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1. INTRODUCTION

The importance of phosphate regulation in the human body has been highlighted by research showing that phos-
phate dysregulation is associated with many disease conditions, including chronic kidney disease (CKD), cardiovas-
cular disease, tumorigenesis, premature aging, and skeletal disorders.1–8 The benefit of dietary phosphate restriction 
in the management of CKD is well established.9–11 However, until recently, little attention has focused on the health 
and disease consequences of an oversupply of phosphorus in the diet of healthy adults. Recent epidemiological 
research has shown that mortality in healthy adults increases as dietary phosphate intake levels rise above 1400 mg 
per day.12 Paradoxically, the United States Department of Agriculture continues to recommend dietary phosphate 
levels exceeding 1700–1800 mg per day for a 2000-calorie diet.13,14 Thus, issues of phosphate homeostasis apply to the 
general population, not just to patients with CKD.

In this book chapter, we outline the physiological basics of phosphate homeostasis, focusing particularly on endo-
crine regulation of this essential micronutrient—the second most abundant mineral in the body, next to calcium. The 
first part discussed at the intestinal absorption and regulation of phosphate homeostasis through the bone–kidney 
axis, the next part explained in more detail at the interaction of specific endocrine regulators of phosphate homeosta-
sis, and the last part elaborated some of the pathophysiological conditions associated with dysregulated phosphate 
homeostasis.
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2. PHOSPHATE HOMEOSTASIS

The regulation of phosphate homeostasis is biologically important because inorganic phosphorus performs 
many functions within the body.15–19 Phosphate is a component of nucleic acids, DNA and RNA, and it is incorpo-
rated in the structure of phospholipids in cell membranes. As an intracellular anion, phosphate is involved in the 
activation and inactivation of enzymes and coenzymes. Phosphate also plays roles in cell signaling through phos-
phorylation, in energy metabolism as ATP, and in bone mineralization as a principal element within hydroxyapa-
tite. Endocrine regulation of phosphate depends on a delicate balance among circulating factors like 1,25(OH)2D3 
(calcitriol, the active form of vitamin D), parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23). 
Dysregulation of these factors can induce phosphorus imbalances which can affect the functionality of almost 
every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in 
morbidity and mortality. Through the action of PTH, vitamin D, and FGF23, phosphate homeostasis is maintained 
by regulating the amount of phosphate absorbed in the intestines, reabsorbed in the kidney, and resorbed from 
bone (Fig. 31.1).

2.1  Intestinal Phosphate Absorption

Phosphate from dietary sources is absorbed in the small intestines, mainly through active transport by the 
type II sodium-dependent phosphate cotransporter, Npt2b (encoded by gene SLC34a2), and absorption is regu-
lated by hormones and dietary conditions.20–22 The sodium and phosphorus ions are transported by the Npt2b 
cotransporters, which involves voltage-dependent and electroneutral mechanisms. In addition to 1,25(OH)2D3, 
factors that regulate the expression and function of Npt2b include FGF23, matrix extracellular phosphoglyco-
protein (MEPE), epidermal growth factor (EGF), thyroid hormone, estrogens, glucocorticoids, and metabolic 
acidosis. Moreover, Na+/H+ exchange regulatory factor 1 (NHERF1) also interacts with Npt2b in the intes-
tines under conditions of low dietary phosphorus intake.23 A smaller amount of phosphorus is believed to be 
absorbed in the intestines by type III sodium-dependent phosphate cotransporters, Pit1 and Pit2, which operate 
by passive transport and are involved in functions of individual cells.22 In addition, ingestion of large amounts 
of dietary phosphate can increase serum phosphate levels through increased absorption via a paracellular route, 
bypassing hormonal regulation of cotransporters.22,24

FIGURE 31.1 Total body phosphorus homeostasis is primarily maintained by a multiorgan cross-talk among parathyroid gland, intestine, 
kidney, and bone. Of clinical importance, since only 1% of total body phosphorus is extracellular, the serum phosphorus concentration does not 
truly reflect total body phosphorus content and is also a poor predictor of intracellular and storage phosphorus content.19,120,127,133,135
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2.2  Renal Phosphate Reabsorption

Serum phosphate levels are regulated mainly through the reabsorption rate of renal phosphate within the kidney, 
the major organ that regulates phosphate homeostasis according to the body’s requirements.5,18,25 Renal phosphate 
reabsorption increases or decreases through the expression of sodium-phosphate cotransporters, Npt2a (SLC34a1) 
and Npt2c (SLC34a3), located in the renal proximal tubule.26 Npt2a is electrogenic and transports three Na+ ions 
coupled to phosphorus (HPO4

2−) at physiologic pH, while Npt2c is electroneutral and transports two Na+ ions for 
each phosphorus ion. Pit2 phosphate transporters are also located in the renal proximal tubule. It is believed that 
a low concentration of sodium regulated by Na+, K+-ATPase in the cells of the basolateral membrane facilitates 
phosphorus transport within the proximal tubule.27–31 Cotransporters import phosphate from the proximal tubular 
lumen, translocated across the apical brush-border membrane (BBM) and exported at the basolateral membrane.26 
Although the molecules involved in phosphate translocation have not been identified, xenotropic and polytropic 
retrovirus receptor 1 (XPR1) appears to act as a phosphate exporter in mammalian cells, but its role as an exporter in 
renal cells has not yet been determined.

Hyperphosphaturia and hypophosphatemia occur in Npt2a knockout mice (Npt2a–/–). Concentrations of serum 
1,25(OH)2D3 and urine calcium also increase in Npt2a knockout mice; there is a ∼70% decrease in phosphate trans-
port in the BBM, and reabsorption is supported by increased expression of Npt2c.32–35 This evidence indicates that 
Npt2a in mice is a major transporter in renal phosphate reabsorption. Mutation of Npt2a in humans causes recessive 
Fanconi syndrome with hypophosphatemic rickets, suggesting that Npt2a plays a role in phosphate handling.36,37 In 
Npt2c knockout mice, (Npt2c–/–), hypercalciuria and higher serum concentrations of 1,25(OH)2D3 occur, but hypo-
phosphatemia or rickets does not.34 The situation is different in humans with mutation of Npt2c, causing hereditary 
hypophosphatemia rickets with hypercalciuria (HHRH), which suggests that Npt2c has a more important role in 
phosphate homeostasis in humans than in mice.38,39

2.3  Skeletal Phosphate Resorption

Bone functions as a reserve for calcium and phosphate from which the body can deposit and withdraw minerals to 
maintain mineral ion balance.17,40–45 Reabsorption is the process by which bone releases calcium and phosphate from 
the hydroxyapatite bone matrix. Osteocytes in mature bone assist in bone mineralization and phosphate homeosta-
sis by producing factors such as FGF23 and 1,25(OH)2D3. Other endocrine regulators that target bone include PTH, 
calcitonin, sex hormones, and osteocalcin. An endocrine communication network that regulates phosphorus homeo-
stasis is formed between bone, kidneys, intestines, and parathyroid glands (Fig. 31.1).

3. ENDOCRINE REGULATORY FACTORS

3.1  Parathyroid Hormone

Phosphate reabsorption is decreased in the kidney by PTH, which induces phosphaturia.26 Decreased reab-
sorption occurs, as levels of Npt2a and Npt2c protein are reduced in the BBM. Through endocytosis, Npt2a 
is delivered to lysosomes for degradation, while Npt2c is dissolved through a pathway dependent on micro-
tubules. The basolateral and apical surfaces of the proximal tubule each contain PTH receptors. On the api-
cal surface, PTH receptors are signaled by a protein kinase C (PKC) pathway, and a protein kinase A (PKA) 
pathway signals PTH receptors on the basolateral surface. PTH signaling occurs by phosphorylation of  
NHERF1.46–49 Production of FGF23 is enhanced by PTH, and phosphate augments PTH production by stabiliz-
ing its mRNA.50–54

3.2  Vitamin D

More than 80% of required vitamin D in human is generated by ultraviolet (UV) B rays from sunlight.55–63 As 
mentioned, 1,25(OH)2D3 increases intestinal absorption of dietary phosphate, mainly through enhanced expres-
sion of Npt2b cotransporters. 1,25(OH)2D3 is produced from circulating 25-hydroxyvitamin D [25(OH)D] through 
the action of 1α-hydroxylase (CYP27B1), an enzyme expressed in the renal proximal tubules. Janus kinase 3 (JAK3), 
produced in epithelial cells of the kidney, has also recently been found to powerfully regulate 1α-hydroxylase 
expression and phosphate transport.64 Although 1,25(OH)2D3 does not play a direct role in the reabsorption of 
renal phosphate, 1,25(OH)2D3 suppresses PTH synthesis, thus indirectly preventing reduced renal phosphate 
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reabsorption caused by PTH. Rising serum phosphate levels suppress production of 1,25(OH)2D3, forming a feed-
back loop between intestinal absorption and serum phosphate. The FGF23 production also increases as serum 
levels of phosphate and 1,25(OH)2D3 rise.

3.3  Fibroblast Growth Factor 23 and Klotho

FGF23, produced by osteocytes and osteoblasts of bone, is a recently discovered regulatory factor in phosphorus 
homeostasis.65–69 Renal phosphate wasting is caused by excessive levels of FGF23 in the serum, and the discovery of 
FGF23’s phosphate regulatory function was made after finding that autosomal-dominant hypophosphatemic rick-
ets (ADHR) was caused genetically by mutations in the FGF23 gene. A member of the FGF19 subfamily, the FGF23 
peptide in humans contains 251 amino acids, which is cleaved proteolytically during the secretion process. FGF23 
requires a transmembrane protein cofactor, Klotho, which enables the activation of FGF receptors (FGFR).70 Ectopic 
calcification, high levels of 1,25(OH)2D3, and hyperphosphatemia were discovered in the phenotypes of Klotho and 
FGF23 null mice.71–76 Upon activation, FGF23 lowers serum phosphate levels and increases phosphate excretion in 
the urine by suppressing reabsorption through the action of sodium-phosphate cotransporters, mostly in the renal 
proximal (Fig. 31.2). Klotho is expressed in the kidney, and Klotho-activated FGF23 reduces the expression of Npt2a, 
possibly by phosphorylating NHERF1.49

Within the renal proximal tubular epithelium, recent findings imply that FGF23 activates FGFR1 as well as FGFR4, 
which mediates signaling involving JAK3.49 In the distal tubular epithelium, FGF23 targets with-no-lysine kinase-4 
(WNK4) which regulates solute transport.15,49 FGF23 also downregulates synthesis of 1α-hydroxylase in the renal 
proximal tubules, thus suppressing 1,25(OH)2D3 production. As mentioned, the release of FGF23 from bone is stimu-
lated by increased serum levels of both phosphate and vitamin D; thus, FGF23 provides a regulatory feedback loop 
between the kidneys and bone.

4. DYSREGULATION OF PHOSPHATE HOMEOSTASIS

The endocrine feedback loops that regulate serum phosphate is a complex process. When endocrine regulation of 
phosphate homeostasis becomes dysfunctional due to phosphate burden or injury from phosphate toxicity, or due 
to genetic abnormalities, several associated disease conditions result. In general, dysregulated serum phosphate falls 

FIGURE 31.2 FGF23 produced in the bone can suppress Npt2a and Npt2c cotransporters to increase the renal excretion of phosphate. Similarly, 
FGF23 can also suppress the renal expression of 1α(OH)ase to reduce production of 1,25(OH)2D3 to decrease intestinal phosphate absorption, 
resulting in reduced serum levels of phosphate.19,132
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within two categories: hypophosphatemia and hyperphosphatemia. However, normal serum phosphate levels do 
not preclude intracellular and extracellular phosphorus dysregulation and associated conditions.4

4.1  Genetic Disorders of Phosphate Regulation

X-linked hypophosphatemic rickets (XLHR), ADHR, and autosomal recessive hypophosphatemic rickets (ARHR) 
occur when the FGF23 function is excessive. High circulating levels of FGF23 result in inadequate renal phosphate 
reabsorption and normal to lower levels of 1,25(OH)2D3. In addition to FGF23, genes that cause XLHR are phosphate-
regulating gene with homologies to endopeptidases on the X chromosome (PHEX), ectonucleotide pyrophospha-
tase/phosphodiesterase 1 (ENPP1), and dentin matrix protein 1 (DMP1) (Table 31.1).

Overexpression of FGF23 also causes hypophosphatemic rickets/osteomalacia associated with McCune-Albright 
syndrome, fibrous dysplasis, hypophosphatemic disease caused by intravenous administration of saccharated ferric 
oxide or iron polymaltose, family with sequence similarity 20, member C (FAM20C), and tumor-induced osteomala-
cia.77–79 In addition to releasing FGF23, mesenchymal tumors can synthesize and release other phosphaturic factors 
such as FGF7, MEPE, and secreted frizzled-related protein 4 (sFRP4).80–83 Hyperphosphatemic diseases occur when 
the FGF23 function is lacking due to inactivating mutations, e.g., familial tumoral calcinosis which produces elevated 
levels of renal phosphate reabsorption and 1,25(OH)2D3, along with ectopic calcification.84–87 In addition to FGF23 
and Klotho, UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3) is 
the gene that causes familial tumoral calcinosis.85,88 Klotho mutations were found to cause resistance to FGF23,89 and 
mutations in GALNT3 and FGF23 impaired secretion and circulation of full-length FGF23.

4.2  Conditions Associated With Phosphate Toxicity

That excessive intake of dietary phosphate is largely absorbed and may bypass normal endocrine regulation sug-
gests that humans, and perhaps other mammals, lack the physiological mechanisms to regulate a high-phosphorus 
diet. Many people, including patients with CKD90 and future medical professionals,91 lack awareness that a conven-
tional Western diet, abundant in dairy, flesh foods, grains, and phosphate additives, far exceeds the recommended 
dietary allowances for phosphorus. Phosphate toxicity, the accumulation of excess phosphorus in the intracellular 
and extracellular tissues, whether from genetic disorders or excessive dietary phosphate intake, is associated with a 
wide variety of disease conditions.2,92,93

TABLE 31.1 A List of several Human Diseases With Abnormal Phosphate Balance Due to Dysregulation of FgF23

Diseases Associated With Increased FGF23 Activity Cause

ADHR FGF23 mutation

ARHR DMP1 mutation

ENS FGFR3 mutation

McCune-Albright syndrome GNAS1 mutation

OGD FGFR1 mutation

TIO FGF23-producing tumor

XLHR PHEX mutation

Diseases Associated With Decreased FGF23 Activity Cause

FTC GALNT3 mutation

FTC FGF23 mutation

FTC KLOTHO mutation

Please note that the serum levels of both C-terminal and intact FGF23 are high in FTC caused by a KLOTHO mutation, while serum levels of C-terminal are high, the 
levels of intact FGF23 are low to normal in FTC caused by GLANT3 or FGF23 mutations.19,132

ADHR, autosomal dominant hypophosphatemic rickets; ARHR, autosomal recessive hypophosphatemic rickets/osteomalacia; DMP1, dentin matrix protein 1; ENS, 
epidermal nevus syndrome; FTC, familial tumoral calcinosis; GALNT3, UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase-3; 
GNAS1, guanine nucleotide-binding protein alpha-stimulating activity polypeptide 1; OGD, osteoglophonic dysplasia; PHEX, phosphate-regulating gene with 
homology to endopeptidases on the X chromosome; TIO, tumor-induced osteomalacia; XLHR, X-linked hypophosphatemic rickets.
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4.2.1  Chronic Kidney Disease
High serum phosphorus concentrations have been shown to increase the risk of developing kidney disease.94 

Increased renal phosphate burden causes tubular injury and interstitial fibrosis within the kidneys.1,95–97 As serum 
phosphorus increases in kidney disease patients, glomerular filtration rate decreases. Increased mortality from 
cardiovascular disease is also associated with CKD.98–102 Patients with early stages or end stage renal disease are 
counseled to manage their condition by following phosphate-restricted diets, and patients may also be prescribed 
phosphate binders.103,104

In hyperphosphatemia, phosphorus binds with free calcium to form calcium-phosphorus (CaxPi) product, a min-
eral compound normally elaborated into bone hydroxyapatite.2,92 The consequent serum reduction in free calcium 
stimulates release of the PTH which in turn resorbs bone to restore normal concentrations of serum calcium. This 
may explain how hyperphosphatemia in patients with CKD may induce secondary hyperparathyroidism, which 
accelerates bone resorption that may eventually lead to skeletal mineralization defects. The subsequent increase in 
serum concentration of CaxPi product, under continuing conditions of kidney burden that initiated hyperphospha-
temia, may also be deposited into the tissue causing ectopic calcification (Fig. 31.3).

4.2.2  Vascular Calcification
The arterial system’s endothelium is susceptible to ectopic calcification from CaxPi product deposition. Mortality 

risk is increased threefold to fourfold by arterial calcification.105 A hard or stable plaque forms in calcified arterial 
vessels, which is associated with hypertension, arteriosclerosis, left ventricular hypertrophy, and aortic valve disease. 
Vasodilation is also impaired by a high phosphorus load, which increases cardiovascular disease risk.106 High levels 
of serum phosphorus have been associated with coronary atherosclerosis,107 left ventricular hypertrophy, 108–111 and 
a 40% increased risk of heart failure.112

4.2.3  Tumorigenesis and Premature Aging
Phosphorus is sequestered in tumors in cancer patients,113 and cancer cells accumulate up to twice as much 

phosphorus as normal cells.114 A cellular environment high in phosphorus in humans has been found to induce 
tumor neovascularization and angiogenesis, or new blood vessel formation in neoplasms,115 possibly playing a 
role in sequestering excess phosphorus, as does the hyphae of mycorrhizae in a plant’s root system.116 Tumor 
growth in lung tissue has been stimulated by dietary phosphorus overload,117 and breast cancer cells cultured with 
elevated phosphorus levels were observed to modulate tumor metabolism and metastasis.118 A high daily phos-
phorus intake by men in the Health Professionals Follow-Up Study was associated with an increased overall risk 
of prostate cancer and with lethal and high-grade prostate cancer.119 Phosphate toxicity has been found to acceler-
ate mammalian aging, leading to early death.5,92,120–122 In particular, renal aging plays a key role in accelerating 
systemic aging.123–125

FIGURE 31.3 Ultrathin sections of kidneys of a mouse with normal serum phosphate level (A) and a mouse with high serum phosphate level 
(B). Please note the comparative glomerular structures (white arrows) and tubulointerstitial structures (yellow arrows) in kidneys with normal and 
high phosphate levels. The toluidine blue-stained kidney sections showing glomerular shrinkage, loss of tubulointerstitial uniformity, and renal 
calcification (red arrows) in kidney exposed with phosphate toxicity.120 (Original magnification ×40).
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5. CONCLUSION

Recent studies have provided convincing evidence of endocrine regulation of systemic phosphate homeosta-
sis.2,19,92,120,126–128 The endocrine interaction between bone-derived FGF23 and kidney-derived Klotho is essential for 
physiologic regulation of phosphate homeostasis. As briefly discussed, dysregulation of the FGF23–Klotho system 
leads to phosphate imbalance and induces a wide range of organ/tissue damage in blood vessels, bone, and kidney. 
Of clinical significance, phosphate toxicity induced by exogenous phosphate administration in humans can be fatal.5 
Recent studies have found that future medical professionals and CKD patients undergoing hemodialysis are not suf-
ficiently aware of the hidden source of phosphate in their diet and highlight the need for educational initiatives to 
raise awareness of the risk posed by dietary items with hidden phosphate ingredients,90,91 as maintaining phosphate 
balance through optimal dietary intake is important for a healthy life and for longevity.7,120,129–134
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