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Abstract

This thesis discusses statistical problems in event history data analysis including sur-
vival analysis and multistate models. Research questions in this thesis are motivated by
the Nun Study, which contains longevity data and longitudinal follow-up of cognition func-
tions in 678 religious sisters. Our research interests lie in modeling the survival pattern and
the disease process for dementia. These data are subject to a process-dependent sampling
scheme, and the homogeneous Markov assumption is violated when using a multistate
model to fit the panel data for cognition. In this thesis, we formulated three statistical
questions according to the aforementioned issues and propose approaches to deal with these
problems.

Survival analysis is often subject to left-truncation when the data are collected within
certain study windows. Naive methods ignoring the sampling conditions yield invalid
estimates. Much work has been done to deal with the bias caused by left-truncation.
However, discussion on the loss-in-efficiency is limited. In Chapter 2, we proposed a method
in which auxiliary information is borrowed to improve the efficiency in estimation. The
auxiliary information includes summary-level statistics from a previous study on the same
cohort and census data for a comparable population. The likelihood and score functions
are developed. A Monte Carlo approximation is proposed to deal with the difficulty in
obtaining tractable forms of the score and information functions. The method is illustrated
by both simulation and real data application to the Nun Study.

Continuous-time Markov models are widely used for analyzing longitudinal data on the
disease progression over time due to the great convenience for computing the probability
transition matrices and the likelihood functions. However, in practice, the Markov assump-
tion does not always hold. Most of the existing methods relax the Markov assumption while
losing the advantage of that assumption in the calculation of transition probabilities. In
Chapter 3, we consider the case where the violation of the Markov property is due to mul-
tiple underlying types of disease. We propose a mixture hidden Markov model where the
underlying process is characterized by a mixture of multiple time-homogeneous Markov
chains, one for each disease type, while the observation process contains states correspond-
ing to the common symptomatic stages of these diseases. The method can be applied
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to modeling the disease process of Alzheimer’s disease and other types of dementia. In
the Nun Study, autopsies were conducted on some of the deceased participants so that
one can know whether these individuals have Alzheimer’s pathology in their brains. Our
method can incorporate these partially observed pathology data as disease type indicators
to improve the efficiency in estimation. The predictions for the overall prevalence and
type-specific prevalence for dementia are calculated based on the proposed method. The
performance of the proposed methods is also evaluated via simulation studies.

Many prospective cohort studies of chronic diseases select individuals whose observed
process history satisfies particular conditions. For instance, studies aiming to estimate
the incidence rate of dementia or the effect of genetic factors on the disease would recruit
individuals in the condition of being alive and disease-free. In contrast, some other studies
may aim to collect information on disease progression or mortality from the time of the
disease onset. Under such settings, individuals are recruited if they are in a subset of
the states at the study entry, and the methods of estimation need to account for such
state-dependent selection conditions. For multistate analysis, one option is to construct
the likelihood based on the prospective data given the history up to and including the time
at accrual. This approach yields consistent estimates under state-dependent sampling
condition with a price of loss in efficiency. Alternatively, the likelihood contribution from
the retrospective and current status data at the time of accrual can be incorporated, but
with difficulty in obtaining such information. For example, subjects’ initial states are often
unknown, imposing a challenge for the computation of the contribution from the current
status data at the time of recruitment. However, auxiliary information on the initial
states may be available, such as the age-specific population prevalence data related to the
disease. In Chapter 4, we proposed a weighted-likelihood method to incorporate auxiliary
prevalence data and account for the state-dependent selection condition. The method
is demonstrated by simulation and applied to the Nun Study of aging and Alzheimer’s
disease. A Bayesian sensitivity test is conducted to evaluate the impact of misspecification
of the auxiliary prevalence.
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Chapter 1

Introduction

1.1 Overview

In this thesis, we will describe three research projects dealing with problems arising in event
history data anaysis, including the left-truncation in survival analysis, process-dependent
sampling in multistate models, and the violation of the homogeneous Markov property in
multistate models. The connection between the three projects is that we are aiming to in-
troduce auxiliary information to the estimation procedure. We will discuss the approaches
to incorporate the auxiliary information and to deal with the uncertainty brought by the
auxiliary information.

The specific circumstances include incorporation of partial summary level data to failure
time data subject to left-truncation (Chapter 2); incorporation of partial knowledge of
mixture component membership and parameter constraints for a non-Markov multistate
model (Chapter 3); utilization of population prevalence information to adjust for a sampling
condition in multistate analysis (Chapter 4).
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1.1.1 Left-truncation in Failure Time Data

Survival analysis is a branch of statistical methods for failure time or time-to-event data.
Examples include analysis of longevity in a population or modeling times to onset or relapse
of specific diseases. These kinds of data are often subject to left-truncation. For instance,
when considering the duration of survival with a disease, the data are typically collected
from participants who had the disease and remained alive at the time of accrual. This
implies that their survival time since disease onset has to be longer than the time to study
entry, which leads to the so-called left-truncation of the survival times. Failure to consider
this sampling condition will lead to invalid inference.

There has been considerable discussion on the estimation of a survival function under
left-truncation. The proposed statistical methods can be generally classified as conditional
or unconditional approaches (Asgharian et al., 2002). The former develops inference based
on the likelihood conditional on the observed truncation times, for example conditional
non-parametric estimation of survival functions for left-truncated data (e.g. Wang et al.,
1986; Wang, 1987; Tsai et al., 1987), and conditional partial likelihood methods for the Cox
models (e.g. Kalbfleisch and Lawless, 1991; Keiding and Moeschberger, 1992; Wang et al.,
1993). Unconditional methods have been discussed by Vardi (1989), Wang (1996), Qin
and Shen (2010), and Qin et al. (2011). The unconditional analysis may have an efficiency
advantage over a conditional approach when it is possible to parameterize the distribution
of the truncation times. For instance Wang (1991) pointed out a non-parametric maximum
likelihood estimator (i.e. Vardi, 1989) can be more efficient than the conditional nonpara-
metric product limit estimate when the truncation time follows an uniform distribution.

An alternative way to deal with loss in efficiency due to left-truncation, namely incorpo-
ration of auxiliary information from the same or similar populations, has drawn increasing
attention in recent years. There are two papers (Li and Qin, 1998; Shen, 2014) propos-
ing methods that incorporate information on the size of the “full" study population for
estimation of a (conditional) survival function in a nonparametric setting. Li and Qin
(1998) proposed a likelihood-based method by adding an extra component to the observed
likelihood representing the contribution of the total number of truncated subjects. Shen
(2014) proposed a constrained expectation-maximization (EM) algorithm for estimation.
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In addition to the augmented likelihood approaches, Faucett et al. (2002) considered a
method based on multiple imputation using auxiliary variables to deal with the loss in
efficiency due to a large right-censored proportion.

In this thesis, we will describe a likelihood-based approach that makes use of auxiliary
information from the truncated sample to improve the efficiency. The approach involves
generating pseudo data and jointly modeling the pseudo sample with the left-truncated
sample. A one-step Monte-Carlo expectation-maximization algorithm is developed for the
inference based on an augmented likelihood. The gain in efficiency is measured by the
relative reduction in variances for the estimates.

1.1.2 Non-Markov Multistate Models for Event History Data

Time-homogeneous Markov models are most widely used in multistate analysis for the
ease of the derivation of the likelihood, score function and information function. However,
this is a fairly strict assumption. Increasing attention has been brought to cases where
the transition intensities are not constant over time. Methods using piecewise constant
transition intensities provide a neat extension to the time-homogeneous Markov model, as
the existing method can be applied within each piece. Discussions on such models appear in
Gentleman et al. (1994), Andersen and Keiding (2002). Methods for semi-Markov models
allow the transition intensities to depend on the sojourn time in each state. Satten and
Sternberg (1999) proposed a semi-Markov model with unknown initiation times. Foucher
et al. (2005) applied the semi-Markov model with generalized Weibull intensities to HIV
disease process. And Foucher et al. (2007) applied a multiple terminal model to renal
transplantation data. Kang and Lagakos (2006) proposed a semi-Markov model for panel
data.

A Hidden Markov Model (HMM) is defined as a process where the observation model
is conditioned on the status of an underlying Markov model. It can be used to deal with
model misspecification for the observed data sequence. For example, while the observed
illness-death process may not be Markovian, it might be reasonable to assume it is the
case for an underlying process with several extra hidden states. Smyth (1994) proposed a
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Hidden Markov based method for fault detection in continuous monitoring of a complex
dynamic system. In addition, a HMM can be used to approximate a semi-Markov model
due to the nice Markov property for the underlying process with hidden states. Titman
(2014) proposed an approximation for semi-Markov model using Hidden Markov Models
where the phase-type models are specified for the underlying process.

In this thesis, we will discuss a new hidden multistate model where the underlying pro-
cess is characterized by a finite mixture of time-homogeneous Markov chains. Each chain
process corresponds to one sub-type of the disease. Disease sub-types may be classified by
biomarkers or medical examinations. Thus we hope to incorporate the known-membership
in the estimating procedure so that the efficiency can be improved.

1.1.3 Process-dependent Sampling in Multistate Models

Event history studies are typically conducted by monitoring subjects over time and collect-
ing information on occurrence of certain events according to a multistate dynamic disease
process. The distinctive features include longitudinal observations and multiple events,
and one obtains so-called panel data when the observation of the continuous-time multi-
state process is made at arbitrary time points. Multistate models are naturally suited and
widely used for event history data analysis. When the model is assumed satisfying the
Markov assumption, Kalbfleisch and Lawless (1985) proposed a likelihood-based method
for panel data. There have been considerable research and applications (Andersen and Kei-
ding, 2002; Tuma et al., 1979; Commenges, 2002) based on this work, as well as software
packages such as the msm package in R (Jackson et al., 2011) developed for implementation.

Most of the multistate models and their extensions are discussed under an ideal situation
with a randomly selected sample being followed up since the beginning of the process.
However, in many longitudinal studies, for example prevalence cohort studies, the cohort is
selected conditioning on being in certain stage of the disease process at the study entry. The
information on the occurrence of events may be collected retrospectively and prospectively
limited to a certain time window. This leads to truncation and censoring of event times.
As in the case of survival analysis, lack of consideration of the process-dependent sampling
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condition will lead to bias in multistate analysis. Joly and Commenges (1999) pointed
out that left-truncation and right censoring are commonly arising problems in multistate
models applied to epidemiology data. They proposed a penalized likelihood method for
an illness-death model subject to both left-truncation and right censoring. Nonparametric
likelihood-based approaches for panel data subject to left-truncation and right censoring
were discussed in Frydman (1995) and Hudgens (2005).

Instead of constructing the likelihoods based on the prospective data conditioning on
the process history up to and including time at which the subject is recruited (e.g. the
duration from time origin to study entry and the states at entry time), we propose to use a
weighted likelihood where the weights resemble the contribution of the current status data
at the time of recruitment given the sampling condition. As the subjects’ initial states
are unknown, auxiliary information such as age-specific population prevalences are used to
facilitate the calculation of the weights.

1.2 Motivation: The Nun Study

The Nun Study is a longitudinal study started in 1991 and ended in 2003. The participants
were 678 Catholic sisters, whose cognitive functions and survival were followed over the
study period. These participants are a sub-sample from a population of 3926 American
Roman Catholic sisters from the School Sisters of Notre Dame who were born between
1886 and 1916. There have been multiple studies conducted on this birth cohort. The
two studies discussed in this thesis include the Nun Study as already before, as well as a
mortality study (Butler and Snowdon, 1996) conducted from 1965 to 1989.

The Nun Study involved 678 participants who were alive and at least 75 years old at the
study entry which is 1991. The observations include yearly measurements of the cognitive
functions for the participants until death or end of the study. Among the 678 participants,
676 have more than one follow-up observations, 297 of them were diagnosed with dementia,
and 606 died during the follow-up period. Postmortem neuoropathologic assessments were
conducted on the sisters who passed away during the study period. In addition, a variety
of information was collected from participants including: (1) year of birth; (2) the presence
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of the allele ε4 in the apolipoprotein E gene (APOE − ε4), which is a commonly known
risk factor for Alzheimer’s disease; (3) intellectual factors such as educational level, high
school course grades, and number of languages spoken.

A Mortality Study was conducted on the same birth cohort of Catholic sisters (Butler
and Snowdon, 1996). Participants were 2573 sisters who were alive and aged 50 and over
at the study baseline 1965. The participants were followed until 85 years old or 1989 if
they had not reached 85 by then. During the study, 1103 deaths were observed at ages
between 50 and 84. Unfortunately, the individual level death times are no longer available.
However, summarized data from this mortality study are reported in Butler and Snowdon
(1996), including the total number of deaths, the standard mortality ratio (SMR) of the
nun cohort versus the US white female population, and information on the birth time
distribution of the original birth cohort.

In Chapter 2, the research interest lies on modeling the mortality of the population
of Catholic sisters. In Chapter 3 and Chapter 4, we focus on modeling the dementia and
Alzheimer’s disease process, and evaluating risk factors using multistate models.

1.3 Outline

In Chapter 2, we propose a method where we incorporate the auxiliary information from
the Mortality Study with the data from the Nun Study to improve the efficiency when
estimating the survival distribution. Chapter 2 is organized as follows. First, we will
describe the question and define the notations in Section 2.1. Then, in Section 2.2, we will
develop a multiple imputation based method to incorporate the summary level information
by creating pseudo samples and joint modeling. In Section 2.3, we will provide the details
and results of application to the Nun Study data, as well as a sensitivity test of model
misspecification for the auxiliary information. A simulation study is conducted and given
in Section 2.4, which is aiming to verify the variances estimation and explore the gain in
efficiency. Section 2.5 is a discussion about the benefits and drawbacks of our methods, as
well as potential future work.
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In Chapter 3, we propose a mixture hidden Markov model to incorporate the pathology
information. In Section 3.1, we introduce the motivation. In Section 3.2, we introduce the
finite mixture hidden Markov model (HMM) and a likelihood-based method for multiple
disease types. This method accounts for the heterogeneity in the disease processes and
panel observation on disease occurrence. Disease type information is partially available
based on the pathology data. In Section 3.3, we apply the mixture HMM to the Nun
Study. In Section 3.4, we conduct simulation studies to illustrate the performance of
the proposed method. Then in Section 3.5, we give some discussion of the identifiability
and estimability issues arising in HMMs. In Section 3.6, we use a Bayesian method as
an alternative way to get the estimates and handle the identifiability issues. Section 3.7
discusses future work.

In Chapter 4, we consider a weighted likelihood method to deal with the process-
dependent sampling condition in event history studies. We first explain the motivation
question in Section 4.1. In Section 4.2, we define notations and introduce methods for
multistate Markov models under intermittent observation. Then we develop a weighted
likelihood which accommodates auxiliary population prevalence information to adjust for
sampling condition. In Section 4.3, we apply the weighted likelihood to study the onset of
dementia and effects of important factors using the Nun Study data. In Section 4.4, we
conduct simulation studies to illustrate the performance of the proposed method. Then
in Section 4.5, we produce estimates in a Bayesian manner and include some discussion
on the sensitivity of the choice of the prior distribution. We will conclude the results and
discuss some future work in Section 4.6. Concluding remarks and more detailed discussion
on future research directions are given in Chapter 5.
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Chapter 2

Augmented Likelihood for
Incorporating Auxiliary Information
into Left-truncated Data

2.1 Introduction

Survival analysis is a branch of statistical methods for failure time or time-to-event data.
Examples include analysis of longevity in a population or modeling times to onset or relapse
of specific diseases. These kinds of data are often subject to left-truncation. For instance,
when considering the duration of survival with a disease, the data are typically collected
from participants who had the disease and remained alive at the time of accrual. This
implies that their survival time since disease onset has to be longer than the time to study
entry, which leads to the so-called left-truncation of the survival times. Failure to consider
this sampling condition will lead to invalid inference.

There has been considerable discussion on the estimation of a survival function under
left-truncation. The proposed statistical methods can be generally classified as conditional
or unconditional approaches (Asgharian et al., 2002). The former develops inference based
on the likelihood conditional on the observed truncation times, for example conditional
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non-parametric estimation of survival functions for left-truncated data (e.g. Wang et al.,
1986; Wang, 1987; Tsai et al., 1987), and conditional partial likelihood methods for the Cox
models (e.g. Kalbfleisch and Lawless, 1991; Keiding and Moeschberger, 1992; Wang et al.,
1993). Unconditional methods have been discussed by Vardi (1989), Wang (1996), Qin
and Shen (2010), and Qin et al. (2011). The unconditional analysis may have an efficiency
advantage over a conditional approach when it is possible to parameterize the distribution
of the truncation times. For instance Wang (1991) pointed out a non-parametric maximum
likelihood estimator (i.e. Vardi, 1989) can be more efficient than the conditional nonpara-
metric product limit estimate when the truncation time follows an uniform distribution.

Sometimes auxiliary information from the subjects that are left out of the study owing
to the left-truncation is available, we refer to these subjects as “truncated sample" in the
article. Interest lies in combining those with the observed sample for more informative in-
ference. Auxiliary information can be in the form summary-level knowledge regarding the
truncated sample, results from previous studies on the same or a similar study population,
or census data or statistics from the general population. An example is the Nun Study -
Aging Study which contains longevity and cognitive function data for 678 religious sisters
in the USA (Snowdon, 2003). The sample is subject to left-truncation because the partic-
ipants were survivors at the study baseline 1991 from an original population of religious
sisters born between 1886 and 1916. An earlier mortality study was conducted on the same
population of religious sisters starting in 1965 and continuing until 1989; the details are
given in Section 2.3.1. The raw individual-level data for the mortality study are no longer
available unfortunately. However the study results are reported in Butler and Snowdon
(1996), including the total number of deaths by 1989, the standard mortality ratio of the
nun birth-year cohorts versus the US white female population, population size and birth
time information of the original set of birth cohorts. It is possible to utilize this auxiliary
information to improve efficiency. Another example of such a situation is the Kuakini
Honolulu-Asia Aging Study (HAAS), established in 1991 with the objective of investigat-
ing dementia and aging processes of a cohort of Japanese-American men (Higuchi et al.,
2015). This study was an outgrowth of the Honolulu Heart Program (Huh et al., 2015),
which started 25 years earlier in 1965 when a study population of Japanese-American men
were recruited. The HAAS participants were survivors of this population and hence their
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survival times are subject to left-truncation.

There are two papers (Li and Qin, 1998; Shen, 2014) proposing methods that incorpo-
rate information on the size of the “full” study population for estimation of a (conditional)
survival function in a nonparametric setting. Li and Qin (1998) proposed a likelihood-
based method by adding an extra component to the observed likelihood representing the
contribution of the total number of truncated subjects. Shen (2014) proposed a constrained
expectation-maximization (EM) algorithm for estimation. In addition to the augmented
likelihood approaches, Faucett et al. (2002) considered a method based on multiple imputa-
tion using auxiliary variables to deal with the loss in efficiency due to a large right-censored
proportion.

Given that most of the literature has discussed methods for incorporating only the
total number of truncated individuals, the goal of this chapter is to make use of auxiliary
information from the truncated multi-birth-year-cohort sample. Our work is closely re-
lated to the idea of (Li and Qin, 1998). However, instead of leaving the distribution of the
event time unspecified, we assume a parametric model for it. The auxiliary information on
the truncated sample is incorporated by augmenting the conditional likelihood function of
observed event times. Great attention is given to the practical issues of what kinds of aux-
iliary information may be available/useful for a multi-cohort study and how to incorporate
these appropriately. The rest of this chapter is organized as follows. In Section 2.2, we
describe the notation and the proposed methods that incorporate the aggregated auxiliary
information on the number of truncated events. In Section 2.3, we provide the details
and results of the application to the Nun Study - Aging Study data, including generating
individual level pseudo-data sets based on the auxiliary information and applying the pro-
posed method to the combined data. Section 2.4 gives details of the simulation studies.
Concluding remarks and discussion are given in Section 2.5.
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2.2 Method

2.2.1 Left-truncation and Conditional Likelihood

Assume the target population members were born during some calendar intervals, as a
combination of K birth cohorts. The birth times for cohort k lie in calendar time intervals
Bk = [bk, bk+1), k = 1, 2, . . . , K, and B = ∪Kk=1Bk. Let T denote the age at death of an
individual from the population of interest. Let B and Y = B + T be the calendar times of
birth and death respectively.

Suppose a sample of individuals from this population are recruited at a calendar time
a∗, a∗ > bK+1, and followed over time for survival up to an administrative censoring time
a∗ + τ ∗. The observed event times are subject to both left-truncation and right-censoring
as only those who survived up to a∗ could be recruited, and not all of them will reach the
death state by a∗+ τ ∗. Let S represent the collection of indices for the individuals selected
into the sample (i.e. the observed sample), n and nk be the sample size for the study and
for birth cohort k respectively. The observed data of a selected individual i are {Li, Xi, δi},
where Li = a∗ − Bi represents the age at accrual time, so Li < Ti, Xi = min{Ti, Li + τ ∗}
is the observed age at the event time and δi = I{Xi = Ti} is the censoring indicator,
i = 1, 2, ..., n. The conditional likelihood for the sample S is then

L0 =
∏
i∈S

P (Xi | Li, Ti > Li) =
∏
i∈S

f(Xi)
δiF(Xi)

1−δi

F(Li)
, (2.1)

where f (·)and F (·) are the density and the survival functions of event time T respectively.

2.2.2 Auxiliary Information on the Truncated Sample and Aug-
mented Likelihood

Suppose another study was conducted on a much larger sample of individuals that were
recruited from the same population during an earlier period [a, a+ τ), where a + τ < a∗.
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Figure 2.1: An example of the underlying cohorts. The dashed vertical lines represent the
birth time window; the shaded region on the left-hand side and right-hand side are the
periods for the Nun Study - Mortality Study and the Nun Study - Aging Study respectively.
Solid horizontal lines represent individuals who participated in the Aging Study. Dashed
horizontal lines represent the left-truncated individuals who died during the study period
of the Mortality Study with unknown death times.

Let N indicate the sample size of this study, and m the total number of deaths occurring
during this study. The length of this study, τ , can be different for each birth cohort.
For instance, in the Nun Study - Mortality Study cohort, the end of follow-up is the
minimum of 1989 and the year that participants reached the age of 85, which is identical
for participants born in the same calendar year but not so otherwise. The individual-level
data for those who had an event during this earlier study period are not obtainable, and
let Sp denote the indices set of this truncated sample. Figure 2.1 gives an example where
the shaded region on the left- and right-hand side are the periods for two studies, e.g. the
Nun Study - Mortality Study and the Nun Study - Aging Study respectively. The lengths
of the segments represent the time to event. Suppose seven individuals were born during
a time interval. Six survived to the start of the first study, three died (denoted by dashed
lines) during the study period and their death times were not known. The remaining three
alive individuals (denoted by solid lines) then entered the second study where lifetime T
was observed for two individuals and censored for one individual.
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The auxiliary information for the truncated sample Sp can be of various forms. We
focus on the case where the number of deaths for certain age groups are known. However,
the idea can be adapted to other types of aggregate information as long as the information
can be represented by sample sizes or ranges of the missing observations. We will discuss
this further in the Section 2.5. Suppose the kth birth cohort consists of individuals who
were born in the calendar time period Bk. The auxiliary information includes the size of
this cohort, Nk, and the number of deaths that occurred during [a, a+ τ), denoted by mk,
k = 1, 2, . . . , K. Note that

∑K
k=1Nk = N and

∑K
k=1 mk = m. Let Y k

(i) be the ith order
statistic of the calendar death times for individuals who belong to the kth birth cohort;
then knowing mk is equivalent to knowing Y k

(mk) ≤ a+ τ, Y k
(mk+1) > a+ τ . The augmented

likelihood incorporating this sub-group survival information is

L =
∏
i∈S

f(Xi)
δiF(Xi)

1−δi

F(Li)

K∏
k=1

P (Y k
(mk) ≤ a+ τ, Y k

(mk+1) > a+ τ)

= L0

K∏
k=1

(
Nk

mk

)
P (Y ≤ a+ τ | B ∈ Bk)mk P (Y > a+ τ | B ∈ Bk)Nk−mk

∝ L0

K∏
k=1

gk (a+ τ)mk [1− gk (a+ τ)]Nk−mk (2.2)

where

gk (u) = P (Y ≤ u | B ∈ Bk) =

∫ bk+1

bk

P (T ≤ u− b | B = b) fB (b | B ∈ Bk) db (2.3)

and fB (b | B ∈ Bk) represents the density of the birth time within interval Bk. One may
assume that the distribution of the lifetime T is independent of the birth time so that
P (T ≤ t | B = b) = 1−F(t).

It is possible to incorporate more detailed aggregate information, for example, the num-
ber of events occurring during specific time intervals. Suppose the study period [a, a+ τ)

can be further divided into intervals a = a0 < a1 < . . . < aJ = a+τ , and let Aj = [aj−1, aj)

where j = 1, . . . , J . Suppose the number of events in the jth interval for birth cohort k,
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mkj, is known, and
∑J

j=1mkj = mk. Without loss of generality let AJ+1 = [aj,∞) and
mk,J+1 = Nk −mk. In this case, the likelihood given in (2.2) becomes

L = L0

K∏
k=1

P (Y k
(mk1) ≤ a1, Y

k
(mk1+1) > a1, . . . , Y

k
(mkJ ) ≤ aJ , Y

k
(mkJ+1) > aJ)

∝ L0

K∏
k=1

J+1∏
j=1

P (Y ∈ Aj | B ∈ Bk)mkj

= L0

K∏
k=1

J+1∏
j=1

[gk (aj)− gk (aj−1)]mkj . (2.4)

When J = 1, the above likelihood reduces to (2.2). Comparing the augmented likelihood
(2.2) or (2.4) with the conditional likelihood (2.1), the extra components improve efficiency
by incorporating auxiliary information from the truncated sample.

Denote the log-likelihood as

l (θ) = l0 (θ) +
K∑
k=1

J+1∑
j=1

mkj log [gk (aj)− gk (aj−1)] , (2.5)

where a parametric model f(t; θ) can be assumed for the event time T indexed by parameter
vector θ. The maximum likelihood estimator for θ is obtained by solving the score equations

S (θ) =
∂l0 (θ)

∂θ
+

K∑
k=1

J+1∑
j=1

mkj
∂

∂θ
log [gk (aj)− gk (aj−1)] = 0. (2.6)

Directly maximizing the log-likelihood (2.5) or solving the score function equation (2.6) can
be complicated as it involves calculation of the gk (·) functions. Alternatively, we propose
to approximate (2.6) by Monte-Carlo expectation.
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2.2.3 Monte-Carlo Expectation

Imagine the ideal case where the event times of the truncated sample, Dp = {Ti}i∈Sp , are
observable. Let D = {Xi, δi}i∈S denote the individual-level data for the observed sample.
Then the “complete" data are the combination of data from these two samples, (Dp,D).
The complete log-likelihood and the corresponding score functions are

lc (Dp,D; θ) =
∑
i∈S

log
[
f(Xi)

δiF(Xi)
1−δi
]

+
∑
i∈Sp

log f(Ti) (2.7)

Sc (Dp,D; θ) =
∑
i∈S

∂ log
[
f(Xi)

δiF(Xi)
1−δi
]

∂θ
+
∑
i∈Sp

∂ log f(Ti)

∂θ
. (2.8)

If we take the expectation of the complete score function (2.8) over all of the values for
Dp conditional on the observed data D and the auxiliary data, these expectations should
equal the log-likelihood and the score functions in (2.5) and (2.6). That is,

S (θ) = EDp|D
[
Sc (θ) | Y k

(mkj)
≤ aj, Y

k

(mkj+1) > aj, j = 1, . . . , J, k = 1, . . . , K
]
. (2.9)

Therefore, instead of directly solving (2.6), we solve the conditional expectation of complete
score function, as shown in (2.9), equal to 0.

Calculation of the conditional expectation in (2.9) can be complicated, and thus we
consider a Monte-Carlo technique. The idea is that for a large enough number R, we
generate sets of pseudo-values for D(r)

p , r = 1, 2, ...R, satisfying the conditions in (2.9). The
average of Sc (Dp,D; θ) of these pseudo-data sets approximates the score function given in
(2.6), i.e.,

S(θ) ≈ 1

R

R∑
r=1

Sc
(
D(r)
p ,D; θ

)
, (2.10)

given that the assumed model for T , with density f(t; θ), is correct. We know that the
event times of participants belonging to the kth birth cohort satisfy Y k

(mkj)
≤ aj, Y

k

(mkj+1)
>

aj, j = 1, . . . , J , and there should be Nk−nk truncated participants in this birth cohort as
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nk indicates the number of participants who remained alive and made it to the subsequent
study. To ensure that the pseudo-data sets meet these constraints, for each j = 1, . . . J

and k = 1, . . . K, we generate mkj calendar birth times using f (b | B ∈ Bk), and generate
the event times using f(t | T + B ∈ Aj, B = b; θ̃), where θ̃ is obtained by maximizing the
conditional likelihood (2.1).

2.2.4 Efficiency Gain

The proposed procedure for maximizing the augmented log-likelihood (2.5) can be seen
as a one-step EM algorithm, where the E-step is the calculation of the conditional ex-
pectation of the complete score (2.9) by the Monte-Carlo approximation (2.10), and the
M-step is solving S (θ) = 0. Louis’s formula (Louis, 1982) is used to estimate the ob-
served information for the likelihood incorporating the auxiliary information. Specifically
we obtain

I (θ) = EDp|D
[
−∂

2lc (Dp,D; θ)

∂θ∂θT

]
−EDp|D

[
Sc (Dp,D; θ)ST

c (Dp,D; θ)
]

+ S (D; θ)ST (D; θ) . (2.11)

Note that the last term takes values of zero at the maximum likelihood estimates from
setting the observed score functions equal to 0.

The conditional expectation is obtained by a Monte-Carlo approximation by simulating
pseudo-data sets as before. Then the observed information is approximated as

I (θ) ≈ − 1

R

R∑
r=1

∂Sc (Dp,D; θ)

∂θT
− 1

R

R∑
r=1

Sc (Dp,D; θ)ST
c (Dp,D; θ) . (2.12)

The variance covariance estimate, V̂ ar(θ̂), is calculated by taking the inverse of I(θ̂). To
evaluate the performance of the proposed method, we calculate the estimated variance

16



reduction for estimating a parameter θq as

RV =
V̂ ar(θ̃q)− V̂ ar(θ̂q)

V̂ ar(θ̃q)
, (2.13)

where θ̃q and θ̂q are estimated based on the conditional likelihood (2.1) and the augmented
likelihood (2.4) incorporating the auxiliary information respectively.

2.3 Application to the Nun Study

2.3.1 Sources of the Auxiliary Information

The Nun Study is a prospective longitudinal study started in 1991. The study population
consists of all US members of the School Sisters of Notre Dame who were born during
the years 1886 to 1916. The participants were a sample of 678 religious sisters from this
population and their cognitive function and survival time information were collected during
the followup to 2003. We refer to this study as the Nun Study - Aging Study. This sample
is subject to left-truncation as the religious sisters needed to be alive at the baseline (year
1991) to be eligible. Another study, the Nun Study - Mortality Study, was conducted
on all of the religious sisters who survived to the year 1965 from the same population.
The study results reported in Butler and Snowdon (1996) provide auxiliary information
on the study population and the truncated sample (deceased individuals). The auxiliary
information includes (i) a description of the birth-time distribution of all US members of
the School Sisters of Notre Dame born in the period 1886 to 1916; (ii) the size of the
study population; there were 2573 religious sisters born during that interval who survived
to the year 1965; (iii) the number 1103 of deaths aged 50 to 84 by the end of follow up
in 1989; and (iv) the standard mortality ratio (SMR) by age group compared to the US
white female population. Figure 2.2 shows the timelines and participants of the Aging
Study and the Mortality Study. We think of the 2573 religious sisters participated in the
Mortality Study as our “full" underlying cohort, and we view those who passed away by
1991 as the truncated sample and those who remained alive in 1991 and entered the Aging
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Figure 2.2: The Nun Study timeline.

Study as the observed sample. The auxiliary information is used to estimate the birth
time distribution of the population and the number of deaths per year up to 1991 for each
birth group. These pseudo mortality data of the truncated sample are then combined with
the observed data from the Aging Study to form the “complete" data for the estimation of
survival. We describe the details in the following.

Birth Time Distribution of the Study Population

It was reported that 3926 US members of the School Sisters of Notre Dame were born
in [1886, 1916), and that their birth times were approximately uniformly distributed from
1894 to 1910, but not before and after this period (Butler and Snowdon, 1996). We divided
this population into K = 30 cohorts by birth years {b1, . . . , b30} = {1886, . . . , 1915}, and
denote the birth time interval for the kth cohort by Bk = [bk, bk + 1), k = 1, . . . , 30. Thus
we assume a piecewise linear trend in numbers of births by year, {N∗k}

30
k=1. To be specific,

we assume

N∗k = φ0 + φ1 (bk − 1886)+ − φ1 (bk − 1895)+ + φ1 (bk − 1909)+

for participants born before 1915, i.e. k ≤ 29, and set the number of births during 1915 to
match the extra small size of the youngest group in the Aging Study. The estimate φ̂1 is
obtained using the average increment in the number of births of the US white female pop-
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Figure 2.3: Estimated number of religious sisters who were born in each year from 1886 to
1916 (height of the vertical lines) and number of those who survived to the year 1965 to
enter the Nun Study - Mortality Study (positions of the triangles).

ulation from 1910 to 1915, and φ̂0 is solved by setting
∑30

k=1N
∗
k = 3926. We also assume

the probabilities of surviving to 1965 for the religious sisters’ population are proportional
to those of the white female population in US. Mortality and age distribution information
for the US white female population can be obtained from the US Census and the Centers
for Disease Control and Prevention websites (e.g. National Vital Statistics Reports 2017;
United States National Intercensal Tables: 1900-1990). The ratio of the size of the pop-
ulation aged 1965− bk in the year 1965 and the total births in the calendar time interval
Bk reflects the chance of survival beyond 1965 for the kth birth cohort, and we denoted it
by F̂k. Given these assumptions, we estimate number of religious sisters who were born in
Bk and survived to the year of 1965 as the following:

Nk =

⌊
ψN∗k F̂k +

1

2

⌋
,
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where ψ is a constant that ensures a population size of
∑30

k=1Nk = 2573, and bxc is the
largest integer that is smaller than x. Figure 2.3 displays the estimated size of each birth
cohort. The height of each vertical line represents the number of religious sisters born
in the year (i.e., N∗k ), and the position of the triangle represents the number of those
who survived to 1965 (i.e., Nk), which reflects the birth time distribution of the study
population. A sensitivity analysis of the underlying assumptions used above is given at
the end of Section 2.3.1.

Estimation of the Number of Truncated Events

The US Vital Statistics Reports contain the current life tables, i.e., the “cross-sectional”
life tables, for the US white female population for most of the years from 1965 to 1990
except 1965, 1969, 1979, 1981, and 1990. The tables report for a hypothetical cohort of a
certain age in the same year the number of survivors out of 100,000 born alive. Denote the
reported number of survivors in the table of calendar year u, for age t, as Q (t, u). Then
the age- and birth-year-specific mortality rate, for a US white female who was born in the
year bk, of dying at age t is

h0 (t, bk) =
# of deaths at age t and calendar year bk + t

exposure-to-risk at age t and calendar year bk + t

=
Q (t, bk + t)−Q (t+ 1, bk + t+ 1)

Q (t, bk + t)
.

For example, for a US white female who was born in the year bk = 1910, the probability
of dying at age t = 60 is (Q(60, 1970)−Q (61, 1971))/Q (60, 1970), where Q(60, 1970) and
Q(61, 1971) can be found in the lifetables of 1970 and 1971 respectively.

Based on the SMR of the participants in the Nun Study - Mortality Study versus the
US white female population given in Butler and Snowdon (1996), we estimate the age- and
birth-year-specific mortality rate for the population of the religious sisters as

h(t, bk) = h0 (t, bk)× SMR (t, bk) .
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Figure 2.4: Age- and birth-year-specific mortality rates for the US white female population
(left) and the participants in the Nun Study - Mortality Study (right) born in the years
1887, 1893, 1899, 1905 and 1911.

Figure 2.4 reports the mortality rates for the US white female population and the estimated
rates for the participants in the Nun Study - Mortality Study born in years 1887, 1893,
1899, 1905 and 1911. The number of events occurring in calendar year aj for participants
born in the year bk can be thus estimated as

mkj =

ckNkh(aj − bk, bk)
aj−bk−1∏
t=1965−bk

(1− h(t, bk)) +
1

2

 ,
where ck is a constant that ensures

∑J+1
j=1 mkj = Nk − nk, bk = 1886, ..., 1915, aj =

1966, . . . ,min {1989, year of age 84}. Table 2.1 gives an example of the number of deaths
within each calendar year in a pseudo-data set for the participants who were born in 1900.
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Table 2.1: Number of pseudo events by years for participants born in 1900

Year Age at Death m1900,j

[1965, 1966) [65, 66) 2
[1966, 1967) [66, 67) 1

...
...

...
[1983, 1984) [83, 84) 4
[1984,∞) [84,∞) 22

A Sensitivity Analysis of Underlying Assumptions

Assumptions were made for the estimation of the numbers of individuals in each age group
in the study population, including (i) a piecewise-linear trend in birth for all 3926 religious
sisters born in [1886, 1916) in the US; (ii) their chance of survival up to 1965 by year of
birth being proportional to that of the US white female population. These assumptions are
reasonable to some extent: the auxiliary information on the birth times of all the religious
sisters born in the US though incomplete is quite reliable; more than 99% of the religious
sisters in the study population were white and the US white female population might be an
appropriate reference. It is though important to provide some evidence through sensitivity
analyses.

Varying the birth time structure in the initial birth cohort of 3926 religious sisters is a
way of changing the estimated age structure of the study population. Increasing the number
born later results in higher proportion of younger religious sisters in 1965, consistent with
proportionally less mortality from early causes of death such as childbirth. Increasing the
number born earlier leads to higher proportion of older religious sisters in 1965, consistent
with proportionally less mortality from later life causes of death such as cancers.

Figure 2.5 shows the variations in the estimated age structure of the study population
under different scenarios of birth time structure considered for the initial birth cohort. The
reference scenario refers to the case when assumptions (i) and (ii) are used for estimation,
and the other scenarios correspond to deviations from assumption (i) by inflating the
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Figure 2.5: Variations of age structure for the study population. Triangles correspond to
estimated number of individuals in each age group under assumptions (i) and (ii) indicated
in Section 2.3.1, and the other scenarios correspond to deviations from assumption (i) by
inflating the number of births for certain period(s).

Table 2.2: Expected number of deaths at ages 50-84 between 1965 and 1989 according
to different birth time structures in the initial birth cohort of 3926 religious sisters born
in 1886 to 1916. The reference scenario AS0 is under assumptions (i) and (ii) given in
Section 2.3.1, and the others correspond to deviations from assumption (i) by inflating the
number of births for certain period(s).

Scenario Period(s) with Inflated Births Expected Deaths
AS0 - - - 1103
AS1 [1886, 1895) - - 1146
AS2 - [1895, 1905) - 1171
AS3 - - [1905, 1915) 998
AS4 [1886, 1895) [1895, 1905) - 1193
AS5 [1886, 1895) - [1905, 1915) 1048
AS6 - [1895, 1905) [1905, 1915) 1072
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number of births for certain period(s). Table 2.2 reports expected number of deaths at
ages 50-84 between 1965 and 1989, calculated under each birth time structure with the
use of the SMR and general population mortality rates. They do not vary greatly and are
reasonably close to the actual number of deaths (1103 deaths in total) in most cases.

2.3.2 Estimating Mortality using the Nun Study Data

First consider the estimation of survival function based on the left-truncated and right-
censored data from the Nun Study - Aging Study only. Figure 2.6 compares the estimates of

Figure 2.6: Comparison of the estimated conditional survival functions: This plot compares
the nonparametric product-limit and the Weibull estimates of the conditional survival
function F (t | T ≥ 80) based on the observed data from the Nun Study - Aging Study.

the conditional survival function F(t | T ≥ 80) based on the non-parametric product limit
method and a Weibull distribution. The good agreement between the two curves suggests
that a Weibull distribution is suitable for the survival trajectory. Tsai et al. (1987) pointed
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out that the occurrence of left-truncation means the problem of small numbers in the risk
sets can now affect both the lower and the upper tails of the non-parametric estimate of
F(t | T > T ∗). They suggest to use a lower bound T ∗ that is larger than the minimum of
the left-truncation times to avoid this difficulty. This is why we estimated F(t | T > 80)

instead of F(t | T > 75) using the nonparametric approach.

Next we use the augmented likelihood (2.4) for the estimation of survival function
incorporating auxiliary information from the truncated sample. We focus on modeling the
survival after age 50; hence the time scale used in the analysis is the actual age minus
50. We consider two parametric distribution models: a Weibull distribution and a two-
piece Weibull distribution with a cutoff point at age 75. Because the participants of the
Nun Study - Aging Study are aged 75 and older and the estimation of survival before
age 75 relies primarily on the truncated sample, the two-piece Weibull model is used to
accommodate the potential difference in the mortality patterns before and after that age
point. Consider a two-piece Weibull model for the event time T with a single breakpoint
w,

T ∼

Weibull(λ1, κ1), if T ≤ w,

Weibull(λ2, κ2), if T > w

with the density and survival functions being

f(t) =

[
κ1

λ1

(
t

λ1

)κ1−1

e
−
(
t
λ1

)κ1]I{t≤w} [κ2

λ2

(
t

λ2

)κ2−1

e
−
(
t
λ2

)κ2]I{t>w}
,

F(t) =

[
e
−
(
t
λ1

)κ1]I{t≤w} [
e
−
(
t
λ2

)κ2]I{t>w}
(Jiwani, 2005). To guarantee the connectedness of the survival function, the parameters
are subjected to a continuity constraint such that

log(λ1) =
κ2

κ1

log(λ2) +

(
1− κ2

κ1

)
log(w). (2.14)

The proposed augmented likelihood and Monte-Carlo procedure are used for parameter
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Table 2.3: Estimates from the Nun Study using Weibull and two-piece Weibull distribu-
tions. EST: Maximum likelihood estimates for log parameters; SE: Model-based standard
error for MLE; RV: Estimated reduction in variance of the MLE using (2.13).

Conditional Likeihood Augmented likelihood

EST SE EST SE RV %

Weibull Weibull

log λ 3.578 0.022 3.604 0.006 93.695
log κ 1.484 0.065 1.414 0.017 92.845

Two-piece Weibull

log λ1 · · 3.503 0.028 ·
log κ1 · · 1.147 0.046 ·
log λ2 · · 3.609 0.005 94.189
log κ2 · · 1.463 0.019 91.622

estimation, where R = 1000 pseudo-data sets were generated based on the estimated
number of death by year for each birth-year-cohort as described in Section 2.3.1. The
shape of the estimated survival function from the Weibull distribution is very similar to
that from the two-piece Weibull.

Table 2.3 reports the estimated Weibull parameters and their standard errors. The
results are based on the conditional likelihood (2.1) of observed data from the Nun Study -
Aging Study, and the augmented likelihood (2.4) incorporating the auxiliary information.
A Weibull model and a two-piece Weibull model with breakpoint at age 75 are considered.
Under the two-piece Weibull model, the estimates of parameters for the ≥ 75 group are
compared with those from the conditional likelihood approach. The variances are estimated
by Louis’s formula (2.11), and the relative reduction in variance (RV), from augmented
likelihood versus the conditional likelihood approaches, is calculated using (2.13). When
the yearly information on the truncated sample members are estimated and incorporated
in the augmented likelihood, the RV for the estimators of the scale parameters in one-
and two-piece Weibull models are 93.7% and 94.2% respectively, and the RV for the shape
parameter estimators are 92.8% and 91.6% respectively.
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Figure 2.7: Estimates and confidence intervals for the survival functions using a Weibull
model based on observed data from the Nun Study - Aging Study and a two-piece Weibull
model based on the combined data with auxiliary information in terms yearly number of
deaths (right). The vertical lines are the 95% confidence intervals for the median survival
age.

Figure 2.7 gives a more straightforward comparison of the estimation accuracy for the
survival functions. The left plot is from the conditional likelihood of the observed data and
using one-piece Weibull model, while the right plot is from the augmented likelihood and the
two-piece Weibull model. The shapes of the estimated survival curves are very similar. The
shaded regions represent the 95% confidence intervals for the estimated survival functions.
The vertical lines are the 95% confidence intervals for the estimates of the median survival
age. The confidence intervals from the augmented likelihood are much narrower than the
ones from the conditional likelihood. Estimates for the other quartiles of the survival age
can be found in Table 2.4. The differences in the estimated median ages are within one
year between the conditional approaches and the proposed methods.
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Table 2.4: Estimated quartiles and empirical confidence intervals for quartiles using the
yearly auxiliary information for the Nun Study.

Conditional, Weibull Weibull Two-piece Weibull

EST 95% CI EST 95% CI EST 95% CI

Quartile 1 77.001 (74.937, 79.115) 77.148 (76.719, 77.575) 77.675 (77.236, 78.112)
Quartile 2 82.957 (81.243, 84.730) 83.617 (83.230, 84.004) 83.923 (83.541, 84.307)
Quartile 3 88.563 (87.267, 89.951) 89.786 (89.358, 90.220) 89.827 (89.413, 90.245)

2.4 Simulation Studies

Simulation studies were conducted to evaluate the performance of the method proposed.
We considered two sample scenarios that are similar to that of the Nun Study. Sample
scenario 〈1〉 is for the simplest case that all individuals were born at time 0 and truncated
later at the same time point. For sample scenario 〈2〉, there are three birth cohorts with
individuals born during B1 = [0, 0.1) ,B2 = [0.1, 0.2) , and B3 = [0.2, 0.3). The birth times
follow a uniform distribution within these windows. The left-truncation times are identical
for individuals within each birth cohort but differ by 0.1 for those from adjacent birth
time intervals. Conditional on the birth times, event times for all of the individuals were
generated. At a fixed calendar time, it is assumed that the “observed data” S were selected
by simple random sampling from the survivors at that time. For those who were not
included in S, the number of events that occurred within time intervals Aj was recorded
and served as the auxiliary data {mkj}, whereas the individual-level event times were
abandoned. In the estimation procedure, for each pseudo-data set, there were mkj event
times generated conditional on the individuals having been born at a uniformly distributed
time in interval Bk and the events occurring within Aj. The pseudo individual-level event
times were generated using the MLEs from maximizing the conditional likelihood (2.1).

The results are based on 500 replications and a total sample size of 3000, where the
conditional expectations are approximated by averaging over 1000 pseudo-data sets. The
distribution used to simulate the event times is the two-piece Weibull with λ1 = 1, λ2 =

1.09, κ1 = 2, κ2 = 4, with breakpoint located at the 0.76 quantile of the distribution. For
each simulation, we obtain estimates from the conditional likelihood not using any auxiliary
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Table 2.5: Empirical bias and reduction in variances using different timelines, types of aux-
iliary information and left-truncation probabilities. Estimates are obtained using condi-
tional likelihood L0, augmented likelihood LT using total number of deaths and augmented
likelihood LI using number of deaths in intervals.

Sample Scenario 〈1〉 Sample Scenario 〈2〉
Bias % RV % Bias % RV %

P (T < L) LT LI LT vs L0 LI vs L0 LI vs. LT LT LI LT vs L0 LI vs L0 LI vs. LT
Log Scale, ≥ 75, log λ2

0.2 1.415 1.434 33.797 35.893 3.051 1.128 1.167 64.517 66.689 5.685
0.3 1.195 1.234 62.644 64.824 5.381 0.860 0.896 84.786 86.075 7.406
0.4 0.922 0.982 83.689 85.177 7.964 0.526 0.551 93.193 93.984 10.146
0.5 0.632 0.693 93.514 94.263 9.563 0.352 0.392 96.396 96.933 14.295

Log Shape, < 75, log κ1

0.2 4.950 4.993 10.713 11.371 0.713 4.409 4.478 32.093 33.140 1.502
0.3 4.351 4.437 30.263 31.551 1.795 3.781 3.850 60.172 61.310 2.795
0.4 3.616 3.739 58.845 59.964 2.684 2.817 2.871 80.087 80.764 3.461
0.5 2.811 2.925 80.759 81.345 2.977 2.289 2.367 89.130 89.626 4.599

Log Shape, ≥ 75, log κ2

0.2 -1.378 -1.630 82.275 86.685 24.996 -0.885 -2.478 88.331 93.422 43.744
0.3 -1.053 -1.670 89.280 93.515 39.726 0.280 -1.758 92.683 96.894 57.401
0.4 -0.165 -1.420 93.126 96.922 55.153 2.108 -1.109 93.185 98.443 73.461
0.5 1.025 -1.038 94.693 98.537 68.957 −† -0.530 −† 99.057 −†

†When the truncation percentage is high (i.e. P (T < L) = 0.5) and the truncation time varies (i.e.
sample scenario 〈2〉), knowing the total number of deaths alone does not give enough information about
the earlier part of the survival distribution to ensure convergence for the estimation of log κ2.

information (L0) with the ones from the augmented likelihood using the total information
(LT ) or interval information (Li) on the number of truncated individuals.

Table 2.5 reports the average percentage of relative bias and relative reduction in vari-
ance estimates over 500 replications. Under the considered settings, the biases in the
estimates based on the augmented likelihood are negligible. Meanwhile, the standard er-
rors are substantially smaller than the ones from the conditional likelihood approach. To
see the improvement in efficiency, we calculate the relative variance reduction (RV) by com-
paring the approaches based on the augmented likelihood with the conditional likelihood
approach not using any auxiliary information (i.e. LT vs L0 and LI vs L0 ), and then by
comparing two augmented likelihood approaches (i.e. LI vs LT ). The performance of the
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three approaches improves incrementally as more detailed auxiliary information is incor-
porated. Comparing the results for the two sample scenarios, the proposed method results
in a larger efficient gain when truncation time varies (sampling scenario 〈2〉). In addition,
the results for different truncation probabilities show that the reduction in variances be-
comes larger when the truncated samples represent a larger proportion of the whole cohort.
With high percentage of truncation (i.e. P (T < L) = 0.5) and considerable variation in
truncation times (sample scenario 〈2〉), knowing the total number of deaths alone does not
in many of the pseudo sets give enough information about the earlier part of the survival
distribution to ensure convergence of the estimate of log κ2.

2.5 Discussion

In this chapter, we constructed the augmented likelihood incorporating the auxiliary sur-
vival information from the truncated sample. From both the simulation and the real data
example, incorporating the auxiliary information successfully reduces the loss in efficiency
due to the left-truncation. However, the validity of these results rely on the compatibility
of the auxiliary information. Careful selection and manipulation of the auxiliary informa-
tion is very important for the proposed method. For our application on the Nun Study -
Aging Study data, the auxiliary survival information is reliable as it comes from an earlier
study conducted on the same population. When the auxiliary information is in an alter-
native form, the way to construct the augmented likelihood becomes different, while its
approximation for the value of the likelihood can still be obtained as long as the auxiliary
information can be viewed as constraints for the generation of pseudo-data.

To achieve convergence when using Monte-Carlo approximation of the conditional ex-
pectations, generating a large enough number of pseudo-data sets is very important. On
the other hand, we want to use the smallest number of pseudo-data sets that accomplishes
convergence for the sake of time efficiency. In our application, we observed that the value
of the mean log likelihood changes while the number of pseudo-data sets increases, and it
becomes rather stable when the number of pseudo-data sets is larger than 100. However,
the ideal number will depend on the sample size, the underlying distribution, and the
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truncation percentage.

In conclusion, incorporation of auxiliary information can substantially increase the
efficiency compared to approaches based on observed left-truncated and right-censored
data only. The MCEM algorithm makes the calculation of the conditional expectation of
the likelihood and its derivatives easier when the closed forms are not obtainable. Future
work such as nonparametric approaches, incorporation of risk factors and extension to
multistate models are discussed in Chapter 5.
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Chapter 3

A Mixture Hidden Markov Model with
Partially Known Component
Memberships

3.1 Introduction

The Nun Study is a longitudinal study of aging and cognition among members of a religious
congregation, the School Sisters of Notre Dame, living in the United States. Among 1031
eligible religious sisters aged 75 years or older, 678 agreed to participate in the study in
1991-1993, and their cognitive function (e.g., whether the sister has developed dementia
or not) was assessed at the baseline and approximately every year thereafter for up to
12 assessments. If a participant passed away during the study, the exact death time was
recorded. We are interested in modeling the disease process of dementia. Consider a three-
state illness-death model (see Figure 3.1) that contains a disease-free state, a dementia
state and a death state. In this process, the death state can be reached from the other
two states and the transition from the disease-free state to the dementia state is assumed
to be nonreversible. The most widely used multistate model is the Markov model. This
kind of model assumes that the transition intensities only depend on the history of the
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Disease-free Dementia

Death
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3

Figure 3.1: A three-state stochastic process for dementia and Alzheimer’s disease

process through the current state. The Markov assumption brings great convenience to the
derivation of the likelihood function, however it may not be suitable for many applications.

Dementia is a “clinical syndrome” that may result from many diseases, and Alzheimer’s
disease (AD) is one of the main causes of dementia (Snowdon et al., 1997). In the Nun
Study, participants were diagnosed with dementia based on the presence of cognitive im-
pairment (Riley et al., 2002). The criteria include the presence of cognitive impairment
in memory and at least one other cognitive domain, functional impairment in activities
of daily living, and decline from a previous level of function. In addition, all participants
agreed to brain donation after death, thus providing a unique opportunity for the assess-
ment of AD pathology. If an individual has AD, we expect to see plaques and tangles in
the brain. These constitute the so-called AD pathology. These pathologic changes will
cause problems between or within the neurons and therefore difficulties in cognitive func-
tions. Different criteria have been used to determine whether the development status of the
pathology is severe enough to be diagnosed as AD, such as the CERAD neuropathologic
criteria and the NIA-RI neuropathologic criteria. The results of the neuropathologic as-
sessment from the Nun Study cohort showed that some of the participants were diagnosed
with dementia without development of the AD pathology, which suggests that this group
of participants may have suffered from other types of dementia that do not develop AD
pathology, for example Parkinson’s disease, use of drugs and alcohol, or temporal brain
injury, etc. Assuming that AD and other types of dementia have the same incidence may
not be reasonable. This motivates us to consider multistate models for mixed types of
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disease that give the same clinical expressions. Disease type classification can often be
challenging. For example, the neuropathological evaluation of AD obtained from brain
biopsy is generally very hard to conduct on a large population. In the Nun Study, the neu-
ropathological assessments, on whether or not AD pathology was present, were conducted
on 389 of those deceased. Therefore the disease type is known for some of the participants.
The method we propose in this chapter accommodates partially known disease types.

The structure of this chapter is the following. In Section 3.2.1 we introduce the fi-
nite mixture hidden Markov model (HMM) and a likelihood-based method for multiple
disease types. This method accounts for the heterogeneity in the disease processes and
panel observation on disease occurrence. In Section 3.2.2, we extend the mixture HMM
to incorporate the pathology data as disease type indicators. In Section 3.3, we apply the
mixture HMM to the Nun Study data. In Section 3.4, we conduct simulation studies to
ilustrate the performance of the proposed method. Then in Section 3.5, we discuss the
identifiability and estimability issues arising in HMMs. In Section 3.6, we use a Bayesian
method as an alternative way to obtain the estimates and handle the identifiability issues.
Section 3.7 is a discussion.

3.2 Method

3.2.1 A Finite Mixture Hidden Markov Model

Assume participants were recruited at time t0 ≥ 0, and the baseline assessments were taken
at accrual. After that, these participants were followed and examined at K∗ pre-fixed
assessment times t1 < t2 < . . . < tK∗ = τ , where τ is the administrative right censoring
time. Suppose the observation process may be terminated due to either the fact that the
participant may leave the study at a random time C or death. Let TD denote the time of
death, T † = min {τ, C, TD} and δ = I{T † = TD}. Denote the actual number of assessments
for a participant as K = max

{
k; tk ≤ T †; k = 1, . . . , K∗

}
, where K = K∗ if the participant

was alive and followed until the end of the study, and K < K∗ if the participant passed
away or dropped out of the study. Suppose the observation disease process {Y (t); t ≥ 0}
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is a multistate model with state space JY = {1, 2, . . . , JY }. The observation of the disease
status for a participant, who was alive at T †, is {Y (t0), Y (t1), . . . , Y (tK)}, while the set
of observed states for the deceased is {Y (t0), Y (t1), . . . , Y (tK), Y (TD)}. Denote HY (t) =

{Y (s); 0 ≤ s ≤ t} as the history of the observed state occupancies up to and include time
t

Let {Z(t); t ≥ 0} be an underlying stochastic process with state space J = {1, 2, . . . , J}.
Denote π = (π1, π2, . . . , πJ), where πj = P (Z(0) = j), j ∈ J . This is the probability
for being in an underlying state at the time origin. Let HZ(t) = {Z(s); 0 ≤ s ≤ t} be
the history of state occupancies of the underlying model up to and include time t, the
transition intensity from state i to state j at time t is

λij(t | HZ(t−)) = lim
∆t→0

P (Z(t+ ∆t−) = j|Z(t−) = i,HZ(t−))

∆t
, (3.1)

for i 6= j and i, j ∈ J . If we assume that {Z(t); t ≥ 0} is a continuous-time Markov
process, then

λij(t | HZ(t−)) = λij(t). (3.2)

Let Λ(t) be the transition intensity matrix with the (i, j) entries being λij(t) if i 6= j, and
the (i, i) entries being −hi(t), where hi(t) =

∑
j 6=i λij(t), i, j ∈ J . For s < t, let P(s, t) be

the transition probability matrix where the (i, j) entry is

pij(s, t) = P (Z(t) = j|Z(s) = i) , (3.3)

for i, j ∈ J . Under the Markov assumption (3.2), the transition probabilities can be
obtained by solving the Kolmogorov forward differential equation

∂

∂t
P (s, t) = P (s, t) Λ(t). (3.4)

If we assume the intensities going from one state to the others are constants over time, i.e.
Λ(t) = Λ, the solution to (3.4) is

P (s, t) = e(t−s)Λ. (3.5)

35



This is the so-called time-homogeneous Markov model.

If the underlying model is Markovian, given the current latent state Z(t), the observed
state Y (t) does not depend on the history of observation process and the underlying process,
that is

P
(
Y (t) | Z(t),HY

(
t−
)
,HZ

(
t−
))

= P (Y (t) | Z(t)) . (3.6)

In hidden Markov models, the observed state occupation at a time point is decided by
the underlying state that the participant is in at the same time point. The connection
between the observation model and the underlying model is represented by the emission
probability matrix EJ×JY , where the (j, u) entry is eju(t) = P (Y (t) = u|Z(t) = j) , j ∈
J , u ∈ JY . If we assume that the relationship between the observation and underlying
models is invariant in time, and that each underlying state is associated with one of the
states of the observation model, the emission probabilities become emission indicators,
where the (i, j) entry becomes

eij =

1, if state i of Z(t) is an underlying state of state j of Y (t)

0, otherwise.

Note that a non-hidden Markov model can be viewed as a special Hidden Markov Model
where the emission probability matrix is a JY -dimensional identity matrix.

If all of the participants were alive at the end of the study or censored before deaths
occurred, and all of the participants were recruited at the time origin of the process, i.e.
t0 = 0, the likelihood for the HMM with panel observation could be written in a matrix-
multiplication form (Titman and Sharples, 2010):

L (Θ|Y ) = φ0Q1Q2 . . .QK1, (3.7)

where Qk, k = 1, 2, . . . , K are J × J matrices with the (i, j) entry being

ejykpij(tk−1, tk),
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and φ0 = (π1e1y0 , π2e2y0 , . . . , πJeJy0) is a row vector of entries φ0,j = P (Z(0) = j, Y (0) =

y0) = P (Y (0) = y0 | Z(0) = j)P (Z(0) = j), j ∈ J . and 1 =
[

1, . . . , 1
]T

1×J
. The term

pij(tk−1, tk) is the probability of being in certain state j at assessment time tk conditional
on being in state i at assessment time tk−1. Multiplying by ejyk , only transitions that can
lead to the observed Y (tk−1) and Y (tk) are kept. It can be easily seen that

Qk = P (tk−1, tk)


e1yk 0 · · · 0

0 e2yk · · · 0
...

... . . . ...
0 0 · · · eJyk


Modifications are required when the chances of recruitment depend on the state occu-

pancy at the beginning of the study. Consider the case where participants are randomly
selected from the individuals who are not in an absorbing state, e.g., death, at the time of
recruitment. Define the probability for being in state j of the underlying model at time t0
given the individual is alive as:

pj (t0) = P (Z (t0) = j | alive at t0) ,

then

pj (t0) =

∑
k pkj(0, t0)πk
g (π, t0)

, (3.8)

where

g (π, t0) =
[
π1, π2, . . . , πJ

]
P (0, t0)


I1

I2

...
IJ

 , (3.9)

and Ij = I{state j is not absorbing}.

Given the sampling condition, let φ(t0, y0) be a row vector of the joint probabilities of
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being in observed state y0 and potential underlying state j at the time of recruitment t0,
j ∈ J . Its jth entry is

P (Z(t0) = j, Y (t0) = y0 | alive at t0) = ejy0pj (t0) .

Then

φ(t0, y0) =
[
p1(t0), p2(t0), . . . , pJ(t0)

]

e1y0 0 · · · 0

0 e2y0 · · · 0
...

... . . . ...
0 0 · · · eJy0


= g (π, t0)−1 πQ0, (3.10)

where Q0 is a J × J matrix with the (i, j) entry being ejy0pij(0, t0). Then the likelihood
for panel observations with non-identical recruitment time t0 is

L = φ(t0, y0)Q1 . . .QK1 = g (π, t0)−1 πQ0Q1 . . .QK1. (3.11)

If death time is observed for a participant, the contribution for the death observation
will be the probability of being in any of the non-absorbing states prior to death, and going
to the absorbing state right at TD. So we consider a J × J matrix QD with the (i, j) entry
being

ejytD

{
J∑
l=1

pil(tK , tD)λlj(tD)

}
.

The likelihood for panel observations with non-identical recruitment time and exactly ob-
served death can thus be written as

L = g (π, t0)−1 πQ0Q1 . . .QK {QD}δ 1, (3.12)

38



It can be shown that

QD = P (tK , tD) Λ


e1ytD

0 · · · 0

0 e2ytD
· · · 0

...
... . . . ...

0 0 · · · eJytD

 .

Consider the case that the sampled participants are at risk for several similar diseases,
characterized by stochastic processes Z(1)(t), Z(2)(t), . . . , Z(M)(t) correspondingly. Let J (m)

be the state space of Z(m)(t),m = 1, 2, . . . ,M . Suppose these diseases are not differentiable
by the stages of the clinical symptoms, i.e. they share the same observed disease status
Y (t). Then the underlying model takes the form of one of the underlying processes, that
is

Z(t) =
M∑
m=1

I{Type m}Z(m)(t), (3.13)

where Z(m)(t),m ∈ {1, 2, . . . ,M} are distinct Markov models. The state space of Z(t)

will be J (m) if the underlying disease process is of type m. Let π(m)
j and λ

(m)
ij (t) be the

initial probability and the transition intensities for Z(m)(t), and use superscripts (m) for
quantities that are calculated using π

(m)
j and λ

(m)
ij (t). The likelihood for finite mixture

hidden Markov model is

L =
M∑
m=1

ψmg
(
π(m), t0

)−1
π(m)Q

(m)
0 Q

(m)
1 . . .Q

(m)
K

{
Q

(m)
D

}δ
1, (3.14)

where ψm is the probability of getting disease type m, i.e. the mixture probability for
Z(m)(t).
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Table 3.1: Numbers of dementia and/or death cases in the Nun Study sample

Died Censored Total

Dementia 285 12 297
No dementia 321 60 381

Total 606 72 678

Table 3.2: Autopsy results for the pathological evaluation of AD for participants in the
Nun Study

CERAD neuropathologic criteria

Definite Probable Possible No Missing

Dementia 92 65 19 23 86
No dementia 35 71 20 64 231

Total 263 126 217

3.2.2 Partially Known Disease Type Information

The Nun Study data involves longitudinal follow-up data for 678 individuals up to 12
assessments, where the assessments are approximately annual. Clinical assessments of
dementia were recorded yearly for each individual up to their death or drop-out from the
study. The average follow-up time is 8.59 years. Dementia was identified based on the
presence of cognitive impairment (Riley et al., 2002). Numbers of dementia and/or death
cases in the Nun Study sample are given in Table 3.1. We use the CERAD neuropathologic
criteria as the indicator of the AD pathology. Based on counts of plaques, the certainty of
AD is divided into four levels: 1 - definite, 2 - probable, 3 - possible and 4 - no; see Table
3.2. Here we consider the levels “definite” and “probable” as the indicator of AD.

Given the pathology data, differentiating the underlying models for dementia with AD
pathology versus dementia without AD pathology is likely to help with understanding the
disease process. Consider a HMM with underlying model being a mixture of two types
of disease; see Figure 3.2, where {Y (t)} is the observed disease process, {Z(1)(t)} is the
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Disease-free Dementia

Death

Disease-free

Death
(without AD Pathology)

AD Pathology Dementia

Death
(with AD Pathology)

Disease-free Dementia

Death

Z(2)(t) :Z(1)(t) :

Y (t) :

1 2

3

1 2

3

1

4

2 3

5

1

4

2 3

5

1 2

3

1 2

3

Figure 3.2: A mixture hidden Markov model (HMM) for dementia and Alzheimer’s disease.
The observation process Y (t) is an illness-death process; the underlying process is a mixture
of two types of dementia: Z(1)(t) without and Z(2)(t) with coexistence of AD pathology.

process for dementia type 1 that is not caused by AD pathology, while {Z(2)(t)} is for
dementia type 2 with coexistence of AD pathology. We assume all participants will follow
one of these two disease processes. For participants with AD-pathology, we add a new state
representing the development of the AD pathology and assume the dementia state will be
reached after the pathology is present. The color in Figure 3.2 represent the correspondence
of the state(s) in the underlying model to the states in the observation model. For Z(1)(t),
this underlying disease process has a one-to-one mapping to the observation process. For
Z(2)(t), the disease process is assumed to be a 5-state Markov model where the healthy
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state and the pathology state can not be differentiated from the observed data, and the
death state of Y (t) is related to both the disease-free death and the death occurred after
development of pathology. Supposing the observed cognition data are based on a mixture
of the two types of underlying disease processes, our goal is to estimate the prevalence for
each state of the observation disease processes over time.

The onset of the disease pathology cannot be monitored continuously over time, and
only current status information can be obtained upon the death with brain autopsy. Con-
sider the Nun Study case where the underlying model Z(t) is a mixture of two Markov
models. Let E(1) and E(2) denote the emission probability matrices of observation process
Y (t) given each of the latent disease processes Z(1)(t) and Z(2)(t) respectively. Based on
the structures for the two underlying disease types, the emission probability matrices for
the two disease types are

E(1) =

 1 0 0

0 1 0

0 0 1

 ,

E(2) =


1 0 0

1 0 0

0 1 0

0 0 1

0 0 1

 .

Let X be the autopsy result, and ∆ = I{X is not missing} be the indicator of observing
X. For individuals whose pathology data are missing, their component membership is
unknown and the likelihood in (3.14) can be directly used:

L0 =
2∑

m=1

ψmg
(
π(m), t0

)−1
π(m)Q

(m)
0 Q

(m)
1 . . .Q

(m)
K

{
Q

(m)
D

}δ
1. (3.15)

where Q
(m)
k is the contribution for the kth panel observation with emission probability
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matrix E(m).

If an autopsy was conducted and gave positive results, the participant must belong
to disease type 2 and have gone through the pathology state (state 2). The likelihood
contribution from such a participant is

L11 = ψ2g
(
π(2), t0

)−1
π(2)Q

(2)
0 Q

(2)
1 . . .Q

(2)
K

{
Q

(2)
D

}δ
r, (3.16)

where the right-multiplied vector r controls the number of possibilities to be summed up,
and we want to guarantee that state 2 is experienced at some time point. Since our model
is a strictly progressive model, define

ri = I{state i can be reached from state 2} ,

which gives

r =


0

1

1

0

1

 .

Multiplying by this vector will eliminate all of the paths that end in states that do not go
through state 2.

If an autopsy was conducted and gave negative results, there are two possibilities: 1
- the participant belongs to disease type 1; 2 - the participant belongs to disease type 2
but died before the onset of the AD pathology. The likelihood for such participants is a
mixture of contributions from Z(1)(t) process and Z(2)(t) process with a state 1 to state 4
path, i.e.

L10 =
2∑

m=1

ψmg
(
π(m), t0

)−1
π(m)Q

(m)
0 Q

(m)
1 . . .Q

(m)
K

{
Q

(m)
D

}δ
cm. (3.17)
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where c1 = 1 and c2 = 1− r.

Finally the likelihood function incorporating the partially known component member-
ship based on available pathology data is a combination of above three cases. For an
individual with definite or probable pathology, the likelihood contribution is (3.16). For
individuals with possible or no pathology, use (3.17). For censored subjects or subjects
who did not have the pathology information, the likelihood contribution is (3.15). That is

L = L0I{∆ = 0}+ L10I{∆ = 1, X = 0}+ L11I{∆ = 1, X = 1}. (3.18)

The vector of parameters is Θ =
(
ψm, π

(m), λ(m);m ∈ {1, 2}
)
. The maximum likelihood

estimates for the parameters are obtained by maximizing the likelihood function (3.18)
while subject to (

ψ̂1, π̂(1), π̂(2), λ̂(1), λ̂(2)
)

= argmax L (Θ|Y )

s.t. for m ∈ {1, 2}, λ(m)
i,j ≥ 0, for i, j ∈ J (m)

ψ1 ∈ [0, 1]

π
(m)
j ∈ [0, 1]∑

j∈J (m)

π
(m)
j = 1. (3.19)

3.3 Results from the Nun Study

Table 3.3 gives the maximum likelihood estimates of the parameters using formula (3.18).
The probability for being in the pathology state at the initial age 75 was fixed at zero. This
is to deal with an identifiability issue arising in HMM. We will discuss this in Section 3.5.
The 95% confidence intervals for the log intensities are calculated using the Wald’s method;
and the model-based standard errors are the square roots of the diagonal elements in the
inverse of the negative information matrix. The bounds for the 95% CI for the intensities
are obtained by taking exponential of the bounds for the log intensities. Being in the
dementia state after the development of the AD pathology at time 0 is allowed.

44



Table 3.3: Estimated transition intensities for dementia from the Nun Study data using
mixture HMM. Parameters are estimated while fixing π(2)

2 = 0. Confidence intervals (CI)
are obtained by taking exponentials of the CI bounds for the log transitition intensities,
which are calculated based on the MLEs and model-based standard errors for the log
transitition intensities.

EST 95% CI

Disease Type 1

Disease-free to Dementia λ
(1)
12 0.055 (0.024, 0.130)

Disease-free to Death λ
(1)
13 0.088 (0.050, 0.154)

Dementia to Death λ
(1)
23 0.377 (0.290, 0.489)

Disease Type 2

Disease-free to Pathology λ
(2)
12 0.153 (0.075, 0.311)

Disease-free to Death λ
(2)
14 0.033 (0.004, 0.288)

Pathology to Dementia λ
(2)
23 0.122 (0.094, 0.158)

Pathology to Death λ
(2)
25 0.088 (0.066, 0.117)

Dementia to Death λ
(2)
35 0.254 (0.223, 0.289)

Other Parameters
Mixture probability ψ1 0.262 (0.123, 0.474)
Initial probability of Z(1)(t) π

(1)
1 0.977 (0.028, 1.000)

Initial probability of Z(2)(t) π
(2)
1 0.974 (0.825, 0.997)

According to the result, around 26% of the participants were classified as type 1, which
relates to other types of dementia than AD, with 95% confidence interval (12.3%, 47.4%).
The intensity of going to the dementia state with presenting of AD pathology is more than
twice as high comparing to participants without the AD pathology, i.e. 0.122 vs. 0.055. It
takes an average of 6.536 years for type 2 participants to develop the AD pathology and
then 8.197 years to proceed to dementia, comparing to 18.182 years for type 1 participants
to go from healthy directly to dementia. For both types of participants, being diagnosed
with dementia increases their transition intensities to the death state. The mortality rate
is 4.284 times higher for type 1 participants and 7.697 times higher for type 2 participants.

Figure 3.3 gives the estimated prevalence of dementia for participants who were at the
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Figure 3.3: Estimated cumulative probability for dementia for religious sisters who were
in healthy state at age 75. The red dashed curve is from a time-homogeneous illness-death
model; the purple solid curve is from the proposed mixture HMM.

disease-free state at age 75. The x-axis is age. The y-axis is the cumulative probability for
being clinically diagnosed with dementia, and the calculation of this probability is given in
Appendix A.2. The purple solid curve is the result from the proposed mixture HMM, and
the red dashed curve is from time-homogeneous illness-death model. When using a single
time-homogeneous illness-death model, the shape of the prevalence curve has to be from
an exponential distribution, while our proposed method allows a more flexible slope that
can go steeper or flatter at different ages. Our method gives an overall smaller prevalence
of dementia than the homogeneous model.

Figure 3.4 compares prevalence of dementia between the two disease types. The left-
hand-side curve is for non-AD dementia, and the right-hand-side curve is for dementia with
AD pathology. According to these curves, dementia due to AD has a lower incidence rate
at younger ages (75 - 85), while this rate is increasing as age becomes older and exceeds
that of non-AD dementia eventually. The prevalence for dementia are around 40% and
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Figure 3.4: Cumulative probability from the Nun Study for two types of dementia type
1 (left) without and type 2 (right) with dementia with AD pathology for people who are
healthy at age 75

45% for non-AD and AD groups respectively.

3.4 Simulation Studies

To evaluate the performance of the proposed mixture HMM, we conducted simulation
studies. Consider the same observation and underlying models as shown in Figure 3.2, and
assume that the “study period” is taken from time 0 to time 1, and a sequence of observa-
tions of Y (t) are recorded at {0, 0.25, 0.5, 0.75, 1}. Let the chance of having either disease
type be 0.5 and the initial probabilities for the two disease types be π(1) = (0.7, 0.3, 0)

and π(2) = (0.4, 0.3, 0.3, 0, 0) respectively. The true values of the transition intensities are
calculated by setting the overall right censoring rate to 0.2 while assuming λ(1)

12 /λ
(1)
13 = 2,
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λ
(1)
23 /λ

(1)
13 = 1.5 for disease type 1, and λ(2)

12 /λ
(2)
14 = 2.2, λ(2)

25 /λ
(2)
14 = 1.8, λ(2)

35 /λ
(2)
14 = 2.5 for

disease type 2. The recruitment time is 0 for every participant. The values of the transition
intensities of the two types of disease processes are given below:

Λ1 =

 −4.302 2.383 1.191

0 −1.787 1.787

0 0 0

 ,

Λ2 =


−2.621 1.802 0 0.819 0

0 0 −3.931 2.457 1.474

0 0 0 −2.047 2.047

0 0 0 0 0

0 0 0 0 0

 .

For each individual, we first generate the mixture component membership using a Bernoulli
distribution with mean 0.5, then generate panel observations for this individual using
underlying model Z(m)(t),m ∈ {1, 2}. If this individual is censored at the end of follow-up,
we discard the membership information and treat it as unknown, otherwise, we have 80%
chance for keeping the membership as known.

Table 3.4 gives simulation results based on 700 replications and sample size 500. In
our simulation scenario, the identifiability and estimability issues arise when the proposed
method is applied. These are common problems in hidden Markov models (Titman and
Sharples, 2010). Therefore the maximization procedure was conducted under the constraint
that the ratio π(2)

2 /π
(2)
1 is known. More discussion regarding the identifiability and estima-

bility issues for the HMM will be given in Section 3.5. The standard errors in the table are
the empirical standard errors of the estimates from 700 replications. For each replication,
the 95% confidence intervals are calculated using the estimates and model-based standard
errors from that replication, and the portions of confidence intervals that contain the true
value are reported in Table 3.4. According to the simulation results, the average values of
the estimates are close to the true values of the parameters. The coverage probabilities of
the 95% confidence intervals are close to 0.95, which suggests that the estimated standard
deviations are reasonable.
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Table 3.4: Simulation results based on 700 replications with sample size 500. The MLEs
are obtained while assuming known π

(2)
2 /π

(2)
1 . EST: average estimates; SEemp: empirical

standard errors; CI.cover: coverage probability for 95% confidence intervals.

TRUE EST SEemp CI.cover
Disease Type 1

λ
(1)
12 2.383 2.984 0.669 97.348
λ

(1)
13 1.191 0.754 0.514 99.242
λ

(1)
23 1.787 1.838 0.299 92.614

Disease Type 2

λ
(2)
12 1.802 2.202 0.728 99.432
λ

(2)
14 0.819 0.745 0.645 94.886
λ

(2)
23 2.457 2.251 0.515 94.129
λ

(2)
25 1.474 2.135 0.453 87.500
λ

(2)
35 2.047 2.081 0.364 91.667

Other Parameters
ψ1 0.500 0.443 0.048 94.886
π

(1)
1 0.700 0.661 0.045 98.295
π

(2)
1 0.400 0.416 0.020 93.561

3.5 Parameter Identifiability and Estimability in Mix-
ture Hidden Markov Models

Two common problems in hidden Markov models (HMM) are the identifiability and the
estimability issues. As pointed out by Titman and Sharples (2010), these issues are more
likely due to the incomplete nature of the observation scheme and the potential complexity
of the models. To show the identifiability for the proposed mixture HMM is highly nontriv-
ial, if not intractable, we explore the issue starting from a simple HMM as shown in Figure
3.5, where the observation process contains only two states, and the underlying model is an
illness-death model. When an individual is in either state 1 or 2 of the underlying model,
we can only know that he/she is not in the absorbing state.
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Z(t) :

Y (t) : 1 2

1 2

3

Figure 3.5: A simple hidden Markov model with a two-state observation process and a
three-state underlying process

The emission probability matrix for such an HMM is

E =

 1 0

1 0

0 1

 .
The intensity matrix for the underlying model is

Λ =

 −h1 λ12 λ13

0 −λ23 λ23

0 0 0

 ,
where h1 = λ12 +λ13. The closed forms of the elements of the transition probability matrix,
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obtained by solving the Kolmogorov forward differential equation, are the following:

p11 (s, t) = e−h1(t−s),

p12 (s, t) =

− λ12
h1−λ23

[
e−h1(t−s) − e−λ23(t−s)] if h1 6= λ23

λ12 (t− s) e−h1(t−s) if h1 = λ23,

p22 (s, t) = e−λ23(t−s),

p21 = p31 = p32 = 0, and pi3 = 1−
∑2

j=1 pij, i = 1, 2, 3. Suppose that all participants were
recruited at time 0, let πi denote the probability for being in state i at time 0, and π3 = 0

and π2 = 1−π1. The vector of unknown parameters is thus Θ = (π1, λ12, λ13, λ23). Let t be
the death or censoring time whichever is less, and δ = 1 if Y (t) = 2, and δ = 0 otherwise.
If h1 6= λ23, the likelihood function is

L (Θ) = π1p11(0, t)λδ13 + π1p12(0, t)λδ23 + (1− π1) p22(0, t)λδ23

=
π1 (λ13 − λ23)

h1 − λ23

(
hδ1e
−h1t − λδ23e

−λ23t
)

+ λδ23e
−λ23t, (3.20)

where we only have three effective parameters: h1 = λ12+λ13, λ23 and (π1 (λ13 − λ23))/(h1−
λ23). Consider another set of values for the parameters Θ∗ = (π∗1, λ

∗
12, λ

∗
13, λ

∗
23), where for

some 0 < ρ < 1/π1,

π∗1 = ρπ1

λ∗13 =
λ13 − (1− ρ)λ23

ρ

λ∗12 = λ12 + λ13 − λ∗13

λ∗23 = λ23.

It’s obvious that L (Θ) = L (Θ∗). If h1 = λ23, the likelihood function is

L (Θ) = e−h1t
[
(1 + π1λ12t)h

δ
1 − δπ1λ12

]
. (3.21)

That is, for any 0 < ρ < 1/π1, the likelihood function gives the same value when π∗1 = ρπ1,

51



λ∗12 = λ12/ρ and λ∗12 = λ12 + λ13 − λ∗13.

As an extension to the HMM, the proposed mixture HMM has a more complicated
structure, therefore the problems are more likely to appear. Consider a simplified sce-
nario where all of the participants were followed from time 0 until their deaths. As-
sume that all of the participants started in the disease-free state, with or without pathol-
ogy, and were diagnosed with dementia before they died. Let a1 and a2 be the time at
the first and the last assessment time that the participant is in the disease-free state,
i.e. a1 = min {tk;Y (tk) = 1}, a2 = max {tk;Y (tk) = 1}, k = 0, 1, . . . , K. Similarly,
let a3 = min {tk;Y (tk) = 2}, a4 = max {tk;Y (tk) = 2}, and a5 = tD. Assume that
Z(1)(t) and Z(2)(t) are time-homogeneous Markov models and let auv = av − au for
u < v, u, v ∈ {1, 2, . . . , 5}. If λ(1)

12 + λ
(1)
13 6= λ

(1)
23 , λ

(2)
12 + λ

(2)
14 6= λ

(2)
23 + λ

(2)
25 6= λ

(2)
35 , the

likelihood function (3.18) can be written as

L = I1ψ1π
(1)
1 λ

(1)
12 λ

(1)
23

e
−
(
λ
(1)
12 +λ

(1)
13

)
a12−λ(1)23 (a23+a35) − e−

(
λ
(1)
12 +λ

(1)
13

)
(a12+a23)−λ(1)23 a35

λ
(1)
12 + λ

(1)
13 − λ

(1)
23

+I2ψ2

π(2)
1 λ

(2)
12 λ

(2)
23 λ

(2)
35

 e
−
(
λ
(2)
12 +λ

(2)
14

)
a12−λ(2)35 (a23+a35)(

λ
(2)
12 + λ

(2)
14 − λ

(2)
35

)(
λ

(2)
23 + λ

(2)
25 − λ

(2)
35

)
+

e
−
(
λ
(2)
12 +λ

(2)
14

)
(a12+a23)−λ(2)35 a35(

λ
(2)
12 + λ

(2)
14 − λ

(2)
23 − λ

(2)
25

)(
λ

(2)
12 + λ

(2)
13 − λ

(2)
35

)
−e
−
(
λ
(2)
12 +λ

(2)
14

)
a12−λ(2)35 (a23+a35)

+ e
−
(
λ
(2)
23 +λ

(2)
25

)
(a12+a23)−λ(2)35 a35 − e−

(
λ
(2)
23 +λ

(2)
25

)
a12−λ(2)35 (a23+a35)(

λ
(2)
12 + λ

(2)
14 − λ

(2)
23 − λ

(2)
25

)(
λ

(2)
23 + λ

(2)
25 − λ

(2)
35

)


−π(2)
2 λ

(2)
23 λ

(2)
35

e
−
(
λ
(2)
23 +λ

(2)
25

)
(a12+a23)−λ(2)35 a35 − e−

(
λ
(2)
23 +λ

(2)
25

)
a12−λ(2)35 (a23+a35)

λ
(2)
23 + λ

(2)
25 − λ

(2)
35

 , (3.22)
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where ψ2 = 1− ψ1 and

I1 = 1− I {∆ = 1, X = 1} =

1 if pathology result is negative or missing,

0 otherwise;

I2 = 1− I {∆ = 1, X = 0} =

1 if pathology result is positive or missing,

0 otherwise.
(3.23)

In (3.22), the vector of unknown parameters is

Θ =
(
ψ1, π

(1)
1 , λ

(1)
12 , λ

(1)
13 , λ

(1)
23 , π

(2)
1 , π

(2)
2 , λ

(2)
12 , λ

(2)
14 , λ

(2)
23 , λ

(2)
25 , λ

(2)
35

)
.

It’s obvious that we are able to identify λ(1)
12 + λ

(1)
23 , λ

(1)
23 , λ

(2)
12 + λ

(2)
14 , λ

(2)
23 + λ

(2)
25 , λ

(2)
35 , and

ψ1. Consider some ρ1 ∈ (0, 1/π
(1)
1 ) and ρ2 ∈ (0, 1/(π

(1)
2 + π

(2)
2 )); it can be shown that the

following parameter vector gives the same likelihood as Θ does.

Θ∗ =
(
ψ1, ρ1π

(1)
1 ,

λ
(1)
12

ρ1
,
(

1− 1
ρ1

)
λ

(1)
12 + λ

(1)
13 , λ

(1)
23 ,

ρ2π
(2)
1 , ρ2π

(2)
2 , λ

(2)
12 , λ

(2)
14 ,

λ
(2)
23

ρ2
,
(

1− 1
ρ23

)
λ

(2)
23 + λ

(2)
25 , λ

(2)
35

)
(3.24)

Therefore there is an identifiability issue in this case. However, if we have both partici-
pants who were diagnosed with dementia and participants who were never observed in the
dementia state before passing away, we would be able to identify all of the parameters.
A complete list of closed form expressions of the likelihood function for different observed
data scenarios is given in Appendix A.1.

Even if all of the parameters are identifiable according to the form of the likelihood
function, we still cannot guarantee to produce good estimates from numerically maximizing
the likelihood function. The complicated form of the likelihood function brings difficulties
in the estimation of the parameters. One reason behind the difficulties in getting the
MLE is the existence of local maxima in the likelihood function, which may cause the
maximizing procedure to be stuck at a point away from the MLE. Another reason is
the “weak identifiability”, which occurs when the likelihood has “flat” regions around the
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Table 3.5: Comparison of the choices of constraints based on simulation studies with 700
replications and sample size 500

S0: No cons. S1:
π̂
(2)
2

π̂
(2)
1

=
π
(2)
2

π
(2)
1

S2:
λ̂
(2)
14

λ̂
(1)
13

=
λ
(2)
14

λ
(1)
13

S3: S1&S2 S4:
λ̂
(2)
12

λ̂
(2)
14

=
λ
(2)
25

λ
(2)
14

TRUE EST SE EST SE EST SE EST SE EST SE

Transition Intensities of Z(1)(t)

λ
(1)
12 2.383 2.441 0.713 3.166 1.029 2.269 0.356 3.595 0.812 2.832 0.599
λ

(1)
13 1.191 1.272 0.275 0.947 0.555 1.275 0.257 0.640 0.382 1.214 0.319
λ

(1)
23 1.787 2.157 0.323 2.169 0.323 2.148 0.320 2.160 0.321 2.179 0.325

Transition Intensities of Z(2)(t)

λ
(2)
12 1.802 0.000 0.005 1.447 0.424 0.000 0.000 1.267 0.204 0.000 0.004
λ

(2)
14 0.819 0.274 0.835 0.610 0.466 . . . . 0.803 0.127
λ

(2)
23 2.457 1.386 0.254 2.474 0.610 1.390 0.256 2.296 0.480 1.346 0.245
λ

(2)
25 1.474 1.555 0.290 2.665 0.674 1.577 0.283 2.455 0.503 . .
λ

(2)
35 2.047 1.449 0.226 1.437 0.221 1.454 0.227 1.438 0.221 1.435 0.220

Other Parameters

π
(1)
1 0.700 0.669 0.312 0.625 0.329 0.677 0.249 0.599 0.212 0.649 0.243
π

(2)
1 0.400 0.076 0.076 0.419 0.051 0.057 0.027 0.426 0.039 0.111 0.058
π

(2)
2 0.300 0.627 0.311 . . 0.639 0.234 . . 0.607 0.245
ψ1 0.500 0.495 0.161 0.437 0.153 0.508 0.103 0.409 0.087 0.466 0.102

maximum value of likelihood, so that the MLE yields multiple different but close estimates.
Berzofsky and Biemer (2012) suggest that this is a common issue for latent class models.

Literature suggests that more frequent observations will make the problem less likely
to appear (Titman and Sharples, 2010). However, increasing observation frequency can be
expensive and is hard to achieve if the issue was found after the data collection is done.
In this case, introducing constraints on the transition intensities to reduce the dimension
of the parameter space may help.

In our simulation study for the model in Figure 3.2, we dealt with the issue with a
dimension reduction approach. Table 3.5 gives several options of constraints and their per-
formance. These options include: scenario 0 - directly maximizing the likelihood without
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constraint; scenario 1 (S1) - controlling the ratio of being in pathology state versus healthy
state for disease type 2; scenario 2 (S2) - controlling the ratio of intensities from disease-
free to death of the two disease types; scenario 3 (S3) - controlling the previous two at the
same time; scenario 4 (S4) - controlling the ratio of intensities from dementia to death of
the two disease types. The estimates and the model-based standard errors in Table 3.5 are
averaged over 100 replications. Without imposing any constraint, the MLE and standard
error for λ(2)

12 gave zero values, suggesting the presence of potential issues. Scenarios S1
and S3 produced valid estimates for λ(2)

12 while S1 required less reduction in dimension of
the parameter. This is the reason why we proceeded with scenario S1. However, the choice
of the constraint depends on the structure of the model and values of the true intensi-
ties. Standard solutions that apply to the general identifiability and estimability issues in
mixture HMMs are still under investigation.

For the Nun Study case, we put a constraint on the initial probability for being in
the pathology state at age 75 to reduce the parameter dimension. However, the way to
deal with the estimability issue is not unique. For example, information regarding the
relationship between the transition intensities may be available in the literature. There
may be information on the comparison between time-to-dementia for a no-AD-pathology
participant versus a participant with pathology, or the death time difference between an
individual with dementia and a healthy individual. This kind of information can be either
a definite number or an approximate interval.

3.6 A Bayesian Approach for Parameter Estimation

The Bayesian method has became a popular tool for making statistical inference using
complex models due to the convenience in numerical calculation and the ability to incor-
porate knowledge on the parameters. It usually involves assignment of prior distributions
to the parameters and, possibly, a set of hyperparameters of the prior distributions. The
Bayesian inference is made based on the posterior distributions of the parameters. The
posteriors are derived based on the priors and the conditional distribution of the observed
data given the values of the parameters, thus are proportional to the likelihood function.
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The standard point estimator of the value of a parameter is the mean of the posterior for
that parameter, given the data.

In this section, we consider Bayesian inference for the proposed mixture HMM and
explore if incorporating prior informations on certain parameters can help with the iden-
tifiability and estimability issues. Simulations are conduced by using the same model and
parameters configurations as in Section 3.4. Results are based on 2000 iterations (exclud-
ing the burning stage) and sample size 5000. The numerical calculations use the Gibbs
Sampler conducted by JAGS. We use two criteria to evaluate the convergence of the Gibbs
Sampler, the effective number of iterations Neff and another commonly used criterion R̂

(Gelman and Rubin, 1992). Usually, we expect Neff ≥ 30 and R̂ ≈ 1 if the algorithm
converges successfully.

Given the parameters of interest Θ =
{
ψm, π

(m), λ(m),m ∈ {1, 2}
}
, consider three sce-

narios for the prior distributions. Details of the prior distribution and the analysis results
are given below.

For scenario 1, we use diffuse prior distributions for all of the parameters, which are in
forms as the following:

ψ1 ∼ Uniform (0, 1)

π
(1)
1 ∼ Uniform (0, 1)

π
(2)
1 ∼ Uniform (0, 1)

π
(2)
2 | π

(2)
1 ∼ Uniform(0, 1− π(2)

1 )

log λ
(m)
ij ∼ Normal (0, 10000) .

Table 3.6 gives results for scenario 1. When we have no prior knowledge on any parameter,
the algorithm gives posteriors that are almost fixed at zero for λ(2)

12 .

Scenario 2 shows an ideal case where the prior distributions of transition intensities
have means at the true values of the parameters. The prior distributions for scenario 2 are
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the following:

ψ1 ∼ Uniform (0, 1)

π
(1)
1 ∼ Uniform (0, 1)

π
(2)
1 ∼ Uniform (0, 1)

π
(2)
2 | π

(2)
1 ∼ Uniform(0, 1− π(2)

1 )

log λ
(m)
ij ∼ Normal

(
log λ

(m)
ij , V

)
V ∼ Uniform (0.2, 0.3) .

When using informative priors, the results become much better; see Table 3.6, where valid
estimates of parameters and standard errors are produced and most of the Neff and R̂ are
acceptable.

One may wonder, as the problem is most likely with the estimation of λ(2)
12 due to the

fact that onset time of AD pathology is unobservable and only current status information
is available, would it be helpful to only provide prior information on this intensity? Thus
we tried scenario 3, where we put informative priors for λ(2)

14 and λ(2)
12 /λ

(2)
14 and diffuse priors

for the rest of the parameters. Instead of directly putting prior information on λ(2)
12 , we use

prior information on the transition intensity for the disease-free death, λ(2)
14 , and the ratio

between developing AD pathology versus death. This is because that we cannot observe
transitions from the disease-free state to the pathology state, while it is might be possible
to get prior information on the disease-free mortality rate, and the ratio of portions of
individuals who died before and after the pathology developed. Another reason of putting
prior information on intensities for transitions 1 → 2 and 1 → 4 is that these transitions
are never observed, which is likely to cause identifiability and estimability issues. The prior
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distributions for scenario 3 are the following:

ψ1 ∼ Uniform (0, 1)

π
(1)
1 ∼ Uniform (0, 1)

π
(2)
1 ∼ Uniform (0, 1)

π
(2)
2 | π

(2)
1 ∼ Uniform(0, 1− π(2)

1 )

log λ
(m)
ij ∼ Normal (0, 10000) , excludes log λ

(2)
12 , log λ

(2)
14

log λ
(m)
ij ∼ Normal

(
log λ

(m)
ij , V

)
λ

(2)
12

λ
(2)
14

∼ Normal

(
λ

(2)
12

λ
(2)
14

, V

)
V ∼ Uniform (0.2, 0.3) .

Table 3.6 shows that the informative prior we chose for λ(2)
12 and λ

(2)
14 does help with the

estimation of λ(2)
12 . However, comparing the results using type 1 and type 3 priors, only

using informative priors for λ(2)
12 and λ

(2)
14 causes problems in posteriors of λ(2)

23 and λ
(2)
25 .

Therefore it is not clear if utilizing auxiliary information on a problematic parameter will
solve the issue. Instead, one needs to find the solution case by case.
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Table 3.6: Bayesian analysis based on a simulated data set with sample size 5000 using different types
of priors. Type 1 - using diffuse prior distributions; Type 2 - using informative prior distributions
which have means at the true values of the parameters; Type 3 - using informative prior distributions
for λ(2)

14 and λ(2)
12 /λ

(2)
14 which have means at the true values and diffuse priors for the other parameters.

qp: the qth quantile of the posterior distributions. Neff ≥ 30 and R̂ ≈ 1 indicate that the algorithm
converges successfully.

Posterior Distribution

TRUE MEAN SD q2.5% q25% q50% q75% q97.5% R̂ Neff

Using Type 1 Prior Distributions

λ
(1)
12 2.383 3.594 0.584 2.595 3.142 3.532 3.966 4.846 1.001 2000
λ

(1)
13 1.191 0.010 0.064 0.000 0.000 0.000 0.000 0.088 1.001 1800
λ

(1)
23 1.787 2.166 0.228 1.754 2.003 2.150 2.316 2.640 1.007 660
λ

(2)
12 1.802 0.000 0.003 0.000 0.000 0.000 0.000 0.000 2.260 3
λ

(2)
14 0.819 3.802 0.634 2.803 3.333 3.751 4.194 5.204 1.002 930
λ

(2)
23 2.457 1.309 0.130 1.074 1.220 1.301 1.393 1.578 1.010 160
λ

(2)
25 1.474 1.115 0.129 0.881 1.021 1.111 1.200 1.387 1.006 2000
λ

(2)
35 2.047 1.560 0.168 1.266 1.446 1.549 1.661 1.954 1.028 620
π

(1)
1 0.700 0.608 0.034 0.538 0.587 0.608 0.632 0.670 1.001 2000
π

(2)
1 0.400 0.194 0.024 0.148 0.178 0.193 0.209 0.242 1.012 2000
π

(2)
2 0.300 0.573 0.025 0.520 0.558 0.574 0.590 0.621 1.015 2000
ψ1 0.500 0.368 0.025 0.320 0.350 0.368 0.384 0.421 1.006 2000

Using Type 2 Prior Distributions

λ
(1)
12 2.383 2.954 0.498 2.106 2.601 2.903 3.241 4.069 1.002 1100
λ

(1)
13 1.191 0.981 0.272 0.453 0.796 0.983 1.166 1.533 1.014 140
λ

(1)
23 1.787 2.085 0.244 1.643 1.907 2.076 2.255 2.577 1.013 130
λ

(2)
12 1.802 1.968 0.424 1.252 1.675 1.931 2.223 2.881 1.090 28
λ

(2)
14 0.819 0.711 0.249 0.337 0.532 0.675 0.851 1.235 1.035 2000
λ

(2)
23 2.457 2.407 0.585 1.478 1.961 2.351 2.739 3.746 1.094 26
λ

(2)
25 1.474 1.958 0.490 1.134 1.583 1.892 2.287 2.994 1.100 26
λ

(2)
35 2.047 1.640 0.197 1.326 1.503 1.605 1.756 2.075 1.012 140
π

(1)
1 0.700 0.661 0.033 0.595 0.640 0.662 0.684 0.722 1.010 270
π

(2)
1 0.400 0.393 0.111 0.139 0.328 0.409 0.471 0.579 1.312 14
π

(2)
2 0.300 0.352 0.105 0.177 0.276 0.336 0.413 0.579 1.149 38
ψ1 0.500 0.433 0.033 0.372 0.410 0.433 0.454 0.500 1.001 1600

Using Type 3 Prior Distributions

λ
(1)
12 2.383 3.662 0.692 2.475 3.169 3.611 4.108 5.150 1.033 66
λ

(1)
13 1.191 0.011 0.071 0.000 0.000 0.000 0.000 0.136 1.001 2000
λ

(1)
23 1.787 2.098 0.247 1.670 1.923 2.083 2.245 2.647 1.011 150
λ

(2)
12 1.802 1.908 0.226 1.442 1.781 1.891 2.026 2.409 1.162 1200
λ

(2)
14 0.819 0.898 0.253 0.589 0.726 0.834 0.992 1.572 2.569 3
λ

(2)
23 2.457 137.810 215.694 1.921 4.201 19.187 203.291 755.637 6.561 2
λ

(2)
25 1.474 114.434 177.025 1.555 3.741 16.432 177.552 620.473 6.499 2
λ

(2)
35 2.047 1.615 0.195 1.240 1.490 1.601 1.717 2.072 1.007 230
π

(1)
1 0.700 0.603 0.034 0.533 0.581 0.605 0.626 0.663 1.006 2000
π

(2)
1 0.400 0.680 0.109 0.416 0.622 0.726 0.763 0.795 2.712 3
π

(2)
2 0.300 0.090 0.106 0.000 0.005 0.036 0.150 0.349 4.663 2
ψ1 0.500 0.369 0.027 0.316 0.350 0.369 0.387 0.424 1.021 78
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3.7 Discussion

In this chapter, we proposed a mixture hidden Markov model which provides the ability to
model non-Markov transition times while utilizing the good properties of Markov models.
Comparing to the traditional HMM, the mixture HMM is particularly appealing when the
underlying disease has multiple types and when relaxation of the Markov assumption on
the observation model is needed. The proposed method is also able to incorporate potential
information for the mixture membership to improve the efficiency and the estimability.

An advantage of the mixture hidden Markov models is that the estimates can be in-
terpreted for cohorts with either single-type of disease or mixture-type of disease. In our
application to the disease process of dementia, the model was able to show the difference
in prevalence of the two types of disease. However, one needs to be careful when relating
the estimates for a single-type cohort to the targeted disease type, because the potential
identifiability and estimability issues may make these results less interpretable.

We have shown that even the simplest HMM suffers from the identifiability and estima-
bility issues. This suggests that strategies to identify and contain these issues are essential
to getting good estimates in mixture HMM. However, general procedures on how to do
these are still under development. In this chapter, we used both analytical and empirical
ways to identify the existence of these issues, and reduced the dimension of the unknown
parameter by putting constraints to solve these issues. We also conducted Bayesian anal-
yses to investigate the usage of auxiliary information on the parameter and constraints on
the parameter. Results suggested that informative priors are helpful, while how to choose
which parameter should have an informative prior depends on the structure of the model
and the sample, and is thus not very straightforward. There are other solutions to these
problems available from the literature (Titman and Sharples, 2010) including increasing
the number of observations.

In conclusion, mixture HMM provides a good tool for modeling a disease process where
multiple underlying disease types share common symptoms. It relaxes the Markov assump-
tion and allows individuals to have different incidence rates of disease stages according to
their disease types. Discussion on future research directions will be given in Chapter 5.
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Chapter 4

Response Dependent Sampling in
Multistate Models

4.1 Introduction

The Nun Study is a longitudinal study aiming to understand the disease progression and
potential risk factors of AD. Participants of the study are 678 American Roman Catholic
sisters who are members of the congregation of the School Sisters of Notre Dame. These
participants were born between 1886 and 1916, and their ages at time of recruitment were
75 to 106.

The observations include the year of birth and approximately annual measurements of
cognitive status for the participants from 1991 (the start of the study) until death or the end
of follow up in 2003. Covariates include the presence of the allele ε4 in the apolipoprotein
E gene (APOE − ε4), which is a commonly known risk factor for Alzheimer’ s disease,
and intellectual factors such as educational level, high school course grades, and number
of languages spoken.

At each assessment time, the cognitive stages are categorized into three levels: nor-
mal cognition (NC), mild cognitive impairment (MCI) and dementia. We use a four-state
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NC MCI Dementia

Death

1 2 3

4

Figure 4.1: A four-state stochastic process for joint modeling of the transitions among
normal cognition (NC), mild cognitive impairment (MCI), dementia, and death

model to represent the disease process for dementia, see Figure 4.1, where state 1, 2, 3 and
4 represent normal cognition, mild cognitive impairment, dementia and death correspond-
ingly. The transitions include forward progression from normal cognition to mild cognitive
impairment and then to dementia, a backward transition from mild cognitive impairment
to normal cognition, as well as death that can happen at any disease level as a competing
event. While the exact death time will be recorded, the exact transition times into other
states are interval censored under the intermittent observation scheme. As AD is often a
senile disease, we use age 75 as the time origin. The time scale used in this chapter is time
since turning 75 (i.e., age - 75).

In many longitudinal studies, the cohort is selected conditioning on subjects alive and
in one of states 1, 2 or 3 at the study entry. For example in the Nun Study, only religious
sisters from the original birth cohort that were still alive in 1991 were eligible to be recruited
into the study. This will lead to left-truncation in the sample. In a longitudinal study of
bloodstream infection (Vakulenko-Lagun and Mandel, 2016), a cross-sectional sample of
intensive care unit patients who lived long enough to be present on the sampling day were
followed until discharge or death. Andersen (1988) analyzed data from a study on incidence
of nephropathy in insulin dependent diabetes, the study population consists of patients
with diabetes and referred to a special hospital, and some of them already had diabetic
nephropathy at the first admission. A similar situation appears in other prospective cohort
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studies of disease processes such as HIV infection (Copas and Farewell, 2001) and dementia
and AD (Commenges et al., 2004). Ignoring such sampling conditions will lead to bias in
multistate analysis. One can construct likelihood conditioning on the baseline information,
e.g., duration from time origin to the study entry and the state occupation at study entry.
However, such a conditioning approach will generally result in a loss of information relative
to that contained in the unconditional likelihood. The efficiency depends on the amount
of information which is lost by ignoring the contribution of the baseline states and left-
truncation time; parameters associated with certain transitions may not be identifiable
when there is not enough information to recover as a consequence. We propose a weighted
method that makes use of the state occupation at recruitment given the sampling condition
and initial probabilities. As the disease process of dementia is widely studied, information
regarding the age-specific prevalence for each cognitive stage and dementia can be found
in the literature. The population prevalences of cognitive stages and dementia are used as
the initial probabilities.

The remainder of this chapter is structured as follows. In Section 4.2, we define notation
and introduce methods for multistate Markov models under intermittent observation. Then
we develop a weighted likelihood which accommodates auxiliary population prevalence
information to adjust for the left-truncation. In Section 4.3, we illustrate the application
of the proposed method in the context of the Nun Study. In Section 4.4, we conduct
simulation studies to illustrate the performance of the proposed method. we produce
estimates using a Bayesian approach in Section 4.5 and discuss the sensitivity to the choice
of the prior distribution. Concluding remarks and suggestions for future work are given in
Section 4.6.

4.2 Methods

4.2.1 Multistate Models for Disease Process Data

The multistate model is a widely used tool for disease process data. Structures of such
models contain multiple states which correspond to different stages of diseases and transi-

63



tions between these states. For example, let {Z(t); t ≥ 0} be a continuous time multistate
stochastic process with state space J = {1, 2, . . . , J}. Let H(t) = {Z(s); 0 ≤ s ≤ t} be the
history of state occupancies before time t; the transition intensity from state i to state j
at time t is

λij(t | H(t−)) = lim
∆t→0

P (Z(t+ ∆t−) = j|Z(t−) = i,H(t−))

∆t
, for i 6= j and i, j ∈ J . (4.1)

One of the most widely used models for multistate processes is the continuous time Markov
model which assumes the probability for being in a state at any future time u > t given the
current state occupancy Z(t) is independent of transition history H(t−). This is equivalent
to assuming that

λij(t | H(t−)) = λij(t), for i 6= j and i, j ∈ J . (4.2)

Let Λ(t) be the transition intensity matrix with the (i, j) off-diagonal entries being λij(t),
and the diagonal entries being −hi(t), where hi(t) =

∑
j 6=i λij(t). Let P be the transition

probability matrix where the (i, j) entry is

pij(s, t) = P (Z(t) = j|Z(s) = i)), for 0 ≤ s ≤ t and i, j ∈ J . (4.3)

Under the Markov assumption (4.2), the values of the transition probabilities can be ob-
tained by solving the Kolmogorov forward differential equation

∂

∂t
P (s, t) = P (s, t) Λ(t). (4.4)

If we assume the intensities going from one state to the others are constants over time,
i.e., Λ(t) = Λ, the solution to (4.4) is

P (s, t) = e(t−s)Λ. (4.5)

This is the so-called time-homogeneous Markov model. When the intensity matrix Λ

has a relative simple structure, the closed forms of entries of (4.5) can be derived by
matrix decomposition of (t− s)Λ. When Λ is complicated, one can use a Taylor series to
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approximate the value of the matrix exponential.

When the time-homogeneous assumption is violated, a piecewise constant intensity
model provides a more flexible setting while retaining some convenience when calculating
the transition probability matrix. Let 0 < c1 < . . . < cR < ∞ be pre-fixed cut-points.
Without loss of generality let c0 = 0 and cR+1 = ∞. Then the time intervals are Cr =

[cr, cr+1) , r = 0, 1, . . . , R. The transition intensity matrix for the rth interval is Λ(t) = Λr,
∀t ∈ Cr. For cr < s < t < cr+1, the transition probability matrix is P (s, t) = e(t−s)Λr , r =

0, 1, . . . , R. For s ∈ Crs , t ∈ Crt , the transition matrix can be calculated by recurrent use
of the Chapman-Kolmogorov Equation, which gives

P (s, t) =
rt∏

r=rs

P (max {s, cr} ,min {t, cr+1}) . (4.6)

When the research interests lie in investigating effects of risk factors, multiplicativ
intensity models can be used. Suppose a vector of risk factors X = (X1, X2, . . . , XP ), and
assume X is invariant over time. Let Λ0 and λij0 be the baseline transition intensity matrix
and its entries. The model for transition intensities is

λij (t;X) = λij0(t)eβ
T
ijX , (4.7)

where βij = (βij,1, βij,2, . . . , βij,P ) is the vector of log instantaneous rate ratios for transition
from state i to state j. Consider a piecewise-constant intensity model, let λij,r denote
the intensity for t ∈ Cr for the participants with all of the covariates being 0, and let
αij,r = log(λijr/λij0). The intensity model for piecewise-constant models with proportional
hazard effects is

λij (t;X) = λij0e
∑P
p=1Xpβij,p+

∑R
r=1 I{t∈Cr}αij,r . (4.8)
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4.2.2 Weighted Likelihood Incorporating the State at Sampling
and Auxiliary Prevalence Information

In the Nun Study, the cognitive functions of the participants were assessed approximately
annually. If death occurred during the study period, the exact time was observed. A mixed
intermittent and continuous observation scheme is common in many prospective studies of
chronic disease processes.

Suppose there are K∗ pre-fixed assessment times 0 ≤ a0 < a1 < a2 < . . . < aK∗ = τ ,
where a0 is the time of initial assessment in the working time scale (e.g., age at study entry
- 75). Let τ denote the administrative right censoring time. Suppose the patients may drop
out from the study at a random time C. Let TD denote the time to enter the terminal
state (death). Denote the actual number of observations for a patient as K = max{k; ak ≤
T †, k = 1, ..., K∗}, where T † = min{TD, C, τ} denotes the minimum of death or censoring
time. Then the set of disease status observations for a patient is {Z(a0), Z(a1), . . . , Z(aK)}.
The indicator of observing a death event is δ = I {min {τ, C,∗ TD} = TD}.

Condition on the left-truncation time a0 and state at sampling Z(a0), the likelihood
function for a subject with panel observation and exact death time is

L0 = P
(
Z(a1) = z1, ..., Z(aK) = zK , t

†, δ | Z(a0) = z0, a0, X
)

=
K∏
k=1

{
P (Z(ak) = zk | Z(ak−1) = zk−1, X)

×

[∑
j 6=4

P
(
Z(t†) = j | Z(aK) = zK , X

)
λj4(t†, X)

]δ}
, (4.9)

The component in the brackets takes into account the unknown state occupancy right
before death occurs. The conditional maximum likelihood estimates are obtained by max-
imizing formula (4.9). Such estimates can be applied to the cohort of patients who are
alive at the time of recruitment.

In order to utilize the baseline state occupation information, we borrow auxiliary infor-
mation of chronic disease processes to help us to consider the sampling condition, which
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is Z(a0) 6= 4. The condition is incorporated to the likelihood (4.9) in terms of weights.
Suppose from the literature or previous studies, we know the prevalence for being in state
j at the time origin 0, i.e., age of 75, j 6= 4. This can be denoted in terms of the initial
probability for being in state j, namely πj = P (Z(0) = j) , j 6= 4. Then we consider the
probability for an individual to be eligible (i.e., alive) at the beginning of the study, and
obtain the adjusted likelihood with form

L = wL0, (4.10)

where

w = P (Z(a0) = z0 | Z(a0) 6= 4, a0)

=

∑3
j=1 P (Z(a0)|Z(0) = j, a0) πj∑3

j=1 P (Z(a0) 6= 4|Z(0) = j, a0}πj
. (4.11)

The MLE for transition intensities can be obtained by maximizing the weighted likelihood
(4.10). Note that this method requires initial probabilities πj’s to be known or estimated.

4.3 Results from the Nun Study Data

For the Nun Study data, consider the multistate model given in Figure 4.1. The intensity
matrix for this model has the following structure:

Λ(t) =


−h1(t) λ12(t) 0 λ14(t)

λ21(t) −h2(t) λ23(t) λ24(t)

0 0 −h3(t) λ34(t)

0 0 0 0

 . (4.12)

To apply the likelihood function (4.10), we obtain the prevalences πj, j = 1, ..., 4 at the
time origin from the literature. In Yesavage et al. (2002), the prevalences for mild cogni-
tive impairment and dementia at age 75 for the general population are estimated as 0.2
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Table 4.1: Estimated prevalence for dementia at 75 for the general population. NC: Normal
cognition; MCI: Mild cognitive impairment.

State NC MCI Dementia
Prevalence 0.68 0.20 0.12

and 0.12 respectively, see Table 4.1. This is equivalent to an estimate for π, such that
π = (0.68, 0.20, 0.12). Borrowing this information, we fit the model using the weighted
likelihood L given in (4.10) and compare with the results from the conditional likelihood
L0 given in (4.9).

We compared results obtained using the conditional likelihood (4.9) and the weighted
likelihood (4.10). We considered two intensity models. Table 4.2 gives the results from a
piecewise constant intensities model with breakpoint at age 90, where the intensities are

λij (t) = λij0e
αijI{t>90}, (4.13)

and the parameter of interest is Θ = {λij0, αij; i, j,∈ J }. APOE − ε4 is a genotype that
is known to be a risk factor for Alzheimer’s disease. Let X = 1 if a participant has
APOE − ε4, and 0 otherwise. Table 4.2 also gives the results from a proportional hazard
intensity model for X with a breakpoint at age 90.

λij (t;X) = λij0e
αijI{t>90}+βijX , (4.14)

where Θ = {λij0, αij, βij; i, j,∈ J }. To help with the identifiability and estimability issues,
we assume that the covariate does not have effects on transitions to the death state, i.e.,
β14 = β24 = β34 = 0. These constraints are based on results from analyses considering
APOE − ε4’s effect on transitions to death, which suggest that APOE − ε4’s effect on
mortality is not statistically significant. The standard errors in Table 4.2 are the square
root of the model-based variances from the inverse of the negative of the information
matrix. The gain in efficiency for a parameter θ is seen by the relative reduction in the
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model-based variances after utilizing the auxiliary information, i.e.,

RV =
Var(θ̃)− Var(θ̂)

Var(θ̃)
, (4.15)

where θ̃ and θ̂ are the maximum likelihood estimates from (4.9) and (4.10) respectively.
For both models, the point estimates from the weighted likelihood (4.10) are slightly dif-
ferent but generally compatible with the ones from the conditional likelihood (4.9). By
utilizing the baseline state information and the sampling condition, the standard errors
become smaller for estimates of parameters corresponding to the progressive transitions,
including NC → MCI, MCI → dementia, and dementia → death. However, estimates of
parameters for NC → death and MCI → NC decreased, and the corresponding standard
errors increased very slightly. This may be due to the truncated individuals tending to be
“less healthy” than the recruited participants, and therefore more likely to contribute to
progressive transitions.
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Table 4.2: Results from the Nun Study. Model 1 - a piecewise constant intensity model
with a breakpoint at age 90; Model 2 - a piecewise constant intensity model, with a
breakpoint at age 90 and risk factor APOE − ε4. RV: relative reduction in variance of
the MLE from L versus L0. αij: the log ratio of rates for age 90+ for transition from
state i to state j; βij: the log ratio of rates for having APOE − ε4 for transition from
state i to state j, where βi4, i ∈ J were fixed at 0.

Conditional, L0 Weighted, L
Transitions EST SE EST SE RV %

Model 1: 90+ v.s. 75 - 90

Log Baseline NC to MCI -1.290 0.073 -1.132 0.057 37.215
75-90 NC to Death -3.547 0.249 -3.653 0.277 -9.820
log λij0 MCI to NC -1.866 0.082 -2.086 0.086 -4.235

MCI to Dementia -2.627 0.104 -2.692 0.089 24.692
MCI to Death -2.701 0.116 -2.699 0.111 5.273
Dementia to Death -1.669 0.098 -1.647 0.087 16.934

Log RR, ≥90 NC to MCI 0.496 0.165 0.675 0.134 21.962
αij NC to Death 1.285 0.407 1.646 0.429 -4.493

MCI to NC -0.795 0.231 -0.872 0.239 -2.459
MCI to Dementia 0.843 0.164 1.024 0.147 17.878
MCI to Death 0.817 0.174 0.788 0.173 1.794
Dementia to Death 0.781 0.122 0.700 0.113 11.772

Model 2: APOE − ε4 & 90+ v.s. 75 - 90

Log Baseline NC to MCI -1.302 0.079 -1.143 0.064 34.924
75-90, X = 0 NC to Death -3.872 0.315 -3.877 0.333 -11.694
log λij0 MCI to NC -1.706 0.088 -1.875 0.090 -5.370

MCI to Dementia -2.782 0.122 -2.941 0.106 24.051
MCI to Death -2.720 0.118 -2.758 0.115 4.412
Dementia to Death -1.727 0.104 -1.690 0.093 18.652

Log RR, X = 1 NC to MCI 0.227 0.191 0.152 0.142 45.155
βij MCI to NC -0.944 0.260 -0.858 0.262 -0.917

MCI to Dementia 0.531 0.179 0.615 0.136 42.104

Log RR, ≥90 NC to MCI 0.510 0.166 0.495 0.147 21.835
αij NC to Death 1.540 0.461 1.646 0.475 -6.319

MCI to NC -0.881 0.232 -0.810 0.235 -2.448
MCI to Dementia 0.954 0.168 1.136 0.152 18.330
MCI to Death 0.799 0.179 0.821 0.178 1.275
Dementia to Death 0.826 0.127 0.769 0.118 12.971
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4.4 Simulation Studies

In this section, we will evaluate the performance of the proposed method through simulation
studies. Consider the four-state Markov model as shown in Figure 4.1, and the intensity
model

λij (t;X) = λij0e
αijI{t>15}+βijX , (4.16)

and assume that β14 = β24 = β34 = 0. Without loss of generality, assume equally spaced
yearly assessments over a period of 15 years. The time for entering into the absorbing state
is exactly observed. A binary covariate is generated using Bernoulli(0.5). The results are
based on 1000 simulations with sample size 300. The left-truncation time (e.g., age at the
initial assessment a0) follows Uniform(0, L), where L ∈ {5, 15, 25}. The baseline transition
intensities for X = 0 are chosen by controlling the probabilities of disease-free survival at
the end of follow-up (q1) and of being in the absorbing state at the end of follow-up time
for the oldest group for the case when x = 0. (q2).∫ 2∑

j=1

2∑
k=1

πjPjk (0, a0)Pk1 (a0, a0 + 15) da0 = q1; (4.17)

3∑
j=1

πjPj4 (0, L+ 15) = q2. (4.18)

The ratios between parameters λ120 : λ140 : λ210 : λ230 : λ240 are set as 1 : 1/4 : 1/2 : 2/3 :

3/8. The initial probability at time 0 is (0.68, 0.20, 0.12, 0).

To see the impact of the range of the left-truncation time, we fix q1 = 0.2 and q2 = 0.8,
while assuming the initial probabilities are known. Tables 4.3 gives the results for these
simulations, where the biases in the parameter estimates from the conditional likelihood
and weighted likelihood approach are negligible. The average of the model based standard
errors and empirical standard errors of the estimates from the proposed approach are
comparable and consistently smaller than those from the conditional approach, and the
shrinkage in the variances becomes larger when the left-truncation range is wider.
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Table 4.3: Simulation study comparing performances of the weighted likelihood approach and the
conditional approach. Results are based on 1000 replications with sample size 300. CI.cover: coverage
probability of 95% confidence intervals.

Conditional Likelihood Approach, L0 Weighted Likelihood Approach, L
TRUE EST BIAS% SE SEemp CI.cover EST BIAS% SE SEemp CI.cover RV %

The left-truncation time follows Uniform(0, 5)

log λ120 -3.523 -3.524 0.027 0.186 0.190 0.941 -3.521 -0.065 0.180 0.180 0.948 6.493
log λ140 -3.928 -3.884 -1.136 0.158 0.149 0.938 -3.883 -1.145 0.157 0.149 0.932 0.411
log λ210 -4.076 -4.155 1.940 0.384 0.409 0.952 -4.153 1.883 0.382 0.408 0.947 0.774
log λ230 -3.160 -3.165 0.161 0.241 0.256 0.944 -3.163 0.118 0.235 0.249 0.938 4.832
log λ240 -3.671 -3.642 -0.764 0.255 0.252 0.945 -3.642 -0.780 0.254 0.251 0.946 0.872
log λ340 -3.140 -3.143 0.086 0.210 0.215 0.950 -3.140 0.014 0.208 0.212 0.943 1.700

β12 -0.501 -0.532 6.231 0.277 0.292 0.946 -0.532 6.283 0.271 0.284 0.946 4.298
β21 0.877 0.919 4.835 0.447 0.467 0.951 0.921 4.968 0.444 0.465 0.952 1.063
β23 0.094 0.076 -19.573 0.344 0.338 0.967 0.079 -15.940 0.336 0.326 0.964 5.100
α12 0.588 0.547 -6.959 0.362 0.350 0.966 0.545 -7.350 0.360 0.348 0.966 1.068
α14 0.793 0.696 -12.246 0.341 0.363 0.957 0.696 -12.297 0.341 0.363 0.957 0.092
α21 1.230 1.211 -1.562 0.497 0.508 0.963 1.208 -1.797 0.495 0.506 0.961 0.546
α23 0.824 0.770 -6.584 0.424 0.439 0.966 0.769 -6.770 0.421 0.440 0.963 1.069
α24 0.861 0.763 -11.341 0.579 0.592 0.969 0.763 -11.395 0.579 0.591 0.973 0.013
α34 0.593 0.555 -6.389 0.415 0.416 0.962 0.552 -6.773 0.414 0.415 0.960 0.430

The left-truncation time follows Uniform(0, 15)

log λ120 -3.523 -3.544 0.591 0.219 0.229 0.944 -3.528 0.147 0.185 0.187 0.947 28.572
log λ140 -3.928 -3.886 -1.087 0.197 0.198 0.936 -3.885 -1.093 0.194 0.196 0.937 2.820
log λ210 -4.076 -4.140 1.559 0.409 0.411 0.972 -4.134 1.435 0.396 0.412 0.948 6.649
log λ230 -3.160 -3.194 1.086 0.282 0.289 0.949 -3.183 0.746 0.241 0.248 0.946 26.762
log λ240 -3.671 -3.669 -0.048 0.324 0.338 0.941 -3.654 -0.461 0.313 0.324 0.946 6.730
log λ340 -3.140 -3.156 0.503 0.255 0.257 0.958 -3.139 -0.020 0.238 0.239 0.948 12.476

β12 -0.501 -0.509 1.638 0.266 0.268 0.956 -0.514 2.652 0.243 0.254 0.942 16.362
β21 0.877 0.890 1.504 0.395 0.396 0.962 0.900 2.653 0.387 0.407 0.940 4.452
β23 0.094 0.098 3.898 0.331 0.331 0.955 0.088 -6.172 0.299 0.308 0.937 18.699
α12 0.588 0.595 1.139 0.269 0.277 0.950 0.587 -0.258 0.249 0.256 0.949 14.559
α14 0.793 0.736 -7.210 0.263 0.270 0.934 0.739 -6.886 0.260 0.264 0.944 1.773
α21 1.230 1.264 2.806 0.416 0.417 0.966 1.258 2.266 0.400 0.415 0.958 7.696
α23 0.824 0.839 1.703 0.334 0.344 0.948 0.844 2.354 0.304 0.310 0.953 17.408
α24 0.861 0.830 -3.601 0.445 0.456 0.960 0.811 -5.757 0.439 0.460 0.954 2.637
α34 0.593 0.611 3.065 0.319 0.325 0.946 0.590 -0.395 0.307 0.297 0.964 7.648

The left-truncation time follows Uniform(0, 25)

log λ120 -3.523 -3.540 0.475 0.250 0.248 0.953 -3.536 0.362 0.203 0.208 0.948 34.622
log λ140 -3.928 -3.905 -0.601 0.237 0.250 0.932 -3.892 -0.936 0.231 0.235 0.931 5.207
log λ210 -4.076 -4.152 1.856 0.463 0.484 0.955 -4.150 1.816 0.443 0.458 0.949 8.492
log λ230 -3.160 -3.226 2.103 0.329 0.353 0.943 -3.192 1.023 0.267 0.279 0.959 34.611
log λ240 -3.671 -3.671 0.008 0.391 0.418 0.946 -3.669 -0.049 0.383 0.423 0.941 -0.679
log λ340 -3.140 -3.175 1.134 0.311 0.343 0.925 -3.160 0.643 0.279 0.290 0.955 19.291

β12 -0.501 -0.517 3.209 0.264 0.265 0.949 -0.510 1.819 0.232 0.230 0.956 22.710
β21 0.877 0.896 2.139 0.389 0.398 0.942 0.894 1.908 0.374 0.395 0.942 7.341
β23 0.094 0.112 18.891 0.335 0.342 0.956 0.097 2.685 0.283 0.284 0.946 28.998
α12 0.588 0.599 1.856 0.281 0.278 0.961 0.593 0.846 0.251 0.252 0.957 20.595
α14 0.793 0.757 -4.590 0.282 0.293 0.945 0.743 -6.298 0.277 0.274 0.946 3.383
α21 1.230 1.269 3.199 0.459 0.482 0.963 1.262 2.619 0.438 0.456 0.958 8.813
α23 0.824 0.868 5.288 0.360 0.378 0.953 0.848 2.817 0.316 0.316 0.955 23.510
α24 0.861 0.851 -1.102 0.477 0.493 0.963 0.831 -3.521 0.474 0.514 0.959 -1.435
α34 0.593 0.632 6.685 0.349 0.375 0.946 0.612 3.275 0.325 0.329 0.960 13.622
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4.5 A Bayesian Approach for Parameter Estimation

When illustrating the method in a frequentist way, we use population prevalences in various
cognitive stages as the initial probabilities. Here we consider an alternative way where we
acknowledge the uncertainty in its applicability by specifying a prior distribution for the
initial probabilities, πj’s, and the parameters in the transition intensity model, and use a
Bayesian method for parameter estimation.

Table 4.4 gives Bayesian analysis results for the Nun Study. The conditional ap-
proach assumes piecewise constant intensities with breakpoint at age 90. The covariate is
APOE − ε4. The number of iterations is 2000 (1000 burning + 1000 saved). The prior
distributions for the log transition intensities are Normal(0, 10000). The prior distribution
for the initial probability is Dirichlet(cµπ), where the mean µπ is the population prevalence
(0.68, 0.2, 0.12), and the variances are µπ(1 − µπ)/(1 + c) with c = 5. Diffuse priors, i.e.,
Normal(0, 10000) are used for the log transition intensities and log hazard ratios. These
choices of priors are applied to several models using the proposed approach including the
single-piece and two-piece baseline models and the models with APOE − ε4 as a covari-
ate, and the results are used to compare with the conditional approach where only diffuse
priors of the parameters other than the initial probabilities are used. Table 4.4 gives the
mean and standard deviations from the posteriors of the parameters. According to the
results, the values of the estimated intensities and hazard ratios are similar to those from
the frequentist method. This suggests that the model is not very sensitive to a reasonable
amount of uncertainty in the auxiliary prevalence data. However, the efficiency gains for
the two-piece models, with or without covariate, are not as obvious as before. This is due
to the fact that there is variation introduced into the auxiliary information.
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Table 4.4: Means and standard deviations of posteriors for the parameter using Bayesian
analyses comparing the intensity models for the Nun Study. The prior distribution for
prevalence is a Dirichlet distribution with mean µπ = (0.68, 0.20, 0.12) and variances µπ(1−
µπ)/6. The breakpoint for the two-piece model is age 90.

Conditional Baseline 1-piece, with X 2-piece 2-piece, with X

MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD

Baseline Transition Intensities

log λ120 -1.300 0.079 -1.069 0.050 -1.086 0.057 -1.127 0.066 -1.151 0.067
log λ140 -3.936 0.328 -3.314 0.214 -3.578 0.283 -3.927 0.366 -3.922 0.361
log λ210 -1.707 0.088 -2.195 0.076 -2.076 0.083 -2.018 0.086 -1.869 0.092
log λ230 -2.781 0.123 -2.354 0.067 -2.491 0.075 -2.725 0.080 -2.900 0.095
log λ240 -2.734 0.131 -2.430 0.086 -2.435 0.082 -2.749 0.118 -2.752 0.115
log λ340 -1.742 0.115 -1.298 0.058 -1.309 0.058 -1.793 0.100 -1.770 0.099

APOE−ε4
β12 0.186 0.198 . . 0.161 0.140 . . 0.137 0.147
β21 -0.937 0.260 . . -0.791 0.256 . . -0.888 0.266
β23 0.524 0.185 . . 0.479 0.129 . . 0.605 0.128

Age Group 90+ v.s. 75 - 90

α12 0.511 0.166 . . . . 0.481 0.161 0.498 0.143
α14 1.539 0.456 . . . . 1.623 0.525 1.591 0.504
α21 -0.881 0.232 . . . . -0.760 0.238 -0.836 0.250
α23 0.951 0.169 . . . . 0.995 0.144 1.087 0.140
α24 0.811 0.183 . . . . 0.812 0.182 0.811 0.185
α34 0.831 0.128 . . . . 0.859 0.120 0.848 0.121

Initial Probabilities

π1 . . 0.773 0.075 0.732 0.089 0.635 0.090 0.635 0.087
π2 . . 0.213 0.077 0.251 0.091 0.352 0.092 0.355 0.088
π3 . . 0.014 0.013 0.017 0.014 0.013 0.012 0.010 0.012
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To investigate the robustness of the Bayesian estimates towards the choice of the pop-
ulation prevalence and the variance of the prior for the prevalence, we fit the model using
three possible values of the auxiliary prevalence as the mean of the prior distributions for
π. The choices include the population prevalence from the literature; an arbitrary choice
of value (1/3, 1/3, 1/3); as well as the equilibrium probabilities of a modified model where
every subject entering into the absorbing states will immediately go back to the normal
cognition state. Such an equilibrium for the four-state model as shown in figure 4.1 is
calculated as the following:

φ1 =
λ21λ34 + λ23λ34 + λ24λ34

λ12λ23 + λ12λ34 + λ21λ34 + λ23λ34 + λ24λ34

φ2 =
λ12λ34

λ12λ23 + λ12λ34 + λ21λ34 + λ23λ34 + λ24λ34

φ3 =
λ12λ23

λ12λ23 + λ12λ34 + λ21λ34 + λ23λ34 + λ24λ34

. (4.19)

Details of the derivation of these results are given in Appendix B.3.

Recall the variance of the prior of π is µπ(1− µπ)/(1 + c) . When increasing the value
of c, the variance becomes smaller. Table 4.5 gives the results where c is valued at 1, 3 and
5. Based on the results, the means and standard deviations from the posteriors are quite
stable with respect to changing the amount of variation in prior distributions of π.

The means of the posteriors from the Bayesian analyses are very close to the frequentist
point estimates. However, most of the posterior standard deviations are slightly larger than
the frequentist standard errors. This may be due to that the Bayesian approach is treating
the initial probabilities as unknown, as well as the uncertainty in the prior information.
However, since the Bayesian analysis is pretty robust towards the prior information on the
prevalence data, it has the advantage of accommodating misspecification and uncertainty
in the auxiliary prevalence data and allows for direct inference from the posterior.

75



Table 4.5: Means and standard deviations of posteriors for the parameter using
Bayesian analyses comparing the Dirichlet priors for the prevalence for the Nun
Study. The mean of the prior distribution, µπ, is one of the three scenarios: Popula-
tion prevalence - (0.68, 0.20, 0.12); Reborn equilibrium probabilities - (0.44, 0.42, 0.14);
Evenly distributed - (0.33, 0.33, 0.33). The variances of the prior distribution are
µπ,k(1− µπ,k)/(1 + c).

Population Equilibrium Evenly
Conditional Prevalence Probabilities Distributed

MEAN MEAN SD MEAN SD MEAN SD

Variance Coefficient: c = 1

log λ120 -1.213 -1.075 0.050 -1.077 0.051 -1.073 0.059
log λ140 -3.345 -3.297 0.210 -3.293 0.210 -3.305 0.227
log λ210 -2.044 -2.196 0.076 -2.199 0.079 -2.198 0.079
log λ230 -2.315 -2.346 0.064 -2.349 0.071 -2.356 0.065
log λ240 -2.417 -2.420 0.077 -2.428 0.089 -2.422 0.081
log λ340 -1.241 -1.300 0.054 -1.304 0.059 -1.302 0.055

π1 0.750 0.093 0.758 0.084 0.760 0.087
π2 0.250 0.093 0.239 0.084 0.230 0.089
π3 0.000 0.000 0.003 0.006 0.011 0.012

Variance Coefficient: c = 3

log λ120 -1.213 -1.077 0.050 -1.078 0.052 -1.075 0.052
log λ140 -3.345 -3.300 0.207 -3.308 0.223 -3.307 0.222
log λ210 -2.044 -2.198 0.077 -2.198 0.077 -2.201 0.078
log λ230 -2.315 -2.356 0.067 -2.358 0.066 -2.362 0.065
log λ240 -2.417 -2.428 0.082 -2.420 0.080 -2.419 0.086
log λ340 -1.241 -1.304 0.057 -1.304 0.057 -1.301 0.060

π1 0.754 0.084 0.729 0.079 0.740 0.092
π2 0.237 0.088 0.262 0.083 0.238 0.094
π3 0.009 0.012 0.010 0.017 0.021 0.014

Variance Coefficient: c = 5

log λ120 -1.213 -1.068 0.050 -1.079 0.052 -1.077 0.051
log λ140 -3.345 -3.292 0.203 -3.284 0.208 -3.296 0.210
log λ210 -2.044 -2.192 0.076 -2.199 0.077 -2.195 0.078
log λ230 -2.315 -2.352 0.067 -2.358 0.065 -2.361 0.064
log λ240 -2.417 -2.427 0.085 -2.426 0.087 -2.420 0.085
log λ340 -1.241 -1.296 0.058 -1.295 0.056 -1.295 0.055

π1 0.773 0.075 0.730 0.079 0.732 0.071
π2 0.213 0.077 0.251 0.079 0.244 0.071
π3 0.014 0.013 0.018 0.019 0.024 0.016
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4.6 Discussion

In this chapter, we proposed a weighted likelihood approach for disease process data while
utilizing the auxiliary information on disease prevalence data. The proposed method is able
to adjust for the left-truncation problem in multistate models. We described the method
details for time-homogeneous and piecewise constant Markov models under intermittent
observation.

We have focused on modeling the transition intensities and risk factor effects for de-
mentia using the Nun Study data. The proposed method successfully improved efficiency
for parameters related to progressive transitions. Simulation studies suggested that the
efficiency gain will increase when the left-truncation problem is stronger. However, incor-
porating auxiliary prevalence cannot ensure efficiency gain for all of the parameters. Which
parameters are impacted in the opposite way depends on the structure of the disease pro-
cess model.

To account for uncertainty in the prevalence data, we have also used a Bayesian method
to get estimates. Bayesian analyses give similar point estimates with slightly less efficiency
gain. When prevalence data are not directly available, we proposed an equilibrium prob-
ability for the reborn process to simulate a snapshot of a population with incoming and
outgoing individuals. This is done by constructing a reborn process corresponding to the
disease process with absorbing state(s) using certain “reborn” rules.

In conclusion, the proposed weighted likelihood method can adjust for the left-truncation
problem in multistate models which is a common issue in disease process data due to the
fact that in most cases„ the individuals have to be alive to enroll in the study. How-
ever, valid estimates will depend on reliable auxiliary information. One may want to use
Bayesian analyses in case of uncertainty in the auxiliary prevalence data. There are a
number of interesting future research directions for this topic. We will discuss them in
details in Chapter 5.
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Chapter 5

Discussion and Future Work

In this thesis, we developed novel statistical methods for time-to-event analysis and multi-
state models to deal with left-truncation and response-dependent sampling problems using
auxiliary information.

In chapter 2, we incorporated auxiliary information from census and external studies on
the same cohort to a sample with large portion of left-truncation. We derived the observed
likelihood for both the sample and auxiliary information. In case where the closed form of
the likelihood is intractable, an Monte-Carlo approach was proposed to approximate the
values of the score and information function. Illustrated by both simulation and real-data
example, the proposed method improves the estimation efficiency of the survival function
comparing to the conditional likelihood approach without use of auxiliary information.

In chapter 3, we developed a finite mixture hidden Markov model to relax the Markov
assumption and consider multiple disease types with common symptomatic stages. The
proposed method is also able to incorporate auxiliary information on disease typesfor some
study subjects. . Through real-data analysis and simulation , we found that the proposed
method is able to identify different types of the underlying disease and gives type-specific
and overall prevalence estimates using either a frequentist or a Bayesian approach. We
also investigated the potential estimability and identifiability issues associated with the
proposed method and explored different ways to deal with them.
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In chapter 4, we addressed the state-dependent sampling problem in muitistate mod-
els analyzing disease process data. We proposed a weighted approach which considers
the sampling condition and makes use of population age-specific disease prevalence data.
The maximum likelihood estimates were obtained by used both frequentist and Bayesian
approaches. We found that incorporating baseline status information given the sampling
condition improves the estimation efficiency for most of the unknown parameters.

In the following sections, we provide some general discussion and propose future work
for each chapter.

5.1 Future Work on Augmented Likelihood for Incorpo-
rating Auxiliary Information

In chapter 2, we focused on parametric models for the event times. However non-parametric
estimates can be considered using a similar approach. Extension to a nonparametric model
can be done by assigning nonparametric forms of the g functions and the conditional
likelihood in (2) and (4). This can be more straightforward when combining with the
one-step MCEM algorithm which doesn’t require the derivation of the g functions. If the
conditional estimates doesn’t cover the range of the pseudo-data, values of the pseudo-data
can be generated subject to only the auxiliary yearly number of deaths.

Another extension is to model the effects of risk factors. Incorporating covariates into
the method can be challenging if we require the pseudo-values to have exactly the same
components as the observed data. However, if the covariate effects for the truncated
part are not of interest, which is reasonable to assume, we can focus on generating the
baseline survival time for the pseudo-data and ignore the covariate effects in the form of
the likelihood functions for the pseudo-data set Dp.

If we consider the combination of data from the truncated sample and the observed
sample, (Dp,D), as the complete data, and the truncated sample Dp as the missing data,
the procedure using the Monte-Carlo Expectation to approximate the score function can be
viewed as a special case of multiple imputation. Therefore, inference schemes for multiple
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imputation can be applied to the proposed method, such as the Rubin’s variance estimator
(Rubin, 2004), which will take the extra variation caused by the generation of the truncated
sample into consideration. Letting Var(θ̂(r)) be the variance estimate for the MLE from
the rth combined sample (Dp,D), the Rubin’s variance estimator is

Σ̂Rubin =
1

R

R∑
r=1

Var(θ̂(r)) +
R + 1

R

1

R− 1

R∑
r=1

(θ̂(r) − θ̂)2

= W + (1 +R−1)B (5.1)

where W is the within-imputation variance and B the between-imputation variance. The
number of degrees of freedom for the Student’s t-distribution is

df = (R− 1)

(
1 +

W

(1 +R−1)B

)2

. (5.2)

With big enough R, the confidence interval can be approximated using a normal distri-
bution. However, when applying 5.1 to the proposed likelihood, we found that it tends
to overestimate the variance. This may be dues to that the pseudo-values are generated
using a frequency-based method. Therefore, we consider to test a robust alternative to
(5.1) proposed by Rubin (2004).

There are other applications of the proposed method. One example is the Honolulu-
Asia Aging Study (Higuchi et al., 2015; Huh et al., 2015), which began in 1991. The cohort,
with 3734 participants, is a subsample of the cohort in the Honolulu Heart Program, which
began in 1965. Assuming the research interest lies on modeling the survival distribution
or the time-to-onset of a disease, the summary level information for the Honolulu Heart
Program can be incorporated in the estimation procedure.

In addition to time-to-event data, other event history data are also subject to the
left-truncation problem. For example, auxiliary information regarding the truncated pop-
ulation may be obtained from the same or similar cohort for multistate models. One can
derive a similar likelihood to (2.4) by determining the form of the likelihood contributions
according to the model and the forms of the auxiliary information. Again, the value of
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the likelihood can be approximated using the Monte-Carlo expectations as long as one can
generate pseudo-values to reflect the auxiliary information.

5.2 FutureWork on Finite Mixture Hidden Markov Mod-
els

An ongoing work for chapter 3 is adding risk factors to the transition intensities. Let
X = (X1, X2, . . . , XP ) be the vector of the risk factors. For underlying disease type
m = 1, 2, let β(m)

ij = (β
(m)
ij,1 , β

(m)
ij,2 , . . . , β

(m)
ij,P ) be the log instantaneous rate ratios for transition

from state i to state j. The proportional hazard model for transition intensities of disease
type m is

λ
(m)
ij (t; X) = λ

(m)
ij0 (t)eX

Tβ
(m)
ij . (5.3)

If the difference between covariate effects between disease types is not of interest, one can
assume β(1)

ij = β
(2)
ij = βij. We found that putting constraints on parameters or the ratios

between the parameters may solve the identifiability and estimability issues. In multistate
models, if the states are defined as the disease stages or have other intuitive interpretations,
auxiliary information on these parameters or ratios may be obtained from the literature.
For instance, there may be information on the relative risk of mortality between patients
with different types of dementia, which corresponds to λ(1)

23 /λ
(2)
45 . This information can be

definite numbers, approximate intervals or prior distributions.

Another extension is to model the missingness mechanism of the mixture component
indicator. In the Nun Study, the selection criteria for conducting autopsy is assumed to
be random, which makes it reasonble to assume that the missing in the pathology data is
completely at random. However, in the case where the missingness depends on the disease
stages, jointly modeling the transition intensities and the mixture components is required.

The proposed method can be extended to cases where the number of components in
the mixture is larger than two. However, a more complex model requires more attention
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to the potential identifiability and estimability issues. For the estimability issue, alter-
native algorithms or changing initial values may help with the problem. In terms of the
identifiability, putting constraints on parameters or simplifying the model will be a good
consideration to solve the issue. If one’s interest is primarily in predicting the observed
process, rather than interpreting the estimates, a model with an identifiability problem
may still give valid prediction of the event time.

5.3 Future Work on Left-truncated Multistate Models

In chapter 4, we have considered the auxiliary information in form of a constant value or
a prior distribution that is identical for the entire sample. Sometimes the prevalence may
depend on covariates in the dataset. In this case, pre-built models or prior information
from literature may be borrowed. For example Brookmeyer et al. (2018) proposed a multi-
state model to forecast the yearly prevalence for MCI, preclinical and clinical Alzheimer’s
disease, from considering the impacts of AD pathology. Barnes and Yaffe (2011) proposed
a model using the relative risks of Alzheimer’s disease versus other modifiable risk factors
including cardiovascular risk factors, psychosocial factors, and health behaviours, such as
diabetes, depression, and smoking. Norton et al. (2014) provided specific estimates of
preventive potential by accounting for the association between risk factors and discussed
the concerns raised by Barnes and Yaffe (2011). In addition, the propose weighted likeli-
hood is conditioning on left-truncation time. Therefore, another possible extension is to
utilize auxiliary information on the left-truncation time distribution for the sample, i.e.
f(a0 | Z(a0) 6= 4). In this case, the weight in (4.11) will take a form of a joint probability
for a0 and Z(a0) conditioning on being alive at accrual.

Another extension is relaxing the Markov assumption on the multistate model. For
instance, in the proposed mixture Hidden Markov model in chapter 3, we estimated the
initial probabilities for being in a disease state at accrual and the transition intensities
simultaneously. Assume that the auxiliary prevalence data are available for the age at
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accrual. Letting JD be the set of absorbing states, formula (3.10) can be rewritten as

P (Y (t0) = y0 | Z (t0) = j)P (Z (t0) = j | alive at t0) = ejy0wZ (t0, j) , (5.4)

where

wZ (t0, j) =

∑
u/∈JD P (Z(t0)|Z(0) = u, t0) πu∑

u/∈JD P (Z(t0) /∈ JD|Z(0) = u, t0) πu
. (5.5)

Thus formulas (3.10 - 3.14) will contain only the mixture probability and the transition
intensities as unknown parameter. This may improve the estimate effciency and help with
the identifiability and estimability issues.

Other extensions include the semi-Markov model and the time-to-event models, where
the sampling conditions are usually in terms of truncation or prevalence of states.
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Appendix A

Appendix for Chapter 3

A.1 Transition Probabilities for the Underlying Models

A.1.1 Closed Forms for Disease Type One

p11 (s, t) = e−h1(t−s)

p12 (s, t) =

− λ12
h1−λ23

[
e−h1(t−s) − e−λ23(t−s)] if h1 6= λ23

λ12 (t− s) e−λ23(t−s) if h1 = λ23

p22 (s, t) = e−λ23(t−s)

p21 (s, t) = p31 (s, t) = p32 (s, t) = 0, and pi3 (s, t) = 1−
∑2

j=1 pij (s, t) .
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A.1.2 Closed Forms for Disease Type Two

p11 (s, t) = e−h1(t−s)

p12 (s, t) =

− λ12
h1−h2

[
e−h1(t−s) − e−h2(t−s)] , if h1 6= h2

λ12 (t− s) e−h1(t−s), if h1 = h2

p13 (s, t) =



λ12λ23e−h1(t−s)

(h1−h2)(h1−λ35)
− λ12λ23e−h2(t−s)

(h1−h2)(h2−λ35)
+ λ12λ23e−λ35(t−s)

(h1−λ35)(h2−λ35)
, if h1 6= h2 6= λ35

− λ12λ23
(h1−λ35)2

[
e−h1(t−s) − e−λ35(t−s)]− λ12λ23

(h1−λ35)
(t− s) e−h1(t−s), if h1 = h2 6= λ35

λ12λ23
(h2−λ35)2

[
e−h2(t−s) − e−λ35(t−s)]+ λ12λ23

h2−λ35 (t− s) e−λ35(t−s), if h2 6= h1 = λ35

λ12λ23
(h1−λ35)2

[
e−h1(t−s) − e−λ35(t−s)]+ λ12λ23

h1−λ35 (t− s) e−λ35(t−s), if h1 6= h2 = λ35

λ12λ23
2

(t− s)2 e−λ35(t−s) if h1 = h2 = λ35

p14 (s, t) =
λ14

h1

(
1− e−h1(t−s))

p22 (s, t) = e−h2(t−s)

p23 (s, t) =

− λ23
h2−λ35

[
e−h2(t−s) − e−λ35(t−s)] , if h2 6= λ35

λ23 (t− s) e−λ35(t−s), if h2 = λ35

p33 (s, t) = e−λ35(t−s)

p21 (s, t) = p24 (s, t) = p31 (s, t) = p32 (s, t) = p34 (s, t) = p41 (s, t) = p42 (s, t) =

p43 (s, t) = p45 (s, t) = p51 (s, t) = p52 (s, t) = p53 (s, t) = p54 (s, t) = 0, and pi5 (s, t) =

1−
∑4

j=1 pij (s, t) .
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A.2 Prevalence of Dementia for the Nun Study

Let f(t) be the prevalence for dementia at time t for individuals shown in Figure 3.2, which
is the proportion of individuals who have experienced the dementia state by time t. Then

f(t) = P (∃s ≤ t, Y (s) = 2) = ψ1f1(t) + ψ1f2(t), (A.1)

where the prevalence for dementia for disease type 1 and 2 are

f1(t) = P
(
∃s ≤ t, Z(1)(s) = 2

)
;

f2(t) = P
(
∃s ≤ t, Z(2)(s) = 3

)
. (A.2)

Calculation of f1(t) is not straightforward using transition probabilities of the under-
lying model Z(1)(t). Alternatively, consider a Markov model with distinct death state for
each of the transient state, see Figure A.1. The transition intensities of the new process
W (1)(t) remain the same as the original process Z(1)(t). It’s obvious that W (1)(t) has the
same prevalence for dementia as Z(1)(t) at any t. The transition intensity matrix ofW (1)(t)

Disease-free Dementia

Death

Disease-free

Death
(no dementia)

Dementia

Death
(with dementia)

W (1)(t)Z(1)(t)

λ
(1)
12

λ
(1)
13 λ

(1)
23

λ
(1)
12

λ
(1)
13 λ

(1)
23

1 2

3

1 2

3 4

Figure A.1: A transformed multistate process for calculating the cumulative prevalence for
dementia - Disease type 1. Z(1)(t): The original process; W (1)(t): A process with distinct
absorbing state for each transient state.
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is

Λ
(1)
W =


−λ(1)

12 − λ
(1)
13 λ

(1)
12 λ

(1)
13 0

0 0 −λ(1)
23 λ

(1)
23

0 0 0 0

0 0 0 0


The transition probability matrix for W (1)(t) is P

(1)
W (s, t) = e(t−s)Λ(1)

W . For such a model,
individuals who experienced the dementia state by time t will be in either state 2 or 4 at
time t. Recall that π(1)

i is the probability for being in state i at time 0, i = 1, 2. Then

f1(t) =
[
π

(1)
1 π

(1)
2 0 0

]
P

(1)
W (0, t)


0

1

0

1

 . (A.3)

Similarly for disease type 2, the new stochastic process W (2)(t) with distinct absorbing
states has the form in Figure A.2. where P

(2)
W (s, t) = e(t−s)Λ(2)

W . The transition intensity

Disease-free AD Pathology Dementia

Death
(without ADP)

Death
(with ADP)

Disease-free AD Pathology Dementia

Death
(without ADP)

Death
(with ADP)

Death
(with dementia)

Z(2)(t) W (2)(t)

λ
(2)
12

λ
(2)
14

λ
(2)
23

λ
(2)
25 λ

(2)
35

λ
(2)
12

λ
(2)
14

λ
(2)
23

λ
(2)
25 λ

(2)
35

1 2 3

4 5

1 2 3

4 5 6

Figure A.2: A transformed multistate process for calculating the cumulative prevalence for
dementia - Disease type 2. Z(2)(t): The original process; W (2)(t): A process with distinct
absorbing state for each transient state.
*ADP: Alzheimer’s disease pathology.
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matrix for W (2)(t) is

Λ
(2)
W =



−λ(2)
12 − λ

(2)
14 λ

(2)
12 0 λ

(2)
14 0 0

0 −λ(2)
23 − λ

(2)
25 λ

(2)
23 0 λ

(2)
25 0

0 0 0 0 −λ(6)
36 λ

(6)
36

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


For W (2)(t), individuals who experienced the dementia state by time t will be in either
state 3 or 6 at time t. Then

f2(t, π(2)) =
[
π

(2)
1 π

(2)
2 π

(2)
3 0

]
P

(2)
W (0, t)



0

0

1

0

0

1


, (A.4)

The prevalence using (A.1) allows individuals to have dementia at t = 0 (i.e., age 75 in
the Nun Study). If one is interested in the prevalence for people who are in the disease-free
state without AD pathology at age 75, i.e.,

ψ1P
(
∃s ≤ t, Z(1)(s) = 2 | Z(1)(0) = 1

)
+ ψ2P

(
∃s ≤ t, Z(2)(s) = 3 | Z(2)(0) = 1

)
, (A.5)

this can be calculated by substituting π(1) = (1, 0, 0) and π(2) = (1, 0, 0, 0, 0) into (A.1).
Curves in Figure 3.4 are using (A.5).
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A.3 The Likelihood Function for the Nun Study

To investigate the identifiability issue and conduct Bayesian analyses using JAGS, we
derived the closed forms of the likelihood function for the model in Figure 3.2.

Define the ai, i = 1, 2, ..., 5 as shown in Table A.1, where each ai values at one the
assessment times t0, t1, ..., tK or the time at death TD.

The form of the likelihood function for one participant is determined by the observed
transition path and the autopsy result for AD pathology of this participant. Table A.2
gives a list of possible combinations of the transitions paths and pathology.

Consider L = L(1)+L(2), where L(m) represent the contributions from underlying disease
type m. Table A.3 gives the case-wise likelihood in terms of the productions of transition
probabilities. The closeforms are given in the following pages.

Table A.1: Selected assessment times essential for derivation of the likelihood function

Notation Definition

a1 Time at the first assessement in the disease-free state
a2 Time of last assessement in the disease-free state
a3 Time at the first assessement in the dementia state
a4 Time of last assessement in the dementia state
a5 Time at death, i.e. a5 = TD

aij aj − ai, for i, j = 1, 2, ..., 5 and i < j
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Table A.2: Cases of participants by observed transition paths and the autopsy results. “-”:
without AD pathology; “+”: with AD pathology; “?”: the autopsy data are missing

Case Pathology Observed Path Disease Type

(1) - Disease-free → Dementia→ Death Type 1
(2) - Disease-free → Death Unknown
(3) - Dementia→ Death Type 1
(4) + Disease-free → Dementia→ Death Type 2
(5) + Disease-free → Death Type 2
(6) + Dementia→ Death Type 2
(7) ? Disease-free → Dementia→ Death Unknown
(8) ? Disease-free → Death Unknown
(9) ? Dementia→ Death Unknown
(10) ? Disease-free → Dementia Unknown
(11) ? Disease-free Unknown
(12) ? Dementia Unknown
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A.3.1 Closed Forms for Disease Type One

The parameters used in the following formulas, λij, hj and πj, are the corresponding
parameters for disease type one, i.e. λ(1)

ij , h
(1)
j and π

(1)
j , for i, j ∈ J (1). For disease type

one, L(1)
7 = L(1)

1 , L(1)
8 = L(1)

2 ,L(1)
9 = L(1)

3 and L(1)
4 = L(1)

5 = L(1)
6 = 0.

L(1)
1 =

ψ1φ1(a0)−λ12λ23
h1−λ23

[
e−h1(a12+a23)−λ23a35 − e−h1a12−λ23(a23+a35)

]
, if h1 6= λ23

ψ1φ1(a0)λ12λ23a23e
−λ23(a12+a23+a35), if h1 = λ23

L(1)
2 =

ψ1φ1(a0)
{
λ13e

−h1a15 − λ12λ23
h1−λ23

[
e−h1(a12+a25) − e−h1a12−λ23a25

]}
, if h1 6= λ23

ψ1φ1(a0)
{
λ13e

−h1a15 + λ12λ23a25e
−λ23(a12+a25)

}
, if h1 = λ23

L(1)
3 = ψ1φ2(a0)λ23e

−λ23a35

L(1)
10 =

ψ1φ1(a0) −λ12
h1−λ23

[
e−h1(a12+a23)−λ23a34 − e−h1a12−λ23(a23+a34)

]
, if h1 6= λ23

ψ1φ1(a0)λ12a23e
−λ23(a12+a23+a34), if h1 = λ23

L(1)
11 = ψ1φ1(a0)e−h1a12

L(1)
12 = ψ1φ2(a0)e−λ23a34

A.3.2 Closed Forms for Disease Type Two

The parameters used in the following formulas, λij, hj and πj, are the corresponding
parameters for disease type two, i.e. λ(1)

ij , h
(2)
j and π(2)

j , for i, j ∈ J (2). For all of the cases
in disease type two, L(2)

7 = L(2)
4 ,L(2)

8 = L(2)
2 + L(2)

5 ,L(2)
9 = L(2)

6 and L(2)
1 = L(2)

3 = 0.
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Appendix B

Appendix for Chapter 4

B.1 Complementary Analysis Results

Table B.1 gives the analyses results from the Nun Study where the effects of APOE−ε4 on
the mortality transitions are not fixed at 0. The results are based on a piecewise constant
intensity model with a breakpoint at age 90. According to the estimates and standard
errors for βij’s on the transitions into the death state from NC, MCI and dementia, the
p-values for these parameters can be calculated as 0.268, 0.722 and 0.898 respectively.
Therefore, we ignored the effects on the mortality transitions for the analyses reported in
Table 4.2.
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Table B.1: Results from the Nun Study using a piecewise constant intensity model, with
a breakpoint at age 90, considering effects of APOE − ε4 on mortality. RV: relative
reduction in variance of the MLE from L versus L0. αij: the log ratio of rates for age 90+
for transition from state i to state j; βij: the log ratio of rates for having APOE − ε4 for
transition from state i to state j, where βi4, i ∈ J were fixed at 0.

Conditional, L0 Weighted, L
Transitions EST SE EST SE RV %

Log Baseline NC to MCI -1.300 0.079 -1.141 0.064 34.637
75-90 NC to Death -3.936 0.328 -3.947 0.348 -12.634
log λij0 MCI to NC -1.707 0.088 -1.876 0.090 -5.350

MCI to Dementia -2.781 0.123 -2.937 0.109 21.341
MCI to Death -2.734 0.131 -2.781 0.127 5.227
Dementia to Death -1.742 0.115 -1.696 0.104 18.041

Log RR, X = 1 NC to MCI 0.186 0.198 0.117 0.151 41.464
βij NC to Death 0.666 0.600 0.675 0.609 -2.963

MCI to NC -0.937 0.260 -0.852 0.261 -0.669
MCI to Dementia 0.524 0.185 0.592 0.155 29.962
MCI to Death 0.040 0.241 0.085 0.238 3.056
Dementia to Death 0.038 0.131 0.016 0.124 9.625

Log RR, ≥90 NC to MCI 0.511 0.166 0.494 0.147 21.655
αij NC to Death 1.539 0.456 1.654 0.470 -5.971

MCI to NC -0.881 0.232 -0.811 0.235 -2.437
MCI to Dementia 0.951 0.169 1.131 0.153 17.749
MCI to Death 0.811 0.183 0.838 0.181 2.111
Dementia to Death 0.831 0.128 0.771 0.119 13.092
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B.2 Expressions of the Transition Probabilities

Consider a time-homogeneous Markov model as shown in Figure 4.1. The transition in-
tensity matrix is in the form of

Λ =


−h1 λ12 0 λ14

λ21 −h2 λ23 λ24

0 0 −h3 λ34

0 0 0 0

 ,

where hi =
∑4

j=1 λij. The transition probability matrix is P(s, t) = e(t−s)Λ. Consider the
eigendecomposition of the intensity matrix

Λ = VDV−1,

where D is a diagonal matrix with elements being the eigenvalues of Λ, and the columns of
V are the eigenvectors of Λ that correspond to elements of D. Then the probability matrix
is

P (s, t) = Ve(t−s)DV−1. (B.1)

Denote

a1 = −1

2

(
h1 + h2 +

√
(h1 − h2)2 + 4λ12λ21

)
a2 = −1

2

(
h1 + h2 −

√
(h1 − h2)2 + 4λ12λ21

)
b = h1h2 − h1h3 − h2h3 + h2

3 − λ12λ21.

The closed forms for the elements of the transition probability matrix are the following.
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B.3 Reborn Equilibrium Probabilities for Multistate Mod-
els with Absorbing States

Suppose Z(t) is a Markov model with state space J = {1, 2, . . . , J} and transition intensity
matrix Λ, where J contains at least one absorbing state. Let JA and JB be the sets of
absorbing states and transient states respectively, JA and JB the numbers of absorbing
and transient states, so that J = JA + JB. Such a model does not have an equilibrium or
a stationary distribution because all of the subjects will end up in one of the absorbing
states given enough time.

However, the equilibrium distribution can be obtained for a reborn process where indi-
viduals are assumed to go back to a transient state immediately after they enter into
any absorbing state. Without loss of generality, let JB = {1, 2, . . . , JB}, and JA =

{JB + 1, JB + 2, . . . , J}. Let ωab be the probability of going from an absorbing state a
into a transient state b, so that

∑
b∈JB ωab = 1,∀a ∈ JA. Such a process is equivalent to a

Markov model ZB(t) with state space JB and transition intensity matrix

ΛB = LΛR, (B.2)

where L is a JB × J matrix constructed by the first JB rows of an J−dimensional identity
matrix, and

R =



1 0 · · · 0

0 1 0
... . . . ...
0 0 · · · 1

ωJB+1,1 · · · · · · ωJB+1,JB
...

...
ωJ,1 · · · · · · ωJ,JB


J×JB .

(B.3)

Let a row vector φ = (φ1, φ2, ..., φJB) be equilibrium probability of the reborn process
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ZB(t). The values of φ can be obtained by solving

φΛB = 0, (B.4)

subject to
∑JB

j=1 φj = 1 and 0 ≤ φj ≤ 1, j ∈ JB. If we want to use the equilibrium
probability as the auxiliary prevalence data for a piecewise constant model, we need to
identify that which time interval does the recruitment time fall in, and the equilibrium
probability for the reborn process can be calculated using the transition intensities for this
interval.

B.3.1 A Reborn Process for the Nun Study

NC MCI Dementia

Death

1 2 3

4

Figure B.1: A four-state stochastic process with reversible transition from mild cogni-
tive impairment (MCI) to normal cognition (NC). The shaded block corresponds to the
absorbing state.

Consider the four-state model as shown in Figure B.1, with the transition intensity matrix
being

Λ =


− (λ12 + λ14) λ12 0 λ14

λ21 − (λ21 + λ23 + λ24) λ23 λ24

0 0 λ34 −λ34

0 0 0 0

 .
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Assume that if a subject enters the death state, it will be reborn immediately to state
j with probability ωj, j = 1, 2, 3. The transition intensity matrix for the reborn process is:

ΛB =

 1 0 0 0

0 1 0 0

0 0 1 0

Λ


1 0 0

0 1 0

0 0 1

ω1 ω2 ω3



=

 − (λ12 + (ω2 + ω3)λ14) λ12 + ω2λ14 ω3λ14

λ21 + ω1λ24 − (λ21 + λ23 + (ω1 + ω3)λ24) λ23 + ω3λ24

ω1λ34 ω2λ34 − (ω1 + ω2)λ34


Consider a simple case where every individual is reborn in state 1; the equilibrium

probabilities are:

φ1 =
λ21λ34 + λ23λ34 + λ24λ34

λ12λ23 + λ12λ34 + λ21λ34 + λ23λ34 + λ24λ34

φ2 =
λ12λ34

λ12λ23 + λ12λ34 + λ21λ34 + λ23λ34 + λ24λ34

φ3 =
λ12λ23

λ12λ23 + λ12λ34 + λ21λ34 + λ23λ34 + λ24λ34

.
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B.3.2 Some Examples of Reborn Processes for Alternate Models
for the Nun Study

NC MCI Dementia

Death

1 2 3

4

Figure B.2: A four-state stochastic process without reversible transition. The shaded block
corresponds to the absorbing state.

In this section, we give two other examples of reborn processes for four-state Markov
models which have an absorbing state. Equilibrium probabilities for the reborn processes
will be calculated while assuming that the subjects reborn to the first state with probability
1 using a time-homogeneous Markov model.

Consider the four-state stochastic process similar to one for the Nun Study without
reverse transition from MCI to NC, see Figure B.2. The transition intensity matrix for
such a model is

Λ =


− (λ12 + λ14) λ12 0 λ14

0 − (λ23 + λ24) λ23 λ24

0 0 −λ34 λ34

0 0 0 0

 .
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NC MCI Dementia Death

1 2 3 4

Figure B.3: A stepwise progressive four-state stochastic process. The shaded block corre-
sponds to the absorbing state.

The equilibrium probabilities of the reborn model by solving (B.4) are

φ1 =
λ23λ34 + λ24λ34

λ12λ23 + λ12λ34 + λ23λ34 + λ24λ34

φ2 =
λ12λ34

λ12λ23 + λ12λ34 + λ23λ34 + λ24λ34

φ3 =
λ12λ23

λ12λ23 + λ12λ34 + λ23λ34 + λ24λ34

.

Consider a stepwise progressive model, where severer stages of the disease can only be
approached from the previous state, see Figure B.3. The transition intensity matrix for
such a model is

Λ =


−λ12 λ12 0 0

0 −λ23 λ23 0

0 0 −λ34 λ34

0 0 0 0

 .
The equilibrium probabilities of the reborn model by solving (B.4) are

φ1 =
λ23λ34

λ12λ23 + λ12λ34 + λ23λ34

φ2 =
λ12λ34

λ12λ23 + λ12λ34 + λ23λ34

φ3 =
λ12λ23

λ12λ23 + λ12λ34 + λ23λ34

.

112


	Examining Committee Membership
	Author’s Declaration
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Motivation: The Nun Study
	Outline

	Augmented Likelihood for Incorporating Auxiliary Information into Left-truncated Data
	Introduction
	Method
	Application to the Nun Study
	Simulation Studies 
	Discussion

	A Mixture Hidden Markov Model with Partially Known Component Memberships 
	Introduction
	Method
	Results from the Nun Study
	Simulation Studies
	Parameter Identifiability and Estimability in Mixture Hidden Markov Models
	A Bayesian Approach for Parameter Estimation
	Discussion

	Response Dependent Sampling in Multistate Models
	Introduction
	Methods
	Results from the Nun Study Data
	Simulation Studies
	A Bayesian Approach for Parameter Estimation
	Discussion

	Discussion and Future Work
	Future Work on Augmented Likelihood for Incorporating Auxiliary Information
	Future Work on Finite Mixture Hidden Markov Models
	Future Work on Left-truncated Multistate Models

	Bibliography
	Appendices
	Appendix for Chapter 3
	Transition Probabilities for the Underlying Models
	Prevalence of Dementia for the Nun Study
	The Likelihood Function for the Nun Study

	Appendix for Chapter 4
	Complementary Analysis Results
	Expressions of the Transition Probabilities
	Reborn Equilibrium Probabilities for Multistate Models with Absorbing States





