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Abstract

Tensor network methods are playing a central role in multiple disciplines of modern
quantum physics, such as condensed matter physics, quantum information and quantum
gravity. Based on renormalization group (RG) ideas, they provide a large class of varia-
tional ansatz for quantum many-body systems. There are various tensor network struc-
tures which are suited for different systems based on their entanglement structures, such as
matrix product states (MPS), projected entangled pair states (PEPS), multi-scale entan-
glement renormalization ansatz (MERA). Numerous techniques involving coarse-graining
tensor networks have been developed, such as tensor renormalization group (TRG), tensor
network renormalization (TNR) and its variants.

First, we study the generalization of MERA to continuous systems, or cMERA, which
is expected to become a powerful variational ansatz for the ground state of strongly inter-
acting quantum field theories. We investigate, in the simpler context of Gaussian cMERA
for free theories, the extent to which the cMERA state |ΨΛ〉 with finite UV cut-off Λ
can capture the spacetime symmetries of the ground state |Ψ〉. For a free boson conformal
field theory (CFT) in 1+1 dimensions as a concrete example, we build a quasi-local unitary
transformation V that maps |Ψ〉 into |ΨΛ〉 and show two main results. (i) Any spacetime
symmetry of the ground state |Ψ〉 is also mapped by V into a spacetime symmetry of the
cMERA |ΨΛ〉. However, while in the CFT the stress-energy tensor Tµν(x) (in terms of
which all the spacetime symmetry generators are expressed) is local, the corresponding
cMERA stress-energy tensor TΛ

µν(x) = V Tµν(x)V † is quasi-local. (ii) From the cMERA,
we can extract quasi-local scaling operators OΛ

α(x) characterized by the exact same scal-
ing dimensions ∆α, conformal spins sα, operator product expansion coefficients Cαβγ, and
central charge c as the original CFT. We argue that these results should also apply to
interacting theories.

Second we extend TNR to field theories in the continuum. A short-distance length
scale 1/Λ is introduced in the continuum partition function by smearing the fields. The
resulting object is still defined in the continuum but has no fluctuations at distances shorter
than 1/Λ. An infinitesimal coarse-graining step is then generated by the combined action
of a rescaling operator L and a disentangling operator K that implements a quasilocal
field redefinition. As demonstrated for a free boson in two dimensions, continuous TNR
exactly preserves translation and rotation symmetries and can generate a proper RG flow.
Moreover, from a critical fixed point of this RG flow one can then extract the conformal
data of the underlying conformal field theory.

Leaving behind tensor network methods, we explore the universal structure that emerges
from the eigenvectors of the reduced density matrix (RDM) for 1+1 dimensional critical
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lattice systems. Using the Ising model as an example, we demonstrate that the large-weight
eigenvectors are related to the low-lying states of the underlying CFT with suitable bound-
ary conditions by a conformal map, and they transform accordingly under the Virasoro
generators.

Finally, using the quantum renormalization group (QRG), we derive the bulk geometry
that emerges in the holographic dual of the fermionic U(N) vector model at a nonzero
charge density. The obstruction that prohibits the metallic state from being smoothly
deformable to the direct product state under the renormalization group flow gives rise to a
horizon at a finite radial coordinate in the bulk. The region outside the horizon is described
by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the
boundary theory. On the other hand, the interior of the horizon is not described by any
Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure
inside the horizon carries the information on the shape of the filled Fermi sea.
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Chapter 1

Introduction

As P.W. Anderson pointed out in the celebrated article “More Is Different”[4], entirely
new properties appear at each level of complexity from large and complex aggregations of
elementary particles. Various phases of matter such as superfluid and superconductivity
arises from local interactions, exhibiting collective patterns of atoms and electrons. Un-
derstanding novel emergent properties from interacting many-body systems is of central
importance in condensed matter physics. Originally developed in the context of condensed
matter physics, the idea of emergence has become a key concept in a variety of areas, from
particle physics to quantum gravity. However, the study of interacting many-body systems
is an extremely challenging task. The fundamental difficulty is that the dimension of the
Hilbert space for a many-body system increases exponentially as the system size increases.
The computational complexity of a straightforward numerical simulation grows so rapidly
that even the most powerful supercomputer cannot handle it.

Tensor networks are a family of variational methods for studying many-body systems.
Using tensors as building blocks, they provide approximate and efficient representations
of many-body states with a lot fewer parameters. For example, an exact representation
of the wavefunction for a one-dimensional spin chain of N spins-1/2 requires 2N param-
eters. However, an MPS representation of a spin chain only has O(N) parameters[22].
If translational invariance is further imposed, we only need O(1) parameters to represent
the such a wavefunction. Moreover, tensor networks typically allow efficient evaluation of
quantities of our interest, such as correlation functions. A well-designed tensor network
method should also involve some optimization scheme that can systematically improve the
numerical accuracy of the tensor network.

Tensor network methods are closely related to the idea of RG and the concept of quan-
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tum entanglement. Historically, White’s Density Matrix Renormalization Group (DMRG)
method achieved massive success in dealing with lattice systems[10, 11]. It has become the
standard tool for one-dimensional quantum lattice systems. The key idea of DMRG is to
keep the relevant degrees of freedom in the renormalization procedures. It was later under-
stood that DMRG can be viewed as a variational optimization algorithm over MPS[7]. A
significant advantage of tensor network method is that it intuitively encodes the entangle-
ment structure of the quantum state. Each internal index of bond dimension χ can carry
at most logχ bits of entanglement across it. From this point of view, it is clear that MPS
method is particularly suited for one-dimensional gapped systems[6], since the entangle-
ment entropy for any bipartition is upper-bounded by logχ. Subsequent generalization
was proposed to tackle critical lattice systems, which is the so-called Multi-scale Entan-
glement Renormalization Ansatz (MERA)[9, 5]. The entanglement structure of MERA
implies that the upper bound of the entanglement entropy of a block of length L scales
as logχ · O(logL). This property makes it possible for MERA to represent the ground
state of one-dimensional critical lattice systems. Using unitaries and isometries as building
blocks, MERA not only provides an ansatz for a quantum state, but also defines a scale
transformation that can be applied to the Hilbert space. Investigating how local operators
are mapped by the scale transformation, we can extract the universal data of the critical
lattice systems[8]. Moreover, MERA has an inherent geometric structure with an emer-
gent dimension, which corresponds to the length scale. Swingle first made the proposal
that MERA could be a discrete realization of AdS/CFT correspondence[19]. The possible
connection between MERA and gauge/gravity duality has later on been investigated by a
lot of authors[16, 15, 17, 14, 13, 12].

Tensor network methods not only involve variational ansatz representing many-body
states, but also techniques of coarse-graining tensor networks (two-dimensional tensor net-
works for most cases) such as TRG[26] and TNR[21]. These tensor networks could rep-
resent partition functions of classical statistical models or physical quantities related to a
PEPS[27]. The idea is to replace a local patch of tensors by a renormalized tensor while
preserving the main features of the tensor network at long distances, much in the spirit of
Kadanoff’s original spin-blocking proposal[55]. By splitting tensors using singular value de-
composition (SVD) and regrouping them, TRG iteratively produces a zoomed-out version
of the tensor network. While sharing some features with traditional RG methods, TRG
arguably fails to perform a proper RG transformation. On the other hand, by removing
local entanglement at each step of coarse-graining, TNR produces a proper RG flow for
the tensor network[21]. Indeed, iterative applications of TNR to the partition function of
a critical lattice model leads to a fixed point of tensor network, from which the universal
data can be extracted. Moreover, TNR is closely related to MERA: iterative applications
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of TNR to a tensor network representation of an Eucliean path integral with a boundary
produce a MERA[21].

Tensor network methods are naturally suited for lattice systems. Although quantum
field theories can be discretized into lattice theories, translational symmetries or other
spacetime symmetries will be broken. Therefore it is an important challenge to generalize
tensor network methods to the continuum. Plenty of progress has been made over the
years, such as continuous MPS (cMPS)[28, 23, 24, 25], continuous MERA (cMERA)[81]
and continuous PEPS (cPEPS)[20].

cMERA, proposed by Haegeman et al., describes an entangling evolution of the quan-
tum field degrees of freedom that flows from some large length scale all the way down
to an UV length scale 1/Λ. The entangling evolution in scale is generated by a Hermi-
tian operator L + K that explicitly preserves spatial translation and rotation invariance.
In Chapter 2, we explore to what extent, and in which sense, cMERA can preserve the
spacetime symmetries of the original QFT, beyond translation and rotation symmetry. In
Chapter 3, we explain how to extend TNR to field theories in the continuum. Using the
free boson theory in two dimensions as an example, we demonstrate that continuous TNR
(cTNR) exactly preserves translation and rotation symmetries and can generate a proper
RG flow. The conformal data can be extracted from the fixed point of the RG flow.

For 1+1 dimensional critical systems, understanding the entanglement structure is es-
sential for the development of tensor network methods. Entanglement entropy and entan-
glement spectra, the most commonly used measures of quantum entanglement, have been
shown to exhibit universal structures[95, 97, 98, 99, 100, 101, 102, 103]. In Chapter 4, we
take a step further by exploring the universal structure that emerges from the eigenvectors
of the RDM for 1+1 dimensional critical lattice systems. We show that the eigenvectors
can be used as a natural basis to construct a lattice representation of the Virasoro algebra
of the underlying CFT with proper boundary conditions.

In Chapter 5, we shift our focus and construct the holographic dual of the fermionic
U(N) vector model using QRG[123]. QRG is very different from the conventional RG
schemes, including those defined by MERA, TNR or their generalizations to the contin-
uum. In QRG, only a subset of operators are kept in the renormalization procedure. The
price one has to pay is that the coupling constants of these operators are promoted to
dynamical variables, whose fluctuations encode the information about the other operators
which are not kept in the renormalization procedure. This feature allows QRG to provide
a microscopic construction of the holographic dual for a given theory.

3



Chapter 2

Spacetime symmetries and conformal
data in cMERA

2.1 Introduction

As mentioned earlier, MERA is one of the most useful tensor network methods for lattice
models. It can be visualized as the result of a unitary evolution, running from large dis-
tances to short distances, that maps an initial unentangled state into a complex many-body
wavefunction by gradually introducing entanglement into the system, scale by scale. The
success of the MERA in a large class of lattice systems, including systems with topological
order [30] or at a quantum critical point [29, 31, 32, 33], teaches us that this entangling
evolution in scale picture is a valid –and computationally powerful!– way of thinking about
ground states and their intricate structure of correlations. With a built-in notion of the
renormalization group [34], MERA is also actively investigated in several other contexts,
from holography [35, 36, 37] (as a discrete realization of the AdS/CFT correspondence
[38]) to statistical mechanics [64], error correction [40], and machine learning [41].

The MERA formalism can also be applied to a quantum field theory (QFT), after
introducing a lattice as a UV regulator. For instance, when applied to a conformal field
theory (CFT) [96, 43, 44], corresponding to a critical QFT, lattice MERA accurately
reproduces the universal properties of the corresponding quantum phase transition (as
given by the conformal data) [32, 33]. However, introducing a lattice has a devastating
effect on the spacetime symmetries of the original QFT, with e.g. translation and rotation
invariance being reduced to invariance under a discrete subset of translations and rotations
[45].
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To overcome this difficulty, Haegeman, Osborne, Verschelde, and Verstraete [81] pro-
posed the continuous MERA (cMERA). It describes an entangling evolution of the quan-
tum field degrees of freedom that flows from some large length scale all the way down to
a UV length scale 1/Λ, directly in the continuum, without introducing a lattice. In this
case, the entangling evolution in scale is generated by a Hermitian operator L + K that
explicitly preserves translation and rotation invariance. While a fully general cMERA al-
gorithm for interacting QFTs (the truly interesting but much more challenging scenario) is
still missing (see however [47]), the simplified Gaussian version of cMERA, also proposed
in Ref. [81], provides a valuable proof of principle that lattice MERA can be successfully
extended to the continuum –one that has already attracted considerable attention in the
context of holography [48, 49] and can extract non-perturbative information of interacting
QFTs [47].

In this chapter we explore to what extent, and in which sense, cMERA can preserve
the spacetime symmetries of the original QFT, beyond translation and rotation symmetry.
Our starting point is the simple observation that, by construction, a successful cMERA
approximation |ΨΛ〉 should reproduce the targeted QFT ground state |Ψ〉 at all length scale
all the way down to 1/Λ (the scale at which the entangling evolution ends). Accordingly,
there should exist a quasi-local unitary transformation V , acting non-trivially only at short
distances . 1/Λ, that maps |Ψ〉 into |ΨΛ〉, i.e. |ΨΛ〉 = V |Ψ〉. If this was indeed the case,
then V would map any local generator G of a symmetry of the ground state, satisfying
G|Ψ〉 = 0, into a quasi-local generator GΛ ≡ V GV † satisfying GΛ|ΨΛ〉 = 0. That is,
all symmetries of |Ψ〉, including its spacetime sysmmetries, would automatically turn into
symmetries of |ΨΛ〉, which would however be realized quasi-locally.

In this chapter we will formalise the above intuition and explore its implications for
a specific QFT, namely the 1+1 free boson CFT, whose spacetime symmetries are given
by the conformal group. However, the above result can be seen to hold more generally
for any optimized Gaussian cMERA discussed in Ref. [81], and we expect it to be correct
also in the interacting case. We will first show that the optimized cMERA |ΨΛ〉 for the
1+1 free boson CFT is invariant under (a quasi-locally generated version of) the global
conformal group, which includes scale transformations. We will then see that the quasi-
local generator DΛ ≡ V DV † (where D is the generator of scale transformations or dilations
in the CFT) is equal to the generator L+K of the entangling evolution in scale that defined
the cMERA in the first place. Finally, we will see that the (exact!) conformal data of the
target CFT can be extracted from |ΨΛ〉 by studying the set of smeared scaling operators
OΛ
α(x) associated to DΛ = L+K. This result implies that the optimized cMERA exactly

captures the universality class of a quantum phase transition.
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2.2 Continuous MERA for a massless free boson

Consider the 1+1 dimensional massless Klein Gordon QFT,

H =
1

2

∫ ∞
−∞

dx :
[
π(x)2 + (∂φ(x))2

]
: (2.1)

for bosonic conjugate field operators φ(x) and π(x), with [φ(x), π(y)] = iδ(x − y). H can
be diagonalized [50],

H =
1

2

∫
dk :

[
π(−k)π(k) + k2φ(−k)φ(k)

]
: (2.2)

=

∫
dk |k| a(k)†a(k). (2.3)

by first introducing Fourier space mode operators φ(k) ≡ 1√
2π

∫
dx e−ikxφ(x) and π(k) ≡

1√
2π

∫
dx e−ikxπ(x) and then annihilation operators a(k),

a(k) ≡
√
|k|
2
φ(k) + i

√
1

2|k|
π(k), (2.4)

with [a(k), a(q)†] = δ(k− q). Above, the normal ordering :A: of an operator A is defined as
usual by placing the a’s to the right of the a†’s [e.g., if A = a(k)a(q)†, then :A: = a(q)†a(k)]
and ensures a vanishing energy for the ground state |Ψ〉 of H, which is characterized by
the infinite set of linear constraints

a(k)|Ψ〉 = 0, ∀k. (2.5)

On the other hand, the Gaussian cMERA |ΨΛ〉 for this CFT, as proposed and optimized
in Ref. [81], reads

|ΨΛ〉 ≡ U(0,−∞)|Λ〉, (2.6)

namely it is the result of applying a unitary evolution U to a product (unentangled) state
|Λ〉, characterized by (√

Λ

2
φ(k) +

i√
2Λ
π(k)

)
|Λ〉 = 0, ∀k. (2.7)

In the context of a scale invariant QFT, U reads

U(sUV , sIR) ≡ e−i(L+K)(sUV −sIR), (2.8)
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Figure 2.1: Left: function g(k) = exp (−e−γ(k/Λ)2) /2 for the optimized Gaussian cMERA
of Ref. [81], where γ ≈ 0.57722 is Euler’s constant (see Appendix A). For comparison, the
CFT dilation operator D such that D|Ψ〉 = 0 corresponds to choosing g(k) = 1/2 and the
non-relativistic dilation operator L such that L|Λ〉 = 0 corresponds to g(k) = 0). Right:
function α(k) for g(k), interpolating between the linear dependence k for the CFT ground
state |Ψ〉 at small k and the constant value Λ for the product state |Λ〉 at large k.

where the generator of non-relativistic dilations L and the so-called entangler K are given
by

L ≡ 1

2

∫
dk
[
π(−k)(k∂k +

1

2
)φ(k) + h.c.

]
, (2.9)

K ≡ 1

2

∫
dk g(k)

[
π(−k)φ(k) + h.c.

]
, (2.10)

and the optimized function g(k) in Fig. 2.1 smoothly approaches 1/2 and 0 for small and
large k, respectively,

g(k) ∼
{

1/2, |k| � Λ,
0, |k| � Λ.

(2.11)

By introducing new annihilation operators aΛ(k),

aΛ(k) ≡
√
α(k)

2
φ(k) + i

√
1

2α(k)
π(k), (2.12)

with [aΛ(k), aΛ(q)†] = δ(k− q), here we start by pointing out that the cMERA state in Eq.
2.6 can be equivalently specified by the modified set of linear constraints

aΛ(k)|ΨΛ〉 = 0, ∀k, (2.13)
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provided α(k) and g(k) are related by dα(k)/dk = 2g(k)α(k)/k (see Appendix A). For the
g(k) in Fig. 2.1, this implies

α(k) ∼
{
|k|, |k| � Λ (CFT limit),
Λ, |k| � Λ (product state limit).

(2.14)

To gain insight into the structure of |ΨΛ〉, we notice that the constraints it satisfies (Eqs.
2.12-2.14) interpolate between the constraints of the CFT ground state |Ψ〉 (Eqs. 2.4-2.5)
at small k and those of the product state |Λ〉 (Eq. 2.7) at large k. In other words, the
optimized cMERA should somehow behave as the CFT ground state |Ψ〉 at large distances
x� 1/Λ and as the product state |Λ〉 at short distances x� 1/Λ [81]. A direct calculation
[51] confirms that, in sharp contrast to the target CFT, in cMERA correlation functions
and entanglement entropy remain finite/regulated at short distances, implying that |ΨΛ〉
has a built-in UV cut-off.

2.3 Smearing symplectic transformation

In order to investigate the spacetime symmetries of |ΨΛ〉, let us introduce the unitary map
V , defined by

V φ(k)V † =

√
α(k)

|k|
φ(k) ≡ φΛ(k), (2.15)

V π(k)V † =

√
|k|
α(k)

π(k) ≡ πΛ(k). (2.16)

This map implements a symplectic transformation (preserving canonical commutation re-
lations) that transforms a(k) into V a(k)V † = aΛ(k) and therefore the CFT ground state
into the cMERA, V |Ψ〉 = |ΨΛ〉. The transformation is quasi-local: V maps the sharp field
operators φ(x) and π(x) into operators φΛ(x) and πΛ(x) that are smeared over a length
1/Λ. Indeed, through a Fourier transform of φΛ(k) and πΛ(k) we obtain

φΛ(x) = V φ(x)V † =

∫
dy µφ(x− y)φ(y), (2.17)

πΛ(x) = V π(x)V † =

∫
dy µπ(x− y)π(y), (2.18)

where µφ and µπ are distributional Fourier transforms [54] of
√

α(k)
|k| and

√
|k|
α(k)

that are

upper bounded by an exponentially decaying function for Λ|x| � 1 (see Appendix A).
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We also note that since V acts diagonally in momentum space, its action by conjugation
commutes with the spatial derivative ∂x. For instance,

(∂xφ)Λ(x) ≡ V ∂xφ(x)V † = ∂x
(
V φ(x)V †

)
= ∂x(φ

Λ(x)),

with the smearing function µφ′(y) for (∂xφ)Λ(x) being the derivative of the smearing func-

tion for φΛ(x), that is µφ′(y) = dµφ(y)/dy = 1/
√

2π
∫
dk eiky (ik)

√
α(k)
|k| . In particu-

lar, the right moving and left moving fields ∂φ(x) ≡ (∂xφ(x) − π(x))/2 and ∂̄φ(x) ≡
(∂xφ(x) + π(x))/2 of the CFT [52] are mapped into smeared right and left moving fields,
e.g.

(∂φ)Λ (x) ≡ V ∂φ(x)V † =
1

2

(
∂xφ

Λ(x)− πΛ(x)
)
. (2.19)

2.4 Quasi-local stress-energy tensor

The spacetime symmetry generators of the CFT are given by the symmetric, traceless
stress-energy tensor Tµν(x) [44], with components T00(x) = :[π(x)2 + (∂xφ(x))2]: /2 ≡ h(x)
and T01(x) = −:π(x)∂xφ(x): ≡ p(x), where h(x) and p(x) are the energy and momentum
densities. In close analogy, the quasi-local stress-energy tensor TΛ

µν(x) ≡ V Tµν(x)V † defines
quasi-local energy and momentum densities,

hΛ(x) ≡ TΛ
00(x) =

1

2
:
[
πΛ(x)2 + (∂xφ

Λ(x))2
]
:, (2.20)

pΛ(x) ≡ TΛ
01(x) = − :πΛ(x)∂xφ

Λ(x) :, (2.21)

where we have used that for any two operatorsA(x) andB(x), (A(x)B(y))Λ ≡ V (A(x)B(y))V †

=
(
V A(x)V †

) (
V B(y)V †

)
= AΛ(x)BΛ(y) and the normal order is now with respect to the

annihilation operators aΛ(k) in Eq. 2.12. As argued earlier, any generator of a symmetry
of the CFT ground state |Ψ〉 is mapped into a quasi-local generator of a symmetry of |ΨΛ〉.
Let us now elaborate this point with a few explicit examples.

2.5 Translations in time and space

Hamiltonian H =
∫
dx h(x) in Eq. 2.1 and the momentum operator P ≡

∫
dx p(x),

generators of translations in time (t, x) → (t + t0, x) and in space (t, x) → (t, x + x0), are
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mapped into

HΛ =

∫
dx hΛ(x) =

∫
dk |k| aΛ(k)†aΛ(k), (2.22)

PΛ =

∫
dx pΛ(x) =

∫
dk k aΛ(k)†aΛ(k), (2.23)

whose expressions in terms of the annihilation operators aΛ(k) make manifest thatHΛ|ΨΛ〉 =
0, PΛ|ΨΛ〉 = 0, and that |ΨΛ〉 is the ground state of the quasi-local Hamiltonian HΛ, since
HΛ ≥ 0. Direct inspection shows that PΛ = P . We have thus recovered the known
invariance of |ΨΛ〉 under space translations generated by P [81] (equivalently, PΛ), and
have in addition shown its invariance under time translations generated by HΛ. Notice,
moreover, that a complete set of simultaneous eigenstates of HΛ and PΛ, can now be built
by applying the creation operators aΛ(k)†’s on |ΨΛ〉.

2.6 Lorentz boosts and scale transformations

We can similarly define cMERA analogues of the generators B ≡
∫
dx x h(x) and D ≡∫

dx x p(x) of boosts (x, t)→ γ(x− vt, t− vx) [where γ ≡ 1/
√

1− v2 is the Lorentz factor
and v is the relative velocity] and dilations (t, x) → (λt, λx) [where λ is the re-scaling
factor], namely

BΛ =

∫
dx x hΛ(x) (2.24)

= i

∫ ∞
−∞

dk aΛ(k)†sgn(k)

(
k∂k +

1

2

)
aΛ(k), (2.25)

DΛ =

∫
dx x pΛ(x) (2.26)

= i

∫ ∞
−∞

dk aΛ(k)†
(
k∂k +

1

2

)
aΛ(k), (2.27)

which again manifestly annihilate |ΨΛ〉. Operator BΛ generates a continuous symmetry of
|ΨΛ〉 related to relativistic invariance and with no counter-part on the lattice. Importantly,
a direct computation (see Appendix A) shows that DΛ = L+K, so that the generator of
scale transformations DΛ coincides with the generator L + K of the unitary evolution in
scale that defines the cMERA |ΨΛ〉. Accordingly, the cMERA state |ΨΛ〉 is scale invariant,
in spite of containing no entanglement at distances smaller than 1/Λ, if we agree to regard
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DΛ = L+K as the generator of dilations. The dilations generated by DΛ not only re-scale
spacetime in the usual sense, but also introduce or remove entanglement as needed in order
to reset the UV cut-off back to 1/Λ.

We emphasize that, by construction, the operators HΛ, PΛ, BΛ and DΛ inherit the com-
mutation relations of the CFT generators ([HΛ, PΛ] = [BΛ, DΛ] = 0, −i[DΛ, HΛ] = HΛ,
etc) and therefore close the same algebra, which can be extended to the global conformal
group and ev(see Appendix A). Thus, the cMERA realizes a quasi-local, smeared version
of conformal symmetry.

In Ref. [81], Haegeman et al. pointed out that the state |ΨΛ〉 recovers scale invariance
in the limit Λ → ∞, where it coincides with the target CFT ground state |Ψ〉. Here we
have just argued, in sharp contrast, that |ΨΛ〉 is already scale invariant at finite Λ, provided
that we adopt DΛ = L + K as the generator of scale transformations. Admittedly, the
scale invariance of |ΨΛ〉 is a tautology (because |ΨΛ〉 had been introduced in Eqs. 2.6-2.8
as a fixed-point of L+K!). To see why these unorthodox notions of scale transformation
and scale invariance are nevertheless very useful, next we show that they lead to smeared
versions of the scaling operators of the theory from which the conformal data of the target
CFT can be extracted.

2.7 Quasi-local scaling operators and conformal data

Let us thus search for the quasi-local scaling operators OΛ
α(x) that transform covariantly

under DΛ and BΛ, that is, such that (choosing x = 0 for simplicity)

−i[DΛ, OΛ
α(0)] = ∆αO

Λ
α(0), (2.28)

−i[BΛ, OΛ
α(0)] = sαO

Λ
α(0), (2.29)

where ∆α and sα are the scaling dimension and conformal spin of OΛ
α(x), respectively [53].

One could determine OΛ
α by solving Eqs. 2.28-2.29, but there is no need. Indeed, we

can instead use V to translate the sharp scaling operators of the CFT (which are already
known [44]) into smeared cMERA scaling operators. A first example is a linear scaling
operator of the CFT, namely the right moving field ∂φ(x) discussed before, which satisfies
−i[D, ∂φ(0)] = ∂φ(0) and −i[B, ∂φ(0)] = ∂φ(0), implying a scaling dimension ∆∂φ = 1
and conformal spin s∂φ = 1. Using the symplectic map V we readily obtain corresponding
expressions for ∂φΛ(x) in Eq. 2.19, namely

−i[DΛ, ∂φΛ(0)] = ∂φΛ(0), (2.30)

−i[BΛ, ∂φΛ(0)] = ∂φΛ(0), (2.31)
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and thus ∂φΛ(x) has the same scaling dimension ∆∂φΛ = 1 and conformal spin s∂φΛ = 1
by DΛ and BΛ as ∂φ(x) has by D and B. This results extends to all scaling operators
of the CFT, including e.g. quadratic scaling operators such as the right moving part of
the stress-energy tensor, T (x) = −2π : ∂φ(x)∂φ(x) :, with ∆T = sT = 2, or vertex
operators Vν(x) ≡ : eiνφ(x) :. Moreover, operators OΛ

α(x) also inherit from the CFT its
operator product expansion (OPE) coefficients Cαβγ. For instance, the OPE T (x)∂φ(y) ∼
∂φ(y)/(x− y)2 + ∂2φ(y)/(x− y), translates into

TΛ(x)∂φΛ(y) ∼ ∂φΛ(y)

(x− y)2
+
∂2φΛ(y)

(x− y)
. (2.32)

Finally, the central charge c can be obtained from (a translation of) the standard OPE of
T (x) with itself, namely

TΛ(x)TΛ(y) ∼ c/2

(x− y)4
+

2TΛ(y)

(x− y)2
+
∂TΛ(y)

(x− y)
, (2.33)

which results in c = 1.

2.8 Discussion

We have seen that the Gaussian cMERA for a 1+1 free boson CFT, as proposed and opti-
mized in Ref. [81], inherits (a quasi-locally realized version of) the spacetime symmetries
of the conformal theory. This result was based on identifying the quasi-local unitary trans-
formation V that maps the CFT ground state |Ψ〉 into the cMERA |ΨΛ〉, and then using
it to also map the symmetry generators of the original theory. As an application, we have
shown that from the generators DΛ = L + K and BΛ =

∫
dx x hΛ(x) we can reconstruct

all the conformal data of the original CFT, namely the central charge c, and the scaling
dimensions ∆α and conformal spins sα of the primary fields, together with their OPE co-
efficients Cαβγ. A similar transformation V can also be built for the optimized Gaussian
cMERA of any free QFT analysed in Ref. [81], including higher dimensional CFTs (in-
variant under the global conformal group) and massive relativistic QFTs (invariant only
under the Poincare group, with a scale dependent entangler K(s)).

We conclude by briefly commenting on the (non-Gaussian) cMERA for interacting
QFTs, for which no optimization algorithm is yet known. Based on the success of MERA
[29, 32, 33] for interacting theories on the lattice over the last 10 years, it is reasonable to
speculate that a putative interacting cMERA algorithm will produce an optimized state
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|ΨΛ〉 that will again only differ significantly from its target ground state |Ψ〉 at short
distances. Accordingly, a quasi-local unitary V should also exist relating |Ψ〉 and |ΨΛ〉 that
maps the generators of symmetries into quasi-local generators. In this way, for instance,
we once again expect to be able to extract an accurate estimate of the conformal data of
interacting CFTs from an optimized non-Gaussian cMERA approximation |ΨΛ〉.
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Chapter 3

Continuous tensor network
renormalization for quantum fields

3.1 Introduction

The study of many-body systems is a major challenge of modern physics. Following the
seminal work of Kadanoff [55] and Wilson [56], the renormalization group (RG) allows us
to investigate how the physics of a many-body system changes with scale while providing
a conceptual framework for understanding universality in second order phase transitions.
More recently, ideas from quantum information have led to a new generation of powerful
numerical RG algorithms for lattice systems [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71], starting with the breakthrough work of Levin and Nave [57], who wrote the partition
function of a two-dimensional statistical model as a tensor network and proposed coarse-
graining the latter by applying linear algebra compression methods (see [58, 59, 60, 61, 62,
63] for related algorithms). Building on that proposal, Evenbly and Vidal subsequently
introduced the tensor network renormalization (TNR) algorithm [64, 65, 66, 67], which
was shown to generate a proper RG flow {A1, A2, · · · } in the space of tensors A (see
[68, 70, 69, 71] for similar proposals). In particular, when applied to a critical lattice
model, TNR naturally flows to an RG fixed point, thus explicitly realizing scale invariance
on the lattice. From the fixed-point tensor A? one can then extract the critical universality
class of a second order phase transition, namely the conformal data that characterizes
the underlying conformal field theory (CFT) [72, 73, 74]. TNR, which recently inspired
research in the context of the holographic principle of quantum gravity [75, 76, 77, 78],
can be readily applied also to field theories by bringing them to the lattice. However,
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the discretization procedure destroys the field theory spacetime symmetries (continuous
translation and rotation symmetries), which are only retained in an approximate, emergent
sense. This makes it of interest, both conceptually and computationally, to extend TNR
to field theories directly in the continuum, in such a way that the original spacetime
symmetries are explicitly preserved.

In this chapter we propose an extension of TNR to the continuum. As a preliminary
step, fluctuations at distances shorter than a cutoff 1/Λ are removed from the Euclidean
partition function by smearing the quantum field degrees of freedom. Then an infinitesimal
transformation of continuous TNR (cTNR) is generated by the combined action of two
operators –a rescaling operator L that rescales space and a disentangling operator K that
implements a quasilocal field redefinition. When applied to the simple case of a free boson
field theory, cTNR is seen to generate the correct RG flow, including a critical fixed point
for the massless theory. As in lattice TNR, from this fixed point we can extract the
conformal data of the underlying CFT. Our construction resembles, but is not equivalent
to, the proposal of the continuous version of the multiscale entanglement renormalization
ansatz (MERA) [79, 80], known as continuous MERA (cMERA) [81], for ground states of
field theories, which is so far only well-understood for free theories but has nevertheless
attracted much attention in the context of holography as a potential toy model realization
of the AdS/CFT correspondence [83, 84, 85, 86, 87, 88, 89, 90, 91].

3.2 Lattice TNR

Let us briefly review the essential ingredients of the TNR algorithm on the lattice [64, 65,
66, 67]. The object to be coarse-grained is a two-dimensional statistical partition function
(equivalently, a discrete Euclidean path integral in two spacetime dimensions) that has
been expressed as a two-dimensional tensor network, where each tensor A in the network
encodes local Boltzmann weights. The lattice spacing a of the model serves as a short-
distance cutoff. Through an intricate sequence of local manipulations of the network, which
aims at removing shortly-correlated degrees of freedom, TNR effectively maps a block of
four tensors As at scale s into a single tensor As+1 at scale s+ 1. Then space is rescaled by
a factor 1/2, so as to reset the lattice spacing 2a of the coarse-grained network back to the
original lattice spacing a, see Fig. 3.1(a). These general features of the method are shared
with most previous tensor network coarse-graining schemes [57, 58, 59, 60, 61, 62, 63]. What
makes TNR stand out is that, thanks to the use of so-called disentanglers u and isometries
w (a technology borrowed from MERA [79, 80], see Fig. 3.1(b)), it first decouples, and
then eliminates, most shortly-correlated degrees of freedom from the partition function, in
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such a way as to generate a proper RG flow with the correct structure of fixed points.

3.3 Continuous partition function

Let us now move to a quantum field theory (QFT) in the continuum. For concreteness
we consider a bosonic field φ(x) in flat D-dimensional Euclidean spacetime. Our object of
interest is now the partition function

Z =

∫
[dφ] e−S[φ], S[φ] =

∫
dx L

(
φ(x),∆φ(x)

)
, (3.1)

where the Euclidean action S[φ] is the integral of a (generally interacting) local Lagrangian
density L, which we assume to be invariant under translations and rotations. As a prelim-
inary step, we introduce a smeared field

φΛ(x) ≡
∫
dy µ(|x− y|)φ(y),

∫
dx µ(|x|) = 1, (3.2)

where µ(x) ∈ R, with x ≡ |x|, is a smearing profile invariant under O(D) rotations
that decays fast to zero (e.g. exponentially) for distances x larger than a characteristic
smearing length scale 1/Λ, see Fig. 3.2(a) for an example. We then define the smeared
action SΛ[φ] ≡ S[φΛ], with corresponding quasilocal Lagrangian

LΛ
(
φ(x),∆φ(x)

)
≡ L

(
φΛ(x),∆φΛ(x)

)
, (3.3)

as well as the new partition function

ZΛ ≡
∫

[dφ] e−S
Λ[φ] =

∫
[dφ] e−S[φΛ] (3.4)

in which fluctuations of φ(x) at distances smaller than 1/Λ have been suppressed thanks
to the smearing. For instance, we expect the correlator for the sharp field φ(x),

〈φ(x)φ(0)〉Λ ≡
1

ZΛ

∫
[dφ] e−S

Λ[φ] φ(x)φ(0) (3.5)

not to diverge for x→ 0, but to tend to a constant when Λx� 1, see i.e. Fig. 3.2(c). The
length 1/Λ plays here a role analogous to the lattice spacing a in the lattice.

16



3.4 Continuous TNR

The proposed cTNR transformation proceeds through an infinitesimal change of the field

φ(x)→ φ(x) + δφ(x), δφ(x) ≡ δs (L + Ks)φ(x), (3.6)

where δs is an infinitesimal change of the scale parameter s, L is the usual rescaling
operator,

L φ(x) = (−x · ∇x −∆φ)φ(x), (3.7)

with ∆φ ≡ (D−2)/2 the classical scaling dimension of the field φ(x), and the disentangling
operator Ks implements a quasilocal field redefinition,

Ksφ(x) = F
(
s, φΛ(x),∆φΛ(x),∆2φΛ(x), . . .

)
. (3.8)

Here F is some function, not necessarily linear, of the smeared field φΛ(x) and its deriva-
tives, which is invariant under translations and rotations and may also depend on the scale
parameter s. While applying L to the smeared field φΛ(x) shrinks its smearing length, ap-
plying the quasilocal disentangler Ks is expected to restore it back to 1/Λ. Transformation
3.6-3.8 applied to ZΛ generates an RG flow. We write symbolically (see Appendix B)

ZΛ
s ≡ Pe

∫ s
0 du (L+Ku) ZΛ =

∫
[dφ]e−S

Λ
s [φ], (3.9)

where Pe denotes a path ordered exponential. In general we should take into account
the change of the integration measure when computing the evolution of the action SΛ

s [φ].
Since both L and Ks act (quasi)locally, it should be possible to write the new action as an
integral of a quasilocal Lagrangian density:

SΛ
s [φ] =

∫
dx LΛ

s

(
φ(x),∆φ(x),∆2φ(x), . . .

)
. (3.10)

Off criticality, we expect a flow of LΛ
s with s towards some massive fixed point La-

grangian. At a critical point, instead, we expect a flow towards an unstable fixed point
Lagrangian LΛ

? corresponding to a (smeared version of) a CFT. This will be characterized
by a spectrum of quasilocal scaling operators OΛ

α(x). For instance, in D = 2 dimensions
the latter are solutions to

(L + K?) O
Λ
α(0) = −∆α O

Λ
α(0), (3.11)

R OΛ
α(0) = sα O

Λ
α(0), (3.12)

where ∆α and sα are the scaling dimension and conformal spin of OΛ
α(x), K? is the fixed-

point disentangling operator, and R is the generator of rotations in the Euclidean plane,
R φ(x) = (x1∂x2 − x2∂x1) φ(x).
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3.5 Continuum versus lattice

As illustrated in Fig. 3.1(c), we can think of e−dxL
Λ
s as the continuum counterpart of a

tensor As in the network representing a partition function on the lattice. Then L + Ks
implement in the continuum the equivalent of a TNR coarse-graining transformation on
the lattice, with the disentangler Ks being the continuum version of the disentanglers us
and isometries ws on the lattice. Indeed, both the continuum Ks and the lattice us and ws
implement a (quasi)local reorganization of the degrees of freedom that aims to decouple
from the partition function those that are shortly correlated, that is, correlated at lengths
on the order a ∼ 1/Λ. However, while on the lattice each step of TNR implements a discrete
change of scale s→ s+1 and the disentanglers us and isometries ws are used to completely
decouple half of the lattice degrees of freedom, in the continuum TNR implements instead
a continuous change of scale s, during which the disentangler Ks gradually decouples field
degrees of freedom.

3.6 Example: free boson in two dimensions

Some features of the above general proposal for interacting field theories can be well illus-
trated using the simplified scenario of free fields. For concreteness, here we consider a free
boson in D = 2 spacetime dimensions. The Euclidean action is given by

S[φ] =
1

2

∫
dx
(
−φ(x)∆φ(x) +m2φ(x)2

)
(3.13)

=
1

2

∫
dk

(2π)2
(k2 +m2)φ(k)φ(−k), (3.14)

where φ(k) ≡
∫
dx φ(x)e−ik·x is a Fourier mode. Although cTNR is a real-space renormal-

ization scheme, for free fields it is insightful to work in momentum space. The following
derivations require performing standard Gaussian integrations and Fourier transforms, as
detailed in (see Appendix B). The momentum-space two-point correlator reads

〈φ(k)φ(−k)〉 =
1

k2 +m2
, (3.15)

leading to a real-space correlator 〈φ(x)φ(0)〉 that diverges at short distances, x→ 0. For
instance, for m = 0,

〈φ(x)φ(0)〉 = − 1

2π
log(x) + const. (m = 0). (3.16)
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Instead the smeared action SΛ[φ] ≡ S[φΛ] reads

SΛ[φ] =
1

2

∫
dx
(
− φΛ(x)∆φΛ(x) +m2φΛ(x)2

)
(3.17)

=
1

2

∫
dk

(2π)2
(k2 +m2)µ(k)2φ(k)φ(−k), (3.18)

and leads to the sharp field correlator

〈φ(k)φ(−k)〉Λ =
1

(k2 +m2)

1

µ(k)2
. (3.19)

Above we have used the Fourier transform of Eq. 3.2, φΛ(k) = µ(k)φ(k). Since the
smearing profile µ(x) is real and rotation invariant, so is µ(k). We further constrain µ(k)
with two requirements. First, we would like 〈φ(k)φ(−k)〉Λ to coincide with 〈φ(k)φ(−k)〉
for k � Λ, so that the smeared field theory reproduces the large distance physics of the
original field theory. Second, we would like to remove the short-distance divergence in
〈φ(x)φ(0)〉 (see e.g. Eq. 3.16), which demands that 〈φ(k)φ(−k)〉Λ tend to a constant (say,
1/Λ2) sufficiently fast for k � Λ. Accordingly we will require (see Appendix B):

µ(k) =

{
1 for k/Λ→ 0,

Λ/k for k/Λ→∞,∣∣∣∣∫ ∞
Λ

(
1

(k2 +m2)

1

µ(k)2
− 1

Λ2

)∣∣∣∣ <∞. (3.20)

3.7 Free boson cTNR

For a free theory, we can use a disentangling operator Ks linear in φ(x),

Ks φ(x) =

∫
dy g(s, |x− y|) φ(y), (3.21)

or Ksφ(k) = g(s, k)φ(k) in momentum space. Notice that Ks is built to be invariant under
both translations and rotations, since for any s, g(s, |x−y|) is only a function of |x−y|. In
analogy with lattice TNR, where disentanglers us and isometries ws act locally on a region
of linear size a, we further require g(s, x) to be a quasilocal function of x with characteristic
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length scale 1/Λ, see i.e. Fig. 3.2(b). For s = 0, L+Ks acts on SΛ[φ] as (see Appendix B)

(L + Ks) S
Λ[φ] (3.22)

=

∫
dk

(2π)2

{
k2µ(k)

[(
− k∂k + g(k)

)
µ(k)

]
(3.23)

+ m2µ(k)
[
(−k∂k + 1 + g(k))µ(k)

]}
φ(k)φ(−k), (3.24)

with g(k) ≡ g(0, k). It follows that, in the massless case m = 0, the action SΛ[φ] is
invariant if and only if

g(k) =
k∂kµ(k)

µ(k)
. (3.25)

Let K? denote the fixed-point entangler (that is, with g(k) obeying 3.25 ) and let SΛ
? [φ]

denote the massless action, i.e. (L + K?) S
Λ
? [φ] = 0. It also follows (see Appendix B) that

(L + K?) φ
Λ(0) = 0, (3.26)

which implies that the effect of the rescaling operator L on the smeared field φΛ(0) (namely
the shrinking of its smearing profile µ(x)) is exactly compensated by that of the fixed-point
disentangler K? (which re-expands the smearing through a quasilocal field redefinition).
Finally, as a concrete example, the pair of functions

µ(k) =
Λ

k
exp

(
1

2
Expi

(
− k2

σΛ2

))
, (3.27)

g(k) = −1 + exp

(
− k2

σΛ2

)
, (3.28)

where Expi(x) is the exponential integral function and σ = eγ ≈ 1.78 (with γ Euler’s
constant), fulfill the constraints 3.20 and 3.25 while their Fourier transforms µ(x) and g(x),
depicted in Fig. 3.2(a,b), are quasilocal with characteristic length 1/Λ (see Appendix B).
Fig. 3.2(c) shows the resulting correlator 〈φ(x)φ(0)〉Λ, which is UV-finite.

3.8 RG flow and critical fixed point

Applying now the above fixed-point disentangler K? to the action SΛ[φ] for m 6= 0 [92]
results in a scale-dependent action

SΛ
s [φ] =

1

2

∫
dx
(
− φΛ(x)∆φΛ(x) +m(s)2φΛ(x)2

)
(3.29)
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where the mass m(s) ≡ mes grows exponentially with the RG scale s. Thus we have
recovered the well-known RG flow of a massive free boson towards its infinite mass fixed
point.

Returning to the critical point, with fixed-point Lagrangian LΛ
? ≡ −1

2
φΛ(x)∆φΛ(x),

it can be shown that the quasilocal scaling operators OΛ
α(x), cf. Eqs. 3.11-3.12, are in

one to one correspondence with the local scaling operators Oα(x) of the free boson CFT
and can obtained by smearing them (see Appendix B). This observation is analogous to
that in Ref. [?]. For example, the right moving field ∂φ(x) ≡ (∂x1 − i∂x2)φ(x) is a CFT
scaling operator with scaling dimension ∆∂φ = 1 and conformal spin s∂φ = 1, satisfying
L ∂φ(0) = −∂φ(0) and R ∂φ(0) = ∂φ(0). By smearing those expressions we readily find
the corresponding scaling operator ∂φΛ(x):

(L + K?) ∂φ
Λ(0) = −∂φΛ(0), (3.30)

R ∂φΛ(0) = ∂φΛ(0), (3.31)

with the exact same scaling dimension and conformal spin. We can similarly recover
the operator product expansion and central charge of the original CFT [72, 73, 74], and
therefore extract all of its conformal data (see Appendix B).

3.9 Discussion

In this chapter we have proposed an extension of the TNR formalism [64, 65, 66, 67] to
quantum fields in the continuum and demonstrated with a free boson that, as on the lattice,
continuous TNR generates a proper RG flow, including a critical fixed point from which one
can extract the universal critical properties (conformal data) of the phase transition. The
exact preservation of translation and rotation symmetry, accomplished through the use of
explicitly symmetric smearing function µ and disentangling operator Ks, demonstrates the
possibility of preserving such symmetries in a real space RG approach. It is also expected
to lead to increased numerical robustness and reduced computational costs with respect to
lattice TNR.

Importantly, an actual cTNR algorithm for interacting QFTs is currently still missing.
However, based on the success of TNR and related algorithms for interacting models on the
lattice [64, 65, 66, 67, 68, 70, 69, 71], it is reasonable to expect that one such algorithm will
be eventually developed. We envisage that cTNR will then represent a powerful alternative
to Wilsonian RG methods [56]. Recall that the latter operate in momentum space and are
based on sequentially integrating out thin shells of modes with large momentum. We
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emphasize that cTNR, a real space method, operates in a fundamentally different way by
decoupling out shortly-correlated degrees of freedom through the use of a quasilocal field
redefinition.

Our proposal parallels the development of the cMERA, put forward by Haegeman,
Osborne, Verschelde, and Verstraete in Ref. [81]. As cMERA [81, ?, 82], the cTNR
formalism is based on smeared fields and is only well understood for free particle QFTs.
Moreover, at criticality both cMERA [?] and cTNR (see Appendix B) can be seen to
realize conformal symmetry quasilocally. However, even though TNR and MERA are
tightly related on the lattice [65], in the continuum there exist a clear divide between
the two formalism. Indeed, in cMERA the fields are only smeared in the space direction,
whereas in cTNR the smearing is isotropic in Euclidean spacetime. As a result, in cTNR it
is unclear how to even define the Hilbert space attached to a constant time slice in which
cMERA would represent a many-body wavefunctional [93]. Finally, while awaiting the
development of a cTNR algorithm for interacting QFTs, we hope that cTNR will become
a useful framework for holographic studies, thus following the path of both lattice TNR
[75, 76, 77, 78] and cMERA [83, 84, 85, 86, 87, 88, 89, 90, 91].
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Figure 3.1: (a) TNR acts of a network of tensors As representing a partition function on
a lattice with spacing a, by replacing a block of four tensors As with a single tensor As+1,
then rescaling the lattice spacing of resulting network from 2a back to a. (b) As part of the
intricate local manipulations that coarse-grain the network, TNR applies disentanglers us
and isometries ws to tensors As. Each isometry ws can be replaced with a unitary us with
a fixed input |0〉 representing a decoupled degree of freedom. (c) Correspondence between
objects in lattice and continuum TNR.
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Figure 3.2: (a) µ(x), 2D Fourier transform of µ(k) in Eq. 3.27, diverges as 1/x (dashed
line) at short distances and is upper bounded by an exponentially decaying function at long
distances (see Appendix B). (b) g(x) = −δ(x) + σΛ2/(4π)e−σΛ2x2/4, 2D Fourier transform
of g(k) in Eq. 3.28, has a contact term at x = 0 and decays as a Gaussian function at long
distances. (c) The correlation function 〈φ(x)φ(0)〉Λ, Fourier transform of 1/(k2µ(k)2), has
a delta contact term at x = 0, and scales logarithmically (dashed line) at long distances
(see Appendix B).
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Chapter 4

Emergent Universal Entanglement
Algebra in Critical Lattice Systems

4.1 Introduction

The study of the entanglement structures in quantum many-body states has been the
source of considerable insight about their physical properties. In the particular case of
systems at a quantum critical point, it has been shown that their entanglement displays
universal behaviour, i.e., structure that comes dictated by the universality class of the
phase transition, irrespective of the microscopic Hamiltonian realization thereof. In the case
of 1+1-dimensional systems, universality classes are labeled by 2-dimensional conformal
field theories (CFTs), whose structure has been thoroughly elucidated starting with the
seminal work of Belavin, Polyakov and Zamolodchikov [96]. Thus, universal entanglement
properties of a 1+1 dimensional system will be expressed in terms of conformal data of the
CFT describing the universality class where the corresponding system lies.

An important first example of universal behaviour in entanglement-related magnitudes
is given by the entanglement entropy. For a quantum system in a pure state |Ψ〉 partitioned
into two parts I and Ī, subsystem I is described by its reduced density matrix

ρI = trĪ |Ψ〉〈Ψ|, (4.1)

and its entanglement entropy is then defined as the von Neumann entropy of ρI ,

S = −tr ρI log ρI . (4.2)
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In the case of a 1+1 dimensional critical system, the entanglement entropy has a universal
scaling [95, 97, 98]:

S ∼ c

3
log lI , (4.3)

where lI is the size of subsystem I, and c is the central charge of the underlying CFT. Going
further, entanglement entropy is only part of the information contained in the entanglement
spectrum, defined as the eigenvalues of the entanglement Hamiltonian

KI ≡ −
1

2π
log ρI . (4.4)

Entanglement spectra have been extensively studied, and also exhibit an emergent uni-
versal structure at criticality, where they reproduce the spectrum of scaling dimensions
of a boundary conformal field theory (BCFT) obtained from the CFT that describes the
quantum critical point [99, 100, 101, 102, 103].

In this chapter, we take a step further by demonstrating that the eigenvectors of the
entanglement Hamiltonian KI (or equivalently those of the reduced density matrix ρI)
also display emergent universal behaviour for a critical lattice theory, in the form of a
nontrivial relation between them and the microscopic Hamiltonian and momentum den-
sities. Specifically, the eigenvectors of KI can be used as a natural basis to construct an
approximate lattice representation of the Virasoro algebra of the corresponding BCFT,
where high-weight eigenvectors correspond to low-lying states.

Emergent signatures of universality in critical lattice systems can be used to gather
information, such as conformal data, about the universality class of the phase transition
they realize. The construction we present allows indeed for the extraction of conformal
data, which, however, come out affected by significant finite size effects, so its viability for
this particular purpose seems to be limited.

This chapter is organized as follows. In Section 4.2 we review the CFT derivation that
motivates our lattice construction: we illustrate the conformal transformation which maps
the entanglement Hamiltonian of a finite interval of a CFT to the dilation operator of
a BCFT, and compute the transformation of the Virasoro generators. Section 4.3 then
introduces our proposed lattice construction in the context of the critical Ising model and
presents numerical results as to the accuracy of the approximate Virasoro representation
we obtain, computed via the free fermion formalism. We conclude in Section 4.4 with a
discussion, and include a brief review of background concepts in the Appendices.
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4.2 CFT derivation

The long-distance physics of a quantum system at criticality is described by a CFT. For-
tunately, CFT is a powerful mathematical tool, which, among others, allows us to perform
conformal transformations on the manifold where the theory is defined by path integration,
thus relating different objects built from the same theory. In this section we exploit this
to relate the reduced density matrix on an interval of the CFT to a semiannulus on the
canonical upper half-plane formulation of BCFT (as was done in [100]). This will enable
us to compute the form of the Virasoro generators acting on the eigenvectors of the entan-
glement Hamiltonian as integrals of the stress-energy tensor, which we will then discretize
in the following section. Appendices C.1 and C.2 provide brief reviews of CFT and BCFT
for the unfamiliar reader.

4.2.1 Path integral representation of a reduced density matrix

Consider a general quantum theory of a field φ(τ, x) in 2-dimensional Euclidean spacetime
(τ, x), with action functional S[φ]. Its ground state |0〉 can be prepared, up to normaliza-
tion, by Euclidean time evolution from τ = −∞ to τ = 0, and therefore be represented by
an Euclidean path integral over the lower half plane

〈Φ(x)|0〉 =

∫
φ(0,x)=Φ(x)

[Dφ(τ < 0, x)]e−S[φ], (4.5)

where |Φ(x)〉 is a field eigenstate with spatial field configuration Φ(x). This is illustrated
in Fig. 4.1(a). Similarly, a Euclidean path integral over the upper half plane prepares the
Hermitian conjugate of the ground state:

〈0|Φ(x)〉 =

∫
φ(0,x)=Φ(x)

[Dφ(τ > 0, x)]e−S[φ]. (4.6)

To compute the reduced density matrix on a finite interval I ⊂ R, we trace out the fields
on Ī, the complement of I (as represented pictorially by Fig. 4.1(b)):

〈Φ−I (x−)|ρI |Φ+
I (x+)〉 =

∫
[DΦĪ ]〈ΦĪΦ

−
I |0〉〈0|Φ

+
I ΦĪ〉

=

∫ φ(0+,x+∈I)=Φ+
I (x+)

φ(0−,x−∈I)=Φ−I (x−)

[Dφ(τ, x)]e−S[φ].

(4.7)
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(a) (b)

Figure 4.1: (a) Path integral representation of the ground state |0〉 of a 1+1-dimensional
QFT. (b) The reduced density matrix ρI on a finite interval I. The field φ(τ, x) takes
values Φ−I (x−) and Φ+

I (x+) on the lower and upper edges of the open cut.

The entanglement entropy of I will typically be UV divergent, due to the presence of
quantum entanglement at arbitrarily small distances at the boundaries between I and Ī.
In order to regularize it, we follow [100] and remove small disks of radius ε around the
boundaries from the path integral, as displayed in Fig. 4.2. Here ε plays the role of the UV
regulator, analogously to, e.g., the lattice constant in a lattice regularization. We assume
ε is much smaller than the size of the interval. Note that the boundary conditions on
the boundaries of the removed disks are yet to be specified for a complete regularization
prescription.

4.2.2 Entanglement Hamiltonian of a finite interval in a CFT

In this section, we restrict our attention to a 1+1-dimensional CFT. We show that we can
define a Virasoro algebra on the interval I, and the generator L0 is affinely related to the
entanglement Hamiltonian KI .

Consider the interval I = (−R,R). As we have argued in Sect. 4.2.1, we remove two
disks of radius ε (ε� R) around the two boundary points −R and R to eliminate the UV
divergence of the entanglement entropy, and impose some conformal boundary conditions,
as shown in Fig. 4.2. For a CFT, the natural boundary conditions are conformal boundary
conditions, which are believed to be stable fixed points of the flows of the boundary renor-
malization group[100]. These boundary conditions determine a universal correction to the
entanglement entropy, which is the celebrated Affleck-Ludwig boundary entropy [104].

To exploit the power of the conformal symmetry in 2 dimensions, we use complex
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Figure 4.2: The regularized path integral representation of the reduced density matrix ρI
on a finite interval I = (−R,R) for a 1+1-dimensional CFT. Some conformal boundary
conditions are imposed on the red and blue circles.

coordinates u, ū = x± iτ . Applying the conformal transformation

w = log

(
R + u

R− u

)
, (4.8)

we map the region of the path integral in Fig. 4.2 to a rectangle, with height 2π and width
2l, where l = log

(
2R
ε

)
, as shown in Fig. 4.3(a). We can extend the rectangle and define a

BCFT on the strip −l < Rew < l, so that time flows in the vertical direction. Thus the
reduced density matrix ρI can be viewed as a thermal state of a Hamiltonian Hαβ on the
region (−l, l), where α and β represent the corresponding boundary conditions.

We can further apply an exponential map

z = i exp

(
−iπw

2l

)
, (4.9)

so that the BCFT is defined on the upper half-plane of z. The boundary conditions α and β
are imposed on the negative and positive real axis respectively. The region corresponding
originally to the reduced density matrix is now a semiannulus comprised between the
semicircumferences |z| = 1 and |z| = eπ

2/l (see Fig. 4.3(b)).

The BCFT on the upper half-plane has conformal invariance only if the conformal
transformations keep the boundary (the real axis) invariant. The holomorphic and anti-
holomorphic transformations are no longer independent, so that only one Virasoro algebra
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(a) (b)

Figure 4.3: (a) The representation of the reduced density matrix after a conformal trans-
formation w = log

(
R+u
R−u

)
. (b) The representation of the reduced density matrix after a

further conformal transformation z = i exp(− iπw
2l

).

exists. The Virasoro generators Ln in the z coordinates are given by the following (see
Appendix C.2):

Ln =
1

2πi

∫
C

[
dz zn+1T (z)− dz̄ z̄n+1T̄ (z̄)

]
, (4.10)

where the integration contour C is a semicircle going counterclockwise around the origin.

Applying the aforementioned conformal transformation (4.9), we can transform Ln to
the w coordinates (see Appendix C.2 for the full derivation):

Ln = − `

π2

∫ `

−`
dw
[
e−

inπ
2`

(w−`)T (w)

+e
inπ
2`

(w−`)T̄ (w)
]

+
c

24
δn,0.

(4.11)

We then apply (4.8) to transform it to the u coordinates (see once again Appendix C.2 for
the full derivation):

Ln =
c

24

(
1 +

4`2

π2

)
δn,0

− `

π2

∫ R−ε

−R+ε

du
R2 − u2

2R

{
einθ(u)T (u) + e−inθ(u)T̄ (u)

}
.

(4.12)

Here the integration contour is along the real axis, from −R+ ε to R− ε, and the function
θ(u) is given by

θ(u) =
π

2
− π

2l
log

(
R + u

R− u

)
, (4.13)
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Figure 4.4: Profile θ(u) for real u and ε = 10−4R.

whose profile for real u is shown in Fig. 4.4. The expressions for the Virasoro generators
can be rewritten in terms of the Hamiltonian and momentum densities:

h(x) = − 1

2π

(
T (x) + T̄ (x)

)
p(x) =

1

2π

(
T̄ (x)− T (x)

) (4.14)

resulting in

L0 =
`

πR

∫ R−ε

−R+ε

dx (R2 − x2)h(x) +
c

24
+
c`2

6π2
, (4.15)

and

Ln =
`

πR

∫ R−ε

−R+ε

dx
(
R2 − x2

)
[cos(nθ(x))h(x)

+i sin(nθ(x))p(x)]

(4.16)

for n 6= 0.

The entanglement Hamiltonian KI of the interval I is given by [105, 106]

KI =

∫ R−ε

−R+ε

dx
(R2 − x2)

2R
h(x). (4.17)

Comparing it with the expressions of the Virasoro generators, we find KI is affinely related
to L0:

L0 =
2l

π
KI +

c

24
+
c`2

6π2
. (4.18)
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As a result, L0 shares eigenvectors with KI and the reduced density matrix ρI . The large-
weight eigenvectors of ρI correspond to the low-lying states of the BCFT. Therefore, the
eigenvectors of ρI constitute a natural representation basis for the Virasoro algebra, whose
generators are represented by Eqs. (4.15)-(4.16).

4.3 Emergent Virasoro representation in the critical

Ising model

In the previous section we have derived the expression for the Virasoro generators rep-
resented on an interval I of a CFT, with the eigenvectors of the reduced density matrix
ρI providing the natural basis for this representation, i.e., the eigenbasis of the represen-
tation of L0. To a certain degree of precision, given by finite size error, this situation
should be reproduced in critical lattice models, provided that we find an adequate discrete
version of the Virasoro representation. This is because, in the low energy regime, we ex-
pect a correspondence between the lattice and continuum frameworks. In this section we
show, following a particular example, that this is the case: we build lattice representa-
tions of Virasoro generators from the continuous expressions, and compare their action on
the eigenvectors of the density matrix (found numerically) with the expected result if the
representation were exact.

We will work with the critical quantum Ising model in an infinite one-dimensional
lattice with lattice constant 1. Each site of the lattice is occupied by a spin 1

2
degree of

freedom, and the Hamiltonian is given by

H = −1

2

∑
j∈Z

(XjXj+1 + Zj) (4.19)

where Xj, Zj are the Pauli operators on site j. Note that there is a factor of 1
2

so that
the low-energy excitations have velocity 1. We consider an interval containing N sites,
whose boundaries are located at the midpoints between sites, as shown in Fig. 4.5. For
the continuum effective formulation, it is then clear that we can set R = N/2. The UV
regulator ε is not determined a priori. We will determine ε by finite size scaling, as explained
later in this section.

The Ising model admits a solution in terms of free fermions, which greatly increases
the system sizes we can address for a given computational power. Appendix C.3 gives
the details of the computation within this framework. By performing a Jordan-Wigner
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Figure 4.5: The interval whose complement we trace out.

transformation, we map the spin operators Xj, Yj, Zj to complex fermion operators cj, c
†
j,

which satisfy anticommutation relations

{cj, ck} = {c†j, c
†
k} = 0, {cj, c†k} = δjk. (4.20)

The RDM of the interval ρI can be expressed as a Gaussian thermal state:

ρI ∝ e−2π
∑N
j=1 ejc

†
jcj , 0 < e1 < e2 < · · · , (4.21)

where {ej} is the single particle spectrum of the entanglement Hamiltonian KI . Thus the
2N eigenstates of ρI are of the form(∏

j∈J

c†j

)
|0〉 J ⊆ {1, . . . , N}, (4.22)

where |0〉 is the vacuum
cj|0〉 = 0 j = 1, . . . , N. (4.23)

From Eq. 4.18, we can see that the spectrum of KI scales with the factor 1/l. Consid-
ering the energy of the first excited state, we have

1/e1 ∝ l = logN − log ε. (4.24)

Therefore, we can compute e1 for various N , and find an approximate value for ε by
extrapolation, which gives ε ≈ 0.0369, as shown in Fig. 4.6.

To build the Virasoro generators on the lattice, we use the correspondence between
Ising lattice operators and CFT operators established in [107]:

XiXi+1 ∼
2

π
1− h− 0.31831ε,

Zi ∼
2

π
1− h+ 0.31831ε,

XiYi+1 ∼ − 2p+ 0.1592i∂τε,

YiXi+1 ∼ 2p+ 0.1592i∂τε,

(4.25)
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Figure 4.6: We compute 1/e1 for N=256, 512, 1024, 2048, 4196, 8192. The extrapolation
gives an estimate ε ≈ 0.0369.

where ε is the energy density operator in Ising CFT. We assign locations i+ 1
2
, i, i+ 3

4
and

i+ 1
4

to the above four operators respectively. Replacing the integrals in Eqs.(4.15)-(4.16)
by finite Riemann sums, we obtain the lattice approximations of Virasoro generators Llat

n :

Llat
n =

l

Nπ

{
−

N∑
j=1

[(
N2/4− x2

j

)
cos (nθ(xj))Zj

]
+

N−1∑
j=1

[
−
(
N2/4− x2

j+ 1
2

)
cos
(
nθ(xj+ 1

2
)
)
XjXj+1

− i

2

(
N2/4− x2

j+ 3
4

)
sin
(
nθ(xj+ 3

4
)
)
XjYj+1

+
i

2

(
N2/4− x2

j+ 1
4

)
sin
(
nθ(xj+ 1

4
)
)
YjXj+1

]}
,

(4.26)

where xj = −(N + 1)/2 + j. Note that in the above expression we have ignored constant
terms and contribution from ε terms, which is negligible in the large N limit. These
operators can be expressed in a quadratic form in terms of the fermionic operators (see
Appendix C.3):

Llat
n =

∑
jk

βjkO†jOk (4.27)

where O = (c1, . . . , cN , c
†
1, . . . , c

†
N) is just a vector with all fermion operators in it. This

makes it easy to compute expectation values for these operators.
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Figure 4.7: Operator content of the Ising CFT with free boundary conditions. The Hilbert
space decomposes into the direct sum of two modules, or conformal towers, each of them
closed under the action of the Virasoro generators Ln. We use the horizontal axis only to
resolve degeneracies. Note that in the free fermion language the two towers correspond to
the two sectors of different fermion parity.

It has been shown in [103] that the natural entanglement cut of the Ising chain cor-
responds to free boundary conditions, or the Cardy state |σ〉 in the CFT language. The
fusion rule σ × σ = 1 + ε indicates that the corresponding operator content contains two
primaries: the identity operator 1 and the energy operator ε, as shown in Fig. 4.7. Now
we compute the matrix elements of the lattice operators Llat

n in the basis of low energy
eigenstates of KI , and compare them with the predictions from CFT.

Llat
0 : We begin with the operator Llat

0 , whose low-lying eigenspaces should coincide with
those of ρI . The one-particle spectrum of the free fermion dictates that it should be of the
form:

L0 =
∑
k

(
k − 1

2

)
c†kck. (4.28)

Indeed, this results in the scaling dimensions depicted in Fig. 4.7, the first few of them
being:

L0|000 . . .〉 = 0,

L0|100 . . .〉 =
1

2
|100 . . .〉,
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Figure 4.8: The diagonal elements of Llat
0 converge to those of L0(dashed lines) as the

system size increases.

L0|010 . . .〉 =
3

2
|010 . . .〉,

L0|110 . . .〉 =

(
1

2
+

3

2

)
|110 . . .〉,

etc. We compute the matrix elements of Llat
0 for different values of N , and compare them

with those of L0. The resulting matrices are diagonal – just as the matrix form of L0 – up
to machine precision. The diagonal elements converge to L0’s as N increases(see Figure
4.8).

Llat
1 : The expected expression for this generator in terms of the creation-annihilation

operators is

L1 =
∑
k

kc†kck+1 (4.29)

When computing the matrix elements of Llat
1 we find that indeed the nonzero matrix

elements of L1 are obtained in the large N limit through a very slow convergence (Fig.
4.9). However, we also find some spurious matrix elements that should be zero but are
however only order of magnitude smaller than the other ones, at the system sizes we
explore. This we interpret as an artifact of the discretization, and indeed those matrix
elements decrease as N increases (Fig. 4.10).

Llat
2 : Again, we can give the expression for the CFT generator in terms of creation -

annihilation operators:

L2 =
1

2
c1c2 +

∑
k

(
k +

1

2

)
c†k.ck+2 (4.30)
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Figure 4.9: The nonzero elements of Llat
1 converge to those of L1(dashed lines) as the

system size increases.

Figure 4.10: Matrix elements of Llat
1 that should be zero.
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Figure 4.11: The nonzero elements of Llat
2 converge to those of L2(dashed lines) as the

system size increases.

Figure 4.12: Matrix elements of Llat
2 that should be zero.

We compare the matrix elements of this operator to those of our matrix representation.
The result is similar to the n = 1 case (see Fig. 4.11 and Fig. 4.12). We still observe
improvement of the lattice approximation when increasing N .

4.4 Discussion

Even though the numerical implementation for the Ising model yields approximately correct
values for CFT data, it would be hard to turn this into an efficient computational scheme
due to the persistence of finite size corrections. Indeed, because of the logarithmic character
of the transformation from Fig. 4.3(a), the reduced density matrix of an interval of N sites
only constitutes an “effective” number of sites which grows as the logarithm of N . Only
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systems that admit efficient descriptions of density matrices for high numbers of sites (such
as the Ising model, via the free fermion formulation) can be expected to present acceptable
finite size errors. For generic models, computationally efficient representations for the
ground state, such as those based on Matrix Product States (MPS) are not guaranteed
to provide a reliable representation of reduced density matrices, and they require large
computational resources to keep correlation lengths longer than few thousand sites with
adequate precision.
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Chapter 5

Non-local Geometry inside Lifshitz
Horizon

5.1 Introduction

Black hole horizon hosts tensions among basic principles of physics established within
the framework of local field theories, and understanding what is behind the horizon may
hold the key to the resolution[108, 109, 110, 111, 112]. Given that there is so far no non-
perturbative definition of quantum gravity except through the AdS/CFT correspondence[113,
114, 115], it is desired to have an access to the interior of horizon via boundary field
theories[116, 117, 118, 119, 120]. However, probing the interior of horizon may require
a full microscopic theory of the bulk beyond the local field theory approximation whose
validity can not be taken for granted near horizon.

Quantum renormalization group (RG) provides a microscopic prescription to derive
holographic duals for general field theories[121, 122, 123]. In quantum RG, renormalization
group flow is mapped to a dynamical system, where the action principle replaces classical
beta functions. The sources for a subset of operators (called single-trace operators) become
dynamical variables whose fluctuations encode the information about all other operators
which are not explicitly included in the RG flow. The resulting bulk theory generally
includes dynamical gravity[122, 123] and gauge theory[124, 125] because the background
metric and gauge field that source the energy-momentum tensor and a conserved current
are promoted to dynamical variables. From the bulk perspective, this accounts for the
fact that multi-trace operators are generated once bulk fields for single-trace operators are
integrated out[126, 127, 128]. Because the complete set of single-trace operators include
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operators of all sizes in general, the bulk theory is kinematically non-local[129, 122]. In
the presence of non-local dynamical degrees of freedom, locality in the bulk is a feature
that is determined dynamically rather than a kinematical structure put in by hand. This
provides a natural setting to study horizon within the framework of RG flow.

In quantum RG, horizon corresponds to a Hagedorn-like dynamical phase transition
where non-local operators proliferate at a critical RG scale[130]. This is best understood
in terms of quantum states defined on spacetime, where RG flow of an action is viewed as a
quantum evolution of the corresponding state generated by a coarse graining operator. The
coarse graining generator projects the state associated with an action toward a reference
state that represents an IR fixed point. Whether the true IR physics of the theory is
described by the putative IR fixed point or not is determined by whether the state can be
smoothly projected to the reference state or not. Although a local action is mapped to
a short-range entangled state, the range of entanglement increases under the RG flow as
non-local operators are generated. If the theory is in a gapless phase, the quantum state
can not be smoothly projected to a reference state which represents a gapped state. The
obstruction manifests itself as a proliferation of non-local operators at a critical RG scale.
This marks as a dynamical phase transition whose order parameter is locality (or loss of
locality), and the critical point gives rise to a horizon in the bulk.

In an earlier work[130], the correspondence between critical phenomenon and horizon
has been demonstrated in a boson model. However, it is not possible to cross the horizon in
the boson model because the critical point arises at an infinite RG scale. In this chapter, we
study a fermionic model with a nonzero charge density which undergoes a phase transition
at a finite RG scale associated with the chemical potential. Since a horizon arises at a
finite radial coordinate, one can go through it to reach the interior via RG flow. While
the outside of horizon is described by a Lifshitz geometry[131, 132, 133, 134], the interior
of the horizon exhibits a non-local geometry which can not be described by a Riemannian
manifold. We show that the non-local structure inside the horizon is sensitive not only
to the universal long-distance properties of the boundary theory but also to microscopic
details.

5.2 Holographic dual for the fermionic vector model

We consider a D-dimensional fermionic U(N) vector model,

S =

∫
dτdD−1x

[
ψ̄a∂τψ

a +∇ψ̄a · ∇ψa − µ ψ̄aψa +
λ

N
(ψ̄a ·ψa)2

]
. (5.1)
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Here τ is the imaginary time, ψ̄a and ψa are Grassmann fields with flavour a = 1, 2, .., N .
µ is the chemical potential for the U(1) charge, and λ is a quartic coupling. We regularize
the field theory on a D-dimensional lattice as

S = −
∑
ij

t
(0)
ij (ψ̄i ·ψj) +m

∑
i

(ψ̄i ·ψi) +
λ

N

∑
i

(ψ̄i ·ψi)2. (5.2)

Here i, j indicate sites on the D-dimensional spacetime lattice. ψ̄i · ψj ≡
∑

a ψ̄
a
iψ

a
j rep-

resents the set of bi-local single-trace operators, and t
(0)
ij ’s are hopping amplitudes on the

lattice. The local chemical potential can be identified as µi =
∑

j t
(0)
ij −m, where m > 0

is assumed. If the hopping is small compared to m, the chemical potential is below the
bottom of the band, and the system is in the insulating state. On the other hand, a
finite charge density is generated and the system becomes a metal when the hopping is
large. The system goes through the insulator to metal transition as the magnitude of t

(0)
ij

is increased, as is illustrated in Fig. 5.1. Our goal is to derive the bulk geometry that
emerges in each state. For other holographic approaches to related vector models, see
Refs. [135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149].

(a) (b) (c)

Figure 5.1: The energy dispersion for (a) insulator, (b) critical point and (c) metal plotted
in the two-dimensional momentum space. The dot in (b) represents the bottom of the band
which touches the chemical potential at the critical point, and the circle in (c) represents
the Fermi surface.

To set up the RG procedure, we divide S into a reference action and a deformation.
The reference action is chosen to be the ultra-local theory which describes the insulating
fixed point,

S0 = m
∑
i

(ψ̄i ·ψi), (5.3)
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and the rest is treated as a deformation,

S1 = −
∑
ij

t
(0)
ij (ψ̄i ·ψj) +

λ

N

∑
i

(ψ̄i ·ψi)2. (5.4)

Following [130], we define quantum states associated with S0 and S1 as

|S0〉 =

∫
Dψ̄Dψ e−S0[ψ̄,ψ]|ψ̄, ψ〉,

|S1〉 =

∫
Dψ̄Dψ e−S1[ψ̄,ψ]|ψ̄, ψ〉, (5.5)

where |ψ̄, ψ〉 are the basis states labeled by the Grassmannian fields,

|ψ̄, ψ〉 =
∏
i,a

(1− ψ̄ai c
a†
1i )(1− ψai c

a†
2i )|0〉. (5.6)

The basis states are constructed from a Fock space which can accommodate up to 2N
auxiliary fermions at each site on the D-dimensional spacetime lattice : ca†1i (ca†2i ) with
a = 1, 2, .., N represents the creation operator of the fermions associated with ψ̄ai (ψai ),
and |0〉 is the vacuum annihilated by caαi. It is emphasized that the auxiliary fermions
occupy sites in the D-dimensional spacetime lattice, and they are different from the original
fermions that live on the (D − 1)-dimensional space. We define an inner product between
quantum states defined in spacetime as

〈Ψ′||Ψ〉 ≡ 〈Ψ′|O|Ψ〉 (5.7)

with O ≡
∏

i,a(c
a†
1i − ca1i)(c

a†
2i − ca2i). The inner product is chosen such that the basis states

satisfy the orthonormality condition,

〈ψ′, ψ̄′||ψ̄, ψ〉 =
∏
i,a

δ(ψ̄
′a
i − ψ̄ai )δ(ψ

′a
i − ψai ), (5.8)

where 〈ψ′, ψ̄′| is the Hermitian conjugate of |ψ′, ψ̄′〉. Then the partition function is given
by the overlap between the two quantum states,

Z =

∫
Dψ̄Dψ e−S0[ψ̄,ψ]−S1[ψ̄,ψ] = 〈S ′0||S1〉, (5.9)

where |S ′0〉 is the complex conjugate of |S0〉.
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Renormalization group flow can be understood as a quantum evolution of |S1〉 generated
by an operator Ĥ[130]. Since the partition function is invariant under the coarse-graining
transformation,

Z = 〈S ′0||S1〉 = 〈S ′0||e−dzĤ |S1〉, (5.10)

where dz is an infinitesimal parameter, the reference state should be annihilated by Ĥ,

Ĥ†O†|S ′0〉 = 0. (5.11)

This is equivalent to the statement that S0 represents a fixed point. Because |S ′0〉 is a
direct-product state in spacetime, the coarse graining operator that satisfies Eq. (5.11) is
ultra-local,

Ĥ =
∑
i,a

[
− 2

m
ca†1i c

a†
2i + ca1ic

a†
1i + ca2ic

a†
2i

]
. (5.12)

The evolution generated by Ĥ corresponds to a real space coarse graining in which the mass
m is gradually increased such that fluctuations of fields are suppressed at each site[150].
While Ĥ is not Hermitian, it can be mapped to a Hermitian operator through a similar-
ity transformation as all eigenvalues are real. As the evolution operators are repeatedly
inserted between the overlap, e−zĤ |S1〉 is gradually projected to the unentangled ground
state of Ĥ. Whether the initial state |S1〉 can be smoothly projected to the direct product
state depends on whether the system belongs to the insulating phase described by the
reference action[130].

Now we fix λ, and label the state associated with the deformation in terms of hopping
amplitudes,

|t〉 =

∫
Dψ̄Dψ e

∑
i,j tij ψ̄i·ψj−

λ
N

∑
i(ψ̄i·ψi)2 |ψ̄, ψ〉. (5.13)

Apart from the fixed quartic interaction, |t〉 contains only single-trace hoppings. How-
ever, multi-trace operators are generated under the coarse graining evolution. In quantum
RG, the multi-trace operators are traded with non-trivial dynamics of the single-trace
sources[121, 122, 123]. As a result, the partition function is given by a path integration
over the scale dependent single-trace sources tij(z)[150, 130],

Z = lim
z→∞
〈S ′0||e−zĤ |t(0)〉 =

∫
Dt(z)Dt∗(z) 〈S ′0||t(∞)〉 e−N

∫∞
0 dz(t∗ij∂ztij+H[t∗,t])

∣∣∣∣
tij(0)=t

(0)
ij

,

(5.14)
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where H[t∗, t] is the coherent state representation of the bulk Hamiltonian Ĥ given by

Ĥ =
∑
i

[ 2

m
tii +

4λ(−1 + 1
N

)

m
t†ii − 4λ(t†ii)

2 − 8λ2

m
(t†ii)

3
]

+
∑
i,j

[
2 +

4λ

m
(t†ii + t†jj)

]
t†ijtij −

2

m

∑
i,j,k

[
t†kjtkitij

]
. (5.15)

Here the gauge is fixed so that the speed of coarse graining is uniform in spacetime, and
the shift is zero at all z[130]. The bi-local fields are the fundamental degrees of freedom
in the bulk, which include the metric and higher spin fields. In the Hamiltonian picture,
the bi-local fields are promoted to quantum operators : tij (t†ij) represents the annihilation
(creation) operator of quantized link between sites i and j. Despite the fact that the
original theory is fermionic, the bulk theory is bosonic because there is no U(N) invariant
fermionic operator in the theory.

In the large N limit, quantum fluctuations in the RG path are suppressed, and the
saddle point approximation becomes reliable. The saddle point equation reads

∂z t̄ij = −2
{
− 2λδij

m
− δij[4λ+

12λ2

m
p̄ii]p̄ii +

2λδij
m

∑
k

(t̄ikp̄ik + t̄kip̄ki)

+ [1 +
2λ

m
(p̄ii + p̄jj)]t̄ij −

1

m

∑
k

t̄ik t̄kj

}
,

∂zp̄ij = 2
{δij
m

+ [1 +
2λ

m
(p̄ii + p̄jj)]p̄ij −

1

m

∑
k

(p̄ik t̄jk + t̄kip̄kj)
}
.

(5.16)

Here t̄ij(z) and p̄ij(z) denote the saddle point configuration of tij(z) and t∗ij(z), which
satisfy the boundary conditions,

t̄ij(0) = t
(0)
ij , (5.17)

p̄ij(∞) =
1

N

∂ln〈S ′0||t̄〉
∂t̄ij

∣∣∣∣
z=∞

. (5.18)

It is noted that p̄ij is not necessarily the complex conjugate of t̄ij at the saddle point. If t
(0)
ij

depends only on ri − rj, the saddle point solution is also invariant under the translation.
In this case, the equations in momentum space are reduced to

∂zT̄q = −2

{
− 2λ

m
−
[
4λ+

12λ2

m
p̄0

]
p̄0 +

4λ

V m

∑
q′

T̄q′ P̄q′ +

[
1 +

4λ

m
p̄0

]
T̄q −

1

m
(T̄q)

2

}
,(5.19)

∂zP̄q =
2

m
+ 2

[
1 +

4λ

m
p̄0

]
P̄q −

4

m
P̄qT̄q, (5.20)
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where T̄q =
∑

r t̄i+r,ie
iqr, P̄q =

∑
r p̄i+r,ie

−iqr, p̄0 ≡ p̄ii = 1
V

∑
q P̄q. q = (ω, k) denotes

frequency, ω and (D − 1)-dimensional momentum, k = (k1, k2, .., kD−1). The solution to
the saddle point equations is given by

P̄q(z) = − e−2z

−iT̄q(0) +m+ 2λp0(0)
− (1− e−2z)

1

m
, (5.21)

T̄q(z) = −2λ

m
+m+

2λ

m
e−2z(mp̄0(0) + 1) +

1

P̄q(z)
. (5.22)

Eqs. (5.21) and (5.22) completely determine the saddle-point configurations of the bulk
fields in terms of T̄q(0), which encodes all the information about the microscopic theory.
For example, the (D−1)-dimensional hypercubic lattice with a continuous imaginary time
gives T̄q(0) = −iω−2t

∑D−1
i=1 cos(ki)−µ, where t is the nearest neighbor hopping amplitude

and µ is the chemical potential. In general, any local hopping in space can be written in
power series of k,

T̄q(0) = T̄0(0)− iω − e(k), (5.23)

where

e(k) = k2 +
∞∑
n=2

ci1,i2,..,i2n
mn−1

ki1ki2 ..ki2n . (5.24)

Here the chemical potential T̄0(0) is singled out, and the coefficient of the quadratic term
is normalized by rescaling k. ci1,i2,..,i2n can be independently tuned by further neighbor
hoppings on a microscopic lattice. It is assumed that the minimum of the band is k = 0,
and the lattice respects the parity to allow only even powers of momentum in the dispersion.
In terms of e(k), the saddle point solutions are written as

P̄q(z) = − e−2z

iω + e(k) + δ
− (1− e−2z)

1

m
,

T̄q(z) = −2λ

m
+m+

2λ

m
e−2z(mp̄0(0) + 1)−m iω + e(k) + δ

(1− e−2z)(iω + e(k) + δ) +me−2z
,(5.25)

where δ = −T̄0(0) +m+ 2λp̄0(0) is the gap.

5.3 Emergent geometry in the bulk

Because the reference state is ultra-local, there is no background metric in the bulk. The
bulk geometry is dynamically determined by the saddle point solution. Since the bulk
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theory involves the bi-local fields of all sizes, it is kinematically non-local. A sense of
locality emerges only when single-trace sources decay fast enough in spacetime. In this
section, we examine the geometry that emerges in the bulk in the insulating phase and in
the metallic phase.

5.3.1 Insulating phase

To study the behavior of the hopping field in real space, we first transform T̄q(z) to the
time domain,

T̄τ,k(z) =

∫
T̄ω,k(z)e−iωτ

dω

2π
=

m2e2z

(e2z − 1)2

[
−θ(τ)θ(−E(k, z)) + θ(−τ)θ(E(k, z))

]
eE(k,z)τ ,

(5.26)
where

E(k, z) = e(k) + δ +
m

e2z − 1
. (5.27)

θ(τ) is the theta function, and ultra-local terms are ignored. In the insulating phase with
δ > 0, E(k, z) is positive for all k and z, and the first term on the right hand side of Eq.
(5.26) vanishes. Because E(k, z) is analytic in k, the hopping field decays exponentially in
real space at all z. For example, for e(k) = k2 the bi-local field in the real space is given
by

t̄i+r,i(z) =

∫
T̄τ,k(z)e−ik·x

dk

(2π)d−1
=

(
1

2
√
−πτ

)d−1
m2e2z

(e2z − 1)2
θ(−τ)e

(δ+ m
e2z−1

)τ
e

x2

4τ , (5.28)

where r = (τ, x) with x = (x1, x2, .., xD−1) representing (D − 1)-dimensional vector in real
space.

Fluctuations of the bi-local fields propagate on the background set by the saddle-point
configuration. Therefore, the bulk geometry can be extracted by inspecting the equation
of motions obeyed by the fluctuations of the hopping fields around the saddle point,

t̃ij = tij − t̄ij,
p̃ij = t∗ij − p̄ij.

(5.29)
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The quadratic action for the fluctuations is

S2 =

∫
dz

{
− 4λ

∑
i

(
1 +

6λ

m
p̄0

)
p̃2
ii

+
∑
ij

[
p̃ij

(
∂z + 2 +

8λ

m
p̄0

)
t̃ij +

4λ

m
(p̃ii + p̃jj)

(
p̄ij t̃ij + t̄ij p̃ij

)]

− 2

m

∑
ijk

(
p̄ij t̃ik t̃kj + t̄ikp̃ij t̃kj + t̄kj p̃ij t̃ik

)}
.

(5.30)

To extract the background metric, we focus on the imaginary part of the hopping field
t̃Aij = t̃ij − t̃∗ij which satisfies a simple equation of motion,(

∂z + 2 +
8λ

m
p̄0(z)

)
t̃Aij −

2

m

(
t̄ik t̃

A
kj + t̄kj t̃

A
ik

)
= 0 (5.31)

for i 6= j. We take the continuum limit, and define t̃Aij = e−2z t̃A(r, r′, z), where r and r′

represent spacetime coordinates (τ,x) and (τ ′,x′). For large z and r 6= r′, the equation of
motion becomes(m+ δe2z)∂z + 4δ − 2m

1− ∂τ+e(∂i)
me−2z+δ

− 2m

1− −∂
′
τ+e(∂

′
i )

me−2z+δ

 t̃A(r, r′, z) = 0, (5.32)

where ∂i ≡ ∂
∂xi

, ∂
′
i ≡ ∂

∂x
′
i

. This can be written in a covariant form,[√
gzz(z)∂z + 4δ − 2m

1− 1
m

(√
gττ (z)∂τ + gij(z)∂i∂j +

∑
n>1

c̃i1,..,i2n (z)

mn−1 ∂i1 ..∂i2n

)
− 2m

1− 1
m

(
−
√
gττ (z)∂τ ′ + gij(z)∂′i∂

′
j +
∑

n>1

c̃i1,..,i2n (z)

mn−1 ∂′i1 ..∂
′
i2n

)]t̃A(r, r′, z) = 0, (5.33)

where
√
gzz(z) = m + δe2z,

√
gττ (z) = gii(z) = m

me−2z+δ
, c̃i1,..,i2n(z) = m

me−2z+δ
ci1,..,i2n . The

bulk metric is identified from the terms up to two derivatives,

ds2 =
dz2

(m+ δe2z)2
+ (e−2z + δ/m)2dτ 2 + (e−2z + δ/m)dx2. (5.34)

c̃i1,..,i2n(z) encodes the vacuum expectation values of the higher spin fields in the bulk.
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In the insulating phase, the geometry ends at a finite proper distance from the UV
boundary,

L =

∫ ∞
0

dz

m+ δe2z
=
log(m+δ

δ
)

2m
. (5.35)

The finite depth in the bulk reflects the fact that the quantum state associated with
the action can be smoothly projected to the direct product state through a series of RG
transformations with a finite depth. The proper distance in the radial direction measures
the “distance” between theories[130].

5.3.2 Metallic phase

As the system deviates further from the insulating state with decreasing gap, the depth
of the bulk space diverges logarithmically. When the system reaches the critical point at
δ = 0, the bulk geometry develops an infinitely long throat with a Lifhistz horizon at
z =∞. At the critical point, the metric in Eq. (5.34) becomes the Lifshitz geometry,

ds2 =
dz2

m2
+ e−4zdτ 2 + e−2zdx2 (5.36)

which is invariant under the scaling

z → z + s, τ → e2sτ, x→ esx. (5.37)

The dynamical critical exponent z = 2 reflects the quadratic dispersion at the bottom of
the band in Eq. (5.23). The isometry of the bulk metric is expected from the form of the
hopping field in Eq. (5.28) which is invariant under Eq. (5.37) at δ = 0. If one tuned
parameters in tij at UV to make the dispersion to scale as T̄q(0) ∼ k2r at the bottom of the
band, the resulting geometry would have the dynamical critical exponent 2r. It is noted
that the higher-derivative terms in Eq. (5.33) are suppressed by the curvature scale in the
bulk. For the locality at a shorter length scale in the bulk, there are stringent constraints
on field theories[151, 152, 153].

At the critical point, the Lifshitz horizon is located at z = ∞. However, the horizon
arises at a finite z in the metallic phase. Unlike the bosonic model[130], the chemical
potential can be further increased across the bottom of the band. For δ < 0, a Fermi
surface forms, and the system becomes a metal. In the metallic phase, the horizon moves
to zH ≡ 1

2
log(1 + m

−δ ) at which gττ vanishes. Outside the horizon, E(k, z) remains positive
for all k, and the metric is given by

ds2 =
dz2

4m2(zH − z)2
+

4δ2

m2
(zH − z)2dτ 2 +

−2δ

m
(zH − z)dx2 (5.38)
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for small zH − z with zH >> 1. The geometry no longer has an isometry associated with
a global translation of z because there is a scale represented by zH . However, the space
outside the horizon has an isometry associated with rescaling of z toward zH . The isometry

becomes manifest in a new coordinate system, z′ = −1
2
log(zH−z), τ ′ = −2δ

m
τ , x′ =

√
−2δ
m
x

in which the metric reduces to the Lifshitz geometry in Eq. (5.36). Although the horizon
arises at a finite z, the proper distance from the UV boundary to the horizon is still infinite.
This is consistent with the fact that the metallic state belongs to a different universality
class from the insulating state.

Although the metric near the horizon takes the universal form, the background higher-
spin fields, c̃i1,..,i2n(z) encodes the information about the microscopic details such as the
underlying lattice and further neighbor hoppings in the boundary theory[154, 155, 156].
The effect of the higher-spin hair on the fluctuation fields in Eq. (5.33) depends on the
momentum of the fluctuation mode and the radial position. For a mode whose proper
momentum is O(

√
m) at radial location z, the 2n derivative term in Eq. (5.33) scales

as (zH − z)(n−1). The bulk equation of motion for the low-momentum modes becomes
insensitive to the higher-spin fields close to the horizon. However, in order to extract the
full low-energy data from the UV boundary, one should probe particle-hole excitations
whose momenta are comparable to the Fermi momentum kF ∼

√
|δ|. If a mode with

proper momentum kF at the UV boundary is sent into the bulk, the momentum is blue

shifted to p ∼
√

|δ|
(zH−z)

near the horizon. For these modes, the higher-derivative terms in

Eq. (5.33) remain important. The sensitivity to the higher-spin fields signifies the need
to go beyond the low-energy effective theory near the horizon. This is expected because
the shape of Fermi surface is determined not just by the quadratic term but also by all
higher-order terms in Eq. (5.24).

The horizon corresponds to a phase transition at which the length scale associated
with the size of bi-local operators in e−zĤ |S1〉 diverges[130]. At the horizon, the range of
hoping diverges, which causes the collapse of the D-dimensional spacetime volume. Zero
area of the horizon is consistent with the fact that the metal has zero entropy density.
Although the Lifshitz horizon has a divergent tidal force, nothing stops one from being
able to continue the coarse graining procedure across the horizon. Inside the horizon with
z > zH , E(k, z) changes sign as a function of momentum. The discontinuity of T̄τ,k(z) as a
function of momentum results in a slow decay of the hopping field along with a Friedel-like
oscillation in real space. The specific form of the oscillation depends on the microscopic
details. From now on, we will focus on the dispersion e(k) = k2, which describes the
spherical Fermi surface. For different shapes of Fermi surface, the structure inside the
horizon will be different. For the spherical Fermi surface, E(k, z) becomes negative for
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|k| < ks(z) ≡
√
−δ − m

e2z−1
,

T̄τ,k(z) =
m2e2z

(e2z − 1)2

(
− θ(τ)θ(ks(z)− |k|) + θ(−τ)θ(|k| − ks(z))

)
e(k2−ks(z)2)τ . (5.39)

The asymptotic behavior of t̄i+r,i as a function of r = (τ, x) is given by ti+r,i = m2e2z

(e2z−1)2K(τ, x; z),
where

K(τ, x; z) ∼ −cos(ks(z)x)

2πks(z)τ
+O(

1

τ 2
), as |τ | → ∞, (5.40)

K(τ, x; z) ∼ −sin(ks(z)x)

πx
+O(

1

x2
), as x→∞ (5.41)

in D = 1 + 1, and

K(τ, x; z) ∼ − 1

8π2τ
· J0(ks(z)|x|) +O(

1

τ 2
), as |τ | → ∞, (5.42)

K(τ, x; z) ∼ −

√
ks(z)

2π3|x|3
· sin(ks(z)|x| − π

4
) +O(|x|−

5
2 ), as x→∞ (5.43)

in D = 2 + 1, where J0(x) is the 0th order Bessel function of the first kind.

Inside the horizon, the saddle point configuration of the hopping field decays in a power-
law as a function of r. The hopping field sets a non-local background on which fluctuation
fields propagate according to Eq. (5.31). In the large z limit, the equation of motion for
t̃A(τ, x, τ ′, x′, z) becomes

(me2z ∂z + 4m)t̃A(τ, x, τ ′, x′, z)− 2m2

∫
dτ1dx1 K(τ − τ1, x− x1; z) t̃A(τ1, x1, τ

′, x′, z)

− 2m2

∫
dτ ′1dx

′
1 t̃

A(τ, x, τ ′1, x
′
1, z) K(τ ′1 − τ ′, x′1 − x′; z) = 0, (5.44)

where the asymptotic behavior of K(τ, x; z) is given in Eqs.(5.40)-(5.43). The non-local
saddle point configuration allows the bi-local fields to jump to far sites in the D-dimensional
spacetime. This implies that the space inside the horizon can not be described by a local
geometry.

The wavevector for the Friedel-like oscillation at radial position z is given by ks(z),
which gradually increases from 0 at zH to the true Fermi momentum kF =

√
−δ in the large

z limit. ks(z) can be regarded as the size of the Fermi surface with a z-dependent chemical
potential µ(z) = −δ − m

e2z−1
. As z increases from the horizon, the bulk effectively scans
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through the occupied states from the bottom of the band to the Fermi level. Therefore,
the non-local structure inside the horizon is determined by the full dispersion below the
Fermi surface. The region deep inside the horizon keeps the data on the low-energy modes
close to the Fermi surface. Different metals have different non-local structures in the large
z limit because the Fermi liquids have infinitely many marginal deformations, including
the shape of the Fermi surface. On the other hand, the region close to the horizon in the
interior is sensitive to the occupied states below the Fermi surface, which is not part of
the universal low-energy data of the boundary theory. A change in the shape of the band
below the Fermi surface that does not involve a change near the Fermi surface does affect
the wavevector of the oscillation near the horizon. This implies that the interior of the
horizon keeps not only the universal low-energy data of the theory but also non-universal
microscopic information of the boundary field theory.

5.4 Summary and Discussion

In this chapter, we apply the quantum renormalization group to construct the holographic
dual of the fermionic U(N) vector model with a nonzero charge density. The bulk equations
of motion are exactly solved in the large N limit to derive the geometries that emerge in
different phases of the model. In the insulating phase, the bulk geometry caps off at a
finite proper distance in the radial direction. At the critical point between the metal to
insulator phase transition, the proper size in the radial direction diverges, which results
in a Lifshitz geometry in the bulk. In the metallic phase, the Lifshitz horizon moves to a
finite radial coordinate. The geometry outside of the Lifshitz horizon carries a higher-spin
hair determined by microscopic hopping amplitudes of the boundary theory. On the other
hand, the interior of the horizon is characterized by an algebraic non-locality, and can not
be described by a Riemannian geometry. Certain microscopic data of the boundary field
theory is encoded in the interior of the horizon.

The non-local space inside the horizon is different from a globally connected network
where every site is connected to every other sites with an equal hopping strength. Since
the non-local connectivity decreases as a power-law in coordinate distance, there is still a
sense in which certain points are ‘closer’ than other points to a given point. However, this
notion of distance can not be captured within the framework of Riemannian geometry. In
order to define a notion of distance in this space, one might rewrite the non-local kernel in
Eq. (5.44) as

K(τ, x) = K̃(τ, x)e−md(τ−τ1,x−x1), (5.45)
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where K̃(τ, x) is a function which captures the modulation in the sign of the hopping
function with |K̃(τ, x)| ∼ 1 and d(τ, x) is a function that measures physical distance.
The idea behind this is to define the physical distance by insisting that the kernel in the
kinetic term decays exponentially. This agrees with the geodesic distance measured by
the metric in Eq. (5.38) outside the horizon, but the definition is general enough to be
applicable to the region inside the horizon. Because the hopping amplitude decays in
power-law in Eq. (5.41) and Eq. (5.43), the distance between two points increases only
logarithmically in coordinate, e.g. d(x, y) ∼ 1

m
log |x − y|. No metric on a Riemannian

manifold can reproduce the distance function of this form. One way of obtaining such
distance function is by embedding the space in a higher dimensional Riemannian space,
and define the distance between two points on the original space in terms of geodesics
that can go through the higher dimensional space. For example, the logarithmic distance
function can be obtained from the geodesic distance between points on the boundary of a
hyperbolic space (see Fig. 5.2). The non-local geometry is ‘anomalous’ in that distance
function can be realized from a local metric only through a higher-dimensional space.

Figure 5.2: Examples of geodesics in the three-dimensional hyperbolic space H3. The
shortest geodesic distances between two points on the plane scales logarithmically in the
coordinate distance in the plane.

For D > 2, the metallic state becomes unstable against superconductivity at an energy
scale which is exponentially small in N . As a result, the geometry for the metallic state
becomes unstable once quantum fluctuations are included in the bulk. However, this should
not be the case for all metals. If one breaks the parity and the time-reversal symmetry,
one can have a Fermi liquid state without perturbative superconducting instability. The
geometries dual to those stable metals are expected to exhibit similar non-local structures
behind the horizon.

Since we use the imaginary time formalism in this study, the bulk theory captures only
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the ground state of the theory. It shows how bulk geometry depends on the microscopic
information of the ground state determined by Hamiltonian. It will be interesting to extend
this to the real time formalism to understand the dependence of bulk geometry on state
and Hamiltonian separately.
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Appendix A

Appendices for Chapter 2

This chapter consists of four sections that provide further details on the cMERA discussed
in the main text and review basic background material on conformal field theory.

Section A.1 discusses the entangling evolution in scale picture of cMERA for a 1+1
free boson CFT and explains how to obtain an alternative characterization of the cMERA
state |ΨΛ〉 in terms of fixed point linear constraints. Section A.2 expands on a specific
choice of quasi-local entangler K (in terms of a Gaussian function g(k)) and analyses the
smeared field operators φΛ(x) and πΛ(x) that results from it. Sections A.3 and A.4 take a
step back and review several aspects of conformal field theory in 1+1 dimensions that are
relevant to the current discussion but do not involve cMERA. Sect. A.3 discusses different
ways in which a 1+1 CFT can be quantized while Sect. A.4 provides more details on the
1+1 free boson CFT.

A.1 Entangling evolution in scale

The Gaussian cMERA state |ΨΛ〉 for the ground state |Ψ〉 is defined in terms of an entan-
gling evolution in scale, which for the case of a 1+1 free boson CFT is determined by a
function g(k). In this section we discuss an alternative characterization of the same Gaus-
sian cMERA |ΨΛ〉 in terms of the linear constraints it satisfies. These linear constraints
are specified by a function α(k). We derive a (fixed point) differential equation for α(k),
which is written in terms of the function g(k), and produce a formal solution for each
g(k), which allows us to write constraints on both α(k) and g(k). We also derive and solve
a partial differential equation for the function αs(k) that describes the linear constraints
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fulfilled by the Gaussian state |ΨΛ(s)〉 resulting from the entangling evolution. In this way
we can connect the initial product state |Λ〉 of the entangling evolution with its fixed point
state |ΨΛ〉. Finally, we show that the cMERA momentum operator PΛ equals the CFT
momentum operator P , whereas the cMERA dilation operator DΛ equals the generator of
the entangling evolution L+K.

The authors thank Mr. Yijian Zou, private communication, for pointing out how to
build a solution αs(k) for the partial differential equation from each solution α(k) of the
fixed point differential equation.

A.1.1 Scale invariant cMERA as a fixed point of an entangling
evolution

Let us start by recalling the original characterization/definition of the cMERA state |ΨΛ〉
from Ref. [81] as the result of an entangling evolution. When the target state |Ψ〉 is the
ground state of a CFT, we expect that the generator L + K of the entangling evolution
can be chosen to be scale independent, in which case we can write

|ΨΛ〉 = lim
s→∞

e−is(L+K)|Λ〉, (A.1)

and thus regards |ΨΛ〉 as the fixed point of an infinitely long unitary evolution generated
by L+K acting on an initial product state |Λ〉. For a free, relativistic, massless boson in
1+1 dimensions, operators L and K can be chosen to be quadratic and they read

L ≡ 1

2

∫
dk
[
π(−k)(k∂k +

1

2
)φ(k) + h.c.

]
, (A.2)

K ≡ 1

2

∫
dk g(k)

[
π(−k)φ(k) + h.c.

]
. (A.3)

The non-relativistic scaling operator L, which generates scale transformations in a non-
relativistic theory, acts on the fields as

−i[L, φ(k)] = −
(
k∂k +

1

2

)
φ(k), (A.4)

−i[L, π(k)] = −
(
k∂k +

1

2

)
π(k). (A.5)

Thus, under a finite transformation by e−isL we have

φ(k)→ e−
s
2φ(e−sk), π(k)→ e−

s
2π(e−sk). (A.6)
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On the other hand, following Ref. [81], we parametrize the entangler K by a function
g(k) subject to a number of conditions that will be discussed later on. This function g(k)
contains the variational parameters of the Gaussian cMERA state |ΨΛ〉. Here we will not
attempt to optimize the function g(k), but will assume instead that it is given to us and
will focus on exploring the resulting fixed point state |ΨΛ〉.

A.1.2 Product state |Λ〉

The product state |Λ〉 from which the entangling evolution starts is a Gaussian state that
is completely characterized by the set of linear constraints(√

Λ

2
φ(k) +

i√
2Λ
π(k)

)
|Λ〉 = 0, ∀k. (A.7)

To see that |Λ〉 is indeed a product state, notice that Eq. A.7 is equivalent, through a
Fourier transform, to (√

Λ

2
φ(x) +

i√
2Λ
π(x)

)
|Λ〉 = 0, ∀x. (A.8)

That is, |Λ〉 is annihilated at each point x in real space by a linear constraint that only
involves φ(x) and π(x) on that point, so that the field mode attached to point x is in a
pure state and thus unentangled from the rest of field modes.

From Eqs. A.4-A.5 it follows that

−i

[
L,

√
Λ

2
φ(k) +

i√
2Λ
π(k)

]
(A.9)

= −
(
k∂k +

1

2

)(√
Λ

2
φ(k) +

i√
2Λ
π(k)

)
, (A.10)

and therefore L|Λ〉 ∝ |Λ〉. (Indeed, using the above commutator and Eq. A.7 it can be
easily checked that the state L|Λ〉 is also annihilated by the same linear constraints as |Λ〉,
which implies that it must be proportional to |Λ〉.) We conclude that |Λ〉 is a fixed point
of an evolution generated by L alone, that is e−isL|Λ〉 ∝ |Λ〉.
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A.1.3 CFT ground state |Ψ〉

We would like to produce a cMERA state |ΨΛ〉 that approximates the target state |Ψ〉,
which in our case is the ground state of a CFT. Specifically, for the massless Klein Gor-
don Hamiltonian the ground state is completely characterized by a different set of linear
constraints, namely (√

|k|
2
φ(k) +

i√
2|k|

π(k)

)
|Ψ〉 = 0, ∀k. (A.11)

An important symmetry of the CFT ground state |Ψ〉 is its invariance under scale trans-
formations or dilations, as generated by the CFT dilation operator D (named relativistic
scaling operator L′ in Ref. [81]), that is

D ≡ 1

2

∫
dk
[
π(−k)(k∂k + 1)φ(k) + h.c.

]
. (A.12)

The dilation generator D acts on the field operators as

−i[D,φ(k)] = − (k∂k + 1)φ(k), (A.13)

−i[D, π(k)] = − (k∂k + 0) π(k). (A.14)

Thus, under a finite transformation e−isD we have

φ(k)→ e−sφ(e−sk), π(k)→ π(e−sk). (A.15)

Eqs. A.13-A.14 can be seen to imply that

−i

[
D,

√
|k|
2
φ(k) +

i√
2|k|

π(k)

]
(A.16)

= −
(
k∂k +

1

2

)(√
|k|
2
φ(k) +

i√
2|k|

π(k)

)
, (A.17)

so that, the state D|Ψ〉 fulfils the same set of linear constraints as |Ψ〉 and thus D|Ψ〉 ∝ |Ψ〉.
As a matter of fact, if we had used normal ordering in the definition of D, as we will do in
Sect. A.4, we would then have D|Ψ〉 = 0.
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A.1.4 Complete set of linear constraints for the scale invariant
Gaussian cMERA |ΨΛ〉

As any Gaussian state, such as the product state |Λ〉 or the target CFT ground state |Ψ〉,
the cMERA state |ΨΛ〉 can also be completely characterized by a set of linear constraints,
which read (√

α(k)

2
φ(k) +

i√
2α(k)

π(k)

)
|ΨΛ〉 = 0, ∀k. (A.18)

Our goal in this section is to determine the function α(k) ≥ 0 that corresponds to a specific
g(k) (that is, a specific choice of entangler K). For this purpose, we introduce a family of
Gaussian states,

|ΨΛ(s)〉 ≡ e−is(L+K)|Λ〉, (A.19)

labelled by the scale parameter s. For each value of s, |ΨΛ(s)〉 is also a Gaussian state,
characterized by the set of linear constraints(√

αs(k)

2
φ(k) +

i√
2αs(k)

π(k)

)
|ΨΛ(s)〉 = 0, (A.20)

which are given by the function αs(k).

A.1.5 Differential equation for αs(k)

Let us obtain a differential equation for the evolution of αs(k) as a function of s. Given
that under an evolution by L+K the field operators φ(k) and π(k) change as

∂

∂s
φs(k) = −i [L+K,φs(k)] , (A.21)

∂

∂s
πs(k) = −i [L+K, πs(k)] , (A.22)

where

−i [L+K,φ(k)] = −
(
k∂k +

1

2
+ g(k)

)
φ(k), (A.23)

−i [L+K, π(k)] = −
(
k∂k +

1

2
− g(k)

)
π(k), (A.24)
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we consider a solution for φs(k) and πs(k) of the form

φs(k) =

√
αs(e−sk)

Λ
e−s/2φ(e−sk), (A.25)

πs(k) =

√
Λ

αs(e−sk)
e−s/2π(e−sk), (A.26)

in terms of the function αs(k), where we impose α0(k) = Λ so that at s = 0 we recover the
constraints for the product state |Λ〉. The differential equation for αs(k) is then obtained
by replacing Eq. A.25 in Eq. A.21, which leads to

∂

∂s
φs(k) = −i

√
αs(e−sk)

Λ
e−s/2

[
L+K,φ(e−sk)

]
(A.27)

= −
√
αs(e−sk)

Λ
e−s/2

(
k∂k +

1

2
+ g(e−sk)

)
φ(e−sk) (A.28)

= −
√
αs(e−sk)

Λ
e−s/2

(
1

2
+ g(e−sk)

)
φ(e−sk) (A.29)

−
√
αs(e−sk)

Λ
e−s/2e−skφ′(e−sk), (A.30)

where φ′(k) ≡ ∂φ(k)/∂k and, on the other hand, by taking the derivative of Eq. A.25 with
respect to s,

∂

∂s
φs(k) =

e−s/2

2
√

Λαs(e−sk)
α(s)
s (e−sk)φ(e−sk) (A.31)

− e−s/2

2
√

Λαs(e−sk)
e−skα(k)

s (e−sk)φ(e−sk) (A.32)

− 1

2

√
αs(e−sk)

Λ
e−s/2φ(e−sk) (A.33)

−
√
αs(e−sk)

Λ
e−s/2e−skφ′(e−sk), (A.34)

where

α(s)
s (k) ≡ ∂αs(k)

∂s
, α(k)

s (k) ≡ ∂αs(k)

∂k
. (A.35)
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Equating the two expressions for k′ = e−sk we obtain√
αs(k′)

Λ
e−s/2φ(k′)× (A.36)(

α(s)
s (k′)− k′α(k)

s (k′) + 2α(k′)g(k′)
)

= 0 (A.37)

or simply
∂αs(k)

∂s
= k

∂αs(k)

∂k
− 2αs(k)g(k). (A.38)

A similar analysis for the derivative of πs(k) with respect to s leads to the same differential
equation.

A.1.6 Fixed point differential equation for α(k)

The cMERA |ΨΛ〉 is characterized by a fixed point α(k) in the limit of large s,

α(k) ≡ lim
s→∞

αs(k), (A.39)

which is thus solution of the fixed point differential equation

k
∂α(k)

∂k
= 2g(k)α(k), (A.40)

obtained from Eq. A.38 by requiring that ∂αs(k)
∂s

= 0 in the limit of large s. We will show
later on that given a solution α(k) of the fixed point differential equation A.40, we can
indeed find a solution αs(k) of the differential eqaution A.38 such that Eq. A.39 holds.

A.1.7 Solution of the fixed point differential equation

We can formally integrate Eq. A.40 and write

α(k) = c0 exp

(
−
∫ ∞
k

dq
2g(q)

q

)
(A.41)

where c0 ≡ limk→∞ α(k). To further characterize the functions g(k) and α(k), let us first
list the conditions we have on g(k). Recall that the entangler K must be quasi-local in
real space, and such that |ΨΛ〉 approximates the CFT ground state |Ψ〉 at distances larger
than 1/Λ.
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Quasi-locality of the entangler K implies that it must go to a constant at large k,
which without loss of generality we choose to be zero (any other value corresponds to a
delta δ(x − y) in real space, which could be absorbed into the rescaling operator L). In
addition, this constant should be reached sufficiently fast. For instance, in the example
below we will choose g(k) to vanish as a Gaussian e−(k/Λ)2/σ, as in Ref. [81].

That |ΨΛ〉 approximates the CFT ground state |Ψ〉 at long distances implies two addi-
tional conditions, which we announce next and will justify below. Consider the expansion
of the integral in the exponent of Eq. A.41 around k = 0 (for k > 0) as

−
∫ ∞
k

dq
2g(q)

q
= µ log(k) + ν +

∞∑
n=1

νnk
n, (A.42)

which we obtained by assuming that g(k) is sufficiently smooth (as required again for the
entangler K to be quasi-local in real space) and by extracting the logarithmic divergence.
Here µ, ν, and νn are constants that depend on g(k). Then we will see below that we must
demand µ = 1 (which can be seen to amount to limk→0 g(k) = 1/2) and ν = − log(c0).
Therefore g(k) is required to satisfy

g(k) ∼
{

1/2, |k| � Λ,
0, |k| � Λ,

(A.43)

together with ν = − log(c0) in the expansion of Eq. A.42.

Let us now discuss what the above conditions imply for the function α(k) resulting from
the fixed point differential equation in Eq. A.40. First, quasi-locality of the entangler K
required a vanishing g(k) for large |k|, which Eq. A.40 translates into requiring that α(k)
tend to a constant c0 for large |k|. On the other hand, demanding that |ΨΛ〉 approximate
the CFT ground state |Ψ〉 at long distances requires that α(k) tend to |k| for small |k| → 0.
This can be seen e.g. by studying the correlator

〈ΨΛ|π(x)π(y)|ΨΛ〉 =
1

2π

∫
dk eik(x−y)α(k)

2
(A.44)

and demanding that it correspond to the CFT correlator

〈Ψ|π(x)π(y)|Ψ〉 = − 1

2π

1

|x− y|2∆π
(A.45)

at large distances Λ|x − y| � 1, both in exponent and amplitude. Specifically, matching
the exponent ∆π = 1 requires that α(k) ∼ c1|k| while matching the amplitude −1/2π sets
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c1 = 1. Therefore α(k) is required to satisfy

α(k) ∼
{
|k|, |k| � Λ,
c0, |k| � Λ.

(A.46)

Notice that Eqs. A.41 and A.42 imply that, for small |k|, α(k) = c0e
ν |k|µ + O(k2). We

therefore conclude that ν = − log(c0) and µ = 1, as stated above.

A.1.8 Building αs(k) from the fixed point α(k)

Given a solution α(k) of the fixed point differential equation A.40, we can build a solution
αs(k) of the scale dependent differential equation A.38 simply as

αs(k) ≡ α(k)h(esk), (A.47)

for any function h(esk). In can indeed be easily check by direct substitution that such
αs(k) fulfils A.38.

In our case, we are interested in a solution αs(k) such that, at the beginning of the
scale evolution, s = 0, the function α0(k) represents the constraints of the product state
|Λ〉,

α0(k) = Λ. (A.48)

This can be achieved with the choice h(esk) = Λ/α(esk), that is

αs(k) = Λ
α(k)

α(esk)
. (A.49)

For small |k| (|k| � Λ) and large s such that es|k| � Λ, this expression tends to Λ|k|/c0

and thus we must choose c0 = Λ in Eq. A.46, which we update to

α(k) ∼
{
|k|, |k| � Λ,
Λ, |k| � Λ.

(A.50)

A.1.9 Symplectic transformation V

Let us now define the following symplectic transformation V

V φ(k)V † =

√
α(k)

|k|
φ(k) ≡ φΛ(k), (A.51)

V π(k)V † =

√
|k|
α(k)

π(k) ≡ πΛ(k). (A.52)
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Clearly, under this transformation we have

V

(√
|k|
2
φ(k) +

i√
2|k|

π(k)

)
V † (A.53)

=

(√
α(k)

2
φ(k) +

i√
2α(k)

π(k)

)
,

so that the linear constraints fulfilled by the CFT ground state |Ψ〉 are mapped into the
linear constraints fulfilled by the cMERA |ΨΛ〉, implying that V |Ψ〉 ∝ |ΨΛ〉.

At this point, it is useful to introduce two sets of annihilation operators, corresponding
to the linear constraints for the CFT ground state |Ψ〉 and the cMERA |ΨΛ〉, namely

a(k) ≡
√
|k|
2
φ(k) +

i√
2|k|

π(k), (A.54)

aΛ(k) ≡
√
α(k)

2
φ(k) +

i√
2α(k)

π(k), (A.55)

so that a(k)|Ψ〉 = 0 for all k, aΛ(k)|ΨΛ〉 = 0 for all k, and Eq. A.53 reads V a(k)V † = aΛ(k).

A.1.10 Momentum operator PΛ = P

The momentum operator for the 1+1 free bosonic CFT under consideration is given by

P ≡ −
∫
dx π(x)∂xφ(x) (A.56)

= −i
∫
dk k π(−k)φ(k) (A.57)

=

∫
dk k a(k)†a(k), (A.58)

whereas for the cMERA we define

PΛ ≡ V PV † (A.59)

=

∫
dk k aΛ(k)†aΛ(k). (A.60)
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We then have

PΛ =

∫
dk k

(√
α(k)

2
φ(k) +

i√
2α(k)

π(k)

)†
(A.61)

×

(√
α(k)

2
φ(k) +

i√
2α(k)

π(k)

)
(A.62)

=

∫
dk k

(√
α(k)

2
φ(−k)− i√

2α(k)
π(−k)

)
(A.63)

×

(√
α(k)

2
φ(k) +

i√
2α(k)

π(k)

)
(A.64)

= −i
∫
dk k π(−k)φ(k) (A.65)

= P. (A.66)

Given that PΛ|ΨΛ〉 = 0, we recover the known result [81] that the state |ΨΛ〉 is invariant
under translations generated by P , P |ΨΛ〉 = 0.

A.1.11 Dilation operator DΛ = L+K

From the CFT dilation operator

D ≡ −
∫
dx x : π(x)∂xφ(x) : (A.67)

=

∫
dk : π(−k) (k∂k + 1)φ(k) : (A.68)

= i

∫
dk a(k)†sgn(k)

(
k∂k +

1

2

)
a(k) (A.69)

we can also define a cMERA dilation operator

DΛ ≡ V DV † (A.70)

= i

∫
dk aΛ(k)†sgn(k)

(
k∂k +

1

2

)
aΛ(k). (A.71)
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Then we have

DΛ = i

∫
dk

(√
α(k)

2
φ(k) +

i√
2α(k)

π(k)

)†
(A.72)

× sgn(k)

(
k∂k +

1

2

)(√
α(k)

2
φ(k) +

i√
2α(k)

π(k)

)

= i

∫
dk

(√
α(k)

2
φ(−k)− i√

2α(k)
π(−k)

)
(A.73)

× sgn(k)

(
k∂k +

1

2

)(√
α(k)

2
φ(k) +

i√
2α(k)

π(k)

)

=

∫
dk π(−k)

(
k∂k +

1

2

)
φ(k) (A.74)

+

∫
dk

k∂kα(k)

2α(k)
π(−k)φ(k) (A.75)

=

∫
dk π(−k)

(
k∂k +

1

2

)
φ(k) (A.76)

+

∫
dk g(k)π(−k)φ(k) (A.77)

= L+K. (A.78)

Note that we neglect constant terms in the calculation.

A.2 Quasi-local entangler K

In this section we consider a concrete example of function g(k) that produces an entangler
K that is quasi-local in real space, in that it is the integral of a smeared density with
Gaussian tails ≈ e−

1
4
σΛ2(x−y)2

. We show that the corresponding cMERA fields φΛ(x) and
πΛ(x) are also quasi-local. This time, they correspond to smeared fields with exponential
tails ≈ e−

√
σΛ|y−x|.

The authors thank Mr. Adrian Franco Rubio, private communication, for determining
the exact value of σ in the expressions bellow.
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A.2.1 Example of g(k) and α(k) leading to a quasi-local entangler
K

A specific example of quasi-local entangler K is obtained with the choice

g(k) =
1

2
exp

(
− 1

σ

(
k

Λ

)2
)
, (A.79)

which is equivalent to that proposed in Ref. [81], except for the presence of a factor
σ ≈ 1.78107, namely the exponential of Euler’s constant γ ≈ 0.57722. Notice that g(k)
tends to 1/2 and 0 for small and large |k|, as in Eq. A.43. The corresponding α(k)
satisfying the fixed point differential equation A.40 is

α(k) = Λ exp

(
1

2
Ei
(
− 1

σ
(
k

Λ
)2
))

, (A.80)

where Ei is the special function known as exponential integral,

Ei(y) ≡ −
∫ ∞
−y

e−t

t
dt, (A.81)

which accepts the following convergent series

Ei(y) = γ + ln |y|+
∞∑
k=1

yk

k k!
. (A.82)

Therefore for |k| � Λ we have

α(k) ≈ Λ exp
1

2

(
γ + log

(
k2

σΛ2

))
= |k|

√
eγ

σ
. (A.83)

We conclude that σ ≡ eγ, which was missing in the Gaussian g(k) of the proposal of Ref.
[81], is required in g(k) in order for α(k) to grow as α(k) = |k|+O(k2) in the limit of small
|k|.

In this case, the entangler reads

K =
1

2

∫
dk e−

k2

σΛ2 : π(−k)φ(k) : (A.84)

=

√
σΛ2

8

∫∫
dxdy e−

1
4
σΛ2(x−y)2

: π(x)φ(y) : (A.85)
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A.2.2 Quasi-local scaling operators

Next we show that the absolute value of the (generalized) functions µφ(x) and µπ(x) for
the smeared fields φΛ(x) and πΛ(x),

φΛ(x) = V φ(x)V † =

∫
dy µφ(x− y)φ(y), (A.86)

πΛ(x) = V π(x)V † =

∫
dy µπ(x− y)π(y), (A.87)

can be upper bounded by O(exp (−|Λx|) for |Λx| � 1, so that we can think of φΛ(x) and
πΛ(x) as quasi-local fields with a characteristic length scale upper bounded by 1/Λ.

The Fourier transforms of
√

α(k)
|k| and

√
|k|
α(k)

, see Eqs. A.51-A.52 are distributions and,

as such, cannot be reliably obtained through a numerical Fourier transform. [That the
profile functions µφ(x) and µπ(x) are actually distributions should not come as a surprise.
In the original CFT, with sharp field operators φ(x) and π(x), they are already distribitions,
namely delta functions δ(x)]. In order to analyse these distributions, we decompose them
as sum of two pieces

µφ(x) = µ
(1)
φ (x) + µ

(2)
φ (x), (A.88)

µπ(x) = µ(1)
π (x) + µ(2)

π (x), (A.89)

where the first term is conveniently chosen such that (i) it is a distribution with an analytic
Fourier transform and (ii) the remaining term is sufficiently regular that it can be reliably
obtained by a numerical Fourier transform.

Since
√

α(k)
|k| ∼ |k/Λ|

− 1
2 as |k| → ∞, we choose µ

(1)
φ (k) ≡ (1 + k2/Λ2)−

1
4 , which has

the same asymptotic behavior for large |k| (to leading order in |k|). This function has an
analytical distributional Fourier transform,

µ
(1)
φ (x) ≡ F

(
(1 + k2/Λ2)−

1
4

)
(x) =

23/4K 1
4
(|Λx|)

Γ
(

1
4

)
|Λx|1/4

, (A.90)

where Kn is the modified Bessel function of the second kind, and Γ is the Euler gamma
function. It can be shown that it has asymptotic behavior

µ
(1)
φ (x) ∼


|Λx|−1/2, |Λx| � 1;

21/4√πe−|Λx|

Γ( 1
4)|Λx|3/4

, |Λx| � 1.
(A.91)
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Arguing similarly about
√
|k|
α(k)

, we choose µ
(1)
π (k) ≡ (1 + k2/Λ2)

1
4 , which has analytical

distributional Fourier transform,

µ(1)
π (x) ≡ F

(
(1 + k2/Λ2)

1
4

)
(x) =

25/4K 3
4
(|Λx|)

Γ
(
−1

4

)
|Λx|3/4

. (A.92)

Its asymptotic behavior is

µ(1)
π (x) ∼


−1

2
|Λx|−3/2, |Λx| � 1;

23/4√πe−|Λx|

Γ(− 1
4)|Λx|5/4

, |Λx| � 1.
(A.93)

µ
(1)
π (x) should be understood as a distribution. Its action on a test function f(x) is defined

as the Hadamard finite-part integral [54]:

〈µ(1)
π , f〉

≡ lim
ε→0+

(∫
R\(−ε,ε)

µ(1)
π (x)f(x)dx+ 2Λ−

3
2 ε−

1
2f(0)

)
.

(A.94)

It is clear that µ
(1)
φ (x) and µ

(1)
π (x) both decay exponentially for large |x|. Since µ

(2)
φ (x) and

µ
(2)
π (x) are non-singular, the singular behaviors of µφ(x) and µπ(x) for |Λx| � 1 are the

same as µ
(1)
φ (x) and µ

(1)
π (x).

After the subtraction, we can readily apply a numerical Fourier transform to µ
(2)
φ (k) ≡√

α(k)
|k| − (1 + k2/Λ2)−

1
4 and µ

(2)
π (k) ≡

√
|k|
α(k)
− (1 + k2/Λ2)

1
4 . By summing the analytical

part and numerical part, we can see that µφ(x) and µπ(x) decay roughly esxponentially
for large x, and µπ(x) also oscillates, as shown in Fig. A.1.

In fact, it can be proven that

µφ(x), µπ(x) = exp
{
−Λx

√
σ log(Λx) + o(Λx

√
log(Λx))

}
, (A.95)

as x→∞. The rigorous proof is rather lengthy, so here we only outline it for the asymptotic

behavior of µφ(x). That µφ(x) is the Fourier transform of
√

α(k)
|k| is equivalent to the

following integral equation,

(x∂x +
1

2
)µφ(x) +

1√
2π

∫
g(x− y)µφ(y)dy = 0, (A.96)
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Figure A.1: Generalized functions µφ(x) and µπ(x) for large Λx � 1, together with func-

tion const. × e−u(x) for u(x) = Λx
√
σ log(Λx). Both µφ(x) (blue) and |µπ(x)| (in yellow

when µπ(x) > 0 and green when µπ(x) < 0) where obtained numerically by adding the
contributions (see Eqs. A.88-A.89) of an analytical Fourier transform and a numerical
Fourier transform. The results were obtained using arbitrary precision arithmetic.

where g(x) =
√

σΛ2

8
e−

1
4
σΛ2x2

is the Fourier transform of g(k). (This follows from requiring

that −i[DΛ, φΛ(x)] = (x∂x + 0)φΛ(x) at x = 0). We define a new variable u(x) such that,

µφ(x) = e−u(x). (A.97)

We seek the solution to this integral equation among functions satisfying a few conditions:

u′(x)→∞, log(u′(x)) = o(log(Λx)), as x→∞;

|u′(x)− u′(y)| = o(
√

log(Λx)) + o(Λ|x− y|),
as x, y →∞.

(A.98)

Then the convolution term in Eq. A.96 can be approximated as∫
g(x− y)µφ(y)dy

=

√
π

2
µφ(x)e

1
σΛ2

(
u′(x)+o(

√
log Λx)

)2

(1+o(1)). (A.99)

One can show that there exists solution to Eq. A.96 satisfying conditions Eq. A.98, and
it reads

u(x) = Λx
√
σ log Λx+ o(Λx

√
log Λx). (A.100)

Then we prove Eq. A.95 for µφ(x). The proof for µπ(x) is obtained similarly, starting from
−i[DΛ, πΛ(x)] = (x∂x + 1)πΛ(z) at x = 0.
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A.3 Radial and N-S quantizations

In Chapter 2 we have analysed the spacetime symmetries of the cMERA state |ΨΛ〉 for the
ground state |Ψ〉 of a 1+1 dimensional CFT where space corresponds to the real line x ∈ R.
We have done so in terms of a subset of generators of global conformal transformations
on the real line (namely the Hamiltonian H, the momentum operator P , the dilation and
boost generators D and B, which can be completed with the generators of special conformal
transformations K1 and K2).

The spacetime symmetries of a 1+1 CFT are usually analysed using instead radial
quantization, where space corresponds to the circle. The Virasoro generators Ln and L̄n
can then be mapped onto generators L′n and L̄′n on the real line, producing the so-called N-S
quantization (North pole - South pole quantization), as described e.g. in S. Rychkov’s notes
EPFL Lectures on Conformal Field Theory in D >= 3 Dimensions, arXiv:1601.05000, for
the global conformal group in higher dimensions. The goal of this Section , which contains
no original research, is to briefly review the connection between radial quantization and
N-S quantization, following a detailed explanation kindly offered to the authors by John
Cardy, and to clarify their relation to the generators H,P,B,D used in the main text.

A.3.1 Complex coordinates and stress-energy tensor

We can parameterize the Euclidean plane by the complex coordinate z ≡ z0 + iz1, and use
z and z̄ as new coordinates,

z = z0 + iz1 z0 = 1
2

(z + z̄)

z̄ = z0 − iz1 z1 = 1
2i

(z − z̄)

∂z = 1
2

(∂0 − i∂1) ∂0 = ∂z + ∂z̄

∂z̄ = 1
2

(∂0 + i∂1) ∂1 = i (∂z − ∂z̄)

(A.101)

The stress-energy tensor Tµν(z
0, z1) of a CFT is symmetric (T10 = T01) and traceless
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(T11 = −T00). In complex coordinates we obtain components

Tzz =
1

4
(T00 − i(T10 + T01)− T11) (A.102)

=
1

2
(T00 − iT01) (A.103)

Tz̄z̄ = (T00 + i(T10 + T01)− T11) (A.104)

=
1

2
(T00 + iT01) (A.105)

whereas Tzz̄ = Tz̄z = (T00+T11)/4 = 0. In addition, from the conservation law gαµ∂αTµν = 0
it follows that Tzz is a holomorphic function (∂z̄Tzz = 0) whereas Tz̄z̄ is antiholomorphic
(∂zTz̄z̄ = 0). Finally, the renormalized holomorphic and antiholomorphic components of
the stress-energy tensor are given by

T (z) ≡ −2πTzz(z), T̄ (z̄) ≡ −2πTz̄z̄(z̄) (A.106)

A.3.2 Generators of conformal coordinate transformation

Holomorphic (antiholomorphic) conformal coordinate transformations z → f(z) (respec-
tively z̄ → f̄(z̄)) preserve angles and are generated by infinitesimal transformations

z → z +
∞∑

n=−∞

cnz
n+1 = (1−

∞∑
n=−∞

cnln)z (A.107)

z̄ → z̄ +
∞∑

n=−∞

c̄nz̄
n+1 = (1−

∞∑
n=−∞

c̄nl̄n)z̄, (A.108)

where cn ∈ C and the holomorphic and antiholomorphic generators ln and l̄n are given by

ln ≡ −zn+1∂z, l̄n ≡ −z̄n+1∂z̄, (A.109)

which close the Witt algebra [44]

[lm, ln] = (m− n)lm+n, (A.110)[
l̄m, l̄n

]
= (m− n)l̄m+n, (A.111)[

lm, l̄n
]

= 0. (A.112)
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A.3.3 Radial quantization

In radial quantization, the Virasoro generators are defined in terms of the (renormalized)
holomorphic and antiholomorphic components T (z) and T̄ (z̄) of the stress-energy tensor
as

Ln ≡
1

2πi

∮
|z|=1

dz zn+1T (z), (A.113)

L̄n ≡
1

2πi

∮
|z̄|=1

dz̄ z̄n+1T̄ (z̄), (A.114)

where the integrals are over the unit circle |z| = 1 and |z̄| = 1 respectively. They close the
Virasoro algebra [44]

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n, (A.115)[

L̄m, L̄n
]

= (m− n)L̄m+n +
c

12
m(m2 − 1)δm,−n, (A.116)[

Lm, L̄n
]

= 0. (A.117)

A.3.4 From the circle to the real line

We would like to obtain an expression for the generators of the conformal group when the
CFT is quantized on the real line. The usual strategy is to map the generators Ln and L̄n
from the unit circle to the real line. For this purpose, consider the conformal map

z → ξ(z) = x(z) + iτ(z), z =
1− iξ
1 + iξ

, (A.118)

which indeed maps the unit circle |z| = 1 to the real line ξ = x ∈ R, as illustrated in Fig.
A.2. Specifically, the point z = 1 is mapped to the origin of the real line x = 0, whereas
limθ→π± e

iθ are mapped to to x = ±∞. Notice also that the origin z = 0 is mapped to
ξ = −i, which we will refer to as South pole S, while z =∞ is mapped to ξ = i, which we
will refer to as North pole N .

Notice that
dz

dξ
=

−2i

(1 + iξ)2 , or ∂z =
i (1 + iξ)2

2
∂ξ (A.119)
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Figure A.2: Under the conformal map z → ξ ≡ x + iτ , where z = (1 − iξ)/(1 + iξ), the
unit circle |z| = 1 is mapped into the real line ξ = x, where x ∈ R.

and therefore under z → ξ the generator ln is mapped into the generator qn

qn ≡
(

1− iξ
1 + iξ

)n+1
(1 + iξ)2

2i
∂ξ (A.120)

= − i
4

(1− iξ)n+1(1 + iξ)−n+1(∂x − i∂τ ) (A.121)

where we used ∂ξ = 1
2
(∂x− i∂τ ). Specializing the holomorphic generator qn to the real line

ξ = x, and switching from Euclidean time τ to Lorentzian time t, where τ = it, so that
∂ξ = 1

2
(∂x − ∂t), we finally obtain the right moving generator

qn = − i
4

(1− ix)n+1(1 + ix)−n+1(∂x − ∂t). (A.122)

Similarly, from z̄ = (1 + iξ̄)/(1− iξ̄), we can build antiholomorphic generators, which after
switching to Lorentzian time turn into the left moving generators

q̄n =
i

4
(1 + ix)n+1(1− ix)−n+1 (∂x + ∂t) . (A.123)

For later reference, we write explicitly the generators of global conformal transforma-
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tion, namely

q0 = − i
4

(
1 + x2

)
(∂x − ∂t), (A.124)

q±1 = − i
4

(1∓ ix)2 (∂x − ∂t), (A.125)

q̄0 =
i

4

(
1 + x2

)
(∂x + ∂t), (A.126)

q̄±1 =
i

4
(1± ix)2 (∂x + ∂t). (A.127)

On the other hand, under the Mobius transformation z → ξ, the stress-energy tensor
changes simply as [44]

T (z)dz =
T (ξ)dξ

dz/dξ
=
i(1 + iξ)2

2
T (ξ)dξ. (A.128)

Accordingly, the generators of conformal transformations become

Qn =
−1

4π

∫
dx

(
1− ix
1 + ix

)n+1

(1 + ix)2T (x) (A.129)

=
−1

4π

∫
dx (1− ix)n+1(1 + ix)−n+1T (x). (A.130)

where
∫
dx ≡

∫
R dξ. Similar derivations for the antiholomorphic component T̄ (z) of the

stress-energy lead to

Q̄n =
−1

4π

∫
dx (1 + ix)n+1(1− ix)−n+1T̄ (x) (A.131)

In particular, for n = 0,±1 we have the generators of the global conformal transforma-
tions,

Q0 =
−1

4π

∫
dx (1 + x2)T (x), (A.132)

Q±1 =
−1

4π

∫
dx (1∓ ix)2T (x), (A.133)

Q̄0 =
−1

4π

∫
R
dx (1 + x2)T̄ (x), (A.134)

Q̄±1 =
−1

4π

∫
dx (1± ix)2T̄ (x). (A.135)
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Figure A.3: In N-S quantization, the time translation is generated by (1 + x2)∂τ .

A.3.5 Global conformal transformations directly on the real line

Let us now consider conformal transformations acting on Minkowski space ξ = x− t. We
specialize to their action on the x axis, that is for t = 0. For simplicity, we restrict our
attention to global conformal transformations,

(x, 0)→ (x, t0) time translations
(x, 0)→ (x+ x0, 0) space translations
(x, 0)→ γ(x,−vx) boosts
(x, 0)→ (λx, 0) dilations
(x, 0)→ (x, ax2) special conformal 1
(x, 0)→ ( x

1−bx , 0) special conformal 2

(A.136)

where t0, x0, γ, v, a, b are real parameters. They are generated, both as a coordinate trans-
formation and as a Hilbert space transformation, by

i∂t, H ≡
∫
dx h(x) Hamiltonian

−i∂x, P ≡
∫
dx p(x) momentum generator

ix∂t, B ≡
∫
dx x h(x) boost generator

−ix∂x, D ≡
∫
dx x p(x) dilation generator

ix2∂t, K1 ≡
∫
dx x2 h(x) SC generator 1

−ix2∂x, K2 ≡
∫
dx x2 p(x) SC generator 1

(A.137)

where we have expressed the generators in terms of the Hamiltonian and momentum den-
sities h(x) and p(x),

h(z) =
−1

2π

(
T (z) + T̄ (z̄)

)
, (A.138)

p(z) =
−1

2π

(
T (z)− T̄ (z̄)

)
. (A.139)
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These generators fulfil the expected commutation relations, including

[H,P ] = 0, [B,D] = 0, (A.140)

[B,H] = iP, [B,P ] = iH, (A.141)

[D,H] = iH, [D,P ] = iP. (A.142)

(A.143)

The above two sets of global conformal generators on the real line can, of course, be
written in terms of each other. Explicitly, we find

q0 + q̄0 =
1 + x2

2
i∂t (A.144)

q0 − q̄0 = −1 + x2

2
i∂x (A.145)

(q1 + q−1) + (q̄1 + q̄−1) = (1− x2)i∂t (A.146)

(q1 + q−1)− (q̄1 + q̄−1) = −(1− x2)i∂x (A.147)

(q1 − q−1) + (q̄1 − q̄−1) = −2x∂x (A.148)

(q1 − q−1)− (q̄1 − q̄−1) = 2x∂t (A.149)

and, correspondingly,

Q0 + Q̄0 =
H +K1

2
(A.150)

Q0 − Q̄0 =
P +K2

2
(A.151)

(Q1 +Q−1) +
(
Q̄1 + Q̄−1

)
= H −K1 (A.152)

(Q1 +Q−1)−
(
Q̄1 + Q̄−1

)
= P −K2 (A.153)

(Q1 −Q−1) +
(
Q̄1 − Q̄−1

)
= −2iD (A.154)

(Q1 −Q−1)−
(
Q̄1 − Q̄−1

)
= −2iB. (A.155)

The ground state |Ψ〉 of CFT Hamiltonian H on the line is the only state in the
Hilbert space invariant under the global conformal group and thus annihilated by all these
generators. More generally, |Ψ〉 is annihilated by

Qn|Ψ〉 = Q̄n|Ψ〉 = 0, ∀n ≥ −1. (A.156)

Notice in particular that |Ψ〉 is also the ground state of

Q0 + Q̄0 =

∫
dx

1 + x2

2
h(x) =

1

2
(H +K1) (A.157)
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While the Hamiltonian H =
∫
dx h(x) has a continuous spectrum, Q0 + Q̄0 has the same

discrete spectrum as L0 + L̄0 on the circle, which is given in terms of the scaling dimensions
∆α ≡ hα+h̄α of the local scaling operators φα(x) of the theory [similarly, while the spectrum
of P is continuous, the spectrum of Q0 − Q̄0 = 1

2
(P + K2) is discrete and given by the

conformal spins sα ≡ hα − h̄α].

A.4 1+1 free boson CFT on the real line

In this section we specialize to the 1+1 dimensional free boson CFT on the real line
discussed in Chapter 2. We collect from [44] a number of well-known fact that are used in
the main text.

A.4.1 Stress-energy tensor

Consider the action

S ≡
∫
dx dt

1

2

(
(∂tφ)2 − (∂xφ)2

)
(A.158)

which leads to a stress-energy tensor

T (x) = −2π : ∂φ(x)∂φ(x) : (A.159)

T̄ (x) = −2π : ∂̄φ(x)∂̄φ(x) : (A.160)

where ∂φ is a holomorphic (or right moving) field and ∂̄φ is an antiholomorphic (or left
moving) field,

∂φ(x) ≡ 1

2
(∂xφ(x)− i∂τφ(x)) (A.161)

=
1

2
(∂xφ(x)− π(x)) , (A.162)

∂̄φ(x) ≡ 1

2
(∂xφ(x) + i∂τφ(x)) (A.163)

=
1

2
(∂xφ(x) + π(x)) , (A.164)

and where we have identified ∂tφ(x) with π(x). Therefore the normal-ordered energy and
momentum densities are given by

h(x) ≡ :
1

2

[
π(x)2 + (∂xφ(x))2

]
: , (A.165)

p(x) ≡ − : π(x)∂xφ(x) : . (A.166)
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A.4.2 Generators of global conformal transformations

Introducing now the annihilation operators a(k) that diagonalize the Hamiltonian H =∫
dx h(x) =

∫
dk |k| a(k)†a(k), namely

a(k) ≡
√
|k|
2
φ(k) + i

√
1

2|k|
π(k), (A.167)

where φ(k) ≡ 1√
2π

∫
dx e−ikxφ(x) and π(k) ≡ 1√

2π

∫
dx e−ikxπ(x) and [a(k), a(q)†] = δ(k−q),

we can write the global conformal generators as

H =

∫
dk |k| a(k)†a(k), (A.168)

P =

∫
dk k a(k)†a(k), (A.169)

B = i

∫
dk a(k)†

(
k∂k +

1

2

)
a(k), (A.170)

D = i

∫
dk a(k)†sgn(k)

(
k∂k +

1

2

)
a(k), (A.171)

K1 = −
∫
dk a(k)†sgn(k)

(
k∂2

k + ∂k −
1

4k

)
a(k), (A.172)

K2 = −
∫
dk a(k)†

(
k∂2

k + ∂k −
1

4k

)
a(k). (A.173)

A.4.3 Primary operators and OPE’s

The primaries in this theory are 1, ∂φ, ∂̄φ and the so-called vertex operator : eiαφ :, with
conformal dimensions (h, h̄) being (0, 0), (1, 0), (0, 1) and (α

2

8π
, α

2

8π
) respectively.

From the free boson action S above, we can compute the correlator

〈φ(x)φ(y)〉 = − 1

4π
log((x− y)2) + const., (A.174)

by Gaussian integration. It follows that,

〈∂φ(x)∂φ(y)〉 = − 1

4π

1

(x− y)2
, (A.175)
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from which we can read the operator product expansion (OPE) of ∂φ with itself,

∂φ(x)∂φ(y) ∼ − 1
4π

1

(x− y)2
, (A.176)

where ∼ indicates that we neglect regular terms. The stress tensor is precisely the ignored
constant regular term,

T (x) ≡ −2π : ∂φ(x)∂φ(x) : (A.177)

≡ −2π lim
y→x

(∂φ(x)∂φ(y)− 〈∂φ(x)∂φ(y)〉) . (A.178)

We can then apply Wick’s theorem to obtain other OPEs. For example,

T (x)∂φ(y) = −2π : ∂φ(x)∂φ(x) : ∂φ(y) (A.179)

∼ ∂φ(y)

(x− y)2
+
∂2φ(y)

(x− y)
(A.180)

and

T (x)T (y) = 4π2 : ∂φ(x)∂φ(x) :: ∂φ(y)∂φ(y) : (A.181)

∼ 1/2

(x− y)4
+

2T (y)

(x− y)2
+

∂T (y)

(x− y)
. (A.182)

All these expressions hold also for the cMERA smeared operators ∂φΛ(x) = V ∂φ(x)V †,
TΛ(x) = V T (x)V †, etc. They can be obtained either by applying the symplectic map V
on the CFT expressions or, equivalently, by defining normal ordering with respect to the
cMERA annihilation operators aΛ(k) and applying Wick’s theorem directly on the smeared
operators.

A.5 Reuse and Permissions License

Chapter 2 and Appendix A of this thesis consist mostly of material published in Reference
[1], whose copyright is held by the American Physical Society. In the following is the Reuse
and Permissions License from the American Physical Society.
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Appendix B

Appendices for Chapter 3

B.1 Quasilocal smearing function

In this section we examine the constraints of the smearing function µ(x,y) and illustrate
a concrete example which fulfills the constraints. We will have four constraints. (i) The
smearing function µ(x,y) is translation and rotation invariant, which means that it only
depends on |x− y|. (ii) To (quasi)preserve the local structure of the continuous partition
function, we require the smearing function µ(x) to be quasilocal, in the sense that it is
upper bounded by an exponentially decaying function at long distances. (iii) The smeared
fields should be normalized such that they have the same behaviors as in the original field
theory at long distances. This demands that

∫
dx µ(|x|) = 1, or equivalently µ(k = 0) = 1.

(iv) We demand that there are only finite fluctuations at short distances, that is,∣∣∣ lim
x→0
〈φ(x)φ(0)〉Λ

∣∣∣ <∞, (B.1)

where 〈φ(x)φ(0)〉Λ represents the correlation function for the smeared action SΛ[φ] de-
termined by the smearing function µ(x). Assuming 〈φ(k)φ(−k)〉Λ tends to a constant
1

Λ2 , which results in a contact term in the correlation function 〈φ(x)φ(0)〉Λ in real space,
constraint (iv) becomes ∣∣∣∣∫ dk

( 1

k2 +m2

1

µ(k)2
− 1

Λ2

)∣∣∣∣ <∞. (B.2)
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Here the integral should be understood as the Hadamard finite-part integral if divergence
occurs in the neighborhood of k = 0. In that case, the condition can also be written as∣∣∣∣∫

k>Λ

dk
( 1

k2 +m2

1

µ(k)2
− 1

Λ2

)∣∣∣∣ <∞. (B.3)

An example of µ(x) that fulfills the four constraints is given by the 2D Fourier transform
of the following:

µ(k) =
Λ

k
Exp

(
1

2
Expi

(
− k2

σΛ2

))
. (B.4)

Here σ = eγ ≈ 1.78, where γ is Euler’s constant. Next we show that constraints (i), (ii)
and (iii) are satisfied. In the following section we will show that constraint (iv) is also
fulfilled.

Constraint (i) is fulfilled because µ(k) only depends on |k|. Constraint (iii) can be
verified by plugging in the expansion

Expi(x) = γ + log x+O(x2), as x→ 0, (B.5)

in Eq. B.4, which yields

µ(k) = 1− k2

2σΛ2
+O(k4), as k → 0, (B.6)

and in particular µ(k = 0) = 1.

Constraint (ii) will follow from the analytical study of the asymptotic behavior of µ(x)
for large x, which can be inferred from its 2D Fourier transform µ(k). We use the same
strategy as in the appendix of [?]. Notice that µ(k) satisfies the differential equation

k∂kµ(k) = g(k)µ(k), (B.7)

where g(k) = −1 + e−
k2

σΛ2 . Applying a 2D Fourier transform, we get the equation in real
space,

(−x · ∇ − 1)µ(x) =
σΛ2

4π

∫
dy e−

1
4
σΛ2y2

µ(x− y). (B.8)

We define a new variable u(x):
µ(x) = e−u(x). (B.9)

Then the differential equation becomes

x · ∇u(x)− 1 =
σΛ2

4π

∫
dy e−

1
4
σΛ2y2−u(x−y)+u(x). (B.10)
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Figure B.1: (a) The smearing function µ(k) in momentum space. The dashed line is Λ
k
,

which represents the asymptotic behavior of µ(k) for large k. (b) The smearing function
µ(x) in real space. The dashed line is 1

2πΛx
, which represents the asymptotic behavior of

µ(x) for small x.

We then expand u(x− y) around x,

u(x− y) ≈ u(x)− y · ∇u(x). (B.11)

In consequence, the right hand side of the differential equation is approximated by a Gaus-
sian integral,

σΛ2

4π

∫
dy e−

1
4
σΛ2y2−u(x−y)+u(x)

≈ σΛ2

4π

∫
dy e−

1
4
σΛ2y2+y·∇u(x)

= e(∇u(x))2/(σΛ2).

(B.12)

Since µ(x) is rotation invariant, it is only a function of x, and hence so is u(x). Then we
have

xu′(x)− 1 = eu
′(x)2/(σΛ2). (B.13)

The approximate solution can be found in the large x limit:

u′(x) = Λ
√
σ logΛx (1 + o(1)), as x→∞. (B.14)

Performing the integration we get

u(x) = Λx
√
σ logΛx (1 + o(1)), as x→∞. (B.15)
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Finally we obtain the asymptotic behavior of µ(x) for large x,

µ(x) = e−Λx
√
σ logΛx (1+o(1)), as x→∞. (B.16)

It is then clear that µ(x) can be upper bounded by an exponentially decaying function in
the limit of large x. Therefore our proposed smearing function fulfills constraint (ii).

Additionally, the asymptotic behavior of µ(x) for small x can also be obtained from its
Fourier transform. To do so, we divide µ(k) into two pieces µ(1)(k) + µ(2)(k):

µ(1)(k) ≡ Λ

k
, (B.17)

µ(2)(k) ≡ Λ

k
Exp

(1

2
Expi(− k2

σΛ2
)
)
− Λ

k
. (B.18)

The 2D Fourier transform of µ(1)(k) is 1
2πΛx

, which is computed analytically, and the 2D
Fourier transform of µ(2)(k) can be shown to be finite around x = 0. Therefore, the
asymptotic behavior of µ(x) at x = 0 is

µ(x) =
1

2πΛx
+O(1), as x→ 0. (B.19)

B.2 Correlation function

In this section we study the behavior of the correlation function 〈φ(x)φ(0)〉Λ for the
smeared free boson action SΛ[φ]. For concreteness, the analysis of the short and long
distance behavior of the correlator will focus on the massless case. At short distances, it
can be shown to be finite, thus fulfilling constraint (iv) from the previous section. At long
distances, it approaches the correlation function 〈φ(x)φ(0)〉 from the CFT.

For the 2D free boson theory in Euclidean spacetime, the action is given by

S[φ] =
1

2

∫
dx
(
−φ(x)∆φ(x) +m2φ(x)2

)
=

1

2

∫
dk

(2π)2
(k2 +m2)φ(k)φ(−k).

(B.20)
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To compute the correlation function 〈φ(k)φ(−k)〉, we introduce a source term in the action:

S[φ, λ] =
1

2

∫
dx
(
− φ(x)∆φ(x) +m2φ(x)2

)
+

∫
dx λ(x)φ(x)

=
1

2

∫
dk

(2π)2
(k2 +m2)φ(k)φ(−k)

+

∫
dk

(2π)2
λ(k)φ(−k).

(B.21)

The partition function is given by the path integral:

Z(λ) ≡
∫

[dφ]e−S[φ,λ]

= Z(0)e
1
2

∫
dk

(2π)2
(k2+m2)−1λ(k)λ(−k)

.

(B.22)

The correlation function can then be computed as follows:

〈φ(k)φ(−k)〉

=

∫
[dφ]e−S[φ]φ(k)φ(−k)∫

[dφ]e−S[φ]

= Z(0)−1 ∂

∂λ(k)

∂

∂λ(−k)

∫
[dφ]e−S[φ,λ]

∣∣∣∣
λ(k)=0

= Z(0)−1 ∂

∂λ(k)

∂

∂λ(−k)
Z(λ)

∣∣∣∣
λ(k)=0

=
1

k2 +m2
.

(B.23)

In the massless case m = 0, 〈φ(k)φ(−k)〉 = 1
k2 . Its 2D Fourier transform produces the

real-space correlator,

〈φ(x)φ(0)〉 =

∫
dk

(2π)2
〈φ(k)φ(−k)〉eik·x

= − 1

2π
log(x) + const.

(B.24)
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Similarly we obtain the correlation function for the smeared action:

〈φ(k)φ(−k)〉Λ =

∫
[dφ]e−S[φΛ]φ(k)φ(−k)∫

[dφ]e−S[φΛ]

=
1

(k2 +m2)µ(k)2
.

(B.25)

In the massless case, 〈φ(k)φ(−k)〉Λ = 1
k2µ(k)2 . Note that 1

k2µ(k)2 ∼ 1
k2 as k → 0, and

1
k2µ(k)2 ∼ 1

Λ2 as k → ∞. To compute the numerical value of the Fourier transform, we

subtract the divergent part 1
k2 + 1

Λ2 , which has analytical Fourier transform − 1
2π

log(σΛx)+
1

Λ2 δ(x) (where we have made a concrete choice of the arbitrary additive constant in Eq.
B.24). We then perform the numerical Fourier transform to the rest and add it to the
analytical part. The final result is shown in Fig. B.2. As we can see, at short distances the
correlation function 〈φ(x)φ(0)〉Λ is finite apart from a contact term, and at long distances,
〈φ(x)φ(0)〉Λ asymptotically approaches the correlation function in the boson CFT. One
can easily verify Eq. B.3, which also proves that the correlation function is finite at short

distances. For example, in the massless case m = 0,
∣∣∣∫k>Λ

dk
(

1
k2µ(k)2 − 1

Λ2

)∣∣∣ ≈ 1.855.

Figure B.2: Correlation function 〈φ(x)φ(0)〉Λ. The arrow represents a delta function
1

Λ2 δ(x). The dashed line is − 1
2π

log(σΛx), which represents the asymptotic behavior of the
correlation function for large x, and matches the CFT correlation formula Eq. B.24.
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B.3 RG flow generated by L + Ks

In this section, we investigate how the action SΛ[φ] and the smeared field φΛ(x) evolve
along the RG flow generated by L + Ks. Recall the definition of L:

Lφ(x) = (−x · ∇x −∆φ)φ(x). (B.26)

For the 2D free boson theory, φ(x) has classical scaling dimension ∆φ = 0. Therefore, the
above equation becomes

Lφ(x) = −x · ∇xφ(x). (B.27)

In momentum space it reads

Lφ(k) = (k · ∇k + 2)φ(k). (B.28)

The action of Ks in real space is given by

Ksφ(x) =

∫
dy g(s, |x− y|)φ(y). (B.29)

In momentum space, it reads
Ksφ(k) = g(s, k)φ(k). (B.30)

In flat spacetime, the path integration measure [dφ] can be decomposed as a product of
measures for individual momentum modes, that is, [dφ] =

∏
k dφ(k). Eq. B.30 implies that

K acts diagonally in momentum space, and therefore only changes the integration measure
by a constant factor. We further assume that L also leaves the integration measure invariant
up to a constant factor. Omitting both of these constant factors, we can generate an RG
flow by directly applying L + Ks to the action SΛ[φ]. In order to alleviate notation, we
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only consider Ks for s = 0, and define K ≡ K0, g(k) ≡ g(0, k).

(L + K)SΛ[φ]

=
1

2

∫
dk

(2π)2
(k2 +m2)µ(k)2

[
(L + K)φ(k)φ(−k)

+ φ(k)(L + K)φ(−k)
]

=
1

2

∫
dk

(2π)2

[
(k2 +m2)µ(k)2(

k · ∇k + 4 + 2g(k)
)(
φ(k)φ(−k)

)]
=

1

2

∫
dk

(2π)2

[(
− k · ∇k + 2 + 2g(k)

)
(

(k2 +m2)µ(k)2
)
φ(k)φ(−k)

]
=

1

2

∫
dk

(2π)2

[
k2
(
− k · ∇k + 2g(k)

)(
µ(k)2

)
+m2

(
− k · ∇k + 2 + 2g(k)

)(
µ(k)2

)]
φ(k)φ(−k)

=

∫
dk

(2π)2

{
k2µ(k)

[(
− k∂k + g(k)

)
µ(k)

]
+m2µ(k)

[(
− k∂k + 1 + g(k)

)
µ(k)

]}
φ(k)φ(−k).

(B.31)

Similarly, we can obtain the change of the smeared field φΛ(x) under the action of L + K.
For simplicity, we only consider φΛ(x) for x = 0.

(L + Ks)φ
Λ(0)

=

∫
dk

(2π)2
µ(k)(L + Ks)φ(k)

=

∫
dk

(2π)2
µ(k)

(
k · ∇k + 2 + g(k)

)
φ(k)

=

∫
dk

(2π)2

[(
− k · ∇k + g(k)

)
µ(k)

]
φ(k)

=

∫
dk

(2π)2

[(
− k∂k + g(k)

)
µ(k)

]
φ(k).

(B.32)
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In the massless case, the action SΛ is invariant if and only if

g(k) =
k∂kµ(k)

µ(k)
. (B.33)

Let K? denote the fixed-point disentangler given by the above condition and SΛ
? the massless

action. Then we have
(L + K?)S

Λ
? = 0. (B.34)

Note that Eq. B.32 implies that the smeared field φΛ(0) is also invariant under the action
of L + K?.

For a massive theory, L + K? generates an RG flow, given by

(L + K?)S
Λ[φ] =

∫
dk

(2π)2
m2µ(k)2φ(k)φ(−k), (B.35)

or equivalently,

SΛ
s [φ] ≡ es(L+K?)SΛ[φ]

=
1

2

∫
dx
(
− φΛ(x)∆φΛ(x) +m2e2sφΛ(x)2

)
.

(B.36)

We can also compute the correlation function along the RG flow:

〈φ(k)φ(−k)〉Λ,s ≡
∫

[dφ]e−S
Λ
s [φ]φ(k)φ(−k)∫

[dφ]e−SΛ
s [φ]

=
1

(k2 +m2e2s)µ(k)2
.

(B.37)

As Fig. B.3(a) shows, the correlation function 〈φ(k)φ(−k)〉Λ,s approaches a constant 1
m2e2s

for small k, and a constant 1
Λ2 for large k. Therefore, the theory behaves trivially at

long distances and short distances. The IR regulator KIR(s) and UV regulator KUV (s) are
approximately mes and Λ respectively. The nontrivial information of the theory for a given
value of s is contained in the correlation function 〈φ(k)φ(−k)〉Λ,s for KIR(s) < k < KUV (s).
This window has a decreasing width along the RG flow. This is expected because the
disentangler K? sequentially removes correlations at different scales. As a comparison, we
compute the correlation function for the theory esLSΛ[φ]. The evolution of the smeared
theory generated by L is given by

esLSΛ[φ]

=

∫
dk

(2π)2
(k2 +m2)µ(k)2e2sφ(kes)e2sφ(−kes)

=

∫
dk

(2π)2
(k2 +m2e2s)µ(ke−s)2φ(k)φ(−k).

(B.38)
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Then we can easily compute the correlation function

〈φ(k)φ(−k)〉(L)
Λ,s ≡

∫
[dφ]e−e

sLSΛ[φ]φ(k)φ(−k)∫
[dφ]e−esLSΛ[φ]

=
1

(k2 +m2e2s)µ(ke−s)2
.

(B.39)

As Fig. B.3(b) shows, the width of the window containing the nontrivial information of
the theory does not change. This is because L only rescales the spacetime and fields, but
it does not remove any correlations.

(a) (b)

Figure B.3: (a) Evolution of 〈φ(k)φ(−k)〉Λ,s as a function of s, generated by L + K?.
The plot is in log-log scale. The correlation is close to a constant outside the window
KIR(s) < k < KUV (s), where KIR ∼ mes, and KUV ∼ Λ. The width of the window keeps

decreasing along the RG flow generated by L + K?. (b) The evolution of 〈φ(k)φ(−k)〉(L)
Λ,s

as a function of s, generated by L. The plot is in log-log scale. The correlation is close to
a constant outside the window KIR(s) < k < KUV (s), where KIR ∼ mes, and KUV ∼ Λes.
The width of the window remains invariant along the RG flow generated by L.
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B.4 2D free boson CFT

In this section, we give a brief introduction to the free boson CFT in 2 dimensions. The
action is

S[φ] =
1

2

∫
dx1dx2

(
(∂x1φ)2 + (∂x2φ)2

)
. (B.40)

It is convenient to parametrize the Euclidean plane by complex coordinates:

z = x1 + ix2, z̄ = x1 − ix2. (B.41)

The primaries in this theory are 1, ∂φ ≡ ∂x1φ − i∂x2φ, ∂̄φ ≡ ∂x1φ + i∂x2φ and the vertex
operators Vα ≡: eiαφ :. Their conformal dimensions are (0, 0), (1, 0), (0, 1) and (α

2

8π
, α

2

8π
),

respectively.

The correlation of ∂φ with itself is

〈∂φ(z)∂φ(w)〉 = − 1

4π

1

(z − w)2
, (B.42)

from which we can derive the OPE

∂φ(z)∂φ(w) ∼ − 1
4π

1

(z − w)2
. (B.43)

The holomorphic component of the stress tensor T is the regular part of the product of ∂φ
with itself:

T (z) = −2π : ∂φ(z)∂φ(z) :

= −2π lim
w→z

(
∂φ(z)∂φ(w)− 〈∂φ(z)∂φ(w)〉

)
.

(B.44)

Here, the normal ordering : A(z)B(z) : of two fields A(z) and B(w) is defined as usual by
subtracting all the singular terms of A(z)B(w) in the limit w → z. The OPE of T (z) with
∂φ can be calculated from Wick’s theorem:

T (z)∂φ(w) = −2π : ∂φ(z)∂φ(z) : ∂φ(w)

∼ ∂φ(z)

(z − w)2

∼ ∂φ(w)

(z − w)2
+
∂2φ(w)

(z − w)
.

(B.45)
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Furthermore, we can calculate the OPE of T (z) with itself:

T (z)T (w) = 4π2 : ∂φ(z)∂φ(z) :: ∂φ(w)∂φ(w) :

∼ 1/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
.

(B.46)

We can read off the central charge c = 1 from this expression, since the OPE of T (z) with
itself for a general CFT is

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
. (B.47)

B.5 Correspondence between sharp and smeared scal-

ing operators

The massless free boson theory S[φ] is invariant not only under Euclidean symmetries
(translations and rotations), but also under change of scale generated by L, and more
generally under the conformal group. It has been shown that Euclidean symmetry is
preserved in the quasilocal action SΛ. However, scale invariance is explicitly broken by the
introduction of a UV cutoff, namely the smearing length 1

Λ
. Nevertheless, we can define

scale invariance with respect to L + K?. More generally, the smeared theory realizes the
whole conformal group although in a quasilocal way, as we explain next.

Since the smearing is diagonal in momentum space, φΛ(k) = µ(k)φ(k), it changes the
integration measure only by a constant factor. Therefore the partition function ZΛ is
proportional to the partition function Z of the original CFT.

ZΛ =

∫
[dφ]e−S[φΛ] ∝

∫
[dφΛ]e−S[φΛ] = Z. (B.48)

In consequence, we can construct a one-to-one correspondence between smeared fields in
the smeared theory and sharp fields in the original CFT. For example, we associate each
linear field O(x) (linear in terms of φ(x)) in the CFT with a smeared field OΛ(x) in the
smeared theory by the following relation:

OΛ(x) ≡
∫
dy µ(|x− y|)O(y) (B.49)

In particular Eq. B.49 maps the linear local scaling operators Oα(x) in the free boson
CFT to the linear quasilocal scaling operators OΛ

α(x) in the smeared theory.
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Local scaling operators are the eigenvectors of L and R:

L Oα(0) = −∆αOα(0),

R Oα(0) = sαOα(0),
(B.50)

while quasilocal scaling operators are the eigenvectors of L + K? and R:

(L + K?) OΛ
α(0) = −∆αOΛ

α(0),

R OΛ
α(0) = sαOΛ

α(0).
(B.51)

The rotation R is unchanged because the smearing function µ(x) is rotation invariant.
Now we associate each linear local scaling operator Oα(0) with a linear smeared operator
OΛ
α(0) ≡

∫
dx µ(x)Oα(x), and show that the equations Eq. B.50 imply the equations Eq.

B.51.

Since µ(x) is rotation invariant, obviously OΛ
α(0) is an eigenvector of R with the same

conformal spin sα. Applying (L + K?) to OΛ
α(0) we get

(L + K?) OΛ
α(0)

=

∫
dx µ(x)(L + K?)Oα(x)

=

∫
dx µ(x)

(
(−x · ∇x −∆α)Oα(x) +

∫
g(|x− y|)Oα(y)

)
=

∫
dk µ(k)(k · ∇k + 2−∆α + g(k))Oα(k)

=

∫
dk (−k · ∇k −∆α + g(k))µ(k)Oα(k)

=

∫
dk (−k∂k + g(k)−∆α)µ(k)Oα(k)

= −
∫
dk ∆αµ(k)Oα(k)

= −∆αOΛ
α(0).

(B.52)

Therefore, OΛ
α(0) is a smeared scaling operator with the same scaling dimension ∆α. Thus,

for linear operators, we have proved that the smearing process Eq. B.49 maps local scaling
operators in the CFT to the quasilocal scaling operators in the smeared theory. Since the
local scaling operators are known for the CFT, we can just use the smearing to find their
counterparts in cTNR. For example, the right-moving field ∂φ(x) ≡ (∂x1 − i∂x2)φ(x) is a
primary with scaling dimension ∆∂φ = 1 and conformal spin s∂φ = 1. Therefore, ∂φΛ(x)
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has the same scaling dimension and conformal spin in the smeared theory. In addition,
we can similarly find the quadratic scaling operators such as the holomorphic component
of the stress tensor, TΛ(x) = −2π : ∂φΛ(x)∂φΛ(x) : with ∆TΛ = sTΛ = 2. Using Wick’s
theorem, we can then consider any higher powers of the field, and even vertex operators
V Λ
ν (x) ≡: eiνφ

Λ
:. Furthermore, the operator product expansion (OPE) of the boson CFT

is preserved in the smeared theory. For instance, the OPE of the stress tensor TΛ and the
primary ∂φΛ(x) is the same as in CFT:

TΛ(z)∂φΛ(w) ∼ ∂φΛ(w)

(z − w)2
+
∂2φΛ(w)

z − w
, (B.53)

where z and w are complex coordinates introduced in the previous section. Finally, the
OPE of TΛ with itself gives the value of the central charge c = 1:

TΛ(z)TΛ(w) ∼ 1/2

(z − w)4
+

2TΛ(w)

(z − w)2
+
∂TΛ(w)

z − w
. (B.54)

Importantly, the quasilocal stress tensor TΛ(z) generates conformal transformations in
the smeared theory through the Ward identities as the local stress tensor T (z) does in the
CFT. Since TΛ(z) is quasilocal, the conformal symmetries of the smeared theory is realized
in a quasilocal fashion.
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Appendix C

Appendices for Chapter 4

C.1 Review of 2D CFT

In this section we have a brief review of CFT on a 2-dimensional plane. The conformal
symmetry are enhanced in 2 dimensions such that there exists an infinite variety of con-
formal transformations. It is convenient to use complex coordinates to parametrize the
spacetime:

z = z0 + iz1, z̄ = z0 − iz1. (C.1)

Here z0 and z1 represents the Euclidean time and the space respectively. Conformal trans-
formations can then be expressed as holomorphic mappings:

z → w(z). (C.2)

An infinitesimal holomorphic mapping may be expanded as a Laurent expansion:

z′ = z + ε(z), (C.3)

ε(z) =
∞∑

n=−∞

cnz
n+1. (C.4)

Under such an infinitesimal transformation, the change of a classical field φ(z, z̄) with zero
spin and scaling dimension is given by

δφ = −ε(z)∂zφ− ε̄(z̄)∂z̄φ (C.5)

=
∑
n

[
cnlnφ(z, z̄) + c̄nl̄nφ(z, z̄)

]
, (C.6)
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where we have introduced the generators

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄. (C.7)

The corresponding conformal algebra is the direct sum of two Witt algebras:

[ln, lm] =(n−m)lm+n,

[l̄n, l̄m] =(n−m)l̄m+n,

[ln, l̄m] =0.

(C.8)

In the commonly used radial quantization, where time slices are circles centered at
z = 0, the conformal symmetry is generated by two copies of Virasoro algebras, which are
the quantum versions of Witt algebras. The Virasoro generators are given by the integrals
of the stress tensor around z = 0:

Ln =
1

2πi

∮
dz zn+1T (z),

L̄n =
1

2πi

∮
dz̄ z̄n+1T̄ (z̄).

(C.9)

They satisfy the commutation relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δm+n,0,

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δm+n,0,

[Ln, L̄m] = 0.

(C.10)

The change of a generic field Φ(z, z̄) is given by the Ward identity:

δΦ =− 1

2πi

∮
z

dw ε(w)T (w)Φ

+
1

2πi

∮
z̄

dw̄ ε̄(w̄)T̄ (w̄)Φ

=
∑
n

−
{
cn[Ln,Φ] + c̄n[L̄n,Φ]

} (C.11)

C.2 Virasoro algebra in 2D BCFT

Now we consider a CFT on the upper half-plane z0 > 0, where some conformal boundary
conditions are imposed on the boundary (the real axis). Conformal transformations keep
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the boundary invariant if and only if ε(z) = ε̄(z̄). Therefore the holomorphic and anti-
holomorphic transformations are coupled together, such that the conformal symmetry has
been reduced to a single copy of Virasoro algebra. In order to apply the CFT machinery
developed in the whole complex plane, we analytically continue the theory to the lower
half-plane by defining

T (z) =

{
T (z) for Im(z) > 0,
T̄ (z̄) for Im(z) < 0.

(C.12)

In radial quantization, the Virasoro generators are given by

Ln =
1

2πi

∮
dz zn+1T̃ (z),

=
1

2πi

∫
C

[
dz zn+1T (z)− dz̄ z̄n+1T̄ (z̄)

]
,

(C.13)

where the integration contour C is a semicircle in the upper half-plane going counterclock-
wise around the origin. The ward identity for the field Φ(z, z̄) can be rewritten as

δΦ =− 1

2πi

∮
z

dw ε(w)T̃ (w)Φ

− 1

2πi

∮
z̄

dw ε(w)T̃ (w)Φ

=− 1

2πi

∮
|w|>|z|

dw ε(w)T̃ (w)Φ

+
1

2πi

∮
|w|<|z|

dw ε(w)T̃ (w)Φ

=
∑
n

−cn[Ln,Φ].

(C.14)

In the following we derive the expressions of Ln in w and u coordinates. For a conformal
transformation z → w(z), the stress tensor transforms as follows:

T (z) =

(
dz

dw

)−2 (
T ′(w)− c

12
{z;w}

)
,

T̄ (z̄) =

(
dz̄

dw̄

)−2 (
T̄ ′(w̄)− c

12
{z̄; w̄}

)
,

(C.15)

where we have introduced the Schwarzian derivative:

{z;w} =
d3z/dw3

dz/dw
− 3

2

(
d2z/dw2

dz/dw

)2

. (C.16)
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Recall that

z = i exp

(
−iπw

2l

)
, (C.17)

and then we obtain the relations

T (z)dz =
2il

πz

(
T ′(w)− c

12
· π

2

8l2

)
dw,

T̄ (z̄)dz̄ =− 2il

πz̄

(
T̄ ′(w̄)− c

12
· π

2

8l2

)
dw̄.

(C.18)

Now in w coordinates Ln reads

Ln =− l

π2

∫ l

−l
dw

[
zn
(
T (w)− c

12
· π

2

8l2

)
+z̄n

(
T̄ (w)− c

12
· π

2

8l2

)]
=− l

π2

∫ l

−l
dw
[
znT (w) + z̄nT̄ (w)

− c

12
· π

2

8l2
· (zn + z̄n)

]
=− l

π2

∫ l

−l
dw
[
e−

inπ
2l

(w−l)T (w)

+e
inπ
2l

(w−l)T̄ (w)
]

+
c

24
δn,0.

(C.19)

Similarly for the conformal transformation

w = log

(
R + u

R− u

)
, (C.20)

we have relations

T (w)dw =

(
R2 − u2

2R
T ′(u)− c

12
· R

R2 − u2

)
du,

T̄ (w̄)dw̄ =

(
R2 − ū2

2R
T̄ ′(ū)− c

12
· R

R2 − ū2

)
dū,

(C.21)
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Then Ln in the u coordinates reads

Ln =− l

π2

∫ R

−R
du

{
R2 − u2

2R

[
e−

inπ
2l

(w−l)T (u)

+e
inπ
2l

(w−l)T̄ (u)
]
− c

12
· R

R2 − u2
(zn + z̄n)

}
+

c

24
δn,0

=− l

π2

∫ R

−R
du
R2 − u2

2R

[
e−

inπ
2l

(w−l)T (u)

+e
inπ
2l

(w−l)T̄ (u)
]

+
l

π2

∫ l

−l
dw

c

24
· (zn + z̄n)

+
c

24
δn,0

=
c

24

(
1 +

4`2

π2

)
δn,0 −

`

π2

∫ R−ε

−R+ε

du
R2 − u2

2R{
exp

[
−inπ

2`

(
log

(
R + u

R− u

)
− `
)]

T (u)

+ exp

[
inπ

2`

(
log

(
R + u

R− u

)
− `
)]

T̄ (u)

}
.

(C.22)

C.3 Free fermion formalism for the Ising Model

Via a Jordan-Wigner transformation we can change to complex fermion variables:

aj =

(∏
k<j

Zk

)
Xj + iYj

2
(C.23)

in which the Hamiltonian takes the form:

H = −
∑
j

[(aj+1 + a†j+1)(aj − a†j)− 2a†jaj] (C.24)
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Now we define the fermion operators in Fourier space, and rewrite the Hamiltonian (up to
additive constants):

ap =
1√
2π

∑
j

aje
ipj {ap, a†q} = δ(p− q) (C.25)

H =

∫ π

−π
dp
[
(1− cos p)

(
a†pap + a†−pap

)
+i sin p

(
a−pap + a†−pa

†
p

)]
(C.26)

The Hamiltonian can then be diagonalized in momentum space by means of the Bogoliubov
transformation

ap = cos θ(p) bp − i sin θ(p) b†−p (C.27)

a−p = cos θ(p) b−p + i sin θ(p) b†p (C.28)

with θ(p) = π−p
4
, p ∈ [0, π]. Again up to an additive constant, we have

H = 2

∫ π

−π
dp
∣∣∣sin(p

2

)∣∣∣ b†pbp (C.29)

The ground state correlation functions are therefore

〈bpbq〉 = 0, (C.30)

〈bpb†q〉 = δ(p− q). (C.31)

Hence

〈apaq〉 =
i

2
cos
(p

2

)
sign(p)δ(p+ q), (C.32)

〈apa†q〉 =
1

2

(
1 +

∣∣∣sin(p
2

)∣∣∣) δ(p− q), (C.33)

which implies, back to position space

〈anam〉 =
1

π

2(n−m)

4(n−m)2 − 1
(C.34)

〈ana†m〉 =
1

2
δnm −

1

π

1

4(n−m)2 − 1
(C.35)
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Thanks to the free fermion formalism, we can obtain the spectrum of the density matrix
ρ for N sites by diagonalizing a 2N×2N correlation matrix, which is a significant improve-
ment with respect to the exponential growth of the dimensionality of ρ. The procedure
is as follows: let c1, . . . , c2N be the 2N creation-annihilation operators on the sites of the
interval whose reduced density matrix we want to compute. We then build the (Hermitian,
positive definite) correlation matrix:

Γij = 〈c†icj〉. (C.36)

We can diagonalize it via a unitary matrix U preserving the anti-commutation relations:

ci −→ c̃i = Uijcj. (C.37)

This way we have found a set of N uncorrelated fermionic degrees of freedom {ãi , ã
†
i}Ni=1 (re-

lated to the original ones by a nonlocal transformation), and the density matrix factorizes
as the tensor product of density matrices associated to each of them:

ρ =
N⊗
i=1

ρi. (C.38)

The entanglement spectrum can be obtained from the eigenvalues of Γ, which naturally
come in pairs (λi, 1− λi).

C.4 Ising model conformal data

The underlying CFT for the Ising model is a minimal model with two nonidentity primary
fields: the spin density σ, and the energy density ε, whose conformal dimensions are

hσ = h̄σ =
1

16
, hε = h̄ε =

1

2
. (C.39)

As explained in the main text, the Hilbert space of the CFT on a manifold with boundaries
depends on the boundary conditions. The Ising CFT admits three conformal boundary
conditions that correspond in the statistical model to fixing the boundary spins to be up
or down, or leaving them free. In our case of study, we observe results compatible with the
presence of free boundary conditions on both boundaries (the circumferences of the disks
we removed). The Hilbert space consists then of the conformal towers of the identity and
energy density operators. Figure 4.7) represents the 18 lowest energy states.
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Appendix D

Appendices for Chapter 5

D.1 Asymptotic Behavior of T̄τ,x

In this appendix, we examine the asymptotic behavior of t̄i+r,i as |τ | → ∞ and x→∞ in
D = 1 + 1 and D = 2 + 1. In 1 + 1 dimensions, the Fourier transform of Eq. (5.39) gives

t̄i+r,i(z) =
m2e2z

(e2z − 1)2
· e−k2

sτ · e
x2

4τ

4
√
π

[
− θ(τ)

i√
τ

(
erf(

x− 2iksτ

2
√
τ

)− erf(
x+ 2iksτ

2
√
τ

)
)

+θ(−τ)
1√
−τ

(
2− erf(

ix− 2ksτ

2
√
−τ

) + erf(
ix+ 2ksτ

2
√
−τ

)
)]
,

(D.1)

where erf(x) is the error function. The asymptotic form is given by Eq. (5.40) and Eq.
(5.41).

In 2 + 1 dimensions, the Fourier transformation of Eq. (5.39) becomes

t̄i+r,i(z) =

∫ π

−π

∫ ∞
0

T̄τ,k(z)e−ikxcosθ · k · dkdθ
(2π)2

. (D.2)

For large |τ |, Eq. (5.39) shows that T̄τ,k(z) falls very fast as |k| goes away from ks. Since

119



-π -π

2

π

2
π

Re(θ)

-4

-2

2

4

Im(θ)

Figure D.1: integral contour of θ where Re(cos θ) = ±1

the integration over k is concentrated near ks, we obtain∫ ∞
0

T̄τ,k(z)e−ikxcosθ · k · dk
2π

= − m2e2z

(e2z − 1)2

∫ ks

0

e(k2−k2
s)τe−ikxcosθ · k · dk

2π

≈ − m2e2z

(e2z − 1)2

∫ ks

−∞
ks · e2ks(k−ks)τe−iksxcosθ

dk

2π

= − m2e2z

(e2z − 1)2
· 1

4πτ
· e−iksxcosθ,

(D.3)

and

t̄i+r,i ≈−
m2e2z

(e2z − 1)2
· 1

8π2τ

∫ π

−π
e−iksxcosθdθ

=− m2e2z

(e2z − 1)2
· 1

8π2τ
· J0(ksx).

(D.4)

On the other hand, for large |x|, we first perform the radial integration in momentum to
obtain ∫ ∞

0

T̄τ,k(z)e−ikxcosθ · k · dk
2π
≈ m2e2z

(e2z − 1)2
· kse

−iksxcosθ

2iπxcosθ
. (D.5)
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To evaluate the remaining angle integration,

t̄i+r,i ≈
m2e2z

(e2z − 1)2
· ks

4iπ2

∫ π

−π

e−iksxcosθ

xcosθ
dθ (D.6)

we use the method of steepest descent for large |x|, where the integral contour is deformed
as in Fig. D.1. The main contributions are from θ = ±π and θ = 0. Expansions around
these points give Eq. (5.43).
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