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Abstract

Information seeking is a fundamental component of many of the complex tasks
presented to us, and is often conducted through interactions with automated search
systems such as Web search engines. Indeed, the ubiquity of Web search engines
makes information so readily available that people now often turn to the Web for all
manners of information seeking needs. Furthermore, as the range of online informa-
tion seeking tasks grows, more complex and open-ended search activities have been
identified. One type of complex search activities that is of increasing interest to re-
searchers is exploratory search, where the goal involves “learning” or “investigating”,
rather than simply “looking-up”.

Given the massive increase in information availability and the use of online search
for tasks beyond simply looking-up, researchers have noted that it becomes increas-
ingly challenging for users to effectively leverage the available on-line information for
complex and open-ended search activities. One of the main limitations of the current
document retrieval paradigm offered by modern search engines is that it provides a
ranked list of documents as a response to the searcher’s query with no further sup-
port for locating and synthesizing relevant information. Therefore, the searcher is
left to find and make sense of useful information in a massive information space that
lacks any overview or conceptual organization.

This thesis explores the impact of alternative representations of search results on
user behaviors and outcomes during exploratory search tasks. Our inquiry is inspired
by the premise that exploratory search tasks require sensemaking, and that sense-
making involves constructing and interacting with representations of knowledge. As
such, in order to provide the searchers with more support in performing exploratory
activities, there is a need to move beyond the current document retrieval paradigm
by extending the support for locating and externalizing semantic information from
textual documents and by providing richer representations of the extracted informa-
tion coupled with mechanisms for accessing and interacting with the information in
ways that support exploration and sensemaking. This dissertation presents a series
of discrete research endeavour to explore different aspects of providing information
and presenting this information in ways that both extraction and assimilation of
relevant information is supported.

We first address the problem of extracting information – that is more granular
than documents – as a response to a user’s query by developing a novel informa-
tion extraction system to represent documents as a series of entity-relationship tu-
ples. Next, through a series of designing and evaluating alternative representations
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of search results, we examine how this extracted information can be represented
such that it extends the document-based search framework’s support for exploratory
search tasks. Finally, we assess the ecological validity of this research by exploring
error-prone representations of search results and how they impact a searcher’s ability
to leverage our representations to perform exploratory search tasks.

Overall, this research contributes towards designing future search systems by
providing insights into the efficacy of alternative representations of search results
for supporting exploratory search activities, culminating in a novel hybrid represen-
tation called Hierarchical Knowledge Graphs (HKG). To this end we propose and
develop a framework that enables a reliable investigation of the impact of different
representations and how they are perceived and utilized by information seekers.
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Chapter 1

Introduction

We shall not cease from exploration. And the end of all our exploring will
be to arrive where we started and know the place for the first time.

– T.S. Eliot Little Gidding (1942, Part V)

We are living in a world that is increasingly more complex, which in turn has led
to our continued dependence on information. The ubiquity of Web search engines
makes information so readily available that people now often turn to the Web for
all manners of information seeking needs. These information needs extend beyond
simply looking up facts and include tasks such as acquiring new skills, learning about
a domain, making informed decisions, solving complex problems, and other informa-
tion intensive tasks. Some examples include understanding a medical problem and
possible treatments for a loved one, acquiring a new technical skill to prepare for a
job interview, or making sense of the literature in an unfamiliar domain. Informa-
tion seeking is a fundamental component of many of the complex tasks presented
to us, and is often conducted through interactions with automated search systems
such as web search engines. As a result, alongside retrieval, the comprehension of
information returned by these systems is a key part of decision making and action
in a broad range of settings [355].

As the range of online information seeking tasks grows, more complex and open-
ended search activities have been identified. One type of complex search activities
that is of increasing interest to researchers is exploratory search, where the goal in-
volves “learning” or “investigating”, rather than simply “looking-up”. In exploratory
search, people seek to learn about a topic of interest or discover new information.
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However, for searchers who are either unfamiliar with their problem domain, unfa-
miliar with the process needed to achieve their goal, or who lack a well-defined goal,
there is a pressing need for assistance in search. Since the seminal work of pioneers in
information seeking research (c.f. [63, 306, 556, 352, 597]) there have been many calls
to move beyond the traditional turn-taking interaction model supported by major
search engines, and toward support for human intelligence amplification and infor-
mation use. Despite the widespread acknowledgement that – rather than just pro-
viding search results – search systems should provide effective browsing mechanisms
[397, 257], to help users explore and examine the search results and to overcome un-
certainty, there is still limited research into the design of alternative representations
of search results that can help users explore, contrast, and learn, i.e. representations
that best support exploratory search.

The recent SWIRL Workshop [129] emphasizes the need for continuing and on-
going research in supporting complex, evolving, and exploratory information seeking
goals. This research requires advances in:

• algorithms to provide information;

• interfaces that represent this information;

• evaluation methods that support these goals.

My PhD thesis contributes towards designing future Exploratory Search Support
(ESS) systems by providing insights into the efficacy of alternative representations
of search results for supporting exploratory search activities, culminating in a novel
hybrid representation called Hierarchical Knowledge Graphs (HKG). To this end we
propose and develop a framework that enables a reliable investigation of the impact
of different representations and how they are perceived and utilized by information
seekers.

1.1 Thesis Statement

My thesis can be stated as follows:

This thesis explores the impact of alternative representations of search re-
sults on user behavior during exploratory search tasks. Supporting com-
plex and exploratory search tasks requires designing search systems that
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move beyond the current query-response paradigm in three main direc-
tions: (1) algorithms that move beyond document retrieval and provide
information relevant to a user’s query; (2) interfaces that move beyond
a turn-taking interaction with a ranked list of documents and provide
richer representations of the search results, as well as (3) mechanisms
for accessing and interacting with them in ways that support exploration
and sensemaking.

To elaborate, the retrieval of information, representation of this information, and
interaction mechanisms that are supported by the search UI are the three pillars
of modern search systems. For example, current search engines retrieve documents
relevant to a user’s query (i.e. retrieval of information units), represent the search
results as a linear ranked list of documents (i.e. representation) and the search UI
employs a simplified interaction model which allows the user to enter a few keywords
in the search box to indicate their information need and then interact with the
retrieved results by scrolling a ranked list and clicking on items that are perceived
to be useful for satisfying their information need (i.e. interaction paradigm).

The research presented in this dissertation extends the current query-response
paradigm by providing information at a more granular level than documents, i.e.,
through extracting semantic information from the content of retrieved documents;
organizing this extracted information as non-linear, spatial representations that high-
light salient concepts of the domain of interest and their relationships; and finally, de-
signing interaction mechanisms that enable the searcher to explore the retrieved infor-
mation and navigate through the space using two alternative navigation paradigms,
i.e., Overview-First-Details-On-Demand [495] and Expand-from-Known [562].

We hypothesize that this extended framework enhances the information seekers’
ability to acquire knowledge, and to investigate and make sense of the information
space, essentially, to perform exploratory search tasks more effectively.

In order to accomplish the above tasks, this thesis specifically:

1. Explores the design of Information Extraction systems that can extract seman-
tic information from a document as a series of entity-relationship tuples.

2. Assesses the potential benefit to exploratory search of the presentation of search
results in the form of a knowledge graph.

3. Contrasts Knowledge Graphs (leveraging Expand-from-Known paradigm) with
Hierarchies (leveraging Overview-first-Details-on-Demand paradigm) to under-
stand the strengths and weaknesses of these alternative representations.
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4. Proposes a novel representation of search results, a Hierarchical Knowledge
Graph (HKG), that combines the benefits of both hierarchical and network
representations into a single representation.

5. Assesses the impact of current error-prone IE algorithms on hierarchical knowl-
edge graphs, demonstrating that they have good resiliency to typical error rates.

Figure 1.1 outlines the progression of this thesis around these five, primary re-
search contributions. The following section provides context for these contributions,
focusing specifically on the domain of exploratory search. We end this chapter by
providing an overview of the research presented in this dissertation and how it is
structured.
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Information Retrieval and 
Extraction Module Search UI Module

Figure 1.1: Progression of Thesis over the Chapters Based on the three main dimensions
described in the Thesis Statement: Information Retrieval & Extraction, Representation and
Interaction. Three main Representations of Search Results were developed throughout the
thesis: Coupling of Documents with Knowledge Graphs (Doc⇐⇒ KG); Knowledge Graphs
with Embedded Document Mappings; Hierarchies; and Hierarchical Knowledge Graphs
(HKG). Our Evaluation Methodologies, depicted in dashed blocks, is based on the 2-step
process described in Section 1.3, where Step 1 refers to assuming Perfect IE algorithms
are in place and focus on the evaluation of representations and interaction mechanism only
and in Step 2 we relax this simplifying assumption and contrast Error-prone and Perfect
IE algorithms effects on Information Seeking Outcomes and Behaviors.
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1.2 Supporting Exploratory Search

In order to motivate the need to go beyond the current query-response paradigm (as
offered by all major search engines), we first need to define what exploratory search
is and understand what support is needed for complex information seeking activities.
The following subsections provide different pieces of a foundation, supported by past
research, that is required in order to understand the motivation behind our effort for
supporting exploratory search tasks.

1.2.1 What is Exploratory Search?

Search and exploration is a fundamental human activity that goes well beyond the
digital domain. Humans are explorers by nature. This exploration is often derived
from curiosity, i.e. as a means for bridging the gap between what we know and what
we would like to know.

In defining exploratory search, researchers acknowledge that exploratory search
covers a broader class of search activities than traditional IR and Interactive Informa-
tion Retrieval (IIR), which targets query-document matching under the assumption
that relevant information exists and that a well-formed query statement will retrieve
it from the collection [597]. People engaged in exploratory searches are generally
[605, 596, 352]: (1) unfamiliar with the domain of their goal (i.e., need to learn
about the topic in order to understand how to achieve their goal); (2) unsure about
the ways to achieve their goals (either the technology or the process); and/or even
(3) unsure about their goals. Exploratory search is a specialization of information
seeking, which describes the activity of attempting to obtain information through a
combination of querying and collection browsing.

We adopt the following definition of exploratory search as a type of information
seeking and a type of sensemaking focused on the gathering and use of information
to foster intellectual development. [597]. This definition aligns well with work by
Marchionini [352] who suggested that there exist two broad classes of exploratory
search: learning and investigation.

In order to design systems that are effective in supporting exploratory search
activities, we must first understand how searchers find specific facts, locate fragments
of information or make sense of gathered information.

There are many theories in related domains that can collectively explain this
exploratory behavior. Among them, information foraging [412], sensemaking [140]
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and berrypicking [44] are the most established theories that are essential to under-
standing how information seekers explore a domain and look for information. These
related theories and different models of information seeking are reviewed in Chapter
2.

1.2.2 Going beyond Document Retrieval

When we examine, specifically, the idea of exploratory search as a type of information
seeking to foster intellectual development, i.e. as learning or investigation tasks, one
question we can ask is whether users’ information needs really answered by a list of
documents without any further processing? Consider a variety of everyday context
that may trigger information seeking: planning a trip, starting one’s own business
or deciding which university is offering the best graduate program. In all of these
scenarios solutions that help scope the information need to the most relevant subset
of resources to consider, and improve the results presented in order to facilitate
knowledge discovery and synthesis are needed.

The work in this thesis is not alone in questioning this simplistic assumption.
Different models of information seeking [50, 305, 157, 158, 351, 110] indicate that
the search process does not end with a set of retrieved documents. In fact, document
retrieval is just the beginning of the information seeking journey. Past research
[462] has shown that extracting relevant information from a set of documents and
encoding them into structures or canonical forms required over 75% of the total
time of the sensemaking process. Hence, any system support that mitigates some of
these steps can significantly reduce the time and cognitive demands of information
seekers during sensemaking and examination of search results. Chapter 2 reviews
some of the relevant efforts that aimed at retrieving more focused answers, snippets
or informative nuggets from the content of documents.

1.2.3 Why even a perfect search engine is not enough?

Web has become the default global repository for information. Perhaps the key
technology that made the Web the default information finding medium is Search.
Web search, enables users to find the information they want via the simplest of
interaction paradigms: type some keywords into a box and get back an informative
results list ranked in order of predicted relevance.

The success of the search engine enables us to do so much information discovery
that it is difficult to imagine what we can do without it. Yet, in turn, successful
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paradigms can indeed constrain our ability to imagine other ways to ask questions
or interact with the information space that might open up new and more powerful
possibilities [611, 484]. That is, the prominence of Web Search based on the fun-
damental efficacy of keyword search makes it difficult to imagine alternative search
paradigms.

It turns out, however, that this elegant paradigm is especially effective for the
“1 minute search” [611], while many users have come to the Web for substantive
research or exploration that can take hours or weeks.

Prior to the emergence of search engines, the Web was explored by links (i.e.
hypertext). As recently as 2004, surfing the Web was still a common way for browsing
the Web, following from link to link, from one site to another. Browsing was indeed
the best practice for knowledge discovery as well as creating new knowledge. As
the Web grew in size, it soon deemed to be beyond surfable, which in turn led to a
shift towards “Searching by query”. This growth itself is a result of the existence of
search as it motivates publishing more and more content knowing that they would
be accessible by keyword search.

Searching (by query) and Browsing are the two predominant paradigms for find-
ing information on the Web. While they have shown to exhibit complementary
advantages for information seeking, neither paradigm is adequate for complex infor-
mation seeking scenarios if applied in isolation [397, 110]. Researchers have tried to
support directed search (i.e. search by query) by attempting to build a “perfect”
search engine: one that returns exactly what is sought given a fully specified infor-
mation need. However, such a perfect search engine, despite perhaps impossible to
flawlessly construct, might not be enough. There is a body of prior research that
highlights information seeking scenarios that lend themselves to browsing as opposed
to directly searching by query.

Exploration is a step by step process.

First and foremost, browsing is a natural way of exploration, information finding
and knowledge discovery. Theories of information foraging [412] and berrypicking
[44] describe the process of exploration as a step by step journey in the space, where
the analysis of one step is needed to inform the next step to be taken [394, 351].

Browsing was the dominant way of looking for information and knowledge dis-
covery before the advent of the Web and the search engines. While search engines
drastically changed the way we perceive information finding, browsing based infor-
mation seeking remains a viable way of exploration and information seeking.

8



Not all search types can be addressed by retrieving a target answer.

Search topics and search types have changed over the years, while the support from
the search engines for query formulation and interaction with the search results
haven’t: Not only people still use few terms and few operators in their queries [514],
but studies show that people typically view only the first few result pages [247],
while more complex and exploratory queries often need multiple results. In fact,
more complex queries require through examination of search results for extracting
and integrating relevant information as well as sensemaking activities.

Even for known item search, orienteering is shown to be an effective, and often
preferred, approach to locate what users are looking for, both in personal repositories
(e.g. email or computers file system) as well as on the Web [535]. To elaborate,
orienteering offers three main advantages over direct search or teleporting :

• Cognitive Ease: Orienteering can lessen cognitive burden during search activi-
ties by eliminating the need to articulate exactly what the searchers are looking
for; narrowing the space they needed to explore.

• Sense of Location: the relatively small steps taken in orienteering can allow
searchers to maintain a sense of where they were, helping them to feel in control,
to know they are traversing in the right direction with the ability to backtrack,
and to feel certain they have fully explored the space when unable find what
they were looking for.

• Understanding the Answer: orienteering can also give searchers a context for
their results they find [152, 331] and help them get a sense of how trustworthy
those results are [594].

Not all information needs can be expressed as a well defined query

Even a perfect search engine would depend on a user’s ability to formulate clear
and well-specified queries. There are a variety of scenarios, however, that do not
lend themselves to keyword search [397, 535, 351]:

• Searcher is not sure what they are looking for until the available options are
presented;

• Some information needs are difficult to formulate as a clear query;
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• Lack of appropriate terminology to formulate a query;

• Information can be gained along the way and not at the final step only (Accu-
mulating results as opposed to landing at a final set of results);

Once we move towards more complex search tasks we encounter a variety of search
scenarios that lend themselves to both search by query and search by navigation
paradigms, whether due to the ambiguity of the information need or the need to
accumulate results and improve the understanding of the space as opposed to landing
at a final set of results. While current search engines are becoming more efficient
at supporting search by query scenarios, we argue that they lack sufficient browsing
support which is essential for examining the retrieved search results and sensemaking
activities.

1.2.4 Supporting Browsing or Search by Navigation

We described the interplay between the two paradigms for finding information on
the Web, that is search by query and search by navigation or browsing. While
searching requires the user to translate their information need into queries, browsing
accommodates the knowledge gap between what the user is able to communicate and
what the system requires to find the desired information [50, 397]. This knowledge
gap is more evident when the information need is more complex.

Supporting browsing and navigation is closely coupled with structuring the in-
formation into meaningful representations and groupings. Even beyond the Web
and online information seeking activities, our understanding of the world is largely
determined by our ability to organize information. We organize to understand, to
explain and to control. The way we organize, label and relate information influences
the way people comprehend that information [611, 452].

Going back to supporting exploratory search activities on the Web as the main
focus of this thesis, we are inspired by the past research on stages of exploratory
search and theoretical models that characterize the process of sense making, that
is at the core of examining the search results and assimilation of the information
into the information seeker’s knowledge of the problem domain. In order to design
systems that are effective in supporting exploratory search, we first must understand
how users find specific facts, locate fragments of information and make sense of the
collected information pieces.
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Sensemaking can be viewed as a process of creating a representation of a large
volume of information. These representations provide an overview of the underlying
content, while creating a way for organizing and accessing the accumulated infor-
mation. An important observation about many sensemaking methods is that they
are anytime algorithms [464]. Anytime methods provide the best solution that they
can find in given limited time. Given more resources, they continue to search for
better solutions. Russell et al. call the common use of such tradeoffs in information
processing tasks the “anytime principle”.

Based on this principle, a reduction of cost (or increase in gain) associated with
a step frees time to invest in other steps. We argue that, if search systems provide
richer representations of the retrieved search results for information, that are better
suited for investigation and knowledge synthesis, then more effort may be placed into
other steps of the information gathering and sensemaking process (e.g., finding more
pieces of relevant information or more in-depth analysis of acquired information). In
other words, providing meaningful organizations of information and creating repre-
sentations of search results can assist the sensemaking process in order to understand
these results and synthesize new knowledge. As well, these organizations are essen-
tial for browsing since they accommodate the state of knowledge and can help users
to get to the point to be able to formulate accurate queries.

However, the simplistic assumption that any automated assistance with gener-
ating representations of search results will improve searcher’s performance, is not
true. In fact, any search tool or information representation that does not match
the searcher’s perception of the information space or the requirements of the task at
hand, can actually slow down the performance. For example, clustering documents
in a collection is a fast and scalable methods that can provide some groupings for a
set of retrieved documents. However, it is shown [215] that generated clusters often
do not make sense to searchers and the searchers might need to begin a potentially
long and complex negotiation with the system to correct the misalignments [463].

1.2.5 Exploring Alternative Representations of Information

In order to provide information seekers with more support in performing exploratory
activities we have motivated the need to go beyond document retrieval and provide
relevant information as well as the necessity to provide more support for browsing
and search by navigation through utilizing richer representations of search results
and more advanced interaction mechanisms. Wilson et al [611] emphasize the signif-
icance of research and evaluations of alternative approaches to data exploration for
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knowledge discovery and synthesis as the best preparation for the next generation
of the Web. In fact, evaluation of representations of knowledge and mechanisms for
accessing and manipulating this knowledge is an integral part of designing any search
system that is effective in supporting exploratory search tasks. The search systems
support information seeking by structuring knowledge and constraining access.

The way that knowledge is organized and made available affects the way that
information seekers are able to access this knowledge and thus their information
seeking performance [351]. To elaborate, all search systems offer specific features
that define and constrain search. For example, a book provides a table of content
that supports direct search for specific topics and encourages scanning and linear
reading. Similarly, digital search systems can support linear, hierarchical or network
structures for representing content and have the potential of providing alternative
representations according to users’ needs. Understanding ways to organize informa-
tion that is meaningful to the searchers and can improve the outcome of exploratory
information seeking is not a trivial task and requires extensive research to contrast
alternative representations and their efficacy for supporting complex search tasks.

1.3 Research Overview

Our thesis statement stated in Section 1.1 highlights three elements of designing
search systems that are essential for supporting users during exploratory search tasks:
[Information], i.e., the units of information that are retrieved in response to users’
information need, and [Representation and Interaction], i.e., the ways these infor-
mation pieces are structured and presented to the user such that it can facilitate the
process of exploration, sensemaking and obtaining knowledge. Essentially, the main
research question we are investigating in this dissertation is “how differences in the
ways that information is represented impacts the users’ behaviors and outcomes of ex-
ploratory search tasks?”. To this end, we propose algorithms that extract semantic
information from the text of retrieved documents and develop specific representa-
tions of these results that can be leveraged by information seekers more effectively
to perform learning and investigation tasks, as two main components of exploratory
search.

In order to ensure the validity of our methodology to investigate our main research
question, in Section 1.3.1 we propose a framework for all of our experiments that
describes our efforts for extending the current query-response paradigm as well as the
holistic evaluation approach we leverage to assess the efficacy of tools we developed.
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1.3.1 Proposed Framework

We propose an experimental framework based on two main modules that we develop
in order to extend the current query-response paradigm into a platform that we
hypothesize is more effective in supporting exploratory search tasks. We broadly
characterize these two modules as an (1) Information Retrieval Module and a (2)
Search UI Module. Our characterization of these two modules are inline with how
Marchionini [351] envisions search system as a source that retrieves and represents
knowledge and provides tools and rules for accessing and using that knowledge.
In our framework, the IR module requires both a document retrieval and ranking
component as well as an Information Extraction (IE) component. As such, we refer
to this module as Information Retrieval and Extraction (IRE) to distinguish it from
the current Document Retrieval model employed by search engines that is more
commonly referred to as Information Retrieval (IR). The Search UI, on the other
hand, is an interface that provides rich representations of the information that is
extracted by the IRE module and supports an interaction paradigm that is enabling
and restricting access to this information.

A final aspect of developing this experimental framework is the decision regard-
ing the choice of evaluation methodologies that enable a holistic assessment of the
impact of each of these modules on searchers’ behaviors as well as the outcomes of
exploratory search tasks. Our proposed approach to evaluating the impact of differ-
ent representations of the search results on the searchers’ behaviors and outcomes is
a two step process that separates the effect of the performance of the IRE module
from the efficacy of the Search UI (i.e. the ways that the retrieved information is
represented and the interaction mechanisms that are supported). In other words, we
study representations independently from extraction methods that generate them.

This separation is valuable as it provides an opportunity to observe the impact of
different representations of the search results on the outcome of complex information
seeking scenarios independent of the accuracy of the algorithms that produce the
underlying data. That is, assuming there is a perfect IRE module in place, which
retrieves documents for a search query and extracts semantic information that is as
accurate as the source content, we can solely focus on assessing how different ways
of structuring and presenting this information impacts users exploratory behaviors
and outcomes. As a result of the Step 1 of our evaluation strategy we can identify
the representations of search results and interaction mechanisms that are effective in
supporting users during exploratory search tasks. Next, the Step 2 of the evaluation
process involves deploying a Search UI module that leverages our ideal version of
the search results representation and then experiment with varying levels of IRE
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module’s output accuracy along with the same search UI across experiments in order
to study the impact of errors in the output of the IR module on the overall outcome
of exploratory search tasks.

Figure 1.2: Our Proposed Exploratory Search Support Framework Consisting of Two
Main Modules. This research is mainly concerned with information needs pertaining
to exploratory search tasks with two main categories of Learn and Investigate (L/I).

In this dissertation Chapter 3 describes the development of our IRE module,
while Chapters 4 and 5 elaborate on our investigation of alternative representations
of the search results and their efficacy in supporting look up and exploratory search
tasks given perfect Information Retrieval and Extraction algorithms. Inspired by
the findings presented in the previous chapters, Chapter 6 introduces and describes
a novel representation of search results, called Hierarchical Knowledge Graph (HKG),
and a search UI that provides mechanisms for interaction. Finally, Chapter 7 expands
on the second step of our evaluation method and investigates the impact of imperfect
IE algorithms on the information seeking behaviors and outcomes.

14



1.3.2 Research Questions and Contributions

To explore the impact of alternative representations of search results on user behavior
during exploratory search tasks, we stated that:

Supporting complex and exploratory search tasks requires designing search
systems that move beyond the current query-response paradigm in three
main directions: (1) algorithms that move beyond document retrieval
and provide information relevant to a user’s query; (2) interfaces that
move beyond a turn-taking interaction with a ranked list of documents
and provide richer representations of the search results, as well as (3)
mechanisms for accessing and interacting with them in ways that support
exploration and sensemaking.

To address the three aspects of designing search systems for supporting ex-
ploratory search tasks we proposed a search framework with two main components
(see Section 1.3.1): An information retrieval and extraction module and a search UI
module that leverages richer representations of the extracted information and sup-
ports more advanced interaction models. Given this characterization of our proposed
framework we started with two primary research questions as follows:

[RQ1]. How can semantic information be automatically externalized as
a response to a searcher’s query?

[RQ2]. How can this extracted semantic information be presented such
that it extends the document-based search framework’s support for infor-
mation seeking activities?

As our first contribution, we extend the current Document Retrieval framework
by developing an Open Information Extraction (IE) tool that can extract semantic
information from textual content of a set of retrieved documents such that the ex-
tractions are tailored to a searcher’s query. We detail our developed retrieval and
extraction system in Chapter 3.

As our second contribution, in an attempt to address RQ2 we leverage knowledge
graphs, as one canonical spatial structure for information representation supported
by theories of learning and comprehension. We developed a search tool that cou-
ples retrieves documents with their corresponding knowledge graphs and enables
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an initial foray into how such a framework can be utilized for information seeking
tasks of varying complexity. Based on an analysis of logged traces of 20 information
seekers completing simple lookup and complex exploratory search tasks using our
extended search framework we identified different information seeking patterns and
their likelihood of resulting in finding relevant information.

Our initial study of the efficacy of the developed knowledge graph extension of
retrieved documents resulted in somewhat counter-intuitive findings favoring these
representations for supporting look-up and known-item tasks. These early results,
reported in Chapter 4 gave rise to a series of additional research questions.

First, we explored the space of spatial representations of information beyond
vectorial models [340] further and directly contrasted networks and hierarchies to
understand how they can specifically assist the searchers in the exploration and
making sense of the search results.

[RQ3]. How do alternative spatial representations of information, that
externalize semantic information in documents’ content, fare in presenting
results for exploratory search tasks?

As our third contribution, in Chapter 5 we present the results of the first and
only mixed methods evaluation and characterization of network and hierarchical
representations of search results and provide novel insights into their comparative
efficacy for supporting simple and exploratory search tasks. Our quantitative and
qualitative findings broadened our understanding of strengths and weaknesses of each
of these representations and highlighted the complementary nature of hierarchical
structures and knowledge graphs as representations of search results. These results
led naturally to a new inquiry that whether these representations can be combined
such that the strengths of the underlying representations are preserved?

[RQ4]. How can we design a hybrid representation that can seamlessly
combine alternative representations of search results while preserving
their complementary strengths and minimizes their shortcomings?

We investigated this inquiry in two steps:

[RQ4-a]. How can we combine alternative representations of search re-
sults – specifically hierarchical and knowledge graph representations –
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into a unified structure where local and global views of the data are co-
visualized and seamless transitions between these views are enabled?

This inquiry in turn led to a series of design questions we discuss in Chapter 6:

1. How do we integrate network and hierarchical views into a single, seamless data
structure?

2. How can both the global and the local view of a knowledge graph be co-
visualized?

3. How can transitions between views be designed to maximize visualization sta-
bility?

[RQ4-b]. Given that we introduced “Hierarchical Knowledge Graphs”
as a new structure that combines the hierarchical overviews with local con-
text of knowledge graphs representations, a related question is whether
this new structure preserves the strengths of the underlying representa-
tions?

As our forth contribution, we introduce and evaluate a novel representation of
search results called Hierarchical Knowledge Graphs (HKG) and demonstrate that
HKGs preserve many of the previously observed advantages of traditional knowledge
graphs, i.e. fewer document views and reduced reading time. Alongside this, HKGs
introduce an effective hierarchical representation into knowledge graphs that can
offer both global and local views of the information space.

And finally our last research question involves an overall assessment of how Hi-
erarchical Knowledge Graphs can work in the real world.

[RQ5]. Given that IE algorithms are not perfect in the real world, how
resilient these HKGs are to these errors? And how do error-prone HKGs
impact a searcher’s ability to leverage these representations to perform
exploratory search tasks?

To probe these questions, and as our fifth contribution, we adopt a tiered eval-
uation model that embeds IE in a task flow and evaluates IE performance in situ
using a balanced mix of quantitative and qualitative (i.e., mixed) methods. Using
this in situ evaluation model, we analyze the effect of precision and recall on the
performance of hierarchical knowledge graphs for two different exploratory search
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tasks. While the quantitative data shows a limited effect of precision and recall on
user performance and user effort, qualitative data provides evidence that the type
of exploratory search task (e.g., learning versus investigating) can be impacted by
precision and recall. The implications of these results and an analysis of other factors
that more significantly impact exploratory search performance in our experimental
tasks are discussed in Chapter 7.

Figure 1.3: Venn Diagram indicating the contribution of each chapter to addressing
the two main components of our proposed framework.

1.4 Thesis Structure and Summary

This dissertation details the research and development efforts related to the main
components of our proposed ESS framework (discussed in Section 1.3.1). In Chap-
ter 2 we review related research areas that can broadly characterize exploratory
search tasks, how systems can support these activities and how these systems can
be evaluated. Chapter 3 describes our designed information extraction algorithm
that is leveraged by our IR module in order to extend the current document retrieval
paradigm. Chapters 4 to 6 involves developing and experimenting with alternative
representations of search results (e.g. Textual Documents, Knowledge Graphs and
Hierarchies) and a range of interaction capabilities that culminated in a Search UI
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that can enable a more effective exploration of search results. Finally, in Chapter 7
we extend the ecological validity of our findings by investigating how error prone rep-
resentations of information can impact the ways searchers’ behaviors and outcomes.
Figure 1.3 illustrates this structure.

Chapter 2: Background. In this chapter we are covering the related work per-
taining to different aspects of designing systems for supporting exploratory search.
The work presented in this dissertation builds upon work in a number of related
research areas including extensions to document retrieval, information extraction
systems, taxonomies of Web search queries, seminal theories and models of informa-
tion seeking and exploratory search. We also look at prior research in information
organization and structuring and visualizing search results. We conclude the chapter
with different aspects of evaluating exploratory search systems.

Chapter 3: Extending the Document Retrieval Paradigm. In this chapter
we begin to develop our extension to the Query-Response paradigm and focus on the
first element specified in our thesis statement, i.e., providing information. Motivated
by the widespread acknowledgement that document retrieval is only the first step
towards satisfying searchers’ complex information seeking goals, we design informa-
tion extraction (IE) algorithms that are effective in extracting semantic information
given a set of retrieved documents. This chapter details our implementation of the
designed (open) IE algorithm and elaborates on the development of the IR module
in our proposed framework described in Section 1.3.1.

Chapter 4: Exploring a Knowledge Graph Extension. As a first step to-
wards understanding the users behaviors and search outcomes given alternative rep-
resentations of search results, we designed an exploratory study to look at how a
conceptual representation of the semantic information extracted by our IR module
can be leveraged to extend the textual representation of documents and enable new
ways of exploring the search results.

The main idea behind this framework is based on combining knowledge graphs
with document retrieval in order to provide a conceptual overview for the information
space. Knowledge Graphs have been widely used to promote meaningful learning as
well as browsing knowledge and navigation. However, there is limited insight into how
these graphs can be utilized by searchers to aid with locating relevant information
and making sense of them. The research described in Chapter 4 challenges the

19



models that focus on either traditional document retrieval or the use of linked data
for finding relevant information. The findings demonstrate that knowledge graphs
and the coherent content of textual documents are both crucial for supporting users
during their exploratory activities.

Overall, the results of this initial study highlighted the role of spatial representa-
tions in structuring the information that can help locate relevant information when
they are coupled with textual content of documents. We also observed how different
representations of the same underlying information can lead to different information
seeking strategies and how the complexity of the search tasks can bias searchers
towards utilizing different components of a representation (e.g. starting from docu-
ments text versus interacting with nodes in the knowledge graphs versus examining
the edges in the graphs corresponding to semantic relationships).

Chapter 5: Alternative Representations of the Search Results. In ex-
ploratory search, how information is presented to the user and how the user inter-
acts with the presented information heavily influence the user’s success [354]. In fact,
information seekers often express a desire for a user interface that organizes search
results into meaningful groups to help make sense of the results, to infer relationships
between concepts, and to help decide what to do next [213, 414, 397].

Given our observations in Chapter 4, regarding the ways that graphs of concepts
and relationships, which are derived from documents, can be utilized by searchers
in search tasks of varying complexity, in Chapter 5 we focused specifically on spa-
tial representations of search results; Two spatial representations, knowledge graphs
and hierarchies, were contrasted to provide a broader understanding of how different
ways of structuring the search results can impact the information seeking behaviors
and outcomes. More specifically, we were interested to identify the unique charac-
teristics of each representation as they both externalize semantic information from
textual content and structure them in a 2D graphical structure. To this end, Chap-
ter 5 describes the first mixed methods study of multiple representations of search
space and identifying their relative strengths and weaknesses in supporting look-up
and exploratory information seeking tasks. The findings of this work culminated
in designing a novel representation of search results, deemed Hierarchical Knowl-
edge Graphs [475], that enables the user to engage in two alternative navigation
paradigms: they can exploit overview layers to explore the collection at a higher
level followed by targeted immersion in the detailed view (See Chapter 6).
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Chapter 6: Putting It All Together: Hierarchical Knowledge Graphs. In
information retrieval and information visualization, hierarchies are a common tool
to structure information into topics or facets, and network visualizations such as
knowledge graphs link related concepts within a domain. Given the complementary
benefits of hierarchies and network structures to support exploratory browsing of
search results (described in Chapter 5), in this chapter, we explore a multi-layer ex-
tension to knowledge graphs, hierarchical knowledge graphs (HKGs), that combines
hierarchical and network visualizations into a unified data representation.

Through interaction logs, we show that HKGs preserve the benefits of single-layer
knowledge graphs at conveying domain knowledge while incorporating the sense-
making advantages of hierarchies for knowledge seeking tasks. Specially, this chapter
describes our algorithm to construct these visualizations, analyzes interaction logs
to quantitatively demonstrate performance parity with networks and performance
advantages over hierarchies, and synthesizes data from interaction logs, interviews,
and thinkalouds on a testbed data set to demonstrate the utility of the unified hier-
archy+network structure in our HKGs.

Chapter 7. Information Seeking with Error-prone Representations Fi-
nally, developing solutions to support users’ exploratory search tasks also includes
significant challenges in evaluation [129]. We note that a reliable evaluation model
needs to assess exploratory search systems based on two complementary aspects: ac-
curacy and effectiveness. Essentially, assessing the accuracy of an exploratory search
system is closely coupled with the accuracy of the information it extracts from the
retrieved documents to be presented to the searchers. System effectiveness for ex-
ploratory search, on the other hand, requires evaluating how well the system aids in
the exploratory search tasks it is designed around.

Given that our proposed framework for supporting users with their exploratory
search activities combines two main components of Information Retrieval and Ex-
traction, which retrieves the relevant information for a query, as well as a Search UI,
that represents and enables interaction with this information we need to incorporate
both the accuracy of the output of our IRE module as well as the efficacy of our
Search UI module to truly measure the effectiveness of our proposed solution.

In Chapters 4, 5 and 6 we made a simplifying assumption; that perfect IE sys-
tems exist and as a result, the output of our IRE module is as accurate as the source
documents that contained the extracted information. The challenge is, however, that
algorithms that automatically extract information from a collection of retrieved doc-
uments are always error-prone and therefore our previous experiments are limited
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in their generalizability to real-world scenarios. That is, they do not provide an
answer to the following question: how search outcomes and users behaviors change
as a result of leveraging error-prone representations of search results? To this end,
in Chapter 7 we revisit our assumption that perfect IE exists, and through a mixed
methods analysis of the effect of precision and recall on the performance of hierar-
chical knowledge graphs for two different exploratory search tasks, we seek to probe
this question.

1.5 Broader Impact

The premise of the internet is to empower the people of all ages, expertise and
backgrounds around the globe with universal access to the information, to learn,
explore and get tasks done effectively. Web search engines are a primary mechanism
by which people seek information and solve problems, However, Search is only a
partially solved problem as it’s currently optimized for look-up tasks which yields
only candidate starting points for learning and cognitive development. In fact, people
are still forced to consume and make sense of the information independently from
search systems [597].

While there have been many efforts towards designing the next generation of
search systems that do not only provide search results, but help users explore, over-
come uncertainty, and learn, we are still far from fully realizing the premise of the
World Wide Web.

The goal of this research, is to advance the current Web Search paradigm, that is
highly effective for factoid look up tasks, towards a knowledge seeking and knowledge
exploration platform. This new platform can enable people to achieve more and
support the activities that they value the most such that this vision of internet
empowering users to find and understand the information they need is realized.
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Chapter 2

Background

Our work draws from several areas of literature that we review in this chapter. We
start with understanding the types of Web search activities and review some of
the established taxonomies of search tasks in Section 2.1. Next, in Section 2.2 we
provide an overview of exploratory search research and the related theories from fields
of IR, HCI and Psychology that can collectively shape our understanding of what
triggers exploratory searches and how this process unfolds. This characterization of
exploratory search behavior is essential for designing new search paradigms that can
assist information seekers with more complex types of search tasks.

Given a broad characterization of exploratory search behaviors and common
strategies, we then shift our focus to reviewing existing research related to the three
main requirements of systems that support exploratory search as specified in our
thesis statement (Section 1.1). As such, Section 2.3 describes the main approaches
that aimed at extending the current query-response paradigm by providing informa-
tion and not documents; Section 2.4 describes efforts that are focused on designing
exploratory search systems that are capable of supporting complex and evolving
information needs, particularly through providing richer representations of search
results and more advanced interaction paradigms to explore and navigate through
these representations.

Finally, in Section 2.5 we review some of the main evaluation methodologies and
metrics that can be leveraged for assessing the effectiveness of new search systems
supporting exploratory search tasks.
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2.1 Taxonomy of Search Tasks

People’s day to day search activities can vary greatly in their motivations, objec-
tives and outcomes. Studies of user search behaviour have a long history in Infor-
mation and Library Science. Specifically with respect to web search, Broder [75]
proposed a taxonomy of Web Search in 2002. He was motivated by the idea that
the traditional notion of an “information need” might not adequately describe web
searching. Broder’s taxonomy classifies web searches into navigational, informational
and transactional. Similarly, Rose and Levinson [451] analyze user goals to classify
web searches into Navigational, Informational and Resource. Drawing upon earlier
work by Campbell [86] and Byström [82], web searches can broadly be classified into
“Simple” and “Complex” searches. Simple search tasks are similar to “known-item”
search tasks and usually involve looking up some discrete, well-structured informa-
tion object: for example numbers, names and facts [352]. Complex search tasks, on
the other hand, involve investigating, learning and synthesizing of information [605].

In contrast to Broder’s and Rose and Levinson’s taxonomies, Marchionini [352]
focuses specifically on a process he terms exploratory search. Marchionini broadly
separates web search into three categories: Look-up, which includes fact retrieval,
navigation and transaction; Learn, which includes knowledge acquisition, compre-
hension, and comparison; and Investigate, which includes analysis, synthesis and
evaluation. The latter two categories, Learn and Investigate, he groups under the
umbrella of exploratory search. There are two activities which mediate the process of
exploratory search: information foraging theory [412], which describes how searchers
collect relevant pieces of information, and sensemaking [140], which describes the
process through which people assimilate new knowledge into their existing under-
standing. In the next section we elaborate on the characteristics of exploratory
searches and review the related theories that provide a foundation for understanding
this category of search tasks.

2.2 Characterizing Exploratory Search

An initial question we wish to explore in this section is ‘what characteristics make
a search exploratory? ’ Indeed exploration is an important aspect of many search
processes. However, not any act of exploring makes a search exploratory. Researchers
have identified salient characteristics of such searches based on what motivates these
types of search activities and how the process of search is conducted. Exploratory
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searches are commonly characterized as a class of information seeking activities that
are open-ended, complex and multi-faceted. These tasks are often motivated by a
complex information problem and a poor understanding of terminology as well as
information space structure. They include complex cognitive activities associated
with knowledge acquisition and the development of intellectual skills [597].

Marchionini [352] suggested that key components of the exploratory search pro-
cess are learning and investigation. He also argues that characterizing exploratory
search requires describing two main aspects of this type of information seeking: (a)
the problem context that motivates the search and (b) the process by which the search
is conducted.

Problem Context. The problem context in exploratory search is often described
as ill-structured and open ended where searchers are motivated by a knowledge gap
or a desire to learn or solve a problem [556, 612, 306, 597]. Exploratory searches
often involve complex situations. The complex nature of these activities commonly
leads to a non-linear and dynamic process requiring the information seeker to tran-
sition back and forth between induction and deduction [78]. The resolution of vague
or complex information problems calls for exploratory search behaviors. In fact,
Exploratory search is a specialization of information seeking, which describes the
activity of attempting to obtain information through a combination of querying and
collection browsing. While searching to learn has been established as an important
motivator behind information activities (e.g. as suggested by [50, 352]), White and
Roth [597] note that learning in exploratory search is not only about knowledge ac-
quisition, but rather the development of higher level intellectual capabilities that can
lead to the application, synthesis and evaluation of this new knowledge.

Search Process. The purpose of exploratory search is typically to create a knowl-
edge product (e.g. a research paper) or make a decision (e.g. choosing a medical
treatment) [411]. To this end, much of the search time in exploratory or learning
tasks is devoted to examining and comparing results, as well as discovering the key
concepts of the domain [597]. Marchionini [352] distinguishes three classes of search
activities associated with an exploratory search process: Lookup, Learn and Inves-
tigate. As depicted in Figure 2.1, while these activities are separated into three
groups there is an interplay between them. Essentially, exploratory searches involve
both exploratory browsing and focused searching activities. While learning and in-
vestigating activities are commonly associated with exploratory browsing, focused
searches can be seen as instances of look-up activities. The majority of current
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search systems are capable of handling look-up tasks given the significant invest-
ment in ranking technologies [611, 597]. However, in order to fully support learning
and investigation activities associated with exploratory searches there needs to be
more involvement from the user, more advanced interaction possibilities between the
user and the search system as well as more advanced UI designs that move beyond
simple query specification and a linear results presentation.

Figure 2.1: Exploratory Search Activities (based on Marchionini’s Taxonomy[352]).

Marchionini’s model of exploratory search primarily addresses the educational
objectives of Bloom’s taxonomy [63]. However, it does not examine other types
of exploratory behavior where the searcher might traverse the information space
with no prior knowledge of the domain and possibly without a defined target. Past
research has identified such exploratory behavior as evident in Wayfinding tasks
[343] that require the navigator to be able to conceptualize the space as a whole as
well as survey knowledge [540] that requires a scientist to visualize a dataset with
no prior understanding of the shape or the organization of the data [597]. In order
to provide assistance with these other types of exploratory searches, search systems
need to support both exhaustive and directed searches. In the domain of Web search,
information seekers that are navigating an unfamiliar document collection can also
benefit from such search systems.
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Exploratory Browsing versus Focused Searching In the previous two sub-
sections we described two important elements of exploratory search: the problem
context and the search process. The problem context is an important motivating
factor, but is also highly dynamic in exploratory search scenarios. In order to reduce
this dynamism, and as a result the inherent uncertainty in the problem context, the
information seekers can engage in two different types of strategies over the course
of an exploratory search episode [597]: Exploratory Search Strategies and Focused
Searching. Search strategies that are exploratory in nature e.g. berrypicking (see
Section 2.2.1.2) or information foraging (see Section 2.2.1.3) can support the gath-
ering and re-representation of information – as is common practice in sensemaking
[139]. Alongside these exploratory approaches, a systematic learning mechanism such
as hypothesis formulation and testing, as in exploratory data analysis (EDA; [548])
can be used to assist the searcher with better defining the problem context. Essen-
tially, the exploratory browsing strategy exposes the user to collection content
to help better define their information needs and to promote information discovery
and new cognition based on observed content. Focused searching on the other
hand, may include some degree of navigation, but is generally intended to help the
searcher follow a known or expected trail rather than foraging new ground [412, 597].
As such, the searcher can query the document collection, examine search results and
documents in close proximity to search results, and extract relevant information to
meet their goals. In this regard, exploratory browsing can be considered as a hy-
pothesis generation activity, while focused searching can act as a hypothesis testing
step in the process of exploratory search. Effective exploratory search systems thus
need to maintain a balance between supporting exploratory browsing activities as
well as focused searching.

2.2.1 Understanding Exploratory Search Process and Strate-
gies

In this section, we review relevant theories from related disciplines such as HCI, IR,
information science, and psychology that can provide a new perspective for under-
standing the process of exploratory search and strategies that are common during
these types of activities. These theories highlight different aspects of exploratory
search behavior including exploration and browsing, locating and collecting relevant
pieces of information and making sense of these pieces.

The last subsection highlights the relationship between exploratory search re-
search to each of these related areas and how different aspects of exploratory search
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behavior can be understood using these relevant theories.

2.2.1.1 Exploratory Behavior and Browsing

Exploratory behavior is defined by the National Library of Medicine as “the tendency
to explore or investigate a novel environment”, is driven by curiosity and is evident
in most exploratory searches. As we noted in the previous section, exploratory
searches are not always motivated by a need to solve a problem; rather curiosity
often leads to exploration, investigation and learning. Yet, curiosity is not particular
to exploratory searches. In fact, both exploratory and look-up search tasks apply
different types of curiosity throughout the search process: Specific curiosity is a
desire for a particular piece of information, that is best exemplified by an attempt to
solve a problem or puzzle. Diversive curiosity, on the other hand, is a more general
seeking of stimulation or novelty, for example a television viewer flipping between
channels [56]. In information seeking, specific curiosity corresponds to well-defined
goals and directed searching, while diversive curiosity corresponds to ill-defined goals
and exploratory browsing [399].

According to Berlyne [56] there are three stages of exploratory behavior: (1) ori-
enting responses, (2) locomotor exploration and (3) investigatory responses. White
and Roth [597] map these stages to three phases of exploratory searches: (1) obtain-
ing overviews of the information space by utilizing techniques such as information
visualizations, (2) focusing on a specific object (e.g. a relevant document) and (3)
examining the object in more detail. We also note the parallel between these stages
of exploratory search and the steps specified by Shneiderman [495] in the Visual In-
formation Seeking Mantra: Overview first, zoom and filter, then details on demand.

Browsing A closely related activity to exploratory behavior is browsing. Browsing
is defined as movement in a connected space [312]. Marchionini [351] reviewed the
research on browsing and observed three general types of browsing activities based
on the object of search (i.e. the information needed) and by the tacticts employed
to find this information; Directed browsing occurs when browsing is systematic, fo-
cused and directed by a specific target. For example, scanning a list to locate a known
item or verifying attributes such as dates on a Web page require directed browsing.
Semidirected browsing involves scenarios where browsing is generally purposeful, the
target is less defined and the browsing is less systematic. An example is querying
a database for a general term and examining retrieved records. Finally, undirected
browsing occurs when there is no real goal and very little focus. Channel-surfing
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or flipping through a magazine are examples of undirected browsing. Similar to
Marchionini’s categories of browsing, Wilson [612] identifies four categories of infor-
mation seeking and acquisition after a survey of health information seeking: Passive
attention, passive search, active search and ongoing search.

Bates [46] suggests that browsing is a cognitive and behavioral expression of
exploratory behavior which has four elements: (1) glimpse a scene; (2) target an
element of a scene; (3) examine item(s) of interest; and (4) physically or conceptually
acquire or abandon examined item(s). To this end, White and Roth [597] argue that
in order to support browsing activities, as an integral part of exploratory searches,
exploratory search support systems should offer collection overviews and the ability
to traverse through the collection (exploratory browsing) and document examination
/ retention.

2.2.1.2 Berrypicking

The theory of Berrypicking was introduced by Bates [44] as a way of describing infor-
mation seeking behavior in online environments. This method depicted information
retrieval as a dynamic and evolving process criticizing traditional approaches sug-
gesting a single results set can satisfy a user’s query. When introduced in 1989, the
berrypicking model was considered revolutionary as it emphasized browsing and nav-
igation as searching modes for which explicit queries do not have to exist [241]. Es-
sentially, the theory of berrypicking exemplifies a pioneering approach to exploratory
search [597].

The term “berrypicking” is an analogy to picking berries in a forest; berries are
scattered on bushes and not in dense bunches. This analogy points to a resemblance
between this model and the information foraging approach to information seeking:
similar to information foraging [410] and wayfinding [343] theories, the berrypick-
ing model views the searcher as moving through an information space, gathering
fragments of information as they move and seeking cues that guide navigation deci-
sions. In fact, the main distinction between these two models is their focus; while
the berrypicking model posits evolving information needs as the main motivator for
exploratory search, information foraging focuses on the act of searching itself.

The berrypicking model, as demonstrated in Figure 2.2, is based on the idea that
in real-life searches, each new piece of information that is gathered by the searcher
gives them new ideas and directions to follow and, as a result, a new understanding
of their information need. Similar to picking berries in a forest, the individual picks
pieces of information a bit at a time and thinks about the information she has found,
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Figure 2.2: An evolving berrypicking search based on Bates’ model [44] - figure is
adapted from [597]

partially by relating it to what she is trying to achieve through the search process
[480].

Berrypicking is a commonly used strategy in exploratory search. During ex-
ploratory searches, the evolution of the information need is important, and it is
indeed an integral part of gathering and understanding information fragments. As
noted, the berrypicking model criticizes the look-up model offered by current search
engines and exhibits two main distinctions from look-up searches [597]: (1) the na-
ture of the query (representing the problem context) is evolving, rather than static
and unchanging; (2)the nature of the search process follows a berrypicking pattern
(see Figure 2.2), instead of leading to a single best retrieved set.
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2.2.1.3 Information Foraging

Information foraging theory [412] attempts to explain information seeking behavior
in humans by drawing ideas from food foraging mechanisms in a variety of living
organisms. Central to the optimal foraging theory is the observation that the eating
habits of animals revolve around maximizing energy intake over a given amount of
time. Similarly, Pirolli and Card [412] proposed information foraging theory based
on this assumption that humans’ adaptive success depends to a large extent on so-
phisticated information gathering, sensemaking and problem solving strategies [410].

Essentially, the information foraging theory provides an account of how people,
while searching for and browsing information resources, choose to continue their
activities in the same region or rather identify a new region in which to look for
information. One of the fundamental premises of the information foraging theory
is that the identification and selection of information regions (aka patches) is done
based on users’ assessment of their appropriateness. This assessment is often done
by relying on available ‘cues’ (e.g. textual snippets or thumbnail images) provided
by modern search engines). These cues can be considered as “information residue”
[176], which was later refined and labelled as “information scent” by Pirolli [409].
Later, Card et al [89] defined information scent as a user’s “imperfect perception of
the value, cost, or access path of information sources obtained from proximal cues,
such as WWW links.” Information scent can thus be understood as the quality that
the forager attributes to proximal cues of a variety of information objects [480].

2.2.1.4 Sensemaking

The Oxford dictionary defines Sensemaking as the action or process of making sense
of or giving meaning to something, especially new developments and experiences.
People are constantly engaged in making sense of the world. Dervin [139] was one
of the influential pioneers in focusing on the needs of users of information systems
and the way they make sense of the world. She describes the process of sensemaking
as a series of continuing gap-defining and gap-bridging activities [139, 140]. This
process can be considered as an active two-way cycle of fitting data into a frame (i.e.
a schema or a mental model) and fitting the frame around the data.

Inspired by Dervin’s view of sensemaking, later research efforts (e.g. [413, 296])
used observational studies and cognitive task analysis to identify the main steps in
sensemaking as follows: (1) knowledge gap recognition; (2) generation of an initial
structure or model of the knowledge needed to complete the task (i.e. concepts,
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relationships and hypotheses); (3) search for information; (4) analysis and synthesis
of information to create insight and understanding; and (5) creation of a knowledge
product or direct action based on the new understanding or insight.

The fundamental intuition behind sense making is also proposed in “assimilation
theory of cognitive learning” by Ausubel [33]. To Ausubel, meaningful learning
occurs when learners build a new knowledge structure by explicitly constructing
new nodes and interrelating them with existing nodes and with each other. Novak
[387] demonstrates how Concept Maps make the theoretical principles of Ausubel’s
assimilation theory practical. According to Novak [387], concept mapping involves
the construction of a conceptual network that represents the learner’s understanding
of a certain domain of knowledge.

Essentially, sensemaking is the creation of situational awareness and understand-
ing in situations of high complexity or uncertainty in order to make decisions [597].
This situational awareness is commonly achieved through constructing a concep-
tual representation of the problem context and highlights the role of analysis and
synthesis as a crucial part of the process [213, 464]. This view of sensemaking, as
“the iterative process of formulating a conceptual representation from a large vol-
ume of information” [213] is the main inspiration behind the research reported in
this dissertation, and is supported by a body of past work. Russell et al. [462]
described sensemaking as “the process of encoding retrieved information to answer
task-specific questions.” They defined a sensemaking model comprising four main
processes: (1) search for representation (structure): the sense-maker creates repre-
sentations to capture salient patterns of data; (2) instantiate the representations:
the sense-maker identifies relevant information and encodes it in the representation;
(3) modify the representations: representations are modified during sensemaking
when data is ill-fitted or missing in the representation; and (4) consume instantiated
representations: the sense-maker consumes the instantiated representation. Qu and
Furnas [423] emphasize the bidirectional relationship between search and represen-
tation construction and identify two separate sub-processes of ‘search for structures’
and ‘search for data’ during sensemaking. In a more recent work, Russell et al.
[463] focus on sensemaking activities in the context of information retrieval tasks
that require understanding large document collections and characterize the process
of sensemaking as “creating a representation of a large volume of information that
allows the analyst to perceive structure, form and content within a given corpus”.
They note that when people need to rapidly make sense of a large document collec-
tion they usually begin by skimming the documents and organizing the collection
into temporary groups (clusters). This sensemaking behavior gives a quick overview
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of the contents, while creating a fast, easy to use representation for organizing and
accessing the accumulated contents.

Like exploratory search, sensemaking can be supported by information search
interfaces. Hearst [213] discusses examples of sensemaking interfaces and their con-
stituent elements, which include flexible arrangement and grouping of information,
integrating notetaking and sketching, hypothesis formulation and collaborative search.

Evidently, exploratory searchers are constantly engaged in sensemaking activities
as they move through the information space. As White and Roth [597] note sense-
making is an individual process of construction, not a process of utilizing existing
information. Given this view, exploratory search typically involves a prolonged en-
gagement in which information seekers iteratively look up and learn new concepts
and facts. Exploratory search can thus be viewed as a sub-component of sensemaking
[597].

2.2.2 Information Seeking

Exploratory search can be more broadly characterized as a class of information seek-
ing. Information seeking is the fundamental process of attempting to obtain infor-
mation in both human and technological contexts [597]. Marchionini [351] views
information seeking as a process driven by human needs for information so that they
can interact with the environment. His view of information seeking is inspired by
three beliefs about human’s existence: Life is active, continuous and accumulative.
This perspective implies that we learn by “bumping into the environment”; that
information flows, continuously, from the environment, regardless of how we are able
to process and store it; and that as the flow of information affects our knowledge
structures, these structures are extended, reinforced or altered.

Wilson [612] distinguishes three classes of related research areas, namely informa-
tion behavior, seeking and searching to further understand user-oriented (cognitive)
IR research. His nested model (see Figure 2.3) defines “information behavior” as a
broad concept representing “the totality of human behavior in relation to sources and
channels of information use.” This definition includes information seeking as well as
other types of behavior (e.g. the passive reception of the information). “information
seeking” is placed as a subset of information behavior and is defined by Ingwersen
and Jarveling [241] as “human information behavior dealing with searching or seeking
information by means of information sources and (interactive) information retrieval
systems”. “Information searching” as a sub-field of information seeking in this model
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Figure 2.3: Wilson’s nested model; figure adapted from [612]

is focused on the interaction between the user and the information system, and is
more formally known as Interactive Information Retrieval (IIR) [597].

2.2.2.1 Information Seeking Models

The process of information seeking has been characterized by a number of mod-
els including Ellis’ behavioral model [157], Dervin’s Situation-Gap-Use Model [140],
Belkin’s Anomalous States of Knowledge (ASK) Model [50], Kuhlthau’s Information
Search Process (ISP) Model [306], Wilson’s Problem Solving Model [612] and Choo
et al’s integrated model of browsing and searching [110].

Ellis’ Behavioral Model. Ellis [157, 158] proposed a general model of informa-
tion seeking behaviors based on the studies of the information seeking patterns of
scientists, researchers and engineers in an industrial firm. One version of this model
describes six categories of information seeking activities: starting, chaining, brows-
ing, differentiating, monitoring and extracting. In this model, browsing is different
from simply viewing some results, and is rather the activity of semi-directed search
in areas of potential interest. To elaborate, browsing takes place in many situations
in which related information has been grouped together or organized as tables of
contents, lists of titles or a set of entities.

Situation-Gap-Use Model. Dervin [139] was one of the influential pioneers in
focusing on the needs of users of information systems and the way they make sense
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of the world. Her Situation-gap-use model posits that users go through three phases
in making sense of the world which revolves around facing and solving their informa-
tion problems. The first phase, called the situation, establishes the context for the
information need; Next, people find a gap between what they understand and what
they need in order to make sense of the current situation. These gaps are manifested
by questions. The final step involves using answers or hypotheses for these gaps to
be able to move to the next situation. Marchionini [351] notes that the situation-
gap-use model applies to more general human conditions than information seeking
but has been adopted by researchers in information science and communications as
a framework for studying the information seeking process.

ASK Model. Related to this concept of a knowledge gap, Belkin et al. [50, 395]
constructed a model of information seeking that focuses on information seeker’s
anomalous states of knowledge (ASK). According to this model, when a search be-
gins, a searcher’s state of knowledge is in an “anomalous state”, and they have a gap
between what they know and want to know. Hence, the searcher must go through
a process of clarification to articulate a search request, with the obvious implication
that search systems should support iterative and interactive dialouges with users.
This model contributes to designing systems for supporting exploratory search in at
least two ways: (1) this model was designed to explain generally open-ended infor-
mation problems and does not directly apply to fact-retrieval tasks; (2) This model
serves as a theoretical basis for the design of highly interactive information systems
[351].

Marchionini’s Information Seeking Process Model. Marchionini [351] pro-
posed another often-cited model of the information seeking process directed towards
electronic environments. In this model, the information seeking process is com-
posed of eight sub-processes which develop in parallel: 1) recognize and accept an
information problem, 2) define and understand the problem, 3) choose a search
system, 4) formulate a query statement, 5) execute search, 6) examine results, 7)
extract information and 8) reflect/iterate/stop. It is interesting to note that in this
model, Marchionini describes the sub-process of extracting as an assimilation activ-
ity : “there is an inextricable relationship between judging information to be relevant
and extracting it for all or parts of the problem’s solution ... To extract information,
an information seeker applies skills such as reading, scanning, listening, classifying,
copying and storing information. ... As information is extracted it is manipulated
and integrated into the information seeker’s knowledge of the domain” (pp 57-58).
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ISP Model. Based on several longitudinal studies, Kuhlthau [306, 305] devel-
oped a multistage model of the Information Search Process (ISP), which “depicts
information seeking as a process of construction”. Kuhlthau’s model is descriptive,
documenting “commons patterns in users’ experience in the process of information
seeking” for complex tasks requiring contraction and learning, with a discrete be-
ginning and ending. This model identifies and emphasizes the importance of the
individual stages that learning tasks and problem solving involve. The stages in the
ISP model are as follows [241]: (1) initiation: becoming aware of the need for informa-
tion, when facing a problem; (2) selection: the general topic for seeking information
is identified and selected; (3) exploration: seeking and investigating information on
the general topic; (4) focused formulation: fixing and structuring of the problem to
be solved; (5) collection: gathering pertinent information for the focused topic; and
(6) presentation: completing seeking, reporting and using the results of the task.
An interesting aspect of the ISP model is that it outlines exploration as one of the
primary six tasks that the user executes during search and as noted frequently the
notion of exploration is fundamental to exploratory search. Exploration, as used
by Kuhlthau, is defined as being an investigational stage of the information-seeking
process [597].

Task-based IR Model. In 2001, Vakkari refined the ISP model in the context of
information retrieval into a tentative theory of Task-based IR process [558] based on
a longitudinal study with twelve students. He refined the ISP model and summa-
rized the six stages into three categories: pre-focus (ISP’s stage 1, 2 and 3), focus
formulation (stage 4) and post-focus (stage 5 and 6). Essentially, Vakkari emphasizes
the crucial role of finding a focus in the search process.

Integrated Model of Searching and Browsing. Finally, Choo et al. [110]
developed a model of online information seeking that combines both browsing and
searching. The main motivation behind this model is the observation that current
Web browsers have already enabled browsing mechanisms that were highlighted as a
part of the Ellis’s model of information seeking. This model suggests that people who
use the Web as an information resource to support their daily work activities engage
in a range of complementary modes of information seeking, varying from undirected
viewing that does not pursue a specific information need, to formal searching that
retrieves focused information to guide action and decision making. In fact, Choo et al.
[110] argue that each mode of information seeking on the Web can be distinguished
by the nature of information needs, information seeking tactics, and the purpose of
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information use.

2.2.2.2 Understanding Information Seeking Activities

There is a body of more recent studies that focused on observing users’ information
seeking behaviour and identifying the challenges searchers face during their search
session, common information seeking activities among them and gaining insight into
how to support these activities.

Pirolli and Card [413] report on preliminary results from a study using cogni-
tive task analysis to help broadly characterize the processes used in “intelligence
analysis”. They developed a model that indicates how an analyst comes up with
novel information. The overall process is organized into two major loops of activi-
ties: (1) a foraging loop that involves seeking information, searching and filtering it,
and reading and extracting information [412] and (2) a sensemaking loop[462] that
involves iterative development of a mental model from the “schema” that best fits
the evidence. Here, schemas” are defined as a set of patterns developed by experts
around the important elements of their tasks. These patterns are built up over time
and from extensive experience.

Elsweiler and Ruthven [159] focus on Personal Information Management (PIM)
which investigates how people store, manage and re-find information. They designed
a diary study to investigate (a) the types of re-finding tasks that were performed
when search on email and on the Web; (b) which of these types is performed more
often and (c) which types are perceived as “difficult” by the majority of participants.
They classified the tasks into lookup, item and multi-item tasks and they did not find
any significantly more difficult task among them as perceived by the participants.
Overall, their study can offer an increased understanding of PIM behaviour at the
task level and an evaluation method to facilitate further investigation.

Diriye et al. [144] employed qualitative and quantitative data gathering methods
to investigate the efficacy of different interface features based on the complexity of
search tasks. They found the simplest interface provided better support for known-
item than exploratory search tasks, while richer search interface features were found
to provide better support for exploratory search, but would distract people from the
objective of more clearly defined search tasks. The results suggest that “searching
is more effective when supported by an interface that is tailored towards the search
activities of the task”.

Alhenshiri et al. [18] present the results of a study to explore the difficulties
users experience during Web information gathering tasks. They argue that while
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several Information Seeking models are proposed and they have focused on identifying
activities performed by users during ”locating of information”, not all these activities
are included in these models. They conducted a user study to examine how users
manage and organize information during Web information gathering tasks. They
identified a set of activities performed by searchers, their frequencies and the reasons
behind the most and least frequent activities.

Granka et al. [186] investigated how users interacted with the results page of a
Web search engine using eye-tracking. They designed a study to understand what the
searcher is doing and reading before actually selecting a document. They investigated
how rank influences the amount of attention a link receives as well as how searchers
explore a SEarch Results Page (SERP).

Bron et al. [76] study the research cycle of media studies researchers and what
activities they perform in order to investigate a research question. They construct a
model that identifies sequences of search processes and their influence on the research
question. Based on their understanding of these researchers’ needs, they propose a
subjunctive exploratory search interface to support media studies researchers in re-
fining their research questions in an earlier stage of their research. This interface
provides users with support for (1) exploration (i.e., query formulation, query refine-
ment and exploring various aspects of a topic) and (2) discovering patterns in the
data (i.e., to compare alternatives and to observe trends in data). They determine
that the interaction patterns of the users are different across the subjunctive inter-
face and the baseline. These patterns indicate that users alternate more between
formulating queries and inspecting results when they use the subjunctive interface.
However, the users of the baseline interface formulate less queries and look through
more result pages.

2.2.2.3 Factors Impacting Information Seeking

Information Seeking depends on the interactions among several factors: information
seeker, task, search system, domain, setting and search outcomes [353, 351]. There
have been a number of observational studies conducted to determine what factors
influence information seeking behaviours and outcomes.

Kelly and Cool [280] report the results of a preliminary investigation of the rela-
tion between topic familiarity and information search behaviour. The authors argue
that while it is commonly acknowledged that topic familiarity is an important factor
influencing information seeking, there is limited insight into how topic familiarity
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can be automatically assessed and how it can be used to improve retrieval. Their
work mainly focuses on identifying information search behaviour that may directly
be influenced by topic familiarity. They have initially focused on reading time and
efficacy as two information seeking behaviours. They have found that as one’s fa-
miliarity with a topic increases, one’s searching efficacy increases while reading time
decreases. Although these results are not surprising, the authors suggest that this
finding can be used to infer topic familiarity from information search behaviour.

Amadieu et al. [23] examined the interaction effects of prior knowledge and
concept map structure (network v.s. hierarchy) on comprehension. They found that
for low prior knowledge readers a hierarchical structure improved comprehension
performance, helped with reading coherent sequences and lowered their feelings of
disorientation. However, the high prior knowledge readers’ performance was not
affected by this structure. They also found that prior knowledge would support
comprehension processes when readers are required to establish semantic relations
between text sections in the non-linear document.

Diriye et al. [144] employed qualitative and quantitative data gathering methods
to investigate the interplay between the interface features, the user and the search
tasks. They found the simplest interface provided better support for known-item
than exploratory search tasks, while richer search interface features were found to
provide better support for exploratory search, but would distract people from the
objective of more clearly defined search tasks. The results suggest that “searching
is more effective when supported by an interface that is tailored towards the search
activities of the task”.

White and Ruthven [598] investigated the concept of “control” and identified
the activities for them they would like to have control over. They argue that users
need to make decisions for three major search activities: (1) selecting query terms
and operators; (2) whether or not formulate a new query and at what point to
stop searching; (3) indicating relevance. They presented an experiment in which
the participants were asked to interact with three interfaces with varying degrees
of user control over how the query is used. The intuition behind the design of this
experiment was to investigate how much control users want over the selection of
search decisions. They found that users are willing to hand over full responsibility
for indicating relevance but want to receive assistance for query formulation and
making search decisions. They also found that the users still wish to retain control
over search activities they consider important for the effectiveness of their search.
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2.2.3 Positioning Exploratory Search

In Section 2.2 we presented past work that contributed to characterizing exploratory
searches as a subclass of information seeking activities and differentiated exploratory
search from other classes of information seeking. We have also reviewed relevant
theories that describe strategies that information seekers leverage to forage for the
information and perform sensemaking and synthesis activities. To conclude this
section we borrow White and Roth’s [597] positioning of exploratory search as a
viable sub-discipline of information seeking in order to highlight its relationship with
existing disciplines such as IR, information visualization, information foraging and
sensemaking. The Venn diagram in Figure 2.4 positions exploratory search in relation
to these relevant areas.

Figure 2.4: Venn diagram positioning exploratory search relative to other related
research disciplines. Circle size signifies approximate size of each discipline. Color is
used to differentiate interior circles. Figure is adapted from [597].

As depicted in the Venn diagram, “exploratory search is a type of information
seeking and a type of sensemaking focused on the gathering and use of information
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to foster intellectual development.” [597]. Overlap exists with different aspects of
information seeking that are essential in exploratory search activities: (1) infor-
mation visualization: is an important asset in generating hypothesis and insight
generation as well as in learning about the information space; (2) exploratory be-
havior (browsing) is an important strategy in navigating this information space;
(3) berrypicking and information foraging describe how searchers find infor-
mation and adapt to their information environment; (4) sensemaking overlaps sig-
nificantly with information foraging and addresses issues of searcher comprehension
and information use; and (5) IIR and cognitive IR focus on individuals’ complex
psychological functions during the retrieval process and is crucial to describe the ba-
havioral and mental processes involved in finding the information as well as learning
and understanding components of exploratory search.

As White and Roth note the exploratory search is a multifaceted concept and is
constantly being changed and shaped by all these related areas. System designers can
thus draw from the research in all of these related disciplines to better support and
understand exploratory search behaviors. In the next two sections we review some
of the related efforts to support exploratory search tasks, corresponding to provid-
ing information (Section 2.3), richer representations and more advanced interaction
models specified in our thesis statement (Section 2.4).

2.3 Going Beyond Document Retrieval

To support the growing complexity of search tasks, researchers in the field of in-
formation retrieval developed and explored a range of approaches that extend the
traditional document retrieval paradigm. The earlier approaches aimed at extend-
ing the document retrieval paradigm by providing information and more focused
answers. We review three main classes of such extensions in this section.

To elaborate, the recognition that there is more to search than basic Informa-
tion Retrieval has led to many extensions and alternatives to the keyword search
paradigm. These extensions aimed at supporting users by providing “information”
and not documents and also involving users more actively in the search process.
Question Answering (QA), Summarization and Information Extraction (IE) all gen-
erate a focused response to a user’s information need in the form of sentences, text
snippets or entity-relationship triples. We review these approaches next.
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2.3.1 Question Answering Systems

People widely use IR systems on a daily basis to find documents that answer their
questions. Compared to these IR systems, QA systems aim to speed the rate at
which users find answers by retrieving answers rather than documents. QA systems
respond with a short, focused answer to a question formulated in a natural language.

QA systems are mainly composed of three main components: question classifi-
cation, information retrieval, and answer extraction. Therefore, each of these three
components attracted the attention of QA researchers [622]. For a survey of differ-
ent QA systems we refer the reader to [19] and [298] which is focused on the IR
perspective.

Different approaches to QA range from statistical and classification based meth-
ods (e.g. [601]) to linguistics based and deep text processing algorithms (e.g.,
[322, 591]). Many question answering systems translate questions into triples which
are matched against the RDF data (i.e., the data format for linked data and entity-
relationship triples) to retrieve an answer, typically relying on some similarity metric.
Unger et al. [554] presented a novel approach to question answering over Linked Data
that relies on a deep linguistic analysis yielding a SPARQL template with slots that
need to be filled with URIs. In order to fill those slots, possible entities were identified
using string similarity as well as natural language patterns extracted from structured
data and text documents. Therefore, these templates capture the semantic structure
of the natural language input.

A major problem with the present QA system is that the answer to a question is
also limited to pre-defined categories. They thus suffer from low recall. Furthermore,
they mostly support a limited range of questions requiring a factoid answer. For
example: “who is the president of US?”.

In 2006, the “complex interactive question answering” track was developed by
TREC that aimed at providing support for more complex questions. A question
is considered complex if it contains a relationship between two or more entities.
For example “what effects does [Aspirin] have on [heart disease]?”. This track also
focused on “interactive” QA systems that involve users in the process of finding
answers. There has been different attempts towards developing evaluation methods
and metrics for Interactive QA systems.

Kelly et al. [283] argue that the Cranfield Model shouldn’t be followed to study
interactive systems with real users. Instead, metrics that are sensitive to individ-
ual users, tasks and contexts need to be developed. To this end, they conducted
a two-week evaluation on three QA systems and a Google baseline system. They
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generated a set of hypotheses to describe a good interactive QA system (e.g., “a
good interactive QA system should support information gathering with lower cog-
nitive workload”). They designed a study to collect data in order to support their
hypotheses. They identified the most effective methods of collecting data for sup-
porting different hypotheses. Overall, they have sketched a method for evaluating
interactive analytic question answering systems, identified key design decisions and
described the effectiveness of data gathering methods.

Smucker et al. [507] aim at understanding how IR systems compare to QA
systems. To this end, they designed a study to measure the performance of humans
using an interactive IR (IIR) system to answer questions. They ran four experiments
that differed in the choice of participants (i.e., NIST assessors, expert and non-expert)
and the time constraints for task completion (i.e., 5 minutes, 10 minutes, unlimited
for each question). They found that IIR systems are competitive with automatic QA
systems for users with complex information need. They propose a better performance
can be achieved by combining the flexibility and precision of IR systems with the
ease-of-use and recall advantages of QA systems.

Complex Answer Retrieval. More recently, Complex Answer Retrieval (CAR)
[142], a new track at TREC, has aimed at answering more complex information
needs through retrieving longer answer passages. The ultimate goal of this track is
to enable systems to collect relevant information from an entire corpus and create
synthetically structured documents by collating these results automatically. In this
regard, CAR can be considered a solution at the intersection of QA systems and
automatic summarization algorithms described in Section 2.3.2. An example scenario
(adapted from CAR homepage 1) involves a user interested in learning about water
pollution through fertilizers, ocean acidification, and aquatic debris and the effects it
has. A desired answer for this question can be a structured body of text that covers
the topic with its different facets and elaborates on pertinent connections between
relevant concepts or entities. This scenario can be envisioned as an automatic essay
generation task given a topic and its related facets. CAR is still in its early stages of
accomplishes this goal of synthesizing complex answers to support a range of learning
tasks. While the first and second years of this track were dedicated to producing
passage and entity rankings for the query and facets given in the outline, the third
year is now focused on the task of arranging paragraphs into a topically coherent
article. Assuming the future efforts can realize the ultimate goal of CAR, these
solutions can provide a starting point for exploratory searches that are motivated

1http://trec-car.cs.unh.edu/
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by learning tasks around general topics where the searcher has a relatively good
understanding of what aspects their topical need involves and what is required to be
covered in the generated output.

2.3.2 Automatic Summarization Systems

Automatic summarization is a process that creates a shortened version of one or
more documents. These summaries contain the most important parts presented in a
concise and coherent way. When compared with QA, these summaries provide more
context and coherent text and thus offer better support for search tasks that require
learning and understanding in order to generate answers to more broad questions.

A comprehensive overview of research in summarization is provided in [346] and
a more recent one can be found in [381]. Text Summarization methods can be clas-
sified into extractive and abstractive summarization. An extractive summarization
method consists of selecting important sentences or snippets from the original docu-
ment and concatenating them into a shorter form. Statistical and linguistic features
of sentences are used for ranking the sentences based on “importance”. An Ab-
stractive summarization on the other hand, attempts to develop an understanding
of the main concepts in a document and then express those concepts in a coherent
natural language content. These approaches use linguistic methods to examine and
interpret the text and then to find the new concepts and expressions to best describe
it by generating a new shorter text that conveys the most important information
from the original text document [193]. For a survey of extractive and abstractive
summarizarion approaches one can refer to [193] and [284] respectively.

Given a collection of documents, most of existing multi-document summarization
methods automatically generate a static summary for all the users using unsuper-
vised learning techniques such as sentence ranking and clustering. However, these
techniques suffer from two major limitations: (1) the generated summary is the same
for all users and does not leverage users feedback and interaction; (2) the generated
summary is presented as a text snippet that lacks a structure which can reveal how
extracted sentences are connected to one another. There has been a few attempts
that addressed these two limitations. The next subsection reviews these attempts.

2.3.2.1 Interactive / Dynamic Summarization

Zhang et al. [644] develop an interactive summarization system called iDVS which
improves the summarization performance using users’ feedback and assists users in
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document understanding using visualization techniques. The system first generates
a 2D view graph of current sentence set of the given documents that initially contain
all the sentences in all the documents. In this graph, the nodes are the sentences and
the edges indicate the cosine similarity between the corresponding sentence pair is
above 0. The similar nodes (i.e. sentences) are positioned close to each other using
a maximizing graph modularity based clustering algorithm. The system then picks
the most important sentences and present them to the user.

The user provides his feedback to the system in two ways: (1) among comparable
sentences, he selects the one which he most prefers; (2) the user partially reorders the
sentences selected by the system based on his understanding of their context in the
corresponding documents. Next, a semi-supervised ranking algorithm uses the users’
preferences and provided ordering and ranks all sentences in all documents. Top n
sentences from each document are then selected as candidates and recommended to
the user. Finally, the user selects the candidates sentences which he is satisfied with.
These sentences will then be included in the summary. A new iteration starts until
the required length of the summary is reached.

They evaluate their system by comparing it with other most widely used unsu-
pervised and supervised summarization systems. They observed their system out-
performed all the unsupervised systems, while maintained a comparable performance
with the supervised summarization approach. They also conducted a user study and
asked fifteen participants to assign a score of 1 to 5 according to their satisfaction of
the use of iDVS as compared with four other summarization systems. They reported
an average score of 4.07 for iDVS, followed by 3.47 for the supervised system and
2.80 for the leading unsupervised system.

Jones et al. [254] develop an interactive summarization system called IDS that
provides dynamic control over some summarization features (e.g., length and topic
focus) and allows users to move flexibly between summaries and their source doc-
ument. The authors consider any system that allows the users to specify a range
of summariser options (e.g. summary length) interactively, an “interactive” sum-
marizer. They also characterise such a system by the ability to bias the summary
towards a particular topic or a set of topics.

The IDS system adopts the sentence extraction approach to the construction of
summarise and has two components: (1) a keyphrase extraction module that uses
machine learning to extract more salient phrases that incorporates TF-IDF values of
different candidate phrases. Next, each sentence from a document is scored based on
the keyphrases it contains; (2) a user interface that supports the transition between
summaries and full text. This “summary in context” functionality uses text shading
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to reveal the summary sentences yet retain the context in which they occur in the
source documents. It thus enables the users to tailor the topics of the documents
that are emphasised in the summary.

In order to evaluate IDS they recruited 18 participants to read through two
randomly assigned articles and highlight the key sentences in these articles. These
assignments were done such that each article would be reviewed by six different
participants. They then constructed an “ideal” summary by taking the majority
opinion of the participants on which sentences are to be included. They measured the
performance in terms of precision and recall of “relevant” sentences. They considered
a sentence “relevant” if it was selected by at least two participants. For the baseline
they used a simple ranking of sentences by the order they appear in the text. They
found that the IDS summaries outperform baseline F-scores (by a maximum of 7%).

NewsInEssence [424] is a digital news system that produces domain-independent
multi-document summaries of news articles related to the user’s current news story
of interest. Therefore, it builds a personalized view of news sources. It also provides
an interface with which the user can visualize the cluster of retrieved news articles
related to his seed article. Each article is represented as a data point in a two-
dimensional space which indicates the time and the news resource associated with
this article.

2.3.3 Information Extraction

Information Extraction has focused on the extraction of entities and relations be-
tween them from natural language texts. IE techniques are exploited as the first
step for QA and summarizarion systems. These systems leverage IE to improve
their effectiveness by finding key entities and the relationships between them to gen-
erate candidate answers. In fact, it is envisioned that in the future, the main source
of structured data to build knowledge bases will be automatically extracted from
natural language sources [145]. By applying an IE system to a collection of docu-
ments a set of triples in the form of (entity, relation, entity) will be generated. These
triples, when combined, can generate a Knowledge Graph. These graphs organize
the entities present in text in a 2 dimensional networks by connecting each pair by
the underlying semantic relationship between them.

While there are many external knowledge bases (e.g., DBPedia 2) are available
that provide a collection of these triples, they cannot necessarily represent the same

2http://dbpedia.org
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information space that the user is interested in. That is, in order to provide better
support for users’ complex search activities, it is beneficial to derive these knowledge
graphs from the information retrieved for the user’s query. These graphs can provide
an alternative representation of the user’s domain of interest and they can support
interaction with the corresponding documents retrieved by the search engine. To
this end, we are interested in methods that extract entities and relations between
them from text.

Many studies have been proposed to extract these triples from text. While some
approaches extract entities or relations independently [648, 11], others aim at joint
extraction of entities and relations using a dual approach [109, 269, 427].

One example of methods that automatically derive lexical knowledge graphs from
text is MindNet [530]. This approach introduces a new “model” to extract semantic
relations fully automatically from text using the Encarta encyclopedia and lexical-
semantic relations discovered by MindNet. MindNet is a lexical knowledge base
that can be constructed fully automatically from a given text corpus without any
human intervention. Through MindNet, words are connected to other words within a
sentence, across sentences and even across documents. For example, if the word “car”
occurs in a particular sentence then it will be connected to words in the same sentence
and also to words in other sentences present anywhere in the corpus wherever the
word “car” is present. In this way one is able to retrieve how a particular word is
related to other words in sentences across documents in a corpus. Unlike MindNet,
our Information Extraction component is not limited to any knowledge resource
(e.g., Encyclopedia) to extract the relations. Also, the relations we extract imply
a “semantic” connections between two entities and it is based on deep linguistic
features as opposed to the occurrence of those entities in the same sentence only.

More recently, IE researchers concentrate especially on Open Information Ex-
traction (OIE), where information is automatically extracted from large textual re-
sources, e.g. web news articles, which are not restricted to any particular domain or
terminology.

One of the first successful systems for the fast and scalable fact extraction from
the Web is the domain-independent system, KnowItAll [162]. KnowItAll starts with
the extraction of entities of pre-defined entity types (e.g. CITY, MOVIE) and then
discovers instances of relations between extracted entities using handwritten pat-
terns. Another system called TextRunner [628] applies a technique of extracting all
meaningful instances of relations from the Web.

The system ReVerb [163], in turn, overcomes some limitations of the mentioned
systems due to a novel model of the verb-based relation extraction. However, Re-
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Verb suffers from two key drawbacks. Firstly, it uses a limited subset of sentence
constructions for expressing relationships and they all are mediated by verbs only.
Secondly, it only analyzes a sentence locally so it often extracts relations that are
not asserted as factual in the sentence (e.g. extracting (Romney, being the president
of, US) from “if Romney wins the votes of 5 states, he will be the president of US.”).
A newly developed OpenIE system called OLLIE [483] overcomes the limitations of
previous Open IE systems by (1) extracting relations mediated by nouns, adjectives,
and more which leads to a higher yield and (2) a context-analysis step increases
precision by including contextual information from the sentence in the extractions.

2.3.3.1 Ranking Extractions

Extraction engines, similar to search engines, intermix relevant and irrelevant in-
formation. This problem is exacerbated in IE systems because they use heuristic
methods to extract phrases that potentially contain entities and relationships [334].
Therefore, there is a need to rank these extractions in order to (1) filter out the
not “useful” assertions as well as (2) providing an ordered list of suggestions for
the users as candidates for exploration. There are different criteria to rank these
extractions. These criteria can be classified into two groups: Subjective and Objec-
tive. We can also classify approaches in these groups into Graph based and Semantic
based Measures. An overall classification of ranking approaches that we review is as
follows.

1. Objective

(a) Graph-based

• Betweenness (e.g., [650])

• Centrality (e.g., [637, 68])

• PageRank (e.g., [650])

(b) Semantic-based

• Co-occurrence and Frequency (e.g., [417])

• Using Ontologies (e.g., [531])

• Semantic Similarity

2. Subjective

(a) Informativeness (e.g., [267])
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(b) Interestingness (e.g., [334, 426])

(c) Unexpectedness (e.g., [336, 184])

(d) Actionability (e.g., [212])

There are different combinations of the mentioned graph-based and semantic-
based ranking methods used in different OIE systems. NAGA [268] is a graph-based
search engine, which ranks subgraphs, based on “confidence”, “informativeness” and
“compactness” based on a user’s query.

Kasneci et al. [267] first formulate a measure for representing the informativeness
of relations between entities in an ER graph and then employs this measure to
determine the most informative subgraph for a given query. The authors argue that in
order to compute the informativeness of nodes in ER graphs, the link structure has to
be taken into account. However, they also argue that the link structure on ER graphs
represents a fraction of the real world only and thus it is not sufficient for an effective
informativeness ranking method. They propose to assign weights to the edges based
on co-occurence statistics for entities and relationships. These weights will then
guide a random walk process on the adjacency matrix of the ER graph (similar to
PageRank). To this end, they use a similar measure as “distinguishing assertions”
employed by [334]. In order to evaluate their ranking algorithm (MING), they simply
compared the answers provided by MING to the ones provided by a different ranking
system (CEPS [R]). They focused on the user perceived quality of MING’s answers.
Therefore, they conducted a user study and collected 210 assessments in total, out
of which MING’s results were marked as informative in 185 of the cases.

Zouaq et al. [650] experiment with different graph-based measures for ranking
nodes and entities. They use nodes’ degree, betweenness centrality for nodes, be-
tweenness centrality for edges, Page Rank and etc and compare the results against
a different set of ranking approaches based on Pointwise Mutual Information (PMI)
[114] and frequency of co-occurence to prove to the superiority of graph-based mea-
sures.

Lin et al. [334] develop three distinct models of what assertions are likely to
be interesting in response to a query. They apply these three models to filter out
less useful statements extracted by TextRunner [628] extraction engine. The authors
argue that the problem of ranking based on interestingness is especially challenging
because “interestingness” can be subjective, personal and context specific. They
define interesting assertions to be those that a person may find useful or engaging.
They identify three qualities of interesting assertions as follows:
(a) they tend to provide more specific information. For example “Steve Jobs was the
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CEO of Apple” is more interesting than “Steve Jobs was the CEO of a company”.
They formulate specific assertions as the ones that either relate multiple proper nouns
or contains a year;
(b) they might be providing distinguishing information about an object. For example
“Obama is the president of US” is more interesting than “Obama is a man”, because
it sets him apart. They used a technique similar to TF-IDF weighting to formulate
the notion of distinguishing.
(c) “basic facts” can also be interesting for a person learning about an object. They
trained a classifier based on the facts included in Wikipedia infoboxes in order to
distinguish these facts.

They evaluated these three models by conducting a user study to collect human
ratings of assertion interestingness. They gathered a total of two or three ratings
for every assertion. They reported an inter-annotator agreement of 71%. They also
used these human labels to evaluate a classifier than combines all these three models
and concluded that the hybrid model outperformed each of these three models when
applied in isolation.

Ram [426] presents a theory of interestingness that serves as the basis for two
story understanding programs. This theory is based on the analysis of the knowledge
goals that underly the understanding process.

“Unexpectedness” is another criterion that can be used for ranking extractions
and suggesting a next candidate for exploration.

As defined in [336] “A piece of information is unexpected if it is relevant but
unknown to the user, or it contradicts the user’s existing beliefs or expectations.”
Liu et al. argue that retrieving the information that is explicitely specified in a
user’s query is not sufficient to fully satisfy user’s information need. Unexpected
information can also be interesting and useful for the user. They have developed
a system that for given competitive Web sites, merges all the pages of the sites,
and then clusters the pages hierarchically according to the feature vectors of the
pages. The system presents the clustering result in a tree form, in which the Web
site that each page belongs to is indicated by the node color. Their system is useful
for browsing through the entire contents of competitive Web sites and grasping the
difference between the contents.

Another approach towards identifying unexpected events is the realization of
what events are expected based on how frequently they occur in people’s everyday
life. Gordon and Schubert [184] aimed at releasing a collection of the resulting event
frequencies, which are evaluated for accuracy. They utilize a set of patterns that
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contain words such as “always”, “usually”, “hourly”, “daily” and etc to extract
mentions of different events from large text corpora and estimate their frequency.
Their results can be used as the first step towards providing commonsense knowledge
datasets needed for many AI applications.

How topic-centric, or informative, a word is can be valuable information for rank-
ing entities. One extension of IDF measure called Residual IDF (RIDF) introduced
in [349] has proven effective for automatic summarization [398] and named entity
recognition [436]. In rIDF, the usual IDF component is substituted by the difference
between the IDF of a term and its expected IDF according to the poisson model.

In a broader sense, Informativeness can be defined in an objective fashion. While
evaluating an extraction as an informative assertion can be different for different
users, we are able to apply objective semantic-based measures to rank the relations
based on the informativeness of the corresponding entity pair. Such approaches
usually take advantage of co-occurrences and statistical frequencies to rank entities
/ entity pairs.

Cumby et al. [130] focuses on task specific entity retrieval for Enterprise domain.
They model the target topic and each extracted entity as a vector and rank entities
based on the cosine distance between the entity’s vector and the target topic’s vector.
Jin et al. [251] created a graph by aggregating multiple relations between the same
entity pair. In order to combine multiple relations they proposed three different ap-
proaches (1) Choosing the most predictive type of relation (using different measures
for defining “importance”, including degree centrality, betweenness centrality and
closeness centrality) (2) Learning ranking using a probabilistic model (performing a
random walk on the graph) (3) Integrating multiple indices from the network (using
SVM regression).

2.4 Designing Exploratory Search Systems

Alongside efforts that provided more focused textual representations relevant to a
user’s query, researchers from a variety of disciplines including information and li-
brary sciences, human computer interaction, psychology and cognitive sciences fo-
cused on the unique nature of complex tasks where the target is unknown and infor-
mation need is evolving. Consequently, a number of desired features of systems for
supporting complex and exploratory search tasks were identified and studied. We
review these features in this section and elaborate on the past work that supports a
subset of these features that are more closely related to the focus of this dissertation.
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The design of Exploratory Search Systems (ESSs) presents unique demands, un-
like searchers where the target is well known or where a single document or fact will
suffice. The primary observation is that supporting users during their interaction
with the information space requires a more advanced design than the classic ranked
list of documents provided by current search engines. White and Roth [597] pre-
sented a set of features that must be present in systems that support exploratory
search activities. Among them we can refer to (1) supporting querying and rapid
query refinement (e.g., [366, 461]); (2) provide groupings and organization of search
results; (3) offer visualizations to support insight and decision making (e.g., [13]);
and (4) support learning and understanding.

A review of available ESSs indicate that only a subset of these features are sup-
ported by such systems. The research presented in this dissertation is our attempt to
addressing the need for meaningful organizations of search results that are amenable
to learning and comprehension of these results. To this end, as described in Chapter
1, we leverage information extraction and visualization techniques to construct and
evaluate the efficacy of alternative representations of search results. In the rest of this
section we review the related efforts in supporting exploratory search tasks through
organizing and structuring the search space (Section 2.4.1), offering visualizations of
information to support insights and decision making (Section 2.4.2) and providing
spatial representations of information to support browsing as well as learning and
sensemaking activities (Section 2.4.3).

2.4.1 Organizing Search Results

Information seekers often express a desire for interfaces that organize search results
into meaningful groups, in order to help make sense of the results and guide decision
making [215]. A taxonomy of techniques for organizing search results was proposed
by Wilson et al. [611]. They identify two main classes of approaches: (1) Coupling
results with additional metadata and classifications such that searchers can interact
and control the presentation of results. (e.g. faceted browsing or categories), or
(2) providing alternative or complementary representations of search results (e.g, a
network representation). Essentially, the first class of approaches involve efforts that
add classifications to structure the search results, whereas the second group attempts
to directly organize search results into alternative representations including spatial
representations of search results.

Following on the first class, Wilson et al. also present four common approaches
to structured classification [611]: hierarchical classifications, faceted classifications,
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automated clustering, and social classifications. In this class, we look at faceted cat-
egorization and clustering as two popular approaches for generating useful document
groupings. In Sections 2.4.2 and 2.4.3 we focus on information visualization tech-
niques as well as existing spatial representations of information as a way of directly
organizing search results and generating complementary representations of these re-
sults.

2.4.1.1 Adding Classification

Looking first at structured classification, early forays into the domain of structuring
search results contrasted categories with automatic clustering to support search.
Hearst [214] showed that categories, because they were more interpretable for the
user, captured important information about the document but became unwieldy
when the document corpus was too large. Clusters, by comparison, were highly
variable with respect to quality and were often less meaningful for the user.

Clustering. Clustering refers to the grouping of items according to some measure
of similarity. In document clustering, similarity is commonly computed using asso-
ciations and commonalities among features such as words and phrases [131]. The
clustering procedure is fully automated, can be easily applied to any document col-
lection, and can reveal interesting and unexpected trends in a group of documents
[215]. Clustering of search results have been used as a way of making search more in-
teractive (e.g. [216, 638, 415]). For example, Pirolli et al. [415] designed an interface
called Scatter/Gather to support search results exploration through text clustering.
In order to evaluate this interface they attempted to measure learning and under-
standing in terms of topic structure and query formulation capabilities at various
points during subject interaction with the system. In comparison to a control group
that performed the same task using the standard interface of a search engine, users
of the Scatter/Gather system showed larger gains in understanding the underlying
topic structure and in formulating effective queries.

Despite some benefits of clustering including domain independence, scalability,
and the potential to capture meaningful themes within a set of documents, the
resultant clusters can be highly variable [214]. As well, generating meaningful groups
and effective labels is a recognized problem [446, 215].

Faceted Categorization. Given the lack of intuitiveness associated with cluster-
ing [215] and a desire for understandable hierarchies in which categories are presented
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at uniform levels of granularity [422, 448], alongside specified hierarchies such as
tables-of-contents, researchers have explored faceted categories, i.e. categories that
are semantically related to the search task of the user, to organize search results.
These include systems that define faceted categories [629], research that studies the
use of facets to support browsing [87], and research that identifies strengths and
weaknesses of faceted browsers [610].

Capra et al. [87] present the results of a study that investigates the relationships
between search tasks, information architecture and interaction style. They tested
three different user interfaces (standard website, text-based faceted interface and
dynamic query faceted interface) by performing three kinds of search tasks (simple
lookup, complex lookup and exploratory). This accounts for two different archi-
tectures (content-driven semi-hierarchical and faceted structure) and three different
interaction styles (hypertext selection, faceted navigation and dynamic query). They
found that (1) handcrafted faceted interface is effective in supporting all three search
tasks even when the overall design is complex and information intensive; (2) inter-
faces should support familiar interaction styles such as keyword search, but that
users gain benefits from support for facets and topic organization implemented in a
flexible fashion; (3) automated metadata and facet extraction presented in generic
screen display forms is a feasible alternative to handcrafted structures because they
did not penalize effectiveness or efficiency for the participants in their study.

Villa et al. [565] investigated the effectiveness of the mechanisms which enable
the users to categorize their search environment during search. They designed an
“aspectual” interface which allows the users to create search aspects. These aspects
can be representatives of independent subtasks of some larger tasks. They conducted
a between-subjects user study to find answers to three research questions:
(1) does the aspectual interface allow a user to better explore the task?
(2) does the aspectual interface aid the user in better understanding of the search
task?
(3) what features of the aspectual interface are used by the users carrying out the
search tasks?

When evaluating the performance of their interface (i.e., the first research ques-
tion), they found that for the tasks where multiple solutions exist and aspects were
implicit in the description, a significant difference was observed between the aspectual
interface and the baseline. However, where the aspects were mostly specified in the
task description or there was a single solution, no significant difference was observed
between these two interfaces. They also found the user perception of the difficulty
of the task dropped significantly for the aspectual interface with the search task was
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complex, had multiple solutions and the aspects were implicit in the description.

In terms of strengths and weaknesses, faceted browsing has proven beneficial
for users already clear about their search task [610]; additional information on in-
teractions between facets (e.g. inter-facet relationships) is helpful when users are
unfamiliar with a domain and need ‘sensemaking’. In other words, exploratory tasks
(e.g.learning or investigating [352]) are precisely those tasks where interactions be-
tween facets are needed.

2.4.2 Information Visualization

A different class of desired features to be supported by exploratory search systems
is to offer visualizations in order to support insight and decision making. White and
Roth [597] note that exploratory search interfaces must present customizable visual
representations of the collection being explored to support hypothesis generation and
trend spotting. In fact, in the domain of digital information seeking, while text as a
representation is highly effective for conveying abstract information, reading and even
scanning text is a cognitively taxing activity, and must be done in a linear fashion.
By contrast, visual information and images can be scanned quickly and the visual
system perceives information in parallel. Information and Knowledge visualization
techniques are powerful tools for generating these visual representation of information
from raw data. Information visualization focuses on the visual representation of large
collections to help people understand and analyze data.

Information visualization is an important tool to support exploratory searches.
In this section we first motivate the application of visualization techniques to support
exploration, comprehension and sensemaking activities. Next, we briefly describe a
reference model that formally defines the information visualization process. Finally,
we focus on the visualization of large graphs, as it is closely related to the research de-
scribed in this dissertation, and expand on interaction models that aim at mitigating
some of the challenges of representing large graph datasets.

2.4.2.1 Why Visualization?

Visual representations, in general, are structures for expressing knowledge. Informa-
tion visualization uses graphical techniques to visually represent large-scale collec-
tions of non-numerical information and help searchers attain new insights in support
of decision making or other related complex mental activities [597]. According to
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Card, Mackinlay, and Shneiderman [88], information visualizations can be charac-
terized as “computer-supported, interactive, visual representations of abstract, non-
physically based data to amplify cognition”(p. 6).

Information visualization amplifies cognitive capabilities in six basic ways [88]: (1)
by increasing cognitive resources, such as by using a visual resource to expand human
working memory; (2) by reducing search, such as by representing a large amount of
data in a small space; (3) by enhancing the recognition of patterns, such as when
information is organized in space by its time relationships; (4) by supporting the easy
perceptual inference of relationships that are otherwise more difficult to induce; (5)
by perceptual monitoring of a large number of potential events; and (6) by providing
a manipulable medium that, unlike static diagrams, enables the exploration of a
space of parameter values.

The efficacy of visualizations for enhancing our cognitive processing power has
been noted by many researchers in the past. According to Ware [582], the “power
of a visualization comes from the fact that it is possible to have a far more complex
concept structure represented externally in a visual display than can be held in visual
and verbal working memories”. In this regard, visualizations are cognitive tools
aiming at supporting the cognitive system of the user. In other words, visualizations
can make use of the automatically human process of pattern finding.

Others have highlighted the role of externalizing relationships between concepts in
supporting cognition, i.e., the acquisition or use of knowledge. Essentially, visualiza-
tions can enhance our processing ability by visualizing abstract relationships between
visualized elements and may serve as a basis for externalized cognition [481, 125].
External representations may also help in “computational offloading” [482]. That is,
compared with a textual representation of the same underlying information, spatial
visualizations may allow users to avoid having to explicitly compute information be-
cause users can extract information ‘at a glance’. “Such representations work best
when the spatial constraints obeyed by representations map into important constraints
in the represented domain in such a way that they restrict (or enforce) the kinds of
interpretations that can be made” [482].

Overall, the idea behind all visualization methods is that orientation, visual
search, and cognitive processing of complex subject matter may be enhanced if struc-
tures behind ideas, knowledge, and information, as well as their relevance for coping
with a particular task, are made explicit [538]. In the next subsection we look at
the process of getting from raw data to visual representations that can enhance our
ability to process information more effectively.
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2.4.2.2 Process of Information Visualization

In striving for a better understanding of information visualization, a variety of clas-
sification schemes have been proposed over the past years. Depending on provenance
and intention, they shed light on the information visualization process, its applica-
tion, or its utility. Information visualization techniques, applications, systems, and
frameworks can be classified according to the data types they can display, user tasks
they support, characteristics of visual representations they deploy as well as cognitive
aspects of their visual appearance [538].

Figure 2.5: Reference Model for Visualization. Figure adapted from [538]

Reference model for visualization. Card, Mackinlay and Shneiderman [88] in-
troduced a reference model for information visualization (Figure 2.5), which provides
a high-level view on the (information) visualization process. This model assumes a
repository of raw data, which exist in a particular format (e.g. based on an encoding
scheme) and can be structured or unstructured. To get to a visualization of this
data, data has to first undergo a set of transformations including filtering of raw
data, computation of derived data as well as data normalization. Next, visual trans-
formations map the transformed data onto a corresponding visual structure, i.e., a
representation. From this visual structure, a set of views can now be generated,
which allow users to navigate through the representation. The cyclic arrows in the
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diagram refer to the fact that the processes involved in the distinct steps are of an
iterative nature and can occur repeatedly before the next step follows.

A key takeaway from this reference model is that different types of data require
different visual forms which in turn impact the choice of interaction models that can
best support manipulating these visual representations. Shneiderman [495] suggested
a taxonomy for information visualization designs built on data type and task, the type
by task taxonomy (TTT). He distinguished seven data types: 1-dimensional (e.g.
textual documents), 2-dimensional (e.g. geographical maps), 3-dimensional (e.g.
real world objects), Temporal (e.g. time series), Tree (e.g. hierarchical structures
such as table-of-contents) and Network (e.g. entity-relationship maps).

Given our interest in representations of entity-relationship data we focus specifi-
cally on network based representations and elaborate on generating appropriate views
of these representations and interaction models that are tailored to them in the next
subsection.

2.4.2.3 Visualizing Large Graphs

Graph visualization research concentrates on the development of effective graph lay-
outs and visual mappings between concepts and relationships to their corresponding
visual elements on the display. The visualization of large graphs is indeed challeng-
ing, in particular, in cases where the whole graph is too complex or large to be
visualized in one static view. To mitigate this challenge, large graphs visualizations
are often accompanied by providing multiple views of the underlying data as
well as effective interaction techniques to transition between these views. Es-
sentially, the interface provides a visualization of the underlying data such that the
users are able to manipulate the view in order to highlight patterns, investigate hy-
potheses, and drill down for more details. Further, users must be able to select items
or data regions to highlight, filter, or operate on them. Large information spaces may
require users to scroll, pan, zoom, and otherwise navigate the view to examine both
high-level patterns and fine-grained details. We elaborate on commonly generated
views of a graph representation as well as effective interaction techniques that can
be coupled with these selected views of underlying data next.

Global and Local Views. There has been a lot of debate over the impacts of
global and local views that a graph can provide for an information space. Most
network visualizations tend to provide a global perspective on a graph by attempting
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to represent an overview of the information space so no information is missing and
the data can speak for itself. However, there has been some work favouring local
views. In the context of online communities it has been shown that “starting with
what you know” can serve a more useful approach [217] than the established principle
of “overview first” [495]. It has also been shown that when dealing with particularly
large networks, “search relevance” can be used to initially establish a partial context
and then expand the visualization from there [562].

Coupled with these two views of large graphs, theories often suggest two predom-
inant navigation paradigms: top-down or overview-first and bottom-up or expand-
from-known. We elaborate on these two navigation paradigms, as means of exploring
graph representations, next.

Top-Down or Overview-first Navigation Paradigm. Top-down approaches
are coupled with global views of the data and are best characterized by Shneider-
man’s mantra “overview, zoom & filter, details-on-demand” paradigm in visual in-
formation seeking [495]. These approaches have conventionally received much at-
tention and have worked well for numerous kinds of data in many domains (e.g.
[108, 35, 277]). However, in the era of big data, top-down approaches that focus
on providing overviews of global information landscapes face significant challenges
when applied to graphs with millions or billions of nodes and edges [277, 278]. The
seminal work on graph clustering by Leskovec & Faloutsos [324] suggests there are
simply no perfect overviews (i.e., no single best way to partition graphs into smaller
communities), a view echoed by sensemaking literature in that people may have very
different mental representations of information depending on their individual goals
and prior experiences [275]. Graph sensemaking is a complex and abstract task,
highly dependent on both domain and data. For this reason, it is highly unlikely
that a single visualization will be sufficient for all sensemaking tasks.

Bottom-Up or Expand-from-Known Paradigm. Bottom-up approaches are
coupled with local views of the graph and generally support the idea of starting with a
small subgraph and expanding nodes to show their neighborhoods. These approaches
are particularly helpful in scenarios where the user is not aiming to learn about global
patterns in the data, and rather is interested in learning something about a particular
data-point, or an entity, in the graph and how this entity relates to the rest of the
graph. A different advantage of bottom-up approaches is that they don’t impose
a structure to the information space and help users construct their own landscapes
of information. This way of exploring the information space may be preferred in
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certain scenarios because people may have very different mental representations of
information depending on their individual goals and prior experiences. Bottom-up
exploration in hierarchical graphs was first investigated in [175] and later expanded
on by [562] to incorporate the idea of “degree of interest” to help users identify which
nodes to explore. Other systems like Apolo [102] do not impose an hierarchy on the
data, allowing users to freely define their own clusters, which Apolo incorporates into
its machine learning algorithm to infer which nodes the users may want to explore
next. Among other approaches in this space we can refer to research that has explored
local exploration of graphs, including Treeplus [320] and Vizster [217].Treeplus [320]
supports the exploration of the local structure of a graph based on a guiding metaphor
of “Plant a seed and watch it grow”. This interaction model allows users to start
with a node and expand the graph as needed, which complements the classic overview
techniques that impose a global view of the data as a starting point. Similarly, Vizster
[217], focusing primarily on the domain of social networks, is also promoting a “start
with what you know, then grow” approach to graph exploration as an overview of
the full network is not helpful in this personal context.

2.4.3 Spatial Representations of Information

In the previous section we described related efforts for visualizing large graphs as
a way of generating spatial representations of entity-relationship data. In this sec-
tion, we specifically focus on the use of these spatial representations for supporting
exploration, investigation and sensemaking activities, essentially to enable effective
exploratory search.

Since their development, concept mapping [391], knowledge graphs [246] and
linked data [62] have been widely used in education and capturing knowledge, and
as a method for knowledge examination, sharing and browsing. These graph-based
datasets allow a natural visualization and browsing of information and simplify the
implementation of learning and investigating strategies for knowledge acquisition
and discovery. Concept Maps, Linked Data and Knowledge Graphs all express con-
cepts/entities and relationships in a network; they use natural language for node
and link labels, and the concept-link-concept triples of these graphs form simple
natural language sentences. Amadieu and Salmerón [22] provide a comprehensive
survey to examine the effects of concept maps on navigation, comprehension, and
learning from hypertexts. Despite the variability of concept maps used in hypertexts,
some findings converge: “Concept maps reduce the cognitive requirements for process-
ing hypertexts. They support outcomes as well as guiding learner navigation. They
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convey a macrostructure of the semantic relationships between content that supports
more coherent navigation and promotes the construction of a mental representation
of the information structure of hypertexts” [22].

While these graphs appear to be effective as a cognitive strategy to stimulate
learners to make cognitive progress in organizing and understanding new informa-
tion [390], there is limited insight into how they can be used by the searchers to
support learning and sense making during an exploratory search task. Here we
review two groups of approaches that leveraged these spatial representations to sup-
port searching and browsing (Section 2.4.3.1) as well as sensemaking and learning
activities (Section 2.4.3.2).

2.4.3.1 Structuring Information for Search and Browsing

The models most similar to our work are those which make use of entities and the
relations between them to support search. Dimitrova et al. [143] designed a semantic
data browser based on external Linked Data resources to support exploratory tasks.
Their study is qualitative and exploratory in nature and examines (1) obstacles and
challenges related to user exploratory search in Linked Open Data (LOD) and (2)
the serendipitous learning effect and the role semantics play in that. They designed
two search tasks for which the participants were expected to find the main charac-
teristics of a particular musical instrument, its similarities and distinctions to other
instruments, and usage and features of a different musical instrument. The partici-
pants reported their findings in a structured form which were then evaluated by two
musical instrument experts.

Yan [623] argues that (a) entity data could be used by Web users for navigation
purposes (e.g., browsing docs retrieved from a search engine); (b) entity data could
also be used for better understanding of the data itself. They proposed to produce
a faceted interface for exploring the documents retrieved for a keyword query auto-
matically and dynamically by exploiting “collaborative vocabularies” in Wikipedia.
They also propose to summarize Entity-Relationship (ER) graphs into multiple re-
lational tabels. However, the ER graphs they work with are limited to graphs with
Named Entities as nodes and simple predicates as edges. They do not provide any
empirical study or evaluation for this design.

Yogev et al. [632] describe an extended faceted search solution that allows to
index, search and browse rich ER data. The output of the search system is a ranked
list of entities that are distributed over different facets. These facets can be used by
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the user to focus the search on a specific entity type or to explore another direction
by navigating to another related entity in the ER graph.

With the introduction of the so-called “Knowledge Graph”, Google has made a
significant paradigm shift towards “things, not strings” [502]. Entities covered by
their graph include landmarks, celebrities, buildings and more. The “Knowledge
Graph” enhances Google’s search in three main ways: query disambiguation, provid-
ing a summary of related facts to the user’s query, and exploratory search suggestions
(based on what other users explored next).

2.4.3.2 Structuring Information for Sensemaking

People spend a significant amount of effort capturing and organizing relevant infor-
mation during exploratory activities. As observed by Bates [44] this information
is collected in pieces and they need to be stored and processed. Structuring these
collected pieces of information is shown to assist the problem solving and reasoning
activities [44, 64, 413].

Similarly, the process of analysis is one of sensemaking [413] in which analysts
constantly forage for relevant information, integrate that information into schemas or
hypotheses that explain what they have found, and use these schemas to guide deci-
sions. A variety of tools have been developed to improve the sensemaking and analy-
sis process, many of which have focused on the area of crime analysis [185, 517, 526].
Solving a crime requires the analyst to “connect the dots” by identifying links be-
tween facts across documents, time and space [185]. Jigsaw [517] is a visual analytics
system that represents connections and relationships between entities in document
collections. It was developed to help analysts search, review and understand the
crime reports better.

Goyal et al. [185] compared the utility of a visualization of relationships among
entities and documents and a notepad for collecting and organizing annotations. The
Visualization mode shows all the documents in the dataset that contain entities in
common with the active document as edges between the document nodes. They
calculated TF-IDF for the unique entities in common between two documents to
assign weight to these edges reflected by their thickness. The Notepad mode is a
text editor where evidence can be collected by highlighting important text found
while reading a document. They found that the visualization of relations between
documents significantly improved participants’ ability to solve the crime whereas
the notepad did not. Piolat et al. [408] also showed that a matrix structure for
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recording information is more beneficial than an outline structure, which is in turn
more beneficial than a linear structure.

Graphic organizers that resemble a concept map have been proved to aid memo-
rization and memory offloading through facilitating organization of the mental rep-
resentation of texts [154, 64, 498]. Shrinivasan and Wijk [498] present a new in-
formation visualization framework that supports the analytical reasoning process
through a data view, a knowledge view and a navigation view. In this design, the
user records the findings in the knowledge view using a mind map. Four analysts
tested this system and found recording the findings, linking them to the visualization
and organizing them very important for their analysis process and it improved their
quality of results.

While the strategies of note-taking and the structures used for memory offloading
is crucial for developing effective techniques for sensemaking and analysis, the stage
in which the searchers need to employ these strategies is as essential. Kittur et al.
[294] introduce a novel interface for capturing online information in a structured
but lightway way to empirically characterize the costs and benefits of structuring
information. They found that it is more effective and less costly to start structuring
the collected information after information foraging is done. The data they gathered
by the user study they conducted indicated that the foraging process is very dynamic
and people’s mental models change significantly over time. Therefore, there are
significant costs to eliciting structure early in the foraging process.

On the other hand, another product of sensemaking and analysis process is gener-
ating coherent schemas. Hummel and Holyoak [238] suggest that the schema induc-
tion involves the alignment of many examples in order to find the commonalities and
overlaps between them. Hence, Kittur et al. [294] propose the need for a two-stage
process in which information is first saved and then later structures. Zhange et al.
[640] also argue that a user doesn’t have a clear idea of structure initially. Therefore,
they designed an environment to support literature search and analysis such that the
user can organize papers into informal clusters by simply moving them in different
areas in the working space. Later, he gets a better understanding of the structure
in the collection, and creates hierarchical sections to relate the items he collected.
Indeed, encouraging a second stage of structuring information can promote induction
and the formation of a better structured information space which could be useful for
both the current searcher and others interested in the same information [294].

Given the benefits of structuring information in supporting analysis and sense-
making, a main research question we wished to explore in this research is that whether
representations of information that are generated automatically and correspond to a
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searcher’s information need can enable more effective extraction and assimilation of
information? We address this question through a series of designing and evaluating
alternative representations of search results in Chapters 4, 5 and 6. The research
described in these chapters is inspired by the premise that exploratory search tasks
require sensemaking and sensemaking involves constructing and interacting with rep-
resentations of knowledge.

Most cognitive scientists believe, learning best begins with a big picture,
a schema, a holistic cognitive structure, which should be included in the
lesson material-often in the text. If a big picture resides in the text, the
designers’ task becomes one of emphasizing it. If this big picture does
not exist, the designers’ task is to develop a big picture and emphasize it.
(West, Farmer and Wolff, 1991, p. 5) [592].

2.5 Evaluating Exploratory Search

A final aspect of developing solutions for supporting exploratory search tasks involves
significant challenges in evaluation. Over the last decade, researchers have focused
on the development of systems and interfaces to support exploratory search activities
(see Section 2.4). Yet designing new evaluation metrics and methodologies that are
tailored to these complex, evolving and highly interactive search scenarios is much
less explored [595, 558]. As White [595] posits. it is necessary to shift the focus of
research in exploratory search towards understanding the behaviors and preferences
of users engaged in exploratory searching, the tasks supported by exploratory search
systems and can elicit exploratory behavior, and on measures of exploration success.

When evaluating exploratory search systems, it is impossible to completely sep-
arate human behavior from system effects because the tools are designed such that
they are closely related to human acts and their intentions [597]. Evaluating the
success of search systems in supporting a range of information seeking tasks involves
leveraging two related aspects of an evaluation paradigm: Evaluation Measures and
Evaluation Methodologies. The performance of search systems is often measured us-
ing a wide range of evaluation measures or metrics. Cognitive load, engagement,
precision and recall are all examples of common IR metrics. These metrics facilitate
benchmarking a system’s performance as well as quantify the impact of any changes.
Evaluation methodologies, on the other hand, are tightly connected to how user
interaction behavior is presented and is also dependent on the metrics adopted for
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measuring success. Essentially, evaluation methodologies connect models of interac-
tion and success metrics by specifying the rules, methods employed in evaluation, as
well as, rationale and philosophy behind the evaluation [595].

In the rest of this section, we review a subset of metrics (Section 2.5.1) and
methodologies (Section 2.5.2) that are commonly leveraged for evaluating search sys-
tems and reflect on the ones that are deemed more suitable for assessing exploratory
search systems. We end this section by expanding on two areas of past research
that contributed to opening new venues for evaluating exploratory search systems
(Section 2.5.3.

2.5.1 Evaluation Measures

Evaluation metrics facilitate tracking the incremental improvement of search systems
and comparisons between experimental systems by providing a way to assess system
performance. White [595] categorize evaluation metrics into two groups: (1) process-
oriented metrics and (2) outcome-oriented metrics. We review these two classes of
metrics next.

2.5.1.1 Process-oriented Metrics

These measures are calculated based on the value of the process that searchers engage
in to meet their information goals. These metrics can capture behavioral traces
of searchers during their interaction with the system and in certain scenarios (e.g.
in controlled lab studies) additional information about the process (e.g. searcher’s
rationale for a certain action) can also be collected. This data can be captured as the
search process is unfolding (e.g. using think-aloud protocols) or after it is completed
(e.g. using stimulated recall). White [595] surveys a number of metrics that were used
in the evaluation of search systems. The metrics range from learning and cognitive
load to efficiency and also include subjective metrics such as engagement, enjoyment
and frustration.

While process-oriented metrics are not commonly used for the evaluation of IR
systems in the past, they are essential for investigating the effectiveness of the next
generation of the search systems that are designed for supporting information seekers
engaged in more complex and exploratory search tasks. In 2006 a workshop entitled
“Evaluating Exploratory Search Systems” organized by Ryen White, Gary Marchion-
ini and Cheorghe Muresan was one of the first joint efforts to discuss exploratory
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search evaluation and it led to identifying metrics that are affiliated with the process
of exploratory search tasks. Among them we can refer to engagement and enjoyment,
described as the degree to which the users are engaged and are experiencing positive
emotions throughout the search process, and task time, that is computed as the time
spent to reach a state of task completeness as an effective way to asses the efficiency
of exploration activities.

2.5.1.2 Outcome-oriented Metrics

A different group of metrics reflect search outcomes and are often computed after the
search process is completed. Traditional IR metrics are focused on the output of the
search systems and assess the retrieval performance given a user’s query. The two
main classes of these IR metrics assess the quality of retrieved search results based
on their relevance to the query as well as their novelty and diversity [115].

In the classic IR paradigm, measuring the quality of the output of retrieval sys-
tems was synonymous with assessing the outcome of the search task. A broad range
of metrics have been proposed for evaluating the relevance of results returned by
search systems. We can refer to precision and recall, mean reciprocal rank (MRR)
and discounted cumulative gain (DCG) as three popular relevance metrics. The main
premise behind all these metrics is a user model describing how searchers examine
the search results as well as the impact of the search results quality on the outcome
of the search (e.g. the amount of user effort and information gained per rank posi-
tions). For example, measures such as precision and recall consider all relevant items
up to a rank position (see [35]), whereas, MRR [571] is the multiplicative inverse of
the rank of the first relevant result (or correct answer), averaged across all queries.
DCG, on the other hand, is a measure of search engine effectiveness that uses a
graded relevance scale of documents in the search results set, unlike precision, recall
or MRR metrics that assume binary relevance labels.

More recent efforts proposed a new class of relevance based metrics that leverage
more realistic models of users interaction with the search results. For example,
Smucker and Clarke [509] introduced a measure known as time-biased gain which
criticizes the earlier models that assume searchers carefully examine each of the
search results at a constant speed. Essentially, the time-biased gain metric considers
temporal effects during the search process and builds on a range of previous research
that utilized time to represent the cost of interaction (e.g. [43]).

Relevance based metrics contributed to designing effective ranking algorithms
and powerful retrieval systems that are capable of retrieving a set of documents that
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are ordered based on their perceived relevance to a user’s query. These metrics,
however, exclude the user from the evaluation process and are only concerned with
the system based utility. While evaluation metrics are meant to reflect the searcher
preferences, a number of studies by Hersh et al. [222], Turpin and Hersh [550] and
others (e.g. [469, 510]) revealed that the ranking of search systems based on offline
evaluation metrics does not necessarily match the online evaluation results. These
studies have shown that the Cranfield-style metrics can have low predictive power
about the performance of search systems [595] mainly because they do not attempt
to model a searcher or the interface with which they are engaged at the query time
[510] and the complexity of searchers’ search strategies [504].

In the end, as the range of tasks for which search systems are used continues to
grow, the search process will become more involved and thus play an important role
in the evaluation of search systems. Essentially, when designing search system evalu-
ation, designers should consider utilizing both process-oriented and outcome-oriented
measures [595], where outcome-oriented metrics should leverage search outcomes be-
yond the output of retrieval systems. We elaborate on the relation between the
output of search systems and the outcome of search tasks in Section 2.5.3.2.

2.5.2 Evaluation Methodologies

A number of methodologies have been used to evaluate search systems that range
from offline test collections and simulated search models to living labs, ethnogra-
phy and large-scale log analysis. White [595] classifies the available methodologies
across three axes: stage, that is the point in the design process that the method is
used; scale, that is the scale at which the method is employed and is one of small,
medium or large; and participants, that are the people involved in the evaluation
of the search systems. Dumais et al. [153] focus on the analysis of behavioral logs of
searchers interactions and categorize experimental methodologies into (1) observa-
tional, where people may be observed searching naturally; and (2) experimental,
where the search experience may be manipulated using an experimental design.

Various evaluation methodologies provide different perspectives on search system
performance and the goal of this section is not to provide a comprehensive survey of
all available methodologies. We can refer the reader to different surveys of IR systems
evaluation methodologies that focus on interactive IR [281], using test collections
[469, 199] or are based on behavioral data [153].

In order to effectively evaluate a search system, researchers may choose to express
their experimental objectives in the form of hypotheses. In fact, a very first step to
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evaluating the ESSs is to formulate clear research questions that can guide the ex-
periment and inform the choice of suitable metrics and methodologies for evaluation.
Once a descriptive list of research questions or hypotheses is specified, the researchers
can choose a set of metrics to assess the performance of a search system as well as
the experimental methodologies that can lead to collecting reliable types of data and
providing supports for these hypotheses. There are many different scenarios where
the research questions are complex or multifaceted which requires a heterogeneous
collection of data sources. Mixed methods approaches [126] are great candidates
for providing different perspectives on different variables of interests and enabling a
holistic characterization of the studied users behaviors. We elaborate more on these
approaches at the end of this section.

Similarities between understanding the utility of search systems for humans who
are engaged in a variety of search tasks and other fields that involve understand-
ing humans or machines or both has led to leveraging many existing experimental
methodologies from areas such as IR, HCI and Psychology. Essentially, in classic
IR, experiment and evaluation have been used interchangeably, but as Kelly [281]
argues these two types of studies need to be separated when discussing Interactive IR
scenarios. That is, one can conduct an evaluation without conducting an experiment
and vice versa. Evaluations are conducted to assess the utility of a system, inter-
face or interaction technique, whereas, experiments have historically been the main
method for interactive system evaluation and for understanding human behaviors.

As a result, most of evaluation methodologies that are suitable for interactive
search scenarios are very similar to those conducted in social science disciplines such
as psychology and education. Focusing on interactive search systems, White [595]
surveys these methodologies and expands on the strengths and weaknesses of each
evaluation method based on the prior work done by Grimes et al. [192]. These
methods ordered from small scale to large scale include interviews and focus groups,
instrumental panels, lab studies, crowdsourced studies, surveys, retrospective log
analysis, online evaluation and offline evaluation. In the remainder of this section we
elaborate on some of these methodologies that are more closely related to our work
and are utilized for a number of experiments reported in this dissertation.

Interviews. In Interactive IR (IIR) scenarios, interviews are a common component
of many study protocols. Interviews involve one-to-one dialogs between the experi-
menter and the experimental participant. Interviews can be structured, unstructured
or semi-structured and the questions can range from open-ended and abstract to more
focused enquiries with a possibility of open-ended follow up questions. Interviews
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are commonly conducted after an experiment is completed, giving the participant an
opportunity to reflect on their experience using the experimental system. While in-
terview questions can be delivered via print or electronic questionnaire, the in-person
interviews allows one to get more individualized responses and offers some flexibility
with respect to probing and follow-up. Kelly et al. [282] compared participants’
responses to a set of open-ended questions across three modes: interview, pen-and-
paper,and electronic and found that while participants’ responses were longer in the
interview mode than in the other two modes, the number of unique informative state-
ments they made in each mode were about equal. This observation indicates that
there are certain scenarios where an in person interview can be a preferred method
(and that for some scenarios a follow-up questionnaire or survey will suffice). To elab-
orate, when an experimenter is interested in asking more complex, abstract questions
then it is likely that the interview mode would be more appropriate. Another place
where interview techniques can be used in Interactive IR evaluations is during stim-
ulated recall where participants can verbalize their decision-making processes and
thoughts while watching a video recording of a search they recently completed [281].
During this process, the researcher might interrupt with specific pre-planned ques-
tions. These questions might be used to investigate something specific, or to probe
remarks or actions made by participants. While in-person interviews often result in
deep understanding of users behavior and rich and detailed datasets, the cost associ-
ated with the process of conducting the interviews and transcribing the data usually
leads to including a small number of experimental participants. Hence, triangulating
interview data with other sources of behavior data (e.g. quantitative logs of searchers
interaction with the system) can improve the generalizability of the findings.

Lab Studies. Controlled lab studies are the primary means of evaluating inter-
active search systems and they have been used extensively for this purpose (e.g.
[52, 283, 598]). In a typical lab study, participants use one or more experimental
search systems to find information described in a small number of prespecified top-
ics. These topics can be derived from common topic sets (e.g. from different TREC
tracks), or can be designed by the researchers following existing guidelines for de-
veloping simulated work tasks (e.g. [66, 307]). Given these search tasks or topics,
the participants interactions with the system(s) are recorded for a later analysis, and
they may provide feedback during the search process (e.g. via thinkaloud protocols)
or at the end of the study (e.g. via surveys or post-task interviews). A variety of
metrics are computed in order to characterize the usability of the systems and the
performance of the participants. Typical performance metrics include number of
relevant documents found, time spent on task, or quality of the answers provided.
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Qualitative measures can also be applied to get a more in-depth insights regarding the
perception of the process, the usability of the systems or the complexity of the search
tasks. Kelly [281] distinguishes between lab studies and controlled experiments that
are conducted in a laboratory. According to her the main factor that makes a study
an experiment is the existence of experimental conditions or manipulations in the
process of experimental design. Other types of lab study, e.g. usability tests, are
thus not an instance of an experiment. Throughout this dissertation we alternate
between the use of terms lab study or experiments to refer to a controlled user study
where experimental conditions exist. For a detailed description of common steps in
conducting a lab study and the application of user studies for evaluating interactive
search systems we refer the reader to [595, 281].

Crowdsourced Studies. The recent emergence of crowdsourcing platforms such
as Mechanical Turk and CrowdFlower has enabled low cost, carefully controlled stud-
ies of human behavior [292, 400]. These platforms provide access to crowdworkers
who are paid a small amount of money to complete some simple human intelligence
tasks such as assigning a category label to a query or performing relevance judge-
ment of a set of documents given a search query. In the domain of IR, crowdworkers
can also be assigned as surrogate assessors to perform annotation or evaluation tasks.
Essentially, crowdsourcing has grown into a viable alternative to expert ground truth
collection, as crowdsourcing tends to be both cheaper and more readily available than
domain experts. More related to the research described in this dissertation, crowd-
sourcing platforms can be a promising approach to creating reference datasets for
intrinsically evaluating Open ended entity and relation extraction as well as manual
assessment of the output of information extraction systems. We describe our de-
veloped evaluation framework that applies crowdsourcing workflows to the task of
assessing extraction errors in Appendix A.

Mixed Methods Analysis. One of the strengths of the experimental frame-
work that is designed for all of the experiments described in this dissertation is
the application of mixed methods approaches as our primary evaluation methodol-
ogy. Essentially, we leverage mixed methods research to understand how well the
exploratory search systems we design satisfy this ultimate goal of enabling searchers
to obtain knowledge more effectively. Mixed methods research is a methodology
for conducting research that involves collecting, analysing and integrating quanti-
tative (e.g., retrospective log analysis, surveys) and qualitative (e.g., think-alouds,
interviews) data. This approach to research is used when this integration provides
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a better understanding of the research problem than either of each alone. To elab-
orate, Quantitative data includes close-ended information such as that found to
measure attitudes (e.g., rating scales), behaviours (e.g., number of clicks, number
of documents visited), and performance instruments. The analysis of this type of
data consists of statistically analysing scores collected on instruments (e.g., question-
naires) or checklists to answer research questions or to test hypotheses. Qualitative
data, on the other hand, consists of open-ended information that the researcher usu-
ally gathers through interviews, focus groups and observations. The analysis of the
qualitative data (words, text or behaviours) typically follows the path of aggregating
it into categories of information and presenting the diversity of ideas gathered during
data collection. In these approaches, research starts with data collection and is mo-
tivated by questions that are broad and non-leading, e.g., How do searchers perceive
the representation of a knowledge graph as a means of supporting exploratory search
tasks? Next, the researcher establishes meaning from views of participants by look-
ing for common patterns, linking these patterns through axial coding and eventually
building a theory from ground up. By mixing both quantitative and qualitative re-
search and data, the researcher gains in breadth and depth of understanding and
corroboration, while offsetting the weaknesses inherent to using each approach by
itself.

2.5.3 Exploratory Search Systems Evaluation

Given the overview of standard evaluation measures and methods to assess the per-
formance and utility of (interactive) search systems in previous subsections, in this
section we primarily focus on requirements of evaluation paradigms for assessing ex-
ploratory search systems. The role of evaluation in exploratory search is primarily
to assess the success of the information seeking process at reaching the information
objectives for the current session, if those exist, and achieving higher order learning
objectives for the searcher, including the application of the newly gained knowledge
to solve problems or to synthesize knowledge in order to design a new knowledge
product (e.g. writing a research paper) [597]. As a class of information seeking
which involves highly interactive, complex and dynamic search scenarios there is a
pressing need for evaluation metrics and methodologies that move beyond minimal
human-machine interaction and focus on assessing the outcomes and the process of
the information seeking activity as opposed to the output of retrieval systems.

We can refer to at least two groups of approaches that contributed to the evalu-
ation of new generations of search systems. The first body of work involves efforts

71



that criticized the traditional system-oriented approaches and the Cranfield method-
ology to the evaluation of search systems and motivated techniques that involve users
and their interactions with the search systems as an integral part of the information
seeking process. The second group of approaches motivated a shift from the assess-
ment of search systems outputs to the evaluation of search process outcomes. We
elaborate on some related efforts in these two groups next.

2.5.3.1 From System-Focused Methods to User-oriented Evaluation Ap-
proaches

The first body of past research that contributed to the evaluation of exploratory
search systems motivated a shift from system-focused methods to user-centered ap-
proaches. System-oriented approaches to evaluating the effectiveness of search sys-
tems such as the Cranfield method [118], the Text Retrieval Conference (TREC), and
other initiatives such as the Cross-Language Evaluation Forum (CLEF) have been
central in driving innovation in information retrieval. At the core of these approaches
is to sample a set of queries that are deemed representative of the searcher needs,
use them as the input to a group of experimental IR systems, pool and judge the
ranked results from these systems, and evaluate the quality of these outputs based
on their ability to retrieve and rank a set of documents that are judged as relevant by
a set of assessors. Similar to the shortcomings of system-oriented metrics, past work
has highlighted some of the limitations of the offline evaluation methodologies (e.g.
[550, 51]). The main criticism against this group of approaches is that they exclude
users from the evaluation of search systems and, as a result, it is not clear whether
the improvements noted in offline evaluation settings will actually translate to a
better search outcome for the searchers. To elaborate, system-oriented approaches
mainly ignore how people formulate their information needs, examine search results
and essentially explore the information space to make sense of the retrieved results.

A group of evaluation methodologies, including the approaches described in Sec-
tion 2.5.2, offer mechanisms to involve the human searchers in the experimental
design and incorporate their perception of the search process as well as the perceived
utility of search results for their task at hand in the assessment of the experimental
search system.
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2.5.3.2 From Search Systems Output to Search Task Outcome

A second group of past work that transformed the ways to evaluate exploratory
search systems has distinguished between the assessment of search systems output
and evaluating the search tasks outcomes. To elaborate, outputs are the products
delivered by a system, whereas outcomes are the benefits the system produces for its
users [454]. In information retrieval, the major aim of search systems is to retrieve
information that is useful for performing larger tasks (e.g. writing an essay on a
given topic). It is often assumed that by assimilating the information obtained from
a list of retrieved results set, i.e., from the output of the search system, users are
able to proceed in their task and that the search is successful if the items retrieved
(i.e. the output) contribute to the task and the searcher achieves the desired outcome
[51, 241, 281, 559].

The assumption that good system output is associated with good task outcome
has led to designing numerous information retrieval algorithms that is assessed by
their quality of the output in terms of relevance to a user’s query through established
metrics such as precision and recall. In recent years, however, there have been calls
to extend the evaluation framework from the output to the outcome of searching
[51, 241, 281, 447, 559]. Robertson ([447], p. 453) posits “From the point of view of
a user engaged in a larger task, the retrieval of items of information must at best be
a sub-goal. Our understanding of the validity of this as a subgoal, and how it relates
to the achievement of wider goals, is limited and deserves more analysis.”.

There has been a long history of research (e.g. [510, 469, 222, 223, 549, 504, 559])
that examined the correlation between system-oriented effectiveness metrics (based
on the output of retrieval systems) and users performance (as reflected in their search
outcome). While the reasons behind these studies’ conflicting results are not clear, in
the domain of complex search tasks we can refer to at least two factors contributing
to the growing evidence that good retrieval performance does not necessarily lead
to successful search outcomes (and that weak retrieval systems will not always lead
to poor search outcomes); First, in the IR community there is a growing realization
that users’ search activities are motivated by a work task which provides a problem
context within which the searcher operates [241]. This view of the search process
has motivated new evaluation methods that go beyond assessing the performance
of the search system based on independent queries and consider a broader scope
of interactions between the searcher and the search system. Alongside a better
understanding of work tasks as a catalyst behind search activities, the advances in
the design of new exploratory search interfaces has led to a non trivial relationship
between the performance of retrieval systems and the success of the search outcomes.
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We conclude our review of existing research that contributed to designing new
evaluation frameworks for assessing exploratory search systems by elaborating on
these two factors and motivate an in-situ evaluation model that we leveraged for
evaluating the efficacy of tools we developed throughout this research, which eval-
uates the output of IE systems in situ using a balanced mix of quantitative and
qualitative methods. This approach is detailed in Chapter 7.

2.5.3.3 Understanding a Holistic Evaluation Approach

Synthesizing past research we see ambiguity in the correlation between system-
oriented effectiveness metrics, i.e., the assessment of outputs, and users performance,
i.e., the assessment of outcomes. In this section we elaborate on two factors that could
explain the reasons behind observing non-trivial relationships between retrieval per-
formance and the success of search outcomes. We conclude with motivating the need
for leveraging evaluation approaches that incorporate both system-based assessments
of outputs as well as the efficacy of search system in leading to successful outcomes.

From Independent Queries to Work Tasks. The first factor that highlights
a non-trivial correlation between system focused metrics and the success of search
tasks is the limitations of the query-based approach to evaluation of search systems
as evident in the Cranfield Model. Traditionally, the unit of retrieval evaluation is
an individual query. More recently, there has been a shift from considering queries
independently and satisfying task-relevant information needs one query at a time
to supporting the completion of information seeking tasks end-to-end [508]. There
are two venues of related research that investigated ways to extend the evaluation
of ESSs by considering the searcher’s broader problem context and not individual
queries. In the domain of observational methodologies (e.g. log based analysis of
search interactions) there have been some work to develop metrics that can handle
system performance during a search session [237, 205, 206, 249, 508].

In the context of experimental methodologies and more related to our work, sim-
ulated search tasks have been leveraged as a primary component of assessing the
efficacy of search systems. To elaborate, as we noted in Section 2.5.2, experiments
have dominantly been the main method for evaluating interactive search. Similar
to classic IR experiments where test collections were used to evaluate the output
of retrieval systems based on a given query, most existing experimental settings for
interactive and complex search scenarios are based on the assigned task paradigm
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[597]. Research on task development (e.g. [66, 307] allows for the creation of sim-
ulated work task situations that are well-suited for exploratory search scenarios,
as they are comparable between the experiment participants, while they allow for
personal assessment of relevance.

One of the main challenges in evaluating exploratory search systems is defining
realistic tasks such that (1) they elicit exploratory search behaviour and (2) partic-
ipants can understand and relate to them. Wildemuth and Freund [605] provided
a set of recommendations for designing search tasks that lead to exploratory be-
haviour in the users. Their main rationale behind designing a formal method for
assigning appropriate search tasks is that different studies use different definitions
of exploratory search and they all design their own search tasks to evaluate their
systems. Therefore, one cannot compare the results of one exploratory search sys-
tem to another. The authors discuss the attributes of exploratory search tasks and
provide a compilation of empirical studies and the tasks which were designed for
them. They recommend that exploratory search experiments incorporate simulated
work task situations as stimuli for eliciting exploratory behaviour. In addition, they
suggest that when a consensus is reached regarding the definition and attributes of
exploratory search, it is possible to design the search tasks that are re-usable across
studies and will result in a better understanding of exploratory search.

Kules and Capra [307] argue that creating a realistic, representative search task
is challenging. They suggested a principled way of designing tasks for evaluating Ex-
ploratory Search systems. Their tasks were designed as “writing a paper for a class”
and defined such that (1) there was ambiguity to the answer; (2) students needed
multiple interactions to complete the task; (3) students were not very familiar with
the topic before the experiment. They used these criteria to extract task candidates
from log data. Then they refined these candidates and compiled a list of qualified
search tasks. Finally, they conducted a user study to investigate if the selected ex-
ploratory tasks were indeed different from known-item tasks. The results confirmed
that these tasks did elicit exploratory search behaviour for the participants.

Development of New Exploratory Search Interfaces. A different contributor
to observing a nontrivial relationship between the retrieval outputs and the outcome
of the search process is the development of new Exploratory Search Support (ESS)
UIs. These new ESS UIs leverage structured organization of search results and enable
more advanced interaction mechanisms than the traditional ranked list of documents.
In these exploratory search systems the retrieval of the relevant information is indeed
only the first step towards enabling effective information seeking activities.
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There are a number of studies that highlight the role of complex interactive
search strategies, as a central element of exploratory searches, in the success of the
final search process outcome. For example, users are able to adapt their searching
to system performance and differences in retrieval effectiveness can be compensated
by human effort [504, 550]. Section 7.2.1 reviews similar studies.

Further, richer representations of search results and more advanced search UIs
have also impacted the ways searchers examine the search results and perform sense-
making activities. Given the new capabilities of these search interfaces and more
advanced information seeking strategies, information retrieval accuracy can serve as
only one element in assessing the effectiveness of the designed ESS for supporting
information seekers. Essentially, the efficacy of search UI and the ways that informa-
tion is structured and presented to the searcher and the ways that user can interact
with this information can indeed impact the success of the searcher.

Focusing on the scope of research presented in this dissertation, we are inspired
by the existing research, described in Section 2.5.3, acknowledging the limitations
of the traditional IR metrics such as precision and recall for evaluating exploratory
search systems. Given that any assessment of the effect of information extraction
errors on exploratory search interfaces is absent from past research, we contribute to
this space by conducting a mixed-methods analysis of how varying levels of precision
and recall in the output of information extraction systems impact user behaviors and
outcomes in exploratory search. We elaborate on a proposed evaluation framework
that incorporates both the accuracy of extraction systems as well as the efficacy
of information representation to assess the effectiveness of an exploratory search
support system in Chapter 7.
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Chapter 3

Extending the Document Retrieval
Paradigm

Any piece of knowledge I acquire today has a value at this moment exactly
proportional to my skill to deal with it.

– Mark Van Doren, Liberal Education

This chapter describes our efforts in developing the first component of our pro-
posed Exploratory Search Support (ESS) Framework, as motivated in Chapter 1.
Our goal is to design an enhanced IR module that goes beyond document retrieval
by extracting relevant pieces of information from textual corpora. To this end, we
extend the current Document Retrieval framework by developing an Open Informa-
tion Extraction (IE) tool that can extract semantic information from textual content
of a set of retrieved documents. Our Information Retrieval and Extraction tool can
be used to automatically generate entity-relationship triples in order to populate
knowledge bases of linked data, while they can also be visualized as knowledge graph
representations pertaining to the same set of retrieved documents.

3.1 Motivation

Given the massive increase in information availability, it gets more and more difficult
to make sense of the available information. The Web has provided the opportunity
to browse and navigate through an extensive information space by utilizing modern
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search engines. This in turn has led to increasing expectations to use the Web as
a source for learning and exploratory discovery. Further, as noted in the previous
chapter, the current document retrieval paradigm offered by major search engines
is generally sufficient when the searcher’s information need is straightforward and
well-defined. However, when the information is sought for learning, investigation or
other complex mental activities, retrieval is necessary but not sufficient [31, 597].

Overall, there is a recognized need for search systems to provide an effective user
experience that enables the users to explore the information space and analyse the
fragments of information they find relevant to their information need. One of the
main limitations of the current document retrieval paradigm, is that it provides a
ranked list of documents as a response to the searcher’s query with no further support
for locating and synthesizing relevant information. Therefore, the searcher is left to
find and make sense of useful information in a massive information space that lacks
any overview or conceptual organization. This is particularly challenging when the
information need is complex and requires investigation and analysis (i.e., exploratory
tasks).

In these exploratory scenarios, searchers are known to leverage two major strate-
gies to mediate their exploration [413, 412, 462]: information foraging and sense-
making. While theories of information foraging [412] and berrypicking [44] describe
the process of collecting relevant pieces of information as a step by step journey us-
ing multiple sources along the way, this is only the first step; users must also make
sense of what they encountered [462, 352]. Sensemaking is described as the process
of assimilating new knowledge into one’s existing knowledge of a domain being ex-
plored [33]. To this end, structuring relevant content as inter-connected networks
of concepts and semantic relationships describing their connections (e.g. Concept
Maps [391]) can be an effective mechanism in assisting people with this assimilation
process [387, 90].

Evidently, the primary source of information in the current IR paradigm is doc-
uments. These documents offer two types of relationships that can assist with com-
prehension and sensemaking: Discourse Relations and Implicit Semantic Relations.
While reading the textual content of a document, the reader can see how sentences
are connected. For example, “John is a great cook. He was a cook in the army.”
indicates an elaboration relation between these sentences. Elaboration, explanation
and contrast are some instances of Discourse Relations that connect sentences in a
coherent text. These textual clues provide a global view of the document content
and its rhetorical structure [347]. These rhetorical relations provide a systematic
way for an analyst to analyse the text, mostly in a linear fashion, to understand the
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content.

On the other hand, Semantic Relations, i.e. relationships that connect each term
or concept with other terms and concepts in a document or a domain of interest,
are not immediately apparent in the text. Therefore, while coherence and discourse
relations help with comprehension, the lack of explicit semantic structure in textual
resources forces the searchers to read through the content in a linear fashion. This
makes the process of locating relevant information inefficient and exhausting.

In order to provide the searchers with more support in performing exploratory
activities, we need to automate the process of locating and extracting relevant in-
formation pieces as well as the process of externalizing the semantic relations that
connect terms and concepts that are discussed in retrieved documents.

A dominant technique towards automatic retrieval of semantic information be-
tween terms and concepts is Information Extraction (IE). IE aims at (semi)automatic
collection of triples from textual corpora of a given domain (for example, the tu-
ple < Napoleon, invaded,Russia > is extracted from “Napoleon invaded Russia.”).
These triples indicate the semantic relationship (i.e., “invaded”) between two entities
(i.e., “Napoleon” and “Russia”). The outcome can be represented as a Knowledge
Graph [246] (similar to a Concept Map [391] except the edges are not restricted to
hierarchical relationships), that is a network of some domain knowledge represented
by labelled nodes and labelled links between them. When these maps are available,
they can provide a structured overview for understanding new documents, and the
new documents can provide coherent context to the knowledge models [560].

In fact, for many years, these knowledge maps have been widely used in education,
capturing knowledge [22] as well as browsing and facilitating information finding
[90]. These knowledge maps represent concepts and relationships between them and
promote the construction of a mental representation of the underlying content [22].

In this chapter we begin to develop the premise that different types of information
representations provide different types of support for exploratory search. We argue
that, while extracting facts and relevant information provide a structured view of the
underlying content which can in turn facilitate exploration and browsing, they are not
meant to entirely replace the textual representation of retrieved documents. Instead,
coupling these extracted entity-relationship triples with their corresponding sentences
and documents can be leveraged to extend the current document retrieval paradigm
by enabling an interplay between alternative representations of search results.

In the rest of this chapter, we first provide some background on Information
Extraction techniques and motivate them as a powerful methodology towards gen-
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erating structured representations of the search space. Next, we describe our design
requirements for developing an extension to the document retrieval paradigm. Fi-
nally, we detail the architecture of our proposed Information Discovery Framework
and the implementation of related components of this framework.

3.2 Information Extraction

In Natural Language Processing (NLP), Information Extraction (IE) is the task of
generating a structured, machine-readable representation of the information in text
[260], usually in the form of triples or n-ary propositions. A proposition can be
considered as a natural language representation of a potential fact (e.g., “Kenya is
the leading exporter of coffee in the world.”) in a format that is suitable for a variety
of downstream systems to process (e.g. <Kenya, is the world’s leading exporter of,
coffee>). 1 More recently, IE researchers concentrate especially on Open Information
Extraction (OIE), where information is automatically extracted from large textual
resources, e.g. web news articles, which are not restricted to any particular domain
or terminology and can scale to large, heterogeneous corpora such as the Web.

By applying an Open IE system to a collection of documents a set of triples in
the form of (entity, relation, entity) will be generated. We note that, while there are
many external knowledge bases (e.g., DBPedia2) available that provide a collection of
these triples, they cannot necessarily represent the same information space that the
user is interested in. That is, in order to provide better support for users’ complex
search activities, it is beneficial to derive these triples from the text of the documents
retrieved for the user’s query. The generated entity-relationship triples can be struc-
tured as semantic networks (also known as knowledge graphs) where entities are the
nodes and relationships correspond to the edges in this network. These knowledge
graphs can serve as an alternative representation of the user’s domain of interest
and they can support interaction with the corresponding documents retrieved by the
search engine. To this end, we are interested in methods that extract entities and
relations between them from text.

1The validity of a ’potential fact’, extracted by an IE method, is only as good as the original
sentence as the source of this extraction.

2http://dbpedia.org
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3.3 Main Design Considerations

The first module in our proposed Exploratory Search Support (ESS) framework
is the Information Retrieval and Extraction (IRE) module that leverages a Search
and Document Retrieval (SDR) component as well as an Information Extraction
component. In this section we review our main design considerations to develop this
module such that we can build a search tool for effective Information Discovery.

Search and Document Retrieval.
Major search engines such as Google and Bing are powerful search systems that
are effective in matching users’ queries to a subset of documents that are ranked
in the order of predicted relevance to users’ information need. Our ESS framework
leverages these engines through the available APIs in order to retrieve a ranked set
of documents based on a given search query formulated by a user.

Information Extraction.
Our main contribution in designing an extension to the current SDR framework is
through developing an Information Extraction component that supports searchers
with their complex information seeking activities.

To this end, the IE component needs to satisfy different constraints:

1. [Input] The IE tool needs to be tailored to the search query that is submitted
by the user of our information discovery framework;

2. [Output] The output of the IE tool is expected to support locating fragments of
information by externalizing semantic relationships between different entities
and concepts that are discussed in the textual content of retrieved documents.

To satisfy the first constraint, the IE component is designed to extend the SDR
component by directly applying the IE algorithms to the output of SDR in order
to generate triples from the text of documents that are retrieved for a user’s query.
Therefore, we are not interested in incorporating pre-existing knowledge bases such as
DBPedia as they do not necessarily correspond to the space the searcher is interested
in.

In order to satisfy the second constraint, we conducted a review of the state-
of-the-art OpenIE systems that were available at the time of developing our ESS
framework in order to evaluate their efficacy in supporting an information discovery
platform.
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Among the available tools (see Section 2.3.3 for a survey), Ollie [163] appeared to
be the most general purpose information extraction tool that overcame the limita-
tions of its predecessors (e.g. learning only verb-based relational phrases in ReVerb).
However, Ollie came with its own limitations. Given that this tool was not specif-
ically designed to support searchers with information seeking tasks, we found Ollie
to be more focused on relation extraction while the arguments that are connected by
these relations could be any noun phrase extracted from sentences. To clarify, as can
be seen in examples below, the triples extracted by Ollie can be used to express a
relationship between two arguments where these arguments could be a noun phrase
with very loose boundaries (which can include multiple or no entities at all).

Sentence: In addition, their kidneys have small glomeruli or lack glomeruli

entirely.

Extraction: (their kidneys; have; small glomeruli or lack glomeruli)

Sentence: On July 16 2008, Hezbollah transferred the coffins of captured

Israeli soldiers , Ehud Goldwasser and Eldad Regev, in exchange for Samir

Kuntar and four other Hezbollah members captured by Israel during the 2006

Lebanon War.

Extraction: (the coffins of captured Israeli soldiers, Ehud Goldwasser

and Eldad Regev; be transferred in; exchange for Samir Kuntar and four

other Hezbollah members)

3.4 Our Information Discovery Tool

Through a 9-month research collaboration with an industry partner (InsightNG com-
pany3) we developed an Information Discovery tool, as an extension to the current
search and document retrieval framework offered by major search engines. This tool
was designed to help users with finding relevant information regarding the goals they
intend to achieve. We first briefly describe the task of entity-relationship extraction
from a set of reference sentences and clarify the main terminology used for rest of
this chapter. Next, we describe the architecture and the main components of this
framework.

3https://www.insightng.com/
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3.4.1 Terminology and Task Description

Before we describe the details of how this information discovery tool is developed
and how the underlying components interact with one another, we need to clearly
specify the task we are trying to achieve and define the terminology we are using to
describe our framework.

Task Description. Given a search query, extract a set of entity-relationship triples
that convey the same information as their corresponding set of retrieved documents
for that query. To simplify this task, we elaborate on the extraction of related entities
and the relation label describing their relationship given a set of reference sentences.
These reference sentences are a subset of all sentences in the documents retrieved for
a user’s query.

Entity. There are many definitions for an entity. For example, “a thing with
distinct and independent existence” or “any singular, identifiable and separate object.
An entity refers to individuals, organizations, systems, etc.” In this dissertation, we
simply consider any noun phrase that could be selected as the title of a Wikipedia
article a valid entity. For example, president, coffee, Canada, freedom, and assembly
of experts are all valid entities.

Reference Sentence. While each document that is retrieved in response to a
user’s query is a collection of sentences, in our extraction task we are particularly
interested in candidate sentences that contain at least two entities and hence can
potentially describe a semantic relationship between these two entities.

We define such a Reference Sentence S as a sentence that contains two entities E1 and
E2 (and possibly some other entities). For example, given the entities “Kingston”
and “United Canadas”, the following sentence provides some context on how these
entities might be related:

“The beautiful Kingston was chosen as the first capital of the United Canadas
and served in that role from 1841 to 1844.”

Relation Label. A Relation Label is a simplified sentence that is expected to
describe the relationship between E1 and E2 based on what can be inferred from the
Reference Sentence S. For example, “Kingston was chosen as the first capital of the
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United Canadas” can be extracted as a Relation Label describing the relationship
between Kingston and United Canadas based on the reference sentence S above.

Related Entities. We consider an entity pair, E1 and E2, related if they appear
in the same reference S and there is a direct relationship between them.

Direct Relationship. Two entities E1 and E2 are considered to be directly related
if the following requirements are met:

• It is possible to write an independent clause such that:

1. the clause contains E1 and E2;

2. E1 and E2 appear in the same order as in S;

3. no external knowledge is used to write this independent clause;

Independent Clause. Like a phrase, a clause is a group of related words; but
unlike a phrase, a clause has a subject and verb. An independent clause, along with
having a subject and verb, expresses a complete thought and can stand alone as a
coherent sentence. In contrast, a subordinate or dependent clause does not express
a complete thought and therefore is not a sentence. A subordinate clause standing
alone is a common error known as a sentence fragment. For example, grammatically
complete statements such as “He saw her”, “The Washingtons hurried home”, or
“Free speech has a price” are sentences and can stand alone. When such statements
are part of longer sentences, they are referred to as independent (or main) clauses.

Given the task described above we can now detail our algorithm for extracting
related entities and their relation labels and how it is incorporated in the overall ESS
framework.

3.4.2 Architecture and Design

Our information discovery system is implemented in four phases. During the first
phase we create the input corpus by collecting retrieved documents based on a given
query. Next, we extract entities from text using state-of-the-art entity taggers. We
then select the sentences that contain at least two entities in them and parse them us-
ing Stanford Dependency Parser. For each sentence, we extract meaningful relations
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between the entities by finding the shortest path in the corresponding parse tree.
We constructed a set of patterns based on dependency triples that lead to seman-
tically meaningful relations. In the final phase we generate labels for the extracted
relations and rank them based on relevance to the query and the informativeness of
the extraction.

In a nutshell, this system is designed to address the following tasks:

1. Extracting “important” entities from a set of top ranked documents retrieved
for a query (i.e. top ranked entities);

2. Identifying meaningful relations between each entity pair (i.e. direct rela-
tionships);

3. Generating concise and readable labels for each relation which briefly explain
the underlying connection between the corresponding entities (i.e. relation
label);

4. Ranking extracted entities and relations based on different measures including
TF-IDF and NPMI.

Figure 6.1 illustrates the architecture of this system. The following subsections
describe these phases and their building blocks in more detail.

3.4.2.1 Phase I: Creating the Source Corpus

The first phase of this system is designed such that it can process different source
documents. The input corpus can be provided by the user as a collection of docu-
ments or the system can collect relevant documents from the web using the query
provided as an input.

The input query can be formulated by the user or, alternatively, the system can
automatically generate a query based on user’s previous interactions with a set of
related concepts. To elaborate, in the first scenario, the user simply formulates the
query as a list of keywords or a natural language sentence while in the second case
the query can be generated by the system using the entities that the user has already
added to a list of concepts they are interested in exploring.

In both scenarios, Bing is used to retrieve the top 50 documents related to the
user’s query. The source documents can be either in HTML format or plain text.
The HTML format can help with creating a higher quality corpus as our system can
pre-process the text more effectively.
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Figure 3.1: The System Architecture

Retrieving Documents from the Web. Microsoft provides a method for retriev-
ing documents using the Bing search engine via the Bing API. The documentation
and account registration can be found using the link below 4. Once an account has
been created one can login to determine the query URL and API Key. Bing uses
OAuth to validate the API key; therefore, in order to use the API, the key must be
encoded in the header of the http request (see Bing documentation for code snip-
pets). Since the Bing API does not return the document itself the contents must be
retrieved using the given URLs. In order to identify each URL the API does provide
a unique identifier for each result.

4https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44
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Preprocessing. Most Named Entity Taggers and Parsers are designed to work on
non-web documents, so it is important to remove html tags as well as special and
non ASCII characters. These can be removed by a set of simple regular expressions
(Table 3.1).

Regular Expression Pattern HTML Tag Match
< script.∗? > .∗? < /script > Client side scripting
< style.∗? > .∗? < /style > HTML Style sheets

< link.∗?/? >
<?/div.∗? > Div Tags

< head > .∗? < /head > HTML Header
<!−−− .∗?−− > HTML Comments

#&[0− 9]+ Special Characters
&nbsp

¡/?a.*?¿ Hyperlinks

Table 3.1: Sample expression patterns used for cleaning HTML documents

Bing API Script. We have developed a script to access the Bing API from the
command line. The input arguments are the output folder and the query terms.
Similar to a search engine, quoted terms are treated as phrases to be searched. The
script produces both the raw and cleaned documents in the output folder with each
document identified by its Bing ID. A mapping file from document URL to Bing ID
is also included so that the original document address can be linked to the document
itself. The script also contains a number of tunable parameters which can only be
accessed from within the code. Table 3.2 summarizes each of these parameters.

3.4.2.2 Phase 2: Entity Extraction

In this phase entities are identified and tagged in input texts. Informally, any noun
phrase that could be considered as the title of a Wikipedia article is a valid entity. We
extract a wide range of entities which include both Named Entities (people, locations,
organizations, ...) and more general entities (e.g., coffee, investment, project, ...). In
order to identify and tag entities we use a Chunker, a Named Entity Tagger (NER)
and Wikifier which are all developed by University of Illinois at Urbana-Champaign
and they are available for download at http://cogcomp.cs.illinois.edu/page/

software. These tools are briefly described in the following subsections.
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Parameter Description
DOCUMENT NUMBER The number of documents to retrieve from the API
AUTH KEY Bing API Key
DELAY RANGE Delay between subsequent calls to the Bing API.
THRESHOLD For phrase queries the minimum number of documents

needed before trying each term as a separate query term
e.g. If the phrase “pizza hut” was searched and below
this number of documents were returned “pizza” and
“hut” would be searched.

BATCH SIZE The number of documents to be fetched by a single
thread

THREAD POOL SIZE Size of the thread pool used for fetching and cleaning
documents from the web

Table 3.2: Tunable Parameters for the Bing API

Named Entity Tagger. The utilized Named Entity Tagger is a state of the art
NER tagger that tags plain text with named entities. The newest version tags en-
tities with either the “classic” 4-label type set (people / organizations / locations
/ miscellaneous), while the most recent (Extended NER) can also tag entities with
a larger 18-label type set (based on the OntoNotes corpus). It uses gazetteers ex-
tracted from Wikipedia, word class models derived from unlabeled text, and expres-
sive non-local features. The best performance is 90.8 F1 on the CoNLL03 shared
task data. The tagger is robust and has been evaluated on a variety of datasets
[430]. In our implementation we used the Extended NER while we only considered
a subset of tags including PERSON, LOC, ORG, NORP, LANGUAGE, PRODUCT
and WORK OF ART. Here is a full list of tags provided by the Extended NER:
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Wikifier. The Wikifier identifies important entities and concepts in text, disam-
biguates them and links them to Wikipedia. Wikification is an important step in
helping to facilitate Information Access, in knowledge acquisition from text and in
helping to inject background knowledge into NLP applications. The main decisions
the Wikifier must make are: (1) What expressions to link to Wikipedia. (2) Disam-
biguating the ambiguous expressions and entities [431]. Wikifier is implemented in
Java and the code can be modified in order to consider more general entities such
as “school” or “park” which are not referring to a particular instance according to
the surrounding context. As an example consider the following sentence: “Kenya
is a capitalist country with an economic policy that emphasizes the role of the free
market.”; Applying Wikifier we generate the following output:

Term from text: ‘economic policy’

Label: http://en.wikipedia.org/wiki/Economics

Properties:

RankerScore, 1.5369297060473759;

IsLinked, true;

SurfaceFormWikiCatAttribs, policy;

TitleWikiCatAttribs, science;

LinkerScore, 0.35744175439733744;

----------------------

Term from text: ‘free market’

Label: http://en.wikipedia.org/wiki/Free_market

Properties:

RankerScore, 2.2444808231094133;

IsLinked, true;

SurfaceFormWikiCatAttribs, free market;

TitleWikiCatAttribs, market;

LinkerScore, 1.7701680178468986;

----------------------

Term from text: ‘Kenya’

Label: http://en.wikipedia.org/wiki/Kenya

Properties:

RankerScore, 0.7606882804807147;

IsLinked, true;

SurfaceFormWikiCatAttribs, ;

TitleWikiCatAttribs, country state nation member territory;

LinkerScore, 0.4709923510089708;
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----------------------

Term from text: ‘capitalist’

Label: http://en.wikipedia.org/wiki/Capitalism

Properties:

RankerScore, 2.3268430680273595;

IsLinked, true;

SurfaceFormWikiCatAttribs, capitalist;

TitleWikiCatAttribs, economy system ideology;

LinkerScore, 1.3837449732297202;

----------------------

Term from text: ‘country’

Label: UNMAPPED

Properties:

RankerScore, -999.0;

IsLinked, false;

SurfaceFormWikiCatAttribs, country;

TitleWikiCatAttribs, ;

LinkerScore, -999.0;

----------------------

Term from text: ‘policy’

Label: UNMAPPED

Properties:

RankerScore, -999.0;

IsLinked, false;

SurfaceFormWikiCatAttribs, policy;

TitleWikiCatAttribs, ;

LinkerScore, -999.0;

----------------------

Term from text: ‘role’

Label: UNMAPPED

Properties:

RankerScore, -999.0;

IsLinked, false;

SurfaceFormWikiCatAttribs, role;

TitleWikiCatAttribs, ;

LinkerScore, -999.0;

----------------------

Term from text: ‘free’
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Label: UNMAPPED

Properties:

RankerScore, -999.0;

IsLinked, false;

SurfaceFormWikiCatAttribs, free;

TitleWikiCatAttribs, ;

LinkerScore, -999.0;

----------------------

Term from text: ‘market’

Label: UNMAPPED

Properties:

RankerScore, -999.0;

IsLinked, false;

SurfaceFormWikiCatAttribs, market;

TitleWikiCatAttribs, ;

LinkerScore, -999.0;

As you see Wikifier did not map terms such as “country” or “policy”, even though
there are corresponding webpages in Wikipedia. However, one might modify the code
to include such general terms in the list of entities.

Curator. The University of Illinois has also developed a tool called Curator. The
Curator is a system that acts as a central server in providing annotations for text. It
is responsible for requesting annotations from multiple natural language processing
servers, caching and storing previous annotations and refreshing stale annotations.
The Curator provides a centralized resource which requests annotations for natural
language text [116]. The Curator architecture defines multiple data types and service
interfaces for creating new annotation servers and communicating with the Curator.
The interfaces are defined using Apache Thrift which provides a software stack and
code generation for cross-language deployment. This allows annotation servers and
Curator clients to be implemented in multiple languages. Currently Thrift supports
C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, Smalltalk, and
OCaml. The Curator package comes bundled with annotators capable of performing
the following annotations:

• Tokenization and Sentence Splitting (via Illinois NLP tools)

• Part-of-speech tags (via Illinois POS Tagger)
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• Chunk (shallow parse) analysis (via Illinois Chunker)

• Named Entities (via Illinois Named Entity Recognizer)

• Coreference (via Illinois Coreference package)

• Parse trees (via Stanford Parser and Charniak Parser)

• Dependency trees (via Stanford Parser)

• Semantic Role Labels for verbs and nouns (via Illinois SRL)

• Reference Entities (via Illinois Wikifier)

Some of these components require significant amount of memory; one motivation
for creating the Curator was the need to distribute such components across multiple
machines. However, a server with 32G of RAM should be able to run all components
together. We use Curator in order to integrate the output of the NP Chunker,
NER and Wikifier for every input text. One can also configure Curator such that
it integrates annotators (e.g., Stanford Parser) which are not developed by The
University of Illinois. The code is open-source and is implemented in Java, making
it easy to modify and add or remove annotators.

Improving Extracted Entities Not all entity mentions that are tagged by the
NER and Wikifier are accurate. We identified two main boundary detection errors
in the output of these entity taggers. In the first case the head of a noun phrase
is tagged as an entity that could be expanded to include a more specific entity
mention. For example in the following sentence “There are five main components
in any information system.”, “system” is not the most specific entity mention and
an accurate tagger needs to include “information” in the extracted entity mention.
In the second case, a modifier (adjectives, adverbs and nouns modifying another
noun) is tagged as entity while the head noun that is modified by this modifier is
left out. Correcting these errors is even more crucial than the first case since entities
by definition need to be a noun phrase and other parts of speech such as adjectives,
adverbs or verbs are not acceptable.

Such incomplete extractions should either be extended to a meaningful entity or
be removed from the list of entities. We developed a subroutine which improves the
quality of these extractions. This subroutine fixes entities in two steps. First, we
parse sentences and obtain POS tags, chunks and dependencies. Next, we identify
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the tagged entities which are a modifier (participating in amod or nn dependency
relation); and merge these modifiers with the rest of the noun phrase containing them
until the head of the phrase is added to this entity. The extended phrase replaces
the incomplete entity. Figure 3.2 provides some sample sentences before and after
applying this subroutine. In the case that a noun is modifying a noun (nn dependency
relation), even when the governor noun is tagged by the entity we extend it by adding
in the modifying nouns. The reason for this is that governor nouns participating
in an nn dependency can be too general and do not necessarily refer to a specific
entity. For example “system” is a very general noun and shouldn’t be considered
as an entity. While “Information system” is a specific type of system and therefore
should be an entity. The merging process is done in two stages. During stage 1, we
are merging “nn”, “amod” and “poss” relations while in stage 2, prepositions and
conjuncts (prep and conj relations) are merged to form a complete noun phrase.
As for stage 2, some statistical measures (including mutual information and ttest)
are used to select better candidates for merging.

Figure 3.2: Examples for Improving Entity Extraction

Please note that entities are surrounded by “[ ]“ and parts of multiple word
entities are joined by “ ”.

Ranking Entities. As described above, Curator integrates the entities extracted
by the NER with that of the Wikifier. Not all these entities are meaningful and
informative. TF-IDF is used to rank the entities. This metric is a statistical measure
used to evaluate how important a term is to a document in a collection or corpus.
We calculate the term frequency (TF) as the number of occurrences of each tagged
entity in the input corpus. We also calculate the document frequency (DF) for each
term and query ClueWeb to find inverse document frequency (IDF) for those terms.
Then we rank the extracted entities based on the TF-IDF measure calculated as:

tfidf(t, d,D) = tf(t, d).idf(t,D) (3.1)
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idf(t,D) = log[
|D|

|dεD : tεd|
] (3.2)

Where, t is the term, d is a document and D is all the documents in the reference
corpus, in our case ClueWeb, (which has 13712600 documents). Please note that
the term frequency (tf) can be calculated using the documents from the corpus
we created based on a query, while idf is calculated from ClueWeb. This ranking
measure tends to assign higher scores to entities which are frequent in one document
but not in all documents. In order to obtain these frequencies we used the Wumpus
search engine which is an Information Retrieval system developed at the University
of Waterloo. Wumpus is freely available under the terms of the GNU General Public
License (GPL). For more information about Wumpus you can refer to http://www.

wumpus-search.org/.

3.4.2.3 Phase III: Relation Extraction

We start this phase by selecting the sentences which contain at least 2 top ranked
entities extracted from Phase I. Once we have a collection of sentence candidates,
we aim at finding meaningful relations expressed in those sentences. To this end,
we generate all possible entity pairs for each sentence. Next, we parse the sentence
containing this entity pair and find the shortest path from the first entity to the
second entity in the generated parse tree. This path indicates the underlying relation
between these two entities. We apply a set of heuristics to remove paths which do
not correspond to a meaningful relation. The result will be a list of paths between
entity pairs. Each entity pair, along with its underlying path, indicates an unlabeled
relation which will be an edge in our knowledge graph. Finally, we apply two different
ranking methods to rank the extracted relations. We also generate readable labels
for a subset of extracted relations which can reveal the existing relation between an
entity pair. Following subsections provide more details for implemented methods.

Parsing Sentences. We applied Stanford Dependency Parser [136] to parse the
candidate sentences. A natural language parser is a program that works out the
grammatical structure of sentences, for instance, which groups of words go together
(as “phrases”) and which words are the subject or object of a verb. Probabilistic
parsers use the knowledge of language gained from manually labelled sentences to
try to produce the most likely analysis of new sentences. The package we used is
a Java implementation of probabilistic natural language parsers, both highly opti-
mized Probabilistic Context Free Grammar (PCFG ) and lexicalized dependency
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parsers, and a lexicalized PCFG parser. The latest version can be downloaded from
http://nlp.stanford.edu/software/lex-parser.shtml . The parser provides Stanford
Dependencies output as well as phrase structure trees. Typed dependencies are
otherwise known grammatical relations. The Stanford dependencies provide a rep-
resentation of grammatical relations between words in a sentence. They have been
designed to be easily understood and effectively used by people who want to extract
textual relations. Stanford dependencies (SD) are triplets: name of the relation,
governor and dependent. As an example the standard dependencies for the sentence
“Many local entrepreneurs made tons of money bringing the Starbucks coffeehouse
concept to their hometowns and then expanding from there.” are given below:

amod(entrepreneurs-3, Many-1)

amod(entrepreneurs-3, local-2)

nsubj(made-4, entrepreneurs-3)

root(ROOT-0, made-4)

dobj(made-4, tons-5)

prep_of(tons-5, money-7)

dep(made-4, bringing-8)

det(concept-12, the-9)

nn(concept-12, Starbucks-10)

nn(concept-12, coffeehouse-11)

dobj(bringing-8, concept-12)

poss(hometowns-15, their-14)

prep_to(bringing-8, hometowns-15)

advmod(expanding-18, then-17)

dep(made-4, expanding-18)

conj_and(bringing-8, expanding-18)

prep(expanding-18, from-19)

pobj(from-19, there-20)

Generating Paths
In order to find the connection between two candidate entities we implemented a

getPath subroutine which finds the shortest path from the first entity to the second
entity using the corresponding parse tree generated by the dependency parser. This
algorithm first generates all possible paths between two entities and then selects the
ones that can potentially lead to meaningful relations. We use a set of heuristic rules
to remove meaningless path. These rules can be customized to select the valid paths
based on different criteria. If there are no particular preferences for the dependencies
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that can appear on the path, the method will generate all paths and then select the
shortest one. Other possible scenarios could be selecting the paths that contain a
verb, selecting the paths of the length longer than 2 or selecting the paths for which
not all intermediate nodes are stop words. We developed a different set of rules which
can select the potentially more meaningful relations and we use it as the first step
for generating labels for the relations. These rules are presented in Section 3.4.2.4.
The following examples illustrate the paths generated for two sample sentences:

3.4.2.4 Phase IV: Labeling and Ranking Relations

As described in the overall algorithm for identifying relations between entities, we
select sentences that contain at least two highly ranked entities. We then find the
shortest path between entities for all possible entities in a candidate sentence. The
fact that two entities occur in the same sentence does not always mean there should
be a meaningful relation between them. In fact, a sentence with multiple entities
can lead to many meaningless relations that do not communicate any information
to the user. Therefore, we need to rank the extracted relations to make sure the
informative relations will be shown to the user before the ambiguous or meaningless
ones. Moreover, representing relations as unlabeled connection are not very useful
for the user. While these links indicate a connection between two entities, it is not
clear how these entities are related. Therefore, we aim at generating a readable label
for the relations we extract. However, not all relations can be labeled effectively due
to the complexity of some sentences and the errors made by the utilized annotators.
The next two subsections provide more details about the methods we developed for
ranking and labeling relations.

Ranking Relations
There are different criteria to rank extracted entity-relationship tuples. These criteria
can be classified into two groups: Subjective and Objective. We can also classify
approaches in these groups into Graph based and Semantic based Measures. We
reviewed these approaches in Section 2.3.3.1. An overall classification of these ranking
approaches is provided here as a reference.
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1. Objective

(a) Graph-based

• Betweenness (e.g., [650])

• Centrality (e.g., [637, 68])

• PageRank (e.g., [650])

(b) Semantic-based

• Co-occurrence and Frequency (e.g., [417])

• Using Ontologies (e.g., [531])

• Semantic Similarity

2. Subjective

(a) Informativeness (e.g., [267])

(b) Interestingness (e.g., [334, 426])

(c) Unexpectedness (e.g., [336, 184])

(d) Actionability (e.g., [212])

In a broader sense, Informativeness can be defined in an objective fashion. While
evaluating an extraction as an informative assertion can be different for different
users, we are able to apply objective semantic-based measures to rank the relations
based on the informativeness of the corresponding entity pair. Such approaches
usually take advantage of co-occurrences and statistical frequencies to rank entities
/ entity pairs. In this system we implemented two ranking methods: Average TF-
IDF and Normalized Pointwise Mutual Information (NPMI) for the entity pairs.
These methods are described in the following subsections.

Selecting Meaningful Relations. Prior to ranking the relations, we select a
subset of extractions which can potentially lead to more meaningful relations. We
objectively define a relationship as meaningful, if it is a direct relationship between
two entities that appear in the same reference sentence.

We developed a set of heuristics which are mostly observed in paths that lead to
more comprehensive and meaningful relations and labels. First, we remove the paths
containing “dep”, “rcmod” and “ccomp”. While “dep” indicates the parser did not
identify all dependencies in the sentence, “rcmod” and “ccomp” usually correspond
to indirect relations. For example, the sentence “John believes that Kenya exports
coffee to US.” Will obtain the following dependencies:
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nsubj(believes-2, John-1)

root(ROOT-0, believes-2)

mark(exports-5, that-3)

nsubj(exports-5, Kenya-4)

ccomp(believes-2, exports-5)

dobj(exports-5, coffee-6)

prep_to(exports-5, US-8)

Therefore, “ccomp” will appear on the path between “John” and “coffee”, while
there is no direct relation between these two entities and the extraction has to be
removed. Next, we select paths that contain a verb and the entities are connected
to this verb via a particular set of dependencies including nsubj, xsubj, nsubjpass,
dobj, iobj, agent, partmod and etc.

Ranking by Average TF-IDF. While ranking individual entities by TF-IDF (as
described in Phase II) will result in selecting sentences that contain high rank entities
only, it does not guarantee the extracted relation is meaningful and informative. We
define informativeness of a relation as a sum of TF-IDF scores of all entities connected
by that relation (i.e., the entity pair) divided by the number of those entities (i.e., 2).
Therefore, for every selected entity pair that has a corresponding path, we calculate
the average TF-IDF as follows:

InformativenessR =
(TFIDF (entity1) + TFIDF (entity2))

2
(3.3)

Ranking by NPMI. Mutual information (MI) is a measure of the information
overlap between two random variables. Pointwise mutual information (PMI) is a
measure of how much the actual probability of a particular co-occurrence of events
p(x; y) differs from what we would expect it to be on the basis of the probabilities
of the individual events and the assumption of independence p(x)p(y). Mutual in-
formation can be used to perform collocation extraction by considering the MI of
the indicator variables of the two parts of the potential collocation [113]. To give MI
and PMI a fixed upper bound, Gerlof Bouma [69] normalized the measures to have
a maximum value of 1 in the case of perfect (positive) association. This measure is
called Normalized Pointwise Mutual Information (NPMI). NPMI can be calculated
for two terms and its value is within the range of -1 and 1. “Some orientation values
of NPMI are as follows: When two words only occur together, NPMI = 1; when
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they are distributed as expected under independence, NPMI = 0; finally, when two
words occur separately but not together, NPMI is defined to be -1”. We applied this
measure to our relation ranking problem. We calculate NPMI for every entity pair
(e1,e2) using the following formula:

NPMI(e1, e2) =
log( P (e1,e2)

P (e1)×P (e2)
)

−log(P (e1, e2))
(3.4)

Where:

P (e1, e2) =
TF (e1 and e2 occuring together)

window size × total number of docs
(3.5)

P (ei)iε{1,2} =
TF (ei)

total number of docs
(3.6)

The window size indicates the maximum distance between the related entities
in the corresponding sentence. In our experiments we set the window size to 10.
Reviewing final results suggests the superiority of TF-IDF for ranking relations which
are related to the topic / goal (e.g., “investment for coffee in Kenya”). On the other
hand, NPMI tends to assign higher scores to the entity pairs which have a strong
association with each other (e.g., “wine” and “beer”) regardless of their relevance
to the topic (e.g., “investment in coffee”). A hybrid approach can be designed to
combine these two measures into one. We suggest a linear interpolation of these two
ranking measures as:

Ranking Score(r) = α× TFIDF score(r) + (1− α)×NPMI score(r) (3.7)

The weight α can be learned by conducting different experiments and evaluating
the final results. Also, TFIDF scores have to be normalized such that the values
range between 0 and 1 which is compatible with the values calculated by the NPMI
measure.
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Labeling Relations. Labeled relations can reveal the underlying connection be-
tween an entity pair for the users. The default label for every relation is the sentence
expressing that relation. Since sentences are sometimes very long and contain many
terms that do not contribute to the core connection between the entities, we aim at
generating a label which is a simplified version of the sentence. This label is expected
to be shorter than the original sentence while it is still readable and meaningful for
the user.

Figure 3.3: Some sample labels.

While sentences can be an upper bound for generated labels, shortest paths be-
tween entities can be considered as a lower bound. Although a label must include
all the terms which are located on the path, constructing a label by combining these
terms only will not always lead to a complete and meaningful label. Our label gen-
eration algorithm takes the entity pair, shortest path between them and the corre-
sponding sentence as an input and progresses as follows: First it parses the sentence
using Stanford Parser and obtains dependency triples relating all words and phrases
in this sentence. Next it processes the words appearing on the path:

• For every noun

– the algorithm first adds the noun to the label;
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– next, all the prepositions that have this noun as a dependent (second ar-
gument in the dependency triple) are also added to the label. For example
in “Kenya exports coffee to US.”, “US” is a noun which has a prep de-
pendency as prep to (coffee, US). Therefore, if “US” is on the path, we
will add the preposition “to” to the label.

– similarly, we add all the conjuncts related to this noun.

– if there is a copula verb (cop) associated with this noun, we add it to the
label a well.

– finally, we extend the nouns to include modifiers (amod / nn) or preposi-
tions (e.g., prep of).

• For every verb

– the algorithm first adds the verb to the label;

– if the verb is negated, the proper auxiliary verb is also added to the label
to negate the verb;

– for active verbs, direct object and indirect object (if applicable) will be
added to the label;

– for passive verbs, the agent will be added to the label;

– for the verbs with open clausal complement, both xcomp and xsubj are
added to the label;

– if the verb has a subject (nsubj) which is missing from the path, has to
be added to the label;

– all phrasal particles (prt) and auxiliary verbs (aux) related to the verb
have to be added;

– we also expand on rcmod, infmod, partmod and prepc of, since these are
relative clauses and convey important information.

– For every adjective

– If it’s not already added to the label, we add it;

– If there is a copula verb associated with it, it is also added.

Please note that all these words are added to the label such that the order of
them in the original sentence is preserved. Therefore, the generated label is readable
and can be considered as a simplified version of the sentence. Figure 3.3 indicates
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some sample labels along with the original sentence and the shortest path used to
generate that label.

Please note that the entity pair corresponding to the relation is highlighted in
blue. As you see the labels are mostly shorter than the sentences while they do not
necessarily start from the first entity or end with the second entity. Going beyond the
entity pair will lead to more meaningful labels. Yet, they are shorter and simplified,
thereby easier to read and understand the underlying meaning of the relation.

3.5 Evaluation Considerations

As with many NLP tools, the main evaluation question to address is the extent to
which they produce the results for which they were designed. It must be noted that
the design or application of an NLP system is commonly connected with a broader
task; For example applying a parser to a set of documents to identify answer can-
didates for a user’s query. Given that the underlying methods involve a component
that analyzes sentences to produce < subject− relation− object > dependency tu-
ples, they have the potential to allow more concept level matches. For example the
question “Who patented the light bulb?” can match “Thomas Edison’s patent of the
electric light bulb” via the tuple < ThomasEdison, patented, bulbs >.

Once a system is in place to generate these triples based on a set of input sen-
tences, a major question is how might the quality of dependency tuple analysis be
evaluated? There are many ways that this evaluation can be done. The simplest and
the most intuitive approach could be a live demonstration of a ‘semantic’ search en-
gine that uses the parsing algorithm in order to match the users’ questions with the
facts that appear in documents. While the target audience can directly observe the
value of such a system, it is difficult to assess the full range of the system capabilities
and can potentially hide known flaws.

A more systematic approach would be to perform a standard intrinsic evaluation
of the dependency extraction component. To this end, a test set can be created
which contains a sample of test sentences, along with ground truth labels, i.e. the
tuples that the system is expected to extract from those sentences. Standard metrics
such as precision, recall and F-measure can be employed to measure the performance
of the extraction algorithm; either against a different version of the same algorithm
(i.e. a formative evaluation) or against competing techniques (i.e. a summative
evaluation).
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While an intrinsic evaluation helps to analyze the quality of the tuples automat-
ically, there are at least three challenges regarding this type of evaluation. First, for
many NLP tasks, including Open IE, there are no pre-existing test sets that can be
leveraged as ground truth labels. In fact, most Open IE systems are designed with
different goals in mind and the tuples they extract are not directly comparable. Sec-
ond, creating a test dataset that includes ground truth labels for a set of sentences
is very challenging. There are no standard guidelines for what constitutes a valid
tuple. Essentially, these ground truth labels need to be manually created for any
new domain or task and they cannot be transferred to new use cases. Finally, even
if a test dataset is available or created, while it can enable an automatic assessment
of the quality of the output of the extractor algorithm according to the ground truth
labels, and quantify the impact of incremental changes to the algorithm, how do we
know that improvements in the accuracy and coverage of the extraction algorithm
output actually makes a difference in the overall quality of the system? That is,
whether a higher extraction accuracy will lead to a better support for the search
task and a meaningful experience for the user?

A more robust approach to the evaluation of tuple extraction algorithm is thus
to perform an extrinsic evaluation, which measures the quality of the extractor by
looking at the impact on the effectiveness of the search task. For certain applications
or tasks, e.g. simple QA, the extrinsic evaluation can be automated. For such
scenarios a new test set can be created by using the user questions as an input
and the answers that should be produced by the system will be the ground truth
labels. In the context of complex and exploratory search tasks, however, since the
outcome of the search task involves synthesis of multiple information fragments and
high levels of analysis and sensemaking, we cannot fully automate the evaluation
process. Essentially, any evaluation methodology needs to involve the user in the
process. A reliable way to address this evaluation challenge is to conduct a lab study
involving real users employing the search system to perform an assigned task, e.g.
finding answers to a set of test questions. This approach, in effect, is a variation of
extrinsic evaluation and we can refer to it as user-centered extrinsic evaluation.

3.5.1 Evaluating Our IRE Module

In this section we have elaborated on a few possible directions to take in order
to evaluate the effectiveness of our designed information retrieval and extraction
tool. In particular, we contrasted intrinsic and extrinsic evaluations; While intrinsic
criteria relate to a system’s objective, extrinsic criteria relate to its functions and its
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main purpose [179]. To put this another way, Resnik [437] notes that the extrinsic
evaluation treats the analyzer (e.g. the information extraction tool) as an enabling
technology, whose value is not intrinsic but rather resides in its contribution to a
larger application. In the rest of this section we expand on ways of conducting
intrinsic and extrinsic evaluations of our developed IRE module and describe our
next steps.

3.5.1.1 Intrinsic versus Extrinsic Evaluation

In the context of designing a search framework to support exploratory and complex
information seeking activities, an intrinsic evaluation of our information extraction
tool would assess the accuracy of the results returned by this tool as a stand-alone
system, whereas the extrinsic evaluation would focus on the impact of the extracted
information (i.e. entity-relationship tuples) within the context of an exploratory
search support framework.

In an intrinsic evaluation we can ask questions such as the following:

1. based on the given reference sentence, are the connected entities directly re-
lated?

2. based on the given reference sentence, are the tagged entity mentions as specific
as possible?

3. based on the given reference sentence, is the generated relation label readable?

4. does the relation label convey the same information as the reference sentence?

We explore this type of evaluation for our system in Appendix A.

On the other hand, the extrinsic evaluation scenario can focus on questions such
as:

1. are users who take advantage of the search UIs, which visualize and enable
interaction with these extracted entity-relation tuples, more successful in com-
pleting their search tasks?

2. will a coupling of entity-relationship based representation of search results and
the textual content of document result in less time spent on reading the re-
turned documents?
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Both of these types of evaluation are valuable and support different purposes.
In fact, it is important to separate out the impact of entity-relationship based rep-
resentations on the outcome of search tasks from the effect of possible errors and
omissions in the output of our information extraction tool on these outcomes.

Further, as we argued in Section 2.5.3.2, there is a non-trivial relationship be-
tween the accuracy of the output of information retrieval systems and the outcome
of exploratory search tasks. Similarly in NLP systems, since different components
(e.g. a parser, an entity tagger, etc) often interact in complex ways, we cannot
simply assume that there is a linear correlation between the accuracy of individual
components and the quality of the final output [438]. For example, there are cases
that the effects of errors of different components are multiplicative, that is errors
propagate down a processing pipeline and the final output may be quite poor de-
spite high effectiveness for each of the individual components. For other systems,
however, the overall effectiveness can be much higher than one would expect given
individual component-level effectiveness. As Resnik [438] notes these systems rep-
resent cases where some components are able to compensate for the poor quality of
other components. One example of this is in cross-language information retrieval
(CLIR) where the user issues a query in one language to retrieve documents in an-
other language. If we consider CLIR systems as having a translation component and
a search component, given that the accuracy of automated translation systems is
quite poor (relative to humans performance), one might expect the performance of
a CLIR system to be lower than a monolingual IR system. Yet it is shown that both
cross-lingual and monolingual IR systems have comparable performances. Resnik
attributes this to the inherent redundancy in documents and queries as a means of
compensating for the poor translation quality.

3.5.1.2 Next Steps

Given the complementary benefits of intrinsic and extrinsic evaluation methods and
the observation that a poor component-based evaluation results does not necessarily
correspond to a poor end-to-end performance, we consider three main evaluation
criteria to reliably investigate the efficacy of knowledge-graph based representations
of search results on the exploratory search outcomes.

1. [Evaluation Requirement 1] Efficacy of knowledge graph based representa-
tions of search results in supporting exploratory search tasks should be evalu-
ated independently from the effect of errors in the output of current IE systems.
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That is, we consider an ideal version of our IE algorithm’s output, where there
are no extraction errors and no extraction is missed so that we can isolate
the effect of extraction errors from the efficacy of perfect knownledge graph
representations on search outcomes.

2. [Evaluation Requirement 2] Since the main goal of designing the informa-
tion retrieval and extraction tool is to support exploratory search tasks, an
extrinsic evaluation method is preferred as it can assess the impact of extracted
entity-relationship tuples on the outcome of exploratory search tasks.

3. [Evaluation Requirement 3] Measuring the impact of the information re-
trieval and extraction tool under real-world circumstances (i.e. erroneous
knowledge graph representations) is also useful as it can provide an ecologi-
cal validity for our findings. An intrinsic approach that directly evaluates the
output of our designed IE tool can provide a mechanism to artificially control
and inject errors to the output of an IE algorithm and observe its impact on
the final search outcome.

In order to satisfy these three requirements we outline an evaluation framework
as follows;

• To satisfy the first requirement, two experts manually revise the output of the
IE algorithm such that the extraction errors including incorrect entity bound-
aries and inaccurate relation labels are fixed. Further, any sentence that con-
tained a valid triple but did not lead to an extraction by the system is manually
processed by the experts following the same steps as our designed algorithm.

• To satisfy the second requirement, we use the gold dataset that is resulted from
the manual refinement of the output of our IE tool to populate our knowledge
graph representations which are then incorporated by the second component of
our search framework, the Search UI. Next we evaluate the efficacy of these rep-
resentations as a part of our search UI using representative search tasks and
controlled lab studies. Essentially, representations that are populated with
gold entity-relationship data provide an opportunity to focus on improving the
interactive and visual aspects of knowledge graphs while the underlying infor-
mation is as accurate as the textual content of retrieved documents. Chapters
4-6 elaborate on these efforts.

• Finally, using the final version of our knowledge graph interface we look at
the effect of error-prone representations in supporting information seeking. To
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this end, we create multiple versions of our entity-relationship datasets with
varying levels of errors and omissions, and evaluate the impact of these er-
roneous representations on the outcome of search tasks. Intrinsic evaluations
are used to provide a lower bound for the accuracy and coverage of automati-
cally generated knowledge graphs, while the gold dataset can serve as an upper
bound. Chapter 7 reports the findings of our investigation of impact of errors
in information seeking.

• As a side project, we also explored the idea of evaluating the output of IE
systems using non-expert annotators. We designed guidelines for assessing the
quality of different system extractions and recruited crowdworkers to perform
this annotation task. We present this work in Appendix A.

3.6 Chapter Summary

In this chapter we motivated the need for approaches that extend the document
retrieval paradigm by automatically extracting semantic information from the textual
content of documents retrieved for a query. This extracted information can then be
leveraged to provide a conceptual overview of the documents and assist searchers
with locating relevant fragments of information and how they relate to other concepts
discussed in the documents.

To this end, we developed an information extraction tool as an extension to the
search and document retrieval paradigm and elaborated on the underlying algorithm.
In a nutshell, the work described in this chapter has addressed the first requirement
of designing solutions for supporting exploratory search activities specified in our
thesis statement, essentially to provide information and not documents in response
to users’ complex information needs. In the next chapter, we utilize our developed
IRE module to populate an entity-relationship dataset given a set of documents
retrieved for some sample topics. This dataset is then used to generate knowledge
graph representations corresponding to these topics.
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Chapter 4

Exploring a Knowledge Graph
Extension

The power of the unaided mind is highly overrated. Without external aids,
memory, thought, and reasoning are all constrained. But human intelligence
is highly flexible and adaptable, superb at inventing procedures and objects
that overcome its own limits. The real powers come from devising external
aids: it is things that make us smart.

– Norman, 1993, p. 43

Chapter 3 motivated the design of a new search paradigm which combines the
textual representation of retrieved documents with their corresponding knowledge
graphs in order to better support sensemaking activities. Given our developed infor-
mation Discovery tool, Open IE algorithms can be employed to automatically extract
entity-relationship tuples from the text of retrieved documents. In this chapter, we
focus on representing these tuples as a Knowledge Graph extension to documents
content. Essentially, we begin to examine the efficacy of such a search framework that
extracts and represents semantic information from a set of documents in supporting
information seeking activities.

The main idea behind this framework is based on combining knowledge graphs
with document retrieval in order to provide a conceptual overview for the information
space. Knowledge Graphs have been widely used to promote meaningful learning as
well as browsing knowledge and navigation. However, there is limited insight into how
these graphs can be utilized by searchers to aid with locating relevant information
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and making sense of them. Our initial study, presented in this chapter, challenges the
models that focus on either traditional document retrieval or the use of linked data
for finding relevant information. The findings demonstrate that knowledge graphs
and the coherent content of textual documents are both crucial for supporting users
during their exploratory activities.

4.1 Motivation

There is a growing realization in the IR community that the current paradigm of
retrieving a ranked list of documents is inadequate in solving complex information
needs [21]. Examples of complex and exploratory search tasks include: learning
about a new domain (e.g., “astronomy 101”) or finding hidden connections between
two events or concepts (e.g., “impacts of WWI on economy”). It can be argued
that current search engines are generally sufficient when the need is well-defined in
the searcher’s mind. However, when information is sought to address broad curiosi-
ties, for learning and other complex mental activities, retrieval is necessary but not
sufficient [597].

In order to bridge the gap between what search engines currently offer with the
support needed for more complex search activities, different extensions have been
proposed (Section 2.3). These solutions focus on retrieving information as opposed
to documents to address the user’s information need. You may recall from Chapter 2
that a dominant technique towards automatic retrieval of information is Information
Extraction. The outcome of these algorithms can be represented as a Knowledge
Graph, that is a network of some domain knowledge represented by labelled nodes
and labelled links between them. Knowledge Graphs (also referred to as Concept
Maps or repositories of Linked Data) have been widely used to promote meaningful
learning as well as browsing knowledge and navigation. As observed by Carnot et al.
[90] the structure of Concept Maps that are carefully constructed may assist learners
in finding information more quickly. When these maps are available, they can provide
a useful structure for understanding new documents, and the new documents can
provide useful context to the knowledge models. [560]

The problem of automatically generating knowledge graphs and databases of
linked data from the web has been well studied. However, there is limited insight
into how these graphs can be utilized by searchers to aid with locating relevant
information and making sense of them. Indeed, better integration of structured
and unstructured information to seamlessly meet a user’s information needs is a
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promising, but underdeveloped area of exploration [21].

There have been some efforts (e.g., [143]) to utilize Linked Data to enable user-
oriented exploratory search systems. However, we believe these graphs, when applied
in isolation, are not sufficient for an effective information finding and sense making,
particularly for more complex search tasks. That is, a hybrid approach that com-
bines the coherent content of text with the organized structure of graphs should be
taken to better support complex tasks. Therefore, we aim at exploring a new search
framework (Section 4.2) and observe how the provided Knowledge Graphs and their
mappings to corresponding documents will be utilized by different searchers to com-
plete both simple and exploratory search tasks. In this chapter we focus on the
interplay between each document and its corresponding graph to gain insight into
how this coupling can support finding and analyzing information. Investigating how
people make sense of information by utilizing this new framework can help us design
an interaction model that facilitates comprehension, analysis and insight.

The main goal of this experiment is to develop a better understanding of how
users search for relevant information using a new design based on Knowledge Graphs
that are derived from text. There are two areas of past research that are motivating
the work presented in this chapter: (1) understanding information seeking behaviors
given different search user interfaces; and (2) approaches that specifically leverage
entities and relationships to support search and browsing. Among the first group,
there is a body of work that focuses on observing users’ behaviour and identifying
the challenges searchers face during their search session, common information seeking
activities among them and gaining insight into how to support these activities (See
Section 2.2.2.2). These findings can help guide the design of search interfaces. Simi-
larly, in this preliminary study we are interested in understanding how a new search
UI that leverages knowledge graph representations of search results along with their
corresponding documents performs across simple and complex search tasks. Fur-
ther, our proposed search framework is inline with the second group of approaches
that demonstrated the efficacy of entity-relationship data for supporting exploratory
search and browsing (See Section 2.4.3).

The main distinctions between our work and these related work are as follows:
(1) Approaches based on faceted search and linked data are mainly limited to named
entities and basic relations (simple predicates or hierarchical) between them. How-
ever, we extract a broader set of entities and concepts and we identify semantic
relations based on dependencies between them. These relations are not limited to a
predefined set of predicates and provide context for understanding the connections
between entities. (2) We generate graphs automatically using the documents collec-
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tion retrieved for the user’s query. Our knowledge graphs thus are derived from the
same information space that the searcher is interested to explore. This is beneficial
because first, the graphs contain the information related to the user’s information
need and second, it provides an interplay between the text and the graph which can
support “comprehension” through discourse relations [348] which is not preserved in
linked data.

The rest of this chapter is organized as follows. In Section 4.2 we introduce our
designed framework that provides two alternative representations of search results
side by side. To evaluate this new interface, in Section 4.3, we conducted a user
study which is exploratory and observational in nature and provides the opportu-
nity to document and analyze interesting interaction patterns. We also identified
frequent interaction patterns performed during an information seeking session (Sec-
tion 4.4). Further investigation of the similarities and differences observed between
simple and complex search tasks can be utilized to understand the reasons behind
the lack of support from the current search engines for complex search tasks. Finally,
we examined the obstacles and challenges faced by the participants during their ex-
ploration and propose future directions that can lead to better understanding of the
requirements of a new search UI that supports information seeking activities (Section
4.6).

4.2 Enabling a New Search Paradigm

We propose a new search framework that takes advantage of knowledge graphs to
mitigate the problem of information overload by providing a semantic organization
of the information space. We also argue that knowledge graphs cannot enable an
effective framework for supporting complex search tasks if applied in isolation. In the
following subsections we provide an outline of our general framework and we describe
how this new framework can be employed to support searchers during information
seeking activities.

4.2.1 The Proposed Framework

Given the current document retrieval paradigm, searchers need to make sense of the
long lists of ranked results provided by search engines. In fact, the lack of effective
overviews challenges users who seek to understand these results. We envision the
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following qualities that Knowledge Graphs can offer to minimize this challenge:

1. They provide a fine grained representation of articles and enable searchers to
retrieve relevant pieces of information (rather than documents) for their query;

2. They visualize how different entities and concepts are connected in a domain;

3. They provide an overview (i.e., the big picture) of the information space related
to the user’s topic of interest;

4. They demonstrate the salient entities related to a topic.

Although Knowledge Graphs could be powerful tools to support navigation and
learning for exploratory search, they cannot replace the document search and re-
trieval for searchers. Each document represents facts (described in sentences) in a
particular order, which is coherent and meaningful. This ordering helps with identi-
fying the connections between different facts, which are not preserved in the graph
representation.

When we extract information from text and restructure it as a knowledge graph
to visualize semantic relations between concepts, we lose discourse relations (i.e.,
information on how two segments of discourse are logically connected to one another)
which are crucial for comprehension and inference from a text.

Hence, there should be an interconnection between the documents and their cor-
responding graphs in order to overcome the shortcomings of each representation of
search results in isolation. We hypothesise that a hybrid approach, which combines
the structure of graphs and the coherent context of text, should be used to better
aid information seeking activities. We believe such a framework can engage users
more fully in the search process. As the searcher explores, each graph provides a
graphical summary for each document. They could be considered as advanced tables
of content that point to the more interesting parts of a possibly long article and help
with getting the big picture at a glance.

In order to design a framework which supports a seamless interaction between
documents and their corresponding graphs, we identified different types of edges and
connections:
Connecting each document to its corresponding graph: In each document,
only the sentences containing an extracted triple (entity1, relation, entity2) are linked
to their corresponding part of the graph and vice versa. Therefore, when the user
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skims a document these sentences are highlighted and linked to the graph. So the
user can switch to browsing the graph to explore a particular entity (most commonly,
a named entity), the related entities and how it connects to the other parts of the
article.
Connecting the graphs: Documents fetched for the user’s query may discuss
different aspects of the same topic or provide different perspectives. Therefore, the
corresponding graphs are not independent of one another. The same domain terms
and entities appear in these graphs and they have to either be represented as a
single node in the aggregated graph, or mapped through a set of inter-graph links
to preserve these connections. These links indicate how different parts of different
documents are related to each other. These links can also be helpful when a user is
analyzing the documents in a sequence. The user can start with the first document
and take advantage of the corresponding graph as a structured summary, which
guides her through understanding this document. Then she moves on to a new
document and extends the current graph to represent both documents. This way,
the user can keep track of the facts “she already knows” and the ones which are
covered in the new document. She can also identify the common facts covered by
both documents. She can build on this graph by incrementally adding a document to
his collection. The research described in this dissertation leverages the first type of
mappings, i.e., the links between different elements of the knowledge graphs and their
corresponding segments in the documents and reserves the second type of mappings,
that connect knowledge graphs derived from different documents for future work. A
Sample Search Scenario.
Consider the following scenario: while reading an article about “Napoleon’s invasion

of Russia”, the user comes across the entity “Treaty of Tilsit”. By traversing to this
node in the graph, she analyzes a set of related facts, which includes:

• Which countries first signed this treaty? Which countries followed later?

• When was this initially signed and why?

• What were the terms of this agreement?

The user can then go back to the article and resume reading (while she now has
a better understanding of this topic) or navigate through the graph and explore a
different part of the article based on where the graph takes her. The nodes and
facts in the graphs are also linked to their corresponding text in the documents.
Therefore, the readers can clarify the interesting facts they observe in the graph.
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They can also navigate to the sections of the texts that are more appealing to them
without needing to read through an article in a linear fashion.

Also, consider a scenario in which a searcher is trying to find out the “impacts
of WWI on economy”. The following two facts are extracted from an article: “many
of America’s men were serving overseas in the war” and “companies allowed women
to work in previously male only jobs”. While these two facts are located in close
proximity in this article, they are positioned at two disconnected parts of the graph.
By traversing the graph only, the searcher cannot discover any connection between
these two seemingly unrelated facts. Hence, there should be an interplay between
the graph and the document in an effective search paradigm.

4.2.2 Evaluating the New Framework

In the previous section we hypothesized that coupling a set of retrieved documents
with their corresponding knowledge graphs, which represents the salient entities and
underlying relations in a domain of interest, can provide a more effective search
experience for the user, especially when investigating more complex search tasks.
In this experiment we focus on the interplay between each document and its cor-
responding graph to gain insight into how this coupling can support information
seeking. Therefore, we do not investigate the effects of connecting different docu-
ments through knowledge graphs and the incremental extension of a graph in this
work. We formulated a list of research questions to investigate our hypothesis:

1. How is this framework used for finding relevant information?

(a) Which features of the graphs are used more frequently by the participants?

(b) Is there a difference in this usage across two different types of search tasks?

(c) What is the most common starting point for the searchers? The graph side or
the document side?

(d) Is the starting point affected by the complexity of the search task?

(e) What are the common activities across the searchers who start their exploration
from the same side?

2. How does this framework provide support for locating relevant information?

(a) What are the most common interaction patterns that correspond to finding
relevant information?
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(b) Are these patterns affected by the complexity of the search tasks?

(c) To what extent do the graphs contribute to locating relevant information?

(d) Do nodes and edges in the graphs provide different types of support for finding
relevant information?

(e) Does the complexity of the search task affect the effectiveness of the graphs (and
in turn nodes and edges) in locating relevant information?

In order to find answers to these questions we designed a user study in three steps:
(1) Extracting Knowledge Graphs from Text, (2) Mapping Graphs and Documents
and (3) Employing search tasks with different levels of complexity. The following
subsections discuss these steps.

4.2.2.1 Generating Knowledge Graphs and Mappings

We designed an Open Information Extraction system that processes a text collection
and generates (entity-relation-entity) triples [474]. This tool, as a part of an Infor-
mation Discovery framework, was described in Chapter 3. Here we provide a high
level overview of the underlying algorithm.

This module is implemented in four phases. During the first phase we create the
input corpus by collecting retrieved documents based on a given query. Next, we
extract entities from text using state-of-the-art entity taggers. We then select the
sentences that contain at least two entities in them and parse them using Stanford
Dependency Parser. For each sentence, we extract meaningful relations between the
entities by finding the shortest path in the corresponding parse tree. We derived
a set of heuristics from the parser’s dependency patterns that lead to semantically
meaningful relations. In the final phase we generate labels for the extracted relations
and rank them based on relevance to the query and the informativeness of the ex-
traction. Since we are investigating the effectiveness of employing knowledge graphs
to provide support for exploratory search tasks, we assure the generated graphs are
accurate. Therefore, some minor errors that were caused by ER extraction and label
generation modules were revised by an expert.

For each document in our result list, we created a corresponding knowledge graph
and mapped all entities and relations to their corresponding parts of text. All nodes
and edges in the graphs as well as their mentions in text are clickable. These map-
pings provide an interplay between text and graphs and are made possible because
our graphs are derived from the same set of documents. This is one key advantage

115



of this framework as compared with systems that employ external resources such as
DBPedia to aid information seeking.

4.2.2.2 Simple and Complex Search Tasks

People’s day-to-day search activities can vary greatly in their motivations, objectives,
and outcomes. These search activities can be broadly classified into two groups:
“Simple” and “Complex”. Simple search tasks are similar to “known-item” search
tasks and usually involve looking up some discrete, well-structured information ob-
ject: for example numbers, names and facts [352]. Complex search tasks, on the
other hand, are seen to be more exploratory and involve investigating, learning and
synthesis of information [605].

What really differentiates simple and exploratory search tasks is the clarity of
the information need, the familiarity the searcher has with the task domain, and
the analysis and understanding involved [597]. These factors invariably affect how
searchers interact with information, and how they search and browse. In this exper-
iment we investigate (1) how the complexity level of a given search task affect the
searchers’ information seeking behaviour and (2) how well the designed framework
supports these two types of search tasks.

4.3 Designing the Experiments

We designed a within-subject study in which each participant needed to complete
two search tasks using the same interface. We conducted our experiments within
the framework provided by the TREC 2007 Question Answering track. We followed
the guidelines from QA and CiQA tracks [133] to design a “simple” task and a more
complex and open ended search scenario (“complex” task).

For the complex task, the searchers were required to find as many relevant sen-
tences as possible within a 10 minute time limit. They were given the following task
description: “What is the position of [California] with respect to [stem cell research]?
– “The analyst wishes to know if Californians generally support stem cell research
and what actions they are taking to accomplish the research.” For the simple task,
the searchers were given the topic “Lyme disease” and a short list of questions (e.g.,
“what organism causes Lyme disease?”) and they were required to find answers to
these questions by providing the corresponding sentence and document number from
the given list based on a fixed query.
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Figure 4.1: A sample coupling of a document and its corresponding knowledge graph
in the designed interface

4.3.1 Construction of Results Lists

We created a list of 10 documents for each search task. In order to investigate
the contribution of the graphs in identifying relevant documents we used different
procedures to construct artificial result lists. For the complex task we were interested
to see how many nuggets (i.e., a piece of text containing relevant information) would
be found by the searchers. Therefore, we retrieved all documents related to the given
topic and ordered them based on the number of nuggets they contained (as identified
by NIST assessors). We then created our list by selecting the top 10 documents and
shuffling them so they are not placed in that order.

For the simple task we constructed a list by adding a mix of relevant documents
that contained nuggets (answers to the factoid / list questions) and the ones that did
not. We refer to them as “good” and “bad” documents respectively. We distributed
the “good” documents evenly throughout the list. This will assure the participants
will have to explore the entire list to be able to find all the answers. Hence, we are
able to investigate if the graphs can be used to identify “good” documents faster,
while they can also be used for locating relevant sentences inside each document.
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4.3.2 Experiment Setup

We recruited 20 (6 female) participants from a very diverse pool for this study, all of
whom use the Internet on a regular basis to search for information. They ranged from
students to senior engineers and faculty members. Their study area covered many
major areas of Computer Science, Architecture, Chemistry, Biology and Physics.

The participants were given 10 minutes to complete each task. They also needed
to complete two post-task questionnaires that would assess their familiarity with the
topic and the experience they just had. We used questionnaires provided by TREC-
9 Interactive Searching track1 and modified them to fit into our experiment design.
Two of the participants did not finish the experiment so we excluded their data from
our analysis. In order to control for order effects, we rotated the order in which
the tasks were assigned to the participants. That is, participants were randomly
divided into two groups of equal size and one group started with the “simple” task
while the other group started with the “complex” task. By the end of both tasks,
the participants were asked to share their feedback about the effectiveness of the
search interface and knowledge graphs for search by responding to a more detailed
questionnaire. Participants were also monitored during the search sessions and the
computer screen was captured for a later review.

4.3.3 Search Interface

We utilized a search interface implemented by the InsightNG company based on our
design for conducting the user study. This interface has two panes (Figure 4.1). The
left pane resembles a modern search engine’s result page which provides a list of
10 documents along with their titles and text snippets. Clicking on each of these
items would load the full document on the left and the corresponding graph on the
right side. On the document side, all terms with corresponding nodes in the graph
were highlighted in yellow while the parts of the text corresponding to an edge (i.e.,
relationship) were highlighted in grey. The user could explore the article by either
browsing the graph or reading through the documents. We implemented mappings
between corresponding elements of the text and the graph such that clicking on one
would highlight the other. For example, clicking on a node in the graph will highlight
all corresponding terms in the text in green. Besides, clicking on an “entity” or
“relation” from the text would center and zoom on that element in the graph.

1www-nlpir.nist.gov/projects/t9i/qforms.html
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4.4 Results and Observations

While retrieving relevant information is the goal of all information seeking systems,
we cannot successfully design an effective approach unless we learn about searcher’s
information seeking patterns. By assessing the designed interface we were mainly
interested to learn how people go about finding information. For example, will they
navigate through the graphs to find an answer to their question? Or will they make
use of the graphs to locate where to read in the text. By looking through the
data collected by questionnaires and observing the participants using the designed
search interface, we gained interesting insight into the common user behaviour during
information foraging activities.

GCN Clicking on a node in the graph
GCE Clicking on an edge in the graph
DCN Clicking on an entity mention in the document
DCE Clicking on a relationship mention in the document
SfG Starting from the Graph side
SfT Starting from the Document side
B2G Switching to the Graph side
B2T Switching to the Document side
RM reading the mention of an entity/relation in text
RF exploring an entity in the graph by looking at related nodes and

connection of this entity
DC dragging the canvas around
DR reading the document text
GR reading the node/edges labels in the graph
CP Copy-Paste an answer to the answer sheet
SD — SU Scrolling down / up the text
B2R going back to the SERP

Table 4.1: Actions and their notations

We defined a set of actions by observing the activities performed by different
participants over the course of their interaction with the system. Table 2 lists the
more prominent actions. For each participant 2 sequences of actions (one per search
task) were generated by using the logs of screen videos and observing the users’ in-
teraction with the system during the experiment. For each search task we calculated
the frequency of all subsequences of length 1 to 5. We call each of these subsequences
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an “interaction pattern” (or “pattern” in short). We filtered out the patterns with
a frequency below 5. Since none of the patterns of length 5 passed this threshold
we did not consider the patterns of length more than 4 in our analysis. The follow-
ing subsections discuss frequent patterns observed during each search task and how
participants exhibited different behaviour during four main activities: (1) switching
between the graph and the text mode; (2) taking advantage of nodes and edges to
locate relevant information and (3) getting started with the exploration; (4) in the
end, we investigate the common patterns that led to locating an answer and compare
them across two tasks. We examined the statistical significance of our observations
using a paired t-test. Also, for all the tables Simple and Complex tasks are denoted
by SP and CX respectively.

4.4.1 General Characteristics of Interaction Patterns in Sim-
ple and Complex Tasks

In this work, we are interested to identify the “interaction patterns” that are com-
mon in both search tasks and the ones that are more pertinent to one of the tasks.
We hypothesise that identifying these similarities and differences can help us under-
stand the characteristics of simple and complex search tasks and how this will affect
searchers interaction behaviour.

Table 4.2 lists the top five frequent patterns of length 1 to 4. As can be seen in
this table the pattern B2T→RM (i.e., switch from the graph to the text and read
the mentions of the recently clicked node / edge) was the most frequent pattern of
length 2 for both tasks. This pattern corresponds to making use of the graphs to
highlight the areas in the text that user is interested to read. Also, we can see that
patterns starting with a GCN (i.e., clicking on a node in the graph) are the next top
two frequent patterns of length 2 for the simple task. These patterns correspond to
clicking on a node in the graph and then either going back to text (GCN→B2T) or
exploring the related entities and the connection to the current entity (GCN→RF).

Among the longer patterns we observe clicking on a node, switching back to the
text and reading the mentions is the most frequent pattern of length 3 for the simple
task. This pattern repeats followed by a CP (i.e., locating an answer) as the top fre-
quent pattern of length 4 for this task. Interestingly, a similar pattern occurs for the
Complex task with one distinction: while clicking on a node is the most likely pattern
to end in locating an answer for the simple task (i.e., GCN→B2T→RM→CP), click-
ing on an edge is more effective for the Complex task (i.e., GCE→B2T→RM→CP).
We will discuss these patterns in Section 4.4.5.
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Length of the Pattern
1 2 3 4

pattern freq pattern freq pattern freq pattern freq

SP

GCN 190 B2T → RM 93 GCN → B2T → RM 61 GCN → B2T → RM → CP 20
B2T 151 GCN → B2T 70 B2T → RM → CP 34 B2T → RM → CP → B2G 17
B2G 123 GCN → RF 52 SFG→ GCN → RF 26 DC → GCN → B2T → RM 14
DC 117 SFG→ GCN 49 RM → CP → B2G 18 GCN → B2T → RM → B2G 13
RM 115 RM → CP 42 GCE → B2T → RM 16 GCN → B2T → RM → B2R 10

CX

B2T 135 B2T → RM 76 B2T → RM → CP 42 GCE → B2T → RM → CP 24
CP 129 RM → CP 65 GCN → B2T → RM 39 B2T → RM → CP → B2G 17

GCN 122 GCN → B2T 48 GCE → B2T → RM 32 GCN → B2T → RM → CP 16
RM 110 CP → B2R 38 RM → CP → B2G 18 GCN → B2T → RM → B2G 10
B2G 98 GCE → B2T 37 B2T → RM → B2G 17 SFG→ GCN → B2T → RM 9

Table 4.2: Top 5 frequent “interaction patterns” of length 1 to 4

We also looked at the distribution of main activities between the two tasks (Table
4.3). For each pattern we report its conditional probability followed by its frequency
(aggregated over all 18 participants). We calculated the conditional probability of
(A→ B) by applying Equation 4.1. For example, the action B2G was observed
123 times in total during the simple task and it was followed by the action DC
in 27% of the cases (33 out of 123). Please note that the same equation is used
for calculating the percentages in Tables 4.4 to 4.6. Also, in all these tables the
frequency of patterns are reported in parentheses and the shaded rows indicate the
frequency of the preceding action (i.e, A in A→ B).

P (B|A) =
freq(A→ B)

freq(A)
(4.1)

These results indicate:
(1) Switching between Graphs and Documents: overall, switching back and forth be-
tween two sides was done similarly in both tasks (ρ > 0.1);
(2) Click patterns: Nodes v.s. Edges: In both tasks participants tended to click on
nodes more than the edges. This trend was strongly significant for the simple task
(ρ < 0.001)
(3) Click patterns: Simple v.s. Complex: on the other hand, the edges were used
more frequently during the Complex task than the Simple task (ρ < 0.1);
(4) Starting the exploration: Graphs v.s Text as a starting point: finally, while par-
ticipants started their search from the graph more than the text, it was a strongly
significant trend for the simple task (ρ < 0.001). Also, starting from text was done
significantly more for the Complex task than the simple task (ρ < 0.05).
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Switch Sides Clicks Starts
B2G B2T GCN GCE DCN DCE SfT SfG Total

SP 8% (123) 10% (151) 12% (190) 2% (31) 3% (43) 0.3% (5) 2% (30) 5% (78) 1531
CX 7% (98) 10% (135) 9% (122) 3% (47) 3% (46) 1% (11) 3% (43) 4% (57) 1347

Table 4.3: Distribution of Actions between Tasks

4.4.2 Switching between Graphs and Documents

As we discussed in Section 4.2.1 Graphs and Documents both provide different types
of support for users who are searching for information. We were interested to identify
the main activities that led the participants to switch from the text to the graph or
vice versa. To this end, we analyzed the frequent patterns starting with a “B2G”
(switching from text to graph) or a “B2T” (switching from graph to text).

action % action %

SP

B2G→ DC 27% (33) B2T → RM 62% (93)
B2G→ GCN 27% (33) B2T → DR 8% (12)
B2G→ RF 15% (19) B2T → DCN 6% (9)
B2G (123) B2T (151)

CX

B2G→ DC 29% (28) B2T → RM 56% (76)
B2G→ GCN 23% (23) B2T → DR 10% (13)
B2G→ B2T 13% (13) B2T → DCN 8% (11)
B2G→ RF 8% (8) B2T → CP 6% (8)
B2G→ GCE 7% (7) B2T → SD 7% (9)
B2G (98) B2T (135)

Table 4.4: Reasons for Switching to Graph / Text

As indicated in Table 4.4 (1) for both tasks clicking on a node (GCN) and dragging
the canvas (DC) were the most frequent actions taken by the participants right after
switching to the Graph side; (2) while learning about an entity (RF) was the third
frequent action for the simple task, going back to the document again (B2T) came
third for the Complex task. This distinction is significant (ρ < 0.01). That could
be an indicator of the fact that after switching to the graph the participant was not
sure where to start from or where to go next. Therefore, they decided to go back to
the text again; (3) one interesting observation is that the top three main activities
after going back to the text were similar for both tasks, with similar likelihood.
Furthermore, RM (i.e., “reading a mention”) was by far the most dominant activity
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once the participants switched to the document side (ρ < 0.001). This corresponds
to making use of nodes or edges in the graph to find out where to read in the text.

4.4.3 Click Patterns: Node v.s Edges

This user study revealed that different searchers take advantage of the provided graph
in a variety of ways: while some participants found the edges more effective to locate
relevant pieces of information, others made use of the mappings between nodes and
text to find important terms more quickly in text. We used the click patterns to
investigate if nodes and edges are used differently across the two tasks. Overall, we
observed similar patterns for clicking on nodes and edges for both tasks.

action % action %

SP

GCE → B2T 74% (23) GCN → B2T 37% (70)
GCE → B2T → RM 52% (16) GCN → RF 27% (52)

GCN → GCN 8% (15)
GCN → DC 12% (22)

GCE (31) GCN (190)

CX

GCE → B2T 79% (37) GCN → B2T 39% (48)
GCE → B2T → RM 68% (32) GCN → RF 25% (31)

GCN → GCN 11% (14)
GCN → DC 7% (8)

GCE (47) GCN (122)

Table 4.5: The most likely actions after a Click

As can be seen in Table 4.5, most of the clicks are followed by reading a mention.
This action is by far the dominant action performed after clicking on an edge (16

31

and 32
47

) and no other frequent pattern starting with a GCE is observed. However,
reading the mentions of a node is not as dominant (ρ > 0.1) and it is followed closely
by exploring an entity by reading its connections to other nodes (i.e., GCN → RF ).
The only noticeable difference observed between the two tasks is that reading the
mentions of an edge was done more frequently for the Complex task (ρ < 0.05).

4.4.4 Starting the Exploration

We also identified the common activities performed by the group who start their
exploration from the Graph side (SfG) compared with the group who start from the
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Document side (SfT). Table 4.6 lists the most frequent patterns starting with a SfG
and the ones starting with a SfT.

action % action %

SP

SFG→ GCN 63% (49) SFT → DCN 43% (13)
SFG→ DC 9% (7) SFT → DR 27% (8)
SFG→ GCE 4% (3)
SFG (78) SFT (30)

CX

SFG→ GCN 60% (34) SFT → DCN 33% (14)
SFG→ GR 14% (8) SFT → DR 26% (11)
SFG→ DC 11% (6) SFT → CP 23% (10)

SFT → DCE 7% (3)
SFG (57) SFT (43)

Table 4.6: Starting from the Graph v.s. Starting from the Document

By analyzing these patterns, we observed that clicking on an entity was the very
first action taken by participants regardless of their starting point (graph or text) and
the task (ρ < 0.001). However, for the group who started their exploration from the
graph side, clicking on an entity was by far the most dominant action (around 60%
for both tasks). On the other hand, for the group who started from the document
side, the top two patterns (i.e., clicking on an entity in text (DCN) and reading the
text (DR)) were not significant (ρ > 0.1).

In fact, “query nodes” was identified as the main starting point for exploring the
graph. One should note that since the participants did not submit a query to the
system, we refer to the main entities in the task description as “query nodes”. While
for the complex task “California” and “Stemcell*” nodes were clicked in 72% of the
cases, “Lyme*” nodes were selected in 63% of the cases once participants started
their search from the graph side.

Another observation for the group who started from the graph was that exploring
the graph (corresponding to DC and GR activities) was done more frequently for the
complex task (25% compared with 9% for the simple task) and the difference was
significant (ρ < 0.05).

4.4.5 Common Patterns for Finding Answers

The conducted user study clearly indicated that the current stage of the new interface
provided different levels of support for different types of tasks. We conducted a post-
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task questionnaire to gauge participants’ preferences for interacting with knowledge
graphs versus documents texts as well as their rationales behind switching from one
side to another in the UI provided. Out of 18 participants, 9 found the availability of
a knowledge graph very useful for the simple task, while they preferred the text view
for the Complex task. However, 4 found the graphs more useful for the complex task
and 4 mentioned the graphs were useful for both tasks. One participant preferred the
text for both tasks. As commented by most participants, the graphs were the most
effective when the searchers were clear about what information they were looking for
(e.g., an answer to a specific QA question). However, when the nature of task was
complex (e.g., CiQA topics), they were not sure how to navigate in the graphs and
would mostly go through the text to find relevant information. Table 4.7 summarizes
the participants’ preferences in regards to the representation (knowledge graph versus
documents) as well as their main motivations for leveraging these representations.

Types of documents the graph is
useful for

Longer documents 11
with a lot of names 10

more technical 8
Locate certain pieces of information 12

Main benefits of using graph Get the big picture / overview of
document

11

Connecting pieces of information 11
To explore related entities 14

Switching from document to
graph

To look at the big picture 8

To locate a more interesting part of text
to jump to

8

To Further read about a fact 11
Switching from graph to

document
To learn more about the current

element of graph
11

To understand a label in graph 8

Table 4.7: Summary of Searchers Preferences

In this experiment we assume the Rationality Principle [418] holds. That is, the
searchers’ behaviour is purposeful and hence they carry out a sequence of actions
to achieve some goal. As mentioned, the participants interacted with our system
in order to find a set of “answers” for two different tasks within a 10 minute time
limit. These answers were evaluated by using NIST judgements provided by TREC.
For the QA task, participants found 2.42 correct answers on average to the 5 factoid
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question. For the CiQA topic, there was a total of 2 vital and 13 okay nuggets present
in the 10 listed documents, out of which the participants were able to retrieve 0.63
vital and 2.0 okay nuggets on average.

One of the most interesting outcomes of analyzing the interaction patterns was
to identify the ones that led to locating an “answer”. While for the simple task an
answer is a known factoid (mostly an entity), for the Complex task an answer is a
snippet of text that contains some evidence or support for a given statement. We
created state diagrams that illustrate the patterns that led to locating an answer.

Figure 4.2: State Diagram for Frequent Patterns that Led to an Answer - Simple
task

As depicted in Figures 4.2 and 4.3, blue states (circles) correspond to the Graph’s
contribution and green states (octagons) correspond to the Document’s contribution
in finding an answer. The state RM could belong to either of these two groups based
on the preceding nodes in this state diagram. Links labels indicate the probability of
transition from the source state to the destination state regardless of other states in
this graph. This is the conditional probability calculated using Equation 4.1. Also,
each state contains a weight that indicates the probability of getting to an answer
by starting from this state. That is, traversing the state diagram starting from this
node and ending at CP. Since for some states there are multiple paths leading to CP,
we select the path with the maximum probability and record this path as the best
candidate pattern for leading to an answer. We calculated these probabilities using
Equation 4.2.

P (statei) =
max(freq(statei → ...→ stateCP ))

freq(stateCP )
(4.2)
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Figure 4.3: State Diagram for Frequent Patterns that Led to an Answer - Complex
task

Where max(freq(statei → ...→ stateCP )) indicates the frequency of the most
repeating patterns that starts from statei and ends at CP ; freq(stateCP ) indicates
the total number of paths that lead to CP . That is, the sum of all maximal patterns
ending in CP . For example, in Figure 4.2, starting from B2T there are three paths
that lead to CP:

(a) B2T→CP with a probability of 0.08;

(b) B2T→RM→CP with a probability of 0.52;

(c) B2T→RM→DR→CP with a probability of 0.06;

Therefore, we consider path (b) as the most successful path that starts from going
back to text and ends at locating an answer. We removed the less likely patterns
from these diagrams for the sake of clarity. Therefore, the probabilities of edges
exiting from a state do not sum to 1 in these figures.

We made the following key observations:
(1) Overall, there are more distinct paths (i.e. maximal repeating patterns) that
lead to an answer for the complex task (129 paths) than the simple task (65 paths).
This resulted in a more complex structure depicted in Figure 4.3.
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(2) Graphs were more likely to initiate a path to an answer for the simple task than
the Complex task (0.52 v.s. 0.33 respectively ; ρ < 0.05);
(3) In the cases that using the Graph led to finding an answer, nodes are more likely
to be the contributing factor for the simple task (0.31 v.s. 0.14 ; ρ < 0.05). However,
clicking on an edge was significantly more beneficial for locating an answer in the
Complex task than the Simple one (0.14 v.s. 0.19 ; ρ < 0.05);
(4) The paths starting from RM were the most likely paths that ended in CP . These
patterns correspond to finding the answers by going through the mentions of entities
and relations in text.

4.4.6 Summary of Findings

In this section we revisit our research questions from Section 4.2.2 and discuss our
findings.

1 (a-b). Overall, the participants clicked on nodes more than the edges in both
tasks. This trend was strongly significant for simple task, while edges were clicked
more during the complex task.
1 (c-d). Overall, for both simple and complex tasks, the participants started their
exploration from the graphs more than the documents. However, this trend was
significantly stronger for the simple task. Also, starting from the document side was
done more frequently for the complex task than the simple task.
1 (e). While clicking on an entity was the main activity done by the group who
started from the graphs, it was strongly significant for the simple task. On the other
hand, exploring the graph was a significant pattern for this group during the complex
task.
2 (a-b) Figures 4.2 and 4.3 depicted the most frequent patterns that involved finding
an answer by the participants. While there are similar patterns observed across two
tasks, the set of patterns for the complex task was more diverse.
2 (c-d-e) Overall, the graphs provided more support for the simple task as compared
with the complex task. Also, nodes were proved more useful in locating an answer
for the simple task, while edges appeared more frequently in that paths that led to
an answer during the complex task.
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4.5 Discussion

Our findings have implications for designing a search framework that is effective in
supporting complex and exploratory search tasks.

Our quantitative results indicated that participants who started their explorations
with the graph side engaged in graph exploration activities (e.g. exploring nodes and
relations and navigating through the canvas) much more frequently during the com-
plex search task than the simple task. This difference was significant. As well, the
more complex structure of the diagram in Figure 4.3 indicates that searchers take
a more diverse set of paths to an answer when performing complex search tasks.
These observations can provide some ground for the need to offer more advanced
mechanisms for interacting with information than what is currently offered by mod-
ern search engines. In fact, information seekers are more motivated to explore the
information space during complex search tasks. Further, different searchers exhibit
different information seeking behaviour in order to locate the relevant pieces of infor-
mation in retrieved documents. A better understanding of the common interaction
patterns can help the search engines to identify and facilitate these search tactics.

We also observed how nodes and edges in our knowledge graphs were utilized
differently during simple and complex search tasks. It is not surprising to see that
nodes contributed to locating factoid answers while edges were utilized mainly for
locating relevant nuggets in the complex task. To elaborate, since the answers for
the simple task are entities, nodes should be more helpful to locate the factoid
information in text. On the other hand, relevant evidence supporting the “position of
California w.r.t Stemcell research” is expressed by sentences / text snippets and more
context is required to judge and identify these answers by the searchers. Therefore,
edges provide more support for locating more complex information. This finding
was also observed in Table 4.2 as the “interaction pattern” of length 4, denoted
by [GCE→B2T→RM→CP] was more frequent as compared with its counterpart
[GCN→B2T→RM→CP] for the Complex task and the opposite was true for the
simple task.

An interesting takeaway is that edges in knowledge graphs incorporate rich se-
mantic information which can assist the sensemaking activities and provide more
context for how different concepts are connected in a domain. Other spatial in-
formation representations such as hierarchical structures (e.g. faceted browsers or
tables of content) may not be as effective as their edges encode simpler Is-a type
relationships.

Overall, applying IE techniques to highlight the mentions of key entities and
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the relations connecting them in text appears to be beneficial for locating relevant
information. This is illustrated in the state diagrams as the probability of starting
from RM and ending at CP .

4.5.1 Limitations of the Current Framework

While our work provided an initial foray into designing a knowledge graph extension
to the documents retrieval paradigm, it is clear that the current search framework
has many limitations in supporting complex and exploratory search tasks. In fact,
while our motivation for leveraging knowledge graph representations was to assist
sensemaking and exploration activities, these graphs were perceived as more benefi-
cial for simple search tasks. That is, our quantitative analysis of search logs indicated
that graphs were more likely to initiate a path to an answer in the simple task than
in the complex task.

A closer examination of participants’ qualitative comments regarding the util-
ity of graphs and documents for completing the designed search tasks helped with
identifying the main shortcomings of knowledge graphs extension in our designed
framework. These shortcomings can be categorized as limitations in extraction and
representation of relevant information as well as interaction with this information.
These shortcomings and candidate solutions to address them are discussed next.

Leveraging External Resources. As we monitored the searchers finding rele-
vant information about a topic they were not very familiar with (e.g., “Stemcell
research”), we realized they were making use of the graphs to learn basic facts (e.g.,
“Stemcells are undifferentiated biological cells”) about the salient entities or the
query terms. However, since documents mostly lack this basic information the cor-
responding graphs would not contain such nodes or links either. Therefore, while
deriving knowledge graphs from the same set of retrieved documents can lead to
generating representations that are relevant to a searcher’s query, augmenting the
generated graphs with information related to the existing entities can be helpful.
These basic facts can be extracted and suggested to the searchers by leveraging
external knowledge sets such as DBpedia that contain entity-relationship triples.

Providing Overviews. We identified a major barrier to effective application of
automatically generated knowledge graphs to complex search scenarios. As noted by
many participants, for the larger graphs, it was not clear where to start and where
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to go next in the graph. This was the main reason mentioned by the participants
who preferred the document text where the nature of the search task was complex.
Since the users of exploratory search systems are usually engaged in complex search
scenarios it is easy for them to get lost or frustrated in the middle of a search session
and just abandon their exploration. It is also very difficult for them to keep track
what they have browsed so far and what is there to explore further.

Hence, exploring different approaches for providing overviews of generated knowl-
edge graphs seem to benefit the searchers. These high level overviews of underlying
knowledge graphs can be utilized as starting points, while they can also assist the
searchers with staying oriented during search sessions.

Enabling Alternative Interaction Paradigms. One of the main challenges for
conducting an effective exploratory search is to mitigate the information overload.
That is, once these graphs become very large, how can the searcher control the scope
of the information they are willing to interact with at any given time.

As identified by many participants, the poor visibility of labels for the large
graphs was the main barrier for utilizing the graphs for exploration and information
finding. Some of the participants mentioned they would like to see only those parts
of the graph that are related to the node they are currently viewing. They found
partially visible graphs less confusing to explore. Therefore, presenting graphs with
different levels of granularity and enabling enhanced interaction mechanisms with
dynamic and on-demand views of these graphs should also be explored.

4.6 Chapter Summary and Next Steps

In this chapter we have reported the results of an initial user study conducted to
develop a better understanding of searchers during information finding and analy-
sis activities using a new search framework that displays documents and knowledge
graphs side by side. We gained valuable insights by observing different information
finding patterns and searchers’ exploration within a new search paradigm. We con-
clude that utilizing graphs of concepts and relationships, which are derived from
documents, can be effective for finding relevant information when the information
need is well defined. Our findings also demonstrate that providing meaningful re-
lations that explain how different entities of a domain are connected are crucial for
supporting more complex search task.
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Probing the relatively limited support provided by our framework for complex
search tasks, we identified three areas of improvement for the current search frame-
work that is designed around coupling knowledge graphs and documents. The first
area of improvements involves efforts in augmenting the extraction of informative
triples through leveraging a variety of existing knowledge bases such as DBPedia.
The second and third areas of improvement focus on representations of these ex-
tracted triples as well as new interaction paradigms to interact with them.

Since the main focus of this dissertation is on providing effective means of repre-
senting these extracted triples as well as new interaction paradigms to explore these
entities and relationships, we envision two main directions to pursue in this disserta-
tion in order to extend the current framework and provide more support for complex
and exploratory tasks: Providing both global and local views of knowledge graphs
as well as enabling alternative interaction paradigms to smoothly transition between
these two views.

Our findings, in many ways, highlight the tension between two alternative ap-
proaches to search: Overview, filter, detail-on demand [495] versus Expand-from-
known [562]. Essentially, knowledge graphs, as low-level representations of entities
and relationships in a domain of interest, seem to be beneficial for browsing the
immediate context-graph around a specific node of interest and then expand the
scope of exploration to other regions of the graph. We observed some instances of
expand-from-known searching among our participants who started their exploration
from query-nodes or the nodes in the graphs that they were the most familiar with.
On the other hand, providing high level overviews of the entire graphs can assist
the information seekers with obtaining a visual preview of how salient concepts of a
domain are laid out and enable a step-by-step plan for exploration.

The next chapter contrasts two different representations of document informa-
tion, hierarchies, designed to focus specifically on these high-level overviews, versus
knowledge graphs, with the goal of quantifying differences in user behavior, perfor-
mance, and perception.
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Chapter 5

Alternative Representations of
Search Results

Information exploration should be a joyous experience, but many commen-
tators talk of information overload and anxiety.

– Wurman, 1989

Chapter 4 reported the results of an initial study on the efficacy of search inter-
faces that combine textual and knowledge graph representations of the search results
in supporting information seeking tasks. The findings highlighted the role of spatial
representations in structuring the information that can help locate relevant informa-
tion when they are coupled with textual content of documents. We also observed
how different representations of the same underlying information can lead to different
information seeking strategies and how the complexity of the search tasks can bias
searchers towards utilizing different components of a representation (e.g. starting
from documents text versus interacting with nodes in the knowledge graphs versus
examining the edges in the graphs corresponding to semantic relationships). Finally,
we identified the main shortcomings of knowledge graphs extension in our designed
framework and the tension between two alternative approaches to search: Overview,
filter, detail-on demand versus Expand-from-known.

In this chapter we directly contrast two different spatial representations of search
results, knowledge graphs (corresponding to the expand-from-known paradigm) and
hierarchies (corresponding to the overview-first paradigm), in order to provide a
broader understanding of how different ways of structuring the search results can
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impact information seeking behaviors and outcomes. More specifically, we are in-
terested in identifying the unique characteristics of each representation as they both
externalize semantic information from textual content and in structuring them in a
2D graphical structure.

The research described in this chapter is the first mixed methods study of multiple
representations of search space, which resulted in identifying their relative strengths
and weaknesses in supporting look-up and exploratory information seeking tasks.
The findings of this work culminated in designing a novel representation of search
results, deemed Hierarchical Knowledge Graphs [475], that enables the user to engage
in two alternative navigation paradigms: they can exploit overview layers to explore
the collection at a higher level followed by targeted immersion in the detailed view
(See Chapter 6).

5.1 Motivation

In the domain of on-line search, the output of current search engines is normally
sufficient for many well-defined online tasks, including navigational queries, trans-
actional queries, and many types of informational queries. However, as we note
in related work, when information is sought to address broad curiosities, e.g. for
learning and other complex mental activities, retrieval is necessary but may not be
sufficient [597, 21]. Specifically, there are many open research questions about how
to design interfaces to support exploratory search using techniques that organize
the retrieved information into meaningful structures. Search results presented by
modern search engines are an example of an ordered list sorted by relevance, i.e. a
vectorial model [340]. However, information seekers often express a desire for a user
interface that organizes search results into meaningful groups to help make sense of
the results, to infer relationships between concepts, and to help decide what to do
next [215, 352]. As a result of this desire for organization, spatial models [392], i.e.
hierarchies and networks, have also been used to organize information and support
sensemaking [340]. While both hierarchies and networks have been shown to be
useful in the structuring of content (e.g. [87, 385, 90]) little work has explored the
similarities and differences between these two representations. This chapter explores
how two specific visualizations of information – Knowledge Graphs (or Knowledge
Maps) and Hierarchical Trees – support exploratory search tasks.

In this chapter, we present the quantitative and qualitative results of a study
contrasting participants’ perspectives on the use of knowledge graphs versus hierar-
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chical trees to support exploration of data for the purpose of developing an answer
for informational queries. We describe the design of interfaces and our evaluation of
the use of network and hierarchical data structures during exploratory search tasks.

5.2 Representing Search Results for Exploratory

Search

Marchionini [352] notes that there are interactive aspects to exploratory search,
rather than simply viewing the query satisfaction or information retrieval problem as
optimally matching documents to a query. Characteristics of interfaces to support
exploratory search, drawn from research in human-computer interaction, include the
use of high-level overviews and rapid previews to facilitate sensemaking during the
exploratory process. The incorporation of overviews argues for some organization of
search results that both presents this overview and allows the user to explore the
data and its interconnected relationships more fully through filtering and the exami-
nation of user-selected details [495]. We review some of the past efforts on providing
representations of search results and their evaluations next and highlight differences
to our work.

5.2.1 Existing Search Results Representations

Any system that supports information seeking must structure information to make it
accessible. The way information is organized and made available affects the strategies
used to access this knowledge and thus information-seeking performance [354, 213,
87].

Given the observation that organization of search results benefits users, one might
then ask what organizations of search results exist. In Section 2.4.1 we reviewed
the existing techniques for organizing search results (e.g. the taxonomy proposed
by Wilson et al. [611]). Fully elaborating on all of the organization techniques or
visualizations for search results is beyond the scope of this chapter, and the interested
reader is referred to the above taxonomies and Sections 2.4.1 and 2.4.2. However,
some visualizations of search result data are specifically salient to our research, in
particular, Ltifi et al.’s [340] vectorial model, hierarchies and networks. Ltifi et al
[340] proposed a classification of visualization techniques for knowledge discovery
including visualizations for linear data (e.g. timelines), multi-dimensional data (e.g.
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scatterplots), vectorial models (e.g. relevance-ordered results), hierarchies (trees,
tables of contents) and networks (e.g. knowledge graphs). Given the non-numerical
characteristic of web search results, the latter three types of visualizations (vectorial,
hierarchical, and network) are particularly useful for displaying search results. While
the vectorial representation presents results as a ranked list, hierarchical and network
representations can be used to display grouping, similarity or relationships among
search results.

Trees are a common tool for representing hierarchies. A hierarchical structure is
mainly made up of organizational links that organize the information into categories
(topics) with no or few cross-links between categories. Google’s “Knowledge Graph”
enhances basic search results with structured data, essentially presenting a network
organization of search results [502]. Google claims the knowledge graph enhances
search in three main ways: query disambiguation, a summarization of related facts,
and exploratory search suggestions (based on what other users explored next).

Most network visualizations tend to provide a global perspective on a graph by
attempting to represent an overview of the information space so no information is
missing and the data can speak for itself. Most of these techniques are based on
Shneiderman’s Visual Information Seeking Mantra [495]: “Overview first, zoom and
filter, then details on demand”. For example Sanchez and Llamas [468] followed this
principle to visualize a large combination of concept maps to distinguish between
an interface for the author and an interface for the end user that facilitates the
exploration tasks. Some of the common techniques for visualizing large network
data is discussed in Section 2.4.2.3.

5.2.2 Evaluating Search Results Representations

Novick and Hurley [392], working in the field of education, performed extensive re-
search on the use of spatial models such as networks, hierarchies, and matrices. In
particular, they were interested in the properties of these spatial models that were
particularly suited to problem solving. Our work differs in its focus on informa-
tion retrieval and the representation of search results. As well, our work differs in
that Novick and Hurley do not develop interfaces that support problem solving; in-
stead, they use questionnaire data to elicit from participants which representations
participants think might best support information representation.

More recently, researchers in information retrieval have performed evaluations
of techniques for representing search results, examining both hierarchical structures
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(e.g. [87, 385, 150]) or networks ([478]). However, these results investigate how
different properties of one structure may affect users’ behaviour, whereas our work
aims at understanding the type of support provided by two inter-related structures
for different types of search tasks on the Web.

Other recent work in search results representation focuses on a single visualization
(e.g. concept maps) that seeks to represent both hierarchies and networks ([23, 22,
90]) to support information seeking and finding. However, the focus of this research
was on comprehension of the representations through a quantitative study. Our
focus is on understanding how hierarchical versus network representations support
different types of search tasks.

Our past work [478] described in Chapter 4 investigated the effects of combining
a knowledge graph with textual documents. Our goal was to understand user be-
haviour with respect to different search tasks. We argued that a hybrid approach that
combines the coherent content of text with the organized structure of graphs may
better support information finding and sense making. Our main takeaway from this
past work was that utilizing graphs of concepts and relationships which are derived
from documents can be effective for finding relevant information when the informa-
tion need is well defined. These findings also demonstrate that providing meaningful
relations that explain how different entities of a domain are connected are crucial
for supporting more complex search task. This chapter broadens this work by look-
ing specifically at the contrast between hierarchical representations (e.g. trees) and
network representations (e.g. knowledge graphs).

5.3 Application Design

One challenge with any application that presents search results from an exploratory
query to users is that the goal is rarely a static representation of the content returned
by a user’s query. Instead, the goal is to develop an interface that allows a user to
interact with the content, to filter and select specific content, essentially to explore
the information returned. As a result, the representation is linked to the interface
that contains it and supports manipulation and exploration of it [215]. In fact, this
observation is one of the main takeaways from our past work reported in Chapter 4:
while the way that the information is structured and presented to the user (e.g. a
knowledge graph versus a textual document) can impact sensemaking and synthesiz-
ing new knowledge, the interaction mechanisms that the search UI is providing can
significantly constrain information seeking strategies and experiences.
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From Section 5.2, we see that there is a need for interaction with representations
of search results, and that, following Ltifi et al. [340], alongside vectorial models
of search, hierarchies and networks are also viable representations for knowledge
discovery. To develop an interface for exploratory search that would allow us to
explore the characteristics of hierarchical and network visualizations, we engaged in
an iterative process using a series of walkthoughs, thinkalouds, and pilot studies.

5.3.1 Prototype Development

To develop our representations and interface, we began with a low-fidelity design,
where paper prototypes were used to explore user perception of representations of
data and user interaction with those representations. We initially designed two
low fidelity interfaces. The first interface employed a graph structure in which the
entities from each article were the nodes and the sentences describing a semantic
relation between them were the edges. In order to investigate how users navigate
through large graphs to find information, our knowledge-graph-based prototype was
designed such that the user would start from the overview page that contained all
the nodes that had a high number of connections to other nodes in the graph. These
nodes could be considered as representatives of different components of the graph
and would help distribute different sub-graphs into different pages. The user was
able to expand any of the nodes on the overview page and would proceed to a new
page that contained the selected node and all the nodes that had a link to this node.
The user could expand a new node on this page or collapse the expanded node and
go back to the previous page.

The second interface utilized a hierarchy (or a tree) structure to organize headings
and sub-headings of the articles, as observed in each page’s table-of-contents. Each
tree was in a collapsed format initially and the user would expand and collapse nodes
to drill down into document content. We also created an overview node that linked all
the trees in our collection. Interfaces were seeded with data gleaned from Wikipedia
pages on Canadian capital cities.

We conducted a thinkaloud study to evaluate our paper prototypes with six par-
ticipants (two female) to gather a set of features required for these interfaces. Data
was presented in both graph and tree form to each participant. We asked partici-
pants to think aloud about what the data represented and how they would interact
with the data. We also collected qualitative data on different use cases of these in-
terfaces with respect to different search tasks. From this initial study, we redesigned
our interfaces.
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5.3.2 Final Design

The qualitative data and participants’ feedback helped refine both the design of our
search result presentation and our interface for manipulating the representation of
the search results. We used force and pack layouts (as part of the D3 library1) to
visualize the graphs and trees respectively.

When the user launches the graph-based application (Figure 5.1, top), they are
presented with a knowledge graph containing labelled nodes and unlabelled links
between nodes. Nodes that represent entities with low frequency are hidden in the
initial view, and only appear once a higher-frequency, connected node is clicked.
This ensures that the graph does not become too cluttered. Once the user clicks
on a node, that node and all connected nodes are highlighted, while the remainder
of the graph is alpha-blended into the background. By hovering over any connected
node in highlighted portion of the graph, the user can see the relationship(s) between
the two nodes in the snippet window located on the left side of the interface (Figure
5.1. top). For each relationship in the snippet region, participants have a link that
allows them to view the corresponding Wikipedia article.

The tree interface is shown in Figure 5.1, bottom. When the user launches the
application, the user is presented with a fully expanded tree. By clicking on any
node within the tree, that portion of the Wikipedia document corresponding to the
node is presented in the preview area at the left of the interface. Under the snippet
in question, there is a link to view article, allowing users to access the article in
question.

5.4 Experimental Design

To detail our experimental design, we first discuss the data extraction method that
we used to populate our interface with data. Next, we present the tasks in our study
and describe our participant population. Finally, we describe the data we capture
from each participant.

5.4.1 Data Extraction

To populate our interactive applications, we created two distinct data sets: one
focusing on history and the second on global politics. For the history data set, we

1http://d3js.org/
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Figure 5.1: The graph and tree visualization interfaces. Note the callouts of nodes
and document snippets.

used the previous search task exploring former capital cities of Canada. For the
politics search task, we created a data set representing governmental structures in
Iran and Russia.

To create this data set, we first collected a set of Wikipedia articles by query-
ing the Web using a popular search engine. We retrieved the top 10 articles in
Wikipedia based on their relevance to three queries corresponding to three topics:
“Former Capital Cities of Canada”, “Political System of Iran” and “Political System
of Russia”.

To create our knowledge graph, we employed our Information Retrieval and Ex-
traction (IRE) system that processes a text collection and generates (entity-relation-
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entity) triples [474]. This module is implemented in four phases. During the first
phase we create the input corpus by collecting retrieved documents based on a given
query. Next, we extract entities from text using state-of-the-art entity taggers 2.
We then select the sentences that contain at least two entities in them and parse
them using Stanford Dependency Parser. For each sentence, we extract meaningful
relations between the entities by finding the shortest path in the corresponding parse
tree. For example we extract The Constitutional Act divided the Province of Quebec
into Upper and Lower Canada as a relationship between the entities Constitutional
Act and Upper Canada. We constructed a set of patterns based on dependency
triples that lead to semantically meaningful relations. In the final phase we generate
labels for the extracted relations and rank them based on relevance to the query
and the informativeness of the extraction. Once the knowledge graph is generated,
we hand-tune some aspects of the graph by correcting minor errors caused by the
extraction of entities and relations. For more details please see Chapter 3.

For the tree based interface, we extracted the Tables of Content (TOCs) em-
bedded in each Wikipedia article. We then manually extended the table-of-contents
by adding subheadings to each section in order to provide a richer structure for the
trees. Overall, our goal was to create visualizations that could realistically be cre-
ated by computer algorithms while ensuring equivalent, high-quality for each of the
generated visualizations.

5.4.2 Search Tasks

We noted earlier that researchers have defined search queries as simple or complex.
With respect to the complexity level, each participant performed one Simple (i.e.
question answering) and one Complex (i.e. essay writing) task. We also used two
different topics (i.e. History and Politics) to investigate the relation between the topic
and content knowledge with the structure used to organize the retrieved information.
In addition, for our complex tasks we closely follow Bystrom̈ and Hansen’s [83]
recommendation that three levels of description should be used to specify a search
task: a contextual description, a situational description and a topical description.
The queries we asked people to find information to satisfy in our study were the
following:

2https://cogcomp.cs.illinois.edu/page/software view/NETagger
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Simple Politics: What governmental body or bodies are involved in the impeach-
ment of the President of Iran and of Russia?

Complex Politics: Imagine you are a high school student who is going to write an
essay on the Political Systems of Iran and Russia. Knowing little about the
presidents of these two countries, you wish to determine which president has
more power. Find at least 3 arguments to justify your answer.”

Simple History: As a result of which act were Upper and Lower Canada formed?

Complex History: Imagine you are a high school student who is going to write
an essay on the History of Canada. Knowing little about Canadian History,
you wish to know which cities have served as a capital for Canada. You would
also like to understand the reasons behind moving the capital from one city to
another.

To assess the study design, we piloted with four participants. The pilot ensured
that the usability of the system was sufficient to support interaction and provided
guidance on the semi-structured interview to collect qualitative data on distinctions
and use cases of the designed interfaces.

To limit study length and ensure coverage of simple and complex queries within
subjects, our final study design was a 2 × 2 × 2 [interface, interface-topic, topic-
complexity] mixed design with interface as a within subjects factor, topic to interface
assignment and complexity to topic assignment as between subject factors. This
resulted in eight different groupings of participants. Each participant saw both in-
terfaces. In the first interface, they had either politics or history, with the other
topic in the second interface. For the two topics, each participant saw a complex
query on one topic and a simple query on the other. In order to control for order
effects, we rotated the order in which the tasks and the interfaces were assigned to
the participants. That is, participants were randomly divided into 8 groups.

5.4.3 Participants

Once the study design was final, we recruited 26 (13 female) participants from dif-
ferent areas of Science, Math and Engineering for this study, all of whom use the
Internet on a regular basis to search for information.
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5.4.4 Procedure and Data Collection

The study proceeded as follows. After a brief introduction to the study, participants
were given an initial questionnaire that evaluated their knowledge of the first query’s
topic. Participants were then presented with their first interface, were given an
introduction to the features of the interface demonstrating how each feature of the
interface worked, and were then given some time to manipulate the interface.

Once participants had developed some comfort with the features of the interface
(approximately three minutes), participants were given the query and told to ma-
nipulate the interface as if they did not know the answer to the query and wished
to locate it. To capture data on participants’ actions, participants were asked to
“think aloud” during each task and share their thoughts and strategies with the re-
searcher. For both tasks, the participants were given 15 minutes and were required
to find relevant information by providing a reference sentence or sentences from the
interface or document collection to justify their arguments or answers. The need to
find specific information ensured that each participant manipulated the interface to
find relevant information.

After providing an answer to the query, participants completed a post-task ques-
tionnaire that evaluated the experience they just had. We used questionnaires pro-
vided by TREC-9 Interactive Searching track 3 and modified them to fit into our
experiment design. At the end of each task, via a semi-structured interview par-
ticipants were asked to reflect on their experience with using the assigned interface
for performing the assigned task. They were encouraged to think about the concep-
tual usability of the type of structure utilized for information organization as well
as the technical usability of the application. At the end of the second task a semi-
structured interview format was used to elicit comparison between the two interfaces
with respect to the different types of search tasks and to reflect on the design of an
“ideal” interface that could support them more efficiently. Participants received a
$10 incentive for their participation.

Data was captured in a variety of ways. Each interface was instrumented with a
logger which monitored participants during the search sessions. Both movement on
the computer screen and participants’ interactions with the system were captured.
Interactions we collected included clicking on nodes or edges, reading snippets, view-
ing articles, and the time they spent reading the articles. The activity logs for two
of the participants were corrupted so we excluded their data from our activity log
analysis. Experimental blocks and a post-task semi-structured interview were audio

3www-nlpir.nist.gov/projects/t9i/qforms.html
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recorded. Finally, two assessors evaluated the quality of answers provided by the
participants for each of the search tasks independently. Simple queries were rated as
either correct or incorrect. To receive a correct rating, both answer and referenced
document section were required to be correct. Complex questions were rated on a
scale. Scores for all queries were normalized to reflect a value in the range [0, 1].
Inter-assessor reliability was evaluated using Pearson coefficient and an overall value
of 0.8 for simple queries and 0.9 for complex queries was found.

5.5 Main Observations

In this section, we present an analysis of data collected during the study. We
first present some numerical data collected from search logs which provides a broad
overview of participants’ contrasting behaviours given different interfaces and given
queries of differing complexity. Next, we present the results of our qualitative analy-
sis, clustered into four broad themes: Biasing Factors, Task Effects, Data Relations,
and Problem Solving Approach.

5.5.1 Validating Search Tasks

In any study where the goal is to explore search result representations for exploratory
search, one concern is whether or not the search tasks are representative of ex-
ploratory search tasks. In our task design, we were guided by Marchionini’s work
on exploratory search [352]. Leveraging two task domains, politics and history, we
created one look-up task and one exploratory search task within each domain us-
ing Marchionini’s definitions, yielding four tasks overall. The politics tasks asked
participants to compare two different governmental structures, Iran and Russia, ra-
tionalizing and providing citations for answers they provide. Similarly, the history
tasks asked participants to discover something about the history of Canada and,
again, rationalize and provide citations for their answers. For our complex tasks,
in particular, we argue that the tasks combine aspects of knowledge acquisition or
comparison (the learn subcategory of exploratory search) with analysis, synthesis,
and evaluation (the investigate subcategory).

Another concern is whether the actual topics are of sufficiently similar complexity
that topic effects do not overwhelm other factors in our results. To address this,
beyond ensuring counterbalancing of topics, we analyzed topic effects vis a vis our
dependent variables to determine whether either the history or politics task resulted
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in statistically significantly varying behaviours. Interestingly, our look-up tasks in
both history and politics, where participants returned a factoid, differed in quality
of answers, time reading, and document views (F1,24 = 6.02, p < 0.05 for quality;
F1,24 = 6.00, p < 0.05 for reading; and F1,24 = 21.22, p < 0.001 for document views).
However, for our exploratory tasks, i.e. our complex tasks where participants were
asked to learn or investigate, scores did not differ significantly between the two topics
areas of history and politics (p > 0.05 in all cases). Because our primary interest
is supporting exploratory search, we argue that our complex tasks are of sufficiently
similar complexity as to limit topic effects.

Finally, alongside care designing our search tasks and a analysis of topic effects on
dependent numerical measures, we also examined our qualitative data to determine
whether participants found the tasks to be aligned with their conceptualization of ex-
ploratory search. The comments made by our participants when they were presented
by the tasks descriptions indicated that these tasks were indeed complex, i.e. that
they were ambiguous and open ended in nature. As well, different participants inter-
preted the task descriptions differently and came up with different strategies based
upon their interpretation, further validating the open-ended, exploratory nature of
the search tasks.

5.5.2 Log Data Analysis

As noted earlier, our data logged all user action with the system. Of particular
interest to us was information on the scoring of participant responses, the number
of nodes clicked in each interface, the number of documents read, and the amount of
time spent reading documents. Table A.1 summarizes this data. The Mark column
contains scoring of participant responses. Clicks is a count of the number of nodes
clicked on. Views is the number of instances when a participants used the interface
to view the actual Wikipedia document (as opposed to relying on the information
contained in the interface). Finally, ViewTime is the amount of time in seconds spent
reading documents (as opposed to manipulating the interface).

We performed a repeated measures ANOVA with interface (tree versus graph)
as a within subject effect and query complexity as a between subjects effect. De-
pendent variables were scoring of query results, clicks with the interface, number
of document views, and time spent viewing documents. Overall, RM-ANOVA in-
dicated that interface had a statistically significant effect on dependent variables
(F4,20 = 5.83, p < 0.01, η2 = 0.54). Query complexity was not significant, nor was
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there any interaction between complexity and interface. Univariate tests of depen-
dent variables with respect to interface (tree versus graph) show statistically signifi-
cant effect on number of document views (F1,23 = 26.29, p < 0.001, η2 = 0.53) and on
time spent viewing documents (F1,23 = 6.01, p < 0.05, η2 = 0.21). Marks and Clicks
were not significant.

Marks Clicks Views ViewTime
Graph 0.74 (0.27) 18.7 (3.2) 1.6 (0.43) 131 (37)
Tree 0.43 (0.04) 17.9 (2.2) 4.9 (0.49) 1228 (444)

Table 5.1: Mean (Standard Deviation) values for marks (average independent eval-
uator scores), clicks on nodes, document views, and document view time.

.

Overall, our data indicate that the knowledge-graph visualization allows partici-
pants to glean more information from the data structure (67% fewer document views,
on average) in less time (almost 90% less time reading documents). The knowledge
graph is designed to represent the information in the document in a way that obviates
the need to read extensively, and it was very successful at accomplishing this. Over
half of all participants examined either 0 or 1 documents while using the knowledge
graph (mean of 1.6 documents), whereas all except one participant examined at least
three documents with the tree structure (mean of 4.9 documents). Qualitatively, we
note that the knowledge graph also fared better in score, though not statistically
significantly better. As well, the workload in both documents (as measured by node
clicks) was very similar (18.7 versus 17.9 clicks per query on average).

5.5.3 Qualitative Data

Given the statistical advantage enjoyed by the graph representation, the next ques-
tion we wished to explore involved participant perspectives on each of these repre-
sentations of search results. How did they differ? What were the advantages and
disadvantages of each from a user perspective? We present four themes arising from
our qualitative data analysis in this section.

5.5.3.1 Biasing Factor: A Willingness to Explore

Exploratory behavior, defined by the National Library of Medicine as “the tendency
to explore or investigate a novel environment”, is driven by curiosity and is evident
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in most exploratory searches. Both lookup and exploratory searches use curiosity in
their search models, though the actual curiosity which drives each type of search is
slightly different [56]. Specific curiosity is the desire for a particular piece of infor-
mation, as typified by an attempt to solve a problem or puzzle. Diversive curiosity
is a more general seeking of stimulation or novelty, for example a television viewer
flipping between channels. In information seeking, specific curiosity corresponds to
well-defined goals and directed searching, while diversive curiosity corresponds to
ill-defined goals and exploratory browsing [399].

In our thinkalound data and in our follow-up interview data, we identified specific
versus diversive curiosity as a factor that influenced participants’ perceptions of each
web interface. Essentially, some participants preferred an interface over the other
based on the amount of time they were willing to spend in exploratory browsing.
Linking to specific curiosity, if an interface is effective in accomplishing a search task
but required extensive time browsing, the participant would rather use a different
interface. Participants patience with the search task was influenced by the tension
between the drive to solve the problem (specific curiosity) versus the tolerance for
browsing (diversive curiosity):

“For specific questions, it depends on how much time I’m willing to spend.
If I have more time I’d like the tree, because it’s more scattered and I can
learn more objectively.” [P4]

“So I feel like the Tree would be good if I wanted to sit down and spend
time reading about a topic and I wasn’t looking for something specific.
Whereas if I was looking for something very specific, for that, I think I
would like the other one [graph] better. Cause it was already doing the
keyword search and it was easier to pick out things.” [P8]

“If I need a fast way, I go to the graph. I use the tree only when I’m
learning deep about a new domain.” [P4]

This observation is in line with the initial work on information foraging; Pirolli
and Card [412] defined the profitability of an information source “as the value of
information gained per unit cost of processing the source.” Cost is defined in terms
of time spent, resources utilized and opportunities lost when pursuing a search strat-
egy instead of others [462]. We find that diversive curiosity biases toward the tree
structure, whereas specific curiosity biases toward the graph.
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5.5.3.2 Task Effects: Finding Versus Learning

The Web has provided the opportunity to browse and navigate through an extensive
information space. However, beyond simply finding basic answers, web searchers also
engage in learning and discovery [352].

As noted in our study design, we incorporate two tasks with different levels of
complexity. Given these two levels of complexity, in post-experiment interviews the
participants were able to compare the two interfaces based on the specificity of the
information they were looking for. Interestingly, however, participants were divided
on which interface was better for simple versus complex search tasks.

Overall, most participants found the graph interface more practical for finding
specific information and simple question answering tasks. Both question-answering
and keyword-based tasks were typically perceived of as advantaging the graph struc-
ture:

“For the question-answering task I’d rather use the graph. Because I want
to know exactly if this word is linked to that word. If there are two words
appear in the same sentence you can quickly find an answer and I don’t
have to read the whole article.” [P9]

“When I was searching for specific keywords, with the tree interface I
actually had to go to the article itself to search. so it wasn’t useful.
Whereas the other one [graph] actually gives me access to the keywords.”
[P14]

“To learn I think the hierarchy interface is good if I want to learn say
about history of Canada, because then you start from step 1 and the you
go to the next level.” [P10]

This is not to say that our participants were universal in their beliefs about data
visualizations. Some participants found that the tree was significantly better for
finding a specific piece of information. P2, P3, and P6 all articulated variants of this
belief:

“But when you are trying to find a specific answer to a question, then the
tree structure is good, because it helps you traverse from the root to a leaf
node.” [P2]
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“I like the tree better for specific questions. It categorizes things bet-
ter.”[P3]

“Tree is pretty good for finding exact information.” [P6]

To try to understand this phenomenon better, we looked at other demographic
data collected from our participants, and found an intersection between the belief
that a tree was better suited to search tasks and our participants self-rated prior
knowledge of the topic being examined. Participants were biased toward a tree
structure for broad learning of the task domain particularly when they had low prior
knowledge. This result seems to replicate findings by Amadieu et al. [23] on the
use of network structures versus hierarchical structures in the education domain,
i.e., that low knowledge learners benefited from hierarchical structures in free recall
performance and exhibited reduced disorientation, whereas high knowledge learners
performed better and followed a more coherent reading sequence given a network
structure. Participants, too, noted this phenomenon:

“So if you are an expert in a domain, you want the view very focused
[knowledge graph]. But if you don’t know much about a domain, you
want to see an overview first [tree].” [P6]

5.5.3.3 Data Relations: Derivative Versus Multifaceted, Local
Versus Global

Visualizations of structures, i.e. of entities and relationships, inherent in
large data sets can help users understand the structure of the data and
make information more accessible. However, participants may perceive
a domain to have a derivative/hierarchical structure or a multi-faceted
structure. If the representation of search results mimics that perceived
structure, participants prefer that structure:

“If you are searching for something that is already structured
and we already know the names of these categories, then the
tree is helpful.” [P2]

“For the [tree] interface, if I was using it for a topic like Geog-
raphy, then I’m looking for continents, countries, cities, states,
capitals, .... Then I know the headings and then I know which
path to take.”[P3]
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“I think [tree] would also be useful if you had some sort of
notion of how things are laid out, like if there was a chronolog-
ical order. Yeah, if that was chronological that would be nice
cause you could gauge where you needed to click. Like you saw
something that was really-really previous and two nodes down
to find something more recent, even if you don’t know exactly
which one.”[P8]

To clarify, the data relations in question are those perceived to be salient
by the participant. If salient relationships are viewed as derivative or hier-
archical (e.g. ‘is-a’ relationships), then a tree can best capture this view
of data, whereas if salient relationships are more heterogeneous and resist
structure as a hierarchy, that advantages the graph-based representation.

Beyond the specific relationships between entities, another theme that
appeared in our data involved the scope of information required to satisfy
a query. The tree structure seems to provide a comprehensive overview
for the information space. Even if we provide groupings and overviews
for our graphs, the graph interface best serves exploration at the entity-
relationship level. As a result, several participants liked the tree structure
for cases where they needed a comprehensive overview of the domain:

“If I’m learning about a new domain, in the case that I want
to cover the entire domain and get a general understanding of
everything but at the surface, I’d like the tree.” [P7]

5.5.3.4 Problem Solving Approach: Depth-First Versus Breadth-
First

According to Brown [77] information seeking is a goal-driven activity in
which needs are satisfied through problem solving. This view is com-
parable to Wilson’s model of information seeking [612], which considers
information seeking as a problem-solving process with the goal of reduc-
ing uncertainty about the information being searched.

“... if you have a large amount of data then you’re kind of
confused, you don’t know which part to look at, which connec-
tion to look at. ... I would use hierarchy to get an idea of how
everything is organized and then maybe I go and try to dig in

150



more, find out the relations between terms.
- For digging more would you use the graph?
- Yes. But again, even in the graph, it should be the specific,
the focused one. Not the whole thing.” [P21]

In unpacking this quote, we note that the process of directly addressing a
problem is essentially a depth-first process where the knowledge graph al-
lows a focused exploration of a region. On the other hand, with confusion
the breadth-first or tree-based exploration is beneficial as it allows the
user to iteratively reduce confusion, obtain an overview, and only slowly
exploit detail. Many participants indicated similar concepts of confusion,
nervousness, or inadequacy as a rationale for their preference for the tree
structure:

“[The graph interface] is not friendly. Too many things!” [P2]

“Because I get frustrated jumping from one node to the other
for a while and don’t get any information I want. ... If the
graph is too big, I get scared of it! ... Too many things, so I
don’t know where to look” [P26]

“when the graph is too big, I don’t know where to look ... and
I don’t also know where to start. Because I’m not familiar
with most of the information .. the Councils, the positions, the
names, ... So I don’t know where to start.” [P26]

More generally, many research domains argue for overview and structur-
ing of content to permit sense-making and reduce confusion. Information
visualization is founded on the techniques people use to structure and
cluster visual stimuli (see, for example, [583], or Section 2.4.2). Prob-
lem solving research in psychology connects aspects of visual perception
and structuring of content to comprehension [432]. Designing for visually
impaired readers argues for well-structured hierarchical content to allow
more rapid sense-making [221], even in the absence of vision. Essentially,
overviews are invaluable when people feel a need to orient themselves
within data.

Alongside confusion and the need to orient ones-self within a domain,
one’s problem-solving strategies may bias behaviour. Research into prob-
lem solving strategies has a long history in the psychology domain. One
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well-known characterization of coping or problem-solving strategies iden-
tifies two groups of individuals: Problem-focused and Emotion-focused
[319]. Problem-focused individuals tend to directly address a problem,
whereas those with an emotion-focused strategy seek to reduce the effects
of the problem. In web search, Kim [290] found that problem-solving
style had some impact on navigational patterns. Emotion-focused sub-
jects traversed several layers of nodes before returning to the starting page
(i.e. a depth-first navigation), whereas problem-focused subjects spent
more time checking nodes available in the same level (i.e. a breadth-first
navigation). Acknowledging the lack of personality-testing in our ques-
tionnaires [290], the link between confusion, nervousness, or fear and a
desire for a hierarchical structure that allows depth-first exploration may
merit further inquiry.

5.6 Discussion

5.6.1 Understanding Tree Versus Graph Visualiza-
tions

As we note in the motivation for this chapter, our goal with this re-
search was to explore the differences between graph and tree visualiza-
tions, specifically to understand their similarities and differences with
respect to the search process. Our results explore these differences, trian-
gulating both quantitative data from log files and qualitative data from
participant interviews to understand how search result representations
influence search behaviour.

From our log data, we note that the hierarchical structures in our study
serve as pointers to passages in a document due to their similarity to
tables-of-contents. Essentially, they simplify the process of locating top-
ics, but the monotonic relationship that they represent – for example
an is-a relationship – limits the information they can represent. The
end result is that hierarchies result in a greater need to read the docu-
ment rather than find the information contained within the visualization,
shown, in our log data, by more instances of reading documents, and a
longer period of time reading documents. Specifically, participants read
documents three times more frequently and spent almost ten times more
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time reading. Our data also highlights the advantages and disadvantages
of gleaning information from a knowledge-graph versus finding the re-
lationship within source material and generating an abstract version of
the knowledge graph for oneself. However, it is also clear that one repre-
sentation is not better than the other in any subjective sense. Many of
our participants expressed a need for combining both interfaces into one
interface which enables switching between a global and a local view of
the information space.

5.6.2 Design Implications

When designing search interfaces, the process of creating a view of search
results remains challenging. Information visualization tools such as the
InfoVis Toolkit4, SpotFire5 and InfoZoom6 typically support multiple
representations of search results. Our work does not dispute the ac-
cepted practice of recognizing that heterogeneous, interactive visualiza-
tions are the best way to allow exploration of a data set generated by
search queries.

Our study highlights the complementary nature of hierarchical structures
and knowledge graphs as representations of data. Our data indicates
that hierarchies allow a more gradual depiction of and immersion into
the domain, essentially fostering sense-making of the overall content (see
Section 5.5.3.3). On the other hand, participants note that graphs are
“more engaging” (P4), yield “more control over exploration” (P8), or are
“similar to my mind” (P16). This, then begs the question of whether
hierarchies and knowledge-graphs could be combined, but the challenge
with combining hierarchical structures with knowledge-graphs is that hi-
erarchies represent topics within a corpus, whereas nodes in a knowledge
graph represent entities and their relations. Any one entity in a knowl-
edge graph can map onto several topics in a hierarchy: For example, a
political figure or governmental structure (e.g. the Guardian Council) or
a historical event (e.g. the War of 1812) may be mentioned in all topics
in a hierarchy, depending on how pervasive that entity is to the overall
corpus.

4http://sourceforge.net/projects/ivtk/
5http://spotfire.tibco.com/
6http://www.softlakesolutions.com/
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On the other hand, within our knowledge graphs, nodes have different
prominence based upon the number of edges they connect to. Entities
that are more pervasive in the document have more connections and,
hence, can be assumed to be more central to the topic. One alternative
to hierarchical structures is to consider central entities within a knowledge
graph, those entities that have a higher connectivity to the graph. By
setting thresholds, one might be able to structure a multi-level view of a
knowledge graph around central entities. In Chapter 6 we are exploring
this option as one way to effectively combine the advantages of knowledge
graphs and hierarchies into a single view. Rather than breaking down
topics or concepts as in our tree view or in concept maps, the multi-level
view of knowledge graphs focusing on central entities simply introduces
information seekers to those entities or objects most central to a retrieved
corpus.

5.6.3 Limitations

In designing any study, compromises must be made. In this section, we
discuss three potential confounds: interface effects versus information
representations; the effect that hand-tuning may have had on results;
and the generalizability of our results given corpus size and topic/task
selection. In this section, we address each of these concerns.

Any time one conducts a user study comparing two artifacts, it is al-
ways possible to bias the study through selective design. A poor user
interface or poor interaction design can disadvantage one experimental
option, leading to biased results. To limit this confound, we conducted
multiple rounds of pilot studies and made modification to ensure that
each representation was sufficiently rich that participants could perform
a significant portion of the information seeking task within the visualiza-
tion. In analyzing our data, we found that participants in our study data
indicated no dissatisfaction with the interaction within the visualizations,
and, instead, focused on the visualizations themselves. Even on probing
during de-briefing interviews, participants would frequently discuss the
advantages and disadvantages of knowledge representations (hierarchies
versus graphs) when asked to comment on each interface.

A second concern revolves around the ecological validity of our results,
particularly in light of hand tuning. As we noted in our experimen-
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tal design section, we used automated algorithms to generate knowledge
graphs [474] and extracted hierarchies from tables-of-contents or head-
ings within documents. However, we then performed some refinement of
the hierarchies (adding low-level sectioning to documents) and knowledge
graphs (mainly refinement of coreferencing). We address this point in two
ways. First, arguably, to ensure that confounds are not present in our
results, hand-tuning (or at least manual verification) is essential. Other-
wise, error-prone algorithms and poorly structured data could influence
the effectiveness of any individual representation of search results, focus-
ing the data around the algorithmic failures as opposed to the nature of
hierarchies versus graphs (we revisit error prone representations and in-
vestigate their impact on information seeking behaviors and outcomes in
Chapter 7.) Second, it is important to note that the manual refinement
we performed was very limited. In hierarchies, we created a richer set
of leaf nodes, but did not modify the overall structured content of the
document; in knowledge-graphs, a small set of entities (less than 10%)
needed to be combined when coreference resolution failed. As research
in automatic summarization and coreference resolution continues, these
problems will hopefully be addressed by researchers working in natural
language processing.

Finally, task and corpus has been a concern in past iterations of this pa-
per. Our tasks and topic effects are discussed in Section 5.5.1. We argue
that the 10 most relevant documents from Wikipedia represents a set of
documents similar to the number explored in real-world web searching
tasks. First, while web searches return more results, work on informa-
tion seeking argues that the effective size of a relevant document set for
web search results is significantly smaller that all documents returned –
on the order of six documents – hence the importance of ranking algo-
rithms in information retrieval [279, 252]. Second, not every retrieved
document is directly relevant to any specific information seeking task. A
user may look within any individual document from a set of top ranked
documents, and he or she may also combine information from multiple
sources to satisfy his or her information needs.
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5.7 Chapter Summary

In this chapter, we presented the results of a study evaluating knowl-
edge graphs and trees as spatial representations of Web search results.
Our analysis includes both log data gleaned from participant interac-
tions with data representations and qualitative interview data gleaned
from thinkalouds and semi-structured interviews. Overall, we find that
knowledge graphs are effective in capturing the entities and relationships
in a corpus in a way that reduces participant reliance on actual retrieved
documents, i.e. participants viewed significantly fewer documents for
significantly less time. As well, the quality of participant responses to
pre-specified queries (a measure of how effective visualizations are at rep-
resenting data) was statistically unaffected by representation. Finally,
from the perspective of our participants, we find that tree-based repre-
sentations are better suited to learning, provide better overviews of a
domain, and are more approachable for participants who are confused.
Graphs, in contrast, work best for directly seeking answers, and appear
to be a more playful mechanism for exploring the details of individual
entities and their relationships.

The next Chapter explores our efforts in combining knowledge graph
and hierarchical representations of search results into a unified structure
where strengths of each representation is preserved and the shortcomings
are minimized.
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Chapter 6

Hierarchical Knowledge
Graphs

The art of information system design (which, I am certain, has a long
future) is to find the form and timing of information presentation which
will best aid the system user in whatever task he has in hand.

– Oddy, Information Retrieval via Man-Machine Dialogue, 1977

In information retrieval and information visualization, hierarchies are a
common tool to structure information into topics or facets, and network
visualizations such as knowledge graphs link related concepts within a
domain. The research described in Chapter 5 demonstrated the comple-
mentary advantages of these two spatial representations of search results
in supporting complex and exploratory search tasks. While these findings
provided many interesting insights about how each of these representa-
tions is perceived and utilized by the information seekers for search tasks
of varying complexity, one open question remains: can we design a rep-
resentation that seamlessly merges these two representations?

In this chapter, we explore a multi-layer extension to knowledge graphs,
hierarchical knowledge graphs (HKGs), that combines hierarchical and
network visualizations into a unified data representation. Through in-
teraction logs, we show that HKGs preserve the benefits of single-layer
knowledge graphs at conveying domain knowledge while incorporating
the sense-making advantages of hierarchies for knowledge seeking tasks.
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Specially, this chapter describes our algorithm to construct these visual-
izations, analyzes interaction logs to quantitatively demonstrate perfor-
mance parity with networks and performance advantages over hierarchies,
and synthesizes data from interaction logs, interviews, and thinkalouds
on a testbed data set to demonstrate the utility of the unified hierar-
chy+network structure in our HKGs.

6.1 Motivation

As noted earlier in this thesis, there are two predominant paradigms for
finding information on the Web: Searching (i.e, Search by query) and
Browsing (i.e, Search by Navigation) [397, 257]. While current search
engines, following a “search by query” paradigm, are generally sufficient
when the information need is well-defined in the searcher’s mind, exam-
ining search results remains a necessary step within a larger information
seeking process [353, 307]. To elaborate, Searching requires the user to
translate an information need into queries, while Browsing accommodates
the knowledge gap between what the user is able to communicate and
what the system requires to find the desired information. This knowledge
gap (also formalized as an ‘anomalous state of knowledge’ by Belkin [50])
is more evident when information is sought to address broad curiosities,
for learning and other complex mental activities [597, 31].

In Chapter 5, this thesis explored the relative benefits of hierarchies and
networks and noted that the benefits are largely complementary: hierar-
chies provide users with some understanding of central topics, allowing
them to develop a better overview of information; whereas networks allow
people to glean concrete information from the representation rather than
needing to extensively read individual documents [479]. Given the com-
plementary advantages of knowledge graphs and hierarchies, our main
research question in this work is that whether we can algorithmically
generate a seamless data structure that combines the advantages of both
hierarchies and networks into a single unified structure.

Given our main goal of designing search interfaces that can assist searchers
with learning and investigating tasks, we are interested in solutions that
support sensemaking, which is central to all exploratory search activities.
Sensemaking is the process of searching for a representation and encoding
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data in that representation to answer task-specific questions [462]. Rus-
sell et al. [462] present four main cognitive stages that are involved in
sensemaking: an interaction between a bottom-up ‘Search for represen-
tation’ phase and a top-down representation instantiation phase, a phase
of shifting representations to fit newly discovered data into the current
representation, and an application of the representation to the user’s spe-
cific task. The top-level representation that results from sensemaking has
many different names: a “holistic cognitive structure” [592], a mind-map,
a concept map [391]. Regardless, the construction of this representation
must be either provided explicitly by the interface or constructed implic-
itly by the user [462, 592] before the user can fully “make sense” of the
retrieved information.

As a first step towards providing representations that are effective in
supporting sensemaking activities, Chapter 2 reviewed the available lit-
erature on search user interfaces in order to gain a better understanding
of strengths and weaknesses of different spatial representations of search
results and whether there have been any efforts to combine multiple
structures into one unified representation that preserves the strengths
of underlying structures while mitigating the weaknesses. Because of
the importance of structure in search, there have been efforts to con-
trast strengths and weaknesses of different spatial representations and
groupings of search results. In Chapter 5 we reviewed the past efforts in
evaluating the efficacy of different representations and identified different
shortcomings of network representations. Essentially, a main drawback
to network structures is that it is hard to both get an overview of an
information space and to navigate through the network effectively.

Given our observation of the complementary benefits of hierarchies and
networks, one remaining question is whether studies have examined the
use of hierarchies and networks as combined – synchronized and simul-
taneous – representations of search results. We have found little work
that explores combined networks+hierarchies. Part of the challenge may
arise from the complexity of seamlessly integrating both hierarchies and
networks into a single unified structure. For example, hierarchies are
typically best when the structure aligns well with the user’s task, but,
given this alignment, entities in networks may have many multiple ‘par-
ents’ within the structure, yielding a many-to-many relationship within
the hierarchy, i.e. a three-dimensional graph.
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In this chapter, we evaluate the efficacy of hierarchical knowledge graphs
(HKGs) as a combined representation of low-level entity relationships and
high-level central concepts. We generate these knowledge graphs auto-
matically using a simple parsing algorithm [474], then extract hierarchies
using a dynamic thresholding approach. We evaluate these HKGs using
a mixed methods approach. Quantitative data argues that HKGs pre-
serve the transparency advantages of knowledge graphs and structural
advantages of hierarchies. Qualitative data triangulates with quantita-
tive observations and provides additional insight into the advantages and
disadvantages of both hierarchical and network visualizations.

6.2 Hierarchical Knowledge Graphs

In this section, we describe hierarchical knowledge graphs, an extension of
knowledge graphs that include hierarchical information about the lower
level graphical structures. The rationale behind our proposed approach
for employing hierarchical knowledge graphs to represent search results
is the complementary benefits [479] of hierarchies [215, 619] and network
structures [391, 31, 478] to support exploratory browsing of search results.
More specifically, hierarchies provide a breadth-first exploration of the in-
formation that allows the user to iteratively reduce confusion, obtain an
overview, and slowly exploit detail. They thus provide a structured way
to navigate from more general concepts to more fine grained data and
are valuable when people feel a need to orient themselves. In contrast
network structures allow users to glean more information from the repre-
sentation (document reading time is reduced), are more engaging, yield
more control over exploration at the lower level of inter-concept relation-
ships [479], and are more similar to one’s mental model [103, 479, 387, 33].

Given the complimentary benefit of networks and hierarchies, the next
question is how to design a representation that can seamlessly merge
these two representations. We take the approach that a knowledge graph
will be an appropriate low-level representation and seek to incorporate a
hierarchical view of this low-level representation of corpus content. To
incorporate a hierarchical view into a knowledge graph, we need to find
answers to the following three design questions (DQs):

1. How do we integrate network and hierarchical views into a single,
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seamless data structure?

2. How can both the global and the local view of a knowledge graph
be co-visualized?

3. How can transitions between views be designed to maximize visual-
ization stability?

To answer these DQs, we first focus on DQ1 and describe the design of our
data structure. Next, to address DQ2 and DQ3 we describe an interface
that supports interaction with the data structure. Alongside our DQs,
we add one additional constraint to our design. We want to ensure that
both the low-level knowledge graph and the hierarchies gleaned from that
knowledge graph can be automatically generated from a targeted search
performed by the user.

6.2.1 Visualization Design and Creation

As noted above, given that we take the approach that a knowledge graph
will constitute the lower-level visualization of our data, the task becomes
creating a knowledge graph and creating a hierarchy that is gleaned from
and corresponds directly to the underlying knowledge graph.

Figure 6.1 depicts the system architecture that supports the process of
automatically generating the hierarchical knowledge graph representa-
tion. To simplify hierarchy generation, we create a 3-level hierarchy for
any document corpus. Beyond the base layer knowledge graph, there
is an intermediate layer of central concepts gleaned from the knowledge
graph. Finally, at the top-level, the documents, themselves, represent
the top level of the hierarchical knowledge graphs. In Figure 6.1, three
main steps are depicted to generate hierarchical knowledge graphs: Doc-
ument Retrieval (yielding the top-level of the hierarchy – corresponding
to the Collection View), Knowledge Graph Generation (yielding the bot-
tom level of the hierarchy – corresponding to the Detailed View), and
Hierarchy-from-graph Generation (yielding an intermediate view of an
individual knowledge graph, which we dub a minimap1).

1The term minimap is drawn from the gaming literature. It represents a less detailed overview
of a gaming world, allowing the user to orient themselves.
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Figure 6.1: Generating Hierarchical Knowledge Graphs

6.2.1.1 Document Retrieval.

The Document Retrieval component aims at creating an initial document
collection based on a user’s query. This collection will then be used as an
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input for the Knowledge Graph Generation component and will represent
the top view of the target hierarchy.

(a) Collection View for the History Topic (b) Collection View for the Politics Topic

Figure 6.2: Collection View generated for two different queries.

To generate a document corpus, we configured our IRE system to use
the Bing Search engine to retrieve the top n documents for a query while
attempting to ensure a reasonable quality of information in the retrieved
documents. By default, to ensure that retrieved documents are consis-
tent in their credibility and coverage, we specify Wikipedia as the target
domain. Furthermore, because it is known that searchers typically view
only a few results [248] and rarely stray past the first page of results [49],
we selected n=10 documents to generate collections. The target domain
from which to glean documents (e.g. a user might specify WebMD for
medical documents, ‘gov’ for public policy documents, ‘bbc’ for news)
and the size of the initial collection can be specified by the user at the
time of query submission.

Finally, since most exploratory search tasks require multiple queries to
retrieve documents for different aspects of the information need, this
component assigns one partition per query so the user can narrow down
the retrieved collection further. For example, considering our History and
Politics topics Figure 6.2 demonstrates the Collection Views generated for
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the set of retrieved documents. While the “Politics of Iran and Russia”
query resulted in two partitions for the retrieved documents, i.e. Poli-
ticsOfIran and PoliticsOfRussia (Figure 6.2b), the “History of Canada”
query resulted in one partition only (Figure 6.2a). For any query with
multiple partitions, the searcher can drill down to any of the partitions
which alters the view to a Partition View. In this view 10 bigger bubbles
corresponding to 10 documents retrieved for that partition are shown.
Figure 6.3 demonstrates the PoliticsOfIran partition view for the Politics
query. Please note that for queries with one partition the Collection View
and the Partition View are identical.

Figure 6.3: PoliticsofIran Partition View for the Politics query.

6.2.1.2 Knowledge Graph Generation.

Leveraging our developed IRE system, we create knowledge graphs for an
individual document or set of documents as follows. (1) Entity taggers
2 are used to extract entities from text. (2) Sentences that contain at
least two entities are selected and parsed using the Stanford Dependency
Parser. For each sentence, we extract meaningful relations between the

2https://cogcomp.cs.illinois.edu/page/software view/NETagger
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entities by finding the shortest path in the corresponding parse tree. (3)
Finally, labels are automatically generated for the extracted relations.
The labeled relations are ranked based on relevance to the query and the
informativeness of the extraction [477]. See Chapter 3 for more details.

The outcome is a set of tuples in the form of <entity1, entity2, relation,
snippet, document anchor>. These tuples collectively correspond to a
knowledge graph representation of retrieved documents where entity is
usually a term or a noun phrase in text that corresponds to a concept in
the domain, relation corresponds to a simplified sentence that is seman-
tically complete and describes how entity1 and entity2 are connected,
snippet is a short portion of text from which the corresponding entity
pair and the relationship is derived, and text anchor is an HTML anchor
that links the extracted tuple to the corresponding portion of the source
document in the collection. For example, from a paragraph on powers
and responsibilities of a president the following tuple can be extracted:
<president, parliament, “President nominates the Cabinet members to
the Parliament”, snippet, [URL][anchor]>.

These tuples are visualized as a knowledge graph where nodes are the
entities and edges are the relationships between them. This visualization
constitutes the lowest layer of the hierarchy and provides a Detailed View
of the search space.

6.2.1.3 Minimap Generation.

The final component of this system generates a hierarchical representa-
tion of the search results by extracting a middle layer from the input
Knowledge graph tuples and provides bidirectional mappings between all
three layers. As noted earlier, we call this layer the minimap layer.

A natural result of the entity-relationship tuples extracted above is that
some entities have a higher number of edges, i.e. are of higher degree. A
higher edge count implies a larger number of connections to other entities
in the graph; in other words, those entities with higher edge counts were
more frequently linked with other entities in the document. We call these
higher degree vertices central concepts and hypothesize that one alterna-
tive to hierarchical faceted structures is to consider a multi-level view of
a knowledge graph around central concepts. The multilevel view focus-
ing on central concepts simply introduces information seekers to those
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Algorithm 1 Extracting Central Concepts

Require: Nodes: array of nodes in the knowledge graph, min degree: a pre-
specified threshhold for the minimum degree of node to be considered as a central
concept (starting value = 3), max count: an experimentally derived threshold
for the maximum number of Central Concepts to be included in the middle layer
(default value = 15).

1: function ExtractCC(Nodes,min degree,max count)
2: while true do
3: CentralNodes ← []
4: for all node in Nodes do
5: if node.degree ≥ min degree then
6: CentralNodes.add(node)

7: if CentralNodes.size() ≤ max count then
8: return CentralNodes
9: min degree++

entities or objects that are most frequently linked to other entities within
the corpus. Generating the hierarchy becomes a thresholding task to ap-
propriately scope the intermediate level of the visualization. Algorithm
1 describes this process more formally.

6.2.2 Prototype Development

Given our hierarchical representation (DQ1), we must support mecha-
nisms for viewing and interacting with the visualization (DQ2 and DQ3).
In information retrieval, it is difficult to separate any visualization for rep-
resenting search results from the interface that contains that visualization
[215]. We iteratively designed an interface to support navigation of our
hierarchical knowledge graphs via a series of pilot studies.

Based on established literature and pilot studies we found that knowl-
edge graphs can become overwhelming or confusing for participants [119,
299, 397, 479]. The overwhelming nature of the full knowledge graph
leads to a need to create filtered views of our graph. These filtered views
draw inspiration from the “expand-from-known” paradigm in informa-
tion visualization [562]. Specifically, at the top level of the full corpus, a
user selects a document, then a central concept from the minimap visu-

166



(a) Minimap View (b) Detailed View

Figure 6.4: A Minimap is generated from the central concepts in the Knowledge
Graph. The user can select a subset of central concepts from the Minimap (high-
lighted in yellow) which will be added to the Detailed View.

alization. While preserving the entire knowledge graph, we alpha-blend
all nodes in the knowledge graph except those nodes directly related to
the central concept from the minimap. Recall that the central concept
is simply a high-degree vertex from the knowledge graph; therefore, the
central concept and all its linked nodes are shown saturated. As a result,
users can identify the central concept, linked entities, and can see closely
related additional entities. Together, this focused detailed view seems
to effectively support expand-from-known at the knowledge graph level.
Figure 6.4 demonstrates a detailed view of the underlying knowledge
graph generated based on the central concepts selected in the provided
Minimap.

As well, for the Hierarchical View, the biggest challenge to address was
the disorientation among the participants during transitions between col-
lection, minimap, and knowledge graph views, a common problem in in-
terfaces that show multiple levels of abstraction. To address this disori-
entation (DQ3), we maintained the connection between the hierarchical
view and the graph view in two ways. First, the user can move between
the layers of Collection View and the Document View smoothly through
a zooming functionality that changes the focus of the UI (see Figure 6.5).
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Figure 6.5: MultiLayer Graph Interface: (a) Collection View; (b) Partition View; (c)
Document View; (d) Minimap (i.e. Global View); (e) Detailed View (Local View);
(f) Snippet Window

Second, the interplay between the Document View and the Detailed View
is designed such that the overview of the document is present at all times,
in terms of a callout on the left side of the screen, an actual minimap as
in computer gaming, which allows the user to maintain a sense of where
he or she is while manipulating the fine-grained nodes and edges in the
Detailed View.

The iterative process culminated in the final prototype shown in Figure
6.5. In this interface, we see an initial overview, the Collection View that
presents an overview of the underlying documents’ structure in the collec-
tion (Figure 6.5-a). The collection view can potentially provide multiple
partitions on the documents. Figure 6.5-b illustrates one partition of a
collection. As an information seeker drills down on each document, the
view is altered (Figure 6.5-c) such that an overview of the document is
presented. The Document View provides a Global View of the corre-

168



sponding document in terms of its central concepts. In this overview,
the salient concepts in that article are visualized as circles of different
sizes, where size indicates the frequency of occurrence in that article. We
used force and pack layouts (as part of the D3 library3) to visualize the
different layers of the knowledge graph representation.

The lowest layer of our representation is the Detailed View (Figure 6.5-
e). This view is a knowledge graph that represents entities and relation-
ships between them. The Detailed View, similar to the graph interface
presented in Chapter 5, contains labeled nodes and unlabeled links be-
tween nodes. Nodes that represent entities with low frequency are hidden
in the initial view, and only appear once a higher-frequency, connected
node is clicked, ensuring that the graph does not become too cluttered.
Once the user hovers over a node, that node and all connected nodes are
highlighted, while the remainder of the graph is alpha-blended into the
background. Clicking on a node can expand it by adding in its related
nodes. Alternatively, clicking on a node can collapse its neighbours if
they are expanded already. Nodes can also be dragged and placed at
different parts of the canvas. This functionality can help with organizing
the graph structure in a way that is more meaningful to the user and it
can help with minimizing label overlap in the graph [479].

Edges can similarly be highlighted by hovering. By clicking on any edge,
the user can see the relationship(s) between the two corresponding nodes
(linked by this edge) in the context window located on the lower left side
of the interface (Figure 6.5-f). For each relationship in the context region,
a hyperlink allows users to view the corresponding web page.

6.3 Experimental Design

Given that we have designed hierarchical knowledge graphs, a related
question is how hierarchical knowledge graphs compare to hierarchies
and/or knowledge graphs with respect to information seeking tasks. To
evaluate this question, we need a set of control interfaces (reference in-
terfaces that can be compared to hierarchical knowledge graphs, HKGs)
and a reference data set. These can then be leveraged to design an ex-
periment. As well, experimental design should replicate, as closely as

3http://d3js.org/
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possible, past work to ensure experimental validity.

In our recent work [479], we developed two interfaces for exploratory
search: one knowledge graph interface and one hierarchical tree inter-
face. To preserve experimental validity, we use identical interfaces as
control interfaces. We also leverage the identical data sets, ensuring that
topic is eliminated as a confound. Finally, we use exactly the same ex-
perimental task, ensuring that performance numbers are representative
between experiments.

6.3.1 Control Interfaces

• The first interface, a knowledge graph interface, functions as fol-
lows: As the interface starts, nodes that represent entities with low
frequency are hidden in the initial view, and only appear once a
higher-frequency, connected node is clicked. Users can also filter the
knowledge graph by clicking on a node; when a user clicks on an
edge, snippets and links associated with that edge are shown in a
preview pane on the left side of the interface.

• The second interface utilized a hierarchy (or a tree) structure to
organize headings and sub-headings of the articles, as observed in
each page’s table-of-contents. When the user launches the applica-
tion, the user is presented with a fully expanded tree. By clicking on
any node within the tree, that portion of the Wikipedia document
corresponding to the node is presented in the preview area at the
left of the interface.

Figure 6.6 depicts these two interfaces. Contrasting these interfaces with
Figure 6.5 shows a similar preview pane for snippets. Links within the
snippets function identically across all three interfaces.

6.3.2 Data Set

We leveraged the two data sets from our previous study: A history data
set, specifically a corpus of Wikipedia articles describing the historical
locations of the capital city of Canada; And a global politics data set, a
Wikipedia corpus representing governmental structures in Iran and Rus-
sia. These data sets are described in Section 5.4.1.
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Figure 6.6: Control interfaces for Knowledge graph and Hierarchy. More details in
Sarrafzadeh et al. [479].

6.3.3 Search Tasks

We used the same two exploratory search tasks [352], a simple and a
complex exploratory search task, as follows:

Simple Politics: What governmental body or bodies are involved in
the impeachment of the President of Iran and of Russia? (sample
question)

Complex Politics: Imagine you are a high school student who is go-
ing to write an essay on the Political Systems of Iran and Russia.
Knowing little about the presidents of these two countries, you wish
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to determine which president has more power. Find at least 3 argu-
ments to justify your answer.

Simple History: As a result of which act were Upper and Lower Canada
formed? (sample question)

Complex History: Imagine you are a high school student who is going
to write an essay on the History of Canada. Knowing little about
Canadian History, you wish to know which cities have served as a
capital for Canada. You would also like to understand the reasons
behind moving the capital from one city to another.

In Section 5.5.1 we validated these search tasks – both quantitatively and
qualitatively – and ensured that the complex tasks are representative of
exploratory search tasks and that both topics are of sufficiently similar
complexity.

6.3.4 Study Design

Our study design was a 3 × 2 × 2 [interface, topic, complexity] mixed
design. For Knowledge graph and hierarchy, we leverage the data set
from our previous study [479] as control interfaces.We add additional
participants for our HKGs to yield our mixed design as follows.

For HKGs, each participant performed two different tasks, one simple
and one complex. The topic area (history or politics) differed for each of
these tasks. More formally, for these participants, our design was a 2 × 2
full factorial mixed design, with topic and complexity as within subjects
factors and complexity to topic assignment as a between subject factor.
We counter-balanced the order in which the tasks were assigned to the
participants.

Alongside the HKG participants, leveraging data from our previous work
[479] adds two additional levels of Interface (hierarchical tree or knowl-
edge graph) as a between subject factor. Combining the data sets yield
the 3 × 2 × 2 mixed design [interface, topic, complexity] with interface
as a between subjects factor, and topic and complexity as within subjects
factors.
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6.3.5 Participants

In total we analyze data from forty seven participants. Twenty six par-
ticipants, thirteen female, used hierarchies and knowledge graphs, the
control interfaces. An additional twenty-one participants (4 female) used
HKGs, the experimental condition, as a between subjects factor. All
participants use the Internet on a regular basis to search for informa-
tion. Participants were aged between 18 and 45 years old (62% were
between 20 and 29 years old). Participants received a $15 incentive for
their participation.

6.3.6 Procedure

After introducing the study, participants were presented with an experi-
mental interface (populated with an unrelated data set), and were given
time to familiarize themselves with the interface and data structure. Once
participants had developed some comfort with the features of the inter-
face (∼ 3 minutes), participants completed a questionnaire assessing their
familiarity with the topic used for the first task. They were then given
the description of their task (see above), and were asked to complete the
task using the interface (15 minutes per task). Participants completed a
post-task questionnaire that evaluated the experience; we used question-
naires provided by TREC-9 Interactive Searching track 4 modified to fit
our experiment. The same process was repeated for the second task.

At the end of the second task, a semi-structured interview explored partic-
ipants’ experience using the interface. Interviews explored the conceptual
usability of the visualization, the technical usability of the application and
the efficacy of the interface for different types of search tasks. Feedback
on competing interfaces was also collected from participants.

6.3.7 Data Collection

Alongside a mixed design of within subject and between subject factors,
we perform a mixed methods analysis of both quantitative and qualitative
data [127]. Data was captured as follows:

4www-nlpir.nist.gov/projects/t9i/qforms.html
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(a) The interface was instrumented with a logger which monitored move-
ment on the computer screen and participants’ interactions with the sys-
tem. Interactions collected included node or edge clicks, snippets read,
articles viewed, and time spent reading the articles. In HKGs, the tran-
sition between the layers and switches between the MiniMap and the
knowledge graph were captured.

(b) Two assessors evaluated the quality of answers provided by the par-
ticipants for each of the search tasks independently. Simple queries were
rated as either correct or incorrect. Complex questions were rated on
a scale. Scores for all queries were normalized to reflect a value in the
range [0, 1]. Inter-assessor reliability was evaluated using Pearson coeffi-
cient and an overall value of 0.97 for simple queries and 0.94 for complex
queries was found.

(c) We captured field notes during participant interactions, audio recorded
all sessions, transcribed final interviews, and collected questionnaire data.
This data was analyzed collectively using open coding to extract low-level
themes and axial coding to identify thematic connections between ele-
ments. Coding was performed incrementally as each participant’s data
was collected, and saturation was found after coding qualitative data
from field notes and transcripts for 15 of our 21 participants.

6.3.8 Hypotheses and Research Questions

Quantitative data allows us to test the following hypotheses:

• Hierarchical knowledge graphs result in fewer document views and
less time spent reading documents than do hierarchical trees.

• Hierarchical knowledge graphs exhibit statistically similar behaviors
to Knowledge Graphs.

Alongside hypothesis testing, our log data provides insight into whether
hierarchies are used in hierarchical knowledge graphs and on whether task
complexity affects the use of hierarchies. As well, to triangulate quan-
titative data, we leverage our qualitative data to compare and contrast
the nature of the hierarchies between the tree interface and the hierarchi-
cal knowledge graphs and to understand whether the hierarchies provide
similar affordances.
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6.4 Results

6.4.1 Quantitative Analysis

Scoring of participant responses by independent evaluators and log file
analysis produced the quantitative measures in Table A.1 for Hierarchi-
cal Knowledge Graphs (H. Graphs), Hierarchical Trees (H. Trees), and
Knowledge Graphs (K. Graphs). Rows represent measures for Marks
(MK), Nodes clicked (NK), Edges Clicked (EC), Document Views (V)
and Document View Time (VT). We break each measurement out by
two query levels, Simple and Complex, as described previously.

H. Graphs H. Trees K. Graphs

S
im

p
le

MK 0.43 (0.21) 0.32 (0.20) 0.37 (0.14)
NC 11.4 (8.6) 19.0 (10.04) 11.38 (9.4)
EC 18.3 (8.9) NA 27.15 (12.9)
V 2.38 (1.61) 6.08 (2.49) 2.38 (3.00)
VT 145.6 (153.7) 1430.9 (2302.8) 211.6 (228.0)

C
om

p
le

x

MK 0.62 (0.18) 0.57 (0.28) 0.58 (0.16)
NC 13.38 (9.2) 20.09 (17.7) 26.23 (19.12)
EC 23.09 (12.7) NA 41.07 (19.4)
V 2.15 (2.13) 4.38 (2.24) 4.38 (2.24)
VT 103.4 (97.6) 985.38 (1848.3) 78.76 (131.5)

Table 6.1: Hierarchical (H.) Graphs vs. Hierarchical Trees and Knowledge (K.)
Graphs: Mean (Standard Deviation) values for marks (MK - average independent
evaluator scores), clicks on nodes (NC) and edges (EC), document views (V), and
document view time (VT). Bolded dependent variables exhibited significant differ-
ences in post-hoc testing.

6.4.1.1 Hypotheses Testing

Multivariate analysis of variance with respect to interface (tree versus
graph versus hierarchical graph), topic (history versus politics), and task
(simple versus complex) for Marks (MK), Views (V), and View Time
(VT) shows a statistically significant effect of interface (F6,172 = 7.126, p <
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0.001, η2 = 0.2) and task (F3,86 = 12.22, p < 0.001, η2 = 0.3) on depen-
dent variables. Post-hoc factor analysis using Tukey correction indicates
that the tree interface exhibited statistically significantly higher numbers
of document views than both hierarchical graphs and knowledge graphs.
As well, the tree exhibited statistically longer reading times than hierar-
chical graphs (p < 0.05), but not than knowledge graphs (p = 0.064) in
our analysis. Hierarchical graphs and knowledge graphs did not differ sig-
nificantly in their effects on any dependent variables. Task significantly
impacted the marks but no other variables.

Clicks are not directly comparable between H. Trees, H.Graphs, and
K.Graphs, as edges are not clickable in hierarchies (NA value in Table 1).
Performing pairwise comparison between H.Graphs and K.Graphs, our
analysis showed no statistically significant effect on dependent variables
(F3,30 = 0.752, p > 0.5, η2 = 0.70), including node click and edge click
behavior.

Given the above analyses, we reject both null hypotheses and conclude
that our hypotheses are supported by our data set. Hierarchical Knowl-
edge Graphs preserve the advantages of Knowledge graphs over hierar-
chical trees in both reading time and in document views. Focusing specif-
ically on our hierarchical graph, we find that our hierarchical graph has
statistically lower document views (61% fewer document views, on aver-
age) and time reading (90% less time reading documents) than does hier-
archical trees and that its behavior is statistically indistinguishable from
the prior observations of knowledge graph interfaces. Furthermore, the
effect size measures, η2, are significantly above the threshold (0.14) typi-
cally considered to be a large effect, lending support to these differences
being sufficiently large to be meaningful. In summary, our quantitative
results support our hypothesis that our hierarchical knowledge graphs
fully preserve the quantitative advantages identified by our prior work
[479] (described in Chapter 5) for knowledge graphs over hierarchies.

6.4.1.2 Additional Quantitative Analysis

Given the statistically indistinguishable nature of HKGs and Knowledge
Graphs, one question is if (and whether) intermediate hierarchical repre-
sentations are used. It is possible that Hierarchical Knowledge Graphs
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are indistinguisable from Knowledge Graphs because users ignore the hi-
erarchy and simply leverage the knowledge graph.

GlobalView MiniMap DetailedView
Simple Task 27.03% 14.61% 58.0%
Complex Task 23.83% 17.24% 58.90%

Table 6.2: Percentage of Time spent on each of Global View, Minimap and Detailed
View

.

To specifically explore this question, we looked at how much time users
spent on each of the provided views in our HKG interface. Overall, our
data indicated that participants took advantage of all three layers rela-
tively similarly across both Simple and Complex tasks. Further, while
the the time spent on detailed view dominates other views (58% for the
simple task and 59% for the complex task), over 40% of time was spent on
additional views in the hierarchy (Table 6.2). Looking specifically at how
participants spent their time in different layers of the hierarchy (i.e. uti-
lizing different views of the data) for different tasks we see that the time
spent at the detailed view is similar for both levels of complexity. On the
other hand, participants seem to spend less time in MiniMap than Global
for the simple task (Pairwise t-tests with Tukey correction yields statis-
tical significance, p < 0.01). For Complex task, however, time in Global
versus mid-level are not statistically different (p > 0.1). Essentially, in
the complex task, sensemaking is split between global and minimap views
of the hierarchy more equitably, i.e., the minimap is particularly useful
during our complex tasks.

We also explored usage patterns of views. Figure 6.7 is a heatmap that
visualizes use of different views for intervals of 1% of task length. Early
in the task, we see frequent use of the global view. While difficult to see,
MiniMap usage peaks just after the halfway point in the task, but there
is no strong concentration of use. The hierarchy, and particularly the
MiniMap visualization, seems to be used throughout the task.
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Figure 6.7: Heatmap visualizing the patterns of users navigating views in HKG for
intervals of 1% of task length.

6.4.2 Qualitative Analysis

The next question we explore involves participant perspectives on hi-
erarchical knowledge graphs as a representation of search results. We
were particularly interested in the overviews knowledge graphs provide
for the information space and their contrast with Table-of-content-based
hierarchies.

To address these questions, we performed open-coding of observations,
transcripts, and questionnaire data. We coded incrementally, and satu-
ration occurred after fifteen participants were coded. We coded all par-
ticipants for completeness. Once open coding was complete, axial coding
and thematic analysis was performed collaboratively by the researchers.
We present three themes arising from our qualitative data analysis: Sup-
porting Exploratory Search Tasks, Imposing a Structure versus Open
Exploration and the Self-Orienting nature of HKGs.

6.4.2.1 Supporting Exploratory Search Tasks

As noted in our study design, we incorporate two exploratory informa-
tion seeking tasks with different levels of complexity. In post-experiment
interviews the participants were able to compare how different task com-
plexities are supported by the assigned interface.

The hierarchical graph representation was found to provide more support
for the Complex Task (i.e., more open ended and exploratory tasks such as
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essay writing or learning) versus Simple tasks (such as question answering
and specific knowledge finding). This observation seems to be true for
any multi-level structure which provides an overview and allows a gradual
immersion into details: Finding a specific piece of information to satisfy
a simple query is best done using a traditional search engine.

Looking specifically at HKGs and complex tasks, the overview allowed
participants to identify the central concepts of a domain at a glance and
the size of the circles indicates their prominence in the corresponding
article. As many participants noted, ‘relevance’ or ‘prominence’ of a con-
cept with respect to the main topic or the domain they are exploring is
an important asset in Complex Search tasks. This qualitative observa-
tion may explain the more equitable use of the MiniMap representation
for complex search tasks noted in our quantitative analysis. Complex
tasks required synthesizing, rationalizing, and comparing, which seem to
require more awareness of the entire data set.

This identification of central concepts was also linked to a perception
of value of the MiniMap as a starting or entry point into the topic of
the document being examined. Several participants articulated a belief
that the overview provided by Central Concepts helped with “going from
knowing nothing to having a plan”, “learning terminology”, “relevance,
importance, or prominence”, and “objectively learning about a domain”.
In particular, the objective nature of central concepts was cited by many
participants as key to their utility.

As White and Roth [597] point out, exploratory search is motivated by
complex information problems, poor understanding of terminology and
information space structure, and often a ‘desire to learn’. Vakkari [557]
also argues “more support is needed in the initial stages of a task”, when
users have an unstructured mental model. Inspired by Kim [290], Sar-
rafzadeh et al. [479] found that hierarchical trees provide this benefit in
unfamiliar domains. A strength of our design of hierarchical knowledge
graphs is that it enables the user to engage in two alternative navigation
paradigms. Users can exploit overview layers to explore the collection at
a higher level followed by targeted immersion in the detailed view.

6.4.2.2 Imposing a Structure versus Open Exploration

While most participants were unanimous that the hierarchical represen-
tation imposes a [subjective] [rigid] structure onto the information space,
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their attitude towards this phenomenon varied. The level of domain
knowledge and the complexity of the search tasks were found to be the
major factors affecting their attitude.

When the searcher is dealing with a domain where he has limited knowl-
edge, he is more open to accepting the structure that the representation
imposes. Both hierarchical trees and hierarchical knowledge graphs in-
corporate imposed structures. Participants articulated a variety of ad-
vantages to structures: it was “easier to follow”, “contained important
aspects” that “simplified focus”, and guided participants in “where to go”
or “what steps to follow”. With respect to hierarchical trees, some partic-
ipants simply “trusted” the designer of the hierarchy (e.g. the author of
an article) to be “logical” or “rational” in the way he broke down things.
This was particularly true for participants with limited knowledge of a
topic domain and replicates findings in our prior work [479] and and the
work by Amadieu et al. [23] that low knowledge learners benefited from
hierarchical structures in free recall performance and exhibited reduced
disorientation.

In the case of higher domain knowledge, our participants were split in
their preferences and attitudes. Some still trusted the logic behind the
layout of a hierarchical trees and the fact that their knowledge of the
domain can guide them to find what they want using this hierarchy.
They trusted the designer to place items in close proximity to where the
item should be. Other participants strongly opposed the rigid structure
of a hierarchy, feeling it was “not the way I think”, “based on the mindset
of the author”, or “did not match the domain structure”.

One interesting perspective of the multi-layer graph representation which
presents central concepts of a domain as an overview for each document
is that it reflects the knowledge graph concepts. This reflection made it,
for many participants, more flexible and exploratory, a window into the
knowledge graph. Many participants commented on this phenomenon,
noting it was “guiding but not imposting”, “more open”, “sparked inter-
est” in the lower level structure, or was “visually appealing” and “fun”.

6.4.2.3 Self-Orienting or Relative Positioning

One main advantage of the Hierarchical Tree visualization in the pre-
vious chapter was the explicit connections between nodes (categories or
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headings) in the representation. These edges help in two ways:

1. At a glance, you can tell why a concept appeared in this overview,
or in this domain. To whit, the hierarchical structure exists the way
it does because of a human author’s decision.

2. The Path from the root to each of these nodes in the Tree Layout can
provide useful information on where a concept is positioned relative
to the topic.

Some of our participants articulated this distinction between these two
types of hierarchies particularly well.

“This [hierarchical knowledge graph] kind of tells you these are
the main things happening here; but I mean it could be a bit
deceptive! because when a concept is there, you don’t know how
it is related to the main topic. you should go there and you
find out if it was actually related. For example, it shows you
“American Revolution“ is there a lot; but I have no idea, how
it’s related to Upper Canada. Whereas in Tree, there is a clear
connection that this is directly related to that; and you can see
how it’s related. Because this heading is directly related to the
main topic. Just by seeing the position of the heading you can
understand what the heading is talking about. But in Circles,
you don’t really know!”[P3]

“The nice thing about the hierarchy [Tree] is that, if we con-
sider history as a Domain ... it starts at one point and ends at
another point, like the current date. Having a hierarchy or a
timeline makes sense. Whereas [hierarchical knowledge graphs]
gives you important concepts and stuff but it doesn’t tell you
‘where the seventy two resolutions occur’ or ‘what’s the order’
and when history is the domain that’s important.’ For exam-
ple, if you are looking at First World War, Upper Canada,
Lower Canada, and you have a Hierarchy [Tree], you start in
the direction of the colonization and go in the order that things
happen. Whereas [with Hierarchical Knowledge Graphs], it’s
just whenever! ‘Political crisis’ is over there but is that in War
of 1812? Or did it happen at World War II? all of them? none
of them?” [P9]
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In Chapter 5 we note that participants may perceive a domain to have
a derivative/hierarchical structure or a multi-faceted structure. If salient
relationships are viewed as derivative or hierarchical (e.g. ‘is-a’ relation-
ships), then a tree can best capture this view of data, whereas if salient
relationships are more heterogeneous and resist structure as a hierarchy,
that disadvantages the hierarchies.

This is not the case in our MiniMap, where the connection between each
of these main concepts and the main topic is unknown at first glance.
Central concepts are simply extracted based on their high connectivity
with other concepts within a specific document within a corpus. However,
it is also true that it would be quite surprising if highly linked concepts
were not, somehow, important components of any individual document.
The more pervasively they link, the more they interconnect with other
concepts, the more important it is to understand them and their rela-
tionship. In this way, HKGs become self-orienting for out participants.

6.5 Limitations

Any study has limitations. Because we leverage the research methodology
and the data sets from our prior work [479], we inherit the limitations
of that study, including topic and implementation issues which may bias
the study. We discussed our approach to addressing these limitations
in Section 5.6.3. Despite this, there is also a strength in replication: if
interfaces are redesigned, data sets differ, and tasks are unique it becomes
difficult to ensure a lack of confound in experimental design. We address
this by preserving, to the limit possible, all aspects of a similar study
within this space contrasting data structures.

Our mixed design of within and between subject factors is a particular
strength to our study design. Because topic (history/politics) and task
complexity are within-subject factors, they are controlled across partic-
ipants. Because we are most interested in interface and it is a between
subject factor, to observe statistical significance we need good separation
of dependent variables between the two data sets, reducing the likelihood
of a type-one error in our analysis.
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6.6 Chapter Summary

The primary goal of the research described in this chapter was to ex-
plore whether we could combine benefits from both knowledge graphs
and hierarchies into one data structure for visualizing search results. We
note that our hierarchical graphs significantly reduce documents read and
reading time as compared to hierarchical trees and perform on par with
knowledge graphs. We also provide evidence that the hierarchy is used
by participants via analysis of interaction logs.

Qualitative data from our participants does indicate that hierarchies
grounded in tables-of-contents are more familiar, easier to follow, and
more focused. This in turn helps users orient themselves in the data.
The vetted nature of hierarchical tables-of-contents was also perceived to
be an asset absent from our hierarchical knowledge graphs. The hierar-
chies in our knowledge graph were viewed slightly differently, as noted
above, with a more quantitative perspective giving them a certain cachet
with respect to the unbiased nature of topic selection.

A final issue to consider is whether any hierarchy might provide benefits.
While it may, one advantage of the hierarchy in our HKGs is its tight
connection to the entities contained in a knowledge graph and the ease
of automatically extracting the hierarchy through thresholding. Another
advantage is flexibility: while we currently leverage only three levels –
corpus, central concept, and knowledge graph – it is easy to generalize
the hierarchy to an arbitrary number of thresholds depending on the
complexity of the domain. We do not generalize the hierarchy in this work
because, for a first experimental validation, there are a limited number
of factors that can be assessed. However, future work can address more
detailed inquiries into scalability to larger corpora, scalability to multi-
level hierarchies, and contrasts with other hierarchies such as automatic
clusters or user-specified facets.

In summary, we find that our hierarchical knowledge graphs preserve
many of the previously observed advantages of traditional knowledge
graphs, i.e. fewer document views and reduced reading time. Along-
side this, HKGs introduce an effective hierarchical representation into
knowledge graphs. In the next chapter, we take a step back and ask
what happens if there are errors in the extraction algorithms? Essen-
tially, how error-prone HKGs impact the information seeking behaviors
and outcomes?
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Chapter 7

Error Prone Representations
of Search Results

“Knowledge rests not upon truth alone, but upon error also.”

– Carl Gustav Jung (1875 - 1961)

In Chapters 4, 5 and 6, we studied representations independently from
extraction methods that generate them. This separation was valuable
as it provided an opportunity to observe the impact of different repre-
sentations of the search results on the outcome of complex information
seeking scenarios independent of the accuracy of the algorithms that pro-
duce the underlying data. In this chapter we take a step back and ask
what happens if there are errors in the extraction? How resilient are new
representations to these errors? And how do errors impact a user’s ability
to leverage these representations to acquire knowledge?

To probe these questions, we perform a mixed methods analysis of the
effect of precision and recall on the performance of hierarchical knowl-
edge graphs for two different exploratory search tasks. To this end, we
leverage the information extraction algorithm that we developed earlier
in Chapter 3 and compare users behavior and outcomes with the erro-
neous output of the IE algorithm to users behavior and outcomes with
the corrected outputs of the information extraction algorithm. While the
quantitative data shows a limited effect of precision and recall on user
performance and user effort, qualitative data provides evidence that the
type of exploratory search task (e.g., learning versus investigating) can
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be impacted by precision and recall. Furthermore, our qualitative anal-
yses find that users are unable to perceive differences in the quality of
extracted information. We discuss the implications of our results and
analyze other factors that more significantly impact exploratory search
performance in our experimental tasks.

7.1 Motivation

While representing information is critical to effective support of exploratory
search, the process of extracting and presenting that information to the
user is challenging. Information extraction (IE) algorithms are not perfect
[516], meaning that the base level information to be presented to a user
may contain errors and omissions, and, as such, may reflect compromises
in either precision or recall by the algorithm. The TAC 1 and TREC 2

tracks on evaluating IE and question answering (QA) algorithms report
varying levels of precision and recall for these algorithms when compared
against manually created ground truth datasets.

To address the extraction and presentation challenge, alongside develop-
ing an information extraction algorithm that is capable of automatically
extracting semantic information from the textual content of documents
(see Chapter 3), in Section 3.5.1.2 we proposed an evaluation framework
that decouples the evaluation of the efficacy of representations of the ex-
tracted information from the performance of the algorithms that generate
these extractions. As a result of this decoupling, we generated knowledge-
graph representations of search results that were populated with gold
entity-relationship data and focused on improving the interactive and vi-
sual aspects of knowledge graphs while the underlying information is as
accurate as the textual content of retrieved documents.

In this chapter, we address the second step of our proposed evaluation
methodology, essentially, we present a mixed-methods study [126] that
examines the impact of imperfect IE on exploratory search tasks. To
conduct this evaluation, we leverage an existing system that supports ex-
ploratory search tasks via hierarchical knowledge graphs (HKGs) [475].
Users interact with two HKGs, one created manually by human experts

1https://tac.nist.gov/
2https://trec.nist.gov/
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(the typical approach to generating ground truth to benchmark IE sys-
tems [516]) and a second graph that was automatically generated and
exhibits significantly lower precision and recall compared to the manu-
ally generated graph.

While our expectation was that precision and recall would impact user
performance (i.e., success in an exploratory search task) or the effort ex-
pended during search (e.g., the number of documents viewed), our results
indicate that neither performance nor effort was significantly impacted
by differing levels of precision and recall. To probe this result in greater
detail, we analyze qualitative data collected via observations and inter-
views. Our qualitative data indicates that task characteristics may be
an important factor to consider in exploratory search. Specifically, for
investigate-style tasks [352] where there is a defined set of facts to re-
trieve, recall may impact user behavior because it is necessary to find
specific facts within the information presented. In contrast, more open-
ended synthesis or comparison tasks, where salient data can be more
flexibly applied by the user, seem more resilient to lower recall rates.

7.2 Past Research

As noted in the introduction, our primary interest in this work is to
develop an understanding of how errors in information extraction – and
consequently error-prone representations – impact exploratory search. In
this section, we provide background in IR research on the effect of error on
information seeking and examine past research in supporting exploratory
search.

7.2.1 Error Effects in Information Seeking

It is often assumed if an evaluation measure coupled with a test collec-
tion reveals that system A provides higher quality output than system B,
then the user will both prefer system A and that system A will more effec-
tively support the user’s information seeking task [20, 559]. However, the
IR research on this topic indicates that the relationship between output
quality and system efficacy is not clear.
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In document retrieval, there is a long history of research that examines
how human search performance varies with system effectiveness [222,
550, 20, 549, 114, 15, 504, 469, 506, 578]. As we noted in Chapter
2, the broader goal of this line of work is to understand when sys-
tem effectiveness improvements are meaningful or useful in improving
users’ information seeking abilities in practice. These studies, however,
have resulted in contradictory findings. Early studies suggest that “bet-
ter” systems, as measured by system oriented metrics such as preci-
sion and recall, do not necessarily translate into better task performance
[222, 550, 223, 549, 504]. More recent work has detected potential correla-
tions between various system effectiveness metrics and human preferences
[15, 469] and between precision and user performance [510].

Even if one gives credence to more recent work relating effectiveness to
user preference and user performance, the reason for inconsistent effects
of system performance on human performance in past work is unclear.
Differences could lie in the definition of ‘relevance’ and how it is used as a
basis for evaluation of document retrieval systems [148, 529]; they could
also lie in the discrepancies between the metrics used for evaluation (e.g.,
MAP vs P@10) and the type of task the user performs (e.g., recall-based
or complex information seeking) [549]; sample size may provide increased
power to discriminate effects [15, 469]; or, finally, differences could be a
result of the lack of UI support for meaningful user interaction with the
retrieved results [332, 504, 550]. Hersh et al. [223] also found that while
precision and recall weren’t associated with success in medical QA tasks,
other factors including experience of the searcher and cognitive abilities
in spatial visualization were correlated with the ability to answer ques-
tions correctly. Further, in Section 2.5.3.3, we highlighted other factors
contributing to observing inconsistent effect of system performance on
users success, particularly in the domain of exploratory search tasks.

Possibly due to the ambiguous link between system performance and ef-
fectiveness, there have been calls to extend evaluation of IR systems from
an analysis of the output of the system to the outcome of the search task
[281, 559]. Furthermore, there is also an evolving drive toward evalua-
tions of how effectively IR systems support complex, evolving, long term
information seeking goals, such as learning and exploration [129].
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7.2.2 Designing for Exploratory Search

While there has been research on understanding complex and exploratory
search (see Section 2.2 and [597, 611] for a survey), there are many open
questions when it comes to the design and evaluation of IR systems that
provide tailored and adaptive support for long-term search needs. We
have identified three areas of past research that explore support for users
with more complex, exploratory search tasks. First, in Section 2.3 we
reviewed a body of work in the IR community that aims to deliver “in-
formation” and not documents. Within this body of work, Open Infor-
mation Extraction (Open IE) [40] techniques have been widely applied
to extract semantic information from the text of documents to support
a variety of down stream applications such as question answering or to
populate knowledge bases (see [384] for a recent survey of these systems).

The second area focuses on investigating ways that search systems can
represent and provide the extracted information to help searchers in eval-
uating and contextualizing search results (see Section 2.4). Within this
space of techniques for the organization of search results, researchers
have performed evaluations of representations including concept maps
[23, 22, 90], hierarchies (e.g. [87, 385, 150]) and networks ([478]). To
extend these efforts, in our prior work [479, 475] we designed search
interfaces looking specifically at the contrast between hierarchical and
network representations.

Finally, developing solutions to support users’ exploratory search tasks
also includes significant challenges in evaluation. The recent SWIRL
Workshop [129] has identified the most relevant research questions to be
addressed in order to develop new evaluation models that are suited for
complex and exploratory information seeking. We reviewed some of the
approaches to evaluating exploratory search systems in Section 2.5. A
major step towards this goal is to design and study characteristics of
search tasks that elicit exploratory behavior. These studies, in turn, pro-
vide data on searchers performing these tasks, specifically focused on task
outcomes and searcher behaviors. Designing tasks for exploratory search
studies can be especially difficult since inducing exploratory style search
requires searcher to individually interpret the tasks, results, and their rel-
evance [308] which is at odds with maintaining some level of experimental
control and consistency [307]. The literature [352, 84, 83, 307, 328, 605]
suggests a number of desirable characteristics for exploratory search. As
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Wildemuth and Freund [605] note, it is crucial to construct tasks hav-
ing particular attributes, knowing that our study findings can then be
generalized to all search tasks having those attributes.

Our primary interest is in how errors in IE impact end-user performance
and effort in exploratory search. Within the broad domain of the impact
of error in IE, we were able to identify only one work by Chu-Carrol
and Prager [112] that examined how user performance degrades in the
face of imperfect named entity and relation extraction. Their experimen-
tal results demonstrated that significant document retrieval gain can be
achieved when state-of-the-art IE systems are used and that recall has
more significant impact on document retrieval performance than preci-
sion when adopting the MAP metric. Their results focus on assessment of
document retrieval, not on assessment of support for exploratory search.

Synthesizing past research, we see ambiguity in the effect of errors in
the domain of information retrieval, and an increasing focus on outcome
versus output centric assessment. Coupled with this, we note that ex-
ploratory search tasks require systems that support browsing, and, within
information retrieval, this has given rise to systems that retrieve and
present information to users in formats that support browsing. However,
absent from past research is any assessment of the effect of informa-
tion extraction errors on exploratory search interfaces. While we concur
that systems would ideally have perfect precision and recall, in the near
term it seems unlikely that computational information extraction will
be perfected, further motivating exploration of the effect of information
extraction errors on interfaces that support exploratory search.

7.3 Evaluation Framework

In order to evaluate how varying levels of precision and recall in IE impact
user behavior, it is necessary to embed the IE algorithm in a system
that supports the overall task. As we noted earlier, in this chapter, our
primary interest is in how varied levels of precision and recall in IE impact
exploratory search.

With this goal in mind, in this section we describe a framework for eval-
uating systems that support exploratory search. We first focus on the
necessary system components to support exploratory search, including
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an IE algorithm and an interface that leverages IE output to support
user interaction. We then characterize the behavior of our IE algorithm
to demonstrate that our system includes varied levels of precision and
recall.

7.3.1 System Support for Exploratory Search

As noted in our thesis statement in Section 1.1, to support exploratory
search, a system must have two components: an information extraction
system that can identify and extract relevant information from a corpus
(e.g., search engine results); and, an interactive UI that presents the
information to users and allows users to browse the extracted information
for sensemaking [257, 397]. Any arbitrary system designed to support
exploratory search will exist on a range from a standard search engine
interface (an ordered list where a user can select and browse individual
documents) to systems that extract and synthesize information for the
user. An example of the latter type of system include those found at
the TREC Complex Answer Retrieval (CAR) track [142] which explores
the design of systems that apply information extraction to synthesize
content and generate an essay on a particular topic. Ultimately, any
system on this spectrum requires the two components identified above:
an information extraction component and an interactive UI to support
browsing.

A common approach to present-day exploratory search systems is to lever-
age IE to identify relevant entities and their relationships within the re-
trieved documents. These entities and relationships can then be displayed
in graphical form (e.g., as a knowledge graph, or hierarchy, or concept
map, etc) which provides the user with a spatial representation of the
information space for sensemaking [414]. This representation can then
be embedded in an interface that allows a user to interact with the repre-
sentation, to filter and select specific content, and essentially to explore
the information returned [479].

7.3.2 Evaluating Exploratory Search Systems

Given that our goal is to understand how errors in extraction can impact
exploratory search tasks, it is necessary to analyze IE algorithms as a
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component within larger frameworks [516, 112, 111, 39]. There are two
aspects to system performance: accuracy and effectiveness. Assessing the
accuracy of an algorithm can be performed through benchmarking and/or
combined efforts tasks (e.g., TREC or CLEF tasks). System effectiveness
for exploratory search, on the other hand, requires evaluating how well
the systems aids in the exploratory search tasks it is designed around.
In the following two subsections, we describe in more detail, these two
types of assessments. Our goal can therefore be stated as an attempt to
characterize the impact of accuracy on effectiveness.

7.3.2.1 System Accuracy

Evaluating information extraction is challenging. There are no clear
guidelines as to what constitutes a valid proposition to be extracted,
and most information extraction evaluations consist of a post-hoc manual
evaluation of a small output sample [516]. There is also no agreement on
an appropriate data set to use for information extraction [384]. However,
Stanovsky and Dagan [516] have developed a methodology that leveraged
the recent formulation of QA-SRL [212] to create the first independent
and large-scale gold benchmark corpus.3 Stanovsky and Dagan’s bench-
mark is based on a set of guiding principles that underlie most Open IE
approaches. This benchmark has provided an opportunity to evaluate
the output of an Open IE system using both precision and recall. While
acknowledging that this benchmark may not be perfect, we leverage it as
the most up-to-date standard for evaluating IE systems.

7.3.2.2 System Effectiveness

It has long been understood in IR that a system understanding of rel-
evance is not always consistent with what a user desires [473] and so
we must also understand how systems impact user performance. To do
this, representative search tasks are required. Marchionini [352], refer-
encing Bloom’s taxonomy of educational objectives [63], distinguishes
three broad categories of search tasks as Lookup, Learn, and Investigate.
While these categories are depicted as overlapping activities, exploratory
search is more pertinent to the Learn and Investigate activities. As a

3The corpus is available at: https://github.com/gabrielStanovsky/oie-benchmark
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result, exploratory search is defined as searching that supports learning,
investigating, comparison or discovery [307, 597]. From this understand-
ing, we can distill exploratory search tasks into fitting into one of two
themes. The first theme includes those tasks that facilitate learning to
achieve knowledge acquisition, comprehension of concepts, interpretation
of ideas and comparison or aggregation of concepts. The second theme
covers those investigative tasks that involve discovery, analysis, synthesis
and evaluation.

Based upon the aforementioned works and a survey of existing classifi-
cation by Li and Belkin [328], we believe that exploratory search tasks
should: provide uncertainty and ambiguity about the information need
and in how to satisfy it; suggest a specific knowledge acquisition, com-
parison or discovery task; be in an unfamiliar domain for the searcher;
represent a situation that a user can relate to and identify with; be of
sufficient interest to test users; and, be formulated such that the user
has enough imaginative context to facilitate immersion in the task. Any
task that meets these criteria provides sufficient complexity that the end-
to-end experience with an exploratory search system can be fully and
properly assessed.

7.4 Experimental Design

To detail our experimental design, we start with instantiating a system
to support exploratory search. Next, we describe the study design, our
participants and the experimental procedure. Finally, we describe the
data we capture from each participant.

7.4.1 Instantiating Our Evaluation Framework

Our experimental platform to support exploratory search leverages infor-
mation extraction, information visualization, and an interface to support
browsing and sensemaking. First, to examine the effect that different lev-
els of precision and recall have on exploratory search, we use two different
information extraction outputs. One set represent the raw, uncorrected
output of our IE algorithm, described in Chapter 3; the second repre-
sents fully human-corrected output. Next, to visualize information, we
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Figure 7.1: The Populated Exploratory Search Interface Leveraged in Our Study.
This interface, represents search results as a hierarchical knowledge graph structure
which enables the user to engage in two alternative navigation paradigms. While
users can frequently exploit the overview layers to explore the collection at a higher
level followed by targeted immersion in the detailed view, they can alternatively de-
scend within an area of interest in a graph and continue exploring in the detailed view
itself by manipulating nodes and edges and getting more context on relationships.

leverage our hierarchical knowledge graphs (see Chapter 6 and [475] for
more details), which is a type of concept map that represents entities
hierarchically and the relationships between those entities. Finally, to
support interaction, we leverage the interface we developed and evalu-
ated previously as it was experimentally shown to support exploratory
search tasks effectively. Overall, to preserve experimental validity, our
system is identical in functionality to the hierarchical knowledge graph
system described in Chapter 6. However, unlike the study in the pre-
vious chapter, in this chapter we use both automatically generated and
manually generated IE results to build knowledge graphs, resulting in
significantly different levels of precision and recall. Each of these compo-
nents is described in detail below.
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7.4.1.1 Automatic Information Extraction

For our experiment, we generate knowledge graphs for a set of docu-
ments using our developed IRE system, which automatically extracts
entity-relationship triples as follows: (1) entity taggers 4 are used to ex-
tract entities from text; (2) sentences that contain at least two entities
are selected and parsed using the Stanford Dependency Parser; (3) for
each sentence, we extract meaningful relations between the entities by
finding the shortest path in the corresponding parse tree; (4) labels are
automatically generated for the extracted relations. The labeled relations
are ranked based on relevance to the query and the informativeness of
the extraction (See Chapter 3). The results (entities and relations) are
emitted along with the snippet from which the entities and relation were
selected and an HTML anchor to the snippet in the source text.

To determine the performance of our IE system, we used the Open-IE
benchmarking toolkit [516]. As can be seen in Figure 7.2, our system
performance is representative of state-of-the art systems; specifically, we
have tuned relative precision and recall of our system such that it achieves
a precision of 0.65 and recall of 0.24 for the task, the mid-point of the
precision and recall curves presented in [516].

Some may question our decision to choose approximately median (as op-
posed to optimal) performance for our information extraction system. If
our goal was to investigate the best possible performance of systems lever-
aging automatic information extraction, choosing the best system would
be justifiable. However, our goal is to examine the effect that errors in
information extraction have on performance. Accordingly, selecting the
top performing system would yield a biased experiment which would be
limited to insights about the best-performing algorithms, whereas more
representative performance across a class of algorithms allows us to gener-
alize to better performing systems. That is, such systems should perform
at least as well as our system relative to manually tuned extractions.

7.4.1.2 Hierarchical Knowledge Graphs

Once information has been extracted, this information must be presented
to the user. For this study, we leverage our proposed data structure

4Reference implementation used https://cogcomp.cs.illinois.edu/page/software_view/

NETagger.
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Figure 7.2: Precision-recall curve for the different Open IE systems using Stanovsky
et al.’s toolkit [516]. The X represents our system.

called hierarchical knowledge graphs (HKGs) [475], introduced in Chap-
ter 6. Like a typical knowledge graph, HKGs provide entity-relationship
depictions of the information contained in a corpus where entities are
represented by vertices and relationships by edges connecting entities; as
well, like hierarchies, HKGs provide a hierarchical representation of the
low-level information in knowledge graphs by leveraging the degree of
connectedness of vertices to select a subset of vertices for an overview of
key concepts within an information space. The benefit of this organiza-
tion is that both the low-level knowledge graphs and the hierarchies can
be automatically extracted using information extraction. However, given
that IE algorithms may be compromised in precision and recall, automat-
ically generated HKGs are more sparse and less precise than manually
generated counterparts.
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7.4.1.3 Exploratory Search Interface

As our experiments require users to complete exploratory search tasks
(outlined in the following section), we leverage the interface we devel-
oped in prior work [475], which was previously shown to be effective
for exploratory search tasks on HKGs [479, 475]. This interface allows
smooth transition between overview and detailed views of HKGs (sup-
porting overview-filter-detail-on-demand search [495] and expand-from-
known searching [562]). Figure 7.1 presents this interface for context.

One advantage of leveraging an existing interface is that we eliminate
the confound of interface effects on user behaviour. Specifically, because
our interface is identical to past work, we can compare human-corrected
output to output from past work. Then, if the output is similar, any
deviations in results between different error levels are attributable to the
effect of extraction errors rather than interface idiosyncrasies.

7.4.2 Exploratory Search Tasks

In order to evaluate the efficacy of error prone knowledge graphs and how
they impact the exploratory search performance, we leverage the complex
search tasks we previously designed.

As we described in Section 5.5.1, these tasks combine aspects of knowl-
edge acquisition/comparison (Marchionini’s learn subcategory) with anal-
ysis, synthesis, and evaluation (Marchionini’s investigate subcategory).
In addition, the task descriptions closely follow Bystrom̈ and Hansen’s [83]
recommendation that three levels of description should be used to specify
a search task: a contextual description, a situational description and a
topical description and query. Finally, in previous studies described in
Chapters 5 and 6, we conducted quantitative and qualitative analysis on
participants performing these exploratory search tasks and showed that
these tasks were indeed complex (i.e., that they were ambiguous, open
ended and exploratory in nature) and they were of sufficiently similar
complexity as to limit topic effects.

For context, we provide the task descriptions used in our study:

Complex Politics: Imagine you are a high school student who is going to
write an essay on the Political Systems of Iran and Russia. Knowing
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little about the presidents of these two countries, you wish to determine
which president has more power. Find at least 3 arguments to justify
your answer.

Complex History: Imagine you are a high school student who is going to
write an essay on the History of Canada. Knowing little about Cana-
dian History, you wish to know which cities have served as a capital for
Canada. You would also like to understand the reasons behind moving
the capital from one city to another.

7.4.3 Acquiring Knowledge Graphs at Different Lev-
els of Quality

We generate HKG representations at two levels of quality in two steps;
First, from our. previous studies, we leverage the document sets as well as
the hand curated set of entity-relationship tuples that were generated by
having experts manually refine the output of our IRE system.These doc-
uments are Wikipedia articles related to the tasks previously described.
The expert crafted tuples form what can be considered the best possible
execution of the extraction algorithm and represent a “best effort” for
knowledge graph creation and so form our gold standard. Accordingly,
the second step involved automatically running the extraction algorithm
to yield an inferior graph that contains errors that would impact user
performance.

7.4.3.1 Characterizing Precision and Recall of Automatic vs
Hand-Tuned IE

To test whether precision and recall rates differ between Automatic and
Gold graphs, we note that the Gold generated graph for the History task
contains 2,957 entity-relationship tuples and the Politics graph contains
3,231 tuples. In contrast, the Automatically generated graphs contain
1,782 and 2,735 tuples, respectively. We ran the automatic graph through
the Open-IE benchmarking toolkit with the manually curated graph as
ground truth. For Politics, the automatic graph achieved a Precision of
0.56 and a Recall of 0.33. For History, the automatic graph achieved a
Precision of 0.7 and a Recall of 0.31. These results are in line with what
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we might expect given our earlier results from running our IE algorithm
on the Open-IE benchmark (See Section 7.4.1.1).

7.4.4 Study Design

Different components of our evaluation framework were discussed in pre-
vious subsections. As a final step, we describe a controlled in-lab exper-
iment to investigate the effect of an error-prone Open IE system’s out-
put (i.e., the automatically ran system) on users conducting exploratory
search tasks. The main goal of our study is to investigate the effect of
errors on user behaviour. To facilitate this, our study design was a 2 x
2 [error-level, topic] mixed design with error-level and topic as within-
subject factors and error-level to topic assignment as a between-subject
factor. The two levels of error were Gold and Auto, which correspond
to the manual and automatic run of the algorithm previously described.
The topics correspond to the History and Politics tasks. The order of
error-level to topic assignment is fully counter balanced to mitigate any
order or learning effect. This resulted in a full-factorial design with 4
groups. Participants were randomly assigned to groups.

We recruited 25 (11 female) participants from different areas of Science,
Arts and Business, Math and Engineering for this study, all of whom use
the Internet on a regular basis to search for information. Participants
were aged between 20 and 45 years old (80% were between 20 and 29
years old). They received a $15 incentive for their participation.

7.4.5 Procedure

Our study began with a brief introduction and a short familiarization
period (∼ 3 minutes) with the experimental interface that was populated
with a completely unrelated dataset. The goal of this familiarization
period was to allow the participants to “figure out” the nuances of the
search interface unconstrained by a particular task. Following this period,
participants were given an initial questionnaire intended to gauge their
prior knowledge of their first task. The questionnaire combined a self-
assessment of their own prior knowledge and a list of three questions,
ordered by increasing difficulty, to provide an objective assessment.
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Following this questionnaire, participants were presented with the de-
scription of the task and were asked to complete the task using the inter-
face (15 minutes per task). To capture data on participants’ use of the
interface, they were asked to provide reference sentences that indicate the
information included in the essays was not purely based on their prior
knowledge of the topic. After 15 minutes had elapsed, participants com-
pleted a post-task questionnaire that evaluated their experience of the
task. We used questionnaires provided by TREC-9 Interactive Searching
track 5 modified to fit our experiment. Additionally, we inquired about
each participant’s perceived assessment of the quality of the knowledge
graphs in terms of the information they provided, including whether they
noticed errors, inconsistencies, or missing information. The same process
was repeated for the second task.

Following the completion of second task, a semi-structured interview was
conducted to explore participants’ experience of the interface. This inter-
view focused on the conceptual usability and efficacy of the interface for
different tasks as manifested in a participant’s perception of task com-
plexity, the strategies they employed to complete tasks, and their belief
as to whether this type of interface supports these types of tasks. We also
inquired about their perceptions of knowledge graph quality, the informa-
tion they found using the graph, and whether they noted any differences
in graph quality between the tasks (see Appendix Section ??).

As a final step, participants were presented with a list of factoid questions
on both topics to collect feedback on how their behaviour may change
when performing question answering style tasks. Participants were given
a small amount of additional time to familiarize themselves with the
interface to complete this type of task. Once they were comfortable, they
were asked to find the answer to one final question that was erroneous
as a means to determine whether they would notice such an error during
their information seeking process. We collected strategies and changes in
quality perception when using the interface for question answering tasks
(see Appendix ?? for more details on interviews).

5Available at www.nlpir.nist.gov/projects/t9i/qforms.html.
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7.4.6 Behavioural Data Collection

Following Creswell [127], we collect data to perform a mixed methods
analysis of both quantitative and qualitative factors. We log all par-
ticipant interactions with the system, which includes the node or edge
clicked, articles viewed, time spent reading articles, as well as more topo-
logical data (e.g., interactions with the UI itself, such as transitioning
between layers or using the “minimap”). In addition, we captured field
notes and audio during all participant sessions, transcribed the final in-
terviews, and collated the questionnaire data. Quantitative data was
analyzed using SPSS. Qualitative data was analysed using open coding
to extract low-level themes and axial coding to identify thematic con-
nections. This process was conducted incrementally as each participant
completed the study and we attained qualitative saturation after 14 out
of 25 participants. Sampling continued to ensure that participant set
cardinality was sufficient to support statistical discrimination.

As participants were required to provide essays for each search task they
completed, we had two independent assessors evaluate the quality of these
answers. To ensure consistency with prior work, we reused the marking
scheme provided by Sarrafzadeh et al. [479]. To aid in further analyses
we normalized all scores to be in the range [0,1] and inter-assessor relia-
bility was found to be 0.90 using the Pearson coefficient (i.e., reasonable
agreement).

7.5 Quantitative Analysis

Because past work suggests that searchers are able to adapt their be-
havior to the system performance by controlling their effort (e.g. issuing
more queries [504], reading more documents [550], allowing more interac-
tion with the search results [510]) in the search process, our interaction
logs can be used as a proxy for the effort the searcher is contributing
during the search task and whether there are differences when comparing
Auto and Gold conditions. Of particular interest to us was clicking on
edges to read the relationship label (EdgeClick), viewing snippets to get
the context around extracted relation label (Snippet), viewing articles
to continue the exploration using the articles themselves (ViewArticle),
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Group 1 (HA - PG) Group 2 (HG - PA) Group 3 (PG - HA) Group 4 (PA - HG)
Auto Gold Auto Gold Auto Gold Auto Gold

Mark 0.52 (0.12) 0.56 (0.14) 0.72 (0.15) 0.66 (0.15) 0.40 (0.16) 0.65 (0.11) 0.65 (0.11) 0.64 (0.16)
Snippet 12.71 (6.7) 16.30 (12.30) 11.50 (5.80) 11.83 (6.77) 14.83 (3.97) 10.0 (2.83) 12.0 (8.55) 13.67 (5.72)

ViewArticle 3.0 (2.08) 4.0 (3.21) 0.67 (0.82) 1.5 (1.38) 3.17 (1.72) 1.0 (1.56) 1.67 (1.50) 1.5 (1.87)
Duration 169.57 (120.76) 189.58 (174.87) 53.83 (58.36) 19.33 (22.85) 163.33 (90.81) 44.0 (63.34) 69.0 (81.03) 78.17 (95.80)

EdgeClicks 20.0 (10.20) 27.86 (27.51) 25.5 (11.04) 21.83 (11.50) 27.0 (14.08) 27.67 (15.02) 30.5 (15.04) 21.67 (10.33)

History Politics History Politics History Politics History Politics
Prior Knowledge

1.0 (0.1) 0.14 (0.38) 1.0 (0.89) 0.5 (0.83) 0.67 (0.82) 0.0 (0.0) 1.3 (0.82) 0.83 (0.98)

Table 7.1: Contrasting relative performance and effort effects: Mean (Standard De-
viation) values for dependent variables. Each group indicates the assignment of
automatic or gold extraction (A or G) as well as the order of the Search Tasks (H
for History and P for Politics).

and overall time on task (Duration). Table 7.1 summarizes means (stan-
dard deviations) for these quantitative measures as well as the scoring of
participant responses by independent evaluators (Mark) and estimates of
their prior knowledge for each topic.

For each of our measures, we performed a sample size power estimate
[234] to ensure that our sample size is sufficient to identify statistically
significant differences in dependent variables. We used means, standard
deviations and T-statistics at 0.975 in our power estimate to support a
two-tailed analysis of effects at the 95% confidence interval. We found
that that sample sizes of between 12 and 18 were sufficient to analyze
Mark, ViewArticle and SnippetViews. Our sample size of 25 exceeds this
threshold.

We performed a repeated measures ANOVA with ErrorLevel (Auto versus
Gold) as a within subject effect and Group as a random factor. The group
variable encodes error level to topic assignment as well as the ordering of
the tasks. For example, in Group 1 (HA - PG), participants performed the
History task with Automatically extracted information first and Politics
task with Gold data next. Dependent variables were Mark, ViewArticle,
Duration, Snippet and EdgeClick.

Overall RM-ANOVA indicated that there was no statistically signifi-
cant effect of ErrorLevel on Mark (p > 0.1), as a measure of search
performance, nor was there any interaction between Group and Error-
Level. There was, however, a significant effect of the group as a ran-
dom factor on Mark (F3,25 = 4.808, p < 0.05, η2 = 0.3) and Duration
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(F3,25 = 3.935, p < 0.05, η2 = 0.4). Post-hoc analysis, using Tukey cor-
rection, indicates that Group 1 and 3 had lower marks than Group 2;
Group 4 was in the middle, not significantly different than any other
group. As well, participants in Group 1 spent more time reading articles
than participants in Group 2. In terms of view article, there was no signif-
icant effect of error level, but there was a significant Group x ErrorLevel
interaction (F3,25 = 4.269, p < 0.05, η2 = 0.4). Figure 7.3 demonstrates
these trends in our data.

(a) Marks (b) ViewArticle (c) Duration

Figure 7.3: Effects of Error Level and Group on (a) Marks, (b) ViewArticle and (c)
Duration.

7.6 Qualitative Findings

In order to triangulate quantitative data, we leverage our qualitative
data to first understand how the designed exploratory search tasks were
perceived by the participants and next dive deeper on characterizing ex-
ploratory search behavior with error prone knowledge graphs. The anal-
ysis of our qualitative interviews and think-alouds indicated that partic-
ipants varied in their perception of complexity of the tasks while there
were reasonable level of agreement on different attributes of each search
task. Furthermore, different ways searchers can be impacted by error-
prone knowledge graphs and the factors that help or hinder noticing these
errors while engaged in complex information seeking activities were iden-
tified. Finally, we contrasted different types of search tasks at different
levels of complexity and specificity of the information being sought and
how they differ in the way they are impacted by errors in retrieved infor-
mation.

The following subsections elaborate on these themes.
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7.6.1 Characterizing the Designed Exploratory Search
Tasks

The qualitative analysis of our post task interviews resulted in a rich char-
acterization of the two exploratory search tasks and how they compare
with respect to their perceived complexity as well as main distinguishing
attributes. We found that our participants were split in their perception
of the complexity of these two tasks and that a variety of factors such
as prior knowledge of the searcher, interpretation of the task, and the
strategies employed impacted their perception.

Participants who found the History task more difficult ([P1-5, P7, P9,
P10, P15, P20]) mentioned a variety of reasons including representation
does not match the perceived domain structure [P3, P10, P15], Politics
is a more familiar domain [P5, P7, P10], “needed a deeper exploration”
[P9], “searching without a keyword”[P3], “more detailed fact finding”[P6,
P8, P13].

A different group of participants, however, perceived the Politics tasks
to be more difficult [P4, P6, P11-13, P17-18, P21-22, P24-25]. The most
common rationales included “Politics task asks a higher level question
and needs a higher level understanding of a domain” [P8, P10], “involves
learning, complex reasoning and interpretation” [P6, P8, P11, P13], “is
multi-faceted” [P13], “involves objectively learning about a domain that
requires more time” [P11, P18] and “more unfamiliar and technical ter-
minology” [P13].

Furthermore, these two search tasks, although both exploratory, were
perceived to possess different attributes. Overall, the Politics task was
found to be more subjective, required more high level information and
belonged to the Learn category of exploratory search tasks [352]. This
task was also found to be a precision oriented task as exploration was
done mostly at a higher level and learning a few accurate facts about
how each president functions locally or globally could suffice for compar-
ison. The History task, on the other hand, was seen as more objective
and was characterized as more of a finding task that involves more de-
tailed information and fact retrieval, closer to the Investigate category of
exploratory search task [352]. This task also seemed to share attributes
of recall oriented tasks where a higher number of relevant facts need to
be retrieved to satisfy the search task.
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“For the Politics task I thought that I had to learn something,
whereas for the other one I didn’t feel I need to learn anything. Like
in order to make any reasonable statement I will have to actually
learn something about these countries.” [P8]

One interesting distinguishing attribute was the notion of subjectivity
that was incorporated into the Politics task description. All participants
were unanimous in the observation that the Politics task, as opposed to
the History task, is asking about a subjective topic, the power of a pres-
ident, which can be interpreted and rationalized differently. This in turn
impacted the perceived complexity of this task based on how participants
defined power and whether or not they perceived this task as an “objec-
tive learning task” or a “subjective goal oriented search”. We observed
that participants who started the task without any predetermined out-
come of the task (i.e. which president is more powerful) found the task
more difficult as they first opted to objectively learn about the Politics
of both countries in order to identify the aspects on which compare the
presidents as well as find out which president is indeed more powerful. As
well, to our surprise, the majority of the participants who found the Poli-
tics task more difficult had indeed more prior knowledge of this topic (i.e.
were familiar with the politics of at least one of the two countries). One
potential reason for this observation was that participants with higher
prior knowledge of the topic were aware of more facets that can define
power and they had higher expectations of what constitutes a reliable
comparison between the two presidents. On the other hand, participants
who interpreted this task as a goal oriented search with the mere objec-
tive of finding evidence that conforms to the president that they believed
had more power, were more satisfied with their search outcome and as a
result perceived the task to be easier to perform.

7.6.2 Perceived Quality of Generated Knowledge Graphs

The second theme that arose from our qualitative analysis explored how
knowledge graphs generated at different levels of quality, as measured
by precision and recall, were perceived by participants performing ex-
ploratory search tasks. In our post-tasks interviews the participants en-
ganged in an in-depth discussion of how the knowledge graphs and the
information they presented were perceived in terms of their quality, ac-
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curacy and whether or not they had a good coverage of the information
they were expected to represent. Given that the automatically generated
knowledge graphs had a recall as low as 0.32 and a precision of 0.60 (av-
eraged over Politics and History topics), we expected this difference to
be noticeable by the participants.

To our surprise, participants did not notice any significant quality dif-
ferences between the knowledge graphs they interacted with across the
two search tasks and they were not able to identify the automatically
generated ones when were specifically asked to do so. Participants, when
asked specifically about the quality of the information represented by
the graphs and whether or not they noticed errors, inconsistencies, in-
complete or unreadable sentences, missing information, etc, mentioned
they found the graphs to be comparable across both tasks. While a few
participants mentioned they noticed minor errors such as typos, or du-
plicates they didn’t think graphs associated with one of the tasks were
significantly better or worse than the other.

Next, participants were told that one of their tasks did use automatically
generated knowledge graphs while the other used experts-curated data
and were asked to guess which task was done with the automatically
generated graphs. The majority of participants were still not able to
identify the task with lower quality graphs. We received some comments
regarding the information that they expected to see or the structure they
expected the graphs to be represented with but wasn’t the case for them.

I think if you come across contradictory knowledge when you’re not
confident about your prior knowledge then I would maybe try to
accept both of them and try to justify them in my mind. [P5]

7.6.3 Factors impacting the recognition of errors

The final theme from our qualitative interviews explored the factors that
may help or hinder noticing of errors in automatically extracted infor-
mation and contrasted the impact of these errors between lookup and
exploratory search tasks. We identified two categories of factors that can
influence the likelihood of noticing errors during information seeking ac-
tivities: (a) Individual Differences; (b) Task Complexity and Scope. We
elaborate on these two factors next.
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7.6.3.1 Individual Differences or User Effects

The interview continued with discussing the reasons that might have
hindered participants from noticing errors or lower quality of graphs for
one of the tasks. We found that the intent of the user performing the task
(i.e., information seeking versus validating information), their confidence
in the task (i.e., their prior knowledge of the topic as well as their language
competency) and different types of cognitive biases impact the likelihood
of noticing errors.

“Now I can see that mostly when I’m reading sentences I look at key-
words only. Especially when it’s not written in my first language.
And sometimes it feels like all English sentences should make sense,
which is not the case in my first language, Persian. I do validate
sentences as I read them in my first language!”[P13]
“I think there are multiple factors to consider. One thing is about
my confidence in some language. When I read sentences in En-
glish, I don’t question the validity as often as I do when I read text
in my first language. So I’m more focused on understanding what
the sentence is trying to say and not so much on spotting potential
grammar issues, typos or inconsistent information. [...] And for
more technical texts it’s a mix of unfamiliarity and lack of confi-
dence in my own knowledge of the domain as well as a higher level
of trust in the validity of information that makes me accept what I
read as facts.”[P13]

“I think if you come across contradictory knowledge when you’re
not confident about your prior knowledge then I would maybe try
to accept both of them and try to justify them in my mind. E.g.
See “President is the highest authority in Iran” and also see “Pres-
ident answers to Supreme Leader”. And think to myself probably
President is the highest authority in a different sense and not like
being the Head of State! So I would trust both but try to justify
them somehow! So I would come up with my own rationale: maybe
Supreme Leader’s authority is different. E.g. only considering reli-
gious matters. So when I don’t have any prior knowledge I’m more
likely to just trust what I see.”[P5]

206



7.6.3.2 Task Effects

The final part of our interviews contrasted different characteristics of sim-
ple (e.g. LookUp or Factoid Question Answering tasks) against complex
and exploratory search tasks (e.g. Learn or Investigate categories) and
how they are impacted by errors. In order to enable the participants to
compare simple and exploratory search tasks, they were presented with
a list of factoid questions on the same History and Politics topics and
were asked to use the system for a few minutes to find answers to these
questions. Participants were encouraged to think-aloud and share their
strategy for locating the specific answers to each question while manipu-
lating the knowledge graphs presented by the UI.

Once participants performed a few question-answering tasks they were
asked to compare between the characteristics of this task and the previ-
ous essay writing tasks that they had completed and whether this inter-
face supports these two types of tasks differently. Alongside participant
comments, data from our field notes and observations indicated that the
impact of poor quality of extracted information is higher for lookup and
factoid question answering tasks than in the exploratory search tasks.
The sensemaking aspect of exploratory search tasks coupled with the
time willing to be spent in these tasks seem to play a role in mitigating
the impact of errors to some extent.

“I’m more likely to notice errors when I dig deeper, I’m investigat-
ing further and when I’m inclined to read the articles text. These
are the case in the Complex Task.” [P9]
“[for a Complex task] I’m trying to get a big picture or form an
idea, whereas here [in Simple task] I’m looking for specific infor-
mation. It’s like a ‘ray of light’ and a small error like that would
have completely deflected it! Where as for the complex task I was
‘shining a lot of light‘ so small errors could cast a little shadow but
then you’ll get lots of other beams of light! ” [P8]

As a final question, participants were given a factoid question to find
an answer to which was particularly designed to direct the user towards
erroneous information in edge labels that contained the answer to this
question. Observing the participants as they came across inaccurate and
misleading information, whether or not they would notice it and how it
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would impact their judgement of utility of the information enabled us to
first confirm some of the previous factors that were mentioned as leading
to noticing errors (e.g. prior knowledge, expectations, etc) more reliably,
and second, better understand whether different search tasks at different
levels of complexity are impacted by errors differently.

The question that was chosen for this final stage was from Politics of Iran
and asked “Whether there is an authority in Iran which can dismiss the
Supreme Leader?”. Since most of our participants, regardless of their
initial knowledge of Politics of Iran had learned about the Politics of
this country through their attempt at the Exploratory Politics tasks, and
that the Supreme Leader of Iran seemed to be a very powerful political
entity, they approached this question with higher prior knowledge as well
as prior expectations and bias towards what the answer should be. As
well, at this points our participants were aware of presence of errors in
knowledge graphs.

The relation label that contained the answer to this question was cor-
rupted due to a parser error which resulted in a semi-readable sentence
which would misleadingly specify ‘Supreme Leader supervised Assembly
of Experts’. While the snippet corresponding to this sentence would con-
tain the accurate information as ”Supreme Leader of Iran is elected and
supervised by the Assembly of Experts”.

About half of our participants read the relation label and dismissed it as
it was not providing an answer to the question. The other half, however,
read the label and then clicked on <View More> to see the snippet.
Among this group some still did not notice the inconsistency between
the information in the relation label and the snippet provided. A closer
speculation of what they read and understood from these sentences led to
interesting observations about how different types of cognitive bias had
led to accepting erroneous information and not noticing the inconsisten-
cies as a result of extraction errors.

In order to unpack this observation, in the next subsection, we provide
some background on cognitive biases and the existing research on how
these biases can impact human judgement, and in particular the per-
formance of online information seeking activities. We end this section
by reflecting on cognitive biases we observed during the conducted user
study.
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Bias .
Cognitive biases are defined as a pattern of deviation in judgement occur-
ring in particular situations, where a deviation may refer to a difference
from what is normatively expected, either by the judgement of people
outside of the situation or by independently verifiable facts [551]. Biases
play a central role in human judgement and decision making and span a
number of different dimensions. As well, biases can be observed in infor-
mation retrieval in situations where searchers seek or are presented with
information that significantly deviates from the truth [594].

Prior work has identified many different types of bias. Biases are not
necessarily impacting the human judgement and their decision making
process negatively. For example, they can form information-processing
shortcuts leading to more effective actions in a given context or enable
faster decisions when timeliness is more valuable than accuracy [551, 594].
One type of bias, however, that can lead to observing irrational search
behavior is the confirmation bias, which describes people’s unconscious
tendency to prefer confirmatory information [382]. During information
seeking activities, this type of bias can make searchers to seek evidence
that supports their hypothesis and disregard evidence that refutes it [295,
594].

As previously discussed, most participants when pressured in time and
engaged in information seeking activities, tend to skim sentences and
only read the keywords. These participants mentioned their eyes are only
focused on the keywords while the rest of the sentence is framed in their
mind. We observed that how different types of bias led this framing of
the sentences to result in misjudging the utility of the information. While
‘confirmation bias’ led some of the participants to just accept ‘Assembly
of Experts’ as yet another council that is supervised by the Supreme
Leader, to our surprise, even some of the participants with very high prior
knowledge of this topic who already knew the answer to this question did
not notice the error in the sentence. When they were asked to describe
their thought process we learned that higher prior knowledge can bias the
framing of the sentences in a way that should make sense to the reader:

I actually read the sentence as “Supreme Leader is supervised
by”! So I added ‘is’ and ‘by’ to the sentence myself. Maybe
because I expected this? I mean I knew that Assembly of Experts
supervises Supreme Leader. So I already knew the answer and
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I was only looking for some evidence to support my answer. So
it’s like my mind is framing the sentences or reading them in
a way that I expect them to be! [P15]

Research on anchoring and adjustment has shown that people typically
perform little revision to their beliefs, especially if those beliefs are strongly
held [551, 594]. Furthermore, it is well established that people have
constraints on their ability to process information. In fact, information
foraging theory [413], inspired by the idea of bounded rationality and
satisficing, states that information seekers, will choose behaviors that op-
timize the utility of information gained as a function of interaction cost.
We notice this bias more strongly in the participants who approached the
exploratory Politics task with an intention of finding evidence to support
the power of the president they believed is more powerful as well as in
specific question answering tasks for mid-range and high prior knowledge
participants.

7.7 Discussion

In this section, we synthesize results from both quantitative and qualita-
tive data. From our quantitative results, we note that Group, rather than
Error condition or Task, resulted in significantly different performance on
exploratory search tasks, as highlighted by the dependent measure Mark.

To investigate this further, we looked more closely at any confounds
within each group that could potentially impact the variance we see in
search performance and behavior. Because of the structure of our exper-
imental task, Group, alongside being a between subject factor (encoding
differences between participant) also encodes topic to error assignment
(as shown in Table 7.1), groups differ in which topic was assigned to Gold
versus Auto in order to balance out topic effects. Given our measure of
Group as a significant factor, it is possible that lower quality extractions
(i.e., Auto condition) impacted the two search tasks differently. Our qual-
itative data provides some evidence that task was perceived differently by
participants; however, we find that while participants were split in their
perception of the complexity of the tasks, one task did not dominate
another in terms of complexity.
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To further probe task-error effects, we performed a Univariate ANOVA
analysis on History and Politics marks separately and noticed a statis-
tically significant effect of group on History marks (F3,25 = 4.373, p <
0.05, η2 = 0.4) but not on the Politics marks. This distinction indicates
that the performance of our participants were impacted by the error con-
dition assigned for the History task but not for the Politics task even
though both datasets were generated with comparable levels of precision
and recall. Repeating the same analysis on History marks using two fixed
factors ErrorEffect and OrderEffect indicated a highly significant effect of
ErrorEffect (F1,25 = 10.806, p < 0.005, η2 = 0.34). OrderEffect, however,
had no statistically significant impact on History marks.

Our qualitative data highlights two possible explanations for this group
effect. First, prior knowledge of participants could help them recover
from the poor quality of the knowledge graphs in terms of the information
they represent. Second, the History task was identified as a investigate-
style exploratory search task, and this class of search task might be more
impacted by recall rates than a Learn/Synthesize task.

To further probe this, we note that our pre-task questionnaires data
provided an assessment of participant knowledge. Figure 7.4 shows a
potential correlation between prior knowledge and overall performance
(marks) on search tasks. To test this observation, we coded prior knowl-
edge from our three questions onto a three-point scale. We performed
a Univariate ANOVA with ErrorEffect and OrderEffect, as fixed factors,
prior knowledge as a random factor, and History marks as a dependent
variable. The results indicated no statistically significant impact of prior
knowledge, ErrorEffect, and OrderEffect. There were also no significant
interaction between Group factors and prior knowledge.

Synthesizing these observations, while we observe no initial effect of er-
ror on performance, combining qualitative data with post-hoc statistical
analysis, we find some evidence that precision and recall rates may signif-
icantly impact one of our tasks, the history task, more than the politics
task. This, potentially makes sense. Because the history task is an inves-
tigate task with, as noted by our participants in qualitative results, a set
of answers that are targeted rather than open-ended, errors in precision
and/or recall might result in concepts useful to the search task being
omitted from the data set.
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Figure 7.4: Effects of Prior Knowledge on Marks for History Task. x-axis indicates
Group as a random factor and y-axis indicates Mark as a dependent variable.

7.8 Limitations and Future Work

We took significant care to address potential limitations in our study,
by: performing power estimates in initial quantitative results to ensure
a sufficient sample size for statistical effects to become visible; trian-
gulating quantitative and qualitative data to cross-validate results; per-
forming post-hoc quantitative analysis to validate qualitative themes that
emerged from participants. However, one challenge with measuring the
effect of IE errors is that, due to the need to understand how error impacts
outcomes, tasks need both an experimental condition (automatically gen-
erated IE) and a control condition (manually corrected IE). This limits
the number of tasks to those with manually generated ground truth. We
control for this by cross-validating our results in ground truth output
with past results and leveraging the same tasks.

However, one obvious area of future work is to add additional exploratory
search tasks from Marchionini’s taxonomy [352]. Our emergent qualita-
tive results indicate that, within the broad category of exploratory search
tasks, different types of exploratory search may be impacted differently
by errors. Understanding where and how the current levels of precision
for IE algorithms impact each of these different task types will help to
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clarify where and how useful current levels of IE accuracy are for different
types of tasks.

Moreover, we only have investigated this problem in the context of HKGs
due to our ability to replicate prior results in a consistent manner. While
different UIs may yield different interaction behaviours, HKGs that be-
long to the class of search systems that directly organize and present
search results using spatial representations [611], were designed to com-
bine alternative interaction paradigms [495]: Users can exploit the overview
layers to explore the collection at a higher level, which can be followed
by targeted immersion in the detailed view.

Accordingly, we believe that the behaviours observed in our study are
reflective of similar systems that seek to support search by navigation
through developing search interfaces that allow the user to interact with
and explore the spatial representations of the search results. While we
cannot suggest that our results would apply to other classes of search
interfaces (e.g., systems that provide a classification of the results using
different metadata or facets), our findings encourage further investigation
to test this possibility.

Alongside this, anther avenue of future work is to investigate other po-
tential factors that may affect user performance in search tasks. For
example, cognitive biases can result in irrational search behavior and
influence searchers’ relevance judgment of information [594]. As well,
bounded rationality impacts the way information seekers optimize their
information processing efforts even at the cost of achieving a sub-optimal
outcome [413]. Our qualitative data provides some evidence that biases
might be salient: participants who approached the exploratory Politics
task with an intention of finding evidence to support the power of the
president they believed is more powerful limited browsing behaviors be-
cause participants felt ‘already informed’ on the topic.

7.9 Chapter Summary

In the field of information retrieval, precision and recall measures are the
gold standard by which algorithms are evaluated. Given that the infor-
mation retrieval domain has yet to realize perfect precision, this chapter
explores the impact of imperfect retrieval on two different information
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seeking tasks: an investigative search task and a learning oriented task.
Through a mixed methods analysis, we find, first, limited statistical im-
pact of error on task outcome measures of exploratory search, despite
imperfect information extraction. Second, we find through qualitative
and follow-on statistical analysis, potential task type effects. Together
these results can inform both the design of user-facing exploratory search
tools and provide a roadmap for evaluation of user-facing information
retrieval systems.
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Chapter 8

Conclusion

What is success? I think it is a mixture of having a flair for the thing that
you are doing; knowing that it is not enough, that you have got to have hard
work and a certain sense of purpose.

– Margaret Thatcher

In this chapter, we discuss the implications from previous chapters, and
revisit the research questions that we proposed in Chapter 1. Finally,
avenues for future research are discussed.

8.1 Overview

The research described in this thesis is inspired by the premise that ex-
ploratory search tasks require sensemaking and sensemaking involves con-
structing and interacting with representations of knowledge.

Most cognitive scientists believe, learning best begins with a big
picture, a schema, a holistic cognitive structure, which should
be included in the lesson material-often in the text. If a big
picture resides in the text, the designers’ task becomes one of
emphasizing it. If this big picture does not exist, the designers’
task is to develop a big picture and emphasize it. (West, Farmer
and Wolff, 1991, p. 5) [592].
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Given the benefits of structuring information in supporting analysis and
sensemaking, a main research question we wished to explore in this thesis
was that whether spatial representations of information that are gener-
ated automatically and correspond to a searcher’s information need can
enable more effective extraction and assimilation of information?

To explore the impact of alternative representations of search results on
user behavior during exploratory search tasks, we stated that:

Supporting complex and exploratory search tasks requires de-
signing search systems that move beyond the current query-
response paradigm in three main directions: (1) algorithms that
move beyond document retrieval and provide information rele-
vant to a user’s query; (2) interfaces that move beyond a turn-
taking interaction with a ranked list of documents and provide
richer representations of the search results, as well as (3) mech-
anisms for accessing and interacting with them in ways that
support exploration and sensemaking.

To defend this thesis statement, this dissertation presented a series of
discrete research endeavours, with each chapter exploring a different facet
of the above claim. In Chapter 3 we addressed the problem of extracting
information – that is more granular than documents – as a response to
a user’s query. Through a series of designing and evaluating alternative
representations of search results in Chapters 4, 5 and 6, we looked at
how this extracted information can be represented such that it extends
the document-based search framework’s support for exploratory search
tasks. Finally, in Chapter 7 we probed the ecological validity of this
research by exploring error-prone representations of search results and
how they impact a searcher’s ability to leverage these representations to
acquire knowledge.

In the next section we revisit our primary research questions from Chapter
1 and address them based on the research presented in this dissertation.

8.1.1 Research Questions

[RQ1]. How can semantic information be automatically exter-
nalized as a response to a searcher’s query?
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There are two aspects to this research question: externalization of the
information and the connection to a searcher’s query. In Chapter 3 we
specified two design requirements for the Information Retrieval and Ex-
traction system we developed based on these two aspects: (1) The extrac-
tion tool should be tailored to the search query submitted by the user;
and (2) The output of the extraction tool is expected to support locating
fragments of information by externalizing semantic relationships between
different entities and concepts that are discussed in the textual content
of retrieved documents.

To address these two requirements, we developed an Information Extrac-
tion (IE) component as an extension to a Search and Document Retrieval
(SDR) component such that the IE algorithm is applied directly to the
output of the SDR component. Further, this IE component externalizes
semantic information from the content of the retrieved documents (i.e.
the output of the SDR component) as a series of entity-relationship tuples
which can map directly to the semantic space of the documents content.

[RQ2]. How can this extracted semantic information be pre-
sented such that it extends the document-based search frame-
work’s support for information seeking activities?

In Chapter 4 we investigated this question at three levels:

1. Design: How can such a framework, that presents search results as
both textual documents and their corresponding knowledge graphs,
be envisioned?

2. Searchers’ Behavior : How is such a framework used by the searchers?
What are common behaviors? Are they impacted by the complexity
of the search task?

3. Outcome: How successful searchers are in locating relevant informa-
tion and completing search tasks once such a framework is provided?

We designed a search interface that couples documents with their cor-
responding knowledge graphs through bi-directional mappings between
mentions of entities and semantic information in text to their correspond-
ing nodes and edges in the graphs. Given this coupling the interface dis-
plays two alternative representations of search results, i.e. documents’
text and their corresponding knowledge graphs representation side by
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side. We demonstrated that utilizing graphs of concepts and relation-
ships that are derived from documents can be effective for finding rele-
vant information, where salient entities and their neighbors in the graphs
can assist with well defined goals and labeled edges describing how differ-
ent concepts are related are used more frequently during complex search
tasks. Probing the relatively limited support provided by our framework
for complex search tasks, we identified two main directions to pursue in
this dissertation in order to extend the current framework and provide
more support for complex and exploratory tasks: Providing both global
and local views of knowledge graphs as well as enabling alternative inter-
action paradigms to smoothly transition between these two views.

Our findings in many ways highlighted the tension between two alterna-
tive approaches to search: Overview, filter, detail-on demand [495] versus
Expand-from-known [562]. Essentially, we found that knowledge graphs,
as low-level representations of entities and relationships in a domain of
interest, seem to be beneficial for browsing the immediate context-graph
around a specific node of interest and then expand the scope of explo-
ration to other regions of the graph. We observed some instances of
expand-from-known searching among our participants who started their
exploration from query-nodes or the nodes in the graphs that they were
the most familiar with. On the other hand, providing high level overviews
of the entire graphs can assist the information seekers with obtaining a
visual preview of how salient concepts of a domain are laid out and en-
able a step-by-step plan for exploration. These observations motivated
a more in-depth research into the efficacy of other spatial representa-
tions of search results and how they compare with knowledge graphs in
supporting exploratory search tasks. We address this question next.

[RQ3]. How do alternative spatial representations of informa-
tion, that externalize semantic information in documents’ con-
tent, fare in presenting results for exploratory search tasks?

To address this question, in Chapter 5 we contrasted two different repre-
sentations of document information, hierarchies, designed to focus specif-
ically on high-level overviews that were absent in our previous representa-
tion, versus knowledge graphs, with the goal of quantifying differences in
user behavior, performance, and perception. Our findings highlighted the
complementary nature of hierarchical structures and knowledge graphs
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as representations of search results. More specifically, hierarchies pro-
vide a breadth-first exploration of the information that allows the user to
iteratively reduce confusion, obtain an overview, and slowly exploit de-
tail. They thus provide a structured way to navigate from more general
concepts to more fine grained data and are valuable when people feel a
need to orient themselves. In contrast, network structures allow users to
glean more information from the representation (document reading time
is reduced), are more engaging, yield more control over exploration at the
lower level of inter-concept relationships, and are more similar to one’s
mental model.

To elaborate, in our experiments hierarchies resulted in a greater need to
read the document rather than find the information contained within the
visualization, shown, in our log data, by more instances of reading docu-
ments, and a longer period of time reading documents. Specifically, par-
ticipants read documents three times more frequently and spent almost
ten times more time reading. While, our quantitative analysis indicated
that networks allow people to glean concrete information from the repre-
sentation rather than needing to extensively read individual documents,
which resulted in statistically lower reading times and a better quality
of provided responses (although not significantly better), our qualitative
observations highlighted the strengths of hierarchical structures in foster-
ing sense-making of the overall content and allowing searchers to develop
a better view of the information space. In fact, we found that our par-
ticipants were biased towards a hierarchical structure for broad learning
of the task domain particularly when they had low prior knowledge.

Overall, our quantitative and qualitative findings broadened our under-
standing of strengths and weaknesses of each of these representations and
argued that one representation is not better than the other in any subjec-
tive sense. Many of our participants expressed a need for combining both
interfaces into one interface which enables switching between a global and
a local view of the information space.

[RQ4-a]. How can we combine alternative representations of
search results – specifically hierarchical and knowledge graph
representations – into a unified structure where local and global
views of the data are co-visualized and seamless transitions be-
tween these views are enabled?
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As a first inquiry into the design of a hybrid structure that combines hier-
archical and knowledge graph representations we addressed three design
questions in Chapter 6:

1. How do we integrate network and hierarchical views into a single,
seamless data structure?

2. How can both the global and the local view of a knowledge graph
be co-visualized?

3. How can transitions between views be designed to maximize visual-
ization stability?

To address the challenges of seamlessly integrating both hierarchies and
networks into a single unified structure we were inspired by the qualita-
tive benefits of hierarchical representations of search results we observed
in Chapter 5. Essentially, hierarchies provide a breadth-first exploration
of the information that allows the user to iteratively reduce confusion,
obtain an overview, and slowly exploit detail. They thus provide a struc-
tured way to navigate from more general concepts to more fine grained
data and are valuable when people feel a need to orient themselves. In
order to realize this level by level immersion into the entities and relation-
ships represented by the knowledge graphs we proposed an alternative to
hierarchical structures through a multi-level view of a knowledge graph
around central entities. These central entities are the nodes that have
a higher connectivity to the rest of the graph. Given this approach, we
designed HKGs such that our knowledge graphs would constitute the
lower-level visualization of our data, and a hierarchy was then gleaned
from and corresponded directly to the underlying knowledge graph.

[RQ4-b]. Given that we introduced Hierarchical Knowledge
Graphs as a new structure that combines the hierarchical overviews
with local context of knowledge graphs representations, a re-
lated question is whether this new structure preserves the strengths
of the underlying representations?

To evaluate this question, we leveraged the hierarchy and knowledge
graph representations we developed in Chapter 5 as control interfaces
as well as the data sets we used to populate these representations. Next,
we performed a mixed methods analysis of both quantitative and qualita-
tive data we collected through our experiment. The quantitative analysis
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of interaction logs of our participants supported both of the following two
hypotheses:

Hypotheses:

1. Hierarchical knowledge graphs result in fewer document views and
less time spent reading documents than do hierarchical trees.

2. Hierarchical knowledge graphs exhibit statistically similar behaviors
to Knowledge Graphs.

Findings:

1. Hierarchical Knowledge Graphs preserve the advantages of Knowl-
edge graphs over hierarchical trees in both reading time and in docu-
ment views. Focusing specifically on our hierarchical graph, we find
that our hierarchical graph has statistically lower document views
(61% fewer document views, on average) and time reading (90% less
time reading documents) than does hierarchical trees and that its
behavior is statistically indistinguishable from the prior observations
of knowledge graph interfaces.

2. Value of hierarchy (i.e. higher levels of the HKG) for complex tasks:
We verified the usage of the higher levels of our HKGs to ensure
they were indeed utilized during the search tasks. We found that,
in the Complex Task, sensemaking was split between global and
minimap views of the hierarchy more equitably, i.e., the minimap is
particularly useful during our complex tasks.

3. The hierarchical graph representation was found to provide more
support for the Complex Task (i.e., more open ended and exploratory
tasks such as essay writing or learning) versus Simple tasks (such as
question answering and specific knowledge finding). This is promis-
ing given our earlier results in Chapter 4 indicating knowledge graphs
can support look-up tasks and are not suitable for satisfying complex
information needs.

4. Our results also highlighted the value of Minimap and Overviews as
a starting point. Looking specifically at HKGs and complex tasks,
the overview allowed participants to identify the central concepts
of a domain at a glance and the size of the circles indicates their
prominence in the corresponding article. This identification of cen-
tral concepts was also linked to a perception of value of the MiniMap
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as a starting or entry point into the topic of the document being ex-
amined.

5. We identified two main distinctions between the notion of hierarchies
in Hierarchical Trees versus Hierarchical Knowledge Graphs and how
they were perceived by our participants:

• Imposing a Structure versus Open Exploration: One interest-
ing perspective of the multi-layer graph representation which
presents central concepts of a domain as an overview for each
document is that it reflects the knowledge graph concepts. This
reflection made it, for many participants, more flexible and ex-
ploratory, a window into the knowledge graph.

• Self-Orienting or Relative Positioning: One main advantage of
the Hierarchical Tree visualizations (Discussed in Chapter 5),
was the explicit connections between nodes (categories or head-
ings) in the representation. We found that these edges help in
two ways: (1) At a glance, you can tell why a concept appeared
in this overview, or in this domain. To whit, the hierarchical
structure exists the way it does because of a human author’s
decision. (2) The Path from the root to each of these nodes
in the Tree Layout can provide useful information on where a
concept is positioned relative to the topic.

In summary, the primary goal of the research described in this chapter
was to explore whether we could combine benefits from both knowledge
graphs and hierarchies into one data structure for visualizing search re-
sults. We note that our hierarchical graphs significantly reduce docu-
ments read and reading time as compared to hierarchical trees and per-
form on par with knowledge graphs. We also provide evidence that the
hierarchy is used by participants via analysis of interaction logs. Qualita-
tive data from our participants does indicate that hierarchies grounded in
tables-of-contents are more familiar, easier to follow, and more focused.
This in turn helps users orient themselves in the data. The vetted na-
ture of hierarchical tables-of-contents was also perceived to be an asset
absent from our hierarchical knowledge graphs. The hierarchies in our
knowledge graph were viewed slightly differently, as noted above, with a
more quantitative perspective giving them a certain cachet with respect
to the unbiased nature of topic selection.

A final issue to consider is whether any hierarchy might provide benefits.
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While it may, one advantage of the hierarchy in our HKGs is its tight
connection to the entities contained in a knowledge graph and the ease
of automatically extracting the hierarchy through thresholding. Another
advantage is flexibility: while we currently leverage only three levels –
corpus, central concept, and knowledge graph – it is easy to generalize
the hierarchy to an arbitrary number of thresholds depending on the
complexity of the domain. We do not generalize the hierarchy in this work
because, for a first experimental validation, there are a limited number
of factors that can be assessed. However, future work can address more
detailed inquiries into scalability to larger corpora, scalability to multi-
level hierarchies, and contrasts with other hierarchies such as automatic
clusters or user-specified facets.

To summarize, we find that our hierarchical knowledge graphs preserve
many of the previously observed advantages of traditional knowledge
graphs, i.e. fewer document views and reduced reading time. Along-
side this, hierarchical knowledge graphs introduce an effective hierarchical
representation into knowledge graphs.

[RQ5]. Given that IE algorithms are not perfect in the real
world, how resilient are HKGs to these errors? And how do
error-prone HKGs impact a searcher’s ability to leverage these
representations to perform exploratory search tasks?

In Chapter 7 we took a step back and started investigating the question
that given that IE algorithms are not perfect how practical HKGs are
in the real world? And how do automatically generated HKGs impact a
searcher’s ability to leverage these representations to perform exploratory
search tasks? To probe these questions, we performed a mixed methods
analysis of the effect of precision and recall on the performance of hierar-
chical knowledge graphs for two different exploratory search tasks [476].
To this end, we leveraged the information extraction algorithm that we
developed earlier in Chapter 3 and compared users behavior and out-
comes with the erroneous output of the IE algorithm to users behavior
and outcomes with the corrected outputs of the information extraction
algorithm. While the quantitative data showed a limited effect of pre-
cision and recall on user performance and user effort, qualitative data
triangulated with follow-on univariate analysis provided evidence that
the type of exploratory search task (e.g., learning versus investigating)
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can be impacted by precision and recall. Furthermore, our qualitative
analyses found that users were unable to perceive differences in the qual-
ity of extracted information. A more in-depth inquiry into the ways our
participants perceived, verified and interacted with presented informa-
tion resulted in an identification of different factors that can influence the
likelihood of noticing errors during information seeking activities; Among
them individual differences such as the level of prior knowledge or the cog-
nitive biases as well as the complexity and scope of tasks impacted the
searchers ability to recognize errors in representations the most. Together
these results can inform both the design of user-facing exploratory search
tools and provide a roadmap for evaluation of user-facing information
retrieval systems.

8.2 Discussion, Limitations, and Future Work

We started this research with a vision of how search systems could enable
searchers to learn, investigate, and make sense of the search results, es-
sentially to perform exploratory search tasks more effectively. This vision
foresaw the creation of novel, richer representations of search results that
are supported by advanced interaction capabilities of the search UIs that
contain them. As a result, these new representations and user interaction
with these representations could fundamentally change the ways searchers
explore information and synthesize new knowledge. In this section, we
discuss our approach to system design and evaluation, limitations, and
future work that arises from this thesis.

8.2.1 Understanding Alternative Representations of
Search Results via Research Through Design

Our approach to realizing the vision of search systems that better en-
able exploratory search was inspired by two complementary established
paradigms: 1) The Research Through Design Model [649] where the re-
searcher focuses on making the right thing; artifacts intended to trans-
form the world (of online information seeking) from the current state
to a preferred state; and 2) Buxton’s premise of “getting the right de-
sign versus getting the design right” [80, 543]. Essentially, the research
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Figure 8.1: Getting the Right Design vs. Getting the Design Right; Figure adapted
from Greenberg and Buxton [190]

through design model integrates the existing models and theories from
the behavioral science domain (“true knowledge”) with the technical op-
portunities demonstrated by engineers (“how knowledge”) [190]. As such,
we grounded our initial choice of knowledge graphs as a suitable repre-
sentation in the large body of prior work in the fields of education and
learning that demonstrated the efficacy of concept maps and knowledge
graphs in supporting learning, comprehension of content, and locating
relevant information [390, 246, 90, 391, 22, 185]. As well, through an
active process of ideating, iterating, and critiquing potential designs for
extending the textual representation of documents, we continually re-
framed the problem as an attempt to “make the right thing”.

To elaborate, our first study, reported in Chapter 4, presented counter-
intuitive results regarding the limited utility of knowledge graphs for sup-
porting complex search tasks despite what prior work would suggest. Our
usability evaluations indicated two main shortcomings of our knowledge
graphs visualizations: lack of overviews and lack of support for expand-
from-known mechanisms to interact with local, more focused views of the
graphs. To address this counter-intuitive result, in Chapter 5, rather than
correcting shortcomings of knowledge graphs, we, instead, explored alter-
native representations and contrasted differences in user behavior. This

225



direction is inline with Greenberg and Buxton [190]’s view on the utility
of exploring many possible early designs for illustrating the essence of an
idea to “get the right design”, and, only afterwards, refining the design
for a particular idea through iterative testing and development. In this
regard, our characterization of complementary strengths of network and
hierarchies resulted in realizing and evaluating a novel representation of
search results that combines aspects of knowledge graphs representations
(that externalize semantic relationships between concepts) as well as hier-
archical structures (that provide overviews of the space and mechanisms
for exploiting details in steps).

8.2.2 Evaluating Exploratory Search Systems

Another important aspect of the research that was conducted in this the-
sis lies in the evaluation methodologies that were employed to characterize
different aspects of supporting exploratory search activities through al-
ternative representations of search results. Essentially, we leverage mixed
methods research to understand whether the exploratory search systems
we design satisfy the ultimate goal of enabling searchers to obtain knowl-
edge more effectively. By mixing both quantitative and qualitative analy-
ses and data, we gain in breadth and depth of understanding the efficacy
of different representations and how they are perceived by information
seekers engaged in simple and exploratory search tasks. For example,
in contrasting characteristics of network and hierarchical representations
for supporting exploratory search tasks, while our knowledge graph repre-
sentations exhibited statistical advantages over hierarchies resulting the
reduction in time spent on reading document and the quality of answers
provided, our qualitative findings highlighted the efficacy of hierarchi-
cal structures in fostering sensemaking and their utility for supporting
broad learning tasks. Further, while our quantitative analysis supported
our hypotheses that HKGs are statistically similar to knowledge graphs
in their ability to reduce the need to read documents and that relevant
information can be gleaned from the representation itself, our qualita-
tive findings provided some insights into how the hierarchical views of
HKGs are viewed differently by the searchers compared with hierarchical
tree structures and and what factors might bias a searcher towards one
representation versus the other.
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Alongside applying Mixed Methods approaches for evaluating the search
UIs we developed, we also contributed to the existing body of work that
argues that a true evaluation of search systems needs to consider both
the accuracy of outputs as well as the success of the search outcomes.
Essentially, this research argues that in exploratory search tasks, both
information retrieval and information representation are important fac-
tors in sensemaking. While retrieval is well-supported by modern search
engines, the representation of retrieved information requires information
extraction, and the efficacy of information extraction algorithms – as
measured by precision and recall – is believed to be one of the most
crucial aspects in creation of suitable information representation. While
boosting the precision and/or recall of information extraction systems
is valuable, it is unclear whether IE algorithms will attain human-like
accuracy in the near term. Accordingly, given that IE algorithms are
not perfect, how do current precision and recall levels in IE algorithms
impact user performance in exploratory search tasks?

While our motivation for asking the above question was essentially an
overall assessment of how HKGs can work in the real world given im-
perfect IE algorithms, there are three primary reasons that we feel the
above is an open and significant question in the broader scope of informa-
tion retrieval. First, in the document retrieval community, assessments
of human performance in question answering tasks given varied precision
and recall has produced mixed results, with some assessments finding
that information retrieval precision and recall can significantly impact
human performance [510, 469] and others finding no significant impact
[222, 223, 549, 504]. Second, if, in exploratory search tasks, there is a
need to support both query and browsing [397, 257], there is some evi-
dence that interaction with search results (i.e., browsing) may limit the
negative impacts of compromised precision and recall [332, 559]. Finally,
while it would seem obvious that the goal of boosting precision and recall
is primarily to satisfy user requirements with respect to IE – is the IE
algorithm accurate enough for the user’s task? – we have found only one
examination of how error-prone IE impacts user performance [112], and
the goal of this earlier evaluation was to assess the impact on document
retrieval, not on exploratory search.

Overall, our evaluation approach described in chapter 7 makes two con-
tributions to IE. First, it demonstrates an approach to evaluating IE
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that embeds IE in a task flow and evaluates IE performance in situ us-
ing a balanced mix of quantitative and qualitative (i.e., mixed) methods.
While the approach to in situ IE evaluation is straight forward and both
qualitative and quantitative analyses are mature research methods, we
argue that this in situ evaluation is essential in ensuring that improve-
ments in IE performance are meaningful. In particular, if one accepts
that the goal of improved IE is to substantively improve task outcomes,
then the fact that we have found only one instance of IE evaluation
that considers user performance [112] is a significant concern, one that
this thesis provides a roadmap for addressing in future work. Second,
through our quantitative and, in particular, our qualitative results, this
work highlights how different exploratory search task types (e.g., inves-
tigate vs compare/synthesize) may be more or less resilient to varied
precision and recall. Understanding this is a first step toward addressing
the contradictory effects that variations in precision and recall have had
on information retrieval outcomes when those outcomes are measured via
human performance metrics [222, 223, 332, 549, 504, 510, 469, 559].

8.2.3 Limitations and Future Work

There are two main aspects to the limitations of this research:

1. How generalizable our findings are given our experimental design
and the evaluation methodologies we used to test our developed
solutions?

2. How practical HKGs are to be deployed in real settings?

We expand on these two aspects in the next two subsections.

8.2.3.1 Generalizability of Findings

Regarding the validity and generalizability of the findings reported in
this dissertation, we took significant care to control the impact of dif-
ferent confounds, such as characteristics of the search tasks, quality of
extracted information, and idiosyncrasies of the search UI design through
leveraging consistent tasks and datasets as well as cross-validating results
across a set of reference interfaces. We also triangulated qualitative and
quantitative data through the application of mixed methods approaches
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to better understand users’ behavior and minimize bias. Additionally, we
administered the same style of controlled experimentation using a tiered,
2-step evaluation methodology that decoupled the contributions of the
accuracy of extraction systems from the efficacy of representations of
this extracted information and the search UIs that contained these repre-
sentations to the final outcomes of exploratory search tasks. We believe
that this tiered model of evaluation is essential in the assessment of search
solutions that support exploratory search as it incorporates the perfor-
mance of two main components of such systems: Information retrieval
and extraction module and the Search UI module.

This level of control, while necessary to address our research questions
specified in Chapter 1, led to some limitations of our experiments. In
particular, one challenge with any methodology that considers both an
experimental condition (e.g. automatically generated knowledge graphs)
and a control condition (manually refined data) is that the number of
tasks and topics for which ground truth entity-relationship triples can
be extracted is limited. Therefore, one obvious area of future work is
to add additional types of search tasks and test our system with more
topics. To elaborate, Marchionini [352] broadly categorizes different types
of exploratory search tasks under two classes of Learn and Investigate
(see Figure 2.1 for a list of all of these tasks). In particular, searches that
support learning aim to achieve knowledge acquisition, comprehension
of concepts, interpretation of ideas and comparisons or aggregation of
concepts. Searches that support investigation, on the other hand, aim to
achieve Bloom’s [63] highest-level objectives such as analysis, synthesis,
and evaluation and require substantial topical knowledge. These tasks
involve elements of discovery, synthesis and evaluation.

In our experiments, we designed an instance of Learn category on the
topic of Politics of Iran and Russia as well as an instance of Investigate
category on the topic of History of Canada. Our post-task evaluations
confirmed that our Politics task combined aspects of knowledge acquisi-
tion (e.g. learning about the political system of foreign countries), com-
prehension of concepts (e.g. different political entities) and comparison
(of presidential powers), while our History task was more focused on
discovery and finding reasons behind moving the capitals of Canada in
line with Marchionini’s characterization of Investigate style tasks. Our
quantitative findings coupled with our emergent qualitative results, re-
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ported in Chapter 7, indicated that within the two broad categories of
exploratory search tasks, different types of tasks may be impacted dif-
ferently by errors. Understanding whether and how the current levels
of precision and recall for IE algorithms impact each of these different
task types will help to clarify how predictive the assessments of outputs
of IE systems are for judging the success of the search tasks and what
other factor might be also taken into account when evaluating the per-
formance of the exploratory search systems. For example, in Chapter
7 we found some evidence that other characteristics of users including
their prior knowledge and cognitive biases can help or hinder their abil-
ity in leveraging error-prone representations of search results. Coupling
the searchers characteristics with the nature of the search tasks, our re-
sults provided some evidence that it is entirely possible that changes in
precision and recall might have no effect on people’s ability to learn or in-
vestigate topics beyond a certain level. Overall, these results encourages
more research in this area and the need for developing better metrics
that can measure real improvements to search interfaces that support
exploratory search tasks.

8.2.3.2 Practicality of our Proposed Exploratory Search Frame-
work

One open question that this thesis hasn’t fully addressed is whether HKGs
are now considered working prototypes. That is, can these representa-
tions be generated on the fly and deployed in the wild such that searchers
can leverage them to satisfy a range of exploratory information needs.

To answer this question we need to reflect on the steps that were taken to
reach this current stage of development and what is left to be addressed.
As noted earlier in this chapter, we adapted a research through design
[649] approach in order to address our second research question, i.e, how
changes in the ways that extracted semantic information is represented
is going to impact the ways that searchers acquire knowledge, learn or
investigate? To this end, based on established theories of learning and
education, we started with knowledge graphs as a promising representa-
tion to support learning and comprehension of topics and observed how
they can be incorporated by search UIs in order to enable searchers per-
form information seeking tasks of varying complexity. Next, in keeping
up with the research through design approach, as well as an attempt to
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“choosing the right design first and then getting the design right” [80],
our earlier research questions gave rise to additional areas of exploration,
to characterize the efficacy of competing representations of search results
in supporting exploratory search tasks, and culminated in the design and
evaluation of a novel representations, HKG, that combines and preserves
the strengths of previously evaluated representations knowledge graphs
and hierarchies.

In developing our HKGs, through a discovery-focused approach, we broad-
ened our understanding of how search systems can be designed to incor-
porate alternative representations of search results and how they can be
leveraged by searchers to interact with the information space in ways
that were not possible before. We are now at the stage where we can
transition from discovery to invention1, as a process behind engineering
and design [190], and can begin to take techniques – existing or new –
that work in the theory or in a lab setting, and extend them to work in
the complexity of the real world.

Our work in Chapter 7 is the first step towards this goal. By under-
standing how error-prone representations, as an inevitable outcome of
imperfect IE algorithms, impact HKG’s efficacy in supporting exploratory
search goals we get one step closer to deploying these systems in the real
world. Given our findings regarding the relative resilience of these repre-
sentations to errors in the output of IE systems, we can begin generating
these representations automatically, and for additional tasks and topics.
Using these new types of exploratory search tasks we can conduct con-
trolled evaluations of automatically generated HKGs and measure how
successful searchers are in completing exploratory search tasks when com-
pared against a standard search engine.

8.2.4 Synthesis

The work presented in this thesis exists at the intersection of a number
of fields: natural language processing for information extraction; web-
based information retrieval; information seeking; information visualiza-
tion; and interaction design. Our primary focus, as noted in our thesis
statement, was to explore how information extraction and representa-
tion of search results could support exploratory search tasks. This thesis

1Scott Hudson at the ACM UIST 2007 Panel on Evaluating Interface Systems Research
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advances the field through a characterization of the benefits of hierarchi-
cal versus network visualizations of search results, through the design of
hierarchical knowledge graphs, and through the careful design and evalu-
ation of systems for supporting exploratory search. Our hope is that con-
tributes to the goal of supporting ever-more-complex information seeking
behaviours.
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Appendix A

Fostering Non-expert
Annotators Reliability for
Evaluating Information
Extraction Outputs

As we explored different approaches to evaluating the output of Infor-
mation Extraction systems in Chapter 3 (in particular Section 3.5.1.1)
we highlighted different challenges to address. In particular, evaluating
the output of IE systems is commonly done by matching the extracted
entity-relationship triples with an available gold standard dataset where
the mentions of entities and relationships are manually annotated by ex-
perts. While these reference datasets are essential for evaluation, once
we move away from traditional IE to Open IE systems, gold standard
datasets are not readily available, nor are there standard guidelines to
construct the ground truth data to evaluate a new dataset. As a result,
the construction of these datasets is extremely expensive in annotator-
hours (and, as a result financially). One promising alternative is the use of
non-expert annotations to judge the quality of system extractions, specif-
ically to identify and categorize errors made by IE systems. Yet, ensuring
high quality label assignment by non-domain-expert labelers remains an
important challenge.

In this work, we contribute to enabling mechanisms for directly evaluat-
ing the output of IE systems for domains where no ground truth labels
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is available. To this end, we generalize the task of assessing semantic
relationships between a series of entity pairs that are extracted by our IE
system as an Error Categorization task to be conducted by non-expert
annotators recruited from the Amazon Mechanical Turk platform. In or-
der to guide the annotators through this task, two experts go through a
vetting process to iteratively categorize errors in a sample of extractions
and refine a set of guidelines to describe each of these error categories.
The outcome is an annotation codebook that could be used in lieu of an-
notation task guidelines for the annotators. As a next step, we developed
an interactive workflow that guides the annotators through the labeling
task and ensures the guidelines that are derived by the experts are closely
and consistently followed.

We evaluate this workflow using a subset of the extractions by our IE
system that is run on both Politics and History topics, and demonstrate
that our codebook-based interaction design significantly enhances label-
ers’ agreement with expert annotators. Overall, this research describes
the process of generating guidelines for producing ground truth labels in
IE and demonstrates how a novel interaction design can be effectively
leveraged to support non-experts’ performance of an error categorization
task 1.

A.1 Motivation

Labeling instances in a dataset is essential for tasks ranging from training
machine learning models to assessing the quality of a variety of NLP
system outputs. Techniques for collecting labeled data include recruiting
experts for manual annotation [534], extracting relations from readily
available sources (e.g. forums) [429], and automatically generating labels
based on user behaviors [92].

Alongside the above methods for producing labeled datasets, researchers
have also turned to crowdsourcing to generate labeled data as these plat-
forms provide a scalable and efficient way to construct labeled datasets.
Successful crowdsourced data labeling typically requires experts to com-
municate their desired definition of target labels to non-expert annotators

1The rest of this appendix is formatted to follow our story for the paper we are submitting to
CHI 2021 based on this work and may not be consistent with the main theme of this dissertation.

304



through a set of guidelines explaining how instances should be labeled
without leaving room for interpretation [100].

There are, however, challenges with producing labeling guidelines. Once
we move from familiar categories – images of cats or traffic lights, for
example – to more abstract labels, guidelines can grow in size and com-
plexity which makes it very difficult for non-experts to follow without
training. However, abstract or synthetic labels are common for a variety
of task domains – error categorization, sentiment identification, citizen
scientist tasks – and in these tasks labeling quality is affected by fac-
tors such as labelers’ expertise or familiarity with the concept or data
[318]. As a result, it can be difficult to train labelers [318], and labelers
frequently go through a concept evolution phase as they progress in the
task [309] which can lead to inconsistent labeling of similar instances by
the same annotator over time.

One highlighted area of interest for the Human-Computation community
in this year’s call for papers is “interface techniques for augmenting hu-
man abilities to perform tasks”. While past crowdsourcing research has
explored a number of techniques for fostering labeling quality, other do-
mains also explore issues of task design to enhance labeler reliability. The
premise of our work is that the application of synthetic labels to data has
much in common with the domain of open coding in qualitative research
[593], specifically the idea that data must be analyzed, understood, and
then assigned to a set of categories based on guidelines developed from
the data set. We look specifically at how annotation codebooks are de-
veloped [344] because the goal of codebook design is to guide non-expert
labelers in complex qualitative labeling tasks.

To explore the applicability of codebook design to synthetic labeling by
crowdworkers, we present a 3-phase design process to devise an annota-
tion codebook workflow for crowdworkers. Specifically, we elicit labels
and processes from domain experts and synthesize these in codebook
form, we tune the codebook through two studies: a pilot study with
crowdworkers and an in-lab restrospective thinkaloud with non-expert
labelers, and we assess our codebook workflow via a summative experi-
ment. Our results indicate that our codebook-centric interaction design
leads to statistically signficant increase in agreement with experts’ anno-
tations once aspects of workflow are tuned to refine structure and balance
effort of label categories.
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The remainder of this paper is organized as follows. We present related
work on crowdsource reliability and on code book design in the next
section. We then describe the design and refinement of our codebook.
Finally, we evaluate our codebook workflow and discuss avenues of future
work.

A.2 Related Work

A.2.1 Crowdwork Research on Worker Accuracy

Approaches to improving workers’ accuracy include Micro-task Decompo-
sition and Consensus Based Aggregation. Researchers have also started to
explore novel interfaces to reduce label noise. For example, research has
shown that open-ended questions yield higher reliability than Likert ques-
tions [293], that crowdsourcing crowdwork task design can yield better
crowdworker performance [70, 178, 311], and that clear instructions and
appropriate guidance can improve completion rates [177, 309, 335, 528].

Alongside the above mechanisms for improving accuracy, metrics have
also been proposed to measure worker reliability, e.g., consensus and con-
sistency. Consensus measures a worker’s agreement with other workers
[27, 493]. Consensus can be calculated for individual workers based on
some metric that assesses proximity to consensus [441], based on some
analysis of typical worker error [135, 137, 242, 433, 511, 597], or by lever-
aging statistical methods [258, 589, 639, 645]. The important aspect of
this measure is that all variants represent some estimate of agreement
between different between crowdworkers doing the same labeling task.

In contrast, consistency measures a worker’s agreement with themselves
[106, 134, 527]. The premise of this measure of reliability is based on
a crowdworker’s ability to yield the same output when repeatedly given
a particular input. Crowdsourcing research has only begun to explore,
at depth, how consistency should be used in practice for measuring of
reliability for crowdworkers [134, 106, 208, 527]. Most closely related to
the work in this paper, Williams et al. [607] studied workers’ consistency
in the context of crowdsourced object detection tasks in two different
domains and found that workers’ ability to yield consistent responses
varied between domains, and was explainable by the duplicate task’s
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difficulty and its position in the worker’s task queue. As Williams et al.
note [607], consistency is a valuable metric to explore given that most
research in quality control in crowdsourcing seeks ways to make workers
perform better as an individual. If workers are performing well – i.e.
providing correct data – then they should continue to be correct when
seeing a repeated task, i.e. they should have high consistency in their
labeling [79, 229, 359].

A.2.2 Research on Non-Expert Labeling

Alongside the above crowdwork research, there exists a long history of
research and practice, particularly in fields such as qualitative research
[344, 521], that seeks to maximize the accuracy of non-expert labelers.
In qualitative research, there is a necessity to code data, i.e. to attach
synthetic labels to data such that data can be clustered according to its
meaning and relevance for the problem domain [521]. This process of
applying labels typically requires careful interpretation of the underlying
content and judicious application of – sometimes ambiguously segmented
– labeling categories.

In past work, Mitra et al. [368] contrasted training of labelers (by provid-
ing them with feedback on accuracy) with Bayesian Truth Serum, BTS,
(where crowdworkers guess others’ responses to the task and are rewarded
for accuracy). Training was shown to better foster worker accuracy than
BTS. Beyond the work of Mitra et al. [368], it seems that no work has
explored, in depth, the benefit of more structured application of non-
expert labeler guidance and from qualitative research. Labeler guidance
typically involves two main steps: (1) Developing category labels to as-
sign to data, i.e. a labeling ‘codebook’ [344]; (2) Designing an effective
annotation workflow (analytical process) that guides non-expert labelers
through the experts’ codebook [344].

A.2.2.1 Developing an Annotation Codebook

Particularly when the process of data labeling, i.e. of qualitative data
coding will be outsourced to non-expert labelers, clear guidelines are re-
quired to describe the labeling categories. These guidelines are frequently
contained in an artifact known as an annotation codebook.
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The procedure used to develop codebooks for qualitative analysis involves
having experts independently engage in an inductive, iterative process to
examine a sample of data, develop codes that describe aspects of that
instance, and gradually increase their understanding of common group-
ings and patterns that emerge from the dataset [100]. The resultant
‘codebook’ of category labels is an important means for documenting the
labels, the shared understanding of what each label means and the proce-
dures for applying them [593]. A standard coding manual (developed by
O’Connell (1989), later revised by [344]) includes six basic components:
(1) the code (i.e. category label name), (2) a brief description, (3) a full
description, (4) inclusion criteria, (5) exclusion criteria and (6) clarifying
examples. Once the annotation codebook is developed by the experts, it
can serve to train new annotators or to outsource annotation, thus freeing
domain experts from the tedious coding task [593].

A.2.2.2 Designing Annotation Workflows for Non Experts

While labeling data is a seemingly simple task, past research shows that
labeling is challenging, especially for complex domains (e.g. [318]). La-
bels reflect a labeler’s mapping between data and their underlying concept
and is impacted by a labeler’s expertise or familiarity with the concept
or data, their judgement, and the ambiguity of the data [309]. Given
that codebooks are developed by a group of experts, it is not clear how a
different group of annotators with limited expertise and who do not share
the same mindset as the original expert assessors can perform complex
annotation tasks consistently and efficiently.

To promote consistency in behavior among non-experts (where consis-
tency is defined as similar actions being performed in similar situations
[309]), past research has shown that interface design can play a central
role in consistency of users interaction who are completing different tasks
using the UI. For example, UI agents such as Wizards and Guides [149]
are used to help prevent users from making mistakes by guiding them
through different information tasks. Specifically in crowdwork, the de-
sign of crowdworker tasks has also been shown to enhance the quality of
crowdsourced data. Researchers have argued that workflows that lever-
age multiple tools for the same task can improve worker output accuracy
and minimize systematic errors [513]. Alongside this, UIs with less auton-
omy or task diversity may lead to a better performance (but a worse user
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experience)[515]. Data format may also influence crowdworker accuracy;
as one example of this, Hutt et al. [239] noted that asking crowdworkers
to input ranked evaluations versus Likert or binary categories results in
higher accuracy. Finally, crowdsource workflows may break down a task
into simpler sub-tasks and present them to the crowdworker one at a time
to coordinate workers through completing a complex task [439].

In order to develop a task workflow that can support non-expert annota-
tors throughout the annotation process, we utilize three design principles
inspired by past research findings on task design and crowdworker train-
ing [368]:

1. Incorporating guidelines as Hard Constraints. For many interactive
user interfaces, the sequence and methods of interaction is deter-
mined by hard constraints [149, 188]. Hard constraints are built
into the interface by the designer and determine what patterns of
interactive behavior are possible. In a labeling task, hard constraints
can incorporate the desired labeling guidelines into the UI design,
similar to a Wizard, to guide the worker through the decision making
steps for each instance.

2. Divide and Conquer. Breaking down a complex task into simpler
subtasks can reduce the cognitive effort of completing a task. There
is evidence that information workers already implicitly break larger
tasks down and that people perceive tasks in segments [635]. Micro-
tasking is prevalent in crowdsourcing, where a number of workflows
have been developed that decompose large, seemingly complex tasks
into microtasks for goals such as as taxonomy creation and copy
editing [106].

3. Mimicking Expert’s Categorization Approach. During the coding
phase, experts go through an iterative process of starting from broader
categories and, as their understanding of underlying data evolves,
begin to see finer discriminations within these broader categories
[593]. As a result, the initial categories are broken down into sub-
categories that provide finer distinctions of initial higher-order cate-
gories. One implication of this observation is that categories can be
grouped such that they have super-categories (i.e. parent categories)
that encompass common attributes among them.

These design principles hint at a workflow design that mimics a decision
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tree, where leaves are the target category labels to apply and intermediate
nodes are the sub-tasks.

A.3 Problem Domain

In this section we describe a problem domain that we use to investigate
the efficacy of designing codebook-style workflows for non-expert anno-
tators performing a complex labeling task. Because our goal is to explore
codebook-style interaction support for complex labeling tasks, we wish to
identify a synthetic labeling task where the application of labels requires
judicious application of labeling categories. We leverage the domain of
error categorization from Natural Language Processing (NLP), and in
particular the categorization of errors from NLP-based Information Ex-
traction (IE) algorithms.

A.3.1 Task Description and Dataset

A.3.1.1 Task Description

To explore codebook design to support crowdsourced labeling, we leverage
an error categorization task where annotators are asked to evaluate rela-
tions that were automatically extracted by an Open Information Extrac-
tion (IE) system [474]. An IE system is a Natural Language Processing
(NLP) System that extracts entities and their relationship from natural
language text. Evaluating the output of IE systems is commonly done
by matching the extracted entity-relationship triples with an available
gold standard dataset where the mentions of entities and relationships
are manually annotated by experts. While these reference datasets are
essential for evaluation, once we move away from traditional IE to Open
IE systems, gold standard datasets are not readily available, nor are there
standard guidelines to construct the ground truth data to evaluate a new
dataset. As a result, the construction of these datasets is extremely ex-
pensive in annotator-hours (and, as a result financially). One promising
alternative is the use of non-expert annotations to judge the quality of
system extractions, specifically to identify and categorize errors made by
IE systems.
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Our motivation for choosing this task as a representative complex label-
ing task is twofold: (1) high quality IE is essential for supporting a vari-
ety of downstream applications such as Question Answering, Generating
Knowledge Graphs and Semantic Search; (2) Despite the widespread use
of Open IE systems, there are no clear guidelines as to what constitutes a
valid proposition to be extracted, and most OpenIE evaluations usually
consist of a post-hoc manual evaluation of a small output sample by ex-
perts [516]. If we can support – through interaction design – non-experts
(e.g. crowdworkers) in effectively perform this labeling task, then this
can significantly expand the ability of NLP researchers to produce high
quality IE datasets.

A.3.1.2 Dataset

We leveraged the document collection from Sarrafzadeh et al [479] that
contains Wikipedia articles on two different topics: history of Canada and
politics of Iran and Russia. We ran an available Open IE system described
in [474] on this collection to generate a dataset of entity pair, relation
label and reference sentence tuples: entity is usually a term or a noun
phrase in text that corresponds to a concept in the domain, and relation

corresponds to a simplified sentence that is semantically complete and
describes how entity1 and entity2 are connected. For example, from the
sentence “President of Iran who took office in August 2013 nominated his
coalition cabinet members to the parliament.” the following tuple can
be extracted: <president, parliament, “President nominates the Cabinet
members to the Parliament”>.

A.4 Creating the Annotation Codebook

A.4.1 Codebook Design

Because there are no widely accepted annotation guidelines for assessing
entity-relationship triples generated by Open IE systems, we recruited
two experts to evaluate each extracted tuple by listing all syntactic and
semantic errors as compared with the reference sentence each tuple was
extracted from.
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First, to develop initial codes, a subset of all system extractions were
reviewed by the two experts to identify common error types observed
in the output. The experts engaged in an iterative vetting process 2 to
group similar errors and refine the formed groups until no more groups
were found. As a result, a taxonomy of seven error categories was created
(Table A.1). These categories cover different aspects of an extracted
relation label between two entities including whether or not the entity
pair are related and whether the extracted label is readable, meaningful
and/or informative.

Category Description

No Relation E not related

Indirect Relation E related through a third entity

Wrong RL E related, but RL not readable

Incomplete RL E are related, but RL incomplete

Misleading RL E are related, but RL inconsistent with S

P. Unreadable RL E related, RL has readability issues

Correct RL E are related, and RL is accurate

Table A.1: A Taxonomy of Error Categories (Relation Label (RL), Sentence (S),
Partially (P), Entities (E))

.

Following the standard codebook template described in above, each of
these categories is accompanied with a description, the main criteria for
instances that belong to this category, and a few clarifying examples, i.e.,
Table A.1 plus carifying instances define the codebook. Once the annota-
tion codebook was finalized, we asked two expert annotators (two of this
paper’s authors) to label the data set independently. Given the 7-category
labeling exercise, inter-rater agreement was measured via Cohen’s Kappa
as 0.509, highly significantly different from chance (p < 0.001).

Resolving Expert Disagreement.
Experts then engaged in a deliberation process to resolve disagreements
on assigned labels in order to generate a closer proxy of ground truth. A
more unified set of experts labels is helpful when analyzing similarities
and differences between workers and experts and can also act as a metric

2Iterative vetting involves using the output of one stage to determine the next stage, incremen-
tally reaching a final objective.
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for evaluating the reliability of the workers accuracy, and whether or not
they improve over time.

To this end, experts discussed their rationale for assigning their selected
label for every instance where there was disagreement. The goal was to
identify the cases where disagreement was caused by either misunder-
standing the category definition or a lack of clarity in the guidelines. For
example, considering the categories as outlined in Table A.1, Incomplete
RL was most frequently confused with Unreadable RL and Wrong RL.
The main reason behind this confusion was the lack of clear guidelines
for distinguishing between readable and unreadable relation labels given
that the label has omitted words.

While the above disambiguation resolved some ambiguous cases, there
exist cases where further analysis indicated true ambiguity, i.e. that
there could be more than one valid label. For ambiguous cases where
there could be more than one valid category label, experts preserved their
disagreement as an indication of the ambiguity of an instance (Entity -
Relation - Sentence tuple). The assumption is that, if ambiguity exists
for experts between two different categories, then an assignment to either
category by non-experts demonstrates consensus with experts.

After the resolution process was completed, the inter-rater agreement
was re-measured via Cohen’s Kappa as 0.728, highly significantly differ-
ent from chance (p < 0.001). Our motivation for measuring inter-rater
agreement between the 2 experts before and after the deliberation pro-
cess is twofold. While the resolved set of labels provide a closer proxy
of the ground truth data, the Kappa scores indicate that (1) this label-
ing task is complex with an initial agreement rate of 51% between the
experts; and (2) while the deliberation process improved agreement be-
tween the experts and helped refine the annotation codebook, for only
70% of instances both experts agreed on a single category label.

A.4.2 Designing the Codebook Workflow

We developed a workflow for the labeling task that uses hard constraints
for guided task support, i.e. a ‘wizard’ that guides the user through the
steps required to complete a task [149]. The workflow structure decom-
poses goals into small independent tasks. Through iterative design, we
structured our workflow as a binary Decision Tree that guides assessors
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via yes/no decisions. The decision tree is shown in Figure A.1 alongside
the interface that supports traversal of the decision tree. The crowd-
worker, by answering these questions, is guided to a leaf node (label)
that represents one of the error categories.

The decision tree was constructed by leveraging commonalities between
different error categories. For example, both ‘No Relation’ and ‘Indirect
Relation’ have, as their basis, the fact that there is no direct relationship
between the two entities: they may have no relation or they may be
connected by a third entity.

Figure A.1: Decision Tree for the Workflow Task Design

We performed two parallel studies to iterate on the codebook and the
codebook workflow design. The first assesses the codebook via amazon
mechanical turk, and the second uses a retrospective thinkaloud in lab.
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A.4.3 Refinement Via Crowdworker Assessment

A.4.3.1 Procedure

We performed an initial evaluation of our codebook and workflow on
Amazon Mechanical Turk3 (AMT) with a small worker pool. A total
of 26 workers were recruited through AMT as annotators for the study.
To normalize crowdworker quality and efficiency, we ensured our workers
had completed at least 500 tasks on AMT with a 90% acceptance rate.

Each annotator was asked to categorize 15 instances. A dataset of 135
instances was used as the main pool to generate task queues for each
annotator. The task queues were generated such that (a) each queue
contains a duplicate instance that is placed at a random position; (b) du-
plicate instances are never placed back to back since it could be perceived
as a system error by the participants; (c) no queue contains more than
3 instances of the same category and hence each worker sees at least 5
categories); and (d) each instance is categorized by at least 3 annotators.

Annotators were paid $3.00 for completing the task. Before beginning
the task, they were required to read a tutorial explaining the task and
all seven categories. Additionally, participants completed three practice
tasks before beginning the main task where they were given feedback on
the correctness of their label.

A.4.3.2 Results and Observations

Our primary interest in this initial tuning experiment was to understand
crowdworker error versus our expert labelers. We examined which cat-
egory labels were assigned in error. The workers were biased towards
the label Unrelated Entities, which appears to lead to higher consistency
scores while hurting agreement scores. Overall, Unrelated Entities ac-
counts for 35% of all category labels assigned. This is significantly differ-
ent from the frequency of this label assigned by Experts (9%). While we
cannot provide data that explains this bias, we hypothesize that the bias
toward the Unrelated Entities label may be associated with the effort
required to reach this category. This label has the shortest path from the
root; therefore, it is the most convenient category to assign to an instance
if the Worker wishes to minimize task completion time.

3https://www.mturk.com
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A.4.4 Refinement Via Retrospective Thinkalound

Alongside assessing crowdworker behavior, recall that the format of the
workflow was elicited from expert labeler behavior during the labeling
task. However, non-expert labelers may not interact in the same fashion
as expert labelers: they may misunderstand terms used by experts; their
decision making process may differ; or other aspects of the codebook may
be unclear. To assess these factors, we performed a lab-based study where
seven participants used the workflow interface to perform the categoriza-
tion task and were then taken through a retrospective thinkaloud [561] to
explore how and why discrepancies occur between an individual and her-
self and between individuals and experts. Recall that, in a retrospective
thinkaloud, participants perform a task in the traditional way, but the
task is video recorded. Participants then re-visit their task and thinkaloud
while watching their interaction [561]. Retrospective thinkalouds are one
way to capture thinkaloud data from a cognitively demanding task where
concurrent thinkalouds might interfere with task performance.

The retrospective thinkaloud task proceeded as follows:

• Participants labeled 20 instances (10 unique + 10 duplicates) using
the workflow interface.

• Once done, they were asked if they noticed any duplicates (to test
whether the duplicates were too easily detectable).

• Next, three of the assigned instances were automatically selected by
the system based on ordered criteria as follows:

1. Instance labels are inconsistent and in complete disagreement
with the experts labels;

2. Instance labels are inconsistent and in partial agreement with
the experts (i.e. agrees with at least one expert’s label);

3. Instance labels are consistent but are in complete disagreement
with the experts labels;

• These instances are presented to the participant and they were asked
to complete the task one more time while thinking out aloud. Note
that, for these three instances we collected a set of three (possibly
overlapping) categories where each assigned category corresponds to
a path taken from the root of the Workflow tree to the leaf category.
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• All three paths were then visualized and presented to the participant
as a means of reflecting back on the thought process that occurred
during the categorization process.

• Finally, the participants were presented with a static interface that
simply listed the categories and were asked to comment on how this
new interface could help or hurt their experience.

We collected both descriptive statistics and qualitative data from 7 par-
ticipants (3 female).

A.4.4.1 Statistics

One question we asked participants was whether they noted repeated in-
stances of labeling. Interestingly while all 10 instances were duplicated in
this experiment, the majority of participants did not notice that instances
were presented twice.

Analyzing the assigned category labels confirmed a very high consistency
rate of 87% (for the last 2 category labels assigned to each instance) as
well as a high level of observed agreement with experts (average agree-
ment: 46% compared with the initial agreement between the experts of
58%).

Finally we observed that for the majority of cases where the participant
was inconsistent in their assigned labels they were actively trying to per-
form better at the task. In fact, out of all inconsistent category labels
(corresponding to 13% of all cases), 65% resulted in a correct category
label as opposed to 18% for the opposite case.

A.4.4.2 Qualitative Findings

We performed a standard process of open coding on transcriptions of
the think-aloud data, and identified three key themes: (1) the impact
of Category Names on the categorization outcome; (2) consistency as a
questionable quality reliability metric; and (3) complementarity in the
strengths of the task design.

Category Names Participants commented on the choice of category
labels and if they matched their understanding of what that category
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entails. The category names can be interpreted and internalized differ-
ently from the intermediate questions that lead to that category and the
choice of words in those questions (e.g. ‘consistency’, ‘sufficient infor-
mation’, etc). For example [P1] was surprised every time she arrived at
the ”Wrong Relation Label” category for an instance as they perceived
the entities to be unrelated and that’s what she expected this category
meant. In the new version of the Interface we renamed this category as
“Unreadable Relation Label”.

Alongside Category names, different wordings of guidelines and interme-
diate questions were refined to improve the clarity and usability of the
task interface, thus enhancing participants understanding of categories.

Consistency as a Quality Metric The retrospective walkthroughs pro-
vided an opportunity for participants to reflect on the causes of incon-
sistencies within their own labels and whether consistency was a reliable
quality metric. Consistency was perceived to be a questionable metric:
while highly consistent annotators lead to more predictability of annota-
tions outcome they can simply be applying the same category over and
over without any effort in following the guidelines and improving their
understanding of the task. On the other hand, we can have highly incon-
sistent annotators who seek to improve their annotation accuracy as their
knowledge of the task evolves. P3 notes they were “the most inconsistent
in the cases I spent much more time investigating.”

Contrasting Workflow and Static Interfaces for Categorization
Because participants were presented with a static interface and were asked
to contrast it with the Workflow interface for error categorization, we
collected strengths and weaknesses of structured workflow. The static
interface was deemed to be much easier to use and needed less time to
complete the task. However, different participants mentioned that having
too many options at once (i.e. 7 error categories to choose from) can be
very overwhelming when learning the task. We leverage this data to
design a final labeling interaction workflow that balances effort across
conditions and allows multiple decisions at leaf nodes.

A.4.5 Final Codebook and Workflow Design

We created a refined workflow design shown in Figure A.2. Contrasting
Figures A.1 and A.2, the Hyrbid structure of the new workflow combines
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Figure A.2: Decision graph to support the hybrid interface

aspects of a static design with the workflow interface. Modifications are
three-fold: (a) the hybrid structure includes a mix of binary and multiple
choice at each level to more efficiently guide the decision making process;
(b) the new structure is not a tree structure; there is redundancy in the
paths to a final category label which helps workers recover from decision
making errors earlier in the categorization process; (c) the overall cost of
reaching different category nodes in the new structure is more uniformly
distributed when compared with the workflow structure. Because this
workflow contains aspects of both static and workflow conditions from
our earlier study, we label it a hybrid design.

To balance workload for different labels, alongside the more structured
workflow we required workers to provide a rationale any time they an-
swered “No” to the question “Are these entities directly related?” For
this response, they need to provide two other entities from the same sen-
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Agreement Agreement w/ Consensus Consistency Consensus Experts
BA MA Exp1-c Exp2-c BC MC Rate Agreement

Static-just-off 0.26 0.36 0.18 0.17 0.56 0.64 0.58 0.77
Static-just-on 0.28 0.38 0.06 0.12 0.51 0.61 0.60 0.68

Workflow-just-off 0.26 0.35 0.10 0.18 0.49 0.55 0.41 0.64
Workflow-just-on 0.34 0.43 0.36 0.37 0.53 0.62 0.53 0.71

Table A.2: Contrasting Binary Agreement (BA), Micro Agreement (MA), Inter-
Experts Agreement (Experts), Agreement between Consensus for each expert in-
dividually (Exp1-c, Exp2-c), Binary Consistency (BC), Micro Consistency (MC),
Consensus Rate, and Expert Agreement for Static and Workflow Conditions with
and without justification.

tence which were directly related. This requirement was added for two
reasons: First, it eliminates the low effort of labeling entities as unrelated;
and it also provides valuable information to the NLP analysis such that
errors can be corrected.

A.5 Evaluating the Codebook Design

While the overall principle of a qualitative codebook (labels for categories,
category desciptions, and examples) is a valuable design template for
structuring labeling task descriptions, our codebook workflow includes
two additional design elements: a divide and conquer decision workflow
that structures decision making, and a justification requirement for one
condition to ensure balanced work across conditions. We hypothesize that
the combination of these elements are needed in codebook workflows to
foster enhanced accuracy.

To evaluate our codebook workflow, i.e. to test our hypothesis that dy-
namics workflow elements improve accuracy in labeling, we conducted a
2X2 between subjects experimental evaluation with two different work-
flow conditions (static versus workflow) and two different justification
conditions (justification versus no justification). This yielded four dif-
ferent experimental conditions representing combinations of dependent
variable: static-just-off; static-just-on; workflow-just-off; and workflow-
just-on.
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A.5.0.1 Participants

We evaluate our codebook workflow using Amazon Mechanical Turk4

(AMT) with 200 crowdworkers performing an Entity-Relationship Error
labeling task. Workers are split equally between the 4 experimental con-
ditions, yielding 50 workers per condition. As in our earlier pilot study,
to normalize crowdworker quality and efficiency, we ensured our workers
had completed at least 500 tasks on AMT with a 90% acceptance rate.

A.5.0.2 Method

Each annotator was asked to categorize 15 instances of entity-relationship
tuples. A dataset of 135 instances was used as the main pool to generate
task queues for each annotator. The task queues were generated such
that (a) each queue contains one duplicate instance that is placed at a
random position; (b) duplicate instances are never placed back to back
since it could be perceived as a system error by the participants; (c) no
queue contains more than 3 instances of the same category and hence each
worker sees at least 5 categories); and (d) each instance is categorized by
at least 3 annotators.

Annotators were paid $3.00 for completing the task. Before beginning
the task, they were required to read a tutorial explaining the task and
all seven categories. Additionally, participants completed three practice
tasks before beginning the main task where they were given feedback on
the correctness of their label.

Prior work has shown that various characteristics of a task (e.g. difficulty,
sequence) can affect the way workers perform tasks [85]. In order to
eliminate task difficulty and ordering as a confound between conditions,
we assigned the same set of generated task queues to both static and
workflow conditions.

A.5.0.3 Measures

To analyze the effect of workflow on user labeling behavior, our primary
measure is agreement with experts, which we measure in two ways: Basic

4https://www.mturk.com
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Agreement, and Agreement with Consensus. Basic Agreement is further
subdivided into binary agreement and micro-agreement.

Basic Agreement reports the average observed agreement for all instances
labeled by annotators in the same condition, i.e. the percentage of labels
that agree with expert annotators. We analyze basic agreement in two
ways:

1. Binary Agreement : For each annotator’s label, if a worker agreed
with at least one of the experts, we assigned them a score of 1.
Otherwise, we assign them a score of 0. Binary Agreement scores
are in the range [0, 1] and represent the fraction of crowdworker
labels that agree with at least one expert labeler.

2. Micro Agreement : One problem with binary agreement is that some
label categories are more similar than others. Micro Agreement pe-
nalizes unrelated labels in the codebook more than labels that are
more similar by leveraging the structure of the workflow. Specif-
ically, we group the 7 categories into 2 classes (i.e., similar and
not-similar) based on whether the 2 categories share a common par-
ent. For every label, we assign a score of 1 if the worker label agrees
with at least one expert label; we assign a score of 0.5 if labels do
not agree with at least one expert label but the label is similar to
an expert label, i.e. the label and an expert label have a common
parent in the workflow; and a score of 0 is assigned otherwise. Micro
Agreement is measured on a [0, 1] scale.

Agreement with Consensus, instead, considers the percentage of time that
the expert label agrees with the majority vote for a label. Recall that in
the experimental method, we ensured that each instance is categorized
by at least 3 crowdworkers, meaning that, even with errors, a plurality of
crowdworkers may select one label. Agreement with Consensus measures
the fraction of instances in the range [0, 1] where the consensus label
agrees with the consensus label. We show agreement with consensus
scores for each individual expert.

Finally, to ensure that measures such as worker consistency and overall
consensus between workers are not impacted, we report these values as
well. Again, we break down consistency into binary consistency (where a
plurality of workers agree with each other), and micro-consistency, where
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they receive partial agreement (0.5) if a plurality select from classes with
a common ancestor.

A.5.1 Results

Table A.2 shows results of Agreement, Agreement with Consensus, Con-
sistency, and Consensus for each of our four experimental conditions. We
also show expert agreement with each other, a theoretical upper bound
on performance for consensus measures.

Examining agreement scores, an overall CHI square test reveals statis-
tically significant differences within the tabular data (χ2(df = 6, N =
200) = 27.11, p < 0.001). Bonferroni corrected post-hoc tests involving
individual measures shows that, for Agreement with Consensus workflow-
just-on is highly statistically significantly (p < 0.001) different than other
conditions. All other measures are not significant, and other experimen-
tal conditions (Workflow-just-off and Static-just-on/off) also do not differ
significantly. Finally, measures of consistency or consensus also do not
vary by statistically significant margins.

A.6 Discussion

We began the previous section by noting that, alongside a regimented
structure for presenting synthetic labels to non-expert labelers, the appli-
cation of codebook principles to labeling required two things: a workflow
to guide labelers through the labeling task; and balanced workload to
discourage crowdworkers from “gaming the system”, i.e. from choosing
a low-effort label, thus simplifying the labeling task.

Our data supports the hypothesis that both aspects of codebook im-
plementation are necessary to increase crowdworker accuracy. Without
justification, we see a repeat of earlier crowdworker behavior, where work-
ers select easily reachable categories more consistently to maximize their
throughput. We assume that this behavior results from the low-wage
environment typical of AMT (median wages as low as $1.38 per hour
[231]). Furthermore, simply turning on justification does little to pro-
mote crowdworker agreement with experts.
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We believe that the primary outcome of this work is an overall guideline
for developing and applying codebook interaction to complex labeling
tasks for non-expert, crowdworker labelers. The design of the codebook-
based workflow can be summarized as a three-step process, where the
task requester designs the task as follows:

1. Capture expert labelers’ codes and the decision-making process for
assigning labels. This step typically involves small scale labeling by
experts to develop code labels, independent labeling applying the
codes to measure clarity of the guidelines and to allow experts to
begin to develop analytical approaches to label assignments, and
a resolution step where experts compare errors to refine label and
analytical approaches to create a clear methodological description
of their work process.

2. Pilot the codebook via retrospective thinkalouds to tune decision
tree and place error recovery. While expert labelers can develop
label categories and can describe their analytical process, non-expert
labelers may struggle to behave in an identical fashion to expert
labelers. While this step may seem costly, we posit that retrospective
thinkalouds with even a handful of participants can provide valuable
insight that can serve to refine the codebook workflow and category
labels [383].

3. Pilot the codebook on mechanical turk to analyze crowdworker error
and refine the workflow to prevent these errors.

While our codebook workflow did increase agreement with experts, we did
not see any changes in crowdworker consensus or self-consistency. Ideally,
it would be desirable to see measures such as consensus and consistency
correlate with increased agreement with experts, primarily because con-
sensus and consistency can be measured directly from crowdworker data.
Potential problems with consistency as a measure of crowdworker accu-
racy were also noted by participants in our qualitative data collected
during our retrospective thinkaloud design study. We believe that one
important area of future work is to more fully probe when and how con-
sensus and consistency measures can be used as a proxy of crowdworker
accuracy, and, in particular, when and how they fail to correlate with
crowdworker accuracy.
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A.7 Conclusion

Researchers in the human computation domain are well aware that in-
terface design – and by extension interaction design – is an important
aspect in enhancing human abilities when performing complex human-
intelligence tasks (aka HITs). In this work, we specifically draw inspira-
tion from the domain of qualitative research, and in particular, the design
of codebook-based workflows for qualitative coding. Our results highlight
how design around these traditional codebook-style data labeling prac-
tices can serve to enhance worker accuracy for labeling tasks where the
labeling categories – as in qualitative research – require more judicious
application of analytical reasoning to the labeling process.
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Appendix B

Study Materials

In this appendix we provide different materials used for conducting the
user studies that were described in Chapters 5, 6 and 7.

B.1 Questionnaires

All demographics, pre and post task questionnaires that we used for
our in lab studies are available online at https://cs.uwaterloo.ca/

~bsarrafz/HKG/Experiment/Forms. Figure B.1 indicates the entry ques-
tionnaire designed to collect some demographics information from the
participants.

A set of pre-task questionnaires were designed for each search task in
order to gauge participants’ interest in and the prior knowledge of each
assigned topic. Participants prior knowledge of the topic was collected
both as a self-rated score as well as their responses to a set of pre-defined
questions. Figures B.2 and B.3 show these questionnaires for Politics and
History tasks respectively. After each task is completed participants were
directed to fill out a post-task questionnaire as shown in Figure B.4.

B.2 Evaluating Search Tasks Outcomes

In Chapters 5, 6 and 7 we used two main topics – Politics and History –
to design search tasks at two levels of complexity. For the Simple Tasks a
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Instructions

Part I: Demographics

What is your gender?

What is your age range?

What is your nationality?

What is your area of study / occupation?

Part II: Search Experience

Overall, for how many years have you been doing online
searching?

How often do you conduct a search on any kind of
system (e.g., personal computer, tablet or smart phone)?

Please choose the option that indicates to what extent
you agree with the following statement: "I enjoy carrying
out information searches."

Figure B.1: Demographics Questionnaire
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Instructions

Part I: Task

Figure B.2: Pre Task Questionnaire for Politics
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Instructions

Part I: Task

Figure B.3: Pre Task Questionnaire for History
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Instructions

Part I: Task

Part II: System

Figure B.4: Post Task Questionnaire - Same questionnaire was used for both tasks.
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series of factoid questions were created where the answers could be one or
more entities. We framed the Complex Tasks as essay writing tasks which
would ask the participants to collect enough information to be able to
write an essay on the assigned topic with at least three main arguments.
The next two subsections present the questions and the task descriptions
used for these two types of tasks.

B.2.1 Simple Tasks

Figures B.5 and B.6 indicate the factoid questions used for History and
Politics tasks respectively. To assess participants’ performance for the
simple tasks, responses were graded as 0.5 mark(s) per correct answer
and 0.5 mark(s) per correct citation of reference sentence, for a total of
1 mark per question.

Figure B.5: List of Factoid Questions for the Simple Task on History of Canada

B.2.2 Complex Tasks

In all of our experiments for at least one of the assigned tasks the partic-
ipants would engage in an exploratory information seeking task in order
to write a short essay articulating their responses for the given task.
To assess participants performance for the complex tasks we designed
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Figure B.6: List of Factoid Questions for the Simple Task on Politics of Iran and
Russia

marking schemes for evaluating the quality of the essays provided by our
participants.

The marking scheme for the Politics task requires 3 main arguments to
be included to support one of the presidents to be more powerful than the
other. In order to ensure these arguments are based on the information
that was retrieved using the system (and not based on the participant’s
prior knowledge) each argument needs to have references to the source
document. Additionally, each argument is graded as follows:

• 1 point: an argument only refers to one president;

• 2 points: an argument compares both presidents on the same aspect
(e.g. military power, rank in the political system, etc.);

• 3 points: same as previous, but the argument also contains informa-
tion about the authority that limits the president’s power (requires
a broader understanding of the political system and the power rela-
tionships between different political entities);
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For the History task, the marking scheme indicates 6 cities as previous
capitals of Canada and specifies the marking criteria as:

• 1 point: 3 or fewer correct capitals are listed;

• 2 points: at least 4 correct capitals are listed;

• 2 points: for every well described reason behind changing a capital
that is explicitly mentioned in a reference document;

• 1 point: for every questionable or subjective reason provided which
includes a reference document;

B.3 Semi-Structured Interviews

In this section we provide a list of questions that guided our semi-structured
interviews for studies presented in Chapters 6 and 7.

For the study presented in Chapter 6 each participant used the HKG
UI to complete one simple and one complex task (with a randomized
order). Once both tasks were completed we conducted semi-structured
interviews to gauge their experience with the interface, whether HKGs
are more suitable for one task than the other and how they fare against
our previously designed Hierarchical Tree UI (described in Chapter 5).

1. Part 1: Contrasting the utility of the HKG interface for simple versus
complex tasks.

(a) Now that you used the same interface for two types of tasks; for
which type do you find it more suitable? for question answering
task or more open ended one?

(b) How about your usual Web search experience? How would you
go about performing these two tasks using a search engine? How
is that different from using this new interface?

(c) Would your domain knowledge change your preference about
the type of task you would do with this interface?

2. Part 2: Demonstrating the Hierarchical Tree based UI as a reference
interface, allowing the participant to explore the features and get a
feel of how completing search tasks using the reference interface
would look like.
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(a) Now that you did a question-answering task and an essay writ-
ing task, you can imagine you were given the other interface
[Tree-based UI] instead. How would you like it? How does it
compare with the [HKG] UI you used for these tasks?

(b) What are other factors that might affect your choice of inter-
face? (e.g. the search domain, task type, prior knowledge, etc.)

(c) Are there specific scenarios where you prefer a hierarchical tree
UI over the HKG interface?

In the followup study presented in Chapter 7 participants used the same
HKG UI to complete two complex search tasks. This provided an oppor-
tunity to gauge participants’ perception of the exploratory search tasks
we designed and better characterize their main attributes. As well, we
investigated how HKGs of varying quality were perceived by participants
and how information seeking can proceed in presence of errors. What
follows is the main steps that were generally followed in the interviews:

1. Perception of Task Complexity: how did you feel about the com-
plexity of these tasks? how were they different?

2. Perceived Quality of Generated Knowledge Graphs: how did you
find the quality of the information represented by the graphs? was
one better than the other? did you notice any errors, inconsistencies,
incomplete or unreadable sentences, missing information, etc?

3. Notifying the participant about the experimental conditions: one
of your tasks used automatically generated knowledge graphs while
the other used experts-curated data. Can you guess which task was
done with the automatically generated graphs?

4. Discussing the reasons that might have hindered participants from
noticing errors or lower quality of graphs.

5. Contrasting different characteristics of simple versus exploratory
search tasks and how they might be impacted by errors. This step
involved using the UI for a few simple queries in order to familiarize
the participant with factoid type queries.

6. Inquiry regarding a factoid question where the relevant edge in the
graphs was erroneous by design.
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