
MeasureIt-ARCH:
A Tool for Facilitating

Architectural Design in the Open
Source Software Blender

by

Kevan Cress

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Architecture

Waterloo, Ontario, Canada, 2020
©Kevan Cress 2020

Author’s Declaration
I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

ii

Abstract
This thesis discusses the design and synthesis of MeasureIt-ARCH, a
GNU GPL licensed software add-on developed by the author in order to
add functionality to the Open Source 3D modeling software Blender that
facilitates the creation of architectural drawings. MeasureIt-ARCH adds
to Blender simple tools to dimension and annotate 3D models, as well as
basic support for the definition and drawing of linework. These tools for the
creation of dimensions, annotations and linework are designed to be used in
tandem with Blender’s existing modelling and rendering toolset. While the
drawings that MeasureIt-ARCH produces are fundamentally conventional,
as are the majority of the techniques that MeasureIt-ARCH employs to
create them, MeasureIt-ARCH does provide two simple and relatively novel
methods in its drawing systems. MeasureIt-ARCH provides a new method
for the placement of dimension elements in 3D space that draws on the
dimension’s three dimensional context and surrounding geometry order to
determine a placement that optimizes legibility. This dimension placement
method does not depend on a 2Dwork plane, a convention that is common in
industry standard Computer Aided Design software. MeasureIt-ARCH also
implements a new approach for drawing silhouette lines that operates by
transforming the silhouetted models geometry in 4D ‘Clip Space’.

The hope of this work is that MeasureIt-ARCHmight be a small step towards
creating an Open Source design pipeline for Architects. A step towards
creating architectural drawings that can be shared, read, and modified by
anyone, within a platform that is itself free to be changed and improved.
The creation of MeasureIt-ARCH is motivated by two goals. First, the work
aims to create a basic functioning Open Source platform for the creation of
architectural drawings within Blender that is publicly and freely available for
use. Second, MeasureIt-ARCH’s development served as an opportunity to
engage in an interdisciplinary act of craft, providing the author an opportunity
to explore the act of digital tool making and gain a basic competency in this
intersection between Architecture and Computer Science.

To achieve these goals, MeasureIt-ARCH’s development draws on refer-
ences from the history of line drawing and dimensioning within Architecture
and Computer Science. On the Architectural side, we make use of the his-
tory of architectural drawing and dimensioning conventions as described by

iii

Mario Carpo,1 Alberto Pérez Gómez2 and others, as well as more contempo-
rary frameworks for the classification of architectural software, such asMark
BewandMervyn Richard’s BIM Levels framework,3 in order to help determine
the scope of MeasureIt-ARCH’s feature set. When crafting MeasureIt-ARCH,
precedent works from the field of Computer Science that implement meth-
ods for producing line drawings from 3D models helped inform the author’s
approach to line drawing. In particular this work draws on the overview of
line drawing methods produced by Bénard Pierre and Aaron Hertzmann,4

Arthur Appel’s method for line drawing using ‘Quantitative Invisibility,’5 the
techniques employed in the Freestyle line drawing system created by Grabli
et al. 6 as well as other to help inform MeasureIt-ARCH’s simple drawing
tools.

Beyond discussing MeasureIt-ARCH’s development and its motivations,
this thesis also provides three small speculative discussions about the
implications that an Open Source design tool might have on the architectural
profession.

We investigate MeasureIt-ARCH’s use for small scale architectural projects
in a practical setting, using it’s toolset to produce conceptual design and
renovation drawings for cottages at the Lodge at Pine Cove. We provide
a demonstration of how MeasureIt-ARCH and Blender can integrate with
external systems and other Blender add-ons to produce a proof of concept,
dynamic data visualization of the Noosphere installation at the Futurium
center in Berlin by the Living Architecture SystemsGroup. Finally, we discuss
the tool’s potential to facilitate greater engagement with the Open Source
Architecture (OSArc) movement by illustrating a case study of the work
done by Alastair Parvin and Clayton Prest on the WikiHouse project, and by

1Mario Carpo, “Building with Geometry, Drawing with Numbers,” in When Is the Digital
in Architecture?, ed. Andrew Goodhouse and Canadian Centre for Architecture (Montréal:
Canadian Center for Architecture, 2017), 35–44

2Alberto Pérez Gómez and Louise Pelletier, Architectural Representation and the
Perspective Hinge (Cambridge, Mass: MIT Press, 1997)

3BSI Standards Limited, “PAS 1192-2:2013,” n.d., http://www.hfms.org.hu/web/images/
stories/PAS/PAS1192-2-BIM.pdf.

4Pierre Bénard and Aaron Hertzmann, “Line Drawings from 3D Models: A Tutorial,”
Foundations and Trends® in Computer Graphics and Vision 11, nos. 1-2 (2019): 1–159,
https://doi.org/10.1561/0600000075.

5Arthur Appel, “The Notion of Quantitative Invisibility and the Machine Rendering of
Solids,” in Proceedings of the 1967 22nd National Conference on - (The 1967 22nd national
conference, Washington, D.C., United States: ACM Press, 1967), 387–93, https://doi.org/10.
1145/800196.806007.

6Stéphane Grabli et al., “Programmable Rendering of Line Drawing from 3D Scenes,” ACM
Transactions on Graphics 29, no. 2 (March 1, 2010): 1–20, https://doi.org/10.1145/1731047.
1731056.

iv

http://www.hfms.org.hu/web/images/stories/PAS/PAS1192-2-BIM.pdf
http://www.hfms.org.hu/web/images/stories/PAS/PAS1192-2-BIM.pdf
https://doi.org/10.1561/0600000075
https://doi.org/10.1145/800196.806007
https://doi.org/10.1145/800196.806007
https://doi.org/10.1145/1731047.1731056
https://doi.org/10.1145/1731047.1731056

highlighting the challenges that face OSArc projects as they try to produce
Open Source Architecture without an Open Source design software.

Figure 1: A Plan Drawing Made in Blender, With and Without MeasureIt-ARCH
(Left) Plan created with MeasureIt-ARCH. (Right) Plan Created without

MeasureIt-ARCH

v

Acknowledgements
There are many people without whose help and support this thesis would
not have been possible. Firstly a thank you to my committee. To my
supervisor Philip Beesley, for his enthusiasm, knowledge, and for always
inspiring new connections and possibilities as I worked. ToMaya Przybylski,
my committee member, for her support and guidance, especially during
the early stages of exploration. To my internal reader, Craig Kaplan, for
his eye for detail and for bringing a Computer Science perspective to the
work, with feedback and references that will be immeasurably valuable as I
continue forward. And tomy external reader Patrick Harrop, for his insightful
questions on the nature of digital craft and its relation to the work.

Secondly, at this academic milestone, I’d like to take a moment to thank
everyone who has contributed to my education over the past six years
— especially the faculties of both the McEwen and Waterloo Schools of
Architecture. Beyond the academic, I’d also like to give special thanks to
Alex Strachan and Daniel Viirtela for the opportunities they’ve provided over
the years.

Lastly, but certainly not least, a heartfelt thank you to all of my friends and
family. You have given me more support than you could ever know.

vi

A Note on Production
In keeping with the core principles of this thesis work, as much of
this document as possible has been produced using Open Source
software. The development of MeasureIt-ARCH has been tracked
and made publicly available through GitHub; it’s history can be found
at (https://github.com/kevancress/MeasureIt-ARCH). The thesis text was
written in the markdown language using the Atom text editor. The raw
markdown was converted to any necessary formats using Pandoc while
typesetting and formatting were controlled and automated with the LaTex
document preparation system to produce the PDF or print publication you
are currently reading. Citations and references were managed using the
Zotero reference management software.

Unless explicitly stated, all original diagrams presented in this thesis are
produced using Blender and MeasureIt-ARCH.

This thesis would not be the work that it is without the passionate work
of countless Open Source developers who have volunteered their time and
effort to produce highly versatile tools for the benefit of the broader public.
They cannot be thanked enough.

A Note on Performance Metrics
In a few places throughout this thesis, timing benchmarks are provided as
comparativemetrics for the performance of certain operations inMeasureIt-
ARCH. All of these tests were performed on the same computer, with the
following specifications;

Operating system: Windows-10 Version 10.0.18363 Build 18363

Graphics card: NVIDIA GeForce GTX 1050

Processor: Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz, 2304 Mhz, 4
Core(s), 8 Logical Processors

Installed Physical Memory (RAM): 16.0 GB

vii

https://atom.io/
https://pandoc.org/index.html
https://www.latex-project.org/
https://www.zotero.org/getinvolved/
https://www.blender.org/
https://github.com/kevancress/MeasureIt-ARCH

Table of Contents
Author’s Declaration . ii
Abstract . iii
Acknowledgements . vi
A Note on Production . vii
A Note on Performance Metrics vii
Introduction . 1

Introduction 1
The Craft of Digital Tool Making 1
Creating a Functioning Open Source Tool for Architectural

Drawing. 2
Sections . 4

SECTION 1: Motivating an Open Source Architectural Software 8
Motivating an Open Source Architectural Software. 9

Distributed Development and Innovation. 10
The Open Source Architecture Movement 13
Early Attempts at Architectural Design with Open Source

Software. 17

SECTION 2: Requirements and Specifications 20
Requirements Analysis; Why do Architects Dimension 21

A Brief History of Architectural Descriptions 21
Dimensioning Conventions 23

Classifying Architectural Software 25
An Open Source Architectural Software Specification 28

Scope . 28
Feature Requirements . 33
General Requirements . 38

SECTION 3: Blender and Architecture 42
Why Blender? . 43
Blender’s Notable Features . 48
Previous Architectural Investigations 53

SECTION 4: MeasureIt-ARCH 56
Updating MeasureIt . 58

An Open Base to Build From 58
How do MeasureIt & MeasureIt-ARCH Work? 59

viii

1. Adding New Element Types 61
2. Redesigning the User Interface 64
3. Adding a Style System 73
4. Redesigning the Draw System to Work in 3D Space. . . . 74

Implementing Linework and Dimensions 80
Limitations and Design Constraints 80

Line Drawing . 82
An Overview of MeasureIt-ARCH’s Line Drawing 82
Background Research . 82
The Freestyle Line Drawing System. 85
MeasureIt-ARCH’s Implementation 88
1. Which Lines or Edges do we Want to Render? 88
2. For Each Line; How do we Determine if All or Part of this

Line is Visible? . 95
3. What Visual Characteristics do we Give These Lines? . . . 104

Dimensions; Dissolving the Work Plane with MeasureIt-ARCH . . . 107
Why Use a Work Plane and When Does it Fail 107
Perpendicularity in Two and Three Dimensions 108
Using Mesh Geometry and the Users Viewpoint to Determine

a Dimension’s Placement. 109
The User Experience; Adding Multiple Dimensions Simultane-

ously. 113
Automated Dimension Placement; Benefits and Limitations. . 114

Sharing MeasureIt-ARCH . 116
The Cathedral and the Bazaar 116
Licensing . 117
Leveraging New Media 117
Community Bug Fixing 119

SECTION 5: Specification Evaluation 122
Requirements Specification Evaluation 123
Feature Requirements . 124
General Requirements . 139
Summary . 150

SECTION 6: Testing and Implications 152
Testing and Implications Overview 153
Continuing Work with the Lodge at Pine Cove 154

Production Driven Improvements to MeasureIt-ARCH 155
Blender and MeasureIt-ARCH; Hybrid Workflows 157
Drawing Examples . 160

Dynamic Data and Linkages 164

ix

The Futurium Noosphere and the Processing Simulator . . . 164
The OSC Parser . 166
Modeling the Futurium Noosphere for Performance. 169

The WikiHouse Project and Open Systems Labs 171
Push to Develop Proprietary Software 174
Blender and MeasureIt-ARCH’s Implications. 176

Conclusion 178
Looking Beyond this Thesis . 179

References 182

Appendices 196
MeasureIt - ARCH Code Overview 197
MeasureIt - ARCH v0.4 Documentation 199

x

List of Figures
1 A Plan DrawingMade in Blender, With andWithout MeasureIt-

ARCH . v
2 MeasureIt-ARCH’s GitHub Release Banner Image 5
3 MeasureIt-ARCH in Action 6
4 The Toni Harting Cottage at the Lodge at Pine Cove. 17
5 Mark Bew and Mervyn Richards BIM Wedge 26
6 Architectural Software Analysis Matrix. 30
7 Architectural Software Analysis Radar Charts. 31
8 A Still from the Spring Open Movie. Produced by the Blender

Institute . 44
9 Status of the Blender Development Fund as of July 30th, 2019 45
10 FreeCAD User Interface 46
11 Blender 2.8’s User Interface 46
12 A Cube Dimensioned with the Original Measure It 47
13 ’Minimalist Kitchen’ by Augusto Cezar rendered in Blender

with EEVEE . 48
14 ’Modulations’ by Alberto Giachino. 49
15 Using Grease Pencil to sketch in-situ over a simple massing

model . 51
16 ’Differential Growth Collection 00 (aka: cabbages)’ by Alex

Martinelli. 52
17 Yorik Van Havre - Pennington, Road Bridge Case Study at

Leeds-Liverpool . 54
18 A Schematic Diagram of MeasureIt-ARCH’s Inheritance

Structure . 62
19 Diagram of MeasureIt-ARCH’s Inheritance Structure. 63
20 MeasureIt’s Original Location in Blender’s UI 64
21 MeasureIt’s Original Panel for Operators. 64
22 MeasureIt’s Original Panel for Dimension Settings 65
23 MeasureIt-ARCH Main Tool Panel 67
24 MeasureIt-ARCH’s Dimension Properties UI 68
25 MeasureIt-ARCH Unit Settings UI 69
26 MeasureIt-ARCH Style Settings UI 69
27 MeasureIt-ARCH’s List Style UI 70
28 Schematic Diagram of MeasureIt-ARCH’s UI Code. 72
29 MeasureIt-ARCH’s Styles User Interface 73
30 MeasureIt’s Original Dimensions 75

xii

31 A Depth Buffer (Mapped to Greyscale), and its Corresponding
Rendered Scene. 75

32 Schematic Diagram of MeasureIt-ARCH’s Draw Code. 79
33 Multiple Line Styles Rendered with Freestyle 85
34 Blender Freestyle’s User Interface 86
35 Freestyle’s Line Types . 89
36 A Line Group’s User Interface Settings 91
37 The Line Group by Crease Operator’s Behaviour. 92
38 Depth Buffer Example. 96
39 Inverse Hull Silhouette Lines. 99
40 Variable Silhouette Examples 100
41 Perspective Challenges with a Camera Space Z-offset 101
42 Clip Space Z-offset in Shader without Perspective Distortion 102
43 MeasureIt-ARCH Linework Compared with Freestyle

Linework on Organic Geometry. 102
44 Silhouette Ground Clipping 103
45 Thick Line Tessellation 104
46 MeasureIt-ARCH’s Line Overextension. 105
47 Adjusting a Dimensioned Massing Object in Revit 108
48 Directions Perpendicular to a Line in Two and Three Dimensions109
49 Visualization of View Segmentation Thresholds in 3D Space . 111
50 How Adjacent Face Normals are Used to Evaluate Dimension

Placement . 112
51 A Still from the ’MeasureIt-ARCH V0.3 Update Video’ 118
52 Image from an Error Report Submitted by a MeasureIt-ARCH

User . 120
53 Image Sequence of MeasureIt-ARCH Linework, on a Rotating

Cube . 124
54 Image Sequence of MeasureIt-ARCH Hidden Linework, on a

Rotating Cube . 125
55 Image Sequence of MeasureIt-ARCH Silhouette Linework, on

a Rotating Cube . 125
56 Image Sequence Showing all Three MeasureIt-ARCH Line

Behaviours on a Rotating Cube 126
57 MeasureIt-ARCH Silhouette Lines 126
58 MeasureIt-ARCH Line Overextension. 127
59 MeasureIt-ARCH Linework and Silhouettes Applied to a GIS

Model . 127
60 Line Group by Crease Operator Behaviour. 128
61 MeasureIt-ARCH Annotations. 129
62 MeasureIt-ARCH Dimension Terminations. 130

xiii

63 Image Sequence Showing a MeasureIt-ARCH Aligned Dimen-
sion’s Behaviour when Attached to a Rotating Cube 131

64 Image Sequence Showing a MeasureIt-ARCH Axis Dimen-
sion’s Behaviour when Attached to a Rotating Cube 133

65 Angle Dimensions at 30 Degree Increments 134
66 Reflex Angle Dimensions at 30 Degree Increments 135
67 Angle Dimensions on a Cube (left) and Deformed Cube (right) 135
68 Arc Dimensions at 30 Degree Increments with a Radius of

100cm (0 - 180 degrees) 136
69 Arc Dimensions at 30 Degree Increments with a Radius of

100cm (180 - 360 degrees) 137
70 Dimension Offset Gizmo Behaviour. 140
71 Aligned Dimension Placement Behaviour. 141
72 ACubewith anAlignedDimension, Viewed fromTwoDifferent

Viewports Simultaneously. 142
73 Image Sequence ShowingMeasureIt-ARCH’s Text Orientation

Behaviour. 142
74 Dimension Text Orientation Shown at 30 Degree Intervals . . 143
75 MeasureIt-ARCH Dimension Text Placement. 143
76 Animated Sequence of MeasureIt-ARCH Elements 144
77 MeasureIt-ARCH Linework and Dimensions Overlaid on Three

Distinct Rendering Styles. 145
78 A Small Pavilion with MeasureIt-ARCH Linework and Dimen-

sions, Rendered in Two Styles 146
79 MeasureIt-ARCH Render Compositing Setup 146
80 MeasureIt-ARCH Linework and Dimension Instancing. 147
81 The Current UI for the ’Per Camera Resolution’ Add-on 149
82 Pine Cove Sauna - Cut Perspective, Overlaid with MeasureIt-

ARCH Dimensions and Annotations 154
83 Pine Cove Sauna - Conceptual Plan 158
84 Pine Cove Sauna - Conceptual Render 159
85 Paul Kane Cottage - Proposed Renovation Plan, with

MeasureIt-ARCH Drawing Elements. 161
86 Paul Kane Cottage - Proposed Renovation Plan, without

MeasureIt-ARCH Drawing Elements. 162
87 Two Additional Proposed Pine Cove Cottage Renovation

Plans with MeasureIt-ARCH Drawing Elements. 163
88 The Futurium Noosphere as Represented in the Processing

Simulator . 165
89 Blender UI for a Simple OSC Mapping. 166
90 A Simple OSC Test; Virtual Coffee and a Distance Sensor . . 167
91 Our UI to Parse a Message from the Processing Simulator . 168

xiv

92 The Futurium Noosphere Component Library 169
93 Rendered Noosphere Visualization with Debug Timings . . . 170
94 WikiHouse Contributors Slack Engagement - July 2019 . . . 172
95 Wikihouse Microhouse Iso. 173
96 Buildx Prototype . 175
97 Installing MeasureIt-ARCH 199
98 MeasureIt-ARCH Main Tool Panel 200
99 Style Settings . 202
100 Unit Settings . 202
101 Scene Settings . 203
102 Dimension List . 203
103 Dimension Settings . 204
104 Line Group List . 205
105 Line Group Settings . 206
106 Annotation List . 207
107 Annotation Settings . 207
108 Render Buttons . 209
109 MeasureIt-ARCH Compositing Setup 209
110 Components of a Dimension 212
111 Components of an Annotation 212

xv

”Invent your own tools.
Adopt new technologies,
rewrite the code,
and collaborate in
unexpected ways.”

- PARTISANS 7

7PARTISANS, Rise and Sprawl: The Condominiumization of Toronto, ed. Hans Ibelings
and Nicola Spunt (Montreal Amsterdam: The Architecture Observer, 2016).

Cress

Introduction
This thesis explores the craft of code and digital tool making by developing
a specialized software tool MeasureIt-ARCH and by framing this practical
work within a discussion of related aspects of dimensioning and drawing in
architectural practice. . MeasureIt-ARCH was developed in response to two
key goals.

First, to help myself learn and gain competency in the craft of digital tool
making.

Second, to create a functioning piece of free and Open Source software to
allow for the creation of architectural drawings, that could bemade available
to anyone.

The Craft of Digital Tool Making
As a student of architecture, I’ve always been fascinated by the digital tools
we increasingly rely on for our everyday design work. I have been intrigued
by how they function, and how they could improve. I have been amazed by
their efficiency, but frustrated at their ‘black box’ nature, their source code and
methods hidden away and guarded by the companies that license them to
us. This interest in our digital tools has led to a desire to truly engagewith and
design these tools for myself, and to share that process. The exploration of
craft in this work tries to embody the ethos of the craftsperson as described
by Richard Sennett in his appropriately titled book ‘The Craftsman.’8 Sennet
describes craft as;

“the special human condition of being engaged.”9

The text evokes an expanded state of engagement that is achieved not only
through the act of physical making, but also through cyclical acts of problem
solving and problem finding, exploring often-ambiguous areas of study and
seeking an intuitive understanding through practice and creation. The thesis
represents a modest participation within the vast craft that is digital tool
making.

8Richard Sennett, The Craftsman (New Haven: Yale Univ. Press, 2008)
9ibid., 44

1

MeasureIt-ARCH

Creating a Functioning Open Source Tool for
Architectural Drawing.
The exploration and learning of the first goal was tempered and guided by the
concrete goal of creating a functioning tool for the creation of architectural
drawings. This tool is MeasureIt-ARCH. MeasureIt-ARCH’s contributions
include a simple set of tools for generating linework, annotations and
dimensions in the Open Source 3D modeling software Blender, designed to
allow for the creation of conventional architectural drawings. MeasureIt-
ARCH contributes to the culture of distributed Open Source development
in the architectural profession, providing a freely available Open Source
software platform that is capable of producing architectural drawings.

MeasureIt-ARCH implements two novel technical methods in its drawing
system. The first of these methods allows for the dynamic placement of
dimensions in 3D space, and the second is a method for drawing object
silhouette lines by transforming a duplicate of the object’s geometry in 4D
Clip Space.

MeasureIt-ARCH attempts to solve the problem of placing dimensions in 3D
space in an intuitive and legible way . A common practice in today’s industry-
standard Computer-Aided-Design (CAD) or Building Information Modeling
(BIM) tools is to rely on amanually defined twodimensional ‘work plane’ upon
which the dimension is placed. That practice tends to remove dimension
elements from 3D space, reducing them to two dimensions. MeasureIt-
ARCH explores an alternative to conventional ‘work plane’ based methods
by drawing on contextual information about the object that the dimension is
attached to in order to determine a placementwithin 3D space that optimizes
the dimension’s legibility. This placement system makes use of the model’s
surface normals and the user’s current viewpoint to determine a dimension’s
location dynamically whenever the scene is drawn.

MeasureIt-ARCH also presents a novel approach to silhouette line drawing.
This method is similar to the Inverse Hull method commonly used for Non-
Photorealistic Rendering (NPR) in games and animation.10 The Inverse Hull
method creates an inverted copy of the model’s geometry, expanded along
its surface normal to produce a silhouette effect. In contrast, MeasureIt-
ARCH offsets the duplicated geometry along the Camera Space Z-Axis
by a user specified threshold. This allows the user to vary the types
of silhouette lines being drawn by MeasureIt-ARCH’s silhouette system.

10Junya Christopher Motomura, “GuiltyGear Xrd’s Art Style: The X Factor Between 2D
and 3D” (Game Developers Conference, Moscone Center - San Francisco, 2015), 24, http:
//www.ggxrd.com/Motomura_Junya_GuiltyGearXrd.pdf

2

http://www.ggxrd.com/Motomura_Junya_GuiltyGearXrd.pdf
http://www.ggxrd.com/Motomura_Junya_GuiltyGearXrd.pdf

Cress

Typically this method would function poorly in a perspective view, as
perspective projection would distort the duplicated geometry resulting in
a distorted silhouette. MeasureIt-ARCH works around this problem of
perspective distortion by conducting its transformation of the silhouette
geometry in 4D Clip Space. This technique allows the method to obtain
consistent silhouettes in orthographic and perspective views.

In addition to discussing in more detail how these two technical challenges
were overcome in MeasureIt-ARCH, this thesis also explores motivations
that inspired MeasureIt-ARCH’s creation, the history and analysis that
defined its scope, the affordances that Blender might have for architectural
design, and potential implications that an Open Source tool might have
for small practices and Open Source architectural movements. The thesis
describes what MeasureIt-ARCH does and how it functions, the reasons for
its design, and its development process.

MeasureIt-ARCH is shared publicly on GitHub.11

11Antonio Vazquez and Kevan Cress, MeasureIt-ARCH, 2018, https : / / github . com /
kevancress/MeasureIt-ARCH.

3

https://github.com/kevancress/MeasureIt-ARCH
https://github.com/kevancress/MeasureIt-ARCH

MeasureIt-ARCH

Sections
The thesis is divided into six sections. The first provides an exploration
of the motivations that inspired the software tool. The second describes
the specification and scope that guide MeasureIt-ARCH’s development. The
third explores why Blender was chosen as a base for MeasureIt-ARCH and
what affordances are offered for architectural design in Blender’s existing
feature set. The fourth discusses features, development and benchmarks.
The fifth reviews specifications previously identified in section one in order
to evaluate MeasureIt-ARCH’s current state and explore what lies ahead
for future development. The final section includes three investigations that
explore use cases and future implications.

Section 1: Motivating an Open Source Architectural
Software.
This section provides a brief overview of three distinct areas of interest that
have motivated my desire to create MeasureIt-ARCH. This section briefly
discusses the culture of distributed development found in the animation
industry, the Open Source Architecture movement, and the author’s own
experience using the Open Source software Blender for architectural design.

Section 2: Requirements and Specifications
The Requirements and Specifications Section provides a short history of the
development of architectural drawing conventions. Included is a review of
standards that govern the style and legal importance of numeric dimensions
in current architectural practice.

In addition to understanding the general requirements of architectural
drawings, the thesis integrates the BIM classification system authored by
Mark Bew and Mervyn Richards as a framework to identify broad categories
of software used in architectural practice. These categories, along with a
comparative analysis of the feature sets of other industry standard AEC
software packages, are used to situate MeasureIt-ARCH’s intended scope
and feature set and to prepare a detailed specification of features for
MeasureIt-ARCH.

4

Cress

Section 3: Blender and Architecture
Section three provides a discussion of the aspects of the Open Source
software Blender that make it suitable as a base for the development of the
features outlined in our specification. We discuss Blender’s development
model, notable features, and cite a review of the software conducted
by Theodoros Dounas and Alexandros Sigalas in 2009. This discussion
illustrates both potential affordances and shortcomings of Blender for
architectural projects, providing a practical context for the development of
the new features of Measureit-ARCH.

Section 4: MeasureIt-ARCH

Figure 2: MeasureIt-ARCH’s GitHub Release Banner Image

Section four describes how MeasureIt-ARCH builds on the foundation of
Antonio Vazquez’s MeasureIt add-on to develop a more comprehensive
toolset for architectural drawing, and explains how MeasureIt-ARCH
integrateswith and utilizes the 3D nature of Blender’smodelling environment
to produce a workflow for small design projects. We provide a detailed
analysis of MeasureIt-ARCH’s linework and dimensioning implementations,
alongwith precedent research in the field of computer science that informed
these features.

In the discussion of MeasureIt-ARCH’s dimensioning tools, we present
an analysis of the conventional work plane based dimensioning systems
present in industry-standard tools, identifying their challenges and failure
cases in their implementation in Rhino and Revit. Providing an

5

MeasureIt-ARCH

alternative that integrates dimensions within three-dimensional design
space, MeasureIt-ARCH uses an algorithm that allows the user to place
multiple dimensions simultaneously, without the need to predefine a
work plane. It accomplishes this by calculating the dimension’s optimal
positioning related to the user’s viewpoint and the topology of the geometry
that the dimension is attached to.

Figure 3: MeasureIt-ARCH in Action
Still from the ’MeasureIt-ARCH V0.3 Update Video’, published on YouTube

Finally, in the spirit of Open Source development, and to foster discussion
and testing around the tool, we discuss the ‘Version 0.1’ and ‘Version 0.3’
releases of MeasureIt-ARCH. These open releases and the resulting user
feedback helped contribute to solutions for significant issues in the cross-
operating system compatibility of the tool, and helped to identify bugs,
leading to the improved stability of the tool.

Section 5: Specification Evaluation
We evaluate how MeasureIt-ARCH’s current implementation measures up
to the specification presented in the first section. For each identified feature,
we discuss the successes and shortcomings of its current state and show
performance benchmarks. We also provide brief notes on how features
might be improved in future development.

Section 6: Testing and Implications
We look beyond the creation of MeasureIt-ARCH, exploring impacts that the
Blender and MeasureIt-ARCH, as an Open Source design platform, might
have on the architectural profession. We demonstrate MeasureIt-ARCH’s
application in two widely varied practical implementations. We illustrated
MeasureIt-ARCH’s implications for small scale architectural projects, in a
case-study design of several small cottages developed for the Lodge at Pine

6

Cress

Cove located in French River, Ontario. In parallel, data tied experimental
lightweight digitally fabricated constructions are explored in collaboration
with the Living Architecture Systems Group’s recent installation entitled
‘Futurium Noosphere’, installed in 2019 at the Futurium facility in Berlin,
Germany. This collaboration explores the potential of MeasureIt-ARCH
and Blender to integrate with external data sources used in the Futurium
installation, and visualize this data through MeasureIt-ARCH’s annotations.
This is accomplished by combining MeasureIt-ARCHwith an additional add-
on created for the handling of external data through the Open Sound Control
(OSC)message protocol. Finally we provide some reflection on how anOpen
Source tool like MeasureIt-ARCH might impact OSArch projects.

7

SECTION 1:
Motivating an Open Source
Architectural Software

8

Cress

Motivating an Open Source
Architectural Software.
As a profession, Architecture’s relationship with the software that enables
its creation is often one-sided. We are reliant on those that produce the
software we use, and change and innovation in this software generally come
from outside the AEC industry, from the technology companies that craft the
tools we use in our day to day work.

Now, more technologically invested readers may find this statement off-
putting. No doubt, the architectural profession has its share of innovators.
They cannot be denied and should not be undervalued. There is a vibrant
community of academics and cutting-edge practices that develop new
methods and innovate within the bounds of existing software, to embrace
the technological revolution that is currently overturning our conceptions
of fabrication and construction. One doesn’t need to look farther than
the conference proceedings that emerge from institutions like eCAADe,
CADRIA or ACADIA, or the fabrication labs of most schools of architecture,
to see evidence of the experimentation and the potential for technological
advancement in the architectural research that is carried out by these
dedicated pioneers.

And yet, despite this dedicated and robust community of innovators and
academics, the translation of these innovations from research to practice is
slow in the collective professional entity that is the Architecture, Engineering
and Construction (AEC) Industry. Of course, there are a multitude of
factors that contribute to the pace of development in this profession. Short
deadlines, tight budgets, and high risk have made it difficult for the average
architectural Practice to experiment or innovate on the job. More challenging
still, the interdisciplinary nature of the AEC Industry necessitates fluent
exchange and smooth communication, leading to an almost darwinian
selection of a few software packages which dominate across major
segments of the industry. While having a few dominant ‘industry standard’
tools provides stability for the industry it can make it difficult for smaller,
more experimental tools to integrate into larger workflows, and expecting
the level of technological skill necessary for every architect to be capable of
wrangling experimental software into service in their day to day work seems
unreasonable. Especially in a profession whos education already demands
a multidisciplinary understanding of design, philosophy, art history, statics,
and sustainability, not to mention the practicalities of creating buildings that
comply with local requirements and regulations.

9

MeasureIt-ARCH

Where though, does a modest Open Source tool for architectural drawing sit
in all this?

MeasureIt-ARCH, as a simple tool, cannot answer this challenge, this gap
between architectural innovation and architectural practice, but it does draw
its inspiration from it. In response to this challenge, it pulls motivations
from the culture of innovation and distributed development present in
the animation industry, the growing enthusiasm behind the Open Source
Architecture (OSArc) movement, and my own experience using the Open
Source software Blender in small scale design work. And while the body and
scope of this thesis deal predominantly with details of MeasureIt-ARCH’s
development and its modest toolset, it’s worth taking a moment to explore
these motivations to set the stage with the grander aspirations, to which
MeasureIt-ARCH is only a small step.

Distributed Development and Innovation.
Howmight an Open Source architectural design software start to mobilize a
change in architecture’s relation to software, in a way that helps to close this
gap between architectural innovation and practice? If we aren’t expecting
the average architect to have the software literacy necessary to read and
write code, then how might an Open Source software motivate bottom-up
software development and change in the AEC industry? To see an image of
how this changemight play out, it is useful to look at the culture of innovation
and distributed development at play in the animation industry, and howOpen
Source development, and the more recent shift to Open Source tools has
affected it.

The animation industry itself bears some passing resemblance to the
early phases of an architectural design. Both involve the spatial design
and composition of environments, that will be inhabited by actors. Both
require the active co-ordination and exchange of assets across multiple
departments with different focus and scope, and although animators are
not limited by the fetters of having to physically construct their creations,
they face other technical limitations imposed by the available computing
resources that must be overcome in order to ensure that projects are
completed.

The necessity to deliver products that are increasingly computationally
intense means that studios involved in animation are constantly innovating
to make the best use of new hardware resources or to produce more
appealing visuals than their competitors. This intense innovation has
resulted in a company structure at many studios that includes a dedicated

10

Cress

research and development department, responsible not only for keeping
pace with ever-evolving hardware but also for developing artist-friendly
software tools. The work of this technical team allows the creative
departments at the studio to focus on the design work they do best.
Allowing artists to take advantage of new developments and software
without burdening them with the need to have the technological literacy
required to create and maintain that software themselves.

These tools can be reserved for in house use, due to their bespoke nature
or to keep a competitive edge. But occasionally large studios, like Disney
or Pixar, will release key developments and software libraries for the good
of the industry as a whole under Open Source Licenses (Disney’s Principled
shadingmodel and Pixar’s Open Subdivision technology are prime examples
of this)1213. This allows other studios R&D departments to incorporate these
advances into their own tools, and provides an opportunity for other Open
Source software platforms, to keep pace with the ‘industry standard’ that is
being actively developed within the industry itself.

However, some studios have taken this approach a step further. Rather
than focusing on bespoke in-house tools, they’ve adopted fully Open Source
software platforms as their primary design tool. This change can make
it simpler for new tools to be developed and shared with the rest of the
industry. As each studios R&D department develops new tools and improves
those that already exist, their new developments can be folded back into the
shared Open Source platform and made available for others to use. Since
these developments are folded into a shared platform, other studios can
make use of these developments as soon as they are committed to the code
base. This type of development model can be seen in Toronto’s Tangent
Animation Studios. Tangent Animation uses Blender, an Open Source 3D
modelling tool that plays a key role in this thesis work, in conjunction with
many other tools likeHoudini and Substance Painter to realize their animated
features. To improve their workflow, Tangent’s Senior Software Engineer,
Stefan Werner has worked in tandem with the Blender Development team,
to add several improvements to the Open Source platform, including but
not limited to, support for the Intell Embree raytracing kernel, Cryptomatte
compositing masks, and early support for the OpenVDB library to better

12Brent Burley and Walt Disney Animation Studios, “Physically-Based Shading at Disney,”
n.d., 26, https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_
notes_v2.pdf.

13Tony DeRose, Michael Kass, and Tien Truong, “Subdivision Surfaces in Character
Animation,” in Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques - SIGGRAPH ’98 (The 25th annual conference, Not Known: ACM Press,
1998), 85–94, https://doi.org/10.1145/280814.280826.

11

https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
https://doi.org/10.1145/280814.280826

MeasureIt-ARCH

facilitate the exchange of fluid and smoke simulation data between Houdini
and Blender.14

This culture of distributed ‘in-house’ development is not dependant on the
existence of a monolithic Open Source software platform like Blender, the
sharing of innovative developments as smaller software libraries, released
under Open Source licenses was, and is still, commonplace, not only in the
animation industry but in the Open Source software world at large. What an
Open Source Platform adds to this mix is the opportunity to distribute these
developments and make them available to a wider audience. It moves the
burden of implementation off of the individual or studio that wishes to use
the released library and makes it a shared responsibility of the development
team and the maintainers of the Open Source platform. This makes each
successive development more accessible, as their inclusion in a common
platform makes them ready for use across the industry.

Adopting this style of distributed development in the AEC industry would
require a substantial reimagining of how architectural firms are structured,
but has the potential to shift how innovation occurs in the industry. Investing
solely in software from external vendors means relying on those external
vendors to deliver innovations from the top-down. Adopting a free Open
Source design platform, on the other hand, could provide architectural
firms with the opportunity to redirect their financial investment, from
licensing commercial software, towards creating dedicated research and
development teams within their organization. A change like this could help
drive bottom-up innovation from within the industry itself. Of course, for this
shift to be feasible, there must first be an Open Source software platform
that is capable of meeting the needs of the AEC industry. Once such a
platform can meet the basic needs of the industry, or a small segment of
the industry, it may serve as a base on which further bottom-up, architect
driven development could occur.

And yet, even without an Open Source software platform on which to work,
some architects are still drawn to the ideals of the Open Source movement.
Though their interest in the Open Source comes from another perspective
entirely.

14Stefan Werner, “Developer.Blender.Org Stefan Werner’s Account History,” accessed
October 3, 2019, https://developer.blender.org/p/swerner/

12

https://developer.blender.org/p/swerner/

Cress

The Open Source Architecture Movement
The original Open Source movement, can largely be attributed to the work of
Linus Torvalds and his Linux operating system kernel, which he released for
free in 1991. The free release of Linuxwould prove to be a spark for change in
the practices of software development and beyond. Most notably Netscape
(now known as Mozilla Firefox) would release their formerly proprietary web
browser and its source code to the public in 1998 and coin the term “Open
Source”. This Open Source spark would inspire other developers to begin
producing and releasing their software for free as well. Creating an ‘Open
Source’ movement andmethodology that would spread far beyond software
development.

There is more to Open Source than simple the ‘free’ release of software,
however. Typically Open Source refers to the practice of producing and
releasing software and its source code to the public. Thismeans that not only
can anyone use the software, but they can modify and redistribute it as well.
Often Open Source works are also protected legally by ‘copyleft’ licences.
These copyleft licences, like the GNU GPL licence, are a manipulation of
traditional copyright law, used to ensure that the original Open Source work,
as well as any derivative works that modify or build on the original must be
Open Source as well. Utilising copyleft licenses helps ensure that the work
of Open Source developers isn’t exploited for commercial gain, a protection
that theseworkswould not have if theywere released into the public domain.

This radical form of protected sharing has no doubt inspired interest even
outside the realm of software development, reaching as far as the realm
of architectural theory. The Open Source Architecture (OSArc) movement
has drawn inspiration from the collaborative authorship of Open Source
software and is trying to co-opt some of the movement’s ideas in order to
re-ignite the ideals of Participatory Architecture championed by the likes
of Christopher Alexander, Giancarlo DeCarlo and Cedric Price in the mid-
1900s. Facilitating their ideals of a participatory design process with new
information technologies.

“[the] traditional approach to the reconciliation of social values
and individual choice is to entrust de facto decision-making to the
wise and knowledgeable professional experts and Politian’s. But
whether one finds that ethically tolerable or not, we hope we have
made it clear that even such a tactic only begs the question, for
there are no value-free, true-false answers to any of the wicked
problems” Horst W. J. Rittel and Melvin M. Webber15

15“Dilemmas in a General Theory of Planning,” Policy Sciences 4, no. 2 (June 1, 1973):

13

MeasureIt-ARCH

Horst Rittel and Melvin Webber in their 1973 work Dilemmas in a General
Theory of Planning define problems of urban design and architecture as
wicked problems, characterized as having no singular conception, no perfect
solution, no ethical opportunity for trial and error, no clear endpoint, and
resulting consequences that ripple far beyond the original scope of the
problem. Not to mention that these already significant challenges are
compounded by the cultural complexity present in a post-industrial, diverse,
heterogeneous society.

“We have neither a theory that can locate societal goodness, nor
one that might dispel wickedness, nor one that might resolve the
problems of equity that rising pluralism is provoking.” - Horst W.
J. Rittel and Melvin M. Webber16

This loss of trust in the idea of the wise Promethean Architect a in the mid a Referring to themodernist ideal
of the architect, characterized by
Ratti and Claudel in Open Source
Architecture

20th century set the stage for participatory design discussions. It was a
sobering realization that professional Architects might, in fact, not have all
the answers, accompanied with a growing sense of existential dread in the
face of the true complexity of urban and architectural design problems.

If designs that benefited the general public could not come from the mind of
the expert alone, then new methods of design would need to be tested.

in 1969, Giancarlo De Carlo proposed that the only effective way to stop
the architect from being an “operative appendage” of the dominant societal
powers was to engage in a sequential design process that revolved around
continuous feedback and revision from the inhabitants of an architectural
work. That it was only through this cyclic engagement that the architect
could overcome their alienation from the public and restore their credibility
in the eyes of the people.17

While the notions of cyclic feedback and revision are compelling to discuss
in theory, they are significantly more difficult to implement in practice
when it comes to architecture. Historically, buildings are, notably, static,
and an architect’s active engagement in their life typically ends shortly
after construction. Might then, an architect utilizes new technologies to
empower and engage the broader public, or at least the buildings prospective
occupants in cycles of user feedback and revision, to create buildings that
better suit the public that occupies them?

This certainly seems to be the future proposed by the Open Source

155–69, https://doi.org/10.1007/BF01405730.
16Ibid.
17Giancarlo De Carlo, “Architecture’s Public,” in Architecture and Participation, Digit. print

(London: Taylor & Francis, 2009), 3–22

14

https://doi.org/10.1007/BF01405730

Cress

Architecture Movement, initiated by Carlo Ratti and Mathew Claudel in their
manifesto “Open Source Architecture”, they define the OSArc movement as;

“an emerging paradigm […] drawing from references as diverse
as open source culture, avant-garde architectural theory, science
fiction, language theory, and others, it describes an inclusive
approach to spatial design, the collaborative use of design
software, and the transparent operation throughout the course of
a buildings […] life cycle”.18

The movement began life as a collaborative Wikipedia page in 2011. This
collaborative online document would serve as the kernel for an article
published in Domus19 in June of 2011. However, after the article’s
publication, the text would continue to grow, eventually becoming the full-
fledged manifesto that was published in 2015. Ratti and Claudel (and a host
ofmany other collaborative authors) trace a lineage of participatorymethods
that span from the historic vernacular, through the gothic cathedrals, briefly
interrupted by international modernism before being revitalized in the mid to
late 19th century by the post-modernists and cyberneticists. They propose
that the next evolution of participatory design is one that will build on
the success of the Open Source software movement by creating an ‘Open
Source Architecture’. Architectural designs that can be shared modified and
redistributed but that will ultimately be composed bywhat they refer to as the
“Choral Architect” who weaves together the disparate ideas of the populous
into a harmonious whole.20 However, the models and methods that have
proved successful in the world of Open Source software development may
not be so easy to translate to architectural Design.

Theodora Vardouli and Leah Buechley provide a critical assessment of
the assumptions and problems that exist within the conception of an
Open Source Architecture. At the core of their critique is the fundamental
differences in medium and methods of creation between architecture and
software. The Open Source software movement can flourish because
its software is reliably reproducible by anyone with a computer and an
internet connection through the compiling of source code. In basic terms,
a software’s source code is the plain text written in a (more or less) human-
readable programming language that can be compiled to produce the
computer-readable set of instructions that are the software. Because a

18Carlo Ratti and Matthew Claudel, Open Source Architecture (New York, New York:
Thames & Hudson, 2015)

19Carlo Ratti, “Open Source Architecture (OSArc),” Domus, June 15, 2011, https://www.
domusweb.it/en/opinion/2011/06/15/open-source-architecture-osarc-.html.

20Ratti and Claudel, Open Source Architecture

15

https://www.domusweb.it/en/opinion/2011/06/15/open-source-architecture-osarc-.html
https://www.domusweb.it/en/opinion/2011/06/15/open-source-architecture-osarc-.html

MeasureIt-ARCH

software’s source code is simple plain text, the code can be shared modified
and reproduced without error by thousands of participants with minimal
financial investment and without the need for any commercial tools. The
process of “compiling” or building architecture from its plans and constituent
virtual representations is significantly more nuanced, involves many more
actors, often with competing interests, and requires significantly more
capital investment. The idea that architecture has a “source” to be open is a
problematic one as well, and according to Vardouli and Buechley, this lack of
a clear ‘Open Source’ can lead to hollow and meaningless appropriations of
Open Source ideals.21

Most OSArc projects treat the virtual representations of a building (3D
models, BIM Data, CAD drawings) as the ‘source’ of a work of architecture
and utilize commonOpen Source platforms like GitHub to share andmanage
collaborative editing of this data. However, unlike software source code,
which is comprised mainly of plain text, architectural data currently requires
the use of specialized commercial software to read and edit. OSArc projects
have excelled at the sharing of architectural data over the web; however,
the industry-standard tools available for editing this data are commercial,
closed source, and proprietary, which imposes a financial barrier to entry on
any who wish to engage with these projects. Without an open platform to
open and edit what the OSArc movement views as the ‘source code’ of an
architectural work, its difficult to argue that these works are Open Source
at all. To put it simply, the realization of a truly “Open Source Architecture”
requiresmore than just the sharing of plans or buildingmodels in proprietary
formats. For a project to be Open Source in the truest sense of the term, then
the set of tools necessary to interact with that project should be Open Source
as well to ensure that its information is accessible, legible and editable for
those who wish to engage with it. Otherwise, the OSArc movement runs
the risk of becoming yet another “hollow appropriation”22 of Open Source
methodologies.

But how far can one get in producing an architectural project using only Open
Source software?

21Theodora Vardouli and Leah Buechley, “Open Source Architecture: An Exploration of
Source Code and Access in Architectural Design,” Leonardo 47, no. 1 (August 3, 2012): 51–
55, https://doi.org/10.1162/LEON_a_00470

22ibid.

16

https://doi.org/10.1162/LEON_a_00470

Cress

Early Attempts at Architectural Design with Open
Source Software.
In the summers of 2016 & 2017, I worked with the Lodge at Pine Cove,
a “luxury rustic” vacation resort located on the French River in northern
Ontario, to design two 1,000 sq. ft. modular cottages. Investing in a
commercial software package, such as Autodesk’s Revit, as an individual
designer working on a relatively small scale project seemed impractical, and
a significant financial burden. As an alternative, I attempted to use the Open
Source 3D modelling package Blender as my primary tool for the design of
the Pine Cove Cottages.

Figure 4: The Toni Harting Cottage at the Lodge at Pine Cove.
Design by Kevan Cress, Interiors by The Lodge at Pine Cove, Photo by Braeden

Martel

The early designwork donewith Pine Cove consisted primarily of conceptual
design exploration. 3D models of several of the existing cottages on-site at
Pine Cove were created and used as a rough guide for the development of
the pre-fabricated modular system that would be used for the construction
of the new cottages. Renderings and visualizations were produced and
shared with guests of the Lodge for feedback. Blender was capable of
performing all of these tasks, and its modelling tools allowed for the quick
creation of the detailed models necessary to explore possible modular
construction options. However, once the design was complete and a
construction system decided on, Blender’s lack of available dimensioning
toolsmade it impossible to create the necessary Engineering, Manufacturing
and Construction drawings without transferring the model to a commercial

17

MeasureIt-ARCH

software, in this case, McNeil’s Rhino. While Rhino was used to create
the 2D Technical Drawings, the Blender model was maintained to produce
3D renders and visualization. Attempting to manage two representations
of the same project in independent software packages and trying to keep
them in sync resulted in inconsistencies between the 3D Blender model and
the 2D Rhino drawings. These inconsistencies, the result of human error
in maintaining synchronization between the two forms of representation,
along with a tight timeline for final specifications, resulted in some small
discrepancies between the fabricated panels and the 3D model.

While small discrepancies like this are not uncommon in architectural
projects where 3D models and 2D drawings are not synchronized, this
experience attempting to utilize Blender in a production environment helped
to identify Blender’s current strengths and limitations when applied to
architectural projects. It has shown that even though Blender’s modeling
and rendering toolsets are valuable assets for design and client consultation,
it is lacking the functionality required to produce working drawings, and
currently this makes it impractical for use in the later stages of architectural
production. This experience has also demonstrated that attempting to work
with multiple representations of a project in separate software packages
introduces more opportunities for errors and inconsistencies to accumulate
in a project.

But what if we could augment Blender to a level where it was capable of
facilitating the entirety of an architectural workflow? Could it provide a cost-
effective option for small firms and individual designers? Could it allowOpen
Source Architecture projects to truly meet their mandate, allowing them
to produce their drawings and models in a format that is available to be
read and modified by anyone? Could it serve as an Open Source platform
upon which the AEC industry might start to build a culture of distributed
development, providing opportunities for the passionate community of
architectural technology innovators to fold their advancements back into a
common platform for all the industry to use?

Blender has a long way to go before we can begin to see answers to these
questions. As we will see in the following work, even updating Blender to
the level where it can be used for small scale architectural drawings will be
a significant task, but it is these questions, these ideas of a future where the
AEC industry has the agency to direct the development of the software it
relies on, that truly motivate the modest developments made in this thesis.

18

SECTION 2:
Requirements and
Specifications

20

Cress

Requirements Analysis; Why do
Architects Dimension
A Brief History of Architectural Descriptions
Architecture deals fundamentally with the description of objects to be built,
but this act of description has not always relied on drawings with numeric
dimensions aswe are familiar with them today. In ancient times the architect
would physically mark the site itself. Drawing a plan in-situ. Classical
architects could describe their forms as a series of geometric relations.
Mario Carpo once described how the western cannons ‘first true architect’
Filippo Brunelleschi occasionally made use of carved radishes to convey
construction details to craftsmen during the construction of the Florence
cathedral. However we could consider the popularization of paper and
ink drawing in the 14th century23 to be the first of many technological
developments that would lead to our modern mode of dimensioning. With
paper and ink drawings the conception of a work of architecture became
fundamentally separate from the physical work itself, even though the
creation of these early drawings was essentially analogous to the physical
marking of the site in times past. Early paper and ink drawings were
constructed geometrically, utilizing a compass and unmarked ruler24 in
processes that would be mechanically similar to the marking out of a
building in situ, only with smaller tools.25 These geometric methods for
design, persistent since the era of Vitruvius, provided several affordances
for architects of the time. They allowed for the construction of curvilinear
forms without the need for complex calculus and decimal notation (which
wouldn’tmake its way to Europe until the early 17th century),26 They could be
transmitted as a set of verbal instructions or written in plain text (which was
essential as there wouldn’t be a way to reliably copy drawings until the 16th
century),27 and they were inherently scale-less (because the description was

23Marco Frascari, “An Age of Paper,” in When Is the Digital in Architecture?, ed.
Andrew Goodhouse and Canadian Centre for Architecture (Montréal: Canadian Center for
Architecture, 2017), 25–31.

24Mario Carpo, “Drawing with Numbers: Geometry and Numeracy in Early Modern
Architectural Design,” Journal of the Society of Architectural Historians 62, no. 4 (2003): 450,
https://doi.org/10.2307/3592497.

25Carpo, “Building with Geometry, Drawing with Numbers,” 40.
26George Sarton, “The First Explanation of Decimal Fractions and Measures (1585).

Together with a History of the Decimal Idea and a Facsimile (No. XVII) of Stevin’s Disme,”
Isis 23, no. 1 (1935): 153–244, http://www.jstor.org/stable/225223.

27Mario Carpo, “How Do You Imitate a Building That You Have Never Seen? Printed
Images, Ancient Models, and Handmade Drawings in Renaissance Architectural Theory,”

21

https://doi.org/10.2307/3592497
http://www.jstor.org/stable/225223

MeasureIt-ARCH

a set of geometric relationships that would produce proportionally identical
results regardless of the scale at which they were carried out at).28 These
methods of geometric representation were not unique to architecture of
course and were utilized in mathematics and physics as well, as they were
the best techniques of the time. Galileo, for instance, discerned that the
path of a projectile could be described geometrically as a section through a
cone (a parabola), but it would be centuries still before this same phenomena
could be defined algebraically through the quadratic equation.29

The era of geometric construction however, would only last for so long. The
ability to mass copy drawings through woodcuts or copperplate etchings on
a printing press (widespread in the 1600’s),30 paired with the advances in
numeracy brought about by Simon Stevin’s introduction of decimal numbers
to thewest (1585)31 and the application of al-Khwarizmi’s algebra to describe
continuous lines by Fermat and Descartes (1637)32 ushered in the ‘Age of
Architectural Numeracy’33 in which the conventions of the number based,
scaled, and dimensioned drawings that we are familiar with today were
developed. While these number based drawings are visually similar to their
geometric counterparts, they lack a geometric procedure, which means that
in order to translate from the small scale drawing, to the full scale building
you need to know the drawing’s scale factor, and you need to be able to
measure each element in order to conduct the appropriate scaling. This
leads to what Mario Carpo describes as the Iron Law of Transference, in
which;

” ‘We can only measure what we can draw, and we can only build
what we can measure in a drawing. In short, if you cannot draw it,
you cannot measure it, and if you cannot measure it, you cannot
build it.’.

If one were to take the Carpo’s Iron Law of Transference at face value,
you might imagine that we would not need dimensioned drawings at all.
That builders and craftspeople would simply measure directly from the
architects scaled drawing themselves, with written numeric dimensions

Zeitschrift Für Kunstgeschichte 64, no. 2 (2001): 227, https://doi.org/10.2307/3657211.
28Carpo, “Building with Geometry, Drawing with Numbers,” 40.
29Victor J. Katz and Bill Barton, “Stages in the History of Algebra with Implications for

Teaching,” Educational Studies in Mathematics 66, no. 2 (September 18, 2007): 195, https:
//doi.org/10.1007/s10649-006-9023-7.

30Carpo, “Drawing with Numbers,” 454.
31Sarton, “The First Explanation of Decimal Fractions andMeasures (1585). Together with

a History of the Decimal Idea and a Facsimile (No. XVII) of Stevin’s Disme.”
32Katz and Barton, “Stages in the History of Algebra with Implications for Teaching,” 195.
33Carpo, “Building with Geometry, Drawing with Numbers,” 42.

22

https://doi.org/10.2307/3657211
https://doi.org/10.1007/s10649-006-9023-7
https://doi.org/10.1007/s10649-006-9023-7

Cress

provided merely as a courtesy or to save time. However in practice it is
generally the written dimensions that are the primary description of the
buildings form, and, quite importantly, these written numeric dimensions
are the basis of the contracts and legal agreements between the Architect,
and Client or Contractor. In fact the Canadian Construction Documents
Committee, a joint committee with representation from the Association of
Consulting Engineering Companies-Canada (ACEC), Canadian Construction
Association (CCA), Construction Specifications Canada (CSC), and the
Royal Architectural Institute of Canada (RAIC), notes clearly in its standard
contracts that:

“If there is a conflict within the Contract Documents: dimensions
shown on Drawings shall govern over dimensions scaled from
Drawings” (CCDC 2 – 2008 Stipulated Price Contract GC 1.1.7.3)

This language in contract is necessary because, in practice, there are many
opportunities for errors to accumulate through the transmission, printing,
and physical measuring of the drawn elements in architectural document
packages, and to make matters worse these accumulated errors are all
multiplied by the drawings scale factor. It is for this reason that the
written dimension takes legal precedent over the scaled measurement in
todays architectural profession, as numeric dimensions are immune to the
potential distortions that reproduction inflicts on drawn representations.
We should then amend Carpo’s Iron Law of Transference to include this
fundamental step of producing an architectural drawing; describing our
drawn representation with written numeric dimensions.

We can only dimension what we can measure, we can only
measure what we can draw, and we can only build what we have
dimensioned in a drawing. In short, if you cannot draw it, you
cannotmeasure it, if you cannotmeasure it you can not dimension
it, and if you cannot dimension it, you cannot build it.

So, our Open Source architectural software must be capable not only of
producing drawn representations of works of architecture (3 dimensionally
or otherwise), but it also needs to be capable of carrying out this fundamental
step of measuring our design, and displaying those measurements as
numeric dimensions. It must be able to Measure It.

Dimensioning Conventions
How should we display and draw these numeric dimensions then? What
are the conventions for numeric dimensions and where did they come

23

MeasureIt-ARCH

from. Here the history is less clear cut. We might deduce that some
of the conventions would have arisen along side the early applications of
orthographic drawings for precise measurement in military architecture in
the 16th century,34 however any clear documentation of this I have not
found. Many of the drafting symbols and conventions found today seem
to have arisen from the engineering study of Geometric Dimensioning and
Tolerances, a field of research whos origin is generally attributed to Stanley
Parker and his 1956 text Dimensions and Drawings, however a reputable
source tracing this history has proven illusive.

While the history of dimensioning conventionsmay be somewhatmurky, the
standards that define and dictate these conventions in current day practice
are crystal clear. “ISO 129 Technical Drawings - Indication of Dimensions
and tolerances” produced by the International Standards Organization lays
out the standard description of how numeric dimensions should be drawn.
In general the dimension elements drawn with MeasureIt-ARCH have been
designed to comply with ISO 129-1, and the relevant sections of the standard
have been noted in the Requirements Specification below, as well as the
evaluation of that specification in Section 5 of this thesis.

34Pérez Gómez and Pelletier, Architectural Representation and the Perspective Hinge, 266.

24

Cress

Classifying Architectural Software
With an understanding of the importance of numeric dimensioning in
architectural practice in mind, it is useful here also to take a moment
to consider the types of software that are often used in a current day
architectural practice, and the workflows in which these software packages
are used for dimensioning and architectural representation, in order to help
define the scope and features that should be included in our Open Source
architectural software. A comprehensive analysis of current architectural
workflowswould be amassive undertaking, as architectural workflows often
contain nuances and idiosyncrasies that vary from firm to firm, architect
to architect and project to project. That being said, there are existing
frameworks in place that define broad categories of software functionality
that can be helpful when attempting to determine a more general class
of use cases. For this analysis, Mark Bew and Mervyn Richard’s BIM
Levels framework serves as a basis on which to build. Bew and Richard’s
framework provides differentiation between software packages based on
the level of connection and synchronization maintained in a project. The
framework first considers the synchronization maintained between the
many forms of representation (drawings, details, renderings, schedules)
produced to describe the building in question. Second, it considers
the degree of synchronization maintained between the different actors
throughout the AEC industry involved in the production of a building. This
framework by Bew and Richards has been used to inform BIM standards
quite extensively in the UK and to a lesser degree internationally (as outlined
in PAS 1192-2 and ISO 19650 respectively).35 Each of Bew and Richards BlM
levels can be defined briefly as such:

35Limited, “PAS 1192-2.”

25

MeasureIt-ARCH

Figure 5: Mark Bew and Mervyn Richards BIM Wedge

Level 0: Unlinked 2D drawings; All building information is represented in
two-dimensional drawings, and all synchronization needs to be maintained
manually. Hand drawn drawing sets or early 2D CAD workflows would be
considered BIM level 0. There are very few CAD applications available today
that only offer Level 0 functionality.

Level 1: Hybrid 3D-2D approach with ‘non-federated’ b 3D models with b a ’federated’ model in the
context of Bew and Richards
framework refers to a building
model whose various layers (me-
chanical electrical, structural, ar-
chitectural) are distributed, to
be worked on by their respec-
tive profession, but remain linked
and synchronized to a commonly
available master model

limited Metadata. BIM level 1 workflow practices are characterized by
the use of single-discipline 3D models36 with some basic capacities for
generating 2D drawings and other data exports (schedules, etc.). Rhino,
Sketchup, and AutoCAD offer this level of functionality.

Level 2: Partially ‘Federated’ 3D Models with imbedded metadata are used
to automatically generate 2D drawings and other data exports that remain
linked to, and are informed by the 3D model. BIM level 2 models can be
linked within a common data environment and used to resolve conflicting
information across disciplines. BIM level 2 is what we commonly consider
‘Building Information Modeling’ in North America. software like Revit,
Vectorworks, and ArchiCAD facilitate this level of workflow.

Level 3: In a level 3 software a single fully federated 3D model is accessible
at all times to all stakeholders through an online common data environment

36Bilal Succar, “Building Information Modelling Maturity Matrix,” Concepts and Technolo-
gies, 65–103, accessed August 18, 2019, https://www.academia.edu/186259/Building_
Information_Modelling_Maturity_Matrix

26

https://www.academia.edu/186259/Building_Information_Modelling_Maturity_Matrix
https://www.academia.edu/186259/Building_Information_Modelling_Maturity_Matrix

Cress

using a non-proprietary file format such as the IFC (Industry Foundation
Class) open standard. No software platform available today currently
supports this level of functionality.

These three levels outlined by Bew & Richards deal predominantly with how
architectural information in CAD and BIM software is exchanged among the
various stakeholders involved in the creation of a building, and how this
information is transformed into 2D drawings for the production of contract
documents. While these levels encompass the dominant tools that are the
main workhorses of architectural firms, they don’t capture many of the more
aesthetically focused tools that are often used in parallel with the firm’s
CAD or BIM software. To more fully encapsulate the software functionality
utilized in architectural work, a fourth category of ‘supplementary tools’
should be defined.

Supplementary Tools: Supplementary tools augment the typically limited
visualization capacities of CAD and BIM software, and are often used
to produce realistic or stylized renderings of the aesthetic or ephemeral
characteristics of an architectural work. Software such as Lumion, 3DsMax,
Unreal Engine, V-ray, and Maxwell are often used in this capacity.

27

MeasureIt-ARCH

An Open Source Architectural Software
Specification
Scope
With our software classifications in mind, we can make some decisions
about the scope of our Open Source architectural software. To keep our
scope manageable, we will work under a few additional assumptions.

Firstly, we assume that developing a new 3D modelling tool from scratch
that is capable of meeting the needs of architects and the AEC industry is
an unreasonable goal for a single novice programmer to realize. Instead, an
existing Open Source modelling tool should be selected and used as a basis
upon which to add features to facilitate an architectural workflow that fits
within one of the level classifications outlined by Bew and Richards. Blender
has been chosen as the basis upon which to build for this thesis.

Second, we need to identifywhich of BewandRichards levels of functionality,
our proposed solution is aiming to sit within. Based on my own previous
experience using Blender as a design tool, as discussed in the motivations
of this thesis, we can make some statements about Blender’s current
capabilities and where it might fit into Bew and Richards framework, with
someminor modification. We can comfortably say that Blender’s capacities
for rendering and architectural visualization already give it a reasonable
standing within our Supplementary Tools category. We can also say, quite
confidently, that Blender’s 3D modelling ability sets it above the limited 2D
drawing workflows of a Level 0 classification. We can not, however, say that
Blender fits into a level 1 classification, as it lacks drafting tools necessary
to translate the architectural information contained in its 3D models into
dimensioned drawings that can be shared with other stakeholders. Other
Level 1 Tools such as Rhino, Sketchup, and AutoCAD include tools to create
annotations and dimensions to communicate this architectural information.
These tools also provide options to display architectural elements as simple
line drawings, relying on line weight, style and colour to communicate form,
instead of rendered shading.

To gain a clearer understanding of what functionality is present in Blender,
and how it compares to the features on offer in other software prevalent
in the AEC industry, the following Matrix and Radar charts were produced.
The matrix takes a sampling of common software packages and scores the
degree to which a given feature (tool or operation) has been implemented.
The features selected for ranking are those that are present inmore than one

28

of the software packages being evaluated. Scores are assigned numerically
from 0-6 based on the degree to which the feature has been implemented.

A score of 0 is assigned if no support is present for the stated feature.

A score from1-3 is assigned if the feature is available in the software through
the use of an add-on.

A score from 4-6 is assigned if the feature is present natively within the
software package itself.

Evaluation of the features degree of implementation was kept quite
coarse. A simple qualifier of minimal, basic or comprehensive support was
provided. These qualifiers correspond to scores of 1,2,3 or 4,5,6, respectively,
depending on whether or not the implementation is internal or external. This
coarseness in the ranking system was necessary, as a full evaluation of
what constitutes a ‘high-quality’ implementation any of these features could
quickly become a substantial research endeavour of its own, which would
be contrary to the intent of this analysis. This particular assessment aims
simply to provide a high-level overview of which features are commonly
present in software used in the AEC industry.

To display these rankings in a visually meaningful way, the features being
scored were sorted into five major categories, and an average score was
calculated for each category. These categories are;

• Drafting
• Rendering
• General modelling
• Interoperability,
• BIM capabilities.

The average scores for each category is presented in a radar chart for each
software. Blender’s current state is represented in the darker orange, while
its desired future state is proposed in light orange.

29

Figure 6: Architectural Software Analysis Matrix.

30

Figure 7: Architectural Software Analysis Radar Charts.

31

MeasureIt-ARCH

The results of the matrix and radar graph fit well with the previous
practical experience of using Blender in a production environment during
my work designing cottages for The Lodge at Pine Cove. In this practical
application, Blender’s modelling and rendering functionality was suitable
for the schematic design phase of the project and for representing the
aesthetic elements of the design, but when it came time to communicate
the technical information required by building code officials, manufacturers
and contractors, Blender’s available toolset fell short.

Based on these experiences, Bew and Richard’s classification system,
and the provided analysis, we can see that the improvements required to
augment Blender to the pointwhere it could be considered a Level 1 software
lie predominantly in our categories of Interoperability and drafting, while
some substantial improvements to the BIM capabilities category would be
necessary for it to approach a level 2 categorization.

It seems feasible then for the scope of this thesis to focus on augmenting
Blender to a point where it could be considered a Level 1 tool. To tighten
the focus further still, we can see that Blender’s substantial deficiency in the
drafting category, when compared to the other level 1 software considered,
makes this an ideal feature set to focus on for our planned augmentations.

The specification below outlines how these drafting features might be
implemented in Blender, and assigns each feature a priority as it relates to
achieving a level 1 categorization for Blender. The priorities are as follows.

Necessary; Necessary features are those such as like line drawing,
dimensioning and annotating tools, which are present in all Level 1 packages.

High; High priority features are present in at least two level 1 packages.

Medium; Medium priority features are present in at least one of the Level
1 packages discussed and represent ‘quality of life’ or automation improve-
ments that would allow for more efficient workflows. Medium priority fea-
tures can generally be achieved manually using some combination of the
Necessary or High priority features in combination with Blender’s existing
feature set (for example, a dedicated room area tag feature would speed up
the production of plan drawings, but could be set upmanually in Blender with
the existing driver system and MeasureIt-ARCH’s annotations).

32

Cress

Feature Requirements
Line Drawing
Priority: Necessary

Description:

• Users specify edges of their 3D Geome-
try to be drawn as simple lines

• Lines have their weight, colour, and style
(solid or dashed) specified by the user

• Lines occluded by geometry should be
visually distinct, differentiated by colour
and dash style

• Lines that represent the silhouette of
an object should be visually distinct,
indicated by line weight

• Lines created in the same operation
should be collected as a line-group,
and share common properties (colour
weight etc.)

Stimulus and Response:

• The user selects the desired edges of
their 3D Geometry within the 3D view
space

• Once all edges are selected, the user se-
lects the UI button (or keyboard short-
cut) for the line group operation to create
lines along those edges and collect them
in a line group

• Once a line group is created its proper-
ties should be adjusted through a corre-
sponding UI panel

• Edges should be able to be added or
removed from a line group after its initial
creation.

Automated Line Group Creation
Priority: Necessary

Description: As Blender’s mesh-based 3D
geometry will often consist of significantly
more edges than will be necessary to produce
clean line drawings, and manual selection of
the relevant edges will often be a tedious
process for the user, an automated system
should be in place to automatically initialize
line groups with edges that meet some user-
specified factor, such as;

• Geometry crease angles
• Material boundaries
• Non-manifold edges

Stimulus and Response:

• The user selects the object they wish to
run the operation on

• The user selects the relevant selection
criteria

• The operation generates the line group
from edges that pass the selection
criteria

Annotations
Priority: Necessary

Description:

• Annotations display user-entered text
• Annotations should be anchored to an
objects Vertex, Origin, or an empty object

• Annotation Leader Lines should con-
form to ISO 129-1 Section 5.5

• Annotations should have user-defined:
• Font
• Font Size
• Color
• Alignment (Left, Right, Top, Bot-
tom)

• Line Weight (for the leader line

33

MeasureIt-ARCH

connecting the text to the anchor
point)

• End Cap (for the end of the leader
attached to the anchor point)

• Annotations display critical data about
the object they are anchored to such as;

• Assigned Material
• User defined Metadata

Stimulus and Response:

• The user selects the Vertex, Object or
Empty Object they wish to anchor the
annotation to

• The user selects the UI button for the
Annotation operation to create a new
Annotation

• The Annotations properties should be
edited via their corresponding UI panel

• Annotations Placement and Rotation
should be manipulated in the 3D view-
port

Aligned Dimensions
Priority: Necessary

Description:

• Aligned Dimensions measure the dis-
tance between two points in 3D space.
These two points could be;

• Object Origins
• Vertices
• Empty Objects
• Light Objects
• Camera Objects

• Aligned Dimensions extensions should
always be perpendicular to the line they
measure (ISO-129-1 Section 5.4)

• Aligned Dimensions should have user-
defined:

• Font
• Font Size

• Color
• Rotation (taking the line being
measured as the axis of rotation)

• Line Weight (for the leader lines)
• Terminations (According to ISO
129-1 Section 5.3.2)

Stimulus and Response:

• The user selects two or more points
(vertices, Objects, Empties etc.) they
wish to dimension

• The user selects the UI Button (or Key-
board Shortcut) for the Aligned Dimen-
sion operation

• Aligned Dimensions are created for each
pair of points selected (if 3 points are
selected then a dimension is created
between points 1 and 2, and a sperate
dimension is created between points 2
and 3)

• Dimensions are automatically posi-
tioned based on the user’s current view-
point

• A Dimension’s distance from its line
of measure can be adjusted in the 3D
viewport

• Dimension properties should be ad-
justed through a UI panel

Single Axis Dimensions
Priority: Necessary

Description:

• Single Axis Dimensions measure the
distance between two points in 3D
space, but only along a specified Axis.
These two points can be;

• Object Origins
• Vertices
• Empty Objects
• Light Objects

34

Cress

• Camera Objects
• Single Axis Dimensions are always
placed perpendicular to the axis along
which they measure

• Single Axis Dimensions can have user-
defined:

• Font
• Font Size
• Color
• Line Weight (for the leader lines)
• End Cap (arrows or dashes at the
ends of the dimension line)

• The axis of measure for a Single Axis
Dimension can be:

• Any cardinal Axis (X, Y, Z)
• Any user-defined Axis

Stimulus and Response:

• The user selects two or more points
(vertices, Objects, Empties etc.) they
wish to dimension

• The user selects the UI Button (or
Keyboard Shortcut) for the Single Axis
Dimension operation

• Single Axis Dimensions are created for
each pair of points selected (if 3 points
are selected then a dimension is created
between points 1 and 2, and a sperate
dimension is created between points 2
and 3)

• Dimensions are automatically posi-
tioned based on the user’s current view-
point

• A Dimension’s distance from its line
of measure can be adjusted in the 3D
viewport

• Dimension properties can be adjusted
through a UI panel

• The Axis of Measure can be selected in
the UI panel

Angle Dimensions
Priority: High

Description:

• Angel Dimensions measure the angle
between two lines, as defined by three
points.

• Angle Dimensions are aligned in-plane
with the 3 points that define them.

• Angle Dimensions can have user-
defined:

• Font
• Line Weight
• Color
• Font Size
• Radius

Stimulus and Response:

• The User selects the 3 points that define
the angle they wish to measure. Points
1 & 2 represent the first line of the angle,
points 2 & 3, the second line.

• The User selects the UI button (or key-
board shortcut) for the Angle Dimension
Operation, which creates a new Angle Di-
mension

• The Angle Dimension’s properties can be
adjusted through a UI panel

Arc Dimensions
Priority: High

Description:

• Arc Dimensions should measure the
Radius (ISO 129-1 Section 7.3) and Arc
Length (ISO 129-1 Section 7.6) of an Arc,
defined by 3 Points, where points 1 and
3 are the extremes of the arc.

• Arc Dimensions are aligned in-plane with
the 3 points that define them.

• Arc Dimensions can have user-defined:

35

MeasureIt-ARCH

• Font
• Line Weight
• Color
• Font Size
• Radius
• Endcaps

Stimulus and Response:

• The User selects the 3 points that define
the arc they wish to measure.

• The User selects the UI button (or key-
board shortcut) for the Arc Dimension
Operation, which creates a new Arc Di-
mension

• The Arc Dimension’s properties can be
adjusted through a UI panel

Room Area Tags
Priority: Medium

Description:

• Room Area Tags measure the area
defined by a planar polygon defined by
an arbitrary number of points

• RoomArea Tags are placed in-planewith
the polygon that they measure

• Room Area Tags can display a room
name in addition to the area of the room.

• Room Area Tags can have user-defined:
• Room Name
• Font
• Font Color
• Font Size
• Fill
• Fill Color

Stimulus and Response:

• The user selects either:
• the points that define the polygon
they wish to measure

• or the existing faces of the geome-

try that they want to measure
• The user selects the UI Button (or
keyboard shortcut) for the Room Area
Tag operation, which creates a new
room tag

• The Room Tags Properties can be
adjusted through a UI panel

Schedules & Reporting
Priority: Medium

Description: Architectural Schedules are ta-
bles containing user-specified attributes about
a group of objects or materials present in a
model. Schedules are valuable tools for report-
ing information contained in a digital model.
They can be used to produce lists of necessary
material quantities, Door and Window Specifi-
cations and amounts, and Furniture and Equip-
ment lists, to name a few of their many uses.

• Schedules should be generated to in-
clude information based on the set of
user-defined attributes such as;

• Assigned material
• Name
• Instance
• Any User-defined metadata fields

• Schedules should allow for the grouping
of data by attribute to allow for reporting
on quantities and amounts. Each
grouping represents a column in the
table:

• e.g. All four items that are instances
of the ‘Door 36” x 72”’ object are
grouped to a single row and report
their number in a ‘Quantity’ attribute

• Schedules should have the following
user-defined properties:

• Main Font
• Column Title Font
• Row Title Font

36

Cress

• Color
• Line weight
• Position
• Size
• Attributes
• Groups
• Camera Visibility

• Schedules should be exportable in a
format that can be read and modified by
other tools created to edit spreadsheets:

• .csv (comma delimited)
• .ods (the open document spread-
sheet format)

Stimulus and Response:

• The user creates a Schedule item via a
UI button

• The user specifies their desired at-
tributes and groupings in that Schedules
UI Panel

• The user runs the populate schedule
operation to analyze the model and
produce the completed schedule.

• The Schedule is then drawn in the view
of the specified camera

Title Blocks
Priority: Medium

Description: Title Blocks Identify a drawing or
page and keep track of revision numbers and
other key project information.

• Title Blocks should contain the following
user-defined information

• Author name
• Revision Number
• Revision History
• Date
• Description
• Disclaimer/ Legal info
• Project Name

• Project Address
• Project Number
• Scale
• Drawing Title
• Drawing Number

• Title Blocks Should Automate the follow-
ing Information:

• Date
• Scale

• Title Blocks should have the following
user defined visual characteristics:

• Orientation (Top, Bottom, Side)
• Line Weight
• Color
• Font
• Font Size (definable per informa-
tion category)

Stimulus and Response:

• The user selects the camera to which
they wish to add a title block

• The user selects the UI button to add a
title block to that camera

• The user adjusts the title blocks settings
and fields in its UI panel

• The title block is drawn in the view of the
specified camera

37

MeasureIt-ARCH

General Requirements
Style System
Priority: Necessary

Description:

• Styles should available for all elements
created through this add-on:

• Annotations
• Dimensions
• Line Groups
• Title Blocks
• Schedules

• Styles should define the relevant visual
properties for that element type. Typi-
cally:

• Color
• Font
• Line Weight

• If a style should be used, and which style
to be used should be user-defined on a
per-element basis.

• Styled properties should be able to be
overridden on a per-property basis, with-
out breaking other properties connected
to the style.

• The StylesUI should be visually similar to
their corresponding elements UI panel

Integrated User Interface
Priority: Necessary

Description: MeasureIt-ARCH’s user inter-
faced should be designed to minimize clutter
and to fitwith the design principles of Blender’s
UI. MeasureIt-ARCH elements should be or-
ganized into lists, and the properties of the
currently selected item should be displayed
below in a single column layout. This UI de-
sign is based on Blender’s representation of
other Object Properties such as Vertex Groups

and Shape Keys.

3D Integration
Priority: High

Description: All elements created by
MeasureIt-ARCH should be placed in 3D
space, independent of any 2D work planes
or paper space.

Gizmo Implementation
Priority: Medium

Description: Although the properties of
MeasureIt-ARCH drawing elements can be
edited through the UI, and Blender’s non-
overlapping non-modal UI design still allows
for users to see responsively how changes
to these properties impact the drawing, this
method of editing dimensions is still not as
intuitive as directly manipulating drawing ele-
ments in the 3D view.

For many of Blender’s standard tools, ‘gizmos’
are used as a visual cue that allows for
direct manipulation of objects in the 3D
viewport. Connecting gizmos to the properties
of MeasureIt-ARCH elements would make
them significantly more intuitive to adjust.

Adaptive Behaviour
Priority: High

Description: All elements created by
MeasureIt-ARCH should attempt to adjust cer-
tain properties, such as position or orientation,
to remain coherent, visible and legible as the
user adjusts their viewpoint in the 3D scene.
Some behaviours to facilitate this might in-
clude:

• Line Groups should draw with distinct
Line weight, Color, or Dash style depend-

38

Cress

ing on their occlusion or silhouette state.
• Text should automatically adjust its
orientation to remain legible to the user.
(See ISO-129-1 Section 5.6.2 Figure 23)

• Dimensions and Annotations should ad-
just their placement in the 3D space to
remain visible to the user.

Animated Properties
Priority: High

Description: Building MeasureIt-ARCH within
Blender should expose all of it its properties to
Blender’s animation system. Any MeasureIt-
ARCH property should able to be animated.
Animated properties could be used for simple
tasks, like toggling the visibility of drawing
elements, or for creating more dynamic forms
of representation, such as walk throughs and
animations.

Hybrid Rendering
Priority: High

Description: All elements created by
MeasureIt-ARCH should be drawn as an over-
lay, drawn overtop of the rendering systemcur-
rently in use in Blender’s viewport. This overlay
should be conceived as a separate layer of vi-
sual information, even though it utilizes the
same 3D space and information for Occlu-
sion purposes. Treating the MeasureIt-ARCH
elements as an independent layer of visual in-
formation allows it to assist in the production
of more than just technical line drawings. As
an overlay, MeasureIt-ARCH can facilitate hy-
brid forms of representation that make use of
Blender’s diverse options for stylistic and re-
alistic rendering, with this additional layer of
technical information composited in.

Instancing Support
Priority: Medium

Description: Taking advantage of Blender’s
Linked data capabilities, MeasureIt-ARCH an-
notations, line groups and dimensions should
be able to be instanced along with their host
object and linked acrossBlender files. A proper
instancing system could begin to facilitate
workflows closer to that of a BIM Level 2 capa-
ble software, allowing users to create linked li-
braries of objects that would function similarly
to Revit’s families.

Interoperability
Priority: Medium

Description: In order for this tool to be
properly integrated within an architectural
workflow, it should be possible to export
the information produced within it to other
software packages, and to import models and
information from other sources. Key import
and export formats should include:

• Import:
• .dxf for AutoCAD data
• .ifc for the import of BIM data
• .obj , .fbx , .3ds , and .dae for
the import of general purpose 3D
models

• Export:
• .svg for the export of vector
linework, text and dimensions

• .ifc for the export of BIM data
• .obj , .fbx , .3ds , and .dae for
the export of general purpose 3D
models

39

MeasureIt-ARCH

Scaled Camera Space
Priority: Medium

Description: Typically, in CAD style applica-
tions, the inclusion of a ‘Paper Space’ is pro-
vided to set up the desired views, accommo-
date the flattening or cutting of the 3D model
into 2D representations, and facilitate the ad-
dition of 2D annotation text and dimensions.
Our proposed Open Source architectural soft-
ware aims to keep all of this information posi-
tioned in 3D space and use automated place-
ment systems to ensure that it remains legible
as the user’s viewpoint shifts. However, there
must still be a feature that allows for this 3D
view to be composed onto a page with mean-
ingful real-world size and scale for this soft-
ware to be useful in conventional architectural
workflows. Currently, Blender uses ‘Cameras’
to define the specific view to be rendered how-
ever, the camera settings are optimized for
the composition of digital images and video
and lack clear physical definitions. Some Ad-
justments to Blender’s native camera settings
could be beneficial here.

• Cameras should have an option for
render sizes specified in physical units
(Centimeters, Inches, etc.) with a
specified resolution (Pixels Per Inch)

• Stored presets should be available for
common paper sizes

• Each Camera should be able to have an
independent size and resolution

• Orthographic Scale information should
be defined as a ratio with physical units:

• e.g. 1cm on the defined paper size
is 1m in the model space

• Stored presets should be available for
common architectural scales.

40

SECTION 3:
Blender and Architecture

42

Cress

Why Blender?
Before we dive into MeasureIt-ARCH’s development itself, it is important to
understand why Blender was chosen as a base for this tool. At its face,
the choice may not seem immediately intuitive; There are several Open
Source CAD tools available (BRL-CAD, FreeCAD, and LibreCAD, to name a
few). However, each of these packages faces unique challenges when it
comes to meeting the goal chosen for this thesis work. That is, creating
an Open Source software that would allow for the creation of architectural
drawings, and could be made available to anyone.

For this goal to be met, the platform should;

1. Have a stable and supported user and developer base.
2. Be approachable.
3. Provide usable tools for creating dimensioned and annotated design

drawings.

As an additional decision factor, an Open Source design platform must be
more than a ‘free AutoCAD clone’, or a purpose-built design tool for single
specific design style or solution. An Open Source design platform has the
potential to question the existing conventions of CAD and BIM software and
should leverage that potential.

While most existing Open Source CAD tools successfully meet our third
criteria, they fair significantly worse when evaluated on the first two. This is
somewhat problematic, as these first two criteria are arguably much more
difficult targets to achieve, especially when considered in the scope of a
masters thesis. Though someOpenSource tools like FreeCADcertainly have
aspirations of improving their approachability and feature set to surpass
conventional CAD tools, the lack of concrete funding and full-time developer
base makes these aspirations especially challenging for an Open Source
platform.

Blender, on the other hand, meets all but our third criteria quite well.

43

MeasureIt-ARCH

Stability & Support
While many Open Source software tools operate as a sort of pseudo-
anarchic collaboration without much of a defined structure to speak of,
Blender’s development structure lies somewhere between the chaos of true
Open Source, and the structure of more traditional software development.
Much like Netscape, Blender started development as a closed source
project.

Created by Ton Roosendaal in 1995. Blender started life as a proprietary
tool for NeoGeo a Dutch animation studio co-founded by Roosendaal. From
1998 to 2002 Blender continued to be developed by Roosendaal under the
company Not a Number. In 2002, following Not a Number’s shutdown, the
community surrounding Blender, initiated by Roosendaal, raised 100,000
Euros to purchase Blender’s licensing fromNot a Number’s investors and re-
release it as an Open Source software under the GNU GPL license.37 Since
2002 Blender has seen stable development and a robust community, largely
due to the support of the two organizations that facilitate the software’s
development, the Blender Institute, and the Blender Foundation.

The Blender Institute is responsible for supporting Blender by offering
professional training courses at their offices in Amsterdam, testing and
demonstrating Blender’s capabilities through Open Projects (typically short
films produced entirely with Open Source software), and managing the
Blender Cloud service. The Blender Cloud is a paid monthly subscription
service that provides access to more advanced training tutorials, as well as
texture and material libraries, and asset and project management solutions
geared towards the management of Animated films. The Institute is
primarily funded through these Blender Cloud subscriptions.

Figure 8: A Still from the Spring Open Movie. Produced by the Blender Institute

37Blender Foundation, “Blender 2.8 Design Document,” Blender Developers Blog, accessed
August 9, 2019, https://code.blender.org/2017/10/blender-2-8-design-document/.

44

https://code.blender.org/2017/10/blender-2-8-design-document/

Cress

The Blender Foundation, on the other hand, is a not-for-profit organization
whose primary purpose is to provide the financial and organizational
infrastructure necessary to manage a successful software project. Most
importantly, they provide grants and funding that allow the Blender
communities most dedicated and talented developers to work on Blender
either full or part-time. The Foundation gives these select developers that
have the desire and skill to improve Blender the financial freedom to do
so and ensures that there is always a committed core team available for
maintenance, bug fixing, planning, and to offer some limited user support.

The Foundation’s grants are funded by both community and corporate
donations to the Blender Development Fund. As of July 26th, 2019, the
development fund provides an income to the Blender Foundation of 82,089
US Dollars per month38. The Foundations 29 corporate members make up
67% of its funding, while the 2716 individual donors account for 33%. This
money funds grants to 17 developers (3 part-time), as well as supporting
Ton Roosendaal and three other support staff. cc it is almost certain that these

figures will have changed by
the time you are reading this;
however, The Blender Founda-
tion regularly updates its cur-
rent status and grants publicly at
https://fund.blender.org/

Figure 9: Status of the Blender Development Fund as of July 30th, 2019
Image from https://fund.blender.org/

Industry Support It’s worth noting that at the beginning of 2019, the
development fund sat at roughly 25,000 US Dollars per month39. Its
substantial growth in the intervening six months is largely due to a 1.2-
Million-dollar grant (paid over four years) from Epic Games (creators of
Unreal Engine), following the release of the Blender 2.8 Project.40 This
is a major milestone for Blender both financially and in terms of Industry
recognition. The Epic grant and smaller grants from other notable
companies like Ubisoft, Tangent Animation, Google, Intel, and others
illustrate that the Blender Foundation and its developers are recognized,
respected and trusted by major players in the Computer Graphics industry.

38Blender Foundation, “Blender 2.8 Highlights,” Blender Developers Blog, accessed August
9, 2019, https://code.blender.org/2018/03/blender-2-8-highlights/

39Ton Roosendaal and Blender Foundation, “Development Fund Report, July 2019,”
Blender Developers Blog, July 20, 2019, https://code.blender.org/2019/07/development-
fund-report-july-2019/

40ibid.

45

https://code.blender.org/2018/03/blender-2-8-highlights/
https://code.blender.org/2019/07/development-fund-report-july-2019/
https://code.blender.org/2019/07/development-fund-report-july-2019/

MeasureIt-ARCH

Approachability
Approachability has been a challenge for Blender in the past, but improving
the User Experience, and taming its notoriously steep learning curve has
been a significant focus for the development team. The Blender Foundation
is just reached the completion of a major design overhaul of the software
with its 2.8 release. An explicit target of the Blender 2.8 project was
improving the User Experience of the software. Redesigning the user
interface to enhance feature discoverability, and implementing an ‘Industry
Standard Keymap’ to make Blender’s keyboard shortcuts and interaction
feel more comfortable to those coming from commercial applications like
Autodesk’s 3DsMax. The Blender Institute is also responsible for producing
nearly 2 hours worth of free introductory tutorials to acquaint new users
with the software. This approach is notably different from those of other
Open Source CAD applications, which either lack the resources to produce
this degree of introductory educational content or explicitly take an” experts
only” approach to the design of their tools.41 d d From BRL-CAD’s documenta-

tion; ”MGED does not provide a
discoverable graphical user inter-
face. Going through the available
tutorials and documentation is
required to be proficient. MGED
is expert-friendly with minimal
documentation and feedback in-
side the application itself”.

Figure 10: FreeCAD User Inter-
face

Like any 3D design software, Blender does have a steep learning curve,
however, the abundance of tutorials produced by the Blender Institute and
the Blender Community, as well as the development team’s ongoing efforts
to improve the User Experience for new users, are helping ease the difficulty
of approaching the software.

Figure 11: Blender 2.8’s User Interface

41BRL CAD, “Mged - BRL-CAD,” accessed July 26, 2019, https://brlcad.org/wiki/Mged

46

https://brlcad.org/wiki/Mged

Cress

Architectural Drawing tools

Figure 12: A Cube Dimensioned
with the Original Measure It

In the past, the Blender community has made efforts to add tools for basic
dimensioning. Antonio Vazquez, one of Blender’s more active volunteer
developers, produced the MeasureIt add-on. Which added tools to create
and display simple, screen space (meaning that the dimensions are drawn
as a 2D overlay on the 3D scene, rather than existing in the 3D space of
the model), dimensions in Blender. However, the add-on lacks support for
dimension styles, and line drawings, both features necessary to produce
architectural drawings efficiently. WhileMeasureIt was still beingmaintained
by Antonio, with periodic updates to ensure its functionality in the latest
version of Blender, his primary focus for the last two and a half years has
been on the development of Blender’s Grease Pencil tools.

Thanks to the Open Source nature of Blender and its add-ons, Antonio’s work
on MeasureIt could be used as a solid foundation on which fully featured
dimensioning tools could be built. MeasureItwould serve as an open base on
which to create a tool that would meet our scope and specifications defined
in the previous section.

Based on the past efforts of Antonio Vazquez, the technical challenge
of creating useful dimensioning tools in an already thriving Open Source
Platform seemed an accomplishable scope of work. Significantly
more manageable in scope than attempting to resolve the issues of
approachability, financial stability, and community support present in other
existing Open Source CAD applications. For these reasons, improving
MeasureIt for Blender to meet the requirements of our specification was
identified as the primary goal of this thesis.

47

MeasureIt-ARCH

Blender’s Notable Features
Building architectural dimensioning tools into Blender provides opportunities
to draw on the rich toolset already present in the software. As Blender
is primarily used is as a Digital Content Creation tool for VFX, Animation
and Games, the majority of its tools are focused on providing artist friendly
solutions to create high-quality visuals. Meaning that when applied as an
architectural tool, Blender brings new opportunities for design thinking to
the table rather than merely being a ‘free autoCAD clone’. Some of the most
exciting features that relate to the production of architectural design are
presented here;

Responsive Physically Based Rendering

Figure 13: ’Minimalist Kitchen’ by Augusto Cezar rendered in Blender with EEVEE

Blender 2.8 features the EEVEE (Short for ‘Extra Easy Virtual Environment
Engine42) rendering engine, primarily developed by Clement Foucault.
EEVEE can simulate near-photorealistic lighting andmaterial characteristics
(including reflection and refraction), in ’real-time’. The exact framerate varies
depending on the complexity of the scene and your specific hardware, of
course. Still, the EEVEE engine is typically responsive enough to be used
during design andmodelling tasks. As a renderer, this functionality is similar
to packages like Lumion, or Unreal Engine, but because EEVEE is built directly

42Blender Foundation, “Eevee Roadmap,” Blender Developers Blog, accessed August 9,
2019, https://code.blender.org/2017/03/eevee-roadmap/

48

https://code.blender.org/2017/03/eevee-roadmap/

Cress

into Blender, and not as an external rendering application, it can provide users
with a fully rendered scene while they design.

Procedural Modeling
Procedural Modeling, more commonly referred to as parametric modelling
in the field of architecture, generates forms based on a series of rules and
input parameters. In Blender, this can be accomplished through a variety
of methods. Blender’s modifier system takes a simple input mesh, and
a set of parameters, and performs a specified operation to generate new
geometry or deform existing geometry. These modifiers can be stacked to
create complex forms from simple inputs. Blender’s driver system allows
the user to link nearly any property of any object in the scene to any other.
This allows for the creation of complex parametric relationships, although
the user interface for defining and managing these relationships is not
particularly intuitive. Jacques Lucke, a recent Blender Foundation grant
recipient, is currently in the process of overhaulingmany of Blender’s internal
systems, such as the modifier system, to allow for a node-based interface.
This should allow for node-based parametric modelling workflows similar
to Rhino’s Grasshopper. Similar, but less intuitive, workflows are already
possible in Blender using either the animation-nodes add-on (also created
by Lucke) or the Sverchok add-on.

Figure 14: ’Modulations’ by Alberto Giachino.
Parametric tiles generated with Blender and the Sverchok add-on then 3D printed

49

MeasureIt-ARCH

Custom Object Metadata & Linked Data Workflows
While it is beyond the scope of this thesis to add BIM-like functionality to
Blender, it is important to note that Blender’s data structures are already
well situated to handle adaptations to manage the kinds of object metadata
required to facilitate a BIM workflow. Users can already define custom
properties that are attached to an object and use these custom properties
in conjunction with Blender’s driver system to alter an object’s geometry,
materials or animation. Blender also provides a ‘linked data workflow’.
Meaning that objects can be linked across Blender files, allowing a user to
create collections of objects with customizable parameters that can then be
linked into a central working file, in a workflow similar to Revit’s Families,
or SketchUp’s Components. The user interface available to set up and
manage this linked data workflow is not particularly intuitive at the moment;
however, the basic functionality does exist, and an Asset Manager designed
to facilitate working with linked collections is a key target for an upcoming
release.43

Grease Pencil Sketching
Blender’s Grease Pencil started life as a simple tool to sketch notes to
animators in the 3D viewport, but thanks to recent work by Antonio Vazquez,
Charlie Jolly, Daniel Lara, and Matias Mendiola, the Grease Pencil has been
developed into a robust 2D drawing tool that exists within the 3D space of a
Blender scene. This was intended to allow for the production of 2D animated
films.

When paired with an appropriate input device like a graphics tablet, the
Grease Pencil gives users the ability to sketch naturally into the 3D scene.
For architects, the Grease Pencil could be used to develop architectural ideas
quickly by sketching in-situ over simple 3D massing models. The Grease
Pencil toolset makes Blender feel like a unique hybrid of sketchbook and
modeling software.

43Blender Foundation, “Asset Manager,” Blender Developers Blog, accessed April 13, 2020,
https://code.blender.org/2020/03/asset-manager/

50

https://code.blender.org/2020/03/asset-manager/

Cress

Figure 15: Using Grease Pencil to sketch in-situ over a simple massing model

Robust API
Blender features an incredibly robust Application Programming Interface
(API) that gives access to low-level utilities within the software through
the Python programming language. Application Programming Interface’s
are a relatively common feature of large software applications. They
provide users with the ability to access certain aspects of the software
through a programming language. Revit, Rhino, and SketchUp all feature
API’s; however, their depth and usefulness vary. Typically, the scope of an
API allows users to write add-ons for the automation of repetitive tasks,
and the importing and exporting of various filetypes44,45 however, some
software API’s provide deeper access that allows for the creation of complex
tools. Rhino’s Grasshopper plug-in is a prime example of this, although
Grasshopper is now a core part of the Rhino software, it started life as an
Open Source add-on built with Rhino’s API.46 Blender’s API provides low-
level access to some of the software’s core functionality, such as the ability
to access the OpenGL drawing functions that allow add-on’s to create and

44Autodesk, “Understanding Revit Terms | Revit Products | Autodesk Knowledge Network,”
accessed April 1, 2019, https://knowledge.autodesk.com/support/revit-products/getting-
started/caas/CloudHelp/cloudhelp/2014/ENU/Revit/files/GUID-2480CA33-C0B9-46FD-
9BDD-FDE75B513727-htm.html

45Trimble, “SketchUp Ruby API — SketchUp Ruby API Documentation,” accessed April 4,
2019, http://ruby.sketchup.com/

46McNeel & Associates, RhinoCommon Is the .NET SDK for Rhino5 / Grasshopper:
Mcneel/Rhinocommon (2010; repr., Robert McNeel & Associates, 2019), https://github.com/
mcneel/rhinocommon

51

https://knowledge.autodesk.com/support/revit-products/getting-started/caas/CloudHelp/cloudhelp/2014/ENU/Revit/files/GUID-2480CA33-C0B9-46FD-9BDD-FDE75B513727-htm.html
https://knowledge.autodesk.com/support/revit-products/getting-started/caas/CloudHelp/cloudhelp/2014/ENU/Revit/files/GUID-2480CA33-C0B9-46FD-9BDD-FDE75B513727-htm.html
https://knowledge.autodesk.com/support/revit-products/getting-started/caas/CloudHelp/cloudhelp/2014/ENU/Revit/files/GUID-2480CA33-C0B9-46FD-9BDD-FDE75B513727-htm.html
http://ruby.sketchup.com/
https://github.com/mcneel/rhinocommon
https://github.com/mcneel/rhinocommon

MeasureIt-ARCH

draw new content to the 3D scene, the ability to alter existing User Interface
(UI) elements, as well as functions that give add-on’s access to Blender’s
Dependency Graph and mesh creation and modification systems. This
functionality is essential for MeasureIt-ARCH, and other add-ons, as it allows
for the creation of new tools and elements that integrate directly with the 3D
environment.,

Figure 16: ’Differential Growth Collection 00 (aka: cabbages)’ by Alex Martinelli.
Generated in Blender via the Python API and Grease Pencil.

These features provide new opportunities for designers. While BIM software
development has put a focus on attempting to optimize the design process
for maximum efficiency in technical precision and design documentation, a
design tool like Blender puts its focus on functionality that allows designers
to explore the more experiential aspects of a design quickly. It offers
designers faster visual feedback on their designs, lighting, materiality, and
atmosphere, through real-time rendering, which provides designers with
more opportunities to iterate and interact with those features of their design
work.

If this feature set were to be paired with tools for the creation of technical
drawings, Blender could serve as a powerful design tool for architects.

52

Cress

Previous Architectural Investigations
“Although most users will be faced with a steep learning curve
when using Blender, scaling that curve will bring many benefits
in terms of design thinking and concept development in the
architectural workflow of the user. In the end, in our experience
in mastering a software like Blender the user becomes more
comfortable with design tool making,”47

In 2009 Alexandros Siglas and Theodoros Dounas published an analysis of
Blender’s capabilities in architectural workflows, examined through its use
in a two-year design seminar at the Department of Architecture in Volos,
Greece.48 While much of their analysis is somewhat out of date, as Blender
has undergone 25 releases and 2 major redesigns (the 2.5 and 2.8 projects)
since 2009, their discussion of Blender’s modular data approach, and how it
impacts design thinking, remain consistent to today.

Modular Data Approach
“Modeling and other workflows in Blender don’t try to hide the
way the computer handles the data in 3D computer graphics.
The designer is exposed to the mechanics of computer graphics,
(…). The modular approach of the modelling tools(…), helped
the students to develop ”design thinking” and use Blender as
a decision-making tool for concept design and not only as a
visualization tool.” - Alexandros Siglas and Theodoros Dounas49

Dounas and Siglas note that Blender’s modular approach to data storage
and geometry manipulation helped students build an understanding of what
they refer to as the ‘mechanics of computer graphics.’50 This modularity
can be seen in the Blender’s modifier system, it’s linked data approach, and
the driver system, which, as we have discussed, allow for operations to be
stacked in a flexible manner to produce complex results from simple input
geometry. Managing the balance between this exposure to the underlying
systems that make up a 3D modelling application and providing intuitive
easy to use tools has been a significant task for Blender developers over
the intervening decade. While the modular approach has been maintained,
the way it is presented is currently much less raw than it was in 2009.

47Theodoros Dounas and Alexandros Sigalas, “Blender, an Open Source Design Tool:
Advances and Integration in the Architectural Production Pipeline,” 2009, 8

48ibid.
49ibid.
50Ibid.

53

MeasureIt-ARCH

Figure 17: Yorik Van Havre - Pennington, Road Bridge Case Study at Leeds-Liverpool
A parametric bridge derived from a Bezier curve, as seen in, ’Blender, an Open

Source Design Tool’, by Alexandros Siglas and Theodoros Dounas

Barriers to Adoption
In their conclusion, Dounas and Siglas propose that:

“Blender has still a long way to go in terms of percentage of
adoption among architects, not because of lack of features or
integration capabilities but because it is an Open Source software,
downloaded free of charge and usually perceived as a mere toy.”

As we’ve discussed, this toy-like perception is beginning to change in the
computer graphics and animation industry, as more studios begin to utilise
Blender in professional work and larger industry players such as Google,
Intel, and Epic begin to contribute financially to Blender’s development fund.
Whether or not architects response to the software will improve as well
remains to be seen, but the most achievable avenue to encourage adoption
may lie in bridging the gap in Blender’s architectural functionality that has
persisted over the decade since Dounas and Sigalas’s paper, Blender’s lack
of adequate dimensioning tools.

54

SECTION 4:
MeasureIt-ARCH

56

Cress

This section provides an overview of MeasureIt-ARCH’s workings and
development. First we explore how Antonio Vazquez’s original add-
on, MeasureIt was expanded and updated to be able to facilitate the
development of new features for MeasureIt-ARCH. Second we take a deeper
dive into the new linework and dimensioning tool’s developed for MeasureIt-
ARCH’s, and discuss the precedent research that their development is based
off of. Finally we discuss how MeasureIt-ARCH was shared, and how issue
reports from the Blender community were essential to bug fixing, testing and
improving MeasureIt-ARCH.

The codebase of MeasureIt-ARCH currently sits at more than 8000 lines of
code, split over 12 files, written in Python andGLSL,made up of 308Commits
since December of 2018. The discussion in this section however, is not an
exhaustive walkthrough of the content of MeasureIt-ARCH’s code, but rather
an overview of the process, methods, and precedent used in MeasureIt-
ARCH’s design. Through this overview, the reader should gain a high-level
understanding of MeasureIt-ARCH’s structure and operation.

For those interested in exploring MeasureIt-ARCH’s code, Appendix A of
this thesis provides a simple roadmap of MeasureIt-ARCH’s code base,
with an overview of the purpose of each python file, and MeasureIt-ARCH’s
source code itself, along with its revision history and reported issues are
documented in their entirety in the projects GitHub repository.51

51Vazquez and Cress,MeasureIt-ARCH.

57

MeasureIt-ARCH

Updating MeasureIt
MeasureIt-ARCH’s development started first with an assessment of
MeasureIt to identify how its systems worked, which systems worked well,
and which systems needed to be revised. The aim of the discussion here is
to provide an overview of the thought process that inspired the four primary
changes to Antonio Vazquez’s original tool as well as to take a brief look at
how each of these changes were implemented.

An Open Base to Build From
The MeasureIt add-on produced by Antonio Vazquez provided a fantastic
foundation on which to start building MeasureIt-ARCH. It provided a
substantial structure to work with, as well as some clear areas to improve.

MeasureIt added tools that allowed users to add aligned and single Axis
dimensions to your Blender model, as well as angle, arc, area, and origin
dimensions, annotations, and labels. Each of these measurement types
was stored in a single list attached to the object they referenced. Each
measurement had its own unique set of properties, all of which were set
individually through a UI that displayed all an objects ‘measurements’ in a
sequential list. Measurements were drawn in screen space, which means
that while the distances themselves were calculated in 3D Space, the
positions and placement of the measurements were converted to 2D pixel
co-ordinates before being drawn. e e all images drawn on a screen

are translated to screen space
co-ordinates at some point, but
the point at which this occurs in
the drawing pipeline impacts the
spatial relationships of the object
being drawn to its surrounding
scene

Through early tests with MeasureIt, a few fundamental changes became
immediately apparent. To improve MeasureIt to meet our specification we
needed to:

1. Add the ability to add new element types (like linework) to the add-on.
2. Redesign the User interface to avoid clutter, and clearly communicate

features and properties
3. Develop a system to allow dimensions of a similar type to share visual

properties (i.e. a dimension style system)
4. Redesign MeasureIt’s draw system to work in 3D-space to allow for

proper depth ordering and occlusion. f f MeasureIt-ARCH’s shaders
use the 4D Homogeneous
co-ordinates system, which
is common practice for glsl
shaders, however the python
side that interfaces with
Blender’s API uses Blender’s
scene space 3D co-ordinates

Eachof these taskswould require a substantial redesign ofMeasureIt’s code.

58

Cress

How do MeasureIt & MeasureIt-ARCH Work?
Before we can understand how these changes were made, we need to
understand, at least at a high level, the basic structure of howMeasureIt (and
by extension MeasureIt-ARCH) work. Most importantly, we need to have a
grasp of the steps that are taken in MeasureIt’s code to store dimensions,
annotations or line groups, set their properties, and finally draw them to
the screen. For this discussion we’ll use the term element to refer to any
dimension annotation or line group created by the add-ons, since all three
types follow the same general procedure. At this high level, both the original
MeasureIt and the MeasureIt-ARCH follow, more or less, the same process.
However, MeasureIt-ARCH adds some intermediary steps which we will
discuss in relation to the features they improve.

Property Groups
MeasureIt and MeasureIt-ARCH store all the elements associated with a
particular object inside a list attached to that object called a ‘Generator’. Each
element stored in the generator is an instance of a Property Group. Property
groups contain all the properties needed to draw that element accurately,
and determine its look and style. These properties include information about
the element’s line weight, colour, location, anchor point, or any other critical
information that the software needs to draw that particular element. The
properties on each element instance are initially set when the user creates
that element.

Operators
In Blender, any action that the user can trigger through a button or a keyboard
shortcut is called an Operator. When the user presses a button to add
a MeasureIt element, it triggers an operator to create that element. This
operator creates a new element instance, adds it to the relevant object’s
Generator list, and sets the properties in its property group according to the
state of the scene at that moment (i.e., checking which vertices the user has
selected as the element’s anchor points etc.).

Once elements have been created, they need to be displayed in two ways.

Panels
First, we need to expose the properties in each element’s property group
to the user so they can be edited. We can do this through Blender’s user
interface. In Blender, segments of the user interface that display properties
are called Panels. To present an element’s properties to the user interface

59

MeasureIt-ARCH

we need to define a panel that describes which properties from the property
group will be displayed, how they should be formatted, and where they
should appear in Blender’s UI.

Draw Methods
Second, we need to draw the element to the screen in the 3D scene. The
drawing process involves checking the generator list of each object in the
scene, working out the placement of all of the elements stored in the
generator, and updating those elements whenever anything in the scene
changes. This process is carried out in the element’s Draw Method. An
element’s drawmethod is run every time Blender detects that anything in the
scene has changed. This means that that a drawmethod is ideally being run
upwards of 60 times a second since every change of the users viewpoint,
or adjustment of a property triggers the scene to be re-drawn. To keep
the 3D scene responsive we need to ensure that all of our elements draw
methods are quick and efficient to run, since the speed of our drawmethods
will determine howmany times a second the scene can be updated, directly
impacting our 3D views frame rate.

Once the draw method calculates where an element should be situated in
the 3D scene, and processes the properties that impact it’s appearance, it
sends this information to the appropriate shader.

Shaders
While MeasureIt and MeasureIt-ARCH run on the computers Central
Processing Unit (CPU) Shaders are smaller programs that run on the
dedicated hardware of the computer’s Graphics Processing Unit (GPU).
Shaders are written in the GLSL programming language and are responsible
for taking the basic properties of an element provided by the draw method,
and calculating how they should be drawn to the actual pixels of the screen.

These five aspects of MeasureIt and MeasureIt-ARCH, Property Groups,
Operators, Panels, Draw Methods and Shaders are key to understanding
the changes that were made to Antonio Vazquez’s original MeasureIt and
how these changes address the four issues identified above.

60

Cress

1. Adding New Element Types
In the original MeasureIt, every drawn element, (be it an aligned dimension or
annotation or any other element type) was an instance of the same property
group and used the same draw method. A property called ‘gltype’ was
used to identify what type of element the instance was and what parts of
the draw method should be applied. While this solution was functional for
the existing element types in MeasureIt, this structure resulted in code that
was somewhat challenging to understand and add to. Adding support for
linework into this system would have meant adding more properties to the
already extensive single property group and extending the existing plethora
of branching cases in the draw method.

To help make MeasureIt-ARCH structure more readable, the way data was
handled in the add-on needed to be re-thought. A system for managing data
was implemented that would not only facilitate adding linework support,
but also make it easier to add new types of drawing elements in the
future. Rather than using one property group to store all possible properties,
three categories of MeasureIt-ARCH elements, each with their own unique
Generator list, Property Group, and Draw Method, were defined.

• Dimensions deal with the display of spatial properties like length,
angles etc.

• Annotations deal with the display of user-defined text or the metadata
of an object.

• Line Groups deal with the drawing of a collection of lines with similar
characteristics (line weight, colour, etc.).

61

MeasureIt-ARCH

Figure 18: A Schematic Diagram of MeasureIt-ARCH’s Inheritance Structure

While each of the three types is unique, they do share many similar
properties. All these types have a colour and a line weight property, for
example. To streamline the code, each type’s Property Group was set up to
inherit its common properties from a Base Property Group. This inheritance
structure helps reduce duplicate code, and it helps ensure that standard
operators (like deleting an item or updating its text) don’t need to be rewritten
for each type. This helps simplify the process of defining and managing
each of our types and makes adding new subtypes in the future more
straightforward.

The full Inheritance structure for MeasureIt-ARCH in its current state looks
like this:

62

Figure 19: Diagram of MeasureIt-ARCH’s Inheritance Structure.

63

MeasureIt-ARCH

2. Redesigning the User Interface
MeasureIt’s original user interface, though functional, left a bit to be desired.
The entirety of the user interface was put into the right toolbar of the 3D
view, leaving little visual distinction between Operator buttons, configuration
settings and element properties. The element properties themselves were
clusteredwith a logic that was not immediately understandable to unfamiliar
users and not consistent with Blender’s general UI conventions. To make
MeasureIt-ARCH feel more like an integrated part of Blender, it’s UI needed to
be redesigned to fitwith theUI principles outlined byBlender core developers.

Figure 20: MeasureIt’s Original Location in Blender’s UI

Figure 21: MeasureIt’s Original Panel for Operators.

64

Cress

Figure 22: MeasureIt’s Original Panel for Dimension Settings
Settings for two aligned dimensions are shown here

65

MeasureIt-ARCH

Blender’s User Interface Design Principles
Blender User Interface, as started by Ton Roosendaal and developed by
William Reynish and the rest of the UI team, g draws heavily on Jef Raskin’s, g Blender’s full UI team at time

of writing consists of; Pablo
Vazquez, WilliamReynish, Camp-
bell Barton, Brecht Van Lommel,
Julian Eisel, and Harley Acheson

The Humane Interface52. In 2008 Reynish published a design document
for the Blender 2.5 UI redesign project outlining the fundamental principles
drawn from Raskin’s work that are embodied in Blender’s UI;

• Non-Modal; The user interface should never “pull the user’s locus of
attention away from the content she wishes to create.”53 The designed
object alwaysmaintains a privileged place in Blender’s UI, ensuring that
the designer is aware of how their actions in the software are impacting
it.

• Non-Overlapping This quality of non-modality is achieved by imple-
menting a non-overlapping interface. Rather than relying on a plethora
of pop upwindows and dialogue boxes, the likes ofwhich have become
the norm in complex software applications, Blender’s UI is subdivid-
able, to allow for all of the necessary UI panels to be made available in
the same window. Each subdivision can be stretched to the user’s de-
sired size and used to represent a particular set of information (Object
Properties, Materials, Scene Hierarchy, UV data, etc.). Meaning that
the software never puts you in a position where you’re editing proper-
ties in a floating window and unable to see their effect until after your
changes are applied.

During the Blender 2.8 UI redesign, another principle was added to this mix,
the Single Column Layout. The single column layout was advised so that
all properties would be clearly legible in a single list, rather than clustered
together as we see in MeasureIt’s original UI design.

Organizing the User Interface Panels
Keeping these principles in mind, the first step in redesigning the UI involved
sorting the various panels into appropriate areas of Blender’s user interface.

Operators: The operator buttons for the creation of MeasureIt-ARCH
elements are located in the right toolbar of the 3D View window. All of these
operators are called from the 3D View after the user has selected the objects
or vertices they wish to dimension. In order to distinguish them from other
tools, the operators have been moved to their own tab in this toolbar. The

52Jef Raskin, The Humane Interface: New Directions for Designing Interactive Systems
(Reading, Mass: Addison Wesley, 2000)

53William Reynish, “The Evolution of Blenders User Interface,” n.d., 25

66

Cress

operator buttons were re-ordered to a single column layout and their text
was paired with a representative icon from Blender’s existing icon set.

Figure 23: MeasureIt-ARCH Main Tool Panel

Element Properties: The properties for MeasureIt-ARCH’s various element
types were moved to the Object tab of Blender’s Properties Editor. Each
element type was given their own panel, to make them easier to quickly
access , and visually distinguish.

67

MeasureIt-ARCH

Figure 24: MeasureIt-ARCH’s Dimension Properties UI

Configuration Settings: The majority of the original MeasureIt’s configura-
tion settings were eliminated in the update to MeasureIt-ARCH. The original
MeasureIt usedUnit settings independent of those defined in Blender’s scene
settings. To avoid confusion, these separate unit configuration options were
removed, and MeasureIt-ARCH instead uses the units specified in Blender’s
scene settings. The remaining MeasureIt-ARCH unit configuration settings,
which define the level of precision used in dimension text, were appended
directly onto Blender’s existing units UI panel in the Scene tab of Blender’s
properties editor.

Currently, a MeasureIt-ARCH Settings panel is also present in the Scene tab
of Blender’s properties editor. However, this panel only contains a series of
toggle options that are useful for development debugging. These will be
completely removed in an upcoming release.

Styles: The new Styles panel is also presented in the Scene tab of Blender’s
properties editor, since the style instances are stored as custom data
attached to the scene.

68

Cress

Figure 25: MeasureIt-ARCH Unit Settings UI

Figure 26: MeasureIt-ARCH Style Settings UI

69

MeasureIt-ARCH

Displaying MeasureIt-ARCH Properties; The List UI
The second step was finding a way to present the MeasureIt-ARCH element
properties using an approach that is more compact and less cluttered.
De-cluttering the UI was necessary to make it faster for users to find the
particular element they’re looking for.

Figure 27: MeasureIt-ARCH’s List Style UI

To accomplish this, a list-style user interface was implemented. The design
of the list UI was based on Blender’s existing UI for displaying other mesh
data such as shape keys and vertex groups, as well as a discussion between
Pablo Vazquez, a Member of Blender’s UI Design team, and twitter user Fin
around a potential list based redesign of Blender’s modifier system UI.54 The
UI list displays all of the elements of a particular type, and the properties
of the actively selected list item are displayed below the list in a collapsible
UI box. This allows users to easily search through the list of elements, and
compare their settings in a visually simple way.

54Fin O’Riordan and Pablo Vazquez, “Fin. On Twitter: ”@PabloVazquez_ Soooooo.....
More Like This Then? https://t.co/WcHnuNplBd” / Twitter,” Twitter, accessed July 29, 2019,
https://twitter.com/FinEskimo/status/1097551783327645699

70

https://twitter.com/FinEskimo/status/1097551783327645699

Cress

Some technical tricks were required to allow multiple style types, or multiple
dimensions types to appear in their respective lists, as Blender’s current API
for creating UI lists won’t accept lists withmore than one type of element. To
circumvent this a dummy list that points to the relevant elements is used as a
stand in for the list element type. This dummy list is automatically generated
behind the scenes and should not impact the user experience in any way.

A schematic diagram of MeasureIt-ARCH’s UI code can be seen on the
following page.

71

Figure 28: Schematic Diagram of MeasureIt-ARCH’s UI Code.

72

Cress

3. Adding a Style System
To understand howMeasureIt-ARCHstyleswere implemented, let’s consider
an annotation style as an example. We can think of an annotation style as
an instance of the annotation property group just like any other annotation.
However, unlike a regular annotation, we need our annotation style to be
stored in a place where all the annotations in the scene can reference it,
and access its properties. This means that instead of storing our annotation
style instance inside of an object’s annotation Generator list as we would
for a regular annotation, we need to store our annotation style somewhere
more general. Luckily, Blender doesn’t only support the storing of custom
data lists on objects, but on all its major data types. Which means we can
create a ‘Style Generator’ list as a custom property of the 3D scene itself in
order to store our style instances in a more communal location. Now that
we have a place to store our styles we can create a Styles UI Panel to allow
our style properties to be displayed to be edited by the user.

Figure 29: MeasureIt-ARCH’s Styles User Interface

With our style stored in an accessible location, we need to edit our regular
annotations property group to give it properties to identify and store a

73

MeasureIt-ARCH

reference to a style. First, we need to add a True or False property
called ‘is_style’ which tells MeasureIt-ARCH if this particular instance of the
annotation property group is a style or a true annotation instance to be
drawn in the scene. Second we add another True or False property called
‘uses_style’ that tells the code if our annotation should look for a Style to
use. Third, we need to add a property called ‘style’ to store a reference
to the name of style we want the annotation to pull its properties from.
Lastly in the annotation’s draw method we need to check ‘uses_style’ to see
if the annotation being drawn uses a style, and if it does, we override the
annotation’s visual properties, using the properties of style referenced in the
‘style’ property.

In our actual implementation, the ‘is_style’, ‘uses_style’ and ‘style’ properties
are all added in the base property group, and inherited by all MeasureIt-ARCH
elements. This allows every MeasureIt-ARCH element type to be instanced
as a style, and to use styles.

4. Redesigning the Draw System to Work in 3D
Space.
MeasureIt’s original draw system worked in ‘Screen Space’. Screen space is
a two dimensional co-ordinate system that only contains information about
an elements x and y position relative to the screen it is being drawn on.
The way MeasureIt elements were being converted to screen space caused
any information about the elements 3D location and depth to be lost before
the element was drawn. Without this depth information all elements in the
originalMeasureIt would drawover top of the 3D scene objects, causing even
simple scenes to become visually cluttered and confusing to read.

74

Cress

Figure 30: MeasureIt’s Original Dimensions
Note these dimensions draw in screen space in front of a cube they should be

occluded by

Converting MeasureIt’s 2D screen space draw methods into 3D draw
methods for MeasureIt-ARCH required a complete re-write of MeasureIt’s
original drawing system. These new 3D space draw methods not
only allowed for proper depth ordering and occlusion of MeasureIt-
ARCH elements, but they opened up the possibility to add new features
like MeasureIt-ARCH’s dynamic linework, and its topologically aware
dimensions. Both of these features require 3D data and depth information
that was discarded in the old drawing method. We’ll discuss how each of
these features makes use of this 3D information in more detail later in this
section, but first we need to understand how we implemented a 3D draw
method in Blender.

When writing a draw method for 3D space using Blender’s API, there are a
few essential steps.

Figure 31: A Depth Buffer
(Mapped to Greyscale), and its
Corresponding Rendered Scene.

1. Ensure that the draw method is being called from a Post-View
draw handler: In Blender’s API a variety of handlers are available that can
be used to call methods in your add-on code after a particular event has
occurred (i.e., saving, loading, frame changes, drawing etc.). Blender’s Draw
Handlers, which call a user-specifiedmethod every time Blender redraws the
scene, are perfect for calling our draw methods, because we want our draw
methods to run every time the scene has changed and is redraw by Blender.

Blender provides two types of draw handlers ‘Post Pixel’ and ‘Post View’, Post
Pixel is used for methods that draw in screen space, and Post View is used
for methods that draw in 3D space. hh Although the differences be-

tween the two handlers isn’t
particularly well documented in
the Blender API, I believe dif-
ference in implementation with
these handlers results from their
automatic configuration of the
appropriate 3D or 2D projection
Matrix used by any glsl shaders
that are used within the handlers
called method.

75

MeasureIt-ARCH

2. Enable drawing to, and testing against a Depth Buffer. The
depth buffer can be thought of as a record of the distance of every drawn
element from the current viewpoint. Using a depth buffer allows objects
(or MeasureIt-ARCH elements) to be drawn in any arbitrary sequence, and
then be checked against the depth buffer to see if any closer objects occlude
them.

3. Ensure all co-ordinates output from the draw method are 3D:
The drawmethod needs to determine the co-ordinates of every line, arrow, or
circle that gets drawn. For lines, this is very straightforward as only the user
specified start and end points of the line need to be sent to the shader. For
dimensions and annotations, on the other hand, all of the components that
make up the element (leader lines, extension lines, terminations etc.) and
their positioning need to be calculated by the drawmethod for the shader to
use.

In the original MeasureIt, after the distance between the two 3D points was
calculated, the points were projected down to 2D screen space co-ordinates
before calculating the positions of the rest of the elements components.
This projection to 2D simplifies the calculations necessary to generate the
rest of the drawing, but results in the elements depth information being
sacrificed.

MeasureIt-ARCH on the other hand calculates the position of all of an
elements components in 3D space. In some instances, this requires some
extra information about the scene to ensure that elements like dimensions
are placed reasonably and predictably. While this adds some computational
complexity, it allows for elements to be placed more coherently in the
3D scene, and opens up the potential for more responsive features like
MeasureIt-ARCH’s dynamic dimension placement.

Once the placement of all an elements components have been calculated in
3D space, their co-ordinates are passed to a shader.

4. Use a shader that accepts 3D co-ordinates: Shaders are the
programs that run on the GPU (Graphics Processing Unit) that draw the co-
ordinates they receive to the pixels of the screen. While the bulk of a Blender
Add-on is written in the Python programming language, shaders are written
in the programming language GLSL. GLSL is used to access the OpenGL API,
an API that Blender uses to communicate with the GPU hardware.

Blender’s API does provides a set of basic built in shaders for drawing in 2D
and 3D. The original MeasureIt made use of Blender’s built in 2D shaders in
its draw method for nearly all of its drawing. However, Blender’s API also

76

Cress

allows you to define custom shaders. MeasureIt-ARCH makes use of this
functionality to define it’s own 3D shaders for its drawing. These custom
shaders allow MeasureIt-ARCH to achieve effects such as; drawing lines
thicker than one pixel, smoothing jagged edges of lines, drawing dashed
lines, drawing silhouette lines, and drawing dimension and annotation text
from a generated image texture.

Each shader is comprised of either two or three parts (depending on its
desired outcome), which run in sequence.

1. A Vertex shader: The Vertex shader converts the 3D World Space
(x,y,z) co-ordinates provided by the drawmethod, to 4D Homogeneous
Clip Space co-ordinates (x,y,z,w) which are a projection of the 3D co-
ordinates based on the ‘model view projection matrix’. In short, Clip
Space co-ordinates allow shaders to calculate perspective projections
based on the user’s current viewpoint through the mathematical
operation of matrix multiplication, which the GPU’ hardware is
optimized for. For a detailed and intuitive discussion of why
homogeneous co-ordinates are used Squirrel Eiserloh’s 2015 GDC
presentation provides an excellent summary.

In the vertex shader, after our co-ordinates have been projected, we can also
offset their depth, in Clip Space, from the current viewpoint. MeasureIt-ARCH
does this occasionally to fix rendering errors with overlapping elements, or
to achieve silhouette outlines.

2. A Geometry shader: The Geometry shader is optional, but it lets us
generate new lines or shapes based on the input co-ordinates we
received from the draw method. MeasureIt-ARCH uses a Geometry
shader to control a lines thickness. The Geometry shader expands
the start and end points of the line received from the draw shader,
into a rectangle whose width is determined by the line weight property.
Calculating this expansion in the geometry shader makes it easier to
manage lines in the main body of the add-on, and, since this particular
expansion is conducted in screen space, it allows for line thickness to
stay consistent regardless of the screen’s aspect ratio or the distance
of the line from the viewer.

3. Fragment shader: The Fragment shader converts the shapes defined
in the Vertex or Geometry shaders into pixels on the screen and
describes how these pixels should be coloured. MeasureIt-ARCH’s
Fragment shaders assign an elements colour based on its user defined
colour property. InMeasureIt-ARCH’s line shader, the Fragment shader
also fades the opacity of the line close to its edges, to reduce jagged

77

MeasureIt-ARCH

pixilated artifacts on diagonal lines. Fragment shaders can also colour
a shape by mapping an image texture to it based on the UV co-
ordinates associated with the shape. i. MeasureIt-ARCH uses image i UV co-ordinates are a set of 2D

co-ordinates that describe how
a point in 3D space could be
unwrapped to lie in a 2D image
plane, and are typically used for
mapping textures to a 3D surface

textures to display dimension and annotation text. The text itself is
rendered to a 2D texture, earlier in the drawing process, and then
mapped onto a simple rectangular card located in the appropriate
position and orientation in 3D space. Rendering the text as a simple UV
mapped card makes it simple to re-orient an elements text to maintain
a legibility, as the 4 UV mapping co-ordinates of the rectangle can be
flipped according to the user’s viewpoint.

A schematic diagram of MeasureIt-ARCH’s draw methods and shaders can
be found on the following page.

78

Figure 32: Schematic Diagram of MeasureIt-ARCH’s Draw Code.

79

MeasureIt-ARCH

Implementing Linework and
Dimensions
Limitations and Design Constraints
Now that we have a high level understanding of how Vazquez’s MeasureIt
was adapted and updated to become MeasureIt-ARCH, lets take a moment
to explore inmore depth howMeasureIt-ARCH implements itsmain features.
Namely the drawing of linework and dimensions. Each of these area’s has
a rich history of research and development and numerous algorithms and
implementations developed by computer graphics researchers associated
with it. This section of the thesis provides a brief look at some of the
key developments in the history of each of these features, and how these
precedent approaches have influenced MeasureIt-ARCH’s implementation
of line drawing and dimensioning tools. MeasureIt-ARCH itself does
not implement any of these techniques verbatim however, opting instead
for implementations that are, as a general rule, unique but much less
sophisticated.

These unique but simple implementations are necessitated by a few
factors. Foremost, my own novice experience as a programmer means
that simpler solutions are always more achievable. There are however other
technical constraints on MeasureIt-ARCH’s implementation of linework, and
dimensioning tools that are imposed by its nature as an add-on for Blender,
rather than a standalone application. As an add-on written in Python
MeasureIt-ARCH is constrained by Python’s comparatively slow execution
speed, as Python code typically runs several time slower than lower level
languages like C or C++. For most aspects of MeasureIt-ARCH’s code
this difference in speed is imperceptible, however, in certain areas, such
as the draw methods, where MeasureIt-ARCH may potentially loop over
hundreds of thousands of drawing elements, and needs to do so in a
fraction of a second, Python’s slower execution can be a challenge. In these
loop intensive areas Python’s slower execution necessitates some creative
solutions to ensure MeasureIt-ARCH remains responsive.

This technical constraint prevents more computationally intensive drawing
techniques from being implemented directly in MeasureIt-ARCH (by a
programmer of my skill level). There is however another constraint
that influences how MeasureIt-ARCH implements its line drawing and
dimensioning systems that is worth noting. This constraint is not technical
or skill based in nature but rather one imposed by the stated goal of
this thesis work. That is, that the end product of this work, MeasureIt-

80

Cress

ARCH, needs to be a functioning Open Source platform for the creation of
architectural drawings within Blender that is publicly, and freely available for
all to use. Themethods employed in MeasureIt-ARCH are not intended to be
primary research, new developments, or even implementations of cutting
edge best practices in the field of computer science, and by no means
would they qualify as such. The methods employed by MeasureIt-ARCH are
however, functional. They meet the majority of the requirements outlined in
the specification presented in the first section of this thesis, and as we will
show in the testing and implications section of this thesis they are capable
of producing simple architectural drawings within Blender. To this end,
MeasureIt-ARCH focused on simple methods and algorithms, especially in
the area of line drawing, that were tailored to the specific subset of necessary
features needed to meet our defined specification, rather than attempting to
utilize more sophisticated processes with broader feature sets.

That being said, to achieve functional implementation MeasureIt-ARCH
borrows and combines methods from across the existing body of research
in its solutions, to arrive at hybrid techniques. The following describes in
more detail how these hybrid methods were derived from the background
research that MeasureIt-ARCH draws on.

81

MeasureIt-ARCH

Line Drawing
An Overview of MeasureIt-ARCH’s Line Drawing
MeasureIt-ARCH Line Groups are responsive to their context in the 3D scene.
If a Line Group is hidden by other geometry, or if it represents the silhouette
of an object, it’s appearance is adjusted, based on its user-defined LineGroup
properties. This means that easily readable line drawings and diagrams can
be produced without the need for the user to define each line’s state, and
resulting visual properties, individually. Line Groups contain a subset of a
Blender object’smesh edges. The edges contained in a LineGroup can either
be selected manually by the user, allowing for fine grained control of the
lines drawn, or selected algorithmically through the use of the Line Group
by Crease operator. This operator adds all mesh edges that define a crease
greater than a user specified angle to a new Line Group. The edge’s crease
angle is determined by the rotational difference between the edge’s adjacent
face normals.

Background Research
MeasureIt-ARCH’s Line drawing system is a hybrid of many early techniques
in the area of ‘Non-photorealistic Rendering’ (NPR for short). Research into
NPR algorithms for the production of 3D computer graphics dates back to
the early 1960’s and can generally be divided into two key areas of study
based on the desired visual outcome. First are NPR algorithms aimed at the
production of technical illustrations and line drawings. The second would
be NPR algorithms aimed at imitating or replicating the look of images
produced by hand with more traditional artistic media, (pencil, pen and ink,
charcoal etc.). Asmaybe expected,MeasureIt-ARCH focuses predominantly
on the first area of research, as the second introduces a large degree of
complexity, and lies outside of our previously established scope. j j Though, it is worth a brief

note here however to draw atten-
tion to the fact that Blender al-
ready comes well equipped fea-
tures to generate traditionally
styled works. The previously dis-
cussed Grease Pencil tools al-
low for direct hand sketching
within the 3D environment, with
textured strokes similar to a 2D
raster graphics package, and the
Freestyle render engine allows
for the algorithmic generation
of stylized and textured strokes
from 3D models. However, nei-
ther of these tools is efficiently
suited to the production of re-
sponsive, technical Illustrations.

Before we look at any specific algorithm that deals with the generation of
linework for technical drawings, lets establish what types of problems these
algorithms need to solve. In general, existing algorithms for computing and
rendering linework deal with 3 distinct problems;

1. Which lines do we want to render?
2. For each line; how do we determine if all or part of this line is visible?
3. What visual characteristics do we give these lines based on their

determined visibility?

82

Cress

Although there are a myriad of technical line drawing methodologies, we
can categorize them in to two distinct classifications based on how they
approach their solution to these three problems.55

1. Object Space algorithms
2. Image Space (or Screen Space) algorithms

Object Space algorithms conduct their calculation in 3D space. They
make use of the three dimensional geometric relationships between objects,
such as occlusion, face adjacency, and differences in face normals, in order
to compute the relevant lines to be drawn, and their visibility.

One of the most commonly known object space line drawing methods
is Arthur Appel’s Quantitative Invisibility algorithm.56 Developed in 1967,
Appel’s Quantitative Invisibility uses a combination of techniques and
geometric information such as a face’s, adjacent faces, its implied vorticity,
as well as the parametric representation of its edges, in order to calculate
geometric intersections, or piercing points. These piercing points represent
where a line intersects or passes behind a surface, and each piercing point
marks changes in the visibility state of the line. Determining where these
changes in visibility occur allows for a quantitative measure of the number
of times a line is occluded by a front facing surface, hence ‘Quantitative
Invisibility’. Using this measure of Quantitative Invisibility, decisions can be
made about how, or if, the invisible line segment should be drawn. The
maths that drive Appel’s algorithm are quite elegant, and the algorithm
produces line drawings that are very accurate and consistent acrossmultiple
views. Quantitative Invisibility’s key drawback is that, like all object space
line drawing algorithms, the computational cost required to draw each view
scales proportionally with the geometric complexity of the scene.

Image Space algorithms on the other hand, generally have a computa-
tional cost that scales with the resolution, in pixels, of the image being pro-
duced. At their simplest, Image Space line drawing algorithms make use of
buffers; images that store key information about the scene such as depth, or
surface normal direction, as pixel values. These buffers can be processed
and utilized in a variety of ways. In some cases, 2D edge detection filters,
such as a Sobel filter, can be applied to a depth or normal buffer to calculate
linework based on discontinuities in the pixel values of the buffer.57 In oth-
ers, the entire wire frame of the object can be rendered after the solid view of

55Nadia Magnenat Thalmann and Daniel Thalmann (Tokyo: Springer Japan, 1990).
56Appel, “The Notion of Quantitative Invisibility and the Machine Rendering of Solids.”
57Philippe Decaudin, “Cartoon-Looking Rendering of 3D-Scenes,” Research Report (INRIA,

June 1996), http://phildec.users.sf.net/Research/RR-2919.php.

83

http://phildec.users.sf.net/Research/RR-2919.php

MeasureIt-ARCH

the object, and tested against the scene’s depth buffer to determine it’s visi-
bility. Line segments with a pixel depth value larger than the value stored in
the depth buffer are determined to be occluded and can be discarded. Many
algorithms are based on these simple principles, but use different manipula-
tions, or combinations of buffers in order to achieve different styles.58

More complex Image Space solutions, such as those described by McGuire
et al,59 and the Freestyle system developed by Grabli et al60 parametrize the
lines extracted from their image space calculations to allow for finer stylized
control over properties such as line thickness, opacity, colour and texture.

While Image Space algorithms can be calculated quite quickly, when
compared Object Space algorithms, they often struggle at obtaining the
same degree of accuracy, and consistency demonstrated by their Object
Space counterparts. This measure of accuracy, and consistency in image
space line drawing is generally referred to as ‘temporal coherence.’61

The challenge with achieving good temporal coherence in Image Space
algorithms arises from the fact that the lines being drawn are not derived
directly from properties of the 3D geometry itself, which are generally
consistent regardless of the users view point, but from Image Space pixel
buffers, who’s discontinuities may change from view to view. Issues with
temporal coherencemanifest as a ‘flickering’ of the linework as the viewpoint
changes.

58Bruce Gooch et al., “Interactive Technical Illustration,” in Proceedings of the 1999
Symposium on Interactive 3D Graphics - SI3D ’99 (The 1999 symposium, Atlanta, Georgia,
United States: ACM Press, 1999), 31–38, https://doi.org/10.1145/300523.300526.

59Morgan McGuire and John F. Hughes, “Hardware-Determined Feature Edges,” in
Proceedings of the 3rd International Symposium on Non-Photorealistic Animation and
Rendering - NPAR ’04 (The 3rd international symposium, Annecy, France: ACM Press, 2004),
35, https://doi.org/10.1145/987657.987663.

60Grabli et al., “Programmable Rendering of Line Drawing from 3D Scenes.”
61Ibid.

84

https://doi.org/10.1145/300523.300526
https://doi.org/10.1145/987657.987663

Cress

The Freestyle Line Drawing System.
Of particular interest when discussing a technical line drawing system
for Blender, is the Freestyle line rendering system. As mentioned above
Freestyle is an image space line drawing system, developed by Grabli et
al. AlthoughFreestyle is just one ofmany current day line drawing algorithms,
it is of direct relevance to us here because the Freestyle system is already
implementedwithin Blender, andMeasureIt-ARCH’s line drawing system has
been developed in direct response to Freestyle’s existing capabilities and
methods. As such we should understand what Freestyle is, how it functions,
and what use cases it is intended for.

Freestyle is a programmable, modular system for the generation of line
drawings from 3D models. Freestyle works in image space, but instead of
extracting its lines using image filters applied to pixel buffers and drawing
these lines directly to the screen, Freestyle makes use of a two stage
approach. First Freestyle generates a 2D representation of the scene called
a view map. The view map is a data structure that contains a parametric
representation of the scenes feature lines and vertices as they appear at that
particular viewpoint. The viewmap also contains additional metadata about
each of these feature lines, such as their type (Border, Silhouette, Crease,
etc.) and visibility. The parametric nature of this data contained in the
view map is the key to Freestyle’s flexibility as a line drawing system, as it
allows for the view map data to be interpreted in a variety of ways. Once
the view map has been calculated, different style modules can operate on
its data to produce a variety of different styles of line art. For Freestyle’s
implementation in Blender, these style modules can be defined through a
plethora of settings present in the user interface, or written manually as a
Python script.

Figure 33: Multiple Line Styles Rendered with Freestyle
A torus knot rendered with three unique Freestyle Style Modules.

85

MeasureIt-ARCH

Figure 34: Blender Freestyle’s User Interface
Freestyle’s UI within Blender provides a plethora of options for specifying the edge

types to be rendered, as well as the desired styling for those lines.

Freestyle’s flexibility and large range of potential styles is ideal for its
main use case; the creation of stylized non photorealistic renderings that
mimic traditional artistic mediums. However, when it comes to our desired
use case; the creation of technical illustrations for architectural drawings,
the cost of Freestyle’s complexity can start to negatively impact its user
experience and efficiency, when applied to this task. There are a few key
aspects of Freestyle’s implementation and user experience that we should
note to avoid when developing MeasureIt-ARCH.

1. Freestyle is a post process; Freestyle runs only after Blender renders
a scene. This means that for a user to see the effect of their changes to
a style module, the entire scene must be re-rendered. For complex scenes,
this makes tweaking linework incredibly time consuming.

86

Cress

2. Freestyle offers limited opportunities for direct user intervention
when selecting lines; Freestyle’s view map handles all calculations
regarding which lines will be drawn in the scene, however nearly all of these
lines are generated algorithmically, and there is no ability for the user to
tweak the view map after its creation. There is one line type, the Edge Mark
type, that can be added to the view map based on user defined edges, but
there is no ability to remove algorithmically generated lines that the user
doesn’t want to see rendered. The only option available for tweaking the
view map is to adjust its calculation parameters and re-render the scene.
This means that the fastest and most practical way to make changes to the
generated linework from Freestyle is often to export it to an external image
editing software after the linework has been rasterized and edit the image
manually.

3. Complex interface for defining styles; Freestyle predominantly
relies on python scripting for the definition of style modules. Though
Blender’s implementation does provide a basic user interface to create style
modules without the need for scripting, this interface is still quite complex,
with a huge variety of options and settings available in order to facilitate
Freestyle’s vast range. Many of these settings are highly technical in nature
and not intuitive for an end user. The level of mastery required to efficiently
navigate and use this interface can be daunting when one is only attempting
to achieve simple results.

For our purposes, these workflow challenges can be seen as symptoms of
Freestyle’s complexity. While one solution might be to find optimizations in
Freestyle’s algorithms or implementation that could maintain its flexibility
while resolving these issues, our approach however will be one of
optimization through reduction. A line drawing system for the creation of
architectural drawings does not require the stylistic flexibility that Freestyle
offers, but it does need to be responsive, direct, and intuitive.

87

MeasureIt-ARCH

MeasureIt-ARCH’s Implementation
With the benefits and pitfalls of Object Space and Image Space line drawing
algorithms, and our takeaways from the Freestyle system, in mind, lets
review our three key line drawing problems introduced at the beginning of
this section. We’ll use our insights from the previous discussion to start to
derive MeasureIt-ARCH’s approach to each problem.

1. Which Lines or Edges do we Want to Render?
To answer this question we need to understand a few things, how do we
classify the types of lines that make up a drawing, which line classifications
do we actually need to draw to create a readable technical drawing, and then
how do we go about selecting and saving these lines for later drawing. As
noted in our critique of the Freestyle system, one of our major priorities with
MeasureIt-ARCH’s line selection process is going to be providing a simple
method for the user to add or remove lines fromany automated line selection
processes.

Line Types
To get a sense of the types of edges that can be calculated by a line drawing
system, lets look at the line types that Freestyle can calculate, and see which
types make sense to include for our application. (Note: these line type
descriptions are take directly from Blender’s Freestyle UI descriptions, we’ll
be improving on these definitions soon).

1. Silhouette Lines; Edges at the boundary of visible and hidden faces.
2. Border Lines; Open mesh edges (Non-Manifold edges).
3. Contour Lines; The outer silhouette of an object.
4. SuggestiveContour Lines; Edges that are almost silhouette or contour

edges.
5. Ridge & Valley Lines; Boundaries between the convex and concave

areas of the surface.
6. Crease Lines; Edges between two facesmaking an angle smaller than

the crease angle.
7. Edge Mark Lines; Edges annotated by Freestyle edge marks.
8. External Contour Lines; The outer silhouette of occluding and

occluded objects.
9. Material Boundary Lines; Edges at material boundaries.

The differences between some of the Freestyle line types are subtle and can
often be difficult to intuit from their written descriptions. The figure below

88

Cress

illustrates the 5 most common Freestyle line types, rendered without styling
on two Utah Teapots.

Figure 35: Freestyle’s Line Types
Contour Lines(Green), External Contour Lines(Red), Silhouette Lines (Blue), Border

Lines(Magenta), Crease Lines (Cyan)

Each of Freestyle’s 9 Line types can be included in Freestyle’s view map
calculation, and its worth noting that not all of these line types directly
correspond with the mesh edges of a 3D model. Some of these lines, such
as the Ridge and Valley, or Suggestive Contour lines are interpolated surface
features that may not have a corresponding mesh edge.

Now, our technical line drawing system is meant to deal predominantly with
the depiction architectural forms, where hard edge creases are the most
common andmost essential for describing form. These crease lines should
be our predominant focus for the MeasureIt-ARCH system. The second
most important, given our priority of user intervention, should be something
akin to the Edge Mark line type that Freestyle provides, but with the ability
to not only add but also remove lines. We also want the MeasureIt-ARCH
system to be responsive and work in ‘real time’ in Blender’s 3D view port. To
achieve this, we should stick with a relatively simple set of line types. With
these considerations in mind our proposed list of edge types for MeasureIt-
ARCH looks something like this;

1. User Defined Lines; A user should be able to select any pair of vertices,
and create or remove a line defined by those vertices.

89

MeasureIt-ARCH

2. Crease Lines; A user should be able to specify a crease angle, and
any edge whose adjacent faces form a crease greater than that angle
should be marked as a line to draw.

3. Variable Silhouette Lines; The Variable Silhouette line type is
MeasureIt-ARCH’s naïve approximation and amalgamation of
Freestyle’s External Contour, Contour, Silhouette, and Border line types.
Which of these analogous Freestyle line types the Variable Silhouette
Line behaves like, is determined by a single user editable property.
Although hard edged forms are our primary focus, variable silhouette
lines should provide a basic option to clearly depict simple organic
forms through linework.

4. Hidden Lines; Hidden lines can be either user defined lines, or crease
lines that are occluded in the current view by other geometry.

With our basic desired line types defined, we need to devise a method to
calculate and store these lines. A data structure for MeasureIt-ARCH that
could be considered analogous to Freestyle’s view maps.

Line Groups; Storing Lines to be Drawn
Now that we have an idea of which line types we would like to be able to
draw, We can start to work on the sequencing of how these lines, once
selected, are stored and represented inmemory for later styling and drawing.
To use Freestyle as a comparative example again, once Freestyle’s various
line types have been calculated, they are stored in the two dimensional View
Map data structure, before the style modules are applied and the result
is drawn to an image. There are two main pitfalls of this approach that
we’d like to avoid. First, because the view map is a two dimensional data
structure, the calculations that select which lines should be drawn need to
be re-run each time our viewpoint in the scene changes. Second, because
the style modules and drawing process are applied immediately after the
view map is calculated, there is no opportunity to add or remove unwanted
algorithmically generated lines after the view maps creation.

To address these two issues, MeasureIt-ARCH calculates and stores the
lines that need to be drawn in Object Space, and separates the line selection
and calculation process from the drawing process entirely. This object space
storage of lines to be drawn is what MeasureIt-ARCH refers to as a Line
Group. Line Groups are a type of property group that stores the selected line
segments, aswell as their user defined properties. Line Groups, like all drawn
property group instances in MeasureIt-ARCH, are stored in a Generator list,
in this case the ‘Line Generator’, attached to the Object who’s geometry they
reference.

90

Cress

Figure 36: A Line Group’s User Interface Settings

Utilising Line Groups makes it so that the line selection and calculation
process, generally the slowest part of a line drawing algorithm, needs to
only be run once for a given set of geometry. Once the Line Group has
been populated with the relevant lines, these lines can be drawn from any
perspective, with the relevant perspective transforms being applied to the
Object Space data in hardware through the shader program running on the
GPU, to render the image to the screen. This separation of line selection and
line drawing means that the two tasks can be conducted in parallel, allowing
the user to modify the contents of a Line Group at any time, while the draw
system draws the Line Group’s current contents to the screen.

How does a user populate and edit a Line Group though? MeasureIt-ARCH
offers two main methods, one algorithmic, one direct.

The Line Group By Crease Operator
The Line Group By Crease Operator is currently MeasureIt-ARCH’s only
algorithmic solution for adding lines to a Line Group. In principle, the
Line Group by Crease operator checks, for each edge in the mesh, if the
faces adjacent to that edge form an angle greater than some user specified
threshold. If the angle formed by the faces is greater than the threshold, then
the edge is added to a Line Group created by the operator, if not then the edge
is ignored. The Line Group by Crease operator also gives the user the option
to decide if non-manifold edges (edges with more or less than two adjacent
faces) should be added to the newly created Line Group.

91

MeasureIt-ARCH

Figure 37: The Line Group by Crease Operator’s Behaviour.
A cube with one rounded corner drawn with (left) MeasureIt-ARCH linework on all
mesh edges. (center) MeasureIt-ARCH linework generated by the Line Group by

Crease Operator using a crease threshold angle of 10 degrees. (right)
MeasureIt-ARCH linework generated by Line Group by Crease Operator using a

crease threshold angle of 30 degrees

Direct Selection
MeasureIt-ARCH’s primary method for creating and editing Line Groups is
through the direct selection of mesh edges. A new Line Group can be
created with the Line Group operator. This newly created Line Group will
be populated with the mesh edges that the user has selected at the time the
operator is run.

MeasureIt-ARCH also provides two additional Operators that allow for direct
line selection. The add and remove line operators allow for the modification
of existing Line Groups. Running either of these operators will respectively
add or remove the mesh edges currently selected by the user to the active
Line Group, allowing for easy adjustment of existing Line Groups. The add
line, and remove line operators can be added to Blender’s quick favourites
menu or assigned a keyboard shortcut for even faster workflows.

MeasureIt-ARCH Line Groups; Benefits and Limitations
While the Object Space approach of MeasureIt-ARCH’s Line Groups allows
for users to fine tune the selection and storing of lines, and ensures that
selection calculations don’t need to be run every time the users viewpoint
changes, these benefits do come with certain downsides. When compared
to the selection and storage methods of a sophisticated Image Space
algorithm such as Freestyle, MeasureIt-ARCH’s Line Groups contain much
less useful metadata about a lines condition. Lines in a MeasureIt-ARCH
Line Group have no concept of their visibility state, or their relation to other

92

Cress

lines in Image Space.

This lack of relation to other lines in Image Space means that some of the
more advanced features for stylizing lines offered by a system like Freestyle
are not possible in MeasureIt-ARCH. For example, stylizations such textured
strokes in Freestyle rely on chaining together individual line segments based
on their proximity in image space. This line chaining allows for the creations
of longer strokes alongwhich the desired texture can bemapped, resulting in
amore natural looking textured stroke. A lack of Image Space chaining does
limit MeasureIt-ARCH’s artistic flexibility, but as our primary use case is the
creation of technical drawings and diagrams, this seems to be an acceptable
trade off for the improved control over line selection, and the added ability to
draw lines directly in the 3D viewport in real time.

MeasureIt-ARCH’s Line Groups face one other major limitation. That is
that the lines included in a Line Group are tied directly to an objects mesh
geometry, that is to say that a line in MeasureIt-ARCH Line Group cannot be
defined by any arbitrary pair of points in 3D space. Instead a line segment
within a Line Group has to be defined by a pair of vertex indices in the
mesh. Having lines directly tied to mesh geometry does mean that certain
line types, that we deemed non essential for MeasureIt-ARCH, such as
suggestive contour or ridge and valley lines cannot be drawn directly with
MeasureIt-ARCH. It does however give us some performance benefits that
help withMeasureIt-ARCH’s real time performance. If MeasureIt-ARCHwere
to define it’s line segments through pairs of 3D co-ordinates, thiswouldmean
that every time a mesh object was moved, edited, or deformed, the user
would need to re-define the lines that should be drawn for that object, as
the modified object would no longer match with the co-ordinates defined
in the Line Group. Instead by defining line segments as a reference to a
pair of vertex indices the current position of the vertices can be checked at
draw time. This allows Line Groups to adapt to modifications in the model,
without needing to re-calculate line selection. This ability to adapt to mesh
modifications also allows MeasureIt-ARCH linework to be compatible with
many of Blender’s toolsets formesh deformation, such as ShapeKeys, which
allow the user to store and blend between different variations of a mesh, or
Blender’smodifier system, which allows for parametric deformation ofmesh
objects. By defining lines using pairs of vertex indices rather than absolute
3D coordinates these deformations can be accounted for by MeasureIt-
ARCH’s Line Groups in real time.

Of these limitation two in particular lead us nicely into our second problem of
line drawing. Firstly we mentioned here that the lines stored in Lines Groups

93

MeasureIt-ARCH

have no defined visibility, how then do we determine which lines are visible
to be drawn? Second, we’ve provided no solution yet for the drawing of our
third and fourth desired line type forMeasureIt-ARCH, the Variable Silhouette
line type and the Hidden line type. Given the fact that Line Groups are not
re-calculated for each view, have no visibility information and are directly
tied to the mesh geometry of an object, view dependent line types like these
might seem difficult to achieve in this system. Both of these challenges are
addressed however, in MeasureIt-ARCH’s solution to the second problem of
line drawing.

94

Cress

2. For Each Line; How do we Determine if All or Part
of this Line is Visible?
While MeasureIt-ARCH handles the process of selecting lines to draw in
Object Space. It handles all of it’s visibility calculation in Image Space.
This switch is again to help improve performance to allow for the real time
display of MeasureIt-ARCH linework. Object Space visibility calculations, like
Appel’s Quantitative Invisibility, rely on an early form of a technique called
ray casting. In Appel’s method, first a series of calculation are carried out to
determine where the visibility on the line might change (the piercing points
where it intersects a surface for example). Then a ray is projected from the
users viewpoint, to each line segment who’s visibility is in question. This
ray can then be evaluated to determine the number of front facing surfaces
it intersected on its way to the line segment in question. The number of
intersections this ray cast experiences is equal to the number of surfaces
occluding the line who’s visibility we are calculating, and this number of
occluding surfaces is that line segments quantitative invisibility. There are
two main drawbacks for this approach if we were to apply it in MeasureIt-
ARCH. First it requires that all lines be defined in their parametric form,
whereasMeasureIt-ARCH defines it’s line as pairs vertex indices, and later at
draw time as pairs of cartesian co-ordinates. This limitation could beworked
around, but the second, more significant limitation, is that the number of
calculations required, and therefore the speed of theseObject Space visibility
algorithms, is directly tied to the amount of geometry in the scene.

Instead MeasureIt-ARCH uses Z-buffering for its visibility calculations. Z-
buffering is an Images Space technique for determining visibility that
operates per-pixel to produce a raster image of the scene. Since Z-buffering
operates on a per-pixel basis, the drawing speed is most directly influenced
by the resolution of the produced raster image, instead of the amount of
geometry in the scene. This is ideal for achieving the real-time viewport
performance we are aiming for with MeasureIt-ARCH. Z-buffering does of
course comewith some limitations, but before we describe them, we should
understand how Z-buffering works to determine basic visibility calculations,
and how MeasureIt-ARCH manipulates this basic functionality to draw its
Hidden, and Variable Silhouette line types.

95

MeasureIt-ARCH

How does Z-Buffering Work
Z-buffering determines a drawn element’s visibility by checking each
rendered pixel against the Depth Buffer. The depth buffer, as we briefly
introduced in the previous section, is a per pixel record of the distance
each drawn pixel is from the users viewpoint. When using Z-buffering to
determine basic visibility, each pixel to be drawn has it’s distance from the
users viewpoint checked against the current value in the depth buffer for that
pixel. If the pixel to be drawn has a distance greater than what is already
present in depth buffer then it is discarded, as it must be occluded by some
closer object which has already been drawn. If however, the pixel to be drawn
has a distance that is less than the value currently in the depth buffer, then
the pixel to be drawn overwrites the value in the depth buffer with its depth
value, and overwrites the pixel the rendered image with its color value, as
it must be closer viewpoint than anything that had been drawn to that pixel
previously.

Why do we call this Z-buffering? Well, if we think of the width and height
of our image as its X axis and Y axis respectively, then we can think of
this ‘distance from the users viewpoint’ as our images Z axis, stretching
out backwards perpendicular to the image plane. A sort of 3D version
Image Space where the cartesian X, Y and Z Axes are aligned with the users
viewpoint. This ‘3D Image Space’ is generally referred to as View Space or
Camera Space.

Figure 38: Depth Buffer Example.
A Depth Buffer (mapped to greyscale), and its corresponding rendered scene.

96

Cress

Setting up Z-Buffering in Blender’s API
Enabling depth buffer testing though Blender’s API requires only a few lines
of code.

‘bgl.glEnable(bgl.GL_DEPTH_TEST)’; Enables depth testing when drawing

‘bgl.glDepthMask(True)’; Allows new draw passes to be written to the depth
buffer.

After depth testing is enabled, you can define what test function should be
used (When using an OpenGL depth buffer, smaller values are closer to the
viewpoint)

‘bgl.glDepthFunc(bgl.GL_LEQUAL)’ This is the typical visibility test described
above. With this depth test enabled only parts of an object, or MeasureIt-
ARCH element, that are not occluded by anything closer to the users
viewpoint will be drawn (The test passes if the new Z-value is less than or
equal to the current Z-value in the depth buffer for that pixel)

‘bgl.glDepthFunc(bgl.GL_GREATER)’ This test does the opposite, only parts of
an object that are occluded by an object closer to the viewport will be drawn.
(The test passes if the new Z-value is greater than the current Z-value in the
depth buffer for that pixel)

Hidden Line Drawing
MeasureIt-ARCH takes advantage of these different types of depth testing in
order to achieve It’s Hidden Line type. Line Groups with hidden line drawing
enabled are actually drawn not once, but twice. First we draw the Line Group
with a standard GL_LEQUAL depth test and a plain line shader. This gives us
our standard lines that aren’t occluded by anything. Next we draw a second
pass using theGL_GREATERdepth test and a dashed line shader. This draws
any lines in the Line Group that are occluded with a dashed appearance. The
result of this two pass approach is that the style of the line that is eventually
drawn is determined by its depth in relation to the other objects in the scene.
This method also maintains user control over which particular Hidden Lines
are drawn, as this two pass approach applies directly to the user defined Line
Groups. This two pass approach is quite conventional for Z-buffer based
hidden line drawing, making use of readily available functions present in the
OpenGL API. Our approach to silhouettes will need to be a bit more creative
however.

97

MeasureIt-ARCH

Variable Silhouette Lines
The key functionality of Variable Silhouette lines in MeasureIt-ARCH is to
replicate, at least in a basic way the functionality of Freestyle’s External
Contour, Contour, Silhouette, and Border line types. Since we are only
interested in drawing simple solid lines, we don’t need to achieve this in a
way that allows for line chaining or any of the more advanced stylization
options that Freestyle offers, we simply need away to draw clean continuous
lines that replicate the appearance of these four Freestyle line types. Most
importantly to keep our silhouette system fast enough to run in real time
we want to create a method that doesn’t require visibility calculations or
line selection to be carried out on the CPU, but rather a method that runs in
our shaders on the GPU. There exists no readymade OpenGL function that
makes this easily implementable, like therewas for hidden lines, sowe’ll need
to look closer at conventional methods for silhouette drawing in shader as
well as each of our four Freestyle line types, to try and derive our ownmethod.

Conventional Silhouette Drawing; The Inverse Hull Method One of
themost conventionalmethods for drawing silhouette lines around an object
in shader is commonly known as the ‘Inverse Hull Method’. Although I’ve
found little scholarly material on this technique, it sees fairly frequent use in
video games62 and NPR renderings, and seems to be a sort of vernacular
approach to silhouette line rendering. The Inverse Hull method works by
duplicating the entirety of the mesh’s geometry, and offsetting it by some
user defined value along the surface’s normal direction to create a hull
around the original mesh. The surface normals for this new hull are then
inverted, and back facing surfaces are culled from the rendered view. This
entire method can be done in the Vertex and Geometry Shaders on the GPU,
or by manually modeling the Hull, and is quite effective for simple geometry.
However the Inverse Hull method often produces unwanted artifacts as
the silhouette becomes thicker, or when non-manifold edges are present
in the geometry. This method also offers us no control over which type of
silhouette line we want to draw.

62Junya Christopher Motomura, “GuiltyGear Xrd’s Art Style.”

98

Cress

Figure 39: Inverse Hull Silhouette Lines.
(Left) A clean silhouette (Center) Small cracks appear in thicker linework due to

non-manifold geometry (Right) Thicker lines produce unwanted artifacts

Our main takeaway from the Inverse hull method, that will be valuable in
developing our Variable Silhouette Lines, is that to draw the silhouette of
an object, it’s not necessary to select only the edges that represent the
silhouette in that view, but rather we can draw the entire geometry of the
mesh, and manipulate it to give the impression of a silhouette. However
since we do want some control over which type of silhouette line we are
drawing, let’s take a closer look at each of the Freestyle line types we are
trying to emulate.

Types of Silhouette Lines In general in the field of line drawing research,
a silhouette line is defined as a line marking the edge between a visible,
and an invisible face. The cusp of the visible and hidden. Each of the four
Freestyle line types we are trying to emulate is some slight variation on this
theme, the cusp of the visible and invisible.

Silhouette Lines Are the most basic, they draw every cusp from visible to
invisible.

Border Lines Are the next simplest, rather thanmarking the transition from a
visible face to an invisible face, theymark the transition from a visible face to
emptiness. In other words, Border Lines mark edges with only one adjacent
face. These are a special case of Non-Manifold edges.

Contour Lines Are the outside Silhouette lines of an object. Its outline. Each
cusp from visible to invisible, that isn’t in front of any other part of the object.

External Contour LinesAre only Silhouette lines that have absolutely nothing
behind them.

Describing the 4 types in this way we can see that all four share the basic
quality of silhouette lines, being a cusp between a visible and invisible face,

99

MeasureIt-ARCH

but each type has some additional conditions regarding the surfaces behind
them.

Our takeaway here then is that the key distinction between these line types
has to do with the distance from the particular visibility cusp to the next
surface behind it. Might we then be able to make use of our depth buffer
then to differentiate between these line types?

Our Derived Method
MeasureIt-ARCH’s Variable Silhouettes work entirely based on these two key
takeaways. We draw every edge of the mesh as a thick line wireframe, and
then, in the geometry shader we push this wireframe away from the observer
along the Camera Space Z-axis. This causes any non silhouette lines to be
occluded by the mesh geometry, and these occluded pixels are discarded in
the depth buffer test. The amount that the wireframe is moved back along
the Camera Space Z-axis determines what type of silhouette is drawn, and
we call this amount the Z-offset, and expose it as a property of the LineGroup
that the user can adjust. Smaller Z-offsets produce linework analogous to
Freestyle’s Silhouette andBorder line types, larger Z-offsets produce linework
analogous to Freestyle’s Contour line type, and very large Z-offsets produce
results similar to the External Contour line type.

Figure 40: Variable Silhouette Examples
A progression showing how the display of MeasureIt-ARCH’s Variable Silhouette

lines change as the Z-Offset value is adjusted

100

Cress

The implementation isn’t quite this simple however. Simply moving the
wireframe back along the Camera Space Z-Axis works well for orthographic
views, where there is no perspective distortion. However in a perspective
view this shift along the Z-axis results in the silhouette being distorted. In
the figure below we can see how this might look if our setup was modeled
explicitly in the 3D scene.

Figure 41: Perspective Challenges with a Camera Space Z-offset
How a Z-offset silhouette might appear if created in the 3D scene. (Left) Scene

setup (Center) Orthographic camera result (Right) Perspective camera result. Note
how this does not result in a proper silhouette

However we can fix this perspective distortion in our shader code. To
understand how this works we need to introduce one more co-ordinate
system, Clip Space. Clip Space is a homogeneous four dimensional co-
ordinate system that is used in OpenGL shaders. The fourth dimension
(W) in clip space, allows for perspective view transforms to be carried out
throughmatrixmultiplications, which the GPU hardware is optimized for. For
our purposes we can think of our X,Y,Z,W co-ordinates in Clip Space as the
same as our X,Y,Z Camera Space co-ordinates, just with an additional value
that, more or less, represents the amount of perspective distortion which
that point will receive when it’s mapped to the 2D image on the screen. In
our shader, we get a points Clip Space coordinates by multiplying its Object
Space position by the ‘ModelVIewProjectionMatrix’ which returns our Clip
Space position. The key here is that our Clip Space coordinates have their
perspective distortion baked into the W value. So if we apply our Z-offset
only after we’ve converted our co-ordinates to Clip Space, then we can slide
our points backwards along the Camera Space Z-axis, without introducing
any new perspective distortion. The results of this are shown in the figure
below.

101

MeasureIt-ARCH

Figure 42: Clip Space Z-offset in Shader without Perspective Distortion
(Left) Orthographic camera result (Right) Perspective camera result

Using this Clip Space Z-offset to create Variable Silhouette lines allows
MeasureIt-ARCH to emulate Freestyle’s most common silhouette line types
in real time, with a high degree of user control. By combining multiple
Line Groups with different Z-offsets and line weights MeasureIt-ARCH can
communicate complex organic shapes through simple line drawings with a
visual fidelity similar to that of an un-styled Freestyle render.

Figure 43: MeasureIt-ARCH Linework Compared with Freestyle Linework on Organic
Geometry.

(From Left to Right) 1. Shaded model and wireframe. 2. MeasureIt-ARCH linework,
drawn with two Variable Silhouette Line Groups. 3. Freestyle linework drawn with

Silhouette (thin) and External Contour (Thick) lines. 4. MeasureIt-ARCH and
Freestyle results overlaid, MeasureIt-ARCH in red, Freestyle in green, overlap in

yellow

Z Offset’s Weakness; Ground Clipping
The major downside of this method for drawing Variable Silhouette lines
is what we’ll call ground clipping. Since our Silhouette lines are depth
tested against the entire 3D scene, some undesirable clipping of thick

102

Cress

silhouette lines can occur where objectsmeet. This can be seen in the figure
below. This can currently be worked around by rendering multiple passes
of the scene (foreground and background) using Blender’s view layers and
compositor. However in the future this could be solved in shader by using
custom depth buffers for silhouette lines

Figure 44: Silhouette Ground Clipping
Silhouette lines can be clipped in an undesirable manner when close to another

object or ground plane

Z - Buffering, Benefits and Limitations
These Z-Buffering based methods for line visibility, Hidden Line rendering,
and Variable Silhouette rendering are ideal for our goal of real time viewport
performance, as they keep draw times quite low. The raster images
produced by thesemethods also integrate well into Blender’s existing render
pipeline allowing them to be overlaid with the output from any of Blender’s
viewport render engines. A Z-Buffering approach is also functional for
rendering out final drawings for print or transmission, as long as the image
size and resolution are set to suitable values for the scale of the print.
Where these raster techniques do fall short is interoperability. There is
currently no option to export MeasureIt-ARCH linework to a vector format
for editing in other software packages. Although the prime goal of this thesis
is to create an architectural drawing toolset that works within Blender first,
interoperability is certainly an area that will need to be improved in future
development.

103

MeasureIt-ARCH

3. What Visual Characteristics do we Give These
Lines?
Our third and final problem for line drawing is also the simplest to solve.
MeasureIt-ARCH provides a few basic properties for Line Groups that the
user can edit to change the look of all line segments in that Line Group. Each
of these properties is sent to the Line Group Shader at draw time.

These properties are;

Lineweight

The lineweight determines the thickness of the lines drawn. Thickening each
line segment is achieved in the LineGroup’sGeometry Shader. TheGeometry
Shader takes the start and end point of the line, and calculates its direction
and normal in Screen Space. It uses the lines direction and normal to draw
a tessellated rectangle of the user defined thickness over the initial line.

Since MeasureIt-ARCH has no line chaining, in order to have a smooth
transition between line segments we also draw a circular endcap at the end
of each line segment. Without some kind of end geometry, gaps would be
visible between adjacent thick lines.

Figure 45: Thick Line Tessellation
(Left) Shapes created in the geometry shader. Black dots show the line’s start and
end points, tessellated rectangle in green, point pass in red. (Right) Resulting thick

line

104

Cress

Color

Cotrols the color of the Line Group, applied in the fragment shader.

Z-Offset

As covered in the previous section, the Z-Offset value allows the user
to manipulate the Line Groups depth without introducing any perspective
deformation, this is used to create Variable Silhouette lines

Extension

Allows for some over extension of MeasureIt-ARCH lines, as is often
common in hand drawn architectural drawings. This overextension is
calculated in the Geometry Shader, in Object Space.

Figure 46: MeasureIt-ARCH’s Line Overextension.
From left to right, extension values shown are 0.0, 0.05, 0.1, 0.15

Hidden Line Color & Hidden Line Weight

If Hidden line drawing is enabled for this Line Group, these settings allow
Hidden Lines to be given their own independent color and line weight

Dash Scale & Spacing

Dashed lines for hidden line drawing are as close as MeasureIt-ARCH gets
to a textured stroke. When the Geometry Shader generates the tessellated
rectangle that is rendered it also calculates an ‘arc length’ parameter for
each of the points in this rectangle. we can think of the arc length as a
linear gradient along the length of the rectangle, whose maximum value is
determined by the line’s length.

In the fragment shader, for each pixel of the line rendered we evaluate a sine
function for the arc length value at that pixel. This gives us a periodic sine
wave along the length of the line which we can use to create our dashes. If
the value of the sine wave at any point along the line is less than some cut

105

MeasureIt-ARCH

off threshold, we discard that piece of the line, if its above that threshold, we
draw the line as normal. This results in a dashed line, with the space between
the dashes determined by the threshold value. The Dash Scale and Dash
Spacing properties describe the sine waves frequency and cut off threshold
respectively, allowing the user to control the scale and spacing of the dashed
lines.

These eight properties allow the user to control the look of each Line Group
to some degree. All of these properties can also be controlled through
MeasureIt-ARCH’s style system, allowing multiple Line Groups to share the
same property set.

With that we bring our discussion of MeasureIt-ARCH line drawing system
to a close, next, on to Dimensions.

106

Cress

Dimensions; Dissolving the Work Plane
with MeasureIt-ARCH
Creating a new Open Source dimensioning tool provides an opportunity
to rethink the paradigms and systems that define how dimensioning tools
are implemented in industry-standard software packages. Contemporary
design tools such as Autodesk’s Revit, and McNeil’s Rhino provide three-
dimensional design environments. However, the dimensioning tools of these
software packages are still bound to a two-dimensional “work plane” or
“C-plane” (as it’s called in Rhino). These work plane based dimensioning
systems are legacies of 2DCAD software that have persisted into their three-
dimensional successors.

Why Use a Work Plane and When Does it Fail
The 2D work plane approach to dimensioning has two significant
advantages;

First, the computations required to accurately locate and display a dimension
element on a 2D plane are significantly more straightforward than those
required in 3D. Dimensions projected on a 2D work plane are the most
efficient solution when the desired end product is a 2D plan, section, or
elevation drawing.

Second, the process for the user to place a dimension is very straightforward
in awork plane based system. First, the user defines thework plane, often by
selecting a surface already modelled in that plane. Then they select the two
anchor points of the dimension and drag in the desired direction to determine
the dimensions placement. This ‘Select Point, Select Point, Drag to Place’
workflow for adding dimensions has been nearly ubiquitous since the time
of 2D CAD applications, and the definition of a 2D work plane facilitates the
use of this same user experience in a 3D context.

However, the 2D work-plane approach does begin to slow down the user’s
ability to add dimensions to 3D isometric or axonometric views (or any 3D
view for that matter). The work-plane needs to be manually redefined by
the user to add dimensions to each unique plane, meaning any complex
geometric formwill require a plethora of uniquework-planes to be thoroughly
dimensioned.

Things become especially challenging when modifying geometry after a
dimension has been placed, as changes to a dimension’s anchor points

107

MeasureIt-ARCH

may cause the dimension to move out of the work plane that was defined
for it. How a piece of software responds to this varies, but often it
will result in an error in the dimensioning tool. Revit makes some effort
to automatically adjust work planes to adapt to changes in a model’s
parameters. However, these adjustments are not always successful, and
often themodel’s connection to the dimensionwill break, resulting in an error
message prompting the user to delete the dimension or undo the action that
caused the error. In Rhino dimension behaviours are a bit more nuanced.
As long as the record history functionality is enabled, Rhino’s dimension
elements will track with their connected geometry, even outside of their
original work plane (or C-Plane as it is referred to in Rhino). However, the
C-Plane still imposes a limit on the creation of new dimensions and must be
redefined before dimensions can be added to a new plane.

Figure 47: Adjusting a Dimensioned Massing Object in Revit

This insistence on defining a flat two dimensional plane in which dimensions
sit, impacts the usability and efficiency of these dimensioning tools, for the
sake of computational simplicity and a traditional user experience. Can we
remove the work plane and its limitations, what new possibilities does this
allow, howdoes it impact the user experience, andwhat newchallenges does
it present?

Perpendicularity in Two and Three Dimensions
Let’s take a moment to examine how the computations required to place
a dimension change when moving from two dimensions to three. Adding
a dimension in 2D is relatively trivial. We need to draw some extension
lines perpendicular to the line that we are measuring, and a dimension line
with some text parallel to this measured line but offset by some amount.
The bulk of the computational work here is involved in finding the correct

108

Cress

perpendicular direction. For a 2D line with a direction defined by the vector
(x,y), its two perpendicular directions would be (y,-x), a 90-degree rotation
counter-clockwise, or (-y,x), a 90-degree rotation clockwise. With only two
options to choose from for the direction of the dimension, a piece of software
can very simply rely on sampling the user’s mouse movement to decide
which of the two options to choose, and use themouse position to determine
how long to make the perpendicular extension lines.

Moving up to 3D things become more challenging, while in 2D space,
there were only two possible perpendicular directions to choose from, in
3D space, there are an infinite set of perpendicular directions. Trying to
select the user’s intended option from this infinite set using only mouse
input would be unreliable and frustrating for the user. This challenge
of perpendicularity leaves us with two options, maintain the status quo
and reduce the problem back to 2D space by having the user pre-define
a 2D work-plane or utilize more information from the 3D environment to
select a reasonable perpendicular direction with as little user intervention
as possible.

Figure 48: Directions Perpendicular to a Line in Two and Three Dimensions

Using Mesh Geometry and the Users Viewpoint to
Determine a Dimension’s Placement.
To select a sensible perpendicular direction without any user intervention,
we first need to develop a series of rules defining how dimensions should
ideally be placed. Though MeasureIt-ARCH implements simple case by
case algorithms (rather than trained learning algorithms) for its dimension

109

MeasureIt-ARCH

placement system, some of the decisionmaking and rule defining processes
for the dimension placement were inspired by the work done by Ian Vollick,
Daniel Vogel, Maneesh Agrawala, and Aaron Hertzmann63 in their work on
automatic placement systems for annotating Images. The set of rules that
inform MeasureIt-ARCH’s dimension placement algorithm are:

1. Dimensions should always be placed perpendicular to the line of
measurement

2. Dimensions should never be placed inside of an object
3. Aligned Dimensions should try to remain in-plane with one of their

adjacent Faces
4. Dimensions should be as close to parallel as possible with the user’s

viewpoint to ensure readability.
5. Single Axis Dimensions should always remain in plane with a basis

plane (XY plane, YZ plane, XZ plane)

While it is relatively simple to articulate these rules in language, to write them
in code, we need to formalize them mathematically. Implementing these
rules requires information about the geometry surrounding the dimension
and the user’s viewing direction. Using this information and a bit of
linear algebra, it is possible to produce an algorithm that reliably places
dimensions without manual user input. The resulting algorithm, as it is
currently implemented in MeasureIt-ARCH can place Dimension elements
in a useful and predictable manner and automatically adjust their location
as the geometry is modified, or as the user’s viewpoint changes.

But how is the Information about the user’s viewpoint and object geometry
obtained, processed and used in the placement algorithms? The bulk of this
calculation is conducted in two processes;

View Segmentation
Rather than constantly adjust the dimension for every movement of the
user’s viewpoint, the 3D space is divided into six segments (Top, Bottom,
East, West, North, South) each with a defined view vector ((0,1,0) for Front,
(1,0,0) for East, (0,0,1) for Top etc.). We determine the segment of space
our user’s viewpoint is currently in by comparing its position vector with a
series of thresholds. This lets the placement of the dimension be influenced
by the segment of the 3D space the user viewpoint is currently occupying,
rather than the viewpoints exact position. Meaning that only when the user’s
viewpoint crosses a predefined threshold fromone segment to another does
the dimension re-orient itself. In the case of Axis Dimensions, this also allows

63Ian Vollick et al., “Specifying Label Layout Styles by Example,” n.d., 10

110

Cress

us to finetune unique thresholds that feel more natural for each of the three
axes.

Figure 49: Visualization of View Segmentation Thresholds in 3D Space
(Left) Basic segmentation (Right) Per-axis segmentation

Using the Geometry’s Face Normals.
To ensure that the dimension points away from the object in a sensible
direction, MeasureIt-ARCH considers the geometry of the object like so;

1. The algorithm finds two faces adjacent to the line being measured.

2. The normals of the adjacent faces are stored in a list. kk A faces normal is the direction
perpendicular to the plane de-
fined by the face, in Blender and
other 3D applications that use
mesh modelling the normal is
calculated to point outward from
the meshes surface for manifold
objects

3. The sum of the normals is calculated and converted to a unit vector.

4. This new Unit vector is returned as our outward direction.

Implementation in Aligned Dimensions For Aligned Dimensions, this
consideration of the face normals is most of the placement algorithm. Once
a normal is selected, it can either be used as the direction for the dimension
right away or be projected downonto the plane of either of the adjacent faces
or onto the basis plane, who’s normal ismost similar to the current viewpoint
segments View Vector. Depending on the user preference as indicated in the
dimension’s properties.

111

MeasureIt-ARCH

Figure 50: How Adjacent Face Normals are Used to Evaluate Dimension Placement

Implementation in Single Axis-Dimensions Single Axis Dimensions
are slightly more complex and make greater use of view segmentation.
Here’s how the Single Axis placement algorithm works;

1. Determine which segment thresholds to use based on the axis being
measured.

2. Determine what segment of 3D space the user’s viewpoint is currently
in based on the segment thresholds.

3. Get that segment’s corresponding view Vector ((0,1,0) for Front, (1,0,0)
for East, (0,0,1) for Top etc.)

4. Calculate the distance between the two points being measured on the
specified axis (x, y, or z) This is our Distance Vector.

5. Calculate the cross product of our Distance Vector and our View
Vector (In 3D the cross product of two vectors is always a third vector,
perpendicular to the plane defined by the first two)

6. The resulting vector obtained by the Cross Product operation is our
dimension placement direction.

Since the dimensions are ultimately being projected onto a 2D plane in
both of these cases, one could argue that the end result is not significantly

112

Cress

different from a work plane based system, however the key distinction here
is that MeasureIt-ARCH’s system does not require the user to manually
define these basis planes or projections before the dimension is created,
the dimension placement system works out which plane is most suitable
automatically based on the users viewpoint.

These steps presented represent only the basic principles of these
algorithms. In MeasureIt-ARCH’s implementation, both axis and aligned
dimension placement algorithms also provide additional features such as
allowing the user to lock dimensions to a desired basis plane, and the ability
to manually tweak the direction of the dimension by rotating it using the
line being measured as the rotation axis. Beyond these additional features,
the algorithms also need to be able to deal with edge cases to ensure they
behave as expected even when some of the required information is not
available. The consideration of adjacent faces, in particular, needs to be able
to handle cases with non-manifold geometry (more than two adjacent faces
to a single edge), as well as objects without any geometry such as Blender’s
empties. In these cases, the general fallback is to place the dimension in a
plane that is normal (perpendicular) to the View Vector of the view segment
that the users viewpoint is currently in.

The User Experience; Adding Multiple Dimensions
Simultaneously.
A significant result of this automated dimension placement system is its
change to the user experience of adding dimensions. The traditional,
‘Select anchor point, select anchor point, drag to place’ process of placing
dimensions is not possiblewith this system. Instead to add a dimensionwith
MeasureIt-ARCH the user selects the two anchoring vertices first, and then
runs the ‘Add Dimension’ operator, which creates a new dimension instance
that utilizes those two selected vertices as it’s anchor points, and the draw
system determines this new dimensions placement automatically. Once the
dimension is placed, the user can tweak the dimensions distance from the
line being measured either by dragging the dimension in the 3D viewport
using MeasureIt-ARCH’s gizmos, or by adjusting its distance property in
the User Interface. For adding a single dimension this process isn’t too
dissimilar from the traditional mode of adding dimensions in industry
standard packages. The strength of thismethod however, is that it is capable
of adding multiple dimensions with a single click of the ‘Add Dimension’
operator.

113

MeasureIt-ARCH

If the user selects more than two mesh vertices, then when the ‘Add
Dimension’ operator is called it will add dimensions between each of the
selected vertices in the order that they were selected by the user. This
allows the user to quickly define sequences of dimensions, without needing
to place each dimension individually, or redefine awork planewhen changing
plane. As an example of MeasureIt-ARCH’s current workflow, calculating
the position of, and adding three aligned dimension elements, (all on what
would be considered independent work planes in other software), with the
aligned dimension tool in MeasureIt-ARCH takes only a fraction of a second.
When compared to the user input time required to specify three unique work
planes and draw in each of their dimensions individually in standard software
packages, this seems like an improvement.

Automated Dimension Placement; Benefits and
Limitations.
The added complexity in MeasureIt-ARCH’s dimension placement algorithm
does make it more computationally intensive than it’s work plane based
alternatives. Querying an object’s faces, running vector calculations,
determining viewport segments, as well the conditional checks for edge
cases, each of these operations takes time, and because dimension
placement is calculated in the Draw Method, these operations are running
every single time the scene updates, for every dimension in the scene.

That being said, modern computing power can handle this added complexity
quite well, and although MeasureIt-ARCH’s performance when it comes to
dimension drawing is still slower than industry standard packages, there
is significant room in MeasureIt-ARCH’s code to optimize and improve the
basic principles described for the dimension placement system, and the
ability to add multiple dimensions simultaneously, through a single use of
the dimension tool, also helps to offset the slower viewport performance by
providing a potentially more efficient user experience.

Currently, however, MeasureIt-ARCH does show some noticeable reductions
in viewport framerate in scenes where 500+ aligned dimensions are being
drawn. MeasureIt-ARCH takes approximately 218ms per viewport update
(roughly 4.5 frames per second(fps)) to draw 512 dimensions, compared
to 6.9ms (140 fps) per viewport update to draw the same number of
dimensions in Rhino. Although further timing has revealed that, in general,
the common performance bottleneck inMeasureIt-ARCH is not solely due to
the dimension placement system, but is also a symptom of the number of
unique draw calls being sent to the GPU shaders from the dimension’s draw

114

Cress

method.

The speed of the dimension placement system is also proportional to the
amount of mesh edges in the object being measured. The system takes
roughly 1ms to compute for a single dimension measuring an object with
768 edges, and this timing scales proportionally as the mesh complexity
increases. The process of batching our dimensions co-ordinates and
sending them to the various shaders, on the other hand, consistently takes
between 0.4ms and 1.2ms to compute. Which of these processes ends up
being the main performance bottleneck for a scene depends on the average
complexity of the objects being dimensioned.

This performance still isn’t ideal; however, given that MeasureIt-ARCH is
currently only suited for small projects, it is likely that an upper limit of 500+
dimension elements per scene is enough for the small scale workloads we
expect the tool to be used for. However, for MeasureIt-ARCH to ever be
considered for use in large-scale projects in the future, some work will need
to be done to improve the bottlenecks in the dimension placement, and
dimension drawing systems.

115

MeasureIt-ARCH

Sharing MeasureIt-ARCH
“Treating your users as co-developers is your least-hassle route to
rapid code improvement and effective debugging. The power of
this effect is easy to underestimate.”64

Creating MeasureIt-ARCH as an Open Source add-on for an Open Source
software, called for some direct and intentional sharing of the tool
throughout its development process. Rather than solely relying on traditional
academic modes of information collection and dissemination, this thesis
took inspiration from the Cathedral and the Bazaar by Eric S. Raymond,65 as
well as the sharing methodologies of the Blender Foundation and Blender
community, since for any Open Source project to survive and grow, it is
essential for it to engage with a community. l66 l This is not to say that effort was

not put into traditional modes of
academic research sharing, to
date versions of this work have
been accepted for presentation
and publication at eCAADe +
SIGraDi 2019, and the Blender
Conference

MeasureIt-ARCH takes advantage of new media platforms like YouTube,
GitHub, and the ‘Blender.Today’ forums, to make the work publicly available
and create opportunities for user feedback. Although this feedback never
dramatically changed the primary design goals of MeasureIt-ARCH outlined
in our specification, it was invaluable for troubleshooting bugs, and for giving
focus to small, simple changes that helped to improve MeasureIt-ARCH’s
user experience.

The Cathedral and the Bazaar
Raymond’s “The Cathedral and the Bazaar” outlines two philosophies for the
development of software. Cathedrals are produced in isolation. Guarded
and protected until a final release is ready. This is similar to the conventional
mode of software development, closed and hidden with infrequent releases.
Bazaars, on the other hand, are a cacophony of chaotic voices and
opinions where individual contributions come together to create a new
whole. The Bazaar style is reminiscent of the extreme ideals of Open Source
development as a pseudo-anarchic, egalitarian community m. However, as m Of course, whether Open

Source development, in reality,
is the ideally egalitarian process
many idealize it as, is up for
serious debate. Open Source
communities, like most commu-
nities today, are struggling to
overcome a series of systemic
attitudes and unconscious
biases that pose problematic
barriers to genuinely fair and
equitable participation

64Eric S. Raymond, The Cathedral & the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary, 1st ed (Beijing ; Cambridge, Mass: O’Reilly, 1999).

65ibid.
66Kevan and Beesley Cress, “Architectural Design in Open-Source Software - Developing

MeasureIt-ARCH, an Open Source Tool to Create Dimensioned and Annotated Architectural
DrawingsWithin the Blender 3D Creation Suite.” in Sousa, JP, Xavier, JP and Castro Henriques,
G (Eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th
eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-
13 September 2019, Pp. 621-630 (CUMINCAD, 2019), http://papers.cumincad.org/cgi-
bin/works/paper/ecaadesigradi2019_561.

116

http://papers.cumincad.org/cgi-bin/works/paper/ecaadesigradi2019_561
http://papers.cumincad.org/cgi-bin/works/paper/ecaadesigradi2019_561

Cress

we’ve seen in our analysis of Blender’s development structure, Open Source
projects can benefit from a balance between the two approaches. Raymond
too notes that;

“It’s fairly clear that one cannot code from the ground up in bazaar
style. One can test, debug and improve in a bazaar style, but it
would be very hard to originate a project in bazaar mode. […] Your
nascent developer community needs to have something runnable
and testable to play with” - Eric S. Raymond67

MeasureIt-ARCH, still in its early development, is much closer to a Cathedral
style of development, with only two key contributors (first Antonio and now
Myself). However, steps are being taken to ‘Share Early & Share Often’ as
Raymond recommends. Although beyond the end of this thesis, efforts to
foster greater engagement with the toolmust be pursued if MeasureIt-ARCH
is to continue to grow and improve.

Licensing
To facilitate sharing and ensure thatMeasureIt-ARCH remains free andOpen
Source, it has been released under the GNU GPL v3 license. This is the same
license as Blender’s source code. GPL v3 is what is commonly referred
to as a ‘viral copyleft’ license, as it employs modern-day copyright law to
enforce terms that ensure that for any software released under this license
its source code must be made available along with the compiled software
itself. GNU GPL is referred to as a ‘viral’ license because It provides clauses
stating that any derivative works created from the software’s source code
must also inherit the same license. This helps protect free and Open Source
works released under the GPL license from being bought or absorbed by
larger commercial applications and ensures that they remain Open Source.

Leveraging New Media
To date, YouTube has been the primary outreach vehicle for MeasureIt-
ARCH. In the time since serious development was started on MeasureIt-
ARCH, two YouTube videos documenting MeasureIt-ARCH’s features and
development have been published. The first on March 24th, and the second
on June 27th of 2019. Alongside these documentation videos, one time-
lapse, showing a rough demo of the MeasureIt-ARCH being used to produce
a set of drawings for a simple residentialmassingmodel, was also published.

67Raymond, The Cathedral & the Bazaar

117

MeasureIt-ARCH

As of July 30th, 2019, these videos have been viewed a total of 1,168 times
and garnered 34 comments. By YouTube’s standards, this is a relatively
limited scope of engagement, however as a student working on a piece of
software as part of a master thesis, having this degree of exposure and
feedback on the project throughout its development has been invaluable, and
these cycles of release, testing, and bug fixing have helped keep MeasureIt-
ARCH’s development focused as and act of craft, reinforcing what Richard
Sennett refers to as ‘An Experimental Rhythm of Problem Solving and
Problem Finding.’68 The engagement that these videos have fostered both
through their existence onYouTube and through their sharing on the ‘Blender.
Today’ forums have led to meaningful improvements to MeasureIt-ARCH,
suggested by the community, that would not have occurred otherwise.

Figure 51: A Still from the ’MeasureIt-ARCH V0.3 Update Video’
Published on YouTube

68Sennett, The Craftsman

118

Cress

Community Bug Fixing
“”Somebody finds the problem,” he says, ”and somebody else
understands it. And I’ll go on record as saying that finding it is
the bigger challenge.”” - Eric S. Raymond69

“The open relation between problem solving and problem finding,
as in Linux work, builds and expands skills, but this can’t be a one
off event. Skill opens up in this way only because the rhythm
of solving and opening up occurs again and again.” - Richard
Sennett70

While the majority of engagement with the project was generated through
YouTube and ‘Blender.Today’, both of these sources directed users who
experienced any issues with the software to report their problems via
MeasureIt-ARCH’s GitHub page.71 This GitHub page has served as the
central hub for bug reports and feedback on MeasureIt-ARCH. Utilizing
GitHub has helped to keep the management of the project as open and
transparent as possible, by allowing those interested in the project to access
the latest development version at any time. It has also provided a central
location for the management of submitted bug reports, issues, and feature
requests. Testers of MeasureIt-ARCH’s public releases who reported and
documented the following bugs andwere essential to their identification and
eventual fixes.

Cross Operating System Compatibility
The first release of MeasureIt-ARCH would not run at all on the Apple
operating system ‘macOS’. Thanks to several issue reports by early users the
cause of this incompatibility was quickly identified and addressed. The issue
was due tomacOS’s lack of support for several of the OpenGL functions that
the first release of MeasureIt-ARCH depended on. Namely the ‘glLineWidth’
utility was not available. When used on operating systems that do support
it’s functionality ‘glLineWith’ provides a simple method to draw lines thicker
than one pixel. The need to accommodate macOS’s lack of OpenGL support
to ensure compatibility eventually led to the development of MeasureIt-
ARCH’s Geometry Shader which handles the drawing of line thickness. As
a sole developer working on a Windows PC, this bug would not have been
identified without the help of community testers.

69Raymond, The Cathedral & the Bazaar
70Sennett, The Craftsman
71KevanCress, “MeasureIt-ARCH Issues,” n.d., https://github.com/kevancress/MeasureIt-

ARCH/issues?utf8=%E2%9C%93&q=

119

https://github.com/kevancress/MeasureIt-ARCH/issues?utf8=%E2%9C%93&q=
https://github.com/kevancress/MeasureIt-ARCH/issues?utf8=%E2%9C%93&q=

MeasureIt-ARCH

MeasureIt-ARCH’s Text Drawing System
One of the most significant bugs identified by public testing was a flaw
in MeasureIt-ARCH’s text drawing system. MeasureIt-ARCH draws text in
3D by rendering the text first to a 2D texture in an offscreen pixel buffer,
and storing this texture data as array in the MeasureIt-ARCH element’s
properties. When it this element is drawn in 3D the texture data is read
back to an OpenGL buffer, and mapped to a card placed in the 3D scene.
In MeasureIt-ARCH’s first release however, instead of storing the texture
data as a property of the MeasureIt-ARCH element, it was written directly
to an indexed OpenGL texture on the GPU. This implementation worked
but would fail sporadically and unexpectedly, as some of MeasureIt-ARCH’s
indexed textures would occasionally be overwritten by elements of the
Blender User Interface, which also makes use of indexed OpenGL textures
to display components of the UI such as colour wheels or the top header
bar. When these textures were overwritten users would find their dimension
text replaced either by black boxes, or by oddly distorted chunks of Blender’s
UI. Since the bug was sporadic however, it was difficult to reliably reproduce
on my own, but the thorough reporting and documentation of this bug by
an early tester of MeasureIt-ARCH was essential to tracking down its cause,
and developing its eventual solution.

Figure 52: Image from an Error Report Submitted by a MeasureIt-ARCH User
This image shows corrupted MeasureIt-ARCH text textures. Note one dimension’s
text has been overwritten with the UI texture that displays Blender’s colour wheel UI

element

120

Cress

Modifier Instability
As we have discussed previously MeasureIt-ARCH elements generally
reference an object’s vertex indices to determine their location and how they
are anchored to the geometry, rather than storing their absolute position
in 3D space. While this allows dimensions and linework to adapt to
changes in the object they reference, it also means that conducting an
operation in Blender that re-orders the vertex indices of an object can
cause MeasureIt-ARCH elements to break or shift unexpectedly. In past
versions of MeasureIt-ARCH, this meant that some of Blender’s procedural
modifiers, like the Boolean modifier, would result in erratic behaviour from
MeasureIt-ARCH elements. However, through community testing we were
able to identify which of Blender’s modifiers would recalculate an objects
vertex indices and provide an option that users could enable to prevent the
problematic modifiers from being evaluated when determining the position
of a MeasureIt-ARCH elements anchor points. The effect of these modifiers
can still be evaluated for the mesh object itself, but this no longer impacts
the placement of MeasureIt-ARCH elements. Enabling this option makes
working with Boolean modifiers and other generative modifiers much more
stable.

While this has solved the issue of erratic behavior of MeasureIt-ARCH
elements when using procedural systems like Blender’s modifiers, there
is still work to be done to develop a solution to maintain consistent and
reliable dimension positions during more general non-procedural mesh
editing operations that cause a re-ordering of an object’s vertex indices.

In addition to the bug fixes, user feature suggestions have also led to the
implementation of better unit formatting, and the unification of Blender and
MeasureIt-ARCH’s unit systems. Community engagement has resulted in
the creation of a public project planning board on the GitHub platform to
manage and prioritize community feature suggestions, as well as my own
development plans for the MeasureIt-ARCH tool.72

72Kevan Cress, “MeasureIt-Arch Project Board,” n.d., https://github.com/kevancress/
MeasureIt-ARCH/projects/2.

121

https://github.com/kevancress/MeasureIt-ARCH/projects/2
https://github.com/kevancress/MeasureIt-ARCH/projects/2

SECTION 5:
Specification Evaluation

122

Cress

Requirements Specification Evaluation
While many of MeasureIt-ARCH’s implemented features have been men-
tioned throughout our discussion of MeasureIt-ARCH’s development, this
section provides a complete summary of all of MeasureIt-ARCH’s current
features, and evaluates it’s current state as compared to our specification
outlined in section one. Each feature’s implementation has been rated, based
on how it compares with the original specification, with one of the following
terms:

Fully Implemented: All features, as identified in the specification are
currently implemented.

Substantially Implemented: The majority of features identified in the
specification are currently implemented, with a few remaining improvements
to be made.

Partially Implemented: A portion of features, or a proof of concept, is
currently implemented in MeasureIt-ARCH.

Not Yet Implemented: No portion of this feature, as defined in the
specification, has yet been Implemented.

In Active External Development: No portion of this feature, as defined in
the specification, has yet been Implemented inMeasureIt-ARCH, but is under
active development in another add-on, or by another member of the Blender
community.

Images sequences illustrating the feature’s current performance on simple
geometry have been provided. To see the behaviour of MeasureIt-ARCH
in video form, please see the two video releases that have been published
alongside MeasureIt-ARCH’s public test releases.,73,7475 To experiment
with MeasureIt-ARCH’s features and limitations yourself, please see the
installation guide and documentation presented in Appendix B.

73MeasureIt-ARCH Introduction - YouTube, 2019, https://www.youtube.com/watch?v=QL_
ArANpsVU&t=90s.

74MeasureIt-ARCH Rough Demo Timelapse - YouTube, 2019, https://www.youtube.com/
watch?v=lHI78SDB8bs.

75MeasureIt-ARCHVersion 0.3Update - YouTube, 2019, https://www.youtube.com/watch?
v=MWo87QvcEPk&t=2s.

123

https://www.youtube.com/watch?v=QL_ArANpsVU&t=90s
https://www.youtube.com/watch?v=QL_ArANpsVU&t=90s
https://www.youtube.com/watch?v=lHI78SDB8bs
https://www.youtube.com/watch?v=lHI78SDB8bs
https://www.youtube.com/watch?v=MWo87QvcEPk&t=2s
https://www.youtube.com/watch?v=MWo87QvcEPk&t=2s

MeasureIt-ARCH

Feature Requirements
Line Drawing
Priority: Necessary

Status: Fully Implemented

Current Features:

• Users can specify edges of their 3D Geometry to be drawn as simple lines
• Lines can have their weight, colour, and style (solid or dashed) specified by the user
• Lines occluded by geometry can be visually distinct, differentiated by colour and
dashes

• Lines can be specified to represent the silhouette of an object and can be made
visually distinct with unique colour and line weight

• Lines created in the same operation are collected as a line-group, and share
common properties (colour weight etc.)

• Lines can have a specified “overextension”. Overextension extends a line beyond
themesh edge it references. This effect provides a simple imitation of hand drafted
linework if that style is desired. (Figure 58)

Figure 53: Image Sequence of MeasureIt-ARCH Linework, on a Rotating Cube

124

Cress

Figure 54: Image Sequence of MeasureIt-ARCH Hidden Linework, on a Rotating Cube

Figure 55: Image Sequence of MeasureIt-ARCH Silhouette Linework, on a Rotating Cube

125

MeasureIt-ARCH

Figure 56: Image Sequence Showing all Three MeasureIt-ARCH Line Behaviours on a Rotating
Cube

Figure 57: MeasureIt-ARCH Silhouette Lines
A progression showing how the display of Variable Silhouette lines change as the Z-Offset value

is adjusted

126

Cress

Figure 58: MeasureIt-ARCH Line Overextension.
From left to right, the extension values shown are 0.0, 0.05, 0.1, 0.15

Figure 59: MeasureIt-ARCH Linework and Silhouettes Applied to a GIS Model
The city shown is Sudbury Ontario. Massing models provided by Open Street Map

127

MeasureIt-ARCH

Automated Line Group Creation
Priority: Necessary

Status: Partially Implemented

Current Features:

• An automated system is provided to automatically initialize MeasureIt-ARCH line
groups based on creases in mesh geometry that are greater than a user specified
threshold angle.

• This automated line group creation system can also identify and create linework
on non-manifold edges.

Remaining Features:

• Line Groups can not yet be automatically generated based on:
• Material boundaries

Figure 60: Line Group by Crease Operator Behaviour.
A cube with one rounded corner drawn with (left) MeasureIt-ARCH linework on all mesh edges.
(center) MeasureIt-ARCH linework generated by the Line Group by Crease Operator using a

crease threshold angle of 10 degrees. (right) MeasureIt-ARCH linework generated by Line Group
by Crease Operator using a crease threshold angle of 30 degrees

128

Cress

Annotations
Priority: Necessary

Status: Substantially Implemented

Current Features:

• Annotations can display multiple lines of user-entered text
• Annotations are anchored to a user specified mesh vertex, object origin, or an
empty object

• Annotation leader lines conform to ISO 129-1 Section 5.5
• Annotations have user-defined:

• Font
• Font Size
• Color
• Alignment (Left, Right, Top, Bottom)
• Leader Line Weight
• End Cap

• Annotations can display user definedmetadata about the object they are anchored
to.

Remaining:

• While Annotations can display user-defined Metadata, they cannot yet display the
assigned material of their anchor object without manual entry.

Beyond the Spec:

Future development on MeasureIt-ARCH annotations could focus on:

• Support for the display of common architectural symbols

Figure 61: MeasureIt-ARCH Annotations.
(left) arrow endcap, (center) dot endcap, (right) no endcap

129

MeasureIt-ARCH

Aligned Dimensions
Priority: Necessary

Status: Fully Implemented

Current Features:

• Aligned Dimensions measure the distance between two points in 3D space. These
two points can be;

• Object Origins
• Vertices
• Empty Objects
• Light Objects
• Camera Objects

• Aligned Dimension extension lines are always placed perpendicular to the line they
measure (ISO-129-1 Section 5.4)

• Aligned Dimensions have user-defined:
• Font
• Font Size
• Color
• Rotation (taking the line being measured as the axis of rotation)
• Leader Line Weight
• Terminations (According to ISO 129-1 Section 5.3.2)

Figure 62: MeasureIt-ARCH Dimension Terminations.
From Left to Right: None, Arrow, Filled Arrow, Dashed

130

Cress

Figure 63: Image Sequence Showing a MeasureIt-ARCH Aligned Dimension’s Behaviour when
Attached to a Rotating Cube

131

MeasureIt-ARCH

Single Axis Dimensions
Priority: Necessary

Status: Substantially Implemented

Current Features:

• Single Axis Dimensionsmeasure the distance between two points in 3D space, but
only along a specified Axis. These two points can be;

• Object Origins
• Vertices
• Empty Objects
• Light Objects
• Camera Objects

• Single Axis Dimensions are always placed perpendicular to the axis along which
they measure

• Single Axis Dimensions have user-defined:
• Font
• Font Size
• Color
• Line Weight (for the leader lines)
• End Cap (arrows or dashes at the ends of the dimension line)

• The axis of measure for a Single Axis Dimension can be:
• Any cardinal Axis (X, Y, Z)

Remaining Features: + Currently, Axis Dimensions only support themeasurement along
a cardinal Axis (X, Y, or Z). Future development could focus on adding support to allow
for measurements to be taken along any arbitrary user-defined axis.

132

Cress

Figure 64: Image Sequence Showing a MeasureIt-ARCH Axis Dimension’s Behaviour when
Attached to a Rotating Cube

133

MeasureIt-ARCH

Angle Dimensions
Priority: High

Status: Substantially Implemented

Current Features:

• Angel Dimensions measure the angle between two lines, defined by three points.
• Angle Dimensions are aligned in-plane with the 3 points that define them.
• Angle Dimensions can have user-defined:

• Font
• Line Weight
• Color
• Font Size
• Radius

• Angle Dimensions can display their measurement in degrees or radians depending
on Blender’s unit settings.

• Angle Dimensions can display either the non-reflex (between 0 and 180 degrees
65) or reflex (greater than 180 degrees 66) angles defined by the 3 points.

Figure 65: Angle Dimensions at 30 Degree Increments

134

Cress

Figure 66: Reflex Angle Dimensions at 30 Degree Increments

Figure 67: Angle Dimensions on a Cube (left) and Deformed Cube (right)

135

MeasureIt-ARCH

Arc Dimensions
Priority: High

Status Substantially Implemented

Current Features:

• Arc Dimensions measure the Radius (ISO 129-1 Section 7.3) and Arc Length (ISO
129-1 Section 7.6) of an Arc, defined by 3 points, where points 1 and 3 are the
extremes of the arc.

• Arc Dimensions are aligned in-plane with the 3 points that define them.
• Arc Dimensions can have user-defined:

• Font
• Line Weight
• Color
• Font Size
• Radius
• Endcaps

Remaining Features:

• Add a toggle to allow for the display of only the radius, or only the arc length if
desired.

• Add an option to display the arc length in degrees or radians

Figure 68: Arc Dimensions at 30 Degree Increments with a Radius of 100cm (0 - 180 degrees)

136

Cress

Figure 69: Arc Dimensions at 30 Degree Increments with a Radius of 100cm (180 - 360 degrees)

137

MeasureIt-ARCH

Room Area Tags
Priority: Medium

Status: Not Implemented

Schedules & Reporting
Priority: Medium

Status: Not Implemented

Title Blocks
Priority: Medium

Status: Not Implemented

138

Cress

General Requirements
Style System
Priority: Necessary

Status: Substantially Implemented

Current Behaviour:

• Styles are available for all MeasureIt-ARCH elements.
• Styles define the visual properties of that element type. Typically properties such
as:

• Color
• Font
• Line Weight

• Style use is user-defined on a per-element basis.
• The Styles UI is visually similar to its corresponding element type’s UI panel
• A default style, that is applied to all new elements on creation, can be defined by
the user.

Remaining Features: Not all styled properties can be overridden on a per-element basis,
currently only a dimension’s preferred view plane and camera visibility can be overridden
per element. Some inspiration for the future development of this override system could
be taken from the library override system currently being developed for linked data
planned for a future release of Blender.

3D Integration
Priority: High

Status: Fully Implemented

Current Behaviour:

• All MeasureIt-ARCH elements are placed directly in 3D space, and do not require
conventional 2D reference systems such as a ‘work plane’ or ‘paper space’

• All MeasureIt-ARCH elements have an ‘In Front’ drawing option, which if selected
allows the element to ignore occlusion and draw in front of all geometry in the
scene.

139

MeasureIt-ARCH

Gizmo Implementation
Priority: Medium

Status: Partially Implemented

Current Behaviour: Accomplishing Gizmo Implementation for MeasureIt-ARCH has
been challenging, as access to Blender’s gizmo system through the Python API is
mostly undocumented. Currently, gizmos for manipulating a dimension’s offset, and
annotation’s offsets, and an annotation’s rotation have been implemented by examining
Blender’s source code, and the few existing Gizmo template examples, in an attempt to
understand the API implementation. However, many other properties could still benefit
from gizmo support.

Figure 70: Dimension Offset Gizmo Behaviour.
(from left to right) Gizmo enabled. Gizmo displays tool tip on mouse hover. Click and drag to

adjust gizmo property. Gizmo Released to confirm change.

140

Cress

Adaptive Behaviour
Priority: High

Status: Substantially Implemented

Current Behaviour:

• MeasureIt-ARCH lines adjust their appearance depending on their occlusion and
silhouette state.

• MeasureIt-ARCH text automatically adjusts its orientation to remain legible to the
user. (Figure 74) (See ISO-129-1 Section 5.6.2 Figure 23 for comparison)

• Aligned and axis dimensions adjust their placement to remain in the users view if
possible. (Figure 71)

• MeasureIt-ARCH dimension text and termination symbols adjust their placement
to avoid overlapping. (Figure 75)

Remaining: While MeasureIt-ARCH’s dimensions and text both exhibit adaptive
behaviour, annotations are not yet capable of the kind of automatic positioning that
MeasureIt-ARCH’s dimensions display. Future development could explore having
annotation text rotate to stay parallel to the desired camera or viewport to improve
annotation workflows.

Figure 71: Aligned Dimension Placement Behaviour.
Image sequence showing MeasureIt-ARCH’s Aligned Dimension placement behaviour. Note that
the dimension position interpolates from being in plane with the cube’s top face, to being in plane

with the cubes side face, as the cube’s orientation relative to the viewport changes

141

MeasureIt-ARCH

Figure 72: A Cube with an Aligned Dimension, Viewed from Two Different Viewports
Simultaneously.

Note that the dimension can draw in two different positions in two different viewports,
simultaneously, depending on the observer’s position in that viewport.

Figure 73: Image Sequence Showing MeasureIt-ARCH’s Text Orientation Behaviour.
Note that the text flips between the third and fourth image in the sequence once it rotates past

the acceptable threshold.

142

Cress

Figure 74: Dimension Text Orientation Shown at 30 Degree Intervals

Figure 75: MeasureIt-ARCH Dimension Text Placement.
A dimension’s text and termination arrows automatically adjust their placement to avoid

overlapping.

143

MeasureIt-ARCH

‘Real Time’ Responsive Performance
Priority: High

Status: Substantially Implemented

Current Behaviour:

• MeasureIt-ARCH’s line drawing system averages between 50 to 70ms per frame to
draw 525,312 line segments (59.6ms / framemeasured using Python’s time.time()
function averaged over 100 frames. 53.2 ms / framemeasured with Blender’s built
in Redraw Time, averaged over 10 frames).

Remaining:

• Draw call batching and caching should be implemented for MeasureIt-ARCH
dimensions to help improve their draw speed.

Animated Properties
Priority: High

Status: Fully Implemented

Description: Building MeasureIt-ARCH within Blender exposes all of its properties to
Blender’s animation system. Any MeasureIt-ARCH property can be animated. These
animated properties can be used for simple tasks, like toggling the visibility of drawing
elements, or more complex animations can be produced, like the one shown below.

Figure 76: Animated Sequence of MeasureIt-ARCH Elements
From ’MeasureIt-ARCH Version 0.3 Update’

144

Cress

Hybrid Rendering
Priority: High

Status: Substantially Implemented

Current Behaviour: All elements created by MeasureIt-ARCH are drawn as an overlay
overtop of any of Blender’s existing render engines in the viewport. When rendered
MeasureIt-ARCH elements are drawn to a .png image file, that can be composited over
Blender’s render passes. As an overlay, MeasureIt-ARCH can facilitate hybrid forms
of representation that make use of Blender’s diverse options for stylistic or realistic
rendering.

Remaining: MeasureIt-ARCH data is currently rendered as it’s own image layer, which
can be composited over the output of any of Blender’s render engines. While this
MeasureIt-ARCH layer is automatically composited over Blender viewport when working
in the 3D scene, exporting a final rendered image requires manual set up in Blender’s
compositor (Figure 79). Further work could be done on integrating MeasureIt-ARCH’s
output directly with Blender’s existing render passes, however work on this front is
currently limited by the functions available in Blender API for manipulating the data in
Blender’s render passes. A possible solution would be to automatically generate the
compositing setup required for the final render before rendering. Further development
could also look at allowing each ofMeasureIt-ARCH’s element types to render to a unique
render pass (or compositing pass) as well.

Figure 77: MeasureIt-ARCH Linework and Dimensions Overlaid on Three Distinct Rendering
Styles.

(left) Flat shaded, (center) Stylized water color shading (right) Realistic Brick

145

MeasureIt-ARCH

Figure 78: A Small Pavilion with MeasureIt-ARCH Linework and Dimensions, Rendered in Two
Styles

Design inspired by the works presented in ’KIOSK’ by Owen D. Pomery

76

Figure 79: MeasureIt-ARCH Render Compositing Setup

76Owen D. Pomery, KIOSK (Architecture Research Press, 2018), https://owenpomery.com/kiosk

146

https://owenpomery.com/kiosk

Cress

Instancing Support
Priority: Medium

Status: Partially Implemented

Description: Taking advantage of Blender’s linked data capabilities, MeasureIt-ARCH
annotations and line groups are able to be instanced, within the same Blender file or
across multiple files, along with their host object. However, the current implementation
does not support the instancing of dimensions. Dimension instancing is possible;
however, the current system for drawing dimension text is not able to account for local
changes in the scale or rotation of an instanced object when updating the dimension’s
text. To avoid the display of incorrect information, dimension instancing has been
disabled until these errors can be fixed.

Full Instancing support, though outside of the primary objective of this thesis, is a
significant priority for post-thesis improvements toMeasureIt-ARCH. A proper instancing
system could begin to facilitate workflows closer to that of a BIM Level 2 capable
software, allowing users to create linked libraries of objects that would function similarly
to Revit’s families.

Figure 80: MeasureIt-ARCH Linework and Dimension Instancing.
(Left) Original object, (Center) Correct instance, no local rotation or scaling (Right) incorrect

instance, local rotation and scaling are not accounted for in the dimension text.

147

MeasureIt-ARCH

Interoperability
Priority: Medium

Status: In Active External Development

Description: Although import and export functionality was not a direct focus of
MeasureIt-ARCH’s development during this thesis, it is a high priority for ongoing
development. Fortunately, Blender’s existing Import capabilities are quite strong. Blender
currently supports the import of .dxf AutoCAD data, and .obj , .fbx , .3ds , and .dae files
for the import of general-purpose 3D models. Blender also has rudimentary support for
the importing of .ifc files thanks to the IfcOpenShell importer,77 although the imported
model does not currently maintain the class structures of the IFC standard.

Blender’s weakness in this area is its export capacity. While it supports the export of
many general purpose 3D model formats, like those mentioned above, there has been
no capacity for the export of BIM data through IFC. However, Dion Moult, an architect
from Sydney, Australia is currently in the process of creating an .ifc exporter,78 and as
of October 1st has been in touch about the possibility of integrating its support with
MeasureIt-ARCH79

In addition to the IFC support, some future development focus should be given to the
conversion of MeasureIt-ARCH elements to a viable vector format to allow for editing
in external packages. Currently MeasureIt-ARCH elements can only be rendered out as
raster graphics. The .svg file format seems like the best candidate here.

77IfcOpenShell, “IfcOpenShell,” accessed October 7, 2019, http://ifcopenshell.org/.
78Dion Moult, “Blender IFC Exporter,” GitHub, accessed October 7, 2019, https : / / github . com /

IfcOpenShell/IfcOpenShell.
79DionMoult,MeasureIt-ARCH Features & Suggestions - Comment, DionMoult, 2019, https://github.com/

kevancress/MeasureIt-ARCH/issues/4#issuecomment-536822024.

148

http://ifcopenshell.org/
https://github.com/IfcOpenShell/IfcOpenShell
https://github.com/IfcOpenShell/IfcOpenShell
https://github.com/kevancress/MeasureIt-ARCH/issues/4#issuecomment-536822024
https://github.com/kevancress/MeasureIt-ARCH/issues/4#issuecomment-536822024

Cress

Scaled Camera Space
Priority: High

Status: In Active External Development

Description: Scaled Camera Space functionality has not been added directly to
MeasureIt-ARCH at this point. However, I have previously implemented support for these
features, as outlined in the specification, in Blender as part of the ‘Per Camera Resolution’
add-on created in the summer of 2018.80 Merging the two add-ons in future development
could allow for further quality of life improvements to MeasureIt-ARCH, allowing font
sizes and line weights to be aware of, and impacted by, the intended paper size and
scale.

Figure 81: The Current UI for the ’Per Camera Resolution’ Add-on

80Kevan Cress, Per Camera Resolution, 2018, https://github.com/kevancress/per_camera_resolution.

149

https://github.com/kevancress/per_camera_resolution

MeasureIt-ARCH

Summary
In its current state, MeasureIt-ARCH has reached Substantial Implementa-
tion or more on the majority of its necessary and high priority targets. As
we will see in the drawings produced for the Lodge at Pine Cove, presented
in the following section, the current state of MeasureIt-ARCH is capable of
producing simple working drawings for small scale architectural projects.
This, in itself, is a significant step forward for Blender’s capacity for use
as an Open Source architectural platform. That being said, our evaluation
of the proposed specification shows that there is still significant room for
improvement. Yet, the recent communication with other interested parties,
such as Dion Moult, and the feedback from the Blender community through
MeasureIt-ARCH’s GitHub, shows a potential way forward that might begin
to address the future high priority issues like Interoperability.

150

SECTION 6:
Testing and Implications

152

Cress

Testing and Implications Overview
Now that we’ve discussed what Blender and MeasureIt-ARCH are, what
features they have, and how MeasureIt-ARCH was developed, the Testing
and Implications section steps through three examples of how Blender and
MeasureIt-ARCH might begin to be applied in architectural work.

First, we’ll look at a direct application of Blender & MeasureIt-ARCH’s current
state. Showing how MeasureIt-ARCH’s tools were used to produce several
renovations drawings for the Lodge at Pine Cove.

Second, we’ll take a look at how Blender and MeasureIt-ARCH can be
augmented with other Add-ons to interface and communicate with other
computational systems. To illustrate this possible future potential, a simple
but dynamic simulation of the Noosphere at the Futurium in Berlin by Philip
Beesley Architects Inc. has been developed as a proof of concept.

Finally, we’ll revisit the software challenges facing today’s Open Source
Architecture (OSArc) projects, that we touched on in the motivations section
of this thesis. We’ll look at the WikiHouse project, and use their relation to
software as a case study for how an Open Source design platform might
help OSArc projects meet their goal of genuinely Open Source design.

These three provocations are intended to pique the reader’s curiosity,
and prompt discussion about directions for MeasureIt-ARCH’s continued
development after the completion of this thesis.

153

MeasureIt-ARCH

Continuing Work with the Lodge at Pine
Cove
As mentioned in the motivations section of this thesis, my earlier work
with the Lodge at Pine Cove in the summers of 2016 and 2017 helped
me to identify Blender’s potential strengths and weakness when used in a
small scale architectural project. The design of two 1,000 sq. ft. Modular
cottages during that time period showed Blender’s capability for modeling
and rendering, but also it’s lack of available toolset for the creation of
technical drawings, as we have discussed.

Thanks to the continued support of Alex Strachan and Daniel Viirtella of
Pine Cove, I have had the opportunity to continue to work on design
projects for the Lodge and utilize these projects as a practical testing
ground for MeasureIt-ARCH during its development. To date, Blender and
MeasureIt-ARCH have been used to design and produce preliminary plans
and visualizations for eight upcoming renovations to existing Pine Cove
Cottages, as well as preliminary construction drawing for the six of these
additions. In addition to these renovation drawings, MeasureIt-ARCH and
Blender have been used to produce the preliminary designs for a new Sauna
for the Lodge (although whether the design presented in this thesis or an
alternative floating sauna design will be chosen for actual construction
remains to be seen).

Figure 82: Pine Cove Sauna - Cut Perspective, Overlaid with MeasureIt-ARCH
Dimensions and Annotations

154

Cress

Production Driven Improvements to
MeasureIt-ARCH
The production of these technical drawings for the Lodge at Pine Cove
has helped greatly to improveMeasureIt-ARCH throughout it’s development.
Using MeasureIt-ARCH in a production settings helped to challenge my own
assumptions about how MeasureIt-ARCH’s tools should be developed and
how they should function. Some of the key improvements to MeasureIt-
ARCH inspired through it’s testing in the creation of the Pine Cove cottage
drawings include;

The Line Group by Crease Operator
Attempting to use an early version of MeasureIt-ARCH to produce Linework
for one the Pine Cove renovation drawings helped motivate the creation of
the ‘Line Group by Crease’ operator, as it quickly became apparent when
working to a deadline that MeasureIt-ARCH’s direct selection method for
the creation of Line Groups was far too time consuming and tedious to be
the only method for Line Group creation. Instead it became apparent that a
workflow that made use of the automated ‘Line Group by Crease’ operator
to initially identify major feature lines, which could then be tweaked with the
direct selection operators was a much more efficient workflow.

Empty Object Support
A frequent task during the creation of the Pine Cove cottage drawings
was the need to create annotations that were not attached to any object’s
geometry. These ‘floating annotations’ were useful for adding general notes
to a drawing, and for labeling room areas (as a dedicated room area tag has
not yet been implemented). With early versions of MeasureIt-ARCH floating
annotationswere achieved by anchoring an annotation to amesh object that
contained only a single vertex, but this was somewhat cumbersome and
time consuming to set up.

To solve this, support was added to allow MeasureIt-ARCH elements to
anchor to Blender’s ‘Empty’ object type. Empties are objects that have no
mesh data, but appear in Blender’s 3D view as a simple user defined shape.
Empties are simple for the user to select, move, and rotate in the 3D scene,
but they don’t appear in any of Blender’s output renders, which makes them
an ideal anchor for floating annotations.

Tomake the creation of these floating annotations as simple as possible, an
option was added to the ‘Add Annotation’ operator that would facilitate their
creation. If the ‘Add Annotation’ operator is run when no object in the scene

155

MeasureIt-ARCH

is selected, the operator creates an Empty object at the users cursor location
and anchors a new annotation to it. This new annotation’s text is centered on
the Empty with no leader line, making it ready to use as a floating annotation.

Support to allowMeasureIt-ARCH’s dimensions to anchor to Blender’s Empty
objects was also added. This allows for dimensions that are not tied directly
to an objects mesh geometry if the user desires. This can be used to make
‘floating dimensions’ that can be used as a sort of quick ruler in the 3D scene,
or for representing datum lines.

Multi Line Annotations
Using annotations to add notes to drawings also required annotations to
support multiple lines of text. This required a refactoring of MeasureIt-
ARCH’s text drawing system to support multiple text fields per MeasureIt-
ARCH element. In the annotation settings, an operator is provided that
gives users the option to add or remove text fields from MeasureIt-ARCH
annotations, allowing formultiple lines of text to be entered anddisplayed per
annotation. Due to MeasureIt-ARCH’s inheritance structure, this support for
multiple text fields is now also available for dimensions as well, however no
UI options have been added yet to let users access this functionality. In the
future this could be expanded to allow users to add custom text to dimension
objects.

156

Cress

Blender and MeasureIt-ARCH; Hybrid Workflows
Work on the Pine Cove cottage drawings also helped to develop workflows
for integrating MeasureIt-ARCH elements with Blender’s rendering capabili-
ties, informing practices that allow Blender’s internal system to work in con-
cert with MeasureIt-ARCH to allow for quick transitions between rendered
visualization and dimensioned drawing. The two main techniques used to
create the Pine Cove cottage drawings are;

Style Specific Render Engine Setups
A tremendously useful feature of Blender’s material system allows each
material to have a customized unique output for each of Blender’s three
render engines. What this allows us to achieve is a workflow where we
tailor our materials to achieve a unique style in each render engine. Once
our materials have been set up, we can switch between visual styles with
the change of a single setting. In the workflow developed for the Pine
Cove cottage drawings, this set up was used to create a single model
that could quickly transition from a rendered presentation model, to a flat
shaded technical drawing. To achieve this, materials were set up to output a
textured and shaded appearance when Blender’s EEVEE render engine was
enabled, and to output a plain white flat shaded appearance when Blender’s
Workbench render engine was enabled. MeasureIt-ARCH elements can be
composited over both of these styles if desired.

Boolean Cutting
Once MeasureIt-ARCH elements had been updated to function in a stable
manner with Blender’s Modifier system, it was possible to use Blender’s
boolean modifier to create plan and section cuts. To set this up, we create
a mesh object that will act as our cutting volume, and assign all of the
objects we want to be cut a boolean modifier that will procedurally conduct
a boolean difference operation with our cutting volume. With this set up we
can move our cutting volume however we like and see the resulting plan or
section cut in real time, also since Blender’s modifiers are ‘non-destructive’
we can simply disable our boolean modifier, or move the cutting volume
away from our objects to restore our model to it’s un-cut state. We can also
take advantage of another of Blender’smaterial properties to further improve
our plan and section cuts.

The cut faces of a Blender object that has been effected by a Boolean
modifier will inherit the material assigned to the cutting volume, so if we
assign a black flat shaded material to our cutting volume, Blender will

157

MeasureIt-ARCH

procedurally apply this material to any cut face. This technique can be used
to quickly and procedurally adjust the location and appearance of plan and
section cuts in our Blender model, over which our MeasureIt-ARCH drawing
elements can be composited.

Figure 83: Pine Cove Sauna - Conceptual Plan
Linework and dimensions drawn by MeasureIt-ARCH

158

Figure 84: Pine Cove Sauna - Conceptual Render
Blender EEVEE render overlaid with a MeasureIt-ARCH plan and section.

159

MeasureIt-ARCH

The Example Project
The Blender scene file for the version of the Sauna project used to produce
the images presented in this thesis is publicly available in the Demo Files
folder of MeasureIt-ARCH’s GitHub repository. This demo serves as an
illustration of how dimensioned plan, section and elevation drawings, as well
as presentation renders, can all be generated in the same scene, from the
same 3D model using Blender and MeasureIt-ARCH.

Drawing Examples
The drawings presented on the following pages provide a sampling of the
work done for Pine Cove with Blender and MeasureIt-ARCH

160

Figure 85: Paul Kane Cottage - Proposed Renovation Plan, with MeasureIt-ARCH Drawing Elements.

161

Figure 86: Paul Kane Cottage - Proposed Renovation Plan, without MeasureIt-ARCH Drawing Elements.

162

Figure 87: Two Additional Proposed Pine Cove Cottage Renovation Plans with MeasureIt-ARCH Drawing Elements.

163

MeasureIt-ARCH

Dynamic Data and Linkages
Our second test with Blender and MeasureIt-ARCH is a simple dynamic
visualization of theNoosphere installation at the Futuriumcenter in Berlin, by,
the Living Architecture Systems Group (LASG) and Philip Beesley Architect
Inc. (PBAI) Thanks to support by Philip Beesley, Matt Gorbet, Michael
Lancaster, and others from the LASG and PBAI, a system was developed
to allow the ‘brain’ of the Futurium Noosphere, written in the Processing
programming language, to communicate directly with Blender over the Open
Sound Control (OSC) Network protocol to drive various properties of a
Blender visualization. This visualization helps to highlight MeasureIt-ARCH’s
annotation system, namely its ability to draw from custom metadata and
update to changes in thatmetadata in real-time, evenwhen that data is being
driven from external sources. It also illustrates the potentials that arise from
chaining together multiple Open Source Add-ons and external sources using
Blender as a common platform.

The Futurium Noosphere and the Processing
Simulator
The Futurium Noosphere is a mass of dynamic sensors, actuators and
microprocessors embedded in a body of stretched spars of steel and
acrylic. Mylar fronds and Rebel Star LED’s articulate and pulse in response
to information from the sculpture’s sensors and underlying behaviour
algorithms. Controlling the Noosphere’s behaviour is the Processing
Simulator developed by the team at PBAI. The Processing Simulator
drives the actuators of the sculpture, communicating with the various
microprocessors to receive sensor input, which it interprets based on
its behaviour algorithms before returning an action for the actuators.
However, this dual function piece of software doesn’t only drive the physical
sculpture. It also provides a digital symbolic representation of the sculpture’s
sensors and actuators. The Processing Simulator tries to mimic its
physical counterpart as closely as possible, communicating with its virtual
microprocessors using the OSC network protocol, just as it does with the
physical sculpture. This virtual double of the Futurium Noosphere allows
the team at PBAI to explore and simulate adjustments to the sculpture’s
behaviour before the sculpture’s physical construction, and see its behaviour
represented symbolically.

The Processing Simulator is, as its name suggests, coded in the processing
programming language. It is a purpose-built, from the ground up, 3D

164

Cress

environment. The simulator gives the team at PBAI very fine-grained control
of the sculpture’s behaviour code but results in a somewhat symbolic,
abstracted representation of sculpture. This level of abstraction is ideal for
a control interface, but a visualization of higher visual fidelity, presented in
tandemwith the Processing Simulator could help simulate and give the team
at PBAI some feedback on the more qualitative aspects of the sculpture’s
nature. As a proof of concept to show howBlender &MeasureIt-ARCHmight
be able to create this kind of high fidelity simulation, the following exercise
was conducted.

Figure 88: The Futurium Noosphere as Represented in the Processing Simulator

165

MeasureIt-ARCH

The OSC Parser
To allow Blender and MeasureIt-ARCH to receive data from the Processing
Simulator, Blender needed to be able to speak the same language as the
Noosphere sculpture, that is, It needed to be able to communicate using
the OSC (Open Sound Control) network protocol. Implementing basic OSC
support was accomplished using JPfeP’s Blender OSC Communication add-
on.81 This add-on provides essential support for the receiving of OSC
messages. However, its implementation didn’t support the style of OSC
messaging necessary to communicate with the Processing Simulator.

An OSC message consists of 3 major parts;

1. A client that will receive the message
2. An OSCmessage address,
3. The data that the message contains

The challenge of implementing OSC in Blender is defining how these last
two parts of the message, the message address and data, get interpreted
andmapped onto the Blender properties that you want to control. In JPfeP’s
original add-on, every Blender property that you wanted to control had to be
allocated to its own OSCmessage address. This one-to-onemapping works
fine for simple implementations but does not scale well when dealing with
the volumeand speed ofmessaging necessary for a complicated installation
like the Futurium Noosphere.

Figure 89: Blender UI for a Simple OSC Mapping.
The OSC address ”/blender/1” maps to the location[0] property of the object ”Light”

81JPfep, “Blender AddOSC Addon,” accessed August 17, 2019, http://www.jpfep.net/
pages/addosc/

166

http://www.jpfep.net/pages/addosc/
http://www.jpfep.net/pages/addosc/

Cress

Figure 90: A Simple OSC Test; Virtual Coffee and a Distance Sensor

Rather than sending a unique address and message for every actuator,
the Processing Simulator concatenates OSC data into a single string that
is sent to the microprocessor responsible for setting the properties of
the desired actuators. This helps reduce the number of messages being
sent each second, helps to improve the performance of the simulator and
keeps the sculptures running smoothly, but this messaging structure does
require some extra interpretation on the receiving end. An address from the
Processing Simulator takes this format;

“/CONTROL/FADE_ACTUATOR_GROUPS/393072”_

Where “393072” refers to the particular microprocessor being addressed.
The data sent to that message address might look something like this;

“MO1 36 10 MO2 39 10 MO3 30 10 MO4 20 10 MO5 18 10 MO6
25 10 DR1 65 10 DR2 48 10 DR3 13 10”

This data contains the values to be used by nine actuators. Each actuator

167

MeasureIt-ARCH

value startswith aPrefix that identifies it, for example, “MO1” refers to the first
“Moth” actuator (The vibrating Mylar fronds) while “DR3” would refer to the
third pair of Rebel Star LEDs. The value immediately following the identifying
prefix is the data meant for that particular actuator (MO1 gets set to 36, and
DR3 gets set to 13), and the following value is the expected time between
messages in milliseconds, in this case, 10 ms for all actuators.

To allow Blender to interpret these messages, a Message Parser was added
to JPfeP’s OSC add-on. This parser acts as a sort of stand-in on Blender’s
side for the simulator’s virtual microprocessors. Each parser has a unique
message address, splits the incoming string of data for that address into a
list, and provides a UI to allow the user to specify a unique mapping for each
of the incoming messages prefixes.

Figure 91: Our UI to Parse a Message from the Processing Simulator

168

Cress

Modeling the Futurium Noosphere for
Performance.
Now that we are able to parse and receive messages from the Processing
Simulator, we need amodel of the FuturiumNoosphere that we canmap our
message data on to. The Noosphere is incredibly dense as a digital model,
beingmade up of hundreds of components eachwith complex semi-organic
forms. Thankfully by taking advantage of Blender’s object instancing we
can optimize our digital model of the Noosphere to be suitable for real time
rendering.

Running _testmaxspeed in Rhino on the model of the Futurium Noosphere
provided by PBAI returns an average viewport performance of 2.04 FPS,
which is 489.2 milliseconds per viewport update. To use this model for real-
time rendered data visualization well need to improve on this significantly.
To accomplish this, our Blender model of the Futurium Noosphere can be
broken down to it’s component parts and re-assembled using Blender’s
linked data instancing. First we create a library file containing the five main
components thatmake up theNoosphere. From this library, the components
are linked into the our main Blender file where the simulation will occur,
and each component is attached to an empty placeholder object, generated
from the original Rhino file of the Noosphere. Each of these Empty objects
contains the components correct location and rotation when in position in
the assembled sphere, and instancing the correct component at each empty
leaves us with a fully populated model of the sphere.

Figure 92: The Futurium Noosphere Component Library

169

MeasureIt-ARCH

Once the sphere is assembled from the linked components, we can create
proxy objects of the elements whose properties we would like to drive
from the OSC parser, and who’s values we would like to annotate with
MeasureIt-ARCH. Proxies allow for local changes to an instance of a Blender
object that has been linked from a library file. Once we’ve made Proxies
of the elements we’d like to be able to manipulate, we can assign their
properties to amessage prefix in the OSC parser, and add aMeasureIt-ARCH
annotation to display that properties current value. Currently, MeasureIt-
ARCH annotations can only display data from an object’s custom properties,
and not any of the object’s standard properties. This limitation means
that, for now, we must use Blender’s drivers to synchronize our annotation-
displayed custom property with the object property being controlled by the
OSC input.

Rendered with the EEVEE render engine, with MeasureIt-ARCH overlays, and
OSC input from the Processing Simulator driving four lights, Blender’s debug
timer reports viewport update times that average around 142 milliseconds
per viewport update, roughly 3.5 times faster than Rhino’s basic shaded
viewport. Of course, 7 FPS is still not fast enough to be considered truly ‘real-
time’. However, there are still significant optimizations that could be made,
to the geometry of the Noosphere components, the draw code of MeasureIt-
ARCH, and the property assignment code of the OSC parser, that could all
improve the performance of this visualization.

Figure 93: Rendered Noosphere Visualization with Debug Timings

170

Cress

The WikiHouse Project and Open
Systems Labs
WikiHouse is an ‘Open Source’ architectural project founded by Alastair
Parvin and Nick Lerodiaconou in 2011. The WikiHouse project is a
contemporary attempt to leverage the design talents of the masses to
produce an innovative system for affordable housing.82 Their unique
structural system WREN consists of an assembly of pieces that can be cut
from standard plywood sheets on a CNC router and used to construct a
home. All plans andmodels developed by the project are released for free on
the organizations GitHub and are released under the MPL2.0 license, which
allows collaborators to download and modify their contents as they see fit.

WikiHouse has seen a good deal ofmedia coverage, over a dozen completed
projects,83 and general praise as a project that directly advances local
manufacturing and low-income housing and construction. Whether the
project meets its mandate as an ‘Open Source’ architectural project though
is up for some debate.

The last commit to any of the repositories in the WikiHouse’s GitHub page
was, at the time of my writing, in November of 2018. The projects Slack
channel on the other hand, called WikiHouse-Contributors, sees regular
daily discussion about the project and its development. Sharing the latest
information about the project through slack is somewhat problematic for
an Open Source project however, as slack only allows partial access to the
discussion history of a channel to those without a premium subscription,
although slack is the least of WikiHouse’s problems when it comes to
proprietary software.

82Architecture for the People by the People, 2013, https://www.ted.com/talks/alastair_
parvin_architecture_for_the_people_by_the_people

83Open Systems Lab, “WikiHouse,” accessed August 21, 2019, https://www.wikihouse.
cc/projects

171

https://www.ted.com/talks/alastair_parvin_architecture_for_the_people_by_the_people
https://www.ted.com/talks/alastair_parvin_architecture_for_the_people_by_the_people
https://www.wikihouse.cc/projects
https://www.wikihouse.cc/projects

MeasureIt-ARCH

Figure 94: WikiHouse Contributors Slack Engagement - July 2019

Older WikiHouse designs like the Microhouse were based initially in
SketchUp. SketchUp, previously the gold standard of intuitive, publicly
approachable, 3D drawing packages, used to be an excellent option for
the production and sharing of OSArc projects. Originally developed by
‘@LastSoftware’ in 2000, SketchUp was purchased by Google in 2006.
Google proceeded to release both a free and pro version of the software. The
$0 price tag, intuitive interface, basic dimensioning tools, plus its integration
with google earth, made SketchUp a popular choice for many. However,
in 2012 Trimble Inc. purchased Sketchup from Google. In the seven years
since Trimble’s acquisition, they have redirected SketchUp’s development.
Trimble has taken SketchUp from an introductory but capable 3D modelling
tool aimed at beginners and hobbyists to a reasonably well-featured BIM
software package with the addition of tools like SketchUp Layout. While this
push has been a positive development for small to mid-size Architectural
firms that make use of SketchUp, the refocused development has left the
free version of the software, behind as a casualty.

172

Cress

Figure 95: Wikihouse Microhouse Iso.
Copyright Open Systems Lab, Licenced CC BY-SA 3.0

In early 2017 on a GitHub Issue discussing improving the open availability
of WikiHouse project data, Clayton Prest, the hardware and R&D lead of
WikiHouse and its sister project Open Systems Lab noted that “Wehave used
SketchUp as the default format to date as that’s where much of the earlier
WikiHouse contributions weremodelled. But I agree that this no longermakes
sense, ”.84

In November of 2017 the free version of SketchUp, SketchUp Make,
was discontinued and replaced with a severely limited online-only web
application.

The loss of SketchUp as a capable, publicly approachable 3D modelling
tool has left OSArc projects like WikiHouse in a tough situation with limited
options. They’re left to either, ask individual contributors to invest their
personal funds into purchasing a commercial software package in order to
engage with the project, or, invest a portion of the projects time and capital
into the production of a bespoke design tool that lets the public engage with
their system.

84Clayton Prest, “Wikihouseproject / Microhouse Issue #6,” January 25, 2017, https :
//github.com/wikihouseproject/Microhouse/issues/6#issuecomment-275063114

173

https://github.com/wikihouseproject/Microhouse/issues/6#issuecomment-275063114
https://github.com/wikihouseproject/Microhouse/issues/6#issuecomment-275063114

MeasureIt-ARCH

Currently the ‘source code’ that WikiHouse has shared for the WREN system
is based in Rhino’s Grasshopper, which means a minimum buy-in of $995
for an individual to engage with the project, and McNeil’s Rhino is one of
the cheaper options when it comes to architectural design software. To an
established architecture firm, $995may seem like a nearly insignificant cost.
But it’s important to remember that the lifeblood of an Open Source project is
individual, volunteer participation,85 which means that for a project to grow
and flourish the barrier to entry must be as low as possible. Lowering the
financial barrier to entry for OSArc projects is a difficult problem to overcome
when looking at the landscape of architectural software available today,
which has become more costly and proprietary year by year.

Even WikiHouse itself seems to be moving away from Rhino and
Grasshopper, and towards the creation of their own bespoke design tool,
Buildx.

Push to Develop Proprietary Software
“for rules-based building systems like WREN we think there are
limitations to common CAD software. TheWikiHouse Foundation
is currently developing a web-based platform for open digital
construction, to make the design and development of WikiHouse
technologies much much easier. It will have a front end for
architectural design and back end for system R&D, which will be
closer to coding than CAD, but still intuitive for visually-minded
designers to use” - Clayton Prest86

The motivation to design a custom piece of design software seems to be
motivated by two significant concerns;

1. According to Prest, the WREN building system is pushing the limits of
what Grasshopper can achieve as a parametric modelling system.

“We are definitely not looking at using Grasshopper long-
term, or even medium-term in the development of the Buildx
platform. We’re already pushing the performance limits of
Grasshopper/Rhino because its graphics processing can only run
on a single thread, and WikiHouse models are rather large!” -
Clayton Prest87

85Raymond, The Cathedral & the Bazaar
86Prest, “Wikihouseproject / Microhouse Issue #6.”
87Clayton Prest, “WikiHouse-Contributors / Software Dev,” WikiHouse-Contributors,

May 16, 2018, https : / / wikihousecontributors . slack . com / archives / C15DW4XBK /

174

https://wikihousecontributors.slack.com/archives/C15DW4XBK/p1526490467000617
https://wikihousecontributors.slack.com/archives/C15DW4XBK/p1526490467000617

Cress

2. The WikiHouse team wants to make designing with the WikiHouse
system more accessible by

“developing web infrastructure powered by game-changing au-
tomation technology to make development simple, transparent
and low risk.”88

Figure 96: Buildx Prototype
Designed by Open Systems Lab

While this system would certainly open up the use of the WikiHouse WREN
system to a greater number of individuals, it simultaneously codifies and
obfuscates the rules and logic that drive the system. It simplifies the end-
user experience while making it more difficult for users to make changes
to, and iterate on, the underlying parametric rules that drive the WREN
system. The tendency for OSArc projects to move towards these kinds of
hyper-specific bespoke design tools is another complication with the OSArc
movement highlighted by Vardouli and Buechley.

“in all these prototypes, implementations and visions, the
user acquires access to design via a black box—a design
software environment— that embodies its author’s assumptions,
knowledge and expertise. Users do not have the ability to access
or modify this black box. Although pragmatically, these platforms
for participatory design can be argued to ”open” design, to non-
expert users, they are themselves closed and inaccessible. ” -
Theodora Vardouli and Leah Buechley89

Bespoke design tools like Buildx are inherently siloed. They serve a

p1526490467000617
88ibid.
89Vardouli and Buechley, “Open Source Architecture.”

175

https://wikihousecontributors.slack.com/archives/C15DW4XBK/p1526490467000617
https://wikihousecontributors.slack.com/archives/C15DW4XBK/p1526490467000617
https://wikihousecontributors.slack.com/archives/C15DW4XBK/p1526490467000617
https://wikihousecontributors.slack.com/archives/C15DW4XBK/p1526490467000617
https://wikihousecontributors.slack.com/archives/C15DW4XBK/p1526490467000617
https://wikihousecontributors.slack.com/archives/C15DW4XBK/p1526490467000617

MeasureIt-ARCH

single task and enhancing or augmenting their capabilities requires direct
investment by the groupmanaging their development. Of course, whether or
not this is the desired outcome of the project is entirely up to the WikiHouse
team itself to decide. Even as a bespoke tool the Buildx System has the
potential to be a design tool that could givemore people than ever before the
opportunity to design there own affordable housing. It also has the potential
to helpmake distributedmanufacturing available to themasses, which could
be a dramatic step forward for sustainable social housing. All of this can be
achieved by the project regardless of its ‘Open Sourced-ness’ and we should
celebrate the WikiHouse project and its team for these feats.

However, the question does remains; if there were a freely available tool
that could encode the parametric logics of the WREN system and provide
them to users through a simple accessible interface, while still maintaining
the capacity for deeper editing and connection with other tools available to
those users who desired to dive deeper, could it better meet the needs of the
WikiHouse Project and future OSArc projects?

Blender and MeasureIt-ARCH’s Implications.
Although the complexity of the WikiHouse system is beyond what Blender
and MeasureIt-ARCH are currently capable of representing, it would seem
there is some space in the gap between commercial complex design tools
like Rhino, and free simple bespoke design systems like Buildx. This might
be an ideal niche to explore for future development of MeasureIt-ARCH
and Blender. If, for example, a parametric system like Buildx could be
added into Blender, either explicitly as an add-on or through the proposed
parametric node system being developed by Jaques Lucke, could it be used
as a simple interactive design tool, as Buildx is currently, while still allowing
interested users to take advantage of Blender’s general-purpose modelling
tools? Could a hybridization of bespoke parametric systems with general-
purposemodelling tools allow for greater customization andmore individual
expression and refinement, depending on the user’s interest and ability?
Further still could Interfacingwith other add-ons, LikeMeasureIt-ARCH, allow
for documentation or even further hybridization by connecting with other
OSArch systems?

Although MeasureIt-ARCH and Blender do not yet have the capability to
answer these questions, I hope that our discussion of MeasureIt-ARCH’s
development, and its current capacities, paired with these questions help
to paint a picture of what might be achieved with Open Source software in
architecture in the years to come.

176

Cress

If MeasureIt-ARCH is the first small step towards encouraging Blender’s
use as a general Open Source platform for architectural design, then Open
Source Architecture likely represents the ideal niche of the architectural
profession to focus on for future development. If that is to be the case, then
improving the ability to interface and add support for OSArc design projects
likeWikiHouse and itsWREN structural systemwill be an essential next step.

177

Conclusion

178

Cress

Looking Beyond this Thesis
“When you start community-building, what you need to be able to
present is a plausible promise. Your program doesn’t have to work
particularly well. It can be crude, buggy, incomplete […]. What
it must not fail to do is (a) run, and (b) convince potential co-
developers that it can be evolved into something really neat in the
foreseeable future.” -Eric S. Raymond90

MeasureIt-ARCH, as it stands at the end of this thesis work, is a toolset
that is integrated closely with Blender’s established design and is capable
of creating simple responsive drawings that embrace and engage the
inherent complexity and opportunity of three dimensional space. MeasureIt-
ARCH’s dimensions respond to the user’s viewpoint and make use of their
relationship to an objects geometry to determine a reasonable placement.
MeasureIt-ARCH’s linework provides a fast and simple toolset to create line
drawings comprised of plain lines, hidden dashed lines and silhouette lines
that draw and update in real time. MeasureIt-ARCH’s annotations allow
users to display their own text, or information from an objects custom
properties as notes in the 3D space.

MeasureIt-ARCH is a functioning piece of free and Open Source software
that allows for the creation of simple architectural drawings within the Open
Source 3D creation tool Blender.

MeasureIt-ARCH is, of course, not without its faults and limitations, and still
has a long way to go before it can be considered a useful tool for medium
or large-scale architectural projects. The addition of tools that make better
use of Blender’s object metadata and linked data workflows, to produce
schedules, interrogate a models information, and allow for the integration
and layering of models from different disciplines are all improvements that
could be achieved in the not so distant future. In the shorter term, MeasureIt-
ARCH’s user experience could benefit from the proper implementation of
manipulator Gizmos that allows the user to adjust the properties of a
dimension without leaving the 3D viewport, and optimization of the drawing
system to allow for better performance when dealing with a large number
of dimension elements on screen, to allow for the drawing of more complex
objects.

Most importantly though, I hope MeasureIt-ARCH represents what Eric S.
Raymond refers to as ‘A Plausible Promise’. A small spark that might inspire
other to think about the sorts of tools and improvements they might be able

90Raymond, The Cathedral & the Bazaar.

179

MeasureIt-ARCH

to make and share with others.

Its worth a moment to here in the conclusion to reflect on the three areas
that motivated this thesis which we presented in the first section of this
work. Now that we’ve begun to augment Blender to a level where it can
tackle small scale architectural projects, could it start to provide a cost-
effective option for small firms and individual designers? Could it start to
allow Open Source Architecture projects to truly meet their Open Source
mandate, allowing them to produce their drawings and models in a format
that is available to be read and modified by anyone? Could it start to serve
as an Open Source platform upon which the AEC industry might start to
build a culture of distributed development, providing opportunities for the
passionate community of architectural technology innovators to fold their
advancements back into a common platform for all the industry to use?

Only time andmore developmentwill tell, but I hope that the potential of each
of these questions helps to inspire others to engage in future developments
that move us, small step by small step, towards a more open future.

MeasureIt-ARCH’s development does not end with this thesis. Thanks to
the skills I have learned through this exercise in the craft of digital tool
making, I can continue to work on and improve MeasureIt-ARCH, and I hope
that through sharing MeasureIt-ARCH’s development process, as well as the
larger issues that motivate it, others may become interested in participating
inMeasureIt-ARCH, Blender’s development, or the craft of digital tool making
in general.

MeasureIt-ARCH and Blender have the potential to take further steps
towards becoming a useful Open Source design platform for architects, that
provides a free and open option for the creation of architectural drawings
that can be shared, read, and modified by anyone.

The most promising of these future developments will be those that draw
heavily on cross-collaborative work. Whether that collaboration focuses
on practical application like the Pine Cove project, dynamic linkages with
other systems like the Futurium Noosphere project or OSArc activism
like the WikiHouse project, each of these avenues has the potential for
unique developments that could add to the virtual palimpsest of ideas and
implementations that make up Blender as an Open Source platform.

If we wish to foster modes of working that take real advantage of the skills
and design thinking that our industry has to offer, thenwe need to ensure that
our software offers the potential for bottom up, architect-drivenmodification
and enhancement. As a profession, we have a responsibility to take an
active role in shaping the tools that increasingly define our work. MeasureIt-

180

Cress

ARCH is hopefully only one of many small steps that we as a profession can
take together towards making a viable Open Source architectural Software,
that is free to be reshaped, redesigned, redeveloped by the best ideas our
profession has to offer.

181

References

182

183

Relevant Software
Associates, McNeel &. RhinoCommon Is the .NET SDK for Rhino5 /
Grasshopper: Mcneel/Rhinocommon. 2010. Reprint, Robert McNeel &
Associates, 2019. https://github.com/mcneel/rhinocommon.

Autodesk. “About Element Behavior in Revit | Revit Products 2018
| Autodesk Knowledge Network.” Accessed April 1, 2019. https://
knowledge.autodesk.com/support/revit- products/getting- started/
caas/CloudHelp/cloudhelp/2018/ENU/Revit-GetStarted/files/GUID-
5BFA499A-5ACA-4069-852C-9B60C9DE6708-htm.html.

———. “About Family Visibility and Detail Level | Revit Products 2018
| Autodesk Knowledge Network.” Accessed April 1, 2019. https :
//knowledge.autodesk.com/support/revit- products/learn- explore/
caas/CloudHelp/cloudhelp/2018/ENU/Revit-Customize/files/GUID-
B28F98C2-D3DA-486E-B198-96B8C862F28B-htm.html.

———. “Help: What Can You Do with the Revit Platform API?” Accessed
April 4, 2019. http : / /help .autodesk .com/view/RVT/2019/ENU/
?guid=Revit_API_Revit_API_Developers_Guide_Introduction_Getting_
Started_Welcome_to_the_Revit_Platform_API_What_Can_You_Do_
with_the_Revit_Platform_API_html.

———. “Understanding Revit Terms | Revit Products | Autodesk
Knowledge Network.” Accessed April 1, 2019. https://knowledge.
autodesk . com / support / revit - products / getting - started / caas /
CloudHelp/cloudhelp/2014/ENU/Revit/files/GUID-2480CA33-C0B9-
46FD-9BDD-FDE75B513727-htm.html.

CAD, BRL. “Mged - BRL-CAD.” Accessed July 26, 2019. https://brlcad.
org/wiki/Mged.

McNeel. “Cycles| Rhino 3-D Modeling.” Accessed April 4, 2019. https:
//docs.mcneel.com/rhino/6/help/en-us/options/cycles.htm.

Trimble. “SketchUp Ruby API — SketchUp Ruby API Documentation.”
Accessed April 4, 2019. http://ruby.sketchup.com/.

iii

MeasureIt-ARCH

184

185

Giachino, Alberto. “Parametric Panels with Sverchok (1).” CodePlastic,
April 24, 2018. http://www.codeplastic.com/2018/04/24/parametric-
panels-with-sverchok-1/.

JPfep. “Blender AddOSC Addon.” Accessed August 17, 2019. http:
//www.jpfep.net/pages/addosc/.

O’Riordan, Fin, and Pablo Vazquez. “Fin. On Twitter: ”@PabloVazquez_
Soooooo..... More Like This Then? https://t.co/WcHnuNplBd” /
Twitter.” Twitter. Accessed July 29, 2019. https : // twitter .com/
FinEskimo/status/1097551783327645699.

Reynish, William. “The Evolution of Blenders User Interface,” n.d., 25.

Roosendaal, Ton, and Blender Foundation. “Blender Development
Fund, Projects for First Half 2019.” Blender Developers Blog, December
24, 2018. https://code.blender.org/2018/12/blender-development-
fund-projects-for-first-half-2019/.

———. “Development Fund Report, July 2019.” Blender Developers
Blog, July 20, 2019. https://code.blender.org/2019/07/development-
fund-report-july-2019/.

MeasureIt-ARCH

186

187

Participatory Design
Alexander, Christopher, ed. The Oregon Experiment. New York: Oxford
University Press, 1975.

Bryant, Greg. “The Oregon Experiment After Twenty Years.” RAIN,
1991. http://www.rainmagazine.com/archive/1991-1/the-oregon-
experiment-revisited.

De Carlo, Giancarlo. “Architecture’s Public.” In Architecture and
Participation, Digit. print., 3–22. London: Taylor & Francis, 2009.

PARTISANS. Rise and Sprawl: The Condominiumization of Toronto.
Edited by Hans Ibelings and Nicola Spunt. Montreal Amsterdam: The
Architecture Observer, 2016.

Rittel, Horst W. J., and Melvin M. Webber. “Dilemmas in a General
Theory of Planning.” Policy Sciences 4, no. 2 (June 1, 1973): 155–69.
https://doi.org/10.1007/BF01405730.

MeasureIt-ARCH

188

189

WikiHouse
Architecture for the People by the People, 2013. https://www.ted.com/
talks/alastair_parvin_architecture_for_the_people_by_the_people.

Edward, David F. A., and Marialena Nikolopoulou. “Building Open-
Source to What Extent Does WikiHouse Apply the Open-Source
Model to Architecture?” University of Kent, 2018. https : / /
static1 . squarespace . com / static / 5392f715e4b032d797fc94ed / t /
5b00a0ce6d2a734d9cb89662/1526767832775/BuildingOpenSource_
DEdward.pdf.

Lab, Open Systems. “WikiHouse.” Accessed August 21, 2019. https:
//www.wikihouse.cc/projects.

Parvin, Alastair. “Scaling the Citizen Sector,” 28. United Kingdom:
Community Land Trust Network. Accessed September 30, 2018.
https ://medium.com/@AlastairParvin/scaling- the- citizen- sector -
20a20dbb7a4c.

Prest, Clayton. “WikiHouse-Contributors / Software Dev.” WikiHouse-
Contributors, May 16, 2018. https : //wikihousecontributors .slack .
com/archives/C15DW4XBK/p1526490467000617.

———. “Wikihouseproject / Microhouse Issue #6,” January 25,
2017. https://github.com/wikihouseproject/Microhouse/issues/6#
issuecomment-275063114.

MeasureIt-ARCH

190

191

MeasureIt-ARCH Resources and Publications
Cress, Kevan. “MeasureIt-ARCH Architectural Dimensions for Blender
2.8 (in Development) — Blender.Community,” March 24, 2019. https:
//blender.community/c/today/3Mcbbc/.

———. “MeasureIt-ARCH Commit Logs,” n.d. https://github.com/
kevancress/MeasureIt-ARCH/commits/master.

———. “MeasureIt-ARCH Issues,” n.d. https://github.com/kevancress/
MeasureIt-ARCH/issues?utf8=%E2%9C%93&q=.

———. “MeasureIt-Arch Project Board,” n.d. https : / / github . com /
kevancress/MeasureIt-ARCH/projects/2.

———. Per Camera Resolution, 2018. https://github.com/kevancress/
per_camera_resolution.

Cress, Kevan and Beesley. “Architectural Design in Open-Source
Software - Developing MeasureIt-ARCH, an Open Source Tool to
Create Dimensioned and Annotated Architectural Drawings Within
the Blender 3D Creation Suite.” In Sousa, JP, Xavier, JP and Castro
Henriques, G (Eds.), Architecture in the Age of the 4th Industrial
Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi
Conference - Volume 1, University of Porto, Porto, Portugal, 11-13
September 2019, Pp. 621-630. CUMINCAD, 2019. http://papers.
cumincad.org/cgi-bin/works/paper/ecaadesigradi2019_561.

MeasureIt-ARCH Introduction - YouTube, 2019. https://www.youtube.
com/watch?v=QL_ArANpsVU&t=90s.

MeasureIt-ARCH Rough Demo Timelapse - YouTube, 2019. https://
www.youtube.com/watch?v=lHI78SDB8bs.

MeasureIt-ARCH Version 0.3 Update - YouTube, 2019. https://www.
youtube.com/watch?v=MWo87QvcEPk&t=2s.

Moult, Dion. MeasureIt-ARCH Features & Suggestions - Comment,
Dion Moult, 2019. https://github.com/kevancress/MeasureIt-ARCH/
issues/4#issuecomment-536822024.

Vazquez, Antonio. Blender MeasureIt Addon. Accessed January 31,
2019. https://github.com/Antonioya/blender.

Vazquez, Antonio, and Kevan Cress. MeasureIt-ARCH, 2018. https:
//github.com/kevancress/MeasureIt-ARCH.

MeasureIt-ARCH

192

193

France: ACM Press, 2004. https://doi.org/10.1145/987657.987663.

Thalmann, Nadia Magnenat, and Daniel Thalmann. Computer
Animation: Theory and Practice. Tokyo: Springer Japan, 1990. http:
//public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=
3102178.

Vollick, Ian, Daniel Vogel, Maneesh Agrawala, and Aaron Hertzmann.
“Specifying Label Layout Styles by Example,” n.d., 10.

MeasureIt-ARCH

194

Appendices

196

Cress

MeasureIt - ARCH Code Overview
The following is a brief outline of the file structure of MeasureIt-ARCH’s code
base, describing where key elements of MeasureIt-ARCH’s functionality can
be found within it;

init.py
The init file contains all code relevant to the initialization of the add-on and
handles the registering and unregistering of all classes. The init file also
defines some of MeasureIt-ARCH’s scene level properties.

auto_load.py
A set of utilities written by Jaques Lucke to automatically register and
unregister an add-ons classes without having to manually add them to a list
in the init file. These methods are called from the init file.

measureit_arch_baseclass.py
measureit_arch_baseclass.py contains classes which define the base
Property Groups that all MeasureIt-ARCH elements inherit from. This file
also contains the common operators for the deletion of MeasureIt-ARCH
elements.

measureit_arch_main.py
measureit_arch_main.py contains code relating to the core operations of
MeasureIt-ARCH. Notable sections include:

• The save and load handlers responsible for cleaning MeasureIt-ARCH
data

• MeasureIt-ARCH’s main operator UI panel.
• MeasureIt-ARCH’s settings UI panel
• The Operator to enable and disable MeasureIt-ARCH’s draw handlers
(The Show/Hide Button)

• The main draw loops for both 2D (text) and 3D elements
• The Post View and Post Pixel draw callback’s
• Several utility methods that assist with interpreting user selection.

197

MeasureIt-ARCH

measureit_arch_geometry.py
measureit_arch_geometry.py contains the draw methods for each element
type, as well as the select_normal() method which handles the calculation
of MeasureIt-ARCH dimension’s placement. Each of the draw methods
defined in measureit_arch_geometry.py are called from the main draw loops
in measureit_arch_main.py.

measureit_arch_*element type*.py
measureit_arch_dimensions.py, measureit_arch_annotations.py, and mea-
sureit_arch_lines.py each contain all of the unique Property Definitions, Op-
erators, and UI panels for their respective MeasureIt-ARCH element type.

measureit_arch_styles.py
Contains all code related to the creation of MeasureIt-ARCH styles and their
UI.

measureit_arch_render.py
Contains all code to necessary to draw MeasureIt-ARCH elements to a
rendered frame, or series of rendered frames in the case of an animation.
This involves pre-drawing the scene to the rendered images depth buffer to
be available for depth testing, setting flags to ensure that the draw methods
use the camera position rather than the users viewpoint for operations like
view segmentation, and writing the rendered image to an image ID block
within Blender so it can be accessed by the user.

measureit_arch_gizmos.py
Contains the work in progress code for Measureit-ARCH’s Gizmo System.

shaders.py
Contains all the GLSL shaders used by MeasureIt-ARCH’s drawing system,
wrapped in python classes so they can be accessed by Blender’s Python API.

198

Cress

MeasureIt - ARCH v0.4 Documentation
INSTALLATION
Add-on Installation

1. Download “MeasureIt-ARCH_v03.zip”
2. Open Blender 2.8 (you can get the latest build here)
3. Open the Add-on Preferences (Edit -> Preferences -> Add-ons) and click

install.

Figure 97: Installing MeasureIt-ARCH

4. Navigate to and double click on “MeasureIt-ARCH_v03.zip”
5. Click the Checkbox to enable the Add-on

199

https://builder.blender.org/download/

MeasureIt-ARCH

FEATURES & USER INTERFACE
Main Tool Panel
The main tool panel is where you can add
MeasureIt-ARCH Items to your 3D scene. This
toolbar is located in the 3D Viewport Editor
and can be accessed by pressing the “n” key

Figure 98: MeasureIt-ARCH Main Tool Panel

Show / Hide MeasureIt Toggle

• Shows and hides all items created by
MeasureIt-ARCH

Selected Object Only Toggle (Ghost Icon)

• When disabled, MeasureIt-ARCH will
only show items belonging to currently
selected objects

Show Gizmo’s (Arrow Icon)

• When enabled MeasureIt-ARCH will
show gizmo’s for the selected object.

Add Dimensions
Aligned

• Adds an Aligned Dimension between 2
Objects or Vertices

• Object Mode: Select two objects
and then press the Aligned Button

• Edit Mode: Select two or more
Vertices and press the Aligned
Button

Axis

• Adds a Dimension that measures along
a single Axis between 2 Objects or
Vertices

• Object Mode: Select two objects
and then press the Aligned Button

• Edit Mode: Select two or more
Vertices and press the Aligned
Button

• Axis Selection Lets you pick the axis to
be measured on creation

Bounds (Object Mode Only)

• Adds a set of dimensions that measure
the Bounding Box of the selected object

• Axis Selection Lets you pick the axes to
be displayed on creation

200

Cress

Angle (Edit Mode Only)

• Adds an angle dimension for 3 selected
vertices.

• The 2nd vertex selected defines the
corner of the angle.

Arc (Edit Mode Only)

• Adds an arc dimension circumscribing
the 3 selected vertices.

Dimension Style (Color Swatch Icon)

• Lets you select a style to be assigned to
new dimension on creation.

View Plane (Axis Icon)

• Lets you select the preferred view plain
for new dimensions (used to automati-
cally place dimensions on creation)

• XY Plane (Plan View): Dimensions
placed to be viewed from the top or
bottom

• YZ Plane (Section/ Elevation
View): Dimensions placed to be
viewed from the left or right

• XZ Plane (Section/ Elevation
View): Dimensions placed to be
viewed from the front or back

• None: Dimensions placement will
be based on the angles of the
adjacent surfaces.

Add Lines
Line Group (Edit Mode Only)

• Creates a Line Group from selected
edges. Select the desired edges in edit
mode and press the Line button.

Line Group by Crease (Object Mode Only)

• Creates a Line Group from any edges
sharper than the specified crease angle.

Line Style (Color Swatch Icon)

• Lets you select a style to be assigned to
new Line Group on creation.

• Note This option will not be visible
if you have not created any styles in
your scene.

Add Annotations
Annotation

• Adds an Annotation to the selected
Object or Vertex.

Annotation Style (Color Swatch Icon)

• Lets you select a style to be assigned to
new Annotation on creation.

• Note This option will not be visible
if you have not created any styles in
your scene.

201

MeasureIt-ARCH

Scene Settings
MeasureIt-ARCH Styles & Settings can be
found in the Scene Tab of the Properties Editor.

MeasureIt-ARCH Styles
Styles have a nearly identical user interface
to their corresponding items. Style-able
properties can be found in the item’s settings.
Some settings, like an Annotations Offset, or
a Dimensions Distance are still set per item,
even when using a style.

Figure 99: Style Settings

MeasureIt-ARCH Unit Settings
MeasureIt-ARCH unit setting can be found
in Blender’s Scene Settings under the Units
panel. MeasureIt-ARCH makes use of
Blender’s Scene Unit System.

Figure 100: Unit Settings

Metric Precision

• Defines the number of decimal places
included in your dimensions when using
the Metric Unit System

Imperial Precision

• Fractional Precision to be used when
using the Imperial Unit System

202

Cress

MeasureIt-ARCH Settings

Figure 101: Scene Settings

Show Dimension Text

• Show or hide the text on dimension and
annotation elements

Debug Text

• Writes Dimension Text to an image for
Debug purposes

Evaluate Depsgraph

• Evaluate Blender’s Dependency Graph
before drawing MeasureIt-ARCH ele-
ments. By default, MeasureIt-ARCH
does not evaluate the Dependency
Graph as some generative modifiers can
give unpredictable results. Enabling this
setting will make MeasureIt-ARCH at-
tempt to evaluate these modifiers, in its
calculations.

Instance Dimensions

• Will Enable Dimension Instancing.
• Note: Text on instanced Dimensions
will not adjust to the changes in the
instances scale or rotation.

Object Settings
Dimension, Annotation, and Line Group set-
tings can be found in Object Tab of the Prop-
erties Editor. (Note: These panels will only ap-
pear if the active object has a dimension, anno-
tation or line group associated with it. Too add
dimensions, annotations or line groups use the
main tool panel)

Dimensions

Figure 102: Dimension List

Color

• Sets Dimension Color

Link Style (Link or Broken Link Icon)

• Toggles if this Dimension uses a Style

Visibility (Eye Icon)

• Toggles the Dimensions visibility

Delete (x Icon)

• Deletes the Dimension

203

MeasureIt-ARCH

Dimension Settings

Figure 103: Dimension Settings

Font

• Lets you select a custom font for the
Dimension.

View Plane

• Set the preferred view plain for this
Dimension

• XY Plane (Plan View): Dimensions
placed to be viewed from the top or
bottom

• YZ Plane (Section/ Elevation
View): Dimensions placed to be

viewed from the left or right
• XZ Plane (Section/ Elevation
View): Dimensions placed to be
viewed from the front or back

• None: Dimensions placement will
be based on the angles of the
adjacent surfaces.

Measurement Axis (Axis & Bounds Di-
mensions Only)

• Select the Axis to Measure

Visible In View

• Limit the Dimensions visibility to a
specific Camera in your scene.

• If no Camera is selected the Dimen-
sion will be visible in all Cameras

• If a Camera is selected the Dimen-
sion will only be visible when that
Camera is the Active Camera

Line Weight

• The Dimensions Line Weight

Distance

• TheDistance of theDimension Text from
the Objects or Vertices it’s attached to.

Radius (Arc and Angle Dimensions Only)

• TheDistance of theDimension Text from
the center of the Arc or Angle.

Offset

• The offset distance from the ends of the
Dimension line to the Vertex or Object it’s
attached to

Rotation

• Rotates the Dimension around the axis
of its measurement

204

https://docs.blender.org/manual/en/dev/data_system/scenes/properties.html#scene

Cress

Font Size

• The Dimension font size.

Resolution

• The Dimension font resolution

Alignment

• The Dimension text alignment relative to
the dimension line (Left, Center, Right)

Arrow Start & End

• Set the style of the dimension termina-
tions

Arrow Size

• Set the size of the dimension termina-
tions

Draw In Front

• Makes this element Ignore Visibility
tests.

Evaluate Depsgraph

• Evaluate Blender’s Dependency Graph
before drawing this MeasureIt-ARCH
element.

Line Groups

Figure 104: Line Group List

Color

• Sets Line Group Color

Draw Hidden Lines (Cube with Dashed
Lines Icon)

• This Line Group will draw hidden lines as
dashed lines.

Link Style (Link or Broken Link Icon)

• Toggles if this Line Group uses a Style

Visibility (Eye Icon)

• Toggles the Line Groups visibility

Delete (x Icon)

• Deletes the Line Group

205

MeasureIt-ARCH

Line Group Menu (Chevron
Icon)
Add to Line Group (Edit Mode Only)

• Adds selected Edges to this Line Group

Remove from Line Group (Edit Mode
Only)

• Removes selected Edges from this Line
Group

Line Group Settings

Figure 105: Line Group Settings

Line Weight

• Set the Line Groups line weight

Z Offset

• Tweaks the Line Groups Distance from
the screen in Clip Space. Higher values
move the Lines closer to the screen.

• This is useful for adjusting Line
Groups that don’t appear to be
drawing correctly (Jagged Edges
etc.)

• Making this value negative allows
for the drawing of silhouettes.
Higher values will move lines fur-
ther backwards

Extension

• Adds a slight over-extension to each line
segment in this Line Group

Hidden Line Color (Only Available if Draw
Hidden Lines is Enabled)

• Sets the color of hidden lines

Hidden Line Weight (Only Available if
Draw Hidden Lines is Enabled)

• Sets the line weight of hidden lines

Dash Scale (Only Available if Draw Hid-
den Lines or Draw Dashed is Enabled)

• Changes the dash size of dashed lines.
Larger values make smaller dashes

Dash Spacing (Only Available if Draw
Hidden Lines or Draw Dashed is Enabled)

• Changes the dash spacing for dashed
lines. 0.5 gives even spacing.

Draw Dashed

• Draws all lines in this Line Group as
dashed lines, regardless of visibility

Screen Space Dashes

• Calculates Dash Spacing in Screen
Space. Useful to achieve more even

206

Cress

dashes in still renders when some lines
are nearly parallel to the view. Can cause
dashes to appear to ‘slide’ along edges
when used in animations.

Draw In Front

• Makes this element Ignore Visibility
tests.

Evaluate Depsgraph

• Evaluate Blender’s Dependency Graph
before drawing this MeasureIt-ARCH
element.

Annotations

Figure 106: Annotation List

Color

• Sets Annotation Color

Link Style (Link or Broken Link Icon)

• Toggles if this Annotation uses a Style

Visibility (Eye Icon)

• Toggles the Annotations visibility

Delete (x Icon)

• Deletes the Annotation

Annotation Settings

Figure 107: Annotation Settings

Text Field

• Sets the text for the annotation
• Annotations can have multiple text
fields, each new text field will display
as a new line in the Annotation Text

Font

• Lets you select a custom font for the
Annotation from your system.

207

MeasureIt-ARCH

Text Source

• MeasureIt-ARCH can pull annotation
text from an objects Custom Properties
metadata. This field defines the source
custom property.

• If two text fields are available, MeasureIt-
ARCHwill use the first to display the cus-
tom properties name, and the second to
display the value. If only one text field is
available, only the valuewill be displayed.

Size

• The Annotation font size

Resolution

• The Annotation font resolution

Justification

• Text Justification relative to the end of
the Annotation leader line (Left, Center,
Right)

Position

• Text Position relative to the end of
the Annotation leader line (Top, Middle,
Bottom)

Endcap

• Dot Adds a Circle to the end of the
Annotation Leader

• Triangle Adds an Arrow to the end of the
Annotation Leader

Endcap Size

• Sets the size of the Dimension Leader
Endcap

Line Weight

• Line Weight of the Annotation leader

Offset

• The XYZ offset from the object or vertex
that the annotation is attached to.

Rotation

• The XYZ rotation of the annotation text

Draw In Front

• Makes this element Ignore Visibility
tests.

208

https://docs.blender.org/manual/en/dev/data_system/custom_properties.html?

Cress

Rendering

Figure 108: Render Buttons

MeasureIt-ARCH Render Settings can be
found in the Render Panel of the Properties
Editor. Currently this renders all MeasureIt-
ARCH items to an image file which can be
layered over Blender’s render in the composi-
tor.

Figure 109: MeasureIt-ARCH Compositing Setup

MeasureIt-ARCH Image -Renders a Still
Image - Note: If ‘Save Render to Output’ is not
enabled the rendered image will only be stored
in an image data-block within Blender.

MeasureIt-ARCH Animation

• Renders the full frame range of the
current scene

• Animation Renders can be Cancelled
with the Esc key, or by Right Clicking in
the 3D View

• Note: A 3D Viewport window must
be open for MeasureIt-ARCH to render
animations

• Note: Animation frames will be saved to
the Output path defined in the Render
Panel

Save Render to Output

• Saves Still Image renders to the Output
path defined in the Render Panel after
rendering

209

Glossary of Terms
General Terms
Add-on A supplementary piece of software
that adds functionality to an existing software.

AEC Architecture Engineering and Construc-
tion. The acronym commonly used to refer to
the multi-disciplinary industry responsible for
the creation of our built environment.

API Application Programming Interface. An
API is a library of functions that allow for
external access to the functions of a piece
of software. A software’s API allows for
the programming of external add-ons that
interfacewith the software’s core functionality.

BIM Building Information Modeling

CAD Computer Aided Design

Git A system formanaging version control of
a software’s development.

Git Commit In the context of this thesis,
a Commit refers to a particular state in the
software’s git version control system. Each
commit represents the set of changes made
to the software since the last commit.

GitHub An online platform for the hosting of
projects managed with the Git version control
system.

GPU The Graphics Processing Unit, a spe-
cialized piece of computer hardware opti-
mized for the types of calculations necessary
to draw images and graphics.

Manifold Geometry In the context of digital
3Dmodels, manifold geometry can be thought
of as objects that are continuous and closed.
Cubes, Torus’s and Spheres are all examples
of the 3Dmanifold geometries. More precisely

every edge of a manifold geometry in 3D is
adjacent to exactly 2 faces.

Method A method refers to a named block
of code within a piece of software that runs a
particular procedure. Methods can be called
multiple times from various locations within
the code, and help to reduce the need for code
duplication.

MeasureIt The add-on developed by Anto-
nio Vazquez to add basic dimensioning func-
tionality to Blender.

MeasureIt-ARCH The add-on developed
for this Thesis which expands and improves
on the functionality of MeasureIt

Normal A direction orthogonal (perpendicu-
lar) to a given plane.

OpenGL Open Graphics Library. An API orig-
inally developed by Silicon Graphics nowman-
aged by the Khronos Group. OpenGL facili-
tates cross-platform, programming language-
independent, communication with the com-
puters GPU for the drawing and rendering of
2D and 3D content.

Rhino A NURB’s based 3D modelling and
drafting application developed by Robert Mc-
Neel & Associates.

Revit A Building Information Modeling appli-
cation common in the North American Archi-
tecture Engineering and Construction Indus-
try. Developed by Autodesk

SketchUp A mesh-based 3D modelling ap-
plication owned by Trimble Inc.

String A data type used in computer pro-
gramming which stores a sequence of charac-
ters (letters).

210

Cress

Work Plane (C-Plane) A construct used
in many Computer-Aided Design software
packages. The Work Plane, or Construction
Plane (C-plane), is a user-defined 2D plane
used to assist in the placement of dimensions
and other drawing elements.

Co-ordinate Spaces
Our discussion of MeasureIt-ARCH’s develop-
mentmakes use of several unique Co-ordinate
Spaces when describing two dimensional,
three dimensional and in one case, four di-
mensional space. Each of these Co-ordinate
Spaces is described briefly below.

Camera Space Camera Space is a three
dimensional cartesian co-ordinate system
where the Z axis is pointing directly away from
the ‘camera’ or the observer of the 3D scene
in their viewing direction. The X axis and Y
axis in Camera Space can be thought of as
the horizontal and vertical axes of the picture
plane.

Clip Space Clip Space is a four dimensional
homogeneous co-ordinate system. 4D homo-
geneous co-ordinates are used frequently in
computer graphics applications as they allow
common three dimensional geometric oper-
ations to be calculated through four dimen-
sional matrix multiplication. For our purposes
in this thesis, Clip Space is used to calculate
and manipulate the perspective projection of
objects in 3D space. In this case Clip Space
is similar to Camera Space, with the Z axis
pointing away from the observer in their view-
ing direction and the X axis and Y axis repre-
senting the picture plane. The fourth axis of
Clip Space, W, can be thought of roughly as a
measure of how much any point in Clip Space
is distorted by a perspective projection when

drawn to the screen.

Image Space Image Space is a two dimen-
sional cartesian co-ordinate systemwhere the
X axis and Y axis represent the horizontal and
vertical axis respectively, of a rendered image.

ScreenSpace ScreenSpace is a twodimen-
sional cartesian co-ordinate system identical
to image space, we use the term screen space
when discussing an image that is rendered
temporarily to the screen as part of a 3D ap-
plication, rather than a rendered image that is
created to be saved by the user.

Object Space Object Space is a three
dimensional cartesian co-ordinate system
where the X, Y and Z axes are aligned with
the transformation of the object in question. If
the object has not undergone any transforma-
tions (scaling, rotation, or translation) then its
Object Space is identical to the World Space.

World Space World Space is a three dimen-
sional cartesian co-ordinate systemwhere the
X, Y and Z axes are the 3 perpendicular basis
vectors of the 3D space.

211

MeasureIt-ARCH

Dimension Terminology
The following terms are used to refer to the various components that make
up Annotations and Dimensions

Figure 110: Components of a Dimension
Based on the terminology outlined in ’ISO 129-1:2004 Technical drawings —

Indication of Dimensions and Tolerances’

Figure 111: Components of an Annotation
Based on the terminology outline in ’ISO 129-1:2004 Technical drawings —

Indication of Dimensions and Tolerances’

212

	Author's Declaration
	Abstract
	Acknowledgements
	A Note on Production
	A Note on Performance Metrics
	 Table of Contents
	 List of Figures
	Introduction

	Introduction
	Sections

	SECTION 1: Motivating an Open Source Architectural Software
	Motivating an Open Source Architectural Software.

	SECTION 2: Requirements and Specifications
	Requirements Analysis; Why do Architects Dimension
	Classifying Architectural Software
	An Open Source Architectural Software Specification
	Feature Requirements
	General Requirements

	SECTION 3: Blender and Architecture
	Why Blender?
	Blender's Notable Features
	Previous Architectural Investigations

	SECTION 4: MeasureIt-ARCH
	Updating MeasureIt
	Implementing Linework and Dimensions
	Line Drawing
	Dimensions; Dissolving the Work Plane with MeasureIt-ARCH
	Sharing MeasureIt-ARCH

	SECTION 5: Specification Evaluation
	Requirements Specification Evaluation
	Feature Requirements
	General Requirements
	Summary

	SECTION 6: Testing and Implications
	Testing and Implications Overview
	Continuing Work with the Lodge at Pine Cove
	Dynamic Data and Linkages
	The WikiHouse Project and Open Systems Labs

	Conclusion
	Looking Beyond this Thesis

	References
	Appendices
	MeasureIt - ARCH Code Overview
	MeasureIt - ARCH v0.4 Documentation

