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Abstract

In this thesis, we investigate Ore extensions of Hopf algebras and the Zariski Cancellation
problem for noncommutative rings. In particular, we improve upon the existing condi-
tions for when T = R]z; 0, 4] is a Hopf Ore extension of a Hopf algebra R, and we give
noncommutative analogues of a cancellation theorem of Abhyankar, Eakin, and Heinzer.
In Chapter 3, we study the relationship between prime ideals of T' = R[x;0,4] and their
contractions under R. In Chapter 4, we look at when T' is a Hopf algebra and by studying
the coproduct of z, A(x), we provide a sequence of results that answers a question due to
Panov; that is, given a Hopf algebra R, for which automorphisms ¢ and o-derivations o
does the Ore extension T' = R|x; 0, ] have a Hopf algebra structure extending the given
Hopf algebra structure on R? In Chapter 5, we consider the question of cancellation for
finitely generated not-necessarily-commutative domains of Gelfand-Kirillov dimension one
and show that such algebras are necessarily cancellative when the characteristic of the
base field is zero. In particular, this recovers the cancellation result of Abhyankar, Eakin,
and Heinzer in characteristic zero when one restricts to the commutative case. We also
provide examples that show affine domains of Gelfand-Kirillov dimension one need not
be cancellative when the base field has a positive characteristic, giving a counterexam-
ple to a conjecture of Tang et al. In Chapter 6, we prove a skew analogue of the result of
Abhyankar-Eakin-Heinzer, in which one works with skew polynomial extensions as opposed

to ordinary polynomial rings.
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Chapter 1
Introduction

In this thesis, we investigate Hopf Ore extensions and Zariski cancellation problems. Let
us begin by taking a look at the background of these two topics. An Ore extension is also
called a skew polynomial ring and is defined as follows. Let k£ be a field and R be a k-
algebra. Given a k-algebra endomorphism o of R, we define a k-linear o-derivation § of R
to be a k-linear map satisfying (ab) = o(a)d(b) +6(a)b for a,b € R. Then one can form an
Ore extension T' = R[z, 0, ], which is the k-algebra generated by R and the indeterminate
x subject to the relation zr = o(r)x + 6(r) for all » € R [20]. There is currently great
interest in the study of Ore extensions of algebras, which is largely due to the fact that
many quantized algebras and their homomorphic images can be expressed in terms of
(iterated) Ore extensions. New methods are developed to describe prime ideals in an Ore
extension 7' = R[z;0,6] in [19, 25, 26]. In the case that R is commutative noetherian (and
o is an automorphism), a complete description of the prime ideals of 7" in terms of their
contractions to R is given in [19]. In Chapter 3, we investigate the relationship between
prime ideals of T" and their contractions under R when R is a noetherian ring that satisfies

a polynomial identity.

We are particularly interested in Ore extensions that have the additional property of



being a Hopf algebra. A Hopf algebra (R, m, A, u,€) is an associative k-algebra that is
also a coassociative k-coalgebra with the extra condition that A and e are algebra maps,
together with an antipode map S and some additional constraints about how the various

maps interact [38]. We give further details in the next chapter.

Notably, Hopf algebras play an important role in many different areas of mathematics,
including algebraic topology, group scheme theory, and group theory [2]. In [10], Panov
considered the possible Hopf algebra structures on an Ore extension T' = R[x;0,d] that
extend the underlying Hopf structure on a Hopf algebra R. In Chapter 4, we will establish
sufficient and necessary conditions on ¢ and 0 to make 7" extend the Hopf algebra structure
of R by improving the result of [11, theorem in §2.4]. Specifically, when R is noetherian
and R ®; R is a domain, we show that after a suitable change of variables, we have
Alz) =F'®@z+2®1+w, withw € R®;, R and 3 a grouplike element of R. Since
T = R[x;0,0] is a free R-module generated by {1,z, 2%, ..., }, it is of great significance to

understand the nature of A(z) when studying the Hopf algebra structure of 7T'.

Now let us shift to the second topic, i.e., the Zariski cancellation problem (ZCP). Kraft
said in his 1995 survey [28] that “there is no doubt that complex affine n-space A™ = A is
one of the basic objects in algebraic geometry. It is therefore surprising how little is known
about its geometry and its symmetries.” Although there has been some remarkable progress
in the last few years, many basic problems remain open. On a related note, the famous
Zariski cancellation problem asks: is an affine variety X over an algebraically closed field

k having the property that X x A! = A"*! necessarily isomorphic to A"? The question is

known to have an affirmative answer when n = 1 [1], and n = 2, with the characteristic zero
case being done by Fujita [1 7] and Miyanishi-Sugie [37], and the positive characteristic case
handled by Russell [13]. In positive characteristic, Gupta [21, 22] gave counterexamples to

the Zariski cancellation problems in dimension at least three. Still, the problem remains
open in dimension greater than two in the case that the base field has characteristic zero.

Equivalently, the Zariski cancellation problem can be stated algebraically: if A is an affine



(finitely generated) k-algebra such that Alzx| = k[z1,...,2,11], does it follow that A is
isomorphic to k [z1,...,x,]? More generally, we are interested in the question: when does
R[t] = S[t] imply that R and S are isomorphic as k-algebras for a some specific k-algebra
R? If it is always the case that R is isomorphic to S whenever R[t] = S|t], then R is called

cancellative.

In [1], it has been shown that if R is commutative and has Krull dimension one, then R
is cancellative. On another hand, many counterexamples were constructed in [11] when R
has Krull dimension two. So it is natural to ask whether R is cancellative if R is noncommu-
tative and has Gelfand-Kirillov dimension one. In Chapter 5, we look at noncommutative
analogues of the result of Abhyankar, Eakin, and Heinzer. Their theorem, when one works
in the category of commutative algebras, says that if A is a finitely generated algebra that
is an integral domain of Krull dimension one, then A is strongly cancellative in the above
sense. We consider a noncommutative analogue of this theorem, in which one considers
finitely generated domains of Gelfand-Kirillov dimension one. When working with non-
commutative algebras, it is generally preferable to work with Gelfand-Kirillov dimension

rather than with the classical Krull dimension.

In light of the Zariski cancellation problem, it is then natural to ask when an algebra R
is skew cancellative; that is, if R[z;0,0] = S[x;0’,40'] when do we necessarily have R = S7
In Chapter 6, we study the skew cancellativity of the two most important special cases of
this construction; namely, the skew polynomial extensions of automorphism type, where
0 = 0; and skew polynomial extensions of derivation type, where o is the identity. In the
former case, where § = 0, it is customary to omit ¢ and write R[z;o]; and in the latter
case, where ¢ is the identity, it is customary to omit o and write R[z;d]. We show that R
is skew cancellative in the two cases just mentioned when the coefficient ring R is an affine
commutative domain of Krull dimension one. We end this thesis by listing some relevant

open questions in Chapter 7 that naturally arise from our investigations.



Chapter 2
Preliminaries

In this chapter, we summarize the notation and mathematical conventions used in this
thesis. In addition, we will give detailed definitions of concepts that are involved in the
later chapters. Throughout this thesis, we take k to be a field and all algebras are over k.
Given two morphisms f, g, we denote f o g the composition of f and g. A map J is called
a derivation of an algebra R if §(ab) = ad(b) + d(a)b for all a,b € R. A map o is called an
endomorphism of an algebra R if ¢ is a ring homomorphism sending R to R. In addition,
if o is a bijective endomorphism of R, then ¢ is called an automorphism of R. We will

generally always assume that ¢ is an automorphism in this thesis.

2.1 Ore Extensions

2.1.1 Definition of an Ore extension

Let R be a k-algebra. An Ore extension, also called a skew polynomial ring, is a generaliza-
tion of a polynomial extension of an algebra R in a variable z. In this setting, however, we

no longer assume that the variable x commutes with the elements of R. If z commutes with



R, then the construction yields the trivial case, namely, a polynomial ring in the variable
x with coefficient ring R. In general, in the algebra we construct, each element will be
expressible uniquely in the form Y a;z" for some a; € R and such that the degrees behave
appropriately; i.e., for polynomials f(x), g(z), we have deg(f(z)g(z)) <degf(x)+degg(x).
In this case, it is required that xa € Rz + R. In particular, za = o(a)z + d(a) will satisfy
the above requirement, where o, § are endomorphisms of the additive group R*. Moreover,

by looking at z - (ab) with a,b € R, we notice that
z(ab) = o(ab)x + d(ab)
and
(za)b = o(a)o(b)x + o(a)o(b) + 6(a)b.
Hence, this implies that ¢ is an endomorphism of R and that
d(ab) = a(a)d(b) + d(a)b.
We can state the precise definition of an Ore extension as follows.

Definition 2.1.1. Let R be a k-algebra with a k-algebra endmorphism ¢ and a k-linear
o-derivation § of R, (i.e. § : R — R is a k-linear map with the property that 0(ab) =
o(a)d(b)+0(a)bfor a,b € R). A skew polynomial extension or Ore extension T' = R|x; 7, ]
is the k-algebra generated by R and the indeterminate x, subject to the relations xr —
o(r)z = 4(r) for r € R.

Thus T, as a set, is just the R[z], but where the indeterminate = now skew commutes
with elements of R. In the Ore extension R[x;o,d], if § = 0 this is written as R[z;o];
and, if o = id, as R|x;d]. These give two special types of Ore extensions, which will be

investigated in Chapter 6.

Remark 2.1.1. The algebra T' = R[x; 0, 0] defined above has the universal property that
if : R — S is a k-algebra homomorphism and y in an algebra S has the property that

yo(a) = ¢(o(a))y + ¢(6(a))

5



for all a in R, then there exists a unique algebra homomorphism v : R[z;0,§] — S such

that ¢ (z) = y and the diagram

commutes.

Now we provide some examples of Ore extensions.

Example 2.1.2. Let R[z] be the classic polynomial algebra over a ring R. Then R[z] is the
special Ore extension of R in which o0 = idg and 6 = 0. In particular, the polynomial algebra
in n > 2 variables R [z, - ,z,] is also an example of Ore extension of R[zy, -+, 2y 1]

with variable x,,.

Example 2.1.3. The quantum plane k,[z,y], with ¢ € k\{0}, is an Ore extension of
R = k[z], in which o is the algebra automorphism of R determined by o(z) = gz and
0 = 0. In the notation of Ore extensions, we write k[z]|[y; o] = R[y; 0] = k,[z,y], where
yr = o(r)y = qry.

Example 2.1.4. A differential operator algebra k[y|[x;d] is an Ore extension in which
o = idy), and ¢ is simply a derivation. For instance, if § = %, then we have the relation

xy = yx + 0(y) = yx + 1 and k[y|[x; 0] becomes the so called first Weyl algebra over the
field k, A;(k).

Example 2.1.5. A quantum Weyl algebra Af(k) is an Ore extension of the form
kly][z; 0, 0],

with ¢ € k\{0}, where o is determined by o(y) = gy and § is the unique o-derivation
satisfying d(y) = 1. The variables y and x satisfy the relation xy = o(y)x+0(y) = qyx + 1.

6



2.1.2 Properties of Ore extensions

In this subsection, we list some properties of Ore extensions and some concepts relative to

Ore extensions which will be involved in later chapters.

Definition 2.1.2. Let R be aring, let a be in R, and let ¢ be an endomorphism of R. The
rule d,(r) = ar — o(r)a defines a o-derivation ¢, on R, called the inner derivation induced

by a. Any derivation of R that is not an inner derivation is called an outer derivation.

Definition 2.1.3. Let § be a derivation and ¢ be an endomorphism on a ring R. A J-ideal
(resp. o-ideal) of R is an ideal I of R such that §(1) C I (resp. o(I) C I). The ring R is
called d-simple (resp. o-simple) if R is nonzero and the only d-ideals (resp. o-ideals) of R
are (0) and R.

Theorem 2.1.6. [35, Theorem 2.9] Let T = R|x;0,4].

1. If o is injective and R is a domain, then T is a domain.
2. If o 1s injective and R s a division ring, then T' is a principal right ideal domain.

3. If o is an automorphism and R is a prime ring, then T is a prime ring.

Proof. See the proof in [35, Theorem 2.9]. O

Theorem 2.1.7. [35, Theorem 2.10] Let R be a right noetherian ring, and T be an over
ring generated by R and a variable x such that Rx + R = xR + R. Then T 1is right
noetherian. In particular, if T = R[x;0,0| is an Ore extension and R is right noetherian,

then T is right noetherian.

Proof. See the proof in [35, Thereom 2.10]. ]



2.2 Hopf Algebras

In this section, we introduce some basic information about Hopf algebras over a field k.

Let us first give the definitions of algebras and coalgebras in the following subsection.

2.2.1 Algebras and Coalgebras

Definition 2.2.1. An algebra is a triple (A, m, u) where A is a k-vector space and m :

AR A— Aand p: k — A are k-linear maps that make the following diagrams commute:

id
Aep Ag, A1

AR A

id ®@m m

AR, A A

and
AR, A

A

A

(2.2)

The property of distributivity in A of product m (also called multiplication) and addition
is captured in the definition of m as a map from the tensor product A ®; A to A. The
isomorphisms A ~ k ®; A and A ~ A ®; k in the diagram (2.2) are the canonical ones.
For instance, in A ~ k ®; A,a € A is mapped to 1 ® a and conversely, A ® a € k ®; A is
mapped to Aa. In general, we let ab or a - b denote the product of two elements a and b in

an algebra.



The dual concept of a coalgebra arises naturally when we reverse all the arrows in
the diagrams (2.1) and (2.2). Next we will introduce coalgebras and study some of their

properties.

Definition 2.2.2. A coalgebra is a triple (C, A, €) where C' is a k-vector space and A :

C — C®,C and e: C' — k are k-linear maps that make the following diagrams commute:

C A C®C
A id ®A
A®id
C®.C o1 C®,C;,C
(2.3)
and
/ C \
C ek A k®, C
d®€ EM
C®,C
’ (2.4)

Many basic concepts of algebras find their analogues in coalgebra theory. Dually, we call
A the coproduct (also call comultiplication) and call € the counit map. For the notation of
coproduct, we will use Sweedler’s notation, which is named after Moss E. Sweedler who
introduced it in his pioneering book [19]. It can be very useful to denote the coproduct of

an element c in a coalgebra C' by A(c) = 37,y c1 @ ¢z or simply A(c) = Y ¢1 ® ca.

Remark 2.2.1. Using Sweedler’s notation, the counit axiom in (2.2 ) says that for all

ceC,
0226(01)0222616(02).

9



Moreover, we express the coassociativity above in this following formula. It simply says

(id®A) o A(c) = (iId®A) (Z 1 ® 02) = Z €1 @ ca1 @ Ca9.
It should equal
(A®id)o A(c) = Z C11 ® €12 @ Co.

So, in this case we write both of the above simply as

Y a®a®c (2.5)

Applying coassociativity to (2.5) we find that the three expressions

D A() @Y a®@A(n)@czand Y ¢ @@ A(c)

are all equal in C' ®;, C ®; C' ®; C. Thus we write it as

201®62®C3®C4.

By a similar way, we have A,, = (id®A)oA,_; = (A®id)oA,_; as an iterated application
of A as above, so
A, C — O (2.6)

Note that commutative algebras are an important subclass of associative algebras.
Analogously, there exists a dual concept for a coalgebra called cocommutativity. The
coalgebra C' is cocommutative if and only if A(c) =) ¢y ® ¢; for all ¢ € C. Here we can

use a diagram to express cocommutativity.

Definition 2.2.3. Let 7 : C' ®, C' — C ®; C be a k-linear map, called the flip, such that
T(a®b) = b®a, for all a,b € C. A coalgebra (C, A, €) is called cocommutative if ToA = A

i.e., the following diagram commutes

C®pC C®C

h A

¢ (2.7)

10



We will give a number of examples of algebras and coalgebras in this subsection.

Example 2.2.2. It is easy to see that C[z] is an algebra and a coalgebra. We omit the
checking of the algebra structure here. The coproduct on basis elements that determine

the coproduct of C[z] is given by,

A(z") = ZZ:; (TZ) '@

extending linearly in C[z], where ¢(1) = 1, e(2") = 0, for n > 1 and 2° = 1. It is not
too difficult to see that this is coassociative. We can consider a small example, A (z?) =

1®2?+2x @+ 22 ® 1. Notice that
([d@A) (A(?)
=(i[deA)(1®2*+22R 2+ 1°® 1)
=11 +2rRr+2°01)+22@(1r+r1)+2°0 (1®1)
—1R12°+20rRr+102°R®1+220102+2r®201+2°Q111
and

(A ®id) (A(2%))
(ARid)(1®s’+22@r+2°®1)

=(19l)®@sr*+2(1@r+r@1)@r+ (1@ +2rQr+2°®1)®1
=191’ 42022+ 20102r+1R2°®1+22R201+2°01® 1.
So (Id ®A) (A(z?)) = (A®id) (A(x?)) . Moreover, (id ®¢) (A(2?)) = 2? = (e®id) (A(x?)).

Remark 2.2.3. In this above example, we also can define a different valid coproduct by

n
— E :.’L’Z ® o
=0

and extending linearly in C[z], and
1,ifn=0
0,if n 0.

11



Notice that

(A ®id) (A( ZZﬂ@m”@x i

=0 7=0
n %
i=0 5=0

and
n n— Z

(id®A) ( ZZx Q) @z

=0 7=0

= iixiébxj ® ",

i=0 j=0

So coassociativity holds.

Example 2.2.4. Let A = {sy,5,...,8;} be a finite alphabet and let A* denote the free
monoid on the set A. Consider the vector space kA* whose basis elements are all the
elements of A*. This is the free associative algebra on A. We define the product of basis
elements to be simply concatenation and the unit element 1 to be the empty word. We

define the coproduct on the basis elements in A via the rule

n
= E S; & Sp—i
i=0

for each basis element s; € A, where we take so = 1. For example,
A(Sl) :1®81+81®1, A(Sg):1®82+81®81+82®1,....

In this case, an order for the elements of A is required. If w is a word in A*, say w =

$1S9* - Sm, then we define

A(w) = A(sy) - A(sm)
and then extend linearly to kA*. In fact, it is straightforward to show that,
n - n % n—i
A(s}) = Z <i)81 ® ST
i=0

12



We define
1, ifw=1

0,if w#1
for all w in the algebra. Then the counit satisfies the relations,
w=10w=(ec®id)A(w)
w=w®l=_>1d®e)A(w).

A group algebra is another fundamental example of an object that has both an algebra

structure and coalgebra structure.

Example 2.2.5. Let GG be a group and let kG be the group algebra, where each element
in kG is expressed as a sum y  «a,g, where o € k and g € G, and all but finitely many of
the o are zero. The coproduct is defined by A : kG — kG ®; kG by A(g) = g ® g for
g€ G,and ¢(g) =1 for g € G.

Definition 2.2.4. Let (C, A, €) be a coalgebra. A subcoalgebra D of C' is a vector subspace
of C such that A(D) C D ®; D. A left coideal I of C' is a vector subspace of C' such that
A(I) CI®,C. A right coideal I of C' is a vector subspace of C' such that A(l) C C ®; 1.
A coideal I of C is a vector subspace of C' such that A(I) C I ®, C+C ®y I and €(I) = 0.

We list algebra and coalgebra morphisms below and they will be used in constructing

bialgebras.

Definition 2.2.5. Given algebras (A,ma, pua) and (B, mp,up), an algebra morphism
f:A— B is a k-linear map such that

foma=mpo(f®f)and fops= pp.

Definition 2.2.6. Given two coalgebras (C,A¢,ec) and (D, Ap,€ep), a coalgebra mor-
phism ¢ : C' — D is a k-linear map such that

Apoyp=(p®p)oAc, and €p o = €c.

13



Example 2.2.6. Let A = kGG and B = kH be two group algebras. Suppose ¢ is an algebra

morphism and v is a coalgebra morphism from A to B. Then we have

¢(ab) = ¢(a)p(b)
p(1p) = ¢(pa(la))

and

Ap((a)) (ar) © ¥(az)

ep(Y(a)) = ea(a)

(]

for all a,b € A.

2.2.2 Bialgebras and Convolutions

In the proceeding subsection, we notice that in Examples 2.2.2, 2.2.4, 2.2.5, (m, u) and
(A, €) are compatible, namely, m and p are colagebra morphisms and A and e are algebra

morphisms. In this situation, the resulting objects are called bialgebras.

Definition 2.2.7. A bialgebra H is a k -vector space H = (H, m,u, A, €), where (H, m, u)
is an algebra; and (H, A, €) is a coalgebra; and such that either (and hence both) of the

following two conditions hold:

1. A and e are algebra morphisms;

2. m and u are coalgebra morphisms.

We only require one condition in the definition of a bialgebra above to hold because of

the following proposition.

Proposition 2.2.7. Let H = (H, m,u,A,€) have both algebra structure and coalgebra
structure. Then A and € are algebra morphisms if and only if m and u are coalgebra

morphisms.
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We need the information below to complete the proof the above proposition.

Given two k-algebras A and B, we can see that A ®; B is also a k-algebra by defining
(a®b)(c®d) = ac®bd and extending linearly using distributivity. Expressed as a diagram
this is:

d®T ®id ma & mpg

ARy B®, A®, B AR, ARy B®, B

ARy B

where 7 : B®y A - A ®y B is the flip: 7(b® a) = a ® b. The unit uag, 5 of A ®y B is
given by

&
kgk®kﬂA UB

A®y B

Similarly, if C' and D are coalgebras then so is C'® D with Aggp given by

A®A id®r ®id

C®yD C®.C®D®pD

C®rD®pC®yD

and counit

€0 Re
C @D C D

Ek=Ek

In particular, this applies when A = B and when C' = D. Now we give the detailed

argument of the above proposition.

Proof. 1t suffices to see the following facts by the definitions of algebra morphisms and

coalgebra morphisms.

1. Ais an algebra morphism by (2.8) and (2.9)

2. € is an algebra morphism by (2.10) and (2.11)
3. m is a coalgebra morphism by (2.8) and (2.10)
4. p is a coalgebra morphism by (2.9) and (2.11).
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H®, H H
A®A
Ho,Hoy Hoy H A
id ®74,4 ®id
ma@m
H®,Hop Hoy H AT He H
I
k H
A
®
k®k rEH H®,H
HeooH—2 s kak
m €
H H®Lk
H

/\
k id e

an algebra and a coalgebra morphism.
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(2.8)

(2.10)

(2.11)

]

Definition 2.2.8. A morphism of bialgebras f : A — B is a k-linear map which is both

Definition 2.2.9. If f : A — B is a bialgebra morphism, then ker f is called a biideal:

this means that ker f is an ideal and a coideal (i.e. the kernel of a coalgebra morphism)



Examples 2.2.2, 2.2.4 and 2.2.5 are bialgebras. A tensor algebra is also an example of

bialgebra.

Example 2.2.8. Let V' be a vector space and form 7'(V'), the tensor algebra,

(V)= (ver).

n>0
The multiplication of pure tensors is given by tensoring and the rule is then obtained by

extending linearly. Then T'(V') is a bialgebra if we define
Av)=v@1+1veT(V)T(V)
and €(v) =0 for v € V.

Remark 2.2.9. Not every object which has both algebra and coalgebra structures is a
bialgebra. A counterexample is given in Remark 2.2.3. Since A(z?) = 1@2?+ 2@z +22®1
and A(x)A(z) =122 +2r @z + 22 ® 1, A(z?) # (A(2))>

2.2.3 Hopf algebras

Now we are ready to introduce Hopf algebras.

Definition 2.2.10. Let C be a k-coalgebra and A be a k-algebra and f,g € Homy(C, A).
The convolution of f and g is the linear map fxg:=mo (f®g)oA:C — A, ie., in
Sweedler’s notation

(f*g)(c) = Zf (c1) g (c2)
for all ¢ € C. The convolution product is the map » : Homy(C, A) x Homy(C, A) —
Homy(C, A) that sends a pair (f,g) to f *g.

One particular case on which we will focus afterwards is when (H,m, u, A, €) is a bial-
gebra and the convolution product is considered between linear endomorphisms of H. We

prove now some properties about the convolution product.
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Proposition 2.2.10. Let (C,A¢€) be a k-coalgebra and (A, m,u) be a k-algebra. Then
the convolution product x on Homy(C, A) is a bilinear and associative map. Moreover,

poe € Homy(C, A) is the identity element. Therefore, Homy(C, A) is a monoid.

Proof. Bilinearity follows from the fact that f x g := mo (f ® g) o A and the fact that
tensor products of maps are bilinear. Associativity can be obtained from the associative
properties of m and the tensor product of maps, as well as from the coassociativity of A.

Given f,g,h € Homy(C, A) and ¢ € C, we write in Sweedler’s notation

(fxg)xh)(e) =D (fxg)(er) h(ca)
=Y fle)g(ea)h(cs)
=Y f(e)(gxh)(e)
= (f*(g*h)(c)
which proves that (f x g) x h = f x (g * h). Hence, * is associative on Homy,(C, A).

Next we will show poe € Homg(C, A) is the identity element. Let f € Homy(C, A)

and ¢ € C. Then we compute in Sweedler’s notation

(Fx(moee) = 32 flenle(ea)) = £ (P are(e)) = fle).

Similarly, we can prove that (poe)x f = f. ]

Definition 2.2.11. Let H = (H,m,u, A, €) be a bialgebra. An antipode of H is a mor-
phism S : H — H such that

m(S®id) A = pe =m (id®S) A

18



i.e. the following diagram commutes:

id
Ho, H id®S5 Ho, H
/ K
H € k a H
\ /
S®id
H®, H “1 H®, H

(2.12)

Remark 2.2.11. An antipode may not always exist in a bialgebra but when it does, it is
unique by the uniqueness of inverses in the monoid Homy(H, H). An antipode of H is an

anti-homomorphism.
Definition 2.2.12. A Hopf algebra H is a bialgebra with an antipode S.

Definition 2.2.13. Morphisms of Hopf algebras are just bialgebra maps preserving the

antipode.

We can easily see that those examples of bialgebras in the above are Hopf algebras by

endowing them with a proper antipode.

Example 2.2.12. Let C[z] be defined in Example 2.2.2. Then Clz] is a bialgebra. If we
define the antipode S on C|x] given by S(z") = (—1)"a™ for n > 0, then Clz] is a Hopf
algebra.

Example 2.2.13. Let kA* be defined in Example 2.2.4. Then S is defined by S(s;) = —s;
for s; € A. Then kA* is a Hopf algebra.

Example 2.2.14. In the group algebra kG, if we define S(g) = g~! for all ¢ € G, then
kG is a Hopf algebra.
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Definition 2.2.14. Let G be an algebraic variety over an algebraically closed field k, which

also has the structure of a group, that is, the multiplication and inverse maps

m:GxG—=QG

(z,y) — zy

and
7T:G—=>G

!

are morphisms of varieties. Then G is an algebraic group over k.

The coordinate algebra O(G) of an algebraic group G is the algebra of regular functions

from G to k. So the identity element of O(G) is the constant function 1.

Proposition 2.2.15. Let G be an algebraic group over k. Then O(G) is a Hopf algebra.

We define
w:k— O(G)

1 — ido(G), id@(G)(Z) =1,
A:OG)— OG) 2, 0(G) Z0(G x G)
and A(f) the function from G x G to k by

AN, y)) = f(ay)

forz,y € G; and e : O(G) — k is given by f — f(1lg). Finally, let S : O(G) — O(G) be
given by
(Sf)(x) = f(a7").
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Proof. 1t is clear that O(G) is an algebra. Now we check the coalgebra structure and

antipode.
(d @A) A(f)(z, ¥, 2) = A(f)(z,yz) = flzyz)
(A @id)(A(f)(z,y,2) = A(f)(zy, 2) = fzyz)
(id®e)(A(f))(x) = Af)(z, 1e) = f(zle) = f(x)
(id @) (A(f)(z) = (A(f)(z,27h) = flza™") = f(le) = e(f) = pe(f)(x).

The following example will be involved in Chapter 4.

Example 2.2.16. Let GG be the group of upper-triangular 3 x 3 unipotent complex matrices
and let H be the coordinate ring of G. Then H is generated as a C-algebra by the coordinate
functions x, y, z, where evaluating x, y and z at an element of GG corresponds to taking resp.
the (1,3)-, (1,2)-, and (2, 3)-entries of the element. Then H = kly, z][z] with coefficient
Hopf algebra R = k[y, z]. The coproduct of H = kly, z|[z] is determined by the products
of A(x),A(y) and A(z). Let

1 a b 1 d e 1 a+d e+af+b
A=10 1 ¢| and B=|0 1 f Then AB= (0 1 c+ f
0 01 0 0 1 0 0 1

By the definition in Proposition 2.2.15, we have

A(z)((A, B))

A(y)((A, B))
A(2)((A, B))

2(AB) = e+af +b = (z ®@idow) +ido @z +y © 2)((4, B))
Y(AB) = a +d = (y @ ido(e) +ido @y)((A, B))
2(AB) = ¢+ f = (2 ®ido(e) +ido(e) ®2)((4, B)).

Therefore, z is not primitive in H (see Definition 2.2.15).
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Theorem 2.2.17. [11, Corollary 1.7] The functor G — O(G) defines a contravariant

equivalence of categories

‘ affine commutative semiprime
affine algebraic groups over k
— Hopf k-algebras and

and their morphisms .
Hopf algebra morphisms

Example 2.2.18. Let G be the set of unlabelled finite graphs and H = Span,(G). Let us
define the comultiplication A : H — H ®;, H as follows. For a set V; C V(I') of vertices
of a graph I', let us denote by G (V;) the induced subgraph of I' with the set of vertices
Vi; ie., Vi is the set of vertices of G (V1), and e € E(I') is an edge in G (V1) if and only if
both ends of e belong to V;. We set

AT = 3 GUA) &GV \ W)
Vicv(T)
We define the disjoint union of graphs as a multiplication. This comultiplication and
multiplication can be extended by linearity to linear combinations of graphs. This makes
the space H into a commutative algebra. Besides, we define pu(1) = 0, €(@) = 1 and
¢(T') = 0 for any nonempty graph I'. It is easy to check that H is a bialgebra. Moreover,

since H is graded and connected, S is unique and has the form of
S — Z(_l)nmn71p®nAnfl’
n>0

where p is the projection onto ker(e), and A"~* m™~! are defined as in 2.6. Therefore, H

is a Hopf algebra.

Example 2.2.19. The universal enveloping algebra U(g) of Lie algebra g is a Hopf algebra.
We define A(x) =2 ® 1+ 1 ® x for every z in g. Notice that this rule is compatible with
commutators and can therefore be uniquely extended to all elements of U(g). Moreover,
we define €(x) = 0 for all x # 1 in g (again, extended to U(g)) and S(z) = —z all x in g).

Clearly U(g) is cocommutative. U(g) is commutative if and only if ¢ is abelian.
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2.2.4 Some properties of Hopf algebras
We will use the following proposition in Chapter 4.
We define Alg,(H, k) to be the set of algebra morphisms from H to k.

Corollary 2.2.20. Let H be a bialgebra. The space Alg,(H, k) is a monoid under the
convolution product = with € as the convolution identity element. Furthermore, if H is
a Hopf algebra, with antipode S, then Alg,(H, k) becomes a group, in which for every

a € Alg,(H, k), its convolution inverse is cco S.

Proof. As a direct consequence of Proposition 2.2.10, Alg, (H, k) is a monoid. Assume

that H is a Hopt algebra and S is the antipode. Given h € H, we compute

(ax (a0 8))(h) =D a(h)a (S (ha)) = a (3 S (b)) = ale(h) = e(h)

since « is an algebra morphism and by applying the antipode property. Similarly, we prove

that (o S)xa =e. O

So we denote Alg,(H, k) the group of algebra automorphisms from H to k.

Proposition 2.2.21. [19, Proposition 4.01] Let H be a Hopf algebra with antipode S. Then:

1. S(gh) = S(h)S(g), for g,h € H;
3. A(S(h)) =>_S(hy) @S (hy), for he H;

4. €(S(h)) = e€(h), forh € H.

Proof. See the proof in [19, Proposition 4.01]. n
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Definition 2.2.15. Let C be a coalgebra. An element g € C' is called grouplike if g # 0
and A(g) = g®g. The set of grouplike elements of C'is denoted G(C'). Let H be a bialgebra.
An element h € H is called primitive if A(h) = 1®@h+h® 1. The set of primitive elements
of H is denoted P(H).

Remark 2.2.22. If g € C' is grouplike, then by the counit axiom we have ¢(g)g = g, from
where it follows that €(g) = 1. Likewise, if h € H is primitive, then by the counit axiom it
follows that e(h) = 0.

Definition 2.2.16. Let H be a Hopf algebra and a € Alg,(H,k). The left winding
automorphisms 7 is the algebra endomorphism mo(a®I)oA : H — H, i.e., in Sweedler’s

notation:
Th(h) =Y () hy
for all h € H. Similarly, we can define the right winding automorphism 7 as the map

mo (I ®a)oA: H— H, in Sweedler’s notation:

a(h) =Y i (hy)
for all h € H.
Now we introduce an important invariant of a coalgebra C', its coradical, which will be

used in Chapter 4. A nonzero subcoalgebra of a coalgebra C' is called simple if it does not

have any nontrivial proper subcoalgebras.
Definition 2.2.17. Let C be a coalgebra. The coradical Cy of C' is the sum of the simple
subcoalgebras of C. The coalgebra C' is called connected if C is trivial, i.e., Cy = k.

In Chapter 4, we will apply the following proposition to a connected coalgebra C'.

Proposition 2.2.23. [38, Theorem 5.2.2] Let C' be a coalgebra. Define inductively C, =
AN C @, Croy + Co @4, C) forn > 1. Then {Cy, }nen is a family of subcoalgebras of C,
called the coradical filtration, that satisfies
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]. C = UTLENC’n
2. Cn g Cn—l—l

3. A(C,) C ST Ci @y Cos.

Proof. See [38, Theorem 5.2.2]. ]

Remark 2.2.24. A family {A;};en of subcoalgebras of a coalgebra that satisfies 1 to 3

above is called a coalgebra filtration.

2.2.5 Smash Products

In Chapter 4, we investigate cocommutative Hopf algebras. To understand the structure of
cocommutative Hopf algebras, we will need the concept of nilpotent-by-finite groups and

smash products.

Definition 2.2.18. A polycyclic group is a group G with a finite chain
1:G0<]G1<]"'<]Gn:G,
where G; is normal in G, 1, and each factor G,;;1/G; is cyclic.

Definition 2.2.19. A polycyclic-by-finite (resp. nilpotent-by-finite) group G is a group

that has a polycyclic (resp. nilpotent) normal subgroup of finite index.

Remark 2.2.25. If GG is a finitely generated and nilpotent-by-finite, then it is polycyclic-
by-finite.

Before we give the definition of smash products, we introduce the concept of a skew
group ring. Let R be a ring and G be a group that acts on R as automorphisms. We use

both 9 and ¢ - r to denote the action of g € G on r € R. The skew group ring R#G is
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then the free right R-module with elements of G as a basis and with multiplication defined
by (rh)(sg) = (rs") (hg) for g,h € G,r,s € R. Thus each element of R#G has a unique
expression as » gec Tgg With 7y = 0 for all but finitely many g € G. For a k-Hopf algebra

H, we have a somewhat analogous construction called the smash product as below.

Definition 2.2.20. Let H be a Hopf algebra. A k-algebra A is a left H-module algebra if
1. Ais a left H-module via: h® a — h - a,
2. h-(ab) = > (hy-a)(hy-b),
3. hla=¢€(h)ly

forall h € H, a,b € A.

Definition 2.2.21. Let H be a k-Hopf algebra and let A be a left H-module algebra.
Then the smash product algebra A# H is defined as follows, for all a,b € A, h,g € H :

1. As a k-vector space, A#H = A ®;, H and we write a#h for the element a ® h

2. The multiplication is given by
(a#th)(b#tg) = Y alhy - b)#hag.

If H = kG, then A#kG = A#G, the skew group ring: multiplication is just (ag)(bh) =
a(g - b)gh, for all a,b € A, g,h € G.

2.3 Zariski Cancellation Problems

2.3.1 Preliminaries

A longstanding problem in affine algebraic geometry is the Zariski cancellation problem,

which asks whether an affine variety X over an algebraically closed field k having the
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property that X x A! = A"l is necessarily isomorphic to A". The question is known to

have an affirmative answer when n = 1 [I], and n = 2, with the characteristic zero case
being done by Fujita [17] and Miyanishi-Sugie [37], and the positive characteristic case
handled by Russell [43]. In positive characteristic, Gupta [21, 22] gave counterexamples

to the Zariski cancellation problem in dimension at least three, but the problem remains
open in dimension greater than two in the case that the base field has characteristic zero.

Ring theoretically, one can ask more generally:

Question 2.3.1. For R some specific k-algebra, when does R[t] = S[t] imply that R and

S are isomorphic as k-algebras?

In recent years, increased attention has been paid to the noncommutative analogue of
the Zariski cancellation problem [7, 18, 31, 32, 50]. In this setting, a finitely generated
k-algebra R that has the property that whenever R[x] = S[z]| implies R = S where S is
another finitely generated k-algebra is said to be cancellative. An algebra R is strongly
cancellative if, for every d > 1, any isomorphism R[zq,...,x4] = S[x1,..., 24| implies
that R is isomorphic to S. It is known that many classes of noncommutative algebras are
cancellative or strongly cancellative in the sense above. Notably, cancellation holds for
algebras with trivial centre, for “noncommutative surfaces” that are not commutative, and

many quantizations of coordinate rings of affine varieties (see the results in [7]).

We make use of the following definitions from [7, 31]. If B is a subring of a ring C' and
fi,++, fm are elements of C, then the subring generated by B and the set {f1, -, fin} is
denoted by B{f1, -, fm}-

Definition 2.3.1. Let A be an algebra.
1. We call A cancellative (resp. strongly cancellative) if for any algebra B, any iso-
morphism A[t] — B[t] (resp., for any d > 1, any isomorphism Alty,... tq] —

Blty,...,t4)) implies that A = B.
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2. We call A retractable (resp. strongly retractable) if for any algebra B, any isomor-
phism ¢ : A[t] — BJt] (resp. for any d > 1, any isomorphism ¢ : Altq,...,tq —
Blty,...,t4])) implies that ¢(A) = B.

3. Let Z(A) and Z(B) denote the centres of A and B, respectively. We call A Z-
retractable (resp. strongly Z-retractable) if for any algebra B, any algebra isomor-
phism ¢ : A[t] — BJt] (resp. for any d > 1, any isomorphism ¢ : Alty,...,tq —
Blty, ..., td]), we necessarily have ¢(Z(A)) = Z(B).

4. We call A detectable (resp. strongly detectable) if for any algebra B, any isomor-
phism ¢ : A[t] — Bls| (resp. for any d > 1, any isomorphism ¢ : A[tq,...,tq —
Blsi, ..., s4]), we necessarily have s € B{¢(t)} (resp. s; € B{d(t1),...,¢(ta)} fori =
1,...,d).

2.3.2 Some useful tools

In this subsection, we provide the basic background on the Makar-Limanov invariant that
was introduced by Makar-Limanov [34], who called the invariant AK, although it is now

standard to use the terminology Makar-Limanov invariant and the notation ML.

We quickly recall the basic concepts involved in the definition of this invariant. These

concepts can be found in [34, 7, 31].

Definition 2.3.2. Let k be a field and let A be a k-algebra.

1. We let Der(A) denote the collection of k-linear derivations of A.

2. A k-linear derivation 6 of A is called locally nilpotent if for each a € A there exists
a n, € N such that §"(a) = 0 for all n > n,.

3. We let LND(A) = {d € Der(A) | ¢ is a locally nilpotent derivation of A}.
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4. A Hasse-Schmidt derivation of A is a sequence of k-linear maps 0 := {0, }n>0 such

that: .
0o = ida, and 9, (ab) = > i(a)d—i(b)
=0

for a,b € A and n > 0.

5. A Hasse-Schmidt derivation 0 = {0, }n>0 is called locally nilpotent if for each a € A
there exists an integer N = N(a) > 0 such that 0,(a) = 0 for all n > N and the
k-algebra homomorphism A[t] — A[t] given by t > t and a = > - 0,(a)t" is a
k-algebra isomorphism. If only the first condition holds then the map A[t] — At
is still an injective endomorphism but need not be onto; we will call Hasse-Schmidt
derivations for which only the first condition holds (i.e., there exists an integer N =
N(a) > 0 such that 9,(a) = 0 for all n > N) a weakly locally nilpotent Hasse-Schmidt

derivation.

6. A Hasse-Schmidt derivation 0 = {0, }n>0 is called iterative if 0; 0 0; = (’JZ” ) 04 for
all 7,7 > 0. The collection of Hasse-Schmidt derivations of an algebra A is denoted
Der’ (A) and the collection of iterative Hasse-Schmidt derivations is denoted Der’(A).
The collection of locally nilpotent Hasse-Schmidt derivations (resp. iterative Hasse-

Schmidt derivations, resp. weakly locally nilpotent Hasse-Schmidt derivations) of A

is denoted LND* (A) (resp. LND!(A), resp. LND*'(A)).

7. Given 0 = {0, }n>0 the kernel of 0 is defined to be

ker(0) = ﬂ ker(0,).

n>1
8. The *-Makar-Limanov invariant of A is defined to be
ML*(4) = () ker(d).

SELND*(A)
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10.

11.

. The x-Makar-Limanov centre of A is defined to be

MLZ(A) = ML*(A) N Z(A).
We say that A is LND*-rigid (resp. strongly LND*-rigid) if ML*(A) = A (resp.
ML*(A[ty, ..., t4]) = A, for any d > 1).

We say that A is LND?,-rigid (resp. strongly LND7-rigid) if ML7,(A) is equal to Z(A)
(resp. ML7(A[ty,...,t4]) = Z(A), for any d > 1).

In items (7)—(10), * is either blank, I, H, or H'.

Remark 2.3.2. Let k be a field and let A be a k-algebra. We recall some basic facts about

derivations and Hasse-Schmidt derivations.

1.

If 0 = {0, }n>0 is a locally nilpotent Hasse-Schmidt derivation of A then by definition
the map Gy, : A[t] — A[t] defined by

a— Z@n(a)t”, foralla € At —t (2.13)

n=0

extends to a k-algebra automorphism of A[t] and when 0 = {0, },>¢ is a weakly locally

nilpotent Hasse-Schmidt derivation then this map is an injective endomorphism.

Conversely, if one has a k-algebra automorphism (resp. endomorphism) G : A[t] —
A[t] such that G(t) =t and G(a) — a € tA[t] for a € A, then for a € A we have

Gla) = du(a)r".

and 0 = {0, }n>0 is a locally nilpotent Hasse-Schmidt derivation (resp. weakly locally
nilpotent Hasse-Schmidt derivation) of A (see [7, Lemma 2.2 (3)]).
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3. If the characteristic of k is zero and § : A — A is a k-linear derivation, then the only
iterative Hasse-Schmidt derivation 0 = {0, }n>o of A with 0; = ¢ is given by
5”

Tl

On (2.14)

for n > 0. This iterative Hasse-Schmidt derivation is called the canonical Hasse-
Schmidt derivation associated to d. If, moreover, ¢ is locally nilpotent, then by
[7, Lemma 2.2(2)], the map Gpy; defined in item (2.13) is an automorphism and
0 = {0 }n>0 is a locally nilpotent iterative Hasse-Schmidt derivation, and conversely
if 0 = {0n}n>0 is locally nilpotent then so is 6. Thus locally nilpotent iterative
Hasse-Schmidt derivations correspond naturally to locally nilpotent derivations in
the characteristic zero case and so ML’ (A) = ML(A) for algebras with characteristic

zero base field.

4. [36, §1.1] If the characteristic of k is a positive integer p, then for an iterative deriva-

tion 0 = {0y, }n>0, On can be explicitly described as

(D))" (0p)" - (D)
(o) (i)l (i)

where n = ig+i1p+ - - - +1,p" is the base-p expansion of n. In this case, an iterative

Op =

Hasse-Schmidt derivation 0 is completely determined by 01, 0p, 0,2, . . ..

5. Let T be the polynomial ring A [t,...,ts] over a k-algebra A. We fix an integer
1 < i < d. For each n > 0, we can define a divided power A-linear differential
operator A" as follows:

(Tt iy >

AT { (2.15)

0 otherwise,

where (") is defined in Z or in Z/(p). Then {A}>7  is a locally nilpotent iterative
Hasse-Schmidt derivation of 7. We can also extend an element 0 = {0,},>0 in

LND#'(A) to an element of LND'(T") by declaring that t,,...,t4 are in the kernel
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of 0 = {0,}n>0; moreover, the extension is iterative if the original Hasse-Schmidt
derivation is iterative, and it is in LND®(T) if the original weakly locally nilpotent
Hasse-Schmidt derivation is in LND”(A). Combining this observation along with

data from the maps A}, we see
ML (A[tr, .., ta]) € ML*(A),

where * is either I, H, or H'.

2.4 Gelfand-Kirillov dimension

In this section, we introduce two very important dimensions, Krull dimension and Gelfand-

Kirillov dimension.

A useful invariant in commutative algebra is the Krull dimension, which is named after
Wolfgang Krull. It is defined as the supremum of the lengths of all chains of prime ideals.
For noncommutative rings there is an extension of Krull dimension due to Gabriel and
Rentschler, which is defined as an ordinal given by the deviation of the poset of its left
ideals (if it exists). We give some interesting facts about Krull dimension. A field %k has
Krull dimension 0; k[xq,...,z,] has Krull dimension n; a principal ideal domain that is
not a field has Krull dimension 1. Krull dimension is also used in algebraic geometry. The
dimension of the affine variety given by the zero set of a radical ideal I in a polynomial

ring A is the Krull dimension of A/I.

However, for a noncommutative ring it is often more convenient to work with Gelfand-
Kirillov dimension. For more information about Gelfand-Kirillov dimension, we refer the
reader to the book of Krause and Lenagan [29] and we will state the definition in the
next subsection. One well-known fact is that Krull dimension and Gelfand-Kirillov dimen-
sion coincide when one restricts one’s focus to the class of finitely generated commutative

algebras over a field.
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2.4.1 Definition of Gelfand-Kirillov dimension

The following definition is from the textbook [29].

Definition 2.4.1. Let k£ be a field and let A be a finitely generated k-algebra. Choose a
finite-dimensional k-subspace V' of A, containing 14, such that A is generated as an algebra
over k by V. Let V" denote the span of {vivy---v, | v1,09, -+ ,v, € V} for n > 1. There

is an ascending chain of subspaces
ECVCViC...CcVPC...C UV”:A
n=0

with dimy, (V™) < oo, for each n € N. The asymptotic behavior of the monotone increasing
sequence {dimg (V")} provides a useful invariant of the algebra A, known as the growth
or Gelfand-Kirillov dimension of A, and defined by

— log di vn
GKdim(A) = T 128 dime (7).
n logn
One of the first questions to consider is whether this definition depends on the vector
subspace V' chosen. It does not, as is proved in [29, Lemma 1.1]. The notion is extended

to algebras A that are not finitely generated as follows:
GKdim(A) = sup{GKdim(B) : B is a finitely generated subalgebra of A.}

Algebras that are finite-dimensional (as vector spaces) have Gelfand-Kirillov dimension
equal to 0. For integral domains (i.e., a commutative algebra without zero-divisors) that
are finitely generated, the Gelfand-Kirillov dimension is equal to the transcendence degree,
i.e., the maximum number of algebraically independent elements of the algebra. It is clear
that GKdim(A) = 0 if and only if A is locally finite-dimensional, meaning that every

finitely generated k-subalgebra of A is finite-dimensional.
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2.4.2 Gelfand-Kirillov dimension of an Ore extension

In this short subsection, we record two results that we will need in Chapter 5.

Proposition 2.4.1. [29, Lemma 3.4] Let A be a k-algebra with k-derivation §, and let
B = Alz;6]. Then GKdim(B) > GKdim(A) + 1.

Proof. See the proof in [29, Lemma 3.4]. O

Proposition 2.4.2. [29, Proposition 3.5] Let A be a k-algebra with k-derivation ¢ such that
each finite-dimensional subspace of A is contained in a §-stable finitely generated subalgebra
of A. Then GKdim(A[z;d]) = GKdim(A) + 1.

Proof. See the proof in [29, Proposition 3.5]. O
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Chapter 3

Prime ideals of T'= R|z; 0, |

3.1 Statement of results

Throughout this chapter, we always assume that R is a noetherian ring, and 7' = R[z; 0, J]
is an Ore extension as defined in Chapter 1 with o an automorphism. When investigating
the prime ideals of T' = R[x; 0, 4], it is important to understand the actions of these maps
on R. In particular when we can eliminate one of § or o and assume either § = 0 or
o = id, then the analysis becomes more straightforward [26, 25]. We let Spec(R) denote
the set of primes of R. Goodearl [19] exhibited a relationship between prime ideals of T'
and their contractions in the coefficient algebra R in the case when R is commutative and

noetherian. The result is stated in the following theorem.

Theorem 3.1.1. [19, Theorem 3.1] Let T' = R[x;0, 0], where R is a commutative noethe-

rian ring and o 1S an automorphism.

1. If P is a prime ideal of T and I = PN R, then one of the following cases must hold:

(a) I is a (o,0)-prime ideal of R. In this case, either
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i. I is a o-prime (0,0)-ideal of R, or
ii. I is a 0-prime (o, d)-ideal of R and R/I has a unique associated prime ideal,

which contains (1 — o)(R).

(b) I is a prime ideal of R and o(I) # 1.

2. Conversely, if I is any ideal of R satisfying (a) or (b), then I = P N R for some
prime ideal P of T. More specifically, in case (a), IT € Spec(T') while in case (b),
there exists a unique P € Spec(T') such that PN R =1, and T/P is a commutative

domain.

We recall that a (o, d)-ideal of R is simply an ideal that is invariant under the maps o
and 6. An ideal [ is a (o, §)-prime ideal if whenever J and K are (o, 0)-ideals with JK C [
we necessarily have either J or K is contained in I. The notions of o- and d-ideals and o-

and J-prime ideals are defined analogously.

Theorem 3.1.1 can be roughly interpreted as follows: if R is commutative and noetherian
and P is a prime ideal of T = R[x; 0, ] then either T'/P is commutative or P N R is well-
behaved under the maps ¢ and §. Thus one can easily study the prime homomorphic

images of T'.

Since commutative rings are a special case of polynomial identity rings (PI rings, for
short), that is rings that satisfy a nonzero identity in finitely many noncommuting variables,
it is natural to consider whether Goodearl’s results extend to this setting. We are unable

to completely resolve this question and leave the complete resolution for future work.

We recall that a prime ideal of a ring is completely prime if the quotient ring formed
by modding out by the ideal is a domain. Our main results in this direction are given in

the theorem below.

Theorem 3.1.2. Let R be a noetherian PI algebra and let o and § be resp. an automor-

phism and a o-derivation of R. Then if P is a completely prime ideal of T := R[x;0,0]
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then either T/ P satisfies the same polynomial identity as R or I := PN R is a o-invariant

and d-invariant prime ideal of R.

The proof of this theorem will require some additional technology, and will be given in

the next section.

3.2 Prime Ideals of T' = R|z; 0, | and their contractions

under R

To prove Theorem 3.1.2, we need to use noncommutative localization. We refer the reader

to the book of Goodearl and Warfield [20] for further background.

If Ris a ring and X is a right denominator set of R with 1 € X, then let RX ! the
ring of quotients of R with respect to X. Then there is a natural homomorphism ¢ from

R to RX ™! given by r s r171.

e For any right ideal A of R, we define A® (the extension of A) to be ¢(A)(RX ).
e For any right ideal B of RX !, we define B¢ (the contraction of B) to be ¢~1(B).

e Given (a,s1), (b, s9) € R x X if there exists some s € X such that (asy — bsy)s =0,
then we say (a,s1) and (b, s5) are equivalent and we write as;' ~ bsy*. Then as a

set RX ! is given by Rx X/ ~.

Then we can conclude the following proposition by the results in [30, Propsosition 10.32

and 10.33].

Proposition 3.2.1. Given a ring R and a denominator set X, if A is a right ideal of R,

then we have the following:
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1. We define A°={as™' |a € A, s € X}, and A® is a right ideal of RX™" if R is right

noetherian.

2. If A is an ideal in R such that A® is an ideal in RX ™', then for any right ideal
Ay C R, (A1A) = ASA“.

3. A={re R|rse A for somes € X} and so A C A,
4. If B is a right ideal of RX ™', then B = B.

5. If R is right noetherian, there is a bijection between the set of primes of RX ™1 and
the set of primes of R which are disjoint from X, given by contraction and extension.

Moreover, P = P for any prime ideal P of R.
Proof. See the proof in [30, Propsosition 10.32 and 10.33]. ]
We can now prove the main theorem of this chapter.

Proof of Theorem 3.1.2. Let I = PN R. Then if o(I) ¢ I, there is some a € [ such
that o(a) & I. Moreover, since P is completely prime and R/I embeds in T'/P, we see
that I is a completely prime ideal of R. Thus o(a) is not a zero divisor mod I. Then we
have xa = o(a)z + 0(a) € P and so o(a)r = —d(a) (mod P). Now we let X denote the
set of nonzero divisors of T'/P. Then Goldie’s theorem (see [20]) gives that X is a right
denominator set of T/P and that Frac(T/P) := (T/P)X ! is a division ring. Similarly,
we can construct Frac(R/I) and the universal property of localization gives Frac(R/I)
embeds in Frac(T'/P). Moreover, by construction o(a) is a unit in Frac(R/I) and so since
o(a)r = —6(a) in Frac(T/P), we see that x + P can be identified with the image of
—(0(a))™*8(a) in Frac(R/I). In particular, T'/P is a subalgebra of Frac(R/I). Since R
satisfies a polynomial identity, both R/I and Frac(R/I) satisfy the same identities as R
(and possibly more) and since 7'/ P is isomorphic to a subring of Frac(R/I), it satisfies the
same identity as R. Thus we have obtained the result if o(I) € I.
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Thus we may assume that o(/) C I. Then in this case if a € I then za = o(a)z + §(a)
and since a,0(a) € I, both za and o(a)z are in P and so §(a) € PN R =1. Thus I is a
(0,8)-ideal. Moreover, we showed that it was a prime ideal and so we obtain the desired

result.

[]

In future work, we would like to extend the result to a true analogue of Goodearl’s

theorem 3.1.2 for Ore extensions of PI rings and eliminate the completely prime hypothesis.
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Chapter 4
Hopf Ore extensions

In Chapter 2 we introduced the notions of Ore extensions and Hopf algebras. We will now
talk about Hopf Ore extensions, which were introduced by Panov [10]. Then we will look
at work of Brown, O’Hagan, Zhang and Zhuang [! 1], which improved upon Panov’s result
and hence became the main reference in this particular topic. Throughout this chapter,
we let k be a field, we let R be a Hopf algebra with antipode S, and we let T' = R[z; 0, 0]
be an Ore extension of R. We recall that T is the algebra generated by R and by x subject
to the relations
xr =o(r)x+06(r)

for all » € R, where o is an automorphism of R and 0 is a o-derivation. Every element in
T can be written uniquely as >,y 72", with finitely many nonzero r; € R. This chapter is

based on the content of [24]. The main result of this chapter is to establish the following

theorems.

Theorem 4.0.1. Let R be a noetherian Hopf k-algebra and let T = R[z;0,d] be an Ore
extension of R. Suppose that R @y R is a domain. Then T has a Hopf algebra structure

extending that of R if and only if after a linear change of variables we have the following:
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1. There exists a grouplike element 8 of R such that A(z) ='®@r+2® 1+ w, and
S(x) = —=PF(x+ > w1 S(we)) and 5w S(ws) = > S(wy)we with w € R @y R;

2. There is a character x : R — k such that

o(r) = 7'>l<<7”) = ZX(H)TQ = ZﬁflﬁﬁX(Tz)
forallr € R;

3. The o-derivation ¢ satisfies the relation
Ad(r) — 25(7“1) ® 7Ty — Zﬂ_lrl ® §(re) — wA(r) — Ao(r)w =0

and
wRl+(AN(w)="ow+ (I ®A)w.

It is shown that R ®; R is a domain when R satisfies certain conditions as follows.

Theorem 4.0.2. Let k be an algebraically closed field of characteristic zero and let R be
a noetherian cocommutative k-Hopf algebra of finite Gelfand-Kirillov dimension that is a

domain. Then R ®; R is a domain. In particular, the results of Theorem 4.0.1 apply in
this setting.

4.1 Hopf Ore extensions and Panov’s question

Panov united the two algebraic structures of Ore extensions and Hopf algebras in one

algebraic object, more precisely, he raised the following question:

Question 4.1.1. Given a Hopf algebra R, for which automorphisms ¢ and o-derivations
0 does the Ore extension T'= R[x; 0, ] have a Hopf algebra structure extending the given

Hopf algebra structure on R?
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In general, since T is a free left R -module on basis {z’: ¢ > 0}, the general form of

coproduct of z is

Ax) = Z wiz' @ 7,

0,j>0

where each w;; € R®;, R. To understand the Hopf algebra structure of 7', it is necessary to
establish the form of A(z). However, A(z) can be very complicated as described above. To
simplify matters, Panov imposed a hypothesis on A(x) and defined the Hopf Ore extension

as follow:

Definition 4.1.1. [10, Definition 1.0] Let R and T' = R]z;0,6] be Hopf algebras over k.
The Hopf algebra T' = R[x;T,d] is called a Hopf Ore extension if A(x) =2 @71 +r, @ x
for some 71,79 € R and R is a Hopf subalgebra of T.

Under this setting of the formula of A(z), Question 4.1.1 can be transformed as below:

Question 4.1.2. Given a Hopf algebra R, for which automorphisms ¢ and o-derivations

0 does the Ore extension T' = R[x; 0, ] become a Hopf Ore extension?

Moreover, if A(z) = x®r;+ry®@z, then Panov showed in [10] that A(z) = '@ 1+1r'®2/,
by replacing the generating element z by 2’ = xr; ! in T, where 7’ = ryr; ' is a grouplike
element. Without loss of generality, we can assume that A(z) = x® 1 +r ® 2 in definition

4.1.1. Then it follows from [10, Lemma 1.1] that

e(x) =0
S(x) = —rtw

where =1 = S(r). This agrees with the Hopf structure on the classical polynomial al-
gebra K[x], where x is primitive. Since r is a grouplike element, we call x a skew prim-
itive element. We recall Sweedler’s notation, defined in Chapter 2 in which we write
A(r) = Y r; ® ry for the coproduct of a general element r € R. Then Panov showed
the necessary and sufficiency condition of 7' = R|x; 0, d] being a Hopf Ore extension and

answered question 4.1.2 in the subsequent theorem.
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Theorem 4.1.3. [0, Theorem 1.3] The Hopf algebra T = R|x;0,0] is a Hopf Ore extension
if and only if

1. there is a character x : R — k such that o(a) = x (a1) as for any a € R (i.e., 0 is a
twisted automorphism of R;

2. the following relation holds: x (a1) as = ra;r='x (az);

3. the o-derivation § satisfies the relation Ad(a) = d (a1) ® ag +ra; @ I (as) .

4.2 Generalization of Hopf Ore extensions

The additional hypothesis that the variable x of the extension 7' is skew primitive, typically,
is not valid. In particular, Brown, O’Hagan, Zhang, and Zhuang (BOZZ) [l1] gave a

counterexample 2.2.16.

To deal with such examples, Brown et al. [11] relaxed Panov’s hypothesis and studied
skew polynomial extensions of Hopf algebras in which A(z) is of the form s@ z +x @t +
v(x ® x) + w, where s,t € R and v,w € R ®; R. In addition, Brown et al. [l 1] extended

the definition of Hopf Ore extensions as follows:

Definition 4.2.1. [I1, in §2.1] Let R be a Hopf k-algebra. A Hopf Ore extension (HOE)
of R is a k-algebra T such that:

1. T is a Hopf k-algebra with Hopf subalgebra R;

2. there exists an algebra automorphism ¢ and a o-derivation § of R such that T' =
R[z;0,4];

3. there are s,t € R and w,v € R ®; R such that
Alz)=s@r+z@t+v(r®x)+w. (4.1)
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The condition given by Equation (4.1) can be seen as imposing that x is not too “far”
from being skew primitive. We observe that the “Hopf Ore extensions” originally defined
by Panov are the Hopf Ore extensions (defined in 4.2.1) in which v = w = 0. It is natural

to ask just how restrictive this condition Equation (4.1) is, namely:

Question 4.2.1. [I1, in §2.1] Does the third condition in Definition 4.2.1 follow from the

first two, after a change of the variable x?

Indeed, it is unclear in general whether an Ore extension of a Hopf algebra R that is
itself a Hopf algebra should have an easy formula for A(x) described in the Definition 4.2.1.
But understanding the form of A(z) is of significance in understanding the Hopf algebra

structure of 7.

4.3 Generalized Panov’s theorem

In Definition 4.2.1, the hypothesis on A(z) in Definition 4.1.1 is extended to be
Alz)=s@r+20t+v(r® )+ w.

In this section, the improved Panov’s theorem is stated. Like Theorem 4.1.3, it establishes
a criterion to assess when we can extend a Hopf algebra structure on R to an Ore extension
T = Rlz;0,0], that is, define on T" a Hopf algebra structure compatible with the given

structure on R.

Before we move forward to the improved theorem, we make observations that should be
understood. The polynomial variable of a skew polynomial extension is far from uniquely
determined. For if T' = R]z; 0, ] is a skew polynomial algebra and A\ € k, then a straight-
forward computation shows that J) := §+ A(id —o) is another o-derivation of R. Moreover,

we can rewrite the Ore extension as
T =Rz +Ao,0].
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Moreover, given a unit of R, say for example b, replacing x by b~ 'z, and writing ad(b™!)

to denote conjugation by b~!, then again, the Ore extension can be formed as
T=R [bilx; ad (bil) o, bild] .

In practice, b will be a grouplike element of a Hopf algebra when we apply this below, so
this usage of the notation ad coincides with the standard Hopf notation ad,, [38, page 33].
Therefore, without loss of generality, we are allowed to change the variable z as x + \, b~'x
or via a combination of the two b~'x + X for the sake of convenience in the subsequent

proofs.

After a suitable change of variable x and corresponding adjustments to o, and w in

the Ore extension T' = R|x; 0, ], the improved Panov’s theorem is provided as follow.

Theorem 4.3.1. [11, Theorem in §2.4]

1. Let R be a Hopf k-algebra and let T = Rx;0,6] be a HOE of R. Suppose that
S(z) =ax+ B for a, B € R with o a unit of R. (4.2)

Write w = Y w; ® wy € R ®y R, with {w1} and {ws} chosen to be k-linearly inde-
pendent subsets of R. Then the following hold.

(a) a,b are grouplike and v = 0.

(b) After a change of the variable x and corresponding adjustments to 0,6 and w
e(x) =0 (4.3)

and
Alz)=a®@zr+1r®1+w. (4.4)
For the remainder of 1, we assume that (4.3) and (4.4) hold.
(c) S(z) =—a™t (x+ > wiS (wy)).
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(d) There is a character x : R — k such that

o(r) = ZX (ri)ry = Z aria” 'y (ra), (4.5)

for all r € R. That is, o is a left winding automorphism Tﬁ, and 1s the com-
position of the corresponding right winding automorphism with conjugation by

a.

(e) The o-derivation § satisfies the relation
Ad(r) —0(r) @ry —ary ® 96 (r2) = wA(r) — Ao(r)w (4.6)
(f) The elements {w,} and {wy} of R satisfy the identities
S (wi) wy = a”twy S (ws) (4.7)
and
wl+ (A®id)(w) =a®w+ (id ®A)(w) (4.8)

2. Let R be a Hopf k-algebra. Suppose given a € G(R),w € R ®y R, a k-algebra auto-
morphism o of R and a o-derivation § of R such that this data satisfies (4.5), (4.6),
(4.7) and (4.8). Then the skew polynomial algebra T = R|x;0,d] admits a structure
of Hopf algebra with R as a Hopf subalgebra, and with x satisfying (4.2), (a), (b) and
(c) of (1). As a consequence, T is a HOE of R.

4.4 Answer to Panov’s original question

In this section, we will resolve Panov’s original Question 4.1.1 affirmatively when R is
noetherian and R ®; R is a domain. In practice, there are no known examples of Hopf
algebras R that are domains for which R ®; R is not a domain as well, so one can think of

this theorem, intuitively, as applying to noetherian domains.

Indeed, if we assume that R ®; R is a domain, then we can get a much simpler form of

A(x) as described in the following lemma.
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Lemma 4.4.1. [I |, Lemma 1| Let T = R|x;0,6] be a Hopf k-algebra with R a Hopf
subalgebra. Suppose that R ®y R is a domain. Then

Alx)=s(1®z)+tz®1) +v(r )+ w, (4.9)

where s,t,v and w € R ®;, R.

Comparing the form of A(z) in (4.9) and (4.1), it is natural to ask the following question:

Question 4.4.2. Can the conclusion (4.9) be replaced by (4.1) in the definition of HOE
4.2.17

In fact, we observe that there are two examples which give positive answer to Question
4.4.2 described in the following two results. Brown, O’Hagan, Zhang, and Zhuang [I1]
showed that when R is a connected Hopf algebra, the answer to Question 4.4.2 is affirmative
in the proposition below. Recall that R is called a connected Hopf algebra if its coradical
is the base field k. If R is a connected Hopf k-algebra, then so is R ®; R : for, if {R;} is
the coradical filtration of R, then it is clear from the definition, [38, Theorem 5.2.2], that
A, =" R, ® R,_; is a coalgebra filtration of R®j, R, and hence by [38, Lemma 5.3.4]
the coradical of R ®y, R is contained in Ay = k. Hence R ®y, R is a domain by [38, Lemma
6.6]. Similarly, R ®; R ®j R is a connected Hopf algebra domain. In this setting, [11] give

the following result.

Proposition 4.4.3. [11, Proposition in §2.8] Let k be algebraically closed of characteristic
0. Let R be a connected Hopf k-algebra and let T = R|x;0,0] be a Hopf algebra containing
R as a Hopf subalgebra. Then

Alz)=1®@zr+zr@1+w
for some w € R®y R. As a consequence, T is a HOE of R and is a connected Hopf algebra.

Another recent example has been proved [0] in the theorem below.
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Theorem 4.4.4. [0, Theorem C] Suppose k is algebraically closed and R is a finitely
generated commutative integral Hopf k-algebra. If an Ore extension R[x;o,0] admits a

Hopf algebra structure extending that of R then, after a linear change of the variable x,
Alz) =a@zr+20b+w

for some a,b € R, each of which is either 0 or grouplike, and some w € R ®; R. In
particular, R[x;o0,0] is a Hopf Ore extension of R.

Therefore, Question 4.2.1 seems likely to have a positive answer. In this section, in
light of the above lemma, we will show that under the hypotheses that R ®; R is a domain
and R is noetherian, then after a change of variables we have A(z) = 37! @z +2® 1 +w,
with w € R ®; R and 8 a grouplike element of R. More precisely, the hypothesis that R
is noetherian ensures that the antipode is bijective [15], and allows us to use work of [I1]

to get that S(z) has a linear form.

Suppose that T admits a Hopf algebra structure extending that of R. Recall that T is
a free left R-module with basis {2’ | i > 0} and T'®;, T is a left R ®; R-module with basis
{z' ®@27: 4,5 > 0}. Thus we have that

Ax) = Zwi,jmi ® 17,
i,
with w; ; € R ®, R. By Lemma 4.4.1, the hypothesis that R ®; R is a domain gives that
Alz) =s(1®z)+txz®1)+v(r®z)+w, (4.10)

with s,t,v,w € R ®; R. After a change of variables and corresponding adjustments to o

and ¢, we may assume that ¢(z) = 0. For if €(z) = ¢ # 0 € k, then let y = z — ¢ and so

and



Let ¢'(r) = 6(r) + o(r)c — cr. Then a straightforward computation shows that
§'(ab) = o(a)d'(b) + &' (a)b,
whence ¢’ is a o-derivation. Therefore, R[z;0,d] = Ry, o,d'].

In the next two Lemmas, we aim to answer question 4.4.2 and will show much more:
after a change of variables we have A(z) = 7' @ 2 + £ ® 1 + w, where 3 is a grouplike
element of R. This is a significant step, as it shows that A(z) can be assumed to have a
much simpler form, which gives an explicit Hopf algebra structure on the Ore extension T’

that is compatible with the Hopf structure on R.

To begin, we list the following facts which are useful in the proof of the subsequent
lemmas. Using coassociativity of A : T — T ®; T" and the form given in Equation (4.10)

and then comparing the coefficients of all relevant terms
rRrRr,l1R®rR1,1x¥2,1R01Qr,rRrx®1

on both sides of the equation (id ®A)A(z) = (A ® id)A(z), we obtain the following

equations:

+(A®id)(v) - (w 1)
(

We use these equations to derive additional useful equations. Note that we use Sweedler
notation to make things more compact, that is, we simply write f = > f1 ® fo in R®y, R.
We also note that we may always assume, in addition, that when we choose an expression
for an element Zle a; ® by € R®; R, that {ay,...,a4} and {by,...,bs} are k-linearly
independent sets. We set

a = (1d®e)(s) = 2816(82), (4.16)
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and
B=(e@id)(t) = e(t:)(t). (4.17)
Observe that applying id ®e ® € to Equation (4.13), we obtain on the left side

(id ®e ® €)(Id ®A)(s) - (1 ®@v)),

which is

(Z 816(82)> . <Z e(vl)e(vz)> =a- (Z 6(“1)6(02)> ;

and on the right side, we obtain (id ®e ® €)((A ® id)(v) - (s ® 1)), which is

(3" vie(vs)) - (26(82)51> - (Z vle(vg)) L

Thus we obtain the new equation

Q- (Z 6(’(]1)6(’02)) = (Z U1€(U2>> - a. (4.18)

We do not give the complete details of the following computations, as they can be done in

a similar manner. We apply € ® € ® id to Equation (4.11) and we obtain

(Z e(vl)vz> : (Z e(vl)vg> = <Z e(vl)m) : <Z 6(1)1)6(1)2)) . (4.19)

By a result of Skryabin [15, Corollary 1], S is bijective on T and R so we must have
S(z) = ax + b with a,b € R and @ a unit in R. Notice that

0=¢(z) =mo (S®id) o A(z). (4.20)

The coefficient of z? in the right side of Equation (4.20) is Y ac (S (v1)vs), and the coefficient
of 2 on the left side of Equation (4.20) is 0. Since a is a unit and ¢ is an automorphism,

we see that Y S(v;)ve = 0 and after the standard fact that € o S = e then obtain that

> " e(vr)e(vs) = 0. (4.21)
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Now we apply the id ®e ® id to Equation (4.13). We obtain on the left side
(id ®e®id)((id @A) (s)-(1®w)) Z 51® Z €(891)€(v1)®82202) Z S1R1®s,y Z e(vy)v
and on the right side
(ld®e®id)(A®id)(v) - (s@1)) =Y vi(>_si€(s:)) @ 1@ va.
By the multiplication map m ® id : R ®; R ®, R — R ®; R, we can see that

s (1 ® (Z e(v1)02)> =0 ((Z 51€(82)) ® 1) : (4.22)

Lemma 4.4.5. Let R be a noetherian Hopf k-algebra and let T = R[z;0,d] admit a Hopf
algebra structure with R a Hopf subalgebra. Suppose that R @y R is a domain. Then after
a change of the variable x” with the property that e(x) = 0 and corresponding adjustments
to o and §, we can ensure that v =0 in Equation (4.10); namely, that A(z) = s(1 ® x) +
t(r®1) +w, with s,t,w € Ry, R.

Proof. Suppose R ®j, R is a domain. By lemma 4.4.1, we have Equation (4.10)
Alz) =s(1®z)+txz®1)+v(r®z)+w,

where s,t,v,w € R®;, R. Using the fact that (e ®id) o A(z) = (id ®¢) o A(x) = z and that
€(z) = 0 in Equation (4.10) gives 1 = (e ® id)(s) = (id ®¢)(t); that is,

1= Z 6(81)52 = Ztle(tg). (423)

Equations (4.16), (4.17) and (4.23) tell us that

so in particular a and § are nonzero. Thus, Equations (4.18) and (4.21) give

Ze(vl)e(vg) = Z’U1€(’U2) = 0.
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Further, Equation (4.19) tells that

D elvi)va = e(v)e(va) =D vie(vy) =0.
Thus by Equation (4.22), we see that 0 = v(a ® 1).

Since a ® 1 # 0, and R ®; R is a domain, we see that v = 0. Thus we have shown that
Alr)=s(1®z)+t(zr®1) +w. O

Lemma 4.4.6. Let R be a noetherian Hopf k-algebra and suppose that T = R[z;0,/]
admits a Hopf algebra structure with R a Hopf subalgebra. Suppose that R ®; R is a
domain and A(z) = s(1®z) + t(x ® 1) + w, with s,t,w € R® R. Then after a change
of the variable x, we can assume that A(z) = 7' @z +x @1+ w', where B is a grouplike
element in R and w' =) w] @ wy € R®y R. Moreover, S(z) = —f(x + > wiS(w))) and
B (S wlS(uh) = 52 S(w) ).

Proof. By the assumption that A(z) has the form of Equation (4.10) with v = 0, we get
(Id®A)(s)- (1®s) = (A®id)(s) (4.24)
from Equation (4.14). Applying id ®S ® id to Equation (4.24), we obtain that
(id®S®id) ([d®A)(s) - (1®s)) = ([d®S ®id) (A ®id)(s)) .

By the associativity of the product map, i.e., mo(id ®m) = mo(m®id) : R®y R®x R — R,
we obtain on the left side
mo (id®@m)o (Id®S ®id)((id ®A)(s) - (1 ® s)))
=m o (id ®m)(z 51 ® (Z S(51)S(891) ® $9282))

= Z 516(82)<Z S(s1)s2)
:a(z S(s1)s2)
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and on the right side
mo(m®id)o (id®S ®id)((A ®id)(s)) =mo (e ®id)(s) = 26(81)82 = 1.
Therefore, we have

&(Z S(s1)s2) = 1.

Since R is a domain and « is left invertible, « is invertible and o™ = > S(s;)ss. Applying

id ®e ® id to Equation (4.12), and using Equations (4.16) and (4.17), we see that
s(1®p)=tlax1l). (4.25)
Note that « is a unit, and thus
s(a”t®p) =t (4.26)
Combining Equations (4.12) and (4.26), we have
(Jd®A)(s)- (1®s)- (1®a'®8)=(A®id)(s)- (Al ) ®B) - (s@1).

By Equation (4.24), we have

(Aid)(s)-(1®a'®B) = (A®id)(s)- (Ala™)®8) - (s®1). (4.27)
Applying (id ® id ®e) to Equation (4.27) and using the fact that e(/5) = 1, it results that
D e(s)As1) - (1@ a™) =) e(s)A(s1) - Ala™) - s (4.28)

Note again that R ®; R is a domain and « # 0. Cancelling A(a) = > €(s2)A(sy) from
both sides of Equation (4.28), we have

l@a ' =A(a™):s. (4.29)
Then
Ala™z) = Ala™Y) - Ax)
=Ala™) - (s(1®@z)+tr®1)+w)
=l@alz+A(™) trel)+AleHw
=l@alz+Alc™) tlaxl)(a'r®1)+A(a Hw
=l®alr+a'z@a B+ Al Hw (By Equations (4.25) and (4.29)).
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Replace x, 8 and w by a 'z, o= and A(a™!)w, resp.. Then we have that
Alz) =10z +2® 0+ w. (4.30)

Using the fact that (A ® id) o A(z) = (id ®A) o A(z) along with Equation (4.30), if we
compare the coefficients of z ® 1 ® 1, then we obtain the equation: A(f8) = f ® (. Hence

[ is a grouplike element and thus has inverse. Notice that
A =A@)AB ) =p"@ap " +26 @1+ wAB).

To get a simpler form of S(z) later, one can replace by x3~! and after a change of

variables, we can assume that
Alr)=8"'"®r+201+w. (4.31)

Using the identity that m o (id®S) o A(x) = mo (S ®id) o A(z) = ¢(x) and Equation
(4.31), a direct computation shows that S(z) = —f(x + > w1S(ws)) and 5wy S(wq) =
Z S(wl)wz. ]

As a consequence, we have the following corollary.

Corollary 4.4.7. Let R be a noetherian Hopf k-algebra and suppose that T = R|x;0, ]
admits a Hopf algebra structure extending that of R. Suppose that R ®y R is a domain.
Then after a change of variables for the variable x, we have A(z) = B '@z +2® 1+ w,
where [ is a grouplike element in R and w =) w; @wy € R®y R and thus condition (1ii)
in Definition 4.2.1 follows from conditions (1) and (2). In particular, the Question 4.2.1

has an affirmative answer under the above hypotheses.

This corollary allows us to immediately obtain our main result.

Theorem 4.4.8. Let R be a noetherian Hopf k-algebra and let T = R[z;0,d] be an Ore
extension of R. Suppose that R @y R is a domain. Then T has a Hopf algebra structure

extending that of R if and only if after a linear change of variables we have the following:
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1. There exists a grouplike element 8 of R such that A(z) ='®@r+2® 1+ w, and
S(x) = —=PF(x+ > w1 S(we)) and 5w S(ws) = > S(wy)we with w € R @y R;

2. There is a character x : R — k such that

= ZX(H)TQ = Zﬂ’lrlﬂx(m)
forallr € R;

3. the o-derivation ¢ satisfies the relation
— Z(S(rl) ® ry — Zﬁ_lrl ® 0(ry) — wA(r) — Ao(r)w =0

and
w1+ (AN (w)="@w+ (I ®A)w

Proof. Suppose that R®y R is a domain. Let T' = R[x; 0, 4] be a Hopf algebra with a Hopf
structure extending that of the Hopf algebra R. Then we have (1) follows from Lemmas

4.4.5 and 4.4.6.
The maps A, € and S of T" must preserve the relation xr = o(r)x + d(r). In particular,
we have the following equations:
A(z)A(r) = A(o(r))Az) + A(6(r));
e(x)e(r) = e(o(r))e(x) + €(0(r));
S(r)S(x) = S(x)S(a(r)) + 5(6(r)).
Using arguments from [0, Theorem 1.3] and [I 1, Theorem, §2.4], we obtain (2) and (3).

Conversely, a similar argument to that used in [10, Theorem 1.3] and [! 1, Theorem, §2.4]

shows that (1), (2) and (3) imply that 7" is a Hopf algebra with R as a Hopf subalgebra. [
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4.5 Cocommutative Hopf algebras

In light of Theorem 4.4.8, it becomes natural to ask when R ®; R is a domain. Obviously,
the hypothesis that R ®; R is a domain plays a significant role in last section. However,
it appears to be difficult to show that R ®; R is a domain when R is a Hopf algebra
that is a domain. Rowen and Saltman [12] exhibit division k-algebras E and F', both
finite-dimensional over their centres and each containing an algebraically closed field &
of characteristic 0, such that E ®; F' not a domain. Their construction is non-trivial
and it does not obviously lend itself to produce a counterexample in the Hopf algebra
case. In this section, we shall show that R ®; R is a domain when £ is algebraically
closed of characteristic zero and R is a noetherian cocommutative Hopf algebra of finite
Gelfand-Kirillov dimension that is a domain. In this case, one has that R is isomorphic to
the smash product of the enveloping algebra of a finite-dimensional Lie algebra £ and a
finitely generated nilpotent-by-finite group. The underlying Lie algebra L is generated by
the primitive elements in R, and the nilpotent-by-finite group is just the group of grouplike
elements of R, which acts on £ via k-algebra automorphisms, giving the smash product
structure. To complete the proof of Theorem 4.5.2, we will need a result describing when
crossed products are domains. The proof of the following theorem can be found in the

book of Passman.

We recall that a domain R is called left (right, resp.) Ore domain if and only if
Rry N Rry # (0) (resp. riRNryR # (0)), for all non-zero elements 1,7y € R. The domain
R is called an Ore domain if R is both a left and right Ore domain. It is well-known that

a domain of finite GK-dimension is an Ore domain.

Theorem 4.5.1. [11, Corollary 37.11] Let R be an Ore domain and let let G be a group

and suppose that G has a finite subnormal series

{1} =Gy<G1<--- <G, =G
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with each quotient Gi11/G; locally polycyclic-by-finite. If G is torsion-free then R#G is an
Ore domain. In particular if R is an Ore domain and G is a torsion-free polycyclic-by-finite

group then the smash product R#G is a domain.

Using this result, we can give the proof of the following theorem.

Theorem 4.5.2. Let k be an algebraically closed field of characteristic zero and let R be
a noetherian cocommutative k-Hopf algebra of finite Gelfand-Kirillov dimension that is a
domain. Then R ®; R 1s a domain. In particular, the results of Theorem 4.4.8 apply in
this setting.

Proof. By a refinement of a result of Kostant (see Bell and Leung [5, Proposition 2.1]), we
have that R = U(Ly)#kH where Ly is a finite-dimensional Lie algebra over k and H is
a finitely generated nilpotent-by-finite group that acts on £,. Hence, we have R ®; R =
U(Ly @ Lo)#k[H x H]. Let L denote the Lie algebra Ly & Ly and let G denote H x H.
Then R ®y R = U(L)#kG, where G acts on U(L) in the natural way induced from the

action of H on L.

Since R is a domain, H is torsion-free, and thus G is also torsion-free. Moreover, G is
also finitely generated and nilpotent-by-finite, since H is. Since L is finite-dimensional, we
have that U(L) is an Ore domain; moreover G is a torsion-free polycyclic-by-finite group,

and so we see that R ®;, R is a domain from Theorem 4.5.1. ]

As a immediate consequence of 4.5.2, we get the following corollary.

Corollary 4.5.3. [24, Corollary 3.3] Let k be an algebraically closed field k of character-
istic zero and let R be a noetherian cocommutative Hopf algebra of finite Gelfand-Kirillov
dimension over k which is a domain. Let T' = R|x;0,0] be an Ore extension over R. Then
T has a Hopf algebra structure extending that of R if and only if after a change of variables

we have the following:
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1. there exists a grouplike element 3 of R such that A(z) = 8@z +2z® 1+ w, and
S(x) = —=PF(x+ > w1 S(we)) and 5w S(ws) =D S(wy)we with w € Ry R;

2. there 1s a character x : R — k such that
o(r) = 7.(r) = S x(r)rs = 3 BB ()
for allr € R.

3. the o-derivation ¢ satisfies the relation

AS(r) = d(r) @y = > Bl @6(rz) — wA(r) — Ao(r)w =0

and

wRl+ (A (w)=3"®@w+ (I A)w.

Proof. Theorem 4.5.2 tells us that in this case R ®; R is a domain. Then the assertion

immediately follows from Theorem 4.4.8. [
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Chapter 5
Zariski Cancellation Problems

Throughout this chapter, when A is a finitely generated k-algebra, we will simply say that
A is an affine algebra over k, or simply an affine algebra when the base field is understood;
we shall also let Z(A) denote the centre of an algebra A. The goal of this chapter is to look
at noncommutative analogues of the result of Abhyankar, Eakin, and Heinzer [I, Theorem
3.3 and Corollary 3.4]. Their theorem, when one works in the category of commutative
algebras, says that if A is a finitely generated algebra that is an integral domain of Krull
dimension one, then A is cancellative (see Definition 2.3.1). We consider a noncommutative
analogue of this theorem, in which one considers finitely generated domains of Gelfand-
Kirillov dimension one. When working with noncommutative algebras, it is generally
preferable to work with Gelfand-Kirillov dimension rather than with the classical Krull

dimension. The main result is as follows.

Theorem 5.0.1. We have the following results for affine domains of Gelfand-Kirillov

dimension one.

1. Let k be a field of characteristic zero and let A be an affine domain over k of Gelfand-

Kirillov dimension one. Then A is cancellative.
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2. Let p be prime. Then there exists a field k of characteristic p and an affine domain

A over k of Gelfand-Kirillov dimension one that is not cancellative.

In this section 5.1, we state some known results which are relevant to Theorem 5.0.1.
Then we show some propositions which will be used in the proof of Theorem 5.0.1 in
section 5.2. In addition, we prove a general result that suggests over “nice” base fields that
cancellation should be controlled by the centre (see Proposition 5.2.7, Corollary 5.2.9, and
Conjecture 5.2.10). In section 5.3, we prove Theorem 5.0.1 (a) and prove some positive
results for domains of Gelfand-Kirillov dimension one over positive characteristic base
fields. In Section 5.4, we construct the family of examples needed to establish Theorem

5.0.1 (b).

5.1 Some Known Results

In general, there are rings R for which the implication given in Question 2.3.1 does not
hold. In fact, Danielewski [14] gave the following two families of examples of affine complex

varieties as counterexamples.

1. Let n > 1 and let B,, be the coordinate ring of the surface 2™y = 2% — 1 over C. Then
B, # Bj if i # j, but B;[s] = B,[t] for all 7,7 > 1. Therefore, all the B, ’s are not

cancellative.
2. Clz,y, z]/(p) is not isomorphic to Clz,y, z]/(¢), while (Clz, y, z]/(p))[t] is isomorphic to

(Clz,y, 2/ (q)[t], where p = vy — 2% + 1,9 = q(v,y,2) = 2’y — 2° + L.

It should be noted, however, that these non-cancellative examples all have dimension
at least two, and if we restrict our attention to curves, cancellation holds: this is a result

of Abhyankar, Eakin, and Heinzer [I] described in the theorem below.
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Theorem 5.1.1. [I, Theorem 3.3] Let A be an integral domain of transcendence degree
one over a subfield k. Suppose that Alxy,...,x,] = Blyi,...,yn] for somen > 1, and let
k' denote the algebraic closure of k in A. If A % B, then A and B are both polynomial
rings over the field k'. Consequently, if A is not a polynomial ring, then A is strongly

cancellative.

Since Krull dimension and Gelfand-Kirillov dimension coincide for finitely generated
commutative k-algebras, Theorem 5.0.1 specializes to the classical cancellation result of
Abhyankar-Eakin-Heinzer in the case of characteristic zero base fields when one takes R

to be commutative.

Part (2) of Theorem 5.0.1 gives a counterexample to the conjecture below when the

base field has positive characteristic:

Conjecture 5.1.2. [50, Conjecture 0.3(1)] Let A be a noetherian finitely generated prime
algebra. If Z(A) has Gelfand-Kirillov dimension less than or equal to one, then A is

cancellative.

While Theorem 5.0.1 (a) answers the following question of Lezama, Wang, and Zhang

[31] in the case when the base field has characteristic zero in the domain case.

Question 5.1.3. [31, Question 0.5] Is every affine prime k-algebra of Gelfand-Kirillov

dimension one cancellative?

We note that [1] show in fact prime affine commutative algebras of Gelfand-Kirillov
dimension one are strongly cancellative and we do not know whether this conclusion holds
in characteristic zero for Theorem 5.0.1 (a). We also point out that Lezama, Wang, and
Zhang proved that for algebraically closed base fields k, affine prime k-algebras of Gelfand-

Kirillov dimension one are cancellative in the theorem below:

Theorem 5.1.4. [31, Theorem 0.6] Let k be algebraically closed. Then every affine prime

k-algebra of Gelfand-Kirillov dimension one is cancellative.
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Notice that the algebraically closed property is needed, because the authors invoke
Tsen’s theorem at one point in their proof. Our example in section 5.4 shows that this
application of Tsen’s theorem is in some sense necessary to get their result in positive

characteristic.

In characteristic zero, our Theorem 5.0.1 (a) is somewhat orthogonal to the result of
[31], since domains of Gelfand-Kirillov dimension one over algebraically closed fields are
commutative by an application of Tsen’s theorem to a result of Small and Warfield [10]
and hence the only part of Theorem 5.0.1 (a) covered by Theorem 5.1.4 is the commutative

case, which was previously known from the result of Abhyankar-Eakin-Heinzer 5.1.1.

5.2 Preparation for the proof of theorem 5.0.1

To prove Theorem 5.0.1, we will need several propositions and lemmas. We will show a
similar result to the lemma below in the case of left Goldie rings. In addition, we prove
Proposition 5.2.7 and Corollary 5.2.9, which give further underpinning to the idea that the
centre of an algebra plays a large role in whether the cancellation property holds for that

algebra.

Lemma 5.2.1. [7, Lemma 3.2] Let Y = @.°,Y; be an N-graded domain. If Z is a
subalgebra of Y containing Yy such that GKdim(Z) = GKdim(Yy) < oo, then Z =Y.

We begin by proving a lemma, which is the counterpart of Lemma 5.2.1.

Lemma 5.2.2. Let Y := @2, Y; be an N-graded k-algebra and suppose that YoyYy contains
a reqular element whenever y is a nonzero homogeneous element of Y. If Z is a subalgebra

of Y containing Yy such that GKdim(Z) = GKdim(Yy) < oo, then Z =Y.

Proof. Suppose that Z strictly contains Y, as a subalgebra. Since Y is a graded algebra, Z
is an N-filtered algebra with X := FyZ. By [29, Lemma 6.5], GKdim(Z) > GKdim(gr(Z2)),
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where gr(Z) is the associ