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Abstract—We address the problem of how to extract counterex-
amples for the transitive-closure-based model checking (TCMC)
technique. TCMC is a representation of the CTLFC (CTL with
fairness constraints) model checking problem in first-order logic
with transitive closure (FOLTC) and has been implemented in
the Alloy Analyzer. It is a declarative, symbolic model checking
method. As a CTL model checking method, TCMC is defined
over transition systems and states (rather than paths) and there-
fore, returns a transition system with a bug as a counterexample.
Our contribution is to isolate a counterexample path/subgraph in
a declarative manner by adding constraints that do not depend
on the property. Our method does not require extensions to Alloy.

I. INTRODUCTION

Model checking [8] is a technique for debugging and
verifying behavioural models of software systems at a variety
of levels of description in the development process. In model
checking, a temporal logic property is checked of a formal
model of a transition system. If the property fails, a coun-
terexample can be returned, which illustrates a path of the
model that does not satisfy the property. The counterexample
is of critical value to the user in determining the error in the
model of the transition system.

In symbolic model checking, the model is represented
as a formula in logic. Traditional symbolic model checking
approaches create a formula that is reachable in one step from
a set of states (pre/post image) and algorithmically, iteratively
call a logic solver until all states have been explored (a fixed
point). By remembering the set of states at each step in the
iteration, a counterexample path can be produced. BDD-based
model checking [23] and IC3 [3], [6] are examples of the
iterative approach to symbolic model checking.

Bounded model checking (BMC) [2] is a non-iterative
approach to symbolic model checking for checking properties
in linear temporal logic (LTL). In BMC, one formula in logic
is created to represent a finite path of steps in the transition
system. A single call to a solver determines the validity of
the temporal logic property, rather than repeated calls as in
iterative model checking. BMC checks paths of finite length
for linear temporal logic (LTL) properties.

We are investigating the model checking of abstract be-
havioural models described in first-order logic (FOL). The
use of FOL allows the modeller to use abstract/uninterpreted
datatypes and functions to represent unknown parts of a model

precisely; and to describe transitions declaratively as con-
straints rather than deterministic operations. FOL is well-suited
for describing models concisely early in the development
process. It is possible to do BMC on FOL models by forming
a FOL formula to represent a finite path and using a FOL
solver such as a satisfiable module theories (SMT) solver [1]
or a finite model finder such as the Alloy Analyzer [18].

Alloy supports first-order logic with transitive closure
(FOLTC)1. Alloy is a popular modelling language for de-
scribing models abstractly. By limiting the problem to finite
scopes, problems in FOLTC become decidable and the con-
straint solving engine of Alloy is very useful for finding bugs
automatically. BMC can be done in the Alloy Analyzer without
the use of transitive closure.

Vakili and Day [26], [25] presented a non-iterative, sym-
bolic model checking method called transitive-closure-based
model checking (TCMC). TCMC declaratively describes the
meaning of properties in computational tree logic with fairness
constraints (CTLFC) [8] as a set of constraints in FOLTC. For
finite models, the transitive closure operator can be unrolled
to create one formula to represent the entire model checking
problem to be passed to a solver. Even over a reduced scope,
TCMC produces real bugs for liveness properties because it
checks an entire sub-transition system, not just paths of a
certain length. Unlike LTL, which has meaning relative to
paths, CTLFC has meaning relative to states. Therefore, if
the property does not pass, the solver returns as an instance
a faulty transition system. In this paper, we address the
problem of how to extract counterexamples from TCMC. The
motivation for our work is that users would rather see a path
than an entire transition system to debug their models.

In the following sections, we first present an example
that shows the entire faulty transition system now returned
from TCMC to demonstrate our goal. Then, we explain the
background on TCMC. Next, we describe our solution. The
contribution of our work is a constraint-based formulation
(rather than algorithmic) of the problem of producing a
counterexample for TCMC. Our method does not depend
on the property but rather constrains the solution to be a
path or subgraph of the transition system. Our approach can

1Alloy combines operators on relations, including transitive closure, with
first-order quantifiers.
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Fig. 1: RDT sender and receiver

be used in any FOLTC solver. TCMC and our solution are
implemented as modules for the Alloy Analyzer, and do not
require changes to the implementation of the Alloy Analyzer,
making our solution immediately available to users of Alloy.
Finally, we describe some case studies, which test the utility
and performance of our approach.

II. EXAMPLE

We use a model of a simple networking protocol as an exam-
ple to demonstrate the current limitation of TCMC. The model
describes a flawed protocol for reliable data transfer (RDT)
over an unreliable network. RDT is used by two servers to
communicate via alternating data packets and acknowledgment
messages. The protocol assumes that any message travelling
through the network can be corrupted, in which case detection
and recovery are required. To begin, the sender sends a packet
to the receiver and awaits a reply. The receiver, upon successful
receipt of the packet, replies with a positive acknowledgment.
However, in the case where the packet arrives corrupted, the
receiver instead responds with a negative acknowledgment
and waits for the sender to retransmit. Whenever the sender
receives a negative or corrupt acknowledgment message, it re-
sends the previous packet. Fig. 1 shows a concurrent model of
a sender and a receiver reacting to four events: send success,
send error, ack success, and ack error. Transitions labelled
with multiple events means that the transition is taken if

State1
sender: Wait ack
receiver: Receive success

State0
sender: Ready send next
receiver: Ready receive next

State2
sender: Ready resend
receiver: Ready receive next

State3
sender: Wait ack
receiver: Receive error

Fig. 2: Transition system counterexample from TCMC

either event occurs. ack error can mean either a negative
acknowledgment or a corrupt message.

In this model, a sender should not resend a packet when
the receiver is expecting the next one. Checking this property
using TCMC implemented in Alloy provides the counterex-
ample transition system shown in Fig. 2. A node in this
transition system represents a sender-receiver state pair. This
output is not the full transition system, but rather a four-
element subset of the system containing the counterexample.
Within this graph, there is indeed a path from the start state
to the problematic state: the path (State0, State1, State2),
which occurs when the first two events are send success
and ack error. However, the graph also contains states and
transitions that are irrelevant to the counterexample. As RDT is
rather simple, we can find the counterexample path by manual
inspection. However, in more complex systems the path can
be hidden inside a very large graph. Our goal is to present
the user with a path by removing the irrelevant states and
transitions from the transition system.

III. BACKGROUND

A transition system is a five-tuple: TS = (S, S0, σ, A, l),
where S is a finite set of states; S0 ⊆ S is a non-empty set of
initial states; σ : S×S is a transition relation; A is a finite set
of atomic propositions; and l : S → P(A) is the total labelling
function.

Computation Tree Logic with fairness constraints
(CTLFC) [8] uses a combination of temporal operators and
path quantifiers to describe a property of the behaviour of a
transition system from a particular state. The path quantifiers
A (all paths) and E (some path) are combined with the
temporal operators X (next), G (globally), F (eventually), and
U (until) to form properties such as AG p meaning atomic
proposition p is true in all states of the transition system.
A primitive set of CTL operators is EU , EG, and EX ,
from which all the others can be derived. Additionally, the
operator EcG p means there exists a fair path on which p
is true globally, where a fair path is one where c is true
infinitely often. As a branching time logic, the semantics of
CTLFC is described over computation trees. A computation
tree is a tree representing all the (potentially) infinite paths



from an initial state. All LTL properties can be expressed
in CTLFC with the addition of variables in the model [9].
Creating a counterexample for a universal temporal formula
(contains only As) is the dual of the problem of creating a
witness for an existential temporal formula (contains only Es).
Clarke et al. [10] and Hojati et al. [15] describe algorithms for
creating witness paths (called linear counterexamples), which
generally involve remembering the set of states during the
model checking iterations (called stages) and also computing
a strongly-connected component within the set of states that
satisfy EG. Clarke et al. [7] extended this algorithm to
handle formulas whose counterexample cannot be described
as a single path, but must be stated in terms of a tree. This
algorithm recurses through the nested temporal formulas and
glues together trees to create a counterexample for the whole
formula. Jiang and Ciardo [19] discuss how to extract minimal
counterexamples for iterative model checking approaches.

Transitive-closure-based model checking (TCMC) is a
declarative, symbolic model checking method for CTLFC
properties. Using the (reflexive) transitive closure operator,
TCMC describes necessary and sufficient conditions on a
finite set of states for them to satisfy a property. The closure
operator, a second-order operator, specifies the reachability
relation, which is not expressible in FOL. Immerman and
Vardi [17] describe an approach (but not an implementation)
that uses transitive closure for expressing all of CTL*, which
requires the introduction of a new Boolean variable into the
transition system for each sub-formula of the property. Vakili
and Day [26] present TCMC, which supports only CTLFC, but
does not require the introduction of extra Boolean variables.
Vakili and Day also implement TCMC in Alloy where the
transitive closure operator is automatically unfolded for the
finite scope and the result is one formula that represents one
model checking query, which is passed to the solver. (In
contrast, Hojati et al. [16] is an example of an algorithmic
approach to using the transitive closure operator for symbolic
model checking.)

For a transition relation σ and a CTLFC property ϕ, TCMC
consists of checking S0 ⊆ [ϕ], where [ϕ] is the set of states
that satisfy ϕ and is defined as follows. σX is the (possibly
non-total) transition relation σ restricted to domain elements in
set X . ˆ is the transitive closure operator and ∗ is the reflexive
transitive closure.

Definition III.1. Transitive-closure-based model checking
(TCMC)2

1) [p] = {s ∈ S | p ∈ l(s)}
2) [¬ϕ] = {s ∈ S | s 6∈ [ϕ]}
3) [ϕ ∨ ψ] = [ϕ] ∪ [ψ]
4) [EXϕ] = {s ∈ S | ∃t ∈ [ϕ] : σ(s, t)}
5) [ϕEUψ] = {s ∈ S | ∃t ∈ [ψ] : ∗(σ[ϕ])(s, t)}
6) [EGϕ] = {s ∈S | ∃t ∈ [ϕ] : ∗(σ[ϕ])(s, t) ∧ ˆ(σ[ϕ])(t, t)}
7) [EcGϕ] = {s ∈ S | ∃t ∈ [ϕ] :

∗ (σ[ϕ])(s, t) ∧ ˆ(σ[ϕ])(t, t) ∧ t ∈ [c]}
2We use the definition of TCMC found in [13], which is an improved

presentation of [26].

In Definition III.1, [EXϕ] is a set of states that can be
reached one step from any state in [ϕ]. The definition of
[ϕEUψ] is a set of states that can reach a state in [ψ] by
going through some states in [ϕ] described using the transitive
closure of σ. [EGϕ] is a set of states that can reach some state,
t, in [ϕ], and state t must loop back to itself by going through
some states in [ϕ] to create an infinite path. Every state in
[EcGϕ] must reach a state t that satisfies ϕ and the fairness
constraint (c) and that loops back to itself by going through
states in [ϕ]. As a CTL model checking method, TCMC
constraints describe a set of states, not a path (as in LTL model
checking). The solver returns as a counterexample/witness a
set of states (rather than a path) and a value of σ (the transition
relation) in which the property holds. The correctness of
TCMC was proven in [25].

Due to the state-space explosion problem, the whole state
space usually cannot be fully explored when verifying a
property. Farheen [13] describes the meaning of results for
scoped TCMC. Given a state set of scope n in scoped TCMC,
where n is less than the size of the entire state space, TCMC
checks all the full (meaning contains all transitions between
the states within the scope), connected subgraphs of size n
in the complete transition system from an initial state. From
Farheen’s methodology, we know:

• For a safety property (which has a finite path counterex-
ample), a counterexample transition system from scoped
TCMC contains a real bug.

• For a liveness property (counterexample is an infinite
path on which the desired proposition is never true), a
counterexample transition system from scoped TCMC
contains a real bug.

• For an existential property (holds for some path), the
witness produced is a real witness.3

Thus, we begin our methodology for extracting counterexam-
ples from a transition system instance that we know has a
real bug or witness. We use an implementation of TCMC in
Alloy as an Alloy module. No extensions are necessary to the
Alloy Analyzer. However, our results are applicable for any
implementation of TCMC in FOLTC.

IV. EXTRACTING COUNTEREXAMPLE PATHS

In this section, we present our constraint-based method for
extracting counterexamples in TCMC. The general idea is to
add constraints to the model that force the constraint solver to
produce an instance as a path or a result less than the whole
transition system. In the following subsections, we classify the
possible forms of counterexamples, introduce our method for
extracting them, describe how to extend the TCMC process
with our technique, and discuss limitations in comparison to
other model checking techniques.

3The witness is guaranteed to contain at least one initial state. It does not
guarantee there is a path from every initial state in the complete transition
system.



A. Classification of Counterexamples

Given a transition system and a universal property it does
not satisfy, we wish to produce a counterexample: a specific
computation illustrating why the property fails. A counterex-
ample is a subtree of the transition system’s computation
tree starting at its root, including only the paths relevant for
refuting the property (it may include finite and infinite paths).
There are CTLFC properties whose counterexamples cannot
be described in a path but require a branching subtree. For
a subtree, there is an associated (finite) subgraph of the
transition system, containing only the states and transitions
used in the subtree. As a set of constraints on a transition
system, TCMC produces subgraphs as instances (not subtrees).
Our goal is to add constraints that produce a subgraph that
isolates the counterexample as clearly as possible. By focusing
on the form of the subgraph, we avoid the need to consider
the property itself.

Subgraphs can be used to describe counterexamples, but
they are less informative than subtrees because they cannot
generally specify the order in which transitions are taken.
Thus, while every subtree generates a unique subgraph, the
reverse is not generally true. For example, consider the tran-
sition system in Fig. 3 and the property AF (¬p ∨AGp).
In words, this asserts that “all paths eventually reach ¬p
or a state after which p must always hold.” A counterex-
ample should demonstrate that “there is an infinite path
along which p always holds yet ¬p is always reachable.”
This counterexample cannot be a path, but must be a tree.
Fig. 4 shows the counterexample subtree (defined recursively
because it is infinite) and its associated subgraph. A property
with a different counterexample, but the same subgraph, is
(AX AX p) ∨ (AX AX ¬p). The finite tree containing paths
S1, S2, S1 and S1, S2, S3 is a counterexample for it and has
the same subgraph, but this subtree is not a counterexample
for AF (¬p∨AGp). This example shows that a subgraph can
describe multiple subtrees and some of these subtrees may not
be counterexamples to the property.

First, we characterize the relationship between subgraphs
and subtrees. We say a subgraph is unambiguous if it is
generated by a unique subtree; otherwise, it is ambiguous.
The significance of unambiguity is that the counterexample
subtree can be uniquely determined from the counterexample
subgraph. On the other hand, given an ambiguous subgraph
that describes a counterexample, from the subgraph we can
find subtrees that generate it but we cannot tell valid coun-
terexample subtrees apart from subtrees that happen to use
the same states and transitions.

Next, we consider the various forms of subtrees and how
they map to subgraphs. An important subcategory of subtrees
are paths, which have no branches. If a finite path has no
repeated states, we call it a simple path. Infinite paths must
have repeated states, since the transition system is finite. Some
infinite paths can be represented by a simple path followed by
a state that is a repeat of an earlier state, where a loop begins;
such an infinite path called a lasso. We use the term restricted

p
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S3

Fig. 3: A three-state transition system
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Fig. 4: Counterexample for AF (¬p ∨AGp) on Fig. 3

path to refer to both simple paths and lassos.
Not all paths have an unambiguous subgraph. For example,

the subgraph in Fig. 4 is ambiguous since it is generated by
the finite path S1, S2, S1, S2, S3 in addition to the subtree T .
As a more extreme example, for some transition systems we
can write a property whose only counterexample is a Eulerian
path (one that takes every transition once). In this case, the
subgraph is the entire transition system, and we cannot infer
anything about the counterexample subtree from it.

All simple paths generate unambiguous subgraphs: there
is only one possible ordering of states, so the subgraph and
subtree are in a one-to-one correspondence. Lassos do not have
unambiguous subgraphs, but they have the following similar
property: given a subgraph that describes a counterexample, if
a lasso generates it, then the lasso is a valid (but perhaps
unnecessarily long) counterexample. Based on these obser-
vations, we develop two separate counterexample extraction
methods: one for restricted paths (Path TCMC) and another
for subgraphs (Subgraph TCMC). The former provides more
useful debugging information because it generates a path,
while the latter only generates a subgraph but works for any
property. We choose the boundary between these two methods
based whether the subgraph can unambiguously represent a
counterexample. In practice, many properties that users check
fall under the category of Path TCMC.

B. Path TCMC

In this section, we present Path TCMC, an extension of
TCMC that extracts a restricted path counterexample for a
property that does not hold. It can extract both finite paths
(simple paths) and infinite paths (lassos). The method is
limited to cases where such a path exists; it does not work
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Fig. 5: Example of a lasso represented by P = (N,n0, δ, π)

when all counterexamples of a property are other types of
paths or are branching subtrees.

Given a transition system TS = (S, S0, σ, P, l), we intro-
duce a four-tuple P = (N,n0, δ, π) to represent the path,
where: N is a finite set of path nodes; n0 ∈ N is the initial
node; δ is a partial function from N to N representing links
between nodes; and π is a total function from N to S. We then
define the transition relation of the corresponding subgraph
as σP = {(π(n), π(n′)) | (n, n′) ∈ δ}, and stipulate three
properties to ensure P represents a path in TS:
• It respects transitions: σP ⊆ σ.
• It starts in an initial state: π(n0) ∈ S0.
• It is connected: ∗δ(n0, n) for all n ∈ N .

P is a graph that contains only a single finite or infinite path
because δ is a function. Via π, its mapping to states in TS,
it describes a path through σ, the transition relation of TS.
For finite paths, δ is defined for all except one path node,
which is the last node. For infinite paths, δ is total. Fig. 5
gives an example of how P can represent a lasso where N is
the set {n0, n1, n2, n3}. Note that constraining σP (a subset
of σ) rather than directly constraining σ, is necessary because
σ might be defined concretely or have constraints that force it
to always include certain states and transitions.

To perform Path TCMC with a property ϕ, we apply
the temporal operators from Definition III.1 to the transition
system σP instead of σ. We then ask an FOLTC solver, such
as the Alloy Analyzer, for an instance that satisfies the TCMC
constraints plus the above constraints. If a counterexample
path exists, it will return an instance of TS and P . At this
point, we know σP forms a valid counterexample subgraph.
We showed in Section IV-A that these subgraphs are either
unambiguous or identify an infinite path that is guaranteed to
be a valid counterexample. Therefore, we conclude that the
restricted path given by {π(δi(n0)}i≥0 is a valid counterex-
ample for ϕ, where δi denotes i repeated applications of δ.

If it is desired to obtain a minimal counterexample path,
we can iteratively reduce the scope of N . As a final step, we
can check for a non-infinite counterexample path by adding
the constraint that there exists a path node with no δ-successor
(meaning the path is finite). We must do this because the solver
could return an infinite path when a finite one would suffice;
for example, the link from n3 back to n1 in Fig. 5 might be
unnecessary, but including it does not change |N |.

C. Subgraph TCMC
In this section we present Subgraph TCMC, an extension

of TCMC that extracts a minimal counterexample subgraph
for a property that does not hold. Unlike Path TCMC, it is
applicable to all properties, even those whose counterexamples
are not paths. However, its results can be more difficult to
interpret because it gives the states and transitions used in a
problematic scenario, not the subtree that defines the scenario
itself.

Given a transition system TS = (S, S0, σ, P, l), we intro-
duce σG ⊆ σ to define a subgraph. Then, similar to Path
TCMC, we apply the temporal operators from Definition III.1
to σG instead of σ. We iteratively reduce the scope of σG
given to the FOLTC solver to get a minimal counterexample
subgraph. The result is a subgraph containing only the states
and transitions necessary to refute ϕ.

If the solver does not support setting scopes on the size of
relations (Alloy does not), then we can simulate it by defining
G = (T, src, dest), where T is a set of transition objects
and src and dest are total functions from T to S describing
the source and destination states of each transition. We then
define σG = {(src(t), dest(t)) | t ∈ T}, and stipulate three
properties to ensure G behaves correctly:
• It respects transitions: σG ⊆ σ.
• It has no duplicates: for all t, t′ ∈ T , if src(t) = src(t′)

and dest(t) = dest(t′), then t = t′.
• It is connected: there is a state s ∈ S such that ∗σG(s, s′)

for all s′ in the images of src and dest.
The no-duplicate property is needed to ensure that an exact
scope on T results in an exact number of transitions in σG.
The connectedness property is not strictly needed, since a
disconnected subgraph would not be minimal, but it helps to
make the non-minimal counterexamples more understandable.

D. Process
Figure 6 outlines our process to extract counterexamples

from a transition system that does not satisfy a property.
The process assumes that the user has just received a failing
instance containing m transitions after using TCMC to check a
model with state scope n. At this point, we know a bug exists
in the system, but it is unclear whether the counterexample
can be represented by a restricted path.

As a first step, we check the model using Path TCMC; if
the counterexample can fit within a restricted path, an instance
will be produced. Note that Path TCMC introduces the notion
of path nodes, denoted N in Section IV-B, and scoped TCMC
imposes a limit on its cardinality. We recommend using scope
to n to account for the worst case scenario where the path
spans every state in the instance.

After Path TCMC returns an instance, users who desire
smaller counterexamples can iteratively reduce the scope of
path nodes, and re-run Path TCMC. Failure to return an
instance indicates that there are no counterexamples involving
fewer path nodes. As noted in Section IV-B, users may also
add the constraint that there exists a path node with no δ-
successor to avoid unnecessarily infinite counterexample paths.
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Fig. 6: Counterexample extraction process

If in the first step Path TCMC fails to generate an instance,
then we conclude that the counterexample cannot fit within
a restricted path. Subgraph TCMC should now be used for
extraction, with a scope imposed on the number of relations
as described in Section IV-C. We recommend using m as the
initial scope, to account for the worst case that the coun-
terexample contains an Eulerian path. Again, users may now
iteratively reduce the scope and re-check until the returned
subgraph is small enough to understand.

Path TCMC and subgraph TCMC are implemented in
additional modules for the Alloy Analyzer.

E. Comparison to Other Techniques

In this section, we compare our method and its usefulness
with the popular model checker NuSMV 2.6.0 [5]. When
a restricted path counterexample exists, Path TCMC and
NuSMV produce similar results: both give a sequence of states
and, in the case of a lasso, indicate where the loop begins. For
a non-restricted path, NuSMV produces a trace with states in
order, whereas with our method we must resort to Subgraph
TCMC and lose explicit ordering. However, in these cases
the NuSMV trace can have many occurrences of “Loop starts
here,” which is difficult to interpret (we cannot tell when
each loop is taken) and indicates a failure to identify a finite
counterexample. For a branching subtree counterexample, as
in the example in Fig. 4, Subgraph TCMC shows us all the
states and transitions necessary to refute the property but does
not give any information about the ordering of transitions
as a subtree would. NuSMV, on the other hand, produces
an incomplete portion of the subtree: it gives the repeating
sequence S1, S2, S1, S2, . . . , which is the right-hand edge of
the full subtree. In general, when refuting a property of the

State0
sender: Ready send next
receiver: Ready receive next

State1
sender: Wait ack
receiver: Receive success

State2
sender: Ready resend
receiver: Ready receive next

(a) Safety c/e

State0
sender: Ready send next
receiver: Ready receive next

State1
sender: Wait ack
receiver: Receive error

State2
sender: Ready resend
receiver: Ready receive resend

(b) Infinite Liveness c/e

Fig. 7: RDT Alloy counterexample output

form ϕ1 ∨ ϕ2, NuSMV produces a path refuting only the left
disjunct even though both need to be false.

V. CASE STUDIES

In this section, we demonstrate our method and investigate
its performance using the Alloy Analyzer. Revisiting our RDT
example from Section II, we check that there should never be
a system state where the receiver is expecting the next packet
while the sender is preparing a resend. This safety property is
formalized by:

AG¬(sender = “Ready resend” ∧
receiver = “Ready receive next”)

Our Path TCMC constraints successfully reduced the output
to the finite counterexample path shown in Figure 7a.

A naı̈ve RDT liveness property that we can check is that if
the receiver receives a corrupt packet, it will eventually receive
the corrected one:

AG (receiver = “Receive error”⇒
AF receiver = “Receive success”)

The infinite path counterexample that immediately comes to
mind is an infinite loop of negative acknowledgments and
corrupt packets, in which the correct packet is never received.
Indeed, this is the exact path returned by Alloy in Figure 7b,
which is a lasso.

We applied our method to some existing small Alloy mod-
els, created previous to our work, to show that our solution
does not require any changes to the model and to investigate
its performance compared to TCMC itself. Our models come
from Alloy transition systems generated using Dash [24], and
transition systems modeled directly in Alloy [13].

To produce a counterexample from these models, we de-
signed properties that should not be valid in the model.
Our properties range from safety to liveness and some are
properties whose counterexamples cannot be expressed as
paths (called “subgraph properties”). Table I has one row



TABLE I: Performance of TCMC, Path TCMC and Subgraph
TCMC in Alloy (minutes/seconds) (“-” means not relevant)

Path Subgraph
Property Scope TCMC TCMC TCMC
Musical Chairs Liveness 11 3.4s 4.0s -
Musical Chairs Liveness 12 1m08.7s 2.3s -
Traffic Light Safety 18 3m08.0s 5m30.4s -
Traffic Light Liveness 18 16.8s 5m37.8s -
Mutex Safety 10 55.9s 1m33.6s -
Mutex Safety 14 2m23.3s 17.7s -
Musical Chairs Subgraph 12 30.7s 1m29.1s 1m51.4s
Traffic Light Subgraph 12 6.1s 2m50.0s 1m12.4s

for each model-property pair being checked. Our experiments
were run on an Intel® Core™ i7-4720HQ CPU @ 2.6 GHz
running Windows 10 Home.

The TCMC column provides timings for model checking
using the base TCMC Alloy module. The Path TCMC and
Subgraph TCMC columns show timings of the same process,
but with the base TCMC module replaced with our own
modules that implement Path and Subgraph TCMC respec-
tively. Each cell in the table is a complete re-run of the
Alloy Analyzer’s execution, and represents the average time
elapsed until the first counterexample instance was found.
These executions were run until the elapsed time converged
to within 5% of the running average time. Finally, following
the process from Figure 6, we ran the Subgraph Module only
when the Path Module failed to return an instance (the last
two rows of the table).

In most cases, our augmented TCMC modules ran slower
than the base TCMC module. However, in cases such as
Musical Chairs Liveness scoped to 12 States or Mutex Safety
scoped to 14 States, the opposite was observed. Our modules
introduce path node and transition objects, increasing the
search space. However, they also add constraints between
existing objects, reducing the search space. Thus, it is difficult
to predict constraint solving times.

VI. RELATED WORK

In this section, we focus on related work on model checking
support for abstract modelling languages. BMC [2] unrolls
a transition relation for a fixed number of steps to check if
an LTL property holds for all paths of this length. Liveness
properties can be checked by requiring a loop at the end of the
path. BMC can be implemented in Alloy without using tran-
sitive closure. A common method for unrolling the transition
relation a fixed number of steps is to use the ordering module
in Alloy [18], however it disallows repeated states on the path,
which means it cannot be used to produce counterexamples for
liveness. Cunha [11] extended the ordering module to describe
paths with loops. As BMC-based approaches, these methods
of model checking are for LTL properties.

Electrum [22] and DynAlloy [14] are extensions to Alloy
to model transition systems. Electrum supports BMC and also
translates to NuXmv [4], which can verify CTL properties.
DynAlloy does not support temporal logic properties but rather
pre/post condition reasoning.

Tools for languages such as TLA+ [27], B [21], [20], and
ASMs [12] provide model checking via explicit state model
checking, BMC, or translations to existing tools.

Overall, Path TCMC and Subgraph TCMC support the
generation of counterexamples for a rich set of properties
(CTLFC) by the introduction of constraints without any ex-
tensions to tool support.

VII. CONCLUSION

We have presented a constraint-based method for extracting
counterexamples from the results of transitive-closure-based
model checking for all CTLFC properties, even those whose
counterexample is not a path. We characterize how subgraphs
represent counterexamples. By focusing on subgraphs, our
constraints do not depend on the property and therefore avoid
recursing through the nested temporal operators. Since our
technique relies on TCMC, which has been proven correct,
our method is guaranteed to not produce spurious counterex-
amples. To produce a path counterexample, our method is
purely declarative. Iteration is only used in our method to
produce the smallest subgraph or path. A significant advantage
of the declarative approach is its simplicity. Our result allows
users to focus their attention on the source of the error in
a model by reviewing a minimal set of information. Our
method is immediately accessible to Alloy users without any
extensions to the Alloy Analyzer. Our subgraph representation
of counterexamples is useful for constraint-based methods for
CTL model checking.
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