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Abstract

Even though the usual L2 image fidelity measurements, such as MSE and PSNR, char-
acterize the mean error for each pixel of the images, these traditional measurements are not
designed to predict human visual perception of image quality. In other words, the standard
L2-type optimization in the context of best approximation theory is not in accordance with
human visual system. To provide alternative methods of measuring image distortion per-
ceptually, the structural similarity image quality measure (SSIM) was established decades
ago.

In this thesis, we are concerned with constructing a novel class of metrics via intensity-
based measures, which accommodate a well-known psychological model, Weber’s model
of perception, by allowing greater deviations at higher intensity values and lower devia-
tions at lower intensity values. The standard Weber model, however, is known to fail at
low and high intensities, which has given rise to a generalized class of Weber models. We
have derived a set of “Weberized” distance functions which accommodate these generalized
models. Mathematically, we prove the existence and uniqueness of the density functions
associated with the measures which conform to generalized Weber’s model of perception.
Meanwhile, we consider the generalized Weber-based metrics as the optimization criteria
and implement them in best approximation problems, where we also prove the existence
and uniqueness of best approximations. We compare the results, which are theoretically
adapted to the human visual system, with best L2-based approximations. Using a func-
tional analysis point of view, we examine the stationary equations associated with the
generalized Weber-based metrics to arrive at the Fréchet derivatives of these metrics. Fi-
nally, we establish an existence-uniqueness theorem of best generalized Weber-based L2

approximations in finite-dimensional Hilbert spaces.
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Chapter 1

Introduction

In the context of mathematical imaging, one of the most interesting problems is to con-
struct the metrics or distance functions which can appropriately measure the similarity or
difference between two images. In practice, these metrics may be applied into many funda-
mental image processing problems, including, but not limited to, image quality assessment
[36, 37], image compression [35] and image reconstruction [39]. While there are some efforts
that demonstrate how to train a visibility metric using deep learning [38], mathematically,
there are few distance functions which are capable of describing how “close” the two im-
ages (or signals) are in terms of the human visual system (HVS). Fortunately, there is a
traditional law, so-called Weber’s Law, which accounts for the relation between the relative
change of stimulus and the background stimulus. In the application of our purpose, this
stimulus refers to the human vision sensation, which motivated us to establish the Weber’s
model of visual perception [7]. In [1], the authors presented one method of modifying the
usual L2 distance metric so that they are in accordance with Weber’s model of perception.
Moreover, it has been proved that the most natural “Weberized” image metric is the loga-
rithmic L1 distance, from which one may obtain the generalization of “Weberized” metrics,
i.e., logarithmic Lp distances [1].

The motivation of this thesis is to build up a novel class of metrics via intensity-based
measures, which accommodate Weber’s model of perception—allowing greater deviations
at higher intensity values and lower deviations at lower intensity values. Indeed, we have
generalized the Weber’s model of perception and derived the generalized form of “We-
berized” distance functions. In the meantime, we are extremely interested in the best
approximation problems in the finite dimensional Hilbert space, in which the optimization
is done with respect to the generalized Weber-based L2 distance functions and the struc-
tural similarity (SSIM) function. In the greyscale range space, we prove the existence and
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uniqueness of the density functions associated with the intensity-based measures, which
conform to generalized Weber’s model of perception, by a powerful functional equation:
Abel’s equation [40].

The remainder of this thesis is structured as follows. Chapter 2 contains the mathematical
background required to understand the representation of images as functions and imple-
ment the best image functions approximation. Weber’s model of perception, coming from
Weber’s law, is firstly presented. Then, we review some fundamental basics of signal and
image processing, including the discrete cosine transform (DCT), which was used to test
on experiments of image function approximation using different types of distance met-
rics. Furthermore, we provide an elementary acquaintance for two typical image fidelity
measurements—mean squared error (MSE) and structural similarity (SSIM).

In Chapter 3, we first review previous efforts to Weberize the distance functions which
involve the ratio between two image functions. We then show how distance functions can
be Weberized, in terms of a generalized Weber’s model of perception, by employing nonuni-
form measures on greyscale range space. In addition, the leading order terms of generalized
Weber-based distance functions are exploited in this chapter.

As for Chapter 4, we focus on the mathematical aspects of our problem, i.e., existence,
uniqueness and asymptotic behaviours of the density functions associated with intensity-
based measures conforming to generalized Weber’s model of perception. Essentially, the
Abel’s equation and iteration dynamics of the density functions play a key role in proving
the above mathematical properties of the density functions.

In Chapter 5, we present a rigorous analysis of the stationarity conditions on the gen-
eralized Weber-based and SSIM-based approximations. In addition, we investigate the
Frećhet derivatives of the distance functionals utilized in optimization algorithms in the
two aforementioned approximation methods.

Chapter 6 consists of the existence and uniqueness of the optimal solution for the best
approximation of non-negative functions via a standard L2 metric and a set of Weber-based
L2 metrics. In practice, we implement the Gauss-Newton algorithm to obtain a best affine
logarithmic L2 approximation in finite dimensional Hilbert space.

Finally, we summarize the contributions of this thesis and provide some possible exten-
sions of this work in Chapter 7.
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Chapter 2

Background

This chapter introduces some background information to help the readers to understand
mathematical preliminaries of this thesis. In what follows, we state Weber’s Law and then
describe Weber’s model of perception and its generalization. Furthermore, we show how
to represent the signals and images as 1-dimensional and 2-dimensional functions in terms
of both continuous and discrete versions. Last, but not least, a number of traditional
and well-known concepts related to signal and image processing, including discrete cosine
transform (DCT), mean squared error (MSE) and structural similarity (SSIM), have been
provided in this chapter.

2.1 Weber’s Model of Perception and its Generaliza-

tion

Weber’s law, a well-known perceptual law in the field of psychology and psychophysics,
was originally described by German physiologist Ernst Heinrich Weber [18], and was then
developed by his student Gustav Theodor Fechner [19]. According to Weber’s law, the
change of a human being’s sensitivity can be quantified by the background physical stimu-
lus. More specifically, the smallest change in the stimulus that produces a just noticeable
difference, i.e., ∆I, is proportional to the initial stimulus I, i.e.,

∆I

I
= k, (2.1)

where k, so-called Weber’s fraction, is a constant. Note that the stimulus can be in any of
the human sensations, e.g., vision, hearing, etc.
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In reality, all images such as greyscale and colour images are perceived by human vision.
With reference to the human visual system, we employ the effect of Weber’s law to establish
Weber’s model of visual perception: Consider a image function u(x) which represents the
intensity at a point x. Then the minimum perceived sensitivity ∆u is related to the
intensity u as follows,

∆u

u
= c, (2.2)

where c is a constant over a significant range of u-values. In practice, this standard We-
ber’s law in Eq. (2.2) has been applied in some image and visual processing methods,
such as total variation (TV) restoration [7], Mumford-Shah segmentation [8] and visual-
ization discrimination [9]. The main idea of these methods is to “Weberize” – modify
the image or visual processors so that they accommodate Weber’s model of perception.
However, in some situations, e.g., luminance and contrast discrimination [10, 11] and du-
ration discrimination [12], a generalized form of Weber’s law is employed to construct the
perception model. This motivates us to investigate on a generalized Weber’s model of per-
ception: Given a greyscale background intensity I > 0, the minimum change in intensity
∆I perceived by the human visual system (HVS) is related to I as follows,

∆I

Ia
= C, (2.3)

where a > 0 and C is constant, or at least roughly constant, over a significant range of
intensity values I. Note that the special case a = 1 corresponds to Weber’s standard model,
and the case a = 0 corresponds to an absence of Weber’s model. In essence, Eqs. (2.2)
and (2.3) show that the human visual system (HVS) is more (less) sensitive to changes at
which greyscale intensities (i.e., |u(x)|) are small (large) [1]. In other words, a generalized
Weber-based distance between two functions u and v should allow lesser deviations at lower
intensity values and greater deviations at higher intensity values.

2.2 Representation of Images as Functions

Realistically, a 2-dimensional (2D) image can be thought of as a function of two real spatial
variables x and y, say f(x, y), where x and y are continuous real variables defining points
of the image, and f(x, y), typically a real value, represents the intensity of the image at
point (x, y). Mathematically, f(x, y), i.e., the image function, is described as follows,

f : R2 → R. (2.4)
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As such, a number of tasks for analyzing images can be achieved by appropriate functional
analysis. For greyscale images, we may define the domain of f(x, y) as X ⊂ R2, which is
usually called the pixel space. Without loss of generality, we can assume that X = [a, b]2 ⊂
R2, and the range of f is the interval [A,B], where a, b, A and B are non-negative constants.
Then, the value A will represent black and B will represent white. An intermediate value,
i.e., A < f(x, y) < B, will represent some shaded grey value. In many studies, the greyscale
space [A,B] is normalized to the interval [0, 1].

Indeed, Eq. (2.4) states the continuous version of image functions. However, one most
often works with discrete image functions in practice, which are essentially interpreted as
digital images. A digital image is a 2D image g(x, y) described by a discrete 2D array of
intensity samples. Given any greyscale digital image, it is represented by an m by n matrix,
denoted as u = {uij}, where i and j are positive integers, and 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Moreover, each entry uij of the matrix represents the greyscale values at the (i, j) pixel.
The intensity range of the digital image is also quantized into a discrete values, which allow
the image to be easily stored in digital memory. As a popular case of 8-bit images, each
greyscale value is recorded as a number in the set {0, 1, 2, · · ·, 255}.

2.3 Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) was originally invented by Nasir Ahmed in 1972 for
image compression [20]. Since then, it has been further developed and widely applied in
many image and video compression standards such as JPEG and MPEG. In fact, the main
idea of discrete cosine transform is to describe the finite set of discrete data as a weighted
sum of cosine functions. Similar to discrete Fourier transform (DFT), DCT converts a
signal or image from the spatial domain to frequency domain. There actually exist a
few different versions of DCT, and the most commonly used form is so-called “DCT-II”
method, introducing the periodic extension of 2N -point data set f [n] which, in turn, is an
even extension of the N -point data set (f [0], f [1], · · ·, f [N − 1]) by reflecting with respect
to n = −1/2,

F [k] =
N−1∑
n=0

f [n] cos

(
π

N

(
n+

1

2

)
k

)
, k = 0, 1, · · ·, N − 1. (2.5)

Now, if we let the set of N -vectors uk, k = 0, 1, · · ·, N − 1, with components defined as
follows,

φk[n] = cos

(
π

N

(
n+

1

2

)
k

)
, n = 0, 1, · · ·, N − 1, (2.6)
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it is straightforward to obtain that,

〈φ0, φ0〉 = N, 〈φk, φk〉 =
N

2
, k 6= 0, (2.7)

and
〈φk, φl〉 = 0, k 6= l. (2.8)

In other words, the N -vectors φk form an orthogonal set in RN . From Eqs. (2.7) and (2.8),
by normalization process, it follows that the set of N -vectors, ek, defined below, forms an
orthonormal basis on RN :

ek[n] = λk

√
2

N
cos

(
π

N

(
n+

1

2

)
k

)
, n = 0, 1, · · ·, N − 1, (2.9)

where

λk =

{
1√
2
, k = 0

1, k 6= 0.
(2.10)

Given any f ∈ RN , we can express it as the linear expansion in terms of the orthonormal
basis ek, i.e.,

f =
N−1∑
n=0

ckek, (2.11)

where ck, usually called the Fourier coefficients of f , are given by

ck = 〈f, ek〉 =
N−1∑
n=0

f [n]λk

√
2

N
cos

(
π

N

(
n+

1

2

)
k

)
. (2.12)

With the understanding of Fourier transform, we consider the ck to define the discrete
cosine transform (DCT) of f , i.e.,

F [k] = λk

√
2

N

N−1∑
n=0

f [n] cos

(
π

N

(
n+

1

2

)
k

)
. (2.13)

By imposing the orthonormality of the DCT basis ek, the inverse discrete cosine transform
(IDCT), denoted as f [n], is derived as follows,

f [n] = λk

√
2

N

N−1∑
n=0

F [k] cos

(
π

N

(
n+

1

2

)
k

)
. (2.14)
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2.4 Mean Squared Error (MSE)

The mean squared error (MSE) is one of the most popular quantitative performance metrics
in the field of signal and image processing. Throughout, we consider a greyscale image
which is represented by an image function f : X → Rg, where X ⊂ R2 and Rg denotes the
greyscale range space that is positive and bounded, i.e., Rg = [A,B] ⊂ (0,∞). As such,
we may define the signal/image function space F(X) = {f : X → Rg | f is measurable}.
Moreover, the consequence of the boundedness of the image function f(x) is that F(X) ⊂
Lp(X) for all p > 1, where the Lp(X) function spaces are defined in the usual way. For
any p > 1, the Lp norm can be used to define a metric dp on F(X): For f, g ∈ F(X), we
have the following family p-metrics,

dp(f, g) = ‖f − g‖p =

[∫
X

[f(x)− g(x)]pdx

] 1
p

. (2.15)

Our primary concern is the approximation of functions in the case p = 2, i.e., the Hilbert
space, L2(X). In this case, the distance between two functions f, g ∈ L2(X) is given by

d2(f, g) = ‖f − g‖2 =

[∫
X

[f(x)− g(x)]2dx

] 1
2

. (2.16)

Notice that, technically speaking, the integrals of X presented above represent double
integrals since X ⊂ R2.

With reference to Section 2.2, we recall that digital images may be represented by
matrices. For any two n1×n2 matrices, e.g., u = {uij} and v = {vij}, the two dimensional
versions of the lp metric defined over vectors in Rn are given by,

dp(u, v) =

[
n1∑
i=1

n2∑
j=1

|uij − vij|pdx

] 1
p

. (2.17)

As a special case of the Euclidean metric, p = 2, we have

d2(u, v) =

[
n1∑
i=1

n2∑
j=1

[uij − vij]2dx

] 1
2

, (2.18)

which has been widely employed in image processing algorithms. Furthermore, the mean
squared error (MSE) between the two digital images u and v is expressed as follows,

MSE(u, v) =
1

n1n2

[d2(u, v)]2 =
1

n1n2

n1∑
i=1

n2∑
j=1

[uij − vij]2. (2.19)
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It then follows from the MSE that the root mean squared error (RMSE) is given by,

RMSE(u, v) =
√

MSE(u, v) =

[
1

n1n2

[d2(u, v)]2
]1/2

=

[
1

n1n2

n1∑
i=1

n2∑
j=1

[uij−vij]2
]1/2

. (2.20)

In fact, MSE and RMSE are useful and popular not only because they can characterize
the average error per pixel, which allows one to compare errors among the pairs of images
of different sizes, but also because it satisfies some desirable mathematical properties such
as convexity, symmetry and differentiability [21].

2.5 Structural Similarity (SSIM)

It is well-known [21, 41] that MSE and other L2-based distances do not measure visual
quality very well. The structural similarity (SSIM) [25] was proposed to measure image
fidelity in terms of structural information which is consistent with the human visual system,
as opposed to the usual L2 image distortion measurement, i.e., MSE. Over the last few
years, the SSIM has been intensively applied in a wide range of academic research related
to image and video processing, for instance, image compression and video streaming [22,
23, 24]. Moreover, the best approximation problem that involves SSIM-based optimization
criterion has been effectively investigated and developed in [17]. In essence, the “local
SSIM”, which represents the SSIM value between two local image patches, denoted as x
and y, measures the similarities of three elements of the patches: the similarity l(x, y) of
the local patch luminance or brightness, the similarity c(x, y) of the local patch contrasts,
and the similarity s(x, y) of the local patch structures [25]. Mathematically, l(x, y), c(x, y)
and s(x, y) are defined as follows,

l(x, y) =
2x̄ȳ + ε1

x̄2 + ȳ2 + ε1
, (2.21)

c(x, y) =
2sxsy + ε2
s2
x + s2

y + ε2
, (2.22)

s(x, y) =
sxy + ε3
sxsy + ε3

, (2.23)

where ε1, ε2 and ε3 are numerical stability coefficients which can be adjusted to keep
the denominators of the above equations away from zero and which accommodate the
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perception of the human visual system. With regard to Eqs. (2.21), (2.22) and (2.23), we
also have that

x̄ =
1

N

N∑
i=1

xi, (2.24)

s2
x =

1

N − 1

N∑
i=1

(xi − x̄)2, (2.25)

and

sxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ), (2.26)

which denote mean values, variances and covariances of local image patches x and y,
respectively. In practice, the local SSIM index between x and y is usually expressed as the
product of l, c and s with appropriate powers. In the special case of ε2 = 2ε3, the SSIM
function, S(x, y), becomes a product of two terms,

S(x, y) =

[
2x̄ȳ + ε1

x̄2 + ȳ2 + ε1

][
2sxy + ε2
s2
x + s2

y + ε2

]
= S1(x, y)S2(x, y). (2.27)

The SSIM function presented in the above equation is indeed the primary form that is
being employed and discussed in this thesis.

Once again, let us consider x, y ∈ RN as two N -dimensional signal or image blocks, and
the SSIM function in Eq. (2.27). Notice that −1 ≤ S(x, y) ≤ 1, and S(x, y) = 1 implies
that x = y. S(x, y) = S(y, x) indicates that the SSIM function is symmetric with respect
to the signals or image blocks. If we look closer at the luminance component, i.e., l(x, y),
of SSIM function, it may be rewritten as follows,

l(x, y) =
2(ȳ/x̄) + ε′1

1 + (ȳ/x̄)2 + ε′1
, (2.28)

depending upon the ratio ȳ/x̄, where ε′1 = ε1/x̄
2. Consequently, l(x, y) shows the potential

of accommodating Weber’s model of perception. Let us consider y as an approximation of
x and described by the following form,

y = x+ r, (2.29)

where r denotes the residual term of the approximation, i.e., y, of x. If we let ∆x̄ represents
the mean value of the residue r, it then follows that

ȳ = x̄+ ∆x̄. (2.30)

9



As such, rewriting Eq. (2.28) yields

l(x, y) =
2(1 +

∆x̄

x̄
) + ε′1

1 + (1 +
∆x̄

x̄
)2 + ε′1

, (2.31)

which is consistent with Weber’s model of perception [25], according to Eq. (2.2). In other
words, if the ratio ∆x̄/x̄ is a constant, then for large x̄, greater deviation in ȳ would be
assigned in order to keep the luminance measurement, i.e., l(x, y), as a constant, where
l(x, y) is somehow relevant to the just noticeable difference with respect to luminance.

As mentioned earlier, SSIM function S(x, y) is a similarity function: If x and y are
“close”, then S(x, y) is close to 1. A dissimilarity measure may be defined for S(x, y)
as follows:

T (x, y) = 1− S(x, y). (2.32)

If x and y are “close”, then T (x, y) is close to zero. Note that 0 ≤ T (x, y) ≤ 2. Finally, let
us define the following zero-mean blocks,

x0 = x− x̄I, y0 = y − ȳI =⇒ x̄0 = ȳ0 = 0, (2.33)

where I represents the identity matrix. Then, we may obtain

||x0 − y0||2 =
N∑
k=1

(x0,k − y0,k)
2 = (N − 1)[s2

x0
+ s2

y0
− 2sx0y0 ]. (2.34)

After a little manipulation, it follows from Eq. (2.27) that

1− S2(x0, y0) =
1

N − 1

||x0 − y0||2

s2
x0

+ s2
y0

, (2.35)

As such, the function,
0 ≤ T (x0, y0) ≤ 2, (2.36)

which can be viewed as a variance-weighted squared L2 distance function [25], showing a
connection between the SSIM-based approximation and the regular L2 approximation.
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Chapter 3

Intensity-based Measures in
Generalized Weber’s Model of
Perception

In this chapter, we first review early research effort on ”Weberizing” the distance between
two signal or image functions u and v. The ”Weberization” is incorporated with this
distance function by considering a ratio of u and v. Then, we examine a novel method
of producing ”Weberized” distance functions, which are motivated by generalized Weber’s
model of perception, by employing appropriate nonuniform measures on greyscale range.
In the end, we show the equivalence of the L2 metric and the logarithmic L2-based metric,
from which we cannot generate the normed signal or image function spaces.

3.1 Previous Work on Weberizing Distance Functions

First of all, let us concisely set up some basic mathematical ingredients of our formalism
[1]:

1. The base (or pixel) space X ⊂ R on which our signals/images are supported. With-
out loss of generality, we can assume that X = [0, 1] for the case of signal functions. For
images, X = [0, 1]2. In digital image processing, X can be the set of pixel locations (i, j),
1 ≤ i ≤ n1, 1 ≤ j ≤ n2.
2. The greyscale range Rg = [A,B] ⊂ (0,∞).
3. The signal/image function space F(X) = {u : X → Rg | u is measurable}. Note
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that from our definition of the greyscale range Rg, u ∈ F(X) is positive and bounded, i.e.,
0 < A ≤ u(x) ≤ B <∞ for almost every (a.e.) x ∈ X. A consequence of this boundedness
is that F(X) ⊂ Lp(X) for all p > 1, where the Lp(X) function spaces are defined in the
usual way. For any p > 1, the Lp norm can be used to define a metric dp on F(X): For
u, v ∈ F(X), dp(u, v) = ‖u− v‖p. Our primary concern is the approximation of functions
in the case p = 2, i.e., the Hilbert space, L2(X). In this case, the distance between two
functions u, v ∈ L2(X) is given by

d2(u, v) = ‖u− v‖2 =

[∫
X

[u(x)− v(x)]2dx

] 1
2

. (3.1)

In what follows, we consider v(x) to be an approximation to u(x) and let {φk}∞k=1 denote
a set of basis functions (e.g., complete orthonormal basis) in L2[a, b]. If v(x) is a linear
combination of basis functions, i.e., v(x) =

∑N
k=1 ckφk(x), the usual squared L2 error is

given by

∆2
N =

∫ b

a

[
u(x)−

N∑
k=1

ckφk(x)

]2

dx. (3.2)

In the case that the {φk}∞k=1 form a complete orthonormal basis in the Hilbert space of
functions L2[a, b], it is well-known that ∆2

N is minimized when

ck = 〈u, φk〉, (3.3)

the so-called ”Fourier coefficients” of u, for 1 ≤ k ≤ N .
Generally, a Weberization of the L2 metric can be achieved when we incorporate some

nonnegative intensity-based weight function, denoted as g(u(x), v(x)), which is dependent
upon one or both of the image functions u(x) and v(x) at each pixel, inside the L2-based
distance function in Eq. (3.2). Then, we obtain a Weberized L2 distance function as follows
[1, 2],

W 2
N =

∫ b

a

g(u(x), v(x))

[
u(x)−

N∑
k=1

ckφk(x)

]2

dx. (3.4)

In fact, one simple and effective method of Weberizing the L2-based metric is to divide
the difference |u(x) − v(x)| by |u(x)| or |v(x)|. As a special case, when g(u(x), v(x)) =
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g(u(x)) = u(x)−2, Eq. (3.4) becomes

W 2
N =

∫ b

a

1

u2(x)

[
u(x)−

N∑
k=1

ckφk(x)

]2

dx

=

∫ b

a

[
1−

∑N
k=1 ckφk(x)

u(x)

]2

dx,

(3.5)

where the function u(x)−2 denotes the intensity-based weight function, in which regions of
higher (lower) intensity values have a lower (higher) weight, which conforms to Weber’s
model of perception. This particular distance function involves the ratio of the reference
function u and its approximation v. As examined in [1], Eq. (3.5) is convenient to work
with in terms of some best approximation problems. Note, however that, strictly speaking,
it is not a metric since the weighting function g(u(x)) is not symmetric in its argumentation.
This complication was addressed in [1]. Furthermore, let us analyze the following distance
function,

W 2
N =

∫ b

a

g(u(x))

[
u(x)−

N∑
k=1

ckφk(x)

]2

dx,

which is a general form of Eq. (3.5). To determine the optimal coefficients that minimize
W 2
N in Eq. (3.4), we impose the stationarity conditions, which is given by

∂W 2
N

∂cp
= −2

∫ b

a

g(u(x))

[
u(x)−

N∑
k=1

ckφk(x)

]
φp(x)dx = 0, 1 ≤ p ≤ N. (3.6)

After some rearrangement, we obtain

N∑
k=1

ck

∫ b

a

g(u(x))φk(x)φp(x)dx =

∫ b

a

g(u(x))u(x)φp(x)dx, (3.7)

which represents a linear system of equation in the unknowns ck having the form

Ac = b, (3.8)

where

akp =

∫ b

a

g(u(x))φk(x)φp(x), bp =

∫ b

a

g(u(x))u(x)φp(x), 1 ≤ p, k ≤ N. (3.9)
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For each p ∈ {1, 2, ..., N}, we multiply both sides of Eq. (3.7) by cp and sum over all p to
obtain following results,∫ b

a

g(u(x))v2(x)dx =

∫ b

a

g(u(x))u(x)v(x)dx, (3.10)

which shows the weighted average of v2(x) is equal to weighted average of u(x)v(x) when
the ”Weberized” L2 error function in Eq. (3.4) is minimized. And Eq. (3.10) is named
weighted average equation of ”Weberized” L2-based distance function.

3.2 Generalized Weber’s Law and Nonuniform Mea-

sures on Greyscale Range Space

In this section, we introduce the method of constructing generalized Weber-based distance
functions between u(x) and v(x) in the signal/image function space F(X) by using nonuni-
form measures that are supported on greyscale range space Rg = [A,B]. This idea was
introduced in [4] to construct the metrics to deal with image function approximation, and
employed in [1] to show the logarithmic L1 metric between two functions u and v accommo-
dates Weber’s standard model of perception. Note Weber’s standard model of perception
refers to Eq. (2.3), where a = 1.

3.2.1 Nonuniform Greyscale Measures and Logarithmic Metrics

As before, we denote the base space as X = [a, b]. Now, let us consider two functions u, v
and define two subsets of X over the greyscale range space as follows [4],

Xu = {x ∈ X|u(x) ≤ v(x)}, Xv = {x ∈ X|v(x) ≤ u(x)}. (3.11)

Note that X = Xu∪Xv, and a possible situation is sketched in the figure below [3]. In usual
Lp metrics for 1 ≤ p ≤ ∞, the contribution of each strip in Figure 3.1 to the integral will
be an appropriate power of |u(x)−v(x)|, which implies a uniform weighting or measure on
the intensity axis. From the nonuniform measures, however, the “distance” between such
two image functions u(x) and v(x) is not necessarily |u(x) − v(x)| but rather the sizes of
the intervals (u(x), v(x)] ⊂ Rg and (v(x), u(x)] ⊂ Rg, i.e., ν(u(x), v(x)] or ν(v(x), u(x)], as
assigned by a measure ν that is supported on the greyscale interval Rg. Then, the distance
between u and v associated with the measure ν is defined in the following,

D(u, v; ν) =

∫
Xu

ν(u(x), v(x)]dx+

∫
Xv

ν(v(x), u(x)]dx. (3.12)
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Figure 3.1: Sketch of two nonnegative greyscale functions u(x) and v(x) with strips of
width dx that will contribute to the distance D(u, v; ν).

For convenience, we assume that the greyscale measure ν is sufficiently regular, i.e., it
can be defined in terms of a continuous, nonnegative density function ρ(y) : Rg → [0,∞)
as follows,

ν(y1, y2] =

∫ y2

y1

ρ(y) dy = P (y1)− P (y2), (3.13)

where (y1, y2] ⊂ Rg and P ′(y) = ρ(y), i.e., P (y) is an antiderivative of ρ(y). The distance
function in Eq. (3.12) is then given by

D(u, v; ν) =

∫
Xu

[∫ v(x)

u(x)

ρ(y)dy

]
dx+

∫
Xv

[∫ u(x)

v(x)

ρ(y)dy

]
dx

=

∫
Xu

[P (v(x))− P (u(x))] dx+

∫
Xv

[P (u(x))− P (v(x))] dx

=

∫
X

|P (u(x))− P (v(x))|dx.

(3.14)
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Example 3.2.1: In the special case that ν is the uniform Lebesgue measure on Rg, to be
denoted as mg, ρ(y) = 1 and P (y) = y. From Eq. (3.14), we obtain,

D(u, v;mg) =

∫
Xu

[v(x)− u(x)] dx+

∫
Xv

[u(x)− v(x)] dx =

∫
X

|u(x)− v(x)|dx, (3.15)

which is the L1 distance between u and v.

Importantly, it now remains to define what we mean by a density function conforming to
Weber’s model of perception [13].

Definition 3.2.1: Given a > 0 and the lowest possible intensity value I0, suppose that
Weber’s model of perception in Eq. (2.3) holds for a particular value of C > 0 and for all
intensities I ≥ I0, the density function ρa(y) is said to conform to Weber’s model if the
following condition is satisfied for all I ≥ I0,

νa(I, I + ∆I) =

∫ I+∆I

I

ρa(y)dy = K, (3.16)

where ∆I = CIa is the minimum perceived change in intensity at I according to Eq. (2.3),
and K > 0 is a constant.

For this chapter, we assume there exists such a density ρ(y) function associated with
the measure ν, which accommodates Weber’s generalized model of perception, without
presenting any mathematical details. The rigorous proof of the existence and uniqueness
of the density function ρ(y) will be given in Chapter 4.

In terms of perception, Eq. (3.16) introduces an invariance result, which may be in-
terpreted graphically with respect to the density function ρa(y) in Figure 3.2 [13]. For
the graph, K represents the “visual accumulation” of intensity that contributes to human
visual perception. Essentially, for any a > 0, our goal is to find density functions ρa(y)
which conform to Weber’s model of perception referring to Eq. (2.3). In [1], the important
result for Weber’s standard model, a = 1, states the following:

Theorem 3.2.1: The measure ν on Rg which accommodates Weber’s standard model of
perception, a = 1 in Eq. (2.2), over the greyscale space R ⊂ [0,∞) is, up to a normalization
constant, defined by the continuous density function ρ1(y) = 1/y. For any two greyscale
intensities I1, I2 ∈ Rg, ∫ I1+∆I1

I1

1

y
dx =

∫ I2+∆I2

I2

1

y
dx, (3.17)
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Figure 3.2: Graphical representation of the invariance result in Eq. (3.16). Area of A =
Area of B.

which implies
ν(I1, I1 + ∆I1) = ν(I2, I2 + ∆I2) (3.18)

according to Definition 3.2.1.

Example 3.2.2: In the case of a = 1, ρ1(y) =
1

y
, and P (y) = ln y, which is the anti-

derivative of ρ1(y). From Eq. (3.14), we have

D(u, v; ν) =

∫
Xu

[∫ v(x)

u(x)

1

y
dy

]
dx+

∫
Xv

[∫ u(x)

v(x)

1

y
dy

]
dx

=

∫
X

| lnu(x)− ln v(x)| dx

= ‖ lnu(x)− ln v(x)‖1.

(3.19)

Theoretically, Eq. (3.19) is the distance function to apply in any approximation scheme
which is better suited to Weber’s standard model of perception. Even though the develop-
ment of L1 minimization algorithms have been steadily promoted by compressive sensing
[5] and stochastic methods [6], it is still difficult to work out the best approximated function
v(x) by minimizing the logarithmic L1 metric in Eq. (3.19), due to the nondifferentiability
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of D(u, v; ν) with respect to the unknown coefficients in v, and computational inefficiency
of the L1 optimization algorithms. For convenience, we consider more usual and practical
L2-based analogues denoted as dlog(u, v), which is given by

dlog(u, v) =

[∫
X

[log u(x)− log v(x)]2 dx

] 1
2

= ‖ log u(x)− log v(x)‖2.

(3.20)

By squaring Eq. (3.20) and expanding v(x) as the linear combination of a set of basis
functions {φk}∞k=1, we obtain the standard logarithmic L2-based metric in the following,

d2
log(u, v) =

∫
X

[
log u(x)− log(

N∑
k=1

ckφk(x))

]2

dx. (3.21)

To minimize the squared distance function in Eq. (3.21), we impose the stationarity
condition on it and yield

∂dlog(u, v)

∂cp
= −2

∫
X

[
log u(x)− log(

N∑
k=1

ckφk(x))

]
φp(x)∑N

k=1 ckφk(x)
dx = 0, (3.22)

where 1 ≤ p ≤ N . If we let c∗(c∗1, c
∗
2, ..., c

∗
N) be a solution to Eq. (3.22) for any 1 ≤ p ≤ N ,

and multiply both sides of
∂dlog(u,v)

∂cp
by c∗p then sum all equations, we have

∫
X

[
log u(x)− log(

N∑
k=1

c∗kφk(x))

] ∑N
k=1 c

∗
kφk(x)∑N

k=1 c
∗
kφk(x)

dx = 0. (3.23)

If we let X = [a, b], rewriting the above equation yields

1

b− a

∫ b

a

log u(x)dx =
1

b− a

∫ b

a

log(
N∑
k=1

c∗kφk(x))dx, (3.24)

which may be viewed as a weighted average equation of logarithmic L2-based metric.
Namely, the left hand side (LHS) of Eq. (3.24) is the mean value of log u(x) over [a, b], and
the right hand side (RHS) represents the mean value of log(

∑N
k=1 c

∗
kφk(x)). Note that this

type of result does not occur in the normal/standard “best L2-based approximation” cases.
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Special case 1: Constant logarithmic L2 approximation

When X = [a, b] and v(x) = c, which is an arbitrary constant, Eq. (3.21) then becomes

d2
log(u, v) =

∫ b

a

[
log u(x)− log(c)

]2

dx. (3.25)

Then, the best approximation of u(x) is simply

c = exp

[
1

b− a

∫ b

a

log u(x)dx

]
(3.26)

by solving Eq. (3.24).
In fact, Eq. (3.22) is a nonlinear system of equations, which makes the approximation

problem more complicated even though we can exploit a number of effective numerical
algorithms to solve it appropriately. To simplify the complexity, a modified logarithmic
L2-based distance function was introduced as follows [1, 2],

d2
log(u, v) =

∫
X

[
log u(x)−

N∑
k=1

ckφk(x)

]2

dx. (3.27)

Now, the linear system of equations can be easily solved to yield the optimal coefficient
c∗ = (c∗1, · · ·, c∗N), when we impose the stationarity condition on Eq. (3.21). As such, the
best modified logarithmic L2 approximation of u(x) is given by

v(x) = exp

[
N∑
k=1

c∗kφk(x)

]
. (3.28)

Of course, one might notice the cost of simplification is that we have lost some “Weberiza-
tion” information in the approximate function (i.e., v(x)) over the distance function (not
a metric) in Eq. (3.27).

3.2.2 Generalized Weber-based Metrics

From Theorem 3.2.1, the density function, ρ1(y) = 1/y, is a decreasing function, which
assigns lesser (more) weight to higher (lower) intensities as we would expect in a Weberized
distance function. That being said, we would expect the density functions ρa(y), accom-
modating Weber’s generalized model of perception, a > 0 and a 6= 1, to be decreasing
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functions of intensity y as well. Given that ρ1(y) = 1/y, one might guess for any a > 0,
the density function ρa(y) is equal to 1/ya. Now, based on Definition 3.2.1 and Figure
3.2, let us prove that ρa(y) ' 1/ya is the leading order term, as y → ∞, of the density
function, which accommodates Weber’s generalized model of perception referring to Eq.
(2.3). Consider the problem: Given any intensity I ≥ I0 (i.e., the lowest intensity value),
and an a > 0, find the leading-order behaviour of the density function ρa(y) so that

F (I) =

∫ I+CIa

I

ρa(y)dy = K, (3.29)

where K is a constant. By assuming ρb(y) = 1/yb, we have

F (I) =

∫ I+CIa

I

1

yb
dy = K. (3.30)

Differentiating both RHS and LHS of Eq. (3.30) with respect to I, we obtain

1 + aCIa−1

Ib(1 + CIa−1)b
=

1

Ib
. (3.31)

After multiplying Ib on both sides, the relation in Eq. (3.31) becomes

1 + aCIa−1 = (1 + CIa−1)b. (3.32)

Note that Eq. (3.32) is automatically satisfied when a = 1. As we show later (Chapter 4),
no such density function of the form ρ(y) = 1/ya exists for a > 1 so here we consider only
the case 0 < a < 1. Furthermore, since Weber’s law breaks down at very low intensities,
we are primarily interested in the high-intensity range, i.e., the asymptotic case x → ∞.
In this special case, Ia−1 → 0 as I → ∞. A binomial expansion of the right hand side of
Eq. (3.32) yields

(1 + aCIa−1) ≈ 1 + bCIa−1 , as I →∞ . (3.33)

Using this result in (3.32) implies that

aCIa−1 = bCIa−1 , (3.34)

which implies that a = b. Therefore, for any 0 < a < 1, ρ1
a(y) = y−a is the leading-order

behaviour of density functions, which obeys the invariance condition of Weber’s generalized
model of perception, as y →∞. From Fig. 3.2, for any two greyscale intensities I1, I2 ≥ I0,
we have ∫ I1+∆I1

I1

ρ1
a(y)dy '

∫ I2+∆I2

I2

ρ1
a(y)dy, (3.35)
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where ∆I1 = CIa1 and ∆I2 = CIa2 are the minimum perceived changes in intensity at I1

and I2, respectively [3].
Now, for 0 < a < 1, if the leading-order approximation of the density functions, i.e.,

ρ1
a(y) = y−a, is substituted into Eq. (3.12) and (3.13), we derive the metrics between image

functions produced by the nonuniform measures, which accommodates Weber’s generalized
model of perception, up to a multiplicative constant, as follows,

D(u, v; ν) =

∫
Xu

[∫ v(x)

u(x)

1

ya
dy

]
dx+

∫
Xv

[∫ u(x)

v(x)

1

ya
dy

]
dx

=

∫
Xu

(v−a+1 − u−a+1) dx+

∫
Xv

(u−a+1 − v−a+1) dx

=

∫
X

|u−a+1 − v−a+1|dx.

(3.36)

For a = 0, i.e., the absence of the Weber’s model, Eq. (3.36) still holds, corresponding to
Eq. (3.15). In this case, ρ0(y) = 1, and the measure ν0 = mg, i.e., Lebesgue measure, be-
comes uniform all over the greyscale range Rg, which suggests that all greyscale intensities
are weighted equally in computing the distances between image functions. In summary,
along with Eq. (3.19), the metrics between image functions yielded by the measures, which
are associated with the density functions, are expressed in the following,

a = 0 : D0(u, v;mg) =

∫
X

|u(x)− v(x)|dx.

0 < a < 1 : Da(u, v; νa) =

∫
X

|u(x)−a+1 − v(x)−a+1|dx.

a = 1 : D1(u, v; ν1) =

∫
X

| lnu(x)− ln v(x)| dx.

(3.37)

The standard and generalized ”Weberization” is essentially introduced in D1(u, v; ν1) and
Da(u, v; νa), respectively, which tolerate greater differences at higher intensity values and
lower differences at lower intensity values. Moreover, as a increases, the density functions
with the leading order behaviour, i.e., ρ1

a(y) = 1/ya, decrease more rapidly with respect
to the intensity values y. In the meanwhile, one might wonder what the distance function
Da(u, v; νa), conforming to Weber’s generalized model of perception, looks like for a > 1.
In that case, we shall show the asymptotical form of density functions ρa(y) is not 1/ya but
rather some other function involving the logarithm, and the relevant details are presented
in Chapter 4.
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3.2.3 Equivalence of Weber-based Metrics and Usual L2 Metric

By some analysis, we discovered the distance function in Eq. (3.20) is a logarithmic L2-
based metric, but this metric does not come from a normed space. To prove the claims,
we first need to show the distance function in Eq. (3.20) is a metric. At first glance,
dlog(u, v) is a metric because we are essentially employing the logarithm functions that are
continuous and bijective on usual L2 metric. On the other hand, we can prove dlog(u, v)
is a metric by the definition. It is evident that dlog(u, v) ≥ 0 and dlog(u, v) = dlog(v, u)
for all u, v ∈ F(X) ⊂ L2, where F(X) is the signal/image function space as before. Also,
dlog(u(x), v(x)) = 0 if and only if u(x) = v(x), since dlog(u(x), v(x)) = 0 ⇐⇒ log(u(x)) =
log(v(x)) a.e.⇐⇒ u(x) = v(x) a.e.. For triangle inequality, we let

U(x) = log(u(x)), V (x) = log(v(x)), x ∈ X, (3.38)

where X is some base or pixel space. Clearly, U(x), V (x) ∈ F(X) ⊂ L2 as well. Then, we
have

d2(U(x), V (x)) ≤ d2(U(x),W (x)) + d2(W (x), V (x)) (3.39)

for any W (x) = log(w(x)) ∈ F(X), where d2 represents the usual L2 metric. This implies

dlog(u(x), v(x)) ≤ dlog(u(x), w(x)) + dlog(w(x), v(x)). (3.40)

Hence, dlog(u, v) is a metric. The second part of the proof is to show we cannot define a
norm which generates the metric in Eq. (3.20), i.e., dlog(u, v). If we assume that a norm
which is associated with the logarithmic L2 metric in Eq. (3.20) exists, then one relation
between dlog(u, v) and this norm, denoted as ‖ · ‖log, is as follows,

‖u− v‖log = dlog(u(x), v(x))

=

[∫
X

[log u(x)− log v(x)]2 dx

] 1
2

.
(3.41)

Then, there exists a function w(x) = u(x) + v(x) ∈ F(X) ⊂ L2 such that

‖w − v‖log = dlog(w(x), v(x))

=

[∫
X

[logw(x)− log v(x)]2 dx

] 1
2

.
(3.42)
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By plugging w = u+ v into Eq. (3.27), we obtain

‖u+ v − v‖log = dlog(u(x) + v(x), v(x))

=

[∫
X

[log(u(x) + v(x))− log v(x)]2 dx

] 1
2

=

[∫
X

[
log

(
1 +

u(x)

v(x)

)]2

dx

] 1
2

.

(3.43)

The metric space indicated as (dlog(u, v),F(X) that we are interested in is a restricted
linear space, i.e., we can add and subtract elements in this space provided that they satisfy
positivity condition. Thus, Eq. (3.43) becomes

‖u‖log =

[∫
X

[
log

(
1 +

u(x)

v(x)

)]2

dx

] 1
2

. (3.44)

which is a contradiction, since ‖u‖log is supposed to be a special norm of u(x) without
incorporating with the function v(x) . Therefore, we have also proved the claim that the
logarithmic L2 metric in Eq. (3.20) is not from a normed space, which completes the
proof. Indeed, the reason why we care about the claim is because we aim to determine
whether there is a unique optimal solution, i.e., unknown coefficients, when we minimize
the distance function in Eq. (3.20). Unfortunately, the above result implies that we cannot
use the theory of best approximation in normed spaces and strictly normed spaces. As
such, the existence and uniqueness of the minimizer in terms of dlog(u, v) is not guaranteed
by the usual normed space and strictly normed space. Nevertheless, we are still able to
establish the existence and uniqueness theorem by some discussion which will be shown in
detail in Chapter 6.

Now, suppose that our space F [a, b] is composed of integrable functions such that

1 < A ≤ u(x) ≤ B (3.45)

for a.e. x ∈ [a, b]. Note we let A > 1 to ensure the positivity of log(u(x)). Before proving
the equivalence of standard L2 and logarithmic L2 metrics, let us recall the Mean Value
Theorem:

Theorem 3.2.2: Let g : [A,B]→ R be continuous on [A,B] and differentiable on (A,B).
Then for any y1, y2 ∈ [A,B], there exists a c between y1 and y2 such that

g(y2)− g(y1) = g′(c)(y2 − y1). (3.46)
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Since the logarithm function, i.e., g(u) = log(u), is continuous and differentiable on
[A,B], it follows, by the Mean Value Theorem, that for a.e. x ∈ [a, b],

log u(x)− log v(x) =
1

c
(u(x)− v(x)), (3.47)

where c lies between u(x) and v(x). Since A < c < B, we arrive at the result,

1

B
d2(u, v) ≤ dlog(u, v) ≤ 1

A
d2(u, v). (3.48)

Notice that the equality in Eq. (3.48) is justified in the special case that u(x) = v(x).
Therefore, we show standard logarithmic L2-based metric is equivalent to L2 metric, i.e.,
the convergence in standard logarithmic L2 metric implies the convergence in L2 metric.

Indeed, for any fixed a ∈ [0, 1), the generalized Weber-based L2 metrics are given by

da(u, v; νa) =

[ ∫
X

[u(x)−a+1 − v(x)−a+1]2dx

] 1
2

, (3.49)

where u, v ∈ F (X) ⊆ L2 ⊂ Rg, A ≤ u(x) ≤ B for a.e. x ∈ X = [ã, b̃]. Note that ã (or
b̃) is a nonnegative constant, which is distinct from Weber’s component a. By Theorem
3.2.2, we shall show the generalized Weber-based L2 metrics are equivalent to the usual L2

metric. Imposing the Mean Value Theorem on the antiderivatives of the density functions,
i.e., Pa(y) = y−a+1 on [A,B] with A > 0, yields

u(x)−a+1 − v(x)−a+1 =
1− a
ca

(u(x)− v(x)), for a.e. x ∈ [ã, b̃], (3.50)

where c lies between u(x) and v(x). Since A < c < B, we can derive the following
inequalities for a.e. x ∈ [ã, b̃],

1− a
Ba
|u(x)− v(x)| ≤ |u(x)−a+1 − v(x)−a+1| ≤ 1− a

Aa
|u(x)− v(x)|. (3.51)

By integrating x over [ã, b̃], we find that

1− a
Ba

d2(u, v) ≤ da(u, v; νa) ≤
1− a
Aa

d2(u, v), (3.52)

where 0 < a < 1, and d2 denotes the usual L2 norm. This implies the equivalence of L2

and generalized Weber-based L2 metrics. Similarly, we claim that the usual Lp metrics are
equivalent to the generalized Weber-based Lp metrics, where 1 ≤ p ≤ ∞. The proof of the
claim, simply following the above process described by Eqs. (3.49-3.51), is omitted here.
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3.3 Function Approximation using Generalized Weber-

based Metrics

3.3.1 Introduction

Now, we let two nonnegative greyscale functions u(x) and v(x) be a reference function and
an approximation to u(x), respectively. Given the set {φk}Nk=1 that is linearly independent
or orthogonal over the base space X, the approximation v(x) is normally expressed as the
linear combination of N -basis, i.e., φ1, · · ·, φN , in the following,

v(x) =
N∑
k=1

ckφk(x). (3.53)

Given an image function u(x) ∈ F(X) on X, where F(X) is defined in the following,

F(X) = {u : X → Rg | u is measurable}, (3.54)

our goal is to search for the best approximation of u(x) in the metric space (F(X), Da(u, v; νa))
for any 0 < a < 1. To obtain the optimal solution, i.e., the best approximation denoted as
v(x), which corresponds to Eq. (3.53), we shall minimize the following distance function,

Da(u, v; νa) =

∫
X

|u(x)−a+1 − (
N∑
k=1

ckφk(x))−a+1|dx. (3.55)

However, due to the difficulties of differentiating the integrand of Da(u, v; νa)) in Eq.
(3.54) with respect to each coefficient ck, and the expensive computations to achieve L1-
minimization, we typically consider the squared L2 analogues of Eq. (3.54), which are
given by

Da(u, v; νa) =

∫
X

[u(x)−a+1 − (
N∑
k=1

ckφk(x))−a+1]2dx. (3.56)

After imposing stationarity conditions on Eq. (3.55), for any 1 ≤ p ≤ N , we have∫
X

[u(x)−a+1 − (
N∑
k=1

ckφk(x))−a+1]
φp(x)

(
∑N

k=1 ckφk(x))a
dx = 0, (3.57)

which yields an extremely complicated nonlinear system of equations in terms of the un-
known coefficients c1, · · ·, cN . In order to obtain the optimal coefficients to minimize the

25



distance function in Eq. (3.56), one may employ some optimization algorithms such as gra-
dient descent method, Gauss-Newton method and so on. Indeed, some of those numerical
schemes were exploited in the following best approximation examples in both 1 dimensional
and 2 dimensional cases. More importantly, we shall visualize the properties of Weber’s
(generalized) model of perception, i.e., 0 < a ≤ 1, by comparing the best (generalized)
Weber-based approximation with the usual best L2 approximation.

3.3.2 Some Interesting Examples in Range-based Approxima-
tions

Example 1: Consider the following step function on X = [0, 1],

u(x) =

{
2, 0 ≤ x ≤ 1

2

4, 1
2
< x ≤ 1.

(3.58)

In Figure 3.3, we have shown the plots which are the best approximations for the cases
a = 0 (best L2), a = 0.25, 0.5 (generalized Weber) and a = 1 (standard Weber) using the
following DCT (discrete cosine transform) basis functions,

φk(x) = λk

√
2

N
cos

(
π

N

(
x+

1

2

)
k

)
, (3.59)

where k = 0, 1, · · ·, 4, and

λk =

{
1√
2
, k = 0

1, k 6= 0,
(3.60)

denoting the normalization constants for different values of k. In the experiment, we have
discretized the function u(x) in Eq. (3.58) into an N -vector to represent a digital signal,
which is produced by sampling the function u(x) at N equidistant points between 0 and
1. In this case, we let N = 512, and Eq. (3.58) becomes

φk(n) = λk

√
2

N
cos

(
π

N

(
n+

1

2

)
k

)
, (3.61)

where n = 0, 1, · · ·, 512.
From Figure 3.3, we notice that the approximations for a = 0.25, a = 0.5 and a = 1
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Figure 3.3: Best L2, standard Weberized L2 (a = 1), generalized Weber-based L2 (a =
0.25, 0.5) approximations to the step function using N = 5 DCT (discrete cosine transform)
basis functions.

show less variance from u(x) than the best L2 approximation (a = 0) over the lower
intensities (0 ≤ x ≤ 1/2) and higher variance over the higher intensities (1/2 < x ≤ 1),
which accommodates (generalized) Weber’s model of perception. Moreover, the difference
between the best approximations and u(x), i.e., reference function, decreases (increases) as
a ∈ [0, 1] increases in the lower (higher) intensity regions. Because when a increases, the
associated density function ρa(y) = 1/ya is decreasing more rapidly, which results in more
deviation over the higher intensity regions.

Example 2: Let us consider a 512×512-pixel 8 bpp image, which is composed by four
squares with greyscale values 60, 128, 128 and 220. Figure 3.4 shows original square image,
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the best L2 approximations (a = 0) and standard Weberized L2 (a = 1) using the following
2 dimensional DCT basis,

Φkl(n,m) = φk(n)φl(m), (3.62)

where φk(n) was defined in Eq. (3.61), and 0 ≤ k, l ≤ 14. We expect standard Weber-
ized L2 approximation exhibits greater/lesser deviation than the best L2 approximation at
higher/lower greyscale levels.

Figure 3.4: Left and right, respectively: Original square image, best L2 (a = 0) and
best standard Weberized (a = 1) L2 approximations to the squares image (512×512) using
15× 15 2 dimensional DCT basis

By inspection, we realize there is less/more texture in the black/white square in the right
image comparing with the black/white square in the middle image. As such, the black
square in the best standard Weberized L2 approximation and white square in the best
usual L2 approximation are treated as the “better” approximation to the original image
in terms of human visual perception. Essentially, the results described above correspond
to our expectation that the best ”Weberized” L2 method (a = 1) produces a better/worse
approximation than best L2 approximation method (a = 0) over the lower/higher intensity
regions.

Example 3: Consider a 512×512-pixel 8 bpp image called Lena. Figure 3.5 exhibits the
best approximations for a = 0 (best L2), a = 0.5 (generalized Weber) and a = 1 (standard
Weber) using only 2× 2 = 4 2D-DCT basis functions for each 8× 8 block. Note that there
are totally 4096 8 × 8 blocks in Lena image. For each block, we minimize the distance
functions in Eq. (3.2), Eq. (3.56) and Eq. (3.21) in order to find the best L2, generalized
Weber-based L2 and standard Weber-based L2 approximations. After processing all blocks
by minimizing these metrics, we can construct the associated approximation to the whole
Lena image. Theoretically, we can perfectly reconstruct the Lena by every approximation
method if 8× 8 2D DCT basis is employed for each 8× 8 block.
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(a) Original image (b) a = 0 (best L2)

(c) a = 0.5 (generalized Weber) (d) a = 1 (standard Weber)

Figure 3.5: Original image Lena and best approximations for a = 0 (best L2), a = 0.5
(generalized Weber) and a = 1 (standard Weber) using only 2 × 2 = 4 2D-DCT basis
functions for each 8× 8 block.

In [1], the authors state the visual effect that we expect is somewhere between the
usual L2 (a = 0) and standard Weberized L2 (a = 1) approximations. As such, we aim to
figure out the effect of generalized Weber-based approximation. First of all, it is interesting
to see a number of visible ”ringing artifacts” in all the approximations especially over the

29



(a) Original image (b) a = 0 (best L2)

(c) a = 0.5 (generalized Weber) (d) a = 1 (standard Weber)

Figure 3.6: Best approximations for a = 0 (best L2), a = 0.5 (generalized Weber) and
a = 1 (standard Weber) using 2 × 2 = 4 2D-DCT basis over 8 × 8 blocks comprising the
shoulder region of Lena image (zoomed in).

shoulder region in Figure 3.5 and 3.6. The ringing artifacts in the approximate images
are caused by the distortion over regions with edges separating high and low greyscale
intensities. By observing Figure 3.5, we can hardly justify the overall differences among
the approximations (b), (c) and (d). However, if we look at Figure 3.6 carefully, the ringing
artifacts over the shoulder region in each approximation are slightly different from each
other; in particular, there are more ”spikes” near edges over the region circled by red
rectangle in best L2 approximation (a = 0) in Figure 3.6 (b), comparing with the best
standard (a = 1) and generalized (a = 0.5) Weber-based approximations in Figure 3.6
(c) and (d). This, once again, suggests the best standard and generalized Weber-based
tolerate lesser differences over regions in which they assume lower intensity values.
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Chapter 4

Existence, Uniqueness and
Asymptotic Behaviour of
Intensity-based Measures

During the process of deriving the metrics conforming to generalized Weber’s model of
perception, the density functions play an important role in constructing the nonuniform
measures in greyscale range space to describe the distance functions between two functions
u and v. However, the effectiveness of the generalized Weber-based metrics, in particular
logarithmic L2 metric, are mathematically based on the existence of the associated density
functions ρa(y) defined on the greyscale range space Rg = [A,∞], where a,A > 0. In
this chapter, we present a formal mathematical proof of the existence and uniqueness of
continuous density functions ρa(y) by Abel’s equation, a well-known functional equation,
which is a powerful tool to solve the embedding problem [14]. As standard Weber’s law
breaks down at very low and high luminance or contrast, we are also interested in showing
the asymptotic behaviour of the density functions ρa(y), satisfying invariance condition
(i.e., Eq. (3.16)) illustrated in the previous chapter, for y goes to zero and infinity. These
asymptotic results of density functions in essence complete the generalized version of We-
ber’s law. Additionally, we provide a scheme that computes any number of terms of the
asymptotic expansion of ρa(y) for y →∞ and 0 < a < 1.
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4.1 Existence and Uniqueness of Greyscale Density

Functions for Generalized Weber’s Model

For any a > 0, the generalized Weber’s model of perception in Eq. (2.3) suggests that
the density function ρa(y) should be a decreasing function of intensity y in greyscale range
space. As such, the HVS will allow greater deviations between u(x) and v(x) before being
perceived, with increasing intensity value. Indeed, the density function ρ1(y) = 1/y defines
the logarithmic measure ν such that the L1-based distance function between u and v
becomes Eq. (3.19). Therefore, our next step is to find the density functions that conform
to Weber’s generalized model. However, for any a > 0, one might be curious about
whether there exists a unique density function that accommodates Weber’s generalized
model of perception. From the invariance property defined in Definition 3.2.1, we then
mathematically state the following existence-uniqueness theorem of the density functions
conforming to Weber’s generalized model.

Theorem 4.1.1: For a given a > 0 and a cutoff intensity value I0, there exists a unique,
continuous function ρa(y) defined on [I0,∞) which conforms to Weber’s generalized model
of perception, i.e., for any two greyscale intensities I1, I2 ≥ I0 and a particular value of
C > 0, ∫ I1+∆I1

I1

ρa(y)dx =

∫ I2+∆I2

I2

ρa(y)dx, (4.1)

where
∆I1 = CIa1 , ∆I2 = CIa2 . (4.2)

Before proceeding with the proof of the above theorem, we make two comments:

1. In the special case a = 1, the density function ρ1(y) = 1/y exactly, as per Theorem
3.2.1. It can easily be shown that both sides of Eq. (4.1) are equal to ln(1 + C).

2. Theorem 4.1.1 above can actually be extended to the case a = 0, which corresponds
to an absence of Weber’s law. In this case, ρ0(y) = 1 which corresponds to uniform
Lebesgue measure on Rg.

We now proceed to prove Theorem 4.1.1. From elementary calculus, let us first define the
antiderivative of the density functions ga as follows,
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P (x) =

∫ x

x0

ga(y)dy, x ≥ x0 > 0, (4.3)

where x0 is the cutoff greyscale value. Clearly, P (x0) = 0. According to the equal area
condition in Eq. (3.16) and Theorem 4.1.1, we have

P (x+ Cxa)− P (x) = K, constant, for x ≥ x0, (4.4)

where C > 0 is the fixed Weber’s constant. If we let f(x) = x+ Cxa, Eq. (4.4) becomes,

P (f(x))− P (x) = K. (4.5)

Dividing both sides of Eq. (4.5) by K > 0 gives,

Q(f(x)) = Q(x) + 1, (4.6)

where Q(x) = 1
K
P (x). Indeed, Eq. (4.6) is known as Abel’s equation, which is a well-

known functional equation that controls the iteration of f(x) [15]. For instance, replacing
x with f(x) in Eq. (4.6) yields

Q(f 2(x)) = Q(f(x)) + 1 = Q(x) + 2, (4.7)

where f 2(x) denotes f(f(x)). Consequently, we derive the following functional equation
by encoding a recurrent procedure,

Q(fn(x)) = Q(x) + n, n ≥ 1. (4.8)

Note that fn(x) represents the nth iteration of f , i.e., fn(x) = f(f(· · ·f(x))). Now, if we
multiply both sides of Eq. Eq. (4.8) by K, we have

P (fn(x)) = P (x) + nK, n ≥ 1, (4.9)

which can be regarded as a “unnormalized” Abel’s equation for P (x) in our problem of
generalized Weber’s law. By assuming x0 is the initial point and defining xn = fn(x0),
according to Eq. (4.3), Eq. (4.9) simply states that each iteration of f represents the
addition of another block of area K to the integral. However, iteration of f in Eq. (4.8)
counts the number of blocks instead of their areas.

Given the function f(x), Abel’s equation in Eq. (4.6) is said to be solvable if there
exists a continuous solution Q(x) such that Eq. (4.6) is satisfied for all x ∈ X, where
X ⊂ R. In what follows, we shall discuss the existence of a continuous solution of Eq.
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(4.6) by imposing specific properties of f(x). In particular, these properties are connected
with the dynamics of iteration of f as presented below. First, let us state following theorem
[15] which is very useful for the analysis of solvability of Q(x) in Eq. (4.6).

Theorem 4.1.2: Abel’s equation in Eq. (4.6), for Q and f real-valued functions, has a
continuous solution if and only if f has no periodic orbits, in which f is said to be acyclic.

From the above theorem, for a continuous solution of Q(x) to exist, the function f(x)
cannot have a periodic point. In fact, if p ∈ [x0,∞) is a periodic point of f(x), we have

fn(p) = p, (4.10)

for some n ≥ 1. Note that a fixed point f(p) = p is a particular example of a periodic
point. Then from Eq. (4.8), for x = p, we obtain,

Q(p) = Q(p) + n, (4.11)

which has no solution for n ≥ 1, implying that Q(p) is undefined. This is actually the part
of the proof of Theorem 4.1.2.

In the case of a = 0, the function f(x) = x + Cx0 = x + C, which represents a simple
translation map. Since C > 0, it follows that the function, f(x) = x+ C, has no periodic
points on [x0,∞). Hence, there exists a continuous solution of Q(x) for Eq. (4.6) on
[x0,∞). For a > 0, the function f(x) = x+Cxa in our generalized Weber’s model has only
x = 0 as a periodic point, but x = 0 /∈ [x0,∞); thus, there exists the continuous solution
for our problem over the interval [x0,∞).

On the other hand, we can show the existence of continuous solution of Q(x) for Abel’s
equation in Eq. (4.6) by examining the iteration dynamics of the function f(x) on the
interval [x0,∞). It follows from f(x) = x+ Cxa that

f ′(x) = 1 + aCxa−1 > 0, x ≥ x0 > 0, (4.12)

which suggests that f(x) is an monotonically increasing function on [x0,∞). Note that

f(x) = x+ Cxa > x, x ≥ x0, (4.13)

implying that the graph of f(x) lies above the line y = x for all x ≥ x0. Now, if we replace
x with f(x), we have,

f 2(x) = f(x) + Cf(x)a > f(x), (4.14)

for all x ≥ x0. Continuing this procedure indefinitely will yield,

fn+1(x) > fn(x), (4.15)
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for all n ≥ 1 and x ∈ [x0,∞). As a consequence, we may set up the sequence of iteration
functions {fn(x)}∞n=1, which is called forward orbit of x under iteration by f(x). Clearly,
the sequence {fn(x)}∞n=1 is a strictly increasing sequence. In addition, rewriting Eq.
(4.14) gives that

f 2(x) = x+ Cxa + C(x+ Cxa)a > x+ 2Cxa. (4.16)

By replacing x with f(x) in Eq. (4.16), we obtain,

f 3(x) > f(x) + 2Cf(x)a

> x+ Cxa + 2Cxa

= x+ 3Cxa.

(4.17)

Hence, it is straightforward to show that

fn(x) > x+ nCxa, (4.18)

by inductive arguments, for all C > 0, a ≥ 0 and x ∈ [x0,∞). As n → ∞, the sequence
of iterations fn(x) → ∞ for any x ∈ [x0,∞), which shows that the sequence {fn(x)}∞n=1

is unbounded. This result is consistent with the fact that f(x) has no periodic points.
Since f(x) = x+ Cxa on [x0,∞), we can define the following mapping,

f : [x0,∞)→ [x1,∞), (4.19)

where x1 = x0 + Cxa0. More generally, let us define the increasing sequence of points
{xn}∞n=0 as follows,

xn+1 = f(xn) = xn + Cxan, (4.20)

and
In = [xn, xn+1], (4.21)

for all n ≥ 0. Then, we have
f : In → In+1, (4.22)

and
f−1 : In+1 → In, n ≥ 0. (4.23)

From these properties it follows that for n ≥ 0,

x ∈ In =⇒ f−n(x) ∈ I0. (4.24)

That being said, for a fixed n ≥ 1, given any point x ∈ In, we can eventually map it
into I0 after a finite number of iterations of f−1. Note that f(x) is an increasing one-to-
one function on [x0,∞), which implies the existence of its inverse function f−1(x) for all
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x ∈ [x1,∞). Furthermore, points in I0 cannot be “iterated backward” since they do not
belong to the range of f .

In [16], Belitskii and Lyubich discussed the existence of the solution of Abel’s equation
by using the dynamics of f . From several parts of the paper, we extract information which
is helpful with showing that there exist solutions to Eq. (4.6) for our generalized Weber
models, based on the dynamical properties of f presented above. Following the notation
in [16], we let X ⊂ R denote the interval over which we consider the solution to Abel’s
equation in Eq. (4.6).

Proposition 4.1.1: If X is compact, Abel’s equation in Eq. (4.6) has no solution, i.e., no
continuous solution.

Proof: It is clear that the continuous solution Q(x) on a compact set X ⊂ R is bounded.
However, for any x ∈ X, the iterates fn(x) ∈ X. Then, according to Eq. (4.8), Q(fn(x))→
∞ as n→∞, which is a contradiction.

In consequence, we introduce the corollary as showed below.

Corollary 4.1.1: If there exists an f -invariant compact nonempty set K ⊂ X, i.e., a set
K such that f(K) ⊆ K, then a continuous solution to Eq. (4.8) cannot exist.

Definition 4.1.1: A closed set A ⊂ X is said to be an absorber if f(A) ⊂ A, i.e., A is
f -invariant, and for any point x0 ∈ X, there exists a neighbourhood V0 of x0 and a number
k0 = k(x0) such that fn(V0) ⊂ A for n ≥ k0.

Definition 4.1.2: A closed set N ⊂ X is said to be a nozzle if its preimage, defined as
follows,

F−1(N) = {x ∈ X | f(x) ∈ N}, (4.25)

is a subset of N , i.e., F−1(N) ⊂ N , and for any x0 ∈ X, there exists a neighbourhood W0

of x0 and a number l0 = l(x0) such that f−n(W0) ⊂ N for n ≥ l0.

From Definitions 4.1.1 and 4.1.2, it is also worth to mention that the set X \ N is invariant
if N is a nozzle for f ; if f is a homeomorphism, i.e., f is continuous and bijective on X
and f−1 is continuous, then a nozzle for f is an absorber for f−1 [16].

Theorem 4.1.3: If Abel’s equation in Eq. (4.6) is solvable, i.e., has a continuous solution
on X, then there exist an absorber A and a nozzle N with empty intersection. Conversely,
let f be a homeomorphism and suppose that the space X is normal, i.e., any two disjoint
sets A,B ⊂ X have nonintersecting open neighbourhoods. If there exist an absorber and
a nozzle with empty intersection, then Eq. (4.6) is solvable.
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For a fixed C > 0 and a ≥ 0, we now employ Theorem 4.1.3 on testing Abel’s equation in
Eq. (4.6) with fa(x) = x + Cxa on the interval X = [x0,∞). From our earlier discussion
on the iteration dynamics of fa(x), we may conclude the following: For any n ≥ 1, let

N =
n−1⋃
i=0

Ii = [x0, xn] (4.26)

and

A =
∞⋃

i=n+1

Ii = [xn+1,∞), (4.27)

where xn and Ii corresponds to Eq. (4.20) and Eq. (4.21), respectively. Apparently, A
is an absorber and N is a nozzle for fa. Note that A ∩ N = ∅. Additionally, fa(x) are
homeomorphic functions on [x0,∞). Because for any a ≥ 0, the function fa(x) = x+Cxa

is bijective and continuous on [x0,∞), and fa and f−1
a map any open set I = (c, d) to

basic open sets, where c, d ∈ [x0,∞). From Theorem 4.1.3, Abel’s equation in Eq. (4.6) is
solvable, which implies that there exists a unique continuous solution Q(x) on X = [x0,∞).
Since P (x) = KQ(x), there exists a unique function P (x), as defined in Eq. (4.3), which
satisfies the equal-area condition in Eq. (4.4). However, it still remains to solve the
problem of determining whether the integral function P (x) is determined by a unique
density function g(x) and whether g(x) is continuous.

From Eq. (4.4), we can define the following integral

G(x) =

∫ x+Cxa

x

ga(y)dy = K, (4.28)

where K is a constant. By assuming that ga(y) is a continuous function, and differentiating
both sides of Eq. (4.28) with respect to x, we obtain

ga(x+ Cxa)(1 + aCxa−1)− ga(x) = 0. (4.29)

Again, defining the cutoff greyscale value x0 > 0 and rewriting Eq. (4.29) yields,

ga(f(x))f ′(x)− ga(x) = 0, (4.30)

where
f(x) = x+ Cxa, x ∈ [x0,∞). (4.31)

For a ≥ 0 and C > 0, given a generalized Weber’s model that defines the function f(x) in
(4.31), our goal is to impose previous result that there exists a unique solution of integral
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function P (x) to establish the existence and uniqueness of a continuous solution g(x) to
Eq. (4.30) over the interval X = [x0,∞). If such a solution exists, we then integrate both
sides of this equation as follows,∫ x

x0

[
ga(f(y))f ′(y)− ga(y)

]
dy = 0. (4.32)

By the change of variables and the Chain Rule, it follows that∫ f(x)

f(x0)

ga(t)dt−
∫ x

x0

ga(y)dy = 0, (4.33)

which is equivalent to∫ x0

f(x0)

ga(y)dy +

∫ f(x)

x0

ga(y)dy −
∫ x

x0

ga(y)dy = 0. (4.34)

Hence, we obtain, ∫ f(x)

x0

ga(y)dy −
∫ x

x0

ga(y)dy =

∫ f(x0)

x0

ga(y)dy = K. (4.35)

Now, if we define P (x) as in Eq. (4.3), then the above equation is equivalent to Eq. (4.5).
As such, ga(x) is a density function which defines the integral P (x) which satisfies the
Weber equal-area condition.

Indeed, Eq. (4.30) is a special case of the family of linear functional equations having
the form,

P (x)ψ(F (x)) +Q(x)ψ(x) = γ(x), (4.36)

and studied by Belitskii and Lyubich [16]. From Theorem 1.1 in [16], let us state the
following Theorem in terms of functional equation in (4.36) which is defined for all x ∈ X,
where X is a topological space.

Theorem 4.1.4: Let F : X → X be a homeomorphism. Then if the Abel equation
associated with Eq. (4.36),

φ(F (x))− φ(x) = 1, (4.37)

is solvable, i.e., has a continuous solution φ, then Eq. (4.36) is totally solvable, i.e., it is
solvable for every continuous function γ(x) on X.

The problem is that the mapping f(x) = x+Cxa is not a homeomorphism on our space
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X = [x0,∞) for all C > 0 and a ≥ 0. Indeed, f(x) is not a surjective function on X, since
for any y ∈ [x0, x1), there is no element x ∈ X such that f(x) = y, where x1 = x0 + Cxa0.
Nevertheless, f(x) is injective on X, which provides another possibility to make the above
theorem effectively imposed. Of course, the price paid by the fact that f(x) is just injective
is that the topological space X has to satisfy more additional conditions, i.e., X is locally
compact and countable at infinity (l.c.c.i), referring to Corollary 1.6 of [16].

Definition 4.1.3: A topological space X is said to be locally compact if every point x ∈ X
has a compact neighbourhood, i.e., there exists an open set U and a compact set K such
that x ∈ U ⊆ K.

Definition 4.1.4: [16] A topological space X is said to be countable at infinity if there
exists a covering

X =
∞⋃
i=1

Ki, (4.38)

where the Ki are compact. (As stated in [16], without loss of generality, one can assume
that Ki ⊂ Ki+1.)

Now, the first concern is whether the space X = [x0,∞) is locally compact or not.
Technically speaking, the point x0 cannot have open neighbourhoods of the form (x0 −
δ, x0 + δ) which lie in X, where δ > 0. To address this issue, we may consider the
base space as X = (x0,∞), which is clearly l.c.c.i, i.e., locally compact and countable at
infinity. By previous analysis, we know the Abel equation in Eq. (4.37) is solvable, where
F = f : In → In+1, according to Eq. (4.19). Consequently, it is straightforward to see that
the generalized functional equations in Eq. (4.36) are totally solvable, which implies the
solvability of the special case of Eq. (4.30). In conclusion, for any a ≥ 0 and x0 > 0, there
exists a unique density function ga(x), satisfying the equal area condition with respect to
generalized Weber’s model, on the interval [x0,∞]. This completes the proof of Theorem
4.1.1.
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4.2 More Detailed Asymptotic Behaviour of Greyscale

Density Functions

4.2.1 Asymptotic analysis of density functions for the case 0 <
a < 1

In Section 3.2.2, we have proved for any 0 < a < 1, ρa(y) = y−a is the leading-order be-
haviour of density functions that accommodate generalized Weber’s model of perception,
as y →∞. As a result, we obtain the following theorem [3].

Theorem 4.2.1: For 0 < a < 1, the density function ρa(y) which accommodates gener-
alized Weber’s model of perception is, to leading order, ρa(y) = 1/ya as y → ∞: For any
two greyscale intensities I1, I2 ≥ I0 > 0,∫ I1+∆I1

I1

1

ya
dx '

∫ I2+∆I2

I2

1

ya
dx, (4.39)

where I0 represents the lowest greyscale intensity, ∆I1 = CIa1 and ∆I2 = CIa2 denotes the
minimum changes in perceived intensity at I1 and I2, respectively, referring to generalized
Weber’s model in Eq. (2.3).

Notice that the above Theorem is a generalization of the invariance result of Theorem 3.2.1.
Consequently, for any 0 < a < 1, the generalized Weber-based L1 metrics constructed by
density functions ρa(y) = 1/ya between the functions u and v, are given by,

Da(u, v; νa) =

∫
X

|u(x)−a+1 − v(x)−a+1|dx. (4.40)

Previously, we also presented a sketch of the proof of Theorem 4.2.1. Now, in order to
determine the more detailed asymptotic behaviour of density functions that accommodate
generalized Weber’s model of perception, let us consider the forward problem: For any
a ∈ (0, 1), given any intensity x = Cxa ≥ x0, where x0 is a lower positive greyscale value,
find a density function ga(y) such that the function (i.e., Eq. (4.28)),

G(x) =

∫ x+Cxa

x

ga(y)dy = K, (4.41)

for all x ≥ x0, whereK is a constant which represents the “visual accumulation” of intensity
that contributes to human visual perception.
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Again, from the assumption that ga(y) is a continuous function, we obtain the same
equation as Eq. (4.29) by differentiating both sides of Eq. (4.41) with respect to x,

ga(x+ Cxa)(1 + aCxa−1)− ga(x) = 0. (4.42)

Note that Eq.(4.42) is a functional equation for the unknown g(x), and it is unclear how to
solve the equation explicitly. However, as previously introduced in section 3.2.1, we tried
performing some asymptotic analysis on Eq. (4.42) by assuming a solution of the following
form,

ga(y) ∼ yα, (4.43)

where α is also a constant that is related to the constant a. By employing Eq. (4.43) on
Eq. (4.42), we have

(x+ Cxa)α(1 + aCxa−1)− xα = 0. (4.44)

Case 1: The asymptotic limit of density functions as x→∞

For any 0 < a < 1, we are now analyzing the asymptotic limit of ga(y) for x → ∞. As
x→∞, x dominates xa in the first parenthesis of Eq. (4.44), thus we factor the equation
as follows,

xα(1 + Cxa−1)α(1 + aCxa−1)− xα = 0. (4.45)

Since 0 < a < 1, xa−1 → 0 as x→∞. As such, we employ the binomial theorem expansion
on the term (1 + Cxa−1)α to obtain,

xα(1 + αCxa−1 + · · ·)(1 + aCxa−1)− xα = 0, (4.46)

which yields
(α + a)Cxα+a−1 + αaC2xα+2(a−1) + · · · = 0, (4.47)

after some manipulation. In order to eliminate the first term which is dominant in Eq.
(4.47) as x→∞, we let

α = −a =⇒ ga(y) ∼ y−a, (4.48)

which completes the proof of Theorem 4.1.2.
In order to make density functions ga(y) fitted more accurately in the equal area con-

dition in Definition 3.2.1, we may wonder how to derive the next-to-leading order terms
of the density function ga(y). Intuitively, one may suggest to carry out the binomial ap-
proximation to more terms to remove the higher order terms in Eq. (4.47). Hence, let us
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perform more asymptotic analysis on the density function by first substituting ga(y) = yα

into Eq. (4.41) and yielding

G(x) =

∫ x+Cxa

x

yαdy

=
1

α + 1
yα+1

∣∣∣∣x+Cxa

x

=
1

α + 1

[
(x+ Cxa)α+1 − xα+1

]
.

(4.49)

Once again, x dominates xa in the term x+ Cxa, so we factor Eq. (4.49) and obtain∫ x+Cxa

x

yαdy =
1

α + 1

[
xα+1(1 + Cxa−1)α+1 − xα+1

]
. (4.50)

Note 0 < a < 1, Cxa−1 is sufficiently small as x → ∞. Therefore, by employing the
binomial expansion on the term (1 + Cxa−1)α+1, Eq. (4.50) becomes∫ x+Cxa

x

yαdy =
1

α + 1

[
xα+1

(
1 + (α + 1)Cxa−1 +

α(α + 1)

2
C2x2a−2 + · · ·

)
− xα+1

]
.

(4.51)
After some simplification, we have∫ x+Cxa

x

yαdy = Cxa+α +
α

2
C2x2a+α−1 + · · ·. (4.52)

Clearly, the first term in Eq. (4.52), i.e., Cxa+α, is dominant as x→∞, since 2a− b− 1 =
(a− b) + (a− 1) < a− b. In other words, higher order terms of Eq. (4.52) is subdominant
since they involve increasing power of a − 1 < 0. As such, we have the following result:
For x > 0, 0 < a < 1, α < 0 and α 6= −1,∫ x+Cxa

x

yαdy ∼ Cxa+α as x→∞. (4.53)

Notice that the condition α 6= −1 originally comes from the antiderivative of yα in Eq.
(4.49), and α < 0 is due to the fact that the density function accommodating Weber’s
generalized model of perception is a decreasing function.

In the special case that α = −1, Eq. (4.49) becomes

G(x) =

∫ x+Cxa

x

y−1dy

= ln(x+ Cxa)− ln(x)

= ln(1 + Cxa−1).

(4.54)
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As x → ∞, Cxa−1 → 0, since 0 < a < 1. By Taylor series approximation, Eq. (4.54) can
be expanded as follows, ∫ x+Cxa

x

y−1dy = Cxa−1 − 1

2
C2x2a−2 + · · ·, (4.55)

which coincides with Eq. (4.52) for α = −1. Overall, we can set up the following important
lemma.

Lemma 4.2.1: For any x > 0, 0 < a < 1 and α < 0,∫ x+Cxa

x

yαdy ∼ Cxa+α as x→∞. (4.56)

Note that when α = −a, Lemma 4.2.1 yields the result,

∫ x+Cxa

x

y−ady ∼ C as x→∞, (4.57)

which is in agreement with the conclusion in Theorem 4.1.1.
Besides, let us now proceed further and find the second and third leading order terms

of the density functions ga(y), satisfying the invariance result in Eq. (4.41), for 0 < a < 1
as y →∞. First of all, by substituting α = −a into Eq. (4.52), we obtain∫ x+Cxa

x

y−ady − C = −a
2
C2xa−1 +O(x2a−2). (4.58)

Up to a constant, the first term in the RHS of Eq. (4.58) matches up the leading order
term in the asymptotic expansion of G(x) in Eq. (4.55) in the case α = −1. Multiplying
by the appropriate constant i.e., −1

2
aC, on Eq. (4.55) yields,

− 1

2
aC

∫ x+Cxa

x

y−1dy = −1

2
aC2xa−1 +

1

4
aC3x2a−2 +O(x3a−3). (4.59)

The leading order behaviour of the RHS in Eq. (4.59) is consistent with the dominant
behaviour of the RHS in (4.58). By subtracting Eq. (4.59) from Eq. (4.58), we obtain the
equation as follows,∫ x+Cxa

x

[
1

ya
+

1

2
aC

1

y

]
dy − C = O(x2a−2) as x→∞. (4.60)

43



As a result, the difference between the integral and the constant C is now O(x2a−2) rather
than O(xa−1) in Eq. (4.58), which leads to the conclusion that 1

ya
+ 1

2
aCy−1 is an improved

approximation to the density function ga(y) in the limit y → ∞, for any 0 < a < 1. We
can write that, up to an overall constant,

ga(y) ∼ 1

ya
+

1

2
aC

1

y
as x→∞. (4.61)

Indeed, one may realize that the crucial step to work out the second leading order behaviour
of the density function ga(y) is to find the value of α, yielding the leading order term that
corresponds to the dominant behaviour of the RHS of Eq. (4.58).

Following the same logic, we first specifically calculate the leading order behaviour of
the RHS of Eq. (4.60) and rewrite it in the following,∫ x+Cxa

x

[
1

ya
+

1

2
aCy−1

]
dy−C =

[
1

6
a(a+1)− 1

4
a

]
C3x2a−2+O(x3a−3) as x→∞. (4.62)

To eliminate the first term in the RHS of Eq. (4.62), imposing Eq. (4.52) and letting
α = a− 2 yields, ∫ x+Cxa

x

ya−2dy = Cx2a−2 +
1

2
(a− 2)C2x3a−3 + · · ·. (4.63)

Note that we have α = a − 2 because we set a + α = 2a − 2 to match the dominant
behaviours in the RHS of Eq. (4.52) and (4.62) with each other. Multiplication by the
appropriate constant, namely [1

6
a(a+ 1)− 1

4
a]C2, on Eq. (4.63), yields,[

1

6
a(a+ 1)− 1

4
a

]
C2

∫ x+Cxa

x

ya−2dy =

[
1

6
a(a+ 1)− 1

4
a

]
C3x2a−2 +O(x3a−3) + · · ·. (4.64)

By subtracting Eq. (4.64) from Eq. (4.62), we have that∫ x+Cxa

x

[
1

ya
+

1

2
aC

1

y
+

[
1

4
a− 1

6
a(a+ 1)

]
C2ya−2

]
dy−C = O(x3a−3) as x→∞. (4.65)

As x→∞, O(x3a−3) goes to zero faster than O(x2a−2), which implies the following equation
is the better approximation to the density function ga(y) meeting the invariance require-
ment in Eq. (4.41) according to Weber’s generalized model of perception,

ga(y) ∼ 1

ya
+

1

2
aC

1

y
+

[
1

4
a− 1

6
a(a+ 1)

]
C2ya−2 as x→∞. (4.66)
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In principle, we can continue the procedure above and find infinitely more terms for the
asymptotic expansion of the density function ga(y). If we consider ga(y) = 1/ya is the
zeroth leading order term, the value of α used in Eq. (4.52) to find the nth leading order
behaviour is

α = n(a− 1)− a, (4.67)

which leads to an net asymptotic expansion of ga(y) having the following form,

ga(y) =
∞∑
n=0

anx
n(a−1)−a as x→∞. (4.68)

In summary, let us list the following steps [13] involved in the derivation of Eq. (4.68).

Step 1: By setting b = a in Eq. (4.52), we obtained, after a little rearrangement, the
asymptotic result in Eq. (4.58), which implies that the invariance result according to Eq.
(4.41) is satisfied, to leading order, by ga(y) ∼ 1/ya, in agreement with the dominant
behaviour introduced in Theorem 4.1.1.

Step 2: Secondly, we impose the result for α = −1 in Eq. (4.55) in an effort to match the
leading term on its RHS with the dominant behaviour of the RHS of Eq. (4.58), namely,
O(xa−1). Then, we multiply both sides of Eq. (4.55) by the appropriate constant so that
the coefficients of the dominant terms in O(xa−1) match. The term in the square bracket
in Eq. (4.60) is the improved approximation of ga(y) as y →∞.

Step 3: To match the higher order terms in Eq. (4.52), namely, xn(a−1), with the leading
order term xa+α in Eq. (4.52), we employ the relation, α = n(a − 1) − a for n ≥ 0,
on finding more leading order behaviours of the density function ga(y), which derives the
general form of the asymptotic expansion of ga(y) in Eq. (4.68).

To conclude, in this case, we not only derived the general form of the asymptotic
behaviour of density functions ga(y), but provided a method of computing the asymptotic
expansion of ga(y) for y →∞ to any number of terms for the case 0 < a < 1, by the above
steps i.e., from step 1 to step 3.

Case 2: The asymptotic limit of density functions as x→ 0+

In this case, we are looking for the asymptotic behaviour of ga(y) for any 0 < a < 1 as
x→ 0+. Since x→ 0+, xa dominates x in the first parenthesis of Eq. (4.44), and we factor
as follows,

[Cxa(1 + C−1x1−a)]α[aCxa−1(1 + (aC)−1x1−a)]− xα = 0. (4.69)
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After a little manipulation, we have,

aCα+1xaα+a−1[1 + C−1x1−a]α[1 + (aC)−1x1−a]− xα = 0. (4.70)

Note that the term x1−a → 0 as x → 0+ for any 0 < a < 1. As such, we obtain the
following equation by employing binomial expansion on the term (1 + C−1x1−a)α,

aCα+1xaα+a−1[1 + αC−1x1−a + · · ·][1 + (aC)−1x1−a]− xα = 0. (4.71)

After some rearrangement, Eq. (4.71) becomes

aCα+1xaα+a−1

[
1 +

1

C
(α +

1

a
)x1−a + · · ·

]
− xα = 0. (4.72)

To eliminate the term xα, we have to match it with the leading term xaα+a−1, which implies
the following relation,

aα + a− 1 = α =⇒ α(a− 1) + (a− 1) = 0. (4.73)

Since 0 < a < 1, we obtain α = −1, which suggests that

ga(y) ∼ y−1. (4.74)

When α = −1, Cα+1 = C0 = 1. Thus, the constant C from the leading term on the left of
Eq. (4.72) has been eliminated, but we still have the following,

(a− 1)x−1 = 0, (4.75)

which is not satisfied with any 0 < a < 1. The failure of this method suggests the
assumption that ga(y) ∼ yα as y → 0+ is invalid. To show the invalidity of the form,
ga(y) ∼ yα as x→ 0+, more explicitly, let us first consider the following helpful lemmas.

Lemma 4.2.2: For any x > 0, 0 < a < 1 and −1 < α < 0,∫ x+Cxa

x

yαdy ∼ Cα+1

α + 1
xa(α+1) as x→ 0+. (4.76)

Proof: First of all, we consider the case α 6= −1. By basic calculation, we obtain,

G(x) =

∫ x+Cxa

x

yαdy

=
1

α + 1
yα+1

∣∣∣∣x+Cxa

x

=
1

α + 1

[
(x+ Cxa)α+1 − xα+1

]
.

(4.77)
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Because x→ 0+, xa dominates x, then we rewrite Eq. (4.77) as follows,

G(x) =
1

α + 1

[
(Cxa)α+1

(
1 +

1

C
x1−a

)α+1

− xα+1

]
. (4.78)

Since 0 < a < 1 and x1−a/C is sufficiently small as x → 0+, employing the binomial
approximation on the term (1 + 1

C
x1−a)α+1 yields,

G(x) =
1

α + 1

[
(Cxa)α+1

(
1 + (α + 1)

1

C(1 + α)
x1−a +

1

2C
α(1 + α)x2(1−a) + · · ·

)
− xα+1

]
.

(4.79)
For 0 < a < 1, it is clear that 0 < a(1 + α) < (1 + α), which determines the dominant
behaviour of the RHS as x→ 0+ and completes the proof.

Lemma 4.2.3: For any x > 0, 0 < a < 1 and α = −1,∫ x+Cxa

x

y−1dy ∼ (a− 1) lnx as x→ 0+. (4.80)

Proof: From Eq. (4.54), we have

G(x) =

∫ x+Cxa

x

y−1dy

= ln(1 + Cxa−1)

= ln(Cxa−1) + ln

(
1 +

1

C
x1−a

)
= (a− 1) lnx+ lnC +

1

C
x1−a − 1

2C
x2(1−a) + · · ·.

(4.81)

where we have used the Taylor approximation of ln
(
1 + 1

C
x1−a). Obviously, the leading

order term of G(x) is (a− 1) lnx for α = −1. The proof is complete.

Lemma 4.2.4: For any x > 0, 0 < a < 1 and α < −1,∫ x+Cxa

x

yαdy ∼ − 1

α + 1
xα+1 as x→ 0+. (4.82)

Proof: With reference to Eq. (4.79) in the proof of Lemma 4.1.2, it follows that 1 + α <
a(1 + α) < 0 in that 0 < a < 1 and α < −1, which implies the term xα+1 is dominant as
x→ 0+.
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From the aforementioned three lemmas, we obtain the following results,

• If −1 < α < 0, then ∫ x+Cxa

x

yαdy → 0 as x→ 0+. (4.83)

• If α < −1, then ∫ x+Cxa

x

yαdy → ∞ as x→ 0+. (4.84)

Essentially, our goal is to find the value of α such that the equal area condition in Eq. (4.41)
holds as x → 0+. Whereas, we now notice no value of α ∈ (−∞, 0) works by the results
in Eq. (4.83) and (4.84). This implies that yα is not the correct leading order behaviour
of the density function ga(y) for x→ 0+. Naturally, the next step is to investigate on the
appropriate form of leading order term of ga(y), satisfying the invariance results in Eq.
(4.41), as x→ 0+. Before that, let us first illustrate the following significant theorem [13]
that describes the relation between the equal area condition on generalized Weber’s model
of perception and the associated density function ga(y) for a > 0.

Theorem 4.2.1: For given values of a > 0, C > 0 and A > 0, let ga(y) satisfy the
invariance condition in Eq. (4.41). Then, the indefinite integral,∫ ∞

A

ga(y)dy, (4.85)

must diverge.

Proof: We let y0 = A, and define the following sequence,

yn+1 = yn + Cyan, (4.86)

for n ≥ 0. From the invariance result in Eq. (4.41), it follows that for n ≥ 1,∫ xn+1

xn

ga(y)dy =

∫ x1

x0

ga(y)dy = K, (4.87)

where K > 0 is a constant. From Eq. (4.86), y1 = y0 +Cya0 > y0, since a, C and y0 are all
positive. This implies that

y2 = y1 + Cya1 = y0 + Cya0 + Cya1 > y0 + 2Cya0 , (4.88)
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which suggests that
yn > y0 + nCya0 , (4.89)

for n ≥ 1. In fact, the claim in Eq. (4.89) can be proved by inductive arguments. As such,
yn →∞ as n→∞. Switching the index n in Eq. (4.87) to k and summing all the k from
0 to n− 1 yields the following expression,

n−1∑
k=0

∫ xk+1

xk

ga(y)dy =
n−1∑
k=0

∫ x1

x0

ga(y)dy =
n−1∑
k=0

K = nK, (4.90)

which implies ∫ xn

x0

ga(y)dy = nK, (4.91)

As n→∞, Eq. (4.90) becomes ∫ ∞
x0

ga(y)dy =∞, (4.92)

which completes the proof.
Now, let us proceed and find the correct form of leading order behaviour of ga(y)

referring to Eq. (4.41) for 0 < a < 1 as x→ 0+. If we denote the antiderivative of leading
order term of ga(y) as A(y), Eq. (4.41) can be rewritten as follows,

G(x) =

∫ x+Cxa

x

gd(y)dy = A(x+ Cxa)− A(x) ∼ K, (4.93)

where gd(y) andK represents the valid dominant behaviour of ga(y) and a positive constant,
respectively. For any 0 < a < 1 and C > 0, both x and x + Cxa approach 0 as x → 0+,
which implies A(x)→ A(0) and A(x+Cxa)→ A(0). Interestingly, the difference between
A(x+Cxa) and A(x) is approaching to a positive constant rather than 0 or ∞, according
to Eq. (4.93). This might make one consider leading order terms which diverge as y → 0+

but which involve logarithms. In what follows, we are going to test a few functions and
see whether Eq. (4.93) is satisfied in terms of the functions for 0 < a < 1 as x→ 0+.

• gd(y) = − ln y > 0 for 0 < y < 1 so that g(y) → ∞ as y → 0+. In this case,
A(y) = y − y ln y, since ∫

ln y dy = y ln y − y. (4.94)

As a result, we have

A(x+ Cxa)− A(x) = Cxa − (x+ Cxa) ln(x+ Cxa) + x ln(x)→ 0, (4.95)

as x→ 0+.
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• gd(y) = − 1

y ln y
> 0 for 0 < y < 1 so that g(y) → ∞ as y → 0+. It is clear that

A(y) = − ln | ln y|, which implies that

A(x+ Cxa)− A(x) = − ln | ln(x+ Cxa)|+ ln | lnx|. (4.96)

From Eq. (4.81), we obtain

A(x+ Cxa)− A(x) = − ln

∣∣∣∣a lnx+ lnC +
1

C
x1−a +O(x2−2a)

∣∣∣∣+ ln | lnx|

= − ln

∣∣∣∣− a+
lnC

| lnx|
+

1

C

x1−a

| lnx|
+
O(x2−2a)

| lnx|

∣∣∣∣
→ ln

(
1

a

)
,

(4.97)

as x→ 0+ for any a, x, x+ Cxa ∈ (0, 1).

Note ln(1/a) is a positive constant. Indeed, Eq. (4.97) suggests that gd(y) = − 1

y ln y
is a

valid leading order term which satisfies Eq. (4.93) as y → 0+. Up to some constant, the
leading order behaviour of the density function ga(y) as y → 0+ can be stated as follows,

ga(y) ' − 1

y ln y
. (4.98)

Although, in practice, only finite intervals [A,B] ⊂ Rg of the intensity space are employed,
as opposed to the infinite interval [0,∞); the asymptotic analysis on studying the leading
order terms of the density function is still interesting as Eq. (4.98) presents the dominant
behaviour of the density function, from which we can establish the generalized Weber-based
measures in terms of very low intensities.

Finally, we skip the further asymptotic analysis of density functions as x → 0+ for
0 < a < 1. One could follow similar principles, which are step 1, 2 and 3, as showed in the
previous case. The Taylor approximation of the logarithm would be applied appropriately
during the process.

4.2.2 The “Reverse Problem” for Weber’s Generalized Model of
Perception

Before investigating the asymptotic behaviour of the density functions that accommodate
generalized Weber’s model of perception for the other case a > 1, let us first consider
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the “reverse problem” to verify previous asymptotic results of the density functions and
provide a few connections to the other asymptotic analysis which will be introduced in the
next section. In “reverse problem”, given the density function g(y) = y−a, we aim to find
the leading order behaviour of f(x) such that

F (x) =

∫ x+Cf(x)

x

1

ya
dy = K > 0, (4.99)

where K is a constant which again represents the “visual accumulation” of intensity that
contributes to human visual perception; C, a positive constant, is usually called Weber’s
constant. By differentiating Eq. (4.97) with respect to x, we obtain the following differen-
tial equation (DE) for f(x) after a little manipulation,

1 + Cf ′(x) =

[
x+ Cf(x)

x

]a
. (4.100)

Indeed, Eq. (4.100) can be written as the DE,

ω′(x) =

[
ω(x)

x

]a
, (4.101)

where
ω(x) = x+ Cf(x). (4.102)

When a = 1, we easily obtain f(x) = kx = kx1, where k is a constant. Since the constant
k can be merged into the Weber’s constant C, we then simply have f(x) = x = x1, which
corresponds to standard Weber’s model, i.e., ∆x/x = C. For a > 0 and a 6= 1, solving the
separable DE in Eq. (4.101) yields

ω−a+1 = x−a+1 + A, (4.103)

where A denotes an arbitrary constant. From Eq. (4.103), we have

ω(x) = [x−a+1 + A]1/(1−a), (4.104)

Substituting Eq. (4.104) into Eq. (4.102) yields

Cf(x) = ω(x)− x = [x−a+1 + A]1/(1−a) − x, (4.105)

We now wish to determine the dominant behaviour of f(x) as x→∞.
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Case 1: For 0 < a < 1, the term x−a+1 in Eq. (4.104) will dominate, so we factor as
follows,

ω(x) = x[1 + Axa−1]1/(1−a), (4.106)

which implies that
Cf(x) = x[1 + Axa−1]1/(1−a) − x. (4.107)

Once again, as x → ∞, xa−1 → 0, which allows us to impose binomial approximation to
expand the term in square brackets in Eq. (4.107) and obtain,

Cf(x) ' x

[
1 +

A

(1− a)
xa−1

]
− x =

A

(1− a)
xa. (4.108)

In fact, Eq. (4.108) suggests that f(x) ∼ xa, which is in agreement with the results, i.e.,
∆I1 = CIa1 and ∆I2 = CIa2 , in Theorem 4.1.1.

Case 2: For a > 1, the term x−a+1 in the square brackets in Eq. (4.102) will approach
zero as x→∞. As such, we factor out the A,

ω(x) = A1/(1−a)[1 + A−1xa−1]1/(1−a). (4.109)

By employing the binomial approximation,

ω(x) ' A1/(1−a)

[
1 +

1

A(1− a)
x−a+1

]
= A1/(1−a) +

A1/(1−a)

A(1− a)
x−a+1.

(4.110)

As a > 1, we have that
ω(x)→ A1/(1−a) as x→∞. (4.111)

Note that the function ω(x) is the upper limit of integration to the function F (x) in Eq.
(4.99), which implies that

F (x) =

∫ ω(x)

x

1

ya
dy = K > 0. (4.112)

For a > 1, we now find the constancy of the function F (x) is satisfied, at least as x→∞,
if, to leading order,

F (x) =

∫ B

x

1

ya
dy, (4.113)
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where B = A1/(1−a). Instead of w(x) getting larger and larger as x→∞, ω(x) is decreasing
towards the constant B, in which case F (x) is negative. This actually, once again, implies
that 1/ya is not a correct form of the asymptotic behaviour of density functions. Moreover,
the incorrectness of the result that ga(y) ∼ 1/ya as y → ∞, for a > 1, can be explicated
by Theorem 4.2.1 in that

F (x) =

∫ B

x

1

ya
dy <∞. (4.114)

4.2.3 Asymptotic analysis of density functions for the case a > 1

In Section 4.2.1, we have discussed the asymptotic expansion of density functions for 0 <
a < 1. It now remains to perform an asymptotic analysis of density functions for the
case a > 1. As a matter of fact, we shall show that the asymptotic expansion of density
functions for a > 1 as x→ 0+ (0 < a < 1 as x→∞) employs the same expression as those
used for the asymptotic limit x→∞ for the case 0 < a < 1 (x→ 0+ for the case a > 1).

Case 3: The asymptotic limit of density functions as x→∞

In this case, we present that for a > 1, the asymptotic behaviour of the density function
ga(x), x→∞, cannot be represented by a power law. Similar to Lemmas 4.2.2, 4.2.3 and
4.2.4 that were previously introduced in Case 2 in Section 4.2.1, we show the following
three important lemmas to analyze the asymptotic limit for this case.

Lemma 4.2.5: For any x > 0, a > 1 and α < −1,∫ x+Cxa

x

yαdy ∼ − 1

α + 1
xα+1 as x→∞. (4.115)

Proof: By straightforward calculation, we obtain,

G(x) =

∫ x+Cxa

x

yαdy =
1

α + 1

[
(x+ Cxa)α+1 − xα+1

]
. (4.116)

As x→∞, the term xa dominates x. As a result, we may proceed in the following,

G(x) =
1

α + 1

[
(Cxa)α+1

(
1 +

1

C
x1−a

)α+1

− xα+1

]
. (4.117)
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Since a > 1 and x1−a/C approaches zero as x→∞, employing the binomial approximation
on the term (1 + 1

C
x1−a)α+1 yields,

G(x) =
1

α + 1

[
(Cxa)α+1

(
1 + (α + 1)

1

C(1 + α)
x1−a +

1

2C
α(1 + α)x2(1−a) + · · ·

)
− xα+1

]
.

(4.118)
Note that the final line is identical to Eq. (4.79) in the proof of Lemma 4.2.2. Since a > 1,
the exponent a(1 + α) < 1 + α, which implies that the term x1+α dominates as x → ∞,
yielding the desired result.

Lemma 4.2.6: For any x > 0, a > 1 and α = −1,∫ x+Cxa

x

y−1dy ∼ (a− 1) lnx as x→∞. (4.119)

Proof: ∫ x+Cxa

x

y−1dy = ln(1 + Cxa−1)

= ln(Cxa−1) + ln

(
1 +

1

C
x1−a

)
= (a− 1) lnx+ lnC +

1

C
x1−a − 1

2C
x2(1−a) + · · ·.

(4.120)

where we impose the Taylor series expansion of ln
(
1 + 1

C
x1−a). The proof is complete.

Lemma 4.2.7: For any x > 0, a > 1 and −1 < α < 0,∫ x+Cxa

x

yαdy ∼ Cα+1

α + 1
xa(α+1) as x→∞. (4.121)

Proof: From Eq. (4.118) in the proof of Lemma 4.2.5, for a > 1 and −1 < α < 0, it follows
that 0 < 1 + α < a(1 + α), which suggests that the term xa(α+1) is dominant as x → ∞.
This completes the proof.

From Lemmas 4.2.5, 4.2.6 and 4.2.7, we can conclude the following for the case a > 1:

• If −1 ≤ α < 0, then ∫ x+Cxa

x

yαdy → ∞ as x→∞. (4.122)
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• If α < −1, then ∫ x+Cxa

x

yαdy → 0 as x→∞. (4.123)

From Eqs. (4.122) and (4.123) with the assumption that the leading order behaviour of the
density function ga(y) for y → ∞ is of the form ga(y) ∼ yα, we found there is no α value
for which the integral approaches a constant as x → ∞. This leads us to thinking about
the new form of leading order behaviour of density functions ga(y) for y →∞. Recall that
this was also the case for the asymptotic limit of density functions in the case 0 < a < 1
as x → 0+ − see Eqs. (4.83) and (4.84). Similarly, one may consider leading order terms
which converge to zero as y → ∞ but which involve logarithms. Based on our previous
analysis in Case 2, we examine the following form of the density function,

g(y) =
1

y ln y
> 0 for y > 1. (4.124)

Note that g(y) → 0 as y → ∞. To verify, let us integrate g(y) in Eq. (4.124) from x to
x+ Cxa and obtain,∫ x+Cxa

x

1

y ln y
dy = ln[ln(x+ Cxa)]− ln(lnx)

= ln

[
a lnx+ lnC +

1

C
x1−a +O(x2−2a)

]
− ln(lnx)

= ln

[
a+

lnC

lnx
+

1

C

x1−a

lnx
+
O(x2−2a)

lnx

]
→ ln(a),

(4.125)

as x → ∞. As such, we may view the integrand in Eq. (4.125) as an leading order
behaviour of the density function ga(y) for a > 1, i.e.,

ga(x) ' 1

x lnx
as x→∞. (4.126)

By comparing Eq. (4.126) with Eq. (4.98), we realize that, up to some constant, the
leading order term of density functions ga(y) for the case 0 < a < 1 as x→ 0+ is the same
as the dominant behaviour of ga(y) for a > 1 as x→∞.

Case 4: The asymptotic limit of density functions as x→ 0+

In Case 3, we showed that an analysis of the asymptotic limit x → ∞ for the case a > 1
employs the same equations as those used for the asymptotic limit x → 0+ for the case
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0 < a < 1. As such, we expect that the asymptotic behaviour of density functions for the
case a > 1 as x→ 0+ corresponds to the identical form of the asymptotic limit presented
in the case 0 < a < 1 as x→∞.

Indeed, if we set α = −a and substitute it into Eq. (4.51), we arrive at Eq. (4.58)
which may also be viewed as an asymptotic relation for a > 1 as x→ 0+,∫ x+Cxa

x

1

ya
dy − C =

1

2
aC2xa−1 +O(x2a−2). (4.127)

Then, we can employ Steps 1, 2 and 3 as introduced in Case 1 to produce an asymptotic
expansion of density functions in the following,

ga(x) =
∞∑
n=0

an
xa+n(1−a)

as x→ 0+, (4.128)

which is exactly the same form as Eq. (4.68) showed in Case 1 for 0 < a < 1 as x → ∞.
Note as n increases for n ≥ 1, the term xa+n(1−a) subdominate the term xa as x→ 0+ since
a > 1 and the exponents n(1− a) are negative.

Finally, by combining all asymptotic bahaviours of density functions ga(y) in aforemen-
tioned cases, the significant results can be stated to give

0 < a < 1 : ga(y) ' 1

y ln y
as y → 0+.

a > 1 : ga(y) =
1

ya
+

1

2
aC

1

y
− 1

12
aC2(2a− 1)

1

y2−a + · · · as y → 0+.

0 < a < 1 : ga(y) =
1

ya
+

1

2
aC

1

y
− 1

12
aC2(2a− 1)

1

y2−a + · · · as y →∞.

a > 1 : ga(y) ' 1

y ln y
as y →∞.

(4.129)

As mentioned in Section 3.2.2, Weber’s law breaks down at very low intensities, and our
main interests concentrate on the high-intensity range, i.e., the asymptotic case y → ∞.
In many applications, e.g., medical image processing, the range of the intensity values
produced by the image is typically very large. As such, one could be more interested in
the last two asymptotic results in Eq. (4.129), and it follows Eq. (3.12) and Eq. (3.13)
(the intensity-based measure) that the associated distance functions are as follows,

0 < a < 1 : Da(u, v; νa) =

∫
X

|u(x)−a+1 − v(x)−a+1|dx.

a > 1 : D1(u, v; ν1) =

∫
X

| ln(lnu(x))− ln(ln v(x))| dx.
(4.130)
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Chapter 5

Best Approximations and
Stationarity Conditions for
Generalized Weber-based and
SSIM-based Approximations

In Section 3.3 of this thesis, we briefly considered the problem of function approxima-
tion using “Weberized” L2-based metrics, that is, L2 distance functions which employed
intensity-based density functions of the form ρa(y) for 0 < a < 1. In Eq. (3.57), the
stationarity conditions satisfied by the best approximations (in terms of the expansion co-
efficients ck associated with a fixed orthonormal basis) were given. We begin this chapter
(Section 5.1) with a more detailed analysis of the (finite-dimensional) optimization problem
associated with this best approximation problem. In Section 5.2, we investigate the sta-
tionarity conditions satisfied by best generalized Weber-based approximations from a more
theoretical, i.e., functional analysis, perspective involving the Fréchet derivative. These re-
sults have inspired a similar analysis of the best structural similarity-based (SSIM-based)
approximation problem [17] which will be described in Section 5.3.

5.1 The problem of best function approximation for

generalized Weber metrics

Previously, we showed that if the intensity-based measure ν supported on the greyscale
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range space Rg is defined by a continuous density function ρa(y) for a > 0, then the distance
between two functions u and v is given by

D(u, v; ν) =

∫
X

|P (u(x))− P (v(x))| dx, (5.1)

where P is the antiderivative of ρa, i.e., P ′(y) = ρa(y). As mentioned before, it is more
convenient to work with the L2-based analogues of the above distance functions, which are
given by,

D2(u, v; ν) =

[ ∫
X

[P (u(x))− P (v(x))]2 dx

]1/2

. (5.2)

As mentioned earlier, we shall consider u to be a fixed reference function and v an approx-
imation to it. We consider finite-dimensional approximations of the following standard
form,

vn(x) =
n∑
k=1

ckφk(x) , (5.3)

where the set of functions {φk}∞k=1 is assumed to form a linearly independent or orthogo-
nal/orthonormal basis on X. There is one complication, however, in that we must guar-
antee that the function vn(x) defined in Eq. (5.3) lies in the space of measurable and
positive-valued functions F(X) which, we recall, is defined as follows,

F(X) = {u : X → Rg | 0 < A ≤ u(x) ≤ B a.e. x ∈ X}. (5.4)

We define Cn ∈ Rn to be the feasible set of parameters, c = (c1, · · · , cn) so that vn ∈ F(X).
In Section 6.2, we show that Cn is compact and convex. For now, we define the following
subset of Sn ⊂ F(X),

Sn =

{
v : X → Rg

∣∣∣∣ v(x) =
n∑
k=1

ckφk(x) for c ∈ Cn
}
. (5.5)

In other words, Sn = F(X) ∩ span{φk}nk=1.

In the problem of best approximation, our goal is to determine the optimal coefficients
ck in Eq. (5.3) that minimize the distance function D2(u, vn; ν) in Eq. (5.2). Let us now
consider the squared D2 distance function between u and vn as a function of the parameters
c1, · · · , cn and, for notational convenience, denote it as follows,

∆(c) = ∆(c1, · · · , cn) =

∫
X

[P (u(x))− P (vn(x))]2 dx

=

∫
X

[P (u(x))− P (
n∑
k=1

ckφk(x))]2 dx .
(5.6)
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We wish to find a set of optimal parameters a = (a1, · · · , an) ∈ Cn which minimizes ∆(c),
i.e.,

a = (a1, · · ·, an) = arg min
c∈Cn

∆(c). (5.7)

If we assume that such a minimizer in Eq. (5.5) exists, then the function,

vn =
n∑
k=1

akφk(x) ∈ Sn , (5.8)

will be considered to be the best approximation of u in Sn. It should be mentioned that
the uniqueness of the minimizer may not be guaranteed since there might exist several local
optimal solutions that minimize the distance function in Eq. (5.6). More details about
the existence and uniqueness of the best approximation vn will be discussed in the next
chapter.

Now, let us consider the following finite-dimensional constrained optimization problem:

min
c∈Cn

∆(c), (5.9)

where ∆(c), i.e., Eq. (5.6), is a differentiable function, and Cn ⊂ Rn is the feasible set that
restricts all possible approximate functions vn (i.e., Eq. (5.3)) in F(X). In what follows,
we shall focus on necessary optimality conditions for the above problem (i.e., Eq. (5.9)).
As an introduction, let us first review the definitions of the cone of internal directions
[43], which are commonly dealt with specifying the optimality conditions in a number of
optimization models.

Definition 5.1.1: Let d ∈ Rn and c0 ∈ Cn. Then d is called the internal direction of
Cn if and only if ∃ α > 0 and ∀ t ∈ [0, α], we have

c0 + td ∈ Cn. (5.10)

In fact, the set of all internal directions of Cn at c0 is a cone, which is denoted as I(Cn, c0).

Necessary Optimality Condition

Suppose that c0 is a local solution to Eq. (5.9), then we have [44]

D∆(c0)d ≥ 0, ∀ d ∈ I(Cn, c0), (5.11)
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where D∆(c0)d denotes the directional derivative of the function ∆(c) at c0 with the
direction d.

Proof: From the definition of the internal cone, for any d ∈ I(Cn, c0), we have c0 +td ∈ Cn
for all t ∈ [0, α], where α > 0. As such, we may define a new function g(t) on the interval
[0, α] as follows,

g(t) = ∆(c0 + td). (5.12)

Since c0 is a minimizer of ∆, it is clear that 0 is a minimizer of g. Indeed, the first-order
Taylor expansion for g at 0 is given by,

g(t) = g(0) + g′(0)t+ o(t), (5.13)

where o(t) represents the higher-order terms of t which go to 0 faster than t as t approaches
to 0. Now, we claim that

g′(0) ≥ 0. (5.14)

To show Eq. (5.14), suppose g′(0) < 0. Then there exists an 0 < ε < α such that for any
0 ≤ t < ε, we have o(t) < |g′(0)t|, which implies that

g(t) < g(0) + g′(0)t+ |g′(0)t|. (5.15)

Since g′(0) < 0 and 0 ≤ t < ε, the above equation can be rewritten as

g(t) < g(0) + g′(0)t− g′(0)t = g(0), (5.16)

which contradicts that 0 is a minimum point of g. This implies that g′(0) ≥ 0. From Eq.
(5.12), we also have

g′(t) = D∆(c0 + td)d. (5.17)

Finally, setting t = 0 and combining the result with the claim, i.e., Eq. (5.14), yields that

D∆(c0)d ≥ 0, (5.18)

which completes the proof.
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5.2 Another look at the stationarity equations for best

Weber-based approximation in terms of the Fréchet

derivative

Let us now return to the optimization problem in Eq. (5.9), where ∆(c) is defined in Eq.
(5.6). If we now impose the usual stationarity conditions on Eq. (5.6), we obtain

∂∆

∂cp
= −2

∫
X

[P (u(x))− P (vn(x))]P ′(vn(x))φp(x)dx = 0, 1 ≤ p ≤ n. (5.19)

It then follows from P ′(y) = ρa(y) that∫
X

[P (u(x))− P (vn(x))]ρa(vn(x))φp(x)dx = 0, 1 ≤ p ≤ n. (5.20)

In the standard Weber model, i.e., P (y) = log(y) for all y ∈ F(X), Eq. (5.20) will yield a
complicated nonlinear system of equations in the unknowns ck because of the nonlinearity
of the logarithms. These complications will also exist for the Weber generalized models of
perception as well. As introduced in Chapter 3, one may employ a gradient-descent scheme
in deriving numerical estimates of the optimal coefficients ak. For the initial guess of ck
in numerical experiments, it is reasonable to start with the best L2 coefficients associated
with the {φk}nk=1 basis.

Let us now consider the stationarity equations in Eq. (5.20). For each p ∈ {1, 2, · · ·, n},
multiply both sides of Eq. (5.20) by ap, the coefficient of the best approximation vn(x) to
u(x) in Eq. (5.8), and then sum over all p to obtain the following result,∫

X

[P (u(x))− P (vn(x))]ρa(vn(x))vn(x)dx = 0. (5.21)

However, the above operation is not restricted to the use of the optimal coefficients ak. If
we consider any set of coefficients {c1, · · ·, cn} which define a function h(x) of the form,

h(x) =
n∑
k=1

ckφk(x), (5.22)

subject to the condition that vn + h ∈ F(X), we arrive at the following equation,∫
X

[P (u(x))− P (vn(x))]ρa(vn(x))h(x)dx = 0. (5.23)
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Now, let us define the following vector space of functions,

Hn = span{φ1, · · ·, φn}. (5.24)

Hn is an n-dimensional subspace of Rn. From Eq. (5.5), it is evident that Sn ⊂ Hn.
Generally, Hn * F(X) since it will contain negative-valued functions. In addition, F(X) *
Hn because F(X) is not even a vector space. For instance, if we have a function u(x) ∈
F(X). Then from Eq. (5.4), 2u(x) ∈ [2A, 2B] for a.e. x ∈ X, which implies that
2u(x) /∈ F(X). Therefore, F(X) is not a vector space. Nevertheless, we can show the
function space F(X) is closed and bounded as follows.

Given any function f ∈ F(X) ⊂ L2(X), we let

||f ||2a,2 =

∫
X

[P (f(x))]2 dx, a ≥ 0, (5.25)

where || · ||a,2 denotes the usual squared L2 norm (i.e., a = 0 and P (y) = y) and modified
squared L2 metrics (i.e., generalized Weberized) , and P , as introduced before, is related
to the intensity-based measures ν (i.e., Eq. (3.13)) supported on the greyscale range space
Rg. Since P is an increasing function on F(X), it then follows from Eqs. (3.13) and (5.4)
that

P 2(A)mg(X) ≤ ||f ||2a,2 ≤ P 2(B)mg(X), a ≥ 0, (5.26)

where mg(X) denotes the Lebesgue measure of X. In particular, if a = 0, i.e., Lebesgue
measure, and X = [a, b], we have ρ0(y) = 1 and mg(X) = b − a. Clearly, Eq. (5.26)
suggests that F(X) is a bounded set. For the closedness of F(X), let us take an arbitrary
convergent sequence of functions {fj} ⊂ F(X) such that

lim
j→∞

fj = f. (5.27)

Since {fj} ⊂ F(X), we have that

A ≤ fj(x) ≤ B, a.e. x ∈ X, (5.28)

for all j ∈ {1, 2, · · ·}, and the sequence of bounded functions uniformly converges to f , it
then follows from Eqs. (5.27) and (5.28) that

A ≤ f(x) ≤ B, a.e. x ∈ X. (5.29)

Therefore, this suggests that f ∈ F(X), implying that F(X) ⊂ L2(X) is a closed set.
Furthermore, it follows from Eqs. (5.22) and (5.23) that if vn ∈ Sn satisfies the station-

arity conditions in Eq. (5.21), then Eq. (5.23) holds for all h ∈ Hn such that vn + h ∈ Sn.
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Indeed, Eq. (5.23) has the appearance of a result involving Fréchet derivatives since the
integral on the left side may be viewed as a linear operator acting on h ∈ Hn. Motivated
by this result, we now consider the squared distance function in Eq. (5.6) in terms of the
real-valued function v ∈ F and not the expansion coefficients ck, i.e.,

∆(v) =

∫
X

[P (u(x))− P (v(x))]2 dx. (5.30)

As such, we now consider ∆(v) to be a functional, i.e., ∆ : F → R. From Eq. (5.23), we
conjecture that the Fréchet derivative of ∆(v) is given by the following linear operator,

∆′(v)h = −2

∫
X

[P (u(x))− P (v(x))]ρa(v(x))h(x)dx. (5.31)

From the necessary optimality condition mentioned in Section 5.1.1 , if vn ∈ Sn is a local
minimizer of ∆(v), then

∆′(vn)h ≥ 0 (5.32)

for all h ∈ I(Sn, vn) ⊂ Hn, where I(Sn, vn) represents the cone of internal directions of Sn
at vn.

There are some complications, however, with the idea of Fréchet derivative since, tech-
nically speaking, our space F(X) is a metric space but not a normed space. That being
said, we may be able to extend all of the usual definitions of Fréchet derivatives over
normed spaces to our metric space F(X) which, in fact, has a linear structure, as far as
linear combinations of functions are concerned. The fact that we are working with L2-type
distance functions also helps.

Special case: Lebesgue measure

To show the effectiveness of Eq. (5.31), let us now consider a special case of the D2 metric
defined in Eq. (5.2) in which ρ(y) = 1 and P (y) = y, i.e., Lebesgue measure. In this case,
F(X) is a subset of L2(X) which is a complete set of functions. Once again, we consider
u to be a reference function and vn (i.e., 5.3) to be an approximation to it ,and work with
the squared L2 distance function ∆, defined as follows,

∆(vn) = ‖u− vn‖2
2 =

∫
X

[u(x)− vn(x)]2 dx. (5.33)

For a function h ∈ Hn ⊂ L2(X) such that vn + h ∈ Sn, the difference between ∆(vn + h)
and ∆(vn) is given by

∆(vn + h)−∆(vn) =

∫
X

[u(x)− (vn(x) + h(x))]2dx−
∫
X

[u(x)− vn(x)]2 dx, (5.34)
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which implies

∆(vn + h)−∆(vn) = −2

∫
X

[u(x)− vn(x)]h(x)dx+

∫
X

h(x)2 dx. (5.35)

Then, it follows from Eq. (5.31) that the Fréchet derivative of ∆(vn) is stated as follows,

D∆h = ∆′(vn)h = −2

∫
X

[u(x)− vn(x)]h(x)dx, (5.36)

which is linear in terms of h. From Eqs. (5.35) and (5.36), we have

lim
h→0

|∆(vn + h)−∆(vn)−D∆(vn)h|
‖h‖2

= lim
h→0
‖h‖2 = 0, (5.37)

which conforms the valid form of the Fréchet derivative of ∆(vn) derived in Eq. (5.36). As
a result, if v̄n is a stationary point of ∆(vn), i.e.,

∆′(v̄n)h = −2

∫
X

[u(x)− v̄n(x)]h(x)dx = 0 ∀h ∈ Hn, (5.38)

then from Eq. (5.35), for all h ∈ Hn, h 6= 0,

∆(v̄n + h) > ∆(v̄n), (5.39)

which suggests v̄n is a minimizer of ∆(vn).
In what follows, we shall try performing the same type of analysis on the more general

D2 metrics (i.e., Eq. (5.2)) defined by measures ν which correspond to density functions
ρ(y). As indicated in Chapter 4, we assume that ρ(y) is a continuous function on Rg.
Given a reference function u ∈ F(X) and an approximation vn ∈ Sn, for any h ∈ Hn such
that vn + h ∈ Sn, according to Eq. (5.6), we examine the following difference,

∆(vn + h)−∆(vn), (5.40)

as h → 0. Note that, for convenience, we omit the subscript index of the approximate
function vn, and simply express it as v. First of all, it follows from Eq. (5.30) that

∆(v + h) =

∫
X

P (u(x))2dx− 2

∫
X

P (u(x))P (v(x) + h(x))dx+

∫
X

[P (v(x) + h(x))]2dx.

(5.41)
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Recall that P ′(y) = ρ(y), i.e., P (y) is differentiable on Rg. Then for a.e. x ∈ X, by the
Mean Value Theorem, i.e., Theorem 3.2.2, we have,

P (v(x) + h(x)) = P (v(x)) + P ′(ξ(x))h(x)

= P (v(x)) + ρ(ξ(x))h(x),
(5.42)

where ξ(x) lies between v(x) and v(x) +h(x). This implies that the second integral on the
RHS of (5.41) may be written as follows,∫

X

P (u(x))P (v(x)+h(x))dx =

∫
X

P (u(x))P (v(x))dx+

∫
X

P (u(x))ρ(ξ(x))h(x)dx. (5.43)

Similarly, the third integral on the RHS of Eq. (5.41) becomes∫
X

[P (v(x)+h(x))]2dx =

∫
X

P (v(x))2dx+2

∫
X

P (v(x))ρ(ξ(x))h(x)dx+

∫
X

ρ(ξ(x))2h(x)2dx.

(5.44)
As such, the distance between ∆(v + h) and ∆(v) is as follows,

∆(v+h)−∆(v) = −2

∫
X

[P (u(x))−P (v(x))]ρ(ξ(x))h(x)dx+

∫
X

ρ(ξ(x))2h(x)2dx. (5.45)

Note that in the special case ρ(y) = 1, i.e., Lebesgue measure, the above equation becomes
Eq. (5.35), as expected. The first integral on the RHS of Eq. (5.45), however, cannot be
considered as the Fréchet derivative of ∆(v) since the density function ρ(y) is evaluated at
ξ(x) and not v(x). As such, we rewrite Eq. (5.45) as follows,

∆(v + h)−∆(v) = −2

∫
X

[P (u(x))− P (v(x))][ρ(v(x)) + ρ(ξ(x))− ρ(v(x))]h(x)dx

+

∫
X

ρ(ξ(x))2h(x)2dx

= −2

∫
X

[P (u(x))− P (v(x))]ρ(v(x))h(x)dx

− 2

∫
X

[P (u(x))− P (v(x))][ρ(ξ(x))− ρ(v(x))]h(x)dx+

∫
X

ρ(ξ(x))2h(x)2dx.

(5.46)

It now appears that the first term on the RHS of Eq. (5.46) could be considered as the
Fréchet derivative of ∆(v), i.e.,

∆′(v)h = −2

∫
X

[P (u(x))− P (v(x))]ρ(v(x))h(x)dx, (5.47)
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At first glance, the second term on the RHS of Eq. (5.46) seems linear in h; However,
we shall show that it goes to zero faster than the linear form of h when h tends to zero,
because ρ(y) is continuous and ξ → v as h→ 0.

Let us first rewrite Eq. (5.46) as follows, based on the assumption in Eq. (5.47),

∆(v + h)−∆(v)−∆′(v)h = −2

∫
X

[P (u(x))− P (v(x))][ρ(ξ(x))− ρ(v(x))]h(x)dx

+

∫
X

ρ(ξ(x))2h(x)2dx.

(5.48)

Since ∆ is a functional, i.e., ∆ : F(X) → R, we may take absolute values of Eq. (5.48)
and obtain

|∆(v + h)−∆(v)−∆′(v)h| ≤ 2

∫
X

|[P (u(x))− P (v(x))][ρ(ξ(x))− ρ(v(x))]h(x)|dx

+

∫
X

ρ(ξ(x))2h(x)2dx.

(5.49)

In fact, the second integral on the RHS of the above equation can be bounded in a number
of ways. One is to use the facts that ρ(y) is continuous and Rg = [A,B] is compact, which
imply that there exists an M > 0 such that

|ρ(y)| ≤M ∀y ∈ Rg, (5.50)

which, in turn, implies that

|ρ(ξ(x))| ≤M a.e. x ∈ X. (5.51)

Then, we have ∫
X

ρ(ξ(x))2h(x)2dx ≤M2‖h‖2
2. (5.52)

With regard to the first integral on the RHS of Eq. (5.49), we first examine the term, i.e.,
ρ(ξ(x))− ρ(v(x)), in the integrand. Recall that for a.e. x ∈ X, ξ(x) lies between v(x) and
v(x) + h(x), which indicates that

|ξ(x)− v(x)| ≤ |h(x)| a.e. x ∈ X. (5.53)

Note that ρ(y) is uniformly continuous on Rg, which implies that for any ε > 0, there exists
a δ > 0 so that

|ρ(y1)− ρ(y1)| < ε for all y1, y2 ∈ Rg such that |y1 − y2| < δ. (5.54)
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Now, from Eqs. (5.53) and (5.54), if h ∈ Hn satisfies the condition |h(x)| < δ for a.e.
x ∈ X, then

|ρ(ξ(x))− ρ(v(x))| < ε a.e. x ∈ X. (5.55)

The first integral on the RHS of Eq. (5.49) can then be bounded as follows,∫
X

|[P (u(x))− P (v(x))][ρ(ξ(x))− ρ(v(x))]h(x)|dx ≤ ε

∫
X

|P (u(x))− P (v(x))||h(x)|dx,

(5.56)

which implies that∫
X

|[P (u(x))− P (v(x))][ρ(ξ(x))− ρ(v(x))]h(x)|dx ≤ εD2(u, v; ν)‖h‖2, (5.57)

by imposing Cauchy-Schwartz inequality on the RHS of Eq. (5.56), where D2(u, v; ν) has
been shown in Eq. (5.2). Employing the results of Eqs. (5.52) and (5.41) on Eq. (5.49),
we obtain the following result,

|∆(v + h)−∆(v)−D∆(v)h|
‖h‖2

≤M2‖h‖2 + εD2(u, v; ν). (5.58)

Since |h(x)| < δ for a.e. x ∈ X, ‖h‖2 < δ
√
L, where L represents the “length” of X. By

letting ε → 0+ and considering ‖h‖2 < min{δ
√
L, ε}, the RHS can be made arbitrarily

small, which proves that the Fréchet derivative of ∆(v) is given in Eq. (5.47).
Technically speaking, the denominator of the LHS in Eq. (5.58) should employ the true

distance function D2 between the functions v + h and v, i.e.,

D2(v + h, v; ν) =

[ ∫
X

[P (v(x) + h(x))− P (v(x))]2 dx

]1/2

, (5.59)

rather than ‖h‖2. However, in the case that the density function ρ(y) is continuous on
Rg, we shall show the D2 metric is equivalent to the usual L2 metric. As such, Eq. (5.59)
could be rewritten in terms of the usual L2 metric, establishing the existence of the Fréchet
derivative of D2(u, v; ν). Hence, D2(u, v; ν) is Fréchet differentiable on the function space
Sn (i.e., Eq. (5.5)).

In fact, the proof of equivalence of D2 and L2 metrics can be considered as a gener-
alization of the one given in Section 3.2.3 for the particular case of Weber-based density
functions having the form ρa(y) = 1/ya for 0 ≤ a ≤ 1 defined over the positive greyscale
range space Rg = [A,B] where 0 < A,B <∞. In Section 3.2.3, we proved the equivalence
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of L2 metric and Weber-based metrics constructed by the nonuniform measures defined by
the density functions of the form ρa(y) = 1/ya for 0 ≤ a ≤ 1 over the positive greyscale
range space Rg = [A,B] where 0 < A,B <∞.

Here, we may consider the more general case in which Rg = [A,B] ⊂ R. Once again, we
assume that the measure ν supported on Rg is defined by a density function ρ(y) > 0 which
is continuous on Rg. The metric D2(u, v; ν) on F([a, b]) constructed by the intensity-based
measure ν is defined in Eq. (5.2), where P is the antiderivative of ρ, i.e., P ′(y) = ρ(y). For
a.e. x ∈ [a, b], applying the Mean Value Theorem to the function P (y) on [A,B] yields,

P (u(x))− P (v(x)) = P ′(c)(u(x)− v(x))

= ρ(c)(u(x)− v(x)),
(5.60)

where c lies between u(x) and v(x). Taking absolute values, and noting that A < c < B,
we obtain the following set of inequalities for a.e., x ∈ [a, b],

ρmin|u(x)− v(x)| ≤ |P (u(x))− P (v(x))| ≤ ρmax|u(x)− v(x)|, (5.61)

where
ρmin = min

A≤y≤B
ρ(y) > 0, ρmax = max

A≤y≤B
ρ(y). (5.62)

By squaring all terms of Eq. (5.61), integrating over [a, b] and taking square roots, we
obtain the final result as follows,

ρmind2(u, v) ≤ D2(u, v; ν) ≤ ρmaxd2(u, v), (5.63)

where

d2(u, v) =

[ ∫ b

a

[u(x)− v(x)]2dx

]1/2

. (5.64)

As a result, the equivalence of the usual L2 and D2 metrics has been established. Hence,
the effectiveness of the Fréchet derivative of ∆(v) in Eq. (5.47) has been validated. Finally,
let us recall the meaning of the Fréchet derivative of ∆(v) as given in Eq. (5.47): ∆′(v)h
is the instantaneous rate of change of the functional ∆(v) at the point v ∈ F([a, b]) in the
direction h.

The Minimization of Generalized Weber-based Metrics using the Stationarity
Conditions

Motivated by the results of Fréchet derivative of generalized Weber-based metrics, one may
wonder whether the stationary points vn ∈ Sn are the minimizers of the distance functional
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∆(v) with reference to Eq. (5.30). In other words, if

∆′(vn)h = 0 ∀h ∈ Hn such that vn + h ∈ Sn, (5.65)

does it follow that
vn = arg min

v∈Sn

∆(v), (5.66)

or
∆(vn + h) ≥ ∆(vn)? (5.67)

If we recall the case that the density function ρ(y) = 1 implying the Lebesgue measure,
the answer is “Yes,” cf. Eq. (5.39). From Eq. (5.48), if vn ∈ Sn such that ∆′(vn) = 0,
then for any h ∈ Hn such that vn + h ∈ Sn,

∆(vn + h)−∆(vn) = −2

∫
X

[P (u(x))− P (vn(x))][ρ(ξ(x))− ρ(vn(x))]h(x)dx

+

∫
X

ρ(ξ(x))2h(x)2dx.

(5.68)

where, for a.e. x ∈ X, ξ(x) lies between vn(x) and vn(x)+h(x). If we assume that ‖h‖2 6= 0,
the second integral on the RHS of the above equation is certainly positive. Moreover, it
follows from vn ∈ Sn is a stationary point of ∆(v) that the above equation becomes

∆(vn + h)−∆(vn) = −2

∫
X

[P (u(x))− P (vn(x))]ρ(ξ(x))h(x)dx

+

∫
X

ρ(ξ(x))2h(x)2dx,

(5.69)

which was actually derived earlier as Eq. (5.45).
From Eq. (5.69) it follows that if ‖h‖2 is small, then ξ is close to v, which would imply

that first integral on the RHS of the above equation is close to zero in value. There would
then be the chance that the net value of the RHS of Eq. (5.69) would be positive. Indeed,
the second integral in Eq. (5.69) can be bounded below as follows,∫

X

ρ(ξ(x))2h(x)2dx ≥ ρ2
min||h||22, (5.70)

where || · ||2 denotes the usual L2 norm. We now try to obtain an upper bound to the
first integral, which will then give the most negative possible contribution to the RHS of
Eq. (5.68). One such bound can be found if we assume that ρ(y) is not only uniform

69



continuous but uniformly Lipschitz on Rg – which is not an unreasonable assumption. In
this case there exists a K ≥ 0 such that

|ρ(ξ(x))− ρ(v(x))| ≤ K|ξ(x)− v(x)| ≤ K|h(x)| a.e. x ∈ X. (5.71)

For the case of signal functions approximation, let us assume that X = [a, b]. It then
follows from the above equation that the first integral on the RHS of Eq. (5.68) can then
be bounded as follows,∫
X

|[P (u(x))− P (vn(x))][ρ(ξ(x))− ρ(vn(x))]h(x)|dx ≤ K

∫
X

|P (u(x))− P (vn(x))||h(x)|2dx

≤ K(b− a)ν(Rg)||h||22.
(5.72)

Note that the ν-measure of an interval [y1, y2] ⊆ Rg is given by

ν([y1, y2]) =

∫ y2

y1

ρ(y)dy = P (y2)− P (y1) ≤ ν(Rg), (5.73)

where ν(Rg) is the whole measure of the greyscale range space Rg. Consequently, it follows
from u(x), v(x) ∈ Rg for a.e. x ∈ [a, b] that the second line of Eq. (5.72) can be obtained.
If we combine the two bounds showed in Eqs. (5.70) and (5.72), we have, from Eq. (5.69),
that

D(vn + h)−D(vn) ≥ [ρ2
min − 2K(b− a)ν(Rg)]||h||22. (5.74)

The RHS is guaranteed to be positive if

ρ2
min > 2K(b− a)ν(Rg). (5.75)

Note that we cannot ensure that this inequality is satisfied by simply increasing ρmin, i.e.,
by multiplying ρ(y) by a constant C > 0. By doing this, we also multiply ν(Rg), as well as
the Lipschitz constant K, by C. One thing that can be done immediately is to let a = 0
and b = 1 so that b − a = 1, i.e., a rescaling of the x-coordinate. Now, the inequality
becomes

ρ2
min > 2Kν(Rg). (5.76)

Note that in the case of Lebesgue measure, i.e., ρ(y) = C, the Lipschitz constant K = 0,
so the above inequality is satisfied. In this case, we know that vn is a minimizer. From the
asymptotic results determined in Chapter 4, we also have that

• For 0 < a < 1:

Da(u, v) =

∫
X

[u(x)−a+1 − (v(x))−a+1]2dx. (5.77)
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• For a = 1:

D1(u, v) =

∫
X

[log u(x)− log(v(x))]2dx. (5.78)

Now, let us consider the following cases where the density functions, i.e., ρ(y), are positive-
valued and decreasing. In fact, these cases correspond to Weber-based intensity measures
on the bounded greyscale intensity range, i.e., Rg = [A,B], so that∫ B

A

ρ(y)dy = ν(Rg). (5.79)

Case 1: Squared Generalized Weber-based L2 Metrics

For the case that 0 < a < 1, ρ(y) = 1/ya on [A,B], and the Lipschitz constant K = a/Aa+1.
Note that these generalized Weber-based L2 metrics are introduced in Eq. (5.77). From
Eq. (5.79), we obtain that

ν(Rg) =

∫ B

A

1

ya
dy =

1

1− a

[
B−a+1 − A−a+1

]
. (5.80)

Plugging all the facts including ρmin = 1/Ba, K = a/Aa+1 and Eq. (5.80) into Eq. (5.76)
yields

1

B2a
>

2a

(1− a)Aa+1

[
B−a+1 − A−a+1

]
. (5.81)

After some manipulation, we have

2a

(1− a)

Ba+1

Aa+1
− B2a

A2a
− 1 < 0. (5.82)

If we let r = B/A, the above equation becomes

2a

(1− a)
ra+1 − r2a − 1 < 0. (5.83)

If we consider the LHS of Eq. (5.83) as a new function,

R(r) =
2a

(1− a)
ra+1 − r2a − 1, (5.84)

71



it is clear that

R′(r) =
2a(a+ 1)

(1− a)
ra − 2ar2a−1

= 2ara
[

1 + a

1− a
− ra−1

]
= 2ara

[
1 +

2a

1− a
− ra−1

]
.

(5.85)

Since r > 1 and 0 < a < 1, ra−1 < 1, which implies that R′(r) > 0 for all r > 1. As such,
we obtain that

R(r) > R(1) =
2a

(1− a)
− 2 =

4a− 2

1− a
. (5.86)

• If
1

2
≤ a < 1, then R(r) > R(1) ≥ 0, which suggests that there is no solution

satisfying Eq. (5.83). Therefore, for any
1

2
≤ a < 1, the stationary points of the

distance functions Da(u, v), i.e., Eq. (5.77), cannot be guaranteed to be the local
minimizers of Da(u, v).

• If 0 < a <
1

2
, we have R(1) < 0. The solution of Eq. (5.83) is as follows,

1 < r < r̄, (5.87)

where r̄ > 1 is the zero point (if exist) of R(r) in Eq. (5.84), i.e. R(r̄) = 0. Notice
that if there exists such a point r̄, i.e., there exists a point r1 > 1 such that R(r1) > 0,
r̄ is the only zero point of R(r) for r ∈ (1,∞) since R′(r) > 0 for all r > 1. On the
other hand, if R(r) < 0 for all r ∈ (1,∞),then there is no zero point with respect
to function R(r), so r̄ becomes ∞. In practice, the existence and location of r̄ can
be justified and “detected” by some numerical techniques such as Newton’s method,
Secant method and Brent’s method, we then have a range of the ratio between A
and B, i.e., Eq. (5.87), such that Eq. (5.76) is satisfied.

In what follows, let us test a simple example with a = 1/4. It follows from Eqs. (5.84) and
(5.85) that

R(r) =
2

3
r

5
4 − r

1
2 − 1, (5.88)

and

R′(r) =
5

6
r

1
4 − 1

2
r−

1
2 . (5.89)
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We aim to implement Newton’s method to approximate the root of Eq. (5.88). With
reference to Eqs. (5.88) and (5.89), the iteration function of Newton’s method is given by

rn+1 = rn −
R(rn)

R′(rn)

= rn −
4r

5
4
n − 6r

1
2
n − 6

5r
1
4
n − 3r

− 1
2

n

,

(5.90)

where n = 0, 1, · · ·, N , and N denotes total number of iterations. Using MATLAB with
our initial guess of r0 = 5, we can produce the following values:

r1 = 3.2900747461,

r2 = 3.1245081676,

r3 = 3.1223592408,

r4 = 3.1223588658,

r5 = 3.1223588658.

(5.91)

Accordingly, we also have

R(r1) = 1.7484279599,

R(r2) = 0.1401807905,

R(r3) = 0.0017730144,

R(r4) = 3.0927155718× 10−7,

R(r5) = 9.4210307000× 10−15.

(5.92)

Additionally, R(4) ≈ 0.77123 > 0, which automatically shows there exists a unique root
of R(r) in Eq. (5.88). As a result, r̄ ≈ 3.1223588658, which is the upper bound of r,
i.e., B/A, so that Eq. (5.88) is negative for r ∈ (1, r̄). This indeed implies that for
a = 1/4 and 1 < B/A < 3.1223588658, the stationary points of the distance function
D 1

4
(u, v), referring to Eq. (5.77), are minimizers of D 1

4
(u, v). Therefore, for any given

target function u ∈ F(X) (i.e., Eq. (5.4)), if the lower and upper bounds (i.e., A and B)
of greyscale range Rg satisfies the following relation,

1 <
B

A
< 3.1223588658, (5.93)

and there exists a vn such that

D
′
1
4
(u, vn)h = 0 ∀h ∈ Hn such that vn + h ∈ Sn, (5.94)

then vn is consequently considered as a minimizer of the distance function D 1
4
(u, v).
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Case 2: Squared Logarithmic L2 Metric

As a special case of a = 1 corresponding to standard Weberized metric (i.e., Eq. (5.78)),
ρ(y) = 1/y on [A,B], and the Lipschitz constant K = 1/A2. It then follows from Eq.
(5.79) that

ν(Rg) =

∫ B

A

1

y
dy = ln

(
B

A

)
. (5.95)

Consequently, Eq. (5.78) gives to

1

B2
>

2

A2
ln

(
B

A

)
, (5.96)

since ρmin = 1/B. After a little manipulation, we have

ln r − 1

2r2
< 0, (5.97)

by the change of variable, i.e., r = B/A. Note that, in general, B > A, which means that
r ∈ (1,∞). Let us consider a new function as follows,

R(r) = ln r − 1

2r2
. (5.98)

It is straightforward to see that R′(r) > 0 for all r ∈ (1,∞), which implies that

R(r) > R(1) = −1

2
. (5.99)

In addition, R(e) = 1 − 1/2e2 > 0. Hence, there exists a unique r̄ ∈ (1,∞) such that
R(r̄) = 0. To perform the iteration of Newton’s method, we need to know the derivative
R′(r) = 1/r + 1/r3 so that

rn+1 = rn −
2r3

n ln rn − rn
2r2

n + 2
. (5.100)
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Starting at our initial guess of r0 = 3, we obtain the following numerical results,

r1 = 0.1837468205,

r2 = 0.2827868501,

r3 = 0.4401584188,

r4 = 0.6831414991,

r5 = 0.9988570150,

r6 = 1.2494273641,

r7 = 1.3237630678,

r8 = 1.3278530806,

r9 = 1.3278640119,

r10 = 1.3278640119,

(5.101)

Note that R(r10) = 6.1062266354 × 10−6, which is very close to zero. As such, r̄ ≈ r15 =
1.32786401199, which is the upper bound of r, i.e., B/A, so that Eq. (5.98) is negative for
r ∈ (1, r̄). Therefore, for squared standard Weberized metric, i.e., Eq. (5.78), if

1 <
B

A
< 1.3278640119, (5.102)

the stationary points of D1(u, v) are also the minimizers of D1(u, v). Note that even if A
and B do not satisfy the above relation, a stationary point could possibly be an optimal
solution that minimizes standard Weberized metric D1(u, v).

Admittedly, the results in Eqs. (5.93) and (5.102) are not very encouraging due to the
fact that A/B is bounded in a very small “region”, in particular, as shown in Eq. (5.102).
Nevertheless, Eqs. (5.93) and (5.102) may provide some help with best approximation
problems in minimizing the generalized Weber-based metrics (0 < a < 1/2) and standard
Weberized metric (a = 1) from computational perspective.

5.3 The Fréchet Derivative of SSIM between Two Im-

age Functions

5.3.1 Introduction

In [17], the authors examined the best approximation problem using structural similarity
(SSIM): Given a reference function u, find the approximation v ∈ F(X), where F(X)
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(defined in Eq. (5.4)) denotes a suitable class of positive-valued functions on X, such
that the SSIM, which measures the perceptual difference, between u and v is maximized.
Without loss of generality, we assume that u and v are integrable functions on the interval
[a, b], i.e., X = [a, b]. Ignoring the numerical stability constants, the SSIM function between
u and v is defined as follows,

S(u, v) =
4ūv̄σuv

(ū2 + v̄2)(σ2
u + σ2

v)
, (5.103)

where

v̄ =
1

b− a

∫ b

a

v(x)dx = 〈v〉, (5.104)

σ2
v =

1

b− a

∫ b

a

(v − v̄)2dx, (5.105)

representing the mean and variance of the function v over the interval [a, b], respectively.
Similar expressions hold for u. Moreover,

σuv =
1

b− a

∫ b

a

(u− ū)(v − v̄)dx, (5.106)

which denotes the covariance between functions u and v. In this section, let us consider the
approximations afforded by a family of complete orthonormal functions {φk}∞k=1 on [a, b],
i.e.,

vn(x) =
n∑
k=1

ckφk(x), (5.107)

where

〈φk, φl〉 =

∫ b

a

φk(x)φl(x)dx = δkl. (5.108)

In this case, F(X) becomes span{φk}nk=1 on [a, b]. To find the best approximation of the
reference function u, we shall work out a set of optimal coefficients c = (c1, · · ·, cn) that
maximizes S(u, vn). As such, we rewrite Eq. (5.103) in terms of the parameters c,

S(c) =
4ūv̄n(c)σuvn(c)

(ū2 + v̄n(c)2)(σ2
u + σvn(c)2)

. (5.109)

Note that, as the “input” information, the terms ū and σ2
u are specific constants which

are not dependent upon c. Then, we employ logarithmic differentiation to simplify the
calculations on computing the gradient ∇cS(u, vn(c)), i.e.,

logS = log(4ū) + log(v̄n(c)) + log(σuvn(c))− log(ū2 + v̄n(c)2)− log(σ2
u + σ2

vn(c)), (5.110)
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and
1

S

∂S

∂cp
=

1

v̄n

∂v̄n
∂cp

+
1

σuvn

∂σuvn
∂cp

− 1

ū2 + v̄2
n

∂v̄2
n

∂cp
− 1

σ2
u + σ2

vn

∂σ2
vn

∂cp
, (5.111)

where p ∈ {1, · · ·, n}. After a little manipulation on Eq. (5.96), we obtain,

∂S

∂cp
= S

[
1

v̄n

∂v̄n
∂cp

+
1

σuvn

∂σuvn
∂cp

− 1

ū2 + v̄2
n

∂v̄2
n

∂cp
− 1

σ2
u + σ2

vn

∂σ2
vn

∂cp

]
. (5.112)

Now, it remains to compute the partial derivatives on the RHS of Eq. (5.112). Indeed,
from Eqs. (5.104), (5.105), (5.106) and (5.107), we can obtain that

∂v̄n
∂cp

=
∂

∂cp

[ n∑
k=1

ck〈φk(x)〉
]

= 〈φp(x)〉, (5.113)

and

∂σuvn
∂cp

=
∂

∂cp

[
1

b− a

∫ b

a

(u− ū)

[ n∑
k=1

ckφk(x)−
n∑
k=1

ck〈φk(x)〉
]
dx

]

=
1

b− a

∫ b

a

(u− ū)(φp(x)− 〈φp(x)〉)dx

=
1

b− a
[ap − 〈u〉〈φp(x)〉 − 〈u〉〈φp(x)〉+ 〈u〉〈φp(x)〉(b− a)]

=
1

b− a
[ap + (b− a− 2)〈u〉〈φp(x)〉],

(5.114)

where ap = 〈u, φp(x)〉, namely, “Fourier coefficients”, derived from best usual L2 approxi-
mation using the set of orthonormal functions {φk}∞k=1 on [a, b]. Moreover, since

σv
2
n =

1

b− a

∫ b

a

(vn − v̄n)(vn − v̄n)dx

=
1

b− a

∫ b

a

(v2
n − 2vnv̄n + v̄2

n)dx

=
1

b− a
[〈v2

n〉+ (b− a− 2)v̄2
n],

(5.115)

it follows from Eqs. (5.113) and (5.115) that

∂σ2
vn

∂cp
=

1

b− a
[2〈vn, φp(x)〉+ 2(b− a− 2)v̄n〈φp(x)〉]

=
1

b− a

[
2

n∑
k=1

ck〈φk(x), φp(x)〉+ 2(b− a− 2)v̄n〈φp(x)〉
]
.

(5.116)
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From Eq. (5.108), the above equation becomes,

∂σ2
vn

∂cp
=

1

b− a
[2cp + 2(b− a− 2)v̄n〈φp(x)〉]. (5.117)

Finally, imposing the Chain Rule and employing Eq. (5.113) yields,

∂v̄2
n

∂cp
= 2v̄n〈φp(x)〉. (5.118)

Hence, by substituting these results into Eq. (5.112), we obtain

∂S

∂cp
= S

[
〈φp〉
v̄n

+
ap + (b− a− 2)〈u〉〈φp〉

σuvn(b− a)
− 2v̄n〈φp〉
ū2 + v̄2

n

− 2cp + 2(b− a− 2)v̄n〈φp〉
(σ2

u + σ2
vn)(b− a)

]
, (5.119)

where p = 1, · · ·, n. In general, the RHS of Eq. (5.119) is a complicated nonlinear system
of equations in the unknown coefficients cp and a solution of the equations ∂S/∂ck = 0 is
intractable. One may propose to employ the Gauss-Newton strategy, an efficient gradient-
based optimization algorithm [42], to locate the maximum points of S(u, v(c)). In many
applications of image processing, given the oscillatory nature of the basis {φk}nk=1, many
of the mean values 〈φk〉 for a given orthonormal set may be zero. In this case, the above
expression simplifies greatly:

∂S

∂cp
= S

[
ap

σuvn(b− a)
− 2cp

(σ2
u + σ2

vn)(b− a)

]
. (5.120)

That being said, the vanishing of the partial derivative, i.e., ∂S/∂cp, implies that

ap(σ
2
u + σ2

vn) = 2σuvncp, (5.121)

which is a quadratic form in terms of the unknown coefficients cp for p = 1, · · ·, n. If we look
at the above equation more carefully, we shall realize that the stationarity equation (i.e.,
∂S/∂cp = 0) is not depend upon the constants a and b, which is not surprising in a sense of
the best approximation theory, because, intuitively, the optimal solution vn satisfying Eq.
(5.121) is supposed to be restricted by the “size” of the space of functions F(X) rather
than the length of the interval X = [a, b] (i.e., b− a).

5.3.2 Consequences of Stationarity and the Fréchet Derivative
of SSIM

Previously, we investigated the stationary point of SSIM, which involves the partial deriva-
tives with respect to the set of unknown parameters c = (c1, · · ·, cn). As indicated before,
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vn ∈ F([a, b]) ⊆ L2[a, b] is the approximation to u, where a, b are non-negative constants,
and a set of functions φk for k ∈ {1, · · ·, n} form an orthonormal basis on [a, b]. Recall that
we considered the function vn described by Eq. (5.107) (i.e., vn ∈ Sn) as an approximation
to a given function u ∈ F([a, b]). Here we consider the best approximation of u in terms
of SSIM, i.e., the function vn which maximizes the SSIM between u and vn, denoted as
S(u, vn) in Eq. (5.103). From Eq. (5.119), the following stationarity conditions must be
satisfied,[
〈φp〉
v̄n

+
ap + (b− a− 2)〈u〉〈φp〉

σuvn(b− a)
− 2v̄n〈φp〉
ū2 + v̄2

n

− 2cp + 2(b− a− 2)v̄n〈φp〉
(σ2

u + σ2
vn)(b− a)

]
= 0, (5.122)

for p = 1, · · ·, n, since we have assumed S(u, vn) 6= 0. Note that, as before, ap denotes the
“Fourier coefficients”.

Motivated by the previous work on intensity-based measures, i.e., Section 5.1.2, we
shall now perform a series of operations on Eq. (5.106) to further analyze mathematical
properties of SSIM between u and vn. First of all, consider any function hn ∈ F([a, b]),
defined as follows, be

hn(x) =
n∑
k=1

dkφk(x). (5.123)

For each p ∈ {1, · · ·, n}, multiply both sides of Eq.(5.106) by the coefficient dp,[
〈φpdp〉
v̄n

+
apdp + (b− a− 2)〈u〉〈φpdp〉

σuvn(b− a)
− 2v̄n〈φpdp〉

ū2 + v̄2
n

− 2cpdp + 2(b− a− 2)v̄n〈φpdp〉
(σ2

u + σ2
vn)(b− a)

]
= 0.

(5.124)
Now sum over all p ∈ {1, · · ·, n}, we have,[
〈hn〉
v̄n

+

∑n
p=1 apdp + (b− a− 2)〈u〉〈hn〉

σuvn(b− a)
−2v̄n〈hn〉
ū2 + v̄2

n

−
2
∑n

p=1 cpdp + 2(b− a− 2)v̄n〈hn〉
(σ2

u + σ2
vn)(b− a)

]
= 0,

(5.125)
which may be rewritten as follows,

〈hn〉
v̄n

+
[〈u, hn〉+ (b− a− 2)ūh̄n]

σuvn(b− a)
− 2v̄nh̄n
ū2 + v̄2

n

− [2〈vn, hn〉+ 2(b− a− 2)v̄nh̄n]

(σ2
u + σ2

vn)(b− a)
= 0. (5.126)

Note that this result is valid for all functions hn ∈ F([a, b]). Moreover, the LHS of the
above equation has the form of a linear operator acting on hn, since the mean operators
(e.g., 〈u, hn〉) are linear in their arguments. This once again suggests that the LHS is a
Fréchet derivative. That being said, if the structural similarity between the fixed target
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function u and the variable approximation vn is now considered to be a functional in terms
of vn, i.e.,

S(v) =
4ūv̄σuv

(ū2 + v̄2)(σ2
u + σ2

v)
. (5.127)

then we conjecture that the Fréchet derivative of the functional S(vn) is given by

S ′(vn)h = S(vn)

[
〈hn〉
v̄n

+
〈u, hn〉+ (b− a− 2)ūh̄n

σuvn(b− a)
− 2v̄nh̄n
ū2 + v̄2

n

− 2〈vn, hn〉+ 2(b− a− 2)v̄nh̄n
(σ2

u + σ2
vn)(b− a)

]
.

(5.128)

Eq. (5.126) may then be interpreted as the stationarity result,

S ′(vn)hn = 0, for all hn ∈ F([a, b]). (5.129)

In fact, replacing v in Eq. (5.106) with hn yields,

n∑
p=1

apdp = σuhn + 〈u〉〈hn〉 = σuhn + ūh̄n. (5.130)

Notice that ap represents the “Fourier coefficients”, and dp refers to Eq. (5.123). Similarly,
switching u in Eq. (5.106) to hn gives to,

n∑
p=1

cpdp = σvnhn + 〈vn〉〈hn〉 = σvnhn + v̄nh̄n, (5.131)

where ck is interpreted by Eq. (5.107). As a consequence, Eq. (5.126) becomes that

〈hn〉
v̄n

+
σuhn
σuvn

− 2v̄nh̄n
ū2 + v̄2

n

− 2σvnhn
σ2
u + σ2

vn

= 0, (5.132)

and the Fréchet derivative of S(v) is simplified as follows,

S ′(vn)h = S(vn)

[
〈hn〉
v̄n

+
σuhn
σuvn

− 2v̄nh̄n
ū2 + v̄2

n

− 2σvnhn
σ2
u + σ2

vn

]
. (5.133)
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Chapter 6

Existence and Uniqueness of Best
Generalized Weber-based L2

Approximations

In the context of optimization theory, the existence and uniqueness of the optimal solu-
tions (i.e., minimizers or maximizers) in terms of some best approximation problems is a
classical topic which has been widely considered and investigated in the field of mathe-
matical imaging. The purpose of this chapter is primarily to examine the existence and
uniqueness properties of minimizers when the generalized Weber-based distance, denoted as
D(u, v; νa), between the reference function u and its approximation v is minimized, where
a > 0 and νa represents the nonuniform intensity-based measures that accommodate gen-
eralized Weber’s model of perception. Given some a > 0, we previously demonstrated the
distance functions D(u, v; νa) are metrics while they do not come from the normed space.
As a consequence, the theory of best approximation in normed spaces and strictly normed
spaces cannot be appropriately applied in analyzing whether there exists a unique solu-
tion as D(u, v; νa) is minimized for any a > 0. But in this chapter, we shall establish an
existence-uniqueness theorem of best generalized Weber-based approximation by studying
the properties (e.g., compactness, convexity, etc) of a function space which contains all
possible approximate functions v.
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6.1 Introduction

Now, let us consider the following squared L2 distance functions defined by the intensity-
based measures νa,

D(u, v; νa) =

∫
X

[P (u(x))− P (v(x))]2 dx, (6.1)

where a ≥ 0, P is the antiderivative of the continuous density function ρa, and for any
I1, I2 ∈ Rg,

νa(I1, I2) =

∫ I2

I1

ρa(y)dy. (6.2)

In what follows, we consider u as a target function, and v as the approximation which is
described by a linear combination of an orthonormal basis denoted as {φk}nk=1, i.e.,

vn(x) =
n∑
k=1

ckφk(x). (6.3)

Then, Eq. (6.1) becomes

D(c1, · · ·, cn) =

∫
X

[P (u(x))− P (
n∑
k=1

ckφk(x))]2 dx, (6.4)

which is a multi-variable function in terms of a set of parameters c1, · · ·, cn over Cn. As
in Chapter 5, Cn, a subset of Rn, denotes a suitably-defined feasible set of parameters: If
c = (c1, · · ·, cn) ∈ Cn then the linear combination vn(x) indicated above lies in the following
set of positive-valued functions F(X) ⊂ L2(X),

F(X) = {u ∈ L2(X) | 0 < A ≤ u(x) ≤ B a.e. x ∈ X}, (6.5)

where X ⊂ R, and L2(X) represents the Hilbert space. In a special case of Lebesgue
measure (i.e., a = 0), P (y) = y. From Eq. (6.1), we obtain that

D(u, v) =

∫
X

[u(x)− v(x)]2 dx, (6.6)

which is the usual squared L2 distance between the functions u(x) and v(x). It follows
from Eq. (6.3) that the above equation becomes

D(c1, · · ·, cn) =

∫
X

[u(x)−
n∑
k=1

ckφk(x)]2 dx. (6.7)

Note that Eq. (6.6) is a distance function with absence of Weber’s model of perception.
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6.2 Existence and Uniqueness of Best Approximations

6.2.1 Existence and Uniqueness of the Optimal Solution for the
Approximation of non-negative Functions via Standard L2

Metric

It is well-known that the best approximation in Hilbert spaces is as follows [27, 28]:

Theorem 6.2.1: Let {φk}nk=1 represent an orthonormal set in a Hilbert space H, and
we define Y = span{φk}nk=1, which is a subspace of H. Then for any u ∈ H, the best
approximation of u in Y is given by the unique vector

y = PY (u) =
n∑
k=1

ckφk, (6.8)

where
ck = 〈u, φk〉, k = 1, 2, · · ·, n. (6.9)

The ck are called the Fourier coefficients of u with respect to the set {φk}nk=1.

A detailed proof of this standard theorem can be found in many textbooks, e.g., [27].
Indeed, the key idea of the best approximation in Hilbert space is to find the point y ∈ Y
that minimizes the squared distance ||u− v||22, for all v ∈ Y , i.e.,

y = arg min
v∈Y

||u− v||22, (6.10)

where || · ||2 denotes the usual L2 norm. In other words, we have to find the optimal coeffi-
cients c1, c2, · · ·, cn such that the distance, i.e., Eq. (6.7), is minimized. As a consequence,
the above theorem presents that there exists a unique optimal solution y ∈ Y such that
Eq. (6.7) is minimized.

Given the metric space (F(X), d2), we let Sn ⊆ F(X) be a subset of F(X) (i.e., Eq.
(6.5)), where the function space Sn is defined as follows,

Sn =

{
v : X → Rg

∣∣∣∣ v(x) =
n∑
k=1

ckφk(x) for c ∈ Cn
}
, (6.11)

where c = (c1, · · ·, cn). Once again, Cn is a feasible set of parameters which makes all the
approximations, i.e., v(x), restricted in the set of functions F(X). Now, given a function
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u ∈ F(X), instead of the space Y = span{φk}nk=1, we are interested in searching the best
approximation v(x) in the above function space Sn. Mathematically, the natural question is
“Does there exist a unique optimal solution v ∈ Sn such that Eq. (6.7) is minimized?” Note
that both u(x) and v(x) are assumed as the positive functions, i.e., A ≤ u(x), v(x) ≤ B
a.e. x ∈ X. Referring to [29], the distance of a given function u ∈ F(X) to Sn can be
defined to be the number

dist(u, Sn) = inf{d2(u, v) : v ∈ Sn}. (6.12)

Moreover, if v0 ∈ Sn is the minimizer such that d2(u, v0) = dist(u, Sn), then v0 is called a
metric projection of u onto Sn. More importantly [29], in the special case of Sn is a convex
body (i.e., a compact convex set with non-empty interior), we learn that Sn is called a
Chebyshev set, implying that there exists a unique metric projection onto Sn, a subset of
finite-dimensional Hilbert space L2(X), for any function u ∈ F(X). In what follows, we
shall formally prove that the function space Sn is indeed a convex body.

At first, let us investigate the convexity of the feasible set Cn. From the definition of a
convex set, for any c = (c1, · · ·, cn), d = (d1, · · ·, dn) ∈ Cn ⊆ Rn, if we can prove that

λc+ (1− λ)d ∈ Cn, λ ∈ [0, 1] , (6.13)

then Cn is a convex set. In fact, the only restriction making Cn considered as a feasible
set of the parameters is presented in Eq. (6.5), i.e., positive-valuedness and boundedness
of the approximate function v(x). As a result, for any λ ∈ [0, 1], we obtain that

λA ≤ λ[c1φ1(x) + · · ·+ cnφn(x)] ≤ λB, (6.14)

and
(1− λ)A ≤ (1− λ)[d1φ1(x) + · · ·+ dnφn(x)] ≤ (1− λ)B. (6.15)

Adding Eq. (6.14) to Eq. (6.15) yields

A ≤ [λc1 + (1− λ)d1]φ1(x) + · · ·+ [λcn + (1− λ)dn]φn(x) ≤ B, (6.16)

which implies that the set of parameters (λc1 + (1− λ)d1, ..., λcn + (1− λ)dn) ∈ Cn, for all
λ ∈ [0, 1]. Hence, Cn is a convex set. Furthermore, for any v(1), v(2) ∈ Sn, we have two sets
of parameters c = (c1, · · ·, cn), d = (d1, · · ·, dn) ∈ Cn such that

v(1) =
n∑
k=1

ckφk(x), v(2) =
n∑
k=1

dkφk(x). (6.17)
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Then, we obtain that

λv(1) + (1− λ)v(2) =
n∑
k=1

[λck + (1− λ)dk]φk(x). (6.18)

Since Cn is a convex set, λc+ (1− λ)d ∈ Cn. Hence, we have that λv(1) + (1− λ)v(2) ∈ Sn,
according to Eq. (6.11). This implies that the function space Sn is also a convex set.
Likewise, we may use the same manner presented above to prove that the function space
F(X) is convex as well. If we have two functions u, v ∈ F(X), then for any λ ∈ [0, 1], it
follows from Eq. (6.5) that

λA ≤ λu(x) ≤ λB, (6.19)

and
(1− λ)A ≤ (1− λ)v(x) ≤ (1− λ)B, (6.20)

for a.e. x ∈ X. As such, adding up Eqs. (6.19) and (6.20) yields

A ≤ λu(x) + (1− λ)v(x) ≤ B, (6.21)

which implies the convexity of F(X).
Next, we are going to show that for each n ≥ 1, the set of parameters Cn ⊂ Rn is a

closed and bounded set. For the boundedness of Cn, we know vn(x) ∈ Sn ⊆ F(X). From
Eqs. (6.3) and (6.5), it is clear that the range of the approximate functions is the interval
[A,B], i.e.,

A ≤ vn(x) =
n∑
k=1

ckφk(x) ≤ B, a.e. x ∈ X. (6.22)

As before, {φk}nk=1 denotes a set of orthonormal basis for the metric space. For each n ≥ 1,
we would like to find the set Cn ⊆ Rn such that the above inequality is satisfied. Now, we
shall make some assumptions on the basis functions φk(x). First of all, they are assumed
to be continuous on X, which implies that there exist constants mk and Mk, k ≥ 1, such
that

mk ≤ φk(x) ≤Mk, (6.23)

for a.e. x ∈ X. In this particular study, with an eye to applications, we shall consider the
special case of cosine functions in which case

φ1(x) = m1 = M1 = K, (6.24)

and
mk = −Mk = −M, k ≥ 2, (6.25)
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i.e.,
−M ≤ φk(x) ≤M for a.e. x ∈ X , k ≥ 2 . (6.26)

As a special case of n = 1, it follows from Eqs. (6.22) and (6.24) that

A ≤ c1K ≤ B =⇒ A

K
≤ c1 ≤

B

K
, (6.27)

implying that the feasible set C1 is bounded by the interval [A/K,B/K]. When n = 2,
Eq. (6.22) becomes that

A ≤ c1K + c2φ2(x) ≤ B. (6.28)

Since the above inequality is true for a.e. x ∈ X, we obtain the following two inequalities,

A ≤ c1K + c2M ≤ B,

A ≤ c1K − c2M ≤ B.
(6.29)

Note that the above two inequalities define the feasible set C2, which contains the set C1

lying on the c1-axis. Based on the results of these two special cases, it seems that we can
possibly derive bounds on the feasible set Cn by employing a recursive procedure. As a
matter of fact, if we substitute the left inequality of Eq. (6.27) into Eq. (6.29), we obtain
that {

A ≤ A+ c2M ≤ B

A ≤ B + c2M ≤ B,
(6.30)

and {
A ≤ A− c2M ≤ B

A ≤ B − c2M ≤ B.
(6.31)

Solving both Eq. (6.30) and Eq. (6.31) yields the inequality of c2 as follows,

A−B
M

≤ c2 ≤
B − A
M

. (6.32)

Now, let us consider the inequality for general n ≥ 1. From Eqs. (6.22) and (6.24), we
have that

A ≤ c1K + c2φ2(x) + · · ·+ cnφn(x) ≤ B. (6.33)

Then, for n+ 1,

A ≤ [c1K + c2φ2(x) + · · ·+ cnφn(x)] + cn+1φn+1(x) ≤ B. (6.34)
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Similarly, if we employ the two extremes in Eq. (6.33) for the expression in brackets as we
did in earlier for n = 1 and n = 2 to obtain the inequalities,

A−B
M

≤ cn+1 ≤
B − A
M

, n ≥ 1. (6.35)

By induction, the above inequality holds for all cn, where n ≥ 2. For n = 1, c1 is bounded
as indicated in Eq. (6.27). Hence, we have now proved that the set of parameters Cn is
bounded.

In order to establish that Cn is closed, let us define a convergent sequence {cjk} ⊂ Cn
such that

lim
j→∞

cjk = dk, (6.36)

for all k = 1, · · ·, n. Since {cjk} ⊂ Cn, we have that

A ≤
n∑
k=1

cjkφk(x) ≤ B, a.e. x ∈ X. (6.37)

Now, if we let

fj(x) =
n∑
k=1

cjkφk(x), (6.38)

and

f(x) =
n∑
k=1

dkφk(x), (6.39)

then it is straightforward to see that

lim
j→∞

[fj(x)− f(x)] = lim
j→∞

n∑
k=1

(cjk − dk)φk(x) = 0, a.e. x ∈ X. (6.40)

Therefore, as n→∞, Eq. (6.37) becomes

A ≤
n∑
k=1

dkφk(x) ≤ B, a.e. x ∈ X. (6.41)

This suggests that dk ∈ Cn for all k = 1, · · ·, n, implying that Cn ⊂ Rn is a closed set. From
Bolzano-Weierstrass Theorem [30], we shall conclude that the set of parameters Cn ⊂ Rn

is a compact set since Cn is closed and bounded.
From Proposition 1.9 in [26], we learn that any nonempty convex set Cn ⊂ Rn has a
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non-empty relative interior. Moreover, it is clear that dimCn = n, which implies that the
convex set Cn ⊂ Rn is full dimension. As such, the convex set Cn has a nonempty interior
[26]. We now have proved the set of parameters Cn is a convex compact set with nonempty
interior, meaning that Cn is a convex body. As we know, all the basis functions φk(x),
k = 1, · · ·, n, are continuous. Hence, the function space Sn is also a convex body in that
Sn is homeomorphic to the set Cn. Overall, we have presented that the set Sn described
by Eq. (6.11) is a Chebyshev set, which completes the proof of existence and uniqueness
of the optimal solution in Sn when the usual L2 distance function is minimized.

6.2.2 Existence and Uniqueness of the Optimal Solution for the
Approximation of non-negative Functions via Weber-based
L2 Metrics

Now, we consider the following Weberized distance functions/metrics on the space F(X):

• For 0 < a < 1:

Da(c1, · · ·, cn) =

∫
X

[u(x)−a+1 − (
n∑
k=1

ckφk(x))−a+1]2dx. (6.42)

• For a = 1:

D1(c1, · · ·, cn) =

∫
X

[log u(x)− log(
n∑
k=1

ckφk(x))]2dx. (6.43)

As usual, the metric D1(u, vn) presented above represents the standard Weberized L2

distance function, which corresponds to the standard Weber’s model of perception; and
both Da(c1, · · ·, cn) and D1(c1, · · ·, cn) are continuous on the set of coefficients Cn. If we
recall some results obtained in the last section, i.e., Section 6.2.1, Cn ⊂ Rn is a compact
set, which consequently implies that there must exist at least one solution when we wish
to find the best approximation of the reference function u(x) ∈ F(X) by minimizing the
distance functions in Eqs. (6.42) and (6.43).

For the above two metrics, let us consider the following functions:

U1(x) = log(u(x)), U2(x) = u(x)−a+1, (6.44)

and

V1,n(x) = log(
n∑
k=1

ckφk(x)), V2,n(x) = (
n∑
k=1

ckφk(x))−a+1, (6.45)
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where x ∈ X. Since u(x) and vn(x) =
∑n

k=1 ckφk(x) are in the function space F(X) ⊂
L2(X), it is clear that U1(x), U2(x), V1,n(x), V2,n(x) ∈ F(X) ⊂ L2(X) as well. As such, the
best approximation problems investigated on minimizing the two metrics, i.e., Eqs. (6.42)
and (6.43) are still centered in the L2(X) space, i.e., the Hilbert space. This is actually
why we sometimes call the two metrics in Eq. (6.42) and Eq. (6.43) modified L2 distance
functions. Based on the fact that each u(x) ∈ F(X) has at least one best approximation
in the set Sn (or Cn), Sn (or Cn) is now called a proximinal set [28]. Furthermore, since Sn
is also a convex set as we proved in the last section, we may employ the following theorem
[28] to show the uniqueness of best approximations via minimizing the distance functions
described in Eqs. (6.42) and (6.43).

Theorem 6.2.2: Let K be a convex subset of a Hilbert space H. Then each u ∈ H has
at most one best approximation of u in K. In particular, every convex proximinal set is
Chebyshev.

Apparently, Sn is a Chebyshev set, which is also a subset of the function space F(X).
This completes the proof of the uniqueness of the approximation vn(x) in Sn while the two
metrics, i.e., Eqs. (6.42) and (6.43) are minimized.

In what follows, we shall consider a special case of the best affine logarithmic L2 ap-
proximation in the Hilbert space H = L2([0, 1]), in which case

u(x) = x2 + 1, v(x) = cx+ d. (6.46)

From Eq. (6.43), the distance function that is relevant to the best affine logarithmic L2

approximation is then described as follows,

D1(c, d) =

∫ 1

0

[log(x2 + 1)− log(cx+ d)]2dx. (6.47)

For each pair c, d ∈ R, we are approximating u(x) using v2(x) ∈ S2 ⊂ F([0, 1]), where

F([0, 1]) = {f ∈ L2([0, 1]) | 0 < A ≤ f(x) ≤ B a.e. x ∈ [0, 1]}, (6.48)

and S2 refers to Eq. (6.11) for n = 2. Of course, the reference function u(x) has to be
contained in the space F([0, 1]) as well. By imposing the stationarity conditions, we obtain
the gradient of D1(c, d), ∇D1(c, d), as follows,

∂D1(c, d)

∂c
=

∫ 1

0

[log(x2 + 1)− log(cx+ d)]
x

cx+ d
dx,

∂D1(c, d)

∂d
=

∫ 1

0

[
log(x2 + 1)− log(cx+ d)

] 1

cx+ d
dx,

(6.49)
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which yields a nonlinear system of equations with respect to the parameters c and d.
Intuitively, one may first try employing the steepest-descent approach to locate the min-
ima of D1(c, d). Starting at a suitable ”seed” point (c0, d0), let us consider the following
elementary procedure to travel in the direction of steepest descent,

(cn+1, dn+1) = (cn, dn)− hn∇D1(cn, dn), (6.50)

where the constant hn denotes the step size for each iteration. At each (cn, dn), the integral
in Eq. (6.50), i.e. the approximation error, shall be evaluated numerically.

Figure 6.1: Surface plot of the affine logarithmic L2-type distance function D1(c, d)
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Figure 6.2: Contour plot of the affine logarithmic L2-based metric D1(c, d)

Using MATLAB, the numerical solution to c and d are found to be, to four decimals,
c = 0.9056

d = 0.8757,

(6.51)

which implies the affine logarithmic L2 approximation of u(x) = x2 + 1 is

v2(x) = 0.9056x+ 0.8757. (6.52)

To visualize the distance presented in Eq. (6.47), we make a 3D plot (Figure 6.1) of
the affine logarithmic distance with x-axis, y-axis and z-axis represents c, d and D1(c, d),
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respectively. Notice that c and d are both locally bounded by the interval [0.5, 1.5]. In
practice, this interval should also correspond to the boundedness of the set C2, which has
been fruitfully discussed in the last section. Moreover, we also make a contour plot (Figure
6.2) of the distance function D1(c, d). Note the number on each contour line represents the
value of D1(c, d). If we look carefully at Figures 6.1 and 6.2, we shall find that the darkest
blue region appears at around the point (c, d) = (0.9, 0.9), which roughly agrees with the
numerical results, i.e., Eq. (6.51), yielded by steepest-descent algorithm. In addition,
these two plots also illustrate that there is at most one (locally) optimal pair of coefficients
(c, d) for the best affine logarithmic L2 approximation, which is consistent with previously
discussed existence and uniqueness theorem of the minimizer in (generalized) Weberized
L2 approximation.

Gauss-Newton Algorithm and its Application on the Best Affine Logarithmic
L2 Approximation

For some discrete cases (e.g., digital signals or images), Eq. (6.43) can be modified as
follows,

D1(c1, · · ·, cn) =
m∑
i=1

[log(u(xi))− log(
n∑
k=1

ckφk(xi))]
2, (6.53)

where m ≥ n. Now, our best approximation problems in the usual l2 space are to search
a “best” set of parameters c1, · · ·, cn minimizing D1(c1, · · ·, cn) =

∑m
i=1 r

2
i , where

ri = log(u(xi))− log(
n∑
k=1

ckφk(xi)), i = 1, · · ·,m. (6.54)

In the theory of optimization, the above best approximation problem is considered as a
nonlinear least squares minimization problem. Indeed, there is an iterative algorithm, so-
called the Gauss-Newton algorithm, which is designed to solve the nonlinear least squares
problem by applying the least-squares method [33]. Typically, it is seen as an approxima-
tion of Newton’s method for finding the minimum of a function.

In this nonlinear least squares minimization problem, we aim to determine the optimal
coefficients c = (c1, · · ·, cn) that minimize

∆(c) = ‖r(x)‖2 =
m∑
i=1

r2
i (c), (6.55)
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where r : Rn → Rm. Then, it follows from Eq. (6.55) that the gradient gk for each
parameter ck is described as follows,

gk = 2
m∑
i=1

ri
∂ri
∂ck

, (6.56)

and the Hessian for each ck is given by

Hkl = 2
m∑
i=1

(
∂ri
∂ck

∂ri
∂cl

+ ri
∂2ri
∂ck∂cl

)
, (6.57)

where k = 1, · · ·, n and l = 1, · · ·, n. Note that the second term in Eq. (6.57) is (nearly) zero
when we are solving the linear (approximately linear) least squares well-posed problem.
In essence, the Gauss-Newton method approximates the nonlinear least squares problem
by some kind of the first order linearization. As such, the Hessian in Eq.(6.56) can be
approximated as follows,

Hkl ≈ 2
m∑
i=1

∂ri
∂ck

∂ri
∂cl

, (6.58)

when we use Gauss-Newton algorithm to solve our nonlinear least squares minimization
problem. Once again, the reason why we could ignore the second term in Eq. (6.56) is
because we employ the first order linear approximation of r(x) in Gauss-Newton algorithm,

which leads to
∂2ri
∂ck∂cl

is fairly small in every numerical iteration.

In matrix notation, the gradient and the approximated Hessian can be expressed in the
following,

g = 2JT r,

H ≈ 2JTJ,
(6.59)

where

r =


r1

r2
...
rm

 , J =



∂r1

∂c1

∂r1

∂c2

· · · ∂r1

∂cn
∂r2

∂c1

∂r2

∂c2

· · · ∂r2

∂cn
...

...
. . .

...
∂rm
∂c1

∂rm
∂c2

· · · ∂rm
∂cn


. (6.60)

93



Based on the iteration results for stationary points derived by Newton’s method [32], the
iteration function of the Gauss-Newton algorithm is described as follows,

c(s+1) = c(s) − (JTJ)−1JT r

= c(s) − J†r,
(6.61)

where
J† = (JTJ)−1JT , (6.62)

named as generalized inverse of the matrix J. Note that the term −J†r is also called the
Gauss-Newton direction that leads the iterations to the local minimum.

In what follows, let us recall the best affine logarithmic L2 approximation, which is to
minimize the distance function D1(c, d) in Eq. (6.47), i.e.,

D1(c, d) = ||F (c, d)||22, (6.63)

where
F (c, d) = log(cx+ d)− log(x2 + 1). (6.64)

If F ′(c, d) represents the derivative of F (c, d) at the current estimate c, d ∈ R, then the
first order approximation of F at (c+ δc, d+ δd) is given by

F (c+ δc, d+ δd) = F (c, d) + F ′(c, d)

[
δc
δd

]
. (6.65)

As a result, the first order approximation for our problem at the current estimate (c, d) is
obtained by linearizing the function D1(c, d), i.e.,

min

∫ 1

0

[
log(x2 + 1)− log(cx+ d) +

(
xδc

cx+ d
+

δd

cx+ d

)]2

dx. (6.66)

It follows from Eq. (6.64) that the Jacobian of F (c, d), simply denoted as V , is given by

F ′(c, d) = V = [v1(x), v2(x)] =

[
x

cx+ d
,

1

cx+ d

]
(6.67)

As introduced before, the Gauss-Newton direction dGN at the current estimate c, d ∈ R
gives to

dGN = V †(−F (c, d)), (6.68)

where
V † = (V ∗V )−1V ∗. (6.69)
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Note that V ∗ denotes the adjoint of V , so that

V ∗V =

[
||v1(x)||2 〈v1(x), v2(x)〉

〈v1(x), v2(x)〉d ||v2(x)||2
]
. (6.70)

From the optimality condition, i.e., V TV = 0, which can be viewed as a stopping criterion,
we implement Gauss-Newton algorithm for this special problem and obtain the same result
as Eq. (6.51) just in 9 iterations. Comparing with steepest descent method, Gauss-
Newton algorithm dramatically improves the efficiency of optimization process for solving
the best affine logarithmic L2 approximation, since it can achieve quadratic rate of (local)
convergence under certain regularity conditions, e.g., the initial iteration is reasonably
close to the solution, [34]. Generally, the efficiency of Gauss-Newton algorithm could be
extended to higher dimensional (n > 2) best approximation problems in terms of both
signals and images.
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Chapter 7

Concluding Remarks

In this chapter, we first present a summary of the contributions of this thesis. For extensions
of this thesis, we also discuss some possible future work in terms of both mathematical
imaging analysis and the applications of image processing.

7.1 Summary of Contributions

The motivation of this thesis stems from realizing the challenges of a big gap between
image analysis and human visual system. As such, this thesis devotes to constructing the
metrics which can predict human visual perception of image distortions. In practice, we
aim to effectively apply these metrics in best approximation problems to improve percep-
tual quality of compressed or approximate images.

Indeed, the first contribution of this thesis was to generalize Weber’s model of percep-
tion and derive a general form of “Weberized” distance functions. Secondly, we showed
how to construct generalized Weber-based metrics using nonuniform intensity-based mea-
sures which accommodate a generalized Weber’s model of perception in terms of an “equal
area” rule. From mathematical perspective, the existence-uniqueness theorem of the den-
sity functions associated with the intensity-based measures was proved via a well-known
functional equation — Abel’s equation, which controls the iteration dynamics of the embed-
ded function. We also derived the leading asymptotic behaviour of these density functions
and then computed their asymptotic expansions. Furthermore, we analyzed the Fréchet
differentiability of generalized Weber-based metrics and determined the Fréchet deriva-
tives of these distance functions. We then employed the Fréchet derivatives of generalized
Weber-based metrics (0 < a ≤ 1) to examine the relation between the stationary points
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and minimizers of these metrics. We saw that the stationary points of the generalized
Weber-based metrics (i.e., 0 < a < 1/2 and a = 1) are indeed the minimizers of these
metrics if the lower and upper bounds of greyscale range satisfy some particular conditions
(i.e., Eqs. (5.93) and (5.102)). In Chapter 6, the existence-uniqueness theorem of best gen-
eralized Weber-based approximation stated that every “convex body” of finite dimensional
Hilbert space is proximinal and Chebyshev.

7.2 Future Directions

Weber’s model of perception and its generalization allow greater deviations at higher in-
tensity values and lower deviations at lower intensity values. Motivated by this property,
one may expect to obtain more variance at lower intensities and lesser variance at higher
intensities when the “opposite effect” of Weber’s (generalized) model of perception incor-
porates in the construction of distance metrics. This “opposite effect” leads to a kind
of “anti-Weber” model of perception in which the component a in Eq. (2.3) is negative.
Consequently, we are able to establish another class of metrics which accommodate anti-
Weber’s model of perception. For the purpose of image processing applications, it would be
interesting to find a hybrid image approximation model which can adaptively yield Weber-
ized and anti-Weberized approximations with respect to lower and higher intensity regions
of an image. In the future, one may also carry out a number of objective and subjec-
tive experiments to test the performance of generalized Weber-based metrics, which could
provide some help with image quality assessment. Naturally, these experiments should be
designed for indicating the effect that generalized Weber-based metrics are in accordance
with human visual system.

In fact, our intensity-based measure approach does not have to be associated with We-
ber or anti-Weber models of perception. It represents a mathematical method that can be
used to construct arbitrary range-based measures that may be used in function approxi-
mation. As such, it may have applications that lie well beyond the scope of mathematical
imaging.
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