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Abstract

In economic analyses, the variables of interest are often functions defined on continua

such as time or space, though we may only have access to discrete observations – such

type of variables are said to be “functional” (Ramsay, 1982). Traditional economic anal-

yses model discrete observations using discrete methods, which can cause misspecification

when the data are driven by functional underlying processes and further lead to incon-

sistent estimation and invalid inference. This thesis contains three chapters on functional

data analysis (FDA), which concerns data that are functional in nature. As a nonpara-

metric method accommodating functional data of different levels of smoothness, not only

does FDA recover the functional underlying processes from discrete observations without

misspecification, it also allows for analyses of derivatives of the functional data.

Specifically, Chapter 1 provides an application of FDA in examining the distribution

equality of GDP functions across different versions of the Penn World Tables (PWT).

Through our bootstrap-based hypothesis test and applying the properties of the derivatives

of functional data, we find no support for the distribution equality hypothesis, indicating

that GDP functions in different versions do not share a common underlying distribution.

This result suggests a need to use caution in drawing conclusions from a particular PWT

version, and conduct appropriate sensitivity analyses to check the robustness of results.

In Chapter 2, we utilize a FDA approach to generalize dynamic factor models. The

newly proposed generalized functional dynamic factor model adopts two-dimensional load-

ing functions to accommodate possible instability of the loadings and lag effects of the

factors nonparametrically. Large sample theories and simulation results are provided. We

also present an application of our model using a widely used macroeconomic data set.

In Chapter 3, I consider a functional linear regression model with a forward-in-time-

only causality from functional predictors onto a functional response. In this chapter, (i)

a uniform convergence rate of the estimated functional coefficients is derived depending

on the degree of cross-sectional dependence; (ii) asymptotic normality of the estimated

coefficients can be obtained under proper conditions, with unknown forms of cross-sectional

dependence; (iii) a bootstrap method is proposed for approximating the distribution of

the estimated functional coefficients. A simulation analysis is provided to illustrate the

estimation and bootstrap procedures and to demonstrate the properties of the estimators.
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Introduction

In economic analyses, the variables of interest are often functions defined on continua such

as time or space, though we may only have access to discrete observations – such type of

variables are said to be “functional” (Ramsay, 1982). For example, data for international

trade in goods or services are usually by month or year; however, trade can happen at

any points of time during continuous time periods, which makes the underlying processes

of trade functions over time intervals. Traditional economic analyses models the discrete

observations using discrete methods, which can cause misspecification when the observa-

tions are driven by such functional underlying processes and further lead to inconsistent

estimation as well as invalid inference.

Functional data analysis (FDA) proposed by Ramsay (1982) and Ramsay and Dalzell

(1991), as a nonparametric and continuous analysis approach concerning data that are

functional in nature, started to gain attentions and become a powerful tool in various

fields of studies, such as economics (e.g., Grambsch et al., 1995; Ramsay and Ramsey,

2002; Benatia et al., 2017; Chen et al., 2018, Working Paper.a), finance (e.g., Bapna et

al., 2008; Laukaitis, 2008; Chen et al., Working Paper.b), environmental studies (e.g., Gao,

2007; Meiring, 2007), bioscience (e.g., Müller et al., 2009; Durá et al., 2010; Zhu et al.,

2010), sports (e.g., Chen and Fan, 2018), along with others (Ullah and Finch, 2013).

This thesis contains three chapters developing methodologies and motivating applica-

tions of FDA, comprising hypothesis tests for functional data, functional factor models

and functional regression. Specifically, Chapter 1, co-authored with Tao Chen and Joseph

De Juan, provides an application of FDA in examining the distribution equality of GDP

functions across different versions of the Penn World Tables (PWT). The idea is moti-

vated by the fact that data in the PWT have been subject to a series of revisions since its

first release in the early 1990s, and the amendments are substantial for many countries.

Through our bootstrap-based hypothesis test and applying the properties of the derivatives

of functional data, we find no support for the distribution equality hypothesis, indicating

that GDP in different versions do not share a common underlying distribution. This result

suggests a need to use caution in drawing conclusions from a particular PWT version, and

conduct appropriate sensitivity analyses to check the robustness of results.

In Chapter 2, co-authored with Tao Chen and Jiawen Xu, we utilize a FDA approach

1



to generalize dynamic factor models. The newly proposed generalized functional dynamic

factor model adopts two-dimensional loading functions to accommodate possible instability

of the loadings and lag effects of the factors nonparametrically. Large sample theories and

simulation results are provided. We also present an application of our model using a widely

used macroeconomic data set.

In Chapter 3, I consider a functional linear regression model with a forward-in-time-

only causality from functional predictors onto a functional response; such a model is also

referred to as the historical functional linear model. This chapter contributes to the lit-

erature by establishing the asymptotics of B-spline-based estimated functional coefficients

and developing the bootstrap inference, accommodating unknown forms of cross-sectional

dependence. The main findings are (i) a uniform convergence rate of the estimated func-

tional coefficients is derived depending on the degree of cross-sectional dependence and√
n-consistency can be achieved in the absence of cross-sectional dependence; (ii) with

unknown forms of cross-sectional dependence, asymptotic normality of the estimated co-

efficients can be obtained under proper conditions; (iii) the proposed bootstrap method

has a better finite-sample performance than the asymptotics while approximating the dis-

tribution of the estimated functional coefficients. A simulation analysis is provided to

illustrate the estimation and bootstrap procedures and to demonstrate the properties of

the estimators.

2



Chapter 1

Distributions of GDP Across

Versions of the Penn World Tables:

A Functional Data Analysis

Approach1

1.1 Introduction and Motivation

The Penn World Table (PWT) has become the most widely used database for empirical

research aimed at explaining income differences between countries. Yet, despite its pop-

ularity, concerns have been raised regarding (i) data quality of GDP estimates in a given

PWT version, and (ii) data consistency of estimates across versions. Summers and Heston

(1991) note early on that GDP for about two-thirds of the countries in the database have

margins of error of ten to forty percent. They summarize the severity of data inaccuracies

by assigning each country a quality grade of A, B, C, or D, with A being the best and D

the worst.

With data consistency, Breton (2012) and Johnson et al. (2013) report that GDP

estimates in some countries for a given year are vastly different across versions despite being

1This chapter is co-authored with Tao Chen and Joseph De Juan.
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derived from the same source and comparable data construction methodologies. Breton

(2012), in particular, finds the year-by-year GDP level of the UK and the Philippines, two

countries that participated in all the price benchmarking studies and hence supposed to

have the most reliable data, to be consistently higher (or lower) in one version than the

other. Johnson et al. (2013) also report similar data inconsistency for GDP growth across

versions. Ponomareva and Katayama (2010) find considerable difference in annual mean

GDP growth across versions for a given year and country.

In this chapter, we utilize FDA to examine the distribution functions of GDP from four

commonly used PWT versions. We model the discrete GDP observations with FDA and

construct test statistics for the hypothesis that the distribution functions of GDP are equal

in any two PWT versions. The critical values of test statistics are obtained by bootstrap

method.

1.2 Modelling GDP Processes Using FDA

Let Yj,v,t be the value of GDP at time t for country j in PWT version v. We consider

four versions (namely, 6.3, 7.1, 8.0 and 8.1) over the years 1960− 2007 and two groups of

countries (namely, 23 OECD countries and 78 non-OECD countries). As such, j = 1, ...,

N with N ∈ {23, 78}, and v = v63, v71, v80, v81.

Assuming smoothness in the underlying processes of GDP, denoted Xj,v(t), we express

Yj,v,t as

Yj,v,t = Xj,v(t) + εj,v(t),

where εj,v(t) is a random error with mean zero and finite variance. Given the nature of the

data, we use an order-4 B-spline basis to approximate Xj,v(t):

Xj,v(t) ≈ CTj,v,KvBKv(t),

where Kv is the number of basis functions for version v, BKv(t) and Cj,v,Kv are Kv-vectors

of B-spline functions and coefficients, respectively. For a given Kv and regularization

parameter λv, estimates of the coefficients are obtained by minimizing a penalized sum of

4



squared residuals,

m({Cj,v,λv ,Kv}Nj=1;λv,Kv) :=
1

N

N∑
j=1

(
1

S

S∑
i=1

[Yj,v,ti −Xj,v(ti)]
2 + λv

∫ 1

0

(
X ′′j,v(t)

)2
dt

)
,

where S denotes the number of observing time points, and {ti}Si=1 is the observing time

normalized to [0, 1] interval. The penalty is determined by the integral of squared second

derivatives, and λv controls the trade-off between bias and variance in the curve fitting

function (Ramsay, 2005).

Solving the first order condition yields estimates Ĉj,v,λv ,Kv :

Ĉj,v,λv ,Kv =

(
1

S

S∑
i=1

[
BKv(ti)B

T
Kv(ti)

]
+ λv

∫ 1

0

(
B′′Kv(t)

) (
B′′Kv(t)

)T
dt

)−1
1

S

S∑
i=1

[Yj,v,tiBKv(ti)] .

To this end, we utilize the standard leave-one-out cross-validation to guide our choice of

the parameters λv and Kv. The optimal pairs, denoted (λ∗v, K
∗
v ), are displayed in Table 1.1.

The fitting function under (λ∗v, K
∗
v ) is

X̂j,v(t) = ĈTj,v,λ∗v ,K∗vBK∗v (t);

the first and second derivatives are

X̂ ′j,v(t) = ĈTj,v,λ∗v ,K∗vB
′
K∗v

(t) and X̂ ′′j,v(t) = ĈTj,v,λ∗v ,K∗vB
′′
K∗v

(t).

Table 1.1: (λ∗v, K
∗
v )

v63 v71 v80 v81

OECD Countries (1.00× 10−8, 41) (1.00× 10−8, 48) (1.58× 10−8, 41) (1.58× 10−8, 41)

non-OECD Countries (3.98× 10−8, 40) (3.98× 10−8, 37) (3.98× 10−8, 30) (3.98× 10−8, 30)

To get a view of the GDP function for a country within the OECD and non-OECD

groups, Figure 1.1 plots the observations and the fitting functions for the UK and the

Philippines, and Figures 1.2 plots the corresponding first and second derivatives.
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Figure 1.1: Sample countries fitting, level data

1.3 Construction of the Hypothesis Tests

Testing distributional equality of two random vectors is well known in the literature (e.g.,

the Kolmogorov–Smirnov test); however, to the best of our knowledge, little work has been

done on testing distributional equality of random processes. Constructing such a test is one

of the contributions of this chapter. The test is motivated by the notion that two random

variables share a common distribution if they have the same moment generating functions,

provided their existence. We generalize this notion to random processes and construct

an asymptotically consistent test of comparing two random processes by verifying the

equality of an enlarging set of moment functions of the sample paths at an increasing order

of derivatives of the curve fitting functions. The realities of finite sample size, however,

imply that we can only test a finite order of moments and derivatives. We next present the

test statistics for the first two moments associated with the first three orders of derivatives

(level data counts as the zero-order derivative).

6



Figure 1.2: Sample countries fitting, derivatives

1.3.1 Test statistics and test procedures

Let Gj,v(t) be a general representation, such that Gj,v(t) = Xj,v(t), X
′
j,v(t), X

′′
j,v(t), and let

Ĝj,v(t) denote the corresponding estimated function, for all j and v. For a given pair of

PWT versions, v1, v2 ∈ {v63, v71, v80, v81}, the test statistic for testing the first moment

equality is constructed as

W (1)
v1,v2 :=

∫ 1

0

 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

)2

dt. (1.1)

The idea behind this is that when time is fixed at t, the stochastic process reduces to a

random variable, and the expression inside the squared bracket in Equation (1.1) represents

the difference between the estimated averages of two random variables. It follows that the

W
(1)
v1,v2 statistic is a functional of this collection (indexed by t) of differences, which in this

case is a squared-L2 norm4.

4For a collection of functions defined on [0, 1], the L2 norm of a function f is defined as ‖f‖2 =(∫ 1

0
|f(t)|2 dt

)1/2
. Since

∫ 1

0
|f(t)|2 dt to

(∫ 1

0
|f(t)|2 dt

)1/2
is a one-to-one transformation, we can leave out

7



To construct the bootstrap statistics, we use i.i.d. bootstrap resampling method to the

OECD and non-OCED countries, generating B bootstrap samples with N replications,

where N ∈ {23, 78} and B = 1000. Let
{
G∗b,j,v(t)

}N
j=1

denote the underlying processes of

the b-th set of bootstrap sample and
{
Ĝ∗b,j,v(t)

}N
j=1

their corresponding estimated functions.

The bootstrap statistic for the first moment is constructed as

W
∗(1)
b,v1,v2

:=

∫ 1

0

 1

N

N∑
j=1

(
Ĝ∗b,j,v1(t)− Ĝ∗b,j,v2(t)

)
− 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

)2

dt. (1.2)

The null hypothesis for the first moment equality test is

H0 : E [Gj,v1(t)] = E [Gj,v2(t)] , v1, v2 ∈ {v63, v71, v80, v81}, for all j and almost all t, (1.3)

and the alternative is the complement. For a given t, the bootstrap statistic in Equation

(1.2) is centered by the bootstrap population mean, whether or not the null hypothesis

is true. Under the null, the original statistic is also centered and thus shares the same

distribution with the bootstrap statistic, which implies that our test has the exact size.

Under the alternative, the original statistic is no longer centered such that our test has

power. Proofs of the exact size and power properties of the test are shown in Appendix A.

Similarly, the null hypothesis for the second moment equality test is

H0 : Var (Gj,v1(t)) = Var (Gj,v2(t)) , v1, v2 ∈ {v63, v71, v80, v81}, for all j and almost all t,

(1.4)

and the corresponding statistics are constructed as

W (2)
v1,v2 :=

∫ 1

0

 1

N

N∑
j=1

[(
Ĝj,v1(t)− Ḡv1(t)

)2
−
(
Ĝj,v2(t)− Ḡv2(t)

)2
]2

dt, (1.5)

W
∗(2)
b,v1,v2

:=

∫ 1

0

 1

N

N∑
j=1

[(
Ĝ∗b,j,v1(t)− Ḡ∗b,v1(t)

)2
−
(
Ĝ∗b,j,v2(t)− Ḡ∗b,v2(t)

)2
]

− 1

N

N∑
j=1

[(
Ĝj,v1(t)− Ḡv1(t)

)2
−
(
Ĝj,v2(t)− Ḡv2(t)

)2
]2

dt, (1.6)

the square root in the W
(1)
v1,v2 statistic without affecting the test results.
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where Ḡv(t) := N−1
(∑N

j=1 Ĝj,v(t)
)

and Ḡ∗b,v(t) := N−1
(∑N

j=1 Ĝ
∗
b,j,v(t)

)
.

Then one can implement the test as follows:

(i) Estimate Gj,v(t) using the functional data approach introduced above, obtaining Ĝj,v(t).

(ii) Compute W
(m)
v1,v2 using Equations (1.1) and (1.5), where the superscript (m) means the

mth moment, for m = 1, 2.

(iii) Apply i.i.d. bootstrap resampling on the OECD and non-OECD countries, generating

B bootstrap samples with N replications, where N ∈ {23, 78} and B = 1000.

(iv) Recall that
{
G∗b,j,v(t)

}N
j=1

denote the underlying processes of the b-th set of bootstrap

sample. Estimate G∗b,j,v(t) for all b, j, v using the functional data approach, obtaining the

corresponding estimated function Ĝ∗b,j,v(t).

(v) Compute the bootstrap test statistics W
∗(m)
b,v1,v2

using Equations (1.2) and (1.6), where

the superscript (m) indicates the mth moment, for m = 1, 2.

(vi) Reject the null in (1.3) or (1.4) if W
(m)
v1,v2 exceeds the bootstrap statistic W

∗(m)
b,v1,v2

at a

chosen confidence interval.

1.3.2 The asymptotic size and power properties of the test

The proposed test has power and the exact size under the following assumptions. Recall

that S denotes the number of time observations, and K and λ are the general representa-

tions for the number of basis functions and the smoothing parameter, respectively.

Assumption 1.3.1 Gj,v(t) is four times continuously differentiable.

Assumption 1.3.1 ensures the underlying function Gj,v(t) is smooth up to a certain order.

Assumption 1.3.2 N,S →∞, N/S2γ → 0 with 0 < γ < 4/9, K � S1/9, λ = O
(
S−2/3

)
.

Assumption 1.3.2 sets the divergence rates of N and S as well as the orders of parameters

K and λ in terms of S. The intuition behind it is that the asymptotic bias of our functional

estimators vanishes as S →∞, and the optimal convergence rate of these estimators, with

the given basis functions and roughness penalty, can be achieved under properly selected

K and λ (see, e.g., Claeskens et al., 2009). Since we use order-4 B-spline bases with equal-

spaced knots on [0, 1] time interval and the roughness penalties of order-2 derivatives,
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K � S1/9 and λ = O
(
S−2/3

)
imply an optimal convergence rate as S → ∞ (Claeskens

et al., 2009, Theorem 1), where a � b indicates that the ratio a/b is bounded away from

zero and infinity. Also, under the assumption of cross-individual independence that will be

introduced below, the central limit theorem (CLT) adopts the inflator
√
N , and N/S2γ → 0

with 0 < γ < 4/9 is to make sure the functional estimators are converging to the true

underlying processes fast enough, so that the estimation error is not inflated by
√
N .

Assumption 1.3.3 For any given v and almost all t, {Gj,v(t)}Nj=1 are independently dis-

tributed across j with E [Gj,v(t)] = µGv(t) and Var [Gj,v(t)] = σ2
Gj,v

(t). Let SN,Gv(t) :=√∑N
j=1 σ

2
Gj,v

(t), ∃ δ > 0, such that

lim
N→∞

1

S2+δ
N,Gv

(t)

N∑
j=1

E
[
|Gj,v(t)− µGv(t)|

2+δ
]

= 0. (1.7)

Assumption 1.3.3 states the conditions required for applying the CLT. Specifically, the

CLT we apply requires independent but not necessarily identical distribution of the random

variables {Gj,v(t)}Nj=1, as long as the condition in Equation (1.7) is satisfied, which indicates

that for a given v and almost all t, {Gj,v(t)}Nj=1 have some moments of orders higher than

2 with limited growth rates as N →∞.

We then have the following asymptotics for the statistics:

Theorem 1.3.1 Under the null hypothesis and Assumptions 1.3.1 – 1.3.3,
√
NW

(m)
v1,v2

d−→∫ 1

0

(
G(m)(t)

)2
dt and

√
NW

∗(m)
b,v1,v2

d−→
∫ 1

0

(
G(m)(t)

)2
dt, where G(m)(t) denotes some function

of Gj,v(t), for m = 1, 2.

Theorem 1.3.2 Under the alternatives and Assumptions 1.3.1 – 1.3.3,
√
NW

(m)
v1,v2 → ∞

and
√
NW

∗(m)
b,v1,v2

= Op(1), for m = 1, 2.

Theorem 1.3.1 states that under the null,
√
NW

∗(m)
b,v1,v2

and
√
NW

(m)
v1,v2 have the same limiting

distribution, which implies the test has the exact size; Theorem 1.3.2 implies that the power

of the test against the alternatives converges to unity.
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1.3.3 Do GDP data across versions of PWT follow the same dis-

tribution?

Tables 1.2 summarizes the pairwise test results for the null hypotheses of moments equality.

For GDP levels, Xj,v(t), the null hypotheses of the first and the second moments equality

Table 1.2: Bootstrap Test Results

OECD Countries non-OECD Countries

v71 v80 v81 v71 v80 v81

Xj,v(t)

v63 (R, R) (R, R) (R, R) (R, R) (R, R) (R, R)

v71 (R, R) (R, R) (FR, R) (FR, R)

v80 (R, R) (R, R)

X ′j,v(t)

v63 (FR, R) (R, R) (R, R) (FR, R) (FR, R) (FR, R)

v71 (R, R) (R, R) (FR, R) (FR, R)

v80 (FR, R) (FR, R)

X ′′j,v(t)

v63 (FR, R) (FR, R) (FR, R) (FR, R) (FR, R) (FR, R)

v71 (FR, R) (FR, R) (FR, R) (FR, R)

v80 (FR, R) (FR, R)

Note: R=reject H0, FR=fail to reject H0; 95% confidence level. The first and second elements in paren-

thesis indicate tests for the first and second moments.

are rejected for all pairs in both OECD and non-OECD samples, except for the first

moment of the non-OECD pairs 7.1-8.0 and 7.1-8.1. For the first and second derivatives

of GDP, the first moment equality is not rejected in many pairs but the second moment

equality is rejected for all pairs. These results suggest that the distributions of GDP differ

significantly across PWT versions. Some caveats are in order, however. First, tests based on

FDA are applied not to the discrete GDP observations but rather to their continuous-time

approximations (or functional objects) formed using a system of basis function expansion

(order-4 B-spline function) and roughness penalty of order-2 derivatives procedure. Second,

the conversion of the discrete data into functional objects depends on the number of basis

functions K, as well as the smoothing parameter λ that controls the tradeoff between bias

and variance in the curve fitting function. While these setups are to some extent necessary

to conduct FDA, they should be kept in mind when interpreting the results.
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1.4 Concluding Remarks

This chapter utilizes FDA to examine distributional equality of GDP from four PWT

versions. Our principal findings provide some evidence supporting the hypothesis that

the distribution functions of GDP are different across versions. In this regard, they are

consistent and complement the findings of previous studies that, in many countries, the

levels and growth rates of GDP for a given year vary substantially in different PWT

versions.
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Chapter 2

Functional Dynamic Factor Models1

2.1 Introduction

Modern macroeconomics data usually consists of hundreds, or even thousands of series

covering an increasing time span. Due to the high dimensionality of the data, researchers

face challenges not only in empirical analysis, but also in theoretical estimation and in-

ference. Dynamic factor models (DFMs), first proposed by Geweke (1977) and Sargent

et al. (1977), offer a powerful tool for the analysis of such data structure by reducing the

dimensions and summarizing the co-movements of the series using a few common factors.

There is a vast literature on DFMs, such as the studies introduced in survey papers by Bai

and Ng (2008), Forni et al. (2000), Breitung and Eickmeier (2006), Reichlin (2003) and

Stock and Watson (2006). The first two surveys mainly focus on the key theoretical results

for large static factor models and DFMs respectively, while the last three emphasize the

empirical applications of the estimated factors.

Specifically, in a DFM, the only observables xit ’s are decomposed into a K-vector of

latent dynamic factors ft, a K-vector of loadings λi and idiosyncratic disturbances εit,

where i ( = 1, ..., n ) counts cross sections, t ( = 1, ..., T ) indicates the time index, and K

is the number of common factors. The much lower K - dimensional vector ft is assumed to

1This chapter is co-authored with Tao Chen and Jiawen Xu from the School of Economics at Shanghai

University of Finance and Economics.
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govern the co-movements of the whole data set, and its dynamic property is often modeled

as a vector autoregression (VAR) process, such thatxit = λTi ft + εit

ft = Φ (L) ft−1 + ηt
,

where Φ (L) is a lag operator and ηt is a zero-mean random variable independent of the rest.

The idiosyncratic disturbances are assumed to be uncorrelated with the factors at all leads

and lags and mutually uncorrelated at all leads and lags, which is the usual assumption of

the exact factor model of Sargent et al. (1977).

Many researchers, however, have raised the problems regarding parameter instabilities

that are concerned with model misspecification and forecasting failure — parameters may

change dramatically due to important economic events or financial crisis during the sam-

pling period, while ignoring structural changes in factor loadings may cause misleading

results in analysis such as estimating the common factors and assessing the transmission

of common shocks to specific variables. In recent years, more and more researchers at-

tempted to take model instabilities into considerations. Banerjee et al. (2008) investigated

the consequences of ignoring time variations in the factor loadings for forecasting based

on Monte Carlo simulations and found it to worsen the forecasts. Breitung and Eickmeier

(2011), BE hereafter, proposed a sup-LM test to detect structural breaks in factor loadings

and found evidence that January 1984 (which is usually associated with the beginning of

the so called Great Moderation) coincided with a structural break in the factor loadings

using a large US macroeconomic dataset provided by Stock and Watson (2005). Improving

upon the sup-LM test of BE, Yamamoto and Tanaka (2015) proposed a modified BE test

that is robust to the non-monotonic power problem. Empirical application using the U.S.

Treasury yield curve data showed that three structural breaks in factor loadings occurred

in the sample period from 1985 to 2011.

Apart from testing for structural breaks in factor loadings, some researchers focused on

modeling time variations in factor loading parameters. The time varying parameter model

has been widely applied in various model specifications to account for parameter instabil-

ities. In these models, time varying parameters are assumed to follow certain stochastic

processes. Models incorporating such features showed great potential in improving forecast-

ing performance upon the traditional steady model setup. Xu and Perron (2014) modeled
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the return volatility as a random level shift process with mean reversion and varying jump

probabilities. Their model provides robust improvements in forecasting compared with

many popular models, such as GARCH, ARFIMA, HAR and Regime Switching models,

in various return series and multiple forecasting horizons. Xu and Perron (2017) further

propose a generalized varying parameter model in which the parameters are assumed to

follow a level shift process, and demonstrate that their model can help forecast out-of-

sample structural breaks in parameters. This model is also applied to forecast exchange

rate volatilities and forecasting gains are achieved over other competing models, see Li

et al. (2017). There are still very few papers that directly model factor loadings as time

varying processes. Del Negro and Otrok (2008) suggested a time-varying parameter model

where the factor loadings are modeled as random walks. Mikkelsen et al. (2019) assume the

factor loadings to evolve as stationary VAR and consistent estimates of the loadings pa-

rameters can be obtained by a two-step maximum likelihood estimation procedure. Motta

et al. (2011) and Su and Wang (2017) consider time varying loadings as smooth evolutions

that is purely deterministic, such as λit = λi (t/T ). They simultaneously estimate the

factors and the time varying factor loadings via local PCA method; they also provided the

limiting distributions of the estimated factors and factor loading under large T and large

N framework.

As we summarized above, in the existing literature there are basically four types of

models dealing with parameter instability in factor loadings: 1) abrupt structural breaks

in loadings (e.g., Breitung and Eickmeier 2011; Yamamoto and Tanaka 2015), 2) smooth

changes in factor loadings (e.g., Motta et al. 2011; Su and Wang 2017), 3) VAR factor

loadings (e.g., Mikkelsen et al. 2019), and 4) random walk factor loadings (e.g., Del Ne-

gro and Otrok 2008). Here, we provide a new perspective to model instabilities of factor

loadings using FDA methods. An essential motivation of adopting the functional data

idea is to allow for continuous-time analysis — when there exist continuous-time under-

lying processes beyond the observables, which happens a lot with macroeconomics data,

consistent estimation can be achieved from continuous-time analysis but not necessarily

from a discrete-time one where the observations are treated as discrete points without

taking into account the underlying continuity (e.g., Merton, 1980, 1992; Melino and Sims,

1996; Aı̈t-Sahalia, 2002). There has been literature studying factor models with the idea

of functional data. For example, Hays et al. (2012) proposes a functional DFM, where the
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co-movements are specified as latent, continuous, nonrandom functions, and the individual-

specific effects are constant over the continuum time dimension but follow AR(p) processes

over the cross-sectional dimension that in their case is also indexed by time; Jungbacker et

al. (2014) impose smoothness on the individual-specific effects applying cubic spline func-

tions; Kokoszka et al. (2014) and Kowal et al. (2017a) model the processes of observations

and the latent co-movements as continuous functions over time; Kowal et al. (2017b) model

the processes of observations as a functional autoregression with Gaussian innovations, and

design a nonparametric factor model for the dynamic innovation process.

In the current chapter, we propose a generalized functional DFM (GFDFM). Specifi-

cally, in the spirit of FDA, we view the observable xit as the “snapshot” of the continuous-

time underlying process i at time t, denoted by xi(t)’s, and we motivate the GFDFM

as xi(t) =
∑K

k=1

∫ t
0
λik(t, s)fk(s)ds + εi(t). The function fk(t) represents the k-th factor,

and the function λik(t, s) represents the loading for factor k and individual i — the two

time dimensions t and s in the loading function λik(t, s) capture the current and the past

effects of the k-th factor on xi(t), respectively. Such a specification generalize the conven-

tional factor models in several aspects. First, the processes are modeled as functional data

for the subsequent continuous-time analysis. Meanwhile, from the perspective of DFM, a

continuous, and thus infinite-order lag effect is captured by the integration over s; from

the perspective of accommodating loading instability, time-varying loading is allowed by

including the concurrent time dimension t in the loading functions.

A major contribution of this chapter is that, to our best knowledge, we are the first ones

who propose a functional DFM to take account for two-dimensional parameter instability in

factor loadings — in previous literature, the DFMs with continuous time-varying loadings

that only capture the current effect of the factors (e.g., Su and Wang, 2017) can be viewed

as a “concurrent” version of the GFDFM. More specifically, when the past effects of factors

are all zero, the loadings reduce to one-dimensional functions, and the GFDFM can be re-

written into a concurrent form: xi(t) =
∑K

k=1 λik(t)fk(t)+εi(t). Conversely, when the past

effects of the factors are not all zero, the GFDFM can capture the effects of the factors

on the observed processes, while the concurrent form is not able to do so. Therefore, the

GFDFM possesses a time varying property in a more general form.

Furthermore, we provide derivations of the estimators as well as proofs of consistency

and normality. There has been literature on generalizing time-invariant coefficients to time-
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varying ones in regression analysis (e.g., Hastie and Tibshirani, 1993; Hall and Horowitz,

2007), and the effects of such generalization on the convergence rates of the estimators has

also been studied (e.g., Hall and Horowitz, 2007). In the current chapter, we demonstrate

that involving the two-dimensional time-varying loadings complicates the estimators and

the processes of their convergence, so that the asymptotic normality of the fitted observ-

ables can no longer be approached at the standard rate of min
{√

N,
√
T
}

as shown in

literature (e.g., Bai and Ng, 2002) but with a lower speed. We also propose a heuristic

bootstrap test in empirical studies to justify the application of the GFDFM by testing the

significance of the past-effect-dimension in loadings. Moreover, there has not been a large

literature in economics applying FDA (e.g., Chen et al., 2018); hence, this chapter also

contributes to the literature by motivating and developing FDA in the study of economics.

2.2 GFDFM Estimators

Recall the GFDFM defined above; we are specifically interested in the following model:

xi(t) =
K∑
k=1

∫ t

0
λik(t, s)fk(s)ds+ εi(t); i = 1, ..., n, t ∈ [0, 1] , (2.1)

where λik(·, ·)’s are non-stochastic loadings, and fk(·)’s are stochastic common factors.

Let n denote the number of cross sectional series and K the number of factors. For

i = 1, ..., n and k = 1, ..., K, fk(·) represents the k-th factor, λik(·, ·) represents the loading

for replication i and factor fk(·), and xi(·) is the underlying process, from which the data

xit’s are drawn at discrete time points.

To analyze the model in Equation (2.1), if either λik(·, ·)’s or fk(·)’s have observable

realizations, the others can be estimated by solving least squares problems. However, as

in conventional factor models, both λik(·, ·)’s and fk(·)’s are latent; thus, extra conditions

are required to make the model identifiable. In the current chapter, we first estimate the

underlying processes xi(·)’s and denote the functional estimator as x̃i(·)’s, then we esti-

mate the co-movement of xi(·)’s by implementing functional principal component analysis

(FPCA) on x̃i(·)’s and estimate individual-specific time-varying effects of the co-movement

on xi(·)’s using functional linear regression. In order to obtain the functional estimators of
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xi(t)’s, fk(t)’s and λik(t, s)’s, we express these underlying processes using basis expansions:

xi(t) =
∞∑
h=1

ci,hβh(t) ≈
H∑
h=1

ci,hβh(t) =: x̌i(t), (2.2)

fk(t) =
∞∑
h=1

ak,hαh(t) ≈
H∑
h=1

ak,hαh(t) =: f̌k(t), (2.3)

λik(t, s) =

∞∑
p=1

∞∑
q=1

bi,k,p,qθq(t)ψp(s) ≈
P∑
p=1

Q∑
q=1

bi,k,p,qθq(t)ψp(s) =: λ̌ik(t, s), (2.4)

where ci,h’s, ak,h’s and bi,k,p,q’s denote the expansion coefficients, βh(·)’s, αh(·)’s, ψp(·)’s and

θq(·)’s denote the expansion bases, and H,P,Q ∈ N denote the numbers of basis functions.

As H, P and Q increase to infinity, the partial sums in (2.2) - (2.4) converge to xi(t), fk(t)

and λik(t, s), respectively, for all s, t; in other words, one can approximate xi(t), fk(t) and

λik(t, s) arbitrarily closely by selecting proper H, P and Q.

To explain the estimation procedure, we first re-write the model into a vector form:

xi(t) =

∫ t

0
λTi (t, s)f(s)ds+ εi(t) ∀i, or x(t) =

∫ t

0
Λ(t, s)f(s)ds+ ε(t); t ∈ [0, 1] , (2.5)

where the superscript T represents matrix transpose, and for s, t ∈ [0, 1],

x(t) =


x1(t)

...

xn(t)


n×1

,λi(t, s) =


λi1(t, s)

...

λiK(t, s)


K×1

,Λ(t, s) =


λT1 (t, s)

...

λTn (t, s)


n×K

,

f(t) =


f1(t)

...

fK(t)


K×1

, ε(t) =


ε1(t)

...

εn(t)


n×1

.

According to expressions (2.2) - (2.4), we have λi(t, s) ≈ ΨT (s)ΘT (t)bi and Λ(t, s) ≈
BΘ(t)Ψ(s); the notations bi, B, Θ and Ψ are defined in Appendix B. Therefore, we can

define λ∗i (t) := ΘT (t)bi, Λ∗(t) := BΘ(t) and f ∗(t) :=
∫ t

0
Ψ(s)f(s)ds, such that Equation

(2.5) can be approximated as follow:

xi(t) ≈ λ∗Ti (t)f∗(t) + εi(t) ∀i, or x(t) ≈ Λ∗(t)f∗(t) + ε(t), t ∈ [0, 1] . (2.6)
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Since we first estimate functional data from the observations and then proceed to the

eigenanalysis and regression using the fitted functional data, our estimation procedure and

results are specifically in terms of the functional data methods we employ. In the current

chapter, we use the functional estimators achieved by order-four B-spline bases defined on

[0, 1], and the second order derivatives of the fitting functions are adopted as the roughness

penalty, which leads to the following penalized sum of squares criterion:

m({ci,h}i,h ; γx, H) :=
1

n

n∑
i=1

 1

J

J∑
j=1

{
xitj −

H∑
h=1

ci,hβh(tj)

}2

+ γx

∫ 1

0

{
H∑
h=1

ci,hβ
′′
h(t)

}2

dt

 ,
(2.7)

where J denotes the number of observation points, and {tj}Jj=1 denotes the set of time

indices normalized to [0, 1] interval, such that t1 = 0 and tJ = 1. As shown in Equation

(2.7), this estimation requires two parameters to be determined first — the number of

the basis functions H, as well as the smoothing or tuning parameter γx. The smoothing

parameter γx balances the trade-off between the minimization of bias and variance in the

fitting functions. The larger the γx is, the more penalty is put on roughness, and the

smoother the fitting functions becomes while the larger the bias is; on the other hand, the

smaller the γx is, the less penalty is put on roughness, and the more closely the fitting

functions can follow the data points while the larger the variance is. In this chapter, we

use the standard leave-one-out cross-validation (CV) method to select the number of basis

functions and the smoothing parameters.

The basic idea of using the CV method for parameter selection is to find the pair

of parameters (H, γx) that jointly optimizes the out-of-sample performance of the fitting

functions; i.e., the pair of (H, γx) that jointly minimizes a CV criterion. First, we define

the estimators for the left out observations xit’s as

x̃
(−i)
i,H,γx

(t) :=

{
H∑
h=1

c̃
(−i)
i,h,H,γx

βh(t)

}
, ∀i, (2.8)

where the coefficients
{
c̃

(−i)
i,h,H,γx

}
i,h

are obtained based on the parameters (H, γx), omitting

the ith observation. The CV criterion can then be defined as a sum of squares

CV (H, γx) := J−1
J∑
j=1

[
n−1

n∑
i=1

{
xi,tj − x̃

(−i)
i,H,γx

(tj)
}2
]
, (2.9)
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and the optimal H and γx, denote (H∗, γ∗x), can be estimated as

(H∗, γ∗x) := argmin
(H,γx)

CV (H, γx) . (2.10)

with which we can obtain the estimated coefficients
{
c̃i,h,H∗,γ∗

x,H∗

}
i,h

by solving the first

order condition of Equation (2.7), and it follows that

x̃i(t) :=

{
H∑
h=1

c̃i,h,H∗,γ∗
x,H∗

βh(t)

}
. (2.11)

Once we have the fitted functional data, we can now move on to the estimation of the

functional factors and loadings.

Note that we can estimate the co-movement of xi(·)’s using the eigenfunction(s) of the

sample covariance function ṽn(s, t), which is defined as

ṽn(s, t) := n−1
n∑
i=1

x̃i(s)x̃i(t). (2.12)

Applying FPCA on ṽn(s, t), and let ρ̂ be a K-by-K diagonal matrix of the largest K

eigenvalues in descending order and f̂ ∗(·) the K corresponding eigenfunctions, we then

have (Ramsay, 2005): ∫ 1

0
f̂∗(s)ṽn(s, t)ds = ρ̂f̂∗(t), (2.13)

where f̂ ∗(·) captures the co-movement of the processes xi(·)’s. However, f̂ ∗(·) does not

directly correspond to the factor f(·) but to f ∗(·). Here we define the estimator for f(·),
denoted f̂(·), as

f̂(t) :=
∂f̂∗(t)

∂t
. (2.14)

Once we have f̂(·), the expansion coefficients bi’s (or B), and thus the loadings, can

then be estimated by regressing x̃i(t) on Θ(t)
∫ t

0
Ψ(s)f̂(s)ds for each i, which leads to the

penalized least squares estimators

b̂i = R̂−1
λ

∫ 1

0
Ω̂T
λ (t)x̃i(t)dt, λ̂

∗
i (t) = ΘT (t)b̂i, and λ̂i(t, s) = ΨT (s)ΘT (t)b̂i,
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where

Ω̂λ(t) :=

∫ t

0
f̂T (s)ΨT (s)dsΘT (t) and R̂λ :=

∫ 1

0

{
Ω̂T
λ (t)Ω̂λ(t)

}
dt+ γλ

∫ 1

0
Θ′′(t)Θ′′T (t)dt.

Hence,

x̂i(t) = b̂Ti Θ(t)

∫ t

0
Ψ(s)f̂(s)ds.

2.3 Large Sample Theories

Now we establish the large sample properties of our functional estimators. We provide

theorems to show that our estimators are consistent and asymptotically normal. How-

ever, since the true factors and loadings are not completely identifiable, their estimators

can only recover some transformed underlying processes, as opposed to those underlying

processes themselves. Hence, to investigate the properties of the estimators, instead of

comparing the estimators with the underlying processes directly, we compare them after

some transformation.

It is important to note that we have been taking the number of factors K as given in

our estimation, but in practice K is unknown and needs to be estimated. The estimation

of factor numbers has been studied in literature (e.g., Bai and Ng, 2002, 2007; Hallin and

Lǐska, 2007), and one option is to utilize the idea of Bai and Ng (2002) information criteria,

which can consistently estimate the number of static factors, say KS, when KS is finite.

Since a DFM with a finite factor number KD and a finite lag order Kl can be written

as a static factor model with the factor number KS = KD (Kl + 1) by treating each lag

as a separate factor (e.g., Bai and Ng, 2007, 2008), the Bai and Ng (2002) information

criteria can also be used to estimated the number KS in DFMs. Our model, as explained

previously, contains finitely many common factors but infinite-order lags, and we can adopt

the idea of Bai and Ng (2002) information criteria with some adjustment to our setting,

such as

K̂ := argmin
K0>0

PC(K0),

PC(K0) = min
λK

0
i

1

n

n∑
i=1

∫ 1

0

[
x̃i(t)−

∫ t

0
λK

0T

i (t, s)f̂K
0
(s)

]2

dt+K0g(N, J), (2.15)
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where K̂ represents the estimated K, λK
0

i (t, s) and f̂K
0
(s) indicate the loadings and the

factors when the number of factors is K0, and the function g(N, J) needs to satisfy some

proper order conditions. However, in the current paper, the large sample properties with

K̂ is not covered; instead, we will focus on those with K.

Before getting to the asymptotic theorems, we first make the following assumptions.

Assumption 2.3.1 n, J →∞, n ∈ o
(
J8/9

)
; H,Q � J1/9; γx ∈ O

(
J−2/3

)
, γλ → 0.

Assumption 2.3.1 sets the divergence rates of n and J as well as the orders of parameters

H, Q, γx and γλ in terms of n and J . Essentially, under proper regularization conditions,

the estimation errors of f̂(·), λ̂i(·, ·) and x̂i(·) vanish as n, J,H,Q → ∞. In the first step

of estimation when we fit the functional data, the optimal convergence rate of x̃i(t)’s with

given basis functions and roughness penalty can be achieved under properly selected H and

γx (e.g., Claeskens et al., 2009). Since we use order-four B-spline bases defined on [0, 1] time

interval and the roughness penalties of order-two derivatives, H � J1/9 and γx ∈ O
(
J−2/3

)
imply an optimal convergence rate as J →∞ (Claeskens et al., 2009, Theorem 1). Based

on the fitted functional data, the estimation of the co-movements produces an estimation

error of orderOp
(
n−1/2

)
during the process of FPCA, on top of which the estimated loading

has a convergence rate determined by Q and γλ jointly — as γλ → 0 and Q → ∞, λ̂∗i (t)

converges to a “rotated” λ∗i (t) for all t, such that λ̂∗Ti (t)
∫ t

0
Ψ(s)f̂(s)ds (or x̂i(t)) converges

to λ∗Ti (t)f ∗(t). Therefore, among the conditions in Assumption 2.3.1, n, J,H,Q → ∞,

H,Q ∈ O (J) and γx, γλ → 0 suffice the consistency.

Normality, however, requires stronger restrictions on the orders of parameters. We

consider the case where the number of time observations grows faster than the number of

replications. The leading term of the error for the estimated co-movements will then be the

terms whose speeds of vanishing depend on the divergence rate of n, and for that reason,

we use
√
n as the inflator for the derivation of normality. More specifically, n ∈ o

(
J8/9

)
is

to make sure that the functional estimators of the underlying processes are converging to

the true underlying processes fast enough, under the optimal convergence rate, so that the

estimation error is not inflated by
√
n. On the other hand, the error of

∫ t
0
λ̂Ti (t, s)f̂(s)ds

is of order Op
(
n−1/2

)
under the conditions given in Assumption 2.3.1; however, inflating

this estimation error with
√
n does not guarantee normality but only a Op (1), due to the

interaction among all the terms of order Op
(
n−1/2

)
. Hence, one way to obtain normality
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is by replacing the integrals in the estimator
∫ t

0
λ̂Ti (t, s)f̂(s)ds with Riemann sums using a

parameter of order o (n), and inflating the error terms with o (
√
n), so that the Op

(
n−1/2

)
’s

will not be inflated. The details will be shown in the proofs.

Assumption 2.3.2 For all i, there exists a polynomial approximation to the continuous

underlying processes xi(t), say x̌i(t), such that x̌i(t) is four times continuously differen-

tiable.

Assumption 2.3.2 guarantees that the underlying function xi(t) has an approximation

that is smooth up to a certain order, so that we can get a consistent functional estimator

with a desired optimal convergence rate (Claeskens et al., 2009, Theorem 1).

Assumption 2.3.3 µf (t) and σf (t) are two absolute continuous functions, such that

E
{
fT (t)

}
= µf (t), and Var

{
fT (t)

}
= σf (t).

Assumption 2.3.3 is saying that the factor does not have to have constant mean or

variance over time, but only need to have the mean and variance functions that are absolute

continuous, so that we can obtain an upper bound of the convergence rate while performing

some integration transformation. In other words, the factors do not need to be stationary.

Assumption 2.3.4

a. There exists C ∈ R, such that
∫ t

0
λ2
ik(t, s)ds < C and

∫ s
0
λ2
ik(t, s)dt < C, for all i and k;

b. n−1ΛT (t, s)Λ(t′, s′) = ΣΛ,1(t, s, t′, s′) + O
(
n−1/2

)
and n−1Λ∗T (t)Λ∗(s) = ΣΛ,2(t, s) +

O
(
n−1/2

)
for PK × PK matrix functions ΣΛ,1(t, s, t′, s′) and ΣΛ,2(t, s), for P,K ∈ N.

Assumption 2.3.4 provides some boundedness constraints for the loadings.

Assumption 2.3.5

a. E {εi(t)} = 0, for all i and t;

b. maxs,t E
[
n−1

∥∥εT (s)ε(t)
∥∥2
]

= o(1);

c. maxs,t E
[
n−1

∥∥Λ∗T (s)ε(t)
∥∥2
]

= O (1);

d. n−1/2
∑n

i=1µiεi(t)
d−→ N (0,σ(t)) for some non-stochastic real valued K-vector µi ∈

RK, where 0 ∈ RK and σ(t) := limn→∞ n
−1
∑n

i=1

∑n
j=1µiE {εi(t)εj(t)}µTj < ∞ and

K ∈ N.
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Assumption 2.3.5 states the zero-mean and the weak dependence constraints on the

error term through moment conditions and weak convergence. This assumption allows for

weak dependence in the error term across individuals (as in part c) and over time (in part

b). Specifically, for part c, consider the case with K = 1 without loss of generality. Then

E
[
n−1

∥∥Λ∗T (s)ε(t)
∥∥2
]

= E

n−1

(
n∑
i=1

λ∗i (s)εi(t)

)2
 = E

n−1
n∑
i=1

n∑
j=1

λ∗i (s)εi(t)λ
∗
j (s)εj(t)

 ,
Since the loading is non-stochastic, it follows that

E

n−1
n∑
i=1

n∑
j=1

(λ∗i (s)εi(t))
(
λ∗j (s)εj(t)

) = n−1
n∑
i=1

n∑
j=1

λ∗i (s)λ
∗
j (s)E [εi(t)εj(t)] .

Therefore, when there is minimum cross sectional dependence, i.e., E [εi(t)εj(t)] = 0 for

i 6= j, we have maxs,t n
−1
∑n

i=1 λ
∗2
i (s)E [ε2

i (t)], implied by a finite variance of εi(t) and well-

behaved loading functions. The maximum cross sectional dependence allowed will be for

E [εi(t)εj(t)] for i 6= j small enough such that maxs,t n
−1
∑n

i=1

∑n
j=1 λ

∗
i (s)λ

∗
j(s)E [εi(t)εj(t)]

is still O(1) under well-behaved loading functions. Similarly for part b,

max
s,t

E
[
n−1

∥∥εT (s)ε(t)
∥∥2
]

= n−1
∑
i

∑
j

E [εi(s)εi(t)εj(s)εj(t)] = o(1),

which, together with the cross sectional dependence limited by part c, imposes the con-

straint on the correlation over time in εi(t). Part d is the continuous-time-indexed versions

of Assumptions A.2(i) in Su and Wang (2017) but in terms of our model setup. The term

µi in part d is defined in Lemma B.2 from Appendix B.

Assumption 2.3.6

a. f(t) and εi(t) are orthogonal;

b.
∫ t

0
λTi (t, s)f(s)ds and εi(·) are orthogonal;

c.
∫ t

0
λTi (t, s)f(s)ds is a strong mixing process over t, for all i.

Assumption 2.3.6.a and b guarantee that the signals in xi(·)’s can be properly separated

from the noise and that there will not be endogeneity problems when we perform the

functional linear regression to estimate the loadings. Assumption 2.3.6.c constrains the

serial dependence of the process
∫ t

0
λTi (t, s)f(s)ds, and it is useful for the application of

the CLT for strong mixing processes.
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2.3.1 Consistency

Now we present the theorems for consistency.

Theorem 2.3.1 Under Assumptions 2.3.1 to 2.3.6 and the true number of factors K,

there exists an invertible operator W (specified in Appendix B), such that as n, J → ∞,

the followings hold:

a.
∥∥∥f̂ ∗(t)− (Wf)(t)

∥∥∥ p−→ 0, for t ∈ [0, 1];

b.
∥∥∥∫ t0 λ̂Ti (t, s)f̂(s)ds−

∫ t
0
λTi (t, s)f(s)ds

∥∥∥ p−→ 0, ∀i = 1, ..., n, t ∈ [0, 1].

Recall that there are mainly two components in the estimation procedure — FPCA for

identifying co-movements and functional linear regression for predicting the data series.

Essentially, in the process of FPCA, we expect to see the co-movements can be identified,

in that the estimated functional principal components converge to the transformed true

factors under some invertible operator; also, in the process of functional linear regression,

we expect to see the estimated factors generated from the functional principal components

can contribute in the prediction of xi(·) as if the true common factors were observed, and

the resulting estimator x̂i(·) performs reasonably well.

Theorem 2.3.1.a indicates that under the necessary assumptions, the estimated func-

tional principal components f̂ ∗(t) converges to the transformed true factors (Wf)(t) un-

der some invertible operator W . Theorem 2.3.1.b just shows that the underlying process∫ t
0
λTi (t, s)f(s)ds can be consistently estimated by the estimators λ̂Ti (t, s) and f̂(t), where

the factors f̂(t) are generated from the principal components f̂ ∗(t) as shown in (2.14), and

the loadings λ̂Ti (t, s) are obtained from the functional linear regression.

2.3.2 Asymptotic normality

We also have normality for the estimators.

Theorem 2.3.2 Under Assumptions 2.3.1 to 2.3.6 and the true number of factors K,

there exists an invertible operator W , such that as n, J, S →∞ and S = o
(
min

{
n, γ−2

λ

})
,

the followings hold:
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a.
√
n
{
f̂ ∗(t)− (Wf)(t)

}
d−→ N (0,ρ−1Σf (t)ρ

−1);

b.
√
S
{∫ t

0
λ̂Ti (t, s)f̂(s)ds−

∫ t
0
λTi (t, s)f(s)ds

}
d−→ N

(
0,Ωλ(t)R

−1
λ Σλi,fR

−T
λ ΩT

λ (t)
)
.

(W , Σf (t), Σλi,f , Ωλ(t) and Rλ are specified in Appendix B.)

For Theorem 2.3.2.a, recall that f̂ ∗(t) are the functional principal components derived

based on the estimates x̃i(t)’s, which include both the signal
∫ t

0
λTi (t, s)f(s)ds and the

idiosyncratic error εi(t)’s, while there exists some invertible operator W such that the

transformed true factors (Wf)(t) can be defined as the functional principal components

based on the signal
∫ t

0
λTi (t, s)f(s)ds only. After subtracting (Wf)(t) from f̂ ∗(t), it is the

part consisting of interaction with the errors εi(t)’s that remains, which is also the part

that leads to the normality given Assumption 2.3.5.c.

As for Theorem 2.3.2.b, the statement is for each i, and the asymptotic properties are

achieved by enlarging the sample size in the continuum dimension. However, the estimated

factor f̂(t) carries some terms from FPCA with the convergence rates Op
(
n−1/2

)
, and as

explained previously, due to the interaction among these Op
(
n−1/2

)
terms, inflating them

by
√
n does not guarantee normality. Instead, we approximate the integrals of the estimator∫ t

0
λ̂Ti (t, s)f̂(s)ds by Riemann sums with S terms, where S = o (n), and we use the inflator√
S to obtain normality. The normality is then driven by the errors εi(t)’s as well as the

interaction between the true factors and the errors given their low correlation along the

time dimension under the divergence of S, which is slow enough, so that other sources of

randomness will vanish before being caught.

Here we briefly justify our theorems in words, and the mathematical proofs of the theo-

rems can be found in Appendix B. There are four main statements to prove — consistency

and asymptotic normality for f̂ ∗(t) as well as
∫ t

0
λ̂Ti (t, s)f̂(s)ds. The method of adding

and subtracting terms is used to decompose the estimation errors f̂ ∗(t) − (Wf)(t) and∫ t
0
λ̂Ti (t, s)f̂(s)ds −

∫ t
0
λTi (t, s)f(s)ds. With the decompositions, we show that the main

sources of errors generally lie in four types: the residuals from fitting the functional data,

the errors of Riemann sum approximations to integrals, the remainders from the conver-

gence of eigenfunctions, and the interaction involving the idiosyncratic errors. We obtain

the orders of the first three sources of errors from literature, and we derive the limiting

behavior of the last source of error based on our assumptions. In the proofs for consis-

tency, we demonstrate that these sources of errors are op(1) or o(1), while in the proofs for
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asymptotic normality, we further investigate their convergence rates.

2.4 Simulation Analysis

We now examine the performance of our functional estimators through simulations.

First, we generate observables xi,tj ’s. Generating xi,tj ’s requires the underlying pro-

cesses of λik(t, s)’s, fk(t)’s and εi(t)’s for all i and k, and in the current simulation, we set

K = 1. Recall that factor loadings, λik(t, s)’s, are non-random functions; in the current

simulation, we define λik(t, s)’s to be local polynomials of order five on both dimensions.

Specifically, we generate the coefficient matrix B by filling the entries with random draws

from N(1, 1); also, we define the basis for the first dimension as an order-five B-spline con-

taining 20 basis functions, and we define the basis for the second dimension as an order-five

B-spline containing 10 basis functions. For the stochastic processes fk(t)’s and εi(t)’s, we

set them as continuous-time AR(1) processes, which can be written in the following differ-

ential form,

dz(t) = −κzz(t)dt+ σzdB(t), (2.16)

where z(t) is a general representation for fk(t)’s and εi(t)’s, κz and σz are the parameters

for the corresponding process, and B(t) is a standard Brownian motion, which follows that

dB(t) denotes the increments of the standard Brownian motion. In the current simulation,

we set σf , σε = 1 and set κε = 1/dt for the corresponding discretized model so that

εi(t) = dB(t). After generating
∫ t

0
λTi (t, s)f(s)ds, we adjust the size of εi(t) relative to∫ t

0
λTi (t, s)f(s)ds, so that comparing with the noise, the signal is not too weak to be

identified. To reduce the notation load, we still use εi(t) to represent the rescaled error,

and in the current simulation, we rescale the error term such that its standard deviation

is 10% as much as the standard deviation of the signal
∫ t

0
λTi (t, s)f(s)ds. Finally, the

observations xi,tj ’s can be generated as follow:

xi,tj = xi(tj) =

∫ tj

0
λTi (tj , s)f(s)ds+ εi(tj); i = 1, ..., n, j = 1, ..., J. (2.17)

We simulate 199 data sets with sample sizes J × n. The loading functions, as well as the

parameters of factor functions are fixed for all simulations.
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Once the data is obtained, we derive the estimators f̂(·), λ̂i(·, ·) and x̂i(·) following the

procedure introduced above, and we summarize the estimation results by the following two

statistics:

R2
f =

E
[∫ 1

0

{
f̂∗(t)− (Wf)(t)

}T {
f̂∗(t)− (Wf)(t)

}
dt

]
E
{∫ 1

0 f̂
∗T (t)f̂∗(t)dt

} , (2.18)

R2
x =

E
[∫ 1

0

{∫ t
0 Λ̂(t, s)f̂(s)ds−

∫ t
0 Λ(t, s)f(s)ds

}T {∫ t
0 Λ̂(t, s)f̂(s)ds−

∫ t
0 Λ(t, s)f(s)ds

}
dt

]
E
[∫ 1

0

{∫ t
0 Λ̂(t, s)f̂(s)ds

}T {∫ t
0 Λ̂(t, s)f̂(s)ds

}T
dt

] .

(2.19)

The two statistics illustrate the results in Theorem 2.3.1 by measuring the relative average

sizes of the estimation errors and the estimators for f̂ ∗(t) and
∫ t

0
Λ̂(t, s)f̂(s)ds, respectively.

For example, by Theorem 2.3.1.a, E
[∫ 1

0

{
f̂ ∗(t)− (Wf)(t)

}T {
f̂ ∗(t)− (Wf)(t)

}
dt

]
con-

verges to zero, and to observe such convergence, we use the same measure for the size of

f̂ ∗(t) as a reference, i.e. E
{∫ 1

0
f̂ ∗T (t)f̂ ∗(t)dt

}
; hence, we expect the size of the errors

relative to the size of the estimators, R2
f , vanishes as n, J →∞. The same idea applies to

the construction of R2
x.

Specifically, we generate the data using a discretized version of Equation (2.16) with

dt ≈ 1/501, and we check four different sample sizes and three different κf values. The

results of the two statistics are shown in Table 2.1. We can see that as the sample size

increases, both R2
f and R2

x are getting closer to zero in general. Another interesting result

is that as κf gets smaller, which indicates the lag effects get larger, we can also see a

decreasing trend in both R2
f and R2

x. One explanation is that under the current DGP,

the errors have zero lag effects, so stronger lag effects in the underlying signals can help

to distinguish the signals from the errors, and thus, makes the estimation more accurate.

Figures 2.1 and 2.2 show some examples of the comparison between the estimates and the

transformed true processes when κf = 400, and we can see that the fitting is getting more

accurate as the sample size increases.

To check the normality, we perform a K-S test, comparing f̂ ∗(t) − (Wf)(t) and∫ t
0
λ̂Ti (t, s)f̂(s)ds −

∫ t
0
λTi (t, s)f(s)ds respectively with the normal distributions of their
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Table 2.1: Consistency

R2
f R2

x

J n κf = 400 κf = 250 κf = 100 κf = 400 κf = 250 κf = 100

25 20 0.0517 0.0446 0.0239 0.0348 0.0314 0.0238

51 30 0.0227 0.0163 0.0065 0.0194 0.0168 0.0127

101 55 0.0095 0.0052 0.0021 0.0138 0.0119 0.0100

201 100 0.0034 0.0015 0.0007 0.0105 0.0095 0.0082

Note: J indicates the number of time observations, n the number of individuals, κf the coefficient

of the continuous-time AR(1) process, and R2’s the measurements of the goodness of fit for fk(t)

and xi(t).

Figure 2.1 Functional Estimates VS. True Processes, J = 25, n = 20, κf = 400, where

J indicates the number of time observations, n the number of individuals and κf the

coefficient of the continuous-time AR(1) process.

empirical means and variances for all t. Table 2.2 presents the percentages of “fail to re-

ject normality”, for the four different sample sizes and the three different κf values. The

results show that in all the functional estimators, for the majority of time, we fail to reject

normality. Figures 2.3 and 2.4 present the p-values of the K-S test over time comparing

with the 5% significance level, for some sample estimators. Again, for the majority of time,

we fail to reject normality.
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Figure 2.2 Functional Estimates VS. True Processes, J = 201, n = 100, κf = 400, where

J indicates the number of time observations, n the number of individuals and κf the

coefficient of the continuous-time AR(1) process.

Table 2.2: Normality

KSf KSX

J n κf = 400 κf = 250 κf = 100 κf = 400 κf = 250 κf = 100

25 20 0.5768 0.5010 0.5569 0.9944 0.9937 0.9933

51 30 0.7844 0.8004 0.9321 0.9976 0.9979 0.9927

101 55 0.8503 0.9222 0.9800 0.9956 0.9948 0.9879

201 100 0.9042 0.9441 0.9780 0.9960 0.9921 0.9847

Note: J indicates the number of time observations, n the number of individuals, κf the coefficient

of the continuous-time AR(1) process, KSf and KSX the average p-values of the K-S test over

time for fk(t) and xi(t).

2.5 Empirical Analysis

In the current section, we apply our model to real data. Our goal is to present the appli-

cation of our method through empirical analysis; meanwhile, we adopt hypothesis tests to

justify the choice of the GFDFM over the factor models with constant or one-dimensional-

time-varying loadings.
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Figure 2.3 Functional Estimates VS. True Processes, J = 25, n = 20, κf = 400, where

J indicates the number of time observations, n the number of individuals and κf the

coefficient of the continuous-time AR(1) process.

Figure 2.4 Functional Estimates VS. True Processes, J = 201, n = 100, κf = 400, where

J indicates the number of time observations, n the number of individuals and κf the

coefficient of the continuous-time AR(1) process.

2.5.1 Macroeconomic data (Stock and Watson, 2009)

The study by Stock and Watson (2009) investigates split-sample instability with a single

break. In the current empirical analysis, we use the data set from Stock and Watson

(2009), which includes 144 quarterly macroeconomics series from 1959:I to 2006:IV, total

192 observations for each series. The data are publicly available from Publications and

Replication Files at http://www.princeton.edu/~mwatson/publi.html. In Stock and

Watson’s study, they group the series into 13 categories and transform the data by taking

logarithm or differencing — in general, first differences of logarithms (growth rates) are

used for real quantity variables, first differences are used for nominal interest rates, and

second differences of logarithms (changes in rates of inflation) for price series. Since up to

the second differences are taken, a balanced panel covering from 1959:III to 2006:IV for
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144 series is used for analysis, and 109 out of 144 disaggregated series are used to compute

principle components. They compared the performance of three different methods for

four-step ahead in-sample forecasting with a single break in 1984:I — (a) a “full-full”

model (referred to as “FF”, hereafter) with full-sample estimates of the factors and full-

sample forecasting regression (b) a “full-split” model (“FS”) with full-sample estimates

of the factors and split-sample forecasting regression, and (c) a “split-split” model (“SS”)

with split-sample estimates of the factors and split-sample forecasting regression. The

comparison is presented (in Table 5 of their paper) by relative mean squared forecasting

errors, and the results show that the “FS” method outperforms the “SS” method, and

“FS” also produces improvements relative to “FF”, especially for the post-84 sample.

Stock and Watson (2009) estimate the number of factors using the Bai and Ng (2002)

information criteria, and eventually keep three to five factors in their analysis. Though our

functional approach works with any given number of factors, in this empirical analysis, we

impose K = 1 to obtain the estimated functional factor based on the 109 selected series by

Stock and Watson (2009), and then we provide four-step ahead forecasts for all 144 series

using the forecasting regression (8) from their paper.

There are two main components in our empirical analysis. First, we apply the hypoth-

esis test on the second dimension of loadings to justify our application of our GFDFM,

by showing that the null hypothesis of “the cross-individual variance function is a zero

function” is rejected at 5% significance level. Second, we compute the ratios of the root

mean squared forecasting errors (RMSFEs) under GFDFM with K = 1 to the RMSFEs

obtained by (Stock and Watson, 2009) with three to five factors, to show that our func-

tional approach has better performance in terms of RMSFEs. Note that Stock and Watson

(2009) use an in-sample forecast, and in order for our results to be comparable with theirs,

we follow their method for predictive assessment.

2.5.2 Hypothesis test

The general functional form allows more flexibility in our model by using a second di-

mension of loading functions to capture the individualized lag effects of factors as well as

the dynamics of the lag effects. Thus, the utilization of the general functional form can

be justified by the following two reasons: (1) for at least some of the individuals in the
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sample, the second dimension of the loading functions shows non-zero pattern, and (2) the

second dimension of the loading functions shows individual-specific dynamics across all the

replications. Essentially, if (2) is true, then it implies (1). We justify point (2) by check-

ing whether the second dimension of the loading functions has non-zero cross-individual

variance. In the current chapter, we use bootstrap tests on the null hypothesis that the

cross-individual variance function is a zero function, and we adopt an L1-norm for the

construction of the test statistics.

Specifically, we define the variance function for the second dimension of the loadings,

at a given concurrent dimension time t, as Vn,t(s) = n−1
∑n

i=1

{
λi(t, s)− λ̄n(t, s)

}2
, where

λ̄n(t, s) = n−1
∑n

i=1 λi(t, s). Then we construct the test statistic as

Wn,t :=

∫ t

0
|Vn,t(s)| ds, (2.20)

which is the size of the variance function Vn,t(s) on s ∈ [0, t] for a given t and n. For

the bootstrap test statistic, let b = 1, ..., B, where B = 1000, indicating the number of

size-n bootstrap samples. We define λ̄∗b,n(t, s) = n−1
∑n

i=1 λ
∗
b,i(t, s), where λ∗b,i(t, s) denotes

the ith replication of the bth re-sample from {λi(t, s)}ni=1 with replacement. The bootstrap

statistic is then constructed as

W ∗b,n,t :=

∫ t

0

∣∣V ∗b,n,t(s)− Vn,t(s)∣∣ ds, (2.21)

where V ∗b,n,t(s) := n−1
∑n

i=1

{
λ∗b,i(t, s)− λ̄∗b,n(t, s)

}2
.

Intuitively, under the null, Vn,t(s) in Equation (2.21) is a zero function; therefore, Wn,t

and W ∗
b,n,t share the same distribution, which implies that our test has correct size; under

the alternative, the W ∗
b,n,t’s capture the size of centered variance functions while the Wn,t’s

capture the size of uncentered variance functions, which generally implies the Wn,t’s are

greater than the W ∗
b,n,t’s, and thus, our test has power. We defer more detailed verification

for the properties of the test statistics to future research.

We select seven time points from 1959:III — 2006:IV to present the test statistics, and

the results are summarized in Table 2.3. Basically, the null of zero-variance function is

rejected at all seven time points under 95% confidence interval and rejected at six out of

the seven time points under 99% confidence interval, implying that the second dimension

of the loadings does pick up individual-specific lag effects of factors, and for at least some

individuals the lag effect is non-zero, which justify the application of the GFDFM.
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Table 2.3: Hypothesis Test, Macroeconomic Data

61:IV 69:II 76:IV 84:II 91:IV 99:II 06:IV

Wn,t 0.48 3.68 80.47 392.99 2322.22 6977.38 15334.05

95% W ∗n,t 0.22 2.18 70.17 169.41 1127.81 3848.30 8710.40

99% W ∗n,t 0.28 2.90 105.44 195.95 1403.75 4858.23 10957.59

Note: the table presents the sample statistics, Wn,t, as well as the 95% and 99% bootstrap

criteria (95% W ∗n,t and 99% W ∗n,t).

2.5.3 Comparison of the forecasting results

For the comparisons of the four-step ahead forecasting, we split our estimated functions

into ”pre-84” and ”post-84” at the time of ”1984:I”, and we take the ratios of the RMSFEs

from GFDFM to the three RMSFEs from Stock and Watson’s estimates for each of the

144 series. The complete list of ratios for all 144 series are shown in Table 2.4, and Table

2.5 provides a summary in terms of the quantiles, the means as well as the percentages of

RMSFEs smaller than one. For example, for the comparison between our GFDFM and FF

with the pre-84 sample, the ratios of the RMSFEs range from 0.3742 to 1.9885 over all 144

series with the mean 0.7355 and the median 0.6971, and for about 83.33% of the series,

GFDFM produces a better forecast than FF in terms of RMSFE. From Table 2.5 we can

see that on average, in terms of RMSFE, GFDFM outperforms the three methods from

Stock and Watson (2009) for both the pre-84 and the post-84 periods. The corresponding

histograms of the ratios over all 144 series in Figures 2.5 - Figure 2.7 also illustrate the

point.

Table 2.4: Relative Root Mean Square Forecasting Errors, Macroeconomic Data

Pre-84 Sample Post-84 Sample

Series GFDFM-FF GFDFM-FS GFDFM-SS GFDFM-FF GFDFM-FS GFDFM-SS

RGDP 0.65 0.67 0.68 0.54 0.65 0.60

Cons 0.55 0.57 0.57 0.45 0.54 0.50

Cons-Dur 0.74 0.76 0.76 0.64 0.70 0.69

Cons-NonDur 0.63 0.67 0.63 0.48 0.55 0.52

Cons-Serv 0.43 0.45 0.45 0.54 0.73 0.64

GPDInv 0.90 0.95 0.94 0.77 0.87 0.84

FixedInv 0.62 0.66 0.66 0.36 0.43 0.42

NonResInv 0.53 0.56 0.56 0.41 0.47 0.47

NonResInv-Struct 0.50 0.53 0.53 0.65 0.73 0.72
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NonResInv-Bequip 0.59 0.64 0.63 0.36 0.42 0.42

Res.Inv 0.69 0.71 0.71 0.52 0.66 0.60

Exports 0.93 0.97 0.98 0.68 0.72 0.72

Imports 0.82 0.83 0.82 0.63 0.67 0.66

Gov 0.41 0.41 0.41 0.50 0.52 0.52

Gov Fed 0.40 0.40 0.40 0.54 0.57 0.58

Gov State/Loc 0.47 0.47 0.47 0.55 0.61 0.60

IP: total 0.71 0.74 0.74 0.48 0.55 0.54

IP: products 0.61 0.64 0.64 0.47 0.55 0.53

IP: final prod 0.60 0.62 0.62 0.49 0.57 0.55

IP: cons gds 0.76 0.78 0.77 0.54 0.72 0.67

IP: cons dble 0.84 0.85 0.85 0.69 0.74 0.72

iIP:cons nondble 0.59 0.63 0.60 0.56 0.78 0.71

IP:bus eqpt 0.58 0.62 0.61 0.45 0.49 0.49

IP: matls 0.82 0.85 0.86 0.54 0.62 0.62

IP: dble mats 0.83 0.87 0.86 0.50 0.59 0.58

IP:nondble mats 0.80 0.87 0.86 0.53 0.68 0.64

IP: mfg 0.74 0.76 0.77 0.48 0.54 0.53

IP: fuels 0.67 0.68 0.68 0.65 0.72 0.70

NAPM prodn 0.71 0.72 0.73 0.66 0.74 0.67

Capacity Util 0.48 0.50 0.50 0.39 0.45 0.43

Emp: total 0.58 0.61 0.63 0.34 0.43 0.40

Emp: gds prod 0.64 0.67 0.68 0.36 0.48 0.45

Emp: mining 0.47 0.49 0.49 0.50 0.55 0.54

Emp: const 0.52 0.54 0.55 0.36 0.43 0.41

Emp: mfg 0.62 0.67 0.68 0.37 0.52 0.50

Emp: dble gds 0.60 0.64 0.64 0.39 0.52 0.50

Emp: nondbles 0.67 0.78 0.76 0.35 0.48 0.46

Emp: services 0.42 0.45 0.46 0.34 0.41 0.38

Emp: TTU 0.48 0.54 0.54 0.33 0.42 0.38

Emp: wholesale 0.48 0.57 0.56 0.38 0.45 0.43

Emp: retail 0.48 0.54 0.54 0.30 0.40 0.37

Emp: FIRE 0.38 0.41 0.41 0.46 0.53 0.50

Emp: Govt 0.37 0.39 0.38 0.46 0.57 0.56

Help wanted indx 0.54 0.59 0.59 0.43 0.48 0.46

Help wanted/emp 0.58 0.59 0.59 0.38 0.45 0.44

Emp CPS total 0.58 0.63 0.63 0.47 0.59 0.50

Emp CPS nonag 0.57 0.63 0.63 0.51 0.63 0.54

Emp. Hours 0.64 0.69 0.70 0.33 0.40 0.38

Avg hrs 0.71 0.72 0.72 0.62 0.66 0.66

Overtime: mfg 0.81 0.84 0.84 0.71 0.75 0.73

U: all 0.70 0.71 0.71 0.43 0.51 0.46

U: mean duration 0.79 0.83 0.82 0.70 0.85 0.78

U < 5 wks 0.73 0.76 0.75 0.66 0.71 0.68

U 5-14 wks 0.75 0.76 0.76 0.53 0.61 0.55

U 15+ wks 0.61 0.63 0.63 0.46 0.57 0.52

U 15-26 wks 0.72 0.74 0.74 0.56 0.68 0.61

U 27+ wks 0.61 0.63 0.62 0.50 0.61 0.55

HStarts: Total 0.45 0.46 0.46 0.36 0.40 0.41

BuildPermits 0.44 0.44 0.45 0.30 0.34 0.34
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HStarts: NE 0.54 0.55 0.56 0.50 0.57 0.54

HStarts: MW 0.50 0.51 0.51 0.64 0.65 0.62

HStarts: South 0.47 0.48 0.49 0.46 0.53 0.52

HStarts: West 0.44 0.45 0.45 0.38 0.41 0.40

PMI 0.69 0.72 0.74 0.59 0.68 0.62

NAPM new ordrs 0.73 0.73 0.74 0.69 0.77 0.70

NAPM vendor del 0.64 0.65 0.67 0.48 0.65 0.59

NAPM Invent 0.72 0.78 0.83 0.39 0.60 0.55

Orders (ConsGoods) 0.79 0.84 0.86 0.56 0.68 0.66

Orders (NDCapGoods) 0.77 0.81 0.81 0.65 0.74 0.73

PGDP 1.03 1.05 1.06 1.08 1.35 1.27

PCED 0.88 0.89 0.90 1.02 1.23 1.17

CPI-ALL 0.97 0.99 0.99 1.02 1.21 1.20

PCED-Core 0.89 0.90 0.89 1.09 1.41 1.31

CPI-Core 0.80 0.81 0.80 0.98 1.33 1.28

PCED-DUR 1.04 1.06 1.04 0.91 1.14 1.05

PCED-DUR-MOTORVEH 1.20 1.21 1.20 1.11 1.22 1.19

PCED-DUR-HHEQUIP 0.96 1.00 0.96 1.11 1.44 1.34

PCED-DUR-OTH 0.92 0.93 0.93 1.38 1.63 1.45

PCED-NDUR 0.93 0.95 0.98 1.30 1.37 1.35

PCED-NDUR-FOOD 1.08 1.08 1.09 1.31 1.52 1.41

PCED-NDUR-CLTH 1.17 1.20 1.16 1.59 1.71 1.64

PCED-NDUR-ENERGY 1.05 1.15 1.15 1.31 1.31 1.36

PCED-NDUR-OTH 0.96 1.00 0.99 1.16 1.34 1.28

PCED-SERV 1.03 1.03 1.05 1.40 1.61 1.61

PCED-SERV-HOUS 1.05 1.07 1.08 1.17 1.24 1.22

PCED-SERV-HOUSOP 1.08 1.12 1.14 1.24 1.28 1.24

PCED-SERV-H0-ELGAS 1.04 1.25 1.24 0.92 0.96 0.95

PCED-SERV-HO-OTH 1.08 1.09 1.09 1.64 1.86 1.73

PCED-SERV-TRAN 0.95 1.26 1.22 0.54 0.64 0.64

PCED-SERV-MED 1.16 1.20 1.20 0.87 1.03 1.03

PCED-SERV-REC 1.20 1.19 1.21 1.26 1.35 1.30

PCED-SERV-OTH 0.97 0.99 0.99 1.25 1.43 1.57

PGPDI 1.15 1.18 1.14 0.83 1.13 1.07

PFI 1.16 1.20 1.16 0.84 1.13 1.07

PFI-NRES 0.89 0.93 0.90 0.84 1.10 1.06

PFI-NRES-STR Price Index 0.91 0.93 0.93 0.85 0.99 0.95

PFI-NRES-EQP 0.97 1.02 0.97 0.88 1.08 1.05

PFI-RES 0.80 0.80 0.81 0.95 1.45 1.44

PEXP 1.02 1.04 1.06 0.89 1.08 1.02

PIMP 0.81 0.83 0.85 1.19 1.31 1.30

PGOV 1.51 1.60 1.60 1.46 1.73 1.71

PGOV-FED 1.99 2.04 2.03 2.31 2.48 2.49

PGOV-SL 1.08 1.14 1.16 1.00 1.22 1.18

Com: spot price (real) 0.55 0.59 0.57 0.42 0.48 0.46

OilPrice (Real) 0.42 0.49 0.49 0.64 0.70 0.70

NAPM com price 0.58 0.62 0.64 0.50 0.62 0.58

Real AHE: goods 0.47 0.50 0.48 0.45 0.53 0.51

Real AHE: const 0.41 0.42 0.41 0.36 0.41 0.41

Real AHE: mfg 0.51 0.55 0.54 0.45 0.52 0.50
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Labor Prod 0.70 0.72 0.71 0.67 0.72 0.72

Real Comp/Hour 0.44 0.46 0.45 0.55 0.57 0.56

Unit Labor Cost 0.54 0.53 0.55 0.50 0.65 0.63

FedFunds 0.66 0.70 0.71 0.53 0.65 0.64

3 mo T-bill 0.68 0.73 0.73 0.49 0.58 0.57

6 mo T-bill 0.66 0.71 0.69 0.46 0.54 0.53

1 yr T-bond 0.63 0.67 0.64 0.45 0.51 0.49

5 yr T-bond 0.51 0.53 0.52 0.51 0.54 0.56

10 yr T-bond 0.47 0.49 0.49 0.53 0.58 0.60

Aaabond 0.44 0.46 0.45 0.51 0.55 0.58

Baa bond 0.40 0.41 0.41 0.52 0.56 0.58

fygm6-fygm3 0.73 0.75 0.75 0.58 0.68 0.64

fygt1-fygm3 0.62 0.68 0.65 0.52 0.61 0.59

fygt10-fygm3 0.58 0.59 0.59 0.50 0.60 0.60

FYAAAC-Fygt10 0.50 0.56 0.54 0.49 0.52 0.51

FYBAAC-Fygt10 0.52 0.55 0.56 0.43 0.47 0.47

M1 1.46 1.57 1.56 0.98 1.01 1.10

MZM 0.85 0.87 0.88 0.89 0.99 1.10

M2 1.10 1.18 1.16 1.03 1.22 1.33

MB 1.22 1.35 1.36 0.79 0.81 0.82

Reserves tot 1.17 1.51 1.53 0.85 0.92 0.93

Reserves nonbor 0.71 0.81 0.78 0.83 0.95 0.93

BUSLOANS 1.10 1.15 1.13 0.98 1.10 1.06

Cons credit 0.88 0.95 0.93 0.76 0.82 0.82

Ex rate: avg 0.44 0.48 0.48 0.51 0.54 0.50

Ex rate: Switz 0.52 0.55 0.53 0.53 0.57 0.55

Ex rate: Japan 0.55 0.59 0.56 0.51 0.53 0.52

Ex rate: UK 0.46 0.52 0.51 0.61 0.69 0.63

EX rate: Canada 0.43 0.50 0.49 0.48 0.50 0.51

S&P 500 0.72 0.81 0.79 0.44 0.52 0.52

S&P: indust 0.71 0.80 0.78 0.45 0.51 0.51

S&P div yield 0.83 0.88 0.83 0.45 0.57 0.57

S&P PE ratio 0.78 0.94 0.89 0.59 0.67 0.66

DJIA 0.75 0.85 0.84 0.51 0.62 0.62

Consumer expect 0.70 0.77 0.76 0.68 0.82 0.82

As mentioned previously, according to Stock and Watson (2009), the FS model outper-

forms both the FF and the SS models in general. Hence, we now present a comparison

between the FS model and GFDFM. In Figures 2.8 to 2.13, we show the four-step ahead

forecast, using FS and GFDFM respectively, for six variables — real GDP, exports, im-

ports, unemployment rates, CPI, as well as effective interest rates, and Table 2.6 shows

the corresponding comparison of RMSFEs.
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Table 2.5: Relative Root Mean Square Forecasting Errors, Macroeconomic Data

Pre-84 Sample Post-84 Sample

GFDFM-FF GFDFM-FS GFDFM-SS GFDFM-FF GFDFM-FS GFDFM-SS

Min. 0.3742 0.3861 0.3828 0.2991 0.3412 0.3448

1st Qu. 0.5366 0.5656 0.5562 0.4620 0.5354 0.5171

Median 0.6971 0.7223 0.7301 0.5381 0.6468 0.6193

Mean 0.7355 0.7760 0.7721 0.6728 0.7814 0.7581

3rd Qu. 0.8883 0.9305 0.9062 0.8402 0.9635 0.9503

Max. 1.9885 2.0394 2.0255 2.3123 2.4805 2.4946

¡ 1 0.8333 0.8056 0.8264 0.8403 0.7639 0.7569

Figure 2.5 RMSFE, GFDFM vs. Full-Full

Figure 2.6 RMSFE, GFDFM vs. Split-Full
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Figure 2.7 RMSFE, GFDFM vs. Split-Split

Figure 2.8 Real GDP, quantity index (2000=100)

Figure 2.9 Real GDP and Unemployment rate four-step ahead forecasting
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Figure 2.10 Real GDP and Unemployment rate four-step ahead forecasting

Figure 2.11 Unemployment rate, all workers, 16 years & over (%)

Figure 2.12 CPI, all items
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Figure 2.13 Interest rate, federal funds (effective) (% per annum)

Table 2.6: Relative Root Mean Square Forecasting Errors, Macroeconomic Data

Pre-84 Sample Post-84 Sample

GFDFM-FF GFDFM-FS GFDFM-SS GFDFM-FF GFDFM-FS GFDFM-SS

RGDP 0.65 0.67 0.68 0.54 0.65 0.60

Exports 0.93 0.97 0.98 0.68 0.72 0.72

Imports 0.82 0.83 0.82 0.63 0.67 0.66

U: all 0.70 0.71 0.71 0.43 0.51 0.46

CPI-ALL 0.97 0.99 0.99 1.02 1.21 1.20

FedFunds 0.66 0.70 0.71 0.53 0.65 0.64

2.6 Conclusion

The DFMs constructed in previous literature either assume constant loadings over time or

concurrent time-varying loadings. This chapter suggests a more general specification for dy-

namic factor models in terms of functional data. There are two main remarks of our model.

First, given the fact that the data of interest for DFMs usually has continuous underlying

processes, e.g., macroeconomic data, we model the processes as continuous functions and

adopt a continuous-time analysis to achieve estimation consistency and asymptotic nor-

mality. On the other hand, our general model setup allows the loadings to capture both

the lag and the concurrent time-varying individual-specific effects of the factors on the

data series.

We provide theorems for the consistency and normality of the estimators as well as the
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proofs of the asymptotics; then we use a simulation study to illustrate the theorems. We

also present an empirical study using macroeconomic data from Stock and Watson (2009)

and propose a heuristic bootstrap test to justify the application of our GFDFM by testing

the significance of the second dimension of loadings — the test results basically show that

the second dimension of the loadings is statistically significant and thus should be included

in the model, and by comparing the RMSFEs of GFDFM with that in Stock and Watson

(2009), we show that the estimators under GFDFM perform better.
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Chapter 3

Historical-time Functional Linear

Model and its Inference with

Cross-sectional Dependence

3.1 Introduction

In the current chapter, I study another major branch of FDA — functional linear re-

gression and its inference with longitudinal functional data. In general, functional linear

regression can be modeled with a mixture of either scalar or functional response, predic-

tors and coefficients. For example, models with scalar responses, say Yi, in the form of

Yi =
∑KZ

kz=1 ZkziβZ,kz +
∑K

k=1

∫
S Xki(t)βk(t)dt + Ui have been studied either only with the

functional predictors Xki(t)’s and coefficients βk(t)’s on the domain S (see, e.g., Cardot et

al., 1999, 2003; Hall and Horowitz, 2007) or including both the functional terms and the

scalar ones Zkzi’s and βZ,kz ’s (see, e.g., Hu et al., 2004). Moreover, Fan and Zhang (1999)

and Zhu et al. (2014), among others, develop models with functional responses, functional

predictors and univariate functional coefficients as such Yi(t) =
∑K

k=1Xki(t)βk(t) + Ui(t),

while similar models with bivariate functional coefficients defined as

Yi(t) =
K∑
k=1

[∫
S
Xki(s)βk(s, t)ds

]
+ Ui(t) (3.1)
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have also been investigated (see, e.g., Ramsay and Dalzell, 1991; Benatia et al., 2017; Lin

et al., 2019). In this chapter, I focus on a generalized version of the models with bivariate

functional coefficients, allowing the domain S of the integral variable s to vary along t,

such that

Yi(t) =
K∑
k=1

[∫ t

0
Xki(s)βk(s, t)ds

]
+ Ui(t), (3.2)

which is one type of the “historical-time functional linear model” (hFLM) (see, e.g., Malfait

and Ramsay, 2003; Ramsay, 2005; Harezlak et al., 2007; Kim et al., 2011; Wang et al., 2016).

As stated by Malfait and Ramsay (2003) and Ramsay (2005), a more general form

of the hFLM is specified as Yi(t) =
∑K

k=1

[∫
St Xki(s)βk(s, t)ds

]
+ Ui(t) with St being

an arbitrary function of t, and one common situation is where St = [0, t] imposing a

forward-in-time-only causality by treating βk(s, t) = 0 for s > t. There has been literature

developing estimation procedures and estimator properties for the hFLM. Namely, Malfait

and Ramsay (2003) construct a bivariate “tent-like” piecewise linear basis system, use

it to expand the coefficient surface βk(s, t) on a triangular domain, and fit the model

assuming zero cross-sectional correlation in the error terms. Harezlak et al. (2007) suggest

to compare the performance of a variety of regularization methods for linear B-spline basis

functions, including basis truncation, roughness penalties, and sparsity penalties using an

extension of the Akaike Information Criterion. Kim et al. (2011) propose an estimation

procedure for the recent hFLM that is oriented towards sparse longitudinal data, where the

observation times across subjects are irregular and the total number of measurements per

subject is small. Assuming i.i.d. samples, they obtain the basis-approximated functional

response and predictors by utilizing FPCA built upon the kernel smoothed auto-covariance

functions, and then estimate the bivariate functional coefficients. They establish uniform

consistency of the proposed estimators with a convergence rate depending on the sample

size and the kernel smoothing parameter; they also derive the asymptotic distribution

of the fitted response trajectories, which can be used to construct asymptotic point-wise

confidence intervals. Apart from these previous studies, the inference on the functional

coefficients is also an essential aspect of functional regression analysis yet has not been

developed much for hFLMs.

In this chapter, I first propose an estimator for the functional coefficients in the hFLM

as defined in (3.2) by using B-spline-based expansions. Upon the estimation, I study the
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asymptotic properties of the estimated coefficients, providing a uniform convergence rates

as well as an asymptotic normality result under certain conditions. Lastly, since the asymp-

totic distribution of the estimator does not necessarily provide a good approximation with

finite samples, I develop a bootstrap method that can better approximate the distribution

of the estimated coefficients in finite sample situations.

Bootstrap methods involving functional data have been developed under variety of

conditions. For example, Cuevas and Fraiman (2004) provides a general discussion on

the asymptotic validity of the bootstrap methodology for functional data. Sharipov et al.

(2016) and Paparoditis (2018) propose bootstrap functional central limit theorems; specif-

ically, Sharipov et al. (2016) develop a functional central limit theorem for the block boot-

strap in a Hilbert space to capture the dependence structure among the random functions,

while Paparoditis (2018) illustrate a bootstrap central limit theorem for functional finite

Fourier transforms and demonstrate the validity of their bootstrap method. Particularly

for functional linear regression, Herwartz and Xu (2009) suggest a factor based bootstrap

method for the inference of functional coefficient models, allowing for heteroskedastic error

terms; González-Manteiga and Mart́ınez-Calvo (2011) propose a bootstrap procedure to

obtain the pointwise confidence intervals in a functional linear model with scalar responses

and demonstrate the asymptotic validity of their bootstrap method.

However, it is worth noting that for data with dependence, bootstrap can easily fail

by ignoring the order of observations. In previous studies with functional settings, con-

straints on dependence have been imposed across functions. For instance, bootstrap with

longitudinal functional data mostly assumes cross-sectional independence (see, e.g., Hall

et al., 1989; Cuevas et al., 2006; González-Manteiga and Mart́ınez-Calvo, 2011; Shang,

2015); while bootstrap with functional time series has assumed stationarity and weak de-

pendence across functions (see, e.g., Dehling et al., 2015; Sharipov et al., 2016; Paparoditis,

2018). There is also literature on bootstrapping functional data with dependence across

replications in various model specifications, such as linear autoregressive Hilbertian model,

functional linear models with scalar responses, functional linear models with functional

time series data or functional autoregressive models (see, e.g., De Castro et al., 2005; Rana

et al., 2016; Shang, 2018; Franke and Nyarige, 2019).

In the current chapter, I adopt the idea of the moving blocks bootstrap (MBB) devel-

oped by Kunsch (1989) and Liu and Singh (1992). I represent the regressor and residual
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functions using local polynomial basis expansions. Then under some stationarity and er-

godicity assumptions, I generate the bootstrap functions for the regressors and the residuals

via a moving block bootstrap on their basis coefficients. Such a bootstrap accommodates

unknown forms of cross-sectional dependence that can be either weak or strong.

This chapter contributes to the literature by establishing the asymptotics of the B-

spline-based estimated functional coefficients and developing the bootstrap inference, ac-

commodating unknown forms of cross-sectional dependence. The main findings are (i) a

uniform convergence rate of the estimated functional coefficients is derived depending on

the degree of cross-sectional dependence and
√
n-consistency can be achieved in the absence

of cross-sectional dependence, which is a faster convergence than that of the estimators

proposed in Kim et al. (2011); (ii) under proper stationarity and ergodicity conditions on

the functional variables, asymptotic normality of the estimated coefficients can be obtained

with unknown forms of cross-sectional dependence; (iii) the proposed bootstrap method

has a better finite-sample performance than the asymptotics while approximating the dis-

tribution of the estimated functional coefficients, and it can be used to construct percentile

confidence intervals and perform hypothesis tests for the functional coefficients. To my best

knowledge, this study is the first to discuss the asymptotic and bootstrap inferences for

the functional coefficients in hFLMs with cross-sectional dependence.

3.2 The Model and its Estimation

Linear regression is one of the most powerful and widely used approach to analyzing the

relationship between the response and the predictors. In the case with functional data,

where either the response or the predictors (or both) are functions defined on continua,

such a relationship may vary along time, and the response at time t may be affected by

the predictors from different time points. In order to capture such effects, Ramsay and

Dalzell (1991), who devised the term “functional data analysis”, introduced an infinite

dimensional regression with bivariate functional coefficients as in Equation (3.1). While

Malfait and Ramsay (2003) and Ramsay (2005) pointed out that to properly specify such

a dynamic relationship, different versions of functional linear regression models shall be

adopted, given different scenarios. In this section, I first introduce the model of interest,

the hFLM (see, e.g., Malfait and Ramsay, 2003; Ramsay, 2005; Harezlak et al., 2007; Kim
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et al., 2011; Wang et al., 2016); then I present an estimation procedure for the regression

coefficients based on the B-Spline basis system.

3.2.1 The historical functional linear model

As mentioned above, previous studies has considered the general functional linear model

Yi(t) =
∑K

k=1

[∫
S Xki(s)βk(s, t)ds

]
+ Ui(t), for all t ∈ S, indicating that the response Yi(t)

at any point of time t ∈ S depends on the predictors Xki(s) at all points of time s ∈ S.

Practically, it is however a common circumstance where the behavior of the response is

only affected by the movements of the predictors from the past but not from the future;

in other words, βk(s, t) is not defined for s > t, and the set S becomes a function of t,

denoted St, specifying when the effects of the predictors start to appear and vanish given

the current time t. In this chapter, I specifically consider the model with St := [0, t], such

that

Yi(t) =

∫ t

0
Xi

T (s)β(s, t)ds+ Ui(t), t ∈ [0, t̄] , Xi(s) =


X1i(s)

...

XKi(s)

 , β(s, t) =


β1(s, t)

...

βK(s, t)

 , (3.3)

where the response Yi(t), predictors Xki(s) and the error Ui(t) are defined on T := [0, t̄],

and the coefficient surface βk(s, t) is defined on T2 := {(s, t) : 0 ≤ s ≤ t ≤ t̄}. For all

k = 1, ..., K and i = 1, ..., n, Yi, Xki, Ui ∈ CD (T ) and βk(s, t) ∈ CD (T2) with D ∈ N, where

CD (T ) represents the space of all real-valued functions defined on T with continuous D-th

order derivatives and CD (T2) represents the space of all real-valued functions defined on T2

with continuous D-th order partial derivatives1; meanwhile, βk(s, t)’s are square integrable

on T2 such that
∫ t̄

0

∫ t
0
β2
k(s, t)dsdt <∞.

3.2.2 The functional estimators

By the Weierstrass approximation theorem, the functional quantities in Equation (3.3) can

be uniformly approximated arbitrarily closely by polynomial functions, and the represen-

1A more general setup is to let βk have different orders of continuous differentiability; to keep the

notations simple, here I assume both dimensions have the same order, without loss of generality.
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tations using basis expansions can be written as follow (Ramsay, 2005):

Yi(t) =
∞∑
h=1

ai,hηh(t) ≈
H∑
h=1

ai,hηh(t) =: Y̌i(t), (3.4)

Xki(s) =
∞∑
h=1

ck,i,lφl(s) ≈
L∑
l=1

ck,i,lφl(s) =: X̌ki(s), (3.5)

βk(s, t) =

∞∑
p=1

∞∑
q=1

bk,p,qψp(s)θq(t) ≈
P∑
p=1

Q∑
q=1

bk,p,qψp(s)θq(t) =: β̌k(s, t), (3.6)

where ai,h’s, ci,l’s and bk,p,q’s denote the expansion coefficients, ηh(t)’s, φl(s)’s, ψp(s)’s and

θq(t)’s the expansion bases, and H,L, P,Q ∈ N the numbers of basis functions. As H,

L, P and Q increase to infinity, the partial sums in (3.4) - (3.6) converge to Yi(t), Xki(s)

and βk(s, t), respectively, for all s, t, and one can approximate these functional quantities

arbitrarily closely by selecting proper numbers of basis functions. With the basis expansions

of β(s, t), model (3.3) can be re-written as

Yi(t) ≈
∫ t

0
Xi

T (s)Ψ(s)Θ(t)bds+ Ui(t), ∀i = 1, ..., n, (3.7)

where I define the following vectors and matrices for the basis expansions of the functional

data.

b =


b1

...

bK


QPK×1

, bk =


bk,1

...

bk,P


QP×1

, bk,p =


bk,p,1

...

bk,p,Q


Q×1

,

Θ(·) =


θP (·)

. . .

θP (·)


PK×QPK

, θP (·) =


θT (·)

. . .

θT (·)


P×QP

, θ(·) =


θ1(·)

...

θQ(·)


Q×1

,

Ψ(·) =


ψT (·)

. . .

ψT (·)


K×PK

,ψ(·) =


ψ1(·)

...

ψP (·)


P×1

.
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It is worth noting that while selecting the basis for β(s, t) in such a regression model, one

needs to take into account the fact that β(s, t) is only defined for s ≤ t. It is natural

to adopt a basis that does not force β(s, t) to go off to the area where s > t. In the

current chapter, I suggest to use B-spline bases for both dimensions of β(s, t), relying on

the “local” property of the B-spline system. Without loss of generality, I define ψ and

θ each to be a B-spline basis of order D and has non-overlapping equally-spaced knots,

denoted κψ := [0 = κ0, ..., κP−D = t̄] and κθ := [0 = κ0, ..., κQ−D = t̄], respectively. Then

one can construct a set of polynomials Γ (D, κψ, κθ) of order D, which is a two-dimensional

analogue of the set S(m, t) defined in Zhou et al. (1998), such that

Γ (D,κψ, κθ) =
{
γ ∈ CD−2 (T2) : D ≥ 2,

γ is a bivariate polynomial of order D on [κι, κι+1]× [κι′ , κι′+1]

for all ι = 0, ..., P −D − 1 and ι′ = 0, ..., Q−D − 1 with κι ≤ κι′+1

}
,

and an estimator β̂ ∈ Γ (D, κψ, κθ) for β can be defined as a penalized least squares

minimizer

β̂ := min
γk∈Γ(D,κψ ,κθ)
∀k=1,...,K

 1

n

n∑
i=1

∫ t̄

0

[
Yi(t)−

K∑
k=1

∫ t

0
Xki(s)γk(s, t)ds

]2

dt+ λΨΛΨ + λΘΛΘ

 , (3.8)

where ΛΨ and ΛΘ denote some penalties for the two dimensions of β̂, associated with the

tuning parameters λΨ and λΘ. Here, I adopt a commonly used roughness penalty such

that

ΛΨ :=

∫ t̄

0

∫ t

0

[
Ψ(2)(s)Θ(t)

] [
Ψ(2)(s)Θ(t)

]T
dsdt, and

ΛΘ :=

∫ t̄

0

∫ t

0

[
Ψ(s)Θ(2)(t)

] [
Ψ(s)Θ(2)(t)

]T
dsdt.

Under the B-spline basis expansion specified in (3.6), the estimation of β as in (3.8) reduces

to the estimation of b, and the estimator, denoted b̂, can be obtained by minimizing the

criterion

m
(
b̃;P,Q, {Yi,Xi}ni=1

)
:=

1

n

n∑
i=1

∫ t̄

0

[
Yi(t)−

∫ t

0
Xi

T (s)Ψ(s)Θ(t)b̃ds

]2

dt+ λΨΛΨ + λΘΛΘ.

(3.9)
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However, we do not directly observe Yi’s and Xki’s but their “snapshots”, denoted

Yitj ’s and Xkitj ’s for j = 1, ..., JY or j = 1, ..., JX , where JY and JX denote the number of

observation points for the response and the predictor variables, respectively. To simplify the

notations, let {tj}j denotes the set of time indices for either the response or the predictors,

such that t1 = 0 and tJY = tJX = t̄. Hence, to obtain β̂ (i.e., b̂), Yi’s and Xki’s in (3.9)

need to be replaced by their estimates. The coefficients in the basis expansions for Yi’s

and Xki’s can be estimated by solving the following least squares problems, based on their

observations Yitj ’s and Xkitj ’s:

(ãi,1, ..., ãi,H) := argmin
(ri,1,...,ri,H)

1

JY

JY∑
j=1

[
Yitj −

H∑
h=1

ri,hηh(tj)

]2

, (3.10)

(c̃k,i,1, ..., c̃k,i,L) := argmin
(rk,i,1,...,rk,i,L)

1

JX

JX∑
j=1

[
Xkitj −

L∑
l=1

rk,i,lφl(tj)

]2

. (3.11)

The functional estimators can then be obtained as

Ỹi(t) :=

H∑
h=1

ãi,hηh(t) = ηT (t)

[∫ t̄

0
η(τ)ηT (τ)dτ

]−1
 1

JY

JY∑
j=1

η(tj)Yitj

 ,
X̃ki(t) :=

L∑
l=1

c̃k,i,lφl(t) = φT (t)

[∫ t̄

0
φ(τ)φT (τ)dτ

]−1
 1

JX

JX∑
j=1

φ(tj)Xkitj

 ,
where η := [η1, ..., ηH ]T and φ := [φ1, ..., φL]T . Note that the choices of the bases as well

as the functional fitting methods can affect the convergence behavior of the functional

estimators. The asymptotic properties of the functional estimators have been established

in literature utilizing variety of bases and fitting methods (see, e.g., Cox, 1983; Schwetlick

and Kunert, 1993; Zhou et al., 1998; Speckman and Sun, 2003). In the current chapter,

η and φ are set to be B-spline bases of order D defined on [0, t̄] with non-overlapping

equally-spaced knots. I adopt the regression spline method to obtain the fitted functional

data as shown in (3.10) and (3.11). With proper numbers of basis functions, the functional

estimators Ỹi and X̃ki are uniformly consistent and do not suffer from boundary effects

asymptotically (e.g., Gasser and Müller, 1984; Zhou et al., 1998).
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Under the fitted functions Ỹi(t)’s and X̃ki’s, the estimator b̂ shall write[∫ t̄

0

1

n

n∑
i=1

X̃i(t)X̃i
T

(t)dt+ λΨΛΨ + λΘΛΘ

]−1 [∫ t̄

0

1

n

n∑
i=1

X̃i(t)Ỹi(t)dt

]
, (3.12)

where X̃ i

T
(t) :=

∫ t
0
X̃T

i (s)Ψ(s)Θ(t)ds. However, with the B-spline bases ψ and θ of order

D, the value of β at each given time point is approximated by a linear combination of D

basis functions only, while the rest P − D basis functions in ψ and the Q − D in θ are

all irrelevant. As a result, in both matrices Ψ and Θ, the entries corresponding to the

irrelevant basis functions will be zeros. Hence, one can drop all the basis functions that

are irrelevant to the area of s < t, which reduces the number of the to-be-estimated bk,p,q’s

and change the expression in Equation (3.12) to the following

b̂(−) :=

[∫ t̄

0

1

n

n∑
i=1

X̃i
(−)

(t)X̃i
(−)T (t)dt+ λΨΛ

(−)
Ψ + λΘΛ

(−)
Θ

]−1 [∫ t̄

0

1

n

n∑
i=1

X̃i
(−)

(t)Ỹi(t)dt

]
,

(3.13)

where X̃ i

(−)
, Λ

(−)
Ψ and Λ

(−)
Θ denote the X̃ i, ΛΨ and ΛΘ while replacing the matrices Ψ

and Θ with the ones after removing the columns and rows corresponding to the irrele-

vant basis functions. To reduce the notation load, I omit the superscript “(−)” hereafter

while indicating the reduced matrices unless otherwise stated. The estimated functional

coefficient can then be written as

β̂(s, t) = Ψ(s)Θ(t)b̂. (3.14)

It should be empathized that when I apply the B-spline bases for β, this process of

dropping basis functions (and thus, the number of estimates) is crucial, since otherwise,

the matrix
∫ t̄

0
n−1

∑n
i=1 X̃ i

T
(t)X̃ i(t)dt + λsΛs + λtΛt in (3.12) will be singular and thus

non-invertible even with the penalties. There are two reasons jointly contributing to this

fact: first, the B-spline basis functions are only “locally” non-zero; second, St ⊂ St′ ⊂
T for all t < t′ < t̄ — the two together will leave entire columns/rows of the matrix∫ t̄

0
n−1

∑n
i=1 X̃ i

T
(t)X̃ i(t)dt+ λsΛs + λtΛt zero.
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3.3 Large Sample Theorems

In this section, I establish the asymptotics of the estimator β̂(s, t) with cross-sectional

dependence, denoted ρ. Essentially, ρ is a parameter in [1/2, 1] indicating the level of cross-

sectional dependence, such that
∥∥∑n

i=1

∑n
ι=1 E

[
Xi(s)Ui(t)Uι(t

′)Xι
T (s′)

]∥∥
F
∈ O (n2ρ) for

all (s, t), (s′, t′) ∈ T2. When ρ = 1/2, the cross sectional dependence vanishes as n → ∞,

and the maximum level of cross sectional dependence allowed is for ρ = 1, whence we have∥∥∑n
i=1

∑n
ι=1 E

[
Xi(s)Ui(t)Uι(t

′)Xι
T (s′)

]∥∥
F
∈ O (n2). First, let ‖·‖F represent a Frobenius

norm for any M1-by-M2 matrix M (which in this case reduces to a vector L2-norm) such

that ‖M‖F =
√∑M1

m1=1

∑M2

m2=1 |Mm1,m2|
2. In the current chapter, I use the asymptotic

notationsO, o, Op and op for the cases with matrices in any dimensions (i.e., scalars, vectors

or higher dimensional matrices) indicating element-wise bounds or convergence, and I let

the notations adjust to the conformable dimensions without specifying repeatedly. Then I

state the following assumptions.

Assumption 3.3.1

Equation (3.3) holds for all k = 1, ..., K and i = 1, ..., n, where Yi, Xki, Ui ∈ CD (T ),

βk(s, t) ∈ CD (T2) with K,D ∈ N and D ≥ 2; also, E [Yi(t)] = E [Xki(s)] = 0 for all

t, s ∈ [0, t̄].

Assumption 3.3.1 states the model specification on the relationship between the functional

response and the functional predictors, imposing smoothness over the functional terms as

well as finitely many predictors. I also assume that processes Yi’s and Xki’s are centered

around zero, without loss of generality.

Assumption 3.3.2

n, JY , JX , H, L, P,Q → ∞; H ∈ o (JY ), L ∈ o (JX), PQ ∈ o (n) and [min {P,Q}]−D ∈
O (nρ−1).

Assumption 3.3.2 states the divergence conditions for the sample size as well as the num-

ber of basis functions, some of which depend on the level of cross sectional dependence ρ.

First of all, large samples over time and increasing numbers of basis functions H and L
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lead to a consistent estimator for the functional data Yi’s and Xki’s, then with such esti-

mated functional data, consistency of the estimated functional coefficients can be achieved

under sufficiently large numbers of basis functions P and Q. The condition PQ ∈ o (n)

suffices the asymptotic invertibility of matrices when needed. Note that with finite sam-

ple, the invertibility is satisfied by PQK ≤ n. Moreover, as demonstrated in literature

on asymptotics of functional data estimation with local polynomials, one component of

the estimation error is associated with the step length between adjacent knots as well as

the order of the polynomials. The constraint [min {P,Q}]−D ∈ O (nρ−1) is to control the

behavior of this error component.

Assumption 3.3.3

Given any t̄ <∞, there exist estimators Ỹi, X̃ki ∈ CD (T ), such that as n, JY , JX →∞,

n1−ρ sup
t∈T

∥∥∥Ỹi(t)− Yi(t)∥∥∥
F
∈ op(1) and n1−ρ sup

t∈T

∥∥∥X̃ki(t)−Xki(t)
∥∥∥
F
∈ op(1).

Assumption 3.3.3 imposes the existence of the uniformly consistent functional estimators

for the response and the predictors under the given convergence conditions. These con-

trols on the convergence rates of the estimated response and predictors guarantee that

the asymptotics of the estimated functional coefficients β are not sensitive to the esti-

mation errors from the procedure of functional fitting. One can justify this assumption

by selecting the proper diverging parameters. For instance, under a commonly used B-

spline basis setting with D = 4, one can obtain supt∈T

∥∥∥Ỹi(t)− Yi(t)∥∥∥
F
∈ Op

(
J
−4/9
Y

)
and

supt∈T

∥∥∥X̃ki(t)−Xki(t)
∥∥∥
F
∈ Op

(
J
−4/9
X

)
by having H ∈ O

(
J

1/9
Y

)
and L ∈ O

(
J

1/9
X

)
(see,

e.g., Zhou et al. (1998)). Then n1−ρ ∈ o
(
J4/9

)
suffices the convergence conditions stated

above.

Assumption 3.3.4

There exists a K-by-K full-rank positive-definite matrix of real-valued bivariate functions

ΣX(·, ·) ∈ O(1) such that for all t, τ ∈ T ,
∥∥n−1

∑n
i=1Xi(t)Xi

T (τ)−ΣX(t, τ)
∥∥
F
∈ op(1).

Assumption 3.3.4 corresponds to the conventional asymptotic full rank assumption for

linear regression model. Note that this assumption can be satisfied by having the condition

PQ ∈ o (n) from Assumption 3.3.2.
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Assumption 3.3.5

For all i = 1, ..., n and t ∈ T , E [Ui(t)] = 0 and E
[
Ui

2(t)
]
< ∞; for (s, t) ∈ T2,

n−1
∑n

i=1 E [Xi(s)Ui(t)] = o(nρ−1).

Assumption 3.3.5 states that for each individual i, the error term has zero mean and finite

variance over time, and its correlation with the predictors both contemporaneously and

across different time points is centered close to zero so that the average of such correlation

across all individuals tends to zero at a given rate, i.e., n−1
∑n

i=1 E [Xi(s)Ui(t)] = o(nρ−1).

Assumption 3.3.6

There exist a K ×K matrix of real-valued multivariate functions ΣXU(·, ·, ·, ·) ∈ O (1) and

a parameter ρ ∈ [1/2, 1] indicating the level of cross-sectional dependence, such that for

all (s, t), (s′, t′) ∈ T2,
∥∥n−2ρ

∑n
i=1

∑n
ι=1 E

[
Xi(s)Ui(t)Uι(t

′)Xι
T (s′)

]
−ΣXU (s, t, t′, s′)

∥∥
F
∈

o(1).

While Assumption 3.3.5 indicates that n−1
∑n

i=1Xi(s)Ui(t) is centered close to zero, As-

sumption 3.3.6 further controls the order of n−1
∑n

i=1Xi(s)Ui(t) through its second mo-

ment. Such an order condition is essential in the achievement of the asymptotic results for

β̂, especially with the appearance of the cross-sectional dependence.

Theorem 3.3.1 Suppose Assumptions 3.3.1 to 3.3.6 hold, then for any 0 < t̄ ∈ R, the

estimator β̂(s, t) obtained from (3.13) - (3.14) over the domain T2 is uniformly consistent

with the convergence rate sup(s,t)∈T2

∥∥∥β̂(s, t)− β(s, t)
∥∥∥
F
∈ Op (nρ−1).

Theorem 3.3.1 indicates the uniform convergence rate of the estimated functional co-

efficients β̂. Under the functional linear specification given by Assumption 3.3.1, β̂ has

the expression as shown in (3.13) and (3.14). Meanwhile, for βk(s, t) ∈ CD (T2), there

exists some γ(s, t) ∈ Γ (D,P,Q) such that the estimation error can be decomposed into

two components, β̂(s, t) − γ(s, t) and γ(s, t) − β(s, t). As demonstrated in the proof,

β̂(s, t) − γ(s, t) tends to zero at the rate of nρ−1 under the boundedness and convergence

conditions stated in Assumptions 3.3.2 to 3.3.6, while γ(s, t)−β(s, t) vanishes faster by the

condition [min {P,Q}]−D ∈ O (nρ−1) from Assumption 3.3.2. Then with the smoothness
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conditions for β as well as the properties of the order-D B-spline bases for β̂, the uniform

convergence result can be justified using Chebyshev’s inequality. Note that the convergence

rate of β̂ given in Theorem 3.3.1 is obtained base on the order conditions of parameters and

sample size determined in the corresponding assumptions. These order conditions select

the leading term in the estimation error by specifying the relative divergence rate among

parameters. A different set of order conditions can result in a different leading term of the

estimation error, which in turn may generate a different convergence rate for β̂.

As mentioned above, a uniform convergence result has been derived in Kim et al. (2011)

with i.i.d. samples such that the estimation error is of order Op
(
n−1/2

(
h−2
X + h−1

1 h−1
2

))
,

where hX , h1 and h2 are the bandwidths used in obtaining the kernel smoothed covariance

surfaces. On the other hand, one special case for the convergence result is when there is

no cross-sectional dependence, i.e., when ρ = 1/2. Then a
√
n convergence of β̂ can be

obtained, which is a faster convergence than Op
(
n−1/2

(
h−2
X + h−1

1 h−1
2

))
. Intuitively, the

expansion used by Kim et al. (2011) to represent their β̂ is based on the kernel smoothed

covariance surfaces, and the error produced in this smoothing process is carried through

the estimation of β̂. Corresponding to the estimator β̂, there is also such a component

in the estimation error of β̂ coming from the process of functional fitting. However, as

explained above, Assumptions 3.3.2 and 3.3.3 control the order of this component of error,

so that it does not lead the estimation error of β̂, and hence, allows for this
√
n convergence

rate in the absence of cross-sectional dependence.

Assumption 3.3.7

n, JY , JX , H, L, P,Qt̄ → ∞, H ∈ o (JY ), L ∈ o (JX), t̄2 ∈ o (min {JY , JX}), PQ ∈ o (n),

t̄ [min {P,Q}]−D ∈ O (nρ−1), such that there exist estimators Ỹi, X̃ki ∈ CD (T ), where

n1−ρ
√
J̄ sup
t∈T

∥∥∥Ỹi(t)− Yi(t)∥∥∥
F
∈ op(1) and n1−ρ

√
J̄ sup
t∈T

∥∥∥X̃ki(t)−Xki(t)
∥∥∥
F
∈ op(1),

for some J̄ such that t̄2/J̄ ∈ O(1).

Assumption 3.3.7 upgrades the order conditions in Assumption 3.3.2 and the convergence

rate conditions in Assumption 3.3.3 under large t̄. This large t̄ set up allows for further

assumptions on the underlying functions, which will be explained below. Note that As-

sumption 3.3.3 was justified using the results from Zhou et al. (1998), which define the
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functions over a fixed interval. Now with the interval [0, t̄] for t̄→∞, I include the condi-

tion t̄ ∈ o (min {JY , JX}), so that as the range of the time period becomes wider and the

number of observations increases, the observation number within any fixed interval of time

increases as well. In this way, the convergence of Ỹi(t) and X̃ki(t) stated in Assumption

3.3.7 can still be justified by Zhou et al. (1998).

Assumption 3.3.8

There exist some K×K matrix of functions CXiUi(τ) ∈ O (1), such that for some Lebesgue

measure λ and any given τ ≥ 0 with τ ∈ o (t̄), there is∫
T

∥∥∥∥∥CXiUi(τ)− n−2ρ
n∑
i=1

n∑
ι=1

E
[
Xi(t)Ui(t)Uι(t+ τ)Xι

T (t+ τ)
]∥∥∥∥∥
F

dλ ∈ o (t̄) .

Assumption 3.3.8 together with Assumption 3.3.5 indicate that the term Xi(t)Ui(t) be-

comes stationary as t̄ → ∞ in that it has a near-zero first moment across the entire

domain and an autocovariance function that is asymptotically almost surely coincide with

CXiUi(τ) which does not depend on the point in time t. Assumption 3.3.8 also controls the

level of the cross-sectional dependence, such that
n∑
i=1

n∑
ι=1

E
[
Xi(t)Ui(t)Uι(t+ τ)Xι

T (t+ τ)
]
∈ O

(
n2ρ
)
,

almost always over T , as t̄→∞. This assumption serves in the derivation of the asymptotic

normality of β̂.

Assumption 3.3.9

For any two bounded functions f : R→ R and g : R→ R, we have∣∣E [f (Xi(t)Ui(t)) g
T (Xi(t+ τ)Ui(t+ τ))

]∣∣−
|E [f (Xi(t)Ui(t))]|

∣∣E [gT (Xi(t+ τ)Ui(t+ τ))
]∣∣ = O

(
τ−2ξ

)
,

with −ξ being the order of the mixing coefficient of the process Xi(t)Ui(t), τ ∈ o (t̄) and

τ, t̄→∞.

Assumption 3.3.9 states that the term Xi(t)Ui(t) is ergodic in that the dependence of

Xi(t)Ui(t) at any two points in time is vanishing as the two points become further apart.

This assumption also implies that with m̄Ui := t̄−1
∫ t̄

0
Ui(t)dt, one has limt̄→∞Var (m̄Ui) =

0, and there exists some mUi ∈ R, such that limt̄→∞ m̄Ui = mUi .

56



Theorem 3.3.2 Suppose Assumptions 3.3.1 and 3.3.4 to 3.3.9 hold, then as t̄ → ∞,

β̂(s, t) obtained from (3.13) - (3.14) is asymptotically normal in that

Vβ,ρ
−1/2(s, t)n1−ρ

√
J̄
[
β̂(s, t)− β(s, t)

]
d−→ N (0, IK) , ∀(s, t) ∈ T2,

where Vβ,ρ(s, t) := Var
(
n1−ρ
√
J̄
[
β̂(s, t)− β(s, t)

])
∈ O(1), for some J̄ such that t̄2/J̄ ∈

O(1).

Recall that in Theorem 3.3.1, upon the consistency of the functional estimators for

Yi’s and Xki’s achieved through large JY and JX , the n1−ρ consistency of the estimator

β̂ is obtained on the fixed domain [0, t̄] through the enlargement of n. However, with the

unknown form of cross-sectional dependence and interactions among different components

of the estimation errors, normality cannot be achieved simply by increasing n. Theorem

3.3.2 states that if the time interval [0, t̄] extends to infinity as the number of observation

time points increases, then under the stationarity and ergodicity conditions given in As-

sumptions 3.3.8 and 3.3.9, the asymptotic normality of β̂ can be achieved through the time

dimension.

One important implication of Theorem 3.3.2 is that even with an enlarging sample size

along the time dimension, the in-filling asymptotics itself does not lead to normality at

the limit; rather that the time period needs to be long enough to reveal a repetitive and

low-correlated pattern of the functions over time, then averaging over the time dimension

can result in asymptotic normality by using some CLT for dependent processes. This

result delivers a message that in order to apply the asymptotic normality of the estimated

coefficients, instead of only increasing the observation frequency, one needs to extend the

length of the time domain as well.

3.4 Bootstrap Methodology

As explained above, the asymptotic normality is achieved under large t̄. However, with a

finite time domain, or with a small sample size in general, the asymptotic theorem does not

necessarily provide a good approximation to the distribution of β̂. In this section, I will

develop a bootstrap method that outperforms the asymptotic theorem in approximating
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the distribution of β̂, especially with finite time domains or small samples. The bootstrap

method accommodates unknown forms of cross-sectional dependence that is either weak or

strong, and it can be used to construct functional confidence intervals or perform hypothesis

test for the estimated coefficient β̂.

3.4.1 Bootstrap procedure

The idea of the bootstrap is briefly summarized as follow. First, I obtain the consistent

estimates of the error functions, denoted Ûi(t); then I represent them using B-spline basis

expansions. Under certain stationarity and ergodicity conditions, I adopt the idea of the

MBB (see, e.g., Gonçalves, 2011; Kunsch, 1989; Liu and Singh, 1992) on the basis coef-

ficients of the functional predictors and residuals and generate the bootstrap predictors

and residuals, denoted X∗i ’s and U∗i ’s respectively. From this process, I can obtain the

corresponding bootstrap responses Y ∗itj ’s based on X∗i ’s, U∗i ’s and the estimate β̂. With

the pairs
{
Y ∗itj ,X

∗
itj

}
’s, I can then obtain the bootstrap estimated functional coefficients

β̂∗(s, t). Such a bootstrap method captures both the time-wise smoothness and the cross-

sectional dependence — while resampling blocks of the basis coefficients, the smoothness

over time is imposed by the basis functions, and the cross-sectional dependence is preserved

within the blocks.

Specifically, the bootstrap can be implemented as follow.

(B.i) Compute the residuals Ûi(t) = Ỹi(t)−
∫
St X̃i(s)β̂

T (s, t)ds for i = 1, ..., n.

(B.ii) Represent the residuals Ûi(t) using the same basis as for Ỹi(t) and the residual values

at the observing points Ûi(tj). Denoted these fitted residual functions by Ũi(t), such that

Ũi(t) :=
∑H

h=1 w̃i,hηh(t).

(B.iii) Let ∆U ∈ N denote the length of the blocks and b∆U ,d the dth size-∆U block of the ba-

sis coefficients, such that b∆U ,d := {w̃d+D−1, ..., w̃d+∆U+D−2}, where w̃d = [w̃1,d, ..., w̃n,d]
T .

Then resample d(H − 2 ∗D + 2)/∆X,ke blocks with replacement from the set of overlap-

ping blocks b∆U ,1, ..., b∆U ,H−∆U−5. Truncate the resampled blocks in order to form the

bootstrap basis coefficients of the original length [w∗i,1, ..., w
∗
i,H ]T . Then the bootstrap

residuals can be expressed as U∗i (t) :=
∑H

h=1 w
∗
i,hηh(t).

(B.iv) Let ∆X,k ∈ N denote the length of the blocks and b∆X,k,d the dth size-∆X,k block

of the basis coefficients, such that b∆X,k,d :=
{
c̃k,d+D−1, ..., c̃k,d+∆X,k+D−2

}
, where c̃k,d =

[c̃k,1,d, ..., c̃k,n,d]
T . Resample d(L− 2 ∗D + 2)/∆X,ke blocks with replacement from the set
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of overlapping blocks b∆X,k,1, ..., b∆X,k,L−∆X,k−5, and truncate the resampled blocks to form

the bootstrap basis coefficients [c∗k,i,1, ..., c
∗
k,i,L]T . Then the bootstrap predictors write

X∗ki(t) :=
∑L

l=1 c
∗
k,i,lφl(t).

(B.v) For i = 1, ..., n, generate the bootstrap functional response, denoted Y ∗i (t), such that

Y ∗i (t) =

∫ t

0
X∗i

T (s)β̂(s, t)ds+ U∗i (t), t ∈ [0, t̄] , (3.15)

where X∗i (s) := [X∗1i(s), ..., X
∗
Ki(s)]

T .

(B.vi) For i = 1, ..., n and j = 1, ..., JY , generate the observation errors of the response

ε∗itj ∼ i.i.d. N(0, σ2
εi) B times with σ2

εi := J−1
Y

∑JY
j=1

[
Yitj − Ỹi(tj)

]2

, and generate B sets of

observations for the response Y ∗itj :

Y ∗itj = Y ∗i (tj) + ε∗itj . (3.16)

(B,vii) Repeat the same procedure to obtain B sets of observations for the predictors X∗kitj .

(B.viii) Fit the functional response and predictors using B-spline basis expansion, denoted

Ỹ ∗i (t) and X̃∗i (t), and obtain the B bootstrap estimated coefficients β̂∗(s, t), such that

b̂∗ :=

[∫ t̄

0

1

n

n∑
i=1

X̃
∗
i (t)X̃

∗
i
T (t)dt+ λΨΛΨ + λΘΛΘ

]−1 [∫ t̄

0

1

n

n∑
i=1

X̃
∗
i
T (t)Ỹ ∗i (t)dt

]
, (3.17)

where X̃
∗
i
T (t) :=

∫ t
0
X̃∗i

T (s)Ψ(s)Θ(t)ds, and thus, β̂∗(s, t) = Ψ(s)Θ(t)b̂∗.

It is worth noting that for a B-spline basis of order D, the first and the last D−1 basis

functions are not identical to the rest; therefore, while resampling the basis coefficients, I

do not involve those coefficients that correspond to the basis functions at the two ends.

For this reason, in steps (B.iii) and (B.iv), I start the blocks from the D-th basis functions

and end at the D-th last one. Also, I again drop the basis functions over the domain of

β̂∗(s, t) where s > t, like I did in previous sections. Hence, the notations b̂∗ and X̃
∗
i (t)

used in (3.17) denote the corresponding vector or matrix while replacing Ψ and Θ with the

ones after removing the columns and rows corresponding to the irrelevant basis functions.

3.4.2 Bootstrap validity

The bootstrap method I introduced above generalizes the MBB for longitudinal data that

satisfies certain stationarity and ergodicity conditions to functional data. Intuitively, the
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cross-sectional structure can be preserved by resampling the approximately independent

moving blocks over time. However, with functional data, the difficulty is that such a

rearrangement does not preserve the smoothness within functions. By using the “local”

property of the B-spline representation for the functions, I discretize the smooth functions

of stationary and ergodic properties onto vectors of basis coefficients, on which I can

perform a longitudinal MBB.

Theorem 3.4.1 Suppose Assumptions Assumptions 3.3.1 to 3.3.9 hold. With β̂(s, t) ob-

tained from (3.13) - (3.14), β̂∗(s, t) from the bootstrap procedure (B.i) to (B.viii) and

lJ ∈ o
(
J1/2

)
, I have for (s, t) ∈ T2 and some J̄ such that t̄2/J̄ ∈ O(1),

sup
r∈RK

∣∣∣P∗ (n1−ρ
√
J̄
[
β̂∗(s, t)− β̂(s, t)

]
≤ r
)
− P

(
n1−ρ

√
J̄
[
β̂(s, t)− β(s, t)

]
≤ r
)∣∣∣ = o(1),

where P∗ is induced by the bootstrap, conditional on the data.

Theorem 3.4.1 states that under the conditions sufficing a consistent estimator β̂ as

well as stationarity and ergodicity in the predictors and errors, the bootstrap provides

an asymptotically valid approximation to the distribution of β̂. The bootstrap statistic

n1−ρ
√
t̄
[
β̂∗(s, t)− β̂(s, t)

]
can also be used to construct percentile confidence intervals and

perform hypothesis tests for the functional coefficients.

3.5 Simulation Analysis

In this section, I illustrate the estimation and bootstrap methods using a simulation study,

and I demonstrate the consistency and asymptotic normality of the estimated coefficients

β̂ as well as the validity of the bootstrap coefficients β̂∗ under different degrees of cross-

sectional dependence.

3.5.1 Data generating process

Without loss of generality, I set D = 4, β(s, t) = 0 and K = 1. The data for the simulation

study is generated as follow.
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(D.i) I construct a pseudo-continuous interval of T := [0, t̄] consisting of 1001 equally-

spaced points, denoted T p, and then I take Stp := [0, t] ∩ T p for all t ∈ T .

(D.ii) I generate n functional predictors Xi’s using basis expansions with a degree of cross-

sectional dependence controlled by a parameter % and imposed through the basis coeffi-

cients. While ρ captures a more general sense of cross-sectional dependence, which can

be in any unknown form, in the current simulation, a fixed correlation between curves is

considered as indicated by %, and this is just one type of the cross-sectional dependence.

Specifically, I use the basis expansion
∑L

l=1 c1,i,lφl(s), letting φl(s)’s be order-four B-spline

basis functions and C be a matrix of basis coefficients, such that C = ΣC,1ΣC,2 and

C =


c1,1,1 · · · c1,n,1

... · · ·
...

c1,1,L · · · c1,n,L

 .
I define ΣC,1 to be an L-by-L matrix of i.i.d. t-distribution with 2 degrees of freedom, and

the rows of the L-by-n matrix ΣC,2 to be random vectors drawn from N (0,Σ%,X) with

Σ%,X :=


r0σ

2
1 r1σ1σ2 · · · rn−1σ1σn

r1σ2σ1 r0σ
2
2 · · · rn−2σ2σn

...
. . .

...

rn−1σnσ1 rn−2σnσ2 · · · r0σ
2
n

 .
Let 1 = r0 > r1 > ... > rbn%c = 0.1 denote an array of descending equally-spaced values

on [1, 0.1] followed by rbn%c + 1 = ... = rn−1 = 0, indicating the correlation coefficients2.

Meanwhile, I obtain σ2
i ∼ χ2(1) and σi :=

√
σ2
i for i = 1, ..., n, indicating the variances

and the standard deviations respectively.

(D.iii) I generate Ui’s in the same way as for Xi’s, with the basis expansion
∑H

h=1 wi,hηh(s),

where H = L, ηh(s)’s are order-four B-spline basis functions and W = ΣW ,1ΣW ,2 where

W =


w1,1 · · · wn,1

... · · ·
...

w1,H · · · wn,H

 .
The matrices ΣW ,1, ΣW ,1 and Σ%,U are defined in the same way as ΣC,1, ΣC,1 and Σ%,X ,

while I use different notations to indicate that the ones for Ui’s are independently generated.

2bn%c represents the largest integer that is smaller than n%.
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(D.iv) With the functional predictors, coefficient and error terms generated from previous

steps, I can obtain n functional responses according to the specification in (3.2).

(D.v) I draw equally-spaced discrete observations of the response and the predictor on

{tj}JYj=1 and {tj}JXj=1 with observational errors εitj ∼ i.i.d. N(0, σ2
ε) for the response and

εitj ∼ i.i.d. N(0, σ2
ε ) for the predictor, obtaining Yitj ’s and Xitj ’s, where σ2

ε is set to be 1%

of the variance of Yi and σ2
ε is set to be 1% of the variance of Xi.

I can obtain B sets of observations for Yi’s and Xi’s by repeating steps (D.1) to (D.v)

B times. In this simulation study, I set B = 199, and I look at the cases where % ∈
{0.1, 0.5, 0.9} under three different sample sizes (J, n) ∈ {(51, 50), (101, 80), (251, 130)}
respectively, with JY = JX = J . The values for t̄, H and L will be determined in the

following discussion.

3.5.2 Simulation results

With the B sets of simulated data, one can obtain B estimated functional coefficients β̂’s.

In the current simulation, I set the parameters for the functional estimators according to

the order conditions stated in the assumptions. Also, since for B-spline basis expansion of

order D, every point in the functional data is spanned by D consecutive basis functions, I

let the block size be D = 4 and the blocks overlap with a 1 step of jump, so that I keep

together the basis functions that span every single point of the functional data. Then I

first demonstrate the consistency of β̂ using the following statistic:

R2
β,% = E

[
sup

(s,t)∈T2

∣∣∣∣[β̂%(s, t)− β(s, t)
]T [

β̂%(s, t)− β(s, t)
]∣∣∣∣
]
, (3.18)

where β̂%(s, t) denotes the estimated functional coefficients β̂(s, t) obtained under the cross-

sectional dependence of degree % specifically. The statistic R2
β,% measures the size of the

maximal error of estimated functional coefficients over the domain, where the expectation

is approximated by averaging across all 199 sets of simulated samples. When the estimator

β̂%(s, t) is consistent, I expect the statistic R2
β,% to vanish as n, J → ∞. The statistics

under different sample sizes and different degrees of cross-sectional dependence are shown

in Table 3.1. The results indicate that in general, the estimation error is decreasing as the

sample size increases, and the estimation error is generally smaller when the cross-sectional

dependence is weaker.
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Table 3.1: Consistency

Fixed t̄ t̄→∞

J n % = 0.1 % = 0.5 % = 0.9 t̄ H (or L) % = 0.1 % = 0.5 % = 0.9

51 50 0.1808 0.0980 0.1455 100 43 0.0938 0.1126 0.1949

101 80 0.1087 0.2603 0.2176 200 83 0.0489 0.0456 0.0461

251 130 0.0965 0.1586 0.1723 400 163 0.0046 0.0141 0.0097

Note: J indicates the number of time observations, n the number of individuals, % the cross

sectional dependence, H and L the numbers of basis functions of Yi(t) and Xki(s) respectively,

and t̄ the upper bound of the considered time domain.

Figures 3.1 to 3.4 present the comparison between the underlying and estimated func-

tional coefficients with (% = 0.9, J = 51, n = 50) and (% = 0.9, J = 251, n = 130) with in-

filling asymptotics as examples. Specifically, Figures 3.1 and 3.3 plot the true coefficient

surface (left) versus the estimated surface (right) from a set of randomly selected data out

of the 199 simulated data sets. Figures 3.2 and 3.4 then chooses four time points on [0, t̄],

namely t? = {t25, t50, t75, t100}, and plots the true coefficient β(s, t?) (the black dashed

lines) versus the estimated coefficients β̂(s, t?)’s from all 199 simulated data sets (the grey

solid lines).

Second, I show the asymptotic normality of the estimated functional coefficients us-

ing the Kolmogorov-Smirnov (K-S) Test. Specifically, in both settings with a fixed or an

enlarging t̄, I compare the statistic V̂
−1/2
β,ρ (s, t)n1−ρ

√
t̄
[
β̂(s, t)− β(s, t)

]
with a standard

normal distribution through the K-S test over the domain T2 pointwisely and report the

probability of rejection, where V̂
−1/2
β,ρ (s, t) denotes the empirical variance of β̂ρ(s, t) ob-

tained from the DGP. If the estimator β̂ρ(s, t) is asymptotically normally distributed, the

rejection rates of the K-S test are expected to decline as the sampel size increases.

As shown in Table 3.2, with and enlarging t̄, the rejection rates of the K-S test generally

decreases as the sample size increases. However, with fixed t̄, the rejection rates stay

relatively high despite of the increase in sample size. This results demonstrate the point

I made earlier that with a domain of a fix length, the stationarity or the ergodicity of the

functions do not present in the data; hence, even with large sample, averaging over the

time dimension does not necessarily result in asymptotic normality.
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Figure 3.1: β(s, t) (left) vs. β̂(s, t) (right); % = 0.9, J = 51, n = 50

Figure 3.2: β(s, t) (black dashed lines) vs. β̂(s, t) (grey solid lines) at fixed t; % = 0.9,

J = 51, n = 50

Then I present the bootstrap for the functional coefficients. I again randomly select one

set of simulated data and the corresponding estimate β̂(s, t). Then I compare between the

settings of (% = 0.9, J = 51, n = 50) and (% = 0.9, J = 251, n = 130) with in-filling asymp-

totics in Figures 3.5 to 3.8 as examples. Furthermore, similarly to the tests on asymptotic

normality, the distributions of the bootstrapped coefficients and the estimated coefficients
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Figure 3.3: β(s, t) (left) vs. β̂(s, t) (right); % = 0.9, J = 251, n = 130

Figure 3.4: β(s, t) (black dashed lines) vs. β̂(s, t) (grey solid lines) at fixed t; % = 0.9,

J = 251, n = 130

from the simulated data are compared through K-S tests over the domain T2 pointwisely;

the probability of rejection rates are shown in Table 3.3 – a lower (higher) rejection rate

indicates the bootstrap distribution provides a better (worse) approximation to the dis-

tribution of the estimated coefficients. Comparing the rejection rates of the K-S tests

on asymptotic normality and on bootstrap validity, I can see that the bootstrap approx-
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Table 3.2: Asymptotic Normality

Fixed t̄ t̄→∞

J n % = 0.1 % = 0.5 % = 0.9 t̄ H (or L) % = 0.1 % = 0.5 % = 0.9

51 50 0.6806 0.6843 0.4030 100 43 0.5407 0.6614 0.7964

101 80 0.5275 0.4947 0.6711 200 83 0.3757 0.4521 0.2852

251 130 0.5832 0.6304 0.4267 400 163 0.3085 0.4290 0.2368

Note: J indicates the number of time observations, n the number of individuals, % the cross

sectional dependence, H and L the numbers of basis functions of Yi(t) and Xki(s) respectively,

and t̄ the upper bound of the considered time domain.

Figure 3.5: β̂∗(s, t) (left) vs. β̂(s, t) (right); % = 0.9, J = 51, n = 50

imation outperforms the normal approximation to the true distribution of the estimated

functional coefficients, under both fixed t̄ or large t̄. Also, the performance of the bootstrap

approximation is relatively stable with either finite or large t̄.

Finally, in Figures 3.9 and 3.10, I present the p-values versus the 5% significance level

over time from the K-S tests on asymptotic normality (the first plots in both figures) and

on bootstrap validity (the second plot in both figures). I again choose four time points

t = {t25, t50, t75, t100} on [0, t̄], and plots the p-values over the corresponding time intervals
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Figure 3.6: β̂∗(s, t) (black dashed lines) vs. β̂(s, t) (grey solid lines) at fixed t; % = 0.9,

J = 51, n = 50

Figure 3.7: β̂∗(s, t) (left) vs. β̂(s, t) (right); % = 0.9, J = 251, n = 130

(s, t) for all s ∈ [0, t]. Figure 3.9 shows that when the sample size is relatively small, the

K-S test on asymptotic normality is mostly rejected, indicating that the standard normal

distribution cannot provide a good approximation to the distribution of the estimated

coefficients, while the K-S test for the bootstrap approximation is mostly not rejected,

indicating that the bootstrap distribution formed by β̂∗(s, t)’s provides a much better
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Figure 3.8: β̂∗(s, t) (black dashed lines) vs. β̂(s, t) (grey solid lines) at fixed t; % = 0.9,

J = 251, n = 130

Table 3.3: Bootstrap Validity

Fixed t̄ t̄→∞

J n % = 0.1 % = 0.5 % = 0.9 t̄ H (or L) % = 0.1 % = 0.5 % = 0.9

51 50 0.1835 0.4102 0.1883 100 43 0.1256 0.2741 0.4384

101 80 0.1837 0.1642 0.3797 200 83 0.2194 0.2570 0.0914

251 130 0.1275 0.0992 0.0944 400 163 0.1468 0.2378 0.0914

Note: J indicates the number of time observations, n the number of individuals, % the cross

sectional dependence, H and L the numbers of basis functions of Yi(t) and Xki(s) respectively,

and t̄ the upper bound of the considered time domain.

approximation. While Figure 3.10 shows the test results with a large sample — both the

asymptotic normality and the bootstrap have better performance in terms of the p-values

from the K-S tests. Another interesting phenomenon is that the approximation by the

asymptotic normality seems to be better in the later stage (when t = {t100}) than the

earlier one (when t = {t25, t50}). One explanation is that, in the hFLM, estimation with

B-spline-based estimated functional coefficients uses fewer data points while t is small than

when t is large; hence in general, the asymptotic normality forms faster in the later stage,

i.e., when t is large.
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Figure 3.9: p-values of the K-S tests; % = 0.9, J = 51, n = 50

3.6 Conclusion

In this chapter, I consider the historical functional linear model for longitudinal data with

unknown cross-sectional dependence. This chapter contributes to the literature by estab-

lishing the asymptotics of the B-spline-based estimated functional coefficients and develop-

ing the bootstrap inference, accommodating unknown forms of cross-sectional dependence.

The main findings are (i) a uniform convergence rate of the estimated functional coefficients

is derived depending on the degree of cross-sectional dependence and
√
n-consistency can

be achieved in the absence of cross-sectional dependence, which is a faster convergence

than the estimators proposed in Kim et al. (2011); (ii) under proper stationary and er-

godicity conditions on the functional variables, asymptotic normality of the estimated

coefficients can be obtained with unknown forms of cross-sectional dependence; (iii) the

proposed bootstrap method has a better finite-sample performance than the asymptotics

69



Figure 3.10: p-values of the K-S tests; % = 0.9, J = 251, n = 130

while approximating the distribution of the estimated functional coefficients, and it can

be used to construct percentile confidence intervals and perform hypothesis tests for the

functional coefficients. I also provide simulation analysis to illustrate the estimation and

bootstrap procedures and to demonstrate the properties of the estimators. Moreover, I also

demonstrate through the theorem as well as the simulation that even with an enlarging

sample size along the time dimension, the in-filling asymptotics does not necessarily lead

to normality at the limit. The time period needs to be long enough to reveal the station-

arity and ergodicity of the functions, then averaging over the time dimension can result in

asymptotic normality. To my best knowledge, this study is the first to discuss the asymp-

totic and bootstrap inferences for the functional coefficients in hFLMs with cross-sectional

dependence.

There are several aspects in the current study that motivate future research. For exam-

ple, a bootstrap approach provides a practical alternative for estimating the distribution
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of statistics when the the analytical results become unavailable or too complicated to

achieve; in some circumstances, a transformation operator can also provide an alternative

by transforming the statistics of interest into ones that are asymptotically distribution-

free. Then the question becomes, for the historical functional linear model with unknown

cross-sectional dependence, does there exist such a transformation scheme that can turn

the statistic Vβ,ρ
−1/2(s, t)n1−ρ

√
t̄
[
β̂(s, t)− β(s, t)

]
into one following a known distribution,

which can also be used to construct percentile confidence intervals or perform hypothesis

tests; if the answer is yes, then how would the properties of such transformed statistics

compare to the properties of bootstrap statistics. Moreover, endogeneity is a very common

issue in regression analysis. Benatia et al. (2017) address the situation with endogene-

ity in a functional linear regression model with bivariate functional coefficients, providing

asymptotics of the estimators. A further study along this line is to develop the estimators

and their properties in hFLMs when endogeneity is involved, or furthermore, to construct

specification test to detect endogenous predictors under functional setups.
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APPENDICES

A Appendices of Chapter 1

We now prove Theorems 1.3.1 and 1.3.2. Since the proofs for m = 1 and m = 2 follow the

same idea, we will show the proofs for m = 1 only.

Recall that Gj,v(t) = Xj,v(t), X
′
j,v(t), X

′′
j,v(t) and Ĝj,v(t) denotes the corresponding es-

timated function, for all j and v.

A.1 Proof of Theorem 1.3.1

We can expand 1
N

∑N
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

)
as

1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

)

=
1

N

N∑
j=1

(
Gj,v1(t)− µGv1 (t)

)
− 1

N

N∑
j=1

(
Gj,v2(t)− µGv2 (t)

)
+
(
µGv1 (t)− µGv2 (t)

)
+

1

N

N∑
j=1

(
Ĝj,v1(t)−Gj,v1(t)

)
− 1

N

N∑
j=1

(
Ĝj,v2(t)−Gj,v2(t)

)
. (A.1)

Under Assumptions 1.3.1 and 1.3.2, applying Chebyshev’s inequality and Theorem 2 from

Claeskens et al. (2009), we have Ĝj,v(t) − Gj,v(t) = Op (S−γ) for given j, v and almost all
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t (Claeskens et al., 2009, Theorem 2) 3, which implies that

√
N

 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

)
=
√
N

 1

N

N∑
j=1

(
Gj,v1(t)− µGv1 (t)

)−√N
 1

N

N∑
j=1

(
Gj,v2(t)− µGv2 (t)

)+

√
N
(
µGv1 (t)− µGv2 (t)

)
+Op

(
N1/2S−γ

)
. (A.2)

By Assumption 1.3.3 and Lyapunov CLT,

√
N

 1

N

N∑
j=1

(Gj,v(t)− µGv(t))

 d−→ N
(
0, N−1S2

N,Gv(t)
)
, (A.3)

and under the null hypothesis, µGv1 (t)−µGv2 (t) = 0; then symmetry of normal distributions

implies that

√
N

 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

) d−→ G(1)(t),

where G(1)(t) ∼ N
(

0, N−1S2
N,Gv1

(t)
)

+N
(

0, N−1S2
N,Gv2

(t)
)

. Hence, applying the contin-

uous mapping theorem, we have

√
NW (1)

v1,v2 =
√
N

∫ 1

0

 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

)2

dt
d−→
∫ 1

0

(
G(1)(t)

)2
dt.

Recall that
{
G∗b,j,v(t)

}N
j=1

denotes the b-th set of bootstrap sample from {Gj,v(t)}Nj=1,

where we apply an i.i.d. bootstrap, and Ĝ∗b,j,v(t) denotes the corresponding estimated

functions. We again apply Chebyshev’s inequality and Theorem 2 from Claeskens et al.

(2009), so that Ĝ∗b,j,v(t) − G∗b,j,v(t) = Op (S−γ) for given j, v, b and almost all t. We can

3Under the optimal K and λ that satisfy Assumption 1.3.2, the pointwise asymptotic bias and the

square root of the pointwise asymptotic variance are both O
(
S−4/9

)
(Claeskens et al., 2009, Theorem 2).

For the verification, see Claeskens et al. (2009).
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then obtain

1

N

N∑
j=1

(
Ĝ∗b,j,v1(t)− Ĝ∗b,j,v2(t)

)
− 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

)

=
1

N

N∑
j=1

(
G∗b,j,v1(t)−G∗b,j,v2(t)

)
− 1

N

N∑
j=1

(Gj,v1(t)−Gj,v2(t)) +Op
(
S−γ

)
.

Noting that {Gj,v(t)}Nj=1 is the population of
{
G∗b,j,v(t)

}N
j=1

, we can define µG∗v,b(t) :=

N−1
∑N

j=1 Gj,v(t). Hence, we have the following:

1

N

N∑
j=1

(
Ĝ∗b,j,v1(t)− Ĝ∗b,j,v2(t)

)
− 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

)

=
1

N

N∑
j=1

(
G∗b,j,v1(t)− µG∗v1,b(t)

)
− 1

N

N∑
j=1

(
G∗b,j,v2(t)− µG∗v2,b(t)

)
+Op

(
S−γ

)
.

Since
{
G∗b,j,v(t)

}N
j=1

is obtained from i.i.d. resampling, it is implied that

G∗b,j,v(t)− µG∗v,b(t)
d
= Gj,v(t)− µGv(t),

which therefore implies that

√
NW

∗(m)
b,v1,v2

=
√
N

∫ 1

0

 1

N

N∑
j=1

(
Ĝ∗b,j,v1(t)− Ĝ∗b,j,v2(t)

)
− 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

)2

dt

d−→
∫ 1

0

(
G(1)(t)

)2
dt. (A.4)

�

A.2 Proof of Theorem 1.3.2

According to Equations (A.1) to (A.3), we have

√
N

 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

) = G(1)(t) +
√
N
(
µGv1

(t)− µGv2
(t)
)

+Op
(
N1/2S−γ

)
.
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Under the alternatives, µGv1 (t)− µGv2 (t) = O(1), and
√
N
(
µGv1 (t)− µGv2 (t)

)
= O(N1/2);

hence,

√
N

 1

N

N∑
j=1

(
Ĝj,v1(t)− Ĝj,v2(t)

) = Op(N1/2).

According to the proofs of Theorem 1.3.1, the result in Equation (A.4) does not de-

pend on the null hypothesis. Therefore, we can conclude that under the alternatives,√
NW

∗(m)
b,v1,v2

= Op(1).

�

B Appendices of Chapter 2

This appendix contains definitions for the notations, derivations of the estimators, as well

as the proofs to the theorems and the to-be-stated Lemmas.

B.1 Notations

Recall that n denotes the number of replications, and J is the number of observations

for each replication, which forms an index set {tj}Jj=1. We can then define the following

vectors:

xi =


xi(t1)

...

xi(tJ)


J×1

, εi =


εi(t1)

...

εi(tJ)


J×1

;

x̃i is constructed in the same way. The matrices of the basis functions are defined as

follows:

β(·) =


β1(·)

...

βM (·)


M×1

,α(·) =


α1(·)

...

αH(·)


H×1

,A(·) =


α(·)

. . .

α(·)


HK×K

,
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θ(·) =


θ1(·)

...

θQ(·)


Q×1

,ΘP (·) =


θ(·)

. . .

θ(·)


QP×P

,Θ(·) =


ΘP (·)

. . .

ΘP (·)


QPK×PK

,

ψ(·) =


ψ1(·)

...

ψP (·)


P×1

,Ψ(·) =


ψ(·)

. . .

ψ(·)


PK×K

;

the matrices of the basis coefficients are

ci =


ci,1
...

ci,M


M×1

,C =


c′1
...

c′n


n×M

,dk =


dk,1

...

dk,M


M×1

,D =


d′1
...

d′K


K×M

,

ak =


ak,1

...

ak,H


H×1

,a =


a1

...

aK


HK×1

,

bi,k,p =


bi,k,p,1

...

bi,k,p,Q


Q×1

, bi,k =


bi,k,1

...

bi,k,P


QP×1

, bi =


bi,1

...

bi,K


QPK×1

,B =


b′1
...

b′n


n×QPK

,

where the corresponding estimators are constructed in the same way. Specifically, β(·),
ci and C are for the estimation of the functional data from the observations xit; β(·), dk
and D are for the estimation of the functional principal components; α(·), A(·), ak and

a are for the estimation of the functional factors; the rest of the basis functions and the

coefficients are for the estimation of the bi-variate functional loadings. For simplicity of

expression, we introduce the following notations:

Ω̂λ(t) :=
∫ t

0 f̂
T (s)ΨT (s)dsΘT (t);

R̂λ :=
∫ 1

0

{
Ω̂T
λ (t)Ω̂λ(t)

}
dt+ γλ

∫ 1
0 Θ′′(t)Θ′′T (t)dt.
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Also, let f 0
k and ρk denote the limits of the estimated eigenfunctions f̂ ∗k ’s and eigenvalues

ρ̂k’s as n, J →∞, then Assumption 2.3.1 implies that f̂ ∗k − f 0
k = Op

(
n−1/2

)
and ρ̂k − ρk =

Op
(
n−1/2

)
for all k (e.g., Hall et al., 2006)3, and correspondingly, f̂ ∗ − f 0 = Op

(
n−1/2

)
and ρ̂− ρ = Op

(
n−1/2

)
4.

B.2 Derivation

Recall that order-four B-spline bases with equal-spaced knots on [0, 1] time interval are

used to estimate the functional data xi(·) and the functional principal components f̂ ∗(·),
order-four B-spline bases are used to estimate the functional factors f̂(·) as well as the

first dimension of the loading functions λ∗i (·), and order-one B-spline bases are used for

the second dimension of the loading functions. Meanwhile, we use the roughness penalties

of order-two derivatives for all the functional estimators but that for the second dimension

of the functional loadings.

The estimates of {ci}i’s, denoted {c̃i}i’s, can be obtained by solving the first order

conditions of Equation (2.7), such that

c̃i =

 1

J

J∑
j=1

β(tj)β
T (tj) + γx

∫ 1

0
β′′(t)β′′T (t)dt


−1

1

J

J∑
j=1

β(tj)xitj , ∀i, (B.1)

then the fitted functional data can be expressed as

x̃(t) = C̃β(t). (B.2)

Approximating f ∗(t) with the basis expansion Dβ(t) and defining the estimator f̂ ∗(t) :=

D̂β(t) correspondingly, where D̂ denotes the estimator of D, we can then re-write Equa-

3Hall et al. (2006) states that if the process xi(t) is fully observed without noise, the eigenfunctions f̂∗k ’s

and the eigenvalues ρ̂k’s are both Op
(
n−1/2

)
, but if the observations come with noise, the convergence of

the eigenvalues will still be at the rate of Op
(
n−1/2

)
, while that of the eigenfunctions will drop to a lower

speed; however, as the number of observations J goes to infinity, one can treat the process xi(t) as fully

observed in a continuum.
4In our proofs, we use the O, Op and op notations for the cases with matrices in any dimensions

(i.e., scalars, vectors or higher dimensional matrices), and we let the notations adjust to the comfortable

dimensions without specifying repeatedly.
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tion (2.13) as ∫ 1

0
n−1D̂β(s)βT (s)C̃T C̃β(t)ds = ρ̂D̂β(t), (B.3)

where

ρ̂ = n−1

∫ 1

0
D̂β(t)βT (t)C̃Tdt

∫ 1

0
C̃β(t)βT (t)D̂Tdt.

Since Equation (B.3) holds for β(t) at all t, it can be reduced to

D̂n−1

∫ 1

0
β(s)βT (s)dsC̃T C̃ = ρ̂D̂,

which follows

D̂

{∫ 1

0
β(s)βT (s)ds

}1/2

n−1

{∫ 1

0
β(s)βT (s)ds

}1/2

C̃T C̃

{∫ 1

0
β(s)βT (s)ds

}1/2

=ρ̂D̂

{∫ 1

0
β(s)βT (s)ds

}1/2

, (B.4)

with the identification constraint∫ 1

0
f̂∗(s)f̂∗T (s)ds = D̂

∫ 1

0
β(s)βT (s)dsD̂T = IK , (B.5)

where IK is a K ×K identity matrix. The K ×M matrix D̂
{∫ 1

0
β(s)βT (s)ds

}1/2

can be

computed by filling up the K rows with the eigenvectors corresponding to the largest K

eigenvalues of the M ×M matrix

n−1

{∫ 1

0
β(s)βT (s)ds

}1/2

C̃T C̃

{∫ 1

0
β(s)βT (s)ds

}1/2

,

and D̂ can be computed as

[
D̂
{∫ 1

0
β(s)βT (s)ds

}1/2
]{∫ 1

0
β(s)βT (s)ds

}−1/2

. Once D̂ is

obtained, we can get f̂ ∗(t) as

f̂∗(t) = D̂β(t), (B.6)

and the estimated factors

f̂(t) :=
∂f̂∗(t)

∂t
.
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For the estimation of the loadings, the coefficients bi’s, and thus λ∗i (·), can be estimated

through the following penalized least squares criteria, where b̃i represents any estimator of

bi:

m(
{
b̃i

}
; γλ, Q) :=

∫ 1

0

{
x̃i(t)− b̃Ti Ω̂T

λ (t)
}2
dt+ γλ

∫ 1

0
b̃Ti Θ′′(t)Θ′′T (t)b̃idt, (B.7)

and the estimator b̂i (and thus B̂), can be obtained by solving the first order condition,

such that

b̂i =R̂−1
λ

∫ 1

0
Ω̂T
λ (t)x̃i(t)dt, (B.8)

and the corresponding estimator for λ̃∗i (·) as well as the estimated loading function can

then be expressed as

λ̂∗i (t) = ΘT (t)b̂i, ∀i; Λ̂∗(t) = B̂Θ(t),

and

λ̂i(t, s) = ΨT (s)ΘT (t)b̂i, ∀i; Λ̂(t, s) = B̂Θ(t)Ψ(s). (B.9)

B.3 Proofs of theorems

In this section, we present the proofs of the theorems. We first introduce another index

set, {τj}Tj=1, consisting of points that are equally spaced on [0, 1], where T →∞5, and we

define the integral transformation W , such that

(Wf)(t) := ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)f
∗T (τj)Λ

∗T (τj)Λ
∗(t)

∫ t

0
Ψ(s)f(s)ds.

Also, for the latent factors f(t) and the estimator f̂(t), there exists some PK-by-PK

continuous matrix function W ∗(t), such that
∫ t

0
Ψ(s)f(s)ds = W ∗(t)

∫ t
0

Ψ(s)f̂(s)ds, for

all t ∈ [0, 1].

We now begin the proofs with the statement of the following lemmas.

5The use of {τj}Tj=1 and T is for the proof, in order to separate from the index for observations when

necessary.
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Lemma B.1 Under Assumption 2.3.1, we have that Ω̂λ(s)
{∫ 1

0
Ω̂T
λ (τ)Ω̂λ(τ)dτ

}−1

Ω̂T
λ (t)−

Ω̂λ(s)R̂
−T
λ Ω̂T

λ (t) = O (γλ).

Lemma B.2 Under Assumptions 2.3.3, 2.3.5 and 2.3.6.c, there exists a vector µi, where

µi =
∫ 1

0
f 0(t)

∫ t
0
µf (s)Ψ

T (s)dsλ∗i (t)dt for every i so that T−1
∑T

j=1 f
0(τj)f

∗T (τj)λ
∗
i (τj) =

µi +Op
(
T−1/2

)
.

The proof of Theorem 2.3.1.a

By subtracting and adding terms, we have

f̂∗(t)− (Wf)(t) =

f̂∗(t)− ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)x̃
T (τj)x̃(t)

+

ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)x̃
T (τj)x̃(t)− ρ̂−1n−1T−1

T∑
j=1

f̂∗(τj)x
T (τj)x(t)

+

ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)x
T (τj)x(t)− (Wf)(t)

 = (I) + (II) + (III).

(B.10)

Recall that f̂ ∗(t) = ρ̂−1n−1
∫ 1

0
f̂ ∗(s)x̃T (s)dsx̃(t), and applying Theorem 1(c) from Chui

(1971), we have
∫ 1

0
f̂ ∗(s)x̃i(s)ds− T−1

∑T
j=1 f̂

∗(τj)x̃i(τj) = O (T−1)6; therefore,

(I) = f̂∗(t)− ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)x̃
T (τj)x̃(t)

= ρ̂−1n−1
n∑
i=1


∫ 1

0
f̂∗(s)x̃i(s)ds− T−1

T∑
j=1

f̂∗(τj)x̃i(τj)

 x̃i(t) = O
(
T−1

)
. (B.11)

For (II), first note that x̌i(t) is arbitrarily close to xi(t) for all i, and applying Assump-

tion 2.3.1 and Theorem 2 from Claeskens et al. (2009), we have x̃i(t)− x̌i(t) = Op
(
J−4/9

)
;

6Since f̂∗(t) and x̃i(t) both consist of order-four local polynomials, they are both absolutely continuous,

which suffices the result in Theorem 1(c) in Chui (1971).
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hence, it follows that

x̃i(t)− xi(t) = Op
(
J−4/9

)
.

Therefore,

(II) = ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)x̃
T (τj)x̃(t)− ρ̂−1n−1T−1

T∑
j=1

f̂∗(τj)x
T (τj)x(t)

= ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj) {x̃(τj)− x(τj)}T {x̃(t)− x(t)}+

ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj) {x̃(τj)− x(τj)}T x(t)+

ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)x
T (τj) {x̃(t)− x(t)}

= Op
(
J−8/9

)
+Op

(
J−4/9

)
+Op

(
J−4/9

)
= Op

(
J−4/9

)
. (B.12)

For (III), recall (Wf)(t) := ρ̂−1n−1T−1
∑T

j=1 f̂
∗(τj)f

∗T (τj)Λ
∗T (τj)Λ

∗(t)
∫ t

0
Ψ(s)f(s)ds,

then we have

(III) = ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)x
T (τj)x(t)− (Wf)(t)

= ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)x
T (τj)x(t)−

ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)f
∗T (τj)Λ

∗T (τj)Λ
∗(t)

∫ t

0
Ψ(s)f(s)ds

= ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)f
∗T (τj)Λ

∗T (τj)ε(t) + ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)ε
T (τj)Λ

∗(t)f∗(t)+

ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)ε
T (τj)ε(t) = (III.1) + (III.2) + (III.3). (B.13)
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By Assumption 2.3.5.c, we have the followings:

(III.1) = ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)f
∗T (τj)Λ

∗T (τj)ε(t)

= ρ̂−1T−1
T∑
j=1

f̂∗(τj)f
∗T (τj)

{
n−1

n∑
i=1

λ∗i (τj)εi(t)

}

= ρ̂−1T−1
T∑
j=1

f̂∗(τj)f
∗T (τj)Op

(
n−1/2

)
= Op

(
n−1/2

)
, (B.14)

and similarly,

(III.2) = ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)ε
T (τj)Λ

∗(t)f∗(t)

= ρ̂−1T−1
T∑
j=1

f̂∗(τj)

{
n−1

n∑
i=1

εi(τj)λ
∗T
i (t)

}
f∗(t) = Op

(
n−1/2

)
; (B.15)

by Assumption 2.3.5.b,

(III.3) = ρ̂−1n−1T−1
T∑
j=1

f̂∗(τj)ε
T (τj)ε(t)

= ρ̂−1T−1
T∑
j=1

f̂∗(τj)

{
n−1

n∑
i=1

εi(τj)εi(t)

}
= op

(
n−1/2

)
. (B.16)

Therefore, (III) = Op
(
n−1/2

)
. Applying triangle inequality, we then have∥∥∥f̂∗(t)− (Wf)(t)

∥∥∥ ≤ ‖(I)‖+ ‖(II)‖+ ‖(III)‖ = Op
(

max
{
T−1, J−4/9, n−1/2

})
= op(1).

(B.17)

�

The proof of Theorem 2.3.1.b

To separate the convergence rates of different estimators, we now introduce another index

set, {sj}Sj=1, consisting of points that are equally spaced on [0, 1], where S →∞. Recall the
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definition of W ∗(t), we have xi(t) = λ∗Ti (t)f ∗(t) = λ∗Ti (t)W ∗(t)
∫ t

0
Ψ(s)f̂(s)ds. Note that

the continuous function W ∗T (t)λ∗i (T ) has an arbitrarily close polynomial approximation,

then again, by Assumption 2.3.1 and Theorem 2 from Claeskens et al. (2009), we can find

some coefficients, say b0
i, for the base Θ(·), such that

W ∗T (t)λ∗i (T )−ΘT (t)b0
i = Op

(
J−4/9

)
,

and therefore,

xi(t) = λ∗Ti (t)W ∗(t)

∫ t

0
Ψ(s)f̂(s)ds

= b0T
i Θ(t)

∫ t

0
Ψ(s)f̂(s)ds+Op

(
J−4/9

)
= b0T

i ΩT
λ (t) +Op

(
J−4/9

)
;

a penalized least squares estimator of b0T
i can then be expressed as

b̂i =

{∫ 1

0
Ω̂T
λ (t)Ω̂λ(t)dt+ γλ

∫ 1

0
Θ
′′
(t)Θ

′′T (t)dt

}−1{∫ 1

0
Ω̂T
λ (t)x̃i(t)dt

}
.

Hence, we have the following:∫ t

0
λ̂Ti (t, s)f̂(s)ds−

∫ t

0
λTi (t, s)f(s)ds = b̂Ti ΩT

λ (t)−
∫ t

0
λTi (t, s)f(s)ds

=

b̂Ti Ω̂T
λ (t)− S−1

S∑
j=1

xi(sj)Ω̂λ(sj)R̂
−T
λ Ω̂T

λ (t)

+

S−1
S∑
j=1

xi(sj)Ω̂λ(sj)R̂
−T
λ Ω̂T

λ (t)−
∫ t

0
λTi (t, s)f(s)ds


= (IV ) + (V ). (B.18)

Substituting in previous results, it follows that

(IV ) = b̂Ti Ω̂T
λ (t)− S−1

S∑
j=1

xi(sj)Ω̂λ(sj)R̂
−T
λ Ω̂T

λ (t)

=


∫ 1

0
x̃i(s)Ω̂λ(s)ds− S−1

S∑
j=1

xi(sj)Ω̂λ(sj)

 R̂−Tλ Ω̂T
λ (t). (B.19)
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We again apply Theorem 1 (c) from Chui (1971) and a previous result x̃i(t) = xi(t) +

Op
(
J−4/9

)
, so that

∫ 1

0
x̃i(s)Ω̂λ(s)ds− S−1

S∑
j=1

xi(sj)Ω̂λ(sj) = O
(
S−1

)
+Op

(
J−4/9

)
= Op

(
max

{
S−1, J−4/9

})
.

Hence, under Assumption 2.3.1,

(IV ) = Op
(

max
{
S−1, J−4/9

})
R̂−Tλ Ω̂T

λ (t) = Op
(

max
{
S−1, J−4/9

})
. (B.20)

For (V), by subtracting and adding terms, we have the followings:

(V ) = S−1
S∑
j=1

xi(sj)Ω̂λ(sj)R̂
−T
λ Ω̂T

λ (t)−
∫ t

0
λTi (t, s)f(s)ds

= S−1
S∑
j=1

{
λ∗Ti (sj)W

∗(sj)− b0T
i Θ(sj)

}∫ sj

0
Ψ(s)f̂(s)dsΩ̂λ(sj)R̂

−T
λ Ω̂T

λ (t)+

S−1
S∑
j=1

b0T
i Θ(sj)

∫ sj

0
Ψ(s)f̂(s)dsΩ̂λ(sj)R̂

−T
λ Ω̂T

λ (t)−
∫ t

0
λTi (t, s)f(s)ds+

S−1
S∑
j=1

εi(sj)Ω̂λ(sj)R̂
−T
λ Ω̂T

λ (t) = (V.1) + (V.2) + (V.3). (B.21)

According to Assumption 2.3.1 and previous results, it is implied that

(V.1) = S−1
S∑
j=1

{
λ∗Ti (sj)W

∗(sj)− b0T
i Θ(sj)

}∫ sj

0
Ψ(s)f̂(s)dsΩ̂λ(sj)R̂

−T
λ Ω̂T

λ (t)

= S−1
S∑
j=1

Op
(
J−4/9

)∫ sj

0
Ψ(s)f̂(s)dsΩ̂λ(sj)R̂

−T
λ Ω̂T

λ (t) = Op
(
J−4/9

)
, (B.22)
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For (V.2), applying Theorem 1 (c) from Chui (1971) and Lemma B.1, we have

(V.2) = S−1
S∑
j=1

b0T
i Θ(sj)

∫ sj

0
Ψ(s)f̂(s)dsΩ̂λ(sj)R̂

−T
λ Ω̂T

λ (t)−
∫ t

0
λTi (t, s)f(s)ds

= b0T
i S
−1

S∑
j=1

Ω̂T
λ (sj)Ω̂λ(sj)

{∫ 1

0
Ω̂T
λ (s)Ω̂λ(s)ds

}−1

Ω̂T
λ (t)−

∫ t

0
λTi (t, s)f(s)ds+O (γλ)

= b0T
i Ω̂T

λ (t)−
∫ t

0
λTi (t, s)f(s)ds+O (γλ) +O

(
S−1

)
=
{
b0T
i Θ(t)− λ∗Ti (t)W ∗(t)

}∫ t

0
Ψ(s)f̂(s)ds+ λ∗Ti (t)W ∗(t)

∫ t

0
Ψ(s)f̂(s)ds−∫ t

0
λTi (t, s)f(s)ds+O (γλ) +O

(
S−1

)
= Op

(
J−4/9

)
+ λ∗Ti (t)f∗(t)−

∫ t

0
λTi (t, s)f(s)ds+O (γλ) +O

(
S−1

)
= Op

(
max

{
J−4/9, γλ, S

−1
})

. (B.23)

By adding and subtracting terms,

(V.3) = S−1
S∑
j=1

εi(sj)Ω̂λ(sj)R̂
−T
λ Ω̂T

λ (t)

= S−1
S∑
j=1

εi(sj)

{∫ sj

0
f̂T (s)ΨT (s)ds+ ĈT0 (sj)− (Wf)T (sj)Ψ

T (sj)

}
ΘT (sj)R̂

−T
λ Ω̂T

λ (t)+

S−1
S∑
j=1

εi(sj)
{

(Wf)T (sj)Ψ
T (sj)− ĈT0 (sj)

}
ΘT (sj)R̂

−T
λ Ω̂T

λ (t) = (V.3.a) + (V.3.b),

(B.24)

where Ĉ0 is a PK-1 vector of step functions breaking at the knots of Ψ and Ψ(t)f̂ ∗(t) =∫ t
0

Ψ(s)f̂(s)ds + Ĉ0(t), since Ψ is a matrix of order-one B-spline basis functions. Hence,

Theorem 2.3.1.a implies that

(V.3.a) =
1

S

S∑
j=1

εi(sj)

{∫ sj

0
f̂T (s)ΨT (s)ds+ ĈT0 (sj)− (Wf)T (sj)Ψ

T (sj)

}
ΘT (sj)R̂

−T
λ Ω̂T

λ (t)

=
1

S

S∑
j=1

εi(sj)
{
f̂∗T (sj)Ψ

T (sj)− (Wf)T (sj)Ψ
T (sj)

}
ΘT (sj)R̂

−T
λ Ω̂T

λ (t) = Op
(
n−1/2

)
.

(B.25)
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For (V.3.b), it follows from Lemma B.2 and previous results that there exists some PK-1

vector of step functions, say C0(t), such that Ĉ0(t) − C0(t) = Op
(
n−1/2

)
for all t; hence,

applying Assumption 2.3.6,

(V.3.b) = S−1
S∑
j=1

εi(sj)
{

(Wf)T (sj)Ψ
T (sj)− ĈT0 (sj)

}
ΘT (sj)R̂

−T
λ Ω̂T

λ (t)

= S−1
S∑
j=1

εi(sj)
{

(Wf)T (sj)Ψ
T (sj)− CT0 (sj)

}
ΘT (sj)R̂

−T
λ Ω̂T

λ (t) +Op
(
n−1/2

)
= Op

(
max

{
T−1/2,

1√
S

})
+Op

(
n−1/2

)
. (B.26)

Therefore, combining the above results, it follows that for all i,∥∥∥∥∫ t

0
λ̂Ti (t, s)f̂(s)ds−

∫ t

0
λTi (t, s)f(s)ds

∥∥∥∥ ≤ ‖(IV )‖+ ‖(V )‖

= Op
(

max

{
J−4/9, γλ, T

−1/2,
1√
S
, n−1/2

})
= op (1) .

The proof of Theorem 2.3.2.a

Let n = o (T ), then according to the proofs of Theorem 2.3.1.a,

√
n
{
f̂∗(t)− (Wf)(t)

}
=
√
n(III) + op(1). (B.27)

We now check
√
n(III) through (III.1), (III.2) and (III.3).

Recall that
∫ 1

0

{
f̂ ∗(t)− f 0(t)

}2

dt = Op (n−1). Under Assumption 2.3.5.c and Slutzky’s

Lemma, we have

√
n(III.1) = ρ̂−1T−1

T∑
j=1

{
f̂∗(τj)− f0(τj) + f0(τj)

}
f∗T (τj)

{
n−1/2

n∑
i=1

λ∗i (τj)εi(t)

}

= ρ̂−1T−1
T∑
j=1

f0(τj)f
∗T (τj)

{
n−1/2

n∑
i=1

λ∗i (τj)εi(t)

}
+

ρ̂−1T−1
T∑
j=1

{
f̂∗(τj)− f0(τj)

}
f∗T (τj)

{
n−1/2

n∑
i=1

λ∗i (τj)εi(t)

}
= (III.1.a) + (III.1.b), (B.28)
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where

(III.1.a) = ρ̂−1T−1
T∑
j=1

f0(τj)f
∗T (τj)

{
n−1/2

n∑
i=1

λ∗i (τj)εi(t)

}

= ρ̂−1n−1/2
n∑
i=1

T−1
T∑
j=1

f0(τj)f
∗T (τj)λ

∗
i (τj)

 εi(t)
d−→ N

(
0,ρ−1Σf (t)ρ−1

)
,

(III.1.b) = ρ̂−1T−1
T∑
j=1

{
f̂∗(τj)− f0(τj)

}
f∗T (τj)

{
n−1/2

n∑
i=1

λ∗i (τj)εi(t)

}
= Op

(
n−1/2

)
;

hence, we have
√
n(III.1)

d−→ N(0,Ψ(t)ρ−1Σf (t)ρ
−1ΨT (t)). Similarly, for

√
n(III.2),

√
n(III.2) =

√
nρ̂−1T−1

T∑
j=1

{
f̂∗(τj)− f0(τj) + f0(τj)

}{
n−1

n∑
i=1

εi(τj)λ
∗T
i (t)

}
f∗(t)

=
√
nρ̂−1T−1

T∑
j=1

{
f̂∗(τj)− f0(τj)

}{
n−1

n∑
i=1

εi(τj)λ
∗T
i (t)

}
f∗(t)+

√
nρ̂−1T−1

T∑
j=1

f0(τj)

{
n−1

n∑
i=1

εi(τj)λ
∗T
i (t)

}
f∗(t) = (III.2.a) + (III.2b),

(B.29)

where

(III.2.a) =
√
nρ̂−1T−1

T∑
j=1

{
f̂∗(τj)− f0(τj)

}{
n−1

n∑
i=1

εi(τj)λ
∗T
i (t)

}
f∗(t) = Op

(
n−1/2

)
,

(III.2.b) = n−1
n∑
i=1

ρ̂−1√n

T−1
T∑
j=1

f0(τj)εi(τj)

λ∗Ti (t)f∗(t) = Op
(
T−1/2n1/2

)
= op(1).

For
√
n(III.3), applying Assumption 2.3.5.b yields

√
n(III.3) =

√
nρ̂−1T−1

T∑
j=1

f̂∗(τj)

{
n−1

n∑
i=1

εi(τj)εi(t)

}
= op(1). (B.30)

Therefore,
√
n
{
f̂∗(t)− (Wf)(t)

}
d−→ N

(
0,ρ−1Σf (t)ρ−1

)
.

�
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The proof of Theorem 2.3.2.b

Let S = o
(
min

{
J8/9, n, T, γ−2

λ

})
, then according to the proofs of Theorems 2.3.1.a, b and

2.3.2.a,

√
S

{∫ t

0
λ̂Ti (t, s)f̂(s)ds−

∫ t

0
λTi (t, s)f(s)ds

}
=
√
S(V.3) + op(1). (B.31)

Here, we show that
√
S inflates (V.3.b) to a distribution, while

√
S(V.3.a) remains op(1).

First, according to previous results,

√
S(V.3) =

1√
S

S∑
j=1

εi(sj)
{
f̂∗T (s)ΨT (s)− (Wf)T (sj)Ψ

T (sj)
}

ΘT (sj)R̂
−T
λ Ω̂T

λ (t)+

1√
S

S∑
j=1

εi(sj)
{

(Wf)T (sj)Ψ
T (sj)− ĈT0 (sj)

}
ΘT (sj)R̂

−T
λ Ω̂T

λ (t)

=
√
S(V.3.a) +

√
S(V.3.b), (B.32)

where
√
S(V.3.a) = Op

(
S1/2n−1/2

)
= op (1). For

√
S(V.3.b), recall that Ĉ0(t) − C0(t) =

Op
(
n−1/2

)
, and Lemma B.2 implies (Wf)(t)− ρ−1n−1

∑n
ι=1µιλ

∗T
ι (t)f ∗(t) = Op

(
T−1/2

)
;

hence,

√
S(V.3.b)

=
1√
S

S∑
j=1

εi(sj)

{
f∗T (sj)

1

n

n∑
ι=1

λ∗ι (sj)µ
T
ι ρ
−TΨT (sj)− CT0 (sj)

}
ΘT (sj)R̂

−T
λ Ω̂T

λ (t) + op (1) .

(B.33)

Applying Assumption 2.3.6 and the CLT for strong mixing processes,

1√
S

S∑
j=1

εi(sj)

{
f∗T (sj)n

−1
n∑
ι=1

λ∗ι (sj)µ
T
ι ρ
−TΨT (sj)− CT0 (sj)

}
ΘT (sj)

d−→ N (µλi,f ,Σλi,f ) ,

where

µλi,f := E

 1√
S

S∑
j=1

εi(sj)

{
f∗T (sj)

1

n

n∑
ι=1

λ∗ι (sj)µ
T
ι ρ
−TΨT (sj)− CT0 (sj)

}
ΘT (sj)

 = 0,
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Σλi,f := lim
S→∞

Var

 1√
S

S∑
j=1

εi(sj)

{
f∗T (sj)

1

n

n∑
ι=1

λ∗ι (sj)µ
T
ι ρ
−TΨT (sj)− CT0 (sj)

}
ΘT (sj)

 <∞.
For R̂−Tλ and Ω̂T

λ (t), according to previous results, we have

Ω̂λ(t) =

∫ t

0
f̂T (s)ΨT (s)dsΘT (t) =

{
f̂∗T (t)ΨT (t)− Ĉ0(t)

}
ΘT (t)

=
{
f0T (t)ΨT (t)− C0(t)

}
ΘT (t) +Op

(
n−1/2

)
.

Then Ω̂λ(t) → Ωλ(t) for all t with Ωλ(t) :=
{
f 0T (t)ΨT (t)− C0(t)

}
ΘT (t), and by the

continuous mapping theorem, we have R̂λ → Rλ with Rλ :=
∫ 1

0

{
ΩT
λ (t)Ωλ(t)

}
dt +

γλ
∫ 1

0
Θ′′(t)Θ′′T (t)dt. Therefore, applying Slutzky’s Lemma,

√
S(V.3.b)

d−→ N
(

0,Ωλ(t)R−1
λ Σλi,fR

−T
λ ΩT

λ (t)
)
,

and it is implied that for all t,

√
S

{∫ t

0
λ̂Ti (t, s)f̂(s)ds−

∫ t

0
λTi (t, s)f(s)ds

}
d−→ N

(
0,Ωλ(t)R−1

λ Σλi,fR
−T
λ ΩT

λ (t)
)
.

B.4 Proofs of lemmas

The proof of Lemma B.1

For any given Ω̂λ(t), let Ml be a squared matrix, such that

M−1
l M−T

l =

∫ 1

0

Ω̂T
λ (t)Ω̂λ(t)dt,

and let Ul be orthonormal and Ll be diagonal, such that

Ml

∫ 1

0

Θ′′(t)Θ′′T (t)dtMT
l = UlLlU

T
l ,

which implies that
∫ 1

0
Θ′′(t)Θ′′T (t)dt = M−1

l UlLlU
T
l M

−T
l . Then we have

Ω̂λ(s)R̂−Tλ Ω̂T
λ (t) = Ω̂λ(s)

{∫ 1

0
Ω̂T
λ (τ)Ω̂λ(τ)dτ + γλ

∫ 1

0
Θ′′(τ)Θ′′T (τ)dτ

}−1

Ω̂T
λ (t)

= Ω̂λ(s)
(
M−1
l UlU

T
l M

−T
l + γλM

−1
l UlLlU

T
l M

−T
l

)−1
Ω̂T
λ (t)

= Ω̂λ(s)MT
l U
−T
l (I + γλLl)

−1 U−1
l MlΩ̂

T
λ (t).
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Since Ll is diagonal, let ll,r be the rth diagonal element, then we have that (I + γλLl)
−1

is also diagonal, with the rth diagonal element 1− γλll,r/ (1 + γλll,r), which is 1 +O (γλ).

Therefore, (I + γfLl)
−1 = I +O (γλ), and it follows that

Ω̂λ(s)R̂−Tλ Ω̂T
λ (t) = Ω̂λ(s)MT

l U
−T
l (I + γλLf )−1 U−1

l MlΩ̂
T
λ (t)

= Ω̂λ(s)

{∫ 1

0
Ω̂T
λ (τ)Ω̂λ(τ)dτ

}−1

Ω̂T
λ (t) +O (γλ) .

�

The proof of Lemma B.2

Under Assumptions 2.3.3 and 2.3.6.c, we have

E

T−1
T∑
j=1

f0(τj)f
∗T (τj)λ

∗
i (τj)


= T−1

T∑
j=1

f0(τj)E
{
f∗T (τj)

}
λ∗i (τj) = T−1

T∑
j=1

f0(τj)

∫ τj

0
E
{
fT (s)

}
ΨT (s)dsλ∗i (τj)

= T−1
T∑
j=1

f0(τj)

∫ τj

0
µf (s)ΨT (s)dsλ∗i (τj)

=

∫ 1

0
f0(t)

∫ t

0
µf (s)ΨT (s)dsλ∗i (t)dt+O

(
T−1

)
= µi +O

(
T−1

)
;

Var

T−1
T∑
j=1

f0(τj)f
∗T (τj)λ

∗
i (τj)

 = T−2 Var


T∑
j=1

f0(τj)f
∗T (τj)λ

∗
i (τj)

 = O
(
T−1

)
.

�

C Appendices of Chapter 3

This appendix contains the proofs of the theorems and the to-be-stated Lemmas for Chap-

ter 3.
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C.1 Proofs of Theorems

To simplify the notations, we define Λ := λΨΛΨ + λΘΛΘ. Then we begin the proofs by

stating the following lemmas.

Lemma C.1 Let f be a function that maps a squared matrix to a real value; then for full

rank squared matrices X, Y and Z, say with dimension J-by-J , there is

f(M1) = f(M2) + tr


[
∂f
(
M̄
)

∂M̄

]T
(M1 −M2)

 ,

where min {M1,ij,M2,ij} < M̄ij < max {M1,ij,M2,ij} for all elements M1,ij, M2,ij and

M̄ij of the matrices M1, M2 and M̄ , respectively, with i, j = 1, ..., J .

Lemma C.2 Under Assumptions 3.3.2 and 3.3.3, we have

a. n−1
∑n

i=1 X̃i(ξ)
[
Ỹi(τ)− Yi(τ)

]
∈ op (nρ−1) for all ξ, τ ∈ T ,

b. n−1
∑n

i=1

[
X̃i(ξ)−Xi(ξ)

]
Yi(τ) ∈ op (nρ−1) for all ξ, τ ∈ T .

Lemma C.3 Suppose Assumptions 3.3.2 and 3.3.3 hold. Given the bases Ψ and θ, we

have the following:

a. supt∈T

∥∥∥X̃ i(t)−X i(t)
∥∥∥
F
∈ op (nρ−1);

b. t̄−1
∫ t̄

0
n−1

∑n
i=1 X̃ i(τ)X̃ i

T (τ)dτ − t̄−1
∫ t̄

0
n−1

∑n
i=1X i(τ)X i

T (τ)dτ ∈ op (nρ−1);

c. for given (s, t), (τ, ξ) ∈ T2,

Ψ(s)Θ(t)

[
t̄−1

∫ t̄

0
n−1

n∑
i=1

X̃i(t
′)X̃i

T (t′)dt′ + Λ

]−1

ΘT (τ)ΨT (ξ)−

Ψ(s)Θ(t)

[
t̄−1

∫ t̄

0
n−1

n∑
i=1

Xi(τ)Xi
T (τ)dτ

]−1

ΘT (τ)ΨT (ξ) ∈ op
(
nρ−1

)
.

Lemma C.4 Under Assumption 3.3.7, we have

a. n−1
∑n

i=1 X̃i(ξ)
[
Ỹi(τ)− Yi(τ)

]
∈ op

(
nρ−1t̄−1/2

)
for all ξ, τ ∈ T ,

b. n−1
∑n

i=1

[
X̃i(ξ)−Xi(ξ)

]
Yi(τ) ∈ op

(
nρ−1t̄−1/2

)
for all ξ, τ ∈ T .
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Lemma C.5 Suppose Assumption 3.3.7 holds. Given the bases Ψ and θ, we have the

following:

a. supt∈T

∥∥∥X̃ i(t)−X i(t)
∥∥∥
F
∈ op

(
nρ−1t̄−1/2

)
;

b. t̄−1
∫ t̄

0
n−1

∑n
i=1 X̃ i(τ)X̃ i

T (τ)dτ − t̄−1
∫ t̄

0
n−1

∑n
i=1X i(τ)X i

T (τ)dτ ∈ op
(
nρ−1t̄−1/2

)
;

c. for given (s, t), (τ, ξ) ∈ T2,

Ψ(s)Θ(t)

[
t̄−1

∫ t̄

0
n−1

n∑
i=1

X̃i(t
′)X̃i

T (t′)dt′ + Λ

]−1

ΘT (τ)ΨT (ξ)−

Ψ(s)Θ(t)

[
t̄−1

∫ t̄

0
n−1

n∑
i=1

Xi(τ)Xi
T (τ)dτ

]−1

ΘT (τ)ΨT (ξ) ∈ op
(
nρ−1t̄−1/2

)
.

Lemma C.6 Suppose Assumptions 3.3.2, and 3.3.4 to 3.3.9 hold, then as t̄→∞, we have

the following:

a. t̄−1
∫ t̄

0
n−1

∑n
i=1 X̃

∗
i (τ)X̃

∗
i
T (τ)dτ − t̄−1

∫ t̄
0
n−1

∑n
i=1X i(τ)X i

T (τ)dτ ∈ op
(
nρ−1t̄−1/2

)
;

b. for given (s, t), (τ, ξ) ∈ T2,

Ψ(s)Θ(t)

[
t̄−1

∫ t̄

0
n−1

n∑
i=1

X̃
∗
i (t
′)X̃

∗
i
T (t′)dt′ + Λ

]−1

ΘT (τ)ΨT (ξ)−

Ψ(s)Θ(t)

[
t̄−1

∫ t̄

0
n−1

n∑
i=1

Xi(t
′)Xi

T (t′)dt′

]−1

ΘT (τ)ΨT (ξ) ∈ op
(
nρ−1t̄−1/2

)
.

Proof of Theorem 3.3.1

Extending the arguments in the proof of Theorem 2.1 by Zhou et al. (1998) and the proof

of Lemma 6.10 by Agarwal and Studden (1980), it is implied that there exists some γ ∈
Γ (D, κψ, κθ) where γ(s, t) = Ψ(s)Θ(t)b, so that ‖γ(s, t)− β(s, t)‖F ∈ o

(
[min {P,Q}]−D

)
for all (s, t) ∈ T2; then by adding and subtracting terms as well as the triangle inequality,

we can write ∥∥∥β̂(s, t)− β(s, t)
∥∥∥
F
≤
∥∥∥β̂(s, t)− γ(s, t)

∥∥∥
F

+ ‖γ(s, t)− β(s, t)‖F

=
∥∥∥β̂(s, t)− γ(s, t)

∥∥∥
F

+ o
(

[min {P,Q}]−D
)
.
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Meanwhile,

β̂(s, t)− γ(s, t)

= Ψ(s)Θ(t)

[∫ t̄

0
n−1

n∑
i=1

X̃i(τ)X̃i
T (τ)dτ + Λ

]−1 ∫ t̄

0
n−1

n∑
i=1

X̃i(τ)Ỹi(τ)dτ −Ψ(s)Θ(t)b

=

Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)X̃i
T (τ)dτ + Λ

]−1
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)
[
Ỹi(τ)− Yi(τ)

]
dτ

+

Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)X̃i
T (τ)dτ + Λ

]−1
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)Yi(τ)dτ −Ψ(s)Θ(t)b


= (I) + (II).

By Assumptions 3.3.2 to 3.3.4 and Lemma C.3.b, t̄−1
∫ t̄

0
n−1

∑n
i=1 X̃ i(τ)X̃ i

T (τ)dτ + Λ is a

positive definite symmetric matrix. Note that for any rank R positive definite symmetric

matrix M with singular values {ζr(M )}Rr=1, applying the facts ‖M‖max ≤ ‖M‖2
7 and

‖M−1‖2 = [min {ζr(M )}r]
−1 yields ‖M−1‖max ≤ ‖M−1‖2 = [min {ζr(M )}r]

−1 ∈ O(1);

hence,
[
t̄−1
∫ t̄

0
n−1

∑n
i=1 X̃ i(τ)X̃ i

T (τ)dτ + Λ
]−1

∈ Op(1) given Ψ(s) and Θ(t). Mean-

time, due to the “locally nonzero” property of ψ(s) and θ(t) of finite orders, the product

Ψ(s)Θ(t) at any point (s, t) ∈ T2 is a K×QPK matrix with only finitely many non-zero el-

ements of orderO(1). Hence, it is implied that for Ψ(s)Θ(t) and Ψ(ξ)Θ(τ) at fixed s, t and

τ where (s, t), (ξ, τ) ∈ T2, Ψ(s)Θ(t)
[
t̄−1
∫ t̄

0
n−1

∑n
i=1 X̃ i(τ)X̃ i

T (τ)dτ + Λ
]−1

ΘT (τ)ΨT (ξ)

as a function of ξ is Op(1) only on a finite interval of ξ and zero elsewhere. Then applying

7‖·‖2 and ‖·‖max are two matrix norms, such that ‖M‖2 = max {ζr(M)}r and ‖M‖max = maxij |mij |,
where max {ζr(M)}r denotes the largest singular value of M and mij the element on the ith row and jth

column of M .
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Assumptions 3.3.2, 3.3.3 and Lemma C.2.a, we have the following:

(I) = Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)X̃i
T (τ)dτ + Λ

]−1
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)
[
Ỹi(τ)− Yi(τ)

]
dτ

=
1

t̄

∫ t̄

0

∫ τ

0
Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)X̃i
T (τ)dτ + Λ

]−1

ΘT (τ)ΨT (ξ)
1

n

n∑
i=1

X̃i(ξ)
[
Ỹi(τ)− Yi(τ)

]
dξdτ

=
1

t̄

∫ t̄

0
Op(1)op

(
nρ−1

)
dτ = op

(
nρ−1

)
.

For (II), under Assumptions 3.3.1 to 3.3.3, Lemmas C.2.b and C.3.c, substituting in (3.7)

yields

(II) = Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)X̃i
T (τ)dτ + Λ

]−1
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)Yi(τ)dτ −Ψ(s)Θ(t)b

= Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Xi
T (τ)dτ

]−1
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Yi(τ)dτ−

Ψ(s)Θ(t)b+ op
(
nρ−1

)
= Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Xi
T (τ)dτ

]−1
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Ui(τ)dτ + op
(
nρ−1

)
.

Under Assumptions 3.3.2, 3.3.5 and 3.3.6, we have n−1
∑n

i=1Xi(ξ)Ui(τ)dτ ∈ Op
(
nρ−1

)
, and sim-

ilarly to the previous, Ψ(s)Θ(t)
[
t̄−1
∫ t̄

0 n
−1
∑n

i=1Xi(τ)Xi
T (τ)dτ

]−1
ΘT (τ)ΨT (ξ) as a function

of ξ is Op(1) only on a finite interval of ξ and zero elsewhere. Thus, we have

(II) = Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Xi
T (τ)dτ

]−1
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Ui(τ)dτ + op
(
nρ−1

)
=

1

t̄

∫ t̄

0

∫ τ

0
Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Xi
T (τ)dτ

]−1

ΘT (τ)ΨT (ξ)
1

n

n∑
i=1

Xi(ξ)Ui(τ)dξdτ

+ op
(
nρ−1

)
=

1

t̄

∫ t̄

0
Op(1)Op

(
nρ−1

)
dτ = Op

(
nρ−1

)
.
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Therefore,
∥∥∥β̂(s, t)− γ(s, t)

∥∥∥
F
≤ ‖(I)‖F + ‖(II)‖F = Op

(
nρ−1

)
for all (s, t) ∈ T2, and under

Assumption 3.3.2,
∥∥∥β̂(s, t)− β(s, t)

∥∥∥
F

= Op
(
nρ−1

)
+o
(

[min {P,Q}]−D
)

= Op
(
nρ−1

)
. Since β̂ ∈

Γ (D,κψ, κθ) with D ∈ N, the estimators β̂’s are asymptotically stochastically equicontinuous on

T2; hence, the uniform convergence follows, such that sup(s,t)∈T2

∥∥∥β̂(s, t)− β(s, t)
∥∥∥
F
∈ Op

(
nρ−1

)
.

�

Proof of Theorem 3.3.2

First of all, according to previous results, we have

n1−ρ
√
t̄
[
β̂(s, t)− β(s, t)

]
= n1−ρ

√
t̄
[
β̂(s, t)− γ(s, t)

]
+ n1−ρ

√
t̄ [γ(s, t)− β(s, t)]

= n1−ρ
√
t̄(I) + n1−ρ

√
t̄(II) + o(1);

by Assumptions 3.3.4 to 3.3.7, Lemmas C.3.b and C.4.a,

n1−ρ
√
t̄(I) = n1−ρ

√
t̄Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)X̃i
T (τ)dτ + Λ

]−1

1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)
[
Ỹi(τ)− Yi(τ)

]
dτ

=
1

t̄

∫ t̄

0

∫ τ

0
Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(τ)X̃i
T (τ)dτ + Λ

]−1

ΘT (τ)ΨT (ξ)n1−ρ
√
t̄
1

n

n∑
i=1

X̃i(ξ)
[
Ỹi(τ)− Yi(τ)

]
dξdτ

=
1

t̄

∫ t̄

0
Op(1)op(1)dτ = op(1),
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and by Assumptions 3.3.1, 3.3.7, C.4.b and Lemmas C.5.c, substituting in (3.7) yields

n1−ρ
√
t̄(II) = n1−ρ

√
t̄Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Xi
T (τ)dτ

]−1

1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Ui(τ)dτ + op(1)

=
√
t̄
1

t̄

∫ t̄

0

∫ τ

0
Ψ(s)Θ(t)

[
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ
′)Xi

T (τ ′)dτ ′

]−1

ΘT (τ)ΨT (ξ)

[
n1−ρ 1

n

n∑
i=1

Xi(ξ)Ui(τ)

]
dξdτ + op(1).

Since for given s, t and τ , Ψ(s)Θ(t)
[
t̄−1
∫ t̄

0 n
−1
∑n

i=1Xi(τ
′)Xi

T (τ ′)dτ ′
]−1

ΘT (τ)ΨT (ξ) as a func-

tion of ξ isOp(1) only on a finite interval of ξ and zero elsewhere; also, n1−ρn−1
∑n

i=1Xi(ξ)Ui(τ) ∈
Op(1). Hence, the above equation can be re-written as

n1−ρ
√
t̄
[
β̂(s, t)− β(s, t)

]
=
√
t̄
1

t̄

∫ t̄

0
n−ρ

n∑
i=1

Ωi(s, t, τ)Ui(τ)dτ + op(1),

where Ωi(s, t, τ) := Ψ(s)Θ(t)
[
t̄−1
∫ t̄

0 n
−1
∑n

ι=1Xι(τ
′)Xι

T (τ ′)dτ ′
]−1

Xi(τ). Then by Assump-

tions 3.3.8 and 3.3.9, n−ρ
∑n

i=1 Ωi(s, t, τj)Ui(τj) ∈ Op(1) is a stationary and ergodic process over

τj , given any (s, t) ∈ T2, and thus, by the CLT for strong mixing processes, for all (s, t) ∈ T2, we

have the asymptotic normality as such

Vβ,ρ
−1/2(s, t)t̄−1/2

∫ t̄
0 n
−ρ∑n

i=1 Ωi(s, t, τ)Ui(τ)dτ
d−→ N (0, IK),

where Vβ,ρ(s, t) := Var
(
t̄−1/2

∫ t̄
0 n
−ρ∑n

i=1 Ωi(s, t, τ)Ui(τ)dτ
)
∈ O(1).

�
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Proof of Theorem 3.4.1

Recall that the regression residual is obtained as such Ûi(t) = Ỹi(t)−
∫
St X̃i(s)β̂

T (s, t)ds and has

the B-spline representation Ũi(t) :=
∑H

h=1 w̃i,hηh(t), where
w̃i,1

...

w̃i,H

 := argmin
(ri,1,...,ri,H)

1

JY

JY∑
j=1

[
Ûi(tj)−

H∑
h=1

ri,hηh(tj)

]2

=

[∫ t̄

0
η(τ)ηT (τ)dτ

]−1
 1

JY

JY∑
j=1

η(tj)Ûi(tj)

 .
Since ηh(t)’s are local polynomials,

∫
T η(τ)ηT (τ)dτ , and thus, it’s inverse

[∫
T η(τ)ηT (τ)dτ

]−1
is

a block-diagonal matrix; also, each element in the vector
[
J−1
Y

∑JY
j=1 η(tj)Ûi(tj)

]
corresponds to

a basis function ηh, which is locally non-zero. Hence, intuitively, each estimated basis coefficients

in the vector [w̃i,1, ..., w̃i,H ]T summarizes the local information of Ûi(t) through the corresponding

basis function, so the vector [w̃i,1, ..., w̃i,H ]T copies the behaviour of Ûi(t) over time. A similar

argument follows for the estimated basis coefficients [c̃k,i,1, ..., c̃k,i,L]T for X̃i’s, where
c̃k,i,1

...

c̃k,i,L

 := argmin
(rk,i,1,...,rk,i,L)

1

JX

JX∑
j=1

[
Xkitj −

L∑
l=1

rk,i,lφl(tj)

]2

=

[∫ t̄

0
φ(τ)φT (τ)dτ

]−1
 1

JX

JX∑
j=1

φ(tj)Xkitj

 .
Following the bootstrap steps, the “mean-preserving” property of MBB is satisfied for the boot-

strap coefficients w̃∗i and c̃∗ki, so that Lemma C.6.b holds; furthermore, together with the result
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in Theorem 3.3.1, Lemma C.6.c holds. Hence, applying results from above, we have

t̄1/2n1−ρ
[
β̂∗(s, t)− β̂(s, t)

]
= Ψ(s)Θ(t)Ω−1

X̃
∗
i ,Λ

1√
t̄

∫ t̄

0

1

nρ

n∑
i=1

X̃
∗
i (τ)Ỹ ∗i (τ)dτ − β̂(s, t)

= Ψ(s)Θ(t)Ω−1

X̃
∗
i ,Λ

1√
t̄

∫ t̄

0

1

nρ

n∑
i=1

X̃
∗
i (τ)

[
Ỹ ∗i (τ)− Y ∗i (τ)

]
dτ+

Ψ(s)Θ(t)Ω−1

X̃
∗
i ,Λ

1√
t̄

∫ t̄

0

1

nρ

n∑
i=1

X̃
∗
i (τ)X̃

∗
i

T
(τ)dτ b̂− t̄1/2n1−ρβ̂(s, t)+

Ψ(s)Θ(t)Ω−1

X̃
∗
i ,Λ

1√
t̄

∫ t̄

0

1

nρ

n∑
i=1

X̃
∗
i (τ)Ũ∗i (τ)dτ = (III) + (IV ) + (V ).

where ΩX̃
∗
i ,Λ

:= t̄−1
∫ t̄

0 n
−1
∑n

i=1 X̃
∗
i (τ)X̃

∗
i
T (τ)dτ + Λ. Assumption 3.3.7 implies that (III) ∈

op(1), Lemma C.6 implies (IV ) ∈ op(1) and that

t̄1/2n1−ρ
[
β̂∗(s, t)− β̂(s, t)

]
=Ψ(s)Θ(t)Ω−1

X̃
∗
i ,Λ

1√
t̄

∫ t̄

0

1

nρ

n∑
i=1

X̃
∗
i (τ)Ũ∗i (τ)dτ + op(1)

d−→N (0,Vβ,ρ(s, t)) ,

where Vβ,ρ(s, t) := Var
(
n1−ρ

√
t̄
[
β̂(s, t)− β(s, t)

])
∈ O(1).

�

C.2 Proofs of Lemmas

Proof of Lemma C.1

First, let λ(q) := f(M2 + q(M1 −M2)) for q ∈ [0, 1]. Then taking the first order derivative of

λ(q) with respect to q through the matrix argument of the function f yields

λ(1)(q) = tr

{[
∂f (M2 + q(M1 −M2))

∂ (M2 + q(M1 −M2))

]T [∂ (M2 + q(M1 −M2))

∂q

]}

= tr

{[
∂f (M2 + q(M1 −M2))

∂ (M2 + q(M1 −M2))

]T
(M1 −M2)

}
.
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By the mean-value theorem, there exists some q ∈ [0, 1], such that λ(1) − λ(0) = λ(1)(q), which

is equivalent to

f(M1) = f(M2) + tr


[
∂f
(
M̄
)

∂M̄

]T
(M1 −M2)

 ,

where min {M1,ij ,M2,ij} < M̄ij < max {M1,ij ,M2,ij} for all elements M1,ij , M2,ij and M̄ij of

the matrices M1, M2 and M̄ , respectively, with i, j = 1, ..., J .

�

Proof of Lemma C.2

Proof of part a. By the sub-additivity and the sub-multiplicity of the Frobenius norm, we have

sup
t∈T

∥∥∥∥∥ 1

n

n∑
i=1

X̃i(ξ)
[
Ỹi(τ)− Yi(τ)

]∥∥∥∥∥
F

≤ 1

n

n∑
i=1

sup
t∈T

∥∥∥X̃i(ξ)
[
Ỹi(τ)− Yi(τ)

]∥∥∥
F

≤ 1

n

n∑
i=1

sup
t∈T

∥∥∥X̃i(ξ)
∥∥∥
F

sup
t∈T

∥∥∥Ỹi(τ)− Yi(τ)
∥∥∥
F
.

Applying the fact that supt∈T

∥∥∥X̃i(ξ)
∥∥∥
F
∈ Op(1) as well as Assumption 3.3.3, the result in part

a follows.

�

Proof of part b. The verification for part b follows the same idea as that for part a, using the

convergence rate of X̃i from Assumption 3.3.3.

�

Proof of Lemma C.3

Proof of part a. First, recall that X̃i
T

(t) :=
∫ t

0 X̃
T
i (s)Ψ(s)Θ(t)ds. By the “local” property of

the B-spline basis, for any given pair (s, t) ∈ T2, we have ‖Ψ(s)Θ(t)‖F ∈ O(1). Hence, under

Assumptions 3.3.2 and 3.3.3, there is
∥∥ΘT (t)ΨT (s)

∥∥
F

supt∈T

∥∥∥X̃ki(t)−Xki(t)
∥∥∥
F
∈ op

(
nρ−1

)
,

and by the triangle inequality as well as the sub-multiplicity of the Frobenius norm, it follows
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that for t ∈ St,

sup
t∈T

∥∥∥X̃i(t)−Xi(t)
∥∥∥
F
≤
∫ t

0

∥∥ΘT (t)ΨT (s)
∥∥
F

∥∥∥X̃ki(s)−Xki(s)
∥∥∥
F
ds

≤
∫ t

0

∥∥ΘT (t)ΨT (s)
∥∥
F

sup
τ∈T

∥∥∥X̃ki(τ)−Xki(τ)
∥∥∥
F
ds = op

(
nρ−1

)
,

which justifies the result. �

Proof of part b. Applying the triangle inequality and the sub-multiplicity of the Frobenius

norm, the “locally non-zero” property of B-spline as explained in the proof for part a, as well as

Assumption 3.3.3, we have∥∥∥∥∥1

t̄

∫ t̄

0

1

n

n∑
i=1

[
X̃i(s)X̃i

T (s)−Xi(s)Xi
T (s)

]
ds

∥∥∥∥∥
F

≤ 1

t̄

∫ t̄

0

1

n

n∑
i=1

∥∥∥X̃i(s)X̃i
T (s)−Xi(s)Xi

T (s)
∥∥∥
F
ds

≤ 1

t̄

∫ t̄

0

1

n

n∑
i=1

∥∥∥X̃i(s)X̃i
T (s)−Xi(s)X̃i

T (s)
∥∥∥
F

+
∥∥∥Xi(s)X̃i

T (s)−Xi(s)Xi
T (s)

∥∥∥
F
ds

≤ 1

t̄

∫ t̄

0

1

n

n∑
i=1

∥∥∥X̃i(s)−Xi(s)
∥∥∥
F

∥∥∥X̃i
T (s)

∥∥∥
F

+ ‖Xi(s)‖F
∥∥∥X̃i

T (s)−Xi
T (s)

∥∥∥
F
ds

≤ 1

t̄

∫ t̄

0

1

n

n∑
i=1

sup
τ∈T

∥∥∥X̃i(τ)−Xi(τ)
∥∥∥
F

∥∥∥X̃i
T (s)

∥∥∥
F

+ ‖Xi(s)‖F sup
τ∈T

∥∥∥X̃i
T (τ)−Xi

T (τ)
∥∥∥
F
dτ

= op
(
nρ−1

)
,

which justifies the result.

Proof of part c. Applying Lemma C.1 with

f (M) := Ψ(s)Θ(t)M−1ΘT (τ)ΨT (ξ) for some matrix M ,

M1 :=
1

t̄

∫ t̄

0

1

n

n∑
i=1

X̃i(t
′)X̃i

T (t′)dt′ + Λ and M2 :=
1

t̄

∫ t̄

0

1

n

n∑
i=1

Xi(τ)Xi
T (τ)dτ,

and Lemma C.3.b, the result follows.
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Proof of Lemma C.4

The results in Lemma C.4 follows directly by applying Assumption 3.3.7 and the same proof as

for Lemma C.2.

�

Proof of Lemma C.5

The results in Lemma C.5 follows directly by applying Assumption 3.3.7 and the same proof as

for Lemma C.3.

�

Proof of Lemma C.6

Recall that for the estimated basis coefficients [c̃k,i,1, ..., c̃k,i,L]T of X̃i’s, we have
c̃k,i,1

...

c̃k,i,L

 := argmin
(rk,i,1,...,rk,i,L)

1

JX

JX∑
j=1

[
Xkitj −

L∑
l=1

rk,i,lφl(tj)

]2

=

[∫ t̄

0
φ(τ)φT (τ)dτ

]−1
 1

JX

JX∑
j=1

φ(tj)Xkitj

 .
∫ t̄

0 φ(τ)φT (τ)dτ and thus
[∫ t̄

0 φ(τ)φT (τ)dτ
]−1

are block diagonal matrices. 1
JX

∑JX
j=1φ(tj)Xkitj

aggregates the values in Xkitj on to the local non-zero area of each basis coefficient φl. Hence,

the vector [c̃k,i,1, ..., c̃k,i,L]T can be viewed as a discretization of the process Xkitj over time, and

therefore, the stationarity and ergodicity conditions also hold in [c̃k,i,1, ..., c̃k,i,L]T . Following the

bootstrap steps and proofs of Lemma C.3, the results hold.
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