Exploiting Token and Path-based
Representations of Code for
Identifying Security-Relevant

Commits

by

Achyudh Ram Keshav Ram

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2020

© Achyudh Ram Keshav Ram 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Statement of Contributions

Achyudh Ram Keshav Ram was the sole author for Chapters 1, 3, and 4 which were written
under the supervision of Meiyappan Nagappan and Jimmy Lin.

This thesis consists in part of two manuscripts written for publication:

The research presented in Chapter 2 was co-authored with Ashutosh Adhikari and Raphael
Tang, under the supervision of Jimmy Lin, and was accepted to NAACL-HLT 2018 [1].

The research presented in Chapter 3 was conducted with SAP Security Research and is
currently under peer-review.

111

Abstract

Public vulnerability databases such as CVE and NVD account for only 60% of security
vulnerabilities present in open-source projects and are known to suffer from inconsistent
quality. Over the last two years, there has been considerable growth in the number of
known vulnerabilities across projects available in various repositories such as NPM and
Maven Central. However, public vulnerability management databases such as NVD suffer
from poor coverage and are too slow to add new vulnerabilities. Such an increasing risk
calls for a mechanism to promptly infer the presence of security threats in open-source
projects. In this thesis, we seek to address this problem by treating the identification of
security-relevant commits as a classification task.

Since existing literature on neural networks for commit classification is sparse, we first
turn to document classification for inspiration. Extensive research in this domain, on
the other hand, has resulted in increasingly complex neural models, with a number of
researchers questioning the necessity of such architectures. We conduct a large-scale re-
producibility study of several recent neural network models, and show that well-executed,
simpler models are quite effective for document classification. We find that a simple bi-
directional LSTM with regularization yields competitive accuracy and F; on four bench-
mark document classification datasets.

Based on trends in document classification and the domain-specific peculiarities of
commit classification, we build a family of hierarchical neural network models for the
identification of security-relevant commits. We evaluate five different input representations
and show that models that learn on tokens extracted from the commit diff are simpler and
more effective than models that learn from path-contexts extracted from the AST. We also
show that providing the models with contextual information through features extracted
from the source code improves accuracy and F; further, and discuss why path-based models
might not capture any additional information compared to token-based models for this task.
Finally, we make a case for reporting standard deviation of test scores across multiple runs
in order to avoid erroneous conclusions and establish robust baselines.

v

Acknowledgements

I would like to thank my advisors Professor Jimmy Lin and Professor Meiyappan Na-
gappan for their support and guidance. They provided me the opportunity to work on
fascinating problems over the past two years and this thesis would not have been possible
without them. I would also like to thank the readers of my thesis, Professor Mike Godfrey
and Professor Yaoliang Yu, for taking the time to review my work.

Finally, I am grateful to the members of the Data Systems Group and the Software
Analytics Group — many of whom friends and collaborators — for making my time at the
University of Waterloo memorable.

Dedication

This thesis is dedicated to my parents for their boundless encouragement and support.

vi

Table of Contents

List of Figures
List of Tables

1 Introduction

1.1 Neural Networks for Document Classification
1.2 Identifying Security-Relevant Commits
1.3 Thesis Statement
1.4 Contributions
1.5 Thesis Organization

2 Neural Networks for Document Classification

2.1 Research Questions
2.2 Background and Related Work oo
2.2.1 Document Classification
2.2.2 Regularization oo
2.3 Model
2.4 Experimental Setup
24.1 Datasetso
2.4.2 Training and Hyperparameters
2.5 Results and Discussion L
2.6 Conclusions

vii

ix

QU = o W N =

© o N N 9 o o

3 Identifying Security-Relevant Commits

3.1 Research Questions

3.2 Background and Related Work

3.2.1 Distributed Representations for Source Code
3.2.2 Identifying Security Vulnerabilities
3.3 Experimental Setup
3.4 Methodology
3.4.1 Pre-trained Embeddings 0.
342 Baselines.
343 Model
3.4.4 Training and Hyperparameters
3.5 Results and Discussion L oL
3.6 Threats to Validity
3.7 Conclusions

4 Conclusions and Future Work

References

viil

14
14
15
15
16
17
19
19
19
20
22
23
29
30

31

33

List of Figures

2.1 Model architecture for R-LSTMrext . . -« o o o 9
3.1 A simple Java code snippet and its AST 16
3.2 A Javadoc stating which vulnerability was addressed 18
3.3 Model architecture for HH-CNNppp 0 o o o o o oo o Lo 20
3.4 Model architecture for H-CNNpamr 21
3.5 Model architecture for Hybridppe - . . .« .« o o o oo oo o oL 21

X

List of Tables

2.1 Summary of benchmark document classification datasets 10
2.2 Results for the neural document classification models 11
3.1 Results for the identification of security-relevant commits 24
3.2 Results from Tukey’s range test with a family-wise error rate of 0.05 25

Chapter 1

Introduction

The use of open-source software has been steadily increasing over the past couple of decades,
with the number of Java packages in Maven Central doubling in 2018. Meanwhile, Tal [15]
states that there has been an 88% growth in the number of vulnerabilities reported in
open source software over the last two years. In order to develop secure software, it is
essential to analyze and understand security vulnerabilities that occur in software systems
and address them in a timely manner.

Common Vulnerabilities and Exposures (CVE)! is a list of publicly known cybersecurity
vulnerabilities, each with an identification number. These entries are used in the National
Vulnerability Database (NVD)?, the U.S. government repository of standards-based vul-
nerability management data. NVD suffers from poor coverage, as it contains only 10%
of the open-source vulnerabilities that have received a CVE identifier [12]. This could be
due to a number of security vulnerabilities being discovered and fixed through informal
communication channels between maintainers and their users in an issue tracker. To make
things worse, these public databases are too slow to add vulnerabilities as they lag behind
private databases such as Snyk’s DB by an average of 92 days [15]. All of the above pitfalls
of public vulnerability management databases call for a mechanism to automatically infer
the presence of security threats in open-source projects, and the corresponding fixes, in a
timely manner.

While there exist various approaches in the literature for identifying and managing
security vulnerabilities, Ponta et al. [37] argue that an effective vulnerability management
approach must be code centric; rather than relying on metadata, vulnerabilities and their
fixes must be analyzed at the code level. We take this approach.

L https://cve.mitre.org/ 2 https://nvd.nist.gov/

In this thesis, we treat the identification of security-relevant commits as a binary doc-
ument classification problem by considering the code present in commits as documents.
Given the extensive literature in the natural language processing (NLP) community on
applying neural networks for document classification, we first perform a large-scale repro-
ducibility study of several recent neural network models. We then combine the lessons
learned from the reproducibility study and domain-specific knowledge on commit classi-
fication to build a family of hierarchical neural network models for the identification of
security-relevant commits.

1.1 Neural Networks for Document Classification

Since existing literature on neural networks for commit classification is sparse, we turn
to document classification for inspiration. We begin this thesis with an exploration into
neural networks for document classification. While this topic has been studied in far more
detail by the NLP community, it has also led to the development of overly complex neural
architectures and modeling techniques.

Worryingly, these new models are accompanied by smaller and smaller improvements
in effectiveness on standard benchmark datasets, which leads us to wonder if observed
improvements are “real”. There is, however, ample evidence to the contrary. Sculley et al.
[13] lament the lack of empirical rigor in the machine learning community and cite examples
where improvements can be attributed to far more mundane reasons (e.g., hyperparameter
tuning) or are simply noise. Lipton and Steinhardt [20] concur with these sentiments,
adding that authors often use fancy mathematics to obfuscate or to impress (reviewers)
rather than to clarify. Further, Crane [I1] talk about the growing concern within the NLP
community about the reproducibility of results. Complex architectures are more difficult to
train, more sensitive to hyperparameters, and brittle with respect to domains with different
data characteristics—thus both exacerbating the “crisis of reproducibility” and making it
difficult for practitioners to deploy networks that tackle real-world problems in production
environments.

We conduct a large-scale reproducibility study of several recent neural models and find
that a simple bi-directional LSTM (BiLLSTM) architecture with appropriate regularization
yields accuracy and F; scores that are either competitive or exceed the state of the art
on four standard benchmark datasets. While these regularization techniques, borrowed
from language modeling, are not novel, we are to our knowledge the first to apply them
in this context. This work provides an open-source platform for future work in document

classification and the foundation upon which we build neural models for the identification
of security-relevant commits [1].

1.2 Identifying Security-Relevant Commits

Building on our reproducibility-study on document classification, we apply some of the
lessons learned to develop neural models for commit classification. We propose a family of
hierarchical neural network models for the identification of security-relevant commits and
the evaluation of different input representations for commit classification. These models
share a hierarchical structure that uses convolutional layers to progressively build a commit-
level feature vector from tokens extracted from either the commit diff or from source code.

We compare the effectiveness of five input representations:

1. Bag of words: a multiset of the tokens present in the commit diff, after tokenizing
it with a lexer, from which tf-idf features are extracted.

2. Bag of paths: a multiset of the path-context vectors extracted from the abstract
syntax tree (AST); we go into more detail in Section 3.2.

3. Commit diff tokens: a sequence of tokens extracted from the commit diff with
a lexer; we remove comments from the code as may point out any vulnerabilities
present or fixed.

4. Paired source code tokens: a pair of two token sequences extracted from the
source code before and after a commit. This would have more contextual information
than a diff token sequence as it contains the source code for entire Java classes, rather
than just the modified chunks.

5. Hybrid: a combination of commit diff tokens and bag of paths. Training a model on
features extracted from both the commit diff and path-contexts allows us to examine
if these models are capturing different signals.

We collectively refer to models that learn from bag of paths as path-based models, and
bag of words, commit diff tokens, or paired source code tokens as token-based models.

Our results show models that learn from commit diff tokens are more effective than
models that learn from path-contexts extracted from the AST. In fact, Code2Vec, claimed
by Alon et al. [5] to be suitable for a wide range of source code classification tasks, performs

3

worse than an SVM baseline. Furthermore, we show that providing the models with
additional contextual information by training them on paired source code tokens improves
their performance further. We also discuss why path-based models might not capture any
additional information compared to token-based models for this task, with a hybrid model
that learns from a combination of two input representations: diff tokens and bag of paths.

As studies that use neural networks become more prevalent, the software engineering
(SE) community will also have to contend with the “crisis of reproducibility” discussed in
Section 1.1. A number of studies argue that a single performance score is insufficient to
compare non-deterministic approaches and emphasize reporting the standard deviation of
test scores across multiple runs to ensure the stability of the results and avoid erroneous
conclusions [10, 11]. We concur with this sentiment and in order to establish robust
baselines, we compare score distributions based on multiple runs with different random
seeds.

All of our models can be used for inference on large repositories without having to
go through a time consuming compilation process. We envision that this work would
ultimately allow practitioners to build a repository of potential vulnerability fixes by mon-
itoring open-source projects in real-time and detecting security-relevant changes.

1.3 Thesis Statement

Simple neural models adapted from document classification are effective in identifying
security-relevant commits from just the tokens in the commit diff.

1.4 Contributions

The main contributions of this thesis can be summarized as follows:

e A comprehensive reproducibility study of several neural network models on four
benchmark document classification datasets.

e A comparative analysis of the effectiveness of several neural network models, spanning
five different input representations, for the identification of security-relevant commits.

e An evaluation framework for comparing models by treating performance metrics as
distributions rather than individual data points; this can be used in future SE studies
that rely on a non-deterministic approach.

4

e Two open-source libraries that can serve as the foundation for future work:

— Hedwig, which contains a range of document classification models implemented
from scratch: https://github.com/castorini/hedwig

— Omniocular, which contains our hierarchical neural network models and base-
lines for the identification of security-relevant commits: https://github.com/
omniocular/omniocular

1.5 Thesis Organization

The remainder of this thesis is organized as follows:

e In Chapter 2, Section 2.1 introduces the research questions we seek to answer in our
reproducibility study; Section 2.2 reviews related work in document classification
and regularization; Section 2.3 details the architecture of our regularized BiLSTM
models; Section 2.4 discusses the experimental setup, datasets and the hyperparam-
eter configuration; Section 2.5 presents the results of the replication study on four
standard benchmark datasets.

e In Chapter 3, Section 3.1 introduces the research questions we seek to answer in our
analysis; Section 3.2 reviews related work on distributed representations for source
code and the identification of security vulnerabilities; Section 3.3 outlines the exper-
imental setup and dataset; Section 3.4 details our methodology for the identification
of security-relevant commits, the baselines used for comparison and the architecture
of our hierarchical models; Section 3.5 presents the results of our approach and fur-
ther analysis on five different input representations for commit classification; Section
3.6 discusses the threats to validity of our approach.

e Chapter 4 concludes this thesis, summarizes the main contributions and discusses
future work.

https://github.com/castorini/hedwig
https://github.com/omniocular/omniocular
https://github.com/omniocular/omniocular

Chapter 2

Neural Networks for Document
Classification

In this chapter, we conduct a large-scale reproducibility study of several recent neural
models on four standard benchmark datasets. We describe a simple BiLSTM model, and
examine the effectiveness of regularization techniques such as embedding dropout and
weight dropping for document classification. This work is reported in Adhikari* et al. [1].

2.1 Research Questions
Through this reproducibility study, we seek to answer the following research questions:

e RQ1: Are neural models from recent document classification literature more effec-
tive than a simple BiLSTM? We reimplement a range of neural models from recent
literature and compare their effectiveness with a simple BiLSTM baseline on four
standard benchmark datasets.

e RQ2: Does regularization improve the effectiveness of our BiLSTM model for doc-
ument classification? We examine the impact of regularization techniques borrowed
from language modeling on the effectiveness of our BiLSTM model.

2.2 Background and Related Work

2.2.1 Document Classification

Over the last few years, deep neural networks have achieved the state of the art in document
classification. Kim [20] show that convolutional neural networks (CNNs) can effectively
perform single-sentence sentiment prediction, among other sentence classification tasks.
In this approach, the vector representations of the words in a sentence are concatenated
vertically to create a two-dimensional matrix for each sentence. The resulting matrix is
passed through a CNN to extract higher-level features for performing the classification.

Yang et al. [01] introduce the hierarchical attention network (HAN), where a document
vector is progressively built with word- and sentence-level attention by first aggregating
important words into sentence vectors, and then aggregating important sentences vectors
into document vectors. Although this model nicely captures the intuition that modeling
word sequences in sentences should be handled separately from sentence-level discourse
modeling, one wonders if such complex architectures are really necessary for document
classification, especially given the size of training data available for this task.

An important variant of document classification is the multi-label, multi-class case. Liu
et al. [27] develop XML-CNNs for multi-label text classification, basing the architecture
on KimCNN [20] with increased filter sizes and an additional fully-connected layer. They
also incorporate dynamic adaptive max-pooling [10] instead of the vanilla max-pooling
over time in KimCNN. The paper compares with CNN-based approaches for the multi-
label task, but only reports precision and disregards recall. Yang et al. [50] instead adopts
encoder—decoder sequence generation models (SGMs) for generating multiple labels for
each document. Similar to our critique of HAN, we opine against the high complexity of
these multi-label approaches.

2.2.2 Regularization

Deep neural networks are prone to overfitting due to the possibility of the network learning
complicated relationships that exist in the training set but not in unseen test data. Dropout
prevents complex co-adaptations of hidden units on training data by randomly removing—
i.e., dropping out hidden units along with their connections during training [11].

There have been attempts to extend dropout [11] from feedforward neural networks
to recurrent ones. Unfortunately, direct application of dropout on the hidden units of an

RNN empirically harms its ability to retain long-term information [52]. Recently, how-
ever, Merity et al. [28] successfully apply dropout-like techniques to regularize RNNs for
language modeling, and show that this reduces word-level perplexity on multiple datasets.
Inspired by this development, we adopt two of their regularization techniques, embedding
dropout and weight-dropped LSTMs, to our task of document classification. We also adapt
DropBlock, a regularization technique for CNNs, to our hierarchical models in Chapter 3.

Weight-dropped LSTM. LSTMs comprise eight total input—hidden and hidden—
hidden weight matrices; in weight dropping, Merity et al. [28] regularize the four hidden—
hidden matrices with DropConnect [17]. The operation is applied only once per sequence,
using the same dropout mask across multiple timesteps. Conveniently, this allows prac-
titioners to use fast, out-of-the-box LSTM implementations without affecting the RNN
formulation or training performance.

Embedding Dropout. Introduced in Gal and Ghahramani [15] and successfully em-
ployed for neural language modeling [28], embedding dropout performs dropout on entire
word embeddings, effectively removing some of the words at each training iteration. As a
result, the technique conditions the model to be robust against missing input; for docu-
ment classification, this discourages the model from relying on a small set of input words
for prediction.

DropBlock. While dropout works well for regularizing fully connected layers, it is less
effective for convolutional layers due to the spatial correlation of activation units in convo-
lutional layers. There have been a number of attempts to extend dropout to convolutional
neural networks [13]. DropBlock is a form of structured dropout for convolutional layers
where units in a contiguous region of a feature map are dropped together [16].

2.3 Model

We design our model to be minimalistic: First, we feed the word embeddings wi., of a
document to a single-layer BILSTM, extracting concatenated forward and backward word-
level context vectors hy., = h{m @ h%_ . Subsequently, we max-pool hy., across time to
yield document vector d—see Figure 2.1, labels a—f. Finally, we feed d to a sigmoid or a
softmax layer over the labels, depending on if the task type is multi-label or single-label
classification (label g).

Contrary to prior art, our approach refrains from attention, hierarchical structure,
and sequence generation, each of which increases model complexity. For one, hierarchical
structure requires sentence-level tokenization and multiple RNNs. For another, sequence

LT 111 (2| [

3

%\

ti 3 [
H <2

5 'y ' ~H
P b O

Figure 2.1: Ilustration of the model architecture, where the labels are the following: (a)
input word embeddings (b) BiLSTM (¢, d) concatenated forward hf. and backward h?.
hidden features (e) max-pooling over time (f) document feature vector (g) softmax or
sigmoid output.

generation uses an encoder—decoder architecture, reducing computational parallelism. All
three methods add complexity to the model; our approach instead uses a single-layer
BiLSTM with trivial max-pooling and concatenation operations, which makes for both
simple implementation and resource-efficient inference.

2.4 Experimental Setup

We conduct a large-scale reproducibility study involving HAN, XML-CNN, KimCNN, and
SGM. These are compared to our proposed model, referred to as R-LSTMrgxr, as well
as an ablated variant without regularization, denoted LSTMrgxt. The implementation of
our model as well as from-scratch reimplementations of all the comparison models (except
for SGM) are provided in our toolkit called Hedwig, which we make publicly available to
serve as the foundation for future work.! In addition, we compare the neural approaches
to logistic regression (LR) and support vector machines (SVMs). The LR model is trained
using a one-vs-rest multi-label objective, while the SVM is trained with a linear kernel.
We chose a linear kernel as we did not see any noticeable improvement in performance
with a radial basis function kernel. Both of these models use word-level tf-idf vectors of
the documents as features.

All of our experiments are performed on Nvidia GTX 1080 and RTX 2080 Ti GPUs,
with PyTorch 0.4.1 as the backend framework. We use Scikit-learn 0.19.2 for computing

! http://hedwig.ca

http://hedwig.ca

Dataset No. of classes No. of samples %4 S

Reuters 90 10,789 144.3 6.6
AAPD 54 55,840 167.3 1.0
IMDB 10 135,669 393.8 14.4
Yelp 2014 D 1,125,386 148.8 9.1

Table 2.1: Summary of the datasets. W and S denote the average number of words and
sentences per document, respectively.

the tf-idf vectors and implementing LR and SVMs.

2.4.1 Datasets

We evaluate our models on the following four datasets: Reuters-21578, arXiv Abstract Pa-
per dataset (AAPD), IMDB, and Yelp 2014. Reuters and AAPD are multi-label datasets,
whereas IMDB and Yelp are single-label ones. For IMDB and Yelp, we use random sam-
pling to split the dataset such that 80% is used for training, 10% for validation, and 10% for
test. We use the standard ModApte splits [0] for the Reuters dataset, and author-defined
splits for AAPD [50]. We summarize the statistics of these datasets in Table 2.1.

Unfortunately, there is little consensus within the natural language processing commu-
nity for choosing the splits of IMDB and Yelp 2014. Furthermore, they are often unreported
in modeling papers, hence preventing direct comparison with past results. We are not able
to find the exact splits Yang et al. [51] use; for consistency, we use the same proportion
the authors report, but of course this yields different samples in each split.

2.4.2 Training and Hyperparameters

To ensure a fair comparison, we tune the hyperparameters for all baseline models. For
HAN, we use a batch size of 32 across all the datasets, with a learning rate of 0.01 for
Reuters and 0.001 for the rest. To train XML-CNN, we select a dynamic pooling window
length of eight, a learning rate of 0.001, and 128 output channels, with batch sizes of 32
and 64 for single-label and multi-label datasets, respectively. For KimCNN, we use a batch
size of 64 with a learning rate of 0.01. For training SGM on Reuters, we use the source
code provided by the authors? and follow the same hyperparameters in their paper [50)].

2 https://github.com/lancopku/SGM

10

https://github.com/lancopku/SGM

Reuters AAPD IMDB Yelp ’14

Model
Val. Fy Test Fy Val. Fy Test Fy Val. Acc. Test Acc. Val. Acc. Test Acc.

1 LR 77.0 74.8 67.1 64.9 43.1 43.4 61.1 60.9

2 SVM 89.1 86.1 71.1 69.1 42.5 42.4 59.7 59.6

3 KimCNN R. 83.5 +0.4 80.8 +0.3 54.5+14 514 +1.3 429 +0.3 42.7 +04 66.5+0.1 66.1 £0.6
4 KimCNN 0. 37.6 61.0

5 XML-CNN R. 88.8 +£0.5 86.2 +£0.3 70.2 +£0.7 68.7 £0.4 - - - -

6 HAN R. 87.6 +£0.5 852 +0.6 70.24+0.2 68.0+0.6 51.8+0.3 51.24+03 682+0.1 679 +0.1
7 HAN 0. - - - - - 49.4 - 70.5

8 SGM O. 82.5+04 788 +0.9 - 71.0 - - - -

9 LSTMrexT 87.6 £0.2 849 +0.3 721 +04 69.6 £0.4 52.5 +£0.2 52.1 £0.3 68.6 £0.1 68.4 £0.1
10 R-LSTMrgxt 89.1 £0.8 87.0 £0.5 73.1 £0.4 70.5 +£0.5 53.4 0.2 52.8 £0.3 69.0 0.1 68.7 +0.1

Table 2.2: Results for each model on the validation and test sets; best values are bolded.
O. refers to point estimates copied from Tang et al. [10], Yang et al. [51] and Yang et al.
[50]; R. reports mean + SD of five runs from our re-implementations.

For the LR and SVM models, we use the default set of hyperparameters in Scikit-learn.

For R-LSTMrgxt and LSTMrgxT, we use the Adam optimizer with a learning rate of
0.01 on Reuters and 0.001 on the rest of the datasets, using batch sizes of 32 and 64 for
multi-label and single-label tasks, respectively. For R-LSTMrgxT, we also apply temporal
averaging (TA): as shown in Kingma and Ba [21], TA reduces both generalization error
and stochastic noise in recent parameter estimates from stochastic approximation. We set
the default TA exponential smoothing coefficient of Sgya to 0.99. We choose 512 hidden
units for the BiLSTM models, whose max-pooled output is regularized using a dropout
rate of 0.5. We also regularize the input—hidden and hidden—hidden BiLSTM connections
using embedding dropout and weight dropping, respectively, with dropout rates of 0.1 and
0.2.

For our optimization objective, we use cross-entropy and binary cross-entropy loss for
single-label and multi-label tasks, respectively. On all datasets and models, we use 300-
dimensional word vectors [30] pre-trained on Google News. We train all neural models
for 30 epochs with five random seeds, reporting the mean validation set scores and their
corresponding test set results.

2.5 Results and Discussion

We report the mean and standard deviation (SD) of the F; scores and accuracy for all five
runs in Table 2.2. For HAN and KimCNN, we include results from the original papers to

11

validate our reimplementation. We fail to replicate the reported results of SGM on AAPD
using the authors’ codebase and data splits. As a result, we simply copy the value reported
in Yang et al. [50] in Table 2.2, row 8, which represents their maximum F; score. To verify
the correctness of our HAN and KimCNN reimplementations, we compare the differences
in F; and accuracy on the appropriate datasets. We attribute the small differences to using
different dataset splits (see Section 2.4.1) and reporting mean values.

Baseline Comparison. First off, we see that the non-neural LR and SVM baselines
perform remarkably well. On Reuters, for example, the SVM beats many neural baselines,
including our non-regularized LSTMrgxt (rows 2-9). On AAPD, the SVM either ties or
beats the other models, losing only to SGM (rows 2-8). Compared to the SVM, the LR
baseline appears better suited for the single-label datasets IMDB and Yelp 2014, where it
achieves better accuracy than the SVM does. As the closest comparison point, we find no
benefit to HAN as LSTMrgxr achieves just as good or better classification results without
attention mechanisms (rows 6 and 9).

Our simple R-LSTMrgxt model achieves state of the art on Reuters and IMDB (Table
2.2, rows 9 and 10), establishing mean scores of 87.0 and 52.8 for F; score and accuracy
on the test sets of Reuters and IMDB, respectively. This highlights the efficacy of proper
regularization and optimization techniques for the task. We observe that R-LSTMgxr
consistently improves upon the accuracy and F; of LSTMrgxT across all of the tasks—see
rows 9 and 10, where, on average, regularization yields increases of 1.5 and 0.5 points for
Fy score and accuracy, respectively.

A few of our R-LSTMrgxT runs attain state-of-the-art test F; scores on AAPD. How-
ever, in the interest of robustness, we report the mean value. We also find the accuracy
of R-LSTMrgxT and our reimplemented version of HAN on Yelp 2014 to be almost two
points lower than the copied result of HAN (rows 6, 7, and 10) from Yang et al. [51]. On
the other hand, both of the models surpass the original result by nearly two points for
the IMDB dataset. We cannot rule out that these disparities are caused by the absence of
any widely-accepted splits for evaluation on Yelp 2014 and IMDB (as opposed to model or
implementation differences).

Toward Robust Baselines. Recently, reproducibility is becoming a growing concern
for the NLP community [I 1]. Indeed, very few of the papers that we consider in this study
report results on multiple seeds We provide the standard deviation of the scores across
different seeds to demonstrate the stability of our results; doing so is good practice, since it
reinforces the validity of the experimental results and claims. This is in line with previous
papers [53, 39, 11] that emphasize reporting variance for robustness against potentially
spurious conclusions.

12

2.6 Conclusions

In this chapter, we question the complexity of existing neural network architectures for
document classification. To demonstrate the effectiveness of proper regularization and
optimization, we apply embedding dropout, weight dropping, and temporal averaging when
training a simple BiLSTM model, establishing either competitive or state-of-the-art results
on multiple datasets.

This reproducibility study provides the foundation upon which we build neural mod-
els for the identification of security-relevant commits. Not only are LSTMrgrxr and
R-LSTMrext excellent baselines to compare our models against, we can also take in-
spiration from the extensive literature on neural document classification models. Like
documents, commits have a hierarchical structure: a commit contains changes to multi-
ple files, which in turn contains multiple lines of tokens. We can exploit this structure
to build hierarchical models similar to Yang et al. [51], while incorporating regularization
techniques such as embedding dropout and DropBlock.

13

Chapter 3

Identifying Security-Relevant
Commits

In this chapter, building on the insights from our initial study on document classification,
we propose a family of hierarchical neural network models for the identification of security-
relevant commits. While this hierarchical modelling is similar to the work of Yang et al.
[51] in document classification, we eschew attention mechanisms to keep our architecture
simple—we instead focus on adapting regularization techniques from Section 2.2. In the
process, we compare the effectiveness of five different input representations for commit
classification, and examine the impact of regularization on model quality.

3.1 Research Questions

We break down our analysis into five research questions:

e RQ1: Are token-based models better than path-based models for identifying security-
relevant commits? We examine how effective models that do not have access to com-
mit metadata or actual source code for training are at identifying security-relevant
commits. We compare our results with Code2Vec trained on the symmetric difference
of path-contexts of all Java classes before and after a commit [9].

e RQ2: Does extracting file-level features before and after a commait improve the iden-
tification of security-relevant commits? We investigate if providing the model with
contextual information, by training it on paired source code tokens, allows us to

14

better identify security-relevant commits. We encode all Java classes before and af-
ter a commit with two separate encoders. We then concatenate the intermediate
representations from both of these encoders to get the class probability scores.

e RQ3: Do path-based and token-based models capture different signals when identi-
fying security-relevant commits? If we see an improvement in performance with a
hybrid model that uses the features extracted from both the commit diff and path-
contexts to calculate the class probability scores, then we can say that these models
are capturing different signals. If we do not, path-based models potentially do not
capture any additional information compared to token-based models.

e RQ4: Does reqularization improve the effectiveness of our models in identifying
security-relevant commits? In Chapter 2, we demonstrate the effectiveness of proper
regularization for document classification. We employ regularization techniques dis-
cussed in 2.2 across all our models to see if it helps with generalization and conse-
quently improve their effectiveness.

Answering RQ1, RQ2 and RQ3 would help researchers and practitioners choose an
appropriate input representation and architecture for their models, while answering RQ4
would help in fine-tuning these model architectures for this task.

3.2 Background and Related Work

3.2.1 Distributed Representations for Source Code

In computational linguistics, there has been a lot of effort over the last few years to create
a continuous higher dimensional vector space representation of words, sentences, and even
documents such that similar entities are closer to each other in that space [29, 22, 23].
Mikolov et al. [29] introduced word2vec, a class of two-layer neural network models that
are trained on a large corpus of text to produce word embeddings for natural language.
Such learned distributed representations of words have accelerated the application of deep
learning techniques for natural language processing tasks [7].

In the same vein as Mikolov et al. [29], neural networks have been used for representing
snippets of code as continuous distributed vectors [5, 4]. The authors represent a path
in the AST as a sequence of nodes connected by up and down arrows that symbolize the
up or down link between adjacent nodes in the AST. Figure 3.1 shows one such possi-
ble path. This path representation is concatenated with the values of the leaf nodes the

15

1 while (!d) { .
. L. { UnaryPrefix! If "~

2 if (someCondition()) { ! \ \
3 d = true; SymbolRef Cﬂll ___»__,"Assign=
4 } ‘ SymbolRef Syml?/oIRef True
5 %} | ' |
6 someCondition true

(a) A simple Java code snippet (b) The AST for the code snippet

Figure 3.1: A Java code snippet and its AST; the dotted line shows one of many possible
paths along the AST. Figure adapted from Alon et al. [7]

path is connecting, which creates a path-context. A code snippet is a bag of its extracted
path-contexts. Each element in the path-context is mapped to a distributed vector rep-
resentation. These vector representations are jointly learnt with a path-attention network
that aggregates these context vectors in a weighted manner.

While Code2Vec is the most popular, a number of other embedding techniques for
source code are present in the literature. Henkel et al. [I7] learn word embeddings from
abstractions of traces obtained from the symbolic execution of a program. They evaluate
their learned embeddings on a benchmark of API-usage analogies extracted from the Linux
kernel and achieved 93% top-1 accuracy. Husain [15] describe a pipeline that leverages deep
learning for semantic search of code. To achieve this, they train a sequence-to-sequence
model that learns to summarize Python code by predicting the corresponding docstring
from the code blob, and in the process provide code representations for Python.

While building usable embeddings for source code that capture the complex characteris-
tics involving both syntax and semantics is a challenging task, such embeddings have direct
downstream applications in tasks such as semantic code clone detection, code captioning,
and code completion [3, 19].

3.2.2 Identifying Security Vulnerabilities

There exist a handful of papers in SE literature that perform commit classification to iden-

tify security vulnerabilities or fixes. Bosu et al. [¢] conduct an analysis to identify which
security vulnerabilities can be discovered during code review, or what characteristics of
developers are likely to introduce vulnerabilities. Zhou and Sharma [54] describe a vulner-

ability identification system geared towards tracking large-scale projects in real time using

16

latent information underlying commit messages and bug reports in open-source projects.
While Zhou and Sharma [51] classify commits based on the commit message, we use only
the commit diff or the corresponding source code as features for our model.

Li et al. [21] describe a deep learning-based vulnerability detection system that seeks to
improve the false negative rate by not requiring human experts to manually define features.
Russell et al. [11] compile a dataset of potential security vulnerabilities based on the output

of three different static analyzers, and use this dataset to evaluate a vulnerability detection
tool that directly interprets source code using deep feature representation learning.

Closer to our work, Sabetta and Bezzi [12] propose a machine learning approach to
identify security-relevant commits. Similar to our approach, they treat source code as
documents written in natural language, but use well-known document classification meth-
ods to perform the actual classification. Cabrera-Lozoya et al. [9] study the impact of
pre-training a variant of Code2Vec using two different pretext tasks versus a random ini-
tialization. They also claim that models trained on path-based representations outperform
those that are trained on token-based representations, something that we’ll explore further
in this study.

3.3 Experimental Setup

All of the experiments are conducted on a system equipped with a Intel Core i7 7820X
CPU and a pair of Nvidia GTX 2080 Ti GPUs. Our framework is written in Python
3.7, with our neural network models implemented in PyTorch 1.1.0 [32]. We make use of
Scikit-learn 0.21.2 [33] for LR and SVM baselines, and TorchText 0.3.1 for implementing
data preprocessing pipelines for token-based models.

We run our experiments with 50 random seeds and report the mean and standard
deviation of the metrics across all the runs. In our experiments, random seeds control both
the weight initialization for our models and the order in which data is presented to our
model for training.

To extract token-level features for our model, we use the lexer and tokenizer provided
as a part of the Python javalang library.! This allows us to ensure that we do not use
code comments or metadata when constructing the inputs for our models as it is possible
for comments or commit messages to include which vulnerabilities are fixed, as shown in
Figure 3.2. Our models would then overfit on these features rather than actually learning
to identify security vulnerabilities from code.

L https://pypi.org/project /javalang/

17

/**

* Set the <code>acceptCookieNames</code> pattern of

* allowed names of cookies to protect against remote

* command execution vulnerability *

* @param pattern used to check cookie name against

*f

public void setAcceptCookieNames(String pattern) {
acceptedPattern = Pattern.compile(pattern);

W o N OV A wN R

}

Figure 3.2: A code snippet from Apache Struts with the Javadoc stating which vulnerability
was addressed

We use a manually-curated dataset of publicly disclosed vulnerabilities in 205 distinct
open-source Java projects provided by Ponta et al. [30] as our positive training examples.
We follow the same approach as Cabrera-Lozoya et al. [J] to generate negative training
examples: for each commit in the above dataset, we pick a random commit from the
same repository, under the assumption that security-relevant commits are few and far in-
between. This results in a total of 1,950 commits, with equal number of positive and
negative examples. We use random sampling to split the dataset such that 60% is used for
training, and 20% each for validation and testing. In order to minimize the occurrence of
duplicate commits in two of these splits (such as in both train and test), commits from no
repository belong to more than one split.

We also compare the quality of models trained with randomly initialized and pre-
trained embeddings. Since word2vec embeddings only need unlabelled data to train, the
data collection and preprocessing stage is straightforward. GitHub, being a very large
host of source code, contains enough code for training such models. However, a significant
proportion of code in GitHub does not belong to engineered software projects [31]. To
reduce the amount of noise in our training data, we filter repositories based on their size,
commit history, number of issues, pull requests, and contributors, and build a corpus of
the top 1000 Java repositories. We limit the number of repositories to 1000 due to GitHub
API limitations. It is worth noting that using a larger training corpus might provide better
results.

Similarly, we use the dataset provided by Allamanis et al. [2] to pre-train Code2Vec.
This dataset contains around 700K examples in Java, split such that 9 projects are used
for training, and 1 each for validation and testing.

18

3.4 Methodology

3.4.1 Pre-trained Embeddings

We learn token-level word2vec embeddings for code using the CBOW architecture [29] with
negative sampling and a context window size of 5. We do not normalize variable identifiers
into generic tokens as they can contain potentially useful contextual information. We
perform minimal preprocessing on the input code sequence before pre-training the word2vec
embeddings. This includes:

1. Removal of comments and whitespace when performing tokenization with a lexer.

2. Conversion of all numbers such as integers and floating point units into reserved
tokens.

3. Removal of tokens whose length is greater than or equal to 64 characters.

4. Thresholding the size of the vocabulary to remove infrequent tokens.

We pre-train Code2Vec on over 700K Java methods using the semantic labelling task
from Alon et al. [1], where the model is trained to predict a method’s name from the body.
While Cabrera-Lozoya et al. [9] claim that training on a more relevant pre-training task
such as predicting the Jira ticket priority is more beneficial, we do not adopt this approach
as their dataset is not publicly available.

3.4.2 Baselines

We benchmark the performance of our hierarchical models against Logistic Regression (LR)
and Support Vector Machine (SVM) baselines that are trained on tf-idf features on the
Java tokens extracted from the commit diffs.

For the bag of paths baseline, we adapt the Code2Vec model from Alon et al. [1] by
replacing the last layer with a fully connected softmax layer that outputs a probability dis-
tribution over the security relevance of a commit. In order to train Code2Vec on commits,
we follow an approach similar to Cabrera-Lozoya et al. [9]. We transform all Java classes
before and after a commit into two separate sets of path-context vectors. We take the
symmetric difference between these two sets in order to remove the unchanged contexts,
and then feed the resulting set of path-contexts as input to the model.

19

~< ASERN
~ \
</>

: /
/
/

:

Figure 3.3: Hlustration of H-CNNppg, where the labels refer to the following: (a) source
code diffs containing multiple files, (b) stacked token embeddings, (c¢) convolutional feature
extraction, (d) max-pool across time, (e) file-level feature maps, (f) convolutional feature
extraction, (g) stacked file-level feature vectors (h) max-pool across time, (i) commit-level
feature vector, (j) fully connected softmax layer and (k) softmax output.

We also adapt the document classification baselines from Chapter 2 to learn on diff

tokens: LSTMppr is a single-layer BiLSTM and R-LSTMppr is a regularized variant
with weight dropping and embedding dropout.

3.4.3 Model

We design a simple hierarchical model (H-CNNppr) that uses convolutional layers to
progressively build a commit-level vector from token-level vectors, as illustrated in Figure
3.3. This high-level representation of the commit can then be used for classification. We
represent each file in the commit diff as a concatenation of token-level vectors. These vector
representations can be randomly initialized or obtained from pre-trained word embeddings.
The input to our model is a concatenation of all file-level matrices in a commit diff.

20

Figure 3.4: Mlustration of H-CNNpair, where the labels refer to the following: (a) source
code containing multiple files before a commit, (b) source code containing multiple files
after a commit, (c¢) H-CNNppr token and file encoders, (d) concatenation operation, (e)
commit-level feature vector, (f) fully connected softmax layer and (g) softmax output.

</>

Figure 3.5: Tllustration of Hybridppgr, where the labels refer to the following: (a) diff tokens
extracted from source code, (b) path-contexts extracted from source code, (¢) H-CNNppp
token and file encoders, (d) Code2Vec without softmax layer, (e) concatenation operation,
(f) commit-level feature vector, (g) fully connected softmax layer and (h) softmax output.

21

Each file-level input matrix is passed through the token encoder that computes a file-
level feature vector. The token encoder consists of three temporal convolutional layers in
parallel, each having multiple filters of varying window sizes. A temporal max-pooling
operation is applied to these feature maps to retain the feature with the highest value in
every map.

We use a file encoder to compute a commit-level feature vector from these file-level
feature vectors in a similar manner. This high-level commit representation is passed to a
fully connected softmax layer that outputs the probability distribution over the security
relevance of the commit.

We modify the architecture of our model for every research question according to the
changes in the input representation.

For RQ2, we extract commit-level feature vectors before and after a commit with two
separate sets of token and file encoders, as shown in Figure 3.4. We then concatenate the
commit-level feature vectors and pass it through a fully connected softmax layer that out-
puts the required probability distribution. We require two sets of encoders as we maintain
two separate vocabularies for the tokens extracted from Java classes before and after a
commit, preventing us from adopting a siamese architecture.

For RQ3, we build a hybrid model that computes two commit-level feature vectors for
each commit: the first from the token-based H-CNNpirr and the second from the path-
based Code2Vec. We concatenate these feature vectors and then obtain the required output
probability distribution as discussed in RQ2. The architecture of this model is shown in
Figure 3.5.

For RQ4, we incorporate the following regularization techniques into our model: Drop-
Block which was shown to be effective for object recognition [16], and embedding dropout
which was shown to be effective for language modelling [25]. We apply embedding dropout
on the inputs and DropBlock on the activations of the convolutional layers of H-CNNppp
and H-CNNpar; we refer to these variants as HR-CNNppr and HR-CNNpar respectively.
We apply the same regularization techniques to the token-based component of Hybridppp
while retaining the original architecture of the path-based Code2Vec component; we refer
to this variant as R-Hybridppp. As a regularized baseline, we also include R-LSTMppr,
an adapted version of R-LSTMrgxt from Chapter 2 that learns from diff tokens.

3.4.4 Training and Hyperparameters

We train all of our models for a maximum of 30 epochs with an early stopping criterion of 5
epochs. All the convolutional layers in the token encoder and the file encoder have three fil-

22

ter windows of size 3, 5, and 7 with 100 feature maps each. For HR-CNNpprp, HR-CNNpar
and R-Hybridppp, we use embedding dropout and DropBlock with dropout rates of 0.2
and 0.1 respectively. We set a temporal block size of 4 for DropBlock. For LSTMppr and
R-LSTMprr, we choose a hidden state size of 128. In the case of R-LSTMprr, we apply
embedding dropout and weight dropping with dropout rates of 0.2 and 0.1 respectively.

For the path-based models, we sample a maximum of 200 path-contexts from all the
files modified in a commit. Like Alon et al. [1], we did not notice any improvement in the
results when increasing the number of contexts beyond 200.

For all the neural network models, we use Adam [21] for optimization, with a learning
rate of 1.0 x 1073 and batch size of 16. Further, we employ dropout with a rate of 0.5 on
the fully connected layers of all neural network models for regularization.

3.5 Results and Discussion

We report the mean and standard deviation for accuracy and F; across fifty runs in Table
3.1. The best mean scores are bolded for each metric. While we also include the results
of Commit2Vec (rows 5 and 6), it should be noted that Cabrera-Lozoya et al. [9] report
results over a five-fold cross validation without separate validation and test sets. This
difference could be exacerbated due to differences in implementation; Commit2Vec is built
on Tensorflow, while our framework is based on PyTorch. Due to this difference in the
experimental setup we have to be careful when making a comparison between any of the
other models and Commit2Vec. The closest alternative is Code2Vec (rows 3 and 4), though
it is not a replication of Commit2Vec since we pre-train the model differently as explained
in Section 3.4.

We see that there is a considerable amount of overlap in the scores across different
models in Table 3.1. While we can see that LR (row 1) and Code2Vec (rows 3 and 4)
perform worse than rest of the bunch, it’s hard to conclusively answer any of our research
questions without analyzing these results further.

We use Tukey’s test to find mean F; scores that are significantly different from each
other. Tukey’s test is a multiple comparison statistical test that simultaneously compares
the means of every treatment to the means of every other treatment. The null hypothesis
being tested is that all classifiers perform the same (i.e., have the same mean F; scores)
and the observed differences are merely random [35]. In applying this test, we assume that
our test F scores are normally distributed and homoscedastic for each model. We apply
this test individually for every research question on the test F; scores of the models from

23

Table 3.1: Results with mean and standard deviation across 50 runs on the test set

Input Representation Model Embedding Accuracy F,

1 Bag of Words LR - 65.89 60.76

2 SVM - 71.28 68.53

3 Bag of Paths Code2Vec Random 59.49 £2.97 64.36 +2.63
4 Pre-trained 57.86 +2.40 60.55 +2.61
) Commit2Vec Random 68.92 +3.27 69.87 £2.03
6 Pre-trained 72.12 £0.82 71.83 £0.66
7 Commit Diff Tokens LSTMpirr Random 69.70 +4.44 73.41 +2.48
8 Pre-trained 72.36 £3.79 74.31 £1.99
9 R-LSTMprrr Random 70.73 +4.81 74.21 +£3.00
10 Pre-trained 72.35 £3.20 74.44 £1.81
11 H-CNNppr Random 71.38 £6.79 75.07 £3.78
12 Pre-trained 67.49 +5.66 72.00 £3.07
13 HR-CNNprpr Random 71.50 £5.49 75.04 £3.44
14 Pre-trained 66.15 +£6.53 71.26 £3.15
15 Paired Souce Code Tokens H-CNNpamr Random 74.48 +3.45 76.63 +2.54
16 Pre-trained 70.62 +3.37 73.09 £2.41
17 HR-CNNpaig Random 73.66 +3.43 76.00 £2.68
18 Pre-trained 69.32 +4.91 72.16 +2.63
19 Diff Tokens + Bag of Paths Hybridppp Random 70.70 £5.67 72.33 £4.05
20 R-Hybridypp Random 68.53 £5.46 71.26 £4.32

24

Table 3.2: Results from Tukey’s range test with a family-wise error rate of 0.05

Group 1

Group 2

Mean Diff. P-adj Reject?
Model Embedding Model Embedding
RQ1
1 Code2Vec Random LSTMpirr Random 9.05 0.001 Yes
2 Code2Vec Pre-trained LSTMprr Pre-trained 13.77 0.001 Yes
3 Code2Vec Random H-CNNpiprp Random 10.71 0.001 Yes
4 Code2Vec Pre-trained H-CNNppp Pre-trained 11.45 0.001 Yes
5 Code2Vec Random Code2Vec Pre-trained -3.82 0.001 Yes
6 H-CNNppr Random H-CNNpirr Pre-trained -3.07 0.001 Yes
RQ2
7 H-CNNppr Random H-CNNpamr Random 1.56 0.048 Yes
8 H-CNNpipp Pre-trained H-CNNpar Pre-trained 1.09 0.265 No
9 H-CNNpar Random H-CNNpar Pre-trained -3.54 0.001 Yes
RQ3
10 Code2Vec Random Hybridppp Random 7.97 0.001 Yes
11 H‘CNNDIFF Random HybridDIFF Random -2.74 0.001 Yes
RQ4
12 LSTMprr Random R-LSTMprr Random 0.80 0.744 No
13 H—CNNDIFF Random HR—CNNDIFF Random -0.03 0.900 No
14 H-CNNpar Random HR-CNNpar Random -0.63 0.900 No
15 Hybridppr Random R-Hybridppp Random -1.07 0.724 No

25

Table 3.1. We do not show all pairwise comparisons in the tables but only those pairs that
are relevant to each research question.

RQ1: Are token-based models better than path-based models for
identifying security-relevant commits?

Both randomly initialized and pre-trained LSTMprr models outperform their Code2Vec
counterparts with a mean difference of around 9 and 14 points respectively (Table 3.2, rows
1 and 2); similarly both H-CNNppr models outperform Code2Vec with a mean difference
of around 11 points (Table 3.2, rows 3 and 4). Interestingly, the non-neural SVM baseline
(Table 3.1, row 2) has better accuracy and F; scores on average than Code2Vec, and the
highest precision among all the models. This is a substantial improvement, especially
considering that unlike Code2Vec or Commit2Vec, all of these models (Table 3.1, rows
1-2 and 7-14) are trained on input representations extracted from only the commit diff,
without using the source code or the metadata present in a commit. With these results, we
conclude that token-based models are better than path-based models for the identification
of security-relevant commits.

It is worth noting that both Code2Vec and H-CNNppr perform worse when pre-trained
than when initialized randomly (Table 3.2, rows 5 and 6). In part, this could be due
to the embedding layer being frozen in the pre-trained model but not in the randomly
initialized one. It could also be due to the relatively smaller sizes of the datasets we use
for pre-training; we discuss this further in Section 3.6. We also see a similar pattern for
Commit2Vec (Table 3.1, rows 5 and 6) when pre-trained on the semantic labelling task.
One side-effect of pre-training embeddings is that it results in consistently less variation in
the performance of these models across different runs as the random seed has no effect on
the initialization of embeddings (Table 3.1, rows 7-18).

Based on the model’s ability to predict method names in files across different projects,
Alon et al. [1] claim that Code2Vec can be used for a wide range of programming language
understanding tasks. However, for this specific task, most of our token-based models
perform better than Code2Vec.

While Cabrera-Lozoya et al. [J] claim that pre-training tasks that are closer to the
identification of security-relevant commits can improve the performance of Code2Vec, such
a two-staged training process is a lot more involved as it requires a labelled training dataset
and a relevant semi-supervised pre-training task along with the associated data. It might
not always be possible to come up with a relevant task or a dataset large enough for
pre-training.

26

Network architectures that are effective for a certain task, such as predicting method
names, are not necessarily effective for other unrelated tasks. Choices between neural
models should be made considering the nature of the task and the amount of training data
available.

Our results strongly show that token-based models are better than path-based models
for the identification of security-relevant commits.

RQ2: Does extracting file-level features before and after a commit
improve the identification of security-relevant commits?

Of all the models considered in this study, H-CNNpar achieves the highest mean accuracy
and F; scores (Table 3.1, row 15). We see an improvement of around 1.5 points on average
with a randomly-initialized H-CNNpajg compared to its H-CNNppp counterpart (Table
3.2, row 7).

On the other hand, there is not enough evidence to show that pre-trained H-CNNpar
performs better than pre-trained H-CNNpgp, even though the mean F; score has improved
by more than one point (Table 3.2, row 8). In part, this could be due to the fact that
H-CNNpar performs worse when pre-trained than when initialized randomly (Table 3.2,
row 9), and the drop in performance is greater than what we see with H-CNNppp.

While we see improvements due to the additional contextual information available in
paired source code tokens, we feel that our dataset is not large enough to train these models
to effectively use this additional information, and that we’d see larger gains with a bigger
dataset.

Providing our models with additional contextual information by training them on
paired source code tokens does improve the identification of security-relevant commits.

RQ3: Do path-based and token-based models capture different
signals when identifying security-relevant commits?

By combining the path-based Code2Vec and the token-based H-CNNppp, we get a hy-
brid model that performs better than Code2Vec, but not H-CNNppr (3.2, rows 10 and
11). Despite the additional information that could be present in the bag of paths input,
Hybridpppr achieves accuracy and F; in the same ballpark as our token-based models (3.1,

27

row 19). These results show that Code2Vec does not capture any additional information
compared to H-CNNppr for this task.

Since using pre-trained embeddings did not result in a noticeable difference in perfor-
mance for both Code2Vec and H-CNNppp, we skip that variant for Hybridppp.

While our results show that path-based models don’t capture any additional informa-
tion compared to token-based models for the identification of security relevant com-
mits, it is not possible to confirm this without manual analysis of the predictions of
these models and categorizing them based on the vulnerabilities in the dataset.

RQ4: Does regularization improve the effectiveness of our models
in identifying security-relevant commits?

In the case of the R-LSTMprr, where we apply embedding dropout and weight dropping,
we see an increase in the mean F; score over LSTMprr. However, this increase is lower
than what we observed in Section 2.5 for document classification, and is not significant
enough to reject the null hypothesis (Table 3.2, row 12). Likewise, we do not have sufficient
evidence to show that applying embedding dropout and DropBlock affects the performance
of HR-CNNppr and HR-CNNpyr (Table 3.2, rows 13 and 14). In the latter scenario
however, we actually see a drop in mean F; scores. It would be useful to conduct a
comprehensive ablation study to determine the individual effect of these regularization
techniques on these models across a range of SE tasks.

However, interpreting these results is less straightforward in the case of the R-Hybridppp
(Table 3.2, row 15). Regularization decreases the mean F; score, and to a greater degree
than in the other cases. This might be due to the fact that we only apply regularization
to the token-based H-CNNppr component, while retaining the original architecture of the
path-based Code2Vec component. Since we primarily focus on token-based models, coming
up with regularization techniques for path-based models is outside the scope of this study.

We do not have sufficient evidence to show that applying embedding dropout, weight
dropping or DropBlock for regularization improves the performance of our models.

Toward Robust Baselines. Looking at the standard deviation of the scores across
different models allows us to compare the stability of these results. We feel that this is an
important aspect to consider when training neural networks on smaller datasets, which is a
typical scenario in SE. When training on a larger dataset, there is more data to order and

28

more weight updates to move away from a bad initialization [13]. However, on a smaller
dataset like the one we use in this study, we can expect a much larger standard deviation
of these scores across all models, as there are fewer weight updates to move away from a
bad initialization. We see that this is indeed true, comparing the standard deviations from
Table 3.1 to that of Table 2.2.

Most of the SE papers discussed in Section 3.2 that use neural networks in their ap-
proach treat scores as point estimates when comparing the performance of different models
[1, 24, 41, 9]. While Cabrera-Lozoya et al. [9] do report standard deviations of their scores
across five cross-validation splits, they draw their conclusions based only on a comparison
of the mean scores.

3.6 Threats to Validity

The lexer and tokenizer we use from the javalang library target Java 8. We are not able to
verify that all the projects and their forks in this study are using the same version of Java.
However, we do not expect considerable differences in syntax between Java 7 and Java 8
except for the introduction of lambda expressions.?

There is also a question of to what extent the publicly disclosed vulnerabilities provided
by Ponta et al. [36], used for evaluation in this study, represent the vulnerabilities found in
real-world scenarios. While creating larger ground-truth datasets would always be helpful,
it might not always be possible. To reduce the possibility of bias in our results, we ensure
that we do not train commits from the same projects that we evaluate our models on. We
also discard any commits belonging to the set of evaluation projects that are mined using
regular expression matching.

Alon et al. [1] pre-train their model on 10M Java methods, much larger than the 700K
Java methods we use in this study. It is possible that the performance of Code2Vec is
considerably better than the results in Table 3.1 after pre-training on a larger dataset.
Cabrera-Lozoya et al. [9] pre-train Commit2Vec on 12M Java methods and do not see an
improvement compared to random initialization, thereby limiting this threat to validity,
but not eliminating it due to differences in the experimental setup between our studies.

2 https://www.jcp.org/en/jsr/detail?id=335

29

3.7 Conclusions

In this study, we evaluate five different input representations for the identification of
security-relevant commits with a family of hierarchical neural network models. We show
that models such as LSTMprr and H-CNNppr that learn on commit diff tokens are more
effective than path-based models such as Code2Vec and Commit2Vec. In fact, we find no
benefit in these pre-trained path-based models for this task. Not only is such a two-staged
training process more time- and compute-intensive, but these models actually perform
worse than a simple LSTM baseline. We also observe how H-CNNpar makes use of the
additional contextual information available in paired source code tokens and improves upon
H-CNNpypp. Finally, with the help of Hybridppp, we discuss why path-based models might
not capture any additional information compared to token-based models for this task.

30

Chapter 4

Conclusions and Future Work

In this thesis, we show that simple neural models adapted from document classification,
such as LSTMprr and H-CNNppp, are effective in identifying security-relevant commits
using just the commit diff tokens. In the process, we question the need for complex neural
network architectures for document classification and establish strong neural baselines for
the identification of security-relevant commits. As neural networks become more prevalent,
one of the key takeaways for the SE community is the importance of robust baselines and
an evaluation framework that compares performance metrics as distributions rather than
individual data points. This would help researchers ensure the stability of their results and
avoid erroneous conclusions [11].

While we only study the specific task of identifying security-relevant commits, our
approach deserves exploration in other commit classification tasks as well. Such future
research could be a step towards generalizing this thesis for commit classification altogether.
Furthermore, it would be interesting to compare our models to the recent line of pre-trained
Transformers, the state of the art for document classification.

Due to the limited number of ground-truth training samples, we are unable to exploit
the full potential of deep learning. A reflection on the current state of labelled datasets in
software engineering throws light on limited practicality of deep learning models for a lot
of software engineering tasks [25]. This could potentially be solved with pre-trained deep
language representation models for source code. Neural networks are becoming increas-
ingly deeper and complex in the NLP literature, with significant interest in deep language
representation models such as ELMo, GPT, and BERT [34, 38, 12]. Since all of these
models are pre-trained in a semi-supervised manner, the vast amount of data available on
GitHub can be used for this purpose. Such pre-trained models can be fine-tuned more

31

effectively on smaller datasets [19]. Ongoing research on Transformer-based contextual
embeddings for source code is a step towards this goal [19, 11]. Drawing parallels with the
recent history of NLP research, we are hoping that future research in this direction will
considerably accelerate progress in tackling software problems with deep learning.

32

References

1]

3]

[4]

[5]

[7]

Ashutosh Adhikari*, Achyudh Ram*, Raphael Tang, and Jimmy Lin. Rethinking
complex neural network architectures for document classification. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4046-4051, 2019.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention net-
work for extreme summarization of source code. In 33rd International Conference on
Machine Learning, pages 2091-2100, 2016.

Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generating sequences from struc-
tured representations of code. arXiv preprint arXiv:1808.01400, 2018.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning dis-
tributed representations of code. arXiv preprint arXiv:1805.09473, 2018.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A general path-based
representation for predicting program properties. ACM SIGPLAN Notices, 53(4):
404-419, 2018.

Chidanand Apté, Fred Damerau, and Sholom M. Weiss. Automated learning of deci-
sion rules for text categorization. ACM Transactions on Information Systems, 12(3):
233-251, 1994.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137-1155,
2003.

Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni.
Identifying the characteristics of vulnerable code changes: An empirical study. In

33

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 257-268. ACM, 2014.

Rocio Cabrera-Lozoya, Arnaud Baumann, Antonino Sabetta, and Michele Bezzi.
Commit2vec: Learning distributed representations of code changes. arXiv preprint
arXiw:1911.07605, 2019.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. Event extraction
via dynamic multi-pooling convolutional neural networks. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing (Volume 1: Long Papers),
volume 1, pages 167176, 2015.

Matt Crane. Questionable answers in question answering research: reproducibility and
variability of published results. Transactions of the Association for Computational
Linguastics, 6:241-252, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiw:1810.04805, 2018.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and
Noah Smith. Fine-tuning pretrained language models: Weight initializations, data
orders, and early stopping. arXiv preprint arXiv:2002.06305, 2020.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model
for programming and natural languages. arXiv preprint arXiw:2002.08155, 2020.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout
in recurrent neural networks. In Advances in Neural Information Processing Systems,
pages 1019-1027, 2016.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. DropBlock: A regularization method
for convolutional networks. In Advances in Neural Information Processing Systems,
pages 10750-10760, 2018.

Jordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas Reps. Code vectors: Un-
derstanding programs through embedded abstracted symbolic traces. arXiv preprint
arXiw:1803.06686, 2018.

34

[18] Hamel Husain. Towards natural language semantic code search, Sep 2018. URL
https://githubengineering.com/.

[19] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Pre-trained
contextual embedding of source code. arXiv preprint arXiv:2001.00059, 2019.

[20] Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1746-1751, 2014.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiw preprint arXiww:1412.6980, 2014.

[22] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.
In International Conference on Machine Learning, pages 1188-1196, 2014.

[23] Rémi Lebret and Ronan Collobert. “The sum of its parts”: Joint learning of word and
phrase representations with autoencoders. arXiv preprint arXiv:1506.05703, 2015.

[24] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng,
and Yuyi Zhong. Vuldeepecker: A deep learning-based system for vulnerability detec-
tion. arXw preprint arXiw:1801.01681, 2018.

[25] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele Lanza,
and Rocco Oliveto. Sentiment analysis for software engineering: How far can we go?
In 2018 IEEE/ACM 40th International Conference on Software Engineering, pages
94-104. IEEE, 2018.

[26] Zachary C. Lipton and Jacob Steinhardt. Troubling trends in machine learning schol-
arship. arXiv:1807.03341v2, 2018.

[27] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. Deep learning for
extreme multi-label text classification. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 115—
124, 2017.

[28] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimiz-
ing LSTM language models. In International Conference on Learning Representations,
2018.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiw:1301.3781, 2013.

35

https://githubengineering.com/

[30]

[31]

[34]

[35]

[36]

[37]

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, pages 3111-3119, 2013.

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating
GitHub for engineered software projects. Empirical Software Engineering, 22(6):3219—
3253, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv
preprint arXiv:1802.05365, 2018.

Joaquin Pizarro, Elisa Guerrero, and Pedro L. Galindo. Multiple comparison proce-
dures applied to model selection. Neurocomputing, 48(1-4):155-173, 2002.

Serena E. Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric Dangre-
mont. A manually-curated dataset of fixes to vulnerabilities of open-source software.
arXw preprint arXiw:1902.02595, 2019.

Serena FElisa Ponta, Henrik Plate, and Antonino Sabetta. Beyond metadata: Code-
centric and usage-based analysis of known vulnerabilities in open-source software. In

2018 IEEE International Conference on Software Maintenance and Evolution, pages
449-460. IEEE, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training, 2018.

Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference:
performance study of LSTM-networks for sequence tagging. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, pages 338—
348, 2017.

36

[40]

[41]

[45]

[46]

[47]

[48]

[49]

Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference:
Performance study of Istm-networks for sequence tagging. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 338-348,
2017.

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. Automated vulnerability detection
in source code using deep representation learning. In 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 757-762. IEEE,
2018.

Antonino Sabetta and Michele Bezzi. A practical approach to the automatic clas-
sification of security-relevant commits. In 2018 IEEE International Conference on
Software Maintenance and Evolution, pages 579-582. IEEE, 2018.

D. Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. Winner’s curse? On pace,
progress, and empirical rigor. In Proceedings of the 6th International Conference on
Learning Representations, Workshop Track (ICLR 2018), 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929-1958, 2014.

Liran Tal. The state of open source security in 2019, Mar 2019. URL https://snyk.
io/.

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent neu-
ral network for sentiment classification. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1422-1432, 2015.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regulariza-
tion of neural networks using dropconnect. In International Conference on Machine
Learning, pages 1058-1066, 2013.

Haibing Wu and Xiaodong Gu. Towards dropout training for convolutional neural
networks. Neural Networks, 71:1-10, 2015.

Eran Yahav. From programs to interpretable deep models and back. In International
Conference on Computer Aided Verification, pages 27-37. Springer, 2018.

37

https://snyk.io/
https://snyk.io/

[50]

[51]

[52]

[53]

[54]

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei Wu, and Houfeng Wang. SGM:
Sequence generation model for multi-label classification. In Proceedings of the 27th
International Conference on Computational Linguistics, pages 3915-3926, 2018.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical attention networks for document classification. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1480-1489, 2016.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network reg-
ularization. arXiv:1409.2529, 2014.

Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide
to) convolutional neural networks for sentence classification. In Proceedings of the
FEighth International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), volume 1, pages 253-263, 2017.

Yaqin Zhou and Asankhaya Sharma. Automated identification of security issues from
commit messages and bug reports. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 914-919. ACM, 2017.

38

	List of Figures
	List of Tables
	Introduction
	Neural Networks for Document Classification
	Identifying Security-Relevant Commits
	Thesis Statement
	Contributions
	Thesis Organization

	Neural Networks for Document Classification
	Research Questions
	Background and Related Work
	Document Classification
	Regularization

	Model
	Experimental Setup
	Datasets
	Training and Hyperparameters

	Results and Discussion
	Conclusions

	Identifying Security-Relevant Commits
	Research Questions
	Background and Related Work
	Distributed Representations for Source Code
	Identifying Security Vulnerabilities

	Experimental Setup
	Methodology
	Pre-trained Embeddings
	Baselines
	Model
	Training and Hyperparameters

	Results and Discussion
	Threats to Validity
	Conclusions

	Conclusions and Future Work
	References

