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Abstract

In the stable matching problem we are given a bipartite graph G = (AU B, ') where A
and B represent disjoint groups of agents, each of whom has ordinal preferences over the
members of the opposite group. The goal is to find an assignment of agents in one group
to those in the other such that no pair of agents prefer each other to their assignees.

In this thesis we study the stable matching problem with ties and incomplete prefer-
ences. If agents are allowed to have ties and incomplete preferences, computing a stable
matching of maximum cardinality is known to be NP-hard. Furthermore, it is known to
be NP-hard to achieve a performance guarantee of 33/29 — ¢ (~ 1.1379) and UGC-hard to
attain that of 4/3 — e (~ 1.3333). We present a polynomial-time approximation algorithm
with a performance guarantee of (3L — 2)/(2L — 1) where L is the maximum tie length.
Our result matches the known lower bound on the integrality gap for the associated LP
formulation.
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Chapter 1

Introduction

1.1 Motivation

In practice many computational problems are concerned with an assignment of agents in
one group to those in the other. The agents usually constitute two disjoint sets where
each agent in one has ordinal preferences over a subset of the agents in the other. Since
many applications in practice are large-scale, centralized matching schemes are employed
to feasibly compute optimal assignments. Perhaps the best-known example is the National
Resident Matching Program (NRMP) that facilitates the placement of newly-graduated
medical students into residency programs in the United States every year. In 2018, 43,909
new graduates applied through the NRMP for 33,167 positions offered [1]. Another reason
for practicing centralized matching schemes is to achieve obligatory outcomes, that may
be broken by the agents otherwise. To ensure this in the context of the NRMP, no medical
graduate and hospital that are not assigned to each other should have a motivation to
refuse their assignees and become matched together.

The abstract mathematical model of the above phenomena is called stable matching.
The central and simplest model in the class of stable matchings is the classical stable
marriage problem (commonly referred to as the stable matching problem), that was first
studied by Gale and Shapley [3]. An instance of this problem involves a set of men and
women, each of whom has strict preferences over the agents of the opposite gender. The
objective is to find a group of man-woman pairs, namely a matching, such that no man
and woman prefer each other to their assigned partners (a constraint called stability).
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In the same paper [3], the authors also described a generalization of the classical stable
marriage problem that fits to the context of the college admissions. The participants in the
college admissions problem are called students on one side and colleges on the other side.
Each agent again has preferences over a subset of the agents in the opposite group. The
generalization is due to the capacity of each college representing the maximum number of
students that can be assigned to the college, whereas a student can only be matched to at
most one college. Although the stable matching problem is the special case of the college
admissions problem in which the capacity of each college is one, Gale and Sotomayor [J]
showed that a stable assignment for the latter can be computed by reducing it to the
former using a natural cloning technique. The college admissions model is also known
as the hospitals/residents problem, where the students and colleges are replaced by the
residents and hospitals, respectively.

The challenge that the NRMP faces every year is the classical example of the hospi-
tals/residents problem. The Canadian Resident Matching Service [2] is a similar central-
ized matching scheme in Canada for assigning medical students to training programs in
hospitals.

1.2 Stable Matching

Finding a stable matching is one of the central problems in algorithmic game theory. It was
first introduced by Gale and Shapley in their celebrated work [¢] and has been extensively
studied by mathematicians, computer scientists, and economists since. In this section we
discuss the classical stable matching problem and its natural extensions. To find out more
about the body of literature surrounding stable matching, we encourage the reader to see
the outstanding monographs of Gusfield and Irving [10], Roth and Sotomayor [32], and
Manlove [25].

1.2.1 The Classical Stable Matching Problem

An instance of the classical stable matching problem, introduced by Gale and Shapley [3],
involves a set of n men and a set of n women such that each person specifies a preference
list that ranks all the members of the opposite gender in strict order.



A matching M is a set of man-woman pairs such that each person belongs to at most
one pair. If a man a and a woman b is a pair in M, we write M (b) = a and M(a) =b. A
person is said to be matched in M if he/she belongs to some pair in M, and unmatched
otherwise. M is said to be a perfect matching if each individual belongs to exactly one
pair.

In a given instance of the classical stable matching problem, a matching M is said to
be stable if there are no man a and woman b such that a prefers b to M (a), and b prefers
a to M(b). If M admits a pair (a,b) satisfying the above conditions, then M is said to be
unstable; such a pair (a,b) is called a blocking pair for M.

Any stable matching M in an instance of the classical stable matching problem must be
a perfect matching. To see this, suppose that M is not a perfect matching. Since the num-
bers of men and women are equal in the instance, there exists at least one unmatched man
and one unmatched woman. Since all men are acceptable to every woman and vice versa
in the instance, the unmatched man and woman together is a blocking pair contradicting
that M is stable.

Gale and Shapley provided an algorithm [3], the Gale-Shapley algorithm, for finding
a stable matching in O(n?) time. The Gale-Shapley algorithm provides a constructive
proof that there always exists a stable matching for every instance of the classical stable
matching problem. Later on, Irving and Leather [17] showed that for an instance of the
classical stable matching problem the number of stable matchings may be exponentially
many in the size of the instance.

1.2.2 Stable Matching with Incomplete Preferences

Since the introduction of the stable matching problem, several natural extensions of its
classical form have been studied. A man a and a woman b are called acceptable to each
other if each appears on the preference list of the other, and unacceptable otherwise. One
generalization arises when the classical stable matching problem incorporates incomplete
preference lists (SMI). In this case one or more individuals may find some members of the
opposite gender unacceptable. Consequently, the definition of stability is also generalized
accordingly. Given an instance of SMI, a matching M in the instance is said to be stable
if there are no man a and woman b such that a and b are acceptable to each other, a is
either unmatched or prefers b to M(a), and b is either unmatched or prefers a to M (b).



In an instance of SMI, while the number of men need not be equal to the number of
women, it can be assumed without loss of generality that they are equal. Otherwise, one
can easily add men and women, each of whom having an empty preference list, until the
numbers of men and women are equal.

In contrast to the classical form, a stable matching in an instance of SMI may not be
a perfect matching. A trivial example of this might be an instance involving an individual
with an empty preference list. However, as in the case of the classical form, there always
exists at least one stable matching in an instance of SMI, and it is straightforward to
extend the Gale-Shapley algorithm to cope with incomplete preference lists and find such
a matching in polynomial time (see [10, Section 1.4.2]).

While there may be numerous stable matchings in a given SMI instance, Gale and
Sotomayor [9] showed that the set of all men and women can be partitioned into two
subsets such that the members of one subset are matched in all stable matchings in the
instance, and those of the other set are not matched in any. By doing so, they effectively
proved that all stable matchings in the instance have the same size.

1.2.3 Stable Matching with Ties

An alternative extension of the classical stable matching problem emerges by relaxing the
requirement that each individual ranks every member of the opposite gender in a strict
order. In the stable matching problem with ties (SMT), each individual has a complete
preference list, that is a partial order over the members of the opposite gender. Also, one
can alternatively view the preference list of an individual as a sequence of ties, each of
size at least one, in a strictly decreasing order of preference. In other words, an individual
is indifferent between the members of any particular tie in his/her list, whereas he/she
prefers each member of the tie to everyone in any subsequent tie.

Given that a’ and a” are men on the preference list of a woman b, she is said to strongly
prefer a’ to a” if she strictly prefers a’ to a”. b is indifferent between o' and a” if she
equally prefers o’ and a”. If b is either indifferent between a’ and a” or strongly prefers o/
to a”, she is said to weakly prefer a’ to a”. Similarly, the notions of indifference, strong
preference, and weak preference are defined for men.

Irving and Leather [17] introduced three distinct definitions of stability for SMT. Given
an instance of SMT, a matching M is said to be weakly stable if there is no man a and
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woman b such that a strongly prefers b to M(a), and b strongly prefers a to M(b). A
matching M is strongly stable if there is no man a and woman b such that either a strongly
prefers b to M(a) and b weakly prefers a to M (b), or a weakly prefers b to M(a) and b
strongly prefers a to M (b). Finally, a matching M is super-stable if there is no man a and
woman b such that a weakly prefers b to M(a), and b weakly prefers a to M (b).

Given an instance Z of SMT, breaking all ties arbitrarily gives rise to an instance Z' of
the classical stable matching problem. It is straightforward to see that a stable matching
for 7' is a weakly stable matching for Z. So one can strictly order all the members of each
tie in an arbitrary way, and then apply the Gale-Shapley algorithm to find a weakly stable
matching in a polynomial time [29]. This also implies that a weakly stable matching always
exists. Indeed, Irving and Leather [17] showed that amongst all three different notions of
stability it is only weak stability that always exists.

1.2.4 Stable Matching with Ties and Incomplete Preferences

In real-world problems ties and incomplete preference lists often arise simultaneously. In
this thesis we focus on the stable matching problem with ties and incomplete preference
lists (SMTT). Obviously, a preference list in an instance of SMTI may be incomplete and/or
involve ties.

Within the setting of SMTI, the notions of stability given in [17] need to be generalized
further [27]. A matching M for a given instance of SMTT is said to be weakly stable if
there are no man a and woman b such that a and b are acceptable to each other, a is either
unmatched or a strongly prefers b to M(a), and b is either unmatched or b strongly prefers
a to M(b). Although the concepts of strong stability and super-stability are similarly
generalized, we omit them. In this thesis we only focus on weak stability since weakly
stable matchings always exist.

Given an instance of SMTI, it is again straightforward to find a weakly stable matching
by breaking ties arbitrarily and invoking the Gale-Shapley algorithm (see [29]). We previ-
ously mentioned that all stable matchings in an instance of SMI are of the same size, and
all weakly stable matchings in an instance of SMT are complete (and thus of the same size).
However, in the case of SMTI, arbitrary tie-breaking technique leads to stable matchings
of various sizes. To see this, consider the following example.

Example 1.1. In Figure 1.1, there are two men ag and ay, and two women by and by,
where ag finds only by acceptable represented by the edge (ag, by), and likewise, a; finds only
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by acceptable represented by the edge (ay,by). Furthermore, ay is indifferent between by and
by, and by strictly prefers ay to ag. In this setting the reader can verify that matchings
M ={(agp,bo), (a1,b1)} and M" = {(a1,bo)}, illustrated by the blue edges and the red edge,

respectively, are both weakly stable.

Figure 1.1: Weakly stable matchings of different sizes

As a consequence, it is reasonable to consider finding a maximum-cardinality weakly
stable matching (hereafter a mazimum stable matching) where the goal is to find a weakly
stable matching of maximum size. Unfortunately, the problem of computing a maximum
stable matching is known to be NP-hard [19]. Manlove et al. [29] showed that NP-hardness
holds even for very restricted cases such as each tie is of length 2, ties appear on only one
gender’s preference lists, or at most one tie per list. Subsequently, a number of approxi-
mation algorithms have been designed to solve the maximum stable matching problem.

An algorithm for the maximum stable matching problem is said to be a-approximating if
it always computes a stable (weakly) matching M with size |M| > (1/«)-|OPT| where OPT
is an optimal stable matching. Various restricted cases of the maximum stable matching
problem have been widely studied in the literature. Perhaps the most natural one is
that ties appear on preference lists of only one gender, and it is called the maximum
stable matching problem with one-sided ties. Within the context of restricted cases, we
may emphasize the general case, that is the maximum stable matching problem, as the
maximum stable matching problem with two-sided ties.

1.3 Related Work

In this section we review the previous work on the maximum stable matching problem.
In Section 1.3.1, we concentrate on the maximum stable matching problem with one-sided
ties. In Section 1.3.2, we review the prior results related to the maximum stable matching
problem with two-sided ties that is the main focus of this thesis.



1.3.1 Maximum Stable Matching with One-Sided Ties

On the inapproximability side, Halldérsson et al. [12] showed for the case of one-sided
ties that achieving an approximation ratio of 21/19 — ¢ (=~ 1.1053) is NP-hard, and that
obtaining 5/4 — ¢ (= 1.25) is UGC-hard. These APX-hardness results still hold when each

tie is of length at most 2.

On the positive side, Irving and Manlove [18] gave a 5/3 (& 1.6666)-approximation
algorithm for the special case where, in addition to being one-sided, ties are allowed only
at the ends of preference lists. For the particular case of one-sided ties in which the length
of each tie is at most 2, Halldérsson et al. [11] described a randomized algorithm that
attains an expected ratio of 10/7 (=~ 1.4286).

For the case of one-sided ties, Halldérsson et al. [12] provides an algorithm with an
approximation ratio of 2/(1 + L™2) where L is the maximum tie length. This was later
improved by Kirédly [22] to an approximation ratio of 3/2 (= 1.5) with an algorithm using
the natural and effective idea of ” promotion”. The next important result was due to Iwama
et al. [21] who presented an algorithm with an approximation guarantee of 25/17 (~ 1.47).
Their algorithm relies on solving the linear programming relaxation of the associated IP
formulation and uses a fractional optimal solution to break ties. Subsequently, Dean and
Jalasutram [7] improved their algorithm and analysis to yield an approximation guarantee
of 19/13 (= 1.4615). Meanwhile, Huang and Kavitha [15] provided an approximation ratio
of 22/15 (=~ 1.4667) devising a linear-time algorithm that uses an approach of rounding
half-integral stable matchings. Later on, Bauckholt et al. [3] gave a refined analysis of their
algorithm establishing an approximation factor of 13/9 (=~ 1.4444).

For the case of one-sided ties, Iwama et al. [21] demonstrated that the integrality gap
1

for the corresponding linear programming formulation is at least 1+ (1 — E)L where L is
the maximum tie length. Recently, Lam and Plaxton [24, 20] designed a polynomial-time
algorithm with a 1+ (1 — 1)“-approximation factor that corresponds to the known lower
bound on the integrality gap [21]. For the case of one-sided ties with unbounded tie length,
their result implies an approximation guarantee of 1 + % as L approaches infinity in the
limit [25]. When the maximum length of ties is 2, their result also implies an approximation
guarantee of 5/4 (= 1.25) that matches the known UGC-hardness result [12]. It is unknown

whether hardness results, assuming unique games conjecture, can be improved for L > 2.



1.3.2 Maximum Stable Matching with Two-Sided Ties

On the negative side, Iwama et al. [19] were the first to show that the problem of finding
a maximum stable matching (for the case with two-sided ties) is NP-hard, as referred to
earlier. Furthermore, Hallddrsson et al. [13] proved that there is a constant ¢ such that
approximating the maximum stable matching within a factor of 14¢ is NP-hard. Later on,
it was shown by Yanagisawa [33] that getting an approximation ratio of 33/29—¢ (& 1.1379)
is NP-hard, and that of 4/3 — ¢ (~ 1.3333) is UGC-hard. As in the case of one-sided ties,
these APX-hardness results hold even when each tie is of length at most 2.

The simple extension of the Gale-Shapley algorithm due to [29] gives a 2-approximation
solution for the case of two-sided ties. An important progress was achieved by Iwama et
al. [20] who gave a 15/8 (= 1.875)-approximation algorithm using a local search tech-
nique. The next breakthrough was due to Kirdly [22] who developed a 5/3 (= 1.6667)-
approximation algorithm by coming up the ingenious idea of ” promotion”, that is increasing
priorities of unmatched men to guide the tie-breaking process in a modification of the Gale-
Shapley algorithm. Afterwards, McDermid [30] improved the approximation guarantee to
3/2 (= 1.5) for the general case of two-sided ties using some ideas from the polynomial-time
3/2-approximation algorithm by Kiraly [22] that was designed for the case of one-sided ties.
Thereafter, Paluch [31] and Kirdly [23] gave linear-time 3/2-approximation algorithms for
the general case.

For the special case of two-sided ties where each tie is of length at most 2, Halldérsson

et al. [12] were the first to give a non-trivial approximation algorithm, that is with a
performance guarantee of 13/7 (= 1.8571). For the identical particular case, the same
authors [11] gave a randomized algorithm attaining an expected approximation factor of

7/4 (= 1.75). Later on, Huang and Kavitha [15] designed a linear-time algorithm obtaining
an approximation ratio of 10/7 (~ 1.4286) for the same special case. Their algorithm is a
considerable modification of the Gale-Shapley algorithm [], first computing a half-integral
stable matching, and then rounding it to an integral stable matching. Subsequently, Chiang
and Pashkovich [5] gave an effective and tight analysis of the algorithm by Huang and
Kavitha [15], improving the approximation guarantee to 4/3 (= 1.3333) that matches the
UGC-hardness result [33] and the lower bound on the integrality gap given that each tie
is of length at most two [21].

For the general case, Iwama et al. [21] demonstrated that the integrality gap for the
corresponding natural linear programming formulation is at least (3L —2)/(2L — 1) where
L is the maximum tie length. When L approaches infinity in the limit, their result simply



implies a lower bound of 3/2 on the integrality gap that matches the best-known approxi-
mation guarantees in [23, 30, 31].

1.4 Owur Contribution

In this thesis we focus on the maximum stable matching problem with two-sided ties of
length up to L and obtain a polynomial-time (3L — 2)/(2L — 1)-approximation algorithm.
This matches the known lower bound on the integrality gap of the natural LP [21]. Our
main result is captured in the following theorem.

Theorem 1.2. Given an instance of the maximum stable matching problem with incom-
plete preferences and ties of length at most L; the polynomial-time algorithm described in
Section 3.1 finds a stable matching M with

2L -1
M| >
| ‘_SL—Z

|OPT],

where OPT is an optimal stable matching.

Our algorithm is an extension of that by Huang and Kavitha [15] for the special case
of the maximum stable matching problem where ties are of length 2: every man has
L proposals where each proposal goes to the acceptable women. Women can accept or
reject these proposals under the condition that no woman holds more than L proposals at
any point during the algorithm. Similar to the algorithm in [15], we use the concept of
“promotion” introduced by Kirdly [22] to grant men repeat chances in proposing to women.
In comparison to [15], the larger number of proposals in our algorithm leads to subtle
changes to the forward and rejection mechanisms of women, and to further modifications
to the way we obtain the output matching.

Our analysis is inspired by the analyses of both Chiang and Pashkovich [5] and Huang
and Kavitha [15], but requires several new ideas to extend it to the setting with larger ties.
In both [15] and [5], the analyses are based on charging schemes: some objects are first
assigned some values, called charges, and then charges are redistributed to nodes by a cost
function. After a charging scheme is determined, relations between the generated total
charges and the sizes of both output and optimal matchings are established, respectively,
that lead to an approximation ratio. The analysis in [15] employs a complex charging
scheme that acts globally, possibly distributing charges over the entire graph. In contrast,



the charging scheme in [5] is local in nature and exploits only the local structure of the
output and optimal matchings, respectively.

We do not know of a direct way to extend the local cost-based analysis of [5] to obtain
an approximation algorithm whose performance beats the best known 3/2-approximation
for the general case. Indeed, we believe that any such improvement must involve a non-
trivial change in the charging scheme employed. As a result, we propose a new analysis
that combines local and global aspects from [5, 15]. The central technical novelty in
the analysis is captured by Lemma 3.14 that provides an improved lower bound on the
“cost” of components whereas Corollary 3.17 bounds the “cost” from below by a simple
multiple of the number of edges that are contained both in an optimal matching and in
the components. As we will see in Chapter 3, our new charging scheme allows for a more
fine-grained accounting of augmenting paths for the output matching of our algorithm.
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Chapter 2

Background

In this chapter we provide basic definitions, fundamental structural and algorithmic results
that will be useful in Chapter 3. The sections of this chapter are organized as follows. In
Section 2.1, we begin with basic graph definitions followed by broad matching concepts
in graphs. Then we give a characterization of maximum-cardinality matchings due to
Berge [1]. In Section 2.2, we review fundamental definitions as well as key algorithmic
results concerning maximum stable matchings.

2.1 Matchings in Graphs

2.1.1 Basic Graph Concepts

A graph G is a pair (V, F) where V is a finite set and E is a set involving two-element
subsets of V. The elements of V' are called nodes or vertices. An element e = {v, w} of E
is called an edge with the endpoints v and w, and may shortly be written as e = vw. A
graph G is called directed if E is a set of ordered pairs, and undirected otherwise. We will
be treating only undirected graphs in this paper.

If vw is an edge, then it is said that vw is incident to v and w, and that v and w are
adjacent to or neighbours of each other. For a node v € V', we denote by N(v) = {e € E:
v € e} the set of edges incident to v. The degree of a node v, denoted by deg(v), is the
number of edges incident to v, i.e. deg(v) = |N(v)|.

11



An edge is called a loop if both endpoints of the edge are the same. Two or more edges
having the same endpoints are called parallel edges or multiple edges. A graph G is called
simple if it has neither loops nor parallel edges.

To avoid ambiguity, we write V(G) and E(G) to refer to the node and edge sets of G,
respectively. Given G, a graph H = (V(H), E(H)) with V(H) C V(G) and E(H) C E(G)
is called a subgraph of G. Note that given an edge set E, we may write V(FE) to refer to
the set of all nodes that are incident to some edge on E.

A path P in a graph G is a sequence vy, €1, 01, ..., €, U of nodes v; with no repeated
node, and edges e; such that e; = v;_jv; for every ¢+ = 1,2,... k. Thus we say that P is
a (vg,vg)-path. A cycle is a path P with the exception that vy = vy where k& > 1 and
all the edges are distinct. A graph G is called connected if there is a (v, w)-path for all
v,w € V(G). Any graph G can be partitioned into connected subgraphs that are also
called connected components of G. A connected component that contains only one node is
called an isolated node.

A graph G is called bipartite if its node set V(G) can be partitioned into two subsets
Vi and V5 such that for every edge vw € E(G) either v € V} and w € Vs, or v € V5, and
w € V.

2.1.2 Matchings

Given a graph G = (V, E), aset M C E is a matching in G if every node in V is incident
to at most one edge in M. A matching M in G is said to be mazimal if it is not a subset
of any other matching in G.

Given a matching M in G, a node v € V is said to be matched in M if v is incident to
some member of M, i.e. v € V(M); otherwise we say that v is M-exposed. If v is matched
in M, then the partner of v, denoted by M (v), is the node such that {v, M (v)} € M. Note
that M (v) is undefined if v is M-exposed. It follows from the above definitions that the
number of nodes matched in M is exactly 2| M|, and that the number of M-exposed nodes
is |V| — 2| M]|.

Let M be a matching in a graph G. Let P be a path vy, e, vq,... e, v in G. P is

said to be an alternating path with respect to M, also called an M-alternating path, if
the sequence of edges ey, es,..., e, alternate being contained in M and not in M. More
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formally, P is an M-alternating path if and only if either e; € M and e;_1,€;11 ¢ M, or
e; ¢ M and e;_1,e;41 € M for every i =2,3,...,k—1. P is an M-alternating cycle if P is
an M-alternating path and a cycle. M-alternating path P is called M-augmenting if the
endpoints of P, namely vy and vy, are M-exposed.

2.1.3 Maximum-Cardinality Matching

In this section we need some notation and terminology as follows. For sets S and T, we
let S @ T denote their symmetric difference given by S@&T = (S\T)U(T'\ S5), that is the
set of all those elements belonging either to S or to T but not to both.

Let M denote the set of all matchings in G. A maximum-cardinality matching in G is
a matching M € M that has the largest number of edges. The following is a fundamental
structural result that gives a characterization of maximum-cardinality matchings.

Theorem 2.1 (Augmenting Path Theorem [!]). Let G be a graph, M be the set of all
matchings in G, and M € M. Then M has mazimum cardinality over the set M if and
only if there is not M -augmenting path in G.

Proof. First consider for direction (<=) that there exists an M-augmenting path P in
G. Let E(P) = {vyv1,v1va, ..., 0510} denote the edge set of P. We claim that M’ =
M @ E(P) is a matching of greater size than M. To see that M’ is a matching, we show
that |[N(v) N M’'| = 1 holds for all v € V(M’). Let v € V(M'). Since v is matched in
M', |N(v) N M’'| > 0 holds. Now assume for a contradiction that |N(v) N M'| > 2. Then
this implies that there exists two distinct edges e, ey € N(v) such that ey, ey € M'. Since
M’ is the symmetric difference of M and E(P), it holds by definition that either e; € M
or e; € F(P), and similarly either e; € M or e; € E(P). We cannot have ej, e € M
since M is a matching, and ey,e; € P since P is an M-alternating path. Thus, without
loss of generality, we may assume that e; € M \ E(P) and e; € E(P) \ M. Since P is
an M-augmenting path, we deduce that vyvy, vp_1vx ¢ M holds, and since e; € M, we
conclude that v # vy and v # vg. Since P is an M-alternating path, eo € E(P)\ M, v # v
and v # vy, there exists e € M N E(P) such that e € N(v). Since e; ¢ E(P), we have that
e # e;. But then e,e; € M with e,e; € N(v) implying |N(v) N M| > 2 that contradicts
the fact that M is a matching. Hence 0 < |[N(v) N M'| < 2 implying that |[N(v) N M'| =1,
and so M’ is a matching. Since P is an M-augmenting path, |E(P)\ M| =|MNE(P)|+1
holds. By basic set theory, |M'| = |M|—|MNE(P)|+|E(P)\ M| holds. Thus we conclude
that |M'| = |[M|+ 1 > |M| implying M is not a maximum-cardinality matching in G.
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Now consider for direction (=) that M is not a maximum cardinality matching in G.
Then there is some matching M’ in G that satisfies |M’| > |M|. Consider the symmetric
difference J = M’ @ M. Let G' = (V(G), J) be a subgraph of G. Notice that each node
of G’ has degree at most two. If, conversely, there was a node in G’ incident to at least
three edges of J, then either M or M’ would contain at least two edges incident to v. This
contradicts the fact that M and M’ are matchings. Therefore any connected component
of G’ is a path or cycle. The sequence of edges in such components alternate belonging
to M and to M’. Otherwise there would be a node in G’ incident to two edges from
the same matching, a contradiction. Since the cycles are alternating, they contain even
number of edges, and contain the same number of edges of M and M’. Since |M'| > |M]|,
there must be at least one path, P, with more edges of M’ than M. This follows from
observing that each cycle contributes the same number to each of |M’| and |M|. Thus P
is an M-augmenting path. O

We note that this problem is well-understood. A recommended textbook relevant for
advanced undergraduate and new graduate students is Combinatorial Optimization by
Cook, Cunninghum, Pulleyblank, and Schrijver [0] that covers the result stated above and
much more.

2.2 Maximum Stable Matching

In an instance of the maximum stable matching problem, we are given a bipartite graph
G = (AUB, E) where, following standard terminology, the nodes in A will be referred to as
men, and the nodes in B represent women. Each man a € A possesses a partial preference
order over women in B, and similarly, every woman in B has a partial preference order
over men in A.

We restate some terminology and introduce some notational conventions. Let a’ € A
and a” € A be on the preference list of b € B. If b equally prefers @’ and a”, we say that b
is indifferent between o’ and a”, denoted by a’ ~ a”. Additionally, if a’ is ranked strictly
higher than a” on the list of b, we say that b strongly prefers o' to a”, denoted by a’ >, a”.
We say that b weakly prefers a’ to a”, denoted by a’ >, a”, if b is either indifferent between
a’ and a” or strongly prefers o’ to a”. Analogously, we define indifference, strong preference
and weak preference for men over women on their list. Adopting the notational convention,
we use (a’,b) or (b,a’) to refer to an edge {a’,b} € E. For ¢ € AU B, recall that N(c) is
the set of nodes adjacent to ¢ in G.
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Given a graph instance G = (AU B, E) of the maximum stable matching problem, a
matching M in G is said to be stable if there are no a € A and b € B such that (a,b) € E\M,
a is either unmatched or b >, M (a), and b is either unmatched or a >, M (b). If M admits
a pair (a, b) satisfying the above conditions, then M is said to be unstable; such a pair (a, b)
is called a blocking pair for M. In their seminal work [3], Gale and Shapley proposed an
efficient algorithm for finding a stable matching, providing constructive proof that stable
matchings always exist.

2.2.1 The Gale-Shapley Algorithm

In this section we give the straightforward extension of the Gale-Shapley algorithm due
to Manlove et al. [29] for the maximum stable matching problem as follows. Let G =
(AU B, F) be an input bipartite graph with two-sided ties and incomplete preferences.

Initially, every man a € A and woman b € B is unmatched. Each man a € A maintains
a rejection list R(a) to record the women who reject him. While there exists an unmatched
man a € A who has not been rejected by all women in his preference list, he makes a
proposal to a most preferred woman in his list who is not a member of R(a) (If there are
several such women, a breaks the tie arbitrarily).

If a woman b € B has not received any proposal yet and gets a new proposal, she
accepts the proposal. On the other hand, if b holds a proposal and receives another one,
she keeps the proposal from a weakly preferred man and rejects the other (if both are
weakly preferred, b breaks the tie arbitrarily).

When a woman b € B accepts the proposal from a man a € A, they become matched.
In contrast, if b rejects a, he remains unmatched. After the algorithm terminates, the
matched pairs make up the output matching M.

Theorem 2.2 (Gale-Shapley [3]). The Gale-Shapley algorithm always returns a stable
matching.

Proof. Let M be the matching returned by the Gale-Shapley algorithm. Suppose for a
contradiction that M is not stable, i.e. suppose there exists an edge (a,b) € E,a € A,b € B
that blocks M. In the following, we first consider the case that b rejected a proposal from
a at some point during the algorithm, and then we consider the opposite.
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If b rejected a proposal from a during the algorithm, then b holds a proposal, when the
algorithm terminates, from a man M (b) who is not less preferred than a by b. Hence we
get a contradiction to the statement that (a,b) blocks M.

Contrarily, if b did not reject a proposal from a during the algorithm, then the proposal
of a was accepted by some woman who is not less preferred than b by a. Again, we get a
contradiction to the statement that (a,b) blocks M. O

Algorithm 1 The Gale-Shapley Algorithm

1: let G = (AU B, E) be an instance graph

2: let N(c) be the set of nodes adjacent to c€ AU B in G

3: for alla € A do

4: R(a) =@ > R(a) is the rejection history of man a
5: end for
6
7
8
9

: initialize M to the empty set of matching, i.e. M = &

: while Ja € A s.t. a is unmatched in M and R(a) # N(a) do
let b € N(a) \ R(a) be a woman such that b >, b’ for all ¥ € N(a) \ R(a)
if b is unmatched in M then

10: M = MU{(a,b)}

11: else

12: if a >, M(b) then

13: M = MU {(a,b)} \ {(M(b),b)}
14: 1 R(M (b)) == R(M (b)) U {b}

15: else

16: R(a) == R(a) U {b}

17: end if

18: end if

19: end while
20: return M

We note that the Gale-Shapley algorithm gives a 2-approximate solution for the max-
imum stable matching problem. To see this, let M be the output of Algorithm 1 and M’
be an arbitrary stable matching. Clearly, M and M’ are both maximal in the underlying
graph G. It is well-known that any two maximal matchings differ in size with at most a
factor of 2.
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2.2.2 The Huang-Kavitha Algorithm for Ties of Length 2

Our algorithm in Chapter 3 is an extension of the algorithm by Huang and Kavitha [15] for
the special case of the maximum stable matching problem where ties are of length < 2. To
present the origin of some ideas that are fundamental to our algorithm, we give a detailed
description of the Huang-Kavitha algorithm in this section. We note that the original
technique of “promotion” that both the Huang-Kavitha and our algorithms use is due to
Kirdly [22]. The same technique was also used by McDermid [30] and Iwama et al. [21].

Let G = (AU B, E) be an input bipartite graph with two-sided ties of length 2 and
incomplete preferences. The Huang-Kavitha algorithm consists of two phases. In the first
one each man can make two proposals and each woman can accept two proposals. The
outcome of the first phase is a subgraph G’ of G that is built by keeping only the edges
that correspond to the accepted proposals at the end of this phase. The output of the
second phase and so of the algorithm is a maximum-cardinality matching in G’ where all
nodes of degree two are matched.

The two-proposal approach of the algorithm, in contrast to the one-proposal one of
the Gale-Shapley algorithm, effectively deals with the lack of certainty in the following
situation. In the Gale-Shapley algorithm, when a woman is to decide between two proposals
from men who are tied on her list, she is unable to make the best decision in the sense
that which proposal leads to a larger stable matching. Thus the strategy of letting women
accept two proposals is an effective way of coping with their uncertainty. Since a woman
can ultimately be matched with only one man, the men are also allowed to make multiple
proposals to increase their chance of being matched. Below we describe how proposals are
made by men and accepted by women in the first phase of the algorithm.

How men propose. Each man a € A has two proposals p! and p?. A man starts out
as basic and later becomes I-promoted before finally being raised to 2-promoted status.
Each man a € A keeps a rejection history R(a) which records the women who reject a
proposal from a during his current promotion status. At the start of the algorithm, R(a)
is initialized to the empty set for all a € A.

Each proposal p’, for a € A and i = 1,2 goes to a woman in N(a)\ R(a) most preferred
by a. If there are two most preferred women in N(a) \ R(a), the man a breaks the tie
arbitrarily. If a proposal p, for a € A and i = 1,2 is rejected by a woman b € B, she is
added to the rejection history of a, and afterwards, p’, is sent to a most preferred remaining
woman in N(a) \ R(a).
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Suppose now that every woman in N(a) rejected a proposal from a. If a is basic, then
the status of a changes to 1-promoted, and the rejection history of a is cleared, i.e. R(a) is
reset to @. After that, when R(a) becomes equal to N(a) again, the status of a is elevated
to 2-promoted, and the rejection history of a is emptied once more. Eventually, when the
next time R(a) = N(a) holds, a stops making proposals.

Algorithm 2 Phase 1 of the Huang-Kavitha algorithm (part 1)

1: let G = (AU B, E) be an instance graph, and N(c) denote the set of nodes adjacent
toce AUBIn G

2: let G’ = (AU B, E’) be a multigraph with £’ initialized to the empty multiset of edges
3: let degev (u) denote the degree of node u in G’

4: for all a € A do

5: R(a) =@ > R(a) is the rejection history of man a
6: stat, =0 > stat, is the promotion status of man a
7: end for

8: while Ja € A s.t. degei(a) < 2 and R(a) # N(a) do

9: let b € N(a)\ R(a) be a woman s.t. b >,V for all v/ € N(a) \ R(a)

10: PROPOSE(a, b)

11: end while

12: return £’

How women decide. Each woman b € B can hold up to 2 proposals, and among these
more than one can come from the same man. Whenever she holds less than 2 proposals,
newly received proposals are automatically accepted. Otherwise, b first tries to bounce one
of her proposals, and if that fails, she will try to forward one of her proposals. If b can
neither bounce nor forward a proposal, then b rejects a proposal. We continue describing
the details below. Suppose that b currently holds two proposals pg, and pfl/,/,, and receives
a new proposal p!, for some a,a’,a” € A and i,4',i" = 1,2.

Bounce step. If there is a man a € {a,d’,a”} and a woman 3 € B such that § ~, b,
and [ currently holds less than 2 proposals, then a proposal of « is transferred from b to
£, and the bounce step is called successful.

Forward step. If there is a man o € {a,d’,a"} and a woman € B\ {b} such that
S ~4 b, two of the proposals in {p’, pfll,, pg,/,} are from «, and (8 has not rejected « in his
current status, then a proposal p! is forwarded from b to 3, and the forward step is called
successful. As a consequence of a successful forward step, a makes the proposal p!, to 3.

18



Algorithm 3 Phase 1 of the Huang-Kavitha algorithm (part 2)

{The following subroutine describes how b accepts the proposal from a, or bounces,
forwards, or rejects a proposal }

13: procedure PROPOSE(a, b)

14: if degq(b) < 2 then

15: E'=F U{(a,b)}
16: else
17: let @’ and a” be the nodes adjacent to b in G’, and A(b) denote {a,d’, a"}
18: if 3o € A(b) and 38 € N(«) s.t. § ~, b and degy f < 2 then
19: E' =FE U{(a,b),(a,5)}\ {(a,0)} > bounce
20: else if Ja € A(b) and 38 € N(a) \ R(a) s.t. >, b, and
(E" U{(a,b)}) 1 {(e,b)}] = 2 then
21: E =FE U{(a,0)}\ {(a,0)}
22: PROPOSE(«, f3) > forward
23: else
24: if a ~, a’ ~, a” and stat, = stat, = stat,, then
25: let g € A(b) be a man s.t. |(E'U{(a,b)}) N{(a,b)}| =2

{two of those in {a,d’,a”} are the same man since ties are of length 2}
26: else

27 let g € A(b) be a man s.t. oy <, o for all a € A(b), and
staty, < stat, if ap >~ «

28: end if

29: E' = FE U{(a,b)} \ {(o,b)} > reject

30: R(ap) = R(a) U {b}

31: if R(Oéo) = N(Oé()) then

32: if stat,, < 2 then

33: staty, = statq, + 1

34: R(o) =@

35: end if

36: end if

37: end if

38: end if

39: end procedure

Note that in both bounce and forward steps, b does not reject «, and so the rejection
history of « is not updated. To describe the rejection step, the following concepts are
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required. For a woman b € B, proposal pg, is called superior to pg,// for a’,a” € A and
i',i" = 1,2 if b strongly prefers a’ to a”, or if b is indifferent between a’ and a”, and a’
has higher promotion status than a”. A proposal p! for a € A and i = 1,2 is called least

desirable if p’ is not superior to either of the other two proposals.

Rejection step. 1f neither bounce nor forward steps are successful, then b rejects any
of the least desirable proposals in {p’, p’;,, pgf,} in all cases except the following. Observe
that if a ~; @’ ~ a” holds, then two of these proposals are from the same man since ties
are of length 2; in this case if all three proposals are least desirable, b rejects one of two
proposals from this man. Consequently, b is added to the rejection history of the man
whose proposal is rejected.

The following result is due to Huang and Kavitha [15].

Theorem 2.3 (Huang-Kavitha [10]). Let G = (AU B, E) be an instance of the special
case of the maximum stable matching problem where ties of length 2. The linear-time
Huang-Kavitha algorithm computes a stable matching M such that |OPT]/|M| < 10/7 ~
1.4286 where OPT s an optimal stable matching.

In the next section we discuss the improved analysis of the Huang-Kavitha algorithm
by Chiang and Pashkovich [5]. The authors show that the real performance ratio of the
algorithm is at most 4/3, and this result is tight under UGC [33].

2.2.3 The Improved Analysis of The Huang-Kavitha Algorithm
by Chiang and Pashkovich

Our analysis in Chapter 3 is inspired by the analysis of Chiang and Pashkovich [5]. In this
section we compare analytical techniques that are used in [5] and [15]. We first recall the
following main result of Chiang and Pashkovich [5].

Theorem 2.4 (Chiang-Pashkovich []). Let G = (AUB, E) be an instance of the special
case of the maximum stable matching problem where ties of length 2. The Huang-Kavitha
algorithm computes a stable matching M such that |OPT|/|M| < 4/3 ~ 1.3333 where OPT
15 an optimal stable matching.

The analyses in both [5] and [15] are based on charging schemes. However, the charging
scheme in [5] is considerably different from that in [15] as we will see below.
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Naturally, both papers [5] and [15] study the connected components in the union (ap-
proximately) of output and optimal matchings for the purpose of comparing the sizes of
these matchings. For ease of exposition, let M and OPT be output and optimal stable
matchings, respectively. In [15], the authors first show that there are no M-augmenting
paths with respect to OPT, that are of lengths 1 or 3. To obtain an approximation guar-
antee of at most 1.5, the charges are first assigned to M-augmenting paths with respect to
OPT, that are of lengths 5. But in [5], the origin of charges are the proposals accepted at
the end of the first phase.

In [15], the origin of charges together with their distribution mechanism forms a “global”
charging scheme because of the following reason. After the charges are generated, they are
first distributed to so-called “good paths”, and then redistributed from “good paths” to
nodes. “Good paths” may potentially transfer charges across the entire graph. In contrast,
the charging scheme in [5] is “local” since the charges are generated by the proposals
accepted at the end of the first phase and distributed only to the nodes participating in
these proposals (the participants in a proposal are a man making the proposal and a woman
holding that proposal).

The overall idea in [15] is that the total generated charges are distributed to other
connected components so that the total charge of each component is not too large with
respect to the component’s size. In other words, other connected components pay for the
cost caused by M-augmenting paths with respect to OPT, that are of lengths 5. However,
the approach in [5] is rather simple. It is first shown that the total number of generated
charges is at most 4|M|. Later, it is demonstrated that every connected component receives
a total charge of at least three times the number of the edges that are both in OPT and in
the component. Thus they immediately get Theorem 2.4.
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Chapter 3

The Algorithm and Analysis

In this chapter we study the maximum stable matching problem with two-sided ties. Our
main result is a polynomial-time (3L — 2)/(2L — 1)-approximation algorithm where L is
the maximum tie length.

In section 3.1, we present the description and the implementation of our algorithm. In
section 3.2, we analyze the approximation ratio of our algorithm.

3.1 Algorithm for Two-Sided Ties of Length up to L

3.1.1 How Men Propose

Each man a € A has L proposals pl,p?, ...,pE. A man starts out as basic, and later
becomes I-promoted before he is eventually elevated to 2-promoted status. Each man
a € A has a rejection history R(a) which records the women who reject a proposal from a
during his current promotion status. Initially, we let R(a) = @ for all a € A.

Each proposal p! for a € A and i = 1,2,..., L goes to a woman in N(a)\ R(a) most
preferred by a, and ties are broken arbitrarily. If a proposal p, fora € Aandi=1,2,...,L
is rejected by a woman b € B, b is added to the rejection history of a, and subsequently,
p’ is sent to a most preferred remaining woman in N(a) \ R(a).
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Suppose now that R(a) becomes equal to N(a) for some man a € A. If a is either basic
or 1-promoted then a’s rejection history is cleared, and a is promoted. Otherwise, if a is
already 2-promoted, a stops making proposals.

3.1.2 How Women Decide

Each woman b € B can hold up to L proposals, and among these more than one can come
from the same man. Whenever she holds less than L proposals, newly received proposals
are automatically accepted. Otherwise, b first tries to bounce one of her proposals, and if
that fails, she will try to forward one of her proposals. If b can neither bounce nor forward
a proposal, then b rejects a proposal.

We continue describing the details. In the following, we let P(b) and A(b) denote
the set of proposals currently held by b € B and the set of men corresponding to these,
respectively. Suppose that |P(b)] = L, and that b receives a new proposal p’ for some
acAandi=1,...,L.

Bounce step. If there is a man a € A(b) U {a} and a woman [ € B such that § ~, b,
and [ currently holds less than L proposals, then we move one of a’s proposals from b to
£, and we call the bounce step successful.

Forward step. If there is a man a € A(b) U {a} and a woman § € B\ {b} such
that § ~, b, at least two proposals from « are present in P(b), no proposal from « is
present in P(f3) and 3 is not in R(«), then b forwards a proposal p), € P(b) U {p.} for
some 7 = 1,...,L to f and the forward step is called successful. As a consequence of a
successful forward step, o makes the proposal p’, to 3.

We point out that bounce and forward steps do not lead to an update to the rejection
history of an involved man. To describe the rejection step, we introduce the following
notions. For a woman b € B, a proposal p’, is called more desirable than pi, for a’,a” € A
and i',i" = 1,..., L if b strongly prefers a’ to a”, or if b is indifferent between o’ and a” and
a’ has higher promotion status than a”. A proposal pi, € P(b) is least desirable in P(b) if
pg, is not more desirable than any proposal in P(b). Whenever b € B receives a proposal
p’, |P(b)| = L, and neither bounce nor forward steps are successful, we execute a rejection
step.

Rejection step. If there is s unique least desirable proposal in P(b) U {p’}, then b
rejects that proposal. Otherwise, if there is more than one least desirable proposal in P(b),
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b rejects a proposal from a man with the largest number of least desirable proposals in
P(b) U {p.}. If there are several such men, then we break ties arbitrarily. Consequently, b
is added to the rejection history of the man whose proposal is rejected.

3.1.3 The Algorithm

An approximate maximum-cardinality stable matching for a given instance G = (AUB, E)
is computed in two stages.

Stage 1. Men propose in an arbitrary order and women bounce, forward or reject
proposals as described above. The first stage finishes when, for each man a € A, one of
the following conditions is satisfied: all proposals of a are accepted; or R(a) becomes equal
to N(a) for the third time.

We represent the outcome of the first stage as a bipartite graph G’ = (AU B, E’) with
the node set AU B and the edge set E’, where each edge (a,b) € E' denotes a proposal
from a held by b at the end of the first stage. Note that G’ may be a multigraph in which
an edge of the form (a,b) appears with multiplicity equal to the number of proposals that
b holds from a. Clearly, each node u in G’ has degree at most L, denoted by deg(u) < L,
since every man has at most L proposals that can be accepted and every woman can hold
at most L proposals at any point in the first stage.

Algorithm 4 Stage 1 of the algorithm (part 1)

1: let G = (AU B, F) be an instance graph, and N(c) denote the set of nodes adjacent
toce AUBiIn G
2: let G’ = (AU B, E’) be a multigraph with £’ initialized to the empty multiset of edges

3: let dege(u) denote the degree of node uw in G’, and A(b) denote the set of nodes
adjacent to b € B in G’

4: for all a € A do

5: R(a) =@ > R(a) is the rejection history of man a

6: stat, =0 > stat, is the promotion status of man a

7: end for

8: while Ja € A s.t. dege(a) < L and R(a) # N(a) do

9: let b€ N(a)\ R(a) be a woman s.t. b >, b for all b’ € N(a) \ R(a)

10: PROPOSE(a, b)
11: end while
12: return E’
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Algorithm 5 Stage 1 of the algorithm (part 2)

{The following subroutine describes how b accepts the proposal from a, or bounces,
forwards, or rejects a proposal }

13: procedure PROPOSE(a, b)

14:
15:
16:
17:
18:

19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

if degq(b) < L then

E'=F U{(a,b)}
else if Ja € A(b) U {a} and 38 € N(«) s.t. § ~, b and degs f < L then

E' = FE U{(a,b),(a,5)}\ {(a,0)} > bounce
else if Ja € A(b) U {a} and 3 € N(«) \ R(«) s.t. 54,0,
[(E"U{(a,b)}) N {(a,b)}| > 2 and a ¢ A(S) then

B = B U{(,b)}\ {(a )}

PROPOSE(«, f3) > forward
else

let A denote {a € A(b) U{a} : for all ' € A(b) U{a}, a <, @’ and

if v, @/, then stat, < staty}

let ap be a man in arg max 4 |(E' U {(a,b)}) N {(a,b)}|

E' =FEU{(a,b)}\ {(a,b)} > reject

R(ap) == R(a) U {b}

if R(ap) = N(ap) then

if stat,, < 2 then
staty, = statqy, + 1
R(Oéo) =
end if

end if

end if

33: end procedure

Stage 2. We compute a maximum-cardinality matching M in G’ such that all nodes of

degree L in G’ are matched. The existence of such a matching is guaranteed by Lemma 3.1.
The result of the second stage is such a matching M, that is the output of the algorithm.

Lemma 3.1. There exists a matching in the graph G' such that all nodes of degree L in
G’ are matched. Moreover, there is such a matching M, where all nodes of degree L in G’
are matched and we have

|M| > |E'|/L.
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Proof. Consider the graph G’ = (AU B, E’) and the following linear program

s.t. Z ze <1 (ue AUB)
e€d(u)

Z ze=1 (ue AU B,degq(u) = L)
e€d(u)
z > 0.

It is well-known that the feasible region of the above LP is an integral polyhedron. More-
over, the above LP is feasible as is easily seen by considering the point that assigns 1/L
to each edge in E’. Hence there exists an integral point optimal for this linear program.
Notice that every integral point feasible for this linear program is a characteristic vector
of a matching in GG', which matches all nodes of degree L in GG’. To finish the proof, notice
that the value of the objective function calculated at xz* equals |E’|/L. Thus the value of
this linear program is at least |E’|/L, finishing the proof. O

3.1.4 Stability of Output Matching

Let the above algorithm terminate with a matching M. We first argue that it is stable.

Lemma 3.2. The output matching M is stable in G = (AU B, E).

Proof. Suppose for a contradiction that M is not stable, i.e. suppose that there exists an
edge (a,b) € E that blocks M. If b rejected a proposal from a during the algorithm, then
b holds L proposals when the algorithm terminates and all these proposals are from men
who are weakly preferred by b over a. Thus the degree of b in G’ is L implying that b is
matched in M with a man who is not less preferred than a by b. We get a contradiction
to the statement that (a,b) blocks M.

Conversely, if b did not reject any proposal from a during the algorithm, then the
algorithm terminates with all L proposals of a being accepted, particularly, by women who
are weakly preferred by a over b. Therefore the degree of a in G’ is L implying that a
is matched in M with a woman who is not less preferred than b by a. Again, we get a
contradiction to the statement that (a,b) is a blocking pair for M. O
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3.1.5 Running Time

In this section our goal is to show that the running time of the algorithm is polynomial in
the size of the graph G = (AU B, E). We achieve our goal by demonstrating that each
stage of the algorithm has a polynomial execution time. For the first stage, we illustrate
that only a polynomial number of proposals are bounced, forwarded or rejected during this
stage. For the second stage, the proof of Lemma 3.2 implies that it is sufficient to find an
optimal extreme solution for a linear program of polynomial size.

First, we show that proposals are bounced only polynomially many times. For every
b € B, at most L proposals may be bounced to b. Indeed, with each proposal bounced
to b, the number of proposals held by b increases; also, the number of proposals held by
b never decreases or exceeds L during the algorithm. Hence at most L|B| proposals are
bounced during the first stage.

Second, we illustrate that proposals are forwarded only polynomially many times. For
every a € A, promotion status of a, and b € B such that (a,b) € E, at most one proposal
of a may be forwarded to b. To see this, let &’ be a woman forwarding a proposal of a to
b. Notice that b cannot bounce the proposal after b receives it because, otherwise, b’ could
bounce it by the transitivity of indifference. Observe also that b may forward a proposal
from a only if she holds another proposal from him. Then it follows from the forward step
that no woman can forward a proposal of a to b as long as b holds a proposal from him.
If b rejects the proposal, then she is added to the rejection history of a, and so b does
not receive any proposal from a unless the promotion status of a changes. Hence at most
3| A||B| proposals are forwarded during the first stage.

Finally, we demonstrate that proposals are rejected only polynomially many times. For
every a € A, promotion status of a, and b € B such that (a,b) € E, b may reject at most L
proposals from a. Indeed, b holds at most L proposals at any point in time, and since b is
added to the rejection history of a after she rejected him, b does not receive any proposal
from a unless the promotion status of a changes. Hence at most 3L|A||B| proposals are
rejected during the first stage.

3.2 Tight Analysis

Recall that OPT is a maximum-cardinality stable matching in G, and let M be the output
matching defined above. If a € A is matched with b € B in OPT, we write OPT(a) == b
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and OPT(b) := a. Similarly, we use the notations M (a) := b and M (b) = a when a € A is
matched with b € B in M. Note that our analysis is based on graph G’ and therefore all
graph-related objects will assume G’.

Definition 3.3. A man a € A is called successful if the stage 1 of the algorithm terminates
with all of his L proposals being accepted. Likewise, a woman b is called successful if she
holds L proposals when the stage 1 of the algorithm stops. In other words, a person c € AUB
is successful if the degree of ¢ in G' is L, and unsuccessful otherwise.

Definition 3.4. A woman is called popular if she rejected a proposal during the algorithm,
and unpopular otherwise.

Remarks 3.5 and 3.6 below directly follow from the algorithm and are consequences of
the bouncing and rejection steps, respectively.

Remark 3.5. Let a € A and b,/ € B be such that b holds a proposal from a when the
algorithm finishes, b’ is unsuccessful, and b’ ~, b. Then b is unpopular.

Proof. Suppose for a contradiction that b is popular. Then at some point she could not
bounce or forward any one of her proposals, and so she was to reject a proposal. This implies
that after b became popular, whenever she received a new proposal that could be bounced,
that proposal would immediately be bounced. But then, when the algorithm terminates,
b holds a proposal from a that could successfully be bounced to ¢’, a contradiction. O

Remark 3.6. Let a,a’ € A and b € B be such that b holds at least two proposals from a
when the algorithm finishes, b rejected a proposal from o' at some point, a is basic, and
a' >~ a. Then there is an edge (a’,b) in G'.

Proof. Suppose for a contradiction that (a’,b) ¢ G’ holds. Let ¢ be the most recent point
in time when b rejects a proposal from a’. Then it follows from the algorithm that, at ¢,
a” >y, a’ holds for all a” € A(b). The rejection step also implies that, at ¢, there is no a” € A
such that o' ~, a”, a” is basic, and b holds more than one proposal from a”. Moreover, the
algorithm implies that, after ¢, whenever she receives a new proposal from a man a” such
that a” <, o/, she will immediately reject it unless she successfully bounces or forwards it.
Now, consider a point in time after ¢t when there is a man a” such that a’ ~, a”, b already
holds a proposal from a”, and receives another proposal from a”. Then the rejection step
implies that she will reject one of the proposals from a” unless she successfully bounces or
forwards it. But then, when the algorithm terminates, b holds at least two proposals from
a, a contradiction. O
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3.2.1 Analytical Techniques

In the following sections we define inputs, outputs, and costs that are used in our charging
scheme, and so are central to our analysis. Before we take a closer look at these notions
and define them formally, let us discuss phenomena captured by them.

We use two different objects, inputs and outputs, to differentiate between two different
viewpoints on proposals accepted when the algorithm ends. In particular, inputs are
associated with the viewpoint of women on the proposals whereas outputs are associated
with the viewpoint of men. The choice of terms “inputs” and “outputs” is due to the
analysis in [I5] where the edges of G’ are directed from men to women, and so each
proposal becomes an “input” for the woman, and analogously becomes an “output” for
the corresponding man.

Now we describe the ideas that motivated our definitions concerning outputs and inputs.
Let M + OPT denote the multiset that contains the edges in M and the edges in OPT.
To establish the approximation guarantee of our algorithm, we analyze each connected
component in M + OPT. In order to show that M-augmenting paths in M + OPT do not
lead to a large approximation guarantee, we introduce the notions of bad and good inputs
as well as bad and good outputs. For example, a certain number of bad inputs and bad
outputs are generated by the edges incident to the endpoints of an M-augmenting path in
M + OPT. Indeed, as we will see later, if ag — by —ay; — ... — a, — by, is an M-augmenting
path in M + OPT of length 2k + 1, kK > 2 where ag € A, then by has at least L — 2 bad
inputs and a;, has at least L —2 bad outputs. Then to show the approximation guarantee of
(3L —2)/(2L — 1), we provide a way to obtain a lower bound on the number of bad inputs
and bad outputs of men and women in each M-augmenting path; and later we provide an
upper bound on the total number of bad inputs and bad outputs of all men and women.

To implement the above ideas, we use a charging scheme. Our charging scheme asso-
ciates a cost with each man and each woman. These costs keep track of bad inputs and
bad outputs: bad inputs lead to an increase of the corresponding woman’s cost and bad
outputs lead to an increase of the corresponding man’s cost. We show that the total cost
of all men and women is bounded above by 2L|M|. On the other side, we provide a lower
bound on the total cost by giving a lower bound on the cost of each connected component

in M + OPT. These upper and lower bounds lead to the desired approximation guarantee
of (3L —2)/(2L —1).

29



3.2.2 Inputs and Outputs

In our analysis inputs and outputs are fundamental edge-related objects for our charging
scheme. Each edge in G’ generates a certain number of charges. For example, as we will
see in Section 3.2.3, if an edge (a,b) in G’ belongs either to M or to OPT, two charges are
generated by (a,b) so that one is carried to node a and one is carried to node b by cost
function. To define similar charging mechanisms for the remaining types of edges in G,
we first distinguish them as in the following definitions.

Definition 3.7. Given an edge (a,b) in G', we say that (a,b) is an output from a € A
and an input to b € B if (a,b) is not in M + OPT.

To illustrate how outputs and inputs are determined, for example, let (a,b) € M, a € A,
b € B and n(,p) be the number of edges of the form (a,b) in the multigraph G, then the
edge (a,b) gives rise to the following number s, of inputs (and to the same number of
outputs)

n(a,b) -1 if (a, b) Q OPT
S@p) =140 if ngp =1
N(p) — 2 otherwise .

Definition 3.8. An input (a,b) to b € B is called a bad input if one of the following is
true:

e b is popular and a >, OPT(b).

e b is popular, a ~, OPT(b), but OPT(b) is unsuccessful.

e b is popular, a is 1-promoted, OPT(b) is successful, and M (b) ~, OPT(b) ~ a.

An input (a,b) to b € B is a good input if it is not a bad input. In other words, an
input (a,b) to b € B is a good input if one of the following is true:

e b is unpopular.

e b is popular and OPT(b) >, a.

e b is popular, a ~, OPT(b), OPT(b) is successful, and a is not 1-promoted.
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e b is popular, a ~, OPT(b), OPT(b) is successful, but not M(b) ~, OPT(b) ~ a.
An output (a,b) from a man a is called a bad output if one of the following is true:

e b is unpopular.
e b is popular, b >, OPT(a), a is 1-promoted, but not M(b) ~, OPT(b) ~ a.

e b is popular, b >, OPT(a), and a is basic.

An output from a man a is a good output if that is not a bad output. In other words,
an output (a,b) from a man a € A is a good output if one of the following is true:

e b is popular and OPT(a) >, b.
e b is popular, b >, OPT(a), and a is 2-promoted.
e b is popular, b >, OPT(a), a is 1-promoted, and M (b) ~, OPT(b) ~ a.

Lemma 3.9. There is no edge which is both a bad input and a bad output.

Proof. Assume that an edge (a,b), a € A, b € B is both a bad input to b and a bad output
from a. First, consider the first case from the definition of a bad output. It trivially
contradicts all the cases from the definition of a bad input. Second, consider the first
case from the definition of a bad input and either the second or the third case from the
definition of a bad output. Then the case (1) below is implied. Third, consider the second
case from the definition of a bad input and either the second or the third case from the
definition of a bad output. Then the case (2) below is implied. Finally, consider the third
case from the definition of a bad input. It trivially contradicts both the second and the
third case from the definition of a bad output. Thus one of the following cases is true:

1. a >, OPT(b): b >, OPT(a).

2. a ~;, OPT(b) and OPT(b) is unsuccessful; a is not 2-promoted.
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In case (1), the edge (a,b) is a blocking pair for OPT, contradicting the stability of
OPT.

In case (2), since OPT(b) is unsuccessful, OPT(b) was rejected by b as a 2-promoted
man. On the other hand, a ~, OPT(b), a is not 2-promoted, and b holds a proposal from
a when the algorithm terminates, contradicting the rejection step.

]

Corollary 3.10. The number of good inputs is at least the number of bad outputs.

Proof. Assume for a contradiction that the number of good inputs is smaller than the
number of bad outputs. Then there is an edge in G’ which is a bad output but not a good
input. In other words, there is an edge in G which is both a bad output and a bad input,
contradicting Lemma 3.9.

]

3.2.3 Cost

In our charging scheme, cost is a function that assigns charges, that originate from the
edges, to the nodes. More specifically, the cost of a man a is obtained by counting the
edges in G’ incident to a, where bad outputs contribute 2 and all other edges contribute 1.
Similarly, the cost of a woman b is obtained by counting the edges in G’ incident to b, to
which good inputs contribute 0 and all other edges contribute 1.

In the following, let deg(u) be the degree of the node w in G'. For a € A, we define his
cost as follows:

cost(a) := deg(a) + k, where k is the number of bad outputs from q;
for b € B, we define her cost as follows:

cost(b) := deg(b) — k, where k is the number of good inputs to b,

For a node set S C AU B, cost(S) is defined as the sum of costs of all the nodes in S.

The above definitions lead to next three remarks.

32



Remark 3.11. Let b € B be matched in M and have at least k bad inputs. Then cost(b) >
kE+1.

Proof. Let k' be the number of good inputs to b. Since b is matched in M, the edge
(M(b),b) is contained in G’ and therefore it is not an input to b. Thus deg(b) > k+ k' + 1.
Hence, by definition of cost, cost(b) = deg(b) — k" > k + 1 holds.

[]

Remark 3.12. Let b € B be matched in OPT, have at least k bad inputs, and (OPT(b),b) €
E' where E' is the edge set of G'. Then cost(b) > k + 1.

Proof. Let k' be the number of good inputs to b. Since the edge (OPT(b), b) is in G, it is not
an input to b. Thus deg(b) > k+k’+1. So, by definition of cost, cost(b) = deg(b)—k" > k+1
holds.

]

Remark 3.13. Let b € B be matched in both OPT and M, OPT(b) # M(b), and
(OPT(b),b) € E" where E' is the edge set of G'. Then cost(b) > 2.

Proof. Let k and k' be the numbers of bad inputs and good inputs to b, respectively. Since
the edges (OPT(b),b) and (M(b),b) are contained in G’, they are not inputs to b. Thus
deg(b) > k + k' 4+ 2. So, by definition of cost, cost(b) = deg(b) — k' > k + 2 > 2 holds.

]

3.2.4 The Approximation Ratio

Let C(M+OPT) denote the set of connected components in a graph induced by the edge set
M + OPT. Lemma 3.14 below bounds the cost of M + OPT and is proven in Section 3.2.5.

Lemma 3.14. > ¢y 0pm c0St(C) > (L + 1)[OPT] + (L — 2)(|OPT| — |M]).

We are ready to prove our main theorem, and restate it here for completeness.
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Theorem 1.2. Given an instance of the maximum stable matching problem with incom-
plete preferences and ties of length at most L; the polynomial-time algorithm described in
Section 3.1 finds a stable matching M with

2L -1
3L —2

|M| > |OPT],

where OPT is an optimal stable matching.

Proof. By Lemma 3.1, we have

£ deg(u)
M| > — = > .
L uce AUB 2L

By definition of cost and by Corollary 3.10, we obtain

Z deg(u) > cost(AU B).

Combining the above inequalities, we get

2L|M| > Z deg(u) > cost(AU B) = Z cost(C),

u€AUB CeC(M+OPT)

By Lemma 3.14, we obtain

2LIM| > > cost(C) > (L + 1)|OPT| + (L — 2)(|OPT| — | M]).
CeC(M+OPT)

By rearranging the terms, we obtain
2L|M |+ (L —2)|M| > (L+ 1)|OPT| + (L — 2)|OPT/,
and so we obtain the desired inequality

(3L — 2)|M| > (2L — 1)|OPT].
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3.2.5 Costs of Connected Components in M + OPT

The purpose of this subsection is to prove Lemma 3.14. We call a connected component of
M + OPT trivial if it is an isolated node. A component in M + OPT is called alternating
path if the sequence of its edges alternate being contained in M and in OPT. An alternating
path is called alternating cycle if its endpoints are the same. We call an alternating path
OPT-augmenting if the edges incident to its endpoints are in M. Likewise, we call an
alternating path M-augmenting if the edges incident to its endpoints are in OPT. For ease
of exposition, henceforth, we will refer by alternating paths only to the components that
are not alternating cycles, OPT-augmenting or M-augmenting paths.

We begin by studying costs of connected components in M 4+ OPT. For each connected
component, we find an appropriate lower bound. The costs of components that are alter-
nating paths, alternating cycles or OPT-augmenting paths, can be bounded from below
by L + 1 multiplied by the number of edges that are both in OPT and in the associated
component. However, the costs of M-augmenting paths can be bounded from below in
a stronger way. While the costs for trivial paths, alternating paths, alternating cycles or
OPT-augmenting paths can be obtained in a straightforward way, those for M-augmenting
paths are central to our analysis and require a detailed study. After we establish the
lower bounds on the costs of all connected components in M + OPT, we start proving
Lemma 3.14.

The following lemma bounds costs of edges in OPT from below. Recall that deg(u) is
the degree of the node u in G'.

Lemma 3.15. Let a € A and b € B be such that (a,b) € OPT. Then cost({a,b}) > L
holds. Furthermore, if deg(a) > 1, then cost({a,b}) > L + 1; if deg(b) < L — 1, then
cost({a,b}) > 2L — 1.

Proof. We consider deg(a) and deg(b) simultaneously. Since both are integers between 0
and L, the following cover all possible cases for values of deg(a) and deg(b):

1. deg(a) = 0 and deg(b) = L.

2. 1 <deg(a) < L —1 and deg(b) = L.

3. deg(a) = L and deg(b) = L.

4. deg(a) = L and deg(b) < L — 1.
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5. deg(a) < L —1 and deg(b) < L — 1.

In cases (1) and (2), a is unsuccessful. Since (a,b) is an edge in G, b rejected a proposal
from a, and so b is popular. Thus there are L separate edges (a*,b), (a®,b), ..., (a’,b) in
G’ such that a <; o’ for all i = 1,2,..., L. Moreover, none of the edges (a',b), (a* ),

.., (a*,b) is a good input because b is popular, OPT(b) <, a’ for all i = 1,2,..., L, and
OPT(b) is unsuccessful. Thus cost(b) = L.

Hence, for case (1),
cost({a,b}) > cost(b) = L;

for case (2)
cost({a,b}) = cost(a) +cost(b) > L+ 1,
——

N——
>deg(a)>1 =L

as required.

In case (3), b is matched in M since deg(b) = L. Thus, by Remark 3.11, cost(b) > 1
holds. Hence
cost({a,b}) = cost(a) +cost(b) > L+ 1,
~——

——
>deg(a)=L  >1

as desired.

In case (4), b is unsuccessful, and so b did not reject any proposal from a. Thus, a is
basic and for every edge (a,V) € G’ with b’ € B, and so b’ >, b. Thus, by Remark 3.5 and
Definition 3.8, each edge (a,b') € G’ with b’ € B is a bad output from a.

Since deg(a) = L, a is matched in M. Thus if there is no edge (a,b) in G’, then a has
L — 1 bad outputs implying the desired inequality

cost({a,b}) > cost(a) = deg(a) + L —1=2L — 1.

But if there is an edge (a,b) in G', then a has L — 2 bad outputs. Also cost(b) > 1 by
Remark 3.12. Thus

cost({a,b}) = cost(a) 4+ cost(b) > 2L —2+1=2L — 1,
>2L—2 >1

as needed.
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In case (5), both a and b are unsuccessful. Since (a,b) is an edge in G and a is
unsuccessful, a proposal from a was rejected by b at some time during the algorithm. On
the other hand, since b is unsuccessful, she did not reject any proposal during the algorithm,
a contradiction.

]

For completeness, we state the following remark that is trivially true.

Remark 3.16. Trivial components have cost at least (L + 1)|OPT N C|.

Alternating Paths, Alternating Cycles and OPT-Augmenting Paths

Recall that despite the original definition of alternating paths, we merely mean by them
the components that are not alternating cycles, OPT-augmenting or M-augmenting paths.
The following corollary of Lemma 3.15 provides lower bounds on the costs of alternating
paths, alternating cycles and OPT-augmenting paths.

Corollary 3.17. Let C' be a connected component of M+ OPT such that it is an alternating
path, alternating cycle, or OPT-augmenting path. Then cost(C') > (L + 1)|OPTNC|.

Proof. First, we note that since the length of an alternating path is even, the endpoints of
it are either both men or both women as in (3) and (4) below. In contrast, the length of an
OPT-augmenting path is odd, and so its endpoints are a man and a woman as in (1) below.
Last, alternating cycles have the general form as in (2) below, but it can be represented
by various ways simply by shifting the nodes to the right or to the left. Assuming C' is as
stated above, one of the following is true:

1. C'is an OPT-augmenting path of the form ag — by — ... — ax — bgy1.
2. C'is an alternating cycle of the form a; —b; —. .. —ay — by — ay, where (ap,b;) € OPT.
3. C is an alternating path of the form by —a; — ... — by — ax — bgy1, where a; € A and

(CLl, bl) € OPT.

4. C'is an alternating path of the form a; —b; — ... — ax — by — a1, where a; € A and
(Gl, bl) € OPT.
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For cases (1), (2) and (3), Lemma 3.15 implies that cost({a;,b;}) > L + 1 for every
t=1,...,k. Thus

cost(C Zcost{al,b}) (L+1)k = (L+1)|OPTNC|,
\_V_/

>L+1

as required.
For case (4), Lemma 3.15 implies that cost({a;, b;}) > L + 1 for every i = 2,...,k and
cost({ai,b1}) > L. Since a1 is matched in M, cost(ay41) > 1 holds. Thus

cost(C') > cost({ay, bl}) +cost ak+1 Zcost {ai,b;}) > (L+ 1)k = (L + 1)|OPTNC].
5 ~———

~—
>L >1 >L+1

M-Augmenting Paths

In this section, we provide a lower bound on the cost of components in M + OPT, that
are M-augmenting paths of length at least 5. We call an edge in an M-augmenting path
terminal if it is incident to either endpoint of the path, and internal otherwise. We start
by showing that there are no M-augmenting paths in M + OPT of length 1 or 3.

Lemma 3.18. There is no M-augmenting path in M + OPT, that is of length 1 or of
length 3.

Proof. First, suppose that there is an M-augmenting path in M + OPT, that is of length 1.
That is to say, there exists an edge (a,b) in OPT such that neither a nor b is matched in
M. Since (a,b) is in G and none of a and b is matched in M, (a,b) is a blocking pair for
M, that contradicts Lemma 3.2.

Second, suppose that there is an M-augmenting path in M + OPT, that is of length 3
and of form ag — by — a; — by where ag € A (see Figure 3.1). Since ay and b; are unmatched
in M, deg(ap) < L and deg(b;) < L hold, and hence both ay and b; are unsuccessful. Since
ap is unsuccessful, he is 2-promoted and was rejected by every woman in his preference
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list as a 2-promoted man. Since by is such a woman, she is popular. Also, we notice that
(a1,bp) is in M, and hence by holds a proposal from a; when the algorithm terminates.
Thus ay >, ao.

Observe that (a,b;) is in OPT, and hence (ay,b;) is in G. Since b; is unsuccessful, b
did not reject any proposal during the algorithm. Since no proposal from a; was rejected by
by, he is basic. Also, by >,, by holds since by holds a proposal from a; when the algorithm
finishes and no proposal from a; was rejected by by. Thus a1 >4, ap, by >4, b1, ao is
2-promoted, by is popular, a; is basic and b; is unsuccessful.

First, a; ~, ap cannot hold because a, is basic, and by rejected ag as a 2-promoted man,
whereas by holds a proposal from a; when the algorithm ends. Second, by ~,, b; cannot
hold, otherwise we get a contradiction to Remark 3.5 since by is popular, by is unsuccessful,
and by holds a proposal from a; when the algorithm terminates. Hence we conclude that
ay; >p, ap and by >,, by hold. Since (ag, by) € OPT and (ay,b1) € OPT, (a1, by) is a blocking
pair for OPT, contradicting the stability of OPT.

]

a1

a2

Figure 3.1: Illustrations of M-augmenting paths in M + OPT of length 3 on the left and
of length 5 on the right. Dashed lines represent the edges in OPT and solid lines represent
those in M.

Now, we consider M-augmenting paths in M + OPT, that are of lengths at least 5
(see Figure 3.1). Since the length of an M-augmenting path is odd, its endpoints are a
man and a woman. Note that, our next results assume the representation, where, without
loss of generality, the leftmost node is a man. In the following definition, a woman in an
M-augmenting path points right is the compact way to say that the woman weakly prefers
the man on her right to the man on her left, where the weakly preferred man is promoted
if she is indifferent between them.
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Definition 3.19. Let ag—by—a; —...—ar— by be an M -augmenting path of length at least
5, where ag € A. Fori1=0,...,k—1, we say that b; points right if one of the following is
true:

® ;1 >p; G-

® a;11 >, a;, and a;1; 15 not basic.

The desired lower bound on the cost of M-augmenting paths in M + OPT is demon-
strated by partitioning an M-augmenting path into the pieces of the first terminal edge,
internal edges, and the last terminal edge, and providing a lower bound on the cost of each
piece.

Remarks 3.20 and 3.21 below provide bounds on the costs of the terminal edges of an
M-augmenting path in M + OPT.

Remark 3.20. Let ag — by — a1 — ... — ap — by be an M-augmenting path in M + OPT
of length 2k + 1, k > 2, where ay € A. Then cost({ag,bo}) > L. Moreover, by rejected a
proposal from ag at some point, and by points right.

Proof. First, since (ag, by) € OPT, Lemma 3.15 implies cost({ag, by}) > L. Second, observe
that ag is not matched in M, and hence ag is unsuccessful. Thus by rejected ay as a 2-
promoted man. On the other hand, since by, has a proposal from a; when the algorithm
finishes, we deduce that a; >3, ap holds. Notice that if a; >~ ag holds, then a; is not
basic. Thus by points right, that finishes the proof.

n
Remark 3.21. Let ag — by — a; — ... — ap — by, be an M -augmenting path in M + OPT of
length 2k + 1, k > 2, where ag € A. Then cost({ax,br}) > 2L — 1.

Proof. Observe that by is not matched in M, and hence deg(by) < L — 1 holds. Since
(ax,br) € OPT and deg(by) < L — 1, Lemma 3.15 implies the desired inequality that
cost({ax,br}) > 2L — 1.

O
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Lemma 3.22 below is important for a better understanding of the internal edges in M-
augmenting paths and can be considered as rather a technical result followed by a corollary
that is of an essential use. The proof of Lemma 3.22 is presented after we establish the
key result of this section in Lemma 3.25 and prove Lemma 3.14.

Lemma 3.22. Let ag — by — ay — ... — ap — by, be an M -augmenting path in M + OPT of
length 2k + 1, k > 2, where ag € A. Then for everyi = 1,...,k — 1, at least one of the
following 1is true:

1. cost({a;,b;}) > L +2.

2. b; rejected a proposal from a; at some point, and b; points right.

3. a; s basic and b,y >4, b;.

For an M-augmenting path in M + OPT of length 2k + 1, £ > 2, Lemma 3.15 implies
that each internal edge that is both in the same path and in OPT has cost at least L + 1.

The following corollary of Lemma 3.22 establishes an essential fact when the cost of such
an internal edge is exactly L + 1.

Corollary 3.23. Let ag—by— a1 — ... —agx — by be an M-augmenting path in M + OPT of
length 2k+1, k > 2, where ag € A. For everyi = 1,...,k—1 such that cost({a;, b;}) = L+1,
if bi_1 rejected a proposal from a;_1 at some point and b;_, points right, then b; rejected a
proposal from a; at some point and b; points right.

Proof. By Lemma 3.22, for every i = 1,...,k — 1, at least one of the following is true:

1. cost({a;, b;}) > L + 2.
2. b; rejected a proposal from a; at some point, and b; points right.

3. a; is basic and b;_; >, b;.

In case (1), that is an immediate contradiction to cost({a;,b;}) = L + 1.

In case (3), a; is basic. Thus if b;_; points right as stated, then a; 1 <;,_, a;. Hence
a;_1 <p,_, a; and b;_1 >, b;, showing that (a;, b;_1) is a blocking pair for OPT, a contra-
diction to the stability of OPT.

In case (2), we obtain the desired statement.
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Lemma 3.24 below provides a bound on the cost of the rightmost internal edge of an
M-augmenting path in M +OPT given the fact that is established by Corollary 3.23 occurs.
The proof of Lemma 3.24 is presented after the proof of Lemma 3.22.

Lemma 3.24. Let ag — by — ay — ... — a — by, be an M -augmenting path in M + OPT of
length 2k + 1, k > 2, where ag € A. If by_1 rejected a proposal from ay_q, and by_1 points
right, then cost({ag_1,bx_1}) > L + 2.

Now, we have all the tools to bound the cost of M-augmenting paths of length at
least 5.

Lemma 3.25. Let C' be a connected component of M + OPT, that is an M -augmenting
path of length at least 5. Then cost(C') > (L + 1)|OPTNC| + (L — 2).

Proof. Let C be an M-augmenting path in M + OPT of length 2k 4+ 1,k > 2. Recall our
assumption that, without loss of generality, C' is of the form a9 — by — a1 — ... — ar — by,
where ag € A. Then

k-1
cost(C) = cost({ag, bo}) E cost({a;,b;}) + cost({ag,bx}) >
——_— — ~—_— — ~—_— —
>L by Remark 3.20 "' >L+1 by Lemma 3.15 >2L—1 by Remark 3.21

L+(L+1)(k—1)+2L—-1=
(L+1)(k—1)+2(L+1)+(L—-3)=
(L+1)(k+1)+(L—-3) =
(L+1)|OPTNC|+ (L - 3).

By Remark 3.20, by rejected a proposal from ay at some point, and by points right.
Suppose now that the above inequality is tight only. Then Corollary 3.23 implies that,
for all + = 0,...,k — 1, b; rejected a proposal from a;, and b; points right. But then,
Lemma 3.24 implies that cost({ax_1,br-1}) > L + 2 holds, contradicting that the above
inequality is tight. Thus we get the desired inequality cost(C') > (L+1)|OPTNC|+(L—2).

O

Proof of Lemma 3.1/4. By Corollary 3.17 and Remark 3.16, for every connected component
C'in M +OPT that is not an M-augmenting path, cost(C') > (L+1)|OPTNC| holds. Also,
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by Lemma 3.25, for each connected component C' in M + OPT that is an M-augmenting
path of length at least 5, cost(C') > (L 4+ 1)|OPT N C| + (L — 2) holds. Since there are
at least |[OPT| — | M| M-augmenting paths in M + OPT, we obtain the desired inequality
> cecropt) €0st(C) > (L + 1)[OPT[ + (L — 2)(|OPT| — |M]).

]

Proof of Lemma 3.22. Clearly, (a;,b;_1) and (a;11,b;) are contained in G’ since they are
in M. Thus deg(a;) > 1 and deg(b;) > 1. Moreover, since (a;, b;) is included in G, at least
one of the following is true: deg(a;) = L; and deg(b;) = L. Hence it is sufficient to consider
the following cases:

I. deg(a;) < L and deg(b;) = L.
II. deg(a;) = L.

IL.I. b; rejected a proposal from a;.

IT.I.I. b; has at most L — 2 good inputs.
II.LI.IT. b; has L — 1 good inputs.

ILIT. b; did not reject any proposal from a;.

ILILI. there is an edge (a;, b;) in G'.

ILILIL there is not an edge (a;, b;) in G'.
ILILILI. a; has at least one bad output.
ITILILII. a; has L — 1 good outputs.

In case (I.), a; is unsuccessful. Thus b; rejected a proposal from a; as a 2-promoted
man. Also, b; has a proposal from a;,; when the algorithm finishes, implying (2).

In case (IL.IL), deg(b;) = L holds since b; rejected a proposal from a; at some point
during the algorithm. Since b; has at most L—2 good inputs, cost(b;) > deg(b;)—(L—2) = 2
holds. Thus

cost({a;, b;}) = cost(a;) +cost(b;) > L+2,
——
>deg(a;)=L >2

implying (1).
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In case (IL.I.IL.), b; is popular since she rejected a proposal at some point. Let (a’, b;) for
all j =1,...,L—1 be good inputs to b;. Then, by definition of good inputs, a; >;. a’ for all
j=1,...,L—1. Also,a’ # a; forall j = 1,..., L—1 because (a;, b;) € OPT, (a;11,b;) € M
and (a’,b;) for all j = 1,...,L — 1 are good inputs. Since b; rejected a proposal from a;
at some point while she has proposals from a;.; and @/ for j = 1,...,L — 1 when the
algorithm ends, we deduce that a; <;, a,4+; and a; <;, a’ forall j =1,...,L — 1. Since
a; >y, @/ and a; <y, a’, we conclude that a; ~. o/ for all j=1,..., L — 1.

Since a; <y, aiy1, a; =, @, @/ # a; for all j = 1,...,L — 1, and ties are of length at
most L, at least one of the following is true:

Loa; <p, Qjq1-
1. a; =p; Qjt1-

ii.i. there exist j/,j” =1,...,L —1, j' # j” such that o/' = a".

ii.ii. there exists j/ =1,...,L — 1 such that a/' = a;41.

In case (i.), we immediately get (2).

In case (ii.i.), by definition of good inputs, @’ is either basic or 2-promoted. If o/ is
basic, that is in contradiction to the rejection step since a; ~, a’’, b; rejected a proposal
from a; at some point, b; holds no proposal from a; while she holds two proposals from
o’ when the algorithm terminates. If /' is 2-promoted, then ;41 is not basic because
Ajp1 2, a’’, b; rejected @/ as a 1-promoted man while she holds a proposal from ;1 when
the algorithm ends. Thus we conclude (2).

In case (ii.ii.), if a;41 is basic, that is in contradiction to the rejection step because
a; ~, a1, b; rejected a proposal from a; at some point, b; holds no proposal from a; while
she holds two proposals from a;.; when the algorithm finishes. Thus a;.; cannot be basic,
implying that b; points right. Hence we deduce (2).

In case (IL.ILL), cost(a;) > L holds. Also, by Remark 3.13, cost(b;) > 2 holds since
(CI,Z', bl> € OPT, (ai, bl) € G,, and (ai+1, bl) € M. Thus cost({ai, bl}) = COSt(CLi) +C05t(bi) >
L + 2, implying (1).

In case (ILILILL), since (a;+1,b;) € M, cost(b;) > 1 holds. Also, because a; has
at least one bad output, cost(a;) > deg(a;) +1 = L + 1 holds. Thus cost({a;,b;}) =
cost(a;) + cost(b;) > L + 2, implying (1).
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In case (ILILILIL), let (a;, &) for j = 1,...,L — 1 be good outputs from a;. Since
b; did not reject any proposal from a; during the algorithm, (a;,b;_1) € M, and (a;,V’)
for j = 1,...,L — 1 are outputs, we deduce that a; is basic, b; <,, b;i_1, b; <o, ¥’ for all
j=1,...,L—1. Since q; is basic and (a;,?’) for all j = 1,..., L — 1 are good outputs from
a;, we deduce that, by definition of good outputs, b; # b7, b; >,, b forall j=1,..., L —1,
and hence b; ~, V/ forall j=1,..., L — 1.

Because b; <, bi_1, b; =4, U/, b; # 1V for all j =1,...,L — 1, and ties are of length at
most L, at least one of the following is true:

i bz <a; bi—l-
ii. bz X, bi—l'

ii.i. there exist j/,5" =1,...,L — 1, j' # j” such that &' = /"
ii.ii. there exists j/ =1,...,L — 1 such that &' = b;_;.

In case (i.), we immediately get (3).

In cases (ii.i.) and (ii.ii.), by definition of good outputs, »’" is popular and so she rejected
a proposal at some point. On the other hand, b; ~,, v, ¥’ holds at least two proposals
from a; when the algorithm finishes, b; did not reject a; during the algorithm, and b;
does not hold any proposal from a; when the algorithm terminates, a contradiction to the
forward step for &'

]

The following remark is used to simplify the proof of Lemma 3.24 below.

Remark 3.26. Let ag — by — a; — ... — ap — by, be an M -augmenting path in M + OPT of
length 2k + 1, k > 2, where ag € A. Then deg(ay—1) = L.

Proof. Suppose for a contradiction that deg(ax—1) < L, and so aj_; is unsuccessful. Thus
bi_1 rejected aip_1 as a 2-promoted man, and so b,_; is popular. Since b, is unmatched
in M, deg(by) < L holds. So by is unsuccessful, and thus ay, is basic. Since by_; rejected
a proposal from a;_; at some point, and b,_; has a proposal from a; when the algorithm
ends, we deduce that ay_1 <, | ax.
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First, if a1 ~,_, ai holds, we deduce that a; is 2-promoted, contradicting the fact
that ay, is basic. Thus ay_; <p,_, ax. Since by did not reject any proposal from a;, during the
algorithm, and b;_; holds a proposal from a; when the algorithm terminates, by_1 >4, bg
holds. If by_y >,, by holds, then (ag,bx_1) is a blocking pair for OPT, contradicting the
stability of OPT. We conclude that b,_; ~,, b;. But then, since b;_; has a proposal from
ar, when the algorithm finishes, by is unsuccessful, and by_; ~,, by, Remark 3.5 implies
that b,_; is unpopular, a contradiction.

]

Proof of Lemma 3.24. Observe that (ax,br_1) € M, and thus (ag,bx_1) € G'. Therefore,
one of the following cases is true:

I. there is at least one edge (ag_1,bk—1) in G'.
I1. there is no edge (ax_1,bx_1) in G'.

IL.I. there are at least two parallel edges (ay, by_1) in G'.

ILII. there are exactly L —1 edges, (a’,by_1) forj =1,...,L—1in G’, and @/ # aj_1,
a/ #ayfor j=1,...,L—1.

In case (I.), Remark 3.26 implies cost(ay_1) > deg(ax_1) = L, and Remark 3.13 implies
cost(by_1) > 2 since (ag_1,bx_1) € OPT, (ar_1,bx1) € G, and (ay,bx_1) € M. Thus,

cost({ag_1,br_1}) = cost(ay_1) + cost(by_1) > L + 2,

VvV
>L >2

as desired.

In case (II.1.), since by_; rejected a proposal from a;_; at some point, and by_; holds at
least two proposals from a; when the algorithm terminates, we deduce that b;_; is popular
and aj >3, , ar—1 holds. Also, since by is unmatched in M, deg(by) < L holds. Thus by
is unsuccessful and ay, is basic. If ay ~, | ax_1, then Remark 3.6 implies that there is an
edge (ax—1,bk—1) in G’, a contradiction. Thus ay >p, | ax—; holds.

We show that ay, >, _, ax—1 leads to a contradiction. Since by, is unsuccessful and there

is an edge (ag,bx—1) in G', by_1 >4, by holds. If by >, by, then (ay,br—1) is a blocking
pair for OPT, contradicting the stability of OPT. Thus b;_; ~,, by holds. But then, since
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by—1 holds a proposal from a; when the algorithm ends, by, is unsuccessful, and by_1 ~,, bg,
Remark 3.5 implies that b,_; is unpopular, a contradiction.

In case (ILIL.), since by_; holds proposals from a; and @’ forall j = 1,..., L—1, and b;,_,
rejected a proposal from a;_; at some point, we deduce that by_; is popular, ay >y, _, ar—1,
al >y, ap_q forall j =1,... L —1. Since by is unmatched in M, deg(by) < L holds and
therefore b, is unsuccessful.

Analogously to the proof of case (IL.L.), it can be shown that ay >, , ax—1 leads to a
contradiction. Thus ay ~, , ax—1, and a’ >p._, ax—1 forall j =1,...,L —1 hold. Since
a’ # ay_1, a’ # a forall j = 1,...,L — 1, and ties are of length at most L, at least one
of the following is true:

i. there exists 7' = 1,..., L — 1 such that a’’ >pq Qk—1-
ii. o ~p,_, ap—1 forall j=1,...,L—1.
ii.i. there exist j/,5" =1,...,L — 1, j' # j” such that o/’ = a’".
In case (i.), (a/',by_1) is a bad input to by_; by definition. Thus, by Remark 3.11,

cost(bg_1) > 2 holds. Since cost(ay_1) > deg(ax_1) = L holds by Remark 3.26, we obtain
the desired inequality

cost({ag—1,br—1}) = cost(ay_1) + cost(by_1) > L+ 2.

J/ J/

-

>L >2
In case (ii.i.), recall that there is no edge (ay_1,bx—1) in G’. Since by_; rejected a
proposal from a;_; during the algorithm, a’’ ~p._, ag—1, and (ag_1,bx—1) ¢ G', we deduce
from Remark 3.6 that o/’ is not basic. If a’" is 1-promoted, then (a?’, by_1) and (a?", br_,)
are bad inputs to by_; by definition. Thus, by Remark 3.11, cost(bx_1) > 3 holds. Since
cost(ay—1) > deg(ax—1) = L holds by Remark 3.26, we get the desired inequality
cost({ag_1,bx_1}) = cost(ay_1)+ cost(by_1) > L + 2.

J/ J/
-~ -

>L >3

If @/’ is 2-promoted, then b,_; rejected o/ as a l-promoted man. On the other hand,
ag ~p, aj/, ay is basic, and b,_; holds a proposal from a, when the algorithm ends, a
contradiction to the rejection step.

]
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The following example shows that the bound in Theorem 1.2 is tight.

Example 3.27. In Figure 3.2, the preference list of each individual is ordered from a most
preferred person to a least preferred one, where individuals within parentheses are tied. For
example, a’f 1s indifferent between all the women in his preference list except bff , who s less
preferred than the others.

It is straightforward to check that there exists a unique mazimum-cardinality stable
matching, namely OPT = {(ag,bo)} U {(al,0}) | i = 1,....,L — 1, j = «,B,7}. We

show that there exists an execution of the algorithm which outputs the matching M =
{(ao, b)Y U{(a®, b)) |i=1,...,L—1}U{(a’,b%) | i=1,...,L — 1}, leading to the ratio

) AR

OPTI/IM]| = (3L - 2)/(2L — 1).

Proof. The following is an execution of the algorithm which leads either to the matching
M or a matching with the size of M.

e ag makes one proposal to every woman in his list; the women accept.

o af foralli =1,...,L —1 makes one proposal to every woman in his list; the women
accept.
° af forall 2 =1,..., L — 1 makes one proposal to every woman except the last one in

his list; the women accept.

e a] starts to propose b} for all i = 1,..., L — 1, but each time a] makes a proposal,
the proposal is rejected; a; gives up.
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Figure 3.2: An instance with ties of length at most L, L > 2 for which the algorithm
outputs a stable matching M with |OPT|/|M| = (3L —2)/(2L — 1)

Men’s preferences Women’s preferences
ap: (bg b] ... b] ) by : (ag a? ... d}_))
as: (b b ... b7 ) b :a® df . dl
a® - (ba by by ) pE - @ CLB CLB
L—1+-WOp—1 91 .- 004 L—1-0rp—1 Ay - Ay,
a by b by VP v a?
8 8 5. 8
ap_y: (bo OF ... b7 1) b4 by ap_y
aj :b] b : (ag af ... a%_4) af
aj_q by br—1 (a0 af ... af_y) az_4
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Chapter 4

Concluding Remarks

In this Chapter we conclude this thesis by summarizing our contribution and briefly re-
ferring to a problem for future investigation. In Chapter 3, we present a polynomial-time
algorithm for the maximum stable matching problem with two-sided ties that attains an
approximation guarantee of (3L — 2)/(2L — 1) where L is the maximum tie length. Our

result matches the known lower bound on the integrality gap [21], indicating a potential
obstacle to further improvements. When L = 2, our algorithm achieves an approximation
ratio of 4/3 that matches the known UGC-hardness result [33]. For L > 2, we conjecture

that the hardness result can be improved to (3L —2)/(2L — 1) so that it matches both our
result and the lower bound on the integrality gap.
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