)P (Yij(t) = 1|dNik(s) = 1, Yik(s) = 1)dµi(s)dµi(t)

]
.

b22 = E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
k (s)

s
(0)
k (β, s)

dsdNij(t)


= E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
k (s)

s
(0)
k (β, s)

dsdµi(t)


= E

 A∫
0

t∫
0

G(t) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
k (s)

s
(0)
k (β, s)

P (Yik(s) = 1)P (Yij(t) = 1|Yik(s) = 1)dsdµi(t)
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b23 = E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
j (t)

s
(0)
j (β, t)

dNik(s)dt


= E

 ∞∫
0

t∫
0

Yi(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
j (t)

s
(0)
j (β, t)

P (Yij(t) = 1|dNik(s), Yik(s))dNik(s)dt


= E

 ∞∫
0

t∫
0

Yi(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
j (t)

s
(0)
j (β, t)

P (Yij(t) = 1|dNik(s) = 1, Yik(s))dµi(s)dt


= E

 ∞∫
0

t∫
0

Yi(t) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
j (t)

s
(0)
j (β, t)

P (Yij(t) = 1|dNik(s) = 1, Yik(s) = 1)P (Yik(s) = 1)dµi(s)dt


= E

 A∫
0

t∫
0

G(t) (Xi −∆j(β, t)) (Xi −∆k(β, s))
eβXis

(0)
j (t)

s
(0)
j (β, t)

P (Yij(t) = 1|dNik(s) = 1, Yik(s) = 1)P (Yik(s) = 1)dµi(s)dt



b24 = E

 ∞∫
0

t∫
0

Ȳij(t)Ȳik(s) (Xi −∆j(β, t)) (Xi −∆k(β, s))
e2βXis

(0)
j (t)s

(0)
k (s)

s
(0)
j (β, t) · s(0)k (β, s)

dsdt


= E

 A∫
0

t∫
0

(Xi −∆j(β, t)) (Xi −∆k(β, s))
e2βXis

(0)
j (t)s

(0)
k (s)

s
(0)
j (β, t) · s(0)k (β, s)

G(t)P (Yij(t) = 1, Yik(s) = 1) dsdt


= E

 A∫
0

t∫
0

G(t) (Xi −∆j(β, t)) (Xi −∆k(β, s))
e2βXis

(0)
j (t)s

(0)
k (s)

s
(0)
j (β, t) · s(0)k (β, s)

P (Yik(s) = 1)P (Yij(t) = 1|Yik(s) = 1) dsdt


Therefore, we have

B2 = 2 ∗
∑
j>k

E

{ A∫
0

t∫
0

G(t) · (Xi −∆j(β, t)) · (Xi −∆k(β, s)) · P (Yik(s) = 1) (S3.9)

×
[
P (Yij(t) = 1|dNik(s) = 1, Yik(s) = 1)ρi(s)ρi(t)−

eβXis
(0)
k (s)

s
(0)
k (β, s)

P (Yij(t) = 1|Yik(s) = 1)ρi(t)

−
eβXis

(0)
j (t)

s
(0)
j (β, t)

P (Yij(t) = 1|dNik(s) = 1, Yik(s) = 1)ρi(s) +
e2βXis

(0)
j (t)s

(0)
k (s)

s
(0)
j (β, t) · s(0)k (β, s)

P (Yij(t) = 1|Yik(s) = 1)
]
dsdt

}

which alternatively can be written as

B2 = 2 ∗
∑
j>k

E

{ A∫
0

t∫
0

G(t) · (Xi −∆j(β, t)) · (Xi −∆k(β, s)) · P (Yik(s) = 1) ·

(
ρi(t)−

eβXis
(0)
j (t)

s
(0)
j (β, t)

)

×

(
P (Yij(t) = 1|dNik(s) = 1, Yik(s) = 1)ρi(s)−

eβXis
(0)
k (s)

s
(0)
k (β, s)

P (Yij(t) = 1|Yik(s) = 1)

)
dsdt

}
. (S3.10)

Calculation of B̃(β) requires probabilities P (Yik(s) = 1), P (Yij(t)|dNik(s) = 1, Yik(s) = 1) and
P (Yij(t) = |Yik(s) = 1). Under the Poisson model we have

P (Yik(s) = 1) = P (Ni(s
−) = k − 1) =

e−µi(s)(µi(s))
k−1

(k − 1)!
(S3.11)
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P (Yij(t) = 1|Yik(s) = 1) = P (Ni(t
−) = j − 1|Ni(s

−) = k − 1)

= P (Ni(s, t
−) = j − k)

=
e−[µi(t)−µi(s)](µi(t)− µi(s))j−k

(j − k)!
(S3.12)

P (Yij(t) = 1|dNik(s) = 1, Yik(s) = 1) = P (Ni(t
−) = j − 1|dNik(s) = 1, Ni(s

−) = k − 1)

= P (Ni(t
−) = j − 1|Ni(s) = k)

= P (Ni(s
+, t−) = j − k − 1)

=
e−[µi(t)−µi(s)](µi(t)− µi(s))j−k−1

(j − k − 1)!
(S3.13)


