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Abstract

Plug-in electric vehicles (PEVs) represent a huge step forward in a green transportation

system, contribute to the reduction of greenhouse gas emission, and reduce the dependence

on fossil fuel. With the increasing popularity of PEVs, public electric-vehicle charging

infrastructure (EVCI) becomes indispensable to meet the PEV user requirements. EVCI

can consist of various types of charging technologies, offering multiple charging services

for PEV users. Proper integration of the charging infrastructure into smart grid is key to

promote widespread adoption of PEVs. Planning and operation of EVCI are technically

challenging, since PEVs are characterized by their limited driving range, long charging

duration, and high charging power, in addition to the randomness in driving patterns and

charging decisions of PEV users. EVCI planning involves both the siting and capacity

planning of charging facilities. Charging facility siting must ensure not only a satisfactory

charging service for PEV users but also a high utilization and profitability for the chosen

facility locations. Thus, the various types of charging facilities should be located based on

an accurate location estimation of the potential PEV charging demand. Capacity planning

of charging facilities must ensure a satisfactory charging service for PEV users in addition

to a reliable operation of the power grid. During the operation of EVCI, price-based

coordination mechanisms can be leveraged to dynamically preserve the quality-of-service

(QoS) requirements of charging facilities and ensure the profitability of the charging service.

This research is to investigate and develop solutions for integrating the EVCI into the smart

grid. It consists of three research topics:

First, we investigate PEV charging infrastructure siting. We propose a spatial-temporal

flow capturing location model. This model determines the locations of various types of

charging facilities based on the spatial-temporal distribution of traffic flows. In the pro-

posed model, we consider transportation network dynamics and congestion, in addition to

different characteristics and usage patterns of each charging facility type.

Second, we propose a QoS aware capacity planning of EVCI. The proposed framework

accounts for the link between the charging QoS and the power distribution network (PDN)

capability. Towards this end, we firstly optimize charging facility sizes to achieve a targeted

QoS level. Then, we minimize the integration cost for the PDN by attaining the most cost-
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effective allocation of the energy storage systems and/or upgrading the PDN substation

and feeders. Additionally, we capture the correlation between the occupation levels of

neighboring charging facilities and the blocked PEV user behaviors.

Lastly, we investigate the coordination of PEV charging demands. We develop a dif-

ferentiated pricing mechanism for a multiservice EVCI using deep reinforcement learning

(RL). The proposed framework enhances the performance of charging facilities by moti-

vating PEV users to avoid over-usage of particular service classes. Since customer-side

information is stochastic, non-stationary, and expensive to collect at scale, the proposed

pricing mechanism utilizes the model-free deep RL approach. In the proposed RL ap-

proach, deep neural networks are trained to determine a pricing policy while interacting

with the dynamically changing environment. The neural networks take the current EVCI

state as input and generate pricing signals that coordinate the anticipated PEV charging

demand.
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Chapter 1

Introduction

The smart grid is the modernized electrical power grid that uses two-way flows of electricity

and information to enhance the effectiveness and efficiency of electric power delivery [1].

One of the main anticipated benefits and requirements of the smart grid is to enable

the transition to an electrified transportation system. The introduction of plug-in electric

vehicles (PEVs) is considered a viable solution to reduce carbon emissions and decrease the

dependence on fossil fuel, for an economical and environmentally friendly transportation

system. According to the International Energy Agency (IEA) forecast, the number of PEVs

around the globe exceeded 5.1 million in 2018, with an approximately 60% year-on-year

growth rate [2]. This number is expected to rapidly increase in the near future due to the

narrowing in the cost gap between conventional vehicles and electric vehicles. Thus, the

number of electric vehicles is expected to exceed 130 million by 2030 [2]. To achieve this

ambitious goal, there are some barriers hindering the mass adoption of PEVs that should

be overcome. These barriers include PEV cost, negative impacts on the power system, and

availability of charging infrastructure [3].

Although the operating cost of PEVs is lower than the conventional vehicles, the PEV

and associated battery costs are still higher than that of conventional vehicles. Moreover,

the PEV charging demand of electricity is not only high but also dynamically and randomly

appears at any node on the distribution system at any time due to PEV mobility [4]. The

deployment of electric-vehicle charging infrastructure (EVCI) leads to an increase in sys-
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tem electricity demand, and a large-scale penetration of PEVs is expected to significantly

influence peak demand, feeder loss, and voltage fluctuations in power distribution network

(PDN) [5]. EVCI availability is another concern to the PEV users. At the moment, charg-

ing facilities is not widely deployed as ordinary gas stations, because establishing charging

facilities requires a huge investment. Another challenge is caused by the long charging

duration of PEVs at charging facilities. As users spend a long time charging their PEV

batteries at a charging facility, other PEV users need to wait for a longer time before get-

ting a charging service at that facility. Also, PEV users can be blocked from a charging

facility if the facility is at its full capacity. Long waiting times and high blocking rate

degrade PEV user satisfaction and hence charging quality-of-service (QoS).

1.1 PEV Charging Infrastructure

There are various types of charging technologies available in the market and standardized

internationally by the Society of Automotive Engineers (SAE). According to the standard

SAE J1772, charging levels for PEVs include the alternating current (AC) level 1, AC level

2, AC level 3, and direct current (DC) fast charging, as summarized in Table 1.1 [2,6]. AC

level-1 chargers have the lowest power level, and hence take the longest charging duration

to charge a PEV battery. This charging level uses the conventional home outlets, which are

not typically used for PEV charging. Almost every popular PEV around the globe utilizes

AC Level 2 on-board charges in the 6.6 kW–7.4 kW range. Slow charging facilities with

AC level 2 chargers can fully charge a PEV battery in an overnight session (7-10hrs) [6].

Usually, slow charging facilities are deployed in homes, parking lots in workplaces and

shopping malls. AC level 3 on-board chargers use three-phase AC plugs and provide power

levels between 22 kW and 43.5 kW. DC level 3 chargers are the fastest charging option,

which provide power up to 400kW. Fast charging stations with DC level 3 chargers can

charge a PEV battery up to 80% state-of-charge (SoC) in approximately 20 minutes [6].

In addition to the plug-in charging facilities, PEVs can be charged without cables

through the relatively new wireless power transfer (WPT) technology [7]. Dynamic wireless

charging (or on-road wireless charging) can charge PEVs while they move on roads, which
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Table 1.1: Standard charging level classification
Level Current Power

Conventional
plugs

Level 1 AC ≤ 3.7 kW

Slow chargers Level 2 AC 3.7 - 22 kW

Fast chargers Level 3
AC, three phase 22 - 43.5 kW

DC <400 kW

can significantly reduce the on-board battery pack, hence PEVs become lighter in weight

and may be less expensive [8]. Currently, several studies and test sites are underway to

develop the dynamic chargers [9]. For example, the fifth-generation of the on-line electric

vehicles (OLEVs) project can obtain WPT with 22 kW maximum pick-up power and

maximum efficiency 91% at 9.5 kW with 20 cm air gap [10].

1.2 Motivation and Research Contributions

This research is to develop solutions for integrating the EVCI into the smart grid. We

focus on EVCI planning and operation. In the EVCI planning, we investigate two prob-

lems, namely, the siting and capacity planning of charging facilities. In the operation of

EVCI, we investigate the coordination of PEV charging demand using dynamic pricing

of charging services. Planning and operation of EVCI are technically challenging, since

PEVs are characterized by their limited driving range, long charging duration, and high

charging power, in addition to the randomness in driving patterns and charging decisions

of PEV users. Several factors should be considered during the integration of EVCI into the

smart grid, including PEV characteristics, PEV owner driving behaviors, in addition to

operational constraints of the power system. The research motivations and contributions

are discussed in the following.
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1.2.1 Charging Infrastructure Siting

PEV charging infrastructure siting is a problem of strategically locating various types of

charging facilities in a network, while considering unique characteristics and usage patterns

of each facility type. PEV charging infrastructure siting must account for the limited

driving range of PEVs, in addition to the randomness in driving patterns and charging

decisions of PEV users. Furthermore, each type of charging facility must be sited in

locations that conform to the requirements of the PEV users in order to maximize their

satisfaction. Due to the high capital cost associated with charging facility construction,

the planning body must ensure high utilization and profitability of the chosen facility

locations [11]. Charging facility utilization will be maximized if they are close to demand

locations. However, PEV charging demand is closely related to driving behavior, which

varies from one customer to another. Thus, charging infrastructure siting should be based

on an accurate location estimation of the potential PEV charging demand [12].

In existing studies, traffic flows are estimated based on the assumption that travelers

choose a single route (i.e., the shortest distance route) in traveling between each origin-

destination (OD) pair. Then, a flow capturing model sites a given number of charging

facilities to intercept with the maximum amount of traffic flow. The traffic flow is said to

be captured if at least one charging facility is sited on the shortest distance route between

OD pair. The assumption that drivers always choose the shortest distance routes simplifies

the estimation of driver route choices. However, traffic flows can be over-estimated for some

roads if driver route choices are governed only by the distance between OD pair. Moreover,

the assumption neglects the impact of time-dependent dynamics of traffic flows. In reality,

drivers use various routes between the same OD pair to avoid traffic congestion. Tempo-

ral traffic distribution contributes to accurately estimating the spatial traffic distribution.

Some traffic phenomena, such as road congestion, dynamic routing and peak spreading,

can only be described using the temporal dimensions of traffic flows. It is more practical

that drivers choose the routes with minimum travel times to their destinations, consid-

ering various user departure times and network congestion. Thus, both the spatial and

temporal distributions of traffic flows should be used in estimating the PEV charging de-

mand. Furthermore, existing siting models locate a single type of charging facility without
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considering the unique characteristics and usage patterns of each charging technology.

Considering the aforementioned challenges, in Chapter 2, we investigate and develop

the spatial-temporal flow capturing location model (ST-FCLM) for siting various types of

PEV charging facilities on the transportation network. The ST-FCLM accounts not only

the transportation network dynamics and congestion, but also the different characteristics

and usage patterns of each charging facility type. The major contributions of this study

are as follows:

1. The new siting model extends the existing flow capturing models by addressing the

dynamic traffic flows rather than static flows. We consider all the feasible routes

that travelers may choose for each OD pair to minimize their travel time in this

formulation. Moreover, travelers’ departure times and congestion levels on the road

network are inherently accounted in the time-varying traffic flows, which we extract

from a simulation-based dynamic traffic assignment (DTA) model;

2. The proposed ST-FCLM model locates multiple types of charging facilities, taking

advantage of the unique characteristics and usage patterns of each charging technol-

ogy. Towards this end, we partition the traffic flow dataset into distinct categories

by using the Gaussian mixture model-based clustering (GMM). Then, we site each

type of charging facility to capture a specific traffic pattern.

1.2.2 Capacity Planning of PEV Charging Infrastructure

Capacity planning of EVCI is a problem of determining appropriate sizes for charging facil-

ities that quantify the number of chargers and waiting positions. Charging facilities must

be sized to satisfy the PEV user requirements while complying with power grid constraints.

PEV user satisfaction can be achieved by fulfilling the stochastic and time-varying charg-

ing service requirements. Charging QoS is a measure of PEV user satisfaction. Although

increasing the facility sizes enhances the charging QoS, it presents a substantial load to

the power grid that may exceed the capability of PDN. To accommodate the expected

power demand of charging facilities, PDN components (i.e., feeders and substations) may
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need upgrade, which in turn requires huge investments. Utilizing an energy storage system

(ESS) in charging facilities can be a solution to alleviate the required PDN upgrades if

the ESS cost is less than the reinforcements cost [13–15]. Consequently, there are inter-

relationships among the QoS level of EVCI, the required PDN upgrades, and the ESS

allocation in charging facilities. These inter-relationships offer guidance to size the charg-

ing facilities in a cost-effective manner, in addition to provide insights into how to make a

trade-off between the PEV user satisfaction and the required investment in PDN.

There exist several studies on sizing of charging infrastructure. One approach is to

optimize the size of charging facilities based on the expected charging demand of users.

This approach maximizes the PEV user satisfaction and the profit of system operator,

without considering the operational constraints of the power system. Another approach

compromises between the charging service requirements and the power system operational

constraints. It focuses on minimizing the negative impacts on the power system without

ensuring PEV user satisfaction. This is because planning models usually re-locate and/or

re-size the charging facilities to fulfill the requirements of the power system. Consequently,

existing sizing models either ignore the power system constraints or degrade the charging

QoS.

Different from the existing studies, in Chapter 3, we present a QoS-aware capacity

planning framework of networked EVCI. The major contributions of this study are as

follows:

1. The new capacity planning framework takes account of the inter-relationships among

the targeted QoS, ESS allocation, and PDN upgrade. The proposed framework

consists of two models that are solved sequentially: Firstly, the capacity planning

of EVCI model is used to optimize the numbers of chargers and waiting positions

allocated at each charging facility to realize the targeted QoS level for the entire

networked EVCI. After that, PEV charging demand at each facility is estimated for

inclusion in the PDN load demand. Finally, the integration with the PDN model

is used to minimize the integration cost of EVCI with PDN by attaining the most

cost-effective ESS allocation and/or PDN reinforcement;

2. The proposed EVCI model captures the correlation among the occupation levels of

6



neighboring charging facilities, in addition to blocked PEV user behaviors. Towards

this end, we model the EVCI as an open queuing network with finite capacity and

blocking;

3. The proposed approach accounts for the temporal variability of the charging demand

by modeling the charging facilities as non-stationary queue systems. Then, a modified

arrival rate function is derived to approximate the steady state performance of the

systems.

1.2.3 Coordinate of PEV Charging Demand

Coordination of PEV charging demands has become indispensable to meet the PEV user

requirements, while minimizing the negative impacts on the power grid. PEV charging

demand management is classified into two main categories: centralized and decentralized

(distributed) coordinations [16]. In the centralized coordination, a central controller di-

rectly controls the charging process of the participated PEVs. This approach can optimize

the PEV charging process. However, it requires sophisticated communication and control

systems to monitor and coordinate the charging process of a large number of PEVs. In the

decentralized coordination, a dynamic pricing mechanism can be leveraged to coordinate

the PEVs charging process and influence the behaviors of PEV users. The price-setting

should simultaneously achieve the following objectives [17]: 1) to preserve the QoS of

charging facilities to maximize users’ satisfaction; 2) to alleviate the negative impacts on

the power system; and 3) to maximize the utilization of charging facilities.

Recently, significant progress has been made in developing pricing schemes that account

for the uncertainty of PEV charging demand, while considering the fluctuations in electric-

ity price and power grid conditions. The preliminary pricing schemes do not deal with the

multiple services offered by the EVCI and the multiple QoS classes associated with these

services. In a multiservice EVCI, a set of charging services is offered, and each service is

provided by a type of charging facility with a certain QoS class. Different service classes

vary in the PEV charging rate, average waiting time, and charging method (i.e., either

with a plug-in cable or wireless charging). Thereby, users’ dwelling time during the PEV
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charging depends on the charging service class. Each service class has a minimum level of

QoS that must be preserved during the operation to ensure the PEV user satisfaction and

the profitability of charging service.

In addition to the mentioned challenges, two issues remain to be addressed in the con-

temporary modeling approach of dynamic pricing for PEV charging demand. First, existing

dynamic pricing models rely on simplified assumptions and can be unrealistic, such as full

knowledge of the customer-side information including the current charging demand and the

influence of pricing decisions on future user behaviors. Even if the demand is modeled as

a random variable, the assumption of complete information about the expected demand is

unrealistic. Second, PEV charging demand coordination is a complex non-stationary and

stochastic process. Typically, PEV charging demand can change over time-of-day, day-of-

the-week, seasons, or due to an increased or decreased desirability of particular charging

technology. Applying abstract dynamic pricing models in this environment cannot en-

sure optimality, as any change of variables can lead to model misspecification, resulting

in unreliable estimation of the system operation and/or revenue loss. To overcome the

limitations, reinforcement learning (RL) is becoming one of the most promising tools for

the decision-making problem in an unknown environment. RL is capable of learning from

the interactions with the dynamically changing environment and optimizing the decision

in the absence of complete information.

In Chapter 4, we propose a new way to use deep RL algorithms in the context of the

dynamic pricing of charging services. The proposed pricing mechanism preserves different

QoS classes at a multiservice EVCI. Additionally, the proposed approach is able to learn

a pricing policy, while the complete customer-side information is not available. The major

contributions of this study are as follows:

1. We propose a differentiated pricing mechanism that discourages over-allocation of a

charging service, in addition to enhancing the performance of charging facilities in

meeting the expectation of PEV users. Towards this end, the problem is formulated

as a social welfare maximization problem, where the objective is to maximize the

demand for charging services while maintaining the targeted QoS in all service classes;

2. The proposed framework is based on the twin-delayed deep deterministic policy gra-
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dient (TD3) algorithm, which is a model-free RL approach using actor-critic methods.

In the proposed approach, deep neural networks are trained to determine a pricing

policy while interacting with the unknown environment. The neural networks take

the current EVCI state as input and generate pricing signals that coordinate the

anticipated PEV charging demand.

1.3 Research Objectives and Thesis Outline

The objective of this PhD research is to develop solutions for integrating the EVCI into

smart grid, which can achieve high utilization and profitability for the chosen facility

locations, satisfy PEV user requirements, and ensure that PEV load demand complies

with power grid constraints. To attain the overall objective, the following objectives are

tackled sequentially:

1. To introduce an EVCI siting model based on an accurate location estimation of

the potential PEV charging demand, which considers the unique characteristics and

usage patterns of each charging facility type;

2. To develop a capacity planning framework for the networked EVCI, which optimizes

charging facility sizes to achieve a targeted QoS level, in addition to minimize the

integration cost for the PDN by attaining the most cost-effective allocation of the

ESSs and/or upgrading the PDN substation and feeders;

3. To present a differentiated dynamic pricing mechanism for multiservice EVCI, which

motivates PEV users to avoid over-allocation of particular service classes, and learns

and improves automatically without an explicit model of the environment.

The rest of the thesis is organized as follows. Chapter 2 introduces a novel EVCI siting

model, called the ST-FCLM. The potential PEV charging demand is firstly estimated

based on the dynamic traffic assignment model. Then, the ST-FCLM is formulated as

an optimization problem. The performance of the proposed siting model is evaluated on

two benchmark transportation networks. Chapter 3 investigates the capacity planning of
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EVCI. We model the EVCI as a queuing network to capture the correlation among the

occupation levels of neighboring charging facilities. Then, we describe the proposed sizing

model for charging facilities and present the integration model with PDN. In Chapter 4,

we present a differentiated pricing mechanism for a multiservice EVCI. We discuss the

PEV charging demand in the presence of a price-based coordination mechanism. Then,

we formulate the dynamic pricing problem and present an RL approach that decide the

pricing policy. We conclude the research and give future research directions in Chapter 5.
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Chapter 2

EVCI Siting Based on

Spatial-Temporal Traffic Flow

Distribution

In this chapter, we propose a spatial-temporal flow capturing location model. This model

determines the locations of various types of charging facilities based on the spatial-temporal

distribution of traffic flows. We utilize the dynamic traffic assignment model to estimate

the time-varying traffic flows on the road transportation network. Then, we cluster the

traffic flow dataset into distinct categories using the Gaussian mixture model and site each

type of charging facilities to capture a specific traffic pattern. We formulate our siting

model as an mixed integer linear programming (MILP) optimization problem. The model

is evaluated based on two benchmark transportation networks, and the simulation results

demonstrate effectiveness of the proposed model.

2.1 Related Work

PEV charging demand distribution plays a key role in optimizing the charging facility

locations. The utilization of charging facility can be maximized if they are close to demand
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locations. Hence, charging infrastructure siting should be based on an accurate location

estimation of the potential PEV charging demand. There are two basic categories of

charging facility siting models based on demand estimation methods: nodal PEV density-

based models and traffic flow-based models [18].

In the nodal PEV density based models, a PEV is assumed to request a charging service

at a particular location, such as shopping center or residential district. PEV users need

to travel from their locations (demand point) to charging facility locations to charge their

PEVs [11]. In these models, charging facilities are planned by dividing a given area into

small unit areas (cells). The potential charging demand in each cell is proportional to

the average number of PEVs parked in that cell [19]. Then, siting models locate charging

facilities to maximize the number of covered nodal demand [20]. This method accounts

for the differences in nodal demand. However, it does not capture PEV mobility, since it

treats PEV demand as static and fixed in each node [21].

In the traffic flow-based models, PEV users are assumed to prefer charging their vehicles

during trips to destination locations [21]. Thereby, the traffic flow conditions on the road

system can be used to estimate potential PEV charging demand. When the traffic volume

on a particular road is high, there is a high probability that the charging demand on that

road will be high, and vice versa [22]. Traffic flow is defined as the number of vehicles

which travel along the links that connect different transportation network nodes from an

origin to a destination along a pre-determined travel route [21]. Flow capturing models

are used to locate the charging facilities on the traveling routes to maximize the captured

traffic flows. Note that the traffic flows are OD flows, not link flows. Although link flows

are easier to obtain from vehicles count data than OD flows, flow capturing models utilize

OD flows in locating the facilities [23]. This is because flow capturing models prevent flow

double counting, which is the capture of a flow more than once at the expenses of other

flows in the network that have not been captured at all. When link flows are used in these

models, traffic flows that passes over many links can be captured more than once.

Several flow capturing models are proposed in the literature to site a single type of

the charging facilities [24]. Flow-capturing location model (FCLM) is one of the early

models, which sites charging facilities to maximize the captured passing flows. Traffic flow

is considered captured if there is a charging facility located on the flow path [25]. An
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extended version of FCLM has been developed to consider the limited driving range of

PEVs [23,26], which allows PEV users to have long-distance trips via multi-stop charging.

The FCLM is further developed to minimize the number of required charging facilities by

considering the deviation paths under an assumption that PEV users may accept slightly

longer trips to charge their vehicles [27,28]. Additionally, the uncertainty of the traffic flows

can be addressed to account for the future adoption of PEV charging demand [29,30].

Existing traffic flow-based models locate the charging facilities based on the spatial

distribution of PEVs with diversified traveling patterns. In order to estimate the spatial

distribution of PEVs, these models assume that all the traffic between each OD pair is

traveling through a single route, which is the shortest distance route. This assumption

simplifies the estimation process of the traffic flows. However, the assumption neglects

the impact of time-dependent dynamics of traffic flows. In reality, travelers usually choose

the routes with minimum traveling time in traversing to their trip destinations, while

considering the congestion level on roads. Thus, a new siting model based on an accurate

estimation of the PEV charging demand is needed for siting the charging facilities. This

model should account the transportation network dynamics and roads congestion.

Deployment of multiple types of charging facilities is studied in [31, 32], which adopt

the tour-based approach in siting multiple types of charging facilities. In this approach,

PEVs are assumed to travel through a tour of several sequential series of destinations, and

the dwelling time at each destination is known. Then, the siting model deploys suitable

types of charging facilities at destination nodes to utilize the dwelling time of the users. It

is assumed that the trajectory and usage patterns of all PEVs in the system are known.

This information may not be available in a system with a large fleet of PEVs.

The economic aspects in the placement of multiple-types of charging technologies are

studied in [33–35]. The objectives of these studies are to minimize either the personal

charging cost or the social cost of the charging infrastructure. From the perspective of the

system planner, integrated planning frameworks with multiple-types of charging facilities

are presented in [33, 35]. In [33], each charging service provider offers a charging service

with a particular charging technology. The service providers compete with each other in

choosing service locations and prices. The social cost of the entire charging infrastructure

can be minimized by considering the substitution effect among different types of charging
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facilities [35]. From the perspective of PEV users, an agent-based model can be used to

characterize the interaction between PEV drivers and charging infrastructure. Multiple-

types of charging facilities can then be sited in locations that minimize the charging cost of

each PEV, including the opportunity cost of driver’s time [34]. This approach is important

in the high-level planning context; however, it does not account for the traffic conditions

and congestion in identifying areas where it is more likely to use a certain type of charging

facilities. A summary of main features of the charging infrastructure siting approaches is

given in Table 2.1. A more comprehensive survey can be found in [18,24].

Table 2.1: Summary of PEV charging infrastructure siting models

Function Study Main feature

Siting a single
type of facilities

[25] Maximize the captured traffic flows

[23,26] Consider the limited PEV driving range

[27,28] Consider the deviation paths of drivers

[29,30] Consider the uncertainty of traffic flows

Siting multiple
types of facilities

[31,32]
Consider the multiple charging rates of
charging facilities

[33,35]
Minimize the social cost of charging
infrastructure

[34] Minimize the charging cost of PEVs

2.2 System Model

Consider a typical urban area with a road transportation network (RTN) consists of a set

of nodes NT and a set of directed links LT connecting the network nodes. As shown in

Figure 2.1, the RTN nodes can represent road intersections, highway exits, or locations

with high traffic. The RTN links represent streets, roads, traffic lanes, etc. Vehicles

are assumed to start daily trips from a set of origins represented by O (O ⊆ NT ) to a

set of destinations represented by D (D ⊆ NT ). Traffic demand at the origin nodes is

considered to be deterministic and independent of the traffic conditions in the network.
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Let a (a ∈ LT ) denotes a link, and r a route. A route is represented by a list of connected

links {a1, a2, . . . , am} connect origin o (o ∈ O) and destination d (d ∈ D). In order to

denote each OD pair, the single subscript q is replaced the double subscript od, where

Q represents the set of all OD pairs in the RTN. Let Rq denote the set of all feasible

routes that a driver may choose to travel between an OD pair q. Let fq,r(t) represents the

time-varying traffic flow (i.e., vehicles volume per unit time) over the route r (r ∈ Rq)

between OD pair q at time t. Time is partitioned into T time slots with equal duration

∆t, where T = {0, 1, 2, . . . , T} denotes the set of all time slots over a day. The RTN is

assumed empty at t = 0. Individual drivers are assumed seeking routes that minimize their

traveling times, which is known as user equilibrium.

RTN nodes RTN links FCS OWC PL

Figure 2.1: Road transportation network.

2.2.1 PEV Charging Infrastructure

The EVCI consists of a set charging facilities denoted by N = {1, 2, . . . , N}, which is

composed of three subsets: subset P for parking lots (PLs) with AC chargers, subset F

for DC fast-charging stations (FCSs), and subset O for on-road wireless chargers (OWCs).

PEV users can choose any of these technologies to charge their PEV batteries. Each PEV

in the system starts its daily trips with at least half full battery charge. Due to the PEV

15



limited driving range, the initial PEV battery charge assumption is used to determine the

number of required charging facilities between an OD pair if the traveling distance between

them is longer than the maximum PEV driving range. A PEV can be charged by plugging

a cable into a charger in a PL or an FCS. The charging time in PLs is relatively longer

than that with FCSs. Thereby, PLs are deployed on the destination nodes of the daily

trips, such as workplaces and shopping centers. FCSs are deployed on the transportation

system nodes, such as road intersections. Additionally, some PEVs in the system capable

of charging through wireless power transfer technology in OWCs, which are deployed on

the surface of dedicated road lanes, represented by transportation system links. Hence, a

PEV may step into this charging lane to get a charging service, then return back to the

normal traffic after charging.

2.2.2 Dynamic Traffic Assignment

The dynamic traffic assignment model forecasts traffic load in time-varying traffic patterns

among transportation system roads [36]. Different from the static traffic estimation models,

the DTA model describes effects such as network congestion and queuing, due to vehicles

accumulation on the transportation network links if link inflows exceed link outflows [37,38].

In DTA, travelers are assumed to choose routes that minimize their experienced travel time

between an OD pair, considering congestion levels in the whole network [39]. Travelers

then choose time-dependent shortest routes instead of the shortest distance route, which

are likely to differ significantly. Since link travel times change dynamically, depending

on the time departure from the route origin and the traffic conditions encountered along

the route. The traffic flows on roads at a particular time are then affected by the flows

that may depart previously as well as the flows that will depart subsequently. The traffic

flow history on the network has a direct impact on the traffic flows on roads [36]. To

approximate traveler route choices, Wardrop’s user-equilibrium principle is used. This

principle states that the routes used by all travelers between the same OD pair at the same

departure time have equal and lowest experienced travel time, and no user can lower his

experienced travel time through unilateral actions [36]. Thereby, the DTA model excludes

impractical routes such as routes including loops or routes with a high traveling time. In
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simulation-based DTA, time-varying flows that satisfy the dynamic user equilibrium are

determined through iterative procedures [36].

The DTA model requires time-dependent OD matrices, which specify individuals’ trav-

eling demands. OD matrices are generated by dividing the given area into zones. Then, the

number of trips that begin or end in each zone, as well as when these trips will occur, are

aggregated. Most urban planning and transportation agencies have OD matrices extracted

from travel surveys conducted every 5-10 years [36]. These surveys contain information

about trips made by individuals on a typical weekday such as origin, destination, start

time, purpose, etc. OD matrices can also be estimated via other techniques such as mobile

phone data [40]. Usually, OD matrices change slowly over a long time period, influenced

by human factors such as socio-economic and environmental status [41]. Additionally, the

DTA model requires the RTN characteristics dataset, which contains data about trans-

portation network nodes and links attributes, such as network geometric, length of road

segments, number of lanes in each road, and speed limits.

2.3 Spatial-temporal Flow Capturing Location Model

EVCI siting is a problem of strategically locating various types of charging facilities in a

network. The ST-FCLM presented in the following is to site a given number of charging

facilities in locations that maximize the captured traffic flows. EVCI contains three types

of facilities, including OWCs, FCSs, and PLs. These facilities are to meet varying demands

or preferences of PEV users, which can be either en route during the traveling from origins

to destinations or static at the trip destinations. Practically, a PEV driver tends to charge

a PEV at the trip destination if the PEV has enough SoC to complete the trip and there

is a charging facility at the destination, to avoid waiting time at charging facilities. On

the other hand, en route PEV charging will be limited to the situations where the SoC of

PEV battery falls below a certain threshold or for a long distance trip [42]. Planning of

PEV charging infrastructure should satisfy both types of charging demand (en route and

static) to meet critical service requirements.

Both OWCs and FCSs are suitable for meeting the en route charging demand, as users

17



in general would prefer spending less time in charging facilities during the trips. The traffic

flows during peak traffic periods are captured by the OWCs. The chosen OWC locations

should intercept the maximum amount of traffic flow during the peak traffic periods. These

locations are likely to be congested, which is more appropriate for the usage of OWCs. This

is because vehicles speed will be lower and PEVs will be on top of the charging lanes for

a longer time, thus allowing PEVs batteries to be charged by a larger amount of energy.

Additionally, during the peak traffic hours, drivers will be highly motivated to use OWCs

to charge their PEVs while driving, instead of waiting for charging service at a plug-in

charging facility. The traffic flows during non-peak traffic periods are captured by the

FCSs, since a PEV user is more likely to stay for some time at FCS for battery charging,

including the battery charging time and the waiting time for charging service.

In addition to the en route PEV charging demand, users may need to charge their PEVs

at trip destinations. This type of charging demand is considered static, as users utilize their

dwelling time at destination nodes, in which PEVs are parked for several hours, such as

working hours or overnight parking. The static PEV charging demand can be captured by

PLs at the destination nodes of traffic flows. In this way, en route PEV charging demand

will be covered during traveling between OD pairs by either OWCs or FCSs, and during

parking at destination nodes by PLs. Consequently, the unique characteristics and usage

patterns of the three types of charging facilities are considered in our proposed siting model.

To develop the ST-FCLM, we make some assumptions: 1) Drivers always choose the

route that minimizes their personal travel time between each OD pair, considering depar-

ture time and congestion levels in the transportation network; 2) PEVs are assumed to

be uniformly distributed across the given area and the PEV penetration rate is known.

Currently, this assumption may not be accurate in many cities because PEV users have

a certain income level and reside in some city regions. Our model and analysis can be

extended to account for a non-uniform PEV distribution, provided such a distribution is

available; 3) PEV driving range and energy consumption per unit distance are similar in

all PEVs in the system, equal to the average of various PEV classes.

As shown in Figure 2.2, our approach for developing the ST-FCLM is comprised of the

following steps: 1) To estimate the spatial-temporal traffic flows within the given study

area using a simulation basted DTA model; 2) To distinguish between siting locations of
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Figure 2.2: The ST-FCLM framework.

various charging facility types. To accomplish this task, the traffic flow dataset is clustered

according to the temporal characteristics based on the GMM algorithm. Then, we site

each type of charging facilities to capture a distinct traffic pattern; 3) To generate a set

of candidate sites in order to consider the PEV limited driving range. Hence, more than

one charging facility may be allocated between an OD pair in the network if the traveling

distance between them is longer than the maximum PEV driving range.

2.3.1 Clustering the Traffic Flow Dataset

Recall that the exogenously generated traffic flow dataset, F = {fq,r(t)},∀q, r, t, represents

the traffic volume on route r ∈ Rq between OD pairs q ∈ Q at time slot t ∈ T of a typical

weekday. Thus, F ∈ RN×T is a matrix, where N denotes the number of flow vectors

and T denotes the time periods. Each flow vector fq,r = [f 1
q,r, f

2
q,r, · · · , fTq,r] represents the

discretized time-varying flow volumes between on corresponding route and between the

corresponding OD pair. For N flow vectors in the transportation network, the traffic flow
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dataset is denoted as follows:

F =



f 1
1,1 f 2

1,1 f 3
1,1 . . . fT1,1

...
...

...
. . .

...

f 1
q,r f 2

q,r f 3
q,r . . . fTq,r

...
...

...
. . .

...

f 1
Q,Rq

f 2
Q,Rq

fQ,Rq . . . fTQ,Rq


.

In order to site each type of charging facilities in locations that capture distinct traffic

patterns, the time-varying traffic flows are clustered according to their similarities.

Definition 1. The clustering process is to partition F into k clusters {θ1, θ2, ..., θk}
according to a similarity measure, where each cluster θi ⊆ F , (i = 1, 2, .., k) has a common

characteristic.

Traffic flow dataset is clustered according to the temporal characteristics. The goal

of clustering is to categorize the time periods in which the traffic flows are either high or

low. More precisely, the clustering objective is to develop two heat maps that reflect the

relative need for each type of charging facilities: 1) The first heat map is for the aggregated

traffic flow during the peak traffic period, which is used to site OWCs; 2) The second heat

map is for the aggregated traffic flow during the non-peak traffic period, which is used

in siting FCSs. Additionally, PEV numbers are aggregated over time at the destination

nodes to reflect the relative need for PLs at these nodes. All types of charging facilities

in the system can be used by PEV users at anytime of day and those heat maps are only

used for selecting appropriate locations for each charging facility type. Towards this end,

the Gaussian mixture model-based clustering can be used, which is characterized by its

speed of convergence and adaptability to sparse data [43–45]. Another key feature of the

GMM algorithm is its soft assignments of data points to clusters. In the soft assignment,

data points can be assigned to multiple clusters with certain probabilities [43]. The soft

assignment feature facilitates accurate clustering of the traffic flow dataset.

The GMM is a probabilistic model that assumes all data points are generated by a

mixture of a finite number of Gaussian distributions, in which each Gaussian component

represents a unique cluster [46]. To cluster the traffic flow dataset according to the temporal
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characteristic, the spatial dimension of the data is ignored, and temporal distance function

is used to determine the dissimilarity between clusters. The traffic flow dataset is then

represented as F = {f1, . . . , fT}, and the tth entry of a T -dimensional discrete-valued

data vectors represents a vector of traffic flows via all routes and OD pairs on time t. For

the GMM with k components, the density of ft is a sum of weighted Gaussian densities

{θ(µi,Σi)}ki=1 as given by the following equation [43,46]:

p(ft | λ) =
k∑
i=1

ωi θ(ft | µi,Σi) (2.1a)

=
k∑
i=1

ωi
exp(−1

2
(ft − µi)ᵀ Σ−1

i (ft − µi))

(2π)T/2 |Σi|1/2
(2.1b)

where ωi represents the weight of the ith Gaussian component with
∑k

i=1 ωi = 1. The mean

vector and the covariance matrix are denoted by µi and Σi, respectively. The complete

GMM parameters are represented by the mean vectors, covariance matrices and mixture

weights of all the Gaussian component densities. These parameters are collectively denoted

by λ = {ωi, µi,Σi}, i = 1, · · · , k.

Ideally, one should use the maximum likelihood (ML) estimation method in order to

estimate the GMM parameters that best fit the distribution of the data vector. By assum-

ing the independence among the data points, the log-likelihood function (L) is given by

the following equation [46]:

L = ln p(F | λ) =
T∑
t=1

ln
{ k∑

i=1

ωi θ(ft | µi,Σi)
}
. (2.2)

However, this equation is a nonlinear function of λ, making it difficult to maximize its

expression [43,46]. Instead, the expectation-maximization (EM) algorithm can be used to

estimate the GMM parameters. The EM algorithm performs two iterative steps, which

are the expectation step (E-step) and the maximization step (M-step) [43, 46]. The al-

gorithm starts with the E-step by picking an initial guess about the GMM parameters,

then computes the posterior probabilities (or membership probabilities) of the given data,
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which maximize the expected log-likelihood function. Using the current GMM parameters

values, the posterior probability of data at time t belongs to component j is denoted by

(ptj), and is given by

ptj =
ωj θ(ft | µj,Σj)∑k
i=1 ωi θ(ft | µi,Σi)

. (2.3)

Afterwords, the M-step updates the GMM parameters based on the current posterior

probabilities, as given by

ωnewj =
1

T

T∑
t=1

ptj, j = 1, · · · , k (2.4a)

µnewj =
1

Tωnewj

T∑
t=1

ptjft, j = 1, · · · , k (2.4b)

Σnew
j =

1

Tωnewj

T∑
t=1

ptj(ft − µnewj )(ft − µnewj )ᵀ, j = 1, · · · , k. (2.4c)

The EM algorithm converges when the changes in the log-likelihood function or alterna-

tively in the GMM parameters are less than a given threshold value (δ). The termination

condition of the EM algorithm is when | Lnew−L |< δ. Thus, the EM algorithm evaluates

the log-likelihood function, as given by Equation (2.2).

The number of components in GMM can be efficiently selected based on the Bayesian

information criterion (BIC) [43, 47, 48]. The basic idea of the BIC is that adding more

components or clusters to the GMM will increase the value of the likelihood function,

although the complexity of the model will increase as the GMM parameters increase.

The BIC resolves this issue by penalizing the GMM complexity by the addition of more

components. The formula of the BIC is given by

BIC = −2L+ k lnT (2.5)

where L is the maximized value of the likelihood function; k denotes the number of com-

ponents or clusters in the GMM; T denotes the number of data points in the clustered

dataset. The optimal number of components of the GMM is k∗ that minimizes the BIC
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score, as given by the following equation:

k∗ = arg min
k∈N

BIC. (2.6)

2.3.2 Optimization Problem

Based on the clustered traffic flow dataset, the GMM computes the membership probability

for each time slot to the corresponding output label. The cluster that is parameterized

with the highest mean value is labeled as the peak traffic flow cluster. Vector PR =[
pR1 pR2 . . . pRT

]ᵀ
contains the membership probability for data points with respect to

the peak traffic flow cluster. Each element in that vector, pRt , represents the probability of

the observed flows at time slot t belongs to the peak traffic flow cluster.

The ST-FCLM model captures the cumulative traffic flows over peak traffic periods

by the OWCs, and the cumulative traffic flows over non-peak traffic periods by the FCSs.

The cumulative traffic flows during the peak (ΦR ∈ RN ) and non-peak (ΦN ∈ RN ) traffic

periods are defined as

ΦR = F · PR =
T∑
t=1

fq,r(t)p
R
t ∀ q ∈ Q, r ∈ Rq (2.7a)

ΦN = F · PN =
T∑
t=1

fq,r(t)p
N
t ∀ q ∈ Q, r ∈ Rq (2.7b)

where PN is a vector that contains the membership probability for data points with respect

to the non-peak traffic flow cluster. If the GMM partitions the traffic flow dataset with

more than two components, we can then set PN = 1− PR. The probability vectors act as

weights to the traffic flow dataset that facilitates the evaluation of the cumulative traffic

volumes on roads during various time windows.

The static charging demand of PEVs at the trip destinations can be reflected by the

number of PEVs at destination nodes. The PEVs static charging demand can be estimated

based on the cumulative traffic flows over time via all routes between each OD pair q.
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Hence, PEVs static charging demand (ΦS ∈ RQ) is defined as

ΦS =
∑
∀t∈T

∑
∀r∈Rq

fq,r(t) ∀q ∈ Q. (2.8)

The objective of the ST-FCLM is to choose the best locations, which maximize the

captured traffic flows, for each type of charging facilities. In the ST-FCLM, decision

variables are partitioned into two sets: 1) A set of control variables (independent decision

variables) X = (X1
a , X

2
k , X

3
k) that control the siting of charging facilities on RTN nodes

and links; 2) A set of state variables (dependent decision variables) Y = (Y R
q,r, Y

N
q,r, Y

S
q )

that indicate the covered en route and static PEV charging demand. The ST-FCLM is

formulated as follows:

max
X,Y

∑
∀q∈Q

∑
∀r∈Rq

(ΦR
q,rY

R
q,r + ΦN

q,rY
N
q,r) +

∑
∀q∈Q

ΦS
q Y

S
q

 (2.9a)

s.t. X1
a ≥ Y R

q,r, ∀a ∈Wq,r, q ∈ Q, r ∈ Rq (2.9b)

X2
k ≥ Y N

q,r, ∀k ∈ Kq,r, q ∈ Q, r ∈ Rq (2.9c)

X3
k ≥ Y S

q , ∀k ∈ Nq, q ∈ Q (2.9d)

Y S
q ≤

∑
∀r∈Rq

(Y R
q,r + Y N

q,r) ≤ 1, ∀q ∈ Q (2.9e)

∑
∀a∈W

X1
a ≤ N1, (2.9f)∑

∀k∈K
Xj
k ≤ N

j , ∀j ∈ {2, 3} (2.9g)

X2
k +X3

k ≤ 1, ∀ k ∈ K (2.9h)

X1
a , X

2
k , X

3
k ∈ {0, 1}, ∀a ∈W, k ∈ K (2.9i)

0 ≤ Y R
q,r, Y

N
q,r, Y

S
q ≤ 1 ∀q ∈ Q, r ∈ Rq. (2.9j)

The parameters and variables in this formulation are presented in Table 2.2. The

objective function (2.9a) selects the siting plan X = (X1
a , X

2
k , X

3
k) that maximizes the

captured cumulative traffic flows via all routes that travelers may choose to travel between
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Table 2.2: Nomenclature of ST-FCLM
Q, q the set and index of OD pairs

Rq, r the set and index of routes that used in traveling between
an OD pair q

K, W the sets of all candidate nodes and links, respectively

Wq,r, a the set and index of candidate OWC links on route r
between OD pair q where Wq,r ⊆W

Kq,r, k the set and index of candidate nodes for plug-in charging
facilities on route r between OD pair q, where Kq,r ⊆ K

Nq the destination node of the OD pair q, where Nq ⊆ K

N j the given number of OWCs, FCSs, and PLs to be deployed
for j ∈ {1, 2, 3}, respectively

Y R
q,r =1 if the peak traffic flow between OD pair q on route r

is captured, 0 otherwise

Y N
q,r =1 if the non-peak traffic flow between OD pair q on route

r is captured, 0 otherwise

Y S
q =1 if the PEV static charging demand of OD pair q is

captured, 0 otherwise

X1
a =1 if an OWC is located at candidate link a, 0 otherwise

X2
k =1 if an FCS is located at candidate node k, 0 otherwise

X3
k =1 if a PL is located at candidate node k, 0 otherwise

each OD pair. The objective function consists of three parts: The first part captures the

peak traffic flows by siting the OWCs; The second part captures the non-peak traffic flow

by siting the FCSs; The third part captures the PEVs static charging demand by siting the

PLs. Constraints (2.9b) and (2.9c) ensure that the flow between an OD pair is captured

if each link on the route r is traversable after charging in the OWCs or FCSs along the

path. State variables Y R
q,r equal to one if all control variables X1

a (∀a ∈Wq,r) equal to one.

Similarly, state variables Y N
q,r equal to one if all control variables X2

k (∀k ∈ Kq,r) equal to

one. These constraints are designed to consider the limited PEV driving range. On route r

between OD pairs q, a pre-generated candidate node list Kq,r and candidate link list Wk,r

are used to site the charging facilities to ensure that the route is traversable by the limited
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range PEVs. The generation of Kq,r and Wq,r is discussed in the following paragraph.

Constraint (2.9d) ensures that a PL is sited at the destination node Nq of the OD pair q

if the static charging demand of this flow is met. To prevent double-counting, constraint

(2.9e) ensures that charging facilities, either OWCs or FCSs, are sited on one route between

each OD pair, which can capture the highest possible flow over the time. Only one type

of facilities can capture the covered flow. The highest flows during the peak traffic will

be covered by OWCs and then the highest flows during non-peak traffic will be covered

by FCSs. Also, this constraint ensures that the PEV static charging demand can only be

covered if the flows between OD pairs are covered by either OWCs or FCSs, which ensures

that PEVs will be able to reach the PL locations. Constraints (2.9f) and (2.9g) ensure that

the total number of each type of the deployed charging facilities in the system is less than

or equal to a pre-defined number of facilities. Constraint (2.9h) indicates that only one

type of plug-in facilities can be deployed at any system node. Constraint (2.9i) forces the

binary variables to be either 0 or 1. Although state variables Y R
q,r, Y

N
q,r, and Y S

q are defined

as binary variables, they can be relaxed as continuous variables with upper limit of 1 in

constraint (2.9j). This is because the state variables are used in a maximization objective

function, which drives the continuous variables to their highest possible values. The ST-

FCLM is an mixed-integer linear programming (MILP) problem, in which the number of

variables and constraints increase exponentially with an increase of OD pairs and number

of routes between each q.

Figure 2.3: Example on generation the set of candidate charging facilities sites.

To consider the PEV limited driving range, more than one charging facility may be

allocated between an OD pair in the network if the traveling distance between them is

longer than the maximum PEV driving range. For each route that travelers may choose

between an OD pair, two sets of candidate sites are generated: 1) Set Kq,r contains all the

candidate nodes for plug-in charging facilities (FCSs or PLs) to ensure that all the links

on route r are traversable for a round trip between OD pair q; 2) Set Wq,r contains all
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candidate links suitable for deploying OWCs. Figure 2.3 illustrates a simple example of

a single OD pair connected through three bidirectional RTN links {a12, a23, a34} and four

RTN nodes {N1, N2, N3, N4}. We define `(.) as the length of links. In this example, the

PEV range is R = 90. The initial PEV battery SoC is assumed equal to R
2

. To complete

a round trip without running out of battery charge, the first candidate site for plug-in

charging facility is N2 since PEV can travel through a12 with the initial battery SoC. If the

length of a12 exceeds the initial PEV battery SoC, the first candidate site is N1. In both

cases, link a12 is a candidate for deploying OWC. PEV battery SoC is equal to R after

recharging at a plug-in facility at N2 or OWC at a12. Then, the PEV can travel through

a23 and a34. When the PEV reaches N4, it must be recharged again in order to return to

the origin and complete the round trip via the same route. Hence, another plug-in charging

facility should be sited at N4 or OWC at a34. Therefore, the candidate plug-in charging

facility set for this route is {N2, N4}, and the candidate links for OWC is {a12, a34}. In

order to generalize this approach, Algorithm 1 is used to generate the candidate sites for

all OD pairs in a network. All the practical routes being chosen by the travelers should be

extracted from the DTA model for this algorithm. In this algorithm, T (.) returns the tail

node of a link. The set of links between OD pairs q on route r is denoted by Aq,r, and link

i in set Aq,r is denoted by a(i), where i is the ordering index.

2.4 Numerical Results

To validate the model and demonstrate its applicability, we select two popular RTNs, which

are known as the Nguyen-Dupuis network [49] and the Sioux Falls network [50]. In each

case, four steps are taken: 1) The time-varying traffic flows are simulated based on the road

traffic simulator SUMO [51]. The simulation tool iteratively computes the travel times on

the RTN links, then assigns alternative routes to some vehicles on these routes according

to the traveling time; 2) The traffic flow dataset is clustered into distinct categories using

the GMM algorithm; 3) The set of candidate charging facilities sites is identified based on

Algorithm 1; 4) The ST-FCLM is implemented with Gurobi Optimizer 7.5 under Python

environment. The following numerical results are obtained on a laptop computer with a

2.27-GHz Intel(R) Core(TM) i3-M350 CPU and 4 GB of memory.
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Algorithm 1 Generating of the candidate site sets
Input: Vehicles range R, Set of links Aq,r
Output: Candidate nodes set K, Candidate links set W
1: K← ∅, W← ∅.
2: for each q ∈ Q do
3: for each r ∈ Rq do
4: Set i = 1.
5: Set SoC1 ≡ R2
6: for each a(i) ∈ Aqr do
7: if `(a(i)) ≥ SoCi then
8: Wq,r ←Wq,r ∪ {a(i)}
9: Kq,r ← Kq,r ∪ {T (a(i))}

10: SoCi+1 = R− `(a(i))
11: else
12: SoCi+1 = SoCi − `(a(i))
13: end if
14: end for
15: K← K ∪Kq,r.
16: W←W ∪Wq,r.
17: end for
18: end for

2.4.1 Nguyen-Dupuis Network

As shown in Figure 2.4, the Nguyen-Dupuis network contains 13 nodes, 19 links, and 4 OD

pairs, which are (1,2), (1,3), (4,2), and (4,3) [49]. The numbers in the circles represent the

node indices, and the numbers on the links denote the link indices. The speed limit of the

vehicles is 50 km/h, and all links on the network are two-lane one-way roads. Table 2.3

lists the daily travel demand between origins and destinations. The hourly distribution of

vehicle trips on a weekday as a percentage of daily traffic versus time of day follows the

UK national travel survey [52].

To visualize the traffic simulation output, we plot the time-varying flow volumes be-

tween OD pair (1,3) in Figure 2.5. Table 2.4 lists the traffic flows along with the corre-

sponding traveling routes and route lengths for all OD pairs. The results show that f11

between OD pair (1,2) travels through a single route which is the route with the shortest

distance. This is because no other flows use the links of this route, permitting the flow to
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Figure 2.4: The Nguyen-Dupuis network.

Table 2.3: OD matrix of the Nguyen-Dupuis network
OD pair Daily travel demand

(1,2) 11000
(1,3) 24000
(4,2) 13000
(4,3) 6000

travel without congestion. However, drivers use multiple routes in traveling between all

other OD pairs in the network since the links of these routes are shared among multiple

flows. Therefore, these links are congested, so travelers choose the routes with minimum

traveling time between their OD pairs rather than the routes with the shortest distance.

Table 2.4 also shows the cumulative traffic flows (after unity-based normalization) during

the peak ΦR and non-peak ΦN traffic periods, in addition to the static PEV charging de-

mand ΦS at the destination nodes. The sets of candidate charging facility sites K,W are

determined based on Algorithm 1, with assuming that the PEV range is R = 24, which is

longer than the longest link in the network.

In formulating the ST-FCLM, the limits on the numbers of OWCs, FCSs, and PLs

are set to be less than or equal 3,4,1, respectively. As shown in Figure 2.6, the solution

locates OWCs on links {4, 14, 17} to cover flows {f22, f32}, which represent 32.23% of the

overall traffic flows in the network. The FCSs are deployed at nodes {4, 9, 12, 13} to cover
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Figure 2.5: The Nguyen-Dupuis network traffic flow between OD pair (1,3).

Table 2.4: Flows routes and candidate sites sets for Nguyen-Dupuis network at R = 24
OD pair Flow Route by links length ΦR ΦN ΦS K W

(1,2) f11 2-18-11 32 1.000 1.000 20.37% 12 18

(1,3)

f21 1-5-7-10-16 36 0.603 0.714

44.44%

6, 11 7, 16
f22 2-17-8-14-16 49 0.803 0.669 12, 10 17, 14
f23 2-17-7-10-16 44 0.740 0.451 12, 7 17, 10
f24 1-6-13-19 44 0.036 0.334 5, 9, 13 6, 13, 19
f25 1-5-8-14-16 41 0.000 0.012 6, 11 8, 16

(4,2)
f31 3-5-7-9-11 37 0.340 0.443

24.07%
5, 8 5, 11

f32 4-12-14-15 39 0.842 0.738 4, 10 4, 14

(4,3)
f41 3-5-7-10-16 38 0.143 0.189

11.11%
5, 11 5, 16

f42 4-13-19 41 0.402 0.356 4, 9, 13 4, 13, 19

flows {f11, f42}, which represent 28.32% of the overall traffic flows in the network. Note

that f22, f32 and f42 are not through the shortest distance routes between the OD pairs,

but the routes with the highest traffic volumes. A PL is deployed at node {2} to cover

55.56% of the overall static charging demand. The parentage of overall en route charging

demand covered by the charging facilities is 60.55%. This percentage is the maximum

traffic flows can be covered in this network, because only one route between each OD pair

can be covered to prevent double counting of the flows. A higher percentage of traffic flows
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can be covered if constraint (2.9e) is relaxed.

Figure 2.6: ST-FCLM solution for the Nguyen-Dupuis network.

Substantial differences appear when comparing the results of ST-FCLM with those of

arc-cover path-cover flow refueling location model (AC-PC FRLM) proposed in [26] for the

same network. There are two main differences between ST-FCLM and AC-PC FCLM: 1)

In the AC-PC FRLM, drivers are assumed traveling through the shortest distance routes

between OD pairs. Then, the siting model is restricted to cover the charging demand

on those routes. On the other hand, in the ST-FCLM, drivers are assumed traveling

through the routes with minimum travel times to their destinations. Thereby, the ST-

FCLM considers all the feasible routes that travelers may choose for each OD pair to

minimize their travel time. Both the spatial and temporal distributions of traffic flows

are then used in siting of charging facilities in locations that maximize the covered traffic

flows; 2) The AC-PC FRLM locates a single type of charging facilities on the transportation

network nodes. On the other hand, the ST-FCLM utilizes the clustered traffic flow dataset

in siting multiple types of charging facilities.

To compare the ST-FCLM and AC-PC FCLM, we analyze the effect of varying the

number of sited facilities on the percentages of covered traffic flows. As shown in Figure

2.7, the ST-FCLM covers either higher or as same traffic flows as AC-PC FRLM. As shown

in Figure 2.7, the AC-PC FRLM covers only 12.88% of the overall flows in the network

with two charging facilities, although it covers 20.37% with one facility. This is because,
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with two charging facilities, this model covers flow f21 that has more traveling demand than

flow f11, which can be covered by one facility. However, the travelers between OD pair

(1,3) choose various routes during their trips and are not restricted to the shortest distance

route. On the other hand, the ST-FCLM always covers the routes with the highest traffic

volumes. Moreover, the ST-FCLM can cover up to 60.55% by deploying five charging

facilities. However, the maximum traffic flows can be covered in the AC-PC FRLM is

43.9%. Consequently, the ST-FCLM outperforms the flow covering model, where traveler

route choices are only governed by the distance of routes.

Figure 2.7: Comparison between ST-FCLM and AC-PC FRLM when R = 24.

2.4.2 Sioux Falls Network

To validate our model on a larger network, with more realistic topology and demand

properties, we select the well-known transportation network of Sioux Falls, South Dakota,

USA. The Sioux Falls network consists of 24 nodes, 76 links, and 576 OD pairs [50]. The

topology of the Sioux Falls network is shown in Figure 2.8. Other network attributes, such

as OD matrix and link capacity, are reported in [50]. All nodes are candidate sites for

FCSs and PLs, and all links are candidate sites for OWCs.
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Figure 2.8: The Sioux Falls network.

The DTA simulation for the Sioux Falls network converges to the Wardrop’s user equi-

librium after three iterations. The number of generated flow vectors between the 576 OD

pairs is 1656. Each flow vector has a specific traveling route between the correspond-

ing OD pair. The flow vectors contain the discretized values of traffic volumes on the

corresponding traveling routes for 24-time slots over a typical weekday. The traffic flow

dataset is partitioned into two categories based on the GMM clustering algorithm. The

number of Gaussian components is chosen to be two components, which minimize the BIC

score as shown in Figure 2.9. Table 2.5 lists the GMM parameters for the two Gaussian

components. The EM algorithm reaches convergence after three iterations.

We implement the ST-FCLM on the Sioux Falls network, with PEV range R = 100 km.

Figure 2.10 shows the captured traffic flows and the covered static charging demand as a
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Figure 2.9: BIC score versus the number of GMM components.

Table 2.5: GMM component parameters
i ωi µi Σi

1 0.43750854 1.88507101 3.9677486
2 0.56249146 14.59745472 15.14277279

function of the number of charging facilities. The number of deployed facilities is increased

gradually until 10 facilities from each type are deployed. It is observed that around 47%

and 51% of the en route and static PEV charging demand, respectively, can be covered by

the 10 facilities from each type. The optimized siting plan of multiple types of charging

facilities obtained through the ST-FCLM is reported in Table 2.6. In this table, due to

space limitations, the number of facilities is limited to five facilities from each type.

Table 2.6: Deployment plan of multiple types of charging facilities
No. of facilities OWC locations FCS locations PL locations

3 32 22 10
6 49,58 11,12 10,17
9 32,36,58 9,16,22 10,17,15
12 25,27,32,36 16,19,22,23 10,17,15,11
15 25,46,49,53,67 11,12,14,19,23 10,17,15,20,22
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Figure 2.10: Implementing the ST-FCLM on the Sioux Falls network.

2.5 Summary

In this chapter, we propose the spatial-temporal flow capturing location model. This model

locates three types of charging facilities based on the spatial-temporal distribution of the

traffic flows. A simulation-based DTA model is used to estimate the time-varying traffic

flows between all OD pairs in the network. Then, the traffic flow dataset is clustered by

the GMM algorithm according to the temporal characteristics to identify the time periods

in which the traffic flows are high or low. Our model captures the traffic flows during peak

and non-peak traffic periods by OWCs and FCSs, respectively. The ST-FCLM deploys PLs

at the destination nodes of the trips to cover the static PEV charging demand. Thus, our

model makes use of different characteristics and usage patterns of each charging technology.

The simulation results based on the Nguyen-Dupuis and Sioux Falls networks show that

the proposed model captures a higher percentage of traffic flows with the same number

of facilities when compared with an existing model based only on spatial characteristics

of the traffic flows. Additionally, our model can be implemented on a relatively large

transportation network with a comparatively high number of OD pairs. Chapter 3 focuses

on capacity planning of EVCI, and proposes a framework that sizes charging facilities to

fulfill the given QoS targets and minimizes the cost of EVCI integration into PDN.
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Chapter 3

QoS-aware Capacity Planning of

Networked EVCI

In this chapter, we propose a QoS aware capacity planning of EVCI. The proposed frame-

work accounts for the link between the charging QoS and the PDN capability. As illustrated

in Figure 3.1, we firstly optimize charging facility sizes to achieve a targeted QoS level for

the entire networked EVCI. PEV charging demand at each facility is estimated for inclu-

sion in the PDN load demand. Then, we minimize the integration cost for the PDN by

attaining the most cost-effective allocation of the ESSs and/or upgrading the PDN substa-

tion and feeders. Additionally, we capture the correlation between the occupation levels of

neighboring charging facilities and the blocked PEV user behaviors. We model the EVCI

as a queuing network with finite capacity, and utilize the non-stationary queuing models

to study the temporal variability of the PEV charging demand. A network of charging

facilities is used to demonstrate the effectiveness of the proposed framework.

3.1 Related Work

Capacity planning of EVCI must ensure not only a satisfactory charging service for PEV

users but also a reliable operation of the power grid. Existing capacity planning models of
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Figure 3.1: EVCI capacity planning framework.

EVCI follow two main approaches [18]. One approach uses stochastic models to size the

charging facilities to achieve a targeted QoS level [53–55]. A charging facility is modeled

as an isolated stationary queue, while PEVs are modeled as customers in the queue. These

PEVs require a charging service from a limited number of identical chargers. Charging

facilities are sized based on the expected PEV charging demand at each facility location and

evaluated based on statistical metrics, such as blocking probability and waiting time [54].

The M/M/c queuing model can be used to model fast charging stations [5,42,54,56]. This

model assumes that all the arrived PEVs will wait for the charging service, which means

unlimited waiting positions in the charging facility. In order to consider the limited waiting

positions in a charging station, the M/M/c/K queuing model is employed [57,58]. If all the

waiting positions in the facility are occupied, the newly arrived PEV will leave the facility

without charging. Based on the expected PEV charging demand, the numbers of chargers

and waiting positions in the charging facility can be determined to meet the target QoS

set by the planner [54, 57, 58]. Although this approach can ensure a satisfactory charging

service with the stochastic PEV demand, it endangers the reliability of the power system.

This is because the targeted QoS level is set in isolation from the actual capability of PDN.

The other approach sizes the charging facilities to minimize the negative impacts on
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the power grid [19, 22, 59–62]. The sizing objective is to ensure that the charging facility

load demand complies with the power system operational constraints by collaboratively

planning the EVCI and PDN. For instance, a multi-objective planning model with a coupled

distribution and transportation networks is proposed in [11]. The planning model optimizes

the locations and sizes of charging facilities to minimize the total energy loss and bus voltage

deviation on the distribution network, in addition to maximizing the captured traffic flow

of charging facilities. Another model is to optimize the locations and sizes of charging

facilities to balance between the PEV charging requirement and power network stability,

considering a linearized power network model [63]. This approach ensures that the PDN

can safely accommodate the peak load demand of charging facilities; however, PEV user

satisfaction is not a focus. This is because the planning models usually re-locate and/or

re-size the charging facilities to fulfill power grid requirements.

There are a few published papers that deal with both the charging QoS and the PDN

capability in the planning of EVCI. For instance, a siting and sizing model of fast charging

stations on coupled transportation and power networks is proposed in [64]. This model

utilizes users’ waiting time at charging facilities as a service level index. Then, an opti-

mization model is used to size charging stations and determine the required upgrade in

the PDN. In [42], a capacitated flow-refueling location model is proposed to optimize the

planning of highway fast-charging stations. The proposed model adopts the M/G/S queu-

ing model to size charging facilities based on the upper limit of users’ waiting time. This

model also introduces capacity constraints in the siting model. Thereby, if PEV charging

demand cannot be satisfied in a facility, it is distributed to other facilities in the network.

Even though that capacity planning of EVCI has been extensively studied in the liter-

ature, three issues have not yet been well studied: 1) Existing capacity planning models

do not capture the inter-relationships among the charging QoS, the capability of existing

PDN, and the possibility of allocating ESS in charging facilities. Accounting this relation-

ship in the sizing of charging facility ensures the balance between the requirements of the

power system and charging service; 2) Modeling charging facilities as isolated queues with

infinite capacity ignores the correlation among the occupation levels of nearby facilities.

In practice, if the capacity of a charging facility is less than the demand, the blocked PEV

users can spread across the surrounding charging facilities, which can greatly impact the
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level of performance in those facilities. Therefore, charging facilities must be modeled as a

network with a finite capacity to account for the inter-relationships among nearby facilities,

in addition to accounting for the behavior of blocked PEV users by the overloaded facilities;

3) Designing charging facilities using the stationary queuing models do not account the

temporal variability of PEV charging demand. Two approaches are used to apply these

stationary queuing models to a system with time-varying demand (PEV arrival rate). The

first approach uses stationary models with the long-run-average arrival rate to simplify the

sizing problem [54]. However, the system can suffer from high congestion (overload) and

low QoS at the peak demands [65]. The second approach divides the time horizon into

intervals and then uses the peak demand (peak arrival rate) as inputs to the stationary

queuing models [22, 53]. This approach aims to fulfill the targeted performance at the

peak demand. However, it fails to capture the random time lag between the time of peak

demand and the time of peak load on the queuing system. Moreover, this approach does

not account for PEVs that are already in the system (either charging or waiting) from the

preceding time periods [65].

3.2 System Model

In this section, we present modifications to the system model presented in Chapter 2 to

account for the coupling with the PDN, the correlation among the PEV occupancy of

neighboring charging facilities, and the temporal variability of the PEV charging demand.

Consider a typical urban area where the RTN is coupled with the PDN according to

the geographical information. The PDN consist of a set of buses B and a set of branches

(feeders) L. The PDN is connected to the rest of the power grid through substation(s). Let

H (H ⊆ B) be the set of buses connected to substations. It is assumed that load forecasting

studies are conducted at the PDN to estimate the power demand profile [22]. Furthermore,

voltage limits, branch capacity limits, substation capacity limits, and the conductance of

all branches are known. Time is partitioned to equal segments, where each time segment

duration is chosen to be one hour as an example. This is because energy trading and

scheduling are conducted on a one-hour interval basis, according to Ontario’s independent
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electricity system operator (IESO) [66]. Also, PEV traffic flows are estimated on the same

time intervals. The locations of charging facilities are given, as discussed in Chapter 2.

FCSs and PLs are allocated on a finite set of RTN nodes, and OWCs are allocated on a

finite set of RTN links. AC level 3 chargers and DC fast chargers are deployed in the PLs

and FCSs, respectively [6]. Moreover, some PEVs are capable of charging in OWCs via

the dedicated wireless charging lanes [53]. The load demand of charging facility equals the

aggregated charging demand of all PEVs simultaneously being charged.

3.2.1 Networked EVCI Model

The capacity of any charging facility is always finite. Thereby, a PEV user may be mo-

mentarily stopped (rejected) when a charging facility reaches its maximum capacity. This

phenomenon is called blocking. Subsequently, the blocked PEV user may move towards

one of the neighboring charging facilities, requesting a charging service. Due to the block-

ing, there is a correlation among the PEV occupancy of neighboring charging facilities,

and understanding this correlation helps to explain the propagation of congestion. Conse-

quently, a realistic model of EVCI should address the finite capacity of charging stations,

in addition to the behavior of blocked PEV users by the overloaded facilities.

EVCI can be modeled as an open queuing network with finite capacity and blocking.

Different from isolated queue models, a finite capacity queuing network can capture the

interactions among multiple charging facilities, in addition to the blocked PEV user be-

haviors. In such a network, EVCI can be represented as a set of interconnected charging

facilities (service centers). These service centers are interconnected through a road system.

PEV users enter this open network from outside (exogenous arrivals), receive charging ser-

vices, and eventually leave the network. In order to construct the queuing network, each

charging facility is modeled by two types of nodes:

• Charging facility node (CN): A charging facility is represented as a physical node. If

the charging facility is an FCS or a PL, CN n (n ∈ N) can be modelled as a finite

queuing system M/M/cn/Kn, which has a Poisson arrival process M [67], exponen-

tially distributed service time M with service rate µn [5], cn chargers (servers), and
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maximum number of PEVs, Kn, in the facility including the charging and waiting

PEVs. If the charging facility is an OWC, CN node n can be represented as a loss

system M/M/cn/cn, since there is no waiting position on the charging lanes.

• Decision-making node (DN): A DN is a logical (virtual) node associated with each

CN. DN n is used to model the behavior of PEV users, who are requesting a charging

service from the associated CN. The decision of each PEV user can be either to get a

charging service from CN n or move towards another charging facility (DN ń, where

ń 6= n). Thus, the arrivals to a DN can be from an external population and/or routed

from other DNs. DN n is modeled as a single server queue M/M/1 with a very high

service rate µdn � µn since a driver usually makes a decision instantaneously without

delay.

In the networked EVCI, PEV user behaviors in response to the occupancy level of

charging facilities are described through a blocking mechanism, called repetitive service

with random destination (RS-RD) [68]. When a PEV user chooses charging facility n for

a service, the user will first arrive at DN n, then chooses a destination randomly either

by attempting to access CN n or routing towards another DN ń in the network. If CN

n at that time is full, the user will be blocked and return to DN n, starting to randomly

choose a new destination independent of the previous choice(s). 1 After a PEV is served

by a charging facility, it leaves the network with probability 1, under the assumption that

the charging demand of a PEV is unsplittable and a PEV will be charged with sufficient

energy at the visited facility. An illustrative example of a queuing network composing of

two neighboring charging facilities is shown in Figure 3.2.

The routing probability between two charging facilities is denoted by αnń, where n 6= ń

and n, ń ∈ N, while αnn denotes the routing probability between DN n and the associated

CN n. The routing probability αnn is larger than any αnń, for ń 6= n, where αnń are

assigned to the neighboring DNs depending on the proximity to CN n. That is, a blocked

1A deadlock problem may occur in the queuing network if all CNs in the network are full. In this
case, a PEV user may be blocked multiple times until space becomes available at a CN. To avoid a
network deadlock, it is sufficient that the routing matrix is irreducible and the number of PEVs requesting
charging services is less than the total capacity of CNs [69]. In this model, we assumed that the EVCI is
a deadlock-free network.
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Figure 3.2: Queuing network model of two neighboring facilities.

PEV will be routed to a nearby charging facility with a higher probability than those

to farther facilities. This assumption conforms with vehicular traffic modeling [70]. The

routing probability can be estimated based on the multinomial logit (MNL) model, which is

used to predict driver choice probabilities as a function of a certain utility, such as traveling

distance, traveling time, and charging cost [71]. Due to the range anxiety of the blocked

PEV users, αnń is assumed depending on the distance dnń between charging facilities and

can be estimated by

1− αnn =
∑
∀i∈N
i 6=n

αni, (3.1a)

αnń =
(1− αnn)e−dnń∑
∀i∈N
i 6=n

e−dni
, ∀n ∈ N. (3.1b)

Analysis of queuing networks with finite capacity and blocking is complex, because

the steady-state queue length distributions do not have a product form, except for some

special cases [68]. However, the steady-state queue length distribution of the network un-
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der investigation can be approximated using the disaggregation-aggregation (DA) iteration

method [72]. Based on DA iterations, the underlying Markov chain model of a queuing net-

work is approximated through aggregation. This Markov chain typically has a very large

state space and a sparse transition probability matrix. DA iterations exploit the marginal

aggregate probabilities instead of the complete state space, in order to approximate a prod-

uct form solution of the state probabilities. Calculating the state probabilities facilitates

the evaluation of the performance indicators of the EVCI. DA iteration algorithm is briefly

discussed as used in our application in Appendix A.

3.2.2 Analysis of Temporal Variability in Charging Demand

To incorporate the time-varying demand, a charging facility model can be refined using

non-stationary queuing models Mt/M/c/K and Mt/M/c/c (depending on the facility type)

with a non-homogeneous Poisson arrival process (NHPP) Mt. The NHPP is a counting

process, XXX = {X (t) : t ≥ 0}, having independent and Poisson-distributed increments. The

NHPP has a deterministic arrival rate function at time t, λ(t), [73].

The analysis of non-stationary queuing models can be approximated by infinite server

model Mt/M/∞, which has the same arrival process and service time distribution but with

an infinite number of servers [74]. This approximation allows all users to access the service

upon arrival without waiting, which simplifies the mathematical model. The PEV number,

Xt at time t, in the finite queuing model is approximated by the number of the busy servers,

X∞t , in the infinite server model. It is proved, in [74] and the references therein, that X∞t
has a Poisson distribution with mean, m∞(t), which is expressed in terms of the arrival-rate

function λ(t) as

m∞(t) ≡ E[X∞t ] = E
[∫ t

t−S
λ(r)dr

]
= E[λ(t− Se)]E[S] (3.2)

with S being the service time distribution. In (3.2), random variable Se is the stationary-

excess distribution, which indicates the distribution of the remaining service time [75].

The time-varying mean in (3.2) is the expected number of busy servers in the system with

an infinite number of servers, referred to as offered load. This formula is complicated as

43



there is a random time lag, Se, in the arrival rate function. The offered load of infinite

server model provides insight on both the time-lag and magnitude shift between arrivals

and loads of the system.

The offered load approximation in (3.2) is used to derive a new arrival rate function,

which is used in evaluating the performance of the non-stationary queuing systems over

time. The new arrival rate function is called modified offered load (MOL) [65, 75]. Based

on the MOL, the instantaneous performance measures for the Mt/M/c/K and Mt/M/c/c

systems can be approximated with the steady state performance of the associated sta-

tionary models M/M/c/K and M/M/c/c, respectively. The MOL arrival rate function,

λ∗(t), is obtained from the exponentially weighted moving average of the arrival rate for

the non-stationary models by [75]

λ∗(t) =

∫ t

−∞
µ exp

[
−µ(t− u)

]
λ(u) du (3.3)

where µ is the service rate of the queuing model. The MOL arrival rate accounts for

the transient behavior and dependencies among the consecutive intervals. Thereby, the

time-dependent system performance can be analyzed accurately [65].

The non-parametric estimation method is used to estimate the MOL arrival rate func-

tion over time [73]. The MOL arrival rate function to charging facility n, λ∗t,n, is assumed

piecewise constant on any subinterval [t − 1, t), with t ∈ T, depending on the number

of PEVs intercepted at a charging facility, PEV penetration rate, and the facility type.

Let In1 , I
n
2 , · · · , InT be the numbers of PEVs intercepted at charging facility n, which are

collected over T sub-intervals. As discussed in Chapter 2, these numbers are estimated

based on the DTA model, which forecasts the time-varying traffic patterns of RTN [53].

Thus, MOL arrival rate function for charging facility n at time slot t can be calculated by

λ∗t,n =



Pν(1− σ)(1− β)
t∫

u=0

µF Inu exp
[
−µF (t− u)

]
du, if n ∈ F

Pν(1− σ)β
t∫

u=0

µO Inu exp
[
−µO(t− u)

]
du, if n ∈ O

Pνσ
t∫

u=0

µP Inu exp
[
−µP (t− u)

]
du, if n ∈ P

(3.4)
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where P represents the PEV penetration rate; ν is the average charging frequency of a PEV;

σ denotes the percentage of PEV drivers who prefer charging in PLs at trip destinations;

β denotes the percentage of PEVs that have wireless charging capability; and µF , µO, µP

denote service rates of FCS, OWC, and PL, respectively.

3.3 Capacity Planning of EVCI

This planning stage focuses on developing a capacity planning model for EVCI as a resource

provisioning problem without considering limits of the PDN. It resolves the issue of sizing

the charging facilities efficiently by optimizing the number of chargers and waiting positions

required at charging facilities to achieve the targeted QoS level for EVCI.

The allocation of chargers c = {cn,∀n ∈ N} and waiting positions B = {Bn,∀n ∈ N},
where Bn = Kn − cn, in charging facilities affects the overall performance of the charging

service and hence customer satisfaction. Obviously, the numbers of chargers and waiting

positions allocated to a charging facility lead to differences in the facility’s operational

capacity, and hence the blocking probability and the expected waiting time. Furthermore,

with the propagation of congestion (due to the behaviors of the blocked PEV users), the

performance of entire networked EVCI may vary in proportional to the sizes of individual

facilities. Thereby, the capacity of each charging facility must be optimized to realize the

targeted QoS level for the entire networked EVCI, given that both chargers and waiting

positions represent a significant amount of investment during the deployment phase. Two

performance metrics are used to measure the QoS at the networked EVCI:

1. The normalized network throughput at time t, Θt, measures the percentage of PEV

users who can get charging services successfully without being blocked. The more

blocked PEVs in a charging facility, the less user satisfaction since the blocked users

have to go to another facility to get charging services. The throughput can be

obtained by

Θt(c,B) =

∑
∀n∈N λ

∗
t,n(1− pKt,n)∑
∀n∈N λ

∗
t,n

(3.5)
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where pKt,n denotes the blocking probability of charging facility n at time t. Note that

Θt is a function of the time-varying MOL arrival rate to charging facilities, in addition

to the numbers of servers and waiting positions of all facilities in the networked EVCI.

The lower bound of the normalized network throughput, Θ, is defined as

Θ(c,B) = min
∀t∈T

Θt ∗ 100%. (3.6)

2. The expected waiting time, E[Wt,n], measures the speed of getting a charging service.

As PEV users wait longer, their satisfaction level decreases. The expected waiting

time at charging facility n at time t can be obtained by

E[Wt,n(c,B)] =

∑Kn

i=cn+1(i− cn)pit,n
λ∗t,n(1− pKt,n)

(3.7)

where pit,n denotes the probability of having i PEVs in charging facility n at time t.

On the entire network level, the weighted average at time t over all charging facilities,

WNet
t , and the upper bound, WNet, of the expected waiting time metric are given by

WNet
t (c,B) =

1

N

∑
∀n∈N

ω
′

t,nE[Wt,n] (3.8a)

WNet(c,B) = max
∀t∈T

WNet
t (3.8b)

where ω
′
t,n =

λ∗t,n∑
∀n∈N λ∗t,n

is a weighting factor that accounts for the differences in

charging facility demands. It gives more weight to facilities with a higher demand,

and vice versa. Again, WNet
t is a function of the MOL arrival rates and the networked

EVCI characteristics.

It assumed that PEV users do not have prior knowledge about the current QoS at the

chosen facility. Upon arriving at a charging facility, a PEV user spontaneously attempts to

access the charging facility to get a charging service. If the charging facility at that time is

full, the user will be blocked and choose a new destination. The investigation of how the

QoS and charging price affect the PEV user behaviors is investigated in Chapter 4.
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In the sizing problem, both numbers of chargers and waiting positions are minimized

to fulfill the given QoS targets for the networked EVCI, which is formulated as

min
c,B

{∑
∀n∈N

ωncn +
∑
∀n∈N

(1− ωn)Bn

}
(3.9a)

s.t. Θ(c,B) ≥ Θτ (3.9b)

WNet(c,B) ≤ W τ (3.9c)

cn ∈ {1, 2, . . .}, ∀n ∈ N (3.9d)

Bn =

{
{0, 1, 2, . . .}, if n ∈ {F ∪P}
0, if n ∈ {O}.

(3.9e)

The objective function (3.9a) minimizes the total number of the allocated chargers and

waiting positions in the given queuing network. For each charging facility, a relative cost

variable, ωn, is assigned to the chargers and (1−ωn) to the waiting positions. The value of

ωn reflects the relative cost of a charger versus that of a waiting position for each specific

charging facility, n ∈ N. Constraint (3.9b) ensures that Θ(c,B) is not less than predefined

targeted network throughput Θτ . Constraint (3.9c) ensures that WNet(c,B) is not larger

than predefined maximum expected waiting time threshold W τ . Constraint (3.9d) forces

the number of chargers to be a positive integer. Constraint (3.9e) forces the number of

waiting positions to be a positive integer if the charging facility is an FCS or PL, and to

be 0 if the charging facility is an OWC.

The optimization problem simultaneously determines c and B to satisfy the targeted

QoS level. However, establishing appropriate QoS thresholds is not a trivial task. These

thresholds are determined based on the actual capability of PDN as described in the

next section. The sizing problem in (3.9) is a difficult nonlinear integer programming

(NIP) problem with black-box constraints. Because the analytical expressions of the two

performance metrics (i.e., Θ(c,B) and WNet(c,B)) of the networked EVCI are unknown,

and exact derivatives cannot be provided for those black-box constraints. The values of

these functions can be evaluated only through the expensive (time-consuming) DA iteration

algorithm.
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It is shown that the optimal allocation of the scarce resources in a network is an NP-

hard problem [76]. The number of integer variables in the problem is 2N , and the solution

space of the sizing problem grows exponentially with an increase of the number of the

networked charging facilities. Additionally, the evaluation time of the black-box constraints

grows exponentially with an increase of both the number of nodes in the network and the

capacity of the individual nodes.

The mixed-integer sequential quadratic programming (MISQP) algorithm is chosen

to solve the optimization problem. The MISQP is a derivative-free heuristic iterative

algorithm that searches for a local minimum solution relying on information obtained from

the evaluation of several points in the search space [77,78]. This algorithm is used in solving

the problems with a relatively small number of variables, in which the integer variables are

not relaxable (i.e. the function variables can only evaluated at integer points). The MISQP

requires a few number of function evaluations, which is a suitable choice for the expensive

black-box constraints in the sizing problem. The MISQP can efficiently compute a feasible

solution for the sizing problem; however, the global optimal solution is not guaranteed [79].

To increase the chances of finding the global optimal solution, the solver can be initialized

with different random starting solutions.

3.4 EVCI Integration Into Power Grid

So far, the sizes of networked EVCI are optimized to satisfy the targeted QoS metrics,

but without accounting for the operational and electrical constraints of the existing PDN.

The next step is to integrate charging facilities into PDN, which add a substantial load

to the power grid. Originally, the existing system components of the PDN may not be

designed to accommodate the power demand of charging facilities [80]. To facilitate the

integration of charging facilities, PDN substations and feeders may need to be reinforced,

which requires new investments. Alternatively, ESSs can be allocated in charging facilities

to alleviate the PDN integration cost if using ESS is more cost-effective. When utilizing an

ESS, energy is stored during off-peak times and released when the total system load (i.e.,

system demand in addition to EVCI demand) is high. The charging service provider will
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benefit from covering PEV charging demand in charging facilities, in addition to energy

arbitrage profit if the ESS is used on the system demand. This section presents a planning

framework that minimizes the integration cost of EVCI into PDN by attaining the most

cost-effective ESS allocation and/or PDN reinforcement.

PEV charging demand at each facility is firstly estimated for inclusion in the PDN

load demand. This estimation is based on the average number of busy chargers E[BCh
t,n ]

at time t in charging facility n, in addition to the charging power, PCh
n , and the charging

efficiency, ηCh
n , of chargers at facility n. 2 The calculation of E[BCh

t,n ] can be done based

on the analysis of the networked EVCI [81], as discussed in Subsection 3.2.1. The power

demand, PEV
t,n , of charging facility n at time slot t can be computed by

E[BCh
t,n ] =

cn∑
i=0

ipit,n + cn

Kn∑
i=cn+1

pit,n (3.10a)

PEV
t,n = ηCh

n PChn E[BCh
t,n ]. (3.10b)

To reduce the charging time, it is recommended that PEV users charge their PEV

batteries to about 80% of capacity using constant current charging mode [42]. Based

on this assumption and to simplify the calculations, PCh
n is regarded as constant [63,

80]. Although the charging power is assumed constant, the charging duration of each

PEV is assumed to be an independently and exponentially distributed random variable, as

discussed in Subsection 3.2.1. This assumption conforms with the PEV battery charging

behavior model and reflects the stochastic variability of PEV characteristics and users

charging/driving behaviors [5]. After estimating the load demand of charging facilities,

EVCI can be integrated into PDN, in which the objective function and constraint sets are

described as follows.

2To estimate the PEV load demand, each charging facility is assumed to contain a homogeneous type of
chargers with the same charging power. Further study is needed to model charging facilities with multiple
types of chargers at one location.
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3.4.1 Objective Function

The objective function aims to minimize the total capital cost of EVCI integration into

PDN, which includes two parts. The first one is the total investment cost, including the

cost ESS allocation in charging facilities, in addition to the cost of upgrading the PDN

substation(s) and/or feeders. The ESS cost consists of three components [82]: 1) The ESS

power cost CP , which represents the cost of power electronics equipment such as inverters

and rectifiers; 2) The ESS energy cost CE, which is the cost of the storage elements such as

the batteries; 3) The ESS annual operational cost CO
l at year l. The total ESS operational

cost is brought to the year of investment by aggregating the annual costs over the ESS

lifetime L and multiplied by the present value factor, with annual interest rate I. Let CSb

and CF denote the costs of substation expanding and feeder upgrade, respectively. The

total investment cost can be expressed as

CInv =
∑
∀n∈N

{
CPPR

n + CEER
n +

L∑
l=1

CO
l E

R
n

(1 + I)l−1

}
+
∑
∀j∈H

CSbGR
j +

∑
∀ij∈L

CF `ijS
R
ij . (3.11)

The second part of the objective function is the present value of the system daily operational

cost during the ESS lifetime. It includes 1) the cost of importing energy from the upstream

grid, which is calculated based on the day-ahead hourly energy cost Ce
s,t and the power

injected to the system through the substation(s), and 2) the benefit from ESS energy

arbitrage, which is the profit resulting from ESS charging during the off-peak periods at

a low price and ESS discharging at the peak periods at a high price [13]. Let Ds denote

the number of days in load scenario s in one year. Including the energy arbitrage in the

objective function optimizes the ESS charging/discharging schedule. The total operational

cost can be expressed as

COpr =

L∑
l=1

1

(1 + I)l−1

∑
∀s∈S

Ds

{∑
∀t∈T

{∑
∀j∈H

Ces,tP
G
s,t,j +

∑
∀n∈N

Ces,t(P
ES ,c
s,t,n − P

ES ,d
s,t,n )

}}
. (3.12)
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3.4.2 ESS Operational Constraints

The following constraints regulate the ESS allocation and operation in charging facilities.

These constraints should be satisfied for ∀n ∈ N, ∀s ∈ S, and ∀t ∈ T:

PRn = PSpn ≤ PR,max
n (3.13a)

ERn = ESen ≤ ER,max
n (3.13b)

Es,t+1,n = Es,t,n + (ηES ,cPES ,c
s,t,n −

PES ,d
s,t,n

ηES ,d
)∆t (3.13c)

Es,0,n = Es,|T |,n = EIn (3.13d)

Emin ≤ Es,t,n ≤ ERn (3.13e)

0 ≤ PES ,c
s,t,n ≤ δcs,t,nPRn , δcs,t,n ∈ {0, 1} (3.13f)

0 ≤ PES ,d
s,t,n ≤ δds,t,nPRn , δds,t,n ∈ {0, 1} (3.13g)

δcs,t,n + δds,t,n = 1. (3.13h)

Constraints (3.13a) and (3.13b) determine the power rating and energy capacity of the

allocated ESSs, respectively. Decision variables pn (≥ 0) and en (≥ 0) are chosen to be

integers because ESS components are usually available in discrete sizes (modules) [13],

where P S and ES denote the available module steps for ESS power rating and energy

capacity, respectively. The maximum rated power and energy of an ESS in charging facility

n are limited to PR,max
n and ER,max

n , respectively. Constraint (3.13c) models the SoC

dynamics of an ESS at any time slot, where 4t is time segment duration; and ηES ,c,

ηES ,d denote the charging and discharging efficiency, respectively [83]. Constraint (3.13d)

represents the daily initial and final SoC requirements, where EIn denotes the daily initial

SoC of an ESS. The operator can set the value of EIn based on the required reserve of

power. This constraint links between consecutive days by ensuring that the stored energy

at the end of each day is transferred to the next day [83, 84]. Constraint (3.13e) enforces

the SoC upper and lower bound limitations, where Emin denotes the minimum SoC of an

ESS. Constraints (3.13f) and (3.13g) limit the injecting/extracting power into/from the

ESS [85]. Constraint (3.13h) prevents the simultaneous charging and discharging of ESS.
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3.4.3 System Upgrade Constraints

The following constraints regulate the substation(s) and feeders capacity upgrades.3 These

constraints should be satisfied for ∀j ∈ H, ∀ij ∈ L, ∀s ∈ S, and ∀t ∈ T:

GRj = GSgj (3.14a)

SRij = FSfij (3.14b)

0 ≤ PGs,t,j ≤ P
G,max
j +GRj (3.14c)

QG,min
j ≤ QGs,t,j ≤ Q

G,max
j (3.14d)

− (Smax
ij + SRij) ≤ Ps,t,ij ≤ (Smax

ij + SRij) (3.14e)

− (Smax
ij + SRij) ≤ Qs,t,ij ≤ (Smax

ij + SRij) (3.14f)

−
√

2(Smax
ij + SRij) ≤ Ps,t,ij +Qs,t,ij ≤

√
2(Smax

ij + SRij) (3.14g)

−
√

2(Smax
ij + SRij) ≤ Ps,t,ij −Qs,t,ij ≤

√
2(Smax

ij + SRij). (3.14h)

Constraints (3.14a) and (3.14b) determine the required reinforcements of the substation(s)

and feeders capacities. Decision variables gj(≥ 0) and fij(≥ 0) are chosen to be inte-

gers because substation and feeder upgrade is assumed to be available in discrete steps,

where GS and F S denote the available steps for substation and feeder upgrade, respec-

tively. Constraints (3.14c) and (3.14d) limit the active and reactive power supplied by

the substation(s), where PG,max
j , QG,max

j , and QG,min
j denote the maximum active power,

maximum reactive power, and minimum reactive power of existing substation connected

to bus j, repectively. Constraints (3.14e)-(3.14h) represent the linearized branch power

capacity limitations [88].

3This model makes preliminary decisions on the substation(s) and feeder capacity upgrades. More
detailed PDN expansion models that include various types of substation transformers and feeder conductors
as well as accounting for any revised impedance resulting from upgrades can be found in [86,87].
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3.4.4 PDN Operational Constraints

A second order cone programming (SOCP) relaxation of the DistFlow model [89] is adopted

in the power flow analysis of the balanced radial PDN. Different from the standard (non-

linear) power flow model, SOCP relaxation of the DistFlow model offers a convex relaxation

of power flow equations [90]. The following constraints should be satisfied for ∀ij ∈ L,

∀j ∈ B, ∀s ∈ S, and ∀t ∈ T:

Ps,t,ij =− PGs,t,j − P
ES ,d
s,t,n + PES ,c

s,t,n + PEV
t,n + PDs,t,j

+ rijLs,t,ij +
∑

m:j→m
Ps,t,jm, if n→ j (3.15a)

Qs,t,ij = −QGs,t,j +QDs,t,j + xijLs,t,ij +
∑

m:j→m
Qs,t,jm (3.15b)

Vs,t,i − Vs,t,j = −(r2
ij + x2

ij)Ls,t,ij + 2(rijPs,t,ij + xijQs,t,ij) (3.15c)

Ls,t,ijVs,t,i ≥ P 2
s,t,ij +Q2

s,t,ij (3.15d)

(vmin)2 ≤ Vs,t,i ≤ (vmax)2. (3.15e)

Constraints (3.15a) and (3.15b) represent real and reactive power balance at PDN branches,

where n → j and j → m denote a direct line connection either between charging facility

n and bus j or between bus j and another bus m, respectively. Branch resistance and

reactance are denoted by rij and xij. Bus voltage and current flow constraints are intro-

duced in (3.15c) and (3.15d), respectively. Constraint (3.15d) represents a second-order

cone constraint that relaxes the quadratic constraint in the original DistFlow model [89].

Finally, constraint (3.15e) enforces the upper and lower bounds on bus voltage magnitude.

Based on the preceding discussion, the integration problem is formulated as a mixed

integer SOCP problem given by
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min
p,e,g,f

COpr + CInv (3.11)− (3.12)

s.t. ESS operational constraints (3.13a)− (3.13f)

System upgrade constraints (3.14a)− (3.14h)

PDN operational constraints (3.15a)− (3.15e)

(3.16)

where the decision variables for ESS power and energy allocation are denoted by vectors

p , {pn, ∀n ∈ N} and e , {en, ∀n ∈ N}, respectively; and the decision variables

for substation(s) and feeders upgrade are denoted by vectors g , {gj, ∀j ∈ H} and

f , {fij, ∀ij ∈ L}, respectively.

3.5 Numerical Results

The performance of the proposed capacity planning framework is evaluated in this section.

We consider a small network of three charging facilities, and explore the key relationships

among network characteristics. Throughout this case study, we use the Nguyen-Dupuis

RTN, which is shown in Figure 3.3a, where the network attributes are given in [53]. The

time-varying traffic volumes are simulated based on the DTA model using the traffic sim-

ulator SUMO. The PDN under study is a 33-bus radial system, as shown in Figure 3.3b,

where buses and branches data are given in [91]. The RTN nodes/links geographically

overlap with the PDN buses, which means that each RTN node or link is served by one

electric bus of PDN. In the integration with PDN model, we considered four typical daily

load scenarios (winter, spring, fall, and summer), which follow the hourly load shape of the

IEEE-RTS [92]. Moreover, the energy prices follow the hourly Ontario energy price pro-

vided by IESO for different seasons [66]. Each RTN node or link is physically connected to

a PDN bus. The sizing problem is solved by nonlinear black-box optimizer Knitro version

12. The EVCI integration into the PDN problem is solved by Gurobi Optimizer version

8.1. Both models are implemented in a Python 3.7 environment. The numerical results

are obtained on a laptop computer with a 2.3-GHz Intel(R) Core(TM) i5-8300H CPU and

8 GB of memory.
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(a) Nguyen-Dupuis RTN [53]

(b) 33-bus radial PDN [91]

Figure 3.3: RTN and PDN systems under study.

We consider EVCI consists of three charging facilities allocated on the Nguyen-Dupuis

RTN, which are FCS at node 6, OWC at link 18, and PL at node 3. In this case study,

FCS, OWC, and PL are connected to PDN buses 21, 5 and 24, respectively. These charging

facilities are serving 1500 PEVs uniformly distributed within origin-destination pairs of the

RTN. DC level 2 chargers with 90 kW charging power are assigned in the FCS, and three-

phase AC level 3 chargers with 43.5 kW are used in the PL [6]. The charging power of

wireless chargers is not standardized yet; however, 22 kW wireless charging panels are

assumed for the OWC [10]. An open queuing network with finite capacity and RS-RD

blocking is constructed as described in Subsection 3.2.1. The state probabilities of the

queuing network nodes are evaluated based on the DA algorithm. The routing probability
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between a DN and the associated CN is set at 0.6. The routing probability between any

two facilities in the network is calculated based on (3.1).

We firstly examine the performance of the EVCI with stationary arrival rates to explore

the relationships among network characteristics. Subsequently, we present the capacity

planning of the charging network with more realistic time-varying arrival process and

evaluate the time-varying performance metrics. It is shown that the capacity planning

framework can achieve targeted performance metrics. Finally, we integrate the EVCI into

the PDN, and investigate the relationship between the targeted QoS and the required

investment in PDN.

3.5.1 Performance with Stationary Arrivals

This experiment demonstrates the interplay between characteristics of a charging facility

on the performance of the other facilities in the network. The blocking probabilities of the

three charging facilities are inspected under the alteration of external arrival rate, service

rate, number of chargers, and number of waiting positions of the FCS. Number of chargers

and waiting positions are set at c = {3, 2, 5} and B = {2, 0, 2} for FCS, OWC, and PL,

respectively. The arrival process at OWC and PL are stationary with rate λOWC = 5

PEV/h and λPL = 3 PEV/h, while the arrival rate at FCS is varied with λFCS = {7, 5, 3}
PEV/h. As shown in Figure 3.4a, increasing λFCS leads to a proportional increase in

the blocking probabilities of the three facilities, and vice verse. It can be noted also that

the variations are higher in the OWC statistics than the PL. This is because the routing

probability towards OWC is higher than PL. A similar effect is observed if we alter the

service rate, the number of chargers, and the number of waiting positions, as shown in

Figures 3.4b, 3.4c, and 3.4d, respectively. This experiment shows that the performance

of a charging facility in a network may be highly impacted by the characteristics of the

neighboring charging facilities. Consequently, EVCI must be designed as a network to

account for the inter-relationships among nearby facilities.
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Figure 3.4: Assessment of EVCI blocking probabilities against the variation of FCS char-
acteristics: a) Arrival rate, b) Service rate, c) Number of chargers, d) Number of waiting
positions.

3.5.2 Performance with Time-varying Arrivals

We present the capacity planning of the networked EVCI with more realistic time-varying

arrival rates. The objective of the experiment is to optimize the charging facility sizes to

achieve the predetermined targeted performance metrics for the networked EVCI. These

targets are set to be 90% minimum network throughput and 10 minutes maximum expected

waiting time.

In order to solve this sizing problem, the MOL arrival rates are firstly estimated based on
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Table 3.1: Parameters settings
Parameter Value Parameter Value

ν 0.65 [22] ηES ,c, ηES ,d 90% [6]
µF 2 PEV/h [53] σ 30%
µO 6 PEV/h [53] β 40%
µP 0.3 PEV/h [53] L 5 years [83]
CP 175 $/kW [13] I 1% [13]
CE 305 $/kWh [13] ηES 95% [93]
COy 15 $/kWh/year [13] EIn 50% [93]

CSb 788 $/kVA [42] Emin 10% [93]
CF 120 $/kVA.km [42] vmin/vmax 0.9/1.1 p.u. [59]
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Figure 3.5: External arrival rate versus MOL arrival rate.

(3.4). The time-varying numbers of PEVs intercepted with charging facilities are extracted

from traffic simulation. The statistical parameters used in arrival rate estimation are

given and summarized in Table 3.1. The listed PEV population parameters are used

for illustration purposes. In practice, the system planner should adopt the actual PEV

statistical parameters, which can be collected from market surveys.

Figure 3.5 shows the external arrival rate and the MOL arrival rate of both FCS and PL

as a function of the time slot index. It can be noted that there are a magnitude difference

and a phase shift between λt and λ∗t , which account for time-lag and magnitude difference

between the external arrivals and the system loads. This difference is significantly increased
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as the service time of the facility increases, as shown in Figure 3.5b. The MOL arrival rate

functions are used to analyze the non-stationary queuing models.

0 5 10 15 20
Time (h)

0

5

10

15

20

25

30

To
ta

l M
OL

 a
rri

va
l r

at
es

, n
N

* t,
n (

PE
V/

h)

0

20

40

60

80

100

Ne
tw

or
k 

th
ro

ug
hp

ut
, %

t

0

10

20

30

40

50

60

Av
er

ag
e 

Ex
pe

ct
ed

 w
ai

tin
g 

tim
e,

 W
N

et
t

(s
ec

)

n N
*
t, n % t WNet

t

(a) EVCI network

0 5 10 15 20
Time (h)

0

2

4

6

8

10

M
OL

 a
rri

va
l r

at
e,

 
* t,

FC
S (

PE
V/

h)
0

20

40

60

80

100

Th
ro

ug
hp

ut
, %

t,
FC

S

0

2

4

6

8

10

12

14

Ex
pe

ct
ed

 w
ai

tin
g 

tim
e,

 E
[W

t,
FC

S]
(s

ec
)

*
t, FCS % t, FCS E[Wt, FCS]

(b) FCS

Figure 3.6: Time-varying performance of the EVCI.

The sizing problem, in (3.9), minimizes the total numbers of chargers and waiting

positions allocated in charging facilities to achieve the targeted network throughput and

average waiting time. Both chargers and waiting positions are assumed to have a similar

cost ωn = 0.5,∀n ∈ N. The objective function has a minimal value at c = {7, 4, 22} and

B = {1, 0, 2}. Figure 3.6a shows the time-varying performance metrics of the networked

EVCI. It is observed that Θ = 90.13% and WNet = 51.6 seconds, which achieve the

predetermined QoS targets. A similar trend can be observed in the performance of the

individual charging facilities, as shown in Figure 3.6b.

The computational time of the sizing problem is highly dependent on the number

of charging facilities in the network. For instance, the solution time for the EVCI under

investigation is 19 hours. However, the solution time for a network of two charging facilities

is around 1 hour.
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3.5.3 Integration into PDN

In integrating the EVCI network with the PDN, we aim to investigate the relationship

between the targeted QoS level and the required investment in the PDN. The proposed

integration model minimizes the total investment and operation cost by allocating ESS

in charging facilities and/or upgrading the PDN substation and feeders. The substation

capacity is 5 MVA, and the system peak load demand is 3.715 MW (without EVCI loads).

The ESSs are available in discrete power and energy capacities with step size of 100 kW and

100 kWh, respectively. The reinforcement of the substation and feeders are available with

step size of 500 kVA and 250kVA, respectively. Other financial and technical parameters

are summarized in Table 3.1.
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Figure 3.7: QoS targets versus the required PDN investment.

Table 3.2: Detailed integration plans for the EVCI network with the PDN
QoS target 60% 70% 80% 90%

Total capital cost $3.76×106 $4.17×106 $4.24×106 $4.32×106

Upgrade 0 0.5 MVA 0.5 MVA 0.5 MVA
Substation

Cost 0 $394,000 $394,000 $394,000
Upgrade 0 (0,1): 0.5 MVA (0,1): 0.5 MVA (0,1): 0.5 MVA

Feeders
Cost 0 $60,000 $60,000 $60,000

Allocated
(0.1 MW, 0.3 MWh)
(0.1 MW, 0.3 MWh)

0 (0.1 MW, 0.1 MWh) (0.1 MW, 0.3 MWh)
ESS

Cost $262,118 0 $55,353 $131,059
Energy cost $3.53×106 $3.72×106 $3.74 ×106 $3.75×106

Arbitrage profit $45,425 0 $14,174 $25,357
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We analyze the effect of varying network throughput target on the investment cost of

the EVCI network integration into the PDN. Figure 3.7 illustrates the total investment cost

for each QoS target, and the detailed integration plans are shown in Table 3.2. When the

targeted network throughput is set to 60%, ESSs are allocated in the EVCI. On the other

hand, when the QoS target is set to 70%, upgrading the PDN substation and feeders is a

more cost-efficient solution. In the case of Θτ = 60%, it can be noted that the allocated

ESS is higher than the other cases. This is because ESS capacities, as well as feeders

and substation reinforcement, are assumed available in discrete steps. Then, the proposed

model chooses the lowest cost combination of the allocated ESS and PDN reinforcement

to minimize the total capital cost. Hence, in the case of a 60% throughput target, it is

cheaper to allocate ESSs than upgrade the feeders and substation. The solution time for

the integration into PDN problem under investigation is 8 minutes. Consequently, the

required investment in the PDN is highly dependent on the capability of the existing PDN

components and the targeted QoS of the EVCI. Also, allocating ESSs in charging facilities

can be a cost-effective solution to alleviate the required PDN upgrades if ESS cost is less

than the reinforcement cost.

3.5.4 Sensitivity Analysis

Impact of time segment duration

Time segment duration (i.e., 4t) effect is investigated with 4t = 15 min and compared

with the results with 4t = 1 hour. As shown in Figure 3.8a, using the shorter time

interval scales down the MOL arrival rate at charging facilities. However, the observed

EVCI performance is similar for both cases, as shown in Figure 3.8b. This is because

the proposed approach utilizes the nonstationary queuing models, which account for PEVs

that are already in the system (either charging or waiting) from the preceding time periods.

Impact of the routing probability value between a DN and the associated CN

A slight shift in the performance occurs at the overloaded charging facility with an increase

of the routing probability value between a DN and the associated CN (i.e., αnn), as shown
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Figure 3.8: EVCI performance with different time intervals.

in Figure 3.9. This is because, in the networked EVCI model, only a small percentage of

the blocked PEVs are choosing the same charging facility instead of routing to another

facility. In practice, a PEV user will choose another facility after being blocked at one

facility. Since this shift in the performance is observed only at the overloaded charging

facilities, it may not affect the capacity planning problem with acceptable QoS targets.

Impact of the variations of the mean charging time

We have examined the EVCI performance with different PEV charging power capability.

For instance, if most of the PEVs in the system can only charge with 50 kW DC fast

chargers at FCS and 7.4 kW AC level 2 chargers at PL, the PEV charging time at these

facilities increases. In this case, for the commonly available PEVs with 60-70 kWh battery

capacity, the service time is 1 hour (µF = 1) in FCS and 5 hours (µP = 0.2) in PL [2].

As shown in Figure 3.10, the EVCI throughput decreases with the increasing of the mean

service time, as charging facilities will be occupied for a longer time. Thereby, the capacity

planning of EVCI must account for the charging characteristic of PEVs in the system to

achieve the targeted performance.
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Figure 3.9: FCS throughput versus arrival rate with various routing probabilities.
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Figure 3.10: Influence of mean charging time on EVCI throughput.

3.6 Summary

In this chapter, we study capacity planning of EVCI and propose a framework that sizes

charging facilities to fulfill the given QoS targets. The proposed framework minimizes the

cost of EVCI integration into PDN by either allocating ESSs in charging facilities and/or

reinforcing the PDN. The link between the targeted QoS level and the PDN capability

offers insights into how to make a trade-off between the PEV user satisfaction and the

required investment in PDN. Our framework captures the correlation among the occupancy
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of neighboring charging facilities, which ensures that the targeted QoS level is achieved

for the entire networked EVCI. Furthermore, the proposed framework accounts for the

temporal variability of PEV charging demand by addressing the time-lag and magnitude

shift between arrivals and loads of the system. The numerical results demonstrates that

the inter-relationship between the targeted QoS level and the required investment in the

PDN plays a vital role in capacity planning of EVCI. Chapter 4 shows how to leverage

dynamic pricing mechanisms in coordinating the PEVs charging process and influencing

the behaviors of PEV users.
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Chapter 4

Dynamic Pricing for Differentiated

PEV Charging Services Using Deep

Reinforcement Learning

In this chapter, we propose a differentiated pricing mechanism for a multiservice PEV

charging infrastructure. The proposed framework motivates PEV users to avoid over-

utilization of particular service classes. Currently, most of dynamic pricing schemes require

full knowledge of the customer-side information. Since such information is stochastic, non-

stationary, and expensive to collect at scale, the obtained pricing mechanism can lead

to suboptimal solutions. Our proposed pricing mechanism utilizes model-free deep rein-

forcement learning to learn and improve automatically without an explicit model of the

environment. We formulate our framework to adopt the twin delayed deep determinis-

tic policy gradient algorithm. Simulation results for the EVCI environment demonstrate

effectiveness of the proposed framework.
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4.1 Related work

This section provides an overview of the research areas relevant to this study, which is

divided into two parts. The first part discusses dynamic pricing mechanisms for PEV

charging demand coordination, while the second part presents a survey of adopting RL

algorithms in optimizing the dynamic pricing policies.

4.1.1 Dynamic Pricing for PEV Charging Demand Coordination

Dynamic pricing is a decentralized coordination and load management method for the PEV

charging demand. In literature, significant efforts have been devoted to the coordination

of PEV charging demand through dynamic pricing. Deriving the dynamic pricing sig-

nals for PEV charging coordination follows three main categories, namely, game theoretic

approaches, stochastic optimization methods, and queuing network based models.

Game theory based dynamic pricing is widely employed to map the relation among

multiple entities, where each entity maximizes its own profit [17,94–96]. For instance, the

relation between charging station operator and PEV users can be modeled as a single-

leader-multi-follower Stackelberg game [17]. The station operator is modeled as a leader

whose main interest is to optimize the service price to maximize its profit with the same

amount of energy resources. The PEV users are modeled as followers who maximize their

own level of satisfaction by selecting a nearby charging station with low charging cost.

Game theory is then used to derive a dynamic pricing scheme that balances the PEV load

demand among the adjacent charging stations. In order to account for the randomness of

PEV charging demand, a repeated inverse Stackelberg game along with a Markov decision

process is proposed in [94]. In this model, the randomness of PEV arrivals, departures and

charging demands is integrated into a stochastic game. Real-time prices that minimize

the losses on the power distribution system are determined based on the Nash equilibrium

solution and power flow analysis. The energy trading between the smart grid and a number

of PEV groups can also be modeled as a noncooperative Stackelberg game [95]. The smart

grid is to maximize its revenue, while PEV groups are to balance the tradeoff between

battery charging and associated cost. The relation among the competitive charging stations
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and the PEV users can be modeled as a multi-leader-multi-follower Stackelberg game

[96]. In the framework, each charging station optimizes its price with an objective of

maximizing its profit based on the expected PEV charging demand and the prices of

other stations. Furthermore, PEV users select the charging stations that maximize their

satisfaction considering the charging price, waiting time, and traveling distance.

Optimization models can be used to determine the dynamic pricing of the PEV charging

service [97, 98]. For instance, stochastic dynamic programming can be used to determine

charging prices [97]. This model considers multiple uncertainties, such as in PEV charging

demand, the intermittency of renewable energy sources, and the electricity price fluctua-

tion. The optimal incentives offered by the local distribution company (LDC) to the PEV

users in order to participate in the smart charging program are investigated in [98]. The

study aims to address the relationships among the incentives offered by LDC, the share

of PEV fleet participation in smart charging, and the expected investment deferral in the

distribution system.

Queuing models can be used to estimate the PEV charging demand and then derive

a dynamic pricing expression to coordinate the PEV charging service [7, 99, 100]. For

instance, the impact of wireless charging load demand and PEV mobility on the location

marginal price (LMP) of electricity is investigated in [7]. The BCMP queuing network

model is used to estimate the charging demand of PEVs, considering the PEVs mobility.

Then, a dynamic pricing scheme is optimized to adjust the retails price of wireless charging.

Based on the preceding discussion, the existing works study various aspects of the

dynamic pricing of charging services. The existing pricing schemes treated all types of

charging facilities equally. In practice, however, a PEV charging infrastructure includes

various types of facilities such as on-road wireless chargers, fast charging stations, and

slow chargers at parking lots. Each charging service has a distinct QoS level that matches

the user expectations. The charging service demand is interdependent, which means the

demand for one service is often affected by the prices of others. In order to provide

differential QoS, a differential pricing is needed to discourage the over-utilization of a

certain type of charging service. Thus, a differential pricing mechanism should be developed

to set the price for each charging service, which offers the necessary incentives for PEV

users to choose the charging service that matches their requirements. Consequently, the
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QoS levels of charging faculties are maintained.

4.1.2 Reinforcement Learning for Dynamic Pricing

Despite the previous efforts, there exist several challenges facing the implementation of

dynamic pricing mechanisms. One challenge is the lack of complete customer-side infor-

mation. CSP needs to have full knowledge of future PEV charging demand in addition to

impacts of pricing signals on customers’ behaviors. Usually, such information is stochastic

and difficult to estimate. Another challenge is caused by the temporal variability of system

variables. Typically, PEV charging demand is a dynamically changing environment that

is influenced by the non-stationary user behaviors. To overcome the limitations, RL can

be leveraged to adaptively decide a pricing policy for PEV charging demand coordination.

RL is an area of machine learning, which deals with goal-directed learning based on the

interaction between an active decision-making agent and its unknown environment, while

the agent seeks to maximize a numerical reward signal [101]. Using deep RL algorithms,

neural networks are trained off-line in a simulated environment. Then, the neural networks

can be exploited on-line in the practical system.

Recently, there has been a collection of research works studying how to optimize dy-

namic pricing policies using reinforcement learning. For example, dynamic pricing of inter-

dependent perishable products can be optimized using Q-learning [102]. Given an initial

inventory for the products, this approach is to maximize the revenue by dynamically adjust-

ing the pricing policy over a finite sale horizon when the demand function is stochastic and

unknown. Also, RL algorithms can be used in the context of demand response [103–105].

For instant, Q-learning can help to reduce supply-demand mismatches by dynamically

deciding the retail electricity price, considering both the service provider profit and cus-

tomers’ cost [103]. In [104], deep Q-learning and deep policy gradient are used for on-line

optimization of building energy consumption, where the objective is either to minimize the

energy cost or to flatten the net energy profile.

In this work, inspired by the recent research outcomes, we present a dynamic pricing

algorithm for differentiated PEV charging services using deep RL.
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4.2 System Model

In this section, we present modifications to the system model presented in Chapter 2 and

Chapter 3 to account for the presence of a price-based coordination mechanism for PEV

charging demand.

Consider an EVCI with M classes of charging services managed by a CSP. Let set

M = {1, 2, . . . ,M} denote the available service class in the system, where i < j indicates

i is a higher service class than j with more strict QoS requirements. Each service class

is specified by a minimum QoS level that is to be maintained all the time. Each service

class is offered by a number of charging facilities, where n → m indicates that charging

facility n provides charging service of class m. Charging facility n (n ∈ N) with service

class m (m ∈M) provides a charging service with minimum QoS qm ∈ [0, 1] and associated

with normalized charging price pn,t ∈ [0, 1] for all t ∈ T. The CSP announces one-time

(stationary) minimum QoS level of each service class at the beginning of the planning

horizon, q = (q1, . . . , qM). To maintain these QoS classes, the CSP adjusts the pricing

policy of charging services periodically at the beginning of each time slot. Thereby, at time

slot t, the CSP adopts a pricing policy represented in the price vector pt = (p1,t, . . . , pN,t).

PEV users compare prices, QoS, and other service attributes (e.g., location of the

charging facility, type of charging technology) of all services and choose a charging service

at one charging facility offering the particular service class. The offered charging services

are substitutable because the demand for one service class not only depends on its own price

but also depends on the prices of other services in the EVCI. Also, the charging service

classes are vertically differentiated, which means that customers always prefer a higher

service class if the charging prices are the same among different classes [106]. Thereby, any

change in the price of one service can impact the demand for other services in the system.

4.2.1 PEV Charging Demand Model

PEV demand for charging services is assumed sensitive to both the charging service price

and the QoS guarantees. This assumption is only used in the simulated environment for

RL agent training. However, the proposed RL approach is adaptive and able to learn the
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actual PEV user behaviors based on the interactions with the environment. To represent

the PEV charging demand at each charging facility, we use the linear demand model [107].

Based on this model, the time-varying charging demand (arrival rate), λn,t, at charging

facility n in time slot t is a linear function of all prices and service levels of charging

facilities, given by

λn,t(p,q) = Λn,t − βnpn,t +
∑
n̂6=n

βn,n̂pn̂,t + γmqm,t −
∑
m̂6=m

γm,m̂qm̂,t,

n→ m, ∀n, n̂ ∈ N, ∀m, m̂ ∈M

(4.1)

where Λn,t (> 0) denotes PEV arrival rate to charging facilities facility n at time slot t at the

base price, which is accepted by all users. This arrival rate can be estimated based on the

traffic volume intercepted at the charging facility [53]; βn and γm are positive parameters

denoting self-elasticity, which indicate the relative change in the demand for a charging

service that would result from a change in the service price and quality, respectively; βn,n̂

and γm,m̂ are positive parameters representing cross-elasticity, which reflect the change

in the service demand as a result of the change in the prices and service levels of other

charging facilities, respectively. The demand for charging service at facility n should be

more sensitive to its own price changes than those for the other services. Thus, the elasticity

parameters have the relation βn >
∑

n̂6=n βn,n̂. The demand function is assumed to satisfy

the monotonicity properties [108], as follows

∂λn,t(p,q)

∂pn,t
≤ 0,

∂λn,t(p,q)

∂pn̂,t
≥ 0,

∂λn,t(p,q)

∂qm,t
≥ 0,

∂λn,t(p,q)

∂qm̂,t
≤ 0, ∀n, n̂ ∈ N. (4.2)

The assumption means that, if the CSP increases pn,t (or decreases qm), the demand for

charging service at facility n decreases; however, if the CSP increases pn̂,t (or decreases

qm̂,t), the the demand at charging facility n increases. Note that PEV users’ demand at

facility n for service class m is assumed depending on the announced QoS level of service

class qm rather than its actual service level in the facility.
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4.2.2 Charging Station Model

The capacity of any charging facility in the EVCI is finite. Thereby, charging facilities

can be modeled as a finite queuing system [81], where arriving PEV users are rejected

(blocked) at times when the charging facility is full. Also, PEV users may wait until

service becomes available if all chargers are busy and there is waiting space available. PEVs

arrivals to a charging facility follow a non-homogeneous Poisson arrival process, which is

a non-stationary counting process with a deterministic arrival rate λn,t. As discussed in

Subsection 4.2.1, this arrival rate depends on various factors such as traffic volume and

users’ response to changes in p and q. The charging time of PEVs at a charging facility is

assumed independently and exponentially distributed, with service rate µ that depends on

the chargers’ power capability at the charging facility [53]. Each charging facility has cn

independent and identical chargers (servers) that serve PEV users according to the first-

come-first-served rule. The maximum number of PEVs that can be admitted to charging

facility n is denoted by Kn.

Let Xt,n denotes the number of admitted PEVs to charging facility n (n ∈ N) at time

t, where Xt,n is a random variable that reflects the utilization of charging facility n. The

number of admitted PEVs can be expressed as

0 ≤ Xt,n ≤ Kn. (4.3)

Due to the finite capacity of charging facilities, high congestion (overload) may occur at a

facility if the number of admitted PEVs approaches the maximum facility capacity. Then,

the newly arrived PEVs may suffer from a low QoS level in terms of long waiting time or

service rejection (blocking). Thereby, we define QoS metric Qn,t ∈ [0, 1] to measure the

service performance at charging facility n at time t, which is related to the weighted sum

of the blocking and delay rates. We define the QoS metric as

Qt,n = 1− αPKt,n − βP{Wt,n > 0} (4.4)

where α and β are weighting factors to reflect the impact of service blocking and ser-

vice delay respectively on the satisfaction level of PEV users, with α + β = 1; PKt,n and
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P{Wt,n > 0} denote the blocking and delay probabilities of the charging facility, respec-

tively. Both Xt,n and Qn,t represent the state of the charging facility in terms of the facility

utilization and service quality.

4.3 Dynamic Pricing for Differentiated PEV Charg-

ing Services

Price-based coordination mechanisms can be leveraged to dynamically meet the QoS re-

quirements of charging facilities, while maximizing social welfare which is the sum of utili-

ties over all users and service providers. In a multiservice charging infrastructure, a differ-

entiated pricing scheme is required to provide different QoS classes. Thus, a PEV user has

incentives to use a charging service that matches their needs. The differentiated pricing

scheme can enhance the performance of charging facilities in meeting the expectation of

PEV users by discouraging the over-utilization of some charging services.

Our objective in this research is to develop a differentiated dynamic pricing scheme

that accounts for the interactions between two players, which are the CSP and the non-

cooperative PEV users. On one hand, PEV users want to choose the charging service that

maximizes their utilities, when making the charging decisions. The utilities depend on

various random variables, including the current SoC of PEV battery, the charging price, and

the user’s value of time, which indicates how much a user appreciates time-saving during

the charging process. On the other hand, the CSP wants to dynamically adjust the service

prices for all charging facilities based on the current and anticipated demand patterns.

The pricing policy should maximize revenue while achieving the targeted QoS. Thereby,

differentiated pricing should dynamically provide incentives for PEV users to behave in

ways that improve the overall utilization and performance of the charging infrastructure.

Choosing the right price for a PEV charging service is challenging. Determining a

pricing policy requires information not only about how much the current PEV user values

each charging service but also about what the future demand will be. In order to develop

the differentiated pricing scheme, some assumptions are necessary: 1) The PEV charging

infrastructure includes a limited set of service classes, and each service is offered by a
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set of charging facilities as discussed in our system model; 2) There is no competition

between charging facilities with different QoS classes; 3) PEV charging demand is elastic

and price-responsive; 4) PEV users are informed about the real-time charging service prices

at all charging facilities in the system, which can be facilitated by web applications offered

to PEV users; 5) The targeted minimum QoS level of each class of charging services is

predetermined based on user preferences, which can be collected from market surveys.

The differentiated pricing policy can be represented as a social welfare maximization

problem, where the objective is to maximize the demand for charging services in all charg-

ing facilities, while maintaining the minimum targeted QoS in all service classes. The

differentiated pricing problem can be formulated as

max
p

T∑
t=1

N∑
n=1

λn,t(p,q) (4.5a)

s.t. Qt,n ≤ qm, n→ m,∀n ∈ N, ∀m ∈M, ∀t ∈ T. (4.5b)

Optimizing this pricing policy must explicitly incorporate the stochasticity and nonstation-

arity of the PEV charging demand. Also, the pricing policy must be forward-looking by

setting the price signals in anticipation of future demand patterns. Thereby, the generated

charging price in a time slot is based on the previously observed charging demand and

the expected future charging requests. However, due to the lack of complete information

and the variability of system variables, conventional abstract models cannot guarantee op-

timality of the pricing policy. Thereby, we propose a reinforcement learning approach to

determine this pricing mechanism. Based on the proposed approach, the CSP can adjust

the pricing signals in real-time, considering the anticipated future charging demand and

potential service congestion.
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4.4 RL Approach for Differentiated Pricing

Determining a differentiated pricing policy is a real-time decision-making problem in an

unknown environment. Here, we present an RL approach to decide the pricing policy based

on learning while interacting with the environment. Towards this goal, the differentiated

pricing problem is firstly formulated as a discrete finite-horizon Markov decision process

(MDP) [101]. Then, the twin delayed deep deterministic policy gradient (TD3) algorithm

is used to train neural networks that generate the pricing policy, without requiring the full

knowledge of system dynamics and uncertainties. Finally, we present the implementation

details of the TD3 algorithm along with the associated hyperparameter, neural network

architectures, and the reward function design.

4.4.1 Markov Decision Process

As shown in Figure 4.1, MDP for the differentiated pricing problem is a formalization of

the interaction between an agent and the environment [101]. The agent is the learner

and decision-maker that selects actions. The environment responds to the agent’s actions,

presents new situations to the agent, and gives a numerical value to the agent as a reward

to evaluate the agent’s actions. The MDP is defined by the following key components:

• A set of states, S, that reflects the current state of the EVCI. At each discrete

time step t, system state st ∈ S is denoted as st = (t,Xt,1,Qt,1, . . . ,Xt,N ,Qt,N). As

discussed in Subsection 4.2.2, the system state represents the utilization and QoS of

all charging facilities in the EVCI;

• A set of actions, A, that is selected by the agent based on the current system state

and the anticipated future PEV charging demand. The selected actions affect the

charging demand on the next time slot. At discrete time t, the agent selects an

action, at ∈ A, based on its policy π : S 7→ A. This action is a vector of length equal

to N with elements normalized to the range [−1, 1]. The CSP maps this action into

pricing vector pt+1 that sets the charging price (money value) for all facilities at time

slot t+ 1;
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Figure 4.1: MDP framework for differentiated pricing.

• State-transition probabilities p : S ×S ×A 7→ [0, 1], where p(st+1|st, at) indicates the

likelihood that action at results in the transition from state st to next state st+1;

• Reward function r : S × A 7→ R, where r(st, at) computes an immediate reward

signal for executing action at when the system is at state st. The agent’s goal is to

maximize not only the immediate reward but also the cumulative discounted future

rewards Rt =
∑T

i=t γ
i−tr(si, ai), where γ ∈ [0, 1) is a discount factor indicating the

priority of short-term rewards.

One episode of the MDP forms a finite sequence or a trajectory in the form

(s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT ).

75



Determining optimal policy π∗ can be done using the action-value function Qπ ∈ R|S|×|A|,
which is defined as the discounted expected total reward when taking action at at state st

and thereafter following policy π [101]. The Q-function can be formulated as

Qπ(s, a) = Eπ
[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
. (4.6)

The optimal Q-function for each state-action pair is Q∗(s, a) = max
π

Qπ(s, a), and the

optimal policy that returns the highest valued action can be obtained by [109]

π∗(s) = arg max
a∈A

Q∗(s, a). (4.7)

4.4.2 Adopting TD3 Algorithm for Differentiated Pricing

Optimizing a policy based on the MDP can be done using either policy iteration or value

iteration if system transition dynamics (probabilities) are known [105]. However, system

dynamics are unknown and need to be estimated through interactions with the environ-

ment. RL can adopt the model-free approach, in which the RL agent learns to optimize an

action for each state without requiring a complete and perfect model of the environment.

One of the most common model-free algorithms in RL is Q-learning, which uses a table to

store and update Q values while exploring the environment. However, Q-learning is only

applicable when the action space is finite and discrete [110]. In the context of differenti-

ated pricing for charging services, both the state and action spaces are continuous, and

discretization of the states and actions introduces a dimensionality problem [105]. Instead,

here we resort to the TD3 algorithm [111], which is a model-free off-policy actor-critic

algorithm. The TD3 algorithm builds on the deterministic policy gradient (DPG) algo-

rithm, along with deep neural network function approximators. It can learn policies in a

high-dimensional continuous action space.

Actor-critic methods directly optimize policy π(s) in addition to learning Q-function

Qπ(s, a). Policy optimization, known as the actor, directly maps the states to actions. The

Q-function, known as the critic, assigns a value that evaluates the policy’s action given
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the system state and the selected action. Different from Q-learning, Q-table is replaced

by deep neural networks (NN) that act as a function estimator, which achieves better

generalization for continuous state and action spaces via deriving unknown correlations

from previous experience.

As shown in Figure 2, the TD3 architecture consists of two critic (Q-value) networks and

one actor (policy) network. Each NN is characterized by a set of parameters that consist

of the NN weights and biases. The parameters of the critic networks are denoted by φ1

and φ2, and the parameters of the actor network are denoted by vector θ. Since learning

of NN can be unstable, target networks are needed to slowly keep track of the updates in

the (online) critic and actor networks. Thereby, TD3 uses two target critic networks with

parameters φ̀1 and φ̀2, and a target actor network with parameters θ̀. During learning,

a set of transitions need to be collected and stored in experience replay buffer R. Each

transition has the form of 4-tuple (s, a, r, s̀), which denote state, action, reward, and next

state, respectively. Then, a mini-batch is uniformly sampled at each step to train the actor

and critic networks. Training NN using mini-batches ensures that the selected samples are

independently and identically distributed, which in turn facilities an efficient optimization

of NN parameters.

The TD3 concurrently updates two critic networks, Qφ1 and Qφ2 , using the recursive

Bellman equation

Qπ(st, at) = r(st, at) + γQπ(st+1, π(st+1)). (4.8)

To approximate the optimal Q-function, the mean-squared Bellman error function is uti-

lized to indicate how closely Qφ1 and Qφ2 satisfy the Bellman equation, as follow

L(φi,R) = E(s,a,r,s̀)vR

[
(Qφi(s, a)− y(r, s̀))2

]
, i = 1, 2 (4.9a)

y(r, s̀) = r(s, a) + γ min
i=1,2

Qφ̀i(s̀, πθ̀(s̀) + ε). (4.9b)

Note that, in (4.9b), the TD3 uses the smallest of the two Q-values to form the targets in

the Bellman error loss functions. This practice helps in reducing the overestimation bias

problem of Q-values [111]. Also, the target policy is smoothed by adding a small Gaussian

noise component, ε, to the target action, which prevents over-fitting on the narrow peaks
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of Q-values. Optimizing the policy can be done by training the actor network to give the

action that maximizes the expected Q-function as

max
θ

= EsvR
[
Qφ1(s, πθ(s)

]
. (4.10)

The parameters of the actor network are updated through the gradient ascent of the ex-

pected return ∇θJ(θ) with respect to actor parameters only, as given by [112]

∇θJ(θ) = EsvR
[
∇aQφ1(s, a)|a=π(s)∇θπθ(s)

]
. (4.11)

To improve training stability and reduce the accumulation of errors resulting from

temporal difference learning, the actor network is updated once every two updates of the

critic networks [111]. The stability of NN learning is also improved by adopting soft target

update [110], in which the parameters of the target networks is slowly updated to track

the changes in the online actor and critic networks by some portion τ , as follows

φ̀i ← τφi + (1− τ)φ̀i, i = 1, 2 (4.12a)

θ̀ ← τθ + (1− τ)θ̀. (4.12b)

To remove the dependence on the randomly initialized parameters of NN, actions are

sampled uniformly from the action space (pure exploratory policy) for limited time steps

at the beginning of the training process. Subsequently, the TD3 starts exploiting what

NN learned and exploring the environment by adding an uncorrelated mean-zero Gaussian

noise to the selected action. The added noise is clipped to conforms with the action space

bounds. The TD3, as adopted in our application, is summarized in Algorithm 2.
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Algorithm 2 TD3 for differentiated pricing
1: Randomly initialize critic networks parameters φ1,φ2, and actor network parameters θ
2: Set the target NN parameters equal the online NN parameters
φ̀1 ← φ1, φ̀2 ← φ2, θ̀ ← θ

3: Initialize empty replay buffer R with size 100k
4: for Episode = 1, 15k do
5: Receive initial observation state s
6: for t = 1, T do
7: if Episode ≤ 1k then
8: Randomly select actions a = U(−1, 1)
9: else

10: Select actions according to the current policy and add exploration noise a← πθ(s)+ε,
where ε ∼ N (0, 0.1)

11: end if
12: Execute action a, observe reward r and next state s̀
13: Store transition tuple (s, a, r, s̀) in R
14: Randomly sample a mini-batch of N transitions from R
15: Compute greedy actions for next states using target actor network and add clipped

Gaussian noise
à← πθ̀(s̀) + ε, where ε ∼ clip(N (0, 0.2),−0.5, 0.5)

16: Compute targets y ← r(s, a) + γ min
i=1,2

Qφ̀i(s̀, à))

17: Update critic networks parameters using gradient descent
φi ← arg min

φi

1
N

∑
(s,a,r,s̀)vN

(y −Qφi(s, a))2, i = 1, 2

18: if Episode mod 2 = 0 then
19: Update actor network parameters using gradient ascent

∇θJ(θ) = 1
N

∑
svN

[
∇aQφ1(s, a)|a=π(s)∇θπθ(s)

]
.

20: Update target networks
φ̀i ← τφi + (1− τ)φ̀i, i = 1, 2
θ̀ ← τθ + (1− τ)θ̀

21: end if
22: end for
23: end for
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4.4.3 Implementation Details

States and actions

As described in Section 4.2 and Subsection 4.4.1, the system state (observation space) is a

combination of state variables that include time-of-day t, and the utilization and current

QoS of each charging facility in the EVCI. The agent’s action represents continuous control

of the charging service prices in all charging facilities. At each time slot t, the RL agent

generates a pricing action, at, based on the current state of the EVCI, st, and the expected

future charging demand. The selected pricing action, at, influences the behaviors of PEV

users in the next time slot t+ 1. The length of the state tuple is 2N + 1, and all elements

in the state tuple are normalized to range [0, 1]. The action space is a tuple of size N ,

and all elements in the tuple are normalized to range [−1, 1]. Normalization of action and

observation spaces facilitates the convergence of the TD3 algorithm.

Network architecture and hyper-parameters

The TD3 has a pair of critic networks along with a single actor network. Each neural

network consists of two fully-connected hidden layers with 400 and 300 units, respectively.

Rectified linear (ReLU) activation units are used for all hidden units. For the critic networks,

the size of input layers is equal to the sum of the observation space size and the action

space size. Critic network outputs consist of a single linear unit per network, representing

the Q-value. For the actor network, the input layer size is equal to the observation space

size, and the output layer size is equal to the action space size. Actor network output

consists of tanh activation units.

Adam optimizer [113] is used to optimize the parameters of actor and critic networks,

with a learning rate of 10−4 and 10−3 for actor and critic networks, respectively. The

mini-batch size is chosen to be 64, and the experience replay memory can hold up to 105

state transitions. We use a discount factor of γ = 0.99, and a soft target update factor

of τ = 0.005. For policy exploration, we use uncorrelated additive Gaussian action space

noise N (0, 0.1) with zero mean and 0.1 standard deviation. Target policy is smoothed by
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adding Gaussian noise N (0, 0.2), clipped to (−0.5, 0.5), to the selected action from the

target network. The selected hyper-parameters are summerized in Table 4.1.

Table 4.1: TD3 hyper-parameters settings
Hyper-parameter Value Hyper-parameter Value

Episodes 15k Discount Factor 0.99
Batch Size 64 Optimizer Adam

Learning Rate Actor 10−4 Target Update Rate 0.005
Learning Rate Critic 10−3 Exploration Policy N (0, 0.1)

Actor NN units (L1/L2) 400/300 Normalized Observations True
Critic NN units (L1/L2) 400/300 Reply Memory 105

Reward function

The performance of RL algorithms is highly impacted by the reward function. To achieved

the desired behavior, a reward function must be designed in a way to guide the agent

towards the goal. Reward functions can be designed to follow two main forms: sparse

reward and shaped reward [114]. In sparse reward functions, the agent is given a positive

reward if it achieves the desired goal and zero rewards otherwise. Although sparse reward

functions are easy to design for most of the tasks, it does not motivate the RL agent to

learn and may need a lot of training to converge to an acceptable policy. To motivate the

agent’s learning, reward shaping is usually used to give more rewards to the agent in the

states that are closer to the target state. Shaped reward functions are difficult to design.

This is because a shaped reward function can bias learning towards undesirable behaviors

if it is not carefully designed. To achieve the proposed objective in (4.5), we design the

following reward function

rt(st, at) =
1

N

N∑
n=1

X 2
t,n

N∏
n=1

Ct,n (4.13a)

Ct,n =

exp

[
−300(qm + ζ −Qt,n)2

]
, if qm + ζ < Qt,n

1 , otherwise.
(4.13b)
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The reward function consists of two parts representing the differentiated pricing problem in

(4.5). The first part imitates the objective function in (4.5a) and incentivizes the RL agent

to increase facility utilization. As Xt,n increases, the RL agent receives more rewards. The

second part mimics constraint (4.5b), where Ct,n penalizes the reward signal if the current

QoS at a charging facility is less than the targeted QoS. To encourage learning of a pricing

policy that guarantees the targeted QoS all the time, a safeguard constant ζ in the range

of [2%, 5%] is added to the targeted QoS.

Training and validation processes

The training proceeds episodically for 15 × 103 episodes. Each episode represents one

business day that is simulated from an initial state at time t = 1 until the end of the

daily time horizon at t = T . To prevent overfitting and to achieve good generalization,

neural networks are trained on simulated environments that vary in each training run.

Each simulated environment differs in the random seeds that is sampled uniformly from 50

random seeds. The performance of the training process is evaluated using daily cumulative

rewards, which is the total rewards that the RL agent receives over a day. As expected,

the cumulative reward rapidly increases at the beginning of training, then increases at a

much slower rate as the training goes on. During training, the pricing policy is evaluated

periodically without exploration noise. Different from the training process, the validation

process always uses an environment with the same random seed, which is different from

the training seeds. The neural network that achieves the best performance (maximum

cumulative reward) in the evaluation process is selected to form the final pricing policy.

4.5 Numerical Results

In this section, we evaluate our proposed differentiated pricing framework and demonstrate

the applicability of the TD3 algorithm in determining dynamic pricing policies. Firstly,

we present a numerical example that highlights the relationship among the pricing sig-

nals, charging facility utilization, facility QoS. Then, we demonstrate the scalability of

our proposed framework on a relatively larger EVCI, with more realistic architecture and
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demand properties. In both examples, the daily time horizon is divided into 24 time-slots

each of which lasts for one hour. Also, the CSP determines a dynamic pricing policy for

each charging facility to maximize the utilization of charging facilities, while maintaining

the targeted QoS. The CSP does not make any assumptions regarding the PEV charging

demand or the impact of pricing signals on PEV user behaviors (beyond the assumptions

made in Section 4.3). Instead, neural networks are trained to optimize the pricing deci-

sions based on the interaction with the environment. The simulations are implemented

under Python 3.7 environment on a laptop computer with a 2.3-GHz Intel(R) Core(TM)

i5-8300H CPU, 8 GB of memory, and NVIDIA GeForce GTX 1050 Ti GPU unit.

4.5.1 Example 1: Two Charging Facilities

In this example, the CSP finds a pricing policy for two charging facilities. For clarity of

illustration, PEV charging demands in these facilities are assumed sensitive only to the

pricing signals. The numbers of chargers and waiting positions in both charging facilities

are the same, with five chargers and three waiting-positions. The service rate in both

charging facilities equals to 3 PEV/h. As discussed in Subsection 4.2.2, PEV arrivals to

charging facilities are modeled as nonhomogeneous Poisson process, and the arrival rates

are given by Λ1,t = 21 + 10 sin(2πt/24) and Λ2,t = 21 + 10 cos(2πt/24). For the two

facilities, the charging price is normalized to range [0, 1], where zero represents the base

price and one is the maximum allowable charging price. The CSP objective is to decide

a differentiated pricing policy that maintains two QoS classes, with PEV charging service

completion targets at 80% and 90% for the first and second charging facilities, respectively.

We first consider an independent demand scenario, where PEV charging demand in

a facility is only dependent on the charging price at that facility. In this scenario, self-

elasticity and cross-elasticity parameters are set to β1 = β2 = 20 and β1,2 = β2,1 = 0,

respectively. The simulated environment is represented by two finite queuing systems, as

described in Section 4.2. For each charging facility, a QoS index is calculated based on

(4.4), with parameters α = 0.75 and β = 0.25. The reward function is given in (4.13),

with ζ = 0.02. As shown in Figures 4.2a and 4.2b, the RL agent decides pricing policies

that anticipate the stochastic and non-stationary charging demand. The charging prices
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increase as the expected PEV charging demand increases, and the prices decrease to the

base price when the charging demand is less than the maximum facility capacities. The

impact of these pricing policies on the performance of charging facilities is evaluated in

Figures 4.2c and 4.2d, where the resulting facility utilization and QoS are shown. It can

be noted that the resulting pricing policy preserves the targeted QoS in both facilities.

Furthermore, facility 1 has a higher utilization than facility 2, because the targeted QoS in

facility 1 is less than in facility 2. Figure 4.3 shows the convergence of the TD3 algorithm.

The RL agent explores the environment at the beginning of the training. Then, as the

iteration goes by, the cumulative reward increases because the RL agent learns from the

interaction with the environment and, finally, the algorithm converges to the maximum

value.

Another scenario is considered, where PEV charging demand in the charging facilities

are interdependent. Thereby, the charging demand at one facility not only depends on its

price but also on the charging price in the other facility. Self-elasticity and cross-elasticity

parameters are set to β1 = β2 = 20 and β1,2 = β2,1 = 10, respectively. As shown in Figures

4.4a and 4.4b, the pricing policies are adapted to address the interdependence in charging

demand between the two facilities. It can be noted in Figure 4.4b that the charging price

of facility 2 is higher than that in Figure 4.2b in response to the increasing demand in

facility 1. Also, the pricing policy is capable of maximizing the facility utilization while

maintaining the targeted QoS levels, as shown in Figures 4.4c and 4.4d. The RL approach

automatically adjusts the pricing policies according to the changes in customer behaviors

without any preliminary settings.

This example demonstrates that the RL approach can learn and optimize the dynamic

pricing strategies, while interacting with an unknown environment. Based on the proposed

approach, deep neural networks are trained to receive the current state of the EVCI and

generate pricing signals that coordinate the future PEV charging demand.

4.5.2 Example 2: Large-Scale Scenario

To validate our approach on a relatively larger EVCI, with more realistic charging demand

properties, we select the well-known Nguyen-Dupuis RTN [49]. The topology and traffic
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(a) PEV arrivals and pricing for facility 1
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(c) Facility 1 utilization and QoS
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(d) Facility 2 utilization and QoS

Figure 4.2: Pricing policy for independent demand scenario

demand attributes of the Nguyen-Dupuis network are introduced in Subsection 2.4.1. We

consider EVCI that consists of three service classes:

• The first service class is offered by two OWCs, called OWC-1 and OWC-2, which are

located at links 5 and 16, respectively. The targeted QoS for the first class is 95%,

and 4 chargers are allocated in each OWC. The mean charging time in OWCs is set

to 15 minutes. Usually, charging service price is set as an hourly rate, which is billed

by the minute based on the usage time and the type of charging service [115]. The

charging price for the first class service is set to range [20, 40] $/h, with self-elasticity

parameter setting to 0.15;
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Figure 4.3: Convergence process of TD3 algorithm

• The second service class is offered by two FCSs, with targeted QoS levels are set at

90%. One FCS, called FCS-1, is placed at node 10, and contains 5 chargers and 2

waiting positions. The second FCS, called FCS-2, is located at node 12, and contains

11 chargers and 2 waiting positions. The mean charging time in FCSs is set to 30

minutes. The charging price for the second class service is set to range [17, 35] $/h,

with self-elasticity parameter is set to 0.6;

• The third service class is offered by one PL, located at node 3. The targeted QoS

for PL is 85%. The PL contains 30 chargers and 10 waiting positions. The mean

charging time in PL is set to 3 hours. Charging price for the third class service is set

to range [13, 25] $/h, with self-elasticity parameter is set to 2.5.

Service quality elasticity parameters, γm and γm,m̂, for all service classes are set to 3

and 1, respectively. We implement our RL approach to determine the charging prices for

each facility in the EVCI. For compactness, we utilize box-plots to visualize the variability

in the pricing policy, i.e., the distribution of the EVCI prices and performance over a day

are visualized instead of the time-varying visualization. Box-plots provide a simplified

approach for ease of performance comparison among multiple charging facilities. Figure

4.5a shows the PEV arrival distributions to charging facilities, which represent the demand
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(c) Facility 1 utilization and QoS
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(d) Facility 2 utilization and QoS

Figure 4.4: Pricing policy for interdependent demand scenario

for the charging services. Figure 4.5b shows the pricing signal distribution for each charging

facility. It can be noted that charging prices change in the whole specified price range, and

the median prices (shown in dashed line) for OWCs are higher than that in FCSs and PL.

As shown in Figure 4.5c, the pricing policy achieves a 100% QoS level for all service classes

most of the time, except for a few outliers of low QoS (shown in + sign). However, for

each charging facility, the lowest achieved QoS level is higher than the specified service

completion target. Figure 4.5d shows that the utilization at OWCs is less than that of

both FCSs and PL because the targeted QoS at OWCs is higher than that in FCSs and

PL.
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Figure 4.5: Pricing policy for EVCI

4.6 Summary

In this chapter, we study decentralized coordination of PEV charging demand and propose

a differentiated pricing mechanism for a multiservice EVCI. The objective of the proposed

pricing mechanism is to maximize the utilization of charging facilities, while preserving the

targeted QoS level for each service class. A deep RL approach is utilized to determine the

pricing policy without requiring an explicit model for PEV charging demand. The decision-

making problem is solved based on the interaction with the environment. Firstly, the

differentiated pricing problem is formulated as a finite-discrete MDP. Then, TD3 algorithm,

which is a model-free RL algorithm based on the actor-critic approach, is employed to train

neural networks to encode the current EVCI state into pricing signals. The pricing signals
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regulate the future PEV charging demand to achieve the problem objectives. The numerical

results show that the generated pricing policy anticipates future service congestion and

adjusts the pricing signals accordingly.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Transportation electrification through the adoption of PEVs is gaining more popularity

due to the increased awareness of its environmental and economic benefits. Along with the

growing number of PEVs, public EVCI becomes indispensable to accommodate the increas-

ing PEV charging demand. The objective of this PhD research is to develop solutions for

integrating the EVCI into the smart grid, considering both the PEV user requirements and

the service provider’s utility. From the PEV user perspective, planning and operation of

EVCI should achieve the following objectives: 1) to site suitable types of charging facilities

at locations that are accessible by the users, considering the limited driving range of PEVs

and the unique usage patterns of each facility type; 2) to plan appropriate sizes for charg-

ing facilities, which prevent service congestion and fulfill the stochastic and time-varying

charging demand; 3) to coordinate the operation of the EVCI efficiently by preserving the

expected QoS at charging facilities all the time and preventing the over-usage of particular

service classes. From the service provider perspective, planning and operation of EVCI

should achieve the following objectives: 1) to ensure high utilization and profitability of

the chosen facility locations by siting the EVCI based on an accurate location estimation

of the potential PEV charging demand; 2) to minimize the investment cost associated with

charging facility construction and integration with the PDN by optimizing the numbers of

90



chargers and waiting positions allocated at each charging facility, and attaining the most

cost-effective ESS allocation and/or PDN reinforcement; 3) to maximize the revenue from

the EVCI by maximizing the demand for charging service and adaptively deciding a pricing

policy that maximizes facility utilization. To achieve these objectives, this thesis presents a

spatial-temporal flow capturing location model, a QoS aware capacity planning framework,

and a dynamic pricing mechanism for a multiservice EVCI.

In the spatial-temporal flow capturing location model, three types of charging facilities

are located on the transportation network based on the spatial-temporal distribution of

the traffic flows. The proposed model accounts for not only the transportation network

dynamics and congestion but also the different characteristics and usage patterns of each

charging facility type. A simulation-based DTA model is used to estimate the time-varying

traffic flows between all OD pairs in the network. Then, the traffic flow dataset is clustered

by the GMM algorithm according to the temporal characteristics to identify the time

periods in which the traffic flows are high or low. Our model captures the traffic flows

during peak and non-peak traffic periods by OWCs and FCSs, respectively. Also, PLs are

deployed at the destination nodes of the trips to cover the static PEV charging demand.

Simulation results demonstrate that the proposed model captures a higher percentage of

traffic flows with the same number of facilities when compared with an existing model

based only on spatial characteristics of the traffic flows.

The proposed QoS aware capacity planning framework sizes charging facilities to fulfill

the targeted QoS level, while minimizing the integration cost for the PDN. The proposed

framework consists of two models that are solved sequentially: Firstly, the capacity plan-

ning of EVCI model is used to optimize the numbers of chargers and waiting positions

allocated at each charging facility to realize the targeted QoS level for the entire net-

worked EVCI. After that, the integration with the PDN model is used to minimize the

integration cost of EVCI with PDN by attaining the most cost-effective ESS allocation

and/or PDN reinforcement. The link between the targeted QoS level and the PDN capa-

bility offers insights into how to make a trade-off between the PEV user satisfaction and

the required investment in PDN. The numerical results show that the inter-relationship

between the targeted QoS level and the required investment in the PDN plays a vital role

in capacity planning of EVCI.
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We further develop a differentiated dynamic pricing mechanism for multiservice EVCI,

which motivates PEV users to avoid over-allocation of particular service classes, and learns

and improves automatically without an explicit model of the environment. The pricing

problem is formulated as a social welfare maximization problem, where the objective is to

maximize the demand for charging services while maintaining the targeted QoS in all service

classes. Then, a deep RL approach, called the TD3 algorithm, is utilized to determine the

pricing policy without requiring an explicit model for PEV charging demand. The adopted

RL approach trains neural networks to encode the current EVCI state into pricing signals

that anticipate future PEV charging demand and potential service congestion.

5.2 Future Research Directions

This PhD research can be extended in several directions by investigating open issues. These

issues can be summarized as follows:

• The proposed ST-FCLM, in Chapter 2, can be extended by optimizing the number of

charging facilities of various types to maximize user satisfaction within a budget limit.

This extension would address the trade-off between establishing user preferred but

expensive charging facilities and deploying more inexpensive facilities to maximize

the captured traffic flow. More research is required to derive a user satisfaction index,

and to develop a siting model that counterbalance the percentage of covered charging

demand and user satisfaction.

• The proposed QoS aware capacity planning framework, in Chapter 3, can be ex-

tended by optimizing the QoS targets to maximize user satisfaction within a budget

limit. In this case, both the EVCI capacity planning model and integration with the

PDN model can be simultaneously solved. This extension is to address the trade-off

between the targeted QoS level of EVCI and the required investment in both EVCI

and PDN.

• EVCI planning involves the optimization of both siting and sizing of charging fa-

cilities. In this PhD research, we divide the planning problem into two sequentially
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solved sub-problems, where a piece-wise optimal solution of the siting problem (Chap-

ter 2) is used as input for the sizing problem (Chapter 3). However, our approach does

not guarantee the global optimal solution to the EVCI planning problem. Therefore,

more research is required to develop a joint optimization of both the siting and sizing

of charging facilities.

• The proposed differentiated dynamic pricing mechanism, in Chapter 4, can be ex-

tended to minimize the negative impacts on the power grid. Various charging services

may impact the power system differently. This is because each charging service class

has a unique charging rate, thereby the load demand of the facilities varies according

to the facility type. To minimize the negative impacts on the power system, differ-

entiated pricing should motivate the PEV users to follow the valley-filling strategy.

Consequently, PEV users are encouraged to shift the request of charging services to

the time periods and the service classes, which can be safely accommodated by the

power grid.
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Appendix A

Disaggregation-aggregation Iteration

Method

The networked EVCI is modeled as a finite capacity queuing network with RS-RD blocking.

The performance metrics of the network can be approximated using the DA iteration

method [72]. The queuing network consists of V nodes, where each node can be either

CN or DN. To simplify the notations, in this algorithm, each node v (v ∈ {1, 2, . . . , V })
has µv service rate, λv arrival rate, cv number of servers, and Kv number of buffer spaces.

The transfer probability among nodes is denoted by tv,l, where v, l ∈ {1, 2, . . . , V }. A PEV

may leave the network after getting service in node v with transfer probability tv,0. The

transfer probability matrix of the network is generated based on the routing probabilities

among charging facilities as described in the networked EVCI model, where ααα 7→ ttt. The

state of the network can be represented as V -tuple z = (z1, z2, . . . , zV ), where zv indicates

the number of PEVs in queue v. The state space of the network is represented as follows

Z = S1 × S2 × . . .× SV

where Sv = [0 : Kv] is the node’s state space, and × represents the Cartesian product.

In queuing networks modeling, continuous-time Markov chains are used to model system

states [116]. Instead, DA algorithm uses discrete-time Markov chain (Z(t), t ∈ N), with
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state space Z, underlying the queuing network model. This discrete-time Markov chain has

transition probability matrix P = Q∆+I, where Q denotes the generator (transition rate)

matrix and ∆ = 0.99/maxx |qx,x| denotes the randomization constant. The discrete-time

Markov chain has the same steady-state distribution as the continuous-time Markov chain.

The state probabilities of the Markov chain are denoted by p(z) , P{Z(t) = z}, z ∈ Z.

These probabilities are collected in vector p.

The state probabilities of the Markov chain model can be approximated based on

canonical aggregation. Aggregates is a set of system states. A canonical aggregate can

uniquely define the whole system’s (network) state based on the states of all subsystems

(nodes). Aggregate is denoted by Zv,j, which is the set of all system states where node v

is in state j irrespective to the states of other nodes, as follows:

Zv,j = {z ∈ Z | zv = j}, j ∈ Sv, ∀v.

Each aggregate Zv,j defines a marginal probability, which is called the aggregate probability,

as follows:

rv(j) , P{Z(t) ∈ Zv,j} =
∑

z∈Zv,j

p(z), j ∈ Sv, ∀v. (A.1)

Aggregate probabilities are collected in tuples rv , (rv(0), . . . , rv(Kv)), ∀v. Then,

these tuples are collected again into R , (r1, . . . , rV ). Thus, an aggregation function

is defined as R = A(p). This function calculates the aggregate probabilities given the

state probabilities. For this particular Markov chain, the aggregate transition probabilities

πv(j, l) , P{Z t+1
v = l | Z tv = j} can be calculated as follows:

πv(j, l) =



γv if l = j − 1 > 0,

1− δv if l = j = 0,

1− γv − δv if 0 < l = j < Kv,

1− γv if l = j = Kv,

δv if l = j + 1 6 Kv,

0 Otherwise

j, l ∈ Sv, ∀v (A.2)
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where

γv = n(j)µv∆tv,0 +
V∑
s=1
s 6=v

n(j)µv∆tv,s(1− rs(Ks)),

δv = λv∆ +
V∑
s=1
s 6=v

µv∆ts,v(1− rs(0)),

n(j) =

j, if j < cv,

cv, if j ≥ cv.

The algorithm also uses a disaggregation function πππ = D(R), where a maximum entropy

distribution (MED) πππ is uniquely determined from a given aggregate probabilities R. The

MED has a product form solution and is completely determined by MED parameters ρv,j,

which are collected in tuple ρρρ, as follows:

rv(j) =
1

G

∑
z∈Z
zv=j

V∏
i=1

ρi,zi , j ∈ Sv, ∀v, (A.3)

G =
∑
z∈Z

V∏
v=1

ρv,zv . (A.4)

The state probabilities vector can then approximated using p = D(R), where R =

A(D(R)P ). The algorithm begins, at the first iteration i, with an initial MED parameters

ρρρ and iteratively computes the aggregate probabilities R and the transition probability

matrix P until convergence. The algorithm converges when maxv,j |rv(j)(i+1) − rv(j)(i)| is

less than a threshold value ε. It is shown that the algorithm always converges to accu-

rate results. Algorithm 3 describes DA iteration method, as used in the analysis of the

networked charging infrastructure.
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Algorithm 3 DA iteration method algorithm
Input: V, ε, λv, µv, cv,Kv, {tv,l}, {tv,0}, v, l = 1, . . . , V ;
Output: Aggregate probabilities R;
1: Set the iteration index i← 1, and the convergence index Conv← False;

2: Initialize MED parameters ρρρ(1) by setting ρ
(1)
v,j ←

1
Kv

;

3: Calculate G(1) based on (A.4), and R(1) based on (A.3);
4: while Conv = False do
5: Calculate the aggregate transition probabilities πv(j, l), ∀j, l ∈ Sv, ∀v based on Eq.A.2;
6: Calculate the new aggregate probabilities R(i+1) based on the following equation:

rv(l)
(i+1) =

Kv∑
j=0

πv(j, l)rv(j)
(i), l ∈ Sv, ∀v;

7: Approximate new MED parameters ρρρ(i+1) based on the following equation:

ρ
(i+1)
v,j =

rv(j)
(i+1)

rv(j)(I)
ρ

(i)
v,j ;

8: From ρρρ(i+1), calculate G(i+1) based on (A.4), and R(i+1) based on (A.3);
9: if maxv,j |rv(j)(i+1) − rv(j)(i)| > ε then

10: i← i+ 1;
11: else
12: Conv← True;
13: end if
14: end while
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