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Abstract 

 Previous studies have reported the effect of driving simulator games on simulator 

sickness and eye symptoms experienced by users; however, empirical results regarding 

the game experience using commercial virtual reality head-mounted displays (VR-

HMDs) are lacking. We conducted an experiment where participants played a driving 

simulator game (Live for Speed) displayed through an Oculus Rift DK2 for up to 120 

minutes. Game play duration was recorded. Game experience was surveyed using 

questionnaires about simulator sickness, eye symptoms, and game engagement. The 

results showed that the average game play duration for this specific driving simulation 

game was approximately 50 minutes. Simulator sickness was negatively correlated with 

affordable play duration using the VR-HMD. We also found that age was negatively 

correlated with game play duration. There were no differences between those who did 

and did not wear frame glasses. In addition, we compared the VR-HMD game play and 

traditional desktop LCD game play, in terms of simulator sickness, subjective eye 

symptoms, game engagement, and game performance. The results showed that VR-HMD 

game play in the driving simulation game was similar to the experience using the desktop 

LCD display, except for a moderately increased level of simulator sickness. These 

findings provide new data about VR-HMD’s impact on game play and will inform game 

designers, players, and researchers for their choices and decisions on proper game 

duration and the type of devices.   

 

Keywords: virtual reality; driving simulation games; user experience; HMD; simulator 

sickness; eye symptoms.  
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1. Introduction 

 Virtual reality (VR) is being increasingly used in sport and game industries 

(Badcoe 2000; Neumann et al. 2017). For example, VR has been widely used in first-

person driving simulation games. The immersive experience is brought to a new level by 

head-mounted displays (HMDs). Because of the rapid development of virtual reality 

HMDs, commercial models for gaming purposes are becoming widely available at an 

affordable price. For example, the prices of Oculus Rift and HTC Vive are around 

US$800. However, there are concerns regarding factors that may limit the adoption of 

VR-HMDs such as simulator sickness and eye fatigue (Patterson et al. 2006). In the 

research literature, there is a lack of empirical results regarding these factors that can be 

used to inform VR-HMD game designers and players. It is important that human factors 

must be carefully considered in the development of VR (Chen et al. 1998). In the current 

study, we conducted an experiment, in which participants played a driving simulator 

game using a commercial HMD. The goal was to measure the amount of time for which 

participants could comfortably play the VR-HMD driving simulation game, as well as to 

examine individual difference in the game experience. The Oculus Rift DK2 HMD was 

used in this experiment. 

 Playing simulation and virtual environment games can induce motion sickness 

(Stanney et al. 1999). Sensory conflict theory states that motion sickness is caused by a 

disagreement or mismatch between different sensory systems regarding the perceived 

movement (Treisman 1977). Simulator sickness refers to motion sickness experienced in 

simulated virtual environments (Rebenitsch and Owen 2016). In this case, the motion is 

usually seen by the visual system but not felt by the vestibular system, which causes a 
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perceptual conflict (Bles et al. 1998). In addition to the sensory conflict theory, postural 

instability and insufficient vestibular-ocular correction have also been used to explain 

how simulator sickness occurs. Postural instability theory (Riccio and Stoffregen 1991) 

states that motion sickness occurs when people are presented with an environment where 

they do not have effective strategies to maintain a stable posture. Regarding vestibular-

ocular factors, Ebenholtz (1992) hypothesized that motion sickness occurs when the 

vestibular-ocular system cannot sufficiently adjust ocular convergence, accommodation, 

and fusion to compensate for motion within a virtual environment. This theory has 

received support from behavioral and brain imaging results (Guo 2014; Miyazaki et al. 

2015). Therefore, stronger visually induced motion sickness may be associated with 

increased eye symptoms due to increased or unusual load on the vestibular-ocular, 

convergence and accommodation systems. Gamers experiencing simulator sickness 

usually experience dizziness and nausea, and may even vomit in severe cases. Simulator 

sickness has a negative impact on game enjoyment (Lin et al. 2002). 

 A considerable number of studies have examined simulator sickness in virtual 

environments presented using traditional displays (not HMDs). In a report of flight 

simulator results from over 700 pilots, about 45% of participants reported some level of 

simulator sickness (Kolasinski 1995). Most of them reported that the symptoms would 

disappear within one hour. In a review of 10 driving simulator studies, Classen, 

Bewernitz, and Shechtman (2011) concluded that age, gender, and field of view all affect 

simulator sickness. In general, older participants (around 50 to 70 years old) experienced 

more symptoms than younger participants (around 20 to 40 years old) (Keshavarz et al. 

2017). Women in general experienced more symptoms than men (Koslucher et al. 2016). 
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It is still unclear what causes the age and gender differences. Some researchers suggested 

that the age difference may be related to changes in the central nervous system, and the 

gender difference may be a result of evolution (McCaffrey and Graham 1980; Golding 

2006). In general, a larger field of view contributed to a higher level of presence, stronger 

feeling of self-motion, and also higher simulator sickness scores (Classen et al. 2011; 

Palmisano et al. 2017).  

A number of additional factors that affect the level of simulator sickness 

experienced by subjects in virtual environments have been identified. For example, faster 

object motion within a virtual environment results in stronger sensations of motion 

sickness (Hu et al. 1989). While VR technology aims to increase the level of detail, 

presence, and visual fidelity, it is suggested that these factors might also increase visually 

induced motion sickness as a side-effect (Hettinger and Riccio 1992). In addition, 

previous studies (Kennedy et al. 2000; Domeyer et al. 2013) using traditional displays 

have found that the level of simulator sickness increased with exposure duration (i.e., 

continuous play with no break) and that simulator sickness decreased with repeated 

exposure (i.e., playing the same simulator multiple times). Results from a recent study 

(Helland et al. 2016) also showed that higher blood alcohol concentration was associated 

with lower subjective simulator sickness scores, suggesting that alcohol may reduce 

perceived simulator sickness. Regarding interventions to mitigate simulator sickness in 

driving simulators, one study showed that galvanic cutaneous stimulation reduced 

subjects’ simulator sickness scores (Gálvez-García et al. 2015), and another study 

showed that transdermal scopolamine reduced susceptibility to simulator sickness 

especially for female participants (Chaumillon et al. 2017).  
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Only a limited number of studies have examined game experience and simulator 

sickness with VR-HMD. Since VR-HMD is expected to increase presence and 

immersion, it might also increase simulator sickness. Indeed, existing studies have 

reported that simulator sickness resulting from using VR-HMD was stronger than using 

ordinary displays (Howarth and Costello 1997; Häkkinen et al. 2006). It was also found 

that playing VR-HMD games while standing induced a higher level of simulator sickness 

than playing the same game while seated (Merhi et al. 2007).  

Regarding the duration of play, existing studies usually asked participants to play 

for no more than an hour. In one study using a VR chess game (up to 60 minutes), 4 of 

the 20 subjects (20%) stopped playing early due to headache and nausea with an average 

play time around 40 minutes (Howarth and Costello 1997). In another study using a VR 

action game (Whacked on XBox, up to 50 minutes), 10 of the 17 subjects (59%) 

discontinued play due to simulator sickness with an average play time of around 14 

minutes (Merhi et al. 2007). In a recent study using VR roller coaster games (Parrot 

Coaster and Helix Coaster, maximum play time of 14 minutes), 10 of the 24 subjects 

(42%) dropped out early due to nausea with an average play time of approximately 5 

minutes (Davis et al. 2015).  

In previous studies examining driving simulators and simulator sickness, most of 

the simulators were for driving research purposes rather than gaming, and most of the 

displays were LCD or projectors rather than HMD (Brooks et al. 2010; Hamel et al. 

2013; Bridgeman et al. 2014; Jäger et al. 2014). In a study using a vehicle in the loop 

simulator with an HMD (Karl et al. 2013), participants completed two daily driving 

scenarios for about 30 minutes each with breaks in between. Two of the 44 subjects could 
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not finish due to simulator sickness, and approximately 11% of the remaining subjects 

reported severe simulator sickness symptoms. Since most driving games are racing games 

that involve faster driving speed and more aggressive maneuvering than daily driving, the 

amount of virtual motion in VR driving games might be greater than that usually 

presented in driving simulators for driving safety research.  

It is not surprising that the type of VR games affects how long people can 

comfortably play the game. The more virtual motion presented in a game, the shorter the 

play duration becomes. In the current study, we focused on a driving simulator game 

(Live for Speed), which was expected to involve a moderate level of virtual motion, more 

than a chess game but less than a roller coaster game. We also intended to test longer VR-

HMD game play time. It is generally believed that most people can play non-HMD 

games and watch non-HMD movies continuously for 90 minutes without any discomfort 

(Rau et al. 2006). Therefore, it is meaningful to test whether people can play VR-HMD 

driving simulator games for the same duration. As a result, we extended the maximum 

play time to 120 minutes in the current study.  

 Simulator sickness is often measured using subjective evaluation methods that ask 

participants to rate the severity of symptoms after experiencing the simulator. Two 

frequently used measures are the Motion Sickness Assessment Questionnaire (MSAQ) 

and the Simulator Sickness Questionnaire (SSQ). The MSAQ (Gianaros et al. 2001) asks 

16 questions about symptoms in four dimensions: gastrointestinal (stomach sick, queasy, 

nauseated, vomit), central (faint-like, lightheaded, dizzy, spinning, disoriented), 

peripheral (sweaty, clammy, hot/warm), and sopite-related (annoyed, drowsy, tired, 

uneasy). The most recent version of the MSAQ (Davis et al. 2008; Brooks et al. 2010) 
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(Brooks et al. 2010)requires participants to rate each symptom on a scale from 0 (not at 

all) to 10 (severely). The overall score is the average from all the questions linearly 

transformed onto a range from 0 to 100. The SSQ (Kennedy et al. 1993) asks 16 

questions about symptoms in three dimensions: nausea, oculomotor disturbances, and 

disorientation. Each question is rated on a scale of 0 (none), 1 (slight), 2 (moderate), and 

3 (severe). The overall score is a weighted average from all the questions following a 

specific weighting scheme (Kennedy et al. 1993).  

 Eye symptoms are also related to video game play, in a way similar to viewing 

computer displays for prolonged period of time. The combined eye and vision problems 

are referred to as computer vision syndrome (CVS), for example, eyestrain, ocular 

discomfort, eye dryness, double vision, and blurred vision (Rosenfield 2011). A 

frequently used measure of eye sensation is the Current Symptoms Questionnaire (CSQ). 

It asks 10 questions relating to eye discomfort, dryness, blur, soreness and irritation, 

grittiness and scratchiness, something in eye, burning and stinging, sensitive to light, 

itching, and overall symptoms. Each question is rated on a scale from 0 (do not have this 

feeling) to 5 (very intense). The total score (ranging from 0 to 50) is the sum from all the 

questions. The CSQ is effective in classifying subjects with and without a prior diagnosis 

of dry eye, and the CSQ is a valid measure for the assessment of eye dryness and 

discomfort (Situ et al. 2013). In the current study, we used CSQ to measure eye 

symptoms related to playing the VR-HMD game. 

 Regarding game engagement, a frequently used measure is the Game Engagement 

Questionnaire (GEQ). The GEQ (Brockmyer et al. 2009) asks 19 questions about four 

aspects of game engagement, including psychological absorption, flow, presence, and 
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immersion. Each question is rated on a scale from 0 to 4, and the overall average score is 

also on a scale from 0 to 4. The GEQ has shown good reliability and validity. It is 

regarded as a psychometrically strong measure of levels of engagement elicited while 

playing video games (Brockmyer et al. 2009). GEQ has been used in previous studies to 

measure game engagement, for example, in first-person shooter and driving simulator 

games (McMahan et al. 2012; Darty et al. 2014). We used the GEQ to measure game 

engagement in the current study. 

In addition to the duration of play in VR-HMD, another interesting research 

question is whether there is any significant difference between VR-HMD and desktop 

LCD. After the completion of Study 1 that focused on game play duration in VR-HMD, 

we conducted Study 2 in order to further compare the VR-HMD game play with 

traditional desktop LCD game play, in terms of measures including simulator sickness, 

subjective eye symptoms, game engagement, and game performance. 

 

Study 1: Game Play Duration in VR-HMD 

2. Method of Study 1 

 2.1. Participants. Forty-seven adults (35 males and 12 females, mean age 25 ± 5 

years, range 18-38 years) were recruited around the campus of University of Waterloo. 

All participants self-reported normal or corrected-to-normal vision. They had played 

video games for 13 ± 7 years and usually played for 7 ± 9 hours per week. Nine 

participants reported previous experience with VR-HMDs, but their experience was very 

limited at only 5 ± 7 hours. Twenty-two participants wore frame glasses, 10 participants 
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wore contact lenses, and the remaining 15 participants wore no glasses. Participants with 

frame glasses were able to wear their glasses inside the HMD unit. 

2.2. Apparatus. The driving simulator game was Live for Speed (S2 0.6G version, 

as shown in Figure 1). It is a serious racing simulator with realistic physics and vehicle 

dynamics simulation. The driving scene used for the experiment was a racing track (3.3 

km circuit). The simulated vehicle was a model called XF GTI in the game (engine power 

86 kW, torque 130 Nm, total mass 942 kg). Typical driving speed in the game ranged 

around 90 to 180 km/h. The VR-HMD used was Oculus Rift DK2, which has a resolution 

of 960×1080 pixels per eye, a refresh rate at 75 Hz, and 100° field of view supporting 3D 

vision (binocular disparity). The desktop PC used to run the game was an Acer Predator 

G3 model with i7-4790 CPU (3.60GHz), 12GB RAM, GeForce GTX 760 GPU, and 

Windows 8.1 OS. Audio was played via Bose Companion 2 Series III speakers. The 

steering wheel and pedal set was Logitech G27. Figure 2 shows a user playing the game 

wearing the VR-HMD. The average frames per second (fps) was 90. 

 

Figure 1. A scene from the driving simulation game (Live for Speed) used in the current 

study. 
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Figure 2. A user playing the game wearing the VR-HMD. 

 

 2.3. Measures. Game play duration: participants were instructed to play for as 

long as they felt comfortable up to a maximum of 120 minutes. They were told that they 

should stop playing at any time if they felt necessary. The experimenter recorded the play 

time with a stopwatch. Every 15 minutes, the experimenter asked participants whether 

they preferred to stop playing or keep playing. The final total duration of play was 

recorded as game play duration. If a participant reached the 120-minute limit, the 

experimenter would stop the experiment as this was the maximum time permitted. 

Simulator sickness was measured using the most recent version of MSAQ (0-100 range). 

Eye symptoms were measured by CSQ (0 to 50 range). Game engagement was measured 

by GEQ (0 to 4 range). In addition, ocular measures including visual acuity, tear break-up 

time, tear meniscus height, ocular redness, and corneal staining were also recorded, 

which will be reported elsewhere. 

 2.4. Procedure. The experiment was approved by an ethics review committee at 

the University of Waterloo. Upon arrival, participants first read the information letter and 

signed the consent form. They completed a background survey questionnaire with their 

demographic information and previous game experience. Then the experimenter 

introduced the HMD unit and helped the participants wear it properly. Participants played 
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the game while seated. Before the formal experiment, they practiced for 5 minutes. The 

practice session also gave the opportunity for participants to quit the study if they did not 

feel comfortable and could not use the VR-HMD at all. A pre-game CSQ was completed 

to measure the baseline level of eye symptoms, and then participants started the formal 

play for up to 120 minutes. Every 15 minutes, the experimenter asked participants 

whether they preferred to stop playing or keep playing. At the end of the play period, 

participants completed a post-game CSQ (same as the pre-game version), MSAQ, and the 

GEQ. Then they were debriefed, paid (Can$20), and thanked for their participation.   

3. Results of Study 1 

 Statistical analyses were conducted using SPSS. Questionnaire scores were 

available from 42 participants who completed the formal driving session. 

 3.1. Play duration. One participant's play duration value was missing due to a 

clerical error. Valid play duration datasets were collected from 46 participants. Among 

them, 5 participants discontinued after the practice session due to strong discomfort and 

simulator sickness, so their play duration values were recorded as 0 minutes. Overall the 

mean play duration was 51 ± 33 minutes (Figure ). Four major groups of play duration 

were identified, including cannot play at all (less than 1 minute; 5 persons, 11%), short 

duration (1 to 44 minutes; 10 persons, 22%), medium duration (45 to 89 minutes; 24 

persons, 52%), and long duration (over 90 minutes; 7 persons, 15%).  
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Figure 3. Distribution of game play duration for playing a driving simulator game using a 

VR-HMD. The maximum play time allowed in this study was 120 minutes.  

 3.2. Simulator sickness. The average MSAQ score was 30 ± 24. Note that the 

possible range of the MSAQ is 0 to 100. The Pearson correlation between MSAQ and 

game play duration was significant (r = -0.56, p < 0.001). The scatterplot is shown in 

Figure 4. The negative correlation coefficient indicated that people who experienced 

stronger simulator sickness played the game for less time. Further analysis divided the 

data set into two halves at the median MSAQ value of 29, which resulted in two groups, 

low MSAQ (N = 21, Mean = 10, SD = 8) and high MSAQ (N = 20, Mean = 50, SD = 18). 

An independent-samples T test showed that play duration for the high MSAQ group 

(Mean play duration = 39 min, SD = 21 min) was significantly shorter than play duration 

for the low MSAQ group (Mean play duration = 75 min, SD = 24 min), t(39) = 5.111, p 

< 0.001, d = 1.6. This result was in accordance with the correlation analysis finding. 
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Figure 4. Scatterplot of participants’ MSAQ score vs game play duration. 

 

 3.3. Eye symptoms. The CSQ was measured before and after the formal driving 

session. A CSQ-difference score was computed as post-game CSQ minus pre-game CSQ. 

The difference has a possible range from -50 to 50. Overall, pre-game CSQ had an 

average value of 4.1 ± 4.5, and the post-game CSQ average was 7.4 ± 5.6. A paired 

sample T test showed that CSQ significantly increased after playing the game, t(41) = -

4.75, p < 0.001 (two-tailed), d = 0.65. The average CSQ-difference was 3.3 ± 4.5. The 

correlation between CSQ-difference and play duration was not significant (r = -0.14, p = 

0.38); the correlation between CSQ-difference and MSAQ was significant (r = 0.35, p = 

0.02), meaning that participants who reported more eye symptoms also reported stronger 

simulator sickness. Further analysis divided the data set into two halves at the median 

CSQ-difference value of 2.0, which resulted in two groups, low CSQ-difference (N = 19, 

Mean = -0.2, SD = 1.2) and high CSQ-difference (N = 22, Mean = 6.5, SD = 4.0). An 

independent-samples T test showed no significant difference in play duration between the 
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two groups, t(39) = 1.853, p = 0.07, d = 0.9. This result was in accordance with the 

correlation analysis finding. 

 3.4. Game engagement. The average GEQ score was 1.2 ± 0.4. There were no 

significant correlations between GEQ and play duration (r = -0.02, p = 0.91), MSAQ (r = 

0.08, p = 0.63), or CSQ-difference (r = -0.01, p = 0.97). 

 3.5. Age and gender. Analysis of covariance (ANCOVA) was conducted to 

examine the effects of age and gender on play duration. The results showed a significant 

effect of age on game play duration, F(1, 43) = 13.76, p = 0.001, η2 = 0.07. Figure 5 

shows a scatterplot of age vs game play duration. The effect of gender on play duration 

was not significant, F(1, 43) = 0.03, p = 0.86, η2 < 0.001. Table 1 shows play duration 

values and 95% confidence intervals for both the male and the female groups. Overall, 

there was a significant inverse correlation between age and play duration (r = -0.52, p < 

0.001), indicating that younger participants played the game for longer.  

 

 
Figure 5. Scatterplot of participants’ age vs game play duration. 
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Table 1. Game play duration by gender. 

Gender N 
Play duration 

 mean ± SD (minute) 
95% confidence interval 

Male 34 47.3 ± 30.9 36.9 to 57.7 

Female 12 62.0 ± 36.3 41.5 to 82.5 

 

 3.6. Playing the game with frame glasses. A T test (two-tailed) was conducted to 

compare play duration between participants who wore frame glasses and participants who 

did not wear frame glasses (contact lenses or no correction). Table 2 shows play duration 

values and 95% confidence intervals for participants with and without frame glasses, 

which showed no significant differences (t(44) = 0.29, p = 0.77, d = 0.09). Since age 

showed a significant effect on play duration, we also conducted an additional ANCOVA 

with variable of glasses condition and age in the model. The effect of glasses condition 

remained non-significant, F(1, 43) = 0.002, p = 0.97, η2 < 0.001, whereas the effect of 

age was significant, F(1, 43) = 15.96, p < 0.001, η2 = 0.08. An ANOVA with a factor of 

Group (i.e., people with frame glasses, contact lenses, and no correction) and a covariate 

of Age showed the same results; there was no significant difference between the three 

groups, F(2, 42) = 0.081, p = 0.92, η2 < 0.001, whereas the effect of age was significant, 

F(1, 42) = 15.78, p < 0.001, η2 = 0.08. 
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Table 2. Game play duration by wearing frame glasses or not. 

 

 N 
Play duration 

mean ± SD (minute) 
95% confidence interval 

With frame glasses 22 52.6 ± 32.3 39.1 to 66.1 

Without frame 

glasses 
24 49.8 ± 33.6 36.3 to 63.2 

 

 

Study 2: Comparison between VR-HMD and desktop LCD 

After the completion of Study 1, we conducted another study in order to further 

compare the VR-HMD game play with traditional desktop LCD game play. The research 

question focused on whether there would be any significant difference on simulator 

sickness, subjective eye symptoms, game engagement, and game performance. 

4. Method of Study 2 

 4.1. Participants and apparatus. A subset of participants from Study 1 continued 

to participant in Study 2, including 28 adults (20 males and 8 females, mean age 24 ± 3 

years, range 19-33 years). All participants self-reported normal or corrected-to-normal 

vision. They had played video games for 13 ± 5 years and usually played for 7 ± 9 hours 

per week. The apparatus was the same as in Study 1, with an additional desktop LCD 

display (27 inch).  

 4.2. Measures and procedure. The procedure was generally the same as the 

procedure of Study 1, with the additional of the desktop LCD condition. The measures 

included simulator sickness (MSAQ), subjective eye symptom report (CSQ), game 

engagement (GEQ), and game performance (best lap time, in seconds, recorded in the 

driving simulation game). In order to allow a fair comparison, the game play duration 
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was set to be the same for both conditions of VR-HMD and desktop LCD. It was set at 45 

minutes, which was at the lower end of medium duration identified in Study 1. A within-

subject design was used, with the order of experiencing the two displays balanced across 

subjects. The experiment was completed in two sessions with a few days apart.  

 

5. Results of Study 2   

 5.1. Simulator sickness. Paired sample T test of MSAQ scores showed that the 

VR-HMD condition (15.2) resulted in significantly higher level of simulator sickness 

than the desktop LCD condition (5.0), t(27) = 2.875, p = 0.008, d = 0.543.  

 5.2. Eye symptoms. Repeated measures ANOVA was used to analyze the CSQ 

data with two within-subject factors, pre-post (before or after game play) and device 

(VR-HMD or desktop LCD). The effect of pre-post was significant; post-game CSQ (6.8) 

significantly increased in comparison to pre-game CSQ (4.4), F(1, 25) = 6.255, p = 

0.019, η2 = 0.12. The effect of device was not significant, F(1, 25) = 1.120, p = 0.300, η2 

= 0.01. The interaction effect was not significant, F(1, 25) = 1.571, p = 0.222, η2 = 0.01.  

 5.3. Game engagement. Paired sample T test of GEQ scores showed no 

significant difference between the VR-HMD condition (1.1) and the desktop LCD 

condition (0.9), t(25) = 1.522, p = 0.140, d = 0.299. 

 5.4. Game performance. Paired sample T test of best lap time (in seconds) in the 

driving simulation game showed no significant difference between the VR-HMD 

condition (109 s) and the desktop LCD condition (109 s), t(26) = 0.011, p = 0.991, d = 

0.002. 
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6. Discussion 

 How long can people play the VR-HMD driving simulation game? When 

interpreting the results from the current study, it is important to remember that the type of 

game will certainly affect comfortable play duration, and the current study focused on a 

specific driving simulation game. The results suggested that large individual differences 

exist regarding play duration for playing the VR-HMD driving simulator game. Four 

major groups of play duration were identified, including cannot play at all (less than 1 

minutes; 11%), short duration (1 to 44 minutes; 22%), medium duration (45 to 89 

minutes; 52%), and long duration (over 90 minutes; 15%). Overall, the average play 

duration was 51 minutes. About half of the participants could not play continuously for 

an hour. In contrast, most people can play non-HMD games and watch non-HMD movies 

for 90 minutes. To measure play duration in a relatively natural condition, we simply 

asked participants to play for as long as they felt comfortable up to a maximum of 120 

minutes. Although the observer effect may occur, which means that participants may 

choose to play longer because they know they are being observed, we did not intend to 

push participants to the limit of discomfort and therefore told them that they should stop 

playing at any time if they felt necessary. Participants were aware that they were paid the 

same amount regardless of their actual game play duration. As a result, we expect that the 

measured play duration could reflect natural game play behavior of the participants.  

 Regarding the causes of motion sickness in VR games, a major factor is the 

amount of virtual motion presented in the game. Different types of games involve 

different levels of virtual motion. People tend to reply on horizontal and vertical lines in 

the view to establish the perception of orientation and balance in the virtual world (Andre 



20 

 

et al. 1996). When these visual references are moving or when no such references are 

presented, players may suffer from more motion sickness and therefore can only afford 

shorter play duration (Shafer et al. 2018). In this regard, roller coaster games are expected 

to induce stronger motion sickness than driving games. In addition, faster head movement 

in VR games is associated with stronger motion sickness (Moss and Muth 2011). To 

provide a comparison of game play duration across different types of games, as shown in 

Table 3, we compared the game play duration from the current study and the values 

reported or estimated from other studies in the literature. Although different studies may 

have different maximum duration of play allowed in the experiment, the comparison is 

still meaningful because a significant number of participants stopped playing due to 

motion sickness and discomfort before the maximum duration. While people are expected 

to play a chess game for longer duration than a racing game, the opposite results shown 

in Table 3 may be explained by the fact that the chess game was played using an earlier 

model of VR-HMD device. The poorer display quality (lower resolution) of the old VR 

device might be a factor leading to shorter play duration. 

 

Table 3. Comparison of VR-HMD game play duration across different types of games.  

Study Type of game VR-HMD device 
Average play 

duration (minutes) 

(Davis et al. 2015) Roller coaster riding Oculus Rift 10 

(Merhi et al. 2007) Third-person 3D action Visette Pro 27 

This study Car racing Oculus Rift 51 

(Howarth and 

Costello 1997) 
Chess Virtual i-glasses 42 

 (Kosunen et al. 

2016) 
Meditation in a park Oculus Rift ≥60 
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The duration of play is an important factor in game design (Schell 2014). Too 

short a time may prevent players from enjoying the game and developing meaningful 

strategies, whereas too long a time may lead to boredom and tiredness. In VR-HMD 

game design, the potential of simulator sickness represents a new factor to consider when 

designing the duration of play. The results from the current study may help game 

designers determine the proper duration of each game scenario, providing sufficient break 

time and reminders for gamers to take a rest between game sessions in order to minimize 

discomfort. Because VR-HMD games are relatively new, it is not clear how much this 

issue is considered by game designers in the industry right now, and we could not find 

any related reports in the literature. In future studies, interviews with VR-HMD game 

designers should be conducted to further explore this issue and better understand the 

trade-off between longer and shorter game play duration.  

Based on our results, we recommend that gamers who are interested in purchasing 

VR-HMD systems try them first before making the purchase. The current results from a 

game with a moderate level of virtual motion seem to show that the group of people who 

will experience the strongest level of motion sickness can feel it in a short duration of 

play around 15 minutes. If they can do that, usually they could play for much longer time 

such as over 45 minutes. This grouping effect of individual difference is also shown in 

previous studies (Merhi et al. 2007). It suggests that a quick play is a good way to screen 

out people who may suffer from strong motion sickness playing VR-HMD games. While 

it is important to find each individual's play duration, most participants (85%) in the 

current study had a play duration that was shorter than 75 minutes. This result could help 

determine a recommendation for VR-HMD driving simulation play time in the future. 
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Future studies are needed to examine the effects of other factors on game play duration; 

for example, VR game settings such as resolution and refresh rate may affect game play 

duration. It will also be necessary to study other types of games to assess the extent to 

which game play duration varies across game genres.   

 The results from the current study suggest that simulator sickness is a factor 

limiting game play duration. A significant negative correlation coefficient (r = -0.56) was 

found between MSAQ and play duration. Participants who experienced stronger 

simulator sickness tended to stop playing earlier. Previous studies (Kennedy et al. 2000) 

found that simulator sickness increased as the same individuals were continuously 

exposed to the virtual environment for longer durations. In those experiments, simulator 

sickness was measured multiple times for the same individuals as play time increased. 

Building on this earlier work, we found that participants with longer play duration 

reported less simulator sickness than participants with shorter play duration. Together, 

these results suggest that individual differences have a larger impact than exposure 

duration on simulator sickness. 

 The current results suggest that playing the VR-HMD game modestly increases 

eye symptoms. The average CSQ score was significantly increased from 4.1 to 7.4 with a 

mean increment of 80% relative to baseline. Note that the CSQ score range is from 0 to 

50, so the level of symptoms was mild. There was a significant correlation between 

reported eye symptoms and reported simulator sickness. Although the two questionnaires 

have no direct overlap in terms of questions, both sets of subjective feelings are negative 

feelings, so they may not be fully independent.   
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 There was a significant inverse correlation between age and play duration, 

whereby older participants could comfortably play the game for shorter durations. A 

potential explanation is that play duration may also relate to participants' level of interest 

in playing the game. The older participants had more years of previous gaming 

experience (significant correlation between age and years of game experience r = 0.33, p 

= 0.02); the younger participants may have been more interested in playing the game for 

longer time.  

 A potential concern relating to HMDs is whether people with frame glasses can 

wear the device comfortably. In the current study, we found that participants who wore 

frame glasses could use the VR-HMD unit with their glasses on, and the results showed 

that their play duration was not significantly different in comparison to participants who 

did not wear frame glasses. The HMD unit (Oculus Rift DK2) seems to have enough 

space to accommodate frame glasses worn by the participants in the current study. 

Although the participants with frame glasses did not report any incidents, we noticed that 

the HMD unit may not be able to fit all types of frames, and there is a chance of 

scratching the lenses on the frame glasses if the HMD unit is pressed too close to the 

glasses.  

 Regarding the use of MSAQ for measuring motion sickness, participants only 

completed the survey after the experiment, as was the case in the original study for which 

the method was introduced (Gianaros et al. 2001), because MSAQ is designed to measure 

motion sickness after exposure and is not suitable to measure everyday experience. In 

addition, participants’ level of motion sickness before game play were expected to be 

minimal, because the procedures for introduction, informed consent, and ocular 
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measurement took approximately 30 minutes prior to the game play, which should 

provide enough time for participants to rest.  

 Based on the observations from the current study, we provide the following 

recommendations for players. If it is the first time that a player has experienced VR-

HMD games, it is recommended to start with less motion in the VR. Players who have no 

problems with non-HMD video games should avoid being overconfident, because the 

VR-HMD experience is quite different and seems more likely to cause simulator 

sickness. In the case of driving simulation, look around the scene first, and then start 

driving slowly. Avoid sharp turns in the beginning, and gradually increase driving speed. 

Take short breaks after playing for about 5 minutes, and gradually increase play duration. 

Longer periods of rest are recommended after continuously playing for about 50 minutes.  

Researchers have explored design techniques for reducing motion sickness in VR-

HMD games (e.g., Ueda et al. 2018), and there are guidelines for VR game design 

(Rebenitsch and Owen 2016; Porcino et al. 2017), such as controlling the level of virtual 

motion and taking break periodically. However, there is a lack of play duration statistics 

reported in the literature. The question of how long people can comfortably play VR 

games is important but often neglected. Play duration can affect game enjoyment. But 

many studies only asked participants to play for a short period of time such as around 10 

minutes (Shaw et al. 2015; Yoo et al. 2017). Longer play duration is needed, and the 

numerical values of comfort play duration are very important because they provide game 

designers benchmarks to measure design improvement and references to determine the 

best timing of rest reminders. Parents also need to know suitable play duration for their 

children. Since this number is affected by factors such as the type of game, many studies 
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are needed to accumulate data in this research field. There are only very limited data 

available, as we have summarized in Table 3. The current study is a start with one type of 

game (i.e., car racing). Future work will add more results from other types of games. The 

methods used in the current study can provide a basis for future studies. 

After Study 1 that focused on game play duration in VR-HMD, Study 2 was 

conducted to compare game play in VR-HMD versus desktop LCD. When the duration of 

play was held constant (45 minutes) for both conditions, simulator sickness was 

significantly higher in the VR-HMD condition than the desktop LCD condition. The level 

of increment from 5.0 to 15.2 on the MSAQ simulator sickness scale (0-100 range) was 

moderate. While in both conditions, reported eye symptoms slightly increased after 

playing the game (6.8) in comparison to before playing (4.4) on the CSQ scale (0-50 

range), there was no significant difference between the two display conditions. Game 

engagement and game performance were not significantly different between the two 

display conditions. These results suggest that the effects of VR-HMD game play (using 

the driving simulation game) is similar to the effects of using traditional desktop LCD 

displays, except for a moderately increased level of simulator sickness. For game players 

and researchers who want to use VR-HMD as a device for driving safety experiments, the 

current results suggest that it is better to keep the duration of play within a moderate level 

(within around 45 minutes). Non-HMD displays are recommended for longer duration of 

play due to smaller concerns about simulator sickness. Note that the results may be 

specific to this genre of vehicle simulation games where the level of visual motion is 

moderate, and the driver was not required to frequently scan the entire 360 degrees of the 
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scene. With higher levels of visual motion in a game, such as first-person shooter games 

and roller coaster games, the simulator sickness issue of VR-HMD may become worse.  

 In conclusion, we examined how long people could comfortably play a driving 

simulator game using a commercial VR-HMD continuously without a break (up to 2 

hours). We found that the average game play duration was approximately 50 minutes. 

While large individual differences exist, simulator sickness seems to be an important 

factor limiting VR-HMD affordable play duration. We also found that age was inversely 

correlated with game play duration. These findings could help researchers assess the 

impact of VR-HMD games and inform game designers about the proper duration of game 

scenarios for driving simulations. VR-HMD game play of the driving simulation game is 

comparable to that using a traditional desktop LCD display, except for a moderately 

increased level of simulator sickness. Since there are still very limited empirical data 

about the impact of VR-HMD on game experience, more studies are needed to further 

examine other types of games and factors such as repeated exposure and adaptation to 

simulator sickness.  
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