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Abstract

The recent works of Kalantar-Kennedy, Katsoulis-Ramsey, Ozawa, and Dykema-Paulsen
have demonstrated that many problems in the theory of operator algebras and quantum
information can be approached by looking at various subspaces of bounded operators on
a Hilbert space. This thesis is a compilation of papers written by the author with various
coauthors that apply the theory of operator systems to expand on some of these results.
This thesis is split into two parts.

In Part I, we start by expanding on the theory of crossed product of operator algebras of
Katsoulis and Ramsey. We first develop an analogous crossed product of operator systems.
We then reduce two open problems on the uniqueness of universal crossed product operator
algebras into one of operator systems and show that it has answers in the negative. In the
final chapter of Part I, we generalize results of Kakariadis, Dor On-Salmon, and Katsoulis-
Ramsey to characterize which tensor algebras of C*-correspondences admit hyperrigidity.

In Part II, we look at synchronous correlation sets, introduced by Dykema-Paulsen as
a symmetric form of Tsirelson’s quantum correlation sets. These sets have the distinct
advantage that there is a nice C*-algebraic characterization that we present in Chapter
6. We show that the correlation sets coming from the tensor models on finite and infinite
dimensional Hilbert spaces cannot be distinguished by synchronous correlation sets and
that one can distinguish this set from the correlation sets which arise as limits of correlation
sets arising from finite dimensional tensor models. Beyond this, we show that Tsirelson’s
problem is equivalent its synchronous analogue, expanding on a result of Dykema-Paulsen.

We end the thesis by looking at generalizations of graphs by the ways of operator
subspaces of the space of matrices. We construct an analogue of the graph complement
and show its robustness by deriving various generalizations of known graph inequalities.



Acknowledgements

I would firstly like to thank my advisors Kenneth Davidson and Matthew Kennedy for
taking time out of almost every week of the past four years' to teach me the value of a
good idea.

I would also like to thank my coauthors Samuel Harris, Arthur Mehta, Christopher
Schafhauser, and Vern Paulsen, as well as the graduate students in Analysis at the Uni-
versity of Waterloo for many interesting and illuminating discussions.

This degree would have been a far more difficult pursuit had I not been in the capable
hands of the staff at the Pure Mathematics Department. I would like to thank Lis D’Alessio,
Jackie Hilts, Nancy Maloney, Pavlina Penk for their excellent work in this regard. As well,
I would like to thank the Graduate Chairs Barbara Csima, Spiro Karigiannis, and Nico
Spronk for all the work that they have put in into making the graduate student experience
a welcoming one.

Finally, my PhD studies is financially supported by the Natural Sciences and Engineer-
ing Research Council of Canada.

!For Ken Davidson, this would be every week for the past five years.

vi



Table of Contents

1 Introduction

I Dynamics on Operator Systems

2 Preliminaries

2.1
2.2
2.3
24
2.5
2.6

Operator systems, C*-envelopes, and maximal dilations . . . . . . . . . ..
Crossed products of operator algebras . . . . . . . ... ... ... ... ..
Operator system tensor products . . . . . . . ... ... ... ... ...,
Finite-dimensional operator system quotients and duals . . . . . . . . . ..
C*-correspondences and the tensor algebra 7, . . . . . . .. ... .. ...

Notational conventions . . . . . . . . . . .

3 Crossed products of operator systems

3.1

3.2
3.3
3.4

Reduced Crossed Products . . . . . . . . . ... ... ... .. .. ... ..
3.1.1 The C*-envelope of a reduced crossed product . . . ... ... ...
3.1.2  An abstract characterization of reduced crossed products . . . . . .
Full Crossed Products . . . . . .. .. ... ..o
Two Problems of Katsoulis and Ramsey . . . . .. ... ... ... ....

Hyperrigidity and U(Ws2) . . .« o oo oo oo

vii

12
15
16
17
21



4 Characterizing hyperrigidity for C*-correspondences

4.1 Hyperrigidity of operator spaces S(C, X) . . . . .. ... ... . ... ...

IT Synchonous Correlation Sets and Quantum Graphs

5 Preliminaries
5.1 Correlation Sets and Graph Parameters . . . . . . . . ... ... ... ...

5.2 Notation . . . . . . . .

6 A synchronous game for binary constraint systems
6.1 Characterizations of Synchronous strategies . . . . . . .. ... ... ...
6.2 Separating Cg, and Cp, . . . . . . ...

6.3 Separating quantum independence numbers . . . . .. ...

7 Chromatic numbers for quantum graphs
7.1 Non-commutative graphs . . . . . . . . .. ... oo
7.1.1 Non-commutative graphs as operator systems . . .. ... .. ...
7.1.2  The complement of a non-commutative graph . . . .. .. ... ..
7.2 Non-commutative Lovasz inequality . . . . . . . .. .. .. ... ... ...
7.2.1 The strong chromatic number . . . . . .. ... ... ... ...
7.2.2  The minimal chromatic number . . . . . . .. ... ... ... ...
7.3 Sabidussi’s Theorem and Hedetniemi’s conjecture . . . . . . .. ... ...
7.3.1 Sabidussi’s Theorem . . . . . ... .. .. ... ... ...
7.3.2 Hedetniemi’s inequality . . . . . . . .. .. ...

References

viil

64
64
69

71
72
80
85



Chapter 1

Introduction

Aside from examples of C*-algebras as algebras generated by concrete operators on a
Hilbert space, examples of C*-algebras come from constructions associated to objects from
other areas of mathematics. For example, the group C*-algebra construction associates to
each group G a C*-algebra C*(G) that captures its representation theory. More generally,
the crossed product construction gives us a C*-algebra A x G associated to any invert-
ible C*-dynamical system (A, G). On the more combinatorial side, there are C*-algebras
associated to directed graphs. More generally, there are the Cuntz-Pimsner algebras Ox
associated to a C*-correspondence X. The interplay between the objects and their relation
to algebraic properties of the associated C*-algebras allow for a rich source of examples.
See [13] for more detail on these constructions and many others.

There are two natural generalizations of C*-algebras: there are non-self adjoint operator
algebras, which are normed closed subalgebras of B(H) that is not necessarily closed under
the involution *, as well as operator systems, which are unital and *-closed but fail to be
closed under multiplication. Part I of this thesis will focus on operator systems and their
interplay between C*-algebras and non-self adjoint operator algebras. This project is fueled
by the work of Hamana [35, 36] as well as recent work of Kalantar-Kennedy [12], Kawabe
[51], and Davidson-Kennedy [20] that show that even in the C*-setting, understanding
operator systems can give us deeper understanding of the structure of C*-algebras. I would
also be remiss if I did not point out that much of the recent work on nuclear C*-algebras
relies heavily on the machinery of operator systems and that, in the sense of continuous
logic, the work of Goldbring-Sinclair show that C*-algebras as a subclass of the category
of operator systems are first-order axiomatizable [33].

On the side of operator algebras, the work of Katsoulis-Ramsey [17, 16, 14] demonstrate



that understanding C*-algebras associated to C*-correspondences may be the way of re-
solving the Hao-Ng isomorphism problem [37]. The Hao-Ng isomorphism problem asks the
following: if G is a locally compact group acting non-degenerately on a C*-correspondence
X, is it the case that

OXxG:OXxg?

That is, is it the case that the Cuntz-Pimsner algebra construction and the crossed product
construction commute? It is named after Hao and Ng as they show that it is indeed the
case that these constructions commute in the case when the group acting on the C*-
correspondence is amenable. Katsoulis and Ramsey make much headway in this direction,
giving us the best known results on when the Hao-Ng isomorphism problem holds. They do
this by first reducing the Hao-Ng problem down to the analogous problem about Tensor
algebras T, associated to a C*-correspondence X, which are non-self adjoint operator
subalgebras of Ox. In Chapter 3, in joint work with Sam Harris, we answer two questions
of Katsoulis and Ramsey, who pose to what extent we can make this reduction in the
general case of arbitrary operator algebras. We show that such a reduction is not possible
in general and, in fact, that such a reduction is tied directly to nuclearity of the algebra
C*(G). We do this by first defining a crossed product construction for operator systems
in analogy to the work of crossed products of operator algebras of Katsoulis and Ramsey.
After deriving some basic properties about these crossed products, we reduce the problem
of Katsoulis and Ramsey to one about crossed product operator systems. We then show
this cannot hold due to the existence of operator systems known as nuclearity detectors,
discovered by Kavruk in [50].

Katsoulis and Ramsey then proceed to tackle the monumental task of constructing a
notion of crossed product for non-selfadjoint operator algebras. As it turns out, once all
the basic results about crossed product operator algebras are established, they are able to
establish that

T)g_ Ay G = T)—(i_er
for any locally compact G acting on X. As well, Katsoulis is able to establish that
T)—(F X G = T)}FNG

in the case of discrete G so long as the tensor algebra Ty admits a property called hyper-
rigidity. Chapter 4 is dedicated to characterizing exactly when the tensor algebra T, is
hyperrigid. This generalizes results of Kakariadis [11] and Dor On-Salomon [21], who estab-
lish an exact characterization in the case of directed graphs, as well as Katsoulis-Ramsey
[16], who derive one direction of our characterization.
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Part II is focused on applications of C*-algebras and operator systems to Tsirelson’s
correlation sets and quantum graphs. Tsirelson’s correlation sets arise from the following
set-up: suppose that one has two isolated labs run by Alice and Bob respectively. The two
labs play a cooperative game run by a referee Charlie. Alice and Bob are allowed to come
up with a strategy for winning this game beforehand but must not have any communication
once the game starts. Beyond this, Alice and Bob’s labs are allowed to share any number
of entangled quantum states with one another. Tsirelson’s correlation sets are matrices of
probabilities that describe, given a strategy by Alice and Bob as well as some input by
Charlie to each lab, what the probabilty is of winning with some given output by Alice
and Bob. Since Alice and Bob share entangled states, their correlation sets may depend
on the model of quantum system that we take. The goal of Tsirelson’s correlation sets is
to disguish different models of quantum systems by separating these correlation sets.

Indeed, to show that one model of quantum systems is distinct from another, it is
enough to show that one has a winning stategy for the game assuming one model but
cannot always win the game assuming another. Interest in separating physical models
of quantum phenomena can be traced back as far as 1935, with the conception of the
Einstein-Poldosky-Rosen paradox [20]. Bohm gives a formulation of the EPR paradox as
follows: suppose that we have an entangled pair of particles whose total spin is zero (we
say that such a pair is in a spin singlet state). Denote by their spins the vectors oy and o9
respectively. If the two particles are separated, and measurement of the spin of one particle
along a unit vector v is measured in a lab to have (oy,v) = 1, then we must know that
(09,v) = —1. It seems then that the only way we could have gained information about
the state of the other particle faster than information about the particle can reach our lab
is because there were additional hidden variables that the two particles knew before being
separated.

In his monumental paper [3], John Bell shows that no hidden variables can exist in our
system. His original argument is surprisingly elegant and so we sketch it here. Suppose
that some additional parameters for our system exist. Let us call this collection of hidden
parameters \. We will do two experiments, denoted by experiment A and experiment B.
Experiments A and B are going to measure one of two particles, denoted by particles 1 and
2, in a singlet spin state. In experiment A, we will measure particle 1 along a unit vector a
and in experiment B, we will measure particle 2 along a unit vector b. We may denote the
outcome of such an experiment by functions A(a, ) € {—1,+1} and B(b,\) € {—1,+1}.
Fix a probability measure p on the set A of hidden parameters. The expectation value of



the product A(a, \) - B(b, \) among these hidden parameters is then given by

P(a,b) := /AA(a, AN)B(b, N)du(N) .

We choose p so that this expectation value agrees with the expectation value of the product
(01, a) (02,b) according to the quantum model, which is — (a,b). If the quantum model
agrees with experiments and hidden parameters exist, then such a p must exist.

Since our particles are in a spin singlet state, we must have the identity
A(a,\) = —B(a, \)

for all unit vectors a and almost every A. In particular, P(a,b) may be rewritten as
P(a,b) = — /AA(a, A)A(b, N)dp(A) .
Using the fact that for all b and A\, A(b, \)> = 1, for all unit vectors a, b, c,
|P(a,b) = P(a,c)] < /A [Ala, A) (A, A) = Ale, A)ldu(A)
= /A |A(a, \)A(D, N)|[(1 — A(b, \)A(c, N))du(N)
< /A 1 — A(b, VA(e, Ndu(A) = 1+ P(b,c) |

The above inequality is referred to as Bell’s inequality. If P(a,b) = — (a,b) for all a,b, we
have the inequality

| (a,b—c)| <14 (b,c)

for all unit vectors a,b,c. Substituing b = —c and a = b then leads to a contradiction.
Thus, we may conclude that the quantum model for pairs of particles in a singlet quantum
state is distinct from the classical model, even assuming additional parameters.

The biggest problem about correlation sets is Tsirelson’s problem [76, 77]. This problem
asks whether the correlation sets arising from the commuting model for mixed quantum
systems, called Cy., can be approximated by those models which assume that mixing two
systems associated with Hilbert spaces H4 and Hp arises from their tensor product, called
Cys- That is, must it be the case that Cy. = C_qs? Indeed, it seems that due to the work of
Ji et al. that these correlation sets are distinct [39].

4



In Chapter 6, in joint work with Chris Schathauser and Vern Paulsen, we look at a class
of cooperative games called synchronous games, introduced by Dykema-Paulsen [21], and
their associated correlation sets. We show that each correlation set can be distinguished
using traces on a C*-algebra, the trace depending on the choice of model. Indeed, extending
a result of Ozawa [63] and Dykema-Paulsen, we show that Tsirelson’s problem is equivalent
to distingushing the correlation sets arising from synchrous correlations. Modifying a
construction of Solfstra [74], we also show that there is a synchronous game that distinguish
between Cys and Cy.

Finally, in Chapter 7, we look at a generalization of graphs by operator subspaces of
n X n-matrices that are *-closed. This was done originally by Duan, Severini, and Winter
to analyze subspaces of matrices associated to a quantum channel [23]. By thinking of
these subspaces as generalizations of graphs, they are able to generalize graph parameters
to invariants of operator spaces. Indeed, in their paper they generalize the notion of an
independence number « and Lovasz theta 1 to subspaces of matrices. In joint work with
Arthur Metha, we generalize the notion of a graph complement and chromatic number y
to these operator spaces. In doing so, we are able to establish a generalization of Lovasz’s
Sandwich Theorem, which states that

a(G) <9(G) < x(G°)

for any graph G. This is a special case of the work of Stalhke, who also establish a
generalization with respect to subspaces for which the trace of each element is zero [75].
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Dynamics on Operator Systems



Chapter 2

Preliminaries

In this chapter, we introduce the preliminary material and notation needed for Part I of
this thesis. Since Part 1 is dedicated to operator systems, their crossed products, and
the associated tensor algebras, we start with a discussion of operator systems and their
C*-covers. In particular, we focus on describing the C*-envelope of an operator system
through maximal dilations as developed by Dritschel and McCollough. Beyond this, we
describe Arveson’s notion of hyperrigidity, which is only defined for separable operator
systems, and show that his definition is robust enough to extend to non-separable operator
systems. Many of our arguments involving hyperrigidity and C*-covers will use dilations,
and so we will take as the definition of hyperrigidity the unique extension property for all
representations.

The next section is dedicated to crossed products of operator algebras as developed by
Katsoulis and Ramsey. Our goal is to describe enough of the theory to explain why crossed
products of operator algebras are tensor products under a trivial action. This will be used
in Chapter 3 to give an answer to a problem of Katsoulis and Ramsey. This ties in to the
subsequent section on tensor products of operator systems. Many of the results in this
section will be used to describe the behaviour of crossed products of operator systems in
the case where the action is trivial. Unlike the case of operator algebras, there are many
natural tensor products that arise for operator systems. Indeed, we will analyze exactly
which tensor products arise from crossed products of operator systems under the trivial
action in the next chapter.

Unlike the case of C*-algebras we will see in Proposition 3.1.26 that even for abelian
groups, G-equivariant quotient maps on operator systems will not induce a quotient map
on their associated crossed product. The section on finite-dimensional operator systems



and quotient maps is a brief review on the definition of quotients in the category of operator
systems.

Finally, we review C*-correspondences and their associated tensor algebras. These
results will be used heavily in Chapter 4. We end with a section on notation that is to be
used in Part I of this thesis. Although we try to stay consistent in notation between the
two sections, one minor change will be made in Part II which conflicts with the notation
of Part I: operator algebras will be denoted by A and B in Part I, whereas A and B will
be reserved specifically for a C*-algebra in Part II.

2.1 Operator systems, C*-envelopes, and maximal di-
lations

An operator system S is a subspace of a unital C*-algebra C for which 1o € S and S* = S.
The class of operator systems has an abstract axiomatization [11]. We will only say a
word about the abstract characterization: to axiomatize operator systems it is enough
to keep track of the involution *, the cone M, (S)y of positive operators on M,(S) C
M, (C), and the unit 1,y € M,(S). The appropriate morphisms for operator systems are
unital completely positive maps, for which we use the shorthand ucp, and the appropriate
embeddings for operator systems are unital complete order embeddings, that is, maps
0 : S — T for which ¢ and =1 : ¢p(S8) — S are ucp.

Let S be an operator system. A C*-cover for S is a pair (C, p), where C is a C*-algebra
and p : S — C is a unital complete order isomorphism such that C*(p(S)) = C. If (C, p) is
a C*-cover for S and 7 is an ideal in C, we say that Z is a boundary ideal if the restriction
of the canonical quotient map ¢ : C — C/Z to S is a complete order embedding [2]. The
Shilov ideal Js corresponding to the C*-cover (C, p) is the maximal boundary ideal; that
is, whenever Z is a boundary ideal for S in (C, p), we have Z C Js. M. Hamana showed
that the Shilov ideal for S in (C, p) always exists [35]. Moreover, in [35], it is shown that
every operator system S admits a unique C*-cover (C? (S),¢), called the C*-envelope of

S, satisfying the following universal property: whenever (C, p) is a C*-cover of S, there is
a unique x-epimorphism 7 : C — C¥ (S) for which the diagram

env

> CF (S)

C = env
N
S



commutes. In this setting, the Shilov ideal Js is given precisely by the kernel of the map m
[35]. In other words, C/Js ~ C% . (S). The proof in [35] that a C*-envelope always exists
uses the injective envelope of an operator system. Although this construction is useful in
many respects, the construction of the C*-envelope on which we wish to concentrate in this
thesis is the construction given by maximal dilations. Given a unital completely positive
map ¢ : S — B(H), we say that a representation p : S — B(K) is a dilation of ¢ if there
is an isometry V' : H < K for which Vp(z) = p(x)V for all z € S. We will always assume
without loss of generality that H C K. In this way, we may always set K = H & H* and
represent p(z) as the block 2 x 2-matrix

for some a, € B(H+,H), b, € B(H') and ¢, € B(H,H'). Note that ¢, = a,~. The
compression to the (2,2)-corner of p(x) is also a ucp map ¢’ : & — B(H*). We say
that the dilation p of ¢ is trivial if p = ¢ & ¢'; that is, a, = 0 for all x € S. A ucp
map ¢ : § — B(H) is mazimal if the only dilations of ¢ are trivial dilations. For an
operator system S and a ucp map ¢ : S — B(H), we say that ¢ has the unique extension
property if there is a unique ucp extension of ¢ to C* (S) and the unique extension is a
«-homomorphism. Dritschel and McCollough (see [3, Theorem 2.5] and [22]) show that a
ucp map ¢ : § — B(H) is maximal if and only if ¢ satisfies the unique extension property.
In an unpublished work of Arveson, it is shown that every representation of an operator
system has a maximal dilation [0, Theorem 1.3] and that if ¢ : S — B(H) is maximal, then
©(S) necessarily generates the C*-envelope of S [, Corollary 3.3]. When it is convenient,
we will always assume that our operator system S lies as a subspace of the C*-envelope
Cx(S).

An operator subsystem S of a C*-algebra C is said to be hyperrigid in C if we have the
following unique extension property: whenever 7 : C*(S) — B(H) is a *-homomorphism
and whenever ¢ : C*(S) — B(H) is a unital completely positive map extending the unital
completely positive map 7|s then we must have ¢ = m. Hyperrigid operator systems give
us a strong relation between operator systems and their C*-envelope. For example, if S
is hyperrigid in C then we must have C*(S) ~ C*(S). We say that S is hyperrigid if
S is hyperrigid in C*(S). The above definition of hyperrigidity is not the original one.
In [1, Definition 1.1], a subspace (that is not necessarily *-closed or unital) S C C is
said to be hyperrigid if whenever we have a faithful embedding C C B(H) and whenever
¢on : B(H) — B(H) is a sequence of completely contractive and completely positive maps,
we have the implication

lim ||pn(x) — 2| =0 for all x € § implies lim ||¢,(a) —al| =0foralla € C.
n—o0 n—o0



In [1, Theorem 2.1], Arveson proves that these two definitions are equivalent in the sepa-
rable case. The density character of a topological space X is the smallest cardinal  for
which there is a subset E C X of size k that is dense in X. Arveson’s proof will go through
verbatim when we replace all instances of separable with density character at most k for
any infinite cardinal x. For completeness, we provide a sketch of the proof here.

Theorem 2.1.1. Let S be an operator system of density character at most k and let C be
a C*-algebra generated by S. The following are equivalent:

1. S is hyperrigid.

2. If 7 : C — B(H) is a faithful representation for some Hilbert space H and () :
B(H) — B(H))xea s a net of ucp maps for which

lim px(7(s)) = 7(s)
in norm for all s € S then

lim px(m(a)) = m(a)
in norm for all a € C.

3. For every representation m : C — B(H), where H is a Hilbert space of density

character at most k, and for every sequence ¢, : C — B(H) of ucp maps which
satisfy

Tim [ (s) — 7(s)]| = 0
for all s € §, we must have

Tim [ (a) - 7(@)] = 0
for alla € C.

4. For every representation m : C — B(H), where H is a Hilbert space of density
character at most k, m has the unique extension property.

5. For every unital C*-algebra D, for every unital *~homomorphism 6 : C — D, and for
every ucp map ¢ : D — D, if



for all s € S then

foralla € C.

Proof. Statement (1) is a special case of statement (2) and Arveson’s proof that statement
(1) is equivalent to statements (3), (4), and (5) go through vebatim in our case so we only
need to verify that statement (5) implies statement (2).

For (5) implies (2), fix a net (px : A € A) of ucp maps ¢, : B(H) — B(H) for which
) point-norm converges to the identity on S. Assume without loss of generality that C is
a C*-subalgebra of B(H). Let D = B(H) and consider the asymptotic sequence algebra

DA = KOO(A, D)/CA(D)
where ¢, (D) is the ideal of sequences (by), for which limy by = 0. Define the map
Q: DA — DA : (bk) + CA(D) —> (90)\(5/\)) + CA(D) .

This map is well-defined since whenever limy by = 0, as ¢, are all contractions, limy ¢, (by) =
0. The map ¢ is completely positive since whenever x € M,,(D,) is positive, there is some
(b)) € M, (£>*(A, D)) positive such that x = (by) + M,(cA(D)). Let 8 : C — Dy be the
diagonal embedding a — (a,a,a,...) + ca(D). Since p(0(s)) = 6(s) for all s € S, we have
©(0(a)) = 0(a) for all a € C. That is, (¢ar(a) — a), belongs in the ideal ¢y (D). Thus, ¢, (a)
norm converges to a for all a € C. ]

Statement (2) in the next Corollary is what we will take as the definition of hyperrigidity
in this Thesis.

Corollary 2.1.2. Let S be an operator system generating a C*-algebra C. The following
are equivalent:

1. S is hyperrigid.

2. For every representation w : C — B(H), m has the unique extension property.

Proof. Let p denote the density character of S. For (1) implies (2), take any representation
7w :C — B(H). Say H has density character A. Apply the above Theorem with kK = XA+ .

The direction (2) implies (1) is a special case of (4) implies (1) of the above Theorem. [

11



If S is *-closed but non-unital, so long as S contains an approximate unit of C, it follows
from [72, Proposition 3.6] that S is hyperrigid in C*(S) if and only if ST := S + C1 in
the unitization C*(S)* is hyperrigid. For a unital operator algebra A, we say that A is
hyperrigid in a C*-cover D if for all representations 7 of D, there is a unique unital and
completely contractive extension of 7|4 to D.

Lemma 2.1.3. If A is a unital operator algebra with C*-cover D, and S = A+ A*, then
A is hyperrigid in D if and only if S is hyperrigid in D.

Proof. If A is hyperrigid in D and 7 : D — B(H) is a unital *-homomorphism, then
any ucp extension ¢ : D — B(H) of 7|s : S — B(H) is necessarily a unital, completely
contractive extension of 7|y, so that ¢ = m. Hence, S is hyperrigid in D. Similarly, if
S is hyperrigid in D and 7 : D — B(H) is a unital x-homomorphism, then any unital
completely contractive extension ¢ : D — B(H) of w|4 : A — B(H) is ucp and satisfies
Y(a+a*) =7(a) + m(a)* for all a € A. Thus, ¢ is a ucp extension of 7|s, so that ¢ = 7,
which establishes the converse direction. O

In particular, the conditions in Theorem 2.1.1 are equivalent to hpyerrigidity when we
replace all instances of S with A.

A representation 7 : C*(S) — B(H) is said to be boundary if 7 is irreducible and 7
admits the unique extension property. Arveson’s hyperrigidity conjecture asserts that if all
irreducible representations are boundary then the operator system S must be hyperrigid
in C. Very little is known about the hyperrigidity conjecture. For more information on
operator systems, see [(4]. See [1] for the formulation of the hyperrigidity conjecture and
more details on the above results.

2.2 Crossed products of operator algebras

Let A be an operator algebra. That is, A is a norm closed subalgebra of B(H) with an
approximate unit and morphisms given by completely contractive algebra homomorphisms.
For this thesis, we will assume that all operator algebras are approximately unital and not
necessarily closed under *. We will always require that representations of A be non-
degenerate. An automorphism on A is a completely isometric isomorphism ¢ : A — A.
Note that if A is unital, then any automorphism on A is automatically unital. An operator
algebra dynamical system is a triple (A, G, «), where A is an approximately unital operator
algebra, G is a locally compact group, and a : G — Aut(A) is a strongly continuous
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group homomorphism into the group Aut(A) of automorphisms on A. In [17], crossed
products for operator algebras are introduced. Katsoulis and Ramsey define these as
operator subalgebras of a C*-algebraic crossed product. To do this, they first define an
a-admissible C*-cover of a dynamical system (A, G, «) to be any C*-dynamical system
(C,G, &) with a completely isometric homomorphism p : A < C such that, for all s € G,
the diagram

c—2s¢

p P

A5 A

commutes. It is shown in [17] that, given a dynamical system (A, G,«a), both the C*-
envelope and universal C*-algebra of A admit an a-admissible C*-cover, with action de-
noted by the symbol a.

Definition 2.2.1. Let (A, G, @) be an operator algebraic dynamical system and let (C, G, «)
be an a-admissible C*-cover with embedding p : A < C.

1. The reduced crossed product A x G is the norm closure of C.(G, p(A)) in C x4 G.

2. The full crossed product relative to C, denoted by A x¢, G, is the norm closure of
C.(G,p(A)) in C x, G.

3. The full crossed product A x,, G is the full crossed product relative to C} .
[10] for the definition of C7_ (A)).

max

(A) (see

The reduced crossed product is independent of the choice of admissible C*-cover: if
(C,G, a) is any admissible C*-cover of (A, G, ) with embedding p : A < C, then the map

¢ Ce(G,A) C© OGy(A) X3 G = Ce(G,p(A)) SCx\G: frpof

env

extends to a completely isometric isomorphism of operator algebraic crossed products [17].
Theorem 3.3.2 will show that the analogous result for full relative crossed products need
not hold in general. As in the case of C*-algebras, the full crossed product A %, G of an
operator algebra satisfies the following universal property: if (m,u) : (A,G) — B(H) is a
covariant pair, in the sense that 7 is a completely contractive homomorphism on A and u
is a homomorphism on G with 7(as(a)) = usm(a)u® for all s € G and a € A, then there is
a canonical completely contractive homomorphism

7xu:Ax,G— B(H)
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extending m and w. This map is called the integrated form of (m,u).

When the group action is trivial, the resulting crossed product structures become op-
erator algebra tensor products. We briefly recall the definition of these tensor products.
We refer the reader to [10] for more information on operator algebra tensor products.

Definition 2.2.2. Let A C B(H) and B C B(K) be approximately unital operator
algebras. The minimal tensor product of A and B, denoted by A ®,in, B, is the completion
of A® B with respect to the norm inherited from B(H ® K).

Note that matrix norms for A ®,;, B are also inherited from B(H ® K'). The definition
of the minimal tensor product does not depend on the choice of embeddings.

Definition 2.2.3. For approximately unital operator algebras A and B, the mazimal
tensor product of A and B, denoted by A ®y.x B, is the completion of A ® B with respect
to the norm on A ® B given by

2]l max = sup{[|7 - p(2)|l s}

where the supremum is taken over all Hilbert spaces H and all completely contractive
representations 7 : A — B(H) and p : B — B(H) with commuting ranges.

We note that matrix norms for A ®,,.x B are defined similarly. In the supremum, the
maps 7 and p can be assumed to be non-degenerate [10, 6.1.11]. Moreover, if B is a C*-
algebra, then A Q. B is completely isometrically contained in the C*-algebraic tensor

product C .. (A) @max B [10, 6.1.9].

max

Example 2.2.4. Let A be an approximately unital operator algebra and let G be a locally
compact group. Let id : G — Aut(.A) be the trivial action on A; that is, ids; = id4 for all
s € G. We have natural isomorphisms

A X G~ A®@ui, C5(G) : ads — a® Ay, and
A Xig G ~ A @pax C*(G) @ aus — a @ us .
In the reduced case, we have the natural isomorphism

Con(A) Xiax G = Clpy(A) Qmin CX(G)

env

since the left regular representation is exactly the representation of the minimal tensor
product. In the full case, we have the natural isomorphism

Cy (A) Xig G = C:nax(’A) Gmax C*(G)

max

since the universal property for both algebras are identical. Restricting these isomorphisms
to C.(G, A) yields the result. For more details on these isomorphisms, see [79, Lemma 2.73
and Corollary 7.17].
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2.3 Operator system tensor products

We briefly recall some facts about operator system tensor products here. More information
can be found in [52].

An operator system tensor product T is a map that sends a pair of operator systems
(S,7T) to an operator system S ®, 7T such that

1. if X = (Xz]) € Mn(8)+ and Y = (Y}{;Z) c Mm(T)+, then X (%9 Y = (Xz] & Ykg) S
Mnm(S Sr T)-i—; and

2.iff ¢: S — M, and ¥ : T — M, are unital completely positive (ucp) maps, then
PR : SR T — My, is ucp.

An operator system tensor product 7 is said to be symmetric if, for every pair of
operator systems (S, T ), the flip map S®7T — T ®S induces a complete order isomorphism
SRT =T ®,;S.

We will be working with four main operator system tensor products:

Definition 2.3.1. The minimal tensor product of S and T, denoted by S ®,i, T, is defined
such that X € M,,(S ®uin T) is positive if and only if (¢ @)™ (X) € M, for every pair
of ucp maps ¢ : S — My and ¢ : T — M,,.

A fact that will be used throughout the paper is that the minimal tensor product
is injective; i.e., whenever Si,Ss, T1, 7> are operator systems with unital complete order
embeddings ¢ : §§ € Sy and k @ T; C T, the tensor product map ¢t ® K : &1 Qumin T1 —
Sy @min T2 is a complete order embedding [52, Theorem 4.6]. In particular, if S is an
operator subsystem of B(H) and T is an operator subsystem of B(K), then S ®ui, T is
completely order isomorphic to the image of S® T in B(H ® K) [52, Theorem 4.4].

For two linear maps ¢ : S — B(H) and ¢ : T — B(H) with commuting ranges (i.e.
o(s)v(t) = Y(t)p(s) forallse Sandt € T), welet ¢-¢ : S®T — B(H) be defined on
the vector space tensor product by ¢ - (s ®t) = ¢(s)1(t).

Definition 2.3.2. The commuting tensor product of & and T, denoted by S ®,. T, is
defined such that X € M, (S ®, T) is positive if and only if (¢ - )™ (X) € M, (B(H)),
for every pair of ucp maps ¢ : S — B(H) and ¢ : T — B(H) with commuting ranges.

We note that S®. 7T is completely order isomorphic to the inclusion S&T C C*(S) @pmax
Cx(T) [2, Theorem 6.4].

15



Definition 2.3.3. The mazimal tensor product of S and 7, denoted by S ®uax T, is
defined such that X € M, (S ®unax T) is positive if and only if, for every e > 0, there are
S: € My((S)4, T € Myyo)(T)+ and a linear map A, : C* — Cke) © C™#) such that

X +el=A(S.®1T.)A..

Definition 2.3.4. The essential tensor product of S and T, denoted by S ®ess T, is the
operator system structure on S ® 7 inherited from the inclusion S @ T C C (S) @max
Cen(T)-

For any two operator system tensor products a and [, we write a < ( if, for all
operator systems S and 7T, the identity map id : S ®s T — S ®, T is ucp. An operator
system S is said to be («, 5)-nuclear if for every operator system 7T, the identity map
id: S®, T =+ S®3 T is a complete order isomorphism. For example, every unital
C*-algebra is (¢, max)-nuclear [52, Theorem 6.7].

2.4 Finite-dimensional operator system quotients and
duals

In general, the dual space of an operator system can always be made into a matrix-ordered
x-vector space [11, Lemma 4.2, Lemma 4.3] as follows: if S is an operator system with
Banach space dual 8%, and f = (f;;) € M,(S?), then we define f* = (f};), where f}(s) :=
fij(s*) forall1 <i,j <nands € S. Wesay that a self-adjoint element f = (f;;) € M, (S%)
is positive if the associated map F' : & — M, given by F(s) = (f;;(s)) is completely
positive. With this structure, S? becomes a matrix-ordered *-vector space. If S is not
finite-dimensional, then S¢ may not have an order unit, and hence may not be an operator
system. However, if S is finite-dimensional, then S? is an operator system, and any faithful

state on 8¢ will be an order unit for S [14].

The theory of operator system quotients is rather new and not well understood. If
¢ . S — T is a surjective ucp map between operator systems, then we may endow the
quotient vector space S/ ker(¢) with an operator system structure [53]. For s € S, we write
§ to denote its image in S/ ker(¢). We say that X = (X,;) € M, (S/ker(¢)) is positive if,
for every e > 0, there is Y. € M,,(S), such that Ya =X+ 5jn, where I,, denotes the n x n
identity matrix in M, (S). Note that whenever ¢ : & — T is a surjective ucp map, the
induced map ¢ : S/ ker(¢) — T is ucp [53, Proposition 3.6]. This leads to the following
definition.
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Definition 2.4.1. A surjective ucp map ¢ : & — T between operator systems is said to
be a complete quotient map if the induced map ¢ : S/ ker(¢) — T is a complete order
isomorphism.

For our purposes, it will be helpful to translate between complete quotient maps and
complete order embeddings, via the Banach space adjoint. Recall that whenever ¢ : § — T
is a ucp map between finite-dimensional operator systems, we may define a ucp map
¢ T4 — 8% by [¢4(f)](s) = f(¢(s)). Then a ucp map ¢ : S — T between finite-
dimensional operator systems is a complete quotient map if and only if ¢¢: T¢ — S% is a
complete order embedding [28, Proposition 1.8].

2.5 C*-correspondences and the tensor algebra T,

A Hilbert module is a generalization of Hilbert space with the scalar coefficients replaced
by a fixed C*-algebra. That is, a Hilbert C-module is a pair (C, X), where C is a C*-algebra
and X is a right C-module with a C-valued inner product

(): X xX—=C
satisfying the following axioms:
1. For fixed z € X, the map (x,-) : X — X is C-linear.
2. For any z,y € X, (z,y)" = (y, z).
3. For every z € X, (z,z) > 0. As well, x = 0 if and only if (z,z) = 0.

4. The space X is complete with respect to the 2-norm ||z| := /|| (z,z) ||.

Given a Hilbert C-module, one can define the C*-algebra £(X) of bounded C-linear maps
from X to itself with norm given by the supremum norm. A C*-correspondence is a Hilbert
C-module (C, X) along with a *-homomorphism

A:C— L(X).

Whenever convenient, we will denote this action by left multiplication: A(a)x = a - x.

Let (C,X) be a C*-correspondence and let D be a C*-algebra. We say that a pair of
maps (7%, 7!) : (C, X) — D is a Toeplitz pair if
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1. 7°:C — D is a *-homomorphism,
2. 7' X — D is a linear map,
3. For any a € C and z € X we have °(a)7'(z) = 7'(a - z), and

4. For any z and y in X we have 7°((z,y)) = w'(z)*7!(y).

Given a Toeplitz pair (7%, '), we can show that
(7' (@)7(a) — 7z - @) (r (@)2°(a) — (- @) = 0.

Because of this, we always have 7! (z)7%(a) = 7!(z-a) for any x € X and a € C. A Toeplitz
pair can also be thought of as a morphism from the C*-correspondence (C, X) into the C*-
correspondence (D, D) where left and right action is given by multiplication and the inner
product is given by (z,y) = x*y. There is always a maximal C*-algebra associated to
C*-correspondences called the Toeplitz-Pimsner algebra Ty. This C*-algebra is maximal
in the following sense: there is always a Toeplitz pair

K C— Tx
Hl :)(-—%’7&
into Tx and whenever (7%, 7!) : (C, X)) — D is a Toeplitz pair then there is a *-homomorphism

O xrl:Tx - D

for which the diagram

w0 xml
Tx ———— D

(€, X)

commutes. The Toeplitz-Pimsner algebra always contains a canonical norm closed non-
selfadjoint operator algebra Ty called the Tensor algebra. This algebra is described as the
non-selfadjoint operator algebra generated by x°(C) and x!'(X) in Tx.
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The Toeplitz-Pimsner algebra Tx always admits a canonical continuous T-action ~
called the gauge action. Using the universal property of Tx, it is enough to define v as an
action on (C, X): for z € T,

W:C—=C:ara

VX Xix— 2o

will give us the action.

Although the Toeplitz-Pimsner algebra Tx is a canonical algebra associated to (C, X),
it is often too big for our purposes as the gauge-invariant uniqueness theorem for graph
algebras will not generalize to Tx.

Example 2.5.1. Here we show that the gauge-invariant uniqueness theorem will not gen-
eralize to Tx. That is, we show that there is a C*-correspondence (C, X) and a Toeplitz
pair (7% 7!) : (C,X) — D for which D admits a gauge action but the *-homomorphism
7% x 7! is not injective.

For our C*-correspondence, we take the correspondence (C,C) associated to the C*-
algebra C. The algebra 7T¢ is the universal C*-algebra generated by a single isometry. To
see this, suppose that C*(V') is the universal C*-algebra generated by a single isometry.
Define the pair of maps

(k% k') : (C,C) — C*(V)

for which £°(1) = 1 and for which x'(1) = V. Since V is an isometry, for every a,z,y € C,
we have the relations

£ ((z,y) = zy = zV*yYV = (k' (2), k' (y)) and £'(az) = azV = °(a)r'(2) .

It follows that (k°, k') is a Toeplitz pair. Next we claim that whenever there is a Toeplitz
pair (70, 71) from (C, C) into a C*-algebra D, that 7'(1) is an isometry. This follows from
the identity 1 = 7°((1,1)) = (x'(1),7*(1)) = 7' (1)*x'(1). The universal property of T¢
follows since C*(V) is the universal C*-algebra generated by an isometry. On the other
hand, there is always a gauge-invariant Toeplitz pair from (C,C) into C*(Z) by mapping
1 to the canonical unitary u associated to 1 € Z. To see this, we define the Toeplitz pair
(7%, 7!) from (C,C) into C*(Z) by (1) = 1 and 7'(1) = u. The above calculation shows
that (7%, 71) is indeed a Toeplitz pair. As well, there is a T-action v : T ~ C*(Z) given by
the extending the group homomorphism

U,:Z—UC*Z)): 1 zu
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for all z € T. That this action is continuous follows from an application of triangle
inequality on *-polynomials generated by u. Therefore, there is always a gauge-invariant
*-homomorphism 7° x 7! : T — C*(Z) but, while the gauge-invariant uniqueness theorem
would state that such a map should be injective, this map is not.

The remedy for the failure of the gauge-invariant uniqueness theorem is to restrict our
class of representations.

Fix a C*-correspondence (C, X). The compact operators K(X) is the C*-subalgebra
of the space L£(X) of adjointable right-C-linear operators on X spanned by the rank one
operators x (y, -) for z,y € X. Given a Toeplitz pair (7%, 71) : (C, X) — D, there is always
a *-homomorphism

or  K(X) = D:aly, ) — a(z)r(y)*.

The Katsura ideal Jx associated to (C, X) consists of elements a € C for which A(a) €
K(X) and for which ab = 0 whenever b belongs to the kernel of A. A Toeplitz pair
(7% 7Y : (C,X) — D is said to be covariant if for any element a € Jx, we have the
identity

m(a) = pr(Na)) -
The appropriate choice of C*-algebra is the universal C*-algebra associated to covariant
Toeplitz pairs. This algebra is called the Cuntz-Pimsner algebra Ox. We will let
0 C — Ox
L X = Ox
be the canonical covariant Toeplitz pair. Since the gauge action (7°,+!) : T ~ (C, X)

is covariant, Oy has a gauge action as well. As well, there is a canonical quotient map
Tx — Ox. We also have the gauge invariant uniqueness theorem [19, Theorem 6.4].

Theorem 2.5.2 (Gauge-invariant uniqueness theorem). Suppose that there is a covariant

Toeplitz pair (7%, 71) : (C, X) — D with 7° injective and suppose that there is a gauge action

T ~ C*(x°, 7)) for which the Toeplitz pair (7°, ') is T-equivariant. The *-homomorphism
0. 1.
m X7 Ox - D

s mecessarily injective.
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Example 2.5.3. Let £ = (E°, E', s,r) be a topological graph. That is, E°, E! are locally
compact topological spaces, and s,7 : E* — E° are continuous maps. They are called
graphs as we are thinking of E° as the space of vertices and E' as the space of edges. The
maps s and r determine the source and the range of an edge. Therefore, these graphs are
necessarily directed. We will also assume that s is a local homeomorphism: for every point
e € E', there is an open neighbourhood U of e such that s forms a homeomorphism of
U onto its range. Define a C*-correspondence X (FE) over the C*-algebra Cy(E") as the
completion of C.(E') with left and right actions given by

f-g:ew f(e)g(s(e)) and
g-freg(re))fle)
for any f € C.(E') and g € Cy(E®) and with inner product given by

(f.h)y:xe B > fle)hle)
e€E:s(e)=x
for any f,h € C.(E"). The graph C*-algebra C*(E) is the Cuntz-Pimsner algebra Ox ).
This construction of C*-correspondences associated to topological graphs are introduced
by Katsura in [18].

A result of Katouslis and Kribs shows that the tensor algebra T always sits completely
isometrically as a subset of Ox [15, Lemma 3.5]. Moreover, they show that Ox is the C*-
envelope of Ty [15, Theorem 3.7].

Definition 2.5.4. Let (C,X) be a C*-correspondence. We define the operator space
S(C, X) as the *-closed operator subspace of Ox generated by X and C.

An elementary argument shows that S(C, X) sits completely isometrically in both Tx
and Oyx.

2.6 Notational conventions

In Part I of this thesis all non-selfadjoint operator algebras will be denoted by the script
letters A and B. Our groups will be denoted by the letter G and are assumed to be discrete
unless otherwise stated. Unless otherwise specified, all C*-algebras will be denoted by the
letters C and D. Operator systems will generally be denoted by the letters S and 7. The
order unit of an operator system S will be denoted by the unit 1 or 1g if it needs to be
specified, with the exception of the order unit of the matrix algebra M, (C), which will be
denoted by I,,.
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Chapter 3

Crossed products of operator systems

In this chapter, which is joint work with Samuel Harris, we introduce the notion of a crossed
product of an operator system. Much like C* and operator algebraic crossed products,
crossed products of operator systems form a functor from the category of G-operator
systems, where (G is a discrete group, into the category of operator systems. Motivation
for this work comes from two fronts: firstly, the work of Hamana, Kalantar, Kennedy, and
many others demonstrate that G-operator systems are interesting objects in their own right
and they can provide new insight even in the C*-category. Secondly, the work of Katsoulis
and Ramsey demonstrates that looking at crossed products for subobjects of C*-algebras
provide new insight and new results in the isomorphism problem of Hao and Ng.

Our construction of the crossed products mimick the construction of Katsoulis and
Ramsey, who construct crossed products on operator algebras by giving a concrete descrip-
tion as subalgebras of an ambient C*-cover. As mentioned in the preliminaries, although
crossed products of operator systems are functorial, they do not preserve G-equivariant
quotient maps. Beyond this, the universal C*-cover of an operator system crossed prod-
uct need not be the universal crossed product of some C*-cover. These differences mean
that crossed products of operator systems are not just a straight-forward generalization of
crossed products of operator algebras.

Finally, we finish this chapter by solving two problems of Katsoulis and Ramsey that
ask whether universal crossed products of operator algebras are independent of the ambient
C*-cover. We resolve this problem by first encoding the problem to one about operator
system crossed products then appealing to Kavruk’s nuclearity detectors to show that their
problem is answered in the negative. The counter-example algebra is extremely tame: it is
a five dimensional subalgebra of Mg and, using the fact that the hyperrigidity conjecture
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holds when the spectrum is at most countable, we show that it is hyperrigid.

3.1 Reduced Crossed Products

Let G be a discrete group. We will assume that we are working with a set of generators g
for G such that g=! = g and e € g.

Definition 3.1.1. If § is an operator system, then Aut(S) is the group of unital complete
order isomorphisms ¢ : & — S. An (operator system) dynamical system is a 4-tuple
(S,G,g,a), where S is an operator system, G is a group with generating set g, and « :
G — Aut(S) is a group homomorphism.

Let (S,G, g,a) be a dynamical system, and let p: S — C be a complete order embed-
ding for which C*(p(S)) = C. The C*-cover C is said to be a-admissible if there is a group
action @ : G — Aut(C) for which the diagram

c—2s¢
1
S—S
commutes for all g € G. We denote such an a-admissible C*-cover by the triple (C, p, @).

Given an a-admissible C*-cover (C, p, @) of a dynamical system (S, G, g, «), the reduced
crossed product relative to g is defined as the operator subsystem of the reduced crossed
product C*-algebra C x5 G given by

S x40 g = span{p(a)Ay: a € S,g € g} CC xan G .

Finally, given two operator system dynamical systems (S, G, g,a) and (T,G, b, 3), we
say that a ucp map ¢ : & — T is G-equivariant if for every g € G and s € S, we have

By(p(s)) = play(s)).

Remark 3.1.2. If GG is a discrete group with generating sets g and h and g C h then for
any G-action o : G — Aut(S) and any admissible C*-cover (C, p, @) we have the complete
order embedding

Q,
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given by the canonical inclusion. Thus, although different choices of generating sets will
yield different crossed products in general, the choice of generators is not essential in the
structure of the crossed product.

Remark 3.1.3. Recall that if A is a unital operator algebra with C*-cover (C,p) and
¢ : p(A) — B(H) is a linear map, then ¢ is unital and completely contractive if and only

if the map ¢ : p(A) + p(A)* — B(H) given by

d(p(a) + p(0)*) = ¢(p(a)) + ¢(p(b))"

is ucp [2]. In particular, if & € Aut(p(A)), then it readily follows that & € Aut(p(A) +
p(A)*). Suppose that G is a discrete group. For a group action o : G — Aut(.A) and an
a-admissible C*-cover (C, p, ), there is an associated group action a : G — Aut(p(A) +
p(A)*) given by the assignment g — a,. In fact, any a-admissible C*-cover (C, p, a) for
(A, G, ) is also a-admissible for (p(A) + p(A)*, G, a,g). Let p: p(A) + p(A)* — C be
the canonical inclusion. Then for reduced crossed products, setting g = G, we have the
identity

(p(A) + p(A)) P G = (A C) + (AXEP G) CCxap G

This means that there is a bijective correspondence between unital completely positive
maps on the reduced crossed product (p(A) + p(A)*) m&f@ G and unital completely con-

tractive maps on A N&C’)\p ) G. In this way, any reduced crossed product of a unital operator
algebra by a discrete group is contained completely isometrically in an associated operator
system reduced crossed product.

We would like an abstract notion of the reduced crossed product. Indeed, we shall show
that the reduced crossed product is independent of its admissible C*-cover. Until that fact
is established, we will always make reference to the C*-cover in question when discussing
(relative) reduced crossed products.

Example 3.1.4. Let G be a group. Consider the trivial action of G on C; i.e., ay(1) = 1 for
all g € G. In this case, we simply recover the reduced group operator system corresponding
to the generating set g. That is to say,

CcY(G
C Nidﬁ )9 = Sx(9), -

where S)(g) = span{), : g € g} C C5(G) [27].
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Proposition 3.1.5. Suppose that (S, G, g,id) is the trivial dynamical system; i.e., oy =
ids for all g € G. Then the map

v:S Hid,x 9 - S O min S/\(g)
50 5@ Ag

s a complete order isomorphism.

Proof. From the theory of C*-algebras, there is an isomorphism ® : C¥ (S) Xiax G —
C? o (8) @min C5(G) which sends generators to generators [79, Lemma 2.73]. This restricts
to an isomorphism ¥ : S X4, g — span{a ® A, : @ € S, ¢ € g} which sends generators to

generators. By [52, Corollary 4.10], the latter operator system is precisely S @minSa(g). O

Let C be a C*-algebra and S be an operator system contained in C. We say that S
contains enough unitaries in C if the set of elements in & which are unitary in C generate
C as a C*-algebra. This property of operator systems was first considered in [53]. A result
of Kavruk [50, Proposition 5.6] states that if S C C is an operator subsystem of a C*-cover
C for which S contains enough unitaries, then C is the C*-envelope of S. In particular,
Cin(C s 9) = C1(G).

Before working more with C*-envelopes corresponding to dynamical systems, we first
show that for any dynamical system, the group action can be extended to a group action
on the C*-envelope.

Proposition 3.1.6. Suppose that (S,G,g,a) is a dynamical system. Suppose that the
pair (C%.(S), 1) is the C*-envelope of S, where v : S — C%,.(S) is the canonical complete

order embedding. Then there exists a G-action @ on C%, (S) which makes (C%, (S),t, @)
an a-admissible C*-cover of S.

(S), by
env

the universal property of C*-envelopes, there is a unique surjective *-homomorphism @, :
Cx (S) = C L (S) for which the diagram

env env

Proof. Let g € G. Since ¢ o oy is a complete order embedding of & into C,

Cx (S) —2 0% (S)

env env
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commutes. For every g,h € G, the map @, o (@, o @y,) ! restricts to the identity on S. By
uniqueness, we must have @, o (@, o @) ! = ides (s), so that @y, = @, o @j. Evidently
we have @, = idg: (s). In particular, oy o @g-1 = @y-1 o @y = idg: (s), S0 each @, is an
automorphism. Then @ : G ~ CZ(S) is a group action which is admissible with respect

to the dynamical system. O
Definition 3.1.7. Let (S,G, g,a) be a dynamical system. Define the reduced crossed

product S X, 5 g to be the reduced crossed product S fom’(s)") g relative to (C* (S),¢).

ENV

3.1.1 The C*-envelope of a reduced crossed product

The goal of this section is to prove the identity
C’:nv(LS Mo\ g) = Cj,

env(‘s) Mo G
for any dynamical system (S, G, g, «).

The next Lemma contains some useful facts relating to hyperrigidity.
Lemma 3.1.8. Let S be an operator system.

1. If a is an automorphism on S and 7 : S — B(H) is a representation with the unique
extension property, then mo « has the unique extension property.

2. If my © & = B(H;) is a maximal representation for each i € I, then @, m; is also
mazximal.

Proof. The fact that (1) holds is by the definition of the unique extension property. The
proof of (2) is due to Arveson [/, Proposition 4.4]. O

Let S be an operator system in a C*-algebra C. Recall that S is hyperrigid in C if
whenever 7 : C — B(H) is a x-representation, the map 7|s satisfies the unique extension
property. The following Theorem is helpful for our purposes.

Theorem 3.1.9. If S is an operator system in a unital C*-algebra C and S is hyperrigid
in C, then C = C%,(S).

env

Proof. If § C C is hyperrigid, then any faithful representation 7 of C is such that ns has
the unique extension property. Thus, ms is maximal on §. By a theorem of Dritschel

and McCollough [22, Theorem 1.1], since maximal representations generate C*-envelopes,
C*(m|.alS) is isomorphic to C% (S). Evidently C ~ C*(7|s), so this proves that C is the
C*-envelope of S. ]
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Recall that an operator subsystem S of a unital C*-algebra C contains enough unitaries
if the the set of elements in S that are unitary in C generates C as a C*-algebra. The next
result is folklore.

Lemma 3.1.10. Suppose that C is a unital C*-algebra and that S C C is an operator
system which contains enough unitaries in C. Then the operator system S is hyperrigid.

Proof. Let w:C — B(H) be a *-representation, and suppose that the ucp map 7|s is not
maximal. Let ¢ : § — B(K) be a maximal dilation of 7|s. Since v is maximal, ¢ induces
a *-homomorphism on C*(S) = C, which we will also denote by ¢. For s € S, we may
decompose the operator 1(s) with respect to K = H & H* as

| 7m(s)  as
Pls) = { bs  x(s) }

for operators a, € B(H*, H), b, € B(H, H*) and x(s) € B(H"'). Let u € S be unitary
in C. Since t¥(u) must also be unitary, we know that the (1,1)-corner of the operators
Y(u)(u*) and ¥ (u*)(u) must be the identity. A calculation shows that (¢ (u)y(u*))11 =
Iy + ayal and (Y(u*)Y(w))11 = Ig + bib,. Thus, both a, and b, must be zero, so that
Y(u) = w(u) @ x(u). Therefore, if u,v € S are unitaries in C, then using the fact that 1 is
a *-homomorphism,

0 X(U)Ox(v) } = Hup ) =) = { WI(?ZZ)) xC(LZZ) ] '

Hence, a,, and b,, = 0. It easily follows that for any elements uq,...,u, € S that are
unitary in C, we have

Since C is generated by unitaries in §, C is the span of elements of the form wu; ---u,
for elements uq, ..., u, of & that are unitary in C. It follows that 1 decomposes as m @ x
for some ucp map x on C. Restricting to S, this proves that 7|s is maximal, which is a
contradiction. O

This gives an alternate proof of Kavruk’s result on C*-envelopes [50, Proposition 5.6].

Corollary 3.1.11. Suppose that C is a unital C*-algebra and S C C is an operator system
that contains enough unitaries in C. Then C is the C*-envelope of S.
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Proof. By Lemma 3.1.10, § is hyperrigid. By Theorem 3.1.9, C = C%(S). O

env

In order to show that C¥ (S Xan9) = CF

env

(S) x4 G, we require the following lemma.

Lemma 3.1.12. Suppose that (S, G, g, «) is a dynamical system. Let w: C% (S) — B(H)
be a faithful representation that is maximal on S. Let (T, i) be the covariant extension

of m to H® (*(G). That is, for anya € A, h € H, and s,g € G,

7:A— B(H® Q) :7(a)(h®d,) =r(a)h® 5, and
MG = UH®C(Q)) : Ags(h®6,) =h®dy, .

The integrated form T x Ay : C%, (S) Xax G — B(H ® (*(G)) is maximal on 8 X, g
Proof. Since 7™ = @geG moay, Lemma 3.1.8 shows that 7 has the unique extension property
on §. We claim that ™ x Ay has the unique extension property on & X, g. If this
were true, then 7™ X Ay would be maximal on & x,, g. Thus, it remains to show that
7T X Ay has the unique extension property. Suppose that p : C% (S) Xan G — B(H) is
a ucp extension of T X Ag|sx, g We observe that, by maximality of 7, we must have
ples sy = T X Aglcs (s) = 7. Recall that Sx(g) = span{), : g € g}. By Lemma 3.1.10,
Sy (g) is hyperrigid, since it contains enough unitaries in its C*-envelope. Since S)(g) is
hypperrigid, we get the identity p|c=(s,(g) = T X Ar|c=(s,(g))- Thus, C*(Sx(g)) is in the
multiplicative domain of p. Now, let g € G. Since A\, € C*(S,\(g)), for a € C% (S) we
obtain the identity

plady) = p(a)p(Ag) = (7 3 A (@) (7 3 A (Ay)) = 7 ¢ Asr(ady)

This proves that p =7 x Ay, so that T x Ay has the unique extension property. O

We are now in a position to prove the desired result on C*-envelopes of reduced crossed
products.

Theorem 3.1.13. Suppose that (S, G, g, a) is a dynamical system. Then there is a canon-
ical isomorphism

Cr (S HNa,A g) ~ (C* (S) X\ G .

env env

Proof. Let m : C%,(S) — B(H) be a maximal representation, and let T x Ay be the

associated integrated form of the covariant extension (7, Ay) of 7. By Lemma 3.1.12,
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T X Ap is maximal on § X, ) g. Thus, the C*-algebra generated by (T x Ag)(S Xa g) is
the C*-envelope of S %, 5 g. Thus, we obtain the isomorphism

T X )\H :Cx (8) Nay)\G—) Cr (S ><1a7)\g) .

env env

which completes the proof. 0

Hyperrigidity is also preserved by the reduced crossed product.

Corollary 3.1.14. Suppose that (S,G, g, a) is a dynamical system. If S is hyperrigid in
C*o(S), then S x4 g is hyperrigid in C%, (S Xax 9)-

ENV ENV

Proof. By Theorem 3.1.13, we have C% (S Xon 9) = Cly\
O*

(S) Xaa G. Suppose that p :
*w(S) XanG — B(H) is a unital *-homomorphism and let ¢ : C

> o(S) X G — B(H) be
a ucp extension of plsx, ,g- Since S is hyperrigid in Cg, (S), ¥|cs, (s) satisfies the unique

extension property on §. On the other hand, S)(g) is hyperrigid in C}(G) by Lemma
3.1.10. Thus, ¢ agrees with p when restricted to the copy of C5(G) in C! (S) X G.
In particular, C% (S) and the copy of C}(G) are contained in the multiplicative domain
of ¢. As these two algebras generate C¥ (S) X, G as a C*-algebra, it follows that

p = . Therefore, p is maximal on & X, g. Since p was an arbitrary representation of
Ck o (S) Xan G, it follows that S x, g is hyperrigid in C¥ (S X0 9)- O

env env

Example 3.1.15. Consider the commutative C*-algebra C'(T) with generator u : T — C
given by u(z) = z. Fix 6 € [0, 1] and define the action « : Z ~ C(T) by the automorphism

o u s ey
Define Sy := span{l,u,u*}. Observe that « restricts to an action on Sy. Set g =
{1,0,—1} C Z. The crossed product St X, g has C*-envelope C(T) %, Z. Therefore, all

rotation algebras are C*-envelopes of finite-dimesional operator systems.

Example 3.1.16. We consider a generalization of Example 3.1.15. Let n > 1, and let
U(n) act on the Cuntz algebra O, via the mapping

n
Qg 1 S — E 95iSj
i=1

where s1,...,s, are the isometries generating O,, and g = (g;;) is the matrix represen-
tation of the element g of U(n) with respect to the canonical basis. For a subgroup G
of U(n), we say that an action G ~ O, is quasi-free if G acts by a (see [57]). Let
g C U(n) be a finite symmetric subset containing the identity. Let G = (g). Set
S, =span{si, ..., sy, 1, st,..., sk} If G v, O, is a quasi-free action, then G restricts to
an action on S,,. The system S, X, g has C*-envelope O,, X, G.
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3.1.2 An abstract characterization of reduced crossed products

We now move towards showing that the reduced crossed product does not depend on
the choice of C*-cover for the operator system. Recall the following characterization of
positivity for reduced C*-algebraic crossed products (see [13, Corollary 4.1.6]):

Proposition 3.1.17. Suppose that (C,G, ) is a C*-dynamical system. An element x =
> gec @Ay € Ce(G,C) is positive if and only if for any finite set {gi,...,9.} C G, the
matric

n

-1
C(gi (agigj—1>

3,j=1

is positive in M,(C).

The following is a well known result. For a proof, see [79, Lemma 7.16].

Proposition 3.1.18. Let (C,G, ) be a C*-dynamical system and let n > 1. We have the
isomorphism

Mn(C X, G) ~ Mn(C) Na(n)7A G .

The next corollary immediately follows from Proposition 3.1.18.

Corollary 3.1.19. Let (S, G, g, «) be a dynamical system, and let (A, p) be an a-admissible
C*-cover. For n > 1, we have a complete order isomorphism

M (S %) g) 2 M (8) M0

am) A

Therefore, we have the following characterization of reduced crossed products.
Proposition 3.1.20. Let (S, G, g, ) be a dynamical system and let (C, p) be an a-admissible
C*-cover. Forn > 1, the positive cones C,, := M, (S ngc)\p) g)+ are given by the following

rule: an element r = deg gy € M, (S N((lc)\p g) is in C, if and only if, for every finite

subset F' of G, the matrix

g,heF

is positive in Mp(M,(p(S))).
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We now prove that the reduced crossed product is independent of the C*-cover. The
proof is essentially the same as the proof of the analogous result for the operator algebras
[17, Lemma 3.11].

Lemma 3.1.21. Suppose that p : S — C is a complete order embedding of an operator
system S into a C*-cover C. Let Js be the Shilov ideal of S in C. If a : C — C is an
automorphism such that a(p(S)) = p(S), then a(Ts) = Ts.

Proof. Let n > 1 and x € M, (S). A calculation shows that

167(@) + Ma(a( T = (@)D (™ (@) + Mu(Ts) | = (@)™ (o™ @) = [l

by definition of Js. Therefore, S — C/a(Js) : = — p(x) + a(Ts) is a complete order
isometry. Thus, a(Js) is a boundary ideal for § in (C,p). Since the Shilov ideal is
maximal amongst boundary ideals, a(Js) C Js. Since « is an automorphism, applying
the same argument for a~! shows that Js C a(Js). Thus, a(Js) = Js. O

Lemma 3.1.22. Suppose that (S, G, g, @) is a dynamical system and suppose that (C, p, c)
is an a-admissible C*-cover. Then the G-action « induces a G-action on C/Js via g — ¢y,
where &y (x + Js) = ag(x) + Ts. Moreover, if ¢ : C — C/TJs is the canonical quotient map,
then (C/Js,q o p, &) is an a-admissible C*-cover for (S, G, g, «).

Proof. Let g € G. Since (C,p, ) is an a-admissible C*-cover, ay(p(S)) = p(S). By
Lemma 3.1.21, ay(Js) = Js. Hence, the map ¢, as defined above is a well-defined unital
*-homomorphism. It is easy to check that the assignment g — ¢, induces a group action

& of GonC/Js.

To see that (C/Js, q o p, ) is an a-admissible C*-cover for (S,G, g, a), let z € S and
let ¢ € G. We have the identity

dg(q o p(x)) = dy(p(x) + Ts) = (ag 0 p)(x) + Ts
= plag(z)) + Ts = q o play(x)),
thus proving that (C/Js, q o p, &) is a-admissible. m

Theorem 3.1.23. Suppose that (S, G, g, @) is a dynamical system and suppose that (C, p, @)
is an a-admissible C*-cover. If Js is the Shilov boundary of S in C, then

S Ngﬁij‘s,qoﬁ) g~ S N(%\P) g

a

canonically. In particular, the reduced crossed product does not depend on the choice of
C*-cover.
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Proof. By Lemma 3.1.22, the reduced crossed product S m(ofﬁjs °P) o is well-defined. Tt
remains to prove that the map
d:S ngf) g— S Nicyﬁjs’qo”) g
zAg = (T4 Ts)Ag

is a complete order isomorphism. This map is unital and completely positive since it arises
as the restriction of a *-homomorphism

C Na,/\G —)C/jg NO‘W\G
TAg (ZE + js))\s .

Conversely, for X € M, (S x'°) g), suppose that ®(X) € M,(S ngl/\js’qo") g) is positive.

a,

By Proposition 3.1.20, X is positive if and only if for every finite subset I’ of G, the matrix

™, (g0 o™ (X))

g,heF

is positive in Mp(M,(q o p(8S))). dyo0(qop) = (qop)oa, and gop:S = C/Ts is a
complete order embedding, we see that the matrix

Oééﬁ)l (Xgh—l )
g,heF

is positive in Mp(M,(S)). Since ay 0 p = p o oy, the matrix

oy (P (X))

g,heF

is positive in Mp(M,(p(S)). Applying Proposition 3.1.20 again, we see that X is positive
in M,(S xff;\p ) g), establishing the complete order isomorphism.

[]

We close this section with a short discussion on G-equivariant ucp maps. First, we have
the following result ([13, Exercise 4.1.4]):
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Proposition 3.1.24. Suppose that (S, G, g,«) and (T,G, g, ) are dynamical systems and
suppose that @ : S — T is a G-equivariant ucp map. The map

©:S8Xan 0= T Xgxg:ar, — p(a)),

1s ucp. If the map ¢ is a complete order embedding, then the map ¢ is also a complete
order embedding.

Proof. Tt is clear that ¢ is unital. Since the amplifications ™ : M, (S) — M, (T) are G-
equivariant, it suffices to show that ¢ is positive. If x = > __ x/\, is positive in S X,) g,
then for each finite F' C G the matrix

9<g

P .= ag-1(xgp-1)
g,heF

is positive in Mp(S). Since ¢ is ucp, p¥)(P) > 0 in 7. By G-equivariance, this means
that the matrix

ﬁg*l (¢(xgh*1))

g,heF

is positive in Mp(T). This occurs if and only if the element > _ ¢(z,)A, is positive in

T xpxg. A similar argument shows that gz~5 is a complete order embedding whenever ¢ is
a complete order embedding. O

In the case of C*-algebras, a G-equivariant quotient map between two C*-algebras
produces a quotient map on the reduced crossed product. This fails in the case of operator
systems. For example, let 3 := {1,0,—1} C Z. Let FEy, Eo1, E10, F11 enumerate the
canonical system of matrix units for Ms. Define

1 *
o: My —S83;3): Eij— Ui -

It was shown in [28, Theorem 2.4] that ¢ is a complete quotient map. However, the
following holds.

Proposition 3.1.25. [27, Proposition 3.10] The map ¢ Q¢ : My ®upmin Mo — S(3) @min S(3)
1s not a complete quotient map.

33



Proposition 3.1.26. Let 3 = {1,0,—1} C Z. There is a G-equivariant complete quotient
map

@1 (My,id,3,Z) — (5(3),1d, 3, Z)
which does not induce a complete quotient map on the reduced crossed product.

Proof. Let ¢ : My — S(3) be the complete quotient map as above, and suppose that the
induced ucp map

© Xia 3 Mo Xian3 — S(3) X 3

is a complete quotient map. Observe that, since the Z-action is trivial, under the canonical
isomorphisms we have My Xiq\ § = M3 @min S(3) and S(3) Xiax 3 = S(3) @min S(3). In this
way, we can identify ¢ Xiq 3 = ¢ @min idg(;). If ¢ Xiq 3 were a complete quotient map, then
by an amplification, id s, ®mine would also be a complete quotient map. This would imply
that ¢ @min ¢ = (idar, Omin®) © (¢ Omin ids()) is a complete quotient map, contradicting
Proposition 3.1.25. Hence, ¢ Xiq 3 is not a complete quotient map.

[]

3.2 Full Crossed Products

In this section we turn to the theory of full crossed products, motivated by the approach
for operator algebras in [17]. In general, there are many choices for a relative full crossed
product for operator systems. We will focus on those regarding the smallest C*-cover of
an operator system (the C*-envelope) and the largest C*-cover (the universal C*-algebra
of an operator system).

Definition 3.2.1. Suppose that (S,G,g,«) is a dynamical system. If (C,p,«) is an a-
admissible C*-cover of (S, G, g, a), then define the full crossed product relative to C to be
the subsystem

S x¢ g :=spanfau, :a € S,g € g} CC x0 G .

The full enveloping crossed product of (S,G,g,«) is the crossed product

S Haenw §:=8 Nge*nv(s) g.
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Remark 3.2.2. The analogue of Remark 3.1.2 holds for relative full crossed products
as well. Whenever (S,G, g,a) is an operator system dynamical system, (C,p) is an a-
admissible C*-cover and b is another generating set for G with g C b, then there is a
canonical complete order embedding

S %P gy § xEP) .

Remark 3.2.3. Remark 3.1.3 also applies to relative full crossed products. That is to
say, if A is a unital operator algebra, G is a discrete group and (A, G, «) is an operator
algebraic dynamical system with a-admissible C*-cover (C, p, «), then

(p(A) + p(A)*) 2P G = (A %P G) 4+ (AxE) G) CC x, G

To define the relative full crossed product with respect to C¥(S), we need the following
proposition.

Proposition 3.2.4. Suppose that (S,G,g,a) is a dynamical system. Then there is a
unique G-action @ on C*(S) which extends the action on S. Moreover, if j : S — C}(S)
is the canonical complete order embedding, then (C(S),j, @) is an a-admissible C*-cover
for (S,G,g,q).

Proof. Suppose that ¢ € G. By the universal property of C*(S), there is a unique *-
homomorphism @, on C;(S) for which the diagram

Qg

CHS) —— Cx(S)

u

J J

§—2—S
commutes. It is not hard to check that @ defines a G-action on C}(S). [

For an operator system dynamical system (S, G, g, «), we will often denote the associ-
ated G-action on C7(S) by the same letter a.

Definition 3.2.5. Suppose that (S, G, g, «) is a dynamical system. Define the full crossed
product to be the subsystem

S xo g :=spanfauy, :a € S,g€ g} CCr(S) o G .
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The following fact gives us a universality for the full crossed products of operator
systems.

Proposition 3.2.6. Let (S, G, g, «) be a dynamical system, and let (C,t) be any a-admissible
C*-cover for (S, G, g, ). Then there is a unique surjective ucp map tXa : SX,g — SxCg
such that v x aauy) = t(a)u, for alla € S and g € g.

Proof. Note that the map ¢ : § — C is G-equivariant with respect to a. By the universal
property of C*(S), there is a unique unital *-homomorphism map ¢ : C*(S) — C such
that ® s = «. It is easy to see that ® is still G-equivariant, so we obtain a unital *-
homomorphism ® x « : C*(S) x, G — C x4 G. Restricting to S X, g yields the desired
map. ]

Recall from [27] that for a group G with generating set g,
S(g) :=span{u, : g € g} C C*(G) .

There are two difficulties in working with full crossed products. The first is that surjective
ucp maps between operator systems are not, in general, quotient maps of operator systems.
This problem arises even in low dimensions, such as in Proposition 3.1.25. The other key
difficulty can be seen by considering any dynamical system (S, G, g, «) equipped with the
trivial action o = id. Proposition 3.2.12 below shows that S Xigeny § = S ®ess S(g), while
Proposition 3.1.5 shows that S Xig) § = S ®min SA(g). On the other hand, the tensor
product structures arising from S X;q g are not as well understood.

Proposition 3.2.7. Let (S,G,g,id) be a dynamical system with the trivial action. Then
SXiag is completely order isomorphic to the inclusion of the subspace SRS(g) C Ci(S) @ max
C*(G).

Proof. We note that C*(S) Xiq G is canonically isomorphic to C(S) ®@max C*(G), and that
this isomorphism maps S X, g onto S ® S(g), which completes the proof. O

One could define a universal-enveloping tensor product of operator systems & and T to
be the operator system structure S ®,,. 7 arising from the inclusion S ® T C C*(S) Qmax
C o (T). In this way, for any trivial dynamical system (S, G, g,id), we have S Xiqg >~ S®y.
S(g). However, the properties of this tensor product are unclear. If 7g : C*(S) — C?_(S)
and 77 : CH(T) — Ck (T) are the canonical quotient maps, then we obtain the sequence
of ucp maps
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C(S) @umax CHT) LE0 C2(S) @pmax Coine (T) 2255 €2, (S) @i Co(T)

J J J

S®.T > S Que T > S Pess T -

In particular, we have ess < ue < c¢. Similarly, one can define the enveloping-universal
tensor product of operator systems & and 7 to be the operator system structure S ®., T
arising from the inclusion S®T C CZ (S) RmaxCii(T). Clearly, the flip map S®T — T®S
induces a complete order isomorphism S ®,e T — T ®eu S. On the other hand, we can
at least distinguish we from c¢. To this end, we need a slight generalization of a result
of Kavruk [50, Corollary 5.8]. The proof is almost identical to [28, Proposition 3.6]; we
include it for completeness.

Proposition 3.2.8. Let S be an operator system, and let T C C be an operator system
that contains enough unitaries in a unital C*-algebra C. If S Quin T = S ®. T, then
S Qmin cC=S§ Qmax C.

Proof. As every unital C*-algebra is (¢, max)-nuclear [52, Theorem 6.7], we need only show
that S @min C = S ®. C. Let X € My(S ®min C) be positive, and let ¢ : S — B(H) and
Y : C — B(H) be ucp maps with commuting ranges. We consider a minimal Stinespring
representation ¢ = V*r(-)V of ¢ on some Hilbert space H,. We apply the commutant
lifting theorem [2, Theorem 1.3.1] to obtain a unital *-homomorphism p : ¥(C) — B(H,)
such that V*p(a) = aV* for all a € ¥(C). The fact that ¢(S) C ¢(C)" implies that
v i=po¢p: S — B(H,) is ucp and its range commutes with the range of . Since
the restriction of v -7 to S ®, T is ucp and S @pmin T = S ®, T, it follows that v - 7
is ucp on S @uin 7. We extend v - m by Arveson’s extension theorem [2] to a ucp map
n:Ch(S) @min C = B(Hy). Let {uq}aca be a collection of unitaries in 7 that generate

env

C as a C*-algebra. Then for each o € A, we have
Nl ®@us) =771 @ uy) = m(ua),

which is unitary. Then each u, is in the multiplicative domain M, of n, from which it
follows that 1 ® C C M,,. Therefore, for s € S and b € C, we obtain

(s ®@b) =n(s @ 1)n(1 ®@b) = v(s)m(b).
In particular, it follows that
¢ Y(s®@b) = @(s)(b) = @)V m(b)V = V7p(o(s))m(b)V = Vv - (s @ b)V.
Therefore, ¢ - ¢ = V*(-)|se,..cV is ucp, so that ¢ - (X) € My(B(H));. Hence, X is
positive in My (S ®.C) as well, which completes the proof. O
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To show that ue # ¢, we consider the operator system

([ 00 0O )

ca,b,c,d e Cp C Mg(C).

DO OO o

OO OO R
oo o g O
o o2 o O
QL O O O
Q@ Q O O O

\ L . /

If Zo % Zo % Zs is the free product of three copies of Zs and h; is the generator of the
i-th copy of Z,, and NC'(3) is the operator subsystem of C*(x3Zy) spanned by hq, ho, hs,
then the dual operator system NC/(3)¢ is unitally completely order isomorphic to Wi, [27,
Proposition 5.13]. Moreover, Ws 5 is a nuclearity detector [51, Theorem 0.3], and since W o
has a finite-dimensional C*-cover, it follows that C* (W) is nuclear. By [31, Proposition
4.2], Ws 9 is (min, ess)-nuclear.

Proposition 3.2.9. Let G be a discrete group with generating set g. If G is not amenable,
then Wg,g Rue S(g) 7£ W3,2 Re 8(9)

Proof. Suppose that Wi 5 ®ue S(g) = W52 @ S(g). Note that the commuting tensor
product is symmetric [52, Theorem 6.3]. Thus, if W59 ®,. S(g) is not completely order
isomorphic to §(g) ®ye Ws 2 via the flip map, then we are done. Suppose that this flip map
is a complete order isomorphism with respect to the ue-tensor product. Then Ws o ®,,
S(g) ~ S(g) @ue Ws2. Since Cf (W) is C*-nuclear and S(g) ®ue W2 C CiH(G) @max

C;W(W&Q) = C;(G) ®min anv(Wgyg), we see that S(g) ®min W372 = S(g) ®ue W372. In
particular, S(g) ®ess Ws2 = S(g) ®@ue Wso. Since ess is also symmetric, applying the flip
map, we have that

W3,2 Ress 3(9) = W372 Rue S(g)

Since Wi 5 is (min, ess)-nuclear, it follows that Ws 9 ®min S(g) = W2 ®. S(g). By Propo-
sition 3.2.8, we have W59 Qumin C*(G) = Wi @max C*(G), which implies that C*(G)
is nuclear [51, Theorem 0.3], which is a contradiction since G is not amenable. Hence,

Ws o @ue S(8) # Wso @ S(9). 0

Remark 3.2.10. In the case of operator algebraic dynamical systems (A, G, «), Katsoulis
and Ramsey proved [17, Theorem 4.1] that

CH(A %0 G) = C(A) x4 G .

It is known that in general C*(S(g)) does not coincide with C*(G) (see [27]), so such a
theorem is not expected to hold for operator system dynamical systems. In fact, C(S(g))
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and C*(G) fail to coincide in the case where G = Z and g = {—1,0,1} [27]. Moreover,
since we are interested in C*-envelopes, we will focus on properties of the full enveloping
crossed product, rather than the full crossed product.

Like the reduced crossed product, the full enveloping crossed product preserves hyper-
rigidity. The proof is exactly the same as in Theorem 3.1.13, so we omit it. For a proof in
the operator algebraic case, see [14, Theorem 2.7].

Theorem 3.2.11. Suppose that (S, G, g, a) is a dynamical system. Suppose that S is hy-
perrigid. Then the full enveloping crossed product is hyperrigid. In particular, C%, (S X4 env
g) ~C% (S) X, G.

env

We now give the tensor product description of the full enveloping crossed product with
respect to a trivial action.

Proposition 3.2.12. Suppose that (S, G, g,1d) is a trivial dynamical system. We have the
1somorphism

S >4id,env g= S Dess S(g) :
Proof. We know that

*
Ce nv

(S) Xia G = CLy(8) @max C*(G) -
This induces an isomorphism
S Midenv § > span{a @ u, € Cr (S) max C*(G) :a € S, 9 € g} .

By definition, the span on the right hand side is S ®cs S(g). [

For amenable groups, there is no difference between the reduced and the full enveloping
crossed products.

Proposition 3.2.13. Suppose that (S,G,g,a) is a dynamical system with G amenable.
Then & Xax8 =38 Xgenv 9-

env (S) NO& G
sending generators to generators. By restricting this isomorphism to S X, x g, we get the
identity S o) 9 =S Xgenv 8- O

(S) Xan G = C,

env

Proof. Since G is amenable, we have the isomorphism C
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3.3 Two Problems of Katsoulis and Ramsey

If X is an operator space in B(H), then define the associated non self-adjoint operator
algebra U(X) (see [10, Sections 2.2.10-2.2.11] for more on this algebra) as the subalgebra
of B(H?) ~ My(B(H)) given by

U(X)::HS H:Aec,xex}.

Note that the algebra U(X) does not depend on the representation chosen for X. The goal
of this section is to prove the following two theorems:

Theorem 3.3.1. Suppose that G is a locally compact group such that C5(G) admits a
tracial state. Let A := U(Ws2) be the operator subalgebra of My (@i:l M5(C)) endowed
with the trivial G-action id : G ~ A. The following are equivalent:

1. AXes (),d G=AXc a4 G-

2. The group G is amenable.

Theorem 3.3.1 provides a counterexample to Problem 2 in [17] for a large class of locally
compact groups. Indeed, by [55], C5(G) admits a tracial state if and only if G admits an
open amenable normal subgroup. The operator algebra A = U(W; ) is surprisingly tame.
Because A is constructed from Kavruk’s nuclearity detector, which is four-dimensional,
the operator algebra we obtain satisfies dim(A) = 5. Moreover, A is hyperrigid in its
C*-envelope (see Theorem 3.4.10).

The counterexample of Theorem 3.3.1 allows us to give a counterexample to Problem
1 of [47].

Theorem 3.3.2. Let A = UWss). If G is a discrete group, then the following are
equivalent:

1. We have the identity C* (A) x;q G = C*

env env

(.A Aid G)
2. The group G is amenable.

Before proving Theorems 3.3.1 and 3.3.2, we need some facts about U(X). Recall that
an operator system S detects nuclearity (or is a nuclearity detector) if, whenever D is a
unital C*-algebra and

S®minD:S®cDa
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then D is a nuclear C*-algebra [51]. Our first goal is to show that if S is a nuclearity
detector, then U(S) is a nuclearity detector for C*-algebras; that is, if U(S) Quin D =
U(S) @max D then D is a nuclear C*-algebra.

We first wish to interpret the relevant tensor products of an operator system S with a
unital C*-algebra as an operator space. We know that the norm arising from the operator
system S ®uin D agrees with the minimal operator space tensor norm [52, Corollary 4.9].
For the norm arising from the commuting tensor product, we have the following result.

Lemma 3.3.3. Let S be an operator system; let D be a unital C*-algebra; and let d € N.
For any element Z € My(S ®.D) ~ S @, My(D), we have

120wys.m) = sup [0 m(Z)]

where the supremum is taken over all pairs of commuting maps
6:S— B(H) and
7 My(D) — B(H),

where 0 is ucp and ™ s a unital x-homomorphism.

Proof. Since My(D) is itself a unital C*-algebra, by replacing My(D) with D if necessary,
we may assume that d = 1. We know that the order structure of S ®. D is inherited from
the order structure of C}(S) ®max D. From this fact, it follows that the norm structure
of S ®. D is also inherited from the norm structure of C*(S) ®max D. Given an element
2z €S ®.D, we have

1]l = sup [|6" - ' (2)]],
o' '

where the supremum is taken over all unital *-homomorphisms ¢’ : C*(S) — B(H) and
7' D — B(H), with commuting ranges. Since every unital *-homomorphism 6 : C*(S) —
B(H) restricts to a ucp map on S, we obtain the inequality

1]l < supf}6- ()]
where the supremum is taken over all ucp maps 6 : S — B(H ) and unital *-homomorphisms
7 : D — B(H) with commuting ranges. Conversely, if § : S — B(H) is ucp and 7 : D —
B(H) is a unital *-homomorphism whose range commutes with the range of 6, then by
the universal property of C*(S), there is a unital *-homomorphism ¢ : C*(S) — B(H)
such that 0'|s = 6. Since the range of § commutes with the range of 7 and and C}(S) is
generated as a C*-algebra by S, we have that ¢’ and 7 have commuting ranges. Moreover,
|60"-m(2)]| = ||0 - w(2)||. Therefore, the reverse inequality holds, and the result follows. [
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The next lemma is the operator system analogue of a result of Blecher and Duncan [9,
Lemma 6.3].

Lemma 3.3.4. Let S be an operator system and let D be a unital C*-algebra. If U(S) @min
D =U(S) Qmax D, then § @uin D = S ®. D. In particular, if S is a nuclearity detector,
then U(S) is a nuclearity detector.

Proof. Suppose that U(S) @umin D = U(S) @max D, and let z € S ® D. Since we always
have ||z]|c > ||2]|min, it suffices to show that ||z||. < [|2]|min. We may write

k
=1

where z; € S and d; € D. Let § : S — B(H) be ucp and 7 : D — B(H) be a unital
x-homomorphism whose range commutes with the range of . We define

9’:L{(8)—>B(H2):{3 i}w{g\ 9(;)].

It follows from [0, Lemma 8.1] that #’ is a unital completely contractive map. A calculation
also shows that ¢ is a homomorphism. The amplification 7@« : D — B(H?) is a unital *-
homomorphism such that 6’ and 7 & 7 have commuting ranges. In particular, by definition
of the maximal operator algebra tensor norm,

10-7()| = ||o" - (r ) (Z{g ﬂ@dZ)H

1

Z[g %]@di

=l Jed]

= {12/l min

IN

Since this is for arbitrary pairs (0, 7), it follows that ||z||. < ||z||min- A similar argument
shows that || Z]|c = || Z]|min for every Z € My(S® D) and d > 1. Thus, S @uin D = S®.D.

If S is a nuclearity detector and D is a unital C*-algebra such that U(S) @umin D =
U(S) @max D, then the above proof shows that S @i D = S ®. D. Since S is a nuclearity
detector, D must be a nuclear C*-algebra. O]
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Recall that

Ws o 1= ra,b,c,d € Cp C Mg(C).

SO0 & OO
QUL OO oo
QL QOO OO

oo oo a o
S O e o oo

SO OO o

\ L . /

Note that C*

env

(Ws9) is nuclear. Indeed, if we conjugate Wiy by the unitary matrix

1 1 ®3
1 . .
VG [ 1 1 } , we have the isomorphism

Wso ~ {diag(a+b,a —b,a+c,a —c,a+d,a—d) : a,b,c,d € C} .

Therefore, the C*-envelope of Ws, must be a quotient of C°. In particular, U(Wsz) has
a nuclear C*-envelope as well. On the other hand, since Wso is a nuclearity detector
[51, Theorem 0.3], Lemma 3.3.4 shows that &(W;52) is a nuclearity detector. Unlike the
situation for operator systems, the operator algebra U(Ws52) also detects nuclearity for
non-unital C*-algebras. To show this fact, we first need the following fact.

Proposition 3.3.5. Let 7 be the minimal or maximal operator algebra tensor product. Let
A be a unital operator algebra and let D be a C*-algebra. If DT is the minimal unitization
of D and 7 : DT — D' /D ~ C is the canonical quotient map, then the sequence

0 —s A®.D —— A®, Dt 48T 4 s 0

is exact. In other words, A @, D C A ®, D" completely isometrically and id4 @7 is a
complete quotient map of A ®, Dt onto A.

Proof. The inclusion A Q@uin D € A Qumin DT holds by definition of the minimal tensor
product. The fact that A ®pax D C A @pax DT completely isometrically follows by [9,
Proposition 2.5].

The tensor product map idy @7 : A®, DT — A®, C = A is completely contractive.
On the other hand, the map ¢ : A — A ®, DT given by p(a) = a ® 1p+ is a completely
contractive unital homomorphism. Hence, ¢ is a completely contractive splitting of id 4 ®.
It follows that id 4 ®7 is a complete quotient map. O
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Lemma 3.3.6. Let A be a unital operator algebra; let D be a non-unital C*-algebra, and
let D be its minimal unitization. Then A @min D = A Qmax D if and only if A @upin DT =
A ®max D+ .

Proof. If A @min DT = A ®@max DT, then applying Proposition 3.3.5 shows that A ®,
D C A®, Dt completely isometrically for 7 € {min, max}. It immediately follows that
A Qmin D=A max D.

Conversely, suppose that A®pinD = A®maxD. Using the canonical maps, the following
diagram commutes:

0 — ARpax D —— A Qpax DT s A s 0

! I l

0 —— AQuin D —— A ®@pin D y A > 0

By Proposition 3.3.5, the rows are exact. By the Five-Lemma for operator algebras [I1,
Lemma 3.2], since the outer two vertical arrows are complete isometries, the middle arrow
is a complete isometry. Thus, A @pin DT = A Qmax D7 O

Lemma 3.3.7. Suppose that A is a unital operator algebra for which for every unital C*-
algebra C, A @umin C = A Quax C if and only if C is a nuclear C*-algebra. Then for every
non-unital C*-algebra D, A Q@uin D = A Qumax D if and only if D is a nuclear C*-algebra.

Proof. Let D be a non-unital C*-algebra. Let DT be its minimal unitization. We know that
D is nuclear if and only if DT is nuclear. Thus, D is nuclear if and only if A @, DT =
A ®@max DT. By Lemma 3.3.6, the latter condition is equivalent to having A @i, D =
A ®uax D, as desired. O

We are now in a position to prove Theorem 3.3.1, which gives a counterexample to the
second problem of Katsoulis and Ramsey.

Proof of Theorem 3.3.1. The implication (2) — (1) holds by [17, Theorem 3.14]. Con-
versely, suppose we have the identity A X¢cs (4)ia G = A X¢x(a)a G- Since CF (A) is
nuclear,

Céne(A) @min C(G) = € (A) Omax C7(G) = C

env

(.A) Aid G .
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Thus, Axcs (40 G is completely isometrically isomorphic to the completion of A®C*(G)
in C% (A) @min C*(G). We conclude that

Axes (aid) G = A Omin C7(G).
On the other hand, by Example 2.2.4, we have
A Xexa),d G = A @max C*(G).
Then we have the identity
A ®min C*(G) = AXer (w0 G=AXcra)a G =A Qe C*(G) .

Since A is a nuclearity detector, C*(G) is nuclear. In particular, since nuclearity of C*-
algebras passes to quotients [11], it follows that C5(G), which is a quotient of C*(G), must
be nuclear. By [01, ] (see also [29, Corollary 3.3]), G is amenable if and only if C}(G) is
nuclear and C5(G) admits a tracial state. Therefore, G is amenable. O]

Theorem 3.3.1 allows for a proof of Theorem 3.3.2, which gives a counterexample to
the first problem of Katsoulis and Ramsey.

Proof of Theorem 3.3.2. The proof that (2) implies (1) was done by Katsoulis [/, Theorem
2.5]. For the converse, if C}, (A) xia G = CF, (A xiq G), then A X¢=(4)a G embeds

ENvV env

faithfully and canonically into C},,(A) xiq G. Thus, A x¢c:  (4)a G = A Xz (a)a G- By

env

Theorem 3.3.1, this implies that G is amenable. n

3.4 Hyperrigidity and U(Ws,)

In this final section, we show that (min, ess)-nuclearity is preserved under the full enveloping
crossed product whenever the operator system is hyperrigid. We also show that U(Ws2)
is hyperrigid, which shows that the equation C! (A %, G) = C% (A) X, G can fail even
in the case of a hyperrigid operator algebra.

Let S € C and 7 C D be hyperrigid operator subsystems of unital C*-algebras C
and D, respectively. By injectivity of the minimal tensor product, S ®min 7 C C Qmin D.
Moreover, by Theorem 3.1.9, C} (S) = C and C,(T) = D. In particular, by definition
of the essential tensor product, we have that S ®ess T C C Qmax D. In fact, more is true.
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Lemma 3.4.1. Suppose that S C C andT C D are hyperrigid operator subsystems of unital
C*-algebras C and D respectively. Then S @min T C C @min D and S ®Ress T C C Qpax D
are hyperrigid.

Proof. We prove the result for the minimal tensor product; the proof for the essential tensor
product is the same. Let (¢ : C - CROuinD :a+— a®land tp : D = CRminD : b+— 1R0b be
the canonical *-homomorphisms. Suppose that 7 : C @i, D — B(H) is a *-representation
and suppose that p : C @umin D — B(H) is a ucp map extending the map 7|sg, . 7. Since
potc agrees with mote on §, by hyperrigidity of S, poie = more. Similarly, poip = moip.
For any a € C and b € D, since tp(b) is in the multiplicative domain of p,

pla®b) = plic(a)ip(®)) = plic(a))p(in(b)) = T(a @ b) .

Extending by linearity and continuity shows that p = 7. O

The following proposition is a generalization of a result of Gupta and Luthra |
Theorem 4.3].

Y

Proposition 3.4.2. Suppose that S C C is a hyperrigid operator system. Then S is
(min, ess)-nuclear if and only if C is nuclear.

Proof. 1f C is nuclear, then by [34, Proposition 4.2], S is (min, ess)-nuclear. Conversely,
suppose that S is (min, ess)-nuclear, and let D be any unital C*-algebra. First, let us show
that C% (S ®min D) = C @min D and C% (S ®egs D) = C @max D. By Theorem 3.1.9, it

suffices to show that S ®,;, D and S Res D are hyperrigid in their C*-covers. For the
minimal case, suppose that

7T : C @c*min D — B(H)

is a unital x-homomorphism and suppose that ¢ is the restriction of 7 to S @uin D. If p is
any ucp extension of ¢ to C Qi D, then the ucp map plc is a ucp extension of p|s. By
hyperrigidity of S, plc = 7. As well, p|p = ¢|p = 7|p. Thus, C® 1 and 1 ® D are in the
multiplicative domain of p. Therefore, for all ¢ € C and d € D,

pledd)=plcal)p(led) =rn(c@1)r(l®d) =7r(c®d).

Extending by linearity and continuity, we have p = m on C ®u, D. The proof for the
maximal tensor product is the same, replacing all tensors with the appropriate type. Hence,
S Qmin D is hyperrigid in C @i D, and S Reg D is hyperrigid in C ®pax D.
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Since S @min D = S ®Ress D, and both operator systems are hyperrigid, we get

C ®min D = C,

env

(S Qmin D) - OJHV(S Ress D) =C Qmax D.
As D was an arbitrary unital C*-algebra, it follows that C is nuclear. m

Corollary 3.4.3. Suppose that (S,G,g,«) is a dynamical system with S hyperrigid in
C%..(S) and G amenable. Then S is (min, ess)-nuclear if and only if S X4, eny@ s (min, ess)-

nuclear.

Proof. By Proposition 3.4.2; § is (min,ess)-nuclear if and only if C (S) is nuclear. Since
G is discrete and amenable, C% (S) is nuclear if and only if C¥ (S) %, G is nuclear [13,
Theorem 4.2.6]. Using Theorem 3.2.11, & X4 eny ¢ is hyperrigid in C¥ (S) X, G. Applying
Proposition 3.4.2 again, C} (S) %, G is nuclear if and only if & Xgeny g is (min, ess)-
nuclear. O

env

We now will work towards showing that U(W;2) is hyperrigid in its C*-envelope. We
begin with the following helpful fact about C%  (U(S)).

env

Proposition 3.4.4. Let S be an operator system with C*-cover D. Then My(D) is a
C*-cover for U(S). Moreover, C%, (U(S)) = Ma(C%,.(S)).

Proof. Let ¢ : S — D be a complete order isomorphism, where D is a unital C*-algebra
such that D = C*(¢(S)). Then there is an associated unital, completely isometric homo-
morphism ¢ : U(S) — Ms(D) such that

" Azl (A o(x)
0 A/ [0 A
for all A € C and for all x € §. The matrix units F1s, Fy; are in C*(¢(U(S))) since ¢ is
unital. Hence, every element of the form E; ® ¢(z), for x € S, is in C*(¢(U(S))). Thus,
Ei ®a € C*(pU(S))) for all a € D. Using the matrix units Ej5 and Es, we see that

C*(Y(U(S))) = My(D). Thus, My (D) is a C*-cover for U(S) whenever D is a C*-cover for
S.

Lastly, we must show that C! (U(S)) = My (C:(S)). To this end, we let p :
M, (C%,(S)) — C (U(S)) be a surjective, unital *-homomorphism that preserves the
copy of U(S). Let v be the restriction of p to the subalgebra M, ® 1 (s). Since 7y
is a unital *-homomorphism and M, is simple, v must be injective. In particular, if
D = p(I, ® C%,(S)), then My and D are commuting unital C*-subalgebras of C¥%  (U(S))

env env
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that generate the whole algebra. Let 7 be the restriction of p to Io ® (C%,,(S)). Since p
is a completely isometric homomorphism on U(S), a standard canonical shuffle argument
[64, p. 97] shows that p must be a complete isometry when restricted to F1o ® S. As p is
multiplicative, we see that 1 is a complete isometry on Is ® S. Thus, 7|7,gs maps S com-
pletely order isomorphically into D. Since I ® S generates I, ® C (S) as a C*-algebra,
the image of I, ® S under n generates D. By the definition of the C*-envelope, there is
a unique, surjective unital x-homomorphism ¢ : D — CZ (S) such that §(n(lz ® s)) = s
for all s € S. The map 1 : C% . (S) = [, ® C%,(S) — D also fixes the copy of S. Hence,
d on and n o d are the identity when restricted to S. As C* (S) and D are generated by

env

their respective copies of S, it follows that § and n are inverses of each other. Therefore,

D ~ C* (S). We conclude that C* (U(S)) = My(Cx(S))- O

env env env

The following shows that hyperrigidity of ¢(S) passes to S.

Proposition 3.4.5. Let D be a C*-cover of S. IfU(S) is hyperrigid in My(D), then S is
hyperrigid in D.

Proof. Assume without loss of generality that S C D. Suppose that 7 : D — B(H) is a
unital *-homomorphism with restriction p = n|s : S — B(H) to S. Let ¢ : D — B(H)
be any ucp extension of p. Then 73 : My(D) — B(H?) is a unital *-homomorphism.
Moreover, if n = (7®)|y(s), then ¢ : My(D) — B(H?) is a ucp extension of 7, since
¢|s = p. By hyperrigidity of (S), we have p® = 72 In particular, ¢ = 7, as desired. [

Corollary 3.4.6. Let S be an operator system with C*-cover D. If U(S) is hyperrigid in
My(D), then C%,,(S) =D and C%,,(U(S)) = My(D).

Proof. By Proposition 3.4.5, since U(S) is hyperrigid in My(D), S is hyperrigid in D. By
Theorem 3.1.9, C! (S) = D. The fact that C  (U(S)) = My(D) follows by Proposition

env env

3.4.4. [l

Let S be an operator subsystem of a C*-algebra D. Suppose that any irreducible
representation 7w : D — B(H) of D is maximal on S. In general, it is unknown whether this
implies § is hyperrigid in D. That is, it is not known if this implies that all representations
of D, irreducible or not, have the unique extension property. In our case however, this
obstruction is not a concern.

Proposition 3.4.7. Let S be an operator system with finite-dimensional C*-cover F. If
every irreducible representation of F is maximal on S, then S is hyperrigid in F.
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Proof. Since F is finite-dimensional, it has finite spectrum; i.e., there are only finitely
many irreducible representations of F up to unitary equivalence. The desired result then
follows by a theorem of Arveson [/, Theorem 5.1]. O

For notational convenience, we let

o= {[2 ] wsec).

Note that B ~ C? as C*-algebras; however, the given presentation of B will be most useful
for our purposes. We have the following lemma.

Lemma 3.4.8. Let S C @221 My(B) be the operator system defined by

ay b ¢k
3
._ ag | by | B B
S:= g? de fr | ax Sag = g, by, = by, di, = dy, for all1 <k, 0 <3
- fk dy, ag

Then S is hyperrigid in its C*-cover My(B) & Ma(B) & Ma(B).

Proof. Let w: @,_, My(B) = (@;_, My) ® B — B(H) be an irreducible representation.
Then up to unitary equivalence, we may assume that H = K ® L and m = p ® o, where
p:My® My® My, - B(K) and 0 : B — B(L) are *-homomorphisms. Since p ® o is
irreducible and o(B) is abelian, we must have dim(o(B)) = 1 and L = C. Therefore, we
may identify H = K and o ({(1) (1)
it must be surjective. Hence, p is surjective. Thus, H is finite-dimensional and we may
write B(H) = Mp for some D € N. Let py : My — Mp be the restriction of p to the k-th
summand of My in My & My & M,. Each py is a x-homomorphism, so since Ms is simple,
pr is either injective or the zero map. If at two of the pi’s were injective (say, p; and po)
and T} & Ty € My & M, were such that p(T) & Ty & 0) = 0, then we would have

) = wly, where w € {1,—1}. Since 7 is irreducible,

0=p(T1 ®T2®0)" p(T1 & T2 &0) = p1(TTTh) + p2(15T3).

By injectivity of each py, we must have T} = T, = 0, so that panerneo is injective. But
then this restriction would be an isomorphism of My @ M, onto Mp, with the latter being
simple, which is a contradiction. Similarly, it is impossible to have all three p;’s injective.
Moreover, since Ip = p(Iy @ I, ® I) = Si_, pi(), we must have that exactly one py, is
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non-zero. Therefore, we may assume without loss of generality that p; is non-zero (and
hence an isomorphism), while p; = p3 = 0. In particular, we may assume that D = 2.

Up to unitary conjugation, we may assume that p; = idy,. Let ¢ be the restriction
of 7 to S, and let ¢ : @);_, My(B) — M, be any ucp extension of ¢. Let ¢ = V*TI(-)V
be a minimal Stinespring representation of ¢ on some Hilbert space Hy. We consider

@;_, My(B) as a subalgebra of @);_, Mj.

Let X = Eyy+ Eq3 € S. We note that ¢(X) = n(X) = wEjy € My. With respect to
the decomposition Hy = ran (V) @ ran (V)*, for 4,5, k, £ € A, we have

-1 8- 15 4]

for some operators A, B, C'. Noting that X*X + X X* = Z?Zl E;;, we have

4 * *
1 (Z E> — T(XX 4 XX*) = T(X)TI(X) + T(XOI(X)* = {I + B f* A4 ik

i=1
Thus, ¢ (2?21 Eu) =1+ B*B 4+ AA* < ¢(l12) = I,. This forces B*B + AA* = 0, so
that A = 0 and B = 0. Considering the (1,1)-block, it follows that ¢(X*X) = Fg =
(X)) (X)) and (X X*) = By = (X)(X)*. Thus, X lies in the multiplicative domain
My, of . Moreover, ¥(E;) = 0 for all 5 <4 < 12. It readily follows that ¥jog s, B)yereB) =
0. Replacing X with Y = Fj3 + Fa4, it is easy to see that ¥ € M, as well, while
W(Y) = Ep. Let W = FEi9 + Ey and Z = FE3q + Ey3. Then the first copy of My(B) is
generated as a C*-algebra by the four elements X, Y, Z, W. Since we have W*W = E1;+ Eo
and Z*Z = Es3 + Eyu, we need only show that ¢(W) = n(Z) and ¢(2) = n(Z). If
this assertion holds, then W and Z would lie in M, from which it would follow that
My(B) 0® 0 C My, and m = 1. Since W = XY™, we may write

YW) =(XY?) =p(X)0(Y)" = wEpEy = Eu.
Similarly, since Z = X*Y, we have
V(Z) =p(XTY) =(X)Y(Y) = wEy Eip = wEy.

It readily follows that (Z) = n(Z) and ©(W) = ¢(W), while Z, W € M,. Therefore,
1 = m. Applying Proposition 3.4.5 completes the proof. O
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Lemma 3.4.9. The operator sub-algebra of @2:1 My(B) given by

3 ag bk Ck
A=1D G | G by Cap = ag, by = by, V1 < k0 <3
Qg
k=1 a
k

is hyperrigid in My (B) & My(B) & My(B).

Proof. The operator system S in Lemma 3.4.8 is precisely A + A* in @2:1 My (B). The
desired result follows by Lemma 2.1.3. ]

We can now obtain hyperrigidity of the nuclearity detectors W52 and U(Ws.2).

Theorem 3.4.10. The operator algebra U(Ws2) is hyperrigid in Mo (@2:1 B), and W o
is hyperrigid in @2:1 B.

Proof. Since Wj 5 is the set of all matrices in B @ B @ B of the form

D

B o
— b ag
where ap = ap for all 1 < k,¢ < 3, it follows that C*(W;52) C @ile- On the other

hand, for each k, the element V} defined by [2 (1)] in the k-th summand and 0 in the

other summands is an element of Ws,, and V> = ViVj, is I, in the k-th summand and 0
otherwise. It follows that C*(Wjs2) = @;_,B. Using Proposition 3.4.4, My(®7_,B) is a
C*-cover of U(Ws5).

To establish hyperrigidity of U(Ws2) in Mo (@2:1 B), let 7 be the restriction of the
canonical shuffle My(Mg) ~ Mg(Ms) to My (@2:1 B). Then r is a #-isomorphism from
M, (@i:l B) onto @®;_, M>(B) that sends U (W) onto the operator algebra A in Lemma
3.4.9. Applying Lemma 3.1.8, since A is hyperrigid in @;_, Ms(B), U(Ws2) is hyperrigid
in M, (@2:1 B). The analogous claim for Ws, follows by Proposition 3.4.5. The claim
about C*-envelopes immediately follows by Corollary 3.4.6. m
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Chapter 4

Characterizing hyperrigidity for
C*-correspondences

This chapter is concerned with the Hao-Ng isomorphism problem, as stated in the in-
troduction. Recall that the isomorphism problem asks: if (C,X) is a non-degenerate
C*-correspondence and G is a locally compact group acting continuously on (C, X) then
is it the case that we have the identity

OxNG:OXxg?

At its core, the Hao-Ng isomorphism problem is asking whether the functor which maps a
C*-correspondence (C, X) to its Cuntz-Pimsner algebra Ox is closed under crossed prod-
ucts. Because of this, the isomorphism problem is fundamental in the understanding of the
dynamics of Cuntz-Pimsner algebras. Our goal is to establish an intrinsic characterization
of hyperrigidity for C*-correspondences.

We say that a C*-correspondence (C, X) is hyperrigid if the operator space
S(C,X) =span{r+a+y 2,y X,acC} COx

has the following extension property: given a representation 7 : Ox — B(H), if p : Ox —
B(H) is a completely positive and completely contractive map which agrees with 7 on
S(C, X) then ¢ must agree with 7 on Ox. In [16], Katsoulis and Ramsey establish:

1. If (C,X) is a hyperrigid C*-correspondence and G is a locally compact group that
acts on (C, X) then we have the identity
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where (CXG, XX@) is the completion of the pair (C.(G,C),C.(G, X)) in Ox x G.
In particular, for hyperrigid C*-correspondences, the crossed product Ox x G is a
Cuntz-Pimsner algebra.

2. If (C,X) is a hyperrigid C*-correspondence and G is a locally compact group that
acts on (C, X) then we have the identity

OX NTG = OXNTG :

It is an open question whether (CXG, X XG) is the same as (C x G, X x G).

We denote by A : C — L(X) the left action of C on X. Recall that the Katsura ideal
Jx of a C*-correpsondence (C, X) is the ideal

JIx ={a€C:\a) € K(X) and ax = 0 for all z € ker A} .
The main Theorem of this chapter is the following.

Theorem 4.0.1. Let (C, X) be a C*-correspondence. The following are equivalent:

1. The C*-correspondence (C, X) is hyperrigid.
2. We have the identity Jx - X = X.

This extends a result of Kakariadis [11, Theorem 3.3] and Dor-On and Salomon [21,
Theorem 3.5] who establish the equivalence for C*-correspondences associated to discrete
graphs and a result of Katsoulis and Ramsey who prove the forward direction of our
Theorem [16, Theorem 3.1]. Finally, we use this result to give an exact characterization
for when the C*-correspondence associated to a topological graph is hyperrigid when the
range map 7 is open.

4.1 Hyperrigidity of operator spaces S(C, X)

In [16, Theorem 3.1], Katsoulis and Ramsey show that to achieve hyperrigidity of a C*-
correspondence X it is sufficient for the left action of Jx to act non-degenerately on X.
Our main result shows that this condition is in fact equivalent to hyperrigidity of X. The
following two definitions are in [69)].
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Definition 4.1.1. Let (C, X) be a Hilbert C-module. We treat the multiplier algebra M (C)
as the C*-algebra £(C). The Hilbert M (C)-module M (X) is defined as follows: As a linear
space, M (X)) consists of the space of adjointable right-C-linear maps from C into X. That
is, M(X) = L(C,X). The right action is given by composition and the inner product is
given by (x,y) == 2" o y.

If v € X and y € M(X) then (y,2) € Candifa € Ctheny-a € X. If (C,X) is a
C*-correspondence and a € C is such that A(a) € K(X) then for any z € M(X), we have
a-x € X. In particular, if a € Jx then a -z € X.

Definition 4.1.2. Let (C, X) be a Hilbert C-module. We say that X is countably generated
over C if there exists a sequence (x,),>1 in M(X) for which the C-linear span of (z,), is
dense in X. A standard normalized frame for (C, X) is a sequence (z,),>1 in M(X) for
which for every z € X we have the identity

(x,z) = Z (x,xn) (Tp, ) .

n>1
By [09, Corollary 3.3], whenever X is countably generated over C, a standard normalized
frame for X exists.
The reconstruction formula [09, Theorem 3.4] states that a sequence (x,,),>; is a stan-

dard normalized frame if and only if we have the identity
T = Z T, (T, T)
n>1
for every x € X.
Let (C, X) be a C*-correspondence. In the following Lemma, we consider the set M of

countably generated right C-submodules of X. This set is directed under inclusion and it
is cofinal in X.

Lemma 4.1.3. Suppose that (C, X) is a C*-correspondence. Let M denote the space of
all countably generated right C-submodules of X. For each Y € M, let (x,(Y))n>1 denote
a standard normalized frame for Y. Let

en(Y) =Y ap(Y) (a(Y),") .
k=1

The set (en(Y))m,y)enxam is an approzimate unit for K(X) in the following sense: if T €
K(X) then we have the identity

lim lime,(Y) - T=1T.

Y —so0 n—oo
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Proof. Let T € K(X). Let € > 0. Suppose that y1,...,Yn, 21, ..., 2, € X is such that

1T = ye () | <.
)

Let S =", yk (2k, ). Consider any Y € M for which yy, 2, belong to Y for all k. For any
r e X,

Zyk (z,2) €Y.
k
By the reconstruction formula, we know that

v = 2a(Y) (@a(Y),y0) = lim eq(Y)(yi) -

n>1

for all k. This means in particular, that for n large enough,

len(Y)S — S| < €.
Therefore,
1T = en(V)T|| < 2|7 = S| + 15 — en(Y)S]| < 3e.
This proves that e,(Y") is an approximate unit for K(X). O
The following Lemma provides a quantitative variant of [64, Theorem 3.18].

Lemma 4.1.4. Let C be a C*-algebra. Fiz m,n > 1. Suppose that ¢ : C — B(H) is a
completely positive and contractive map for which for some € > 0 and a € M,,,(C), we
have the bound

lp(aa®) = p(a)p(a)’]] <e.
It is then the case that for any b € M, ,,(C), we have the estimate

lp(ab) = p(a)p®d)]| < Velb] -

Proof. For a positive p € Ms,,(C), let

I, | a* b*




The same argument as in [0, Lemma 3.1] shows that the matrix P(M) is positive if and
only if we have the bound

& * *
[b}[a bl <p.
Taking
aa* ab*
p|:ba* bb*:|7

we can conclude P(p) is positive in this case. Since ¢ is contractive and completely positive,
applying the (2n + 2)-amplification of the unitization of ¢ onto P(p), we get the bound

That is, the matrix

is positive. Since the (1,1) corner of this matrix is at most €, we get positivity of the
matrix

{ el p(ab®) — ¢
p(ba*) — p(b)p(a)" @(bb*) — o(b)p(b)*

In particular, we have the bound

lo(ab™) — p(a)p(d)*[|* < ellp®b*) — e(b)e(b)*]]
< ellbo*l (4.1)

where the final inequality follows from the fact that

0 < p(bb") — @ (b)p(b)” < p(bb7) < [|bb7[|1 .

Theorem 4.1.5. Let (C, X) be a C*-correspondence. The following are equivalent:
1. The left action of Jx on X is non-degenerate.
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2. S(C, X) is hyperrigid.

Proof. First assume that Jy acts on X non-degenerately. We denote by (i°,i') the canon-
ical covariant pair

(i%,4') : (C,X) — Ox .

Fix any *-homomorphism 7 : Ox — B(H) and suppose that ¢ : Ox — B(H) is any
cpec-extension of g, x). By a multiplicative domain argument and by non-degeneracy
of Jx acting on X, it suffices to show that for any a € C and x € X, we have

p(t!(a- )i (a-2)") = ot (a- 2)p(i!(a-2))" .
Let M and z,(Y),e,(Y) be as in Lemma 4.1.3. Let
b K(X) = Ox ta{y,-) = ) (y)* .

For any a € Jx, since A(a) is a compact operator, we have

(aa*) = ¢, ( lim lim A(a) - en(Y)/\(a)*> = lim lim Ma - zp,(Y)i(a - 2 (V).

Y —>o0 n—oo
By the Schwarz inequality,

p(°(aa")) = limylim, Y (! (a - 2x(Y) (a - 2x(Y))")

k<n

> limylim,, Y @(c (@ 21(Y))) (e (a - 24 (Y)))"

k<n

= limylim,, Z W(Ll(a . Ik(Y)))W(Ll(a -1 (Y)))"

= 7(:*(aa")) = ¢(:’(aa”)) .

From this, we have the identity
limy lim,, Z (M (a-2(Y))i (a - z1(Y))*) = limylim, Z’/T(Ll(a cap(Y) a2 (Y))F) .
k<n k<n

By the reconstruction formula, for any x € X and for any Y € M with 2 € Y, we have
for all a € Jx,



Let € > 0. Fix any Y € M for which we have the bound

0< Zso 02, (V)i (a - 20 (Y))7) = o(t(a - 2a(Y)))p(M(a - 2a(Y)))* < el .
Let a;, = M (a - 2,(Y)) and let 3, = ! (a -z (z,2,(Y))). Observe that

Ma-x)t(a-2)" = Z anfr .

n>1

Consider for fixed n > 1 the 1 x n-matrices A,, = (a1, -+ , ) and B, = (1, , Bn)-
A calculation shows that

1BuB Il = || ¢ 2) (2, 24 (Y)) (wn(Y), 2))i (a - 2)"

k<n

< lla- x|

> (wan(Y) (V). z)

k<n

Since the sequence z,(Y) is a standard normalized frame, we have the inequality

| Bu By < lla- ||

for any n. As well, a calculation shows that
lim (A,B;) = ¢(Aa)@(Ba)" = lim Y (i} (@~ 2a(Y) @a(Y), 2))e! (a - 2)7)

— (i a- 2a(Y) (V). 2) (e (a - 7))
—o(Ma- 1) (- 2)) — (i} a- 2))p(e (a - 2))"

The above calculation with Lemma 4.1.4 give us the bound
lo( (@~ 2)it(a - 2)%) = (' (a- 2))p( (@ 2))"|* = lim |lp(AnB]) — @(An)e(Ba)"|?
< 6||a~56H [T

Since this identity is independent of the choice of Y and €, we may conclude that for any
a € Jx and for any € X, the element ¢!(a - x) belongs to the multiplicative domain of
v, showing hyperrigidity.
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For the converse, assume that Jx does not act on X non-degenerately. Fix a faithful

covariant representation (7% 7') : (C,X) — B(H). Let N C Jx. form a contractive

approximate unit for Jx under the ordering induced by the positive operators. Define
operators P = limgen 7°(a) and Q = 1 — P where the limit is taken in the strong operator
topology on B(H). For any isometry V € B(K), let (7%, 7)) : (C,X) — B(H ® K) be the
following pair of maps

A= BH®K): a— 7a)® I
v:X = BH®K): zw Prl(z)@ [+ Qr'(z) @V .
It is immediate that 7° is a *~homomorphism and that 77, is linear. For any a € C and

r € X, first observe that since P is the projection which generates the ideal 7°(Jx) in
7(C), that P commutes with 7 O(a). Thus,

T%)R4) (m°(a) @ I)(Pr'(2) ® I + Qr'(x) @ V)
P(r’(a)r'(2)) ® I + Qn’(a)r' (x) @ V
=Pr'(a-2) @1+ Qr'(a-2) @V =7'(a- 1) .

As well, for z,y € X, we have
Tv(2) ry(x) = (Pr'(2) ® I+ Qr'(x) @ V)" (Pr'(y) @ I + Q' (y) @ V)
(@) Pri(y) @ I + 7' ()" Q' (y) ® I
(@) (P+ Q) (y) @ I = 7'({z,y)) ® 1
({z,y)) -

This is therefore a Toeplitz representation for (C, X). To see that this representation is
covariant, let a € Jx. Since A(a) € K(X), for € > 0, let x1,..., 20, %1,-..,Yyn € X such
that for any contraction z € X, we have

a-z— ka (Yk, 2)
k=1

< €.

For any b € N, we have

bab-z—Zb-xk(b-yk,z>

k=1

<E€E.

In particular, A(bab) is within e of the compact operator ), bxy, (byy, -). Let

v K(X) = B(H) : 2 (yi, ) = v ()70 (1)
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A calculation shows
v (Zkbxk (b, '>) = 7 ()T (by)”
= Z (Pt (bay) @ I + Qrt(bxy,) @ V)(Prt(byr) @ I + Qrt(byy) @ V)*
- Z (Prt(bxy) @ I)(Prt(by) @ I)*
=3 (7 ba) © I)(x (bye) @ 1)°
(ka (bay )7l (byk)*> Q1.
For any b € N,
v (A(bab)) — n°(bab) @ I|| < ngv()\(bab)) — oy (Zkbxk (b, -)) H

v (32 b b)) = 7 (bab) 2 1

<2e .

Since this is true for arbitrary ¢ > 0, we conclude that oy (A(bab)) = 7°(bab) for all b € N.
Since N is an approximate unit for Jx and a € Jx, we have oy (X(a)) = 7°(a).

Let us fix the unilateral shift V' € B(¢*(Z,)) and the bilateral shift U € B(¢*(Z)). Let
® : B((*(Z)) — B({*(Z)) be the ucp map given by restriction. The diagram

B(H ® (*(Z))

0%l
/ ]

0
T XTV

Ox =V B(H @ (L))

commutes. So long as we can show Q7'(X) # 0, we are done, since ®o (70 x 1) # 7° x 7,
but agree on S(C, X ). Suppose that Qm!(X) = 0 in order to derive a contradiction. Since
P+Q = I, this means that Pr!(x) = n'(z) for every x € X. If Jy acts on X degenerately,
then by taking a subnet if necessary, there is some € > 0 and some x € X so that for every
b € N, there is some unit vector h, € H for which we have the identity

(@ (@) (@) — 7' (@) 7 (0)n () o, hy) > € .
If a > bin N then we have the identity
(! (z)*n' () — 7' (2)* 7 (b)7" (x)) hay ha) > (7' () 7 (@) — 7' (@) 7°(a)7" () ha, Ba)

> €.
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If we could replace the net (hy)peny with a fixed vector hy = h € H for all b then we
may conclude from the above inequality that Pr'(x) # 7'(x) and we would have our
contradiction.

In order to guarantee that a vector h € H as above exists, we need to fix a specific
faithful representation. Take any non-principal ultrafilter ¢ over N containing the set

S={{aeN:a>b}:be N}.

Such an ultrafilter exists since S has the finite intersection property. Consider the covariant
pair

7,7 : (C, X) — B(HY)

so that 7 (a)(limy ky) = limy 7°(a) - ky and 7' (z)(limy k) = limy ' (z) - ky. Replacing
(7%, 71y with (7°,7') and taking h = limy, hy, will do. O

As an application, we will characterize the topological graphs with range map r open
for which the associated space S(Cy(EY), X(F)) is hyperrigid. This generalizes a result
of Kakariadis [1], Theorem 3.3] and Dor-On and Salomon [21, Theorem 3.5] that give a
characterization for E discrete. First a bit of notation: let EY be the open subset of E°
for which we have the identity

Co(Egy ) = A K(X(E))) -
The kernel of X consists of those elements f € Cy(E®) for which f|, g1y = 0. Thus,

ker A = Co(E" \ r(E)) .
This implies that Jxr)y = Co(Ef, Nint(r(E£'))). Let Y = int(r(E£')). Assume that
Ef, NY is dense in Y. I claim that Jy X (E) = X(E). Let ¢; be an approximate unit
for Co(EY, NY). For any f € C.(E'), I claim that ; - f converges to f. Consider the
positive function F; = (f — ;- f, f — @i - f). Observe that as f is compactly supported
that all F; are supported on a compact set K. As well, F;(z) is a decreasing net for all
r € E°. By the uniform limit theorem, the function
F:E"— C:2— lim F(z)
1—00
is continuous and compactly supported. We need to show that F = 0. If not, there is
some open set U C E° for which F|y > 0. If x € U then for any e € s71(x), r(e) & EY. .
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That is, if € r(s7(U)) then z € EY_ . Assume that r is open. That r(s~!(U)) is an open
subset of Y and that r(s™'(U)) N EY, = @& is a contradiction of the density of EY NY in
Y. Thus we have Jx g X (F) = X(E).

If Ef, NY is not dense in Y then there is some open subset U of Y so that UNE], = @.
Consider any non-zero function f € C.(E') supported on r~*(U). If Jx(g) acts non-
degenerately on X (FE), then by Cohen’s factorization theorem, there is some =z € X(F)
and some g € Jx(p) for which g -z = f. Say f; € C.(E") for which lim; f; = z. For any
point e € E' if f(e) # 0 then r(e) € U. This implies that g(r(e)) = 0. For any 4,

(g-fifyrom Y glr(e)fe)file) =0.

ecEl:s(e)=x

Thus we have (f, f) = lim; (g - f;, f) = 0 — a contradiction.
All this proves:

Theorem 4.1.6. Let E be a topological graph and let r be open. The following are equiv-
alent:

1. The space S(Co(E®), X(E)) is hyperrigid.

2. The set EQ, is dense in E°.
Proof. Let Y = int(r(E")). By the above argument, hyperrigidity of S(Cy(E"), X (F)) is
equivalent to density of EY NY in Y. To finish the argument, suppose that EY. NY is

dense in Y. If z is a point in E*\ r(E!) then there is a non-negative function f supported
outside of r(E') for which f(x) = 1. Since A(f) = 0, we must conclude that z € EY_ . In
particular, whenever U is an open set in E° for which U N EJ. = & then we must have

U CY. By our assumption, we must have U = @. O

Indeed, at the time that the contents of this chapter has been written, Katsoulis and
Ramsey establish from different techniques than ours that the following Theorem is true
for general topological graphs:

Theorem 4.1.7 (Katsoulis-Ramsey). Let E be a topological graph. The following are
equivalent:

1. The space S(Co(E®), X (E)) is hyperrigid.

2. The map r : E* — E° is proper and r(E"') C int(r(E")).
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Part 11

Synchonous Correlation Sets and
Quantum Graphs
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Chapter 5

Preliminaries

In this chapter we explain the concept of a correlation set. These correlation sets arise from
different models of quantum systems where we have two isolated labs that share any number
of entangled states. Correlation sets are matrices of probabilities that are associated to
various models of quantum systems. Because correlation sets provide a description of some
part of a physical system, we will begin by talking about the physical set-up that describe
a correlation set. We will then formalize this concept using the language of C*-algebras.
At the end, we will discuss certain quantum graph parameters which arise from modifying
classical graph parameters such as the independence and chromatic number into a co-
operative game and considering whether one can have a winning strategy for such games
using different quantum systems. This, and the subsequent chapter is joint work with Vern
Paulsen and Chris Schafhauser.

5.1 Correlation Sets and Graph Parameters

Suppose that Alice has n4 quantum experiments each with m4 outcomes and Bob has ng
quantum experiments each with mp outcomes and that their combined labs are in some
combined, possibly entangled, state. We let p(a, b|x,y) denote the conditional probability
that if Alice conducts experiment x and Bob conducts experiment y then they get outcomes
a and b, respectively. The nangmsmp-tuple

(p(a,blz,y)) 1<z<na,1<y<ngp,1<a<ma,1<b<mp

of real numbers is, informally, called a quantum correlation. There are several different
mathematical models that can be used to describe these values, denoted by the subscripts,
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q,qs,qa and gc. The Tsirelson problems are concerned with whether or not these different
mathematical models yield the same sets. Due to the work of [741] and the remarkable work
of [39], it seems to be the case that most of these sets are distinct.

We now recall the formal definitions of these sets. First, the different mathematical
models shall be denoted by a subscript ¢ where ¢ can be either ¢, gs, qa, or qc. We let
Ci(na,mp,ma, mp) C R™a"8™a™B denote the set of all possible tuples (p(a, b|$,y)) that
can be obtained using the model t. We now describe each of these models.

When t = ¢, we have that p(a,b|x,y) € C,(na,ng, ma, mg) if and only if there exist
finite dimensional Hilbert spaces H4 and Hp, orthogonal projections E,, € B(Hy4), 1 <
r < nygl < a < my satisfying ZZZ‘I FE.o = Iu,, for all x, orthogonal projections Fy; €
B(Hg), 1 <y <ng,1 <b < mg satistying > "5 F,, = I, for all y and a unit vector
Y € Hy ® Hp such that

pla,blz,y) = (Eyq ® Fyp, ).

When ¢ = gs, the set Cys(na,np,ma, mp) is defined similarly, except the condition
that the Hilbert spaces H, and Hpg be finite dimensional is dropped.

It is known that the closure of the set Cy(na,np, ma, mp) is equal to the closure of the
set Cys(na,np, ma, mp), see [30, 10, 68], and we denote the closure by Cyq(na, np, ma, mg)

The set Cye(na,np, ma, mp) is defined by eliminating the tensor product and instead
having a single Hilbert space H, a unit vector ¢ € H, together with orthogonal projections
E..q, Fyp € B(H) satisfying

1. By oFyy = FyE,, for all a,b,z,y,
2. YA Epo =y 8 Fyp = Iy for all z,y, and
3. pla,blz,y) = (EpoFyptp, ) for all a,b, z,y.
In each of the cases, i.e., for t € {q,¢s, qa,qc}, when ny = ng =n and my4 = mp = m, we

set Cy(n,m) = Cy(n,n,m,m).

A correlation (p(a,b]a:,y)) € Cy(n,m) is called synchronous provided that whenever
a#b, pla,blz,x) =0, for all 1 < x < n. For each t, we write Cf(n, m) for the subset of
synchronous correlations. Characterizations of synchronous correlations in terms of traces
are known for the cases t = ¢, gc. In Section 6.1, we give characterizations of synchronous
correlations for the remaining cases, t = ¢s, qa.
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By a finite input-output game, we mean a tuple G = (I4, I, O4,0p,V) where 14, Ip,
O, Op are finite sets, representing the inputs that Alice and Bob can receive and the
outputs that they can produce, respectively, and a function

ViIAX[BXOAXOB%{O,l}

called the rule or predicate function. Here V(x,y,a,b) = 1 means that if Alice and Bob
receive (z,y) € 14 x Ig and produce outputs (a,b) € O4 x Op then they win the game
and if V(z,y,a,b) =0, then they lose the game.

A game is called synchronous provided that I, = Ig, O4 = Op and the function V
satisfies V(x, z,a,b) = 0, for all z, and for all a # b.

Given a game, a correlation (p(a,blz,y)) € Cy(|1al,|15],|0al, |Op|) is called a perfect or
winning t-correlation, if the probability that it produces a losing output is 0, i.e., provided
that whenever V(z,y,a,b) = 0, then p(a,blz,y) = 0. When a game has a perfect t-
correlation, then we say that the game possesses a perfect t-strategy. Note that if a game
is synchronous, then any perfect correlation must be synchronous.

From the definition of the set Cyu(na,npg, ma, mg) it readily follows that a game
possesses a perfect ga-strategy if and only if for every € > 0, there is a g-correlation
(p(a,b|x,y)) in Cy(na,np,ma, mp) satisfying that whenever V(z,y,a,b) = 0, then we
must have p(a, b|z,y) < e.

Every synchronous game G has a unital *-algebra A(G) [38] affiliated with it (possibly
the zero algebra), defined by generators and relations. It has generators

{Ero:1<x<n,1<a<m}

and relations

1. Eyo=E;,=E2, forall a and z,
2. 3" E,,=1forall z, and
3. for all a, b, z, and y, if V(z,y,a,b) =0, then E, ,E,;, = 0.

Omne of the results of [38] is that a synchronous game G has a perfect g-strategy if and
only if A(G) has a unital *-representation as operators on a non-zero, finite dimensional
Hilbert space. Thus, a synchronous game G has a perfect g-strategy if and only if one can
find projections F,, on a finite dimensional Hilbert space satisfying the above relations
for the given rule V. Similarly, G has a perfect qc-strategy if and only if A(G) has a
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unital *-representation into a C*-algebra with a trace. The results of Section 6.1 will
show that G has a perfect ga-strategy if and only if A(G) approximately has unital *-
representations on non-zero, finite-dimensional Hilbert spaces; more precisely, A(G) has a
unital *-representation on RY, the tracial ultrapower of the hyperfinite II;-factor R. For
readers not familiar with this ultrapower construction, more details can be found in [13,

Appendix A].

There are two families of synchronous games, both involving graphs, that we wish to
recall.

Let G = (V, E) be a finite undirected graph without loops. That is, V' is a finite set of
vertices and E C V' x V denotes the set of edges. Thus, for each v € V, (v,v) ¢ E, and
(v,w) € E = (w,v) € E, since it is undirected. We let K,, denote the complete graph
on n vertices so that (v,w) € E, for all v # w.

Given two graphs G = (V(G), E(G)) and H = (V(H), E(H)), a graph homomorphism
from G to H is a function f : V(G) — V(H) satisfying

(v,w) € E(G) = (f(v), f(w)) € E(H).

We write G — H to indicate that there is a graph homomorphism from G to H.

Many graph parameters can be defined in terms of graph homomorphisms. For an
integer ¢, let K. denote the complete graph on ¢ vertices. The chromatic number of G is

X(G) = min{c: G — K.}.

The cliqgue number of G is
w(G) = max{c: K. — G},

and the independence number of G is
a(G) = w(G),

where G = (V, E) denotes the complement of G; i.e., the graph with the same vertex set
but for v # w, (v,w) € £ < (v,w) ¢ E.

Given graphs G and H, the graph homomorphism game from G to H is the synchronous
game with inputs V(G), outputs V(H) and rule function

V(v,w,z,y) =0 < ((v,w) € E(G) and (z,y) ¢ E(H)) or (v=w and z #y) .

For t € {q, s, qa,qc}, we write G L H to indicate that the graph homomorphism game
from G to H has a perfect t-strategy.
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In parallel with the above characterizations we set:
(@) =min{c: G5 K.}, w(G) =max{c: K. > G}, a(G) = w(G) .

It is not hard to verify that for complete graphs,
X(Kn) = Xq(Kn) = Xqs(Kn) = Xga(Kn) = Xge(Kn) =1
and that
a(Ky) = ag(Ky) = ags(Kn) = aga(Kn) = age(Ky) = 1.
Indeed, by [38], we have that
n=x(K,) > Xq(Kn) > XqS(Kn) > an(Kn) > XqC(Kn> =n.

To see the second set of equalities, note that if K, N K, with ¢ > 1, then we would have
inputs v # w and the perfect t-correlation for this game would satisfy p(z,y|v, w) = 0 for
every x,y, contradicting Zx,y p(z,ylv,w) = 1.

Since for t € {q,gs, qa, qc}, x:(K,) = n, we have that if there exists K, N K. then
n < ¢. This in turn implies that

¢ =w(K,) < wg(Ke) < wys(Ke) < wga(Ke) < wge(Ke) <

where the last inequality follows since w,.(K.) is the largest n for which K, x K.. Thus,
we see that for complete graphs, these quantum analogues all have the same values as their
classical counterparts.

The second game that we shall need is the (G, H)-isomorphism game defined in [0].
This game is intended to capture the concept of two graphs being isomorphic. It is a
synchronous game with input set and output set both equal to V(G) U V(H) where we
view the vertex sets as disjoint. We refer the reader to [0] for the rules of this game. For
t € {q,qs,qa,qc} we write G =, H to indicate that there is a perfect t-strategy for the
(G, H)-isomorphism game. In [6], they only introduced and studied the cases ¢t = ¢ and
t = ns (which we have not introduced here).

However, we shall use the fact that since this is a synchronous game, it will have an
affiliated *-algebra with generators and relations that can be used to characterize when
perfect t-strategies exist. In fact, the generators and relations for the *-algebra of the game
are precisely the relations (IQFy) in [0]. We now recall the *-algebra A(G) corresponding to
the (G, H)-isomorphism game G. First we need some notation. Given vertices g, ¢’ € V(G)
and h,h' € V(H), write rel(g, ¢') = rel(h, 1’) if any of the following hold:
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1. g=¢ and h = I;
2. (9,9") € E(G) and (h,h') € E(H);
3.9#9,(9,9) ¢ E(G), h# N, and (h,}) ¢ E(H),

while rel(g, ¢') # rel(h, h’) when all three fail to hold. The *-algebra A(G) is generated by
elements

{Xgn:g€VI(G),he V(H)}

subject to the relations

Xg,h = X;,h = XgQJv and Z Xg,h’ = Xg/ﬁ =1
h eV (H) g'eV(Q)

for all g € V(G) and h € V(H) and
rel(g,¢') #rel(h,h') = X Xy =0

for all g,¢' € V(G) and h,h' € V(H).

5.2 Notation

Let F(n, m) denote the group freely generated by n elements of order m. That is, F(n, m) =
(Z/mZ)*™. Let C*(F(n,m)) denote the universal group C*-algebra of F(n,m). For x =
1,...,n, let u, be the unitary in C*(IF(n, m)) corresponding to the zth generator of F(n, m).
If w,,, denotes a primitive mth root of unity, the spectral values of u,, are w! fori=1,...,m.
Let e,; denote the spectral projection of u, at the spectral value w! . Then e,; is a
projection for all z and ¢ and ), e,, =1 for all z.

Conversely, given a C*-algebra A and projections e,; € Afor1 <z <nandl1<i<n
such that ) .e,; = 1 for all z, the element v, = ). wfnem is a unitary in A with order
m. Hence there is a unique *-homomorphism C*(F(n,m)) — A determined by u; — v;. A
straight forward calculation shows these constructions are inverses of each other and hence
C*(F(n,m)) is the universal C*-algebra generated by projections e, ; for 1 < z < n and
1 <j <msuch that ) e,; =1 for all z.

Let M, denote the vector space of n x n matrices over C. This vector space can also be
viewed as a Hilbert space using the inner product (A, B) := tr(B*A). By a submatricial
operator system, we mean a linear subspace S of M, for which the identity matrix [
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belongs to S and for which S is closed under the adjoint map *. A submatricial traceless
self-adjoint operator space is a linear subspace J C M, for which J is closed under the
adjoint operation * and for which given any A € 7, the trace of A is zero.

We will also be using the following graph theory terminology. A graph G = (V, E) is
an ordered pair consisting of a vertex set V' and edge set £ C V x V. Since we are working
with undirected graphs we require that if (i1,45) € E then (is, 1) € E. We say vertices iy
and iy are adjacent, or connected by an edge, and write i; ~ iy, whenever (i1,i3) € E. An
independent set of a graph G is a subset v C V such that for any two distinct elements
1,12 € v we have iy o0 i5. For a graph with n vertices it will be standard to consider the
vertex set to be V' = {1,...,n}, which we will denote by [n].

Finally, we will always denote by U for an arbitrary free ultrafilter over N.
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Chapter 6

A synchronous game for binary
constraint systems

This chapter is about synchronous correlation sets. We start this chapter by character-
izing synchronous correlation sets in terms of tracial states on the algebra C*(F(n,m))
as introduced in the preliminaries. We show that while the sets C;, and Cys cannot be
distinguished by synchronous games, the case of whether Cy, and Cy. can be distinguished
by a synchronous game is equivalent to Connes’ embedding problem.

In Section 2, we describe a class of games called the synchronous BCS games. These
are games based on trying to find a solution to the linear equation Ax = b over the field
Z/2. The synchronous BCS game is a variation of the BCS game used by Slofstra to show
that Cys cannot be closed [71]. We make a modification of Slofstra’s argument to reduce
the problem of finding a winning strategy for this game to finding a representation for a
group I'(A, b) associated to the game. Indeed, by Slofstra’s argument, it follows that one
can separate the set Cys from the set Cy, by a synchronous game.

Finally, in Section 3, we show that for a graph G4, associated to a synchronous BCS
game, the synchronous BCS game has a winning t-strategy if and only if the associated
t-independence number a;(G4p) is maximal. This, combined with the work in Section 2
demonstrates that the parameter o, is distinct from the parameter oy.
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6.1 Characterizations of Synchronous strategies

In [67] it was shown that synchronous quantum strategies arise from various families of
traces. In particular, it was shown that p(i, j|lv,w) € C;.(n,m) if and only if there is a
tracial state 7 : C*(F(n,m)) — C such that p(i, jlv,w) = T(eyi€w;) and p(i,jlv,w) €
Cs(n,m) if and only if there was a tracial state as before such that in addition the GNS
representation of (C*(F(n,m)),7) is finite dimensional. But at the time no characterization
were given of the traces that arise from synchronous quantum spatial correlations or syn-
chronous quantum approximate correlations. In this section we provide characterizations
of those two types of traces.

Definition 6.1.1. Let A C B(H) be a C*-algebra. A tracial state 7 on A is called
amenable provided there is a state p on B(H) such that p|4 = 7 and p(uTu*) = p(T) for
all T'€ B(H) and all unitaries u € A.

Note that when A = C5(G) for a discrete group G, then amenability of 7. is equivalent
to amenability of G. One direction can be seen by taking a restriction of the state p
extending 7, on B(£*(G)) to £*°(G) in order to get a G-invariant state. By an application
of Arveson’s Extension Theorem, the amenability of 7 is independent of the choice of
faithful representation of A. The following is [50, Proposition 3.2] (see also Theorem 6.2.7
in [13]). Here R denotes the hyperfinite II;-factor, U is a free ultrafilter over the positive
integers, and RY is the corresponding tracial ultrapower. See Appendix A in [13] for the
relevant definitions.

Theorem 6.1.2. Suppose A is a separable C*-algebra and T is a tracial state on A. The
following are equivalent:

1. the tracial state T is amenable;

2. there is a *-homomorphism ¢ : A — RY with a completely positive, contractive lift
A — (°°(R) such that tro¢ = 7;

3. there is a sequence of completely positive, contractive maps ¢y, : A — My such that
[¢r(ab) — ¢r(a)Pr(b)]l2 = 0 and  trauw)(dr(a)) = 7(a)
for all a,b e A;

4. the linear functional ¢ : A® A% — C defined by ¢(a ® b?) = 7(ab) is bounded with
respect to the minimal tensor product;
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The trace in condition (3) is the normalized trace, i.e., for A = (a; ;) € M, tr,(A) =
L3 Lai; and the norm in condition (3) is the normalized Hilbert-Schmidt norm, i.e.,
|Allz = tr, (A*A)Y/2.

In condition (4), note that if ¢ is bounded then for any x =) . a; ® b;" we have that

p(rx) =Y r(ajabiby) =Y 7((aibi)(a;b;)") > 0.

(2 12
Since p(1 ® 1) = 1, we see that if ¢ is bounded, then ¢ is a state.

Recall that C*(F(n,m)) is generated by a set of n unitaries, u,, 1 < v < n, of order m
and e, ; denotes the spectral projection of u, corresponding to the spectral value w!, where
Wy, is a primitive mth root of unity.

Lemma 6.1.3. There is a *~isomorphism ~ : C*(F(n,m)) — C*(F(n,m))?? with v(ul) =
w,1<v<n,1<j<m-—1. Moreover, Y(ewi) =e€pi for 1l <v<mandl <i<m.

Proof. The words of the form

nLL K
u,Ul UUK

span a dense *-subalgebra of C*(F(n,m)). If we set

(g - ugg) = wg -

ni
ni’

and extend linearly, then it is easily checked that ~ extends to the desired *-isomorphism.
The second claim is a simple computation. O

Lemma 6.1.4. Suppose n > 1 and p € M, is a positive contraction. If q denotes the
spectral projection of p for the interval [1/2,1], then

1P — qll2 < 2v2|lp — p?||2-

Proof. Define py = (1 — q)p and p; = gp. Note that ||p; — p?|l2 < |lp — p?||2 for i = 0, 1.
Since 0 < pg < %, we have

1
po — Py = po(1 — po) > P

and hence |[po|l2 < 2||po — pd||2. Similarly, since 3¢ < p; < 1, we have

1 1
pm—pi=pm(l—p)> §q(1 —m) = 3(q — 1)

and hence ||p; — qll2 < 2||p1 — p?||2- Since py and p; — ¢ are orthogonal, the result follows
from the Pythagorean identity. O]
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Lemma 6.1.5. Given ¢ > 0 and an integer m > 1, there is a 6 > 0 such that for
any integer d > 1, if p1,...,pm € My are positive contractions with ||p? — pilla < & and
lpipjlla < 0 foralli,j =1,...,m withi # j, then there are mutually orthogonal projections
Qs -y Gm € My such that ||p; — qilla < e foralli=1,...,m.

If in the statement above, we further require || >, pi — 1|2 < 9, then we may arrange

for> . ¢ =1

Proof. We prove the first statement by induction on m. When m = 1, this is immediate
from Lemma 6.1.4. Assume the result holds for an integer m > 1. Fix ¢ > 0 and
define €9 = £/(40m + 3). Let dp > 0 be the constant obtained by applying the induction
hypothesis to m and gy and define § := min{dy, £¢}. Suppose d > 1 and p1,...,pmi1 € My
are positive contractions as above. By the choice of §, there are mutually orthogonal
projections q, ..., ¢, € My such that

1pi — gill2 <0 <e.
Since ||pipmiille < 0 for all i =1,...,m, we have
GiPmstll2 < €0+ 0 < 2¢.
Define r = (1 — ¢; — - - - ¢,) and define p = p,,,11. Then
m
lrpr = pll2 < 2rp = plla <2 [laipll2 < 4me.
i=1

Now, note that

[(rpr)? = rpr|la < ||(rpr)® = p*|l2 + [[p° — pll2 + [lp — rpr2
< 3||rpr — p|l2 + ||p2 —plla < 12meg + 6 < (12m + 1)go.

By the previous lemma, if ¢, 1 denotes the spectral projection of rpr corresponding to the
interval [1/2,1], then
Gmar — P72 < 2V2(12m + 1)ey.

Therefore,

||Qm+1 — p”g < 2\/5(127’)1 + ]_)80 + 4m50 < (40m + 3)60 =E.
Note that each of the projections ¢, ... ¢, are orthogonal to r by construction. As g1
is a spectral projections of rpr, we also have that each of the projections qi,...,q,, is

orthogonal to ¢,,11. This completes the proof of the first part of the lemma.
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To see the final sentence holds, fix m > 1 and ¢ > 0. Let g = ¢/(m + 2) and let
do be the constant given by applying the first part of the lemma to m and ¢y. Define
0 = min{eg, do}. Suppose d > 1 and py, ..., p, € My are projections such that

lpi — P2l < 0. lpipslla <6, and || pp—1[|, <0
k

for all 4,57 = 1,...,m with ¢ # j. By the choice of 9§, there are mutually orthogonal
projections ¢, ¢z, qs, ... qm € My such that ||p1 — qill2 < €0 and ||p; — qil|2 < &o for i =
2,...,m. Now, define ¢{ = 1—¢} —>_"", ¢; and note that ||¢{||> < (m+1)ey. To complete
the proof, define ¢; = ¢} + ¢f. ]

Theorem 6.1.6. Fix integers n,m > 1. For (p(i,j|v,w)) e R™™ the following are
equivalent:

1. (p(z',j|v,w)) € G (n,m);
2. there are synchronous correlations (pk(i,j|v,w)) € C;(n,m) with
liinpk(i,ﬂv, w) = p(i, jlv, w)
for all v, 7,v,w;
3. there is an amenable trace T on C*(F(n,m)) such that
T(evi€w ;) = p(i, j|v, w)
for all i, 7,v,w; and
4. there are projections f,; € RY such that Y, f,; =1 for all v and
tr(foifwi) = (i, jlv, w)
for all i,7,v,w.
Proof. 1t is clear that (2) implies (1). To see (1) implies (3), assume that (p(i, j|v,w)) is a
correlation in CZ,(n, m). There exist correlations (p (i, j|v,w)) in Cy(n, m) for k > 1 such

that

hinpk(zuﬂva w) = p(i,j|?), U})
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for all 4, j,v,w. Each (pk(i,j,v,w)) has a representation on a tensor product of finite
dimensional vector spaces C* @ C™ as

(i, jlo,w) = (Ey, @ Fly b, )
where the matrices EF

b0 Fﬁj are all orthogonal projections satisfying » . Effl = Iy, and
>, Fa ;= I, and each ¢y is a unit vector.

Thus there is a representation 7 : C*(F(n,m)) @ C*(F(n,m))” — My, ® M,, with
Th(ews @ €y;) = Eb, ® Fy 1. Setting gp(a ® b%) = (mp(a ® b%)y, ¢y) defines a sequence
of states ¢ on C*(F(n,m) @ C*(F(n,m))°. Let ¢ be any weak*-limit point of (), and
note that ¢(e,; ® ey ;) = p(i, j|v, w).

If we let m: C*(F(n,m)) @min C*(F(n,m))? — B(H) and ¢» € H be a GNS represen-
tation of this state, then it follows by [67, Theorem 5.5], that 7(a) = (7(a ® 1)1, 1) is a
trace and that

T(a ® ey ;) = T(aey,,; @ 1).
Hence, m(a ® bey, ;) = m(1 @ b)m(a ® ey, ;)Y = m(ae, ; ® b)Y and it follows that

pla®@b?) = (r(a®@b™ ), ) = (m(ab® 1)1, ¢) = 7(ab) .
Thus, 7 is an amenable trace by Theorem 6.1.2.

To see (3) implies (2), it suffices to show that if 7 is an amenable trace on C*(F(n, m)),
then there is a sequence of traces 7, on C*(F(n,m)) which factor through a finite dimen-
sional matrix algebra such that 7(a) — 7(a) for all a € C*(F(n,m)). Since 7 is amenable,
Theorem 6.1.2 yields a sequence of completely positive, unital maps ¢y : C*(F(n,m)) —
Mgy such that

|6 (ab) — dr(a)pr(b)ll = 0 and  tr(¢w(a)) = 7(a)

for all a,b € C*(F(n,m)). By passing to a subsequence and applying Lemma 6.1.5, we
may find projections pﬁi € Mgy such that Zzpﬁl = 1 for all v and k£ and such that
|dr(evi) —pk |l = 0 for all v and ¢. There is a *-homomorphism ¢}, : C*(F(n,m)) — My
such that ¢} (e,;) = pﬁ for all v, 4, and k. Using that C*(F(n,m)) is generated as a C*-

7
algebra by the projections e, ;, one can show

6 (a) = dp(a)ll2 — O

for all a € C*(F(n,m)). In particular,

lim tr(¢y(a)) = lim tr(éx(a)) = 7(a)
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for all a € C*(F(n,m)).

To see (3) implies (4), note that if 7 is an amenable trace on C*(IF(n, m)), then there is a
trace preserving *-homomorphism ¢ : C*(F(n,m)) — RY by Theorem 6.1.2. Define f,; =
P(e,;) € RY for all v and i. Conversely, given f,; as in (4), there is a *-homomorphism
¢ : C*(F(n,m)) — RY such that ¢(e,;) = f,; for all v and i. As C*(F(n,m)) has the
local lifting property, ¢ has a completely positive, unital lift C*(F(n,m)) — (*(R). By
Theorem 6.1.2, the trace 7 := tro¢ on C*(F(n,m)) is amenable. O

Corollary 6.1.7. Let G = (I,0,V) be a synchronous game. The following are equivalent:

(1) G has a perfect qa-strategy,
(ii) there is a unital *-representation of A(G) into RY,

(iii) there is an amenable trace T on C*(F(n,m)) such that V(v,w,i,5) = 0 implies
T(ey,iew ) =0 for all i, j, v, w.

Corollary 6.1.8. The following are equivalent:

(1) Connes’ embedding conjecture has an affirmative answer,
(ii) for all n,m, Cs,(n,m) = Cp.(n,m),

(111) for all n,m, Cye(n,m) = Cye(n, m).

Proof. The equivalence of (i) and (ii) in Theorem 6.1.6 answers [2, Problem 3.8]. In the
remarks following Problem 3.8, [24] shows how a positive solution of the problem leads to
the above result. O]

Remark 6.1.9. The implication (i) = (i) in the above corollary is due to [63].
The equivalence of (i) and (ii) follows from [24, Theorem 3.7] and our solution of their
synchronous approximation problem. Note that the implication (iii) implies (ii) is trivial,
so we have a different proof of Ozawa’s implication. Ozawa’s proof uses Kirchberg’s results
showing the equivalence of Connes’ embedding conjecture to the equality of the minimal
and maximal tensor products of certain C*-algebras of free groups. The above proof uses
the results of [24] which in turn used Kirchberg’s results about the equivalence of Connes’
embedding conjecture to finite approximability of traces, often referred as the matricial
microstates conjecture. Finally, due to the work of [39], it seems to be that the above
corollary has an answer in the negative.
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We next turn our attention to the set of synchronous quantum spatial correlations.
We prove the somewhat surprising result that any synchronous correlation that that can
be obtained using a tensor product of possible infinite dimensional Hilbert spaces has a
representation using only finite dimensional spaces.

Theorem 6.1.10. Let n,m > 1. Then Ci(n,m) = C; (n,m).

Proof. By definition, C?(n,m) C Cf (n,m), so we must prove that C;_ (n,m) C C;(n,m).
Let (p(i,j|v,w)) € Cg,(n,m) be represented as

p(i,j’% w) = <Ev,i ® Fuﬁﬂﬂv ¢>

where {E,;,1 < v <n,1 <i < m} are orthogonal projections on some Hilbert space H
satisfying >, E,; = Iy for all v, {F,; : 1 <w < n,1 < j < m} are orthogonal projections
on some Hilbert space K satisfying Zj F, ; = Ik for all w, and ¢ € H® K is a unit vector.

Note that if we are given any other Hilbert space G and we set F, ; = F,1 @ Ig and
F,, ;= Fu,;®0, then p(i, jlv,w) = ((E,; ® F, ;)1,9). In this manner we see that there
is no loss of generality in assuming that dim(H) = dim(K), so we assume that these two
Hilbert spaces have the same dimension.

Let D .oy aner @ fi be the Schmidt decomposition of ¥ so that X is a countable set
and {e; : k € X} and {f; : k € X} are orthonormal sets in their respective Hilbert spaces.
By setting sufficiently many o’s equal to 0, and direct summing with additional Hilbert
spaces as needed, we may assume that these sets are orthonormal bases for their respective
spaces.

Let {r; : 1l € Y} = {ax : k € X} be an enumeration of the set of distinct non-zero
ag’s (which is at most countable) with 1 > ro > ... and let S; = {k : o = r;}. Let
& = span{ey : k € S;} and F; = span{fx : k € S;}. Since the ay’s are square summable,
each set S5 is finite and so each of these spaces is finite dimensional.

We claim that the spaces & are reducing subspaces for {E,;} and that the spaces F;
are reducing for the set {F, ;}

First, we complete the proof assuming the claim. Let E!, denote the compression of
E,; to the space & and let F, ! denote the compression of Fw j to the space JF; so that
these are orthogonal prOJectlons and Y, B ; = Ig, for all v and }_. F, ; = I for all w.

Set d; = dim(&;) = dim(F;) = card(S)) and let Y = \/LE Zkesl er X fr € & ® Fi, which is
a unit vector. Let ¢, = rd; so that Y, &, = >, a2 = 1 and set

pl(’i,j‘U,IU) = <E1lj,1 ® in;,jwlawl> € C(I(n’m) :
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Note that
S i jlo.w) = pli, jlo, w)
1

so that for ¢ # j, >, tipi(i, jlv,v) = 0 from which it follows that p(i, j|v,v) = 0 for all .
Thus, each p;(4, j|v, w) € Cg(n,m).

Since C;(n,m) is convex, by [19], p(i, jlv,w) € C5(n,m). The key point here is that
by [19] a convex set need not be closed to ensure that such a series remains in the set.

Thus, we need only establish that these spaces reduce the operators. Let w = e*™/™ be
a primitive m-th root of unity and let A, = >"7", w'E,; and let B,, = 27]”21 w! F,, j so that
these are unitaries of order m and the original projections are the spectral projections of
these unitaries. Note that these unitaries generate the same C*-algebras as the projections
so that the projections are reduced by these subspaces if and only if these unitaries are
reduced by these subspaces.

First recall that the synchronous condition guarantees that (E,; ® )Y = (I ® F, ;)¢
by [67, Theorem 5.5i] and hence, (A, ® I = (I ® B,).

Now (A® I)Y = (I ® B)1y implies
aj(Aej,e;) = (A@ D, e; @ f;) = (I @ B, e; ® f;) = ai(Bfi, fj) -

Thus for 7 € S, using that a; > «;, we have

af 2 ) afl{Aveg el =) ail(Bufi, ;)P = I BufillP = of
j j

and so we must have equality throughout. But equality implies that (A,e;, e;) = 0 for all
Jj ¢ S1. Hence, Afe; € & for all i € S;. This shows that A! leaves & invariant. Hence,

A, = (A:)mfl also leaves this space invariant and so &; is a reducing subspace for every
A, and hence for the entire C*-algebra that they generate. A similar proof shows that F;
is reducing for every B,.

Now it follows that for i € Sy, we have that for j € Sy, (Aye;,e;) = 0 and so,
s > adl(Aves,e)P =D rl(Bufi )P =13
J

J

Similar reasoning shows that Afe; € & and consequently that £ reduces these unitaries.

We have now done the first two cases and the complete proof follows by induction along
these lines. O

Corollary 6.1.11. A synchronous game has a perfect qs-strategy if and only if it has a
perfect q-strategqy.
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6.2 Separating C;; and C;,

Suppose Ax = b is an m x n linear system over Z/2; that is, A = (a; ;) € M,,,,(Z/2) and
be (Z/2)". Let V; ={j € {1,...,n} : a;; # 0} denote the variables which occur in the ith
equation for : = 1,..., m. It will be convenient to write the system multiplicative notation
where we identify Z/2 with {1} and write the ith equation of the linear system as

[z =" (6.1)

JjEV;

for i = 1,...,m where z; € {£1}. We recall the definition of the solution group I'(A4,b)
associated to the system Az = b. The idea is to interpret (6.1) as the relations of a group
with generators xi,...,x, and a generator J used to place the role of —1. More precisely,
we make the following definition.

Definition 6.2.1. Given an m X n linear system as above, let I'(A, b) denote the group
generated by uq,...,u,,J with relations

l.ut=J*=1forj=1,...,n,
2. wjup = wuj for jk e Vyand e =1,...,m,
3. ujJ = Jujfor j=1,...,n, and

4. Hjev,-uj =Jbifori=1,...,m.
We call T'(A, b) the solution group associated to the linear system Ax = b.

For:=1,...,m, let

S; ={x e {£1}": Ha:j = (—1)% and z; = 1 for j ¢ V;} .

JjEV;
We associate a synchronous game to Az = b as follows:

Definition 6.2.2. Suppose Ax = b is an m xn linear system over Z/2 and b € (Z/2)". The
synchronous BCS game associated to Az = b, denoted synBCS(A, b), is given as follows:

1. the input set is Z = {1,...,m};
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2. the output set is O = {+1}";

3. given input (7,7), Alice and Bob win on output (z,y) if z € S;, y € 5}, and for all

Let A = C*(F(m,2")) denote the universal C*-algebra generated by projections e; , for
i=1,...,m and x € {£1}" subject to the relations > e;, =1 foralli=1,...,m. The
following result gives a relationship between correlations in Cj.(m,2") and the structure
of the group T'(A,b).

Theorem 6.2.3. Suppose every column of A contains a non-zero entry. Then there is a
surjective *-homomorphism m : A — C*(T'(A,0))/(J + 1), where (J + 1) denotes the ideal
generated by J + 1, given by

[y, Xe, (w5) z€5;
m(e;s) = Jevi AT 6.2
(e {0 e (62
where X.,;(u;) denotes the spectral projection of u; at the point x;.

Moreover, the map T — T o is a bijection from the set of tracial states on the algebra
C*(T'(A,b))/(J + 1) to the set of tracial states 7" on A satisfying 7'(e; z€;,) = 0 whenever
Alice and Bob lose on outputs (z,y) given inputs (i,7).

Proof. First we show that the formula for = given in (6.2) defines a *-homomorphism on
A. Note that since {u; : j € V;} is a set of commuting self-adjoint unitaries, 7(e;,) is
defined and is a projection for each ¢ and . Moreover, for « = 1,...,m, in the algebra

C*(I'(A,0))/{J + 1),

—1)" = Huj = H(XH(%) X-1(u;)) Z H TjXa, (U;)

JEV; JEV; ze{£1}Vi JEV

Note that if 2 € {£1}" and [[ ¢y, z; # (—1)%, then

H i Xe, (1) H UjXa; (1) H TjXa; (1)
JjeV; JjeV; JjeV;
and hence [[;cy. ¥;Xz;(u;) = 0. Combining these calculations, we have

= Z H LjXa, (uj)

x€S; jJEV;
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and hence

S7 wtens) = S0 T () = (=1 3 T s () = 1.

rze{+1}m z€S; jJEV; z€S; JEV;
Thus the desired *-homomorphism 7 exists.

To see 7 is surjective, fix k € {1,...,m}. As the kth column of A contains a non-zero
entry, there is an ¢ € {1,...,m} such that k € V;. Note that

wr = (¢ () = X1 () D ] s ()

z€S; jJEV;
= 2 1Dwew) - > T]xew)
z€S;,wp=1jeV; z€S;,xp=—13€V;
= Z m(eps) — Z T(ep )
€S, xr=1 z€S;,xpr=—1

As C*(I'(A,b))/(J + 1) is generated by uy, ..., U, the result follows.

We next work to prove the claim about traces. As 7 is surjective, the induced map on
traces is injective. To see surjectivity, let 7’ be a trace on A such that 7/(e; ,€;,) = 0 if
x & S;,y¢S;, or there is a k € V; NV} such that z;, # y,. Define

N={a€ A:7'(a*a) =0}
and note that N is an ideal in A. We first show
1. if z ¢ S, then e;, € N,
2. if xy # y for some k € V; NV}, then e; ,e;, ¢ N, and

3.if k€ ViNVj, then Y zpein— D ypeiw €N

IESi yESj

For (1), if » ¢ S;, then 7/(e] €;.) = 7'(€ix€i) = 0 by the assumptions on 7'. For (2), if
xy # yi for some k € V; N'Vj, then

T ((eixjy) (€int)y)) = T'(€jy€inesy) = T (€intjy) =0

by the assumptions on 7. For (3), fix k € V;NV;. Then

T (€is€iy) Tk = Yk
(T reinin) = i,2€j,y
(TrYreizejy) {0 %
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by (2) above. Also,

Y e = Te) =1

z€S; Z‘GS]'
by (1) above. Now,

*
T Tr€iqp — YkCix TkCix — YkCix

z€S; yES,; z€S; yES,;
= Tlen)+ Y Tey) =2 Y T(eisesy) =0
z€S; yES; z€8;,y€S;
which proves (3).
Fix k € {1,...,n}. Since the jth column of A is non-zero, there is an i € {1,...,m}

such that k € V;. Define v, € A/N by
V = Z Tk€; -
TES;

By condition (3) above, the vy is independent of the choice of i. Note that v is a self-
adjoint unitary in A/N and if k,¢ € V; for some i = 1...m, then viv, = vevg. Finally for

¢ =1,...,m, since the projections e; , are orthogonal, we have
_ R o= (=1 b;
Vg = TpCin = Ty | i = (—1)"
keV; keV; zesS; zeS; \keV;

It follows that there is a group homomorphism p : T'(A,b) — U(A/N) given by p(ui) = vy,
and p(J) = —1. Now, p induces a *~homomorphism, still denoted p, from C*(T'(A4,b))/(J+
1) to A/N.

Let ¢ : A — A/N denote the quotient map. Since 7’ vanishes on N, there is a
trace 7 on A/N such that 7 o ¢ = 7/. Define a trace 7 on C*(I'(A,b))/(J + 1) by
T = 7' o p. By construction, p(m(e;.)) = q(e;,) for all ¢ and = and hence p o = ¢. Now,
Tomr =7 oponw =7 o0q=r7". This completes the proof. O

Corollary 6.2.4. Let Az = b be a linear system.

1. synBCS(A,b) has a perfect qc-strategy if and only if J # 1 in T'(A,b),

2. synBCS(A, b) has a perfect qa-strateqy if and only if there is representation I'(A, b) —
RY such that p(J) # 1, and
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3. synBCS(A,b) has a perfect g-strategy if and only if there is a finite dimensional
representation p : I'(A,b) — U(My) such that p(J) # 1.

Proof. We may assume no column of A is identically zero. Assume A is an m X n linear
system.

We first prove (1). If synBCS(A, b) has a perfect qe-strategy p(z,yli,j) € Cp.(m,2"),
there is a trace 7 on A such that

p(x,yli, j) = T(eigzej,y) forall i, j,z,y.

By Theorem 6.2.3, there is a trace 7/ on C*(I'(A,b))/(J + 1) such that 7" or = 7. In
particular, C*(T'(A4,0))/(J + 1) is non-zero. Hence J + 1 # 2 in C*(I'(A,b)) and J # 1 in
['(A,0D).

Conversely, suppose J # 1in T'(A,b). As J is central, (J) = Z/2 is a normal subgroup
of T'(A,b). There is a conditional expectation E : C*(T'(A4,b)) — C*((J)) = C? determined
by E(s) = sfors € {1, J} and E(s) = 0for s € I'(A4,b)\{1, J}. Let x : C*({J)) — C be the
character defined by x(J) = —1. Then yoE is a trace on C*(I'(A,b)). As (xoE)(J+1) =0
and J+1 > 0, the trace xoF vanishes on the ideal (J+1) C C*(I'(A, b)) and hence induces a
trace 7 on C*(I'(A,b))/(J+1). Now, the trace Tom on A is a trace where 7 is the surjection
in Theorem 6.2.3. We define a qc-correlation by

p(x,yli,j) = 7(m(eipe;y)) forall i, j, z,y.

By Theorem 6.2.3, (p(x, y|i,j)) is a perfect qc-strategy.

For (2) and (3), we let B denote either RY or M. Suppose p : T'(A,b) — U(B) is a
group homomorphism such that p(J) # 1. Let ¢ denote the spectral projection of p(.J)
corresponding to the eigenvalue —1. As J # 1, we have ¢ # 0. As J is central in T'(A4, b),
the projection ¢ commutes with the image of p. Now, gp(-) is a unitary representation of
I'(A,b) on U(gBq) and qp(J) = —q. When B = My, ¢Bq = My for some d’ > 1, and when
B =TRY, qBq =~ RY. Hence after replacing B with ¢Bq and p with gp(-), we may assume
p(J) = —1. Now p induces a *-homomorphism C*(I'(A,b)) — B vanishing on J + 1 and
hence induces a *-homomorphism

AT (A D) (T +1) = B

The trace on B defines a trace on A which in turn defines a winning g-strategy when B is
finite dimensional and a winning qa-strategy when B = RY.
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Now suppose synBCS(A, b) has a perfect qa-strategy. As in Theorem 6.2.3, there is a
trace 7 on C*(T'(A,))/(J + 1) which factors through the trace on RY. The GNS represen-
tation of 7 induces a representation of C*(I'(4,b))/(J + 1) — RY which in turn induces

a representation p : T'(A,b) — RY with p(J) = —1. Similarly, if synBCS(A,b) has a
perfect g-strategy, one produces a representation of I'(A, ) in the same way using a finite
dimensional algebra in place of RY. m

The following result is in [74].

Theorem 6.2.5. There is a linear system Ax = b such that there is a representation
p: T(Ab) — URY) such that p(J) # 1 but for every finite dimensional representation
po: (A, 0) = U(My), p(J) =1.

Combining Theorem 6.2.5 with Corollary 6.2.4 provides a synchronous game which has
a perfect qa-strategy but no perfect g-strategy. Hence we have the following strengthening
of Slofstra’s result[71].

Corollary 6.2.6. For sufficiently large m and n, we have Cy(m,2") = Cs (m,2") #
Ce.(m,2"). In particular, for sufficiently large m,n, C3(m,2") = C; (m,2") is not closed.

Remark 6.2.7. If each row of the matrix A appearing in the above result has only k
non-zero entries, then one can deduce that C%(m,2%) = C%,(m,2¥) is not closed.

Remark 6.2.8. If Cy5(m,2") or C,(m,2") was closed, then their subsets of synchronous
elements would be closed. Since Cj(m,2") = C; (m,2"), the above result implies Slofstra’s
result[74] that C,(m,2") and C,s(m,2") are not closed, for sufficiently large m, n.

Remark 6.2.9. It is shown in [70] that C;(3,2) is always closed but as of the writing of
this thesis, it is still open if Cy(3,2) must also be closed. As well, it is shown in [18] that
Cy # Cys.

6.3 Separating quantum independence numbers

In this section we prove that there exists a graph G for which a,(G) < ag(G). Recall
from the preliminaries that for ¢t € {q, qa, gc}, the independence number (@) is the largest
¢ > 1 for which the graph homomorphism game K. — G has a perfect t-strategy.

First let us recall from [0, Section 6] the graph G 4 defined for a linear system Az = b
over Z /2.
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Definition 6.3.1. Suppose Ax = b is an m X n linear system over Z/2 and b € (Z/2)".
Define a graph G4 with the following data:

1. the vertices of G 4 are pairs (i,z) where i € {1,...,m} and z € S;;

2. there is an edge between distinct vertices (i,z) and (j,y) if and only if there exists
some k € V; NV, for which x # y; that is, x and y are inconsistent solutions.

Lemma 6.3.2. Suppose t € {q,qa,qc}. If G and H are finite graphs and G =, H then
o (G) = ay(H).

Proof. Let V =V (G)UV (H). It suffices to show that if G =, H, then whenever a,(G) > ¢,

we also have oy(H) > ¢. As a;(G) > ¢, we have K, = G. The C*-algebra of this
synchronous game is a C*-algebra A, with a tracial state 74 on A, and projections e;, € A
fori=1,...,cand v € V(G) such that > e;, =1foralli=1,...,cand 7(e;€j,) =0
whenever (v,w) € E(G). If t = ¢, we may assume 74 factors through a finite dimensional
algebra and if ¢ = qa, we may assume 74 is amenable.

Similarly, since G =, H, there is a C*-algebra B, a tracial state 73 on B, and projections
Qo € B for v,w € V such that )~ ¢, = 1 for all v € V' and such that if v,w € V(G)
and z,y € V(H) with rel(v,w) # rel(z,y) then 75(¢ysGuwy) = 0. (Note that there are other
relations in the graph isomorphism game; these are the only ones we will need to use here.)
Again we choose 75 to factor through a finite dimensional algebra if ¢t = ¢ and we choose
75 to be amenable if ¢t = qa.

Fori=1,...,cand z € V(H), define

fio= D €u®@qa.€ARB.

veV(G)

Then each f;, is a projection and for alli =1,...,¢, we have > fi, =1 If z,y € V(H)
and (z,y) € E(H), then

TA ® TB(fi,xfj,y) = Z TA(ei,vej,w)TB(q%wa,y)-
v,weV(G)

For v,w € V(G), if (v,w) € E(G), then 74(e;v€jw) = 0, and if (v,w) ¢ E(G), then
78( foxfuwy) = 0. Hence the projections f;, € A ® B and the trace 74 ® 75 determine a
perfect qe-strategy for the graph homomorphism game from K, to H. If 74 and 75 factor
through finite dimensional algebras, so does 74 ® 7. If 74 and 75 are amenable, so is
T4 @ 1. Hence in all cases, ay(H) > c. O
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It is shown in [62, Theorem 3.7] that for ¢ € {q,qa,qc} and graphs G, H and K, if
G5 Hand H- K then G 5 K. This leads to the following:

Proposition 6.3.3. Ift € {q,qa,qc} and G is a finite graph, then a(G) < x:(G).

Proof. Suppose that ay(G) = ¢. By definition, there is a t-homomorphism K, LG If
x¢(G) = d then there is a -homomorphism, G LK 4- Since ga-homomorphisms are closed

under composition, there is a t-homomorphism K, N K, which implies that x;(K.) < d.
As noted in the preliminaries, x;(K.) = ¢ and hence ¢ < d as claimed. O

In the case t = ¢, the following result appears as Theorem 6.2 in [(]. Since the pub-
lication of this result, an error has been found the initial publication of this Theorem by
Adina Goldberg and it is rectified and generalized in [12, 32]. The following proof is an
amendment with ideas coming from their correction.

Theorem 6.3.4. Suppose t € {q,qa,qc} and let Ax = b be an m X n linear system. The
following are equivalent:

1. the game synBCS(A,b) has a winning t-strategy;
2. Gap =i Gap;
3. a(Gap) = m.

Proof. (1) = (2): Suppose that we have a winning t-strategy for the synBCS(A,b). Fix
a C*-algebra B, a faithful trace 7 € B, and projections e;, € B for i = 1,...,m and
x € {£1}" such that > e, = 1foralli, e, = 0if x ¢ S;, and e, ze;,, = 0 if there is
ak e V;nV; with z, # y,. If t = ¢, we assume B is finite dimensional and if t = qa,
we assume B C RY. Let G be the isomorphism game for (G443, Gao) and let A(G) denote
the algebra associated to G as defined in the preliminaries. It suffices to construct a unital
*-homomorphism 7 : A(G) — B.

Let S C {£1}" denote the set of solutions to the ith equation of the linear system
Ax = 0 and let S} C {41}" denote the set of solutions to the ith equation of the linear
system Az = b. Given z,y € {£1}", let zy € {£1}" denote the pointwise product of x
and y. Note that if x € S} and y € S?, then xy € S}. Moreover, for x € S}, the map
SY — S} given by y — xy is a bijection.
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For (i,x) € V(Gayp) and (j,y) € V(Gayp), define

ei,xy = ]

and note that each ¢(; ) () is a projection. For (i,x) € V(Gay), we have

Y GemGw = D D i) = D Ciay = Y €z = L.

(4:9)€V(Ga,o) Jj=1 yES;-) y€esy z€S}

A similar computation shows that for all (j,y) € V(Gay), we have

> Gimiy =1

(5,2)EV(GaLp)

We need to show that for all (¢,z), (¢/,2") € V(Gap) and (4, v), (j',v") € V(Gap), the
implication

Qi) Ga) A )Gy 70 = rel((i, ), (¢, 2")) = rel((4, ), (5, ¥))

holds. To this end, suppose q(; 2),(j.) (" 2,7y 7 0- Theni = 3,47 = j', and e; yyey oy # 0.
We consider several cases.

Suppose first i = 7’. Then we have zy = x'y/. If x = 2/, then y = ¢y’ and we have both
(i,2) = (¢,2") and (j,y) = (j',¥') so the right hand side of the implication holds in the
case. Conversely, if © # 2’ and y # ¢/, then (i,x) # (¢, 2') and (j,y) # (4',y'). Note also
that since ¢ = 4/, x and 2’ are necessarily inconsistent solutions so that (i,z) and (¢, z’)
are adjacent. Similar reasoning shows (j,y) and (j’,') are adjacent. Hence the right hand
side of the implication holds.

Now assume i # i’ so that, in particular, (i,x) # (¢, 2’). If (¢, ) and (¢, 2") are adjacent,
there is a k € V; N Vi such that z;, # x},. On the other hand, as e; z €y vy # 0, we know
ey = (2y)r = (@'y)x = 2}y Therefore, y, # y;. so that (i,y) and (¢/,y’) are adjacent.
Finally, suppose (i, z) and (¢',2’) are not adjacent. Then zy = ) for all i € V;NV,. Again
since €; yy€ir w1y # 0, we also know zpy, = 2y, for all & € V; NV, and therefore y;, = v,
for all k € V; NV so that (j,y) and (j',4') are not adjacent. This covers all cases.

Now, the projections q(;q),(jy) € B define a unital *-representation 7 : A(G) — B and
it follows that G4 = Gap.
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(2) = (3): Suppose that Gap = Gap. By Lemma 6.3.2, it suffices to show that
a;(Gap) = m. The map f : Gag — {1,...,m} : (i,2) = i is an m-colouring of G 4.
Indeed, suppose are (i,z) and (j,y) are distinct vertices in Gag with f(i,x) = f(j,y).
Then 7 = j and hence z # y. That is, there is some k € V; such that z; # vy, and thus
there is no edge between (i, z) and (j,y) in Gap.

For each i = 1,...,m, the vector zog = (1,...,1) is in S; C {£1}" for the system
Az = 0. Hence for i,7 = 1,...,m, there is no edge between the vertices (i,zq) and (j, z¢)
in G4 and we have a(G49) > m. Now by the previous proposition,

m > xX(Gao) > xt(Gap) > at(Gap) > a(Gap) > m,

and a;(Gao) = m.

(3) = (1): Suppose at(Gap) = m. Then the graph homomorphism game from K, to
G ap has a perfect t-strategy. Fix a C*-algebra A with a faithful trace 7 and projections
ey € Afori=1,....m, (k,x) € V(Gap) such that

1. ZZ@Z-JW: 1 for all 1 <i <m, and

k=1 z€Sk

2. 7(ejkzerjy) = 0 if there is an edge between (k,x) and (j,y) in Ga.

If t = ¢, we may assume A is finite dimensional and if t = ga, we may assume A = RY.

Define for i = 1,...,m and j € V},

The v;; are self adjoint since it is a R-linear combination of projections. Next we show
that for all ¢ = 1,...m and for all j,k € V;, v; ; commutes with v; ;. An expansion of the
product gives us

V;,jVik = (Z Z ines,i,x) (Z Z yket,i,y>

s=1 IESi t=1 yESi

= § E xjykes,i,xet,i,y .

s,t T,y
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Using the fact that 7 is tracial, whenever x # vy, 7((€s;2€tiy)*(€sizetiy)) = T(€sizCriy) =
0. By faithfulness of 7 we must have e, ; ye:;, = 0. By the same reasoning, when s # t, we
must have eg; ye;;, = 0 since we have a synchronous game. All this lets us conclude that

Vi, j Uik = E E TjTkCsix = Vi kUi

S x

and hence the operators v; ; and v; , commute. Setting j = k gives us
2 Z Z 2 Z Z
Vijg = LpCsix = €s,ix -
S x S x

Since each e, ; , are pairwise orthogonal, vi ; 1s a projection. Beyond this,

m
2 _ —
Uivj o 68,7:,27 - es,i,x
=1 WS T s

i xES;
=m-1.
In particular, we must have Ui ;= 1foralli,j.

Similarly, for all 7, k and 7 € V; NV}, from the above analysis it follows that

m
T (Vi jUk,j) = Z Z T3 T(€piCqiiy)

p,q=1z€S;,yeSk

- Z Z T(epiz) = T(Uzj) =1.

p x€ES;

Hence we have
T((vij — Vkj) (Vij — vkj)) =2 — 27(vijo ) =0 .
From this it follows that v; ; = vy ; as 7 is faithful.

Given j = 1,...,n, define w; = v;; if j € V; for some ¢ = 1,...,m and w; = 1
otherwise. By the previous paragraph, since the choice of v; ; is independent of the given i,
the operator w; is well-defined. If 1 < j,k < n and thereis ani =1,...,m with j,k € V],

then w; = v; ; and wy, = v;;, commute. Moreover, for each i =1,...,m,
m
b.
ITwi=11vs=>_> I1=ersn=(=1)"
JEV; JEV; k=1 z€S; jEV;

Hence there is a representation p : I'(A,b) — U(A) such that p(u;) = w; and p(J) = —1
for all = 1,...,n. By Corollary 6.2.4, the game synBCS(A, b) has a perfect t-strategy
which proves (1). O
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By Corollary 6.2.4 and Theorem 6.2.5 applied to the above Theorem, we get the fol-
lowing two Corollaries.

Corollary 6.3.5. There exists a graph G for which o,.(G) > oy(G).
Corollary 6.3.6. There exist graphs G and H for which G =,, H but G 2, H.
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Chapter 7

Chromatic numbers for quantum
graphs

Given a graph on n vertices one can associate two different subspaces of the n x n matrices
that encode all of the information of the graph. This has motivated the generalization of
several well known graph theoretic concepts to a larger class of objects.

In [23], Duan, Severini, and Winter describe a version of non-commutative graph theory
whose underlying objects consist of submatricial operator systems. The aforementioned
authors generalize the independence number and Lovasz theta number to submatricial
operator systems.

In [75], Stahlke works with a similar but distinct definition of a non-commutative graph.
Instead of working with submatricial operator systems, Stahlke associates a subspace of
matrices whose elements all have zero trace to a graph. Stahlke generalizes several classical
graph theory concepts to these traceless subspaces including the chromatic number, clique
number and notion of graph homomorphism.

Thus, there are two quite different subspaces of matrices to associate to graphs that
lead to two different ways to create a non-commutative graph theory. In this chapter
we discuss both the submatricial operator system and submatricial traceless self-adjoint
operator space definitions of a non-commutative graph.

There is currently no notion of the complement of a non-commutative graph that gen-
eralizes the graph complement. By working with both of the above definitions we are able
to generalize the complement of a graph using the orthogonal complement with respect to
the Hilbert-Schmidt inner product. We conclude this section by reviewing the definition of
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several non-commutative graph parameters and show that some of these parameters can
be approximated by evaluating classical graph parameters.

In [59] Lovész introduced his well known theta number of a graph, 6(G). Lovéasz shows
that this number determines the following bounds on the independence number, a(@), and
the chromatic number of the graph complement x(G).

a(G) <0(G) < x(G).

These two inequalities are often referred to as the Lovasz sandwich theorem. In [23], it is
shown that that the independence number of a submatricial operator system is bounded
above by its Lovasz number. This provides the first inequality for a generalized Lovész
sandwich theorem. In [75] Stahlke introduces a version of the chromactic number denoted
Xst, that generalizes the second inequality.

In section 7.2 we introduce new generalizations of the chromatic number, y, and ¥,
that provide lower and upper bounds on xs;. Using Y we provide a simplified proof of
a weaker sandwich inequality. The advantage is that we can answer a question posed by

Stahlke by generalizing the equation x(G)w(G) > n to non-commutative graphs.

Given two graphs G and H the Cartesian product is the graph GOH with vertex set
V(G) x V(H) and edge relation given by (v,a) ~ (w,b) if one of v ~¢ w and a = b or
v =w and a ~p b holds. A Theorem of Sabidussi tell us x(GOH) = max{x(G), x(H)}
for any G and H. We introduce a Cartesian product and establish a generalization of this
result for submatricial traceless self-adjoint operator spaces in Section 7.3 . In section 7.3
we also establish a categorical product for submatricial traceless self-adjoint operator space
and extend a Theorem of Hedetniemi to submatricial traceless self-adjoint operator spaces.

7.1 Non-commutative graphs

A non-commutative graph is sometimes viewed as any submatricial operator system .S.
Non-commutative graphs have also been described as any submatricial traceless self-adjoint
operator space J. In this section we review how one can view a classical graph as either
of these objects without losing information about the graph itself. We also discuss several
parameters for non-commutative graphs.
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7.1.1 Non-commutative graphs as operator systems

Definition 7.1.1. Let G = (V, E) be a graph with vertex set [n]. Define S¢ C M,, by

Sq =span{FE;; : (i,j) € E or i = j}.

Observe that for any graph G, Sg will be a submatricial operator system. In [02], it is
shown that graphs G and H are isomorphic if and only if Sg and Sy are isomorphic in the
category of operator systems. We discuss this in more detail in 7.1.2.

Given a graph G, if vertices i, j are not adjacent, then e;ej = Ej ; is orthogonal to the
submatricial operator system S¢ in the sense that for all X € S, the Hilbert-Schmidt inner
product (E; ;, X) = tr(E;; - X*) is zero. Similarly if {4,...,4;} is an independent set of
vertices in G then for any j # k we have e; e is orthogonal to Sg. If v = (v, ..., v;) is an
orthonormal collection of vectors in C” then v called an independent set for a submatricial
operator system S C M, if for any i # j, v;v} is orthogonal to S.

Definition 7.1.2. Let S be a submatricial operator system. We define the independence
number, a(S), to be the largest integer k such that there exists an independent set for S
of size k.

A graph G = (V, E) has a k-colouring if and only if there exists a partition of V
into k independent sets. In [(5] Paulsen defines a natural generalization of the chromatic
number to non-commutative graphs. We say a submatricial operator system S C M,, has
k-colouring if there exists an orthonormal basis for C", v = (vy,...,v,), such that v can
be partitioned into k£ independent sets for S.

Definition 7.1.3. Let S C M, be a submatricial operator system. The chromatic number,
X(S), is the least k£ € N such that S has a k-colouring,.

For any submatricial operator system S C M,, we have x(S) < n since you can partition
any basis of C" into n independent sets. In Theorem 7.1.14 we show that both of the above
parameters provide a generalization of the classical graph theory parameters, that is we
show a(Sg) = a(G) and x(Sg) = x(G). This first equality is originally found in [23] and
the second can be found in [65].

Example 7.1.4. Consider the submatricial operator system S := span{l, E;; : i # j} C
M,,. Let uq,us be two orthonormal vectors and let ¢ be an element of the support of ;.
Since ujuy = 0 there must be an element j # i of the support of uy. Then (uuj, E; ;) =

uy(?)uz(j) # 0. Thus we see that a(S) = 1. This also tell us that x(S) = n.
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As in [23], given a graph G one can compute the Lovasz theta number ¥(G) as,
HWG) =max{|[[+T|:I+T>0,T;; =0 for i~ j}.
Here the supremum is taken over all n X n matrices and I + 7T > 0 indicates that I 4+ T is
positive semidefinite.
The following inequality is due to Lovész. For a good self-contained review please see

[58]-

Theorem 7.1.5. Let G be a graph and G be the graph complement of G. Then,
a(G) <I(G) < x(G).

In order to obtain an generalization of 7.1.5 we need to identify the the appropriate
generalization of a graph complement. Given a submatricial operator system S C M,
we use the orthogonal complement S+ to generalize the graph complement. Note that
the orthogonal complement of a submatricial operator system is no longer a submatricial
operator system since it will fail to contain the identity operator. In fact since I € S we will
have tr(A) = (A, I) = 0 for every A element of S*+. In [75], Stahlke works with precisely
these objects. We show that it is useful to consider both submatricial operator systems
and submatricial traceless self-adjoint operator spaces to generalize the graph complement.

7.1.2 The complement of a non-commutative graph

In this section, we introduce the analogue of the notion of a graph complement for non-
commutative graphs. Using this, we define a notion of clique number, independence num-
ber, and chromatic number.

Definition 7.1.6. Let G be a finite graph with vertex set [n]. The traceless self-adjoint
operator space associated to G is the linear space

Jo :=span{E;; i~ j} C M, .
A traceless non-commutative graph is any submatricial traceless self-adjoint operator space.

Remark 7.1.7. The traceless self-adjoint operator space Jg is the traceless non-commutative

graph Sg given in [75]. Given a finite graph G with vertex set [n], we have the identity
J& = Sz. This identity in particular suggests that the graph complement of a non-
commutative graph should be its orthogonal complement. In [75], Stalhke suggests that
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the graph complement of J5 should be (Jg + CI)*. However, this notion of complement
would mean that Jz # (Jg + CI)* for any graph with at least two vertices. We shall see
that, so long as one is willing to pay the price of working with two different notions of a
non-commutative graph, the orthogonal complement is the correct analogue of the graph
complement.

Proposition 7.1.8. The traceless self-adjoint operator subspaces of M, are exactly the
orthogonal complements of submatricial operator systems. That is, S is a submatricial
operator system if and only if S* is a traceless self-adjoint operator space.

Proof. If S is an operator subsystem of M, then for any X € S*, tr(X) = (X,I) = 0.
As well, if X € S+, for any Y € S, tr(XY) = tr(Y*X*) = 0. This proves that S* is a
traceless self-adjoint operator space. Conversely, if S is a traceless self-adjoint operator
space, then S+ contains [ since for all X € S, (X,I) = tr(X*I) = 0. If X € S* then

(X*)Y) = tr(XY) = tr(Y*X*) = 0. Therefore, X* € S+. This proves that S* is an
operator system. ]

Proposition 7.1.9. If G is a graph with vertex set [n] then SE = Jz.

Proof. Observe that for i, j, k,1 € [n], E;; € S if and only if for all k ~¢ [, tr(E;; Ex) = 0.
This is only possible if 7 ~& j. O]

It is a result of Paulsen and Ortiz [62, Proposition 3.1] that two graphs G and H of
the same vertex set [n] are isomorphic if and only if there is a n X n unitary matrix U for
which USqU* = Sy.

Corollary 7.1.10. Suppose that G and H are graphs with vertex set [n|. The graphs G and
H are isomorphic if and only if there is an n xn unitary matrix U such that UJcU* = Jy.

Proof. For any n X n unitary matrix U, (USgU*)* = UJgU*. Since G and H are isomor-
phic if and only if their graph complement is, the result follows. O]

Remark 7.1.11. In [78] a quantum graph is defined as a reflexive, symmetric quantum
relation on a *-subalgebra M C M,,. In this framework a submatricial operator system
S is indeed quantum graph when taking M = M,. This approach fails to provide a
complement for a quantum graph since S+ will fail to be a reflexive quantum relation on
any M C M, and hence will not be a quantum graph.
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The notion of an independent set for an submatricial operator system was described
solely in terms of an orthogonality relation. We can similarly say that an orthonormal
collection of vectors v = (vy, ..., v,) in C" is an independent set for a submatricial traceless
self-adjoint operator space J C M, if for any i # j, v;v} is orthogonal to J. We say J
has a k-coloring if there exists an orthonormal basis v = (vq,...,v,) of C", that can be

partitioned into k£ independent sets for 7.
Definition 7.1.12. Let J C M,, be a submatricial traceless self-adjoint operator space.

1. The independence number, a(J), is the largest k& € N such that there exists an
independent set of size k for 7.

2. The chromatic number x(7) is the least integer k such that J has k-colouring.

It is not hard to show that x is monotonic and « is reverse monotonic under inclusion.
This holds when considering these as parameters on submatricial operator systems as well
as submatricial traceless self-adjoint operator spaces.

Next we show that if G is a graph, Sg and Jg have the same independence number and
chromatic number. We start with a lemma. The following proof is in [65, Lemma 7.28]:

Lemma 7.1.13. Let vy, ..., v, be a basis for C*. There exists a permutation o on [n] so
that for each i, the o(i)th component of v; is non-zero.

Proof. Let A = [a;;] denote the matrix with column i equal to v;. Since we have a basis,

det(A) # 0. But

det(A) = Z Sgn(a)al,d(l) ©Qpo(n) -

oeSym([n])

There must therefore be some o for which the product ay (1) - @pne(n) is non-zero. This
permutation works. O

It has been shown that a(G) = a(S¢) and x(G) = x(S¢) in [23] and [65] respectively.
We are able to obtain the analogous results for submatricial self-adjoint operator spaces.

Theorem 7.1.14. Let G be a graph on n wvertices, we have a(G) = a(Sq) = a(Je) and
X(G) = x(5¢) = x(Ja)-
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Proof. The inclusion a(Sg) < a(Jg) follow from reverse monotonicity. If iy,..., 4 are
an independent set of vertices in the graph G then we have that the standard vectors
€y, - - -, €;, is an independent set for Si so we get

Oé(G) S Oé(Sg) S Oé(jg) .

Next suppose that vy,...,v, are an independent set for J;. Then since vy, ..., v, is an
linearly independent set of vectors we can find a permutaiton o on [n] so that <vi, ea(i)> is
non-zero for all 7.

We note that if vertices o(j) and o(k) are adjacent in G then we have E, ;) -1 € Ja-
But then (v;v5, Eo)otr) = (Vj,€0(5)) (o), i) # 0 a contradiction. Thus o(1),...,0(k)
are an independent set for the graph G so a(Jg) < a(G). The proof for x follows the
same argument. O

Recall for a classical graph G the clique number, w(G), satisfies that w(G) = o(G).

Definition 7.1.15. Let S be a submatricial operator system and let J be a submatricial
traceless self-adjoint operator space.

1. Define the clique number, w(S), to be the independence number of the submatricial
traceless self-adjoint operator space S*.

2. Define the clique number, w(7), to be the independence number of the submatricial
operator system J .

It should be noted that the above definition w(J) of a traceless submatricial operator
space is first mentioned in [75]. We can use Theorem 7.1.14 to conclude that for any graph

G we have w(G) = w(S¢q) = w(Jg).

The next proposition shows that «, w, and x may be computed purely from the associ-
ated parameters for graphs. We can achieve this by associating a family of graphs to each
submatricial traceless self-adjoint operator space or submatricial operator system.

Definition 7.1.16. Given a submatricial operator system S C M, and an orthonormal
basis v = (vy,...,v,) we can construct two different graphs.

1. The confusability graph of v, with respect to S, denoted H,(S), is the graph on n
vertices with ¢ ~ j if and only if v;v} € 5.
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2. The distinguishability graph of v, with respect to S, denoted G,(S) is the graph on
n vertices with ¢ ~ j if and only if v;v} L S.

We can also define the confusability and distinguishability graphs of an orthonormal
basis v = (v1,...,v,) with respect to submatricial traceless self-adjoint operator spaces
J C M, in the same way. We would then have for S = J*, G,(S) = H,(J) and
H,(S) = G,(J). When it is clear what the underlying system or submatricial traceless
self-adjoint operator space is we simply write GG, and H,,.

Theorem 7.1.17. Let J be a submatricial traceless self-adjoint operator space in M, and
let B denote the set of ordered orthonormal bases for C*. We have the identities

a(J) =supa(G.) ,

vEB
X(J) = inf x(Gy) , and
w(J) =supw(H,) .

veB

The same identity holds if we replace J with a submatricial operator system in M,,.

Proof. Suppose vy, ...,v. is a maximal independent set for 7, that is for ¢ # j we have
viv; L J. We can extend this collection to an orthonormal basis v = (V1 v oy Vey Veg 1y - - - Up).
Note that the vertices 1,...,c in the graph G, are an independence set since for distinct
i,j € [c] we have v;u; L J. This gives i ~ j in G,. Thus there is no edge between i and j
in G,. Therefore a(G,) > ¢ so we have a(J) < sup,.g a(G,). Conversely, for each v € B
if 41,...,i, are an independent set for G, then i; ~ i in Gy. We then have v;,,...,v;, is

c

an independent set for 7. This gives a(J) > a(G,).

The proof of the second identity is similar. If x(J) = ¢ then there exists orthonormal
basis v = (v, ...,v,) and a partition P,... P, of [n] such that v;v} L J for distinct 7 and
4 in the same partition. Define a colouring f of G, by having f(i) = [ if and only if i € P,.
We see that for i # j if we have f(i) = f(j) then v;v; 1L J giving that i ~ j in G, so f
is indeed a ¢ colouring of G,. This gives x(J) > inf,es x(G,). Conversely, if f is any c
colouring of G, for some v € B then we can obtain a ¢ colouring of J by partitioning [n]
into sets P,... P, where i € P, if and only if f(i) = . Then if distinct i, 5 € P, we have
iwjinGvsoviv;J_j.

Lastly, suppose (v, ...,v;) is a collection of orthonormal vectors such that for distinc

i,j we have v;v; € J. We can extend this set to a orthonormal basis v = (vy,...v,)
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and we immediately get that the vertices {1,...,k} form a clique in H,. For the other

direction note for any basis v = (vy,...v,) H, has a clique iy,...,i; then vy,...v; will
satisty v;vj € J for distinct ¢ and j. m

We next extend the definition of Lovész’ theta function, [59], to non-commutative
graphs. This was first extended to submatricial operator spaces in [23]. We introduce a

natural extension to submatricial operator systems as well.

Definition 7.1.18. Let S be a submatricial operator system and J be a submatricial
traceless self-adjoint operator space. Define the theta number of a submatricial operator
system, ¥(.S) and the complementary theta number of a submatricial traceless self-adjoint
operator space, ¥ as follows.

L 9(S)=sup{|[I+T||: T € M,, I +T>0,T LS}
2. W(J)=sup{|[I+T|:T€M,, [+T>0T¢cJJ}

Observe that 9(Sg) = 9(G) and 9(Jg) = 9(G) for all graphs G.

Example 7.1.19. Recall the previously mentioned submatricial operator system S :=
span{l, E;; : i # j} C M,. We see that J(S) = n since we can take T  to be the diagonal
matrix with n — 1 for the 1,1 entry and —1 for all other diagonal entries. We also see that
if v = (eq,...,e,) is the standard basis for C™ then v is a clgiue for S and thus we have
x(S1) = 1. This shows that using the definition of the chromatic number from [(5] we can
not hope to generalize the Lovasz sandwich theorem.

7.2 Non-commutative Lovasz inequality

We see by the previous example that one needs a different generalization of the chromatic
number in order to obtain a Lovasz sandwich Theorem for non-commutative graphs. Here
we introduce the strong and minimal chromatic number of a submatricial operator system
and provide a generalization on Lovasz theorem.

7.2.1 The strong chromatic number

Let J C M, be a submatricial traceless self-adjoint operator space. A collection of or-
thonormal vectors v = (vq,...,v;) in C" is called a strong independent set for J if for
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any 4, j,we have v;v} is orthogonal to J. We say that J has a strong k-colouring if there
exist an orthonormal basis v = (vy,...,v,) of C" that can be partitioned into k strong
independent sets for J. We will show in Corollary 7.2.8, ¥(J) agrees with the chromatic
number of G, for any graph G.

Definition 7.2.1. Let J C M,, be a submatricial traceless self-adjoint operator space. The
strong chromatic number, X(J), is the least k € N such that J has a strong k-colouring.
If J has no strong-k colouring then we say x(J) = oo.

As with xy we have Y is monotonic with respect to inclusion.

Example 7.2.2. Suppose that S = C1 + span{E;,; : i # j} C M, and ( is a nth root
of unity. Define v, = (1,¢*,¢?*, ..., (™ D¥). Observe that the v; are orthogonal and that
vpv; belongs to S for all k. Thus S+ does have a strong-n colouring and we get X(S+) < n.

Example 7.2.3. Consider the submatricial traceless self-adjoint operator space J = CA C
M, where A = diag(n — 1,—1,—1,...,—1). Observe that J C S*. By monotonicity,
X(T) < X(SY) < n. It is known that J(J) = n (see [62, Remark 4.3]). We show in
Theorem 7.2.9 that X is bounded below by ¥ Thus we have X(J) = X(S+) = n.

In [75] Stahlke introduces a different chromatic number for submatricial traceless self-
adjoint operator spaces.

Definition 7.2.4. Let J and K be submatricial traceless self-adjoint operator spaces in
M, and M, respectively. We say that there is a graph homomorphism from J to K,
denoted J — IC, if there is a completely positive and trace preserving map & : M,, — M,
with associated Kraus operators Ey,. .., E, for which E;JE; C K for any 7 and j.

Stalhke’s chromatic number of a submatricial traceless self-adjoint operator space 7,
denoted xgs¢(J), is the least integer ¢ for which there is a graph homomorphism J — Jk,
if one exists. We set xs:(J) = 0o otherwise.

Observe that xg; is monotonic under graph homomorphism by construction.

Theorem 7.2.5. For any submatricial traceless self-adjoint operator space J C M, we
have X(J) > xs:(J)-

Proof. Suppose X(J) = r. There exists a orthonormal basis vy, ..., v, that can be parti-
tioned into strong independent sets Py, ..., P.. By reordering the vectors, we may assume
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that whenever v; € Py and v; € Pp4q, that « < j. By conjugating by the unitary U : v; > e;,
we get the inclusion @;_, Mjp C UJ*U* = (UJU*)*.

This then gives us (D;_, M|p,)* D (UJU*). We have that J — UJU* by conjugating
by the unitary U. Similarly we have UJU* — (®/_,M|p,)* by inclusion. Since xg; is
monotonic with respect to homomorphisms we get xs:(J) < xs:((B1_1 M p)t) = x(G) =7
where G is the disjoint union of » complete graphs. O

Corollary 7.2.6. If 7 C M, s a submatricial traceless self-adjoint operator space for
which for some basis v = (v1,...,v,), the diagonals v;v} are orthogonal to J , then xs:(J) <
n.

In [60] it was shown that a(S) = a(M4(S)) for all submatricial operator systems S.
The proof they give will also work to show a(J) = a(My(J)) and X(J) = X(Ma(J)) for
submatricial traceless self-adjoint operator spaces J and d € N.

Recall that for d,n > 1, the partial trace map is

My M, — M, : XY —tr(X)Y .

As is the case with y we can approximate Y using the chromatic number for classical
graphs.

Theorem 7.2.7. Let J C M, be a submatricial traceless self-adjoint operator space.
Suppose that By denotes the set of ordered orthonormal bases v = (vq,...,v,) of C* for
which vl L T for alli. For eachv = (vq,...,v,) in By, define the graph G, with vertices

[n] and edge relation given by i ~ j if v;v§ is orthogonal to J. Then,

J

veEB

whenever X(J) is finite.

Proof. The proof is exactly as in Theorem 7.1.17. n

Corollary 7.2.8. For any finite graph G, X(Ja) = x(G).

Proof. By Theorem 7.2.7, X(Jg) < x(G,) where v = (e1, ..., e,). The complement of the
graph G, is the graph G. This gets us the bound X(J5) < x(G). As well, by Theorem 7.2.5,

X(G) = xs:(Te) < X(Ta). O

102



Using the strong chromatic number we are easily able to generalize other graph inequal-
ities that for now remain unanswered for yg;. In [75] Stahlke asks if for all submatricial
traceless self-adjoint operator spaces J C M,,, one can show ys;(J )w(J ) > n, where J¢ is
the proposed complement J¢ = (J +CI)*. The question is motivated by the simple graph
inequality x(G)w(G) > n. Indeed for J C M, a submatricial traceless self-adjoint opera-
tor space if we suppose Y(J) = k then we can find an orthonormal basis v = (vq,...,v,)
and a partition of v into independent sets Py, ..., P,. By definition of w(J*) we know that

|P| <w(Jt) fori=1,...,k Thus we have n =Y, |P| <> w(JT*) = X(J)w(TH).

Using [75], one can establish that 9(J) < xs:(J) for any submatricial traceless self-
adjoint operator space J C M,: if ¢ = xs:(J), then there is a graph homomorphism J —
Jk,. In [75, Theorem 19], it is shown that ¥,, is monotonic under graph homomorphisms.

We therefore get the inequality

We can now establish a Lovasz sandwich Theorem for Y.
Theorem 7.2.9. Let S be a submatricial operator system. For any d > 1, we have the

inequalities

a(S) <I(S) < x(SH) .

Proof. The inequality «(S) < 9(S) is a result in [23, Lemma 7] so we will only prove the
other inequality. Let v = (vy,...,v,) be an orthonormal basis that can be partitioned
into k strong independent sets for S*. Then consider the graph G,(S*) as defined in
Theorem 7.1.17. We have X(St) = x(G,). There exists a unitary U € M, such that
we get the the inclusion S D USg, U*. Since 9 is reverse monotonic under inclusion and
invariant under conjugation by a unitary, we establish the inequalities

9(S) <9(Se,) = 9(G.) < x(Go) = X(5T).
[
Similarly we get the follow inequality for any submatricial traceless self-adjoint operator
space J.
a(TH) <IT) < X(T).
It should be pointed out that using xs:(J) < X(J), as shown in Theorem 7.2.5 | and
the fact that w(J) = a(J*), one can obtain the the above inequality as a corollary of

Corollary 20 in [75] . In this sense the above can be considered as a simplified proof of a
weaker result.
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7.2.2 The minimal chromatic number

In this section, we construct a concrete example of a homomorphism monotone chromatic
number. Using this concrete definition, we are able to establish analogues of two classic
identities for chromatic numbers under graph products: Sabidussi’s Theorem and Hedet-
niemi’s inequality.

Definition 7.2.10. Let J C M, be a submatricial traceless self-adjoint operator space.
Define the minimal chromatic number of J, denoted xo(J), to be the least integer ¢
for which there exists a basis vy, ...,v, of C" and a partition Py,..., P. of [n] for which
whenever i, j € P, we have the relation v;v; L J.

We note thatyq differs from X since we no longer require that we are working with
an orthonormal basis. This parameter agrees with the chromatic number for graphs. We
define the competely bounded version of this parameter by xo.(J) = infg xo(Ma(T)).

Proposition 7.2.11. Let G be a finite graph. We have the relation x(G) = xo(Ja)-

Proof. Since xo(Jg) < x(G), it suffices to show that x(G) < xo(Jg). For this proof, let
¢ be minimal and let vy,...,v, be a basis in C" for which there is a partition Py,..., P,
of [n] such that whenever i,j in P,, vivj L Jg. We then have a permutation o of [n] for
which <vi, eg(i)> is non-zero. By conjugating Jg by the permutation matrix defined by o,
assume that o (i) = ¢ for all 7. Define the c-colouring f : V(G) — [¢] By f(i) = s for s such
that 7 € P,. To see that this is a colouring, suppose not. There are then ¢ ~ j for which
i,7 € P, for some s. By definition then we have, £; ; belongs to Jg. We observe then,

<viv;7, E”> = tr(vjvfeie;f) = (v;,e;) (vj,€e5) # 0.

This is contradicts the fact that vv; € Jt. O

We recall the following result, which arises as a consequence of the Stinespring dilation
Theorem (see [75, Definition 7]).

Lemma 7.2.12. Let J C M,, and K C M,, be submatricial traceless self-adjoint operator
spaces. There is a graph homomorphism J — K if and only if there is a d > 1 and an
isometry E : C* — C™ @ C? for which EJE* C My(K).

We use this equivalent characterization to show that x( is monotonic under graph
homomorphisms.
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Theorem 7.2.13. Let J C M, and IC C M,, be submatricial traceless self-adjoint operator
spaces. If there is a graph homomorphism ¢ : J — K with d associated Kraus operators,
then we have the inequality

Xo(J) < xo(Mg @ K) .
In particular, xo.4(T) < Xo.a(K).

Proof. Suppose that Py, ..., P. is a partition of the set [d] x [m] and (w; : i € [d] x [m]) is
a basis for which whenever 4, j are in the same P, then w;w; L M;® K. By lemma 7.2.12,
there is an isometry E for which the map ¢ : M,, - M, ® M,, : X — EXE* sends J to
My ® K. Consider the set {E*w; : ¢ € [d x m]}. This set spans C". To see this, for any
v € C", since Ev € C?¢ ® C™, there are some \; for which Ev = > Adsw;. Multiplying on
the left by E* tell us that v is spanned by the E*w;. If i, j belong to the same P;, then for
any X € J,

(Ew;(E*w;)*, X) = (ww}, EXE*) =0 .

For each i € [¢], let C; = {E*w; : j € P;}. We will define a sequence of linear subspaces
Vi, ...,V for which > | Vi = C" inductively. For the base case, set V; = spanC;. For
1> 1, let

V;:span{v EspanCi:vgzvk} .

k<i

By construction, for distinct ¢ and j, the vectors the V; are linearly independent in relation
to the vectors of V; and ). V; = C". For each s, let Qs = {vs1,...,0s4,} be a basis in V,
where d; = dim(V;). Since each vector in )4 is a linear combination of the vectors in C,
we get that whenever, i, j € [dy], given any X € 7,

<vs7iv;j, X> =0.

The vectors {vg; : s € [c],i € [ds]} then form a basis for C* and are partitioned by the sets
{Qs : s € [¢]}. This proves that xo(J) < xo(Myg® K). If r > 1 and E is an isometry for
which the map ¢ : M,, = My ® M, : X — EXE* sends J to My(K), then the map

l@p: M, @M, = M,y qg@ My, : XY = X ® ¢(Y)
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is a map implemented by conjugation by the isometry 1 ® E. By lemma 7.2.12, 1 ® FE
is a graph homomorphism M, (J) — M,(K). By the above proof, we get the bound
Xo(M(T)) < xo(M,14(K)) < x0.a(K) for every r > 1. This establishes the inequality

Xo.a(J) < x0.(K) -
O

Corollary 7.2.14. Let J be a submatricial traceless self-adjoint operator space. We have
the inequality

XO,cb(j) < Xst(j) .

Proof. We first show that xo.4(Ja) = x(Jg) for any d > 1 and any graph G. Let G!¥ denote
the graph on vertices V(G) x [d] for which (v,i) ~ (w,j) if v ~ w in G. The projection
G — G : (v,i) — v and the inclusion G — G : v + (v, 1) are graph homomorphisms.
We therefore get by monotonicity of y that x(G) = x(G¥). On the other hand, we know
that xo(Ja) = X(G) = x(G¥) = xo(My(Te)) = x0.4(Jg). In particular, for any ¢ > 1,
XO,cb(ch) = X(KC) =c u

Remark 7.2.15. We were unable to determine if xo . = Xxo. Nevertheless, by working
with 0., we can deduce our inequality since we know it is a homomorphism monotone
parameter.

7.3 Sabidussi’s Theorem and Hedetniemi’s conjecture

As an application of our new graph parameters, in this section, we generalize two results
for chromatic numbers on graph products. For convenience we will let Y (X) = x(X*) for
X a submatricial traceless self-adjoint operator space or a submatricial operator system.

Definition 7.3.1. Let G and H be finite graphs.

1. Define the categorical product of G and H to be the graph G x H with vertex set
V(G) x V(H) and edge relation given by (v,a) ~ (w,b) if v ~g w and a ~p b.

2. Define the Cartesian product of G and H to be the graph GLIH with vertex set
V(G) x V(H) and edge relation given by (v,a) ~ (w, b) if one of the following holds

(a) v ~gwand a=">or

(b) v =w and a ~p b.

106



7.3.1 Sabidussi’s Theorem

We generalize the Theorem of Sabidussi [71].

Theorem 7.3.2 (Sabidussi). Let G and H be finite graphs. We have the identity

X(GOH) = max{x(G), x(H)} .

The first step in generalizing this Theorem is to generalize the cartesian product.

Definition 7.3.3. Let J C M, and let K C M,, be submatricial traceless self-adjoint
operator spaces. Let v C C" and w C C™ be bases. Define the cartesian product of J and
K relative to (v, w) as the submatricial traceless self-adjoint operator space

(jDK)v,w:j®Dw+DU®IC

where for a basis © = (x1,...,2,), D, = span{z;x} : i € [n]}.

In the case when e = (eyq,...,e,) and f = (ey,...,e,), we define the cartesian product

JOK to be (JOK). 5.

Lemma 7.3.4. Let G and H be finite graphs with [n] = V(G) and [m] = V(H). We have
the identity JcUJTy = Jaon -

Proof. Observe that Jg ® D,,, = span{E, , @ E;; : v ~¢ w,i € [m]} and that D,, ® Jy =
span{E;; ® E,,, : i € [n],v ~y w}. Combining these, we get that E; ; ® Ey; € JoOJy if
and only if i ~5 jand k =1 or i = j and k ~g [. This is exactly what it means to be a
member of Jaopy. O

Lemma 7.3.5. Suppose that J C M,, and K C M,, are submatricial traceless self-adjoint
operator spaces. Supposev C C" andw C C™ are bases. There exist graph homomorphisms
J = T RD, and K — D, ® K. In particular, there exist graph homomorphisms J —
(JOK)pw and K — (JOK) 4 -

Proof. Define ¢ : M,, - M, @ M,, : X — WX ® wywj. This map has Kraus operator
E:C"—=C'®C™: v+ v®uw/||w|. Since this Kraus operator is an isometry, we know
that ¢ is cptp. As well, p(J) = J @ wywj € J ® D,,. Similarly, £ — D, ® K. Since
J ®D, C (JOK)yw and D, ® K C (JUOK), 0, we conclude that J — (JOK), ., and

K = (JOK) 0. O
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Theorem 7.3.6. Let J C M, and IC C M,, be submatricial traceless self-adjoint operator
spaces. Let v C C" and w C C™ be bases. We have the inequality

maX{XO,cb(j>7 XO,Cb(’C>} < XO,cb((jD’C>v,w) .
Proof. By lemma 7.3.5 and by Theorem 7.2.13, we get the inequalities

XO,cb(j) S XO,cb((jDIC)v,w) and XO,cb(lC) S XO,cb((jDIC)v,w) .

Our Theorem follows. O

The reverse inequality seems to require the existence of orthogonal bases which colour
our submatricial traceless self-adjoint operator spaces. The proof mimicks the proof of
Sabidussi’s Theorem in [31].

Theorem 7.3.7. Let 7 C M,, and K C M, be submatricial traceless self-adjoint operator
spaces. Let ¢ = max{xo(J), xo(KC)}. Suppose that orthonormal bases v C C" and w C C™
exist for which we have maps f : [n] — [c] and g : [m] — [c] for which whenever f(i) = f(j),
V@)V L T and whenever g(1) = g(k), we have wyuyw; ) L K. We have the inequality

Xo((TOK)yw) < max{xo(J), xo(K)} -

Proof. Let ¢ = max{xo(J),x0(K)}. Suppose that v,w,f, and ¢g are as above. Define
h:[n] x[m] —[c: (i,j) = f(i) + g(j) mod c. T claim that whenever h(i,j) = h(k,1),
that (v; ® w;)(v ® wy)* is orthogonal to (JUOK), . The identity h(i,j) = h(k,!) tell us
f@@) = f(k) =g(j) —g(l) mod c. If f(i) — f(k) =0 mod ¢ then we have nothing to check
since this means that f(i) = f(k) and g(j) = g(I). Otherwise, v;v; L vsv} for all s and
wjw; L wsw? for all s. This guarantees that v;v} ® w;w; is orthogonal to (JOK),.. O

Remark 7.3.8. The same proof as above will show us that for some orthonormal bases v
and w,

X(TOK)pw) < max{x(J), x(K)} and
X(TOK);,) < max{x(J ), x(K*)} .

We are now ready to state a generalized version of Sabidussi’s theorem. In the following
statement please recall that Y (X) = Y(X1).
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Corollary 7.3.9 (Sabidussi’s Theorem for submatricial traceless self-adjoint operator
spaces). Suppose that J C M, and K C M, are submatricial traceless self-adjoint op-
erator spaces. There exist orthonormal bases v C C" and w C C™ for which we have the
inequalities

max{xo.(J); Xo.(K)} < X0 ((TOK) ) < X(TOK)y,) < max{X (T ), X(KT)} .
Proof. By Remark 7.3.8, we get the inequality
X((JOK);) < max{X(J), (L")} -
By Theorem 7.2.5 and Corollary 7.2.14, we get the inequality
X0 ((TOK)vw) < Xst(TOK)uw) < X((TOK)y,) -

Finally, by Theorem 7.3.6 we get the final inequality. O]

7.3.2 Hedetniemi’s inequality

The inequality we wish to generalize in this section is a Theorem of Hedetniemi.

Theorem 7.3.10 (Hedetniemi’s inequality). Suppose that G and H are finite graphs. We
have the inequality

X(G x H) < min{x(G), x(H)}

This Theorem follows as a special case of the analogous result for xg «, first we generalize
the categorical product.

Proposition 7.3.11. Let G and H be finite graphs. We have the identity
jG @ In = Joxn -
Proof. Observe that

Jo @ Ty =span{E;; @ By i~ j, k ~p l}
= JaxH -
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We now get a generalization of Hedetniemi’s inequality to xo.c.

Proposition 7.3.12. Suppose that J C M, and K C M, are submatricial traceless self-
adjoint operator spaces. We have the inequality

X(ch(j X ’C) S min{XO,cb(j)a XO,cb(]C)} :

Proof. The partial trace maps produce graph homomorphisms J®K — K and JRK — J.
By Theorem 7.2.13, we get the inequality. O]

Remark 7.3.13. The long standing conjecture of Hedetneimi asked whether we get the
identity

X(G x H) = min{x(G), x(H)}

for any finite graphs G and H. This was recently resolved in the negative by the remarkable
work of Yaroslov Shitov [73].
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