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Summary

Epidemiological studies routinely involve cross-sectional sampling of a population comprised of
individuals progressing through life history processes. We consider features of a cross-sectional
sample in terms of the intensity functions of a progressive multistate disease process under station-
arity assumptions. The limiting values of estimators for regression coefficients in naive logistic
regression models are studied, and simulations confirm the key asymptotic results that are rele-
vant in finite samples. We also consider the need for and the use of data from auxiliary samples,
which enable one to fit the full multistate life history process. We conclude with an application to
data from a national cross-sectional sample assessing marker effects on psoriatic arthritis among
individuals with psoriasis.
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1 INTRODUCTION

1.1 BACKGROUND

Chronic disease processes that feature distinct stages of development can often be naturally charac-
terized using multistate models (Hougaard, 1999; Andersen and Keiding, 2002; Cook and Lawless,
2014). Illness-death processes, for example, are fundamental to studies of disease onset as well as
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the consequence of disease on risk of death (Xu et al., 2010). More general multistate processes can
be useful for modeling the course of progressive diseases such as hepatitis (Sweeting et al., 2006),
retinopathy (Marshall and Jones, 1995), dementia (Tyas et al., 2007) or arthritis (Kobelt et al., 2002).
When a representative sample of individuals is available and life histories are observed prospectively
from their respective time origins, intensity-based models offer a convenient framework for modeling
the life course and studying the effect of covariates (Andersen et al., 1993; Aalen et al., 2008; Cook
and Lawless, 2018). For rare or slowly progressing diseases, however, prospective studies may be im-
practical since extended follow-up of large samples is required to obtain useful information. Prevalent
cohort designs offer an appealing approach to learning about the course of chronic diseases in affected
individuals. In such studies individuals with a disease of interest are selected through cross-sectional
sampling of a population. Sampled individuals are then followed prospectively in order to record the
occurrence of disease related complications, the development of co-morbidities, and death. Samples
chosen in this way are sometimes called length-biased since diseased individuals are sampled propor-
tionally to their lifetime with disease, so naive analyses will under-estimate the mortality rate among
diseased individuals. Much research has been directed at methods which address this length-bias, ei-
ther through joint modeling of the retrospective and prospective data (Asgharian and Wolfson, 2005;
Luo and Tsai, 2009; Huang and Qin, 2011; Qin et al., 2011). or by conditioning on the retrospective
data and using likelihoods accommodating delayed entry (Keiding and Moeschberger, 1992). When
resources preclude followup of individuals, information is restricted to the state occupied by individu-
als and the time of their respective sampling. This is often the case in fertility research (Keiding et al.,
2012) where the goal may be to estimate the distribution of the time to pregnancy among couples try-
ing to conceive who are recruited from cross-sectional sampling of a reference population. Keiding
(2006) gives numerous other examples of this situation and discusses assumptions, likelihood con-
struction, and estimability issues. He also highlights the utility of the Lexis diagram for understanding
and communicating the consequences of process-related sample selection criteria, and points out the
need for supplementary data (e.g. on mortality) to fully characterize life history processes of interest;
this reference is foundational to the work we discuss here, as is Kraemer et al. (2000).

Our interest lies in studying the information about general progressive multistate processes avail-
able from cross-sectional samples. While the distinction between incidence and prevalence of disease
has been clearly articulated (Keiding, 1991) and there has been considerable discussion about the dif-
ferent interpretations of covariate effects in intensity-based and marginal prevalence-based analyses,
researchers continue to report the results of naive application of logistic regression analyses based on
cross-sectional samples. Therefore we first consider the consequences of naive use of logistic regres-
sion when modeling state occupancy in cross-sectional samples from a population with a stationary
disease process. We use large sample theory for misspecified likelihoods (White, 1982) to obtain in-
sight into the factors determining the estimands for covariate effects in this setting. We next consider
the assumptions needed to justify construction of a valid likelihood based on a multistate model, and
the use of auxiliary data to facilitate estimation. The model of primary interest involves a healthy
state, a state representing the onset and early stage of a disease, successive transient states that are
entered upon disease progression, and a death state that can be entered from any of the non-terminal
states.

The remainder of this paper is organized as follows. In the following sub-section we introduce
the disease process that motivates this work. In Section 2 we define notation and intensity functions
for multistate processes, and derive expressions for features of cross-sectional samples in terms of
the properties of a stationary multistate disease process. The relation between disease status and
fixed covariates is routinely assessed by logistic regression using cross-sectional samples. We derive
the limiting value of the regression coefficients in terms of the intensities of the multistate disease
process and point out that the typical adjustment for age at risk can lead to increased bias and un-
interpretable results. Illustrative calculations are then given for a two-stage disease process. Issues
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of non-identifiability are then discussed in Section 3 and we show how auxiliary data can facilitate
estimation of the model parameters based on an augmented likelihood which synthesizes data from
sources using different sampling schemes. Section 4 contains an application to the motivating prob-
lem involving the development of psoriatic arthritis among patients with psoriasis and concluding
remarks are given in Section 5.

1.2 THE RISK OF PSORIATIC ARTHRITIS IN PSORIASIS

Psoriasis is a chronic immune-mediated dermatological condition affecting approximately 3.2% of
adults in North America (Rachakonda et al., 2014). It is characterized by the development of red
raised patches of skin with silvery-white plaques, often located on the knees, elbows, scalp and trunk.
These regions are often painful and itchy and are the cause of distress which affects quality of life
of affected individuals. Approximately one third of patients with psoriasis develop a more serious
condition called psoriatic arthritis (Gladman et al., 2005), which involves the development of painful
joint inflammation, joint stiffness and a consequent decreased range of motion which in turn decreases
functional ability. With time this inflammation will ultimately lead to joint destruction (Cresswell
et al., 2011) and disability and can significantly impact quality of life (Husted et al., 2001).
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PSORIATIC
ARTHRITIS

DEATH

Figure 1: A four-state model for a two-stage disease process involving psoriasis and psoriatic arthritis

This work is motivated by a collaborative research project directed at understanding the risk of
developing psoriatic arthritis in individuals with psoriasis. The multistate model we consider to char-
acterize the process of interest involves fours states: a healthy state (state 0), psoriasis (state 1),
psoriatic arthritis (state 2) and death (state 3); see Figure 1. Data available for analysis include the
results of a cross-sectional survey conducted in 2001 by the National Psoriasis Foundation (Gelfand
et al., 2005). Available information includes demographic variables such as age and gender for 14351
individuals, along with their disease status with respect to psoriasis and psoriatic arthritis. Auxiliary
data are available from a) data for a sample of 657 patients in a registry of individuals with psoria-
sis at the Center for Prognosis Studies in Rheumatic Disease at the University of Toronto (Gladman
and Chandran, 2010), b) data from a registry of 1314 psoriatic arthritis patients from the same cen-
tre (Gladman, 1991) and c) population mortality rates in Canada from 1921 to 2011 (Robert, 2017).
We consider the synthesis of the data from these various sources in the analysis of Section 4 where
we aim to learn about the four state process in Figure 1.
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2 CROSS-SECTIONAL SAMPLING OF MUTLISTATE DISEASE PROCESSES

2.1 CROSS-SECTIONAL SAMPLING AND ILLNESS-DEATH PROCESSES

The illness-death model facilitates modeling the risk of disease in a healthy individual as well as the
effect of disease occurrence on risk of death (Fix and Neyman, 1951) and therefore has a central role
in epidemiology. The state space for an illness-death process is given in Figure 2 (a) with healthy,
diseased and death states labeled 0, 1 and 2 respectively and transitions between states are governed by
intensity functions (Andersen et al., 1993). The cumulative incidence function for disease is governed
by the intensities for disease onset and disease-free death. The lethality of the disease is likewise
reflected by the relative magnitude of the death intensities from the disease and disease-free states.
For conditions with relatively little impact on mortality, it is often reasonable to model the intensity
for death following disease onset on a Markov timescale and model risk in terms of age, but for
more serious diseases the time since disease onset may be a more natural timescale and semi-Markov
models can be used. Hybrid time scales incorporating age and disease duration are also possible, but
we emphasize Markov models which appear reasonable for the setting of interest. To study features
of a population of processes originating over a period of time it is necessary to consider trends in
the disease process in the population over calendar time; for this the transition intensities may also
depend on calendar time.

0 1

2

HEALTHY DISEASE

DEATH

(a) A state-space diagram for an
illness-death process.
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(b) A Lexis diagram representing the calendar times (hori-
zontal axis) of birth, disease onset and death for a sample of
individuals; the ages of disease onset and deaths are repre-
sented on the vertical axis.

Figure 2: A state-space and Lexis diagram for a population of illness-death processes

Attributes of a population of processes at an instant of calendar time are governed by the process
leading to the births of individuals, the intensities of the multistate process, and any calendar time
trends. Keiding (1991) gives a general derivation of the relationship between the parameters for in-
dividual stochastic illness-death processes generated over time, and the age-specific prevalence and
incidence rates at a calendar time; see also Brinks and Hoyer (2018) who study the same phenomenon
but based on differential equations. It is common to assume that births arise from a stationary pro-
cess (Brillinger, 1986) and that transition intensities do not depend on calendar time, although in some
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settings scientific interest may lie in studying related trends. Under the additional assumptions that
the transition intensities do not depend on age and that the disease has no impact on mortality one
obtains the well-known result that the prevalence of a disease is equal to the incidence rate times the
mean lifetime with the disease (Diamond and McDonald, 1992).

The Lexis diagram (Lexis, 1875; Keiding, 1990; Keiding, 2011) in Figure 2 (b) gives a graphical
representation of the relationship between births recorded in calendar time, disease onset, and death.
Each of the 45-degree lines indicates the life course of an individual in the population. For the sixth
individual to be born for example, the line starts at the calendar time of birth (S0) on the horizontal
axis; calendar times S1 and S2 represent the dates of disease onset and death. The vertical axis conveys
time in terms of age, so T1 and T2 represent their age at disease onset and death respectively. A cross-
sectional sample taken at calendar time R is restricted to individuals who are alive. Among selected
individuals, the proportion in the “diseased” state at time R is an estimate of the disease prevalence;
likewise the proportion of “healthy” individuals at calendar time R who develop the disease one
calendar time unit later is the disease incidence (Ahrens and Pigeot, 2014). The prevalence and the
incidence of the disease are features of the population which are determined only in part by the illness-
death process acting at the individual level. Keiding (1991) established the mathematical relationship
between the epidemiological concepts of prevalence and incidence based on a cross-sectional sample.

Additional issues arise when interest lies in the association between covariates and disease status.
While the intensity functions of the multistate model characterize risk of disease onset and offer the
most appropriate way of formulating covariate effects on the dynamic features of the process, logistic
regression is routinely carried out based on the disease status of individuals in the cross-sectional
sample. Interpretation of the corresponding odds ratios is problematic since the limiting values of the
resulting estimators likewise depend on the birth process, stationarity assumptions, and the intensities
of the multistate process. Estimates of covariate effects obtained from logistic regression can therefore
be quite misleading in terms of their effects on the intensities of the multistate process; we explore
this in Section 2.4.

2.2 MULTISTATE MODELS FOR DISEASE PROCESSES

Suppose a multistage disease can be modeled by a stochastic process involving K+ 1 states as shown
in Figure 3 with finite state space S = {0, 1, . . . , K−1, K}, where 0 represents the condition of being
disease-free, states 1, . . . , K − 1 represent the stage of disease among affected individuals, and state
K represents the final absorbing state of death.

DISEASE STAGE

0 1 2 … K−1

K

DEATH

Figure 3: A multistate diagram for a multistage disease process and death.

We therefore consider processes for which individuals are at risk of progression through a se-
quence of states. Let t represent the age of an individual, Z(t) denote the state occupied at age t
(with Z(0) = 0) and Z̄(t) = {Z(u); 0 ≤ u < t} denote the life history up to age t. Let S0 be
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the birth date of an individual with s = S0 + t denoting the calendar time when they are age t. If
H(t) = {Z(u), 0 < u < t, S0} is the complete history of the disease process at age t for an individual
born at time S0, the calendar time- and age-specific intensity function for disease progression is

lim
∆t→0

P (Z(t+ ∆t−) = j + 1 | Z(t−) = j,H(t))

∆t
= λj(s, t | H(t)) , j = 0, 1, . . . , K − 2

and the intensities for death are

lim
∆t→0

P (Z(t+ ∆t−) = K | Z(t−) = j,H(t))

∆t
= ηj(s, t | H(t)) , j = 0, 1, . . . , K − 1.

We take it as understood in what follows that λK−1(s, t | H(s)) = 0 since K − 1 is the most
advanced disease state. Given the date of birth S0, λj(s, t | H(t)) = λj(s, t | s0) and ηj(s, t |
H(t)) = ηj(s, t | s0) for a Markov process, and the transition probabilities P (Z(tu) = k | Z(tl) =
j,H(tl)) = P (Z(tu) = k | Z(tl) = j, S0 = s0) = Pjk(tl, tu | s0) can be expressed simply in terms
of the transition intensities. For example if the disease process is independent of calendar time (i.e.
λj(s, t | H(t)) = λj(t) and ηj(s, t | H(t)) = ηj(t)), then

P0j(tl, tu) =

∫ tu

tl

P0,j−1(0, t) λj−1(t) Pjj(t, tu) dt , j = 1, . . . , K, (1)

where Pjj(tl, tu) = exp(−
∫ tu
tl
λj(t) + ηj(t) dt).

Intensity-based regression models can be adopted when interest lies in the covariate effects on
the transition intensities. Let X denote a p × 1 vector of covariates of interest and re-define H(t) =
{Z(u), 0 ≤ u < t, S0, X} by including the covariates. An intensity-based regression model can be
written in the common multiplicative form as

λj(s, t | H(t)) = λj(s, t | s0) exp(X ′β) ,

where λj(s, t | s0) denotes the calendar time- and age-specific baseline intensity for j → j + 1
transition and β is a p× 1 vector of regression coefficients (Andersen et al., 1993).

2.3 CHARACTERISTICS OF CROSS-SECTIONAL SAMPLES BASED ON MULTISTATE MODELS

Consider a birth cohort composed of individuals born in a window of calendar time [L,R]. Let
T = R − S0 be the age of an individual in this cohort at calendar time R and Y = Z(T ) denote the
state occupied by this individual at time R. The probability that an individual occupies state j at this
time is given by

P (Y = j | L,R) =

∫ R

L

P (Z(R− s0) = j | Z(0) = 0;S0 = s0, L,R) g(s0) ds0

=

∫ R

L

P0j(0, R− s0 | s0) g(s0) ds0 , ∀j ∈ S , (2)

where g(·) is the density function of the birth time S0. These probabilities are complex functions of
the transition intensities governing the disease process as well as the distribution for birth times.

If we assume that the birth process is stationary and the disease process is Markov and independent
of calendar time, the unconditional state occupancy probabilities at an arbitrary calendar time are :

P (Y = j) = lim
L→−∞

P (Y = j | L,R) ∝
∫ ∞

0

P0j(0, t) dt , ∀j ∈ S , (3)
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where the transition probability P0j(0, t) is obtained based on (1). A cross-sectional sample selected
only includes individuals who are alive (i.e. Y 6= K) so if let πj = P (Y = j | Y < K) denote the
overall prevalence of stage j,

πj =
P (Y = j)

P (Y < K)
=

∫∞
0
P0j(0, t)dt∑K−1

j=0

∫∞
0
P0j(0, t)dt

, j = 0, 1, . . . , K − 1 . (4)

The conditional probability of an individual being in state j + 1 given they are in state j or j + 1 is
then

πj+1

πj + πj+1

=

∫∞
0

P0,j+1(0, t) dt∫∞
0

P0j(0, t) dt+
∫∞

0
P0,j+1(0, t) dt

,

which gives the overall prevalence odds of stage j + 1 versus stage j as

πj+1

πj
=

∫∞
0

P0,j+1(0, t) dt∫∞
0

P0j(0, t) dt
, j = 0, . . . , K − 2 . (5)

Since µj =
∫∞

0
P0j(0, t) dt is the mean sojourn time in disease state j over a lifetime, the preva-

lence of stage j in (4) can be equivalently viewed in terms of the ratio of mean lifetime in disease
state j over the overall mean lifetime; the prevalence odds of stage j + 1 versus stage j in (5) thus
can be expressed in terms of the ratio of mean lifetimes in disease state j + 1 and state j. The
age-specific prevalence of stage j and prevalence odds of stage j + 1 versus stage j can be calcu-
lated as P0j(0, t)/[

∑K−1
j=0 P0j(0, t)] and P0,j+1(0, t)/P0j(0, t) respectively. Expressions of this sort

were derived by Hoem and Jensen (1982) who were considering the implications for applications in
demography.

Further simplifications are possible when transition intensities are time homogeneous. In such
cases, λj(t) = λj and ηj(t) = ηj , j = 0, 1, . . . , K − 1 where again λK−1 = 0. In this case the
sojourn time in state j is exponentially distributed with hazard hj = λj +ηj , mean h−1

j = (λj +ηj)
−1,

and survivor function Fj(t) = exp(−hjt), j = 0, . . . , K − 1. The transition probability (1) can be
re-expressed in this case as

P0j(0, t) =

j−1∏

k=0

λk

[
j−1∑

k=0

Fk(t)−Fj(t)∏k−1
l=0 (hl − hk)

∏j
l=k+1(hl − hk)

]
, j = 0, 1, . . . , K − 1, (6)

giving

µj =

∫ ∞

0

P0j(0, t) dt =

[
j−1∏

k=0

ψk

]
1

λj + ηj
(7)

where ψk = λk/(λk + ηk) is the probability of a k → k + 1 (vs. k → K) transition given state k
occupancy, k = 0, . . . , K − 2. The product

∏j−1
k=0 ψk in (7) is the probability of reaching disease state

j and the term 1/(λj + ηj) represents the mean sojourn time in stage j; see Appendix A for further
details. Thus (7) gives the result that the

mean lifetime in stage j = probability of entering stage j × mean sojourn time in stage j .

The overall prevalence odds (5) can likewise be written as

πj+1

πj
= λj ×

1

λj+1 + ηj+1

, (8)
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which is a product of the risk of a j → j + 1 transition and mean sojourn time in stage j + 1. For
the special case of the illness-death model in Figure 2 (a) the expression in (8) gives the well-known
result

overall prevalence odds of disease = incidence of disease × mean duration of disease , (9)

which was first derived in work on the theory of screening for chronic disease (Zelen and Feinleib,
1969; Newman, 1988). Keiding (1991) gave a careful discussion of the relation between incidence
and prevalence in terms of general models and included the time-homogenous illness-death process
as a special case. Alho (1992) showed analogous results for the setting where the transition inten-
sities for disease onset and mortality are age-dependent and showed that the prevalence odds is a
weighted average of the age-dependent incidence and disease duration, averaging with respect to the
age distribution of the health population at the time of sampling. The derivations here are for progres-
sive multistage disease processes with time-nonhomogeneous Markov transition intensities with the
results under the time-homogeneous setting simplifying to give (8).

Next we examine the age distribution of individuals according to their disease status at a fixed
(calendar) sampling time R. Recall S0 is the birth date of an individual and Sj denotes the calendar
time they entered state j (j 6= K); we also let S∗j+1 denote the calendar time of leaving state j (by
either entering state j+1 or the absorbing state K). The subpopulation of individuals occupying state
j at calendar time R must therefore satisfy the condition L < S0 < Sj < R and S∗j+1 > R, so the age
distribution in this subpopulation is

f(s0 | L < S0 < Sj < R,S∗j+1 > R) =
P (L < S0 < Sj < R,S∗j+1 > R | S0 = s0, L,R) g(s0)

∫ R
L
P (L < S0 < Sj < R,S∗j+1 > R | S0 = s0, L,R) g(s0) ds0

.

If the birth process is stationary with S0 ∼ Unif(L,R), it can be shown that the age distribution given
state j occupancy is

fT (t | Y = j) = lim
L→−∞

f(s0 | L < S0 < Sj < R,S∗j+1 > R) =
P0j(0, t)∫∞

0
P0j(0, u) du

, (10)

where the denominator on the right is the mean lifetime in disease state j, j = 0, . . . , K − 1. For sur-
vival models with K = 1, states 0 and 1 represent the conditions of being alive and dead respectively.
For a cross-sectional sample restricted to individuals who are alive at time R, the age distribution is
the length-biased density of the form

fT (t | Y = 0) =
P00(0, t)∫∞

0
P00(0, u) du

=
F0(t)

µ0

.

2.4 MODELING COVARIATE EFFECTS VIA LOGISTIC REGRESSION WITH CROSS-SECTIONAL

SAMPLES

Studies are often conducted with the objective of identifying markers associated with occupancy of
one disease state among a set of possible states. For the example in Section 1.2 one may be naively
asked for the association between a marker and presence of psoriatic arthritis among individuals with
psoriasis (i.e. occupancy of state 2 given occupancy of states 1 or 2). More generally consider the
question about the association between a binary marker X and occupancy of disease state j + 1
versus state j. A common naive approach is to collect a cross-sectional sample, construct a sub-
sample of individuals in disease state j or state j + 1 at the time of sampling, and to carry out a
logistic regression analysis with a binary response Y = I(Z(T ) = j + 1) in a sample of individuals
for whom Z(T ) ∈ {j, j + 1}. Suppose the disease process is simple and can be characterized by
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an illness-death model as in Figure 2(a). In this setting, Aljied et al. (2018) assessed the association
between fixed covariates and the presence of visual impairment in a cross-sectional sample. Jung et al.
(2014) examined risk factors associated with rectal neuroendocrine tumors based on a cross-sectional
sample of Koreans who underwent colonoscopy. Østbye et al. (2005) studied the association between
covariates and depression at a fixed point in time in a cross-sectional sample. Finally, Toperoff et al.
(2015) studied the association between premature DNA methylation aging and type 2 diabetes in
a cross-sectional sample of the East Jerusalem Palestinian (EJP) Arab population. For progressive
disease process like the one depicted in Figure 1, Winchester et al. (2012), Haroon et al. (2013) and
Loft et al. (2018) modelled the relationship between human leukocyte antigen (HLA) markers and the
presence of psoriatic arthritis among individuals with psoriasis. We characterize the logist regression
analyses in these articles as naive since they fail to address the central dynamic aspect of the disease
process characterized by the intensity functions of the multistate formulation.

If V = (1, X,W )′ is a vector of covariates including the binary markerX of interest and additional
covariates W , a logistic regression model

log

(
π(V ; γ)

1− π(V ; γ)

)
= V ′γ

can be fitted where π(V ; γ) = P (Y = 1|V ; γ) with γ being a vector of regression parameters. In
the terms of White (1982), a quasi-likelihood can be constructed for this logistic regression model
based on the assumption that Y | V is Bernouilli. Given a sample of n independent individuals and
data {(Yi, Vi), i = 1, . . . , n}, the maximum quasi-likelihood estimate of γ, denoted γ̂, is obtained by
solving the quasi-score equation

n∑

i=1

Ui(Yi, Vi; γ) =
n∑

i=1

[Yi − π(Vi; γ)]Vi = 0 . (11)

White (1982) showed that the limiting value of γ̂, denoted γ†, can be obtained by computing the
solution to E(Ui(Yi, Vi; γ) where here, and below, the expectation is taken with respect to the true
distribution of the random vector (Yi, Vi). This true distribution is a complex function of the birth
process, the multistate process, the cross-sectional sampling scheme and the population covariate
distribution. Moreover White (1982) shows that

√
n(γ̂ − γ†) ∼MVN(0,A−1(γ†)B(γ†)A−1(γ†))

with A(γ) = −E{∂U(Y, V ; γ)/∂γ′} and B(γ) = E{U(Y, V ; γ)U(Y, V ; γ)′}. The key point is that
the complexities of the true data generating process are not addressed with the simple logistic model
and the estimand (i.e. the limiting value γ†) is in general an uninterpretable function of the parameters
indexing the underlying multivariate distribution.

It is often recommended to include age at the time of sampling as a covariate in such logistic
regression models to account for the different lengths of time individuals in the cross-sectional sample
have been at risk for transitions in the multistate process. A simple adjusted logistic regression model
takes the form

log

(
π(X,T ; γ)

1− π(X,T ; γ)

)
= γ0 + γ1X + γ2T , (12)

where T is the age of an individual in the sample and γ = (γ0, γ1, γ2)′. The limiting value γ† computed
by solving E{U(Y, V ; γ)} = 0 can be used to obtain the age-adjusted odds ratio of state j+ 1 versus
state j, given by exp(γ†1). To obtain γ†, we require the expectation of the score function in (11) with
respect to the binary indicator Y , the covariateX and the age T at sampling; the required distributions
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were given in Section 2.3. More specifically since the cross-sectional sub-sample will only contain
subjects whose disease state is either j or j + 1, the joint distribution of (Y,X) is as follows

P (Y = y,X = x) =
µj+y(x)P (X = x)

µj(x) + µj+1(x)
,

and following (10) the age distribution stratified on (y, x) is

fT (t | y, x) =
P0,j+y(t;x)

µj+y(x)
.

The expectation of the score functions U(Y,X, T ; γ) thus takes the form

E
[
U(Y,X, T ; γ)

]
= E

{
E
[
U(Y,X, T ; γ) | Y,X

]}
(13)

=
1∑

x=0

1∑

y=0

P (X = x)

µj(x) + µj+1(x)

∫ ∞

0

U(y, x, t; γ)P0,j+y(t;x) dt .

Solving E[U(Y,X, T ; γ)] = 0 enables one to explore how the age-adjusted odds ratio exp(γ†1) varies
according to the parameters of the multistate process. Closed-form solutions are not available in
general so the equations must be solved numerically. Consider an illustrative calculation involving a
simple logistic regression model with a binary marker as the only covariate

log

(
π(X; γ)

1− π(X; γ)

)
= γ0 + γ1X , (14)

where exp(γ1) would be interpreted as a standard odds ratio characterizing the association between
X and disease state j + 1 (vs. j). Suppose the binary covariate acts on the transition intensities via
the models

λj(t | H(t)) = λj exp(Xβj) , j = 0, 1, . . . , K − 2, (15a)
ηj(t | H(t)) = ηj exp(Xαj) , j = 0, 1, . . . , K − 1, (15b)

where exp(βj) is the relative risk of a j → j + 1 transition for a subject with covariate value X = 1
versus X = 0, and λj and ηj are baseline intensities for disease progression and death. Under a
time-homogeneous process the limiting value of the odds ratio estimator exp(γ̂1) based on (14) and
obtained from (13) has the form

exp(γ†1) =
exp(βj)

ψj+1 exp(βj+1) + (1− ψj+1) exp(αj+1)
. (16)

Interestingly this is a function of the “true” multiplicative effect exp(βj) on the j → j + 1 intensity
in (15a) and other parameters of the multistate model given in (15). When the covariate X is not
associated with the risk of subsequent transitions out of state j + 1 (i.e. βj+1 = αj+1 = 0), we obtain
γ†1 = βj in which case the cross-sectional analysis yields a consistent estimator of the relative risk
associated with a j → j + 1 transition. However, when either the probability of a j + 1 → j + 2
transition (ψj+1) is high or the covariate has a much stronger effect on j + 1→ j + 2 transition than
on j → j + 1 transition, one may obtain exp(βj) ≤ 1 < exp(γ†1) or exp(γ†1) < 1 ≤ exp(βj). That is,
if the covariate has less impact on the j → j + 1 progression than on the subsequent transition out of
state j + 1, a naive binary analysis could suggest an association between the covariate and disease in
the opposite direction to the one manifest in the corresponding intensity of the multistate model.
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2.5 AN ILLUSTRATIVE EXAMPLE OF A TWO-STAGE DISEASE PROCESS

We illustrate the findings in the previous sections using the study of psoriatic arthritis among psoriasis
patients as an example, where the disease process has four states with state space S = {0, 1, 2, 3}.
Under the time-homogeneous model and following the results given in Section 2.2 we obtain

mean disease free lifetime: µ0 =

∫ ∞

t=0

P00(0, t)dt =
1

λ0 + η0

mean diseased lifetime in state 1: µ1 =

∫ ∞

t=0

P01(0, t)dt = ψ0

[
1

λ1 + η1

]

mean diseased lifetime in state 2: µ2 =

∫ ∞

t=0

P02(0, t)dt = ψ0ψ1
1

η2

and the overall prevalence of disease (in stage 1 or 2) can be obtained based on the formula given in
(4). In addition, when interest lies in progression to stage 2 from stage 1, we find

overall prevalence odds of stage 2 vs 1 = λ1
1

η2

.

Suppose the association between X and the development of psoriatic arthritis is investigated via a
logistic regression model (14) and a sub-sample of the full cross-sectional sample includes individuals
with psoriasis or psoriatic arthritis. Based on the result in (16) we see that when age is not controlled
for,

γ†1 = β1 − α2 .

Recall that β1 reflects the effect of a marker on the risk of psoriatic arthritis among those with psoriasis
(a 1→ 2 transition) and α2 is the marker effect on mortality from the psoriatic arthritis state (a 2→ 3
transition) based on the multistate model. When the marker is not associated with disease mortality
(i.e. α2 = 0), we have γ†1 = β1 so a logistic regression analysis based on the binary disease status
provides a valid estimate of log relative risk of the psoriasis→ psoriatic arthritis intensity. When the
marker has similar effects on the risk of psoriatic arthritis and subsequent death (i.e. β1 ≈ α2), then
γ†1 ≈ 0 and one would not tend to see evidence of an association between the marker and psoriatic
arthritis. Finally, if there is a much stronger marker effect on disease mortality compared to disease
onset (i.e. β1 < α2), evidence from the logistic regression analysis results may suggest an association
in the opposite direction to the one from the multistate intensity.

When fitting a logistic regression model adjusting for age as in (12), the limiting value of the
estimated marker effect depends on the parameters characterizing the multistate disease process in
a complicated way. To investigate this we consider the following setting and carry out asymptotic
calculations. Assume births occur uniformly in [L,R] where R is taken as the screening date; without
loss of generality we set L = 0 and R = 10. Given a binary covariate X ∼ Bernoulli(0.5) and
birth date S0, transition times were simulated based on the four-state disease process as described
in Figure 1 Cook and Lawless (2018). Let T01 and T03 denote the possible 0 → 1 and 0 → 3
transition times which were simulated based as exponential random variables with rates λ0 exp(Xβ0)
and η0 exp(Xα0) respectively. If T01 < T03 then T12 and T13 were simulated as exponential with rates
λ1 exp(Xβ1) and η1 exp(Xα1). Finally if T12 < T13 then T23 was simulated as exponential with rate
η2 exp(Xα2). Let

P (Y = j) =
1

R

1∑

x=0

∫ R

0

P0j(0, t | X = x)P (X = x) dt , j ∈ S, (17)

represent the probability of state j occupation at a fixed sampling time R. We set η0 = η1 = η2 to
consider a case where the disease state does not affect the mortality rate, and solved for λ0, λ1 and
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λ0 such that P (Y = 0) = 0.1, P (Y = 1) = 0.01 and P (Y = 2) = 0.01. The low probability
of being in states 1 and 2 were chosen to correspond to diseases with relatively low prevalence and
the high fraction of individuals assumed to have died ensures that the data are compatible with the
assumption that the disease process has been occurring in the population for a long time. Finally, we
let exp(β0) = exp(α0) = exp(α1) = 1, and allow exp(β1) and exp(β2) to vary. Figure 4 displays
plots of γ†1 − β1, the discrepancy between γ†1 and the intensity based effect of the marker on a Ps to
PsA transition. It is apparent that adjusting for age in logistic regression model does not resolve the
issue, as there is still an asymptotic bias in the estimation of the marker effect. Figure 4 also shows
that there can be evidence of an association in the opposite direction of the intensity-based effect.

-1.5 -1.0 -0.5 0.0 0.5

-0
.5

0.
0

0.
5

1.
0

1.
5

β1

γ 1+
-
β 1

α2 = -0.511
α2 = 0
α2 = 0.337

Figure 4: Plot of γ†1 − β1 against β1. γ†1 is the limiting value of the marker effect from the logistic
regression model adjusted by age as given in (12), β1 and α2 are the gender effects on psoriasis →
psoriatic arthritis and psoriatic arthritis → death transition intensities respectively in the multistate
model.

Next we report on simulation studies conducted to assess the relevance of the asymptotic calcula-
tions for finite samples. We consider the same setting as specified for the calculation of the limiting
value plotted in Figure 4. The disease process is simulated for a population of size n = 10, 000 and
random cross-sectional sample is drawn from individuals in states 1 (e.g. Ps) and 2 (e.g. PsA) at
the screening time R and a simple logistic regression analysis is conducted to estimate the odds ratio
exp(γ1). Table 2 of Appendix B reports the average estimated odds ratio from 200 cross-sectional
samples of the same size and compares those with the theoretical value exp(β1 − α2) under differ-
ent parameter configurations; the agreement between the asymptotic and empirical results is evident.
Finally, in Figure 8 of Appendix B we display histograms of the age at sampling for healthy individ-
uals, individuals with psoriasis and individuals with psoriatic arthritis respectively. The two diseased
groups have slightly different age distribution, and the healthy, disease-free group has quite a different
distribution again as one would expect. Moreover, there is a strong agreement between the histogram
and theoretical distribution curves.
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3 MULTISTATE ANALYSIS WITH CROSS-SECTIONAL AND AUXILIARY DATA

In this section we discuss the need for, and use of, auxiliary data for the analysis of data from a cross-
sectional sample based on a multistate model. We consider the study of the psoriasis and psoriatic
arthritis disease process based on the four-state model in Figure 1 with states S = {0, 1, 2, 3} for
healthy, psoriasis, psoriatic arthritis and death. We assume that given the birth date S0 and covariateX
the process is Markov and consider general calendar time- and age-specific intensities λj(s, t | S0, X)
for j → j + 1 transitions, j = 0, 1 and ηj(s, t | S0, X) for transition to death state, j = 0, 1, 2.
Transition intensity matrix is defined by A(s, t | S0, X).

We further assume a common mortality rate for patients with psoriasis or psoriatic arthritis which
are taken to be proportional to that for disease-free individuals giving

η1(s, t | S0, X) = η2(s, t | S0, X) = η0(s, t | S0, X) exp(α) .

Let C0, . . . , CRc partition calendar time so L = C0 < C1 < · · · < CRC
= R and let Cr = (Cr−1, Cr],

r = 1, . . . , RC define RC birth cohorts. We likewise partition age according to 0 = A0 < A1 <
· · · < ARA

= ∞ to create RA age strata defined by Ah = (Ah−1, Ah], h = 1, . . . , RA. Then for a
disease-free individual of age t at calendar time s, the cohort- and age-specific intensity for mortality
given covariate x is

η0(s, t|s0, x) =
∑

r

∑

h

I(s ∈ Cr)I(t ∈ Ah)ηrhx

where the vector η = {ηrhx; r = 1, . . . , RC , h = 1, . . . , RA, x = 0, 1} is the set of parameters
indexing the disease-free mortality rate. We assume that the intensity for psoriasis and psoriatic
arthritis (among psoriasis patients) does not depend on calendar time and consider multiplicative
models of the form λ0(s, t | S0, X) = λ0(t) exp(Xβ0) and λ1(s, t | S0, X) = λ1(t) exp(Xβ1), where
β = (β0, β1)′. Piecewise-constant functions are also adopted for the baseline intensities λ0(t) and
λ1(t) where we let λj(t) = λjh for t ∈ Ah, j = 0, 1 with the full set of baseline intensities for
psoriasis and psoriatic arthritis denoted by λ = {λjh;h = 1, . . . RA, j = 0, 1}. The full vector of
parameters associated with the disease process is thus θ = (η′, α, λ′, β′)′.

Let r0 =
∑RC

r=1 rI(S0 ∈ Cr) denote the birth cohort of an individual with A∗ = {Cr − S0; r =
r0, r1, . . .} their ages at which mortality risk changes due to trends in calendar time. Finally let
B = A∗ ∪ {Ah;h = 0, 1, . . .} = {b0, b1, b2, . . .} be the ages defining intervals within which the
transition intensity matrix is constant; that is, within intervals Br = (br−1, br] as A(S0+br, br | S0, X),
r = 1, 2, . . .. If P(u, t | S0, X) = [pjk(u, t | S0, X)] denotes the transition probability matrix over any
arbitrary age interval [u, t] given the birth date S0 and covariate X then

P(u, t | S0, X) =
∏

r

I([u, t] ∩ Br 6= ∅)P
(

max{u, dr−1},min{t, dr} | S0, X
)

(18)

and P
(
br−1, br | S0, X

)
= exp{

(
br − br−1

)
A(S0 + br, br | S0, X)} is calculated using the matrix

exponential given a constant transition intensity matrix for the age interval (br−1, br], r = 1, 2, . . ..
The National Psoriasis Foundation (NPF) survey (Gelfand et al., 2005) was a large scale cross-

sectional survey conducted to estimate prevalence of psoriasis and psoriatic arthritis in North America,
we consider such a study and let Sc denote the subsample of individuals having psoriasis (PsC) or
psoriatic arthritis (PsA) from the cross-sectional sample. The information available from an individual
in this subsample includes their birth date S0 and hence their current age T , a covariate X and their
disease status Z(T ). The likelihood contribution based on an individual in this sample is thus

Lc(θ) = P (Z(T ) = j | Z(T ) 6= 3, S0, X) =
P0j(0, t | S0, X)∑2
j=0 P0j(0, t | S0, X)

(19)
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if this individual is observed to be in state j at the sampling time. This likelihood is expressed in
terms of the transition probabilities given the birth date and covariate.

The parameters indexing likelihoodLc(θ) are of course not identifiable based on the cross-sectional
sample alone. In particular there is no information on the mortality rates from the cross-sectional sam-
ple since it is restricted to individuals who are alive at the time of sampling. Moreover the current
status data on the disease status are limited for estimation of the intensities for disease-related tran-
sitions. To overcome this difficulty, auxiliary data from other sources can be utilized to facilitate the
estimation (Lee and Cook, 2018). We consider the case in which the covariate of interest is gender and
the published national year-, age- and gender-specific mortality statistics can be used to estimate the
disease-free mortality parameter η. With longitudinal follow-up of patients in a psoriasis and a pso-
riatic arthritis registry, some information on disease-related transition intensities and disease-specific
mortality rates can be obtained by gender.

Caution is warranted when synthesizing data from the different registries because the selection
conditions differ; to enter the psoriasis registry an individual is required to be in state 1 (i.e. we
require them to be diseased with psoriasis, so Z(T ) = 1). To enter the psoriatic arthritis registry
upon sampling they are required to be diseased with psoriatic arthritis (i.e. we require Z(T ) = 2).
Moreover, information available from the various sources differ. Some retrospective and prospective
information on the disease processes may be available but information on mortality rates are obtained
prospectively. Current status data are available from the cross-sectional sample obtained through the
National Psoriasis Foundation survey. Exploiting this information however requires information on
mortality rates which are available from the prospective follow-up of individuals recruited to the two
registries, as well as population mortality rates.

Let S1 and S2 denote the sets of patients from the psoriasis and psoriatic arthritis registries ac-
cordingly. Suppose the patients from both registries are followed over time up to a random censoring
age C, or age at death T3, and let T † = min(T3, C) and δ = I(T † = T3). The retrospective infor-
mation such as the age at onset of psoriasis (i.e. T1) and/or psoriatic arthritis (i.e. T2) are assumed
available for both registries. For a patient in the psoriasis registry the onset of the psoriatic arthritis is
assessed intermittently at age T = v0 < v1 < · · · < vm < T † and let Zk = Z(vk) for convenience,
k = 0, 1, . . . ,m, and Z0 = 1. The likelihood contribution from a patient from the psoriasis registry is
then

L1(θ) = P (Z̄(T †) | Z(T ) = 1, S0, X) =
P (Z̄(T †) | S0, X)

P01(0, t | S0, X)
(20)

where P (Z̄(T †) | S0, X) is given by

λ0(t1|x)P00(0, t1|S0, X)P11(t1, t|S0, X)
m−1∏

k=0

Pzk,zk+1
(vk, vk+1|S0, X)

2∑

j=1

Pzm,j(vm, t
†|S0, X)ηδj (t

†|S0, X) .

The patients from the psoriatic arthritis registry provide retrospective data on the age of onset for pso-
riasis and psoriatic arthritis as well as prospective survival information. Their likelihood contribution
takes the form

L2(θ) = P (Z̄(T †) | Z(T ) = 2, S0, X) =
P (Z̄(T †) | S0, X)

P02(0, t | S0, X)
(21)

where P (Z̄(T †) | S0, X) is

λ0(t1|X)λ1(t2|X)ηδ2(t†|S0, X)P00(0, t1|S0, X)P11(t1, t2|S0, X)P22(t2, t
†|S0, X) .

The augmented likelihood based on the data from the various sources is then

L(θ) =
∏

i∈Sc

Lic(θ)
∏

i∈S1

Li1(θ)
∏

i∈S2

Li2(θ) (22)

where i indexes the individuals.
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4 ESTIMATING RISK OF PSORIATIC ARTHRITIS IN INDIVIDUALS WITH PSORI-
ASIS

Here we use an augmented likelihood as described in the previous section to model the develop-
ment of psoriatic arthritis in individuals with psoriasis. Cross-sectional data are used from a survey
by the National Psoriasis Foundation (NPF) in the United States from November and December,
2001 (Gelfand et al., 2005). It includes 14351 individuals (51.8% female) who provided their dis-
ease status with respect to psoriasis and psoriatic arthritis. Among the 347 individuals with psoriasis
49 had developed psoriatic arthritis. We also consider data from the University of Toronto Psoriatic
Arthritis Registry (UT-PsA) which was established in1976 (Gladman and Chandran, 2010). It is a
large cohort of patients diagnosed with psoriatic arthritis who were recruited and followed at 6- to
12-month intervals according to a standardized protocol for the collection of clinical and laboratory
datas. As of February 2018 there were 1341 patients with complete information on dates of birth and
recruitment, retrospective reports of the onset time of both psoriasis and psoriatic arthritis; prospec-
tive followup gave some information on mortality. Another source of auxiliary data is the University
of Toronto Psoriasis Registry (UT-Ps), a registry of patients with psoriasis without arthritis which
was established in 2006. These individuals were followed and assessed annually for the development
of psoriatic arthritis. This cohort is currently composed of 657 subjects with complete information
on date of birth and recruitment date, retrospective reporting of their onset time of psoriasis, and
prospective followup for the development of psoriatic arthritis (57), and death (13). Finally, popula-
tion mortality rates are used to evaluate the age-specific mortality rates by 5 year birth cohorts over
1921 to 2011 (Lee and Cook, 2018); the raw data are displayed in Figure 5.
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Fig. 3: Age-specific population mortality rates by calender period in Canada from 1921 to 2011

composite likelihood

ACL( ) /
nFY

i=1

CLi( )

nRY

r=1

LA1,r(�)

nSY

r=1

LA2,r(�), k = I, II, (3.10)

and we may write

UF,i( ) =
@ log CLi( )

@ 
,

UA1,r(�) =
@ log LA1,r(�)

@ 
,

and

UA2,r(�) =
@ log LA2,r(�)

@ 
.

Figure 5: Age-specific population mortality rates by calendar period in Canada from 1921 to
2011 (Lee and Cook, 2018).

A multistate analysis is conducted using the augmented likelihood (22) based on the NPF survey
data, data from the UT-Ps and UT-PsA registries, and population calendar time-, age- and gender-
specific mortality rates. The latter are taken as fixed and used to characterize the disease-free mortal-
ity with η0(s, t|S0, X) considered known. The relative risk of mortality in diseased and disease-free
states is set as exp(ν) = ηj(s, t|S0, X)/η0(s, t | S0, X). The parameters in the multiplicative inten-
sity models for healthy → psoriasis and psoriasis → psoriatic arthritis transitions, λ0(t) exp(Xβ0)
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and λ1(t) exp(Xβ1), are estimated. The baseline intensities, λ0(t) and λ1(t) are set to be piecewise
constant with age cut points at (30, 60). Table 1 summarizes parameter estimates from the multistate
analysis. It shows increasing trends in the baseline intensities for the onset of psoriasis and psoriasis
to psoriatic arthritis transition as people age. There is a significant gender difference in the risks of
psoriasis and progression from psoriasis to psoriatic arthritis. Women have significantly higher risk
of psoriasis (exp(β̂0) = 1.454, 95% CI:(1.419, 1.489), p < 0.0001), but lower risk of developing
psoriatic arthritis once with psoriasis (exp(β̂1) = 0.766, 95% CI:(0.717, 0.818), p < 0.0001). From
a naive logistic regression based on a cross-sectional sample of 347 patients with psoriasis or psori-
asis and psoriatic arthritis from the NPF survey, the estimated odds ratio for the association between
gender and psoriatic arthritis vs. psoriasis is 1.234 (95% CI: (0.656, 2.323), p = 0.515), which is
consistent with literature (Eder et al., 2012). On the other hand, an earlier age of onset of psoriasis
in females and a higher probability of severe disease in men has also been reported (Colombo et al.,
2014). Our results are from a first attempt of using multistate models to capture the disease dynamics,
information from different data sources are pulled together to facilitate and enhance the estimation
from such elaborate models.

Table 1: Parameter estimates from multistate analysis of cross-sectional and auxiliary data on psoria-
sis and psoriatic arthritis

TRANSITION

j = 0 j = 1
Healthy→ Ps Ps→ PsA

EST. S.E. EST. S.E.

Intensity log λj(t) (0, 30] -8.434 0.009 -5.741 0.029
(30, 60] -7.328 0.008 -4.192 0.019
> 60 -6.661 0.020 -3.143 0.022

Gender βj 0.374 0.012 -0.267 0.034

We distinguish the state of death according to the disease state occupied at the time of death as
shown in Figure 6 and under this new six-state multistate diagram the state Dj indicates the death
post state j, for j = 0, 1, 2. The transition intensity functions involved are the same as those in the

0 1 2

D0 D1 D2

HEALTHY

DEATH
DISEASE−FREE

PS

DEATH
POST−PS

PSA

DEATH
POST−PSA

Figure 6: A state space diagram for healthy, psoriasis, psoriatic arthritis, and cause-specific death.

previous four-state space diagram. Based on this, we define the cumulative incidence function for
psoriasis and psoriatic arthritis as

2∑

k=j

[P (Z(t) = k | Z(0) = 0, S0, X) + P (Z(t) = Dk | Z(0), S0, X)] , j = 1, 2 ,
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shown in Figure 7 for different birth cohorts defined by S0 = 1940 and S0 = 1970. The cumulative
incidence of psoriasis increases sharply as age increases, and there is a clear gender difference in the
cumulative incidence function particularly for psoriasis. The much lower cumulative incidence of
psoriatic arthritis is as expected because this is only among patients who have developed psoriasis
first.
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Figure 7: Cumulative incidence function estimates for psoriasis and psoriatic arthritis (PsA) for males
and females based on the six-state model in Figure 6.

Finally, based on the multistate analysis we estimate the prevalence of the disease for a birth
cohort between 1921 and 2009 according to formula (4). Based on the birth data from Statistics
Canada, we consider linear spline models for the birth time distribution, f(s0), with a constant rate
of 250, 000 births per year prior 1936, an increasing trend with 10,000 more births per year during
the baby boomer time from 1936 to 1960, a decreasing trend from 1960 to 1969, and a flat rate
of 375,000 births per year after that. Our estimates of the prevalence are 1.22% (male) and 1.9%
(female) for psoriasis; 0.27% (male) and 0.36% (female) for psoriatic arthritis. WHO Global Report
on Psoriasis (World Health Organization, 2016) estimated the prevalence of psoriasis to be 1.5-5%
in developed countries, and Catanoso et al. (2012) suggested that the prevalence of psoriasis in the
general population is 2-3% and that for psoriatic arthritis is 0.3-1.0%. The estimated prevalence from
the multistate analysis and the reported prevalences from these large scale cross-sectional studies are
therefore in good alignment.

5 DISCUSSION

This work was motivated by a research project in which collaborators had reviewed published work
aiming to identify markers associated with the presence of psoriatic arthritis in individuals with psori-
asis. Most articles reported on the results of fitting logistic regression models based on their respective
cross-sectional samples using a binary disease status as the response and genetic markers as predic-
tors (Winchester et al., 2012; Haroon et al., 2013; Loft et al., 2018). To explore the relation between
the intensity-based effect of a marker on a transition intensity in a multistate framework and the ap-
parent effect on state occupancy in a cross-sectional sample, we considered problems in the context of
cross-sectional sampling from a population in the spirit of Keiding (1991). We adopted a progressive
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intensity-based model for the life history (disease) process applicable to each individual and assume
births arise in calendar times according to a stationary process. We then derived the limiting value of
the effect of a marker on the disease state occupancy when it is estimated based on a logistic regres-
sion model fitted to data from a cross-sectional sample. In doing this we derived i. the state prevalence
at a calendar time, ii. the state-specific age distributions, and iii. age-specific state prevalences. We
also study the limiting behaviour of marker effect estimates when logistic regression models adjust
for the age of individuals, an approach that is routinely adopted to adjust for time at risk. Interestingly
we find that following adjustment for the individuals’ age in a logistic regression analysis, the bias in
the odds ratio (or log odds ratio) estimator may be larger than that of the unadjusted analysis. Details
on the derivations can be found in the supplementary appendices.

Most studies of life history processes involve considering the effect of covariates on transition
intensities; this was raised by Cuzick (1991) and Brookmeyer (1991) in the discussion of Keiding
and Moeschberger (1992). In occupational epidemiology, Thompson et al. (1998) discuss regression
based on the prevalence odds ratio, prevalence ratio and the incidence rate ratio and point out that
adjustment for potential confounders in these frameworks will be done differently. Miettinen (1976)
discusses estimability issues in case-referrant studies and emphasizes issues of interpretability. Bar-
ros and Hirakata (2003) among others point out that simple logistic regression will typically yield
estimates that are uninterpretable. The fact that there exists a setting where a binary analysis can give
a consistent estimator of the intensity-based effect is surprising, but we emphasize that this is only the
case when there is a stationary birth process, there are no trends in the disease process, transition in-
tensities are time homogenous, and the conditions necessary in (X) are satisfied. More generally the
two approaches to analysis will usually lead to quite different inferences about the effect of markers as
demonstrated in Figure 4. Specifically, if the covariate has a stronger effect on death after disease than
on the incidence of disease in either the illness-death or psoriatic arthritis processes, binary analysis
would indicate an association on the opposite direction of the true marker effect.

The multistate process we describe is relatively simple (e.g. it does not allow for recurrent disease
states) in order to provide a basis for discussion of the issues and calculations related to cross-sectional
analyses. If interest lies in fitting this model to data certain transition intensities will be inestimable
and auxiliary data are required. We construct a likelihood function which makes use of auxiliary
follow-up data from the cohorts of individuals, population mortality data by year, and current status
data from a national survey which facilitates fitting of the multistate model; see also Palloni and
Thomas (2011) for related work. When possible it is important to assess the compatibility of the data
from different sources. In cases where even limited data are available some tests could be carried
out to investigate whether the data are plausibly coming from populations with similar compositions
of risk factors. We have allowed the mortality rates to differ for disease and disease-free individuals
but more could be done in terms of sensitivity analyses to check into the influence of compatibility
assumptions on findings.

A significant challenge which we have not addressed is the complex referral process to the two
registries providing retrospective and prospective data. While some individuals are recruited by way
of screening the population, the real process is more complex since patients can be referred by primary
care or other specialist physicians. Modeling the referral process may help mitigate biases arising
from dependent delayed entry but the recruitment process is likely also tied to the severity of the
symptoms which may be associated with risk of disease transitions. We acknowledge this limitation
and consider it an important topic for future research given the increased emphasis on use of disease
registries in recent times.

There are limitations of simply using cross-sectional data to analyse life history processes (Krae-
mer et al., 2000) and use of odds ratios to characterize effects (Langholz, 2010). There has been
considerable discussion about the merits of using retrospectively reported transition times (e.g. dates
of disease onset in prevalent cohort samples) in analyses. Diamond and McDonald (1992) discuss
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the poor reliability of retrospective data, and the fact that the errors are often of an unknown size
and direction. In the absence of any knowledge about this measurement error process it is difficult
to consider the nature of any biases that may result from it. Jewell (2016) gives a broad review of
the alternative types of designs that can be employed for the study of life history processes and an
extensive bibliography.
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APPENDIX A: DERIVATION OF TRANSITION PROBABILITIES

Consider a time homogeneous K + 1-state progressive disease process as shown Figure 3. We write
the transition intensity functions as λj(t) = λj and ηj(t) = ηj to differentiate the risks of progression
and mortality from stage j, j = 0, 1, . . . , K − 1 and λK−1 = 0. The sojourn time in state j (the
time from entry to exit out of state j) follows an exponential distribution with a hazard hj = λj + ηj ,
survival function Fj(t) = exp{−hjt} and the mean sojourn time 1/hj , j = 0, . . . , K − 1. Under this
time-homogeneous model, we have transition probabilities

P (Z(s+ t) = k | Z(s) = j) = Pjk(s, s+ t) = Pjk(t) ,∀j < k .

Let hj = λj + ηj and Fj(t) =
∫ t

0
exp{−hju}du be hazard and survival functions of the sojourn time

in state j, the transition probabilities can be actually expressed in terms of distributions of sojourn
times. More specifically, we have P00(t) = F0(t), and given that

∫ t

0

Fj1(u)Fj2(t− u)du =
Fj1(t)−Fj2(t)
hj2 − hj1

,∀j1, j2 ∈ S ,

we can obtain the following results

P01(t) =

∫ t

0

P00(u)λ0F1(t− u) du = λ0
F0(t)−F1(t)

h1 − h0

P02(t) =

∫ t

0

P01(u)λ1F2(t− u) du = λ0λ1

[ F0(t)−F2(T )

(h1 − h0)(h2 − h0)
− F1(t)−F2(t)

(h1 − h0)(h2 − h1)

]

P03(t) =

∫ t

0

P02(u)λ2F3(t− u) du

where P03(t) can be written as

λ0λ1λ2

[ F0(t)−F3(t)

(h1 − h0)(h2 − h0)(h3 − h0)
− F1(t)−F3(t)

(h1 − h0)(h2 − h1)(h3 − h1)
+

F2(t)−F3(t)

(h2 − h0)(h2 − h1)(h3 − h2)

]
.

Through mathematical induction, the transition probability from state 0 to state j is

P0j(t) =

∫ t

0

P0,j−1(u) λj−1 Fj(t− u) du =
[ j−1∏

k=0

λk

]


j−1∑

k=0

Fk(t)−Fj(t)[∏k−1
`=0 (h` − hk)

]I(k>0) ∏j
`=k+1(h` − hk)


 ,

and its integration is subsequently

∫ ∞

0

P0j(t) dt =

[
j−1∏

k=0

λk
hk

]
1

hj
=

[
j−1∏

k=0

λk
λk + ηk

]
1

λj + ηj
, ∀j = 1, . . . , K − 1 .

APPENDIX B: SIMULATION RESULTS FOR A TWO-STAGE DISEASE PROCESS

Here we provide the simulation results from cross-sectional studies of a time-homogeneous four-state
disease process as shown in Figure 1 and discussed in Section 2.5. We consider a single binary
covariate X with P (X = 1) = 0.5 which is associated with 1 → 2 and 2 → 3 transitions. The
intensity functions for 0 → 1 and 1 → 2 transitions are of the form λ0 exp(Xβ0) and λ1 exp(Xβ1),
and the intensity function for j → 3 transition is ηj exp(Xαj), j = 0, 1, 2. We set β0 = α0 = α1 = 0
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and η0 = η1 = η2, and allow the values of β1 and α2 to vary. The values of parameters η0, λ0 and
λ1 are solved by setting P (Y = 0) = 0.1, P (Y = 1) = 0.01 and P (Y = 2) = 0.01 following the
formula given in (17).

We simulate the life history of such a disease process for a population of 300,000 people that were
born between the time interval (0, R] with a constant rate, and set R = 10 without loss of generality.
Figure 8 shows the histogram of the age of individuals in this population by their state occupied at

Figure 8: Age distribution of the cross-sectional sample by state occupation.

time R, the derived age distribution functions based on multistate models as given in (10) in Section
2.2 are superimposed, and there is a good agreement.

A cross-sectional sample is formed from a simulated population of size n = 10, 000 according to
their disease status at the fixed sampling time R, using the method described previously. The sample
contains individuals in states 1 (e.g. Ps) and 2 (e.g. PsA), a binary response indicating state 2 is
created and a logistic regression analysis is conducted with a single covariate X and its coefficient
γ1. Table 2 reports the limiting value and the average estimates of exp(γ1) from the binary logistic
regression analysis based on 100 iterations, they agree quite well. One can also see that the relative
risk, exp(β1), from the multistate model and the limiting value of the odds ratio from the cross-
sectional samples, exp(γ1), may imply the association between the covariate and the stage 2 disease
in opposite directions under certain circumstances.
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Table 2: Asymptotic and simulation results from a four-state progressive disease process

exp(γ1)a

Limiting Empirical
exp(β1)b exp(α2)c Value Mean

0.35 0.35 1.000 0.981
0.35 0.50 0.700 0.695
0.35 0.75 0.467 0.477
0.50 0.35 1.429 1.393
0.50 0.50 1.000 1.003
0.50 0.75 0.667 0.685
0.75 0.35 2.143 2.180
0.75 0.50 1.500 1.487
0.75 0.75 1.000 0.994
1.25 1.25 1.000 1.027
1.25 1.50 0.833 0.845
1.25 1.75 0.714 0.736
1.50 1.25 1.200 1.221
1.50 1.50 1.000 1.043
1.50 1.75 0.857 0.864
1.75 1.25 1.400 1.440
1.75 1.50 1.167 1.218
1.75 1.75 1.000 1.033

a Limiting value and empirical average of odds ratio estimators under misspecified logistic regression model
b Multiplicative effect of marker on 1→ 2 transition intensity of four-state process
c Multiplicative effect of marker on 2→ 3 transition intensitiy of four-state process

APPENDIX C: AN EXTENSION ACCOMMODATING DIRECT TRANSITIONS

Instead of assuming the process is strictly one-step progressive, this section considers extensions
that allow progression between two un-adjacent states. For simplicity and illustration purpose, the
discussion is in the context of the Psoriatic Arthritis example where 0 → 2 transition is allowed
as shown in Figure 9. The intensity for j → k transition takes a form λjk exp(Xβjk), j < k and
j, k ∈ {0, 1, 2, 3}.

Note that the general result given in (6) is no longer valid for the calculation of the transition prob-
ability P02(t), which affects the derivation of the overall prevalence, odds and odds ratio subsequently.
Under the time-homogeneous model,

P02(t) =

∫ t

0

P01(u)λ12P22(t− u) du+

∫ t

0

P00(u)λ02P22(t− u) du

= λ01λ12

[ F0(t)−F2(t)

(h1 − h0)(h2 − h0)
− F2(t)−F1(t)

(h0 − h1)(h2 − h1)

]
+ λ02

F0(t)−F2(t)

h2 − h0

where hj and Fj(t) are the hazard and the survival functions of the sojourn times in state j as before,
but h0 = λ01 + λ02 + η03, h1 = λ12 + η13, and h2 = η23. This leads to different expressions of mean
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Figure 9: Multi-state diagram for the psoriasis and psoriatic arthritis disease process with 0 → 2
transition.

diseased lifetime with Ps or PsA such that
∫ ∞

0

P01(t) dt =
λ01

h0

1

h1∫ ∞

0

P02(t) dt =
λ01

h0

λ12

h1

1

h2

+
λ02

h0

1

h2

.

The overall prevalence odds of PsA against Ps now becomes

ODDS =
λ12

h2

+
λ02/h2

λ01/h1

= incidence of Ps to PsA× PsA duration +
incidence of healthy to PsA × PsA duration

incidence of Ps × Ps duration
.

If we assume non-differential mortality due to the covariate, that is α03 = α13 = α23 = 0, following
the same discussion as in Section 2.4, the ratio of the overall odds of PsA against Ps for individuals
with versus without the marker of interest can be shown to be

OR = w1RR + w2RR · exp (β02 − β01) + (1− w1 − w2) exp (β02 − β01) , (23)

a weighted average of some sort with w1 = r1r2/(r1r2 +r2 +1), w2 = r2/(r1r2 +r2 +1), r1 = λ01/λ02

and r2 = λ12/η13. Again, the OR given above is a complicated function of the actual relative risk
exp{β12}. Suppose the marker effect is either preventive or conducive on both Ps and PsA. When
the marker has a stronger association with the incidence of PsA than Ps (i.e. |β02| ≥ |β01|), the OR
estimated from binary analysis is always in the same direction as the actual relative risk exp{β12} as
shown in Figure 10. As the ratios r1 and r2 get bigger than 1, which implies a relatively higher risk
of 0 → 1 → 2 path than the 0 → 2 and 0 → 1 → 3 path, w3 → 0 and hence OR → exp{β12}. On
the contrary, if r1 and r2 decrease from 1, w3 → 1 and OR → 1 implying a null effect. That is, as
the lifetime risk of a 0 → 1 → 2 path (against 0 → 1 → 3 and 0 → 2 paths) is getting higher, the
odds ratio estimated from binary analysis approaches to the actual relative risk. On the other hand,
the odds ratio provides a dampened underestimation of the relative risk, as the risk of the 0→ 1→ 2
path decreases. Finally, when the marker has a stronger association with incidence of Ps than PsA,
the OR estimated from binary analysis may imply an association of an opposite nature of the one
based on the relative risk exp{β12} from the multistate model. These findings are further illustrated
by simulation results reported in Table 3.
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Figure 10: A: Covariate effect for varying values of r1, r2, β01 and β02, where β12 > 0. B: Covariate
effect for varying values of r1, r2, β01 and β02, where β12 < 0.
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Table 3: Simulation results for an extended four-state progressive process allow 0 → 2 transition:
(P (Y = 0) = 0.1, P (Y = 1) = 0.01, P (Y = 2) = 0.01, R = 10, n = 10,000, 200 iterations).

exp(γ1)a

exp(β01) exp(β02) exp(β12) Value Mean

0.25 0.25 0.25 0.785 0.794
0.25 0.25 0.50 0.856 0.898
0.25 0.25 0.75 0.928 0.967
0.25 0.50 0.25 1.569 1.642
0.25 0.50 0.50 1.660 1.734
0.25 0.50 0.75 1.751 1.833
0.25 0.75 0.25 2.371 2.535
0.25 0.75 0.50 2.476 2.649
0.25 0.75 0.75 2.582 2.739
0.50 0.25 0.25 0.417 0.397
0.50 0.25 0.50 0.466 0.461
0.50 0.25 0.75 0.516 0.508
0.50 0.50 0.25 0.821 0.845
0.50 0.50 0.50 0.880 0.915
0.50 0.50 0.75 0.940 0.946
0.50 0.75 0.25 1.234 1.241
0.50 0.75 0.50 1.300 1.341
0.50 0.75 0.75 1.367 1.381
0.75 0.25 0.25 0.289 0.275
0.75 0.25 0.50 0.329 0.318

a Limiting value and empirical average of odds ratio estimators under misspecified logistic
regression model


