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Abstract 

The overall goal of this thesis is to develop and validate ways to effectively measure and visualize 

integrated project interface status in terms of interface health, workload, and engineering progress. 

Collaboration, communication, and interactions between project stakeholders have a high impact on 

the overall success of complex capital projects. Managing interactions between stakeholders, tracking 

deliverables, measuring workload, and measuring engineering progress is particularly important in the 

early phases of complex capital projects. Early phases include: (a) project definition, (b) conceptual 

plan and preliminary design, (c) detailed design, and (d) procurement. Due to the iterative nature of 

design and the cyclic nature of the communications and deliverables between project stakeholders, any 

decision made in those phases or any health problem between project stakeholders, such as 

misalignment or miscommunications, has a critical effect on the remainder of the project. These 

complexities are beyond the capabilities of traditional project management methods such as CPM 

(critical path method) scheduling and Earned Value Analysis. To manage these projects and their 

complex nature, new methods that can detect overloaded interfaces, identify unhealthy relationships 

between stakeholders and measure engineering progress are needed in addition to the existing 

traditional project management methods in the construction industry. 

Consistent with the overall goal of this thesis, the objectives of this thesis are to (1) develop methods 

to measure and visualize health and workload between project stakeholders, and (2) develop methods 

to measure and visualize engineering progress by using BIM (Building Information Model) and IMS 

(Interface Management System) related data. 

To address the first objective, a project monitoring method named Integrated Project Monitoring 

Method (Contribution-1, C1) that visualizes interface health and workload measurements within the 

stakeholder interface network is introduced. To populate this visualization for a given project, both 

quantitative (C2: Framework-A) and qualitative (C3: Framework-B) measurements of early-phase 

project health and workload are developed. The quantitative analysis receives its inputs from project 

electronic information management systems, including: Interface Management Systems, Project 

Schedules, Change Management systems, Document Management systems, and related information 

technology (IT), as well as workflow management systems. The qualitative analyses receives its inputs 

using a novel, simplified qualitative point system developed as part of this thesis. 
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To address the second objective, a novel connection between Interface Management Systems (IMS) 

and Building Information Management (BIM) data (C4: BIM+IMS Connector) is proposed and Model 

Maturity Index (MMI) definitions for Mass Rapid Transit domain (C5: MRT-MMI), as well as 

corresponding assessment and visualization tools (C6: MRT-MMI-AT) are developed.  

The methodological contributions (C1-C4) of this thesis combine to form a holistic approach to 

measuring and visualizing project health and workload in the early phases of project progress, with the 

potential to give owners and managers early indications about where additional efforts might be best 

applied to support project success. 

The validation of this thesis was done across several different projects in different domains. The two 

primary domains of validation were Mass Rapid Transit (MRT) and Nuclear Power Generation (NPG), 

with various subdomains in each being considered.  It is concluded that measuring interface health and 

workload between project stakeholders in complex projects, such as MRT and NPG projects, and 

measuring engineering progress during the early phases of the MRT projects is feasible by using the 

tools and frameworks developed and presented in this thesis. 
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Introduction 

1.1 Background and Motivation 

Defining complexity in construction projects is a challenge. Mass rapid transit systems, refineries, 

nuclear power plants, and port facilities, are often considered complex because they involve large 

numbers of project stakeholders with different backgrounds and locations, employ new technologies, 

have logically intricate activity relationships, involve multiple contract types within a sophisticated 

delivery and governance structure, and have a high cost as well as exposure to risk (Shokri, 2014; 

Shokri, Haas, et al., 2016; Shokri et al., 2011). Typically, these projects end up completed late, and 

occasionally, billions of dollars over budget, though they can be managed successfully.  

Effective communication amongst all of the stakeholders is one of the most critical success factors 

in project management. Often, miscommunication between stakeholders leads to inefficient processes 

and project delays. According to the Project Management Institute’s (PMI) Pulse Report’ (2013) 

findings, on average, two-in-five projects do not meet the original project goals, and one-in-five 

projects are unsuccessful due to ineffective communication (PMI, 2013). That shows how crucial it is 

to manage communication and connections across stakeholders for meeting project goals. 

Management of stakeholder relationships, workloads, deliverables, and measurement of engineering 

progress are particularly important in the early phases of a project which are accepted as project 

definition, conceptual plan and preliminary design, detailed design, and procurement phases in this 

thesis. Even though any decision made in those phases has a significant effect on the remainder of the 

project, limited attention has been given to those phases (Austin et al., 2002). Traditional project 

management methods, such as CPM, do not completely cope with these complexities, nor do they 

explicitly handle the iterative nature of design or the cyclic nature of communication and deliverables 

among stakeholders in the early phases of complex capital projects (Austin et al., 2002; Lawrence & 

Scanlan, 2007; Srour et al., 2013). In order to manage such projects and achieve project goals, new 

methods that can detect overloaded interfaces or unhealthy relationships between stakeholders, and 

measure engineering progress are crucial in the construction industry.  

Several promising practices, tools and systems are emerging for management of complex projects in 

the early project definition, design and procurement phases. They include various electronic 
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information management systems such as: Interface Management (IM), automated Change 

Management (CM), Request for Information (RFI), Contract Management, Deliverables Management, 

Building Information Modeling (BIM), Document Management Systems (DMS), Collaboration 

Management Systems (CMS), Workflow Management Systems (WfMS), as well as processes and 

practices, such as Front End Engineering Design (FEED), Project Definition Rating Index (PDRI), etc 

(El-Gohary & El-Diraby, 2010). However, while each of these systems solve some aspect of the 

management problems posed, they are not well integrated in theory and practice. 

Conventional project management approaches such as CPM scheduling and Earned Value Analysis 

remain the backbone of modern project management; however, today’s projects rely on more 

sophisticated systems that employ iterative methodologies. In this thesis, the question of how to 

measure engineering progress and project health during the early phases of complex capital projects is 

explored. Progress measurement is defined as a quantitative assessment of the state of development of 

a project between conception and delivery for use. State of development can be defined for example by 

the level of detail in 3D design (e.g. BIM), process models, risk registers, public consultations, permits, 

right-of-way, project delivery method, procurement specifications, and other project definition and 

design elements. Health measurement is defined as a quantitative and qualitative assessment of the state 

of functionality of stakeholder collaboration in the project. Quantitative assessment includes, for 

example, the percent of stakeholder interface agreement deliverables submitted on-time, or the response 

time distribution for requests for information. Qualitative assessment includes, for example, perception 

of alignment amongst stakeholders, confidence in project leadership, participant satisfaction, stress 

levels, and other factors. Methods exist for progress and health measurement, and those methods are 

explained in Chapter 2 of this thesis; however, they are poorly developed for the early phases of 

complex projects. 

Improved measurement of project health and engineering progress at the early phases of complex 

capital projects is required in order to improve their performance. To improve and measure project 

health and engineering processes, relations among currently dominant collaboration and management 

systems used for the early phases of complex projects must be developed. Such systems include 

Interface Management Systems (IMS) which is used for managing communications and deliverables 

between project stakeholders with a process oriented approach, Building Information Modeling (BIM) 

systems (as well as their industrial and infrastructure equivalents) which is used for creating an 
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intelligent model of a project with an object oriented approach, and conventional CPM-based project 

management systems. More detailed explanation of IMS and BIM are given in Chapter 2.  

1.2 Research Objectives 

The overall goal of the proposed research is to develop and validate methods for measuring and 

visualizing integrated project interface status between project stakeholders in terms of health, workload, 

and engineering progress. Consistent with the overall goal, the objectives and the sub-objectives that 

need to be covered in this thesis include:   

1. Develop and validate methods to measure and visualize health and workload between project 

stakeholders involving: 

 Definition of quantitative interface health indicators that can be calculated automatically 

by actual project data 

 Definition of qualitative interface health and workload indicators that need human analysis 

and input for the calculation 

 Development of models based on both qualitative and quantitative indicators to measure 

interface health between project stakeholders 

 Development of models to visualize present project health between project participants in 

semantically rich and useful forms.   

2. Develop and validate methods to measure and visualize engineering progress by using BIM 

and IMS related data involving: 

 Development of a framework for database-level integration of BIM and IMS 

 Definition of design progress measurement criteria and attributes 

 Development of a model to assess design maturity  

1.3 Research Premises 

The two key premises of this research are; 

1. Measuring and visualizing health and workload between project stakeholders will facilitate early 

detection and more effective diagnosis of overall project health problems in complex capital 

projects. 
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2. Project design progress can be tracked more accurately with integrated BIM and Project 

Information Management systems, such as IMS. 

1.4 Research Scope 

This research study was conducted within the following scope: 

 Complex Capital Projects with the focus on large scale Mass Rapid Transit (MRT) projects, 

totaling hundreds of billions of dollars annual activity globally, and Nuclear Power Plant 

Refurbishment projects which have an average capital cost of approximately $2 billion 

(CAD) per Station Unit in Canada (CME, 2010; Fernandez, 2019), 

 Early phases of the projects include project definition, conceptual planning, preliminary 

design, detailed design, and procurement phases.  

1.5 Research Methodology  

The proposed methodology is illustrated as a flowchart in Figure 1. Overall, the research methodology 

has five main sections: preliminary stage, design and implementation, data collection, visualization and 

validation, and documentation. 

Detailed descriptions of the required steps associated with the above approach and objectives are as 

follows:  

1- Literature review: Conduct a comprehensive literature review on 3D information modeling; 

project information management systems; interface management systems; project tracking, 

control, and monitoring; building information modeling; level of development; model maturity 

index; project health indicators; and social network analysis.  

2- Health and Workload Measurement: Select interface health and workload indicators from 

the literature and define metrics and methods to calculate them by the structured and 

unstructured data.  

3- Dashboard Development: Generate qualitative and quantitative, interrogatable, data-based 

dashboards to show interface health conditions between project stakeholders. 

4- Integration: Establish links and ways to manage them between IM and BIM systems by 

connecting interface points to related 3D BIM components. The links can be established by 
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connecting common features in the 3D BIM and IMS such as; project specifications, location 

and dimensions of the elements, and Industry Foundation Classes (IFCs).  

5- Formalization: Develop new engineering progress measurement definitions for Mass Rapid 

Transit Projects. 

6- Data collection: Conduct research meetings with industry partners and collect data for health 

and engineering progress measurements from one or more sample projects.  

7- Model Development: Review several Mass Rapid Transit projects, and create a synthesized 

3D BIM model and IM network systems. Define interface points between project participants 

on both the 3D BIM and the IM network. Generalize the models.  

8- Monitoring: Measure interface health and workload between project stakeholders and assess 

project engineering progress according to data obtained from the IM system and 3D BIM 

model. Develop a panel that shows results.  

9- Validation: Validate the proposed methods on sample data collected via functional 

demonstration and feedback from industry experts.  

10- Documentation and dissemination: Document and present the findings of this research via 

periodic reports, conference and journal papers and PhD thesis. 
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Figure 1 Research Methodology Flowchart 

1.6 Thesis Structure 

This thesis is organized into six chapters. In Chapter One, an overview of the background and 

motivation of the project, research objectives, scope, and methodology is provided. 

In Chapter Two, the literature review and background information about Interface Management (IM) 

system and its elements, Building Information Modelling (BIM) and its components, project health and 

interface health, engineering progress measurement methods, and Social Network Analysis are 

presented.  
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In Chapter Three, stakeholder interface networks and the methodology of how to measure interface 

health and workload between project stakeholders is explained. 

In Chapter Four, a framework overview of database-level integration of BIM and IMS and conceptual 

engineering progress measurement definitions and corresponding assessment tools for Mass Rapid 

Transit Systems are presented.  

In Chapter Five, validation of the proposed framework and models are presented. The proposed 

Integrated Project Monitoring Method is validated through applications on six complex construction 

projects from two major industry segments: Mass Rapid Transit (MRT) and Nuclear Power Generation 

(NPG). In order to validate the BIM and IM system integration and engineering progress measurement 

definitions and assessment tools, a hypothetical railway model is created. Functional validation of the 

proposed model is presented through a railway project created.  

In Chapter Six, a summary of this research, contributions, limitations, and recommendations for 

future work is provided. 
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Literature Review 

2.1 Introduction to Project Management Information Systems 

Managing and controlling information and document exchange between project participants is one of 

the most important elements to successfully accomplish projects. There are several project management 

techniques in literature and software on the market today. Some of the most known project management 

systems are Change Management, Deliverables Management, Request for Information, and Interface 

Management Systems (IMSs). In this proposal, all of these systems are covered under the Project 

Management Information Systems (PMIS) definition. In the PMBOK Guide 5th Edition, PMIS is 

defined as “An information system consisting of the tools and techniques used to gather, integrate, and 

disseminate the outputs of project management processes (Rose, 2013). It is used to support all aspects 

of the project from initiating through closing, and can include both manual and automated systems.” 

Among the aforementioned systems, the main focus of this research is on the IMS. Therefore, detailed 

explanations for other systems are not provided in this Chapter.  

2.2 Introduction to Interface Management Systems (IMS) 

The concept of Interface Management (IM) was first introduced as a subset of systems engineering in 

the 1960s, and the first applications of IM were in the aerospace industry (Construction Industry 

Institute, 2014). Today, there are several different definitions and classifications of the term “interface” 

in literature. One of the initial definitions, based on a systems approach, was given by Wren (1967) as 

“the contact point between relatively autonomous organizations which are interdependent and 

interacting as they seek to cooperate to achieve some larger system objectives” (Wren, 1967). Over the 

years, various researchers proposed more definitions for the term “interface”. Today many researchers 

consider an interface as “a common boundary or interconnection between independent but interacting 

systems, organizations, stakeholders, project phases and scopes, and construction elements” (Chen et 

al., 2007; Healy, 1997; Lin, 2013, 2009; Morris, 1997; Stuckenbruck, 2008; Wren, 1967).  

Interface management (IM) can be defined as the process of managing project-related 

communications, project stakeholders’ responsibilities, project phases and physical entities (Shokri, 

Ahn, et al., 2016; Weshah et al., 2013; Wren, 1967). In general, IM is used in complex projects and 

executed by a large number of stakeholders who have different specializations, with many overlapping 
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activities. In 2014, Construction Industry Institute (CII) introduced the IM implementation guide where 

definitions of IMS elements, and effective IM practices that can be applied broadly on different types 

of construction projects, are explained (Construction Industry Institute, 2014). According to the 

guideline, IMS is defined as “the management of communications, relationships, and deliverables 

among two or more interface stakeholders” (Construction Industry Institute, 2014). Interface 

Management Systems (IMS), which focus on managing the communications, relationships, and 

deliverables between project stakeholders, are a potential solution for managing complex projects, 

through defining better ways to identify, record, monitor, and track the project interfaces (Eray, 

Sanchez, et al., 2019). 

Interfaces are generated when projects are divided into several sub-projects undertaken by different 

organizations (Chua & Godinot, 2006; Shokri, 2014; Stuckenbruck, 2008), and can be classified as soft 

or hard in a project. In the literature, information exchanges between project participants such as design 

criteria, clearance requirements, and specifications related interactions between engineering delivery 

teams or between a delivery team and an external party are accepted as examples of soft interface 

deliverables. Examples of hard interfaces include physical connections between two or more 

components or systems such as structural steel connections, pipe terminations, or cable connections. 

Also, interfaces can be external or internal depending on how the work related to the interface is done. 

An interface within a single contract or scope of work can be considered internal, whereas if it occurs 

between contracts or scopes of work, then it can be considered external. Moreover, more detailed 

classification of interfaces such as time interfaces, geographical interface, technical interface, and 

organizational interface can be found in literature too (Chua & Godinot, 2006; Eray, Sanchez, et al., 

2019; Shokri, 2014). 

2.2.1 Elements of IMS 

A typical Interface Management System (IMS) would consist of six main components: Interface 

Stakeholders, Interface Points (IPs), Interface Agreements (IAs), Interface Action Items (IAIs), 

Interface Agreement Deliverables (IADs), and Interface Control Document/Drawings (ICDs). The 

definitions of these typical elements are as follows: 

 Interface Stakeholder: An organization that participated in a formal Interface Agreement 

which is within an IM plan of the project. 
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 Interface Points (IPs): “An IP is a soft and/or hard contact point between two interdependent 

interface stakeholders” (Shokri 2014). 

 Interface Agreements (IAs): A document that presents the communication and agreements 

between two Interface Stakeholders over an IP. It includes descriptions of interface 

deliverables, need dates, and required actions for that specific IP. 

 Interface Action Items (IAIs): A document that shows the tasks and activities completed to 

provide the IA deliverables that are defined in the related IA. 

 Interface Control Document/Drawing (ICDs): A document that presents the information 

related to the IP and its approved interface change requests.  

 Interface Agreement Deliverables (IADs): In order to generalize these terms, from this point 

on IAIs and ICDs will be mentioned as Interface Agreement Deliverables (IADs) in this 

proposal. 

Generally, an IMS may include dozens if not hundreds of IPs, each IP may include multiple IAs, and 

each IA may include various types of IADs. Therefore, there could be numerous IADs in a system 

(Shokri, 2014; Shokri, Haas, et al., 2016). A simplified IMS hierarchy can be seen on Figure 2.  

 

Figure 2 Simplified IMS Hierarchy (Source: Eray, Sanchez, & Haas, 2019) 

Recording and managing Interface Points (IPs), Interface Agreements (IAs), and Interface 

Agreement Deliverables (IADs) make up the core structure of an Interface Management System (IMS). 

The fundamental data of an IP that should be recorded include the reference number, title, description, 
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category, involved stakeholders and their responsibilities, creation and approval dates, and the status of 

the IP. As illustrated in Figure 2, there can be several IAs related to an IP. Therefore, it is also 

recommended to register and track IAs by recording a description of IAD, creation date, need date, 

forecasted date, delivery date, and closing date of IA (Construction Industry Institute, 2014; Shokri, 

2014). These are the examples of metadata required. 

2.2.2 Applications of IMS in the Construction Industry 

In the literature, an increasing number of studies on the Interface Management System (IMS) definition, 

interface problems, and web-based IMS platforms, can be found. Interface problems in construction 

projects have been studied under varying constraints such as limiting the study to only two parties 

involved in a project such as owners and contractors, or designers and contractors, or contractors and 

subcontractors, etc. (Al-Hammad, 1990, 1995, 2000; Al-Hammad & Al-Hammad, 1996; Al‐Hammad, 

1993), or limiting the project type to a specific construction category (Al‐Hammad & Assaf, 1992; 

Chen et al., 2008; Yeh et al., 2017), or to a specific phase in the project lifecycle such as design or 

construction (Arain & Assaf, 2007; Yeganeh et al., 2019), or to a country/region (Al‐Hammad & Assaf, 

1992; Sha’ar et al., 2016), or to a specific interface type.  

Several scholars proposed IMS for various type of complex projects which are executed by a large 

number of stakeholders who have different specializations, with many overlapping activities. Pavitt and 

Gibb published one of the early works on the need for IMS in building projects and introduced a system 

to manage cladding interfaces (Pavitt & Gibb, 2003). In 2004, Harrison and Hamilton provided an 

overview of an IMS for railroad and rail transit systems. They also explained interface problems that 

can occur on different types of contracts in railway projects, interface control process illustrations, and 

risks of IMS on rail transit projects (Harrison & Hamilton, 2004). In 2006, Chua and Godinot 

introduced the Work Breakdown Structure (WBS) matrix concept to improve IMS in construction 

projects with a case study on Mass Rapid Transit projects (Chua & Godinot, 2006). Another IMS 

platform was proposed by Lin (2013) to connect project participants for managing interface problems 

during the construction phase (Lin, 2013).  

In 2015, two different web-based IMS are introduced. Ju and Ding (2015) proposed an integrated 

interface model for metro equipment engineering to improve an IMS by changing it from traditional 

methods to a more standardized and structured web-based IM format (Ju & Ding, 2015). Lin (2015) 

also developed a web-based IMS that integrates three-dimensional interface maps to a BIM approach 
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for engineers to improve physical interface information sharing and tracking during the construction 

phase for building projects (Lin, 2015). 

In recent years, usage of IMS has been investigated in various types of construction projects such as 

Mass Rapid Transit (MRT) projects, adaptive reuse projects, offshore projects, etc. For example, Yeh 

et al. (2017) focused on interface problems on design-build and design-bid-build type MRT projects 

and provided a four-step solution which includes using WBS to identify key interface correlations and 

manage engineering interface problems in these projects (Yeh et al., 2017). Following that research, in 

2020 Yeh et al. proposed preventive IM for Mass Rapid Transit projects and suggested series of 

interface design criteria for MRT projects to prevent interface problems related failures (Yeh et al., 

2020). In 2019, Eray et al explored barriers and interface problems occur in adaptive reuse projects and 

investigated usage of IMS in adaptive reuse projects (Eray, Sanchez, et al., 2019). Yassari and Bahai 

(2019) investigated the IM process and strategies to manage interfaces between various subsystems 

during the design, fabrication, and installation phases on a case study from the oil and gas industry 

(Yasseri & Bahai, 2019).  

The usage of IMS is growing in the construction industry lately. Although IMS was introduced in 

the 1960s, it was not used in engineering and construction projects extensively, because of the lack of 

necessary technological infrastructure and lack of common understanding of IM. Today, with the 

developments in information and communication technologies, more engineering and construction 

projects have adopted IM in different forms in their projects using in-house and commercial systems 

(Shokri, 2014; Shokri, Ahn, et al., 2016; Shokri, Haas, et al., 2016; Shokri et al., 2011, 2012). 

2.3 Introduction to Building Information Modelling (BIM) 

Building Information Modelling (BIM) technology, which was introduced almost thirty years ago, is 

one of the most promising developments in the architecture, engineering and construction (AEC) 

industry today (Eastman et al., 2008). Although the term “BIM” is very popular today, there is still no 

single or widely accepted definition for BIM technology. The definition provided by The National 

Building Information Model Standard (NBIMS) as “a digital representation of physical and functional 

characteristics of a facility and it serves as a shared knowledge resource for information about a facility 

forming a reliable basis for decisions during its life cycle from inception onward”, will be accepted as 

the BIM definition for this research (NBIMS, 2016).  



 

 13 

The main idea behind BIM is creating an intelligent model of the project which includes not only 

graphical details, but also engineering information of the system such as material data, wind force, cost, 

schedule, and facility management information, etc. (Shan & Goodrum, 2014). Basically, BIM can be 

explained as a philosophy that many project management software can interoperable with each other 

and reveal a 3D model that includes project related information on the model elements itself. In other 

words, BIM is not a ready-to-go software package that companies can purchase and use, but there are 

many different software packages on the market today that are interoperable with each other and can 

create more accurate models together.  

 In traditional 3D modeling, elements were created as lines, squares, circles, etc. With new modeling 

techniques, elements can be modeled with data included. For example, when a model on Autodesk 

AutoCAD (or another equivalent software) is created, the elements would be presented as lines that 

only include information related elements’ dimensions and locations. It wouldn’t provide the 

information about the modeled element itself. However, when a model is created on Autodesk Revit 

(or equivalent), the elements would be created in 3D including not only its geometric information, but 

also non-geometric such as schedule, cost, identity, location, manufacturer, owner, etc. related 

information too (Ahn et al., 2010; Azhar, 2011; Ding et al., 2012; Lin, 2015; Zeng & Tan, 2007). 

Therefore, the evaluation of the BIM system changed the 3D modeling concept from its roots. 

2.3.1 Evaluation of BIM  

Improvements on computer science and developments on the software platforms helped BIM 

technology to extend traditional 2D and 3D technical drawings into more intelligent visual modeling. 

Today, schedule and cost data of the project can be connected to a BIM model as the 4th and 5th 

dimensions and can be tracked visually. Also, improvements in cloud computing technology helped 

BIM systems move forward on access, update, and sharing model information (Shan & Goodrum, 

2014). 

Today, a BIM system can be considered as a group of tools that enables users to generate, store, 

manage, exchange, and share building information in an interoperable and reusable way during the 

project lifecycle (Vanlande et al., 2008). A BIM system can be used in each stage of a project for 

different purposes. During the conceptual design stage, it can be used for design, sustainability analysis, 

site and logistics management, and cost estimation. At the design and pre-construction stage, it is 

mainly used for multi-trade coordination, design visualization, and evaluation of the constructability of 

the project. The advantage of the BIM System usage in this phase is to coordinate design between 
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stakeholders, to conduct clash detection analysis, and to create walkthrough animations of the project. 

Using a BIM System during the construction phase would help project participants reduce requests for 

information and change orders, do less rework, solve design problems before the actual construction 

through visualization, and improve productivity by having more effective construction management 

and easier information exchange. Project participants could save time and money with these benefits 

during the construction phase. At turnover and facility management stages, a BIM system can be used 

as a centralized information database of the project (Leite et al., 2011; Shan & Goodrum, 2014). Hence, 

usage of a BIM system in all the phases of the project would facilitate control of the lifecycle cost and 

project data in a systematic way and help to manage the project on rapid, accurate and interoperable 

platforms (Leite et al., 2011). 

Interoperability is a concept that is highly important for BIM systems since it is one of the root ideas 

behind it. Therefore, software vendors working in the BIM area are also focusing on providing 

interoperable solutions for all phases of the project such as the Industry Foundation Classes (IFC) 

Standard. Since BIM systems software works with structured data, which can be easily ordered and 

processed, connections between BIM and other systems can be easily created in theory. According to 

SmartMarket Report published by McGraw Hill Construction in 2014, almost 28% percent of the 

construction industry in North America was using BIM System or related tools in 2007, while it 

increased to 71% in 2012 (McGraw Hill Construction, 2014). 

In the literature, there are numerous studies that deal with different application areas of BIM 

technology on construction projects, such as; using BIM models for improving collaboration between 

project participants, reducing material waste, detecting clashes, creating energy-efficient structures, 

controlling design changes, simulating the construction phase in terms of cost and time, etc. (Azhar et 

al., 2011; Meadati & Goedert, 2008; Roh et al., 2011; Singh et al., 2011; Wong & Fan, 2013). Also, 

there are several research projects have been done on integrating BIM models with other methods or 

systems such as facility management systems, building lifecycle management systems, IMS, etc. to 

solve specific problems on the construction projects and improve the usage of 3D modeling among 

different stages of the construction projects. 

One of the most cited research papers on integrating a BIM system with another system was written 

by Goedert and Meadati in 2008. Their research was based on integrating construction process 

documentation with a BIM system during the construction phase. That research introduced the concept 

and methods of integrating a BIM model with 3D as-built data, as well as methods to capture and store 
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construction specifications, submittals, shop drawings, change orders, and RFIs submitted during the 

construction phase and producing 4D as constructed model by connecting the schedule (Meadati & 

Goedert, 2008). 

The integration of CPM and BIM system has been achieved a long time ago, and that connection 

opened ways to new research areas. For example; Shan and Goodrum (2014) provided a framework on 

integrating BIM with CPM to simulate the impact of temperature and humidity at the project level. The 

proposed framework only focused on structural steel erection activities since these activities are mostly 

done outdoors, they are mostly high priority activities and generally on the critical path in the 

construction projects, and there is already a BIM standard for steel. As an outcome of the project, Shan 

and Goodrum (2014) found that the man-hours on the structural steel erection activity differ according 

to the start date of the project and location data on the model (Shan & Goodrum, 2014). 

Sustainability and green building construction are also two of the main research areas in the AEC 

industry. Therefore, the number of studies on green building concepts and BIM systems is also raised. 

Jrade and Jalaei (2015) explained a new concept of integrating BIM and the Canadian green building 

certification system (LEED) at the conceptual design stage of sustainable buildings. The proposed 

methodology describes how to implement an integrated platform during the conceptual design phase to 

create sustainable designs for buildings. In order to integrate these two systems, Jrade and Jalaei 

collected the lists of green products and certified materials and linked these data to a BIM tool’s 

database. The advantages of the proposed integrated system are that the documentation process of 

certification becomes shorter by using the proposed methodology, and users can calculate the total soft 

cost related to the registration and certification process of the designed building (Jalaei & Jrade, 2015).  

Although an IM system is a relatively new concept in the construction industry, there are researchers 

around the world working on IM in different stages of construction projects. Lin (2015) proposed a 

methodology to integrate IM and BIM approach to effectively manage physical interfaces in the 

construction projects. The proposed methodology enables users to track and manage the interface 

events using the 3D interface maps integrated into the BIM approach during the construction phase. A 

web-based framework called the ConBIM-IM system is developed for the construction phase of the 

small-sized construction projects as an end result of the research (Lin, 2015). 

In general, BIM systems are used for building types of construction projects. However, nowadays 

with technological developments on BIM-related software, BIM is also being used for infrastructure 

projects such as highways, airports, bridges, and railway projects, too. London Crossrail project, which 
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is the first major infrastructure project using BIM lifestyle concept, is a unique example for BIM System 

usage on infrastructure projects. As part of this research, 4 research meetings were conducted between 

August 2017 and December 2017 with Nisrine Chartouny, an industry expert from Bechtel Corporation. 

Bechtel Corporation was hired as Crossrail project’s project delivery partner in 2009, and has been 

acting as lead contractor and giving project management support to the London Crossrail project to 

deliver the 42km of central tunnels, and eight new subsurface stations (Rogers, 2019). In these research 

meetings, BIM System usage in the London Crossrail project was investigated through open-ended 

questions (Eray, 2017). 

2.3.2 Open Data Standards  

Industry Foundation Classes (IFC) is an object-oriented building information model format developed 

by the International Alliance for Interoperability (IAI) in 1994 with the aim of describing, sharing and 

exchanging building data among different AEC/FM (Architecture, Engineering, Construction / 

Facilities Management) software applications (Azhar, 2011; Deng et al., 2016). It is an open-source 

format which is free and well documented (Areo, 2016; buildingSMART, 2016).  

Most of the objects in a BIM model can be defined in IFC format which provides objects’ actors, 

controls, groups, products, processes, and resources information as structured information. In other 

words, an IFC file of a BIM model would include both geometric and semantic information of the BIM 

elements, such as owner information, cost, scheduling, utility information, etc. Therefore, a BIM model 

based on IFC’s can be used in various stages of a construction project.  

The main common form of IFC is a plain text ascii file. Each line of an IFC model data would include 

an instance of an entity with its unique reference ID, entity name, and its list of attributes (Hamledari 

et al., 2017).  To date, four IFC domains have been released, and the latest release, IFC4, is accepted 

as the ISO 16739 standard. The first releases of the IFC domain mainly included instances related to 

building type of projects, however, its coverage area increased with each new release. The next release, 

IFC5, is still under the planning phase, and it is expected to include full support for various 

infrastructure domains and more parametric capabilities. 

Similarly, ISO 15926 is an equivalent open data standard that developed for data integration and 

information exchange between computer systems during the life of a process plant. The main idea 

behind ISO 15926 was developing a common language between systems used by the project 

stakeholders such as owner, operators, engineering procurement and construction companies, suppliers, 
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and subcontractors. Although ISO 15926 standard is originally developed for Oil and Gas industry, it 

can be used for any type of information exchange and integration due to its generically developed data 

model and reference data library (Kim et al., 2017; Leal, 2005).  

Though it is not released as an IFC Standard yet, China Railways BIM Alliance prepared and 

submitted the first national development of IFC for the railway domain to Building Smart International 

(bSI) in 2015. It is published as bSI SPEC which is a document that is prepared by any organization on 

any topic for which they want to create a standardized best practice, but which is not yet ready to be a 

bSI Standard. The published bSI SPEC covers alignment, track, subgrade, bridge, tunnel, station, 

drainage, and geology disciplines in railway engineering, and it provides a platform for further 

developments in the IFC railway domain (Alliance, 2015, 2016).  

The latest release of the IFC standard includes eight domains which are namely; 

 IfcArchitectureDomain,  

 IfcBuildingControlsDomain,  

 IfcConstructionMgmtDomain,  

 IfcElectricalDomain,  

 IfcHvacDomain,  

 IfcPlumbingFireProtectionDomain,  

 IfcStructuralAnalysisDomain, and  

 IfcStructuralElementsDomain.  

In order to provide a better explanation of IFC format and IFC domain connections, an HVAC 

example is created. A typical HVAC system and some of the typical interface points between the 

contractors can be seen on Figure 3.  
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Figure 3 An HVAC system and its contractors, (a) HVAC system contractor (Source: (Stevenson & 

Whalen, 2012)), (b) Mechanical contractor (Source:(Air, 2017)), (c) Electrical Contractor 

(Source:(CIM-TEAM, 2017)), and (d) Ductwork contractor (Source:(Systems, 2017)) 

The connections of the HVAC domain with other system domains can be seen in Figure 4. When a 

BIM model that contains an HVAC system is saved in IFC format; the information related to the HVAC 

elements would be saved in related domains. 

 

Figure 4 HVAC IFC domain 

2.4 Introduction to Project and Interface Health  

Project health and human physical health have various similarities when it comes to evaluating their 

health conditions. There would be several symptoms that give clues about the health of a construction 

(d) 

(b) 

(c) (a) 
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project, similar to symptoms of human physical health (Weippert, 2009). Humphreys et al summarized 

these similarities in 7 points. These similarities are namely; 1) state of health influences performance, 

2) symptoms can be used as a starting point to quickly assess health, 3) symptoms of poor health are 

not always present or obvious, 4) state of health can be assessed by measuring key areas and comparing 

these areas’ values to established norms, 5) health changes temporarily, 6) remedies can often be 

prescribed to return to good health, 7) correct and timely diagnosis can prevent small problems from 

becoming large (Humphreys et al., 2004; Weippert, 2009). By tracking these similarities, proactive 

solutions can be taken before poor health conditions occur.  

Health of a construction project can be widely determined by tracking project performance against 

predetermined project goals, objectives, and relationships amongst the project team members. In the 

literature, project health and project performance measurement related studies are intertwined and 

correlated. For example; Tsoukas (2005) defined project health as the synonym of project performance 

(Tsoukas, 2005). It is expected that a project which has an unhealthy project environment, where 

stakeholders’ communication is poor, interfaces are not being managed well, and stakeholders are not 

working towards the project’s aim as a team, would have a poor project performance at the end of its 

lifecycle. Therefore, there are overlapped indicators that are used as both project health indicators and 

project performance indicators. 

Interface health is a subset of project health since management of interfaces between project 

stakeholders is one of the main components that directly affect the overall project health. Interface 

health can be defined as the overall health of all the connections between two interface stakeholders in 

terms of meeting the requirements of the IAs they have, and working as a team for predetermined 

project goals. Therefore, in order to measure project health, first, interface health between project 

stakeholders should be measured (Eray, Haas, et al., 2019). In Figure 5, the connection between project 

health and interface health is presented as a triangle.  

 

Figure 5 Triangle of Health in Project Environment 
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Several models that are related to measuring project health have been proposed in the literature. The 

most recent significant research on determining health problems in construction projects was conducted 

by CII in 2006. CII proposed a Project Health Indicator (PHI) tool that contains a questionnaire with 

43 leading indicators. Each of these indicators has a hypothesized connection with one or more of 5 

outcomes, which are project cost, schedule, quality/operability, safety, and stakeholder satisfaction. By 

filling out the PHI tool questionnaire with its Likert scale, the health of a project in terms of what may 

be expected for these 5 outcomes can be estimated (CII, 2006). 

Another model for assessing construction project health was proposed by the Cooperative Research 

Centre (CRC) Project Diagnostics Research Team in 2002. Over the years, the model that they proposed 

has been converted into a toolkit named “Project Diagnostics”. In this model, a circular process for 

investigating the health of a construction project is used. Initially, construction projects are assessed by 

using 30 Key Performance Indicators (KPIs) that are related to 7 Critical Success Factors (CSFs). If the 

outcome indicates that an assessed project is unhealthy, then the project is examined according to 

Contributing Factors (CFs) that are associated with each CSF, and Secondary Performance Indicators 

(SPIs) that are related to each CFs. At the end of these examinations, root causes of the unhealthy 

project are determined, and remedial activities that are associated with each root cause can be identified. 

This cycle should be repeated until the project's health is measured as healthy (Tsoukas, 2005).  

2.5 Introduction to progress measurement in design 

Measurement of the design progress is an evolving challenge in today’s 3D modeling dominated design 

environment (Poirier et al., 2015). Improvements in the software engineering and computer science 

fields extended traditional 2D and 3D technical design drawings into more intelligent visual modeling 

processes in the construction industry. Today, Building Information Modeling (BIM) philosophy which 

can be defined as creating a virtual prototype of the system, is getting more and more important in the 

construction industry (Azhar et al., 2015).  

Today, there are several 3D modeling software options on the market so that engineering design can 

be done on the shared design files among the project stakeholders. Although these improvements bring 

huge flexibility and power to the construction industry such as automatically superimposing different 

design files and being able to detect clashes, creating walk-through views of the design models, and 

estimating projects’ quantity takeoff automatically, etc., it is hard to measure engineering design 

progress during the design phase of the projects.   



 

 21 

The traditional design progress measurement technique was counting the completed engineering 

drawings and completed issued-for-construction files. However, it is hard to perform this technique on 

3D models, since the 3D design is an evolving process on the same design files. Measurement of the 

design process becomes even harder on complex construction projects since many project participants 

are involved in the design of the project. 

There are different approaches and tools for measuring design progress in both the literature and 

industry today. One of these approaches is tracking the Level of Development (LOD) of design 

elements in the model. Mainly LOD definitions are focusing on graphical details on the design 

elements. Beyond the geometric information, LOD can be used to specify what additional semantic 

data should be defined and shared for model components for different LOD levels. LOD definitions 

helps project stakeholders who receive design models, to understand the content and reliability of that 

content (Grani, 2016). However, design progress is not only related to the graphical details and 

representation, it is also related to engineering information added to the model, and documents and 

process records behind the design. Another approach to measuring design progress, which focuses on 

engineering information added to the model, is tracking Model Maturity Index (MMI) levels of the 

project disciplines. Both LOD and MMI level approaches are explained in the next subsections. 

Also, there are various Building Information Modeling (BIM) maturity assessment tools available 

today that help users to measure their project performance on BIM implementation. Arup, which is a 

global engineering and design firm, developed one of these BIM maturity assessment tools in 2014 

(Azzouz et al., 2016). The main purpose behind Arup’s BIM Maturity Measurement (BIM MM) tool 

is to assess the BIM implementation maturity in projects and compare it between different projects. 

Therefore, although the BIM MM tool provides a measurement on “maturity”, the usage area of this 

tool is different than measuring the design maturity of the project itself.  

2.5.1 Level of Development (LOD)  

Generally, 3D models of construction projects range between a conceptual drawing to a fully detailed 

and coordinated construction model. One way of measuring design completeness in construction 

projects is tracking Level of Development (LOD) level of the elements on the model. In 2008, the 

American Institute of Architects (AIA) released a contract document, “AIAE202-2008 BIM Protocol 

Exhibit,” which defines Level of Development (LOD) and LOD levels, which are related primarily to 

the amount of design detail in the model. According to the AIA, LOD 100 represents a conceptual 
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drawing, while LOD 500 is the as-built model; LOD gets higher during the design phase of the project 

and reaches its highest level during the construction phase (AIA, 2008).  

In 2011, BIMForum formed a working group to initiate the development of a LOD specification 

which follows CSI Uniformat 2010 organization and LOD schema developed by AIA.  By following 

these organizations and basic LOD definitions, the working group created examples, illustrations and 

defined a LOD Specification. In this specification, general insight and definitions of LOD levels for the 

design elements specified in Uniformat 2010 was provided. BIMForum released the latest version of 

the LOD Specification in April 2019 (BIMForum, 2019).  

LOD Specification provides consistency in communication of the design content and information 

reliability of design models (BIMForum, 2019; Grani, 2016). Mainly LOD level definitions are related 

to the graphical and geometric details on the design elements on the model. In other words, as the 

accuracy of the design of the elements gets higher, the LOD level of each element also gets higher in 

the model. Beyond the geometric information, LOD specifications can be used for specifying additional 

semantic data such as cost and schedule data, that should be defined and shared for model components 

in each LOD levels (BIMForum, 2019; Latiffi et al., 2015). There are several LOD spreadsheets 

available to accompany the LOD levels.  

LOD levels are defined only for elements on the design model and there is no such LOD level of the 

complete design model.  It cannot easily or consistently be aggregated to a total LOD level for a project. 

However, it can be used to track the design progress of specific elements in the design model over time 

(BIMForum, 2019; Boton et al., 2015; Yoders, 2012). LOD can be added as a shared parameter to the 

models created on Autodesk Revit to track the design progress of the project. During the design phase, 

the LOD level of the elements can be arranged manually by the design team according to the LOD 

definitions that they created for their project’ design elements. When each element’s LOD level is 

defined on the model, the project team can track changes on these levels to see progress in their projects. 

2.5.2 Model Maturity Index (MMI) 

Most of the engineering progress in the early phases of complex capital projects is not graphical-design 

related, and such progress must be captured as well in order to have a complete idea about the progress 

in the project. Examples of such engineering processes are diverse and include geotechnical studies, 

mechanical and control systems design, and structural systems analysis.  
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Similar to the AIA, the Construction Industry Institute (CII) published metrics to measure progress 

in model-based engineering projects in 2017. These metrics are called Model Maturity Index (MMI) 

and they are focusing on engineering information added to the 3D model, and documents and process 

records behind the design. Similar to LOD, MMI definitions have levels ranging between MMI 100 

which mainly refers to conceptual design, to MMI 600 which indicates that facility management data 

is included in that discipline. 

Until today twelve sets of MMI definitions which are Piping, Structural, Instrumentation, HVAC, 

Equipment, Civil, Electrical, Fire Protection, Layout, Foundations, Buildings, and P&IDs, have been 

established by CII. Each of these definitions is providing a clear set of modeling requirements for each 

MMI level in that discipline to fulfill. The MMI levels are calculated per discipline per location on the 

3D model, and calculations are done by the Model Maturity Risk Index (MMRI) tool developed by CII 

(CII, 2017). 

While LOD levels are mainly related to the design detail on the model, MMI levels are related to the 

amount of the information in the model. In other words, both graphical and non-graphical information 

associated with the project is reflected with MMI levels. Another difference between LOD and MMI 

levels is, LOD is mainly related with details on the design of the model elements, while MMI levels 

are prepared for design disciplines in the project. 

2.5.3 Model Maturity Risk Index (MMRI) 

As part of the Model Maturity Index research, the Construction Industry Institute also developed the 

Model Maturity Risk Index (MMRI) tool (CII, 2017). The tool includes questionnaires for each MMI 

discipline defined (Piping, Structural, Instrumentation, HVAC, Equipment, Civil, Electrical, Fire 

Protection, Layout, Foundations, Buildings, and P&IDs). The aim of the MMRI tool is assessing MMI 

level of these disciplines for a specific location in the project. It also provides a percentage of remaining 

work to achieve higher MMI level within the discipline for the selected specific location too. 

The questionnaires in the MMRI tool have inter-disciplinary relationships between the disciplines 

too. Mainly, the questions on the tool are based on the information added to the model such as site plan, 

geotechnical investigation, design parameters, equipment data, clash detection analysis. The user of the 

tool needs to select an answer from the drop-down menu for each question for the selected location. 

The typical answers in the tool are Yes, No, Not applicable, Design Specified, Loaded, Confirmed, etc. 

for each question. Each of these answers would have connections with different MMI levels and also 
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weights on MMI level calculation.  As an example Foundation is a discipline in which CII provided 

MMI definitions and MMRI tables. The questionnaire for Foundation in the MMRI tool has questions 

about the size and location of the design components. While the answer of “preliminary design” to 

these questions has a connection with MMI 100, the answer of “design specified” has a connection with 

MMI 300.   

The main usage area of the tool is expected to be a guide showing the current maturity of the model 

and required modeling efforts of specific disciplines in different locations on the project. The project 

team can have better communication in model reviewing meetings by filling the questionnaires and 

obtaining current MMI levels of the specific modeling disciplines in different locations. 

2.6 Introduction to Social Network Analysis 

Briefly, Social Network Analysis (SNA) extends from graph theory and is an approach for analyzing 

relationships and investigating interactions between dependent entities (Eteifa & El-adaway, 2018; 

Shokri, 2014). Networks are used in SNA to represent and analyze interactions between individuals or 

groups. In these networks, each individual or group is represented by a node, and the interactions 

between each individual or group are represented by a link between nodes (Alarcón et al., 2013; Shokri, 

2014). The definition of the interactions between groups differs based on the research area and problem. 

In this research, an interaction can be an interface point, agreement, deliverable, report, meeting, etc. 

between two individuals or groups (nodes), and the volume of those interactions defines the weight of 

the links between nodes.  

Several metrics can be obtained by conducting Social Network Analysis (SNA), such as network 

density, clustering coefficient, distance, average path length, degree centrality, eigenvector centrality, 

etc. (Kereri & Harper, 2018). These metrics make SNA a powerful tool that converts invisible 

information to visible and easily understandable formats (Alarcon, 2013). For example, distance gives 

the minimum number of links required to connect two particular nodes, as in the popular idea of “six 

degrees of separation”.  

In this thesis, degree centrality (DC) is used as part of the SNA analysis to measure each node’s 

importance. Theoretically, in a network, a node is important if it is linked to other important nodes, and 

importance is based on the number of links and weight of those links. Also, when the degree centrality 

value gets higher, the importance of the node gets higher too.  Thus, by calculating the DC value of 
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each node in a network, important nodes can be detected. In this thesis, an open-source network 

visualization software named Gephi (version 0.9.2) is used for visualization. 

2.7 Knowledge Gaps 

Traditional project management methods often provide solutions to estimate resource profiles of the 

stakeholders. However, those solutions do not provide any adequate insight of the health or workload 

status of the stakeholder connections. Communication and collaboration between project stakeholders 

directly affect the overall project outcome, therefore special attention should be given to interfaces 

between project stakeholders. Although IMS and project health have been studied in the literature, 

measuring workload and health of the interfaces between project stakeholders is still a new research 

area.  

Currently, there is a lack of a detailed study on measuring engineering progress at the design phase 

of complex construction projects. Methods exist: however, they are either poorly developed for the 

early phases of the complex projects or obsolete in the 3D design world. A 3D based engineering design 

evolves through levels of development, added detail, and established relations. Integrating IMS, BIM, 

and Critical path method based project management techniques can bring solutions to these problems. 

However, although IMS and BIM have been studied comprehensively in the literature, there is still a 

knowledge gap in integrating these systems.  

The concepts of LOD, MMI and MMRI levels are relatively new in the literature. These definitions 

are particularly important to measure design progress in complex projects since they are considering 

not only the geometric data but also engineering data to measure progress. Today, MMI levels are only 

available for 12 disciplines (and they are not available without purchase from the CII), however, the 

scope of these definitions is limited with buildings or industrial projects, and there is still a knowledge 

gap on engineering progress tracking in transportation and infrastructure projects. 
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Stakeholder Interface Networks  and Integrated Project Monitoring 

Method 

3.1 Usage of network analysis in construction projects 

The roots of Social Network Analysis go back to studies of social relations (Moreno, 1934) and network 

characteristics of individuals (Lewin, 1936). Originally, networks were used as a tool to describe the 

relationship pattern and flow of information among individuals or groups (Paul et al., 2008). Over the 

last 30 years, Social Network Analysis (SNA) and network analysis gained broad attention in project 

management and construction management related studies. The development of several SNA tools and 

software accelerated this process. Gradually SNA has become one of the key methods to use in hybrid 

research design in management research, and it gained popularity in construction industry in the areas 

of construction management, transportation planning, and construction safety (Chinowsky & Taylor, 

2012; Eteifa & El-adaway, 2018; Zheng et al., 2016).  

In the last two decades, SNA has been used as an analytical tool in various research projects in the 

construction management field such as: (1) examining communication efficiency in engineering project 

organizations (Loosemore, 1998; Mead, 2001), (2) understanding collaboration between groups in 

engineering projects (Pryke, 2004, 2005), (3) recognizing knowledge sharing patterns among project 

teams (Paul et al., 2008; Schröpfer et al., 2017), (4) investigating correlation between communication 

networks and coordination in construction projects (Hossain, 2009; Hossain & Wu, 2009), (5) 

investigating collaboration patterns and their impacts on the profit performance (Park et al., 2011), (6) 

comparing knowledge integrating process in competitive and collaborative working systems (Ruan et 

al., 2012), (7) analyzing stakeholder-associated risks and their interactions (Yang & Zou, 2014), (8) 

understanding and analyzing job-site management problems (Shyh-Chyang, 2015), and (9) analyzing 

job-site physical health and safety problems (Eteifa & El-adaway, 2018). In this thesis, SNA is mainly 

employed for visualization and as a part of the analytical method for evaluating workload and health of 

communication and coordination between project stakeholders.  

Traditionally, the chain of commands and line of authority in an organization is illustrated by using 

traditional hierarchical management structures. In such systems, the connections between project 

participants are illustrated as a tree structure. However, these structures do not illustrate all project 

participants and they exclude the lines of communications in many cases, as well as other types of 
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relationships. Especially in modern management systems, such as Integrated Project Delivery (IPD), 

organizations are becoming more collaborative and less hierarchical (AIA, 2007; Gahassemi & 

Becerik-Gerber, 2011). In a typical complex project, there would be many project stakeholder pairs 

whose responsibilities in the project are directly interdependent; in other words, there would be 

interface points between those project stakeholders (Chua & Godinot, 2006). In order to evaluate 

interfaces between project stakeholders, it is important to visualize the communication and 

collaboration patterns between these groups in an organization.  

Interfaces between project stakeholders can be visualized by using networks where nodes represent 

stakeholders and edges represent interfaces between stakeholders (Shokri, 2014). In this thesis, these 

networks are referred as stakeholder interface networks. In order to provide an illustration, an example 

stakeholder interface network is presented in Figure 6.  In this illustration, all nodes are accepted as 

equally important and the weight of the edges is assumed to be the same for all edges.  

 

Figure 6 Example Stakeholder Interface Network 

Stakeholder interface networks are useful for illustrating collaboration between project stakeholders. 

In this thesis, these networks are used as a base for visualizing the health and workload condition of the 

interfaces between project stakeholders.  

3.2 Methodology – Integrated Project Monitoring Method 

In this research, methods to measure and visualize interface health and workload between project 

stakeholders are investigated and the Integrated Project Monitoring Method is developed. Integrated 

Project Monitoring Method contains two frameworks (Framework-A and Framework-B) to evaluate 

stakeholders’ connections. Stakeholder Interface Networks are used for visualization of the results.  

Figure 7 presents the methodology of how to measure interface health and workload between project 

stakeholders, as well as how to establish Stakeholder Interface Networks by using the Integrated Project 

Monitoring Method. Details of each step are provided in the following subsections. 
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*Suggested re-evaluation cycle 

Figure 7 Methodology of Integrated Project Monitoring Method  

3.2.1 Project Selection and Identification 

The first step is selecting a project to conduct interface health analysis and gather general information 

about the project such as problem definition, location, timeline, contact point, etc. Construction projects 

might follow different project phases throughout their lifecycle, or name the phases differently, 

depending on the project delivery method used. Therefore, the project lifecycle map where names of 

each project phase and their orders should be gathered in this step too. 
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3.2.2 Stakeholder Identification 

After selecting a project and gathering general information about the project lifecycle, the next step 

is identifying project stakeholders in each project phase. It is expected that any construction project 

would have a dynamic environment where stakeholders involved in the project change throughout the 

project lifecycle. Therefore, in order to create stakeholder interface networks for a project throughout 

its project lifecycle, the first step is identifying a master stakeholder list that shows all the stakeholders 

involved in the project. While preparing this list, the project phases when these stakeholders are actively 

involved in the project should be clarified. This way stakeholder list for each project phase can be 

created.  

Typically, stakeholder list data would be stored in project information management systems adopted 

in the project and can be reached by writing specific queries. In case when such a system is not 

available, or the data acquisition process is time consuming, project stakeholders should be defined by 

having meetings with the project team. In those meetings name of stakeholders, the timeline of when 

each stakeholder actively involved in the project and their status in the project (internal 

stakeholder/external stakeholder) should be clarified. 

3.2.3 Stakeholder Connection Identification 

After creating stakeholder lists for each project phase, the next step is investigating interfaces between 

stakeholders. If a pair of stakeholders have interface points in the project that require them to have 

meetings, and/or sharing reports in between, and/or sending requests to each other, and/or have 

common deliverables that they need to agree, then it is accepted that these stakeholders have a 

connection.  

If an Interface Management System (IMS) is already established in the project, then data for interface 

points between stakeholders can be obtained by creating related queries. In case there is no available 

IMS data for the project, the format presented in Table 1 can be used for gathering interfacing 

stakeholders list data from construction organizations. Typically, project managers or team leaders can 

identify interfacing stakeholders. As it is addressed in Section 3.2.1, construction projects might follow 

different project phases throughout their lifecycle. Therefore, instead of naming project phases as 

“Design”, “Execution”, or “Closeout”, generic names such as Phase A, Phase B, etc. are used for project 

phases in Table 1.  
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Having face to face review meetings with Project Managers (PMs) or team leaders to fill Table 1 

would speed up the process in this step. PMs or team leaders can identify interactions between project 

stakeholders for each phase during review meetings. At the end of this exercise, adjacency matrixes for 

each project phase that shows interfacing stakeholders would be obtained. Examples of filled version 

of Table 1 can be found in Appendix D, Appendix E, and Appendix F.  

Table 1 Data collection format for defining interfacing stakeholders in each project phase 

Name 

Interactions with other stakeholders in 

Phase A Phase B Phase C etc. 

     

In this research, two different approaches are investigated for evaluating interface health between 

project stakeholders. The first framework which will be referred as Framework-A hereafter is defined 

for measuring interface health by using actual project data from various project information 

management systems such as Change Management, Interface Management, Document Management, 

Request For Information systems, and project schedule. However, although Framework-A provides 

objective results based on actual project data without human interpretation, it is found that Framework-

A is hard to implement as a general model for every organization due to the complexity of data required 

and differences in IT systems. After having several meetings  with five different organizations, namely 

Ontario Power Generation, Stantec, Arup, Toronto Transit Commission, and Waterloo Region on 

various construction projects they undertake, it is concluded that either it would take a very long time 

to establish Framework-A in their organization, or it was impossible because the required data was not 

available in the organization’s database. Nonetheless, this approach is partially validated through 

functional demonstration later in Section 5.1, to substantiate the conclusions made concerning its 

feasibility and efficacy. In order to overcome these problems and create a simpler model that can be 

adopted in any project without having a complex project information management system, a second 

framework (Framework–B) which is based on a novel qualitative point system is established. Details 

of each framework are provided in the related subsections below. 

3.2.3.1 Evaluating Stakeholder Connections using Framework-A 

In typical complex construction projects, there would be several project stakeholders involved, and the 

number of stakeholders would change in different project phases. Theoretically, if there are “n” number 

of project stakeholders involved in a project, the number of paired combinations between these project 
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stakeholders can be found with the formula given in Equation 1, where n is the number of project 

stakeholders. 

𝐶(𝑛, 2) =
𝑛!

(𝑛−2)!2!
       [1] 

However, since interface health can be measured bi-directionally, the order or the combination of the 

project stakeholders would matter in this research. Therefore, the maximum number of calculations 

between pairs would be double of the result reached by using Equation 1. In other words, since the 

order of the pairs is important in this framework, instead of combination formulas, the permutation 

formula which is given in Equation 2 where again n is the number of the project stakeholders, should 

be used. 

𝑃(𝑛, 2) =
𝑛!

(𝑛−2)!
       [2] 

For example, if a project involves 10 project stakeholders, the theoretical maximum number of links 

that can be created would be 45, and in that network, the maximum number of interface health 

measurement calculations that need to be conducted would be 90. Manually collecting data and 

conducting these calculations for a project that has a large number of stakeholders would be time-

consuming. One way of overcoming this problem is using project information management systems 

data to measure interface health. 

The main assumption behind Framework-A is that project information management systems are used 

in complex construction projects in order to manage communication and collaboration between project 

stakeholders, and data from those systems are stored in project database. Therefore, Framework-A is 

based on the idea of using actual project data to measure interface health. The overall methodology that 

is followed in Framework-A is presented in Figure 8. 

 

Figure 8 Methodology of Framework-A 

As presented in Figure 8, the first step of Framework-A is defining interface health indicators. 

Therefore, a literature review on health indicators is conducted, and interface health indicators are 

Define interface 
health 

indicators 

Specify 
benchmark 
table and 

weight for each 
indicator 

Calculate each 
indicator value 

for each 
stakeholder 
connection

Calculate 
interface health 
value for each 

stakeholder 
connection



 

 32 

defined. In 2006, CII released a tool to estimate project health in construction projects in terms of 

project cost, schedule, quality/operability, safety, and stakeholder satisfaction by using a Likert scale 

(CII, 2006). The tool included a questionnaire with 43 leading project health indicators. Initially, among 

these 43 health indicators, 10 of them are selected as health indicators that can be calculated 

automatically using actual project data instead of using a Likert scale. Then, these health indicators are 

used as a guide to define 14 interface health indicators that can be measured by actual project data from 

various project information management systems. The defined interface health indicators and expected 

data resource for those indicators are presented in Table 2. 

Table 2 Defined Interface Health Indicators 

No Description Data Source 

I1 Number of RFIs  

Request For Information System I2 Average response duration of RFIs 

I3 Percentage of RFIs that have time-overruns 

I4 Amount of Change requests 

Change Management System 

Interface Management System 

I5 Percentage of cost effect of the change      

requests/scope changes 

I6 Average response duration of change requests 

I7 Average approval duration of the change requests 

I8 The average number of revisions on the documents Document Management System 

Interface Management System I9 Number of rejections 

I10 Total design rework hours 

Schedule  
I11 Design rework hours vs targeted design hours 

I12 Cost effect (percentage) of design rework hours 

I13 Number of milestones that are missed 

I14 Delay effect on actual vs planned schedule 

The second step of the methodology is specifying benchmark values and weights for each interface 

health indicators defined. However, these values would be project specific and should be determined 

by the project team. Therefore, defining a general weight and benchmark table for each indicator is 

beyond the scope of this thesis. 

The third step is calculating each interface health indicator for each edge on the stakeholder interface 

network using actual project data. As explained previously, interface health between two stakeholders 

is bi-directional, therefore, interface health indicators should be calculated bi-directionally too. After 

calculating each indicator for both directions on the edge between two stakeholders, benchmark tables 

should be used for selecting related indicator values. However, it is worth repeating that these 
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benchmark tables would be project-specific, and the project team should define the values according to 

project goals and expectations. 

After finding each indicator value between two project stakeholders, the fourth step is calculating 

interface health (H) value for each edge on the stakeholder interface network by using Equation 3 

below.  

 Health𝑖𝑗
𝐴 = (w1xI1) + (𝑤2x𝐼2) + (𝑤3x𝐼3) + (𝑤4x𝐼4) + (𝑤5x𝐼5) + ⋯ + (𝑤14x𝐼14)   [3] 

where w represents the weight of each indicator defined by the project team, and I represents the 

calculated values of each interface health indicator.  

Interface health (H) value between two stakeholders varies between 1 and 0, where the higher value 

would mean better project health. After calculating the H value between two stakeholders, the interface 

health condition can be determined by using a final benchmark table that is defined by the project team. 

Then, interface health condition results for each stakeholder connection can be presented on the 

stakeholder interface network by using color codes. 

Interface health between two stakeholders is bi-directional, and each direction can have a different 

interface health result. In other words, interface health value between stakeholder A and stakeholder B 

can be different for each stakeholder since they may experience the health of the relationship 

differently. In Figure 9, an example of different interface health measurement between two stakeholders 

are presented with the color codes.  

 

Figure 9 Bi-directional interface health representation 

However, although Framework-A can provide an objective and quantitative data based interface 

health value for each stakeholder connection in a complex project, it is hard to collect data required for 

defined interface health indicators. In order to validate Framework-A, several research meetings were 

conducted with five different construction organizations (Ontario Power Generation, Stantec, Arup, 

Toronto Transit Commission, and Waterloo Region) undertaking multiple complex construction 

projects simultaneously. However, after several meetings with these organizations, it was found that 

either these organizations were not using all of the systems listed above in their projects, or they were 

not storing required data in a reachable database. Therefore, it can be concluded that Framework-A is 
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ideal for construction organizations where required project information management systems and their 

data are available. 

3.2.3.2 Evaluating Stakeholder Connections using Framework-B 

In the previous section, a novel system to measure interface health between project stakeholders in the 

early phases of construction projects using actual project data is introduced. The limitations faced 

during data collection to apply Framework-A showed that a simpler approach is needed to measure 

interface health between project stakeholders where actual project data is not readily available. 

Following this idea, a simpler yet powerful methodology that can be applied throughout the project 

lifecycle is developed through a series of discussions and an iterative process with the industry partners 

in this research project. 

Framework-B is based on a qualitative assessment of interface health and interface workload between 

project stakeholders. Although interface health condition of stakeholders’ connections in the current 

project phase can be a leading indicator for project performance, health measurement is considered 

feasible only for past and current phases of the project by the research partners, whereas workload 

estimation is considered feasible throughout project lifecycle by the research partners. Estimating future 

workload may be useful for resource-leveling in a portfolio of projects and it is one of the future 

research subject recommended in Section 6.4 of this thesis. The key indicators behind workload 

estimation is checking the number of shared interfaces, amount of interface agreements, amount of 

interface agreement deliverables, and communication frequency between project stakeholders. Since 

the evaluation is based on qualitative assessment, even though there is no sophisticated Project 

Information Management System being used, or the data of those systems are not available, users would 

still be able to evaluate the workload between project stakeholders based on their observations. In this 

analysis, the high number of shared interfaces, agreements, deliverables, and frequent communications 

would indicate a high workload between two stakeholders. Thus, the main idea behind interface health 

measurement between two interface stakeholders is evaluating their responsiveness of their 

communication, punctuality on the project schedule, their alignment on overall project goals, and the 

number of revisions that occur on the deliverables sent and received between those stakeholders. 

Starting from this idea, a novel qualitative point system to estimate workload and interface health 

between stakeholders is defined. In this system, project managers are expected to evaluate each 

stakeholder connection in their project for a time period such as per project phase by using a 3-point 

scale where “3” indicates high workload on the connection and indicates potential poor health 



 

 35 

conditions, and “1” indicates low workload in the connection and potential good health conditions. 3-

point scale equates to high-medium-low (HML) scale which is used in risk management (Baccarini et 

al., 2004; Díaz-López et al., 2016). By evaluating each stakeholder connection using this qualitative 

point system, project managers can quickly diagnose overloaded, unhealthy stakeholder connections. 

In Table 3 and Table 4, criteria and scale descriptions for both workload and health estimation point 

systems are presented respectively. It is important to note that while this qualitative point systems were 

developed for the research partners’ relatively broad joint portfolio of project types (complex, but small 

nuclear maintenance projects, and large complex transportation projects), it is possible that they may 

need to be recalibrated for different industry sectors or other categories of projects, such as mega oil 

and gas projects.  

Table 3 Point System for Workload Estimation Between Each Pair of Stakeholders per Project Phase 

Code Main Criteria Scale description Value 

W1 Interfaces  High Number of interfaces (physical, organizational, contractual) 

(>15) 

3 

Medium Number of interfaces (physical, organizational, 

contractual) (>5 and ≤15) 

2 

Low Number of interfaces (physical, organizational, contractual) 

(≤5) 

1 

W2 Communication 

Frequency  

Daily or 2-3 times per week 3 

Weekly 2 

Bi-weekly or less 1 

W3 Agreements  High number of agreements per shared interface (>4) 3 

Medium Number of agreements per shared interface (>2 and ≤4) 2 

Low number of agreements per shared interface (≤2) 1 

W4 Deliverables  High Number of deliverables (reports, design files, specifications, 

etc.) (>10) 

3 

Medium Number of deliverables (reports, design files, 

specifications, etc.) (>4 and ≤10) 

2 

Low Number of deliverables (reports, design files, specifications, 

etc.) (≤4) 

1 

 

Table 4  Point System for Health Estimation Between Each Pair of Stakeholders per Project Phase  

Code Main Criteria Scale description Value 

H1 Responsiveness 

 

High degree of ambiguity and reluctance 3 

 Fuzzy responses that require multiple revisions  2 

 Well defined and smooth process/responses 1 

H2 Punctuality 

 

Constant delays on requests and deliverables that affect milestones 

and critical path 

3 

 There are time overruns on requests and deliverables but didn’t 

affect critical path 

2 
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Code Main Criteria Scale description Value 

 No missed milestones and no time-overruns on requests and 

deliverables 

1 

H3 Alignment 

 

Stakeholders are experiencing poor relationship and misalignment 

on project goals 

3 

 Stakeholders have disagreements on project goals and deliverables, 

but are solution oriented. 

2 

 Stakeholders are well aligned on project goals 1 

H4 Revisions 

 

High amount of revisions (≥50) due to miscommunications and/or 

change requests (CR) 

3 

 Medium number of revisions on reports/design files/deliverables 

(≥5 and <50) due to miscommunications and/or CR 

2 

 Low or no revisions on reports/design files/deliverables (<5) due to 

miscommunications and/or CR 

1 

 

It is worth mentioning again that the values on the scale column of both Table 3 and Table 4 were 

defined by considering complex construction project environments of the research partners of this 

thesis. However, these can be recalibrated according to the expectations of any project team before 

starting evaluation. After evaluating each stakeholder connection on the stakeholder interface network 

using Table 3 and Table 4, the overall workload and health value of each stakeholder connection can 

be calculated by using Equation 4 and Equation 5 respectively. 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑖𝑗
𝐵 = 𝑊1𝑖𝑗 + 𝑊2𝑖𝑗 + 𝑊3𝑖𝑗 + 𝑊4𝑖𝑗      [4] 

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑗
𝐵 =  𝐻1𝑖𝑗 + 𝐻2𝑖𝑗 + 𝐻3𝑖𝑗 + 𝐻4𝑖𝑗            [5] 

where W1, W2, W3, and W4 are main criteria for workload, H1, H2, H3, and H4 are main criteria 

for health, and ij represents the connection between stakeholder i and j.  

In order to eliminate biases, health and workload evaluation of the stakeholders’ connections should 

be done by multiple people from the same group. In such cases, group decision can be achieved by 

using average mean or geometric mean of all the inputs from different decision makers from the same 

group. Also, different stakeholder groups should be involved in the evaluation process. Interface health 

and workload conditions might be experienced differently among two interfacing stakeholders, and by 

collecting data from both parties, different perspectives can be analyzed. Thus it is important to collect 

health and workload data from various stakeholders to have a broader view on the project. 
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3.2.4 Network Analysis 

There are several metrics that can be obtained by conducting SNA including density and distance (Lee 

et al., 2018). These metrics make SNA a powerful tool that converts invisible information to visible 

and easily understandable format (Alarcón et al., 2013). For example, distance gives the minimum 

number of edges required to connect two particular nodes, as in the popular idea of “six degrees of 

separation”. However, most of those metrics are defined for binary situations where edges between 

nodes are just present or absent and doesn’t have any weight (Opsahl et al., 2010).  

In Framework-B, weighted networks where edges between nodes have weights (workload value) are 

analyzed. In such networks, node centrality is not solely related to the number of the edges a node has, 

but the weight of those edges has an impact on node centrality too. Therefore, in order to identify each 

node’s importance in weighted networks, the methodology proposed by Opsahl et al (2010) is followed.  

Opsahl et. al (2010) discussed that the centrality of a node, in other words, the importance of a node, 

would be impacted by both the number of edges the focal node has and the weight of those edges in a 

weighted network. In order to measure node centrality in a weighted network, they proposed a 3-step 

methodology that combines node degree and node strength by using a tuning parameter. The first step 

is calculating the degree of each node. According to Freeman (1978), degree of a focal node is the 

number of nodes that the focal node connected to (Freeman, 1978). This measure can be calculated by 

using Equation 6 below. 

     𝑘𝑖 = ∑ 𝑥𝑖𝑗
𝑁
𝑗        [6] 

where k is the node degree, i is the focal node, j represents all other nodes, N is the total number of 

nodes, and x is the adjacency matrix of the network where xij is equal to 1 if node i is connected to node 

j, otherwise it equals to 0 (Opsahl et al., 2010).  

The second step is calculating node strength which is the sum of edge weights the focal node has. 

This measure can be calculated by using Equation 7 below. 

𝑠𝑖 = ∑ 𝑤𝑖𝑗
𝑁
𝑗         [7] 

where w is the weighted adjacency matrix of the network, in which the cell wij corresponds to the 

weight of the edge between node i and node j. 

The third and last step is calculating degree centrality (DC) measure which shows the node centrality 

in weighted networks by using Equation 8 below. 
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𝐷𝐶𝑖 = 𝑘𝑖
1−𝛼. 𝑠𝑖

𝛼       [8] 

where α is a positive tuning parameter that should be set according to the research setting and data 

collected. If α value is selected between 0 and 1, then the higher DC value would show higher 

importance, while if α value selected a higher value than 1, then low DC value would show higher 

importance in the studied network (Opsahl et al., 2010). In this research, α value is assumed to be equal 

to 0.5 in all case projects presented in Chapter 5. 

Most of the network metrics are focused on static networks whose topology does not evolve with 

time. In recent years, new studies on dynamic networks that change within time by the addition or 

removal of new nodes and edges have been added to literature (Ghanem et al., 2018). In this research, 

a snapshot method is used for dynamic network analysis, and static networks are obtained for different 

time frames in the project lifecycle. In other words, dynamic networks that evolve and change 

throughout the project lifecycle are divided into several static networks for different time frames. Then 

DC value of nodes is calculated for each individual static network. 

As introduced in Section 3.2.4.2, in this research workload value between project stakeholders is 

used as the weight of the edges. Thus, while DC value point outs the importance of the nodes, it also 

indicates the workload of the nodes based on the number of the connection it has and the workload of 

those connections. 

3.2.5 Network Visualization 

Nodes and edges are two main elements of any network system, therefore in order to establish a 

stakeholder interface network, nodes and edges should be defined. In this step, data collected in the 

previous steps are processed and converted into nodes and edges tables.  

First, data collected in the stakeholder identification phase are converted into nodes table by giving 

a unique ID and Label to each stakeholder and converting phase involvement data into Time-set values. 

Time-set values can be actual start and end dates of the phases when each stakeholder is involved in 

the project. If this data is not available, then interval values can be used. For example, if a stakeholder 

stays active for only the first three phases of the project, then the Time-set value for that stakeholder 

would be [0,3] where 0 is the start point of the first phase and 3 is the endpoint of the third phase. If 

Framework-B is used then, the degree centrality of the nodes should be added as the fourth column.  

Second, data collected in the stakeholder connection identification phase and evaluating 

stakeholders’ connections phase are converted into edges tables. Each edges table consists of six 
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columns namely: (1) Source, (2) Target, (3) Type, (4) Interval, (5) Weight, and (6) Health. “Source” 

and “Target” columns contain node IDs of connecting stakeholders. Depending on the network created, 

the type of each connection would be entered as either “undirected” or “directed. The “Interval” column 

contains the Time-set data of each stakeholder connection. Since workload between stakeholders is 

only analyzed in Framework-B, if Framework-A is used for evaluating stakeholder’s connection, then 

the weight of each connection would be accepted as equal and would be “1” for each edge. If 

Framework-B is used, then the “Weight” column would contain dynamic workload values between 

project stakeholders. Lastly, the “Health” column contains dynamic health values between project 

stakeholders. 

After creating nodes and edges table for the selected project, the stakeholder interface network is 

established and visualized using a network visualization software. If Framework-B is used, the 

thickness of the links would represent the workload between stakeholders and the color of the links 

would represent the interface health of stakeholder connections. Workload and health value between 

each stakeholder range between 4 to 12. Higher values represent a high workload and poorer health. 

Also, both workload and health values are transferred to the edges table without using a benchmark 

table. Therefore, edge thicknesses on the stakeholder interface networks also range between 4-12. 

Interface health of stakeholder connections is represented by a color spectrum where lower health 

values are represented by a lighter color and higher health values are represented by a darker color on 

the links between nodes. The color spectrum used for health value visualization in Framework-B is 

presented in Figure 10. Health value “0” is added to the spectrum for the projects where health data is 

not available. 

 

Figure 10 Color spectrum for Interface Health Values 

In Equation-4 and Equation-5, the weight of each criterion is accepted as equal to “1”. However, 

different weights are assigned to each criterion based on project expectations. Similarly, defining a 

standard array for poor, good, and average health conditions is beyond the scope of this research, since 

the weight of the health criteria and expectations on the health of stakeholder collaboration can differ 

in each project. In order to provide an example of how the health scale can differ from project to project, 

two different health scales are presented in Figure 11. Before adopting this methodology in any 
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organization, the scoring system explained in this research should be reviewed by the task force, and 

health definitions should be set for their project types. 

 

Figure 11 Example health scales 

Lastly, Degree Centrality (DC) values are represented by node sizes in stakeholder interface 

networks where higher DC values are represented with bigger nodes. In this research, node sizes are 

scaled relatively. For each stakeholder interface network, the node which has the lowest DC value 

would have the size of 10, while the node which has the highest DC value would have the size of 30. 

The size of the remaining nodes would be arranged automatically in between. A sample stakeholder 

interface network which is used for visualizing interface health and workload values on the edges and 

DC values on the nodes is presented in Figure 12.  

 

Figure 12 A sample Stakeholder Interface Network 

There are several network visualization software available in the market today. In this research, two 

different tools are used for visualization of the stakeholder interface networks. The first one is an open-

source data visualization tool named Gephi (version 0.9.2) which requires nodes and edges tables 

imported in CVS file format. The second one is also an open-source tool created for this research. Gephi 
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is used as the main visualization tool in this thesis to create stakeholder interface networks and visualize 

the interface health and workload results. The stakeholder interface networks created using Gephi are 

presented in Chapter 5 and the stakeholder interface networks created using the second tool is attached 

to Appendix H as a second visualization option. 

3.2.6 Interpretation and Corrective Action 

The last step is the interpretation and corrective action on the networks created. In this step, critical 

stakeholder connection with high workload and poor health condition can be detected on the established 

networks. It is important to have review meetings with PMs and/or Team Leaders in this step to discuss 

the results presented on the established networks. PMs and Team Leaders of the project can review the 

established networks and provide their feedback and make corrections on their evaluation files if 

needed. Ideally, stakeholder’s connections should be evaluated regularly. In this research, a bi-weekly 

re-evaluation is recommended. 

3.3 Summary 

Workload and health of stakeholder interactions in complex projects have been ignored or 

underappreciated in the past, however, stakeholder connections are the core elements that affect overall 

project success at the end.  Especially in the dynamic environment of complex construction projects 

where there are several project stakeholders working together to achieve overall project goals together, 

it is important to track the workload and health of the interactions between stakeholders. Traditional 

project management methods often provide solutions to estimate the resource profile of the 

stakeholders. However, those solutions do not provide any insight about the workload between 

stakeholders or interface health between stakeholders.  

In this section, Integrated Project Monitoring Method which is the first methodological contribution 

of this thesis, is introduced. Integrated Project Monitoring method is developed for measuring and 

visualizing interface health and workload between project stakeholders in complex construction 

projects. Integrated Project Monitoring Method contains two new frameworks which are the second 

and third methodological contributions of this thesis. The contribution of the first framework, 

Framework-A, is that it focuses on interface health measurement between project stakeholders by using 

project data obtained from Interface Management Systems, Project Schedules, Change Management 

systems, Document Management systems, and related information technology (IT) and workflow 

management systems directly. Therefore, it promises an objective data-based methodology to measure 
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interface health between project stakeholders. However, since Framework-A is based on those systems’ 

availability, data acquisition is the main limitation of Framework-A.  

The contribution of the second framework, Framework-B, is that it focuses on both workload and 

health measurement between project stakeholders by using a novel qualitative point system. 

Framework-B promises a simple, yet powerful tool which provides results quickly without any 

complicated data acquisition process. 

Ideally, Integrated Project Monitoring Method should be adopted at the beginning of any project, 

and evaluation of stakeholder connections should be done every couple of weeks. In this research, a bi-

weekly re-evaluation of the stakeholder connections is recommended. By doing so, there would be 

more and constant workload and health data so that overloaded or poor health conditions on the 

stakeholder connections can be identified before it affects the overall project health.   
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Methodology for Engineering Progress Measurement and Visualization 

using Project Information  

The second objective of this thesis is developing methods to measure and visualize engineering progress 

in complex capital projects. As part of this objective, a methodology (BIM+IM Connector) for a novel 

connection between Interface Management Systems (IMS) and Building Information Modeling (BIM) 

data using database level integration is proposed (BIM+IMS Connector). The fundamental idea behind 

BIM-IMS integration is to obtain more accurate project data for better control during the design phase 

of complex construction projects. This thesis does not cover illustration of an IMS on a design model 

by adding Interface Points (IPs) and Interface Agreements (IAs) on the 3D model. Only database 

integration to obtain detailed data is investigated. 

In this Chapter, the scope is limited to the Mass Rapid Transit (MRT) domain. MRT project activity 

is rapidly growing internationally, and they represent hundreds of billions of dollars of investment 

annually (Fernandez, 2019). In literature there are models and frameworks for measuring design 

progress of superstructure projects, therefore specific attention is given to MRT projects that don’t have 

specific design maturity definitions. Developing methods to fill the knowledge gap on design progress 

measurement for mass rapid transit projects is the novelty of this research. 

In order to measure engineering progress in Mass Rapid Transit (MRT) projects, new Model Maturity 

Index (MMI) definitions are created for the Track Line, Overhead Contact Systems (OCS), and Station 

disciplines. These new MMI definitions are named as MRT-MMI definitions. Furthermore, based on 

the MRT-MMI definitions, semi-automated tools to assess and visualize the engineering progress of 

the Track Line, OCS, and Station disciplines per location in an MRT project are also developed. These 

engineering progress assessment and visualization tools are named as MRT-MMI-AT. In these tools, 

visualization of the engineering progress is provided by using spider web graphs. 

4.1 Integration of BIM and Interface Management System (IMS) 

Integration of IMS and BIM data is a vital need for both improved project monitoring and control, and 

for more informed real-time decision making in large-scale complex projects. Although both BIM and 

IMS are used for managing complex construction projects and have common features, they require 

different project data. BIM systems generally consist of design, schedule, and cost data related to the 
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project, while IMS contains information related to the engineering progress of the project. Therefore, 

by integrating these two systems, data for tracking engineering progress can be obtained more 

accurately.  

Today, in many complex construction projects, IMS and BIM systems are used and managed 

separately. Connecting BIM systems’ deterministic product management perspective and object-

oriented approach with IMS’ process-oriented approach would provide a better understanding of 

managing the complexities associated with project uncertainties and risk in organizational structure, 

coordination, collaboration, and communication. Also, integration of BIM and IMS would provide 

more accurate data to track engineering progress during the design phase, since data feeding these steps 

would be complemented by two systems. 

Generally, in complex construction projects, the project team starts creating the BIM model of the 

project before establishing the IMS. In the early stages of the design phase, a conceptual 3D BIM model 

would be generated and would become more detailed during the project lifecycle, while an IMS would 

be adopted when work packages of the project are defined in the design phase. In this thesis, the 

definition of work packages is accepted as the well-defined manageable pieces of a project that can be 

executed and managed by different stakeholders. In 2015, Lin proposed a web based 3D interface map 

model which is based on integration of BIM and IMS. According to Lin (2015), the steps of integration 

of BIM and IMS start with creating a BIM model, and it is difficult to implement IMS within a BIM 

environment if the model is not created for construction management purposes (Lin, 2015).  

BIM and IMS are dynamic systems since their elements can change, evolve, and are sometimes 

removed from the system. Especially in the design phases of construction projects, many new elements 

are added to the BIM, while many of the existing elements could be edited or deleted in order to achieve 

a more detailed design. Likewise, the number of project participants and Interface Points (IPs) change 

in the IMS during the project lifecycle. As it is explained in Section 3, generally, there are few project 

participants at the beginning of the project, while the number increases during the construction phase, 

and then it decreases at the end of the project. Also, IPs do not stay the same; they appear and disappear 

during the project particularly during the design phase. Therefore, the IMS expands and shrinks with 

changes in the number of project participants and number of interface points during the project 

lifecycle. 

Creating the link between BIM and IM systems would help project participants to better coordinate 

over the course of the project and have better communication on interface related problems. Although 
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implementing an IMS in the early phases of complex projects should generally result in better 

management in terms of cost, schedule, and scope, in practice, not all IMS implementations have 

concluded successfully. Some reasons given for specific interface management problems were “Lack 

of communication and coordination between project parties”, “Incomplete design or project plan”, 

“Poor definition of project interfaces”, “Mismanagement of responsibilities”, “Misunderstanding of 

integration and fusion between project parties as a system components”, and “Unclear details in the 

drawings”, etc. (Shokri 2014).  

Many of these listed problems are related to communication, and coordination problems that can be 

solved by connecting an IMS with a BIM system in the early design phases of the project. The result is 

expected to improve communication and alignment along with reduced requests for information, 

change requests, and rework. 

4.1.1 Methodology – BIM+IMS Connector 

Connections can be created by using common features in BIM and IMS such as the schedule, 

specifications, location, and dimensions of the elements. In this research, mainly 3D BIM models are 

investigated. One way of establishing the link between BIM and IMS is using the IFC (industry 

foundation class) database of a BIM system. The properties of many objects in a BIM model are 

reachable using IFC files and can be used for connecting BIM elements with associated Interface Points 

(IPs) in the IMS (Eray et al., 2017). 

Many objects in a BIM model can be defined in IFC format which provides objects’ actors, controls, 

groups, products, processes, and resources information as structured information. Although the first 

releases of IFC format were related to building projects, BuildingSMART concentrated on creating 

common resources for infrastructure projects such as bridge, tunnel, road, and rail construction. 

Although the IFC domain does not contain all elements on a complex construction project today, by 

using IFC infrastructure work extensions, some IPs could be connected to related BIM elements on the 

BIM model. This proposed idea is presented in Figure 13 with internal connections in both BIM and 

IMS. 
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Figure 13 Proposed idea for connecting BIM and IMS  

Establishing an IMS for a complex construction project needs a detailed effort at the beginning of 

the project. Initially, the project needs to be divided into work packages, disciplines, and areas. Then, 

each stakeholder needs to be linked to the related work packages. Also, the project manager, interface 

manager, and technical manager information should be provided to each stakeholder, so they can be 

informed of any new action on the IMS related to their work package. When the setup phase of the IMS 

is finished, then IPs and Interface Agreements (IAs) of the project can be defined. 

Theoretically, in order to define an IP between two interface stakeholders using a sophisticated IMS 

available on the market today or an in-house model, users are required to define mandatory metadata 

and generate a unique ID. Metadata for defining an IP between two interface stakeholders could include 

but not be limited to the title of the IP, and project phase, discipline, area (location), leading work 

package, interfacing work package, etc. An example database connection behind an IP form can be 

seen in Figure 14. 

 

Figure 14 Example database connection behind Interface Point forms  
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Initial connections between BIM and IMS using the proposed framework would be area (location) 

data since that information is commensurate and consistent in both systems. In future implementations, 

facility systems, and model layer may also be useful relations. Each element on the BIM model would 

have a unique ID and area (location) data on the system that can be reachable by IFC format. By 

defining an area on an IMS, related BIM elements would be filtered and become reachable over the 

database. The hypothetical database based connection can be seen in Figure 15. 

 

Figure 15 Hypothetical Database Level Connection  

A crucial aspect of this connection is that each element would have one area, while each area would 

have many BIM elements. Therefore, some of the connections on the database would be one to many, 

while some of them would be one to one. When a database connection of a BIM model and a related 

IMS is established, links between BIM elements and related IPs would be created on the IP form. The 

flowchart of creating an IP between two interface stakeholders with explained database integration is 

presented in Figure 16. A sample of the IP and IA forms that are available today can be found in the 

Appendix A.  
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Figure 16 Flow chart of creating IP on integrated IM-BIM system  

4.2 Model Maturity Index Definitions for Mass Rapid Transit Projects (MRT-MMI) 

Mass Rapid Transit (MRT) systems such as Light Rail Transit (LRT), Bus Rapid Transit (BRT), and 

subways are important for solving traffic congestion and mobility of the people in the world’s crowded 

cities. These MRT projects are generally considered complex projects due to their size, “brownfield” 

nature, engineering design and construction complexity, financial approach, contract type, and delivery 

method. 

Although the project environment varies constantly, these projects can be considered as linear 

projects where many identical units are repeated. However, the graphical details and engineering 

information added to the model would change location-to-location on the design file. According to 

expert opinion from the railway industry, it is hard to track design progress in MRT projects since 

design details and engineering information added to the models are not always similar throughout the 

project. In other words, there would be locations such as stations or areas between stations, where the 

design model is close to the as-built version, while other locations are still in the conceptual design 

phase. 

In order to gain industry expert views,  numerous research meetings (face to face, teleconference, 

and skype meetings) were conducted with industry experts from various organizations such as Stantec, 

Toronto Transit Commission (TTC), Arup, and the Region of Waterloo (Eray, 2018a, 2018d, 2018c, 

2018b). These organizations typically undertake mass rapid transit projects such as LRTs, subways 

projects, and freight rail projects. The names of the contact points and projects are kept confidential in 

this thesis. In those research meetings, general comments obtained from industry experts on how to 

track engineering progress during design phase were: 
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 “Depending on the project requirements, either 2D drawings or 3D design models were 

created for each project.” –Senior Structural Engineer, Arup – June 2018 

 “Engineering progress is tracked by counting lists of drawings, lists of specifications, 

reports, and design briefs. So many things can get left behind, if progress is only tracked 

in a 3D model, but it does have some value as an indicator.”- Rail Sector Lead, Stantec – 

September 2018 

 “The most important element in railway projects is Track Line, because Track design and 

track alignment influences everything. If anything on the Track Line changes, everything 

in the project changes, and it would create months of work.”-Rail Sector Lead, Stantec – 

January 2019 

 “Design progress can be measured by tracking number of the design files for each 

component, tracking volume of comments from stakeholders, and volume of feedbacks on 

the design file of each component. For example, if there are 600 comment on the design 

file of a component then it can be accepted as design is now 10%. When design is getting 

more detailed, number of the comments should decrease, if it does not decrease than it 

would indicate there is a problem.” - Project Lead, TTC – April 2018 

 “Progress measurement can be done by number of hours based on effort wise.” – Director 

Project Controls, TTC- May 2018 

 “Design progress is based on the expert’s opinion.”- Project Manager, Waterloo Region- 

February 2018 

In this research, MRT projects specific conceptual model maturity index (MMI) definitions (MRT-

MMI) and corresponding assessment tools (MRT-MMI-AT) are defined for the Track Line, Overhead 

Contact System (OCS), and station disciplines. Among various types of MRT projects, the main focus 

is given to LRT projects in this thesis and LRT projects are used to provide specific examples related 

to the MRT-MMI definitions and assessment tools. 

LRT projects are a subdivision of MRT systems and according to the American Public Transportation 

Association (APTA), the definition of LRT system is “an electric railway system characterized by its 

ability to operate single or multiple car trains along exclusive rights-of-way at ground level, on aerial 

structures, in subways or in streets, able to board and discharge passengers at station platforms or at 

street, track, or car-floor level and normally powered by overhead electrical wires” (Furmaniak & 
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Schumann, 2014). According to the report published by the International Association of Public 

Transport (UITP) in 2015, LRT and tramway systems are operated in 388 cities around the world. 

Europe is the richest region in terms of the number of LRT projects. A total of 206 cities in Europe has 

LRT or Tramway system in-service. Eurasia follows Europe with 93 cities having LRTs (UITP, 2015).  

4.2.1 MRT-MMI Definitions for Track Line discipline 

Track lines on LRT projects are different than on other types of MRT projects’ track lines since the 

main difference of the LRT projects is that the light rail vehicle (LRV) would have the ability to operate 

in mixed traffic on the street when necessary (Eray et al., 2018; P.C. & Consultants, 2012). Therefore, 

track line types used in LRT projects are generally thinner. In LRT projects, different types of tracks 

such as ballasted track, direct fixation track, embedded track, etc. are used (P.C. & Consultants, 2012). 

In this thesis, a generalized definition for measuring design completeness of the track line discipline 

that can be used for various types of MRT projects is created.  

In order to create MRT-MMI definitions for the Track Line disciple, MII definitions provided by 

Construction Industry Institute (CII) are studied (CII, 2017). In addition to CII documents, the literature 

on Track Line design and available project agreement documents for LRT projects are reviewed 

(Bonnett, 2005; METRO, 2010; Region of Waterloo, 2013). After this process, key design components 

that can be used for tracking track line design are selected and the first version of MRT-MMI definitions 

for the Track Line discipline is created. Then, these definitions are shared with a rail industry expert 

and the validity of these definitions are established through consultation. At the end, the second and 

final version of MRT-MMI definitions are created conceptually for the Track Line discipline. These 

definitions are presented in Table 5.  

Table 5 Conceptual Model Maturity Index Level Definition for Track Line Discipline (MRT-MMI) 

Level Definition 

100  
A generic model of the site plan, route, and topographic maps is created. 

Existing conditions have been quantified and graphically represented. 

200 

The preliminary geotechnical and hydro-technical investigation reports have been 

received.  

The engineering team decided the type of track to be utilized. 
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Level Definition 

Track line components graphically modelled with preliminary size and configuration, as 

follows; 

- Site plan, topographic maps, and surveys 

- Horizontal and vertical layout design 

- The route of the project 

- Track components 

- Track ballast/bed design 

- At-grade crossings 

- Grade separations 

- Roadways 

Design performance parameters, as defined by the project, are associated with model 

design components as graphic or non-graphic information. 

300 

The geotechnical and hydro-technical investigation reports have been received and 

confirmed. 

Project-specific layout and track line specifications are attached to the related components. 

Track line components are graphically modelled with design-specified size and 

configuration, as follows; 

- Site plan, topographic maps, and surveys 

- Horizontal and vertical layout design 

- The route of the project 

- Track components 

- Track ballast/bed design 

- At-grade crossings 

- Grade separations 

- Roadways 

Project plans and permits have been submitted to AHJ (Authority Having Jurisdiction). 

Environmental and remediation requirements have been submitted to AHJ.  

350 

Track line components are graphically modelled with confirmed size and configuration, as 

follows; 

- Site plan, topographic maps, and geotechnical investigation 

- Horizontal and vertical layout design 
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Level Definition 

- The route of the project 

- Track components 

- Track ballast/bed design 

- At-grade crossings 

- Grade separations 

- Roadways 

Project plans and permits have been confirmed by AHJ 

Environmental and remediation requirements have been confirmed by AHJ. 

400 

Track line components are graphically modelled with approved size and configuration, as 

follows; 

- Site plan, topographic maps, and geotechnical investigation 

- Horizontal and vertical layout design 

- The route of the project 

- Track components 

- Track ballast/bed design 

- At-grade crossings 

- Grade separations 

- Roadways 

The Issued for Construction (IFC) drawing package and specifications have been 

submitted. 

Project plans and permits have been approved by AHJ. 

Environmental and remediation requirements have been approved by the AHJ. 

500 As-built: as-built conditions are graphically represented in the model 

600 
FM-enabled: as-built models are supplied with facility management information as 

outlined by project scope 

4.2.2 MRT-MMI Definitions for Overhead Contact System (OCS)  

The second discipline selected for this research is the Overhead Contact System (OCS). In order to 

create MMI definitions for the OCS disciple, MII definitions provided by CII, OCS design literature, 

and project agreement documents for various LRT projects are reviewed in detail (Bonnett, 2005; CII, 

2017; METRO, 2010; Region of Waterloo, 2013; Weiss & Dupont, 1989). After this process, the key 
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design components that can be used for tracking design are selected. The conceptual MRT-MMI 

definitions created for the OCS discipline can be seen in Table 6.  

Table 6 Conceptual MRT-MMI Level Definition for the OCS Discipline  

Level Definition 

100  
A generic model of the site plan, route, and topographic maps is created. 

Existing conditions have been quantified and graphically represented. 

200 

The location of any underground and overhead utilities have been detected and graphically 

represented. 

Overhead Contact System components are graphically modelled with preliminary size and 

configuration, as follows; 

- Site plan, topographic maps, and surveys 

- Curb and property lines 

- Horizontal and vertical layout design of track line 

- Intersection layouts 

- Vehicle envelope 

- Pantograph envelope 

- Pole locations 

- Pole loadings 

- Guying network 

- Tension calculations 

300 

Overhead Contact System components are graphically modelled with design-specified size 

and configuration, as follows; 

- Site plan, topographic maps, and surveys 

- Curb and property lines 

- Horizontal and vertical layout design of track line 

- Intersection layouts 

- Vehicle envelope 

- Pantograph envelope 

- Pole locations 

- Pole loadings 

- Guying network 
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Level Definition 

- Tension calculations 

350 

Overhead Contact System components are graphically modelled with confirmed size and 

configuration, as follows; 

- Site plan, topographic maps, and surveys 

- Curb and property lines 

- Horizontal and vertical layout design of track line 

- Intersection layouts 

- Vehicle envelope 

- Pantograph envelope 

- Pole locations 

- Pole loadings 

- Guying network 

- Tension calculations 

400 

Overhead Contact System components are graphically modelled with approved size and 

configuration, as follows; 

- Site plan, topographic maps, and surveys 

- Curb and property lines 

- Horizontal and vertical layout design of track line 

- Intersection layouts 

- Vehicle envelope 

- Pantograph envelope 

- Pole locations 

- Pole loadings 

- Guying network 

- Tension calculations 

The IFC drawing package and specifications have been submitted. 

500 As-built: as-built conditions are graphically represented in the model 

600 
FM-enabled: as-built models are supplied with facility management information as 

outlined by project scope 
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4.2.3 MRT-MMI Definitions for Stations  

The last design discipline selected for this research is the Stations. In order to create MMI definitions 

for the Stations discipline, design specifications and agreements from various LRT projects across 

Canada are studied. Additionally, currently available MII definitions provided by CII, station design 

literature, and key design components for tracking Station design are studied. Conceptual MRT-MMI 

definitions created for the Station discipline can be seen in Table 7. 

Table 7 Conceptual MRT-MMI Level Definition for Station Discipline 

Level Definition 

100  
A generic model of the site plan, route, and topographic maps are created. 

Existing conditions have been quantified and graphically represented. 

200 

The preliminary geotechnical investigation report has been received.  

The utility conflict matrix is prepared. 

Public infrastructure works are planned. 

The civil plan of the station area and profile have been quantified and graphically 

represented. 

The engineering team decided the type of foundation to be utilized. 

Station components are graphically modelled with preliminary size and configuration, as 

follows; 

- Subsurface foundation elements 

- Station platform 

- Station fixed objects 

- Station equipment 

- Station access routes and emergency exit routes 

Station equipment data, as defined by the project are associated with model design 

components as graphic or non-graphic information. 

300 

The geotechnical investigation report has been received and confirmed. 

The locations of major equipment and structures are decided and graphically modelled. 

Station components are graphically modelled with design-specified size and configuration, 

as follows; 

- Subsurface foundation elements 

- Station platform 
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Level Definition 

- Station fixed objects 

- Station equipment 

- Station access routes and emergency exit routes 

Clash detection analysis has been conducted. 

350 

Station components are graphically modelled with confirmed size and configuration, as 

follows; 

- Subsurface foundation elements 

- Station platform 

- Station fixed objects 

- Station equipment 

- Station access routes and emergency exit routes 

400 

Station components are graphically modelled with approved size and configuration, as 

follows; 

- Subsurface foundation elements 

- Station platform 

- Station fixed objects 

- Station equipment 

- Station access routes and emergency exit routes 

The IFC drawing package and specifications have been submitted. 

500 As-built: as-built conditions are graphically represented in the model 

600 
FM-enabled: as-built models are supplied with facility management information as 

outlined by project scope 

4.3 Engineering Progress Assessment and Visualization Tools for Mass Rapid Transit 

Projects (MRT-MMI-AT) 

Although MRT projects specific MRT-MMI definitions for the Track line, Overhead Contact System, 

and Station disciplines are conceptual currently, conceptual engineering progress assessment and 

visualization tools (MRT-MMI-AT) for those disciplines are developed. Explanation of each tool and 

explanation of how the design progress of each discipline can be assessed with this method is provided 

in the next sub-sections. 
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4.3.1 Engineering Progress Assessment and Visualization Tool (MRT-MMI-AT) for the Track 

Line Discipline 

In order to create the engineering progress assessment tool for the Track Line discipline, first, currently 

available tools and definitions are reviewed in detail and then six main categories that are used in Track 

Line design are defined. The categories are Preliminary Work, Design components, Interdisciplinary 

Work, Specifications, Permits, and Submittals. Based on the MRT-MMI definitions explained and 

presented in Section 4.2.1, twenty-one criteria are created under the six categories. The developed 

conceptual engineering progress assessment tool for Track Line discipline is presented in Table 8. 

In order to obtain the MRT-MMI level of Track Line discipline for a specific location on the project 

by using the criteria presented in Table 8, the applicability of each criterion for that location should be 

obtained. Therefore, a fourth column, named Applicability, is added to the right end of the presented 

table. The options in the applicability column belong to Set A and is presented as Equation 9 below.  

𝐴 = {𝑁𝑜𝑡 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒, 𝑌𝑒𝑠, 𝑁𝑜, 𝑃𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦, 𝐺𝑒𝑛𝑒𝑟𝑖𝑐, 𝐿𝑜𝑎𝑑𝑒𝑑, 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑, … 

… , 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑, 𝐷𝑒𝑠𝑖𝑔𝑛 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑, 𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑, 𝑆𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝑡𝑜 𝐴𝐻𝐽, … 

…,𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 𝑏𝑦 𝐴𝐻𝐽, 𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 𝑏𝑦 𝐴𝐻𝐽, 𝐼𝐹𝐶}   [9] 

 By filling the applicability column for each criterion on the table for a specific location on the 

project, the MRT-MMI level of Track Line discipline in that location on the model can be obtained. 

Table 8 MRT-MMI-AT for the Track Line Discipline 

Categories Code Criteria Applicability 

Preliminary 

Work 

C1 The geotechnical investigation has the status  S | S ∈ A   

C2 The hydro-technical investigation has the status  S | S ∈ A   

C3 The site plan, topographic maps, and surveys have the 

status  
S | S ∈ A   

C4 Existing conditions have been quantified and 

graphically represented. 
S | S ∈ A   

Design 

components 

C5 The track alignment (horizontal and vertical layout 

design) has the status  
S | S ∈ A   

C6 The track ballast/bed design has the status  S | S ∈ A   

C7 The at-grade crossings have the status  S | S ∈ A   

C8 The grade separations have the status  S | S ∈ A   

C9 The roadways have the status  S | S ∈ A   

C10 The track line components are created with 

approximate size, material, and location, and have the 

status  

S | S ∈ A   

C11 Design performance parameters have status  S | S ∈ A   
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Categories Code Criteria Applicability 

Interdisciplinary 

Work 

C12 The Overhead Contact System design has the status  S | S ∈ A   

C13 The signal design has the status  S | S ∈ A   

C14 The grading and drainage/stormwater sewer design has 

the status  
S | S ∈ A   

Specifications C15 Project-specific layout specifications have the status  S | S ∈ A   

C16 Project-specific track line specifications have the status  S | S ∈ A   

Permits C17 Regulator permits have the status  S | S ∈ A   

C18 Permits from Municipalities/Highways have the status  S | S ∈ A   

C19 Permits from Utilities have the status  S | S ∈ A   

C20 Environmental and remediation requirements have the 

status  
S | S ∈ A   

Submittals C21 The IFC drawing package and specifications has been 

submitted 
S | S ∈ A   

According to the MRT-MMI definitions for the Track Line discipline, minimum applicability 

response for each criterion in Table 8 is defined. In Table 9, suggested minimum applicability responses 

to obtain each Model Maturity Index level are presented. When applying proposed engineering progress 

assessment tool to any MRT project, suggested responses for each MRT-MMI level should be reviewed 

by the project design team and adjusted according to their project definitions and requirements. 

Table 9 Suggested minimum applicability responses for each criterion for each MRT-MMI Level of 

the Track Line discipline 

Code 100 200 300 350 400 

C1 Not modeled Received Confirmed Confirmed Approved 

C2 Not modeled Received Confirmed Confirmed Approved 

C3 Generic Preliminary Design Specified Confirmed Approved 

C4 Yes Yes Yes Yes Yes 

C5 Not modeled Preliminary Design Specified Confirmed Approved 

C6 Not modeled Preliminary Design Specified Confirmed Approved 

C7 Not modeled Preliminary Design Specified Confirmed Approved 

C8 Not modeled Preliminary Design Specified Confirmed Approved 

C9 Not modeled Preliminary Design Specified Confirmed Approved 

C10 Not modeled Preliminary Design Specified Confirmed Approved 

C11 Not modeled Loaded Loaded Loaded Loaded 

C12 Not modeled Preliminary Design Specified Confirmed Approved 

C13 Not modeled Preliminary Design Specified Confirmed Approved 

C14 Not modeled Preliminary Design Specified Confirmed Approved 

C15 Not modeled Not modeled Loaded Loaded Loaded 

C16 Not modeled Not modeled Loaded Loaded Loaded 

C17 Not modeled Not modeled Submitted to AHJ Confirmed by AHJ Approved by AHJ 

C18 Not modeled Not modeled Submitted to AHJ Confirmed by AHJ Approved by AHJ 

C19 Not modeled Not modeled Submitted to AHJ Confirmed by AHJ Approved by AHJ 
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Code 100 200 300 350 400 

C20 Not modeled Not modeled Submitted to AHJ Confirmed by AHJ Approved by AHJ 

C21 Not modeled Not modeled Not modeled Not Modeled Yes 

Measurement of engineering progress of the Track Line discipline for a selected location in the 

design model is done by comparing availability response of each criterion with the suggested minimum 

required answers presented in Table 9. By doing so, maturity level reached by each criterion is obtained. 

At the end, the highest maturity level met by all criteria shows the MRT-MMI level of the Track Line 

discipline for the selected location.  

Visualization of engineering progress assessment is obtained by using Spider web graphs. Spider 

web graphs which are also known as radar charts, are used for presenting multidimensional metrics and 

comparing data (Thaker et al., 2016). These graphs provide simple and practical visualization of 

multiple metrics together (Rankin et al., 2008; Thaker et al., 2016). As it is presented in Table 8, 

developed MRT-MMI-AT tool for Track Line discipline contains 21 assessment criteria. Spider web 

graphs can provide simple and practical visualization for those metrics altogether. The information 

presented in Table 9 is converted into spider web graphs for each MRT-MMI level and presented in 

Figure 17. These graphs are also used as dashboards to visualize the progress of each criterion by 

comparing it to following MRT-MMI level. 

 

Figure 17 Spider web graphs for each MRT-MMI Level for Track Line Discipline 
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An example filled-out MRT-MMI-AT for the Track Line discipline in a hypothetical LRT project 

station area is presented in Table 10. In this example, even though most criterion in the “Design 

components” category are modeled as “Design Specified” level, some criteria are still in the 

“Preliminary” level of design. In other words, although some criteria are ready for higher maturity 

levels, not all of them are in the same level. In the last column of Table 10, the maturity level reached 

by each criterion is presented. According to the applicability response of the criteria, the max maturity 

level reached by all criteria is Level 200. Therefore, even though some criteria have higher maturity 

level, the engineering progress result for that specific area is measured as MRT-MMI 200.  

Table 10 An example fılled engineering progress assessment tool for Track Line discipline  

Categories Criteria Code Applicability Level 

Preliminary Work 

C1 Received 200 

C2 Received 200 

C3 Design Specified 300 

 

Design components 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

Yes 400 

Design Specified 300 

Design Specified 300 

Design Specified 300 

Design Specified 300 

Design Specified 300 

Design Specified 300 

Loaded 400 

Interdisciplinary Work 

C12 

C13 

C14 

Preliminary 200 

Preliminary 200 

Preliminary 200 

Specifications 
C15 

C16 

Not modeled 200 

Not modeled 200 

Permits 

C17 

C18 

C19 

C20 

Not modeled 200 

Not modeled 200 

Not modeled 200 

Not modeled 200 

Submittals C21 Not modeled 200 

MRT-MMI Level  200  

 

In Figure 18, an example dashboard containing a spider web graph for this example is presented. In 

this chart, graphs corresponding to MRT-MMI 300, MRT-MMI 200, and responses in Table 10 are 

overlaid to present progress on each design criterion for the example station. In this way progress of 

each criterion can be seen and any criterion that needs attention to obtain following MRT-MMI levels 

can be detected.  
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Figure 18 Example dashboard for MRT-MMI-AT Results  

4.3.2 Engineering Progress Assessment and Visualization Tool (MRT-MMI-AT) for Overhead 

Contact System (OCS) 

Similar to the proposed MRT-MMI-AT for the Track line discipline, an MRT-MMI-AT for the 

Overhead Contact System (OCS) is created after reviewing the literature on OCS. Two main categories 

are defined for tracking the design of OCS. The categories are Preliminary Work and Design 

Components. Based on the MRT-MMI definitions explained and presented in Section 4.2.2, twelve 

criteria are defined under selected categories. The developed conceptual MRT-MMI-AT for the OCS 

discipline is presented in Table 11. 

Similar to the MRT-MMI-AT developed for the Track Line discipline, in order to obtain the MRT-

MMI level of Overhead Contact System discipline for a specific location on the project, the 

applicability of each criterion should be obtained. The options in the applicability column also belong 

to Set A which is presented as Equation 9 in Section 4.3.1. After filling the applicability column for 

each criterion on Table 11 for a specific location on the project, the MRT-MMI level of OCS in that 

location on the model can be obtained. 
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Table 11 Engineering Progress Assessment Tool (MRT-MMI-AT) for Overhead Contact System 

Categories Code  Criteria Applicability* 

Preliminary 

Work 

C1  The site plan, topographic maps, and surveys have 

the status 
S | S ∈ A   

C2  Existing conditions have been quantified and 

graphically represented. 
S | S ∈ A   

Design 

Components 

C3  Intersection layouts have the status S | S ∈ A   

C4  Curb and property lines have the status S | S ∈ A   

C5  Location of any underground and overhead utilities 

have been detected and graphical represented 
S | S ∈ A   

C6  Vertical and horizontal layout of tracks has the status S | S ∈ A   

C7  Vehicle envelope has the status S | S ∈ A   

C8  Pantograph envelope has the status S | S ∈ A   

C9  Pole locations have the status S | S ∈ A   

C10  Pole loadings have the status S | S ∈ A   

C11  Guying network has the status S | S ∈ A   

C12  Tension calculations have the status S | S ∈ A   

 

Based on the OCS MRT-MMI definitions, the suggested minimum applicability response of each 

criterion in Table 11 for each MRT-MMI level is presented in Table 12 below.  

Table 12 Suggested minimum applicability of each criterion for each MRT-MMI Level of OCS 

Code 100 200 300 350 400 

C1 Generic Preliminary Design Specified Confirmed Approved 

C2 Yes Yes Yes Yes Yes 

C3 Not modeled Preliminary Design Specified Confirmed Approved 

C4 Not modeled Preliminary Design Specified Confirmed Approved 

C5 Not modeled Yes Yes Yes Yes 

C6 Not modeled Preliminary Design Specified Confirmed Approved 

C7 Not modeled Preliminary Design Specified Confirmed Approved 

C8 Not modeled Preliminary Design Specified Confirmed Approved 

C9 Not modeled Preliminary Design Specified Confirmed Approved 

C10 Not modeled Preliminary Design Specified Confirmed Approved 

C11 Not modeled Preliminary Design Specified Confirmed Approved 

C12 Not modeled Preliminary Design Specified Confirmed Approved 

It is worth mentioning again that the information presented in Table 12 is suggested responses for 

each criterion. It is important that before applying these tools and definitions to any railway project, the 

design team should review these suggestions and adjust them according to their needs and project 

requirements. 
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4.3.3 Engineering Progress Assessment and Visualization Tool (MRT-MMI-AT) for the Station 

discipline 

Lastly, an MRT-MMI-AT for the Station discipline is created after reviewing the literature on Station 

design. Four main categories are defined for tracking Station design in MRT projects. The categories 

are Preliminary Work, Design Components, Analysis, and Submittals. Based on the MRT-MMI 

definitions explained and presented in Section 4.2.3, sixteen criteria are created under selected 

categories. The developed conceptual MRT-MMI-AT for the Station discipline is presented in Table 

13. 

Similar to the MRT-MMI-AT proposed for the Track line and Overhead Contact System disciplines, 

in order to obtain MRT-MMI level of Station discipline for a specific location on the project by using 

the criteria presented in Table 13, the applicability of each criterion should be obtained. The options in 

the applicability column belong to Set A which is presented as Equation 9 in Section 4.3.1. After filling 

the applicability column for each criterion in Table 13 for a specific location on the project, MRT-MMI 

level of Station discipline in that location on the model can be obtained. 

Table 13 Engineering Progress Assessment Tool (MRT-MMI-AT) for the Station Discipline 

Categories Code Criteria Applicability* 

Preliminary 

Work 

C1 The geotechnical investigation has the status S | S ∈ A   

C2 The site plan, topographic maps, and surveys have the 

status 
S | S ∈ A   

C3 Existing conditions of the track route have been 

quantified and graphically represented  
S | S ∈ A   

C4 Civil plan of the station area and profile have been 

quantified and graphically represented 
S | S ∈ A   

C5 Utility Conflict plans are prepared. S | S ∈ A   

C6 Public Infrastructure works are planned. S | S ∈ A   

Design 

Components 

C7 The locations of major equipment and structures have 

the status 
S | S ∈ A   

C8 The engineering team has determined the types of 

foundations to be utilized 
S | S ∈ A   

C9 Subsurface foundation elements are graphically 

modeled with  size, material, location, and elevation, 

and have the status 

S | S ∈ A   

C10 Station platform has the status  S | S ∈ A   

C11 Station fixed objects (furniture, signage, shelters) have 

the status 
S | S ∈ A   

C12 Station access routes and emergency exit routes have 

the status 
S | S ∈ A   
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Categories Code Criteria Applicability* 

C13 Station equipment (ticket vending machines, 

communication equipment) have the status 
S | S ∈ A   

Analysis 
C14 The equipment data have the status S | S ∈ A   

C15 Clash detection is conducted. S | S ∈ A   

Submittals 
C16 The Issue for Construction (IFC) drawing package and 

specifications has been submitted 
S | S ∈ A   

Based on the Station system MRT-MMI definitions, suggested minimum applicability response of each 

criterion in Table 13 for each Model Maturity Index level is presented in Table 14 below. Similar to 

Table 9 for the Track Line discipline and Table 12 for the OCS discipline, the information presented in 

Table 14 is suggested responses for each criterion. It is important that before applying these tools and 

definitions to any railway project, the design team should review these suggestions and adjust them 

according to their needs and project requirements. 

Table 14 Suggested applicability of each criterion for each MRT-MMI Level of Station discipline 

Code 100 200 300 350 400 

C1 Not modeled Received Confirmed Confirmed Approved 

C2 Generic Preliminary Design Specified Confirmed Approved 

C3 Yes Yes Yes Yes Yes 

C4 Not modeled Yes Yes Yes Yes 

C5 Not modeled Yes Yes Yes Yes 

C6 Not modeled Yes Yes Yes Yes 

C7 Generic Preliminary Design Specified Confirmed Approved 

C8 Not modeled Yes Yes Yes Yes 

C9 Not modeled Preliminary Design Specified Confirmed Approved 

C10 Not modeled Preliminary Design Specified Confirmed Approved 

C11 Not modeled Preliminary Design Specified Confirmed Approved 

C12 Not modeled Preliminary Design Specified Confirmed Approved 

C13 Not modeled Preliminary Design Specified Confirmed Approved 

C14 Not modeled Loaded Loaded Loaded Loaded 

C15 No No Yes Yes Yes 

C16 Not modeled Not modeled Not modeled Not Modeled Yes 

4.4 Summary 

In this Chapter, the creation of a novel connection between BIM and Interface Management System 

(BIM+IMS Connector) is described and new MMI level definitions and their corresponding assessment 

and visualization tools for the MRT domain are introduced. While BIM+IMS Connector is the fourth 

methodological contribution of this thesis, MRT-MMI definitions and corresponding assessment and 

visualization tools (MRT-MMI-AT) are the domain contributions of this thesis. 
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Currently, the MRT-MMI-AT that were developed with expert engineering guidance, can be filled 

with semi-automated assistance by using BIM and IMS data per location. As described in Section 4.1.1. 

of this thesis, location data can be used as the main integration point for these two systems. When full 

integration of BIM and IMS is developed, some automated assistance to fill engineering progress 

assessment and visualization tools would be available as well. As a general example; geotechnical 

investigation reports can be tracked using IMS by checking interface agreements, and the request for 

information system data between civil works and infrastructure stakeholders of the LRT project since 

they would share that information with each other over these systems. Similarly, track line layout design 

related criterion or track ballast/bed design-related criterion can be answered by using LOD levels of 

the related elements on the BIM file. 
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Validation of Proposed Models: Demonstration of Functionality 

As explained in Chapter 3, two frameworks are developed in this research as part of the Integrated 

Project Monitoring Method. Among them, Framework-A requires actual project data, and after several 

aborted attempts for data acquisition from different construction organizations undertaking multiple 

complex construction projects, it was found that either required information management systems were 

not available in their organization, or the required data was not stored in an accessible database. 

Therefore, in this Chapter, Framework-A is validated only to the extent allowed through the grounded 

theory methodology used to develop the metrics and presented in Section 5.1 below.  

The second Framework developed, Framework-B, focuses on both workload and health 

measurement between project stakeholders by using a novel qualitative point system developed as part 

of this thesis. In this Chapter, Framework-B is validated empirically through implementing the point 

system in 6 projects from two different industries. Details of each project investigated and analyzed 

using Framework-B are provided in the related subsections below. 

In Chapter 4, a methodology for database-level integration of Building Information Modeling (BIM) 

and Interface Management Systems (IMS), BIM+IM Connector, was explained. In order to validate the 

proposed methodology, a representative Light Rail Transit project is designed by using Autodesk Revit 

and Coreworx IMS. BIM+IM Connector is validated through a functional demonstration on the 

designed LRT project. Moreover, the Engineering Progress Assessment Tools for Track Line and 

Station disciplines are validated on the representative Light Rail Transit (LRT) project. Details of the 

validation process are explained in Section 5.4.  

5.1 Partial Validation of Integrated Project Monitoring Method – Framework A 

As presented in Figure 7, the first three steps of the Integrated Project Monitoring Method are “Project 

Selection and Identification”, “Stakeholder Identification”, and “Stakeholder Connection 

Identification”. In order to create a functional demonstration of Framework-A, the sample project 

presented in Figure 6 is selected. The project stakeholders and their connections are summarized in 

Table 15.   
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Table 15 Project Stakeholders and their connections 

Node ID Label Connections 

1 A 2,6,7 

2 B 1,4,6 

3 K 6 

4 L 2,5,6 

5 M 4,6,7 

6 N 1,2,3,4,5,7,8 

7 X 1,5,6,8 

8 Y 6,7 

After defining stakeholders and stakeholder connections, the next step is specifying benchmark tables 

and weights of each interface health indicator. As it is explained in Section 3.2.3.1, both benchmark 

values and indicator weights are project-specific. In this example project, all indicators have equal 

importance, therefore indicator weights are the same for all indicators. In order to provide example 

benchmark values, the benchmark table used for I3 (Percentage of RFI time overrun) in this example is 

presented in Table 16. It is worth repeating that these benchmark tables are project specific and will 

change according to project goals and expectations. Therefore, the project teams should define the 

values according to their specific project. 

Table 16 Example benchmark table for RFI time overrun 

Time overrun (%) Indicator value 

0.0% - 20% 1.0 

21% - 40% 0.7 

41% - 60% 0.5 

61 % - 80 % 0.3 

81 % -100 % 0.1 

After defining benchmark values and weights of each indicator, the next step is to “Calculate each 

indicator value for each stakeholder connection”. An example calculation for an interface health 

indicator value is prepared for the third indicator, the “Percentage of RFI that has time overrun (I3)”. 

To calculate the value of this indicator, RFI log data (create date, need date, and completed date) 

between two project stakeholders needed to be collected. For the functional demonstration, RFI 

workflow data from a construction project of cabin gas plants in British Columbia is used in this 

example. For fifteen RFI workflow instances, log data between two stakeholders is shown in Table 17. 

The last two columns of the table show the duration of the workflow instances and the difference 

between need date and closed date (time overrun). 
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Table 17 RFI workflow log data between two project stakeholders 

Create date Need date Closed date Duration (days) Time overrun (days) 

8/11/2010 8/11/2010 8/13/2010 2.00 2.00 

8/11/2010 8/11/2010 8/12/2010 1.00 1.00 

8/20/2010 8/24/2010 8/23/2010 3.00 none 

8/11/2010 8/12/2010 8/12/2010 1.00 none 

8/11/2010 8/12/2010 8/12/2010 1.00 none 

8/11/2010 8/12/2010 8/16/2010 5.00 4.00 

8/11/2010 8/16/2010 8/12/2010 1.00 none 

8/11/2010 8/17/2010 8/17/2010 6.00 none 

8/11/2010 8/12/2010 8/13/2010 2.00 1.00 

8/18/2010 8/24/2010 8/20/2010 2.00 none 

8/18/2010 8/24/2010 8/23/2010 5.00 none 

8/18/2010 8/24/2010 8/18/2010 0.00 none 

8/18/2010 8/24/2010 8/20/2010 2.00 none 

8/18/2010 8/20/2010 8/20/2010 2.00 none 

8/26/2010 8/26/2010 8/27/2010 1.00 1.00 

In this sample data, the average duration of the RFI workflow instances was 2.27 days, and 33% of 

the workflow instances experienced time overruns. Also, the average duration of time overruns was 0.6 

days. After calculating these values, the benchmark table presented in Table 16 would be used to 

determine the appropriate indicator value. According to the example benchmark values in Table 16, the 

value of the I3 would be 0.7. The remaining 13 interface health indicators can be calculated by following 

similar steps.  

After calculating each indicator value between two project stakeholders, the next step is to “Calculate 

interface health value (H) for each stakeholder connection”. For this step, interface health value 

between project stakeholders can be calculated by using Equation 3 presented in Section 3.2.3.1. An 

example H value table that summarizes interface health values between project stakeholders in the 

example project is presented in Table 18. 

Table 18 Example Interface Health (H) Values between project stakeholders shown in Figure 6 

Name Value Name Value Name Value Name Value 

HAB 0.46 HNX 0.85 HYN 0.82 HLM 0.88 

HBA 0.82 HXY 0.80 HNY 0.76 HNK 0.86 

HAX 0.40 HYX 0.88 HNM 0.86 HKN 0.81 

HXA 0.42 HXM 0.65 HMN 0.83 HBL 0.92 

HAN 0.65 HMX 0.72 HNL 0.84 HLB 0.89 

HNA 0.72 HBN 0.40 HLN 0.81   

HXN 0.82 HNB 0.42 HML 0.90   
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After calculating the H values between project stakeholders, interface health condition between 

stakeholders can be determined by using a final benchmark table. The final benchmark table would be 

also project-specific and should be defined by the project team. For this example, interface health 

condition for H values between “0.8” and “1” are accepted as “Good Interface Health”, while the values 

between “0.5” and “0.79” are accepted as “Average Interface Health”, and the values below “0.5” are 

accepted as “Poor Interface Health”. According to these benchmark values, interface health conditions 

between these eight project stakeholders are presented on the stakeholder interface network by using 

color-codes in Figure 19.  

As it is explained in Section 3.2.3.1, interface health between two stakeholders is bi-directional, and 

each stakeholder might experience the health of the relationship differently. In this example project, 

both the pair of Stakeholder A and Stakeholder B, and Stakeholder Y and Stakeholder N experienced 

the health of their relationships differently. In such case, on the overall network representation of the 

interface health condition, the color of the link between those stakeholders would be the associated 

color of the lower H value calculated. However, knowing each H value and seeing the actual colors of 

the links as it is shown in the lookouts in Figure 19, would help upper-level managers to diagnose any 

health problem that arises from those connections. 

 

Figure 19 Interface health condition presentation on the stakeholder interface network  

These network representations of interface health condition between project stakeholders can be used 

as a dashboard for upper-level managers in complex construction projects. Diagnosing any interface 

health problem between project stakeholders before it affects overall project health can be achieved by 

using the explained model. 
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5.2 Validation of Integrated Project Monitoring Method – Framework B 

Integrated Project Monitoring Method using Framework-B is validated through using data from six 

ongoing projects from two different industries. Throughout the validation phase, a total of 37 research 

meetings have been conducted with two industry partners. Among those 37 research meetings, 15 of 

them were with the construction organization in railway industry, and 22 of them were with the 

organization in the nuclear industry. In these research meetings, first, this research project and its 

objectives were introduced. Then, example projects among these organizations’ portfolio of projects 

were selected and data from those projects was collected. Details of each project investigated and 

analyzed are given in the related subsections below. 

5.2.1 Project 1- Rail Line Project 

The first project where Framework-B was applied to an ongoing design-build (DB) type industrial rail 

line project located in North America. The construction organization that provided the data was 

working on various rail line projects with different size and scope all around the globe. The planned 

length of the selected industrial rail line project was approximately 38 kilometers, the estimated 

construction cost of the project was $110,000,000, and the anticipated duration of the design phase was 

19 months. The Project Manager of the consultant team was involved as a decision-maker in this case 

study. Thus, interface health and workload between stakeholders were analyzed from the consultant’s 

point of view. During the interviews and data collection, the project was still under design. Therefore, 

the proposed framework was only applied to the design phase of the project.  

5.2.1.1 Stakeholder Identification and Stakeholder Connections Identification 

In order to identify project stakeholders and interfaces between those stakeholders, 6 review meetings 

were held with the Rail Sector Manager and Project Manager (PM) of Project Consultant. During these 

meetings, first, the methodology of the Project Health Measurement Model presented in Figure 7 was 

briefly introduced to the decision maker. Then, the list of project stakeholders and their hierarchical 

order were defined by asking open-ended questions. It was found that there were 4 main stakeholders; 

Owner, Contractor, Consultant, and Regulatory offices during the design phase. After defining sub-

groups of Owner, Contractor, and Regulatory Offices, a total of 14 stakeholders were defined for the 

design phase. Then, the PM (JJ in Table 15) identified interfacing stakeholders during the design phase 

of the project. In Table 19, the stakeholder list and their connections with each other are summarized. 

The names of the companies were omitted for confidentiality purposes. 
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Table 19 Stakeholder List and Stakeholders’ Connections List of the Rail Line project 

Node ID Label Name Group Connections 

1 AA Owner – Project Manager 1 2,3,10,5,4,6 

2 BB Owners Engineer 1 1,3,10,5,4,6 

3 CC Contractor - Project Manager 2 11,10,12,3,1,13,14 

4 DD Regulatory Office 1 4 2,1 

5 EE Regulatory Office 2 4 1,2 

6 FF Regulatory Office 3 4 2,1 

7 GG Regulatory Office 4 4 18,10,17 

8 HH Regulatory Office 5 4 2,1 

9 II Regulatory Office 6 4 18,10,17 

10 JJ Consultant - PM Team 3 3,2, 1 

11 KK Contractor - Surveyors  2 10,12,13,3,2,1 

12 LL Contractor - Geotechnical/Pavement  2 10, 3,2,1 

13 MM Contractor - Bridge  2 110, 3,2,1 

14 NN Contractor - Rail  2 10,3,7,9,2,1 

 

By the end of this step, it was found that interfaces between defined stakeholders created a total of 25 

undirected connections. 

5.2.1.2 Evaluating stakeholders’ connections 

As presented in Figure 7 in Chapter 3, after defining stakeholders and their connections, the next step 

in the Integrated Project Monitoring Method is to evaluate the project stakeholder’s connections. 

Therefore, the decision-maker was asked to fill out the point system tools explained in Table 3 and 

Table 4 for each stakeholder connection. In the case of larger projects, it could be a project leadership 

team that fills out the tool. Later in this thesis, the potential impact and value of visualizing 

discrepancies between different assessors’ (or stakeholders’) perspectives on the project are explained. 

In Table 20, responses of the decision-maker and calculated “Workload” and “Health” values of each 

stakeholder connection according to those responses are presented. 

Table 20 Workload and Health evaluation of each stakeholder connection in Rail Line Project 

Source Target W1 W2 W3 W4 Workload H1 H2 H3 H4 Health 

AA BB 3 3 2 2 10 2 2 1 2 7 

AA CC 3 1 1 1 6 2 3 2 2 9 

AA DD 2 1 2 2 7 2 2 2 2 8 

AA EE 2 1 2 2 7 2 2 2 2 8 

AA FF 2 1 2 2 7 2 2 2 2 8 

AA HH 2 1 2 2 7 2 2 2 2 8 

AA JJ 2 1 2 1 6 2 2 2 1 7 



 

 72 

Source Target W1 W2 W3 W4 Workload H1 H2 H3 H4 Health 

BB CC 3 3 2 2 10 2 2 2 1 7 

BB DD 2 1 2 2 7 2 2 2 2 8 

BB EE 2 1 2 2 7 2 2 2 2 8 

BB FF 2 1 2 2 7 2 2 2 2 8 

BB HH 2 1 2 2 7 2 2 2 2 8 

BB JJ 3 3 3 2 11 2 2 2 1 7 

CC JJ 3 3 3 2 11 2 2 1 1 6 

CC KK 3 3 3 3 12 2 3 1 1 7 

CC LL 3 3 3 2 11 2 2 1 1 6 

CC MM 3 3 3 2 11 2 2 1 1 6 

CC NN 3 3 3 2 11 2 2 1 1 6 

GG JJ 1 1 3 1 6 1 1 1 1 4 

HH JJ 1 1 3 1 6 1 1 1 1 4 

II JJ 1 1 3 1 6 1 1 1 1 4 

JJ KK 3 1 3 2 9 2 2 1 1 6 

JJ LL 2 1 3 2 8 2 2 1 1 6 

JJ MM 2 1 3 2 8 2 2 1 1 6 

JJ NN 2 1 3 1 7 2 2 1 1 6 

5.2.1.3 Network Analysis 

In order to determine the stakeholder that has the highest workload in this rail line project, the Degree 

Centrality (DC) value of each node was calculated. As explained in Chapter 3, the importance of the 

nodes in a network is based on both the quantity and weight of connections for each node. In this 

research, the weights of the connections are based on the workload values between stakeholders. 

Therefore, higher Degree Centrality (DC) values show a higher workload on the nodes.  In Table 21, 

DC value of each stakeholder in this industrial rail line project is presented. 

Table 21 DC value of the nodes in of Rail Line Project 

ID DC 

AA 18.71 

BB 20.32 

CC 22.45 

DD 5.29 

EE 5.29 

FF 5.29 

GG 2.45  

HH 7.75 

II 2.45 

JJ 27.93  

KK 6.48 

LL 6.16 

MM 6.16 

NN 6.0 
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Based on the network analysis conducted, the consultant (JJ) of the Rail Line Project had the highest 

workload among all project stakeholders, followed by the contractor (CC) and the Owner’s Engineers 

(BB). 

5.2.1.4 Visualization 

As discussed in Chapter 3, nodes and edges table should be created to establish and visualize 

stakeholder interface networks. In the previous steps, required data for these nodes and edges tables 

were collected and analyzed. Nodes table may contain, Code, ID, Label, Type, Interval, and Degree 

Centrality (DC) data. In Table 22, the nodes table for the Rail Line project is presented as an example.  

Table 22 Nodes table – Rail Line Project 

Code ID Label Type Interval DC 

1 AA Owner – Project Manager 1 [0,1] 18.71 

2 BB Owners Engineer 1 [0,1] 20.32 

3 CC Contractor - Project Manager 2 [0,1] 22.45 

4 DD Regulatory Office 1 4 [0,1] 5.29 

5 EE Regulatory Office 2 4 [0,1] 5.29 

6 FF Regulatory Office 3 4 [0,1] 5.29 

7 GG Regulatory Office 4 4 [0,1] 2.45  

8 HH Regulatory Office 5 4 [0,1] 7.75 

9 II Regulatory Office 6 4 [0,1] 2.45 

10 JJ Consultant - PM Team 3 [0,1] 27.93  

11 KK Contractor - Surveyors  2 [0,1] 6.48 

12 LL Contractor - Geotechnical/Pavement  2 [0,1] 6.16 

13 MM Contractor - Bridge  2 [0,1] 6.16 

14 NN Contractor - Rail  2 [0,1] 6.0 

 

The data required for the edges table were collected and analyzed in Section 5.1.1.2. Based on those 

analyses, edges table for the Rail Line project is presented in Table 23.  

Table 23 Edges Table - Rail Line Project 

Source Target Interval Workload Health 

AA BB [0,1] 10 7  

AA CC [0,1] 6 9  

AA DD [0,1] 7 8  

AA EE [0,1] 7 8  

AA FF [0,1] 7 8  

AA HH [0,1] 7 8  

AA JJ [0,1] 6 7  

BB CC [0,1] 10 7  

BB DD [0,1] 7 8  
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Source Target Interval Workload Health 

BB EE [0,1] 7 8  

BB FF [0,1] 7 8  

BB HH [0,1] 7 8  

BB JJ [0,1] 11 7  

CC JJ [0,1] 11 6  

CC KK [0,1] 12 7  

CC     LL [0,1] 11 6  

CC MM [0,1] 11 6  

CC NN [0,1] 11 6  

GG JJ [0,1] 6 4  

II JJ [0,1] 6 4  

JJ KK [0,1] 6 4  

JJ LL [0,1] 9 6  

JJ MM [0,1] 8 6  

JJ NN [0,1] 8 6  

 

The stakeholder interface network was established according to the data presented in Table 22 and 

Table 23 and is visualized in Figure 19. In order to specify stakeholder groups on the network 

representation, color codes were used. In the graph, grey-colored nodes represent Owner, blue-colored 

nodes represent Contractor, pink colored nodes represent consultant, and green colored nodes represent 

regulatory agencies. Moreover, as introduced earlier, the workload value between project stakeholders 

is presented with the line thickness of the connections, and health values are presented with color codes. 

In Figure 20, higher workload value between project stakeholders are represented by thicker edges 

between nodes. Since higher health value indicates poor health condition according to the point system 

used, higher health value between stakeholders are represented with darker colors on the edges. Lastly, 

the degree centrality of each stakeholder is represented with node size such that a higher workload 

(higher DC) corresponds to a larger node. A legend for these representations is included in Figure 20.  

As it is explained earlier in Section 3.2.3, interface health and workload conditions might be 

experienced differently among two interfacing stakeholders. Therefore, in order to include perspectives 

of different project stakeholders, health and workload evaluation of the stakeholders’ connections 

should be done by multiple decision makers from different stakeholder groups. Ideally, in order to 

eliminate biases, these evaluations should also be done by multiple people from the same group. 

Ultimately, by collecting data from various parties in the same project, different perspectives can be 

analyzed and a broader view on the health and workload condition of the stakeholder connections can 

be achieved.  
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Figure 20 Stakeholder interface network of the Rail Line Project 

In order to illustrate the perspective differences that different project stakeholders might have on the 

interface health and workload conditions of stakeholders’ connections, two hypothetical versions of the 

stakeholder interface network of the Rail Line project are created and presented in Figure 21. The aim 

of creating these hypothetical networks is showing that it is possible that Contractor (a) or Owner (b) 

might have different opinions on the condition of the stakeholder connections in Rail Line project. By 

collecting data from different project stakeholders, such differences can be detected, analyzed, and 

reported.  
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Figure 21 Two hypothetical examples (a, b) of different perspectives on Evaluation of Stakeholders' 

connections 

5.2.1.5 Interpretation and Corrective Action 

According to the analysis results presented in Table 23 and Figure 20, the workload value between 

stakeholder CC and KK was found the highest in this project. Moreover, it is found that the stakeholder 
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connection between AA-CC had the poorest health condition. On the other hand, the connections 

between JJ-II and JJ-GG had the lowest workload and the healthiest relationship in this project.  

After analyzing workload and health data and establishing a stakeholder interface network for the 

Rail Line project, review meetings with PM of the project were conducted. Although data were limited 

for the Rail Line project, since it only had two project phases and was in the first phase during the data 

collection, results were deemed accurate by the PM of the project. The presented example project had 

been facing problems related to budget, land acquisition, and limited interactions between project 

owner and contractor. In the results presented in Figure 20, connections between Owner, Contractor, 

and Regulatory Agencies shows low workload and poor health condition, which aligns with the 

problems the project had encountered. On the other hand, results for the connections between 

Consultant (JJ) and Regulatory agencies (GG, HH, II) showed low workload and good health conditions 

for those connections. These results were also found accurate and realistic by the PM since Consultant 

(JJ) has been working on submissions to those agencies and meetings between these stakeholders 

always had a friendly environment so far. Also, since JJ had not submitted the documents yet, the 

workload between those stakeholders was not high. However, the PM stated that these connections 

should be evaluated once more when JJ submits the documents, then the workload and health condition 

of these connections might change. Overall, the results presented in Figure 20 were found valid for the 

design phase of the project.   

5.2.1.6 Re-evaluation  

It is important to re-evaluate stakeholder connections regularly to detect any health problems or 

overloaded connections before those affect overall project health. Therefore, after conducting 

interpretation and corrective action on the first results, re-evaluation data was requested from the PM 

team after 1.5 months. Typically, the same stakeholder list and stakeholder connection list would be 

used for this step in the methodology. But an exception was made for this case project to gather more 

detailed data. 

For this round, after having meetings with PM and Rail Sector Lead of the company, sub-

stakeholders of the consultant’s team were also added to workload and health evaluation and a more 

detailed stakeholder list and stakeholders’ connection list were created. The stakeholder list created for 

re-evaluation is presented in Table 24 below.  
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Table 24 Stakeholder list including sub-stakeholders of Consultant's team 

Id Label Name Group Interactions 

1 AA Owner – Project Manager 1 2,3,10,5,4,6 

2 BB Owners Engineer 1 1,3,10,5,4,6 

3 CC Contractor - Project Manager 2 11,10,12,3,1,17,18,13,14 

4 DD Regulatory Office 1 4 2,1 

5 EE Regulatory Office 2 4 1,2 

6 FF Regulatory Office 3 4 2,1 

7 GG Regulatory Office 4 4 18,10,17 

8 HH Regulatory Office 5 4 2,1 

9 II Regulatory Office 6 4 18,10,17 

10 JJ Consultant - PM Team 3 16,17,18,15,3,2,19,1 

11 KK Contractor - Surveyors  2 3,10,16, 

12 LL Contractor - Geotechnical/Pavement  2 3,10,15,19 

13 MM Contractor - Bridge  2 3,15,10 

14 NN Contractor - Rail  2 3,10 

15 OO Consultant - Bridge Design 3 10,12,13,16,18,19,3,2,1 

16 PP Consultant – Track Design 3 17,10,19,18,15,3,2,1 

17 RR Consultant – Drainage Design 3 16,10,18,15,19,3,2,1 

18 SS Consultant – Environmental 3 10,3,16,15,17,19,7,9,2,1 

19 TT Consultant – Roadway Design 3 16,17,10,18,15,3,2,8,7,9,1 

 

By the end of this step, it was found that interfaces between defined stakeholders created a total of 

64 undirected connections. The PM of the Rail Line project provided a new set of stakeholders’ 

connections evaluation data for this project 1.5 months after than initial evaluation. Data collected in 

this step is attached in Appendix B, and the workload (W) and health (H) evaluation result of each 

stakeholder connection is in Table 25. 

Table 25 Workload and Health evaluation result of each stakeholder connection in Rail Line Project 

Source Target W H  Source Target W H  Source Target W H  

AA BB 10 7  BB TT 6 6 JJ MM 8 6 

AA CC 6 9  CC JJ 6 5 JJ NN 7 6 

AA DD 7 8  CC KK 12 7 JJ OO 11 6 

AA EE 7 8  CC LL 11 6 JJ PP 11 6 

AA FF 7 8  CC MM 11 6 JJ RR 11 6 

AA HH 7 8  CC NN 11 6  JJ SS 11 6  

AA JJ 6 7  CC OO 9 6  JJ TT 11 6 

AA OO 6 7  CC PP 8 6 KK PP 10 6 

AA PP 6 6  CC RR 9 6 LL OO 9 6 

AA RR 6 11  CC SS 9 6 LL TT 6 6  

AA SS 6 6  CC TT 8 6 MM OO 9 8  

AA TT 6 5 GG JJ 6 4 OO PP 9 5  

BB CC 10 7  GG RR 6 6 OO RR 11 5  
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Source Target W H  Source Target W H  Source Target W H  

BB DD 7 8 GG SS 6 6 OO SS 9 5  

BB EE 7 8 GG TT 6 6  OO TT 8 7  

BB FF 7 8 HH JJ 6 6 PP RR 12 6  

BB HH 7 8 HH TT 6 6  PP SS 8 6  

BB JJ 11 7 II JJ 6 4 PP TT 9 7  

BB OO 6 7  II SS 6 6 RR SS 9 6  

BB PP 6 7 II RR 6 6  RR TT 9 6  

BB RR 6 6 JJ KK 9 6 SS TT 8 5  

BB SS 6 11 JJ LL 8 6 10 MM 8 6  

 

By using the new data set obtained, Degree Centrality (DC) of the nodes was recalculated and the 

stakeholder interface network was recreated. The new DC value of each stakeholder is presented in 

Table 26, and the new stakeholder interface network is illustrated in Figure 22. 

Table 26 Re-evaluated Degree Centrality values for Rail Line Project 

 ID Label DC ID Label DC 

1 AA 30.98  11 KK 9.64  

2 BB 32.68  12 LL 11.66  

3 CC 36.33  13 MM 9.17  

4 DD 5.29  14 NN 6.00  

5 EE 5.29  15 OO 29.50  

6 FF 5.29  16 PP 26.66  

7 GG 9.80  17 RR 29.15  

8 HH 10.20  18 SS 27.93  

9 II 7.35  19 TT 30.22  

10 JJ 43.82     
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Figure 22 Stakeholder Interface network of the Rail Line Project 

According to the new data set obtained, it was found that connections between CC-KK and PP-RR 

have the highest workload, followed by BB-JJ, CC-LL, CC-MM, CC-NN, JJ-OO, JJ-PP, JJ-RR, JJ-SS, 
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JJ- TT, and OO-RR. Also, according to the new data set, it was found that connections between AA-

RR and BB-SS had the poorest health condition followed by PR-LPM. 

As the last step, initial results and re-evaluation results were compared and presented in Figure 23 

and Figure 24 below. It was found that workload and health value of most of the stakeholder 

connections remained the same except CC-JJ (3-10). It was found that the workload between these two 

stakeholders dropped drastically and the health of the connection improved.  

After obtaining new results and establishing the second stakeholder interface network for the Rail 

line Project, a face-to-face review meeting with the Rail Lead of the company was conducted. In this 

meeting new results were discussed with the Rail Lead. As presented in Figure 23, the interface health 

condition between AA-RR and BB-SS was very poor. During the review meeting, it was learned that, 

there was a river on the route of the Rail Line Project analyzed. Therefore, the consultant of the project 

had been designing a bridge for the Rail Line. However, there were problems with the Drainage design 

and the Environmental permits for the bridge. By the time the new set of data was collected, the 

collaboration between AA-RR and BB-SS was in a poor state. According to the Rail Lead of the 

company, that was also the reason why workload value between CC-JJ (3-10) dropped drastically 

(Figure 23). Therefore, these results were found accurate by Rail Lead of the company. 

 

Figure 23 Workload value comparison of the initial and re-evaluation results 
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Figure 24 Health value comparison of the initial and re-evaluation results 

5.2.2 Project 2 – Chemical Equipment Replacement Project 

Integrated Project Monitoring Method using Framework-B was also applied to five ongoing 

replacement projects in a Nuclear power plant located in North America. As part of the initial meetings 

with the Projects Control team, organizational guidelines and procedures of nuclear projects were 

reviewed. According to the organizational guidelines, typical project lifecycle in this Nuclear Power 

plant consisted of seven project phases, which were: Identification (0-1), Initiation (1-2), Development 

(2-3), Definition (3-4), Execution (4-5), Closeout (5-6), and PIR (6-7). In Figure 25, the typical project 

timeline is illustrated. In order to generalize the lifecycle, numbers are given as the start-end date for 

each phase as it is presented in Figure 25. 

 

Figure 25 Typical Project Lifecycle of the Projects in the Nuclear Power Plant 
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Among five projects, the first one was a replacement project named Chemical Equipment Replacement 

(CER) Project. Briefly, the project scope was the procurement of a particulate filtration skid and the 

installation of interfacing piping on each unit in the plant, to re-route a portion of the condensate 

recirculation system flow through the filtration skid to remove corrosion product. CER was also 

following the same project life-cycle, and the anticipated project duration was 101 months including 

application in all reactors in the power plant.  

During the project selection and identification step, CER project was in the Execution phase. 

However, it was learned that the same project was applied to another reactor in the same nuclear power 

plant before. Thus, the Project Manager had know-how from the previous application and was able to 

fill the workload and health tool for the whole project lifecycle.  Project Manager of the owner’s team 

involved as decision-maker in this case study. Therefore, in this example, interface health and workload 

between stakeholders were analyzed form the owner’s point of view.  

5.2.2.1 Stakeholder Identification and Stakeholder Connections Identification 

One face to face and two teleconference meetings were held to identify project stakeholders and 

interfaces between those stakeholders with the PM of the CER project. During these meetings, first, 

background information about the CER project was collected, and then the PM provided the list of 

stakeholders for each project phase and explained stakeholder connections in each phase. In Table 27, 

the list of stakeholders, their groups (internal, external, regulatory offices) and phases when these 

stakeholders were active (Time set), are presented.  

Table 27 Stakeholder List of Chemical Equipment Replacement Project 

ID Name Group* Time set 

A Project Sponsor 1 [0,7] 

B Project and Modifications 1 [0,6] 

C Finance 1 [1,6] 

D Supply Chain 1 [2,6] 

E Operations 1 [2,6] 

F Maintenance 1 [2,6] 

G Performance Engineering 1 [2,6] 

H Projects Design Engineering 1 [2,6] 

I Procurement Engineering 1 [2,5] 

N Contractor 2 [2,6] 

O Subcontractor - Design 2 [2,6] 

P Sub vendor 2 [2,5] 

M TSSA-Pressure Boundary 3 [3,5] 

J Field Engineering 1 [3,5] 
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ID Name Group* Time set 

K Contract Management Office 1 [3,5] 

L Drawing Office 1 [5,6] 

Q Subcontractor 2 [4,5] 
* 1: Internal Stakeholder, 2: External Stakeholder, and 3: Regulatory Offices 

The time set value of each stakeholder in Table 23 shows when each stakeholder was active in this 

project. For example, the Time set value of stakeholder E is [2,6], which means that Stakeholder E was 

active between the beginning of the Development phase until the end of the Closeout phase of this 

project. Due to having a dynamic stakeholder list, stakeholder connections were also dynamic and 

changing throughout the project lifecycle in this case study.   

5.2.2.2 Evaluating Stakeholder Connections 

In order to evaluate stakeholders’ connections, the Project Manager (PM) was asked to fill the point 

system tool explained in Chapter 3, for all stakeholder connections in each project phase. CER project 

was applied in the same nuclear power plant with the same stakeholders recently. Therefore, even 

though the current CER project was in the Execution phase, the PM of the project was able to fill the 

point system tool for Closeout and PIR phases based on the first application of the CER project in the 

other reactor. In other words, the PM filled point system tool for the first 5 phases based on the current 

project, and responses for the Closeout and PIR phases were expected results based on the first 

application of the same project on the previous reactor.  In Appendix C, data collected in the stakeholder 

connection evaluation step of Chemical Equipment Replacement project is provided. 

Project stakeholders and stakeholder connections existed in multiple project phases of the CER 

project. Therefore, dynamic value sets were used for representing and evaluating point system tool 

results. First, Workload and Health value of each stakeholder connection were calculated for all the 

phases that a connection existed using Equation-4 and Equation-5. Then, dynamic value sets were 

created for each stakeholder connections. In Table 28, dynamic workload and health values of the 

stakeholder connections are presented. For example, stakeholder connection between stakeholder ID 1 

and 2 has dynamic workload value of “[0,1,6];[1,2,7];[2,3,5];[3,4,5];[4,5,7];[5,6,6]”. In this 

representation, the first two numbers inside each bracket indicate the project phase, and the third value 

is the workload value for this stakeholder connection in that phase. In this example, “[0,1,6]” means 

workload value for this connection in the Identification phase (0,1) was 6. 
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Table 28 Dynamic Workload and Health values in CER project 

Source Target Workload- Dynamic Health - Dynamic 

A B [0,1,6.0];[1,2,7.0];[2,3,5];[3,4,5];[4,5,7

];[5,6,7] 

[0,1,7.0];[1,2,4.0];[2,3,5];[3,4,5];[4,5,7

];[5,6,4]  

B C [1,2,7.0];[2,3,8];[3,4,8];[4,5,8];[5,6,8] [1,2,8.0];[2,3,5];[3,4,5];[4,5,4];[5,6,4]  

A G [2,3,6];[3,4,6];[4,5,6];[5,6,6] [2,3,4];[3,4,4];[4,5,4];[5,6,4]  

A E [2,3,6];[3,4,6];[4,5,6];[5,6,6] [2,3,4];[3,4,4];[4,5,4];[5,6,4]  

B D [2,3,8];[3,4,8];[4,5,9];[5,6,8] [2,3,6];[3,4,6];[4,5,5];[5,6,5]  

B E [2,3,5];[3,4,6];[4,5,7];[5,6,7] [2,3,5];[3,4,5];[4,5,8];[5,6,4]  

B F [2,3,5];[3,4,6];[4,5,7];[5,6,7] [2,3,5];[3,4,5];[4,5,8];[5,6,4]  

B G [2,3,5];[3,4,7];[4,5,7];[5,6,7] [2,3,5];[3,4,7];[4,5,8];[5,6,5]  

B H [2,3,10];[3,4,11];[4,5,8];[5,6,9] [2,3,8];[3,4,9];[4,5,6];[5,6,4]  

B I [2,3,5];[3,4,7];[4,5,6] [2,3,5];[3,4,6];[4,5,5]  

B N [2,3,11];[3,4,11];[4,5,11];[5,6,9] [2,3,8];[3,4,9];[4,5,7];[5,6,5]  

B O [2,3,10];[3,4,10];[4,5,8];[5,6,9] [2,3,8];[3,4,9];[4,5,7];[5,6,5]  

B P [2,3,7];[3,4,8];[4,5,6] [2,3,8];[3,4,9];[4,5,4]  

D I [2,3,6];[3,4,6];[4,5,6] [2,3,4];[3,4,6];[4,5,6]  

D N [2,3,6];[3,4,5];[4,5,6];[5,6,7] [2,3,7];[3,4,7];[4,5,7];[5,6,4]  

E F [2,3,6];[3,4,7];[4,5,10];[5,6,6] [2,3,4];[3,4,4];[4,5,6];[5,6,4]  

E G [2,3,6];[3,4,7];[4,5,7];[5,6,6] [2,3,4];[3,4,4];[4,5,5];[5,6,4]  

F G [2,3,6];[3,4,7];[4,5,7];[5,6,6] [2,3,4];[3,4,4];[4,5,5];[5,6,4]  

G H [2,3,7];[3,4,7];[4,5,7];[5,6,7] [2,3,8];[3,4,8];[4,5,5];[5,6,5]  

H I [2,3,7];[3,4,9];[4,5,6] [2,3,7];[3,4,7];[4,5,4]  

H O [2,3,11];[3,4,11];[4,5,8];[5,6,9] [2,3,8];[3,4,9];[4,5,5];[5,6,6]  

N O [2,3,10];[3,4,10];[4,5,11];[5,6,10] [2,3,6];[3,4,6];[4,5,7];[5,6,6]  

N P [2,3,7];[3,4,7];[4,5,8] [2,3,6];[3,4,6];[4,5,5]  

O P [2,3,7];[3,4,9];[4,5,8] [2,3,6];[3,4,7];[4,5,4]  

B M [3,4,7];[4,5,7] [3,4,7];[4,5,7]  

B J [3,4,6];[4,5,10] [3,4,4];[4,5,6]  

B K [3,4,6];[4,5,10] [3,4,4];[4,5,4]  

N M [3,4,8];[4,5,9] [3,4,6];[4,5,6]  

N J [3,4,6];[4,5,10] [3,4,6];[4,5,7]  

N K [3,4,6];[4,5,10] [3,4,6];[4,5,7]  

N Q [4,5,12] [4,5,4]  

B L [5,6,8] [5,6,5]  

H L [5,6,9] [5,6,6]  

 

5.2.2.3 Network Analysis 

In order to determine the stakeholder that has the highest workload in the Chemical Equipment 

Replacement project, the Degree Centrality (DC) value of each stakeholder was calculated for each 

project phase. In Table 29, DC values of project stakeholders for each project phase when they were 

active in the Chemical Equipment Replacement project are presented.  
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Table 29 DC values of project stakeholders in CER project 

ID DC values 

A [0,1,2.45];[1,2,2.65];[2,3,7.14];[3,4,7.14];[4,5,7.55];[5,6,7.55]  

B [0,1,2.45];[1,2,5.29];[2,3,29.48];[3,4,38.52];[4,5,39.42];[5,6,28.11]  

C [1,2,2.65];[2,3,2.83];[3,4,2.83];[4,5,2.83];[5,6,2.83]  

D [2,3,7.75];[3,4,7.55];[4,5,7.94];[5,6,5.48]  

E [2,3,9.59];[3,4,10.2];[4,5,10.95];[5,6,10.0]  

F [2,3,7.14];[3,4,7.75];[4,5,8.49];[5,6,7.55]  

G [2,3,12.25];[3,4,13.04];[4,5,13.04];[5,6,12.65]  

H [2,3,11.83];[3,4,12.33];[4,5,10.77];[5,6,11.66]  

I [2,3,7.35];[3,4,8.12];[4,5,7.35]  

N [2,3,11.66];[3,4,19.26];[4,5,24.82];[5,6,8.83]  

O [2,3,12.33];[3,4,12.65];[4,5,11.83];[5,6,9.17]  

P [2,3,7.94];[3,4,8.49];[4,5,8.12]  

M [3,4,5.48];[4,5,5.66]  

J [3,4,4.9];[4,5,6.32]  

K [3,4,4.9];[4,5,6.32]  

Q [4,5,3.46]  

L [5,6,5.83]  

5.2.2.4 Visualization 

Snapshots from stakeholder interface network established for Chemical Equipment Replacement 

project for each project phase where workload and health analysis results (Table 28) and DC values 

(Table 29) were used are presented in Figure 26. 

As the CER project had a dynamic network and each stakeholder has different DC values in each 

project phase, the stakeholder who had the highest workload changes phase to phase. In order to specify 

stakeholder groups, color codes are given to stakeholders. In the networks below, green-colored nodes 

represent internal stakeholders, pink-colored nodes represent external stakeholders, and purple-colored 

node represents regulatory offices. Similar to the stakeholder interface network created for Rail Line 

Project, workload values between project stakeholders are presented with thickness and health values 

are presented with color codes on the edges. In other words, the stakeholder connections with higher 

workload value is represented with a thicker edge, and higher health value is represented with a darker 

color on the edges. Also, the degree centrality of each stakeholder is presented with node size in the 

networks below. Legends are included in Figure 26 for these representations. 
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Figure 26 Stakeholder interface networks of Chemical Equipment Replacement project 

5.2.2.5 Interpretation and Corrective Action 

According to the results presented in Table 28, the highest workload value was calculated between 

stakeholder N and Q in the Execution phase [3,4]. Besides having the highest workload, the health 
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value of the connection shows that it was one of the healthiest connections too. On the other hand, the 

poorest health condition through the project lifecycle was calculated between B-H, B-O, B-N, and B-P 

at the definition phase. It was also seen that these connections had poor health conditions during the 

development phase too. 

After analyzing collected data and establishing stakeholder interface networks for Chemical 

Equipment Replacement Project, results were shared with PM of the project. Analysis results were 

found to correspond with the actual project conditions and were validated by PM of the project during 

review meetings. 

5.2.3 Project 3 – Detector Assemblies Replacement Project 

The second project selected in the Nuclear Power Plant to apply Framework-B was another ongoing 

replacement project named Detector Assemblies Replacement project. These detectors were the 

secondary safety Shut Down System (SDS2) for the reactor units at the Nuclear Power Plant and were 

responsible for providing the main control room with an indication of the state of SDS2, specifically 

whether the tanks are full or not. This information is essential for operators to monitor real-time and 

guarantee control over the reactor units. There were eight detector assemblies and sixteen power 

supplies in each of the four reactor units. However, these detector components and power supplies have 

reached the end of life and were obsolete. There was an increasing burden on operators due to false 

alarms, and an increasing burden on maintenance due to lack of spare parts. 

Briefly, the project scope was replacing the detector assemblies and power supplies with new 

equipment in all four units that target the same functionality as the existing system and procure 

sufficient spares. Detector Assemblies Replacement project was also following the same project 

lifecycle presented in Figure 25, and the anticipated project duration was approximately 118 months 

including application in all reactors in the power plant. Project Manager of the owner’s team involved 

as decision-maker and provided data for this project, thus, interface health and workload between 

stakeholders were analyzed form the owner’s point of view.  

5.2.3.1 Stakeholder Identification and Stakeholder Connections Identification 

Multiple meetings were held to identify project stakeholders and interfaces between those stakeholders 

with the PM of Detector Assemblies Replacement project. During these meetings, first, background 

information about the Detector Assemblies Replacement project was collected, and then the PM 

provided the list of stakeholders for each project phase and identified interfacing stakeholders in each 
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phase by following the format presented in Table 1. In Table 30, the list of stakeholders, their groups 

(internal, external, regulatory offices) and phases when these stakeholders were active (Time set), are 

presented. The stakeholders’ connection list for the Detector Assemblies Replacement project is 

attached to Appendix D. 

Table 30 Stakeholder List of Detector Assemblies Replacement Project 

ID Label Name Group* Time-set 

1 SRE System Responsible Engineer 1 [1,7] 

2 PRO Projects 1 [1,7] 

3 DGG Design 1 [1,6] 

4 MNT Control Maintenance 1 [2,6] 

5 OPS Operations 1 [2,6] 

6 VEN Equipment Vendor 2 [3,5] 

7 SC Supply Chain 1 [2,5] 

8 HF Human Factors 1 [2,4] 

9 RS Reactor Safety 1 [2,4] 

10 SSC Seismic 1 [2,4] 

11 CS Conventional Safety 1 [3,5] 

12 RP Radiation Protection 1 [3,5] 

13 WC Work Control 1 [3,5] 

14 WA Work Assessing 1 [3,5] 

15 OUT Outage 1 [3,5] 
*1=internal Stakeholder, 2= External Stakeholder 

5.2.3.2 Evaluating Stakeholder Connections 

After obtaining the Stakeholder List and Stakeholders connection list, the stakeholder connection 

evaluation tool was prepared for the Detector Assemblies Replacement project. During the review 

meetings, how to fill the tool by using the point system presented in Table 3 and Table 4 was explained 

to PM of the project. During the review meetings, the Detector Assemblies Replacement project was at 

the beginning of the Execution phase. Therefore, the PM of the project provided workload and health 

data only for Initiation, Development, Definition, and Execution phases. At the end of this step, 

dynamic weight and dynamic health value of each stakeholder connection when they were active in the 

project were collected. In Table 31, stakeholder connections and their dynamic health and weight values 

are presented. 

Table 31 Dynamic Workload and Health values in Detector Assemblies Replacement project 

Source Target Weight Dynamic Health Dynamic 

1 2 [1,2,5];[2,3,6];[3,4,7];[4,5,8] [1,2,5];[2,3,7];[3,4,4];[4,5,4] 

1 3 [1,2,4];[2,3,9];[3,4,7] [1,2,5];[2,3,7];[3,4,6]  
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Source Target Weight Dynamic Health Dynamic 

2 3 [1,2,6];[2,3,10];[3,4,10];[4,5,9] [1,2,6];[2,3,7];[3,4,7];[4,5,4] 

2 4 [2,3,6];[3,4,6];[4,5,10] [2,3,5];[3,4,4];[4,5,6] 

2 5 [2,3,6];[3,4,6];[4,5,8] [2,3,5];[3,4,4];[4,5,6] 

2 7 [2,3,8];[3,4,6];[4,5,6] [2,3,8];[3,4,6];[4,5,6]  

3 4 [2,3,5];[3,4,5] [2,3,5];[3,4,6]  

3 5 [2,3,5];[3,4,5] [2,3,5];[3,4,4]  

3 7 [2,3,5];[3,4,7] [2,3,5];[3,4,5]  

3 8 [2,3,5];[3,4,5] [2,3,7];[3,4,6]  

3 9 [2,3,5];[3,4,5] [2,3,6];[3,4,4]  

3 10 [2,3,5];[3,4,5] [2,3,6];[3,4,5]  

2 6 [3,4,9];[4,5,9] [3,4,8];[4,5,4]  

2 8 [3,4,6] [3,4,5]  

2 11 [3,4,6];[4,5,6] [3,4,4];[4,5,4]  

2 12 [3,4,6];[4,5,6] [3,4,4];[4,5,4]  

2 13 [3,4,7];[4,5,8] [3,4,4];[4,5,4]  

2 14 [3,4,6];[4,5,6] [3,4,6];[4,5,4]  

2 15 [3,4,8];[4,5,9] [3,4,9];[4,5,7]  

3 6 [3,4,11];[4,5,10] [3,4,8];[4,5,4]  

6 7 [3,4,5];[4,5,6] [3,4,6];[4,5,5]  

13 15 [3,4,7];[4,5,9] [3,4,5];[4,5,4]  

4 5 [4,5,9] [4,5,4]  

4 13 [4,5,9] [4,5,4]  

4 15 [4,5,9] [4,5,4]  

5 13 [4,5,9] [4,5,4]  

5 15 [4,5,9] [4,5,4]  

12 13 [4,5,9] [4,5,4]  

12 15 [4,5,9] [4,5,4]  

5.2.3.3 Network Analysis 

After collecting dynamic health and workload values of each stakeholder connection, network analysis 

was conducted for the Detector Assemblies Replacement project. The details of the network analysis 

conducted is given in Section 3.2.4 earlier. At the end of this analysis, dynamic Degree Centrality (DC) 

values of each stakeholder for all the phases they were active in the project were calculated. Since 

workload and health data for the last two phases were not available, DC values of the stakeholders in 

Closeout and PIR phases were 0. Calculated DC values are presented in Table 32 below.  

Table 32 DC values of project stakeholders in Detector Assemblies Replacement Project 

ID DC values 

SRE [1,2,4.24];[2,3,5.48];[3,4,5.29];[4,5,2.83];[5,6,0.0];[6,7,0.0]  

PRO [1,2,4.69];[2,3,13.42];[3,4,31.56];[4,5,30.58];[5,6,0.0];[6,7,0.0]  

DGG [1,2,4.47];[2,3,19.8];[3,4,23.24];[4,5,6.16];[5,6,0.0]  

MNT [2,3,4.69];[3,4,4.69];[4,5,12.17];[5,6,0.0]  
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ID DC values 

OPS [2,3,4.69];[3,4,4.69];[4,5,11.83];[5,6,0.0]  

SC [2,3,5.1];[3,4,7.35];[4,5,4.9]  

HF [2,3,2.24];[3,4,4.69]  

RS [2,3,2.24];[3,4,2.24]  

SSC [2,3,2.24];[3,4,2.24]  

VEN [3,4,8.66];[4,5,8.66]  

CS [3,4,2.45];[4,5,2.45]  

RP [3,4,2.45];[4,5,8.49]  

WC [3,4,5.29];[4,5,14.83]  

WA [3,4,2.45];[4,5,2.45]  

OUT [3,4,5.48];[4,5,15.0]  

 

As it is explained in Section 3.2.4, DC values are showing the importance of each stakeholder. Since 

workload values are used as the weight values of each edge in this analysis, DC value indicates the 

workload of each stakeholder in this research. 

5.2.3.4 Visualization 

A dynamic Stakeholder Interface Network was established for the Detector Assemblies Replacement 

project by using the nodes and edges data presented in Table 30, Table 31, and Table 32. Snapshots 

from the dynamic network for each project phase in the Detector Assemblies Replacement project is 

presented in Figure 27. Similar to the Rail Line project and Chemical Equipment Replacement project, 

workload value of each stakeholder connection is represented with line thickness on the edges, health 

values are represented with color codes on the edges, and the DC value of each stakeholder is 

represented with the node sizes. Detailed legend is also included in Figure 27 for these representations. 

In order to specify stakeholder groups, color codes are given to stakeholders. In the networks presented 

in Figure 27, green-colored nodes represent internal stakeholders, pink-colored nodes represent external 

stakeholders. Although workload and health data of the stakeholder connections in Closeout and PIR 

phases were not available, stakeholder connections were known. Thus, networks in those phases are 

also created and presented in Figure 27, to show the evaluation of the stakeholder interface network 

over time. 
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Figure 27 Stakeholder Interface Networks of Detector Assemblies Replacement Project 

5.2.3.5 Interpretation and Corrective Action 

According to the results presented in Table 31, the highest workload value was calculated between 

stakeholder Design (DGG) and Vendor (VEN) in Definition phase [3,4], and poorest health condition 

through project lifecycle was calculated between Projects (PRO) and Outage (OUT) during Definition 

phase [3,4].  

After analyzing collected data and establishing stakeholder interface networks for Detector Assemblies 

Replacement project, results were shared and reviewed with the PM of the project. During these last 
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reviewing meetings, open-ended questions were asked the PM to reveal the root causes of the high 

workload and poor health conditions between project stakeholders, and it comes to light that the 

Detector Assemblies Replacement project started late at the beginning and all milestones were missed 

along the way. Besides, internal stakeholders were undertaking various other projects and had their own 

internal milestones that have a higher priority for the nuclear power plant. This was also the main reason 

why PRO and OUT had the poorest health condition during the Definition phase. Since all the 

milestones missed during the project before OUT was active, the project was late, and when the 

Definition phase started OUT already had internal milestones that had a higher priority that affects the 

overall plant. That crated poor health conditions between PRO and OUT. At the end of these review 

meetings, analysis results were found to correspond with the actual project conditions and were 

validated by the PM of the project. 

5.2.4 Project 4 – Control Positioners Replacement Project 

The third project selected in the Nuclear Power Plant to apply Integrated Project Monitoring Method 

using Framework-B was another ongoing replacement project named Control Positioners Replacement 

project. The existing analog positioners in this nuclear power plant were degraded and it was a heavy 

burden on maintenance crews to get these calibrated and operating within performance tolerance. Each 

of the units in the Nuclear Power Plant had 14 valves and associated positioners, which control the flow 

of water through the reactor. Briefly, the project scope was replacing these analog positioners with 

digital smart positioners. 

The anticipated project duration of the Control Positioners Replacement project was approximately 142 

months including application in all reactors in the power plant. This project was also following the 

same project lifecycle presented in Figure 25, as other ongoing projects in the same Nuclear Power 

Plant and had seven project phases. The Project Manager (PM) of the owner’s team involved as the 

decision-maker and provided data for this project, thus, interface health and workload between 

stakeholders were analyzed form the owner’s point of view.  

5.2.4.1 Stakeholder Identification and Stakeholder Connections Identification 

After project selection, the PM of the project was asked to provide the stakeholder list and stakeholder’ 

connections list for all project phases following the data collection format presented in Table 1. The 

master stakeholder list for the Control Positioners Replacement project is presented in Table 33 and the 

stakeholder connection list for each project phase is attached in Appendix E. At the end of this step, 
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stakeholders and stakeholder connections for each project phase of the Control Positioners Replacement 

project were collected. 

Table 33 Stakeholder List of Control Positioners Replacement  project 

Id Label Name Group Time-set 

1 ENG Engineering 1 [0,7] 

2 PM Project Manager 1 [1,7] 

3 CM Control Maintenance 1 [0,1];[2,5] 

4 OPS Operations (Project SPOC) 1 [0,1];[2,5];[6,7] 

5 OPSO Operations (Authorized Operator) 1 [4,5] 

6 DES Design 1 [2,7] 

7 CG Computers Group 1 [3,4] 

8 CS Conventional Safety 1 [2,4] 

9 RP Radiation Protection 1 [3,5] 

10 WC Work Control 1 [4,5] 

11 EPM EPC PM 2 [3,6] 

12 ECPM EPC Construction PM 2 [3,6] 

13 EC EPC Coordinator 2 [3,6] 

14 EDDL EPC Design Discipline Lead 2 [3,4] 

15 EDE EPC Design Engineering 2 [3,4] 

16 ES EPC Software 2 [3,4] 

17 EDTL EPC Design Team Lead 2 [3,6] 

18 SC Supply Chain 1 [3,5] 
*1=internal Stakeholder, 2= External Stakeholder 

5.2.4.2 Evaluating Stakeholder Connections 

Based on the stakeholders’ connections list provided by PM of the project, the workload and health 

evaluation tool for the Control Positioners Replacement project was created and shared with PM during 

the review meetings. After explaining the tool and point system for workload and health evaluation of 

stakeholder connections, PM provided data for each connection between stakeholders in the project. 

Data collected for this step is attached to Appendix E. 

During the data collection for stakeholder connections evaluation, Control Positioners Replacement 

project was at the beginning of the Execution phase. Therefore, the PM of the project provided 

workload and health data for the first 4 phases. For the last three phases (Execution, Closeout, and PIR), 

the PM only provided stakeholders’ connections list and expected workload values between project 

stakeholders. Dynamic workload and health values of stakeholder connections in the Control 

Positioners Replacement project are attached in Appendix E. 



 

 95 

5.2.4.3 Network Analysis 

After collecting dynamic health and workload values of each stakeholder connection, network analysis 

was conducted for Control Positioners Replacement Project. The details of the network analysis 

conducted is given in Chapter 3 earlier. At the end of this analysis, dynamic Degree Centrality (DC) 

values of each stakeholder for all the phases they were active in the project were calculated. Calculated 

DC values are presented in Table 34 below.  

Table 34 DC values of project stakeholders in Control Positioners Replacement Project  

ID DC values 

ENG [0,1,4.0];[1,2,2.0];[2,3,4.24];[3,4,4.9];[4,5,4.9];[5,6,8.66];[6,7,6.71]  

CM [0,1,2.0];[2,3,2.0];[3,4,11.62];[4,5,16.94];[6,7,2.24]  

OPS [0,1,2.0];[2,3,2.0];[3,4,12.04];[4,5,16.61];[6,7,2.24]  

PM [1,2,2.0];[2,3,4.24];[3,4,36.28];[4,5,32.83];[5,6,16.79];[6,7,4.47]  

DES [2,3,10.49];[3,4,35.33];[4,5,18.14];[5,6,11.66];[6,7,2.24]  

CS [2,3,2.0];[3,4,10.0]  

CG [3,4,4.47]  

RP [3,4,10.0];[4,5,7.14]  

EPM [3,4,23.43];[4,5,22.27];[5,6,12.0]  

ECPM [3,4,23.81];[4,5,30.0];[5,6,17.32]  

EC [3,4,23.81];[4,5,30.0];[5,6,11.66]  

EDDL [3,4,12.65]  

EDE [3,4,16.61]  

ES [3,4,4.24]  

EDTL [3,4,19.8];[4,5,14.32];[5,6,14.14]  

SC [3,4,4.47];[4,5,4.0]  

OPSO [4,5,13.96]  

WC [4,5,12.81]  

 

5.2.4.4 Visualization 

A dynamic Stakeholder Interface Network was established for the Control Positioners Replacement 

project by using the nodes and edges data presented in Table 33, Table 34 and Appendix E. Snapshots 

from the dynamic network for each project phase in the Control Positioners Replacement project is 

presented in Figure 28. Similar to the previous projects presented, the workload value of each 

stakeholder connection was represented with line thickness on the edges, health values were represented 

with color codes on the edges, and the workload of each stakeholder was represented with the node 

sizes. Detailed legends are also provided on Figure 28. Although health data of the stakeholder 

connections in Execution, Closeout and PIR phases were not available, stakeholder connections and 

expected workload values of those connections were known. Thus, networks in those phases are also 
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created and presented in Figure 28, to show the evaluation of the stakeholder interface network over 

time. 

 

Figure 28 Stakeholder Interface Networks of Control Positioners Replacement project 

5.2.4.5 Interpretation and Corrective Action 

In the Control Positioners Replacement project, the highest workload values were calculated between 

stakeholders PM and Design in the Definition phase [3,4], and between stakeholders ECPM and EC in 

Definition [3,4] and Execution [4,5] phases. On the other hand, the poorest health condition through 
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the project lifecycle was calculated between Design (DES) and Computers group (CG) during the 

Definition phase [2,3]. 

After analyzing collected data and establishing stakeholder interface networks for the Control 

Positioners Replacement project, results were shared and reviewed with the PM of the project. PM 

explained that rework between the Design and Computers group was high during the Definition phase 

because there were inconsistencies in the reports. That created poor health conditions among these 

project stakeholders. By the end of these review meetings, analysis results were found to correspond 

with the actual project conditions and were validated by the PM of the project. 

5.2.5 Project 5 – Air Conditioning Unit Replacement Project 1 (ACU-1) 

The fourth project selected in the Nuclear Power Plant to apply the proposed Integrated Project 

Monitoring Method using Framework-B was another ongoing replacement project named Air 

Conditioning Unit Replacement (ACU-1) project. Briefly, the project scope was taking on essentially 

a like-for-like replacement of 90 Air Cooling Units (ACUs) across the station. These were simple water-

cooled ACUs that provide cooling and steam protection to nearby critical equipment, and they were 

degraded with either leaking coils or spraying water. Thus a replacement project was initiated. 

ACU-1 project was also following the same project lifecycle illustrated in Figure 25, as other ongoing 

projects in the same Nuclear Power Plant and had seven project phases. The Project Manager (PM) of 

the owner’s team involved as decision-maker and provided data for this project, thus, interface health 

and workload between stakeholders were analyzed form the owner’s point of view.  

5.2.5.1 Stakeholder Identification and Stakeholder Connections Identification 

After project selection, the PM of the project was asked to provide the stakeholder list and stakeholder’ 

connections list for all project phases by filling the data collection table presented in Table 1. The 

obtained master stakeholder list for the ACU -1 project is presented in Table 35. At the end of this step, 

the stakeholder list and stakeholders’ connections list for each project phase of the ACU-1 project were 

collected. ACU-1 project’ stakeholders’ connection list is attached to Appendix F. 

Table 35 Stakeholder List of ACU-1 Project 

Id Label Name Group Time-set 

1 ENG Engineering 1 [0,7] 

2 PM Project Manager 1 [1,7] 

3 CM Control Maintenance 1 [0,1];[2,5] 

4 OPS Operations (Project SPOC) 1 [0,1];[2,5];[6,7] 
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Id Label Name Group Time-set 

5 OPSO Operations (Authorized Operator) 1 [4,5] 

6 DES Design 1 [2,7] 

8 CS Conventional Safety 1 [2,4] 

9 RP Radiation Protection 1 [3,5] 

10 WC Work Control 1 [4,5] 

12 ECPM EPC Construction PM 2 [3,6] 

13 ECC EPC Construction Coordinator 2 [3,6] 

17 EDTL EPC Design Team Lead 2 [3,6] 

18 SC Supply Chain 1 [3,4] 
*1=internal Stakeholder, 2= External Stakeholder 

5.2.5.2 Evaluating Stakeholder Connections 

Based on the stakeholders’ connections list provided by the PM of the project, the workload and 

health evaluation tool for the ACU-1 project was created and shared with the PM during the review 

meetings. After explaining the tool and point system for workload and health evaluation of stakeholder 

connections, the PM provided data for each stakeholder connection in the project.  

During the data collection for stakeholder connections evaluation, ACU-1 project was in the 

Execution phase. Therefore, the PM of the project provided workload and health evaluation for the first 

5 phases. For the last two phases (Closeout, and PIR), the PM only provided expected workload values 

between project stakeholders. Collected data is presented in Appendix F.  

5.2.5.3 Network Analysis 

After collecting dynamic health and workload values of each stakeholder connection, network analysis 

was conducted for ACU-1 project. The details of the network analysis conducted is given in Chapter 3 

earlier. At the end of this analysis, dynamic Degree Centrality (DC) values of each stakeholder for all 

the phases they were active in the project were calculated. Calculated DC values are presented in Table 

36 below.  

Table 36 DC values of project stakeholders in ACU-1 project 

ID DC values 

ENG [0,1,4.0];[1,2,2.0];[2,3,4.24];[3,4,6.0];[4,5,4.9];[5,6,8.66];[6,7,6.71]  

CM [0,1,2.0];[2,3,2.0];[3,4,10.49];[4,5,15.3];[6,7,2.24]  

OPS [0,1,2.0];[2,3,2.0];[3,4,13.04];[4,5,14.49];[6,7,2.24]  

PM [1,2,2.0];[2,3,4.24];[3,4,24.7];[4,5,27.33];[5,6,14.32];[6,7,4.47]  

DES [2,3,10.49];[3,4,25.28];[4,5,18.52];[5,6,11.66];[6,7,2.24]  

CS [2,3,2.0];[3,4,8.0]  

RP [3,4,8.0];[4,5,7.14]  
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ID DC values 

ECPM [3,4,20.59];[4,5,26.66];[5,6,14.14]  

ECC [3,4,20.4];[4,5,26.66];[5,6,8.49]  

EDTL [3,4,15.1];[4,5,11.66];[5,6,10.95]  

SC [3,4,2.24]  

OPSO [4,5,13.96]  

WC [4,5,9.64]  

5.2.5.4 Visualization 

A dynamic Stakeholder Interface Network was established for ACU-1 project. Snapshots from the 

dynamic network for each project phase in is presented in Figure 29 with detailed legends. Although 

health data of the stakeholder connections in Closeout and PIR phases were not available, stakeholder 

connections and expected workload values of those connections were known. Thus, networks in those 

phases are also created and presented in Figure 29, to show the evaluation of the stakeholder interface 

network over time. 
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Figure 29 Stakeholder Interface Networks of ACU-1 project 
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5.2.5.5 Interpretation and Corrective Action 

According to the results presented in Appendix F and on Figure 29, the highest workload values were 

calculated between external stakeholders EPC Construction PM (ECPM) and EPC Construction 

Coordinator (ECC) in Execution phase [4,5], followed by connections between the Project Manager 

(PM) and those external stakeholders in the same project phase. On the other hand, the poorest health 

condition through the project lifecycle was calculated between Operations (OPSO) and Control 

Maintenance (CM) during the Execution phase [4,5]. After analyzing collected data and establishing 

stakeholder interface networks for the ACU-1 project, results were shared and reviewed with the PM 

of the project. The PM explained that internal priorities were affecting health conditions between 

project stakeholders. For example, the reason behind the relatively poor health condition between CM 

and OPSO was the misalignment of the stakeholder priorities. These stakeholders had other ongoing 

projects that had higher priorities that affected the health of the connection. By the end of these review 

meetings, analysis results found to correspond with the actual project conditions and were validated by 

the PM of the project. 

5.2.6 Project 6 –Air Conditioning Unit Replacement Project 2 (ACU-2) 

The fifth project selected in the Nuclear Power Plant to apply the proposed Integrated Project 

Monitoring Method using Framework-B was another ongoing Air Conditioning Unit (ACU) 

replacement project. The Scope of Work for this project was to replace the two ACUs which reached 

the end of life and were in a state of disrepair.  

ACU-2 project was also following the same project lifecycle which is presented in Figure 25, as 

other ongoing projects in the same Nuclear Power Plant, and had seven project phases. The Project 

Manager (PM) of the owner’s team involved as decision-maker and provided data for this project, thus, 

interface health and workload between stakeholders were analyzed form the owner’s point of view.  

5.2.6.1 Stakeholder Identification and Stakeholder Connections Identification  

After project selection, the PM of the project was asked to provide the stakeholder list and stakeholder’ 

connections list for all project phases. The master stakeholder list for the ACU-2 project is presented 

in Table 37. At the end of this step, stakeholders and stakeholder connections for each project phase of 

the ACU-2 project were collected. The data collected for ACU-2 project is presented in Appendix G. 
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Table 37 Stakeholder List of ACU-2 project 

Id Label Name Group Time-set 

1 SRE SRE 1 [0,6] 

3 DRE Director Engineering 1 [0,3] 

5 HFE Human Factors Engineering 1 [3,5] 

7 OPS Operations  1 [0,1];[2,6] 

8 MTN Maintenance 1 [0,1];[2,6] 

11 RE Radiation Protection 1 [2,4] 

12 CS Conventional Safety 1 [2,4] 

13 CE Chemistry and Environment 1 [2,4] 

14 FE Field Engineering 1 [2,5] 

15 ERO Emergency Response Organization 1 [3,5] 

17 TRN Training 1 [5,6] 

18 PSC Plant Status Control 1 [4,6] 

19 PRC Procedures 1 [5,6] 

23 PRO Projects 1 [1,6] 

24 DSG Design 1 [2,6] 

28 CMO Contract Management Office 1 [2,5] 

30 WC Work Control 1 [3,5] 

31 WA Work Assessing 1 [3,5] 

32 FNC Finance 1 [1,6] 

33 SC Supply Chain 1 [2,6] 

35 QLT Quality 1 [3,4] 

36 BM Contractor 2 [2,6] 

46 RCPL Subcontractor 3 [2,6] 
*1=internal Stakeholder, 2= External Stakeholder, 3=Subcontractor 

5.2.6.2 Evaluating Stakeholder Connections 

Based on the stakeholders’ connections list provided by the PM of the project, the workload and health 

evaluation tool for the ACU-2 project was created and shared with the PM during the review meetings. 

After explaining the tool and point system for workload and health evaluation of stakeholder 

connections, the PM provided data for each stakeholder connections in the project.  

During the data collection for stakeholder connections evaluation, ACU-2 Project was at the 

beginning of the Execution phase. Although ACU-2 project hasn’t started the Execution phase, the PM 

of the project provided both health and workload data for Execution and Closeout phases too based on 

experience. Thus, data for the first 4 phases are real project data for the ACU-2 project, and data for 

the last 2 phases are based on the PM's expectations based on the experience.  

As it is presented in Table 37, a total of 23 stakeholders were involved in the ACU-2 project 

throughout its project lifecycle. During stakeholders’ connection evaluation step, it was found that 
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ACU-2 project was a well-connected project which had in total of 113 stakeholder connection 

throughout its project lifecycle. The workload and health data of these connections are attached to 

Appendix G. 

5.2.6.3 Network Analysis 

After collecting dynamic health and workload values of each stakeholder connection, network analysis 

was conducted for the ACU-2 Project. By the end of this analysis, dynamic Degree Centrality (DC) 

values of each stakeholder for all the phases they were active in the project were calculated. Calculated 

DC values are presented in Table 38 below.  

Table 38 DC values in ACU-2 project 

Label DC 

SRE [0,1,8.66];[1,2,5.1];[2,3,23.66];[3,4,23.62];[4,5,20.78];[5,6,9.38]  

DRE [0,1,7.55];[1,2,6.0];[2,3,28.0]  

HFE [3,4,6.0];[4,5,14.0]  

OPS [0,1,7.35];[2,3,15.43];[3,4,18.52];[4,5,31.11];[5,6,14.73]  

MTN [0,1,6.93];[2,3,11.83];[3,4,20.59];[4,5,30.98];[5,6,16.25]  

RE [2,3,10.0];[3,4,10.0]  

CS [2,3,10.0];[3,4,12.0];[5,6,4.0]  

CE [2,3,10.0];[3,4,8.0]  

FE [2,3,6.0];[3,4,4.0];[4,5,22.63]  

ERO [3,4,2.0];[4,5,15.49]  

TRN [5,6,10.0]  

PSC [4,5,5.66];[5,6,6.0]  

PRC [5,6,8.0]  

PRO [1,2,8.66];[2,3,30.4];[3,4,40.6];[4,5,42.43];[5,6,25.88]  

DSG [2,3,17.35];[3,4,19.08];[4,5,21.91];[5,6,7.55]  

CMO [2,3,5.48];[3,4,5.66];[4,5,18.33]  

WC [3,4,6.0];[4,5,16.25]  

WA [3,4,6.0];[4,5,14.7]  

FNC [1,2,5.66];[2,3,6.71];[3,4,5.29];[4,5,14.14];[5,6,2.0]  

SC [2,3,7.55];[3,4,6.63];[4,5,12.65];[5,6,3.46]  

QLT [3,4,6.0]  

BM [2,3,2.0];[3,4,25.04];[4,5,46.96];[5,6,11.31]  

RCPL [2,3,2.0];[3,4,8.0];[4,5,41.27];[5,6,5.66]  

5.2.6.4 Visualization 

A dynamic Stakeholder Interface Network was established for the ACU-2 project. Snapshots from the 

dynamic network for each project phase in the ACU-2 project are presented in Figure 30 with detailed 

legends.  
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Figure 30 Stakeholder Interface Networks of ACU-2 project 

5.2.6.5 Interpretation and Corrective Action 

According to the workload and interface health analysis results presented in Appendix G and on Figure 

30, the highest workload values in the first four phases of ACU-2 project were calculated between 

stakeholders Operations (OPS) and Maintenance (MTN), Projects (PRO) and Systems Responsible 

Engineer (SRE), PRO and Design (DSG), SRE and DSG, and PRO and Contract Management Office 
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(CMO) in Definition phase [3,4]. Meanwhile, the poorest health condition the first four phases of the 

ACU-2 project was calculated between stakeholders PRO and Supply Chain (SC), PRO and Work 

Assessment (WA), and PRO and Work Control (WC) at the Definition phase [3,4]. 

After analyzing collected data and establishing stakeholder interface networks for the ACU-2 project, 

results were shared with PM of the project at the review meetings. During these meetings, PM explained 

that the turnover rate was high in the internal and external stakeholders. Due to the time new employees 

required for training and learning, high workload and poor health condition between project stakeholder 

occurred. For example, the main reason for the poor health condition between Projects (PRO) and 

Supply Chain (SC) groups was related to both high turnover rate in Supply Chain and outdated software 

usage. Over time, procedures followed in the ACU-2 project changed, thus the software used become 

outdated. That also created extra work between project stakeholders.  

Internal stakeholders in the project were also responsible for many other ongoing projects in the same 

nuclear power plant. For example, Operations (OPS) and Maintenance (MNT) were responsible for 

other projects primarily which created a high workload for stakeholders that needed to collaborate with 

them. Moreover, it is learned that documentation of initial ACU project implemented in the 1970s were 

printed on paper, and external stakeholders were having hard time to reach those documentations. That 

was also another reason for the high workload between internal and external stakeholders. By the end 

of these review meetings, analysis results were found to correspond with the actual project conditions 

and were validated by the PM of the project. 

5.3 Partial Functional Validation of the BIM and IMS Integration  

The proposed methodology for Building Information Modeling and Interface Management System 

(IMS) can be further explained and partially validated through an example Light Rail Transit (LRT) 

project. LRT projects are a subdivision of Mass Rapid Transit systems. Today, many LRT projects all 

around the world face problems that can be solved by establishing proper IM and BIM systems. Some 

of the common problems LRT projects face are; designing the platform lower than it should be, or 

designing train door heights that are different than the platform design, or building platforms shorter 

than the train length, or constructing stations narrower than trains can fit. Solving these types of 

problems at the  late phases of the project result in substantial extra costs and schedule problems (Board, 

1995; Flanagan, 2016). 

Generally, BIM or equivalent 3D tools are used for LRT design to manage project complexity and 

perhaps more importantly to communicate design details and interfaces. In addition to BIM, IMS should 
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also be used in LRT projects to manage communications and deliverables between project stakeholders 

in design and construction phases. In order to demonstrate the functionality and efficacy of the IMS 

and BIM integration, a model LRT system was developed for this thesis. A good model would abstract 

key network morphology and elements of actual LRT projects allow for scenario and sensitivity tests, 

would be useful for illustrating concepts being studied and developed, would be realistic enough to 

convince practitioners of its representativeness, and be simple enough that it can be managed and 

manipulated by a single researcher. The development of such a model is described in the following 

sections.  

5.3.1 A Model Interface Management System of a Light Rail Transit (LRT) Project at its Early 

Phases 

Generally, Light Rail Transit (LRT) projects are built by consortiums which contain several project 

stakeholders who have different specializations. In such organizations, many interface points between 

project stakeholders would be created. For instance, station platforms would be subject to many 

interface points in an LRT project. Dimensions of the platforms are important for designing other 

systems in the project, therefore project participants need to agree on the dimensions of station 

platforms, and these agreements should be controlled properly. For example, the height of the platform 

would be an interface point between project stakeholders who undertake Rolling Stock and Civil Works 

since it would affect the design of the train and door locations and vice versa. Similarly, the wideness 

of the stations would be another interface point between project stakeholders who undertake the design 

of Civil Works, Rolling Stock, and Track Works.  

Yeh et al. (2017) defined a breakdown structure of a typical Mass Rapid Transit (MRT) project to 

manage interfaces in urban MRT projects. In this thesis, the breakdown structure that is defined by Yeh 

et al. (2017) was taken into consideration while creating the 3D model and the IM system of a model 

project. The main branches of the aforementioned breakdown structure can be seen in Figure 31. 
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Figure 31 Breakdown structure of a typical MRT line project. Source: (Yeh et al., 2017)  

In the 3D model and IMS developed after reviewing many existing LRT projects, an LRT project 

built by a consortium was hypothesized. To set up its IMS, a fundamental database structure which is 

explained in Section 4.1 was followed. The first step of setting up an IMS for a project is defining its 

scope packages, scope IDs, contractors of these packages, and contractor IDs. Therefore, five 

engineering work packages including Civil Works, Rolling Stock, Track Works, Signaling, and 

Infrastructure were defined for this LRT model with the assumption that each project stakeholder would 

be responsible for only one work package. The project setup table with randomly created contractor 

names and related database codes is summarized in Table 39.  

Table 39 IM System Project Setup Table 

Scope Package Name Scope Package Code Contractor Name Contractor Code 

Owner OWN ICA ICA 

Rolling Stock RLS Alton ALT 

Signaling SGN MTN Rail Works MTN 

Infrastructure INF Sose Infrastructure SOS 

Civil Works CVW Enk ENK 

Track Works TRW YRRail YRR 

MRT Line Project

1. Civil & Architect

Depot

Station & Main 
Line

2. Track Work 3. MEP & ECS

Mech, Elec & 
Plumbing

Environmental 
Control Sys.

Environment 
Monitoring System

Air conditioning 
system

Smoke Evacuation 
& Damper system

4. Escalator & 
Elevator

5. Core E&M

Rolling Stock

Depot Equipment

Platform Screen 
Door System

Power Supply & 
Distribution 

System

Communication & 
Auto. Train Cont. 

Sys.
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The second step of setting up an IMS for a project is defining the Project Manager of the project, and 

Interface Managers and Technical Contacts of contractors. For this LRT model, an interface manager 

and two technical contacts for each contractor (stakeholder) were defined with randomly created names. 

In Table 40, the main contact points of each stakeholder can be seen. 

Table 40 Contact points of each stakeholder in model IM system 

Contracting Party Package Name Role 

ICA Owner Ekin Eray Project Manager 

ICA Owner Ekin Eray Interface Manager 

ALT Rolling Stock Jacob Brown Interface Manager 

ALT Rolling Stock Harry Taylor Technical Contact 

MTN Signaling Thomas Lewis Interface Manager 

MTN Signaling Daniel Morgan Technical Contact 

MTN Signaling Erin Richards Technical Contact 

SOS Infrastructure Grace Foster Interface Manager 

SOS Infrastructure Jack Mason Technical Contact 

SOS Infrastructure Adam West Technical Contact 

ENK Civil Work David Murray Interface Manager 

ENK Civil Work Luke Palmer Technical Contact 

ENK Civil Work Mark Lucas Technical Contact 

YRR Track Works Amy Moore Interface Manager 

YRR Track Works Lisa Lloyd Technical Contact 

YRR Track Works Paul Lavender Technical Contact 

The third step of setting up an IMS for a project is dividing the model project into Phases, Disciplines, 

and Areas. Since LRT projects are linear projects, each station and sections between stations were 

accepted as an area for this project. Also, the phase was assumed as the design phase for each interface 

point and agreement. Discipline and Area data of the project can be seen in Table 41.  

Table 41 Discipline and Areas of the Model 

Discipline Code Area Code 

Administration ADM Conestoga CNS 

Procurement PRO Northfield NRF 

Earthwork ERW R&T Park RTP 

Track line TRC UW UWS 

Structural STR Seagram SGR 

Operations/ Maintenance OPR Central Control Center CCC 

Mechanical MEC Between CNS-UWS Btw CNS-UWS 

Signaling SIG Between CNS-NRF Btw CNS-NRF 

Civil CVL Between NRF-RTP Btw NRF-RTP 

Electrical ELE Between RTP-SGR Btw RTP-SGR 

Telecommunication TEL   

Multidiscipline MLT   
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After defining all the mandatory tables presented in Figure 13 earlier, IPs and IAs between 

contractors can be created. Some IP examples between defined work packages are shown in Table 42.  

Table 42 Examples for Interface points on LRT projects 

Leader Partner Title of Interface Interface Description 

RLS CVW Platform Level Details of cant and platform levels 

RLS TRW Vehicle Data Vehicle data for dimensioning other systems 

SGN CVW Signals Requirements for implementation 

RLS TRW Insulated Rail Joints Location and Quantity of Insulated Rail Joints 

OWN RLS Design restrictions Height restrictions for dimensioning vehicles  

5.3.2 Conceptual 3D Design 

In order to create a conceptual 3D design for the model LRT project, project agreements, route and 

station designs of several projects such as Waterloo LRT, Eglington Crosstown LRT, Valley metro 

were studied. After reviewing project documents from different LRT projects, a conceptual 3D design 

for the model LRT project was created by using Autodesk Revit 2017. The families and objects 

available on Autodesk Revit 2017, and objects freely available on the internet were used while creating 

the LRT project model. As explained in the previous sections, in complex construction projects, 

generally a project team starts creating a 3D model of the project before establishing its IM system. 

According to the assumptions that have been made for this research, there would be a conceptual 3D 

BIM model of the LRT project in the early stages of the design phase, and each element on the model 

could be defined by IFC format. Thus, the model LRT project represents the early phases of the design 

stage of such a project. A partial route of the modeled LRT project is presented in Figure 32 and 

example stations are presented in Figure 33. 

 

Figure 32 Partial Route of the LRT model 
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Figure 33 Example stations on the model 

Three different types of LRT stations were modeled: (1) island type, (2) one-side type, and (3) double 

side type. A total of 14 stations were added to the 12-km long hypothetical LRT line. A typical number 

of design objects for an LRT platform would be over 1000 in real projects. In this research, a limited 

number of design objects which would be subject to interface points and interface agreements between 

project participants were added to the model. Objects that are placed in the station models were: 

concrete platform, concrete base, steel platform columns, beams, glass platform roof, concrete platform 

wall, electric poles, technical room, connection ramp between platform and road, stoppers, fences, 

traffic lights, signals for the train, platform lights, electrical boxes, and pipe lines. Objects on the island 

type platform can be seen on Figure 34. 

 

Figure 34 Island type LRT station (part – 1 and part -2) 
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Each object in this model contained its own properties such as material type, dimensions, constraints, 

identity data, LOD, etc. Properties of the elements can be accessed with the database of the software. 

For example, properties screen of a Platform object on an island type of station is shown in Figure 35. 

  

Figure 35 Properties of a Platform object 

5.3.3 Proposed Database Level Integration of BIM and IMS (BIM+IMS Connector) 

In Chapter 4, a framework for database-level integration of Interface Management System (IMS) and 

BIM is proposed. As it is explained in Chapter 4, integration between these two systems can be done 

by connecting Interface Points to related objects on the BIM model, and the IP forms in the IMS can 

be used for setting this integration. For example, in order to create the first interface point for the model 

project shown in Table 42, the IM manager of the Rolling Stock would follow the framework shown 

in Figure 14. As a first step, the IM manager would define the IP title, which would be “Platform level” 

in this example, then choose the phase, discipline, and area of the interface point from dropdown menus 

which shows the information presented in Table 41. Depending on the complexity of the project, 

discipline data can be divided into Systems too.  

When the Area option is selected from the dropdown menu, BIM elements in that specific area on 

the model would be listed. In this example, the user needs to select the platform element which has the 

unique ID as “2604785” from the BIM element section. After selecting related BIM element, the user 

would require to define work packages related to this IP. In this example, the leading work package 
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would be Rolling Stock, while the interfacing work package is Civil Works. When the IP form is 

submitted, it would get a unique ID such as “IP-CNS-CVL-0001” and all parties involved in this IP 

would be notified. When Rolling Stock and Civil Works create Interface Agreements (IAs) for this 

specific IP, it would be automatically connected to IP and BIM element too. In Table 43, Interface Point 

(IP), Interface Agreement (IA), and BIM element connection of the fırst two examples summarized in 

Table 42 is shown. 

Table 43 Example IP - IA - BIM Element relationship table 

Leader Partner Title of IP IP-ID IA-ID BIM-element ID 

RLS CVW Platform Level IP-CNS-CVL-0001 IA-ALT-ENK-CVL-00001 2604785 

TRW CVW Platform Level IP-CNS-CVL-0002 IA-YRR-ENK-CVL-00002 2604785 

 

Several IMS software available on the market today. In this research, Coreworx IMS Software was 

used for creating the IM System for the case study. Coreworx is a project management information 

software that is used for engineering and construction projects. It offers several web-based software 

products that create solutions for different management problems, such as; project information control, 

interface management, change management, contract management, deliverables management, and 

requests for information. All of these mentioned products are sharing the same database in the main 

system. Therefore, these products are connected via a shared database and queries for different products 

can be done.  

In Figure 36, the filled IP form on the Coreworx IMS for the case study can be seen. Grey rows on 

IP forms on Figure 36 would be automatically filled by the system when the form is saved. Details of 

the BIM element selection can be seen in Figure 37. The part shown in Figure 37 would be added on 

the current IP form prior to selecting leading and interfacing work packages, when BIM and IM systems 

are fully integrated over the database.  
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Figure 36 Creating IP form on Coreworx IMS  

 

Figure 37 BIM element selection on IP form  

Element ID: 

2604785 – Station Platform 

Model View from Autodesk Revit 
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5.4 Validation of Engineering Progress Assessment Tools (MRT-MMI-AT) 

In Chapter 4, new model maturity index definitions (MRT-MMI) and corresponding assessment and 

visualization tools (MRT-MMI-AT) for Track Line, Overhead Contact System, and Station disciplines 

are presented. In order to validate proposed MRT-MMI definitions and MRT-MMI-ATs, Microsoft 

Excel-based semi-automated tools for Track Line, Overhead Contact System, and Station discipline 

were created.  

The functionality of the proposed engineering progress tracking framework is demonstrated through 

the LRT model created and presented in Section 5.3.2. As it is introduced, a 12-km long hypothetical 

LRT line which includes 14 stations was modeled in Autodesk Revit 2017 as part of this thesis. In order 

to use the engineering progress tracking tools created, details of the LRT project were introduced to the 

tool by adding location names and visuals of these locations from the latest 3D model created. Among 

these locations, three of them were used for demonstration. 

5.4.1 Measuring engineering progress of Track Line discipline between two stations 

A screenshot from the engineering progress assessment tool (MRT-MMI-AT) for Track Line discipline 

is presented in Figure 38 below. The structure of the tool is same for the Overhead Contact system and 

Station disciplines. In order to use the Microsoft Excel based-tool created, first, the project location 

should be selected from the dropdown menu highlighted as Number 1 in Figure 38. Based on the 

selected location, pictures from the model will appear in the boxes highlighted as Number 2 in Figure 

38. Then applicability of each criterion should be answered by selecting the answer from the dropdown 

menu highlighted as Number 3. By the end of this step, MRT-MMI level of the Track Line discipline 

in the selected location will calculated and will appeared in the box highlighted as Number 4. In section 

4, minimum required answers for each MRT-MMI level for each discipline are provided. 
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Figure 38 Engineering Progress Assessment tool for Track Line Discipline 

In order to demonstrate the functionality of the tool created, the section between CNS and UWS 

stations in the 3D model created was used. First, the location was selected on the tool, and pictures of 

the selected location from the 3D model appeared as it is presented in Figure 39. 

Then, the applicability of each criterion on the table was answered for the selected location 

accordingly. The latest version of the 3D model created for this research included the generic site plan 

and maps of the area where existing conditions were graphically represented. Also as can be seen in 

Figure 39, track alignment, at grade crossings, roadways, and OCS were modeled preliminary in the 

selected location. A screenshot from the model while answering the applicability of each criterion for 

the selected location is presented in Figure 40.   
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Figure 39 Selection of location on the engineering progress tracking tool 
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Figure 40 Selecting applicability of each criterion 

Based on the answers entered in the model, the engineering progress of Track Line discipline for the 

selected location on the 3D model was found as MRT-MMI 100. In order to compare results with 

minimum required responses for MRT-MMI 100 and MRT-MMI 200, a spider web chart was created. 

As presented in Figure 41, progress on C7, C9, and C12 were already in MMI 200 level and C4 was 

already in MMI 400 level but the rest of the criteria were still in the MRT-MMI 100 level. By having 

such graphs, it is expected that designers can detect the missing elements on the model and focus on 

those to achieve more mature models. 
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Figure 41 Engineering Progress Assessment result for the example project 

5.4.2 Measuring engineering progress of the Station discipline of an LRT station 

In Section 4.2.3 and 4.3.3 new model maturity index definitions and corresponding assessment and 

visualization tool are proposed for the Station discipline. Based on the proposed definitions, a Microsoft 

Excel based tool was created. The structure of the tool was the same as the tool presented for the Track 

Line discipline in Section 5.4.1. The functionality of the tool is demonstrated through the 3D LRT 

model created for this thesis. Among 14 stations modeled, CNS station was selected for the 

demonstration.  

First, CNS Station was selected from drop-down menu created and pictures of the CNS Station from 

the 3D model were appeared on the tool as presented in Figure 42. 
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Figure 42 Location selection on the tool 

Second, applicability of each criterion on the table was answered for the selected location 

accordingly. The latest version of the CNS station on the 3D model created for this thesis included 

generic site plan, track route, plan of the station area, foundation elements, platform, station equipment, 

entrance and exit route, electric poles, technical room, fences, traffic lights, signals for the train, 

platform lights, electrical boxes, and pipelines. A screenshot from the tool showing the applicability of 

each criterion for CNS Station is presented in Figure 43. According to the suggested minimum 

applicability of each criterion for Station discipline presented in Table 14 , the MRT-MMI level of the 

CNS station was found as “100”. 
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Figure 43 MMI Result screen for Station discipline 
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Conclusions and Future Work 

This thesis presented methods and frameworks to measure and visualize integrated interface status 

between project stakeholders in terms of health, workload, and engineering progress. Effective 

communication and alignment on the project goals amongst all of the project stakeholders is critical for 

construction projects. Any misalignment or miscommunication between project stakeholders can lead 

to inefficient processes and project delays. These are signs of interface health problems between project 

stakeholders. Although traditional project management methods often provide solutions to estimate the 

resource profiles of the project stakeholders, they do not provide insight into the workload and health 

of the interfaces between project stakeholders which can both affect overall project outcomes. 

Integrated Project Monitoring Method, the first methodological contribution presented in this thesis, 

provides solutions to detect unhealthy and overloaded interfaces between project stakeholders. 

Detection of such interfaces provides early indications to  upper-level management where additional 

efforts might be best applied to overall project health and performance.  

Integrated Project Monitoring Method contains two Frameworks, which are the second and third 

methodological contributions of this thesis, for evaluating health of the stakeholders’ connections. The 

first framework, Framework-A, is based on the actual project data and promises an objective data driven 

health measurement. However, due to the complexity of the data acquisition from project information 

management systems, Framework-A is only ideal for construction organizations where the required 

data is available electronically. The second framework, Framework-B, is based on a novel point system 

developed as part of this thesis. This allows Framework-B to be adopted in any construction 

organization without any complicated data acquisition processes. Additionally, the concept of 

stakeholder interface network is developed as part of the Integrated Project Monitoring Method. 

Stakeholder interface networks are based on graph theory and social network analysis, and they are 

used for mapping complex and dynamic project environments by illustrating project stakeholders as 

nodes, and stakeholders’ connections (interfaces) as edges. The interface health and workload 

evaluation results obtained from Framework-A and Framework-B are presented on these networks via 

thickness and colors on the edges and size on the nodes. Example stakeholder interface networks of the 

Detector Assemblies Replacement project studied in Chapter 5 are presented in Figure 44 below. In 

this thesis, partial validation of the Framework-A is presented, while Framework-B is applied to 6 
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complex construction projects from railway and nuclear industries, and validated through experts’ 

judgements in these case studies.  

 

Figure 44 Stakeholder Interface Networks of Detector Assemblies Replacement project 

Engineering progress measurement during the early phases of construction projects is an essential 

management task. While most of the engineering progress in the early phases of complex capital 

projects is not graphical-design related, this progress must be captured in order to have a comprehensive 

understanding about the projects’ progress. Despite its importance, there is a lack of detailed studies in 

this area. Although engineering progress measurement methods exist, they are either specific for a class 

of projects or poorly developed for current design practices. This thesis proposed a method to integrate 

Building Information Modelling and Interface Management Systems (BIM+IMS Connector) to obtain 

accurate project data to have better control during the early phases of complex construction projects. 

BIM+IMS Connector is the fourth methodological contribution of this thesis. Additionally, new model 

maturity index definitions (MRT-MMI) and engineering progress assessment and visualization tools 

(MRT-MMI-AT) are created for Mass Rapid Transit (MRT) projects. Dashboards containing Spider 

web graphs are used for visualizing engineering progress of Track Line, Overhead Contact System, and 

Station disciplines in MRT projects. MRT-MMI definitions and their corresponding assessment tools 

(MRT-MMI-AT) are the domain contributions of this thesis. 

In order to validate the methodology proposed for integrating BIM and IMS (BIM+IMS Connector), 

engineering progress measurement definitions (MRT-MMI), and assessment tools (MRT-MMI-AT) 

for Mass Rapid Transit projects, a 3D model and interface management system environment are created 

for a Light Rail Transit (LRT) project. The functionality of the proposed studies are demonstrated by 

using the LRT model created.  

6.1 Conclusions  

The studies presented in this thesis have demonstrated that the four methodological contributions 

are feasible and insightful, and that the two MRT domain contributions are usable. Feasibility of the 
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methodological contributions is demonstrated both intellectually and empirically. Intellectually, these 

contributions represent novel combinations of existing ideas, such as the applications of Graph 

Visualization and Social Network Analysis to construction projects (Integrated Project Monitoring 

Method), and the novel way of connecting Building Information Management (BIM) to Interface 

Management Systems (IMS) (BIM+IMS Connector). Empirically, these new methods were applied on 

both real and simulated data from a variety of construction projects across two major industry segments: 

Mass Rapid Transit (MRT) and Nuclear Power Generation (NPG). 

The empirical studies with industry partners demonstrated that these methodological contributions 

are insightful. The industry experts affirmed that the outputs of the methods corresponded to their 

expert judgment about the projects, and that the novel visual method of combining and presenting the 

information gave them new insights about the projects. 

It is expected that future work will demonstrate that these insights are effective in improving project 

outcomes. This will require the application of these methods to a project over its duration as all of the 

studies here were based on data from completed projects, an important first validation step before 

attempting to apply these methods to active projects. 

The quantitative approach to measuring project health (Framework-A) requires a high degree of IT 

systems integration, which may not be available on all projects. The qualitative approach (Framework-

B), by contrast, involves a simple questionnaire that can be completed by people working on the project, 

allowing it to be deployed on any project. 

Usability of the two MRT domain contributions is, again, demonstrated both intellectually and 

empirically. Intellectually, the structure and content of the contributions are compared to existing CII 

materials for other domains, and is also justified against the MRT literature. Empirically, the validation 

studies show how these definitions (MRT-MMI) and the corresponding assessment tool (MRT-MMI-

AT) would be applied using simulated data. 

Finally, it is concluded that the studies presented in this thesis have demonstrated that the 

measurement and visualization of integrated interface status in terms of health, workload and 

engineering progress, are feasible by the methods and models proposed.  
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6.2 Contributions  

In this thesis, a new set of tools and methods for measuring health and workload between project 

stakeholders and measuring engineering progress in the early phases of complex construction projects 

are developed. The main contributions can be summarized in 6 major areas: 

1. Integrated Project Monitoring Method: 

First, definitions of Project health and Interface health for complex construction project environments 

are created. Then, methods to measure interface health between project stakeholders are investigated 

and a new method is developed. The Integrated Project Monitoring Method contains two new 

frameworks that are developed to measure interface health. Those frameworks are the second and third 

contribution of this thesis and are discussed in the following sections. In order to visualize the interface 

health and workload status between project stakeholders, the stakeholder interface network concept is 

developed as part of the Integrated Project Monitoring Method. In these networks, project stakeholders 

are illustrated as nodes and connections between project stakeholders are illustrated as edges. The 

results obtained from Framework-A are presented by color codes on the edges, while the results 

obtained from Framework-B are presented by thickness (workload) and color codes (health) on the 

edges, and size of the nodes (Degree Centrality). Ultimately, these networks can be used for reviewing 

project health conditions throughout the project lifecycle.  

2. Framework-A:  

Framework-A is the first method developed as part of the Integrated Project Monitoring Method. It is 

based on actual project data from various project information management systems currently being 

used in the industry. Since interface health between project stakeholders can be measured by using 

actual project data with this framework, it promises objective results. 

3. Framework-B: 

Framework-B is the second method developed as part of the Integrated Project Monitoring Method. It 

is based on a novel simplified qualitative point system developed as part of this thesis. In addition to 

interface health measurement, workload measurement on the stakeholder connections and Social 

Network Analysis are also part of Framework-B. 
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4. BIM+IMS Connector: 

In order to obtain accurate project data, to have better control over the design progress, and to have 

better communication about interface related problems in the early phases of the complex construction 

projects, a framework to integrate BIM and Interface Management data is developed as part of this 

thesis. BIM+IMS Connector is based on connecting Interface Points between project stakeholders to 

corresponding BIM element in the 3D model via Industry Foundation Classes (IFCs). 

5. New Model Maturity Index Definitions for Mass Rapid Transit Projects (MRT-MMI): 

In order to measure engineering progress in the early phases of Mass Rapid Transit (MRT) projects, 

new Model Maturity Index definitions for disciplines specific in MRT domain are created (MRT-MMI). 

The selected disciplines in MRT projects to define MMI definitions are Track Line, Overhead Contact 

Systems, and Stations. 

6. Engineering progress assessment and visualization tools for Mass Rapid Transit Projects: 

Based on the MRT-MMI definitions, conceptual semi-automated engineering progress assessment tools 

(MRT-MMI-AT) are created. By using these tools, one can assess and visualize the MRT-MMI level 

of the Track Line, Overhead Contact System, or Stations per location in a 3D model.  

6.3 Limitations 

Despite the benefits of these works, this study has limitations which can be categorized in three groups:  

1) Limitations of the proposed ideas that are inherent in their nature:  

- Framework-A, is based on the availability of various project information management systems 

such as Interface Management, Request for Information, Change Management system, etc. 

Through a series of discussions with multiple industry partners, it was found that either these 

organizations were not using all the systems listed above in their projects, or they were not 

storing required data in a reachable database. Therefore, while Framework-A can provide an 

objective, quantitative data-based interface health value for each stakeholder connection in a 

complex project, data acquisition is its the main limitation. 

- While the aforementioned health measurement and visualization contributions are promising, 

their effectiveness in practice has yet to be established empirically. This will take many years 

of implementation and dozens of documented capital projects as input for subsequent statistical 
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analysis. This limitation is common to most management practice innovations, yet continuous 

innovation is necessary for capital project performance improvements to be made possible.  

2) Threats to internal validity: 

- Framework-B, is based on filling a novel qualitative point system tool. Ideally, health and 

workload evaluations should be done by multiple stakeholders or even multiple people from 

the same group to eliminate individual biases. In this thesis, Framework-B is validated by 

applying it to six projects from two different industries. The main limitation of the validation, 

in each example project, is that workload and health evaluation were conducted from one 

party's point of view. In order to have different perspectives on the project, these evaluations 

should include multiple project parties’ views on stakeholder interfaces. 

- The proposed MRT-MMI definitions and assessment tools for Track Line, Overhead Contact 

System, and Station disciplines in Mass Rapid Transit projects were verified on a representative 

model LRT project. Validation and implementation of this model were not performed on a full-

scale project given a lack of project examples due to proprietary and confidentiality 

considerations. However, it is anticipated that elements of the model will be implemented in 

practice by the industry partner involved in its development.  

3) Threats to external validity: 

- The qualitative point system used in Framework-B is developed for the research partners’ 

relatively broad joint portfolio of project types, therefore, a recalibration of the values may be 

needed for different industry sectors or other categories of projects, such as mega oil and gas 

projects.  

6.4 Recommendations for Future Research 

Measurement of interface health and workload between project stakeholders is a new topic in the 

construction industry.  The following recommendations for future research are proposed based on this 

thesis: 

- In this thesis, all interface health and workload criteria are accepted as having equal weights 

(importance). Future research can investigate the actual importance of each criterion over these 

calculations and can investigate the sensitivity of the model to criteria weights. 
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- As explained in the limitations section, the interface health and workload evaluations of the 

stakeholder connections in the case projects were conducted from one party's point of view. It 

is recommended to conduct the same analysis from multiple project parties’ perspectives. 

- Expanding the Integrated Project Monitoring Method to portfolio-level research is a promising 

research area. It is recommended to explore the applicability of the model in multiple project 

environments with shared project stakeholders. 

- In this thesis, interface health and workload data is collected from six different projects from 

two different industries. Future research can investigate the potential connections between 

project types and network topologies by conducting data mining techniques. 

- It is recommended to verify the functionality of the engineering progress measurement model 

on one or more full-scale Mass Rapid Transit Projects, if the projects may provide adequate 

data. 

6.5 Publications 

The peer-refereed publications, directly related to the scope of this thesis, and authored by the candidate 

are listed below: 

6.5.1 Peer-refereed journal articles 

1. Eray, E., Sanchez, B., Haas, C. (2019) Usage of Interface Management System in Adaptive 

Reuse of Buildings, Buildings, 9(5), 105,  DOI: 10.3390/buildings9050105 

6.5.2 Journal Articles in Progress 

1. Eray, E., Haas, C., Rayside, D., An Integrated Approach for Analyzing Interface Workload 

and Interface Health Between Stakeholders Involved in Complex Construction Projects, to be 

submitted to Journal of Construction Engineering and Management 

2. Eray, E., Haas, C., Rayside, D., Analyzing stakeholder interfaces in a portfolio of engineering 

projects, to be submitted by Summer 2020 

3. Eray, E., Haas, C., Rayside D., Evaluation of interfaces between project stakeholders in a 

group decision environment, to be submitted by Summer 2020 

6.5.3 Peer-refereed conference articles 

1. Eray, E., Haas, C., Rayside, D. (2019) A Model for Measuring Interface Health between 

Project Stakeholders in Complex Construction Projects, 7th CSCE/CRC International 

Construction Specialty Conference, in Laval, QC, Canada, from June 12th to June 15th, 2019 

https://doi.org/10.3390/buildings9050105
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2. Eray, E. Sanchez, B., Kang, S., Haas, C.  (2019) Usage of Interface Management in Adaptive 

Reuse of Buildings, in Advances in Informatics and Computing in Civil and Construction 

Engineering, Cham: Springer International Publishing, pp. 725–731. DOI: 10.1007/978-3-

030-00220-6_87 

3. Eray, E., Haas, C., Rayside, D., Golparvar-Fard, M. (2018) A conceptual framework for 

tracking design completeness of the Track Line discipline in Mass Rapid Transit projects, 35th 

International Symposium on Automation and Robotics in Construction (ISARC 2018), in 

Berlin, Germany, from July 20th to July 25th, 2018 

4. Eray, E., Golzarpoor, B., Rayside, D., Haas, C. (2017) An Overview on Integrating Interface 

Management and Building Information Management Systems, 6th CSCE/CRC International 

Construction Specialty Conference, in Vancouver, BC, Canada, from May 31st to June 3rd, 2017 
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Appendix B Rail Line Project 

Workload and Health evaluation of each stakeholder connection in Rail Line Project 

(re-evaluation) 

Source Target W1 W2 W3 W4 H1 H2 H3 H4 

1 2 3 3 2 2 2 2 1 2 

1 3 3 1 1 1 2 3 2 2 

1 4 2 1 2 2 2 2 2 2 

1 5 2 1 2 2 2 2 2 2 

1 6 2 1 2 2 2 2 2 2 

1 8 2 1 2 2 2 2 2 2 

1 10 2 1 2 1 2 2 2 1 

1 15 1 1 2 2 2 2 1 2 

1 16 1 1 2 2 2 2 1 1 

1 17 2 1 1 2 3 3 3 2 

1 18 1 1 2 2 2 2 1 1 

1 19 1 1 2 2 1 2 1 1 

2 3 3 3 2 2 2 2 2 1 

2 4 2 1 2 2 2 2 2 2 

2 5 2 1 2 2 2 2 2 2 

2 6 2 1 2 2 2 2 2 2 

2 8 2 1 2 2 2 2 2 2 

2 10 3 3 3 2 2 2 2 1 

2 15 2 1 2 1 2 2 2 1 

2 16 1 1 2 2 2 2 1 2 

2 17 1 1 2 2 2 2 1 1 

2 18 2 1 1 2 3 3 3 2 

2 19 1 1 2 2 2 2 1 1 

3 10 1 1 2 2 1 2 1 1 

3 11 3 3 3 3 2 3 1 1 

3 12 3 3 3 2 2 2 1 1 

3 13 3 3 3 2 2 2 1 1 

3 14 3 3 3 2 2 2 1 1 

3 15 3 1 3 2 1 2 1 2 

3 16 2 1 3 2 1 2 1 2 

3 17 3 1 3 2 1 2 1 2 

3 18 3 1 3 2 1 2 1 2 

3 19 2 1 3 2 1 2 1 2 

7 10 1 1 3 1 1 1 1 1 

7 17 1 1 3 1 1 1 3 1 

7 18 1 1 3 1 1 1 3 1 

7 19 1 1 3 1 1 1 3 1 

8 10 1 1 3 1 1 1 3 1 
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Source Target W1 W2 W3 W4 H1 H2 H3 H4 

8 19 1 1 3 1 1 1 3 1 

9 10 1 1 3 1 1 1 1 1 

9 18 1 1 3 1 1 1 3 1 

9 17 1 1 3 1 1 1 3 1 

10 11 3 1 3 2 2 2 1 1 

10 12 2 1 3 2 2 2 1 1 

10 13 2 1 3 2 2 2 1 1 

10 14 2 1 3 1 2 2 1 1 

10 15 3 2 3 3 1 2 1 2 

10 16 3 2 3 3 1 2 1 2 

10 17 3 2 3 3 1 2 1 2 

10 18 3 2 3 3 1 2 1 2 

10 19 3 2 3 3 1 2 1 2 

11 16 3 1 3 3 1 3 1 1 

12 15 3 1 3 2 1 2 2 1 

12 19 1 1 3 1 1 2 2 1 

13 15 3 2 2 2 2 2 2 2 

15 16 3 2 2 2 1 2 1 1 

15 17 3 2 3 3 1 2 1 1 

15 18 3 2 2 2 1 2 1 1 

15 19 3 2 2 1 1 2 2 2 

16 17 3 3 3 3 1 2 1 2 

16 18 3 2 2 1 1 2 2 1 

16 19 3 2 2 2 1 2 2 2 

17 18 3 2 2 2 1 2 2 1 

17 19 3 2 2 2 1 2 1 2 

18 19 3 2 2 1 1 2 1 1 
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Appendix C 

Chemical Equipment Replacement Project Data 

Project Stakeholders at the Identification Phase 

Nodes 

Node ID Label Name Group 

1 A Project Sponsor 1 

2 B Project and Modifications 1 

Evaluation of Stakeholder Connections at the Identification Phase 

Links 

  Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 2 2 2 2 2 1 

Project Stakeholders at the Initiation Phase 

Nodes 

Node ID Label Name Group 

1 A Project Sponsor 1 

2 B Project and Modifications 1 

3 C Finance 1 

Evaluation of Stakeholder Connections at the Initiation Phase 

Links 

  Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 1 3 1 1 1 1 1 

2 3 2-3 2 1 2 2 2 2 2 2 

Project Stakeholders at the Development Phase 

Nodes 

Node ID Label Name Group 

1 A Project Sponsor 1 

2 B Project and Modifications 1 

3 C Finance 1 

4 D Supply Chain 1 

5 E Operations 1 

6 F maintenance 1 

7 G Performance Engineering 1 

8 H Projects Design Engineering 1 

9 I Procurement Engineering 1 
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10 N Contractor 2 

11 O Subcontractor - Design 2 

12 P Subvendor 2 

Evaluation of Stakeholder Connections at the Development Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 2 1 2 1 1 1 

1 7 1-7 1 1 3 1 1 1 1 1 

1 5 1-5 1 1 3 1 1 1 1 1 

2 3 2-3 2 1 3 2 1 2 1 1 

2 4 2-4 2 2 2 2 2 2 1 1 

2 5 2-5 1 1 2 1 2 1 1 1 

2 6 2-6 1 1 2 1 2 1 1 1 

2 7 2-7 1 1 2 1 2 1 1 1 

2 8 2-8 3 2 2 3 2 2 2 2 

2 9 2-9 1 1 2 1 2 1 1 1 

2 10 2-10 3 3 2 3 2 2 2 2 

2 11 2-11 3 2 2 3 2 2 2 2 

2 12 2-12 1 1 2 3 2 2 2 2 

4 9 4-9 1 1 3 1 1 1 1 1 

4 10 4-10 2 1 2 1 2 2 2 1 

5 6 5-6 1 1 3 1 1 1 1 1 

5 7 5-7 1 1 3 1 1 1 1 1 

6 7 6-7 1 1 3 1 1 1 1 1 

7 8 7-8 2 1 2 2 2 2 2 2 

8 9 8-9 2 1 2 2 2 2 1 2 

8 11 8-11 3 3 2 3 2 2 2 2 

10 11 10-11 3 3 2 2 2 1 1 2 

10 12 10-12 2 1 3 1 2 1 1 2 

11 12 11-12 2 1 3 1 2 1 1 2 

Project Stakeholders at the Definition Phase 

Nodes 

Node ID Label Name Group 

1 A Project Sponsor 1 

2 B Project and Modifications 1 

3 C Finance 1 

4 D Supply Chain 1 

5 E Operations 1 

6 F maintenance 1 

7 G Performance Engineering 1 

8 H Projects Design Engineering 1 

9 I Procurement Engineering 1 
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10 N Contractor 2 

11 O Subcontractor - Design 2 

12 P Subvendor 2 

13 M TSSA-Pressure Boundary 3 

14 J Field Engineering 1 

15 K Contract Management Office 1 

Evaluation of Stakeholder Connections at the Definition Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 2 1 2 1 1 1 

1 7 1-7 1 1 3 1 1 1 1 1 

1 5 1-5 1 1 3 1 1 1 1 1 

2 3 2-3 2 1 3 2 1 2 1 1 

2 4 2-4 2 2 2 2 2 2 1 1 

2 5 2-5 2 1 2 1 2 1 1 1 

2 6 2-6 2 1 2 1 2 1 1 1 

2 7 2-7 2 1 2 2 2 1 2 2 

2 8 2-8 3 3 2 3 2 3 2 2 

2 9 2-9 2 1 2 2 2 1 2 1 

2 10 2-10 3 3 2 3 2 3 2 2 

2 11 2-11 3 2 2 3 2 3 2 2 

2 12 2-12 2 1 2 3 2 3 2 2 

2 13 2-13 1 1 3 2 2 2 1 2 

2 14 2-14 1 1 3 1 1 1 1 1 

2 15 2-15 1 1 3 1 1 1 1 1 

4 9 4-9 1 1 2 2 1 2 1 2 

4 10 4-10 1 1 2 1 2 2 2 1 

5 6 5-6 2 1 3 1 1 1 1 1 

5 7 5-7 2 1 3 1 1 1 1 1 

6 7 6-7 2 1 3 1 1 1 1 1 

7 8 7-8 2 1 2 2 2 2 2 2 

8 9 8-9 2 2 2 3 2 2 1 2 

8 11 8-11 3 3 2 3 2 3 2 2 

10 11 10-11 3 3 2 2 2 1 1 2 

10 12 10-12 2 1 3 1 2 1 1 2 

10 13 10-13 2 1 3 2 1 2 1 2 

10 14 10-14 2 1 2 1 2 1 2 1 

10 15 10-15 2 1 2 1 2 1 2 1 

11 12 11-12 3 2 2 2 2 2 1 2 
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Project Stakeholders at the Execution Phase 

Node ID Label Name Group 

1 A Project Sponsor 1 

2 B Project and Modifications 1 

3 C Finance 1 

4 D Supply Chain 1 

5 E Operations 1 

6 F maintenance 1 

7 G Performance Engineering 1 

8 H Projects Design Engineering 1 

9 I Procurement Engineering 1 

10 N Contractor 2 

11 O Subcontractor - Design 2 

12 P Subvendor 2 

13 M TSSA-Pressure Boundary 3 

14 J Field Engineering 1 

15 K Contract Management Office 1 

17 Q Subcontractor - Scaffolding Support 2 

Evaluation of Stakeholder Connections at the Execution Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 1 2 2 2 2 2 1 

1 7 1-7 1 1 3 1 1 1 1 1 

1 5 1-5 1 1 3 1 1 1 1 1 

2 3 2-3 2 1 3 2 1 1 1 1 

2 4 2-4 2 2 3 2 1 2 1 1 

2 5 2-5 2 1 2 2 2 2 2 2 

2 6 2-6 2 1 2 2 2 2 2 2 

2 7 2-7 2 1 2 2 2 2 2 2 

2 8 2-8 3 2 2 1 2 2 1 1 

2 9 2-9 1 1 3 1 2 1 1 1 

2 10 2-10 3 3 2 3 2 2 1 2 

2 11 2-11 2 2 2 2 2 2 1 2 

2 12 2-12 1 1 3 1 1 1 1 1 

2 13 2-13 2 1 2 2 2 2 1 2 

2 14 2-14 3 2 3 2 1 1 2 2 

2 15 2-15 3 2 3 2 1 1 1 1 

4 9 4-9 1 1 2 2 1 2 1 2 

4 10 4-10 2 1 2 1 2 2 2 1 

5 6 5-6 3 2 3 2 1 2 1 2 

5 7 5-7 2 1 3 1 1 2 1 1 

6 7 6-7 2 1 3 1 1 2 1 1 
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7 8 7-8 2 1 3 1 1 2 1 1 

8 9 8-9 1 1 3 1 1 1 1 1 

8 11 8-11 2 1 3 2 1 1 1 2 

10 11 10-11 3 3 3 2 2 2 1 2 

10 12 10-12 2 1 3 2 1 2 1 1 

10 13 10-13 2 2 3 2 1 2 1 2 

10 14 10-14 3 3 2 2 2 2 1 2 

10 15 10-15 3 3 2 2 2 2 2 1 

10 17 10-17 3 3 3 3 1 1 1 1 

11 12 11-12 2 1 3 2 1 1 1 1 

Project Stakeholders at the Closeout Phase 

Node ID Label Name Group 

1 A Project Sponsor 1 

2 B Project and Modifications 1 

3 C Finance 1 

4 D Supply Chain 1 

5 E Operations 1 

6 F Maintenance 1 

7 G Performance Engineering 1 

8 H Projects Design Engineering 1 

10 N Contractor 2 

11 O Subcontractor - Design 2 

16 L Drawing Office 1 

Evaluation of Stakeholder Connections at the Closeout Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 1 2 2 1 1 1 1 

1 7 1-7 1 1 3 1 1 1 1 1 

1 5 1-5 1 1 3 1 1 1 1 1 

2 3 2-3 2 1 3 2 1 1 1 1 

2 4 2-4 2 1 3 2 1 2 1 1 

2 5 2-5 2 1 2 2 1 1 1 1 

2 6 2-6 2 1 2 2 1 1 1 1 

2 7 2-7 2 1 2 2 2 1 1 1 

2 8 2-8 2 2 3 2 1 1 1 1 

2 10 2-10 2 2 3 2 1 1 1 2 

2 11 2-11 2 2 3 2 1 1 1 2 

2 16 2-16 2 1 3 2 1 2 1 1 

4 10 4-10 2 1 3 1 1 1 1 1 

5 6 5-6 1 1 3 1 1 1 1 1 

5 7 5-7 1 1 3 1 1 1 1 1 
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6 7 6-7 1 1 3 1 1 1 1 1 

7 8 7-8 1 1 3 2 1 2 1 1 

8 16 8-16 2 2 3 2 1 2 1 2 

8 11 8-11 2 2 3 2 1 2 1 2 

10 11 10-11 2 3 3 2 1 2 1 2 
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Appendix D 

Detector Assemblies Replacement Project Data 

Stakeholders’ Connection List 

Stakeholders Interactions with other Stakeholders 

ID Label [0-1] [1-2] [2-3] [3-4] [4-5] [5-6] [6-7] 

1 SRE  2,3 2,3 2,3 2 2 2 

2 PRO  1,3 1,3,4,5,7 1,3,4,5,6,7

,8,11,12,1

3,14,15 

1,3,4,5,6,7

,11,12,13,

14,15 

1,3,4,5 1 

3 DGG  1,2 1,2,4,5,7,8

,9,10 

1,2,4,5,6,8

,9,10, 

2,6 2   

4 MNT   2,3 2,3 2,5,13,15 2   

5 OPS   2,3 2,3 2,4,13,15 2   

6 VEN    2,3,7 2,3,7    

7 SC   2,3 2,6 2,6    

8 HF   3 2,3     

9 RS   3 3     

10 SSC   3 3     

11 CS    2 2    

12 RP    2 2,13,15    

13 WC    2 2,4,5,12,1

5 

   

14 WA    2 2    

15 OUT       2 2,4,5,12,1

3 

    

Project Stakeholders at the Initiation Phase [1-2] 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

2 PRO Projects 1 

3 DGG Design 1 

Evaluation of Stakeholder Connections at the Development Phase 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 2 1 1 2 1 1 

1 3 1-3 1 1 1 1 1 2 1 1 

2 3 2-3 1 2 2 1 2 2 1 1 

Project Stakeholders at the Development Phase [2-3] 

Node ID Label Name Group 

1 SRE SRE 1 

2 PRO Projects 1 
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Node ID Label Name Group 

3 DGG Design 1 

4 MNT Maintenance 1 

5 OPS Operations 1 

7 SC Supply Chain 1 

8 HF Human Factors 1 

9 RS Reactor Safety 1 

10 SSC Seismis 1 

Evaluation of Stakeholder Connections at the Development Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 3 1 2 2 2 1 

1 3 1-3 2 3 3 1 2 2 1 2 

2 3 2-3 3 3 3 1 2 3 1 1 

2 4 2-4 1 1 3 1 2 1 1 1 

2 5 2-5 1 1 3 1 2 1 1 1 

2 7 2-7 2 3 2 1 2 3 1 2 

3 4 3-4 1 1 2 1 2 1 1 1 

3 5 3-5 1 1 2 1 2 1 1 1 

3 7 3-7 1 1 2 1 2 1 1 1 

3 8 3-8 1 1 2 1 2 2 2 1 

3 9 3-9 1 1 2 1 2 2 1 1 

3 10 3-10 1 1 2 1 2 2 1 1 

Project Stakeholders at the Definition Phase [3-4] 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

2 PRO Projects 1 

3 DGG Design 1 

4 MNT Maintenance 1 

5 OPS Operations 1 

6 VEN Equipment Cendor (Kinectrics) 2 

7 SC Supply Chain 1 

8 HF Human Factors 1 

9 RS Reactor Safety 1 

10 SSC Seismis 1 

11 CS Conventional Safety 1 

12 RP Radiation Protection 1 

13 WC Work Control 1 

14 WA Work Assessing 1 

15 OUT Outage 1 
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Evaluation of Stakeholder Connections at the Definition Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 1 3 1 1 1 1 1 

1 3 1-3 2 1 3 1 2 2 1 1 

2 3 2-3 3 3 3 1 2 2 1 2 

2 4 2-4 1 1 3 1 1 1 1 1 

2 5 2-5 1 1 3 1 1 1 1 1 

2 6 2-6 3 3 2 1 2 3 1 2 

2 7 2-7 2 1 2 1 2 2 1 1 

2 8 2-8 1 1 3 1 2 1 1 1 

2 11 2-11 1 1 3 1 1 1 1 1 

2 12 2-12 1 1 3 1 1 1 1 1 

2 13 2-13 2 1 3 1 1 1 1 1 

2 14 2-14 2 1 2 1 2 2 1 1 

2 15 2-15 3 2 1 2 2 3 2 2 

3 4 3-4 1 1 2 1 2 2 1 1 

3 5 3-5 1 1 2 1 1 1 1 1 

3 6 3-6 3 3 2 3 2 3 1 2 

3 7 3-7 2 1 3 1 1 2 1 1 

3 8 3-8 1 1 2 1 2 2 1 1 

3 9 3-9 1 1 2 1 1 1 1 1 

3 10 3-10 1 1 2 1 2 1 1 1 

6 7 6-7 1 1 2 1 2 2 1 1 

13 15 13-15 2 1 3 1 1 2 1 1 

Project Stakeholders at the Execution Phase [4-5] 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

2 PRO Projects 1 

3 DGG Design 1 

4 MNT Maintenance 1 

5 OPS Operations 1 

6 VEN Equipment Cendor (Kinectrics) 2 

7 SC Supply Chain 1 

11 CS Conventional Safety 1 

12 RP Radiation Protection 1 

13 WC Work Control 1 

14 WA Work Assessing 1 

15 OUT Outage 1 



 

 156 

Evaluation of Stakeholder Connections at the Execution Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 2 3 1 1 1 1 1 

2 3 2-3 3 3 2 1 1 1 1 1 

2 4 2-4 3 3 3 1 2 2 1 1 

2 5 2-5 2 2 3 1 2 2 1 1 

2 6 2-6 2 3 3 1 1 1 1 1 

2 7 2-7 1 2 2 1 2 2 1 1 

2 11 2-11 1 1 3 1 1 1 1 1 

2 12 2-12 1 1 3 1 1 1 1 1 

2 13 2-13 2 3 2 1 1 1 1 1 

2 14 2-14 1 1 3 1 1 1 1 1 

2 15 2-15 3 3 2 1 2 2 2 1 

3 6 3-6 3 3 3 1 1 1 1 1 

4 5 4-5 2 3 3 1 1 1 1 1 

4 13 4-13 3 3 2 1 1 1 1 1 

4 15 4-15 3 3 2 1 1 1 1 1 

5 13 5-13 3 3 2 1 1 1 1 1 

5 15 5-15 3 3 2 1 1 1 1 1 

6 7 6-7 1 1 3 1 2 1 1 1 

12 13 12-13 3 3 2 1 1 1 1 1 

12 15 12-15 3 3 2 1 1 1 1 1 

13 15 13-15 3 3 2 1 1 1 1 1 

Project Stakeholders at the Closeout Phase [5-6] 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

2 PRO Projects 1 

3 DGG Design 1 

4 MNT Maintenance 1 

5 OPS Operations 1 

Evaluation of Stakeholder Connections at the Closeout Phase 

Links 

  Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 0 0 0 0 0 0 0 0 

2 3 2-3 0 0 0 0 0 0 0 0 

2 4 2-4 0 0 0 0 0 0 0 0 

2 5 2-5 0 0 0 0 0 0 0 0 
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Project Stakeholders at the PIR Phase [6-7] 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

2 PRO Projects 1 

Evaluation of Stakeholder Connections at the PIR Phase 

Links 

  Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 0 0 0 0 0 0 0 0 
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Appendix E 

Control Positioners Replacement Project Data 

Stakeholders’ Connection List 

Stakeholders Interactions with other Stakeholders 

ID Label [0-1] [1-2] [2-3] [3-4] [4-5] [5-6] [6-7] 

1 ENG 3, 4 2, 3, 4 2, 6 2, 6 2, 6 2, 6 2, 3, 4 

2 PM   1 1, 6, 18 1, 3, 4, 6, 8, 9, 

11, 13, 15, 17, 

18 

1, 3, 4, 5, 6, 9, 

10, 11, 13, 17, 

18 

1, 6, 11, 

13, 17, 

18 

1, 6 

3 CM  1 1 2, 6 2, 6, 11, 15, 17 2, 5, 6, 9, 11, 13     

4 OPS  1 1 2, 6 2, 6, 11, 15, 17 2, 5, 6, 9, 11, 13     

5 OPSO         2, 3, 4, 13     

6 DES     2, 3, 4, 6, 

8, 9 

2, 3, 4, 6, 7, 8, 9, 

15, 17 

2, 17 1, 2, 17   

7 CG       2, 6, 17       

8 CS       2, 11, 13       

9 RP       2, 11, 13 2, 11, 13     

10 WC         2, 11, 13     

11 EPM     18 2, 12, 15, 17 2, 13, 17 2, 12, 13, 

17 

  

12 ECPM       2, 3, 4, 6, 8, 9, 

11, 13, 17 

2, 3, 4, 5, 6, 9, 

10, 11, 13, 17 

1, 2, 6, 

11, 13, 

17 

  

13 EC       2, 3, 4, 6, 8, 9, 

11, 17 

2, 3, 4, 5, 6, 9, 

10, 11, 17 

    

14 EDDL       2, 6, 11, 15, 17       

15 EDE               

16 ES       2, 6       

17 EDTL       2, 6, 11, 13, 15 2, 6, 11, 13 2, 6, 11, 

13 

  

18 SC     2, 11 2, 11 2, 11     

Stakeholder List at the Identification Phase [0-1] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

3 CM Control Maintenance 1 

4 OPS Operations (Project SPOC) 1 

Evaluation of Stakeholder Connections at the Identification Phase 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 3 1-3 1 1 1 1 1 1 1 1 

1 4 1-4 1 1 1 1 1 1 1 1 
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Stakeholder List at the Initiation Phase [1-2] 

 Nodes 

Node ID Name Group 

1 Engineering 1 

2 Project Manager 1 

Evaluation of Stakeholder Connections at the Initiation Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 1 1 1 1 1 1 

Stakeholder List at the Development Phase [2-3] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

3 CM Control Maintenance 1 

4 OPS Operations (Project SPOC) 1 

6 DES Design 1 

8 CS Conventional Safety 1 

Evaluation of Stakeholder Connections at the Development Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 1 1 1 1 1 1 

1 6 1-6 1 1 1 2 1 1 1 1 

2 6 2-6 1 1 1 2 1 1 1 1 

3 6 3-6 1 1 1 1 1 1 1 1 

4 6 4-6 1 1 1 1 1 1 1 1 

6 8 6-8 1 1 1 1 1 1 1 1 

 Stakeholder List at the Definition Phase [3-4] 

Node ID Name Group 

1 Engineering 1 

2 Project Manager 1 

3 Control Maintenance 1 

4 Operations (Project SPOC) 1 

6 Design 1 

7 Computers Group 1 

8 Conventional Safety 1 
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Node ID Name Group 

9 Radiation Protection 1 

11 EPC PM 2 

12 EPC Construction PM 2 

13 EPC Coordinator 2 

14 EPC Design Discipline Lead 2 

15 EPC Design Eng 2 

16 EPC Software 2 

17 EPC Design Team Lead 2 

18 Supply Chain 1 

Evaluation of Stakeholder Connections at the Definition Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 2 1 1 1 1 2 1 

1 6 1-6 2 2 1 1 1 1 1 1 

2 3 2-3 1 1 2 1 2 1 1 1 

2 4 2-4 1 1 2 1 2 2 2 1 

2 6 2-6 3 3 3 3 1 1 1 1 

2 7 2-7 1 1 2 1 2 1 1 2 

2 8 2-8 1 1 1 1 1 1 1 1 

2 9 2-9 1 1 1 1 1 1 1 1 

2 11 2-11 3 3 3 2 1 2 2 2 

2 12 2-12 2 3 3 2 1 2 2 2 

2 13 2-13 2 3 3 2 1 2 2 2 

2 14 2-14 1 1 1 1 1 1 1 1 

2 16 2-16 1 1 1 1 1 1 1 1 

2 17 2-17 2 2 2 3 1 2 2 1 

2 18 2-18 1 1 2 1 2 2 1 1 

3 6 3-6 2 1 2 2 1 1 1 1 

3 12 3-12 1 1 2 1 2 1 2 1 

3 13 3-13 1 1 2 1 2 1 2 1 

3 15 3-15 1 1 2 1 2 1 2 1 

4 6 4-6 2 1 2 3 2 2 2 1 

4 12 4-12 1 1 2 2 2 1 1 1 

4 13 4-13 1 1 2 2 2 1 1 1 

4 15 4-15 1 1 1 1 1 1 2 1 

6 7 6-7 1 1 2 1 2 2 2 2 

6 8 6-8 1 1 1 1 1 1 1 1 

6 9 6-9 1 1 1 1 1 1 1 1 

6 12 6-12 2 2 2 3 1 2 1 1 

6 13 6-13 2 2 2 3 1 2 1 1 

6 14 6-14 1 1 1 2 1 1 1 1 

6 15 6-15 3 3 2 3 1 2 2 1 

6 16 6-16 1 1 2 1 1 1 1 2 

6 17 6-17 3 3 2 3 1 2 2 1 
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Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

8 11 8-11 1 1 1 1 1 1 1 1 

8 12 8-12 1 1 1 1 1 1 1 1 

8 13 8-13 1 1 1 1 1 1 1 1 

9 11 9-11 1 1 1 1 1 1 1 1 

9 12 9-12 1 1 1 1 1 1 1 1 

9 13 9-13 1 1 1 1 1 1 1 1 

11 12 11-12 2 2 2 2 1 2 1 1 

11 13 11-13 2 2 2 2 1 2 1 1 

11 14 11-14 1 1 1 2 1 1 1 1 

11 15 11-15 2 2 2 2 1 1 1 1 

11 17 11-17 2 2 2 2 1 1 1 1 

11 18 11-18 1 1 2 1 2 2 2 2 

12 13 12-13 3 3 3 3 1 1 1 1 

12 17 12-17 2 1 1 1 1 1 1 1 

13 17 13-17 1 1 1 2 1 1 1 1 

14 15 14-15 2 3 3 1 1 1 1 1 

14 17 14-17 2 3 3 1 1 1 1 1 

15 17 15-17 2 3 3 1 1 1 1 1 

 Stakeholder List at the Execution Phase [4-5] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

3 CM Control Maintenance 1 

4 OPS Operations (Project SPOC) 1 

5 OPSO Operations (Authorized Operator) 1 

6 DES Design 1 

9 RP Radiation Protection 1 

10 WC Work Control 1 

11 EPM EPC PM 2 

12 ECPM EPC Construction PM 2 

13 EC EPC Coordinator 2 

17 EDTL EPC Design Team Lead 2 

18 SC Supply Chain 1 

Evaluation of Stakeholder Connections at the Execution Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 1 2 1 0 0 0 0 

1 6 1-6 1 2 2 1 0 0 0 0 

2 3 2-3 2 3 3 2 0 0 0 0 

2 4 2-4 2 3 3 2 0 0 0 0 

2 5 2-5 2 3 3 2 0 0 0 0 
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Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

2 6 2-6 2 2 2 2 0 0 0 0 

2 10 2-10 3 3 3 2 0 0 0 0 

2 11 2-11 3 3 3 2 0 0 0 0 

2 12 2-12 3 3 3 2 0 0 0 0 

2 13 2-13 3 3 3 2 0 0 0 0 

2 17 2-17 2 1 2 1 0 0 0 0 

2 18 2-18 1 1 1 1 0 0 0 0 

3 5 3-5 1 1 1 1 0 0 0 0 

3 6 3-6 1 1 1 1 0 0 0 0 

3 9 3-9 2 3 1 1 0 0 0 0 

3 11 3-11 1 1 1 1 0 0 0 0 

3 12 3-12 2 2 1 1 0 0 0 0 

3 13 3-13 2 2 1 1 0 0 0 0 

4 5 4-5 2 3 1 1 0 0 0 0 

4 6 4-6 2 2 2 1 0 0 0 0 

4 11 4-11 1 1 1 1 0 0 0 0 

4 12 4-12 2 3 2 2 0 0 0 0 

4 13 4-13 2 3 2 2 0 0 0 0 

5 12 5-12 2 3 2 2 0 0 0 0 

5 13 5-13 2 3 2 2 0 0 0 0 

6 12 6-12 2 2 2 1 0 0 0 0 

6 13 6-13 2 2 2 1 0 0 0 0 

6 17 6-17 2 2 2 2 0 0 0 0 

9 12 9-12 1 2 1 1 0 0 0 0 

9 13 9-13 1 2 1 1 0 0 0 0 

10 11 10-11 3 3 2 2 0 0 0 0 

10 12 10-12 3 3 2 2 0 0 0 0 

10 13 10-13 3 3 2 2 0 0 0 0 

11 12 11-12 3 3 3 2 0 0 0 0 

11 13 11-13 3 3 3 2 0 0 0 0 

11 17 11-17 2 3 1 1 0 0 0 0 

11 18 11-18 1 1 1 1 0 0 0 0 

12 13 12-13 3 3 3 3 0 0 0 0 

12 17 12-17 2 3 3 2 0 0 0 0 

13 17 13-17 2 3 3 2 0 0 0 0 

Stakeholder List at the Closeout Phase [5-6] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

6 DES Design 1 

11 EPM EPC PM 2 

12 ECPM EPC Construction PM 2 
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13 EC EPC Coordinatior 2 

17 EDTL EPC Design Team Lead 2 

Evaluation of Stakeholder Connections at the Closeout Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 2 2 2 0 0 0 0 

1 6 1-6 2 2 2 3 0 0 0 0 

1 12 1-12 2 2 2 2 0 0 0 0 

2 6 2-6 2 2 2 3 0 0 0 0 

2 11 2-11 1 2 2 1 0 0 0 0 

2 12 2-12 2 2 2 2 0 0 0 0 

2 13 2-13 2 2 2 2 0 0 0 0 

2 17 2-17 2 2 2 2 0 0 0 0 

6 12 6-12 2 2 2 2 0 0 0 0 

6 17 6-17 2 2 2 2 0 0 0 0 

11 12 11-12 3 3 3 1 0 0 0 0 

11 13 11-13 3 3 3 1 0 0 0 0 

11 17 11-17 3 3 3 1 0 0 0 0 

12 13 12-13 3 3 2 1 0 0 0 0 

12 17 12-17 2 2 1 2 0 0 0 0 

13 17 13-17 2 2 1 2 0 0 0 0 

Stakeholder List at the PIR Phase [6-7] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

3 CM Control Maintenance 1 

4 OPS Operations (Project SPOC) 1 

6 DES Design 1 

Evaluation of Stakeholder Connections at the PIR Phase 

 Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 2 1 0 0 0 0 

1 3 1-3 1 1 2 1 0 0 0 0 

1 4 1-4 1 1 2 1 0 0 0 0 

2 6 2-6 1 1 2 1 0 0 0 0 
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Dynamic Workload and Health values of Stakeholder connections in Control Positioners 

Replacement Project 

Source Target Weight Dynamic Health Dynamic 

1 3 [0,1,4.0];[6,7,5.0] [0,1,4.0];[6,7,0.0]  

1 4 [0,1,4.0];[6,7,5.0] [0,1,4.0];[6,7,0.0]  

1 2 [1,2,4.0];[2,3,4];[3,4,6];[4,5,6];[5,6,8

];[6,7,5.0] 

[1,2,4.0];[2,3,4];[3,4,5];[4,5,0];[5,6,

0];[6,7,0.0]  

1 6 [2,3,5];[3,4,6];[4,5,6];[5,6,9] [2,3,4];[3,4,4];[4,5,0];[5,6,0]  

2 6 [2,3,5];[3,4,12];[4,5,8];[5,6,9];[6,7,5.

0] 

[2,3,4];[3,4,4];[4,5,0];[5,6,0];[6,7,0.

0]  

3 6 [2,3,4];[3,4,7];[4,5,4] [2,3,4];[3,4,4];[4,5,0]  

4 6 [2,3,4];[3,4,8];[4,5,7] [2,3,4];[3,4,7];[4,5,0]  

6 8 [2,3,4];[3,4,4] [2,3,4];[3,4,4]  

2 3 [3,4,5];[4,5,10] [3,4,5];[4,5,0]  

2 4 [3,4,5];[4,5,10] [3,4,7];[4,5,0]  

2 7 [3,4,5] [3,4,6]  

2 8 [3,4,4] [3,4,4]  

2 9 [3,4,4] [3,4,4]  

2 11 [3,4,11];[4,5,11];[5,6,6] [3,4,7];[4,5,0];[5,6,0]  

2 12 [3,4,10];[4,5,11];[5,6,8] [3,4,7];[4,5,0];[5,6,0]  

2 13 [3,4,10];[4,5,11];[5,6,8] [3,4,7];[4,5,0];[5,6,0]  

2 14 [3,4,4] [3,4,4]  

2 16 [3,4,4] [3,4,4]  

2 17 [3,4,9];[4,5,6];[5,6,8] [3,4,6];[4,5,0];[5,6,0]  

2 18 [3,4,5];[4,5,4] [3,4,6];[4,5,0]  

3 12 [3,4,5];[4,5,6] [3,4,6];[4,5,0]  

3 13 [3,4,5];[4,5,6] [3,4,6];[4,5,0]  

3 15 [3,4,5] [3,4,6]  

4 12 [3,4,6];[4,5,9] [3,4,5];[4,5,0]  

4 13 [3,4,6];[4,5,9] [3,4,5];[4,5,0]  

4 15 [3,4,4] [3,4,5]  

6 7 [3,4,5] [3,4,8]  

6 9 [3,4,4] [3,4,4]  

6 12 [3,4,9];[4,5,7];[5,6,8] [3,4,5];[4,5,0];[5,6,0]  

6 13 [3,4,9];[4,5,7] [3,4,5];[4,5,0]  

6 14 [3,4,5] [3,4,4]  

6 15 [3,4,11] [3,4,6]  

6 16 [3,4,5] [3,4,5]  

6 17 [3,4,11];[4,5,8];[5,6,8] [3,4,6];[4,5,0];[5,6,0]  

8 11 [3,4,4] [3,4,4]  

8 12 [3,4,4] [3,4,4]  

8 13 [3,4,4] [3,4,4]  

9 11 [3,4,4] [3,4,4]  

9 12 [3,4,4];[4,5,5] [3,4,4];[4,5,0]  

9 13 [3,4,4];[4,5,5] [3,4,4];[4,5,0]  

11 12 [3,4,8];[4,5,11];[5,6,10] [3,4,5];[4,5,0];[5,6,0]  

11 13 [3,4,8];[4,5,11];[5,6,10] [3,4,5];[4,5,0];[5,6,0]  
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Source Target Weight Dynamic Health Dynamic 

11 14 [3,4,5] [3,4,4]  

11 15 [3,4,8] [3,4,4]  

11 17 [3,4,8];[4,5,7];[5,6,10] [3,4,4];[4,5,0];[5,6,0]  

11 18 [3,4,5];[4,5,4] [3,4,8];[4,5,0]  

12 13 [3,4,12];[4,5,12];[5,6,9] [3,4,4];[4,5,0];[5,6,0]  

12 17 [3,4,5];[4,5,10];[5,6,7] [3,4,4];[4,5,0];[5,6,0]  

13 17 [3,4,5];[4,5,10];[5,6,7] [3,4,4];[4,5,0];[5,6,0]  

14 15 [3,4,9] [3,4,4]  

14 17 [3,4,9] [3,4,4]  

15 17 [3,4,9] [3,4,4]  

2 5 [4,5,10] [4,5,0]  

2 10 [4,5,11] [4,5,0]  

3 5 [4,5,4] [4,5,0]  

3 9 [4,5,7] [4,5,0]  

3 11 [4,5,4] [4,5,0]  

4 5 [4,5,7] [4,5,0]  

4 11 [4,5,4] [4,5,0]  

5 12 [4,5,9] [4,5,0]  

5 13 [4,5,9] [4,5,0]  

10 11 [4,5,10] [4,5,0]  

10 12 [4,5,10] [4,5,0]  

10 13 [4,5,10] [4,5,0]  

1 12 [5,6,8] [5,6,0]  
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Appendix F 

ACU-1 Project Data 

Stakeholders’ Connection List 

Stakeholders Interactions with other Stakeholders 

ID Label [0-1] [1-2] [2-3] [3-4] [4-5] [5-6] [6-7] 

1 ENG 3, 4 2, 3, 4 2, 6 2, 6 2, 6 2, 6 2, 3, 4 

2 PM  1 1, 6, 18 1, 3, 4, 6, 7, 8, 9, 

11, 12, 13, 14, 15, 

16, 17, 18 

1, 3, 4, 5, 6, 9, 10, 

11, 12, 13, 17, 18 

1, 6, 11, 12, 

17, 18 

1, 6 

3 CM  1 2, 6 2, 6, 11,12,13, 14, 

15, 16, 17 

2, 5, 6, 9, 11, 12, 

13 

  

4 OPS  1 2, 6 2, 6, 11,12, 13, 

14, 15, 16, 17 

2, 5, 6, 9, 11, 12, 

13 

  

5 OPSO     2, 3, 4, 12, 13   

6 DES   2, 3, 4, 

6, 8, 9 

1,2, 3, 4, 6, 7, 8, 

9,11,12,13 14, 15, 

16, 17 

1,2,3,4,12,13, 17 1, 2, 17  

7 CS    2, 6, 16, 17    

8 RP    2,6 11, 12, 13    

9 WC    2,6, 11, 12, 13 2, 3,4, 11, 12, 13   

10 ECPM     2, 11, 12, 13   

11 ECC   18 2, 3, 4,6, 8,9, 12, 

13, 14, 15, 16, 

17,18 

2, 3, 4,9,10, 12, 

13, 17,18 

2, 12, 13, 17  

12 EDTL    2, 3, 4, 6, 8, 9, 11, 

13, 17 

2, 3, 4, 5, 6, 9, 10, 

11, 13, 17 

1, 2, 6, 11, 13, 

17 

 

13 SC    2, 3, 4, 6, 8, 9, 11, 

12, 17 

2, 3, 4, 5, 6, 9, 10, 

11, 12, 17 

  

14 ENG    2,3, 4, 6, 11, 15, 

16, 17 

   

15 PM    3,4,11,17    

16 CM    2,3,4, 6, 7,11, 

14,17 

   

17 OPS    2,3,4, 6, 7, 11, 12, 

13, 14, 15, 16 

2, 6, 11, 12, 13 2, 6, 11, 12, 

13 

 

18 OPSO   2, 11 2, 11 2, 11   

Stakeholder List at the Identification Phase [0-1] 

Node ID Label Name Group 

1 ENG Engineering 1 

3 CM Control Maintenance 1 

4 OPS Operations (Project SPOC) 1 
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Evaluation of Stakeholder Connections at the Identification Phase 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 3 1-3 1 1 1 1 1 1 1 1 

1 4 1-4 1 1 1 1 1 1 1 1 

Stakeholder List at the Initiation Phase [1-2] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

Evaluation of Stakeholder Connections at the Initiation Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 1 1 1 1 1 1 

Stakeholder List at the Development Phase [2-3] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

3 CM Control Maintenance 1 

4 OPS Operations (Project SPOC) 1 

6 DES Design 1 

8  CS Conventional Safety 1 

Evaluation of Stakeholder Connections at the Development Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 1 1 1 1 1 1 

1 6 1-6 1 1 1 2 1 1 1 1 

2 6 2-6 1 1 1 2 1 1 1 1 

3 6 3-6 1 1 1 1 1 1 1 1 

4 6 4-6 1 1 1 1 1 1 1 1 

6 8 6-8 1 1 1 1 1 1 1 1 
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Stakeholder List at the Definition Phase [3-4] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

3 CM Control Maintenance 1 

4 OPS Operations (Project SPOC) 1 

6 DES Design 1 

8 CS Conventional Safety 1 

9 RP Radiation Protection 1 

12 ECPM EPC Construction PM 2 

13 ECC EPC Construction Coordinator 2 

17 EDTL EPC Design Team Lead 2 

18 SC Supply Chain 1 

Evaluation of Stakeholder Connections at the Definition Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 2 2 1 1 1 1 1 

1 6 1-6 3 3 3 3 1 2 1 1 

2 3 2-3 1 1 2 1 1 2 2 1 

2 4 2-4 1 1 2 1 1 2 2 1 

2 6 2-6 2 3 2 3 1 1 1 1 

2 8 2-8 1 1 1 1 1 1 1 1 

2 9 2-9 1 1 1 1 1 1 1 1 

2 12 2-12 2 2 2 2 1 2 2 1 

2 13 2-13 2 2 2 2 1 2 2 1 

2 17 2-17 1 1 2 2 1 1 1 1 

2 18 2-18 1 1 2 1 1 2 1 1 

3 6 3-6 1 1 2 1 1 2 2 1 

3 12 3-12 1 1 1 1 1 2 2 1 

3 13 3-13 1 1 1 1 1 2 2 1 

3 17 3-17 1 1 1 1 1 2 2 1 

4 6 4-6 1 2 2 2 1 2 2 1 

4 12 4-12 1 2 2 2 2 2 2 1 

4 13 4-13 1 2 2 2 2 2 2 1 

4 17 4-17 1 2 2 3 1 2 2 2 

6 8 6-8 1 1 1 1 1 1 1 1 

6 9 6-9 1 1 1 1 1 1 1 1 

6 12 6-12 2 2 2 3 1 2 1 1 

6 13 6-13 2 2 2 3 1 2 1 1 

6 17 6-17 3 3 2 3 1 2 2 1 

8 12 8-12 1 1 1 1 1 1 1 1 
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Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

8 13 8-13 1 1 1 1 1 1 1 1 

9 12 9-12 1 1 1 1 1 1 1 1 

9 13 9-13 1 1 1 1 1 1 1 1 

12 13 12-13 3 3 3 3 1 1 1 1 

12 17 12-17 2 1 1 1 1 1 1 1 

13 17 13-17 1 1 1 1 1 1 1 1 

Stakeholder List at the Execution Phase [4-5] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

3 CM Control Maintenance 1 

4 OPS Operations (Project SPOC) 1 

5 OPSO Operations (Authorized Operator) 1 

6 DES Design 1 

9 RP Radiation Protection 1 

10 WC Work Control 1 

12 ECPM EPC Construction PM 2 

13 ECC EPC Construction Coordinator 2 

17 EDTL EPC Design Team Lead 2 

18 SC Supply Chain 1 

Evaluation of Stakeholder Connections at the Execution Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 1 2 1 1 1 1 1 

1 6 1-6 1 2 2 1 1 1 1 1 

2 3 2-3 2 3 3 2 2 1 2 1 

2 4 2-4 2 3 3 2 2 2 2 1 

2 5 2-5 2 3 3 2 2 2 2 1 

2 6 2-6 2 2 2 2 2 1 1 1 

2 10 2-10 3 3 3 2 1 1 2 1 

2 12 2-12 3 3 3 2 1 1 1 1 

2 13 2-13 3 3 3 2 1 1 1 1 

2 17 2-17 2 1 2 1 1 1 1 1 

3 5 3-5 1 1 1 1 2 3 2 2 

3 6 3-6 1 2 1 2 1 2 2 1 

3 9 3-9 2 3 1 1 1 2 1 1 

3 12 3-12 2 2 1 1 2 2 2 1 

3 13 3-13 2 2 1 1 2 2 2 1 

4 5 4-5 2 3 1 1 1 2 2 2 
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Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

4 6 4-6 2 2 2 1 2 2 2 1 

4 12 4-12 2 3 2 2 2 2 2 2 

4 13 4-13 2 3 2 2 2 2 2 2 

5 12 5-12 2 3 2 2 2 2 2 2 

5 13 5-13 2 3 2 2 2 2 2 2 

6 12 6-12 2 2 2 1 1 1 1 1 

6 13 6-13 2 2 2 1 1 1 1 1 

6 17 6-17 2 2 2 2 1 1 1 1 

9 12 9-12 1 2 1 1 1 2 1 1 

9 13 9-13 1 2 1 1 1 2 1 1 

10 12 10-12 3 3 2 2 1 1 1 1 

10 13 10-13 3 3 2 2 1 1 1 1 

12 13 12-13 3 3 3 3 1 1 1 1 

12 17 12-17 2 3 3 2 1 1 1 1 

13 17 13-17 2 3 3 2 1 1 1 1 

Stakeholder List at the Closeout Phase [5-6] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

6 DES Design 1 

12 ECPM EPC Construction PM 2 

13 ECC EPC Construction Coordinator 2 

17 EDTL EPC Design Team Lead 2 

Evaluation of Stakeholder Connections at the Closeout Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 2 2 2 2 0 0 0 0 

1 6 1-6 2 2 2 3 0 0 0 0 

1 12 1-12 2 2 2 2 0 0 0 0 

2 6 2-6 2 2 2 3 0 0 0 0 

2 12 2-12 2 2 2 2 0 0 0 0 

2 13 2-13 2 2 2 2 0 0 0 0 

2 17 2-17 2 2 2 2 0 0 0 0 

6 12 6-12 2 2 2 2 0 0 0 0 

6 17 6-17 2 2 2 2 0 0 0 0 

12 13 12-13 3 3 2 1 0 0 0 0 

12 17 12-17 2 2 1 2 0 0 0 0 

13 17 13-17 2 2 1 2 0 0 0 0 
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Stakeholder List at the PIR Phase [6-7] 

Nodes 

Node ID Label Name Group 

1 ENG Engineering 1 

2 PM Project Manager 1 

3 DES Control Maintenance 1 

4 OPS Operations (Project SPOC) 1 

6 DES Design 1 

Evaluation of Stakeholder Connections at the PIR Phase 

 Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 2 1-2 1 1 2 1 0 0 0 0 

1 3 1-3 1 1 2 1 0 0 0 0 

1 4 1-4 1 1 2 1 0 0 0 0 

2 6 2-6 1 1 2 1 0 0 0 0 

Dynamic Workload and Health values of Power ACU Project 

Source Target Weight Dynamic Health Dynamic 

1 3 [0,1,4.0];[6,7,5.0] [0,1,4.0];[6,7,0.0]  

1 4 [0,1,4.0];[6,7,5.0] [0,1,4.0];[6,7,0.0]  

1 2 [1,2,4.0];[2,3,4];[3,4,6.0];[4,5,6];[5,

6,8];[6,7,5.0] 

[1,2,4.0];[2,3,4];[3,4,4.0];[4,5,4];[5,6,0]

;[6,7,0.0]  

1 6 [2,3,5];[3,4,12.0];[4,5,6];[5,6,9] [2,3,4];[3,4,4.0];[4,5,4];[5,6,0]  

2 6 [2,3,5];[3,4,10.0];[4,5,8];[5,6,9];[6,7

,5.0] 

[2,3,4];[3,4,4.0];[4,5,5];[5,6,0];[6,7,0.0]  

3 6 [2,3,4];[3,4,5.0];[4,5,6] [2,3,4];[3,4,6.0];[4,5,6]  

4 6 [2,3,4];[3,4,7.0];[4,5,7] [2,3,4];[3,4,6.0];[4,5,7]  

6 8 [2,3,4];[3,4,4.0] [2,3,4];[3,4,4.0]  

2 3 [3,4,5.0];[4,5,10] [3,4,6.0];[4,5,6]  

2 4 [3,4,5.0];[4,5,10] [3,4,6.0];[4,5,7]  

2 8 [3,4,4.0] [3,4,4.0]  

2 9 [3,4,4.0] [3,4,4.0]  

2 12 [3,4,8.0];[4,5,11];[5,6,8] [3,4,6.0];[4,5,4];[5,6,0]  

2 13 [3,4,8.0];[4,5,11];[5,6,8] [3,4,6.0];[4,5,4];[5,6,0]  

2 17 [3,4,6.0];[4,5,6];[5,6,8] [3,4,4.0];[4,5,4];[5,6,0]  

2 18 [3,4,5.0] [3,4,5.0]  

3 12 [3,4,4.0];[4,5,6] [3,4,6.0];[4,5,7]  

3 13 [3,4,4.0];[4,5,6] [3,4,6.0];[4,5,7]  

3 17 [3,4,4.0] [3,4,6.0]  

4 12 [3,4,7.0];[4,5,9] [3,4,7.0];[4,5,8]  

4 13 [3,4,7.0];[4,5,9] [3,4,7.0];[4,5,8]  
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Source Target Weight Dynamic Health Dynamic 

4 17 [3,4,8.0] [3,4,7.0]  

6 9 [3,4,4.0] [3,4,4.0]  

6 12 [3,4,9.0];[4,5,7];[5,6,8] [3,4,5.0];[4,5,4];[5,6,0]  

6 13 [3,4,9.0];[4,5,7] [3,4,5.0];[4,5,4]  

6 17 [3,4,11.0];[4,5,8];[5,6,8] [3,4,6.0];[4,5,4];[5,6,0]  

8 12 [3,4,4.0] [3,4,4.0]  

8 13 [3,4,4.0] [3,4,4.0]  

9 12 [3,4,4.0];[4,5,5] [3,4,4.0];[4,5,5]  

9 13 [3,4,4.0];[4,5,5] [3,4,4.0];[4,5,5]  

12 13 [3,4,12.0];[4,5,12];[5,6,9] [3,4,4.0];[4,5,4];[5,6,0]  

12 17 [3,4,5.0];[4,5,10];[5,6,7] [3,4,4.0];[4,5,4];[5,6,0]  

13 17 [3,4,4.0];[4,5,10];[5,6,7] [3,4,4.0];[4,5,4];[5,6,0]  

2 5 [4,5,10] [4,5,7]  

2 10 [4,5,11] [4,5,5]  

3 5 [4,5,4] [4,5,9]  

3 9 [4,5,7] [4,5,5]  

4 5 [4,5,7] [4,5,7]  

5 12 [4,5,9] [4,5,8]  

5 13 [4,5,9] [4,5,8]  

10 12 [4,5,10] [4,5,4]  

10 13 [4,5,10] [4,5,4]  

1 12 [5,6,8] [5,6,0]  
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Appendix G 

ACU-2 Project Data 

Project Stakeholders at the Identification Phase 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

3 DRE Director Engineering 1 

7 OPS Operations  1 

8 MTN Maintenance 1 

Evaluation of Stakeholder Connections at the Identification Phase 

Links 

  Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 3 1-3 3 3 2 1 1 1 1 1 

1 7 1-7 3 3 1 1 1 1 1 1 

1 8 1-8 3 3 1 1 1 1 1 1 

3 7 3-7 1 3 1 1 1 1 1 1 

3 8 3-8 1 1 1 1 1 1 1 1 

7 8 7-8 1 1 1 1 1 1 1 1 

Project Stakeholders at the Initiation Phase 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

3 DRE Director Engineering 1 

23 PRO Projects 1 

32 FNC Finance 1 

Evaluation of Stakeholder Connections at the Initiation Phase 

Links 

  Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 3 1-3 1 1 1 1 1 2 1 1 

1 23 1-23 3 3 1 2 2 2 1 1 

3 23 3-23 1 1 1 1 1 1 1 1 

3 32 3-32 1 1 1 1 1 1 1 1 

23 32 23-32 3 3 3 3 1 1 1 1 
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Project Stakeholders at the Development Phase 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

3 DRE Director Engineering 1 

7 OPS Operations  1 

8 MNT Maintenance  1 

11 RE Radiation Protection 1 

12 CS Conventional Safety 1 

13 CE Chemistry and Environment 1 

14 FE Field Engineering 1 

23 PRO Projects 1 

24 DSG Design 1 

28 CMO Contract Management Office 1 

32 FNC Finance 1 

33 SC Supply Chain 1 

36 BM Contractor 2 

46 RCPL Subcontractor 3 

Evaluation of Stakeholder Connections at the Development Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 3 1-3 1 1 1 1 1 1 1 1 

1 7 1-7 1 1 3 1 2 2 2 1 

1 8 1-8 1 1 1 1 2 2 2 1 

1 11 1-11 1 1 1 1 1 1 1 1 

1 12 1-12 1 1 1 1 1 1 1 1 

1 13 1-13 1 1 1 1 1 1 1 1 

1 14 1-14 1 1 1 1 1 1 1 1 

1 23 1-23 3 3 3 2 1 2 1 1 

1 24 1-24 3 3 3 2 1 1 1 1 

1 28 1-28 1 1 1 1 1 1 1 1 

3 7 3-7 1 1 1 1 1 1 1 1 

3 8 3-8 1 1 1 1 1 1 1 1 

3 11 3-11 1 1 1 1 1 1 1 1 

3 12 3-12 1 1 1 1 1 1 1 1 

3 13 3-13 1 1 1 1 1 1 1 1 

3 14 3-14 1 1 1 1 1 1 1 1 

3 23 3-23 1 1 1 1 1 1 1 1 

3 24 3-24 1 1 1 1 1 1 1 1 

3 28 3-28 1 1 1 1 1 1 1 1 

3 32 3-32 1 1 1 1 1 1 1 1 

3 33 3-33 1 1 1 1 1 1 1 1 

3 36 3-36 1 1 1 1 1 1 1 1 

3 46 3-46 1 1 1 1 1 1 1 1 

7 8 7-8 2 2 1 1 1 2 1 1 
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Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

7 11 7-11 1 1 1 1 1 1 1 1 

7 13 7-13 1 1 1 1 1 1 1 1 

7 23 7-23 1 2 1 1 1 1 1 1 

7 24 7-24 1 2 1 1 1 1 1 1 

8 23 8-23 3 3 2 2 1 1 1 1 

8 24 8-24 1 1 1 1 1 1 1 1 

11 12 11-12 1 1 1 1 1 1 1 1 

11 23 11-23 1 1 1 1 1 1 1 1 

12 23 12-23 1 1 1 1 1 1 1 1 

12 24 12-24 1 1 1 1 1 1 1 1 

13 23 13-23 1 1 1 1 1 1 1 1 

13 24 13-24 1 1 1 1 1 1 1 1 

14 23 14-23 1 1 1 1 1 1 1 1 

23 24 23-24 3 3 2 3 1 1 1 1 

23 28 23-28 1 1 1 1 1 1 1 1 

23 32 23-32 2 1 2 2 1 1 1 1 

23 33 23-33 3 3 3 2 3 2 1 1 

32 33 32-33 1 1 1 1 1 1 1 1 

Project Stakeholders at the Definition Phase 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

5 HFE Human Factors Engineering 1 

7 OPS Operations  1 

8 MNT Maintenance  1 

11 RE Radiation Protection 1 

12 CS Conventional Safety 1 

13 CE Chemistry and Environment 1 

14 FE Field Engineering 1 

15 ERO Emergency Response Organization 1 

23 PRO Projects 1 

24 DSG Design 1 

28 CMO Contract Management Office 1 

30 WC Work Control 1 

31 WA Work Assessing 1 

32 FNC Finance 1 

33 SC Supply Chain 1 

35 QLT Quality 1 

36 BM Contractor 2 

46 RCPL Subcontractor 3 
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Evaluation of Stakeholder Connections at the Definition Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 5 1-5 1 1 1 1 1 1 1 1 

1 7 1-7 3 3 2 1 2 2 1 1 

1 8 1-8 3 3 2 1 2 2 2 2 

1 11 1-11 1 1 1 1 1 1 1 1 

1 12 1-12 1 1 1 1 1 1 1 1 

1 13 1-13 1 1 1 1 1 1 1 1 

1 14 1-14 1 1 1 1 1 1 1 1 

1 23 1-23 3 3 3 3 2 3 2 3 

1 24 1-24 3 3 3 3 1 2 1 3 

5 24 5-24 1 1 1 1 1 1 1 1 

5 36 5-36 1 1 1 1 1 1 1 1 

7 8 7-8 3 3 3 3 3 3 3 1 

7 11 7-11 1 1 1 1 1 1 1 1 

7 13 7-13 1 1 1 1 1 1 1 1 

7 23 7-23 2 2 2 2 2 2 2 1 

7 24 7-24 2 2 2 2 2 2 2 1 

7 36 7-36 1 1 1 1 1 1 1 1 

8 11 8-11 1 1 1 1 1 1 1 1 

8 13 8-13 1 1 1 1 1 1 1 1 

8 23 8-23 2 2 2 2 2 2 2 1 

8 24 8-24 2 2 2 2 2 2 2 1 

8 36 8-36 1 1 1 1 1 1 1 1 

8 46 8-46 1 1 1 1 1 1 1 1 

11 23 11-23 1 1 1 1 1 1 1 1 

11 36 11-36 1 1 1 1 1 1 1 1 

12 23 12-23 1 1 1 1 1 1 1 1 

12 24 12-24 1 1 1 1 1 1 1 1 

12 28 12-28 1 1 1 1 1 1 1 1 

12 36 12-36 1 1 1 1 1 1 1 1 

12 46 12-46 1 1 1 1 1 1 1 1 

13 23 13-23 1 1 1 1 1 1 1 1 

14 23 14-23 1 1 1 1 1 1 1 1 

15 23 15-23 1 1 1 1 1 1 1 1 

23 24 23-24 3 3 3 3 3 3 3 3 

23 28 23-28 3 3 3 3 1 1 1 1 

23 30 23-30 1 1 1 1 3 3 3 3 

23 31 23-31 1 1 1 1 3 3 3 3 

23 32 23-32 1 1 1 1 1 1 1 1 

23 33 23-33 3 3 3 2 3 3 3 3 

23 35 23-35 1 1 1 1 1 1 1 1 

23 36 23-36 1 1 1 1 1 1 1 1 

24 35 24-35 1 1 1 1 1 1 1 1 

30 31 30-31 1 1 1 1 1 1 1 1 
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Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

30 36 30-36 1 1 1 1 1 1 1 1 

31 36 31-36 1 1 1 1 1 1 1 1 

32 36 32-36 3 3 3 1 2 2 2 3 

33 36 33-36 3 3 3 2 1 1 1 3 

35 46 35-46 1 1 1 1 1 1 1 1 

36 46 36-46 1 1 1 1 1 1 1 1 

Project Stakeholders at the Execution Phase 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

5 HFE Human Factors Engineering 1 

7 OPS Operations  1 

8 MNT Maintenance  1 

14 FE Field Engineering 1 

15 ERO Emergency Response Organization 1 

18 PSC Plant Status Control 1 

23 PRO Projects 1 

24 DSG Design 1 

28 CMO Contract Management Office 1 

30 WC Work Control 1 

31 WA Work Assessing 1 

32 FNC Finance 1 

33 SC Supply Chain 1 

36 BM Contractor 2 

46 RCPL Subcontractor 3 

Evaluation of Stakeholder Connections at the Execution Phase 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 5 1-5 1 1 1 1 1 1 1 1 

1 7 1-7 3 3 3 3 3 3 3 3 

1 8 1-8 3 3 3 3 3 3 3 3 

1 14 1-14 1 1 1 1 1 1 1 1 

1 23 1-23 1 1 1 1 1 1 1 1 

1 24 1-24 1 1 1 1 1 1 1 1 

1 36 1-36 2 2 2 1 3 3 3 3 

1 46 1-46 2 2 2 1 3 3 3 3 

5 7 5-7 1 1 1 1 1 1 1 1 

5 8 5-8 1 1 1 1 1 1 1 1 

5 23 5-23 1 1 1 1 1 1 1 1 

5 24 5-24 1 1 1 1 1 1 1 1 

5 36 5-36 1 1 1 1 1 1 1 1 

5 46 5-46 1 1 1 1 1 1 1 1 
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Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

7 8 7-8 3 3 3 3 3 3 3 1 

7 14 7-14 1 1 1 1 1 1 1 1 

7 15 7-15 1 1 1 1 1 1 1 1 

7 23 7-23 3 3 3 3 3 3 3 3 

7 24 7-24 2 2 2 2 2 2 2 3 

7 30 7-30 1 1 1 1 1 1 1 1 

7 31 7-31 1 1 1 1 1 1 1 1 

7 36 7-36 3 3 3 3 3 3 3 3 

7 46 7-46 3 3 3 3 3 3 3 3 

8 14 8-14 1 1 1 1 1 1 1 1 

8 15 8-15 1 1 1 1 1 1 1 1 

8 23 8-23 1 1 1 1 1 1 1 1 

8 24 8-24 1 1 1 1 1 1 1 1 

8 28 8-28 1 1 1 1 1 1 1 1 

8 30 8-30 1 1 1 1 1 1 1 1 

8 31 8-31 1 1 1 1 1 1 1 1 

8 36 8-36 3 3 3 3 3 3 3 3 

8 46 8-46 3 3 3 3 3 3 3 3 

14 23 14-23 3 3 3 3 3 3 3 3 

14 24 14-24 1 1 1 1 1 1 1 1 

14 28 14-28 3 3 3 3 3 3 3 3 

14 36 14-36 3 3 3 3 3 3 3 3 

14 46 14-46 3 3 3 3 3 3 3 3 

15 23 15-23 1 1 1 1 1 1 1 1 

15 28 15-28 1 1 1 1 1 1 1 1 

15 36 15-36 3 3 3 3 3 3 3 3 

15 46 15-46 3 3 3 3 3 3 3 3 

18 23 18-23 1 1 1 1 1 1 1 1 

18 36 18-36 3 3 3 3 3 3 3 3 

23 24 23-24 3 3 3 3 3 3 3 3 

23 28 23-28 3 3 3 3 3 3 3 3 

23 30 23-30 2 2 2 2 2 2 2 2 

23 31 23-31 2 2 2 2 2 2 2 2 

23 32 23-32 1 1 1 1 1 1 1 1 

23 33 23-33 2 2 2 2 2 2 2 2 

23 36 23-36 3 3 3 3 3 3 3 3 

23 46 23-46 3 3 3 3 3 3 3 3 

24 36 24-36 3 3 3 3 3 3 3 3 

24 46 24-46 3 3 3 3 3 3 3 3 

28 36 28-36 3 3 3 3 3 3 3 3 

28 46 28-46 3 3 3 3 3 3 3 3 

30 31 30-31 3 3 3 3 3 3 3 3 

30 32 30-32 3 3 3 3 3 3 3 3 

30 36 30-36 1 1 1 1 1 1 1 1 

31 36 31-36 1 1 1 1 1 1 1 1 



 

 179 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

31 46 31-46 1 1 1 1 1 1 1 1 

32 33 32-33 2 2 2 2 2 2 2 2 

32 36 32-36 2 2 2 2 2 2 2 2 

32 46 32-46 2 2 2 2 2 2 2 2 

33 36 33-36 3 3 3 3 3 3 3 3 

33 46 33-46 3 3 3 3 3 3 3 3 

36 46 36-46 3 3 3 3 3 3 3 3 

Project Stakeholders at the Closeout Phase 

Nodes 

Node ID Label Name Group 

1 SRE SRE 1 

7 OPS Operations  1 

8 MNT Maintenance  1 

17 TRN Training 1 

18 PSC Plant Status Control 1 

19 PRC Procedures 1 

23 PR Project Manager 1 

24 DSG Design 1 

32 FNC Finance 1 

33 SC Supply Chain 1 

36 BM Contractor 2 

46 RCPL Subcontractor 3 

Evaluation of Stakeholder Connections at the Closeout Phase 

Links 

 Workload Health 

Source Target Link ID W1 W2 W3 W4 H1 H2 H3 H4 

1 7 1-7 1 1 1 1 1 1 1 1 

1 8 1-8 1 1 1 1 1 1 1 1 

1 23 1-23 1 1 3 3 1 1 1 1 

1 24 1-24 1 1 1 3 1 1 1 1 

7 8 7-8 1 1 1 2 1 1 1 1 

7 12 7-12 1 1 1 1 1 1 1 1 

7 17 7-17 1 1 1 1 1 1 1 1 

7 18 7-18 1 1 1 1 1 1 1 1 

7 19 7-19 1 1 1 1 1 1 1 1 

7 23 7-23 1 1 1 3 1 2 1 1 

8 12 8-12 1 1 1 1 1 1 1 1 

8 17 8-17 1 1 1 1 1 1 1 1 

8 18 8-18 1 1 1 1 1 1 1 1 

8 19 8-19 1 1 1 1 1 1 1 1 

8 23 8-23 1 1 1 1 1 1 1 2 
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8 24 8-24 1 1 1 1 1 1 1 1 

17 19 17-19 1 1 1 1 1 1 1 1 

17 23 17-23 1 1 1 1 1 1 1 1 

17 36 17-36 1 1 1 1 3 3 3 1 

18 23 18-23 1 1 1 1 1 1 1 1 

19 23 19-23 1 1 1 1 1 1 1 1 

23 24 23-24 2 2 2 3 2 2 2 2 

23 32 23-32 1 1 1 1 1 1 1 1 

23 36 23-36 3 3 3 3 2 2 2 2 

23 46 23-46 3 3 3 3 3 2 2 2 

33 36 33-36 3 3 3 3 3 3 3 3 

36 46 36-46 1 1 1 1 1 1 1 1 
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Appendix H 

Additional Stakeholder Interface Network Representations 

 

Stakeholder interface network of Rail Line Project 
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Stakeholder interface network of Rail Line Project (re-evaluation) 

 



 

 183 

 

Stakeholder interface networks of Chemical Equipment Replacement project 
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Stakeholder Interface Networks of Detector Assemblies Replacement Project 
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Stakeholder Interface Networks of Control Positioners Replacement project 
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Stakeholder Interface Networks of ACU-1 project 
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Stakeholder Interface Networks of ACU-2 project 
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Glossary 

BIM (Building Information Modeling) - A digital representation of physical and functional 

characteristics of a facility and it serves as a shared knowledge resource for information about a facility 

forming a reliable basis for decisions during its life cycle from inception onward 

CII (Construction Industry Institute) - A consortium of many construction related firms from both 

the public and private arenas. They work together to improve business effectiveness and sustainability 

in construction industry. 

IA (Interface Agreement) - A document that present the communication and agreements between 

two Interface Stakeholders over an IP. 

IFC (Industry Foundation Classes) - An object-oriented building information model format used 

for describing, sharing, and exchanging building data among different software applications. 

IM (Interface Management) – The process of managing project related communications, project 

stakeholders’ responsibilities, project phases and physical entities. 

  IMS (Interface Management System) – A system that is used for management of communications, 

relationships, and deliverables among two or more interface stakeholders. 

IP (Interface Point) - A soft and/or hard contact point between two interdependent interface 

stakeholders 

LOD (Level of Development) - Detail level of the design elements in the BIM model. LOD 

definitions would change project to project. 

LRT (Light Rail Transit) - Transit service using rail cars singly or in short trains, powered by 

electricity usually supplied by overhead wires, operated on exclusive right-of-way, on non-exclusive 

rights-of-way (with grade crossings), or in mixed street traffic, with stations close together. 

MMI (Model Maturity Index) – Definitions that provided by CII to help measuring maturity of the 

model, by modeling discipline, as a function of what is modeled and the quality of the data used to 

create the model. 

MMRI (Model Maturity Risk Index) – A toolkit that provided by CII to determine the MMI levels 

for each model discipline by location in the model. 
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  MRT (Mass Rapid Transit) – A generic term for an urban public transit system using underground 

or elevated trains. 

MRT-MMI – Model Maturity Index definitions for Mass Rapid Transit Projects.  

MRT-MMI-AT- Engineering progress assessment tool to determine the MRT-MMI levels for each 

model discipline by location in the MRT project model. 

OCS (Overhead Contact System) – A railway electrification system that supplies electric power. 

 


