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Abstract

The recent works of Kalantar-Kennedy, Katsoulis-Ramsey, Ozawa, and Dykema-Paulsen
have demonstrated that many problems in the theory of operator algebras and quantum
information can be approached by looking at various subspaces of bounded operators on
a Hilbert space. This thesis is a compilation of papers written by the author with various
coauthors that apply the theory of operator systems to expand on some of these results.
This thesis is split into two parts.

In Part I, we start by expanding on the theory of crossed product of operator algebras of
Katsoulis and Ramsey. We first develop an analogous crossed product of operator systems.
We then reduce two open problems on the uniqueness of universal crossed product operator
algebras into one of operator systems and show that it has answers in the negative. In the
final chapter of Part I, we generalize results of Kakariadis, Dor On-Salmon, and Katsoulis-
Ramsey to characterize which tensor algebras of C*-correspondences admit hyperrigidity.

In Part II, we look at synchronous correlation sets, introduced by Dykema-Paulsen as
a symmetric form of Tsirelson’s quantum correlation sets. These sets have the distinct
advantage that there is a nice C*-algebraic characterization that we present in Chapter
6. We show that the correlation sets coming from the tensor models on finite and infinite
dimensional Hilbert spaces cannot be distinguished by synchronous correlation sets and
that one can distinguish this set from the correlation sets which arise as limits of correlation
sets arising from finite dimensional tensor models. Beyond this, we show that Tsirelson’s
problem is equivalent its synchronous analogue, expanding on a result of Dykema-Paulsen.

We end the thesis by looking at generalizations of graphs by the ways of operator
subspaces of the space of matrices. We construct an analogue of the graph complement
and show its robustness by deriving various generalizations of known graph inequalities.
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Chapter 1

Introduction

Aside from examples of C*-algebras as algebras generated by concrete operators on a
Hilbert space, examples of C*-algebras come from constructions associated to objects from
other areas of mathematics. For example, the group C*-algebra construction associates to
each group G a C*-algebra C∗(G) that captures its representation theory. More generally,
the crossed product construction gives us a C*-algebra A o G associated to any invert-
ible C*-dynamical system (A,G). On the more combinatorial side, there are C*-algebras
associated to directed graphs. More generally, there are the Cuntz-Pimsner algebras OX
associated to a C*-correspondence X. The interplay between the objects and their relation
to algebraic properties of the associated C*-algebras allow for a rich source of examples.
See [13] for more detail on these constructions and many others.

There are two natural generalizations of C*-algebras: there are non-self adjoint operator
algebras, which are normed closed subalgebras of B(H) that is not necessarily closed under
the involution *, as well as operator systems, which are unital and *-closed but fail to be
closed under multiplication. Part I of this thesis will focus on operator systems and their
interplay between C*-algebras and non-self adjoint operator algebras. This project is fueled
by the work of Hamana [35, 36] as well as recent work of Kalantar-Kennedy [42], Kawabe
[54], and Davidson-Kennedy [20] that show that even in the C*-setting, understanding
operator systems can give us deeper understanding of the structure of C*-algebras. I would
also be remiss if I did not point out that much of the recent work on nuclear C*-algebras
relies heavily on the machinery of operator systems and that, in the sense of continuous
logic, the work of Goldbring-Sinclair show that C*-algebras as a subclass of the category
of operator systems are first-order axiomatizable [33].

On the side of operator algebras, the work of Katsoulis-Ramsey [47, 46, 44] demonstrate

1



that understanding C*-algebras associated to C*-correspondences may be the way of re-
solving the Hao-Ng isomorphism problem [37]. The Hao-Ng isomorphism problem asks the
following: if G is a locally compact group acting non-degenerately on a C*-correspondence
X, is it the case that

OX oG = OXoG ?

That is, is it the case that the Cuntz-Pimsner algebra construction and the crossed product
construction commute? It is named after Hao and Ng as they show that it is indeed the
case that these constructions commute in the case when the group acting on the C*-
correspondence is amenable. Katsoulis and Ramsey make much headway in this direction,
giving us the best known results on when the Hao-Ng isomorphism problem holds. They do
this by first reducing the Hao-Ng problem down to the analogous problem about Tensor
algebras T +

X associated to a C*-correspondence X, which are non-self adjoint operator
subalgebras of OX . In Chapter 3, in joint work with Sam Harris, we answer two questions
of Katsoulis and Ramsey, who pose to what extent we can make this reduction in the
general case of arbitrary operator algebras. We show that such a reduction is not possible
in general and, in fact, that such a reduction is tied directly to nuclearity of the algebra
C∗(G). We do this by first defining a crossed product construction for operator systems
in analogy to the work of crossed products of operator algebras of Katsoulis and Ramsey.
After deriving some basic properties about these crossed products, we reduce the problem
of Katsoulis and Ramsey to one about crossed product operator systems. We then show
this cannot hold due to the existence of operator systems known as nuclearity detectors,
discovered by Kavruk in [50].

Katsoulis and Ramsey then proceed to tackle the monumental task of constructing a
notion of crossed product for non-selfadjoint operator algebras. As it turns out, once all
the basic results about crossed product operator algebras are established, they are able to
establish that

T +
X or G = T +

XorG

for any locally compact G acting on X. As well, Katsoulis is able to establish that

T +
X oG = T +

XoG

in the case of discrete G so long as the tensor algebra T +
X admits a property called hyper-

rigidity. Chapter 4 is dedicated to characterizing exactly when the tensor algebra T +
X is

hyperrigid. This generalizes results of Kakariadis [41] and Dor On-Salomon [21], who estab-
lish an exact characterization in the case of directed graphs, as well as Katsoulis-Ramsey
[46], who derive one direction of our characterization.
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Part II is focused on applications of C*-algebras and operator systems to Tsirelson’s
correlation sets and quantum graphs. Tsirelson’s correlation sets arise from the following
set-up: suppose that one has two isolated labs run by Alice and Bob respectively. The two
labs play a cooperative game run by a referee Charlie. Alice and Bob are allowed to come
up with a strategy for winning this game beforehand but must not have any communication
once the game starts. Beyond this, Alice and Bob’s labs are allowed to share any number
of entangled quantum states with one another. Tsirelson’s correlation sets are matrices of
probabilities that describe, given a strategy by Alice and Bob as well as some input by
Charlie to each lab, what the probabilty is of winning with some given output by Alice
and Bob. Since Alice and Bob share entangled states, their correlation sets may depend
on the model of quantum system that we take. The goal of Tsirelson’s correlation sets is
to disguish different models of quantum systems by separating these correlation sets.

Indeed, to show that one model of quantum systems is distinct from another, it is
enough to show that one has a winning stategy for the game assuming one model but
cannot always win the game assuming another. Interest in separating physical models
of quantum phenomena can be traced back as far as 1935, with the conception of the
Einstein-Poldosky-Rosen paradox [26]. Bohm gives a formulation of the EPR paradox as
follows: suppose that we have an entangled pair of particles whose total spin is zero (we
say that such a pair is in a spin singlet state). Denote by their spins the vectors σ1 and σ2

respectively. If the two particles are separated, and measurement of the spin of one particle
along a unit vector v is measured in a lab to have 〈σ1, v〉 = 1, then we must know that
〈σ2, v〉 = −1. It seems then that the only way we could have gained information about
the state of the other particle faster than information about the particle can reach our lab
is because there were additional hidden variables that the two particles knew before being
separated.

In his monumental paper [8], John Bell shows that no hidden variables can exist in our
system. His original argument is surprisingly elegant and so we sketch it here. Suppose
that some additional parameters for our system exist. Let us call this collection of hidden
parameters λ. We will do two experiments, denoted by experiment A and experiment B.
Experiments A and B are going to measure one of two particles, denoted by particles 1 and
2, in a singlet spin state. In experiment A, we will measure particle 1 along a unit vector a
and in experiment B, we will measure particle 2 along a unit vector b. We may denote the
outcome of such an experiment by functions A(a, λ) ∈ {−1,+1} and B(b, λ) ∈ {−1,+1}.
Fix a probability measure µ on the set Λ of hidden parameters. The expectation value of

3



the product A(a, λ) ·B(b, λ) among these hidden parameters is then given by

P (a, b) :=

∫
Λ

A(a, λ)B(b, λ)dµ(λ) .

We choose µ so that this expectation value agrees with the expectation value of the product
〈σ1, a〉 〈σ2, b〉 according to the quantum model, which is −〈a, b〉. If the quantum model
agrees with experiments and hidden parameters exist, then such a µ must exist.

Since our particles are in a spin singlet state, we must have the identity

A(a, λ) = −B(a, λ)

for all unit vectors a and almost every λ. In particular, P (a, b) may be rewritten as

P (a, b) = −
∫

Λ

A(a, λ)A(b, λ)dµ(λ) .

Using the fact that for all b and λ, A(b, λ)2 = 1, for all unit vectors a, b, c,

|P (a, b)− P (a, c)| ≤
∫

Λ

|A(a, λ)(A(b, λ)− A(c, λ))|dµ(λ)

=

∫
Λ

|A(a, λ)A(b, λ)|(1− A(b, λ)A(c, λ))dµ(λ)

≤
∫

Λ

1− A(b, λ)A(c, λ)dµ(λ) = 1 + P (b, c) .

The above inequality is referred to as Bell’s inequality. If P (a, b) = −〈a, b〉 for all a, b, we
have the inequality

| 〈a, b− c〉 | ≤ 1 + 〈b, c〉

for all unit vectors a, b, c. Substituing b = −c and a = b then leads to a contradiction.
Thus, we may conclude that the quantum model for pairs of particles in a singlet quantum
state is distinct from the classical model, even assuming additional parameters.

The biggest problem about correlation sets is Tsirelson’s problem [76, 77]. This problem
asks whether the correlation sets arising from the commuting model for mixed quantum
systems, called Cqc, can be approximated by those models which assume that mixing two
systems associated with Hilbert spaces HA and HB arises from their tensor product, called
Cqs. That is, must it be the case that Cqc = Cqs? Indeed, it seems that due to the work of
Ji et al. that these correlation sets are distinct [39].
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In Chapter 6, in joint work with Chris Schafhauser and Vern Paulsen, we look at a class
of cooperative games called synchronous games, introduced by Dykema-Paulsen [24], and
their associated correlation sets. We show that each correlation set can be distinguished
using traces on a C*-algebra, the trace depending on the choice of model. Indeed, extending
a result of Ozawa [63] and Dykema-Paulsen, we show that Tsirelson’s problem is equivalent
to distingushing the correlation sets arising from synchrous correlations. Modifying a
construction of Solfstra [74], we also show that there is a synchronous game that distinguish
between Cqs and Cqs.

Finally, in Chapter 7, we look at a generalization of graphs by operator subspaces of
n× n-matrices that are *-closed. This was done originally by Duan, Severini, and Winter
to analyze subspaces of matrices associated to a quantum channel [23]. By thinking of
these subspaces as generalizations of graphs, they are able to generalize graph parameters
to invariants of operator spaces. Indeed, in their paper they generalize the notion of an
independence number α and Lovasz theta ϑ to subspaces of matrices. In joint work with
Arthur Metha, we generalize the notion of a graph complement and chromatic number χ
to these operator spaces. In doing so, we are able to establish a generalization of Lovasz’s
Sandwich Theorem, which states that

α(G) ≤ ϑ(G) ≤ χ(Gc)

for any graph G. This is a special case of the work of Stalhke, who also establish a
generalization with respect to subspaces for which the trace of each element is zero [75].
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Part I

Dynamics on Operator Systems
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Chapter 2

Preliminaries

In this chapter, we introduce the preliminary material and notation needed for Part I of
this thesis. Since Part I is dedicated to operator systems, their crossed products, and
the associated tensor algebras, we start with a discussion of operator systems and their
C*-covers. In particular, we focus on describing the C*-envelope of an operator system
through maximal dilations as developed by Dritschel and McCollough. Beyond this, we
describe Arveson’s notion of hyperrigidity, which is only defined for separable operator
systems, and show that his definition is robust enough to extend to non-separable operator
systems. Many of our arguments involving hyperrigidity and C*-covers will use dilations,
and so we will take as the definition of hyperrigidity the unique extension property for all
representations.

The next section is dedicated to crossed products of operator algebras as developed by
Katsoulis and Ramsey. Our goal is to describe enough of the theory to explain why crossed
products of operator algebras are tensor products under a trivial action. This will be used
in Chapter 3 to give an answer to a problem of Katsoulis and Ramsey. This ties in to the
subsequent section on tensor products of operator systems. Many of the results in this
section will be used to describe the behaviour of crossed products of operator systems in
the case where the action is trivial. Unlike the case of operator algebras, there are many
natural tensor products that arise for operator systems. Indeed, we will analyze exactly
which tensor products arise from crossed products of operator systems under the trivial
action in the next chapter.

Unlike the case of C*-algebras we will see in Proposition 3.1.26 that even for abelian
groups, G-equivariant quotient maps on operator systems will not induce a quotient map
on their associated crossed product. The section on finite-dimensional operator systems
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and quotient maps is a brief review on the definition of quotients in the category of operator
systems.

Finally, we review C*-correspondences and their associated tensor algebras. These
results will be used heavily in Chapter 4. We end with a section on notation that is to be
used in Part I of this thesis. Although we try to stay consistent in notation between the
two sections, one minor change will be made in Part II which conflicts with the notation
of Part I: operator algebras will be denoted by A and B in Part I, whereas A and B will
be reserved specifically for a C*-algebra in Part II.

2.1 Operator systems, C*-envelopes, and maximal di-

lations

An operator system S is a subspace of a unital C*-algebra C for which 1C ∈ S and S∗ = S.
The class of operator systems has an abstract axiomatization [14]. We will only say a
word about the abstract characterization: to axiomatize operator systems it is enough
to keep track of the involution ∗, the cone Mn(S)+ of positive operators on Mn(S) ⊆
Mn(C), and the unit 1Mn(C) ∈Mn(S). The appropriate morphisms for operator systems are
unital completely positive maps, for which we use the shorthand ucp, and the appropriate
embeddings for operator systems are unital complete order embeddings, that is, maps
ϕ : S → T for which ϕ and ϕ−1 : ϕ(S)→ S are ucp.

Let S be an operator system. A C*-cover for S is a pair (C, ρ), where C is a C*-algebra
and ρ : S ↪→ C is a unital complete order isomorphism such that C∗(ρ(S)) = C. If (C, ρ) is
a C*-cover for S and I is an ideal in C, we say that I is a boundary ideal if the restriction
of the canonical quotient map q : C → C/I to S is a complete order embedding [2]. The
Shilov ideal JS corresponding to the C*-cover (C, ρ) is the maximal boundary ideal; that
is, whenever I is a boundary ideal for S in (C, ρ), we have I ⊆ JS . M. Hamana showed
that the Shilov ideal for S in (C, ρ) always exists [35]. Moreover, in [35], it is shown that
every operator system S admits a unique C*-cover (C∗env(S), ι), called the C*-envelope of
S, satisfying the following universal property: whenever (C, ρ) is a C*-cover of S, there is
a unique ∗-epimorphism π : C → C∗env(S) for which the diagram

C C∗env(S)

S

π

ρ
ι
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commutes. In this setting, the Shilov ideal JS is given precisely by the kernel of the map π
[35]. In other words, C/JS ' C∗env(S). The proof in [35] that a C*-envelope always exists
uses the injective envelope of an operator system. Although this construction is useful in
many respects, the construction of the C*-envelope on which we wish to concentrate in this
thesis is the construction given by maximal dilations. Given a unital completely positive
map ϕ : S → B(H), we say that a representation ρ : S → B(K) is a dilation of ϕ if there
is an isometry V : H ↪→ K for which V ϕ(x) = ρ(x)V for all x ∈ S. We will always assume
without loss of generality that H ⊆ K. In this way, we may always set K = H ⊕H⊥ and
represent ρ(x) as the block 2× 2-matrix

ρ(x) =

[
ϕ(x) ax
cx bx

]
for some ax ∈ B(H⊥, H), bx ∈ B(H⊥) and cx ∈ B(H,H⊥). Note that cx = ax∗ . The
compression to the (2, 2)-corner of ρ(x) is also a ucp map ϕ′ : S → B(H⊥). We say
that the dilation ρ of ϕ is trivial if ρ = ϕ ⊕ ϕ′; that is, ax = 0 for all x ∈ S. A ucp
map ϕ : S → B(H) is maximal if the only dilations of ϕ are trivial dilations. For an
operator system S and a ucp map ϕ : S → B(H), we say that ϕ has the unique extension
property if there is a unique ucp extension of ϕ to C∗env(S) and the unique extension is a
∗-homomorphism. Dritschel and McCollough (see [3, Theorem 2.5] and [22]) show that a
ucp map ϕ : S → B(H) is maximal if and only if ϕ satisfies the unique extension property.
In an unpublished work of Arveson, it is shown that every representation of an operator
system has a maximal dilation [5, Theorem 1.3] and that if ϕ : S → B(H) is maximal, then
ϕ(S) necessarily generates the C*-envelope of S [5, Corollary 3.3]. When it is convenient,
we will always assume that our operator system S lies as a subspace of the C*-envelope
C∗e (S).

An operator subsystem S of a C*-algebra C is said to be hyperrigid in C if we have the
following unique extension property: whenever π : C∗(S) → B(H) is a *-homomorphism
and whenever ϕ : C∗(S)→ B(H) is a unital completely positive map extending the unital
completely positive map π|S then we must have ϕ = π. Hyperrigid operator systems give
us a strong relation between operator systems and their C*-envelope. For example, if S
is hyperrigid in C then we must have C∗(S) ' C∗e (S). We say that S is hyperrigid if
S is hyperrigid in C∗e (S). The above definition of hyperrigidity is not the original one.
In [4, Definition 1.1], a subspace (that is not necessarily *-closed or unital) S ⊆ C is
said to be hyperrigid if whenever we have a faithful embedding C ⊆ B(H) and whenever
ϕn : B(H)→ B(H) is a sequence of completely contractive and completely positive maps,
we have the implication

lim
n→∞

‖ϕn(x)− x‖ = 0 for all x ∈ S implies lim
n→∞

‖ϕn(a)− a‖ = 0 for all a ∈ C .

9



In [4, Theorem 2.1], Arveson proves that these two definitions are equivalent in the sepa-
rable case. The density character of a topological space X is the smallest cardinal κ for
which there is a subset E ⊆ X of size κ that is dense in X. Arveson’s proof will go through
verbatim when we replace all instances of separable with density character at most κ for
any infinite cardinal κ. For completeness, we provide a sketch of the proof here.

Theorem 2.1.1. Let S be an operator system of density character at most κ and let C be
a C*-algebra generated by S. The following are equivalent:

1. S is hyperrigid.

2. If π : C ↪→ B(H) is a faithful representation for some Hilbert space H and (ϕλ :
B(H)→ B(H))λ∈Λ is a net of ucp maps for which

lim
λ→Λ

ϕλ(π(s)) = π(s)

in norm for all s ∈ S then

lim
λ→Λ

ϕλ(π(a)) = π(a)

in norm for all a ∈ C.

3. For every representation π : C → B(H), where H is a Hilbert space of density
character at most κ, and for every sequence ϕn : C → B(H) of ucp maps which
satisfy

lim
n→∞

‖ϕn(s)− π(s)‖ = 0

for all s ∈ S, we must have

lim
n→∞

‖ϕn(a)− π(a)‖ = 0

for all a ∈ C.

4. For every representation π : C → B(H), where H is a Hilbert space of density
character at most κ, π has the unique extension property.

5. For every unital C*-algebra D, for every unital *-homomorphism θ : C → D, and for
every ucp map ϕ : D → D, if

ϕ(θ(s)) = θ(s)
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for all s ∈ S then

ϕ(θ(a)) = θ(a)

for all a ∈ C.

Proof. Statement (1) is a special case of statement (2) and Arveson’s proof that statement
(1) is equivalent to statements (3), (4), and (5) go through vebatim in our case so we only
need to verify that statement (5) implies statement (2).

For (5) implies (2), fix a net (ϕλ : λ ∈ Λ) of ucp maps ϕλ : B(H) → B(H) for which
ϕλ point-norm converges to the identity on S. Assume without loss of generality that C is
a C*-subalgebra of B(H). Let D = B(H) and consider the asymptotic sequence algebra

DΛ := `∞(Λ,D)/cΛ(D)

where cΛ(D) is the ideal of sequences (bλ)λ for which limλ bλ = 0. Define the map

ϕ : DΛ → DΛ : (bλ) + cΛ(D) 7→ (ϕλ(bλ)) + cΛ(D) .

This map is well-defined since whenever limλ bλ = 0, as ϕλ are all contractions, limλ ϕλ(bλ) =
0. The map ϕ is completely positive since whenever x ∈Mn(DΛ) is positive, there is some
(bλ) ∈ Mn(`∞(Λ,D)) positive such that x = (bλ) + Mn(cΛ(D)). Let θ : C → DΛ be the
diagonal embedding a 7→ (a, a, a, . . .) + cΛ(D). Since ϕ(θ(s)) = θ(s) for all s ∈ S, we have
ϕ(θ(a)) = θ(a) for all a ∈ C. That is, (ϕλ(a)− a)λ belongs in the ideal cΛ(D). Thus, ϕλ(a)
norm converges to a for all a ∈ C.

Statement (2) in the next Corollary is what we will take as the definition of hyperrigidity
in this Thesis.

Corollary 2.1.2. Let S be an operator system generating a C*-algebra C. The following
are equivalent:

1. S is hyperrigid.

2. For every representation π : C → B(H), π has the unique extension property.

Proof. Let µ denote the density character of S. For (1) implies (2), take any representation
π : C → B(H). Say H has density character λ. Apply the above Theorem with κ = λ+µ.

The direction (2) implies (1) is a special case of (4) implies (1) of the above Theorem.
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If S is *-closed but non-unital, so long as S contains an approximate unit of C, it follows
from [72, Proposition 3.6] that S is hyperrigid in C∗(S) if and only if S+ := S + C1 in
the unitization C∗(S)+ is hyperrigid. For a unital operator algebra A, we say that A is
hyperrigid in a C*-cover D if for all representations π of D, there is a unique unital and
completely contractive extension of π|A to D.

Lemma 2.1.3. If A is a unital operator algebra with C*-cover D, and S = A+A∗, then
A is hyperrigid in D if and only if S is hyperrigid in D.

Proof. If A is hyperrigid in D and π : D → B(H) is a unital ∗-homomorphism, then
any ucp extension φ : D → B(H) of π|S : S → B(H) is necessarily a unital, completely
contractive extension of π|A, so that φ = π. Hence, S is hyperrigid in D. Similarly, if
S is hyperrigid in D and π : D → B(H) is a unital ∗-homomorphism, then any unital
completely contractive extension ψ : D → B(H) of π|A : A → B(H) is ucp and satisfies
ψ(a + a∗) = π(a) + π(a)∗ for all a ∈ A. Thus, ψ is a ucp extension of π|S , so that ψ = π,
which establishes the converse direction.

In particular, the conditions in Theorem 2.1.1 are equivalent to hpyerrigidity when we
replace all instances of S with A.

A representation π : C∗(S) → B(H) is said to be boundary if π is irreducible and π
admits the unique extension property. Arveson’s hyperrigidity conjecture asserts that if all
irreducible representations are boundary then the operator system S must be hyperrigid
in C. Very little is known about the hyperrigidity conjecture. For more information on
operator systems, see [64]. See [4] for the formulation of the hyperrigidity conjecture and
more details on the above results.

2.2 Crossed products of operator algebras

Let A be an operator algebra. That is, A is a norm closed subalgebra of B(H) with an
approximate unit and morphisms given by completely contractive algebra homomorphisms.
For this thesis, we will assume that all operator algebras are approximately unital and not
necessarily closed under *. We will always require that representations of A be non-
degenerate. An automorphism on A is a completely isometric isomorphism φ : A → A.
Note that if A is unital, then any automorphism on A is automatically unital. An operator
algebra dynamical system is a triple (A, G, α), where A is an approximately unital operator
algebra, G is a locally compact group, and α : G → Aut(A) is a strongly continuous
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group homomorphism into the group Aut(A) of automorphisms on A. In [47], crossed
products for operator algebras are introduced. Katsoulis and Ramsey define these as
operator subalgebras of a C*-algebraic crossed product. To do this, they first define an
α-admissible C*-cover of a dynamical system (A, G, α) to be any C*-dynamical system
(C, G, α̃) with a completely isometric homomorphism ρ : A ↪→ C such that, for all s ∈ G,
the diagram

C C

A A

α̃s

αs

ρ ρ

commutes. It is shown in [47] that, given a dynamical system (A, G, α), both the C*-
envelope and universal C*-algebra of A admit an α-admissible C*-cover, with action de-
noted by the symbol α.

Definition 2.2.1. Let (A, G, α) be an operator algebraic dynamical system and let (C, G, α)
be an α-admissible C*-cover with embedding ρ : A ↪→ C.

1. The reduced crossed product Aoλ
α G is the norm closure of Cc(G, ρ(A)) in C oα,λ G.

2. The full crossed product relative to C, denoted by A oC,α G, is the norm closure of
Cc(G, ρ(A)) in C oα G.

3. The full crossed product Aoα G is the full crossed product relative to C∗max(A) (see
[10] for the definition of C∗max(A)).

The reduced crossed product is independent of the choice of admissible C*-cover: if
(C, G, α) is any admissible C*-cover of (A, G, α) with embedding ρ : A ↪→ C, then the map

ϕ : Cc(G,A) ⊆ C∗env(A) oλ G→ Cc(G, ρ(A)) ⊆ C oλ G : f 7→ ρ ◦ f

extends to a completely isometric isomorphism of operator algebraic crossed products [47].
Theorem 3.3.2 will show that the analogous result for full relative crossed products need
not hold in general. As in the case of C*-algebras, the full crossed product Aoα G of an
operator algebra satisfies the following universal property: if (π, u) : (A, G) → B(H) is a
covariant pair, in the sense that π is a completely contractive homomorphism on A and u
is a homomorphism on G with π(αs(a)) = usπ(a)u∗s for all s ∈ G and a ∈ A, then there is
a canonical completely contractive homomorphism

π o u : Aoα G→ B(H)
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extending π and u. This map is called the integrated form of (π, u).

When the group action is trivial, the resulting crossed product structures become op-
erator algebra tensor products. We briefly recall the definition of these tensor products.
We refer the reader to [10] for more information on operator algebra tensor products.

Definition 2.2.2. Let A ⊆ B(H) and B ⊆ B(K) be approximately unital operator
algebras. The minimal tensor product of A and B, denoted by A⊗min B, is the completion
of A⊗ B with respect to the norm inherited from B(H ⊗K).

Note that matrix norms for A⊗minB are also inherited from B(H⊗K). The definition
of the minimal tensor product does not depend on the choice of embeddings.

Definition 2.2.3. For approximately unital operator algebras A and B, the maximal
tensor product of A and B, denoted by A⊗max B, is the completion of A⊗B with respect
to the norm on A⊗ B given by

‖x‖max = sup{‖π · ρ(x)‖B(H)},
where the supremum is taken over all Hilbert spaces H and all completely contractive
representations π : A → B(H) and ρ : B → B(H) with commuting ranges.

We note that matrix norms for A⊗max B are defined similarly. In the supremum, the
maps π and ρ can be assumed to be non-degenerate [10, 6.1.11]. Moreover, if B is a C*-
algebra, then A ⊗max B is completely isometrically contained in the C*-algebraic tensor
product C∗max(A)⊗max B [10, 6.1.9].

Example 2.2.4. Let A be an approximately unital operator algebra and let G be a locally
compact group. Let id : G→ Aut(A) be the trivial action on A; that is, ids = idA for all
s ∈ G. We have natural isomorphisms

Aoλ
id G ' A⊗min C

∗
λ(G) : aλs 7→ a⊗ λs, and

Aoid G ' A⊗max C
∗(G) : aus 7→ a⊗ us .

In the reduced case, we have the natural isomorphism

C∗env(A) oid,λ G = C∗env(A)⊗min C
∗
λ(G)

since the left regular representation is exactly the representation of the minimal tensor
product. In the full case, we have the natural isomorphism

C∗max(A) oid G = C∗max(A)⊗max C
∗(G)

since the universal property for both algebras are identical. Restricting these isomorphisms
to Cc(G,A) yields the result. For more details on these isomorphisms, see [79, Lemma 2.73
and Corollary 7.17].
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2.3 Operator system tensor products

We briefly recall some facts about operator system tensor products here. More information
can be found in [52].

An operator system tensor product τ is a map that sends a pair of operator systems
(S, T ) to an operator system S ⊗τ T such that

1. if X = (Xij) ∈ Mn(S)+ and Y = (Yk`) ∈ Mm(T )+, then X ⊗ Y := (Xij ⊗ Yk`) ∈
Mnm(S ⊗τ T )+; and

2. if φ : S → Mn and ψ : T → Mm are unital completely positive (ucp) maps, then
φ⊗ ψ : S ⊗τ T →Mnm is ucp.

An operator system tensor product τ is said to be symmetric if, for every pair of
operator systems (S, T ), the flip map S⊗T → T ⊗S induces a complete order isomorphism
S ⊗τ T → T ⊗τ S.

We will be working with four main operator system tensor products:

Definition 2.3.1. The minimal tensor product of S and T , denoted by S⊗minT , is defined
such that X ∈Mn(S ⊗min T ) is positive if and only if (φ⊗ψ)(n)(X) ∈M+

kmn for every pair
of ucp maps φ : S →Mk and ψ : T →Mm.

A fact that will be used throughout the paper is that the minimal tensor product
is injective; i.e., whenever S1,S2, T1, T2 are operator systems with unital complete order
embeddings ι : S1 ⊆ S2 and κ : T1 ⊆ T2, the tensor product map ι ⊗ κ : S1 ⊗min T1 →
S2 ⊗min T2 is a complete order embedding [52, Theorem 4.6]. In particular, if S is an
operator subsystem of B(H) and T is an operator subsystem of B(K), then S ⊗min T is
completely order isomorphic to the image of S ⊗ T in B(H ⊗K) [52, Theorem 4.4].

For two linear maps φ : S → B(H) and ψ : T → B(H) with commuting ranges (i.e.
φ(s)ψ(t) = ψ(t)φ(s) for all s ∈ S and t ∈ T ), we let φ · ψ : S ⊗ T → B(H) be defined on
the vector space tensor product by φ · ψ(s⊗ t) = φ(s)ψ(t).

Definition 2.3.2. The commuting tensor product of S and T , denoted by S ⊗c T , is
defined such that X ∈ Mn(S ⊗c T ) is positive if and only if (φ · ψ)(n)(X) ∈ Mn(B(H))+

for every pair of ucp maps φ : S → B(H) and ψ : T → B(H) with commuting ranges.

We note that S⊗cT is completely order isomorphic to the inclusion S⊗T ⊆ C∗u(S)⊗max

C∗u(T ) [52, Theorem 6.4].
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Definition 2.3.3. The maximal tensor product of S and T , denoted by S ⊗max T , is
defined such that X ∈ Mn(S ⊗max T ) is positive if and only if, for every ε > 0, there are
Sε ∈Mk(ε)(S)+, Tε ∈Mm(ε)(T )+ and a linear map Aε : Cn → Ck(ε) ⊗ Cm(ε) such that

X + ε1 = A∗ε(Sε ⊗ Tε)Aε.

Definition 2.3.4. The essential tensor product of S and T , denoted by S ⊗ess T , is the
operator system structure on S ⊗ T inherited from the inclusion S ⊗ T ⊆ C∗env(S) ⊗max

C∗env(T ).

For any two operator system tensor products α and β, we write α ≤ β if, for all
operator systems S and T , the identity map id : S ⊗β T → S ⊗α T is ucp. An operator
system S is said to be (α, β)-nuclear if for every operator system T , the identity map
id : S ⊗α T → S ⊗β T is a complete order isomorphism. For example, every unital
C*-algebra is (c,max)-nuclear [52, Theorem 6.7].

2.4 Finite-dimensional operator system quotients and

duals

In general, the dual space of an operator system can always be made into a matrix-ordered
∗-vector space [14, Lemma 4.2, Lemma 4.3] as follows: if S is an operator system with
Banach space dual Sd, and f = (fij) ∈Mn(Sd), then we define f ∗ = (f ∗ji), where f ∗ij(s) :=

fij(s∗) for all 1 ≤ i, j ≤ n and s ∈ S. We say that a self-adjoint element f = (fij) ∈Mn(Sd)
is positive if the associated map F : S → Mn given by F (s) = (fij(s)) is completely
positive. With this structure, Sd becomes a matrix-ordered ∗-vector space. If S is not
finite-dimensional, then Sd may not have an order unit, and hence may not be an operator
system. However, if S is finite-dimensional, then Sd is an operator system, and any faithful
state on Sd will be an order unit for Sd [14].

The theory of operator system quotients is rather new and not well understood. If
φ : S → T is a surjective ucp map between operator systems, then we may endow the
quotient vector space S/ ker(φ) with an operator system structure [53]. For s ∈ S, we write
ṡ to denote its image in S/ ker(φ). We say that Ẋ = (Ẋij) ∈ Mn(S/ ker(φ)) is positive if,
for every ε > 0, there is Yε ∈Mn(S)+ such that Ẏε = Ẋ + εİn, where In denotes the n× n
identity matrix in Mn(S). Note that whenever φ : S → T is a surjective ucp map, the
induced map φ̇ : S/ ker(φ) → T is ucp [53, Proposition 3.6]. This leads to the following
definition.
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Definition 2.4.1. A surjective ucp map φ : S → T between operator systems is said to
be a complete quotient map if the induced map φ̇ : S/ ker(φ) → T is a complete order
isomorphism.

For our purposes, it will be helpful to translate between complete quotient maps and
complete order embeddings, via the Banach space adjoint. Recall that whenever φ : S → T
is a ucp map between finite-dimensional operator systems, we may define a ucp map
φd : T d → Sd by [φd(f)](s) = f(φ(s)). Then a ucp map φ : S → T between finite-
dimensional operator systems is a complete quotient map if and only if φd : T d → Sd is a
complete order embedding [28, Proposition 1.8].

2.5 C*-correspondences and the tensor algebra T +
X

A Hilbert module is a generalization of Hilbert space with the scalar coefficients replaced
by a fixed C*-algebra. That is, a Hilbert C-module is a pair (C, X), where C is a C*-algebra
and X is a right C-module with a C-valued inner product

〈·, ·〉 : X ×X → C

satisfying the following axioms:

1. For fixed x ∈ X, the map 〈x, ·〉 : X → X is C-linear.

2. For any x, y ∈ X, 〈x, y〉∗ = 〈y, x〉.

3. For every x ∈ X, 〈x, x〉 ≥ 0. As well, x = 0 if and only if 〈x, x〉 = 0.

4. The space X is complete with respect to the 2-norm ‖x‖ :=
√
‖ 〈x, x〉 ‖.

Given a Hilbert C-module, one can define the C*-algebra L(X) of bounded C-linear maps
from X to itself with norm given by the supremum norm. A C*-correspondence is a Hilbert
C-module (C, X) along with a *-homomorphism

λ : C → L(X) .

Whenever convenient, we will denote this action by left multiplication: λ(a)x = a · x.

Let (C, X) be a C*-correspondence and let D be a C*-algebra. We say that a pair of
maps (π0, π1) : (C, X)→ D is a Toeplitz pair if
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1. π0 : C → D is a *-homomorphism,

2. π1 : X → D is a linear map,

3. For any a ∈ C and x ∈ X we have π0(a)π1(x) = π1(a · x), and

4. For any x and y in X we have π0(〈x, y〉) = π1(x)∗π1(y).

Given a Toeplitz pair (π0, π1), we can show that

(π1(x)π0(a)− π1(x · a))∗(π1(x)π0(a)− π1(x · a)) = 0 .

Because of this, we always have π1(x)π0(a) = π1(x ·a) for any x ∈ X and a ∈ C. A Toeplitz
pair can also be thought of as a morphism from the C*-correspondence (C, X) into the C*-
correspondence (D,D) where left and right action is given by multiplication and the inner
product is given by 〈x, y〉 = x∗y. There is always a maximal C*-algebra associated to
C*-correspondences called the Toeplitz-Pimsner algebra TX . This C*-algebra is maximal
in the following sense: there is always a Toeplitz pair

κ0 : C → TX
κ1 : X → TX

into TX and whenever (π0, π1) : (C, X)→ D is a Toeplitz pair then there is a *-homomorphism

π0 × π1 : TX → D

for which the diagram

TX D

(C, X)

π0×π1

(κ0,κ1)
(π0,π1)

commutes. The Toeplitz-Pimsner algebra always contains a canonical norm closed non-
selfadjoint operator algebra T +

X called the Tensor algebra. This algebra is described as the
non-selfadjoint operator algebra generated by κ0(C) and κ1(X) in TX .
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The Toeplitz-Pimsner algebra TX always admits a canonical continuous T-action γ
called the gauge action. Using the universal property of TX , it is enough to define γ as an
action on (C, X): for z ∈ T,

γ0
z : C → C : a 7→ a

γ1
z : X → X : x 7→ z · x

will give us the action.

Although the Toeplitz-Pimsner algebra TX is a canonical algebra associated to (C, X),
it is often too big for our purposes as the gauge-invariant uniqueness theorem for graph
algebras will not generalize to TX .

Example 2.5.1. Here we show that the gauge-invariant uniqueness theorem will not gen-
eralize to TX . That is, we show that there is a C*-correspondence (C, X) and a Toeplitz
pair (π0, π1) : (C, X) → D for which D admits a gauge action but the *-homomorphism
π0 × π1 is not injective.

For our C*-correspondence, we take the correspondence (C,C) associated to the C*-
algebra C. The algebra TC is the universal C*-algebra generated by a single isometry. To
see this, suppose that C∗(V ) is the universal C*-algebra generated by a single isometry.
Define the pair of maps

(κ0, κ1) : (C,C)→ C∗(V )

for which κ0(1) = 1 and for which κ1(1) = V . Since V is an isometry, for every a, x, y ∈ C,
we have the relations

κ0(〈x, y〉) = x̄y = x̄V ∗yV =
〈
κ1(x), κ1(y)

〉
and κ1(ax) = axV = κ0(a)κ1(x) .

It follows that (κ0, κ1) is a Toeplitz pair. Next we claim that whenever there is a Toeplitz
pair (π0, π1) from (C,C) into a C*-algebra D, that π1(1) is an isometry. This follows from
the identity 1 = π0(〈1, 1〉) = 〈π1(1), π1(1)〉 = π1(1)∗π1(1). The universal property of TC
follows since C∗(V ) is the universal C*-algebra generated by an isometry. On the other
hand, there is always a gauge-invariant Toeplitz pair from (C,C) into C∗(Z) by mapping
1 to the canonical unitary u associated to 1 ∈ Z. To see this, we define the Toeplitz pair
(π0, π1) from (C,C) into C∗(Z) by π0(1) = 1 and π1(1) = u. The above calculation shows
that (π0, π1) is indeed a Toeplitz pair. As well, there is a T-action γ : T y C∗(Z) given by
the extending the group homomorphism

Uz : Z→ U(C∗(Z)) : 1 7→ zu
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for all z ∈ T. That this action is continuous follows from an application of triangle
inequality on *-polynomials generated by u. Therefore, there is always a gauge-invariant
*-homomorphism π0×π1 : TC → C∗(Z) but, while the gauge-invariant uniqueness theorem
would state that such a map should be injective, this map is not.

The remedy for the failure of the gauge-invariant uniqueness theorem is to restrict our
class of representations.

Fix a C*-correspondence (C, X). The compact operators K(X) is the C*-subalgebra
of the space L(X) of adjointable right-C-linear operators on X spanned by the rank one
operators x 〈y, ·〉 for x, y ∈ X . Given a Toeplitz pair (π0, π1) : (C, X)→ D, there is always
a *-homomorphism

ϕπ : K(X)→ D : x 〈y, ·〉 7→ π1(x)π1(y)∗ .

The Katsura ideal JX associated to (C, X) consists of elements a ∈ C for which λ(a) ∈
K(X) and for which ab = 0 whenever b belongs to the kernel of λ. A Toeplitz pair
(π0, π1) : (C, X) → D is said to be covariant if for any element a ∈ JX , we have the
identity

π0(a) = ϕπ(λ(a)) .

The appropriate choice of C*-algebra is the universal C*-algebra associated to covariant
Toeplitz pairs. This algebra is called the Cuntz-Pimsner algebra OX . We will let

ι0 : C → OX
ι1 : X → OX

be the canonical covariant Toeplitz pair. Since the gauge action (γ0, γ1) : T y (C, X)
is covariant, OX has a gauge action as well. As well, there is a canonical quotient map
TX → OX . We also have the gauge invariant uniqueness theorem [49, Theorem 6.4].

Theorem 2.5.2 (Gauge-invariant uniqueness theorem). Suppose that there is a covariant
Toeplitz pair (π0, π1) : (C, X)→ D with π0 injective and suppose that there is a gauge action
T y C∗(π0, π1) for which the Toeplitz pair (π0, π1) is T-equivariant. The *-homomorphism

π0 × π1 : OX → D

is necessarily injective.

20



Example 2.5.3. Let E = (E0, E1, s, r) be a topological graph. That is, E0, E1 are locally
compact topological spaces, and s, r : E1 → E0 are continuous maps. They are called
graphs as we are thinking of E0 as the space of vertices and E1 as the space of edges. The
maps s and r determine the source and the range of an edge. Therefore, these graphs are
necessarily directed. We will also assume that s is a local homeomorphism: for every point
e ∈ E1, there is an open neighbourhood U of e such that s forms a homeomorphism of
U onto its range. Define a C*-correspondence X(E) over the C*-algebra C0(E0) as the
completion of Cc(E

1) with left and right actions given by

f · g : e 7→ f(e)g(s(e)) and

g · f : e 7→ g(r(e))f(e)

for any f ∈ Cc(E1) and g ∈ C0(E0) and with inner product given by

〈f, h〉 : x ∈ E0 7→
∑

e∈E1:s(e)=x

f(e)h(e)

for any f, h ∈ Cc(E1). The graph C*-algebra C∗(E) is the Cuntz-Pimsner algebra OX(E).
This construction of C*-correspondences associated to topological graphs are introduced
by Katsura in [48].

A result of Katouslis and Kribs shows that the tensor algebra T +
X always sits completely

isometrically as a subset of OX [45, Lemma 3.5]. Moreover, they show that OX is the C*-
envelope of T +

X [45, Theorem 3.7].

Definition 2.5.4. Let (C, X) be a C*-correspondence. We define the operator space
S(C, X) as the *-closed operator subspace of OX generated by X and C.

An elementary argument shows that S(C, X) sits completely isometrically in both TX
and OX .

2.6 Notational conventions

In Part I of this thesis all non-selfadjoint operator algebras will be denoted by the script
letters A and B. Our groups will be denoted by the letter G and are assumed to be discrete
unless otherwise stated. Unless otherwise specified, all C*-algebras will be denoted by the
letters C and D. Operator systems will generally be denoted by the letters S and T . The
order unit of an operator system S will be denoted by the unit 1 or 1S if it needs to be
specified, with the exception of the order unit of the matrix algebra Mn(C), which will be
denoted by In.
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Chapter 3

Crossed products of operator systems

In this chapter, which is joint work with Samuel Harris, we introduce the notion of a crossed
product of an operator system. Much like C* and operator algebraic crossed products,
crossed products of operator systems form a functor from the category of G-operator
systems, where G is a discrete group, into the category of operator systems. Motivation
for this work comes from two fronts: firstly, the work of Hamana, Kalantar, Kennedy, and
many others demonstrate that G-operator systems are interesting objects in their own right
and they can provide new insight even in the C*-category. Secondly, the work of Katsoulis
and Ramsey demonstrates that looking at crossed products for subobjects of C*-algebras
provide new insight and new results in the isomorphism problem of Hao and Ng.

Our construction of the crossed products mimick the construction of Katsoulis and
Ramsey, who construct crossed products on operator algebras by giving a concrete descrip-
tion as subalgebras of an ambient C*-cover. As mentioned in the preliminaries, although
crossed products of operator systems are functorial, they do not preserve G-equivariant
quotient maps. Beyond this, the universal C*-cover of an operator system crossed prod-
uct need not be the universal crossed product of some C*-cover. These differences mean
that crossed products of operator systems are not just a straight-forward generalization of
crossed products of operator algebras.

Finally, we finish this chapter by solving two problems of Katsoulis and Ramsey that
ask whether universal crossed products of operator algebras are independent of the ambient
C*-cover. We resolve this problem by first encoding the problem to one about operator
system crossed products then appealing to Kavruk’s nuclearity detectors to show that their
problem is answered in the negative. The counter-example algebra is extremely tame: it is
a five dimensional subalgebra of M6 and, using the fact that the hyperrigidity conjecture
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holds when the spectrum is at most countable, we show that it is hyperrigid.

3.1 Reduced Crossed Products

Let G be a discrete group. We will assume that we are working with a set of generators g
for G such that g−1 = g and e ∈ g.

Definition 3.1.1. If S is an operator system, then Aut(S) is the group of unital complete
order isomorphisms φ : S → S. An (operator system) dynamical system is a 4-tuple
(S, G, g, α), where S is an operator system, G is a group with generating set g, and α :
G→ Aut(S) is a group homomorphism.

Let (S, G, g, α) be a dynamical system, and let ρ : S → C be a complete order embed-
ding for which C∗(ρ(S)) = C. The C*-cover C is said to be α-admissible if there is a group
action α : G→ Aut(C) for which the diagram

C C

S S

αg

ρ

αg

ρ

commutes for all g ∈ G. We denote such an α-admissible C*-cover by the triple (C, ρ, α).

Given an α-admissible C*-cover (C, ρ, α) of a dynamical system (S, G, g, α), the reduced
crossed product relative to g is defined as the operator subsystem of the reduced crossed
product C*-algebra C oα,λ G given by

S o(C,ρ)
α,λ g := span{ρ(a)λg : a ∈ S, g ∈ g} ⊆ C oα,λ G .

Finally, given two operator system dynamical systems (S, G, g, α) and (T , G, h, β), we
say that a ucp map ϕ : S → T is G-equivariant if for every g ∈ G and s ∈ S, we have

βg(ϕ(s)) = ϕ(αg(s)).

Remark 3.1.2. If G is a discrete group with generating sets g and h and g ⊆ h then for
any G-action α : G→ Aut(S) and any admissible C*-cover (C, ρ, α) we have the complete
order embedding

S o(C,ρ)
α,λ g ⊆ S o(C,ρ)

α,λ h, .
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given by the canonical inclusion. Thus, although different choices of generating sets will
yield different crossed products in general, the choice of generators is not essential in the
structure of the crossed product.

Remark 3.1.3. Recall that if A is a unital operator algebra with C*-cover (C, ρ) and
φ : ρ(A)→ B(H) is a linear map, then φ is unital and completely contractive if and only

if the map φ̃ : ρ(A) + ρ(A)∗ → B(H) given by

φ̃(ρ(a) + ρ(b)∗) = φ(ρ(a)) + φ(ρ(b))∗

is ucp [2]. In particular, if α ∈ Aut(ρ(A)), then it readily follows that α̃ ∈ Aut(ρ(A) +
ρ(A)∗). Suppose that G is a discrete group. For a group action α : G → Aut(A) and an
α-admissible C*-cover (C, ρ, α), there is an associated group action α̃ : G → Aut(ρ(A) +
ρ(A)∗) given by the assignment g 7→ α̃g. In fact, any α-admissible C*-cover (C, ρ, α) for
(A, G, α) is also α̃-admissible for (ρ(A) + ρ(A)∗, G, α̃, g). Let ρ̃ : ρ(A) + ρ(A)∗ → C be
the canonical inclusion. Then for reduced crossed products, setting g = G, we have the
identity

(ρ(A) + ρ(A)∗) o(C,ρ̃)
α,λ G = (Ao(C,ρ)

α,λ G) + (Ao(C,ρ)
α,λ G)∗ ⊆ C oα,λ G .

This means that there is a bijective correspondence between unital completely positive
maps on the reduced crossed product (ρ(A) + ρ(A)∗) o(C,ρ̃)

α,λ G and unital completely con-

tractive maps on Ao(C,ρ)
α,λ G. In this way, any reduced crossed product of a unital operator

algebra by a discrete group is contained completely isometrically in an associated operator
system reduced crossed product.

We would like an abstract notion of the reduced crossed product. Indeed, we shall show
that the reduced crossed product is independent of its admissible C*-cover. Until that fact
is established, we will always make reference to the C*-cover in question when discussing
(relative) reduced crossed products.

Example 3.1.4. Let G be a group. Consider the trivial action of G on C; i.e., αg(1) = 1 for
all g ∈ G. In this case, we simply recover the reduced group operator system corresponding
to the generating set g. That is to say,

CoC∗λ(G)

id,λ g = Sλ(g), .

where Sλ(g) = span{λg : g ∈ g} ⊆ C∗λ(G) [27].
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Proposition 3.1.5. Suppose that (S, G, g, id) is the trivial dynamical system; i.e., αg =
idS for all g ∈ G. Then the map

Ψ : S oid,λ g→ S ⊗min Sλ(g)

sαg 7→ s⊗ λg

is a complete order isomorphism.

Proof. From the theory of C*-algebras, there is an isomorphism Φ : C∗env(S) oid,λ G →
C∗env(S)⊗min C

∗
λ(G) which sends generators to generators [79, Lemma 2.73]. This restricts

to an isomorphism Ψ : S oid,λ g → span{a⊗ λg : a ∈ S, g ∈ g} which sends generators to
generators. By [52, Corollary 4.10], the latter operator system is precisely S⊗minSλ(g).

Let C be a C*-algebra and S be an operator system contained in C. We say that S
contains enough unitaries in C if the set of elements in S which are unitary in C generate
C as a C*-algebra. This property of operator systems was first considered in [53]. A result
of Kavruk [50, Proposition 5.6] states that if S ⊆ C is an operator subsystem of a C*-cover
C for which S contains enough unitaries, then C is the C*-envelope of S. In particular,

C∗env(CoC∗λ(G)

id,λ g) = C∗λ(G).

Before working more with C*-envelopes corresponding to dynamical systems, we first
show that for any dynamical system, the group action can be extended to a group action
on the C*-envelope.

Proposition 3.1.6. Suppose that (S, G, g, α) is a dynamical system. Suppose that the
pair (C∗env(S), ι) is the C*-envelope of S, where ι : S ↪→ C∗env(S) is the canonical complete
order embedding. Then there exists a G-action α on C∗env(S) which makes (C∗env(S), ι, α)
an α-admissible C*-cover of S.

Proof. Let g ∈ G. Since ι ◦ αg is a complete order embedding of S into C∗env(S), by
the universal property of C*-envelopes, there is a unique surjective ∗-homomorphism αg :
C∗env(S)→ C∗env(S) for which the diagram

C∗env(S) C∗env(S)

S S

αg

ι

αg

ι
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commutes. For every g, h ∈ G, the map αgh ◦ (αg ◦αh)−1 restricts to the identity on S. By
uniqueness, we must have αgh ◦ (αg ◦ αh)−1 = idC∗env(S), so that αgh = αg ◦ αh. Evidently
we have αe = idC∗env(S). In particular, αg ◦ αg−1 = αg−1 ◦ αg = idC∗env(S), so each αg is an
automorphism. Then α : G y C∗env(S) is a group action which is admissible with respect
to the dynamical system.

Definition 3.1.7. Let (S, G, g, α) be a dynamical system. Define the reduced crossed

product S oα,λ g to be the reduced crossed product S o(C∗env(S),ι)
α,λ g relative to (C∗env(S), ι).

3.1.1 The C*-envelope of a reduced crossed product

The goal of this section is to prove the identity

C∗env(S oα,λ g) = C∗env(S) oα,λ G

for any dynamical system (S, G, g, α).

The next Lemma contains some useful facts relating to hyperrigidity.

Lemma 3.1.8. Let S be an operator system.

1. If α is an automorphism on S and π : S → B(H) is a representation with the unique
extension property, then π ◦ α has the unique extension property.

2. If πi : S → B(Hi) is a maximal representation for each i ∈ I, then
⊕

i πi is also
maximal.

Proof. The fact that (1) holds is by the definition of the unique extension property. The
proof of (2) is due to Arveson [4, Proposition 4.4].

Let S be an operator system in a C*-algebra C. Recall that S is hyperrigid in C if
whenever π : C → B(H) is a ∗-representation, the map π|S satisfies the unique extension
property. The following Theorem is helpful for our purposes.

Theorem 3.1.9. If S is an operator system in a unital C*-algebra C and S is hyperrigid
in C, then C = C∗env(S).

Proof. If S ⊆ C is hyperrigid, then any faithful representation π of C is such that πS has
the unique extension property. Thus, πS is maximal on S. By a theorem of Dritschel
and McCollough [22, Theorem 1.1], since maximal representations generate C*-envelopes,
C∗(π|calS) is isomorphic to C∗env(S). Evidently C ' C∗(π|S), so this proves that C is the
C*-envelope of S.
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Recall that an operator subsystem S of a unital C*-algebra C contains enough unitaries
if the the set of elements in S that are unitary in C generates C as a C*-algebra. The next
result is folklore.

Lemma 3.1.10. Suppose that C is a unital C*-algebra and that S ⊆ C is an operator
system which contains enough unitaries in C. Then the operator system S is hyperrigid.

Proof. Let π : C → B(H) be a ∗-representation, and suppose that the ucp map π|S is not
maximal. Let ψ : S → B(K) be a maximal dilation of π|S . Since ψ is maximal, ψ induces
a ∗-homomorphism on C∗(S) = C, which we will also denote by ψ. For s ∈ S, we may
decompose the operator ψ(s) with respect to K = H ⊕H⊥ as

ψ(s) =

[
π(s) as
bs χ(s)

]
for operators as ∈ B(H⊥, H), bs ∈ B(H,H⊥) and χ(s) ∈ B(H⊥). Let u ∈ S be unitary
in C. Since ψ(u) must also be unitary, we know that the (1,1)-corner of the operators
ψ(u)ψ(u∗) and ψ(u∗)ψ(u) must be the identity. A calculation shows that (ψ(u)ψ(u∗))1,1 =
IH + aua

∗
u and (ψ(u∗)ψ(u))1,1 = IH + b∗ubu. Thus, both au and bu must be zero, so that

ψ(u) = π(u)⊕ χ(u). Therefore, if u, v ∈ S are unitaries in C, then using the fact that ψ is
a ∗-homomorphism,[

π(u)π(v) 0
0 χ(u)χ(v)

]
= ψ(u)ψ(v) = ψ(uv) =

[
π(uv) auv
buv χ(uv)

]
.

Hence, auv and buv = 0. It easily follows that for any elements u1, ..., un ∈ S that are
unitary in C, we have

ψ(u1 · · ·un) =

[
π(u1 · · ·un) 0

0 χ(u1 · · ·un)

]
.

Since C is generated by unitaries in S, C is the span of elements of the form u1 · · ·un
for elements u1, ..., un of S that are unitary in C. It follows that ψ decomposes as π ⊕ χ
for some ucp map χ on C. Restricting to S, this proves that π|S is maximal, which is a
contradiction.

This gives an alternate proof of Kavruk’s result on C*-envelopes [50, Proposition 5.6].

Corollary 3.1.11. Suppose that C is a unital C*-algebra and S ⊆ C is an operator system
that contains enough unitaries in C. Then C is the C*-envelope of S.
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Proof. By Lemma 3.1.10, S is hyperrigid. By Theorem 3.1.9, C = C∗env(S).

In order to show that C∗env(S oα,λ g) = C∗env(S) oα G, we require the following lemma.

Lemma 3.1.12. Suppose that (S, G, g, α) is a dynamical system. Let π : C∗env(S) ↪→ B(H)
be a faithful representation that is maximal on S. Let (π, λH) be the covariant extension
of π to H ⊗ `2(G). That is, for any a ∈ A, h ∈ H, and s, g ∈ G,

π : A→ B(H ⊗ `2(G)) : π(a)(h⊗ δg) = π(a)h⊗ δg and

λH : G→ U(H ⊗ `2(G)) : λH,s(h⊗ δg) = h⊗ δsg .

The integrated form π o λH : C∗env(S) oα,λ G→ B(H ⊗ `2(G)) is maximal on S oα,λ g.

Proof. Since π =
⊕

g∈G π◦αg, Lemma 3.1.8 shows that π has the unique extension property
on S. We claim that π o λH has the unique extension property on S oα,λ g. If this
were true, then π o λH would be maximal on S oα,λ g. Thus, it remains to show that
π o λH has the unique extension property. Suppose that ρ : C∗env(S) oα,λ G → B(H) is
a ucp extension of π o λH |Soα,λg. We observe that, by maximality of π, we must have
ρ|C∗env(S) = π o λH |C∗env(S) = π. Recall that Sλ(g) = span{λg : g ∈ g}. By Lemma 3.1.10,
Sλ(g) is hyperrigid, since it contains enough unitaries in its C*-envelope. Since Sλ(g) is
hypperrigid, we get the identity ρ|C∗(Sλ(g)) = π o λH |C∗(Sλ(g)). Thus, C∗(Sλ(g)) is in the
multiplicative domain of ρ. Now, let g ∈ G. Since λg ∈ C∗(Sλ(g)), for a ∈ C∗env(S) we
obtain the identity

ρ(aλg) = ρ(a)ρ(λg) = (π o λH(a))(π o λH(λg)) = π o λH(aλg) .

This proves that ρ = π o λH , so that π o λH has the unique extension property.

We are now in a position to prove the desired result on C*-envelopes of reduced crossed
products.

Theorem 3.1.13. Suppose that (S, G, g, α) is a dynamical system. Then there is a canon-
ical isomorphism

C∗env(S oα,λ g) ' C∗env(S) oα,λ G .

Proof. Let π : C∗env(S) ↪→ B(H) be a maximal representation, and let π o λH be the
associated integrated form of the covariant extension (π, λH) of π. By Lemma 3.1.12,
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π o λH is maximal on S oα,λ g. Thus, the C*-algebra generated by (π o λH)(S oα,λ g) is
the C*-envelope of S oα,λ g. Thus, we obtain the isomorphism

π o λH : C∗env(S) oα,λ G→ C∗env(S oα,λ g) .

which completes the proof.

Hyperrigidity is also preserved by the reduced crossed product.

Corollary 3.1.14. Suppose that (S, G, g, α) is a dynamical system. If S is hyperrigid in
C∗env(S), then S oα,λ g is hyperrigid in C∗env(S oα,λ g).

Proof. By Theorem 3.1.13, we have C∗env(S oα,λ g) = C∗env(S) oα,λ G. Suppose that ρ :
C∗env(S)oα,λG→ B(H) is a unital ∗-homomorphism and let ϕ : C∗env(S)oα,λG→ B(H) be
a ucp extension of ρ|Soα,λg. Since S is hyperrigid in C∗env(S), ϕ|C∗env(S) satisfies the unique
extension property on S. On the other hand, Sλ(g) is hyperrigid in C∗λ(G) by Lemma
3.1.10. Thus, ϕ agrees with ρ when restricted to the copy of C∗λ(G) in C∗env(S) oα,λ G.
In particular, C∗env(S) and the copy of C∗λ(G) are contained in the multiplicative domain
of ϕ. As these two algebras generate C∗env(S) oα,λ G as a C*-algebra, it follows that
ρ = ϕ. Therefore, ρ is maximal on S oα,λ g. Since ρ was an arbitrary representation of
C∗env(S) oα,λ G, it follows that S oα,λ g is hyperrigid in C∗env(S oα,λ g).

Example 3.1.15. Consider the commutative C*-algebra C(T) with generator u : T→ C
given by u(z) = z. Fix θ ∈ [0, 1] and define the action α : Z y C(T) by the automorphism

α : u 7→ e2πiθu .

Define ST := span{1, u, u∗}. Observe that α restricts to an action on ST. Set g =
{1, 0,−1} ⊆ Z. The crossed product ST oα,λ g has C*-envelope C(T) oα Z. Therefore, all
rotation algebras are C*-envelopes of finite-dimesional operator systems.

Example 3.1.16. We consider a generalization of Example 3.1.15. Let n ≥ 1, and let
U(n) act on the Cuntz algebra On via the mapping

αg : si 7→
n∑
j=1

gjisj

where s1, . . . , sn are the isometries generating On and g = (gij) is the matrix represen-
tation of the element g of U(n) with respect to the canonical basis. For a subgroup G
of U(n), we say that an action G y On is quasi-free if G acts by α (see [57]). Let
g ⊆ U(n) be a finite symmetric subset containing the identity. Let G = 〈g〉. Set
Sn = span{s1, . . . , sn, 1, s

∗
1, . . . , s

∗
n}. If G yα On is a quasi-free action, then G restricts to

an action on Sn. The system Sn oα,λ g has C*-envelope On oα,λ G.
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3.1.2 An abstract characterization of reduced crossed products

We now move towards showing that the reduced crossed product does not depend on
the choice of C*-cover for the operator system. Recall the following characterization of
positivity for reduced C*-algebraic crossed products (see [13, Corollary 4.1.6]):

Proposition 3.1.17. Suppose that (C, G, α) is a C*-dynamical system. An element x =∑
g∈G agλg ∈ Cc(G, C) is positive if and only if for any finite set {g1, . . . , gn} ⊆ G, the

matrix  α−1
gi

(agig−1
j

)

n
i,j=1

is positive in Mn(C).

The following is a well known result. For a proof, see [79, Lemma 7.16].

Proposition 3.1.18. Let (C, G, α) be a C*-dynamical system and let n ≥ 1. We have the
isomorphism

Mn(C oα,λ G) 'Mn(C) oα(n),λ G .

The next corollary immediately follows from Proposition 3.1.18.

Corollary 3.1.19. Let (S, G, g, α) be a dynamical system, and let (A, ρ) be an α-admissible
C*-cover. For n ≥ 1, we have a complete order isomorphism

Mn(S o(C,ρ)
α,λ g) 'Mn(S) o(Mn(C),ρ(n))

α(n),λ
g .

Therefore, we have the following characterization of reduced crossed products.

Proposition 3.1.20. Let (S, G, g, α) be a dynamical system and let (C, ρ) be an α-admissible

C*-cover. For n ≥ 1, the positive cones Cn := Mn(S o(C,ρ)
α,λ g)+ are given by the following

rule: an element x =
∑

g∈g xgλg ∈ Mn(S o(C,ρ)
α,λ g) is in Cn if and only if, for every finite

subset F of G, the matrix  α
(n)

g−1(ρ(xgh−1))


g,h∈F

is positive in MF (Mn(ρ(S))).
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We now prove that the reduced crossed product is independent of the C*-cover. The
proof is essentially the same as the proof of the analogous result for the operator algebras
[47, Lemma 3.11].

Lemma 3.1.21. Suppose that ρ : S ↪→ C is a complete order embedding of an operator
system S into a C*-cover C. Let JS be the Shilov ideal of S in C. If α : C → C is an
automorphism such that α(ρ(S)) = ρ(S), then α(JS) = JS .

Proof. Let n ≥ 1 and x ∈Mn(S). A calculation shows that

‖ρ(n)(x) +Mn(α(JS))‖ = ‖(α−1)(n)(ρ(n)(x)) +Mn(JS)‖ = ‖(α−1)(n)(ρ(n)(x))‖ = ‖x‖ ,

by definition of JS . Therefore, S → C/α(JS) : x 7→ ρ(x) + α(JS) is a complete order
isometry. Thus, α(JS) is a boundary ideal for S in (C, ρ). Since the Shilov ideal is
maximal amongst boundary ideals, α(JS) ⊆ JS . Since α is an automorphism, applying
the same argument for α−1 shows that JS ⊆ α(JS). Thus, α(JS) = JS .

Lemma 3.1.22. Suppose that (S, G, g, α) is a dynamical system and suppose that (C, ρ, α)
is an α-admissible C*-cover. Then the G-action α induces a G-action on C/JS via g 7→ α̇g,
where α̇g(x+JS) = αg(x) +JS . Moreover, if q : C → C/JS is the canonical quotient map,
then (C/JS , q ◦ ρ, α̇) is an α-admissible C*-cover for (S, G, g, α).

Proof. Let g ∈ G. Since (C, ρ, α) is an α-admissible C*-cover, αg(ρ(S)) = ρ(S). By
Lemma 3.1.21, αg(JS) = JS . Hence, the map α̇g as defined above is a well-defined unital
∗-homomorphism. It is easy to check that the assignment g 7→ α̇g induces a group action
α̇ of G on C/JS .

To see that (C/JS , q ◦ ρ, α̇) is an α-admissible C*-cover for (S, G, g, α), let x ∈ S and
let g ∈ G. We have the identity

α̇g(q ◦ ρ(x)) = α̇g(ρ(x) + JS) = (αg ◦ ρ)(x) + JS
= ρ(αg(x)) + JS = q ◦ ρ(αg(x)),

thus proving that (C/JS , q ◦ ρ, α̇) is α-admissible.

Theorem 3.1.23. Suppose that (S, G, g, α) is a dynamical system and suppose that (C, ρ, α)
is an α-admissible C*-cover. If JS is the Shilov boundary of S in C, then

S o(C/JS ,q◦ρ)
α,λ g ' S o(C,ρ)

α,λ g

canonically. In particular, the reduced crossed product does not depend on the choice of
C*-cover.
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Proof. By Lemma 3.1.22, the reduced crossed product S o(C/JS ,q◦ρ)
α,λ g is well-defined. It

remains to prove that the map

Φ : S o(C,ρ)
α,λ g→ S o(C/JS ,q◦ρ)

α,λ g

xλg 7→ (x+ JS)λg

is a complete order isomorphism. This map is unital and completely positive since it arises
as the restriction of a *-homomorphism

C oα,λ G→ C/JS oα̇,λ G

xλs 7→ (x+ JS)λs .

Conversely, for X ∈ Mn(S o(C,ρ)
α,λ g), suppose that Φ(X) ∈ Mn(S o(C/JS ,q◦ρ)

α,λ g) is positive.
By Proposition 3.1.20, X is positive if and only if for every finite subset F of G, the matrix α̇

(n)

g−1(q ◦ ρ(n)(Xgh−1))


g,h∈F

is positive in MF (Mn(q ◦ ρ(S))). α̇g ◦ (q ◦ ρ) = (q ◦ ρ) ◦ αg and q ◦ ρ : S → C/JS is a
complete order embedding, we see that the matrix α

(n)

g−1(Xgh−1)


g,h∈F

is positive in MF (Mn(S)). Since αg ◦ ρ = ρ ◦ αg, the matrix α
(n)

g−1(ρ
(n)(Xgh−1))


g,h∈F

is positive in MF (Mn(ρ(S)). Applying Proposition 3.1.20 again, we see that X is positive

in Mn(S o(C,ρ)
α,λ g), establishing the complete order isomorphism.

We close this section with a short discussion on G-equivariant ucp maps. First, we have
the following result ([13, Exercise 4.1.4]):
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Proposition 3.1.24. Suppose that (S, G, g, α) and (T , G, g, β) are dynamical systems and
suppose that ϕ : S → T is a G-equivariant ucp map. The map

ϕ̃ : S oα,λ g→ T oβ,λ g : aλg 7→ ϕ(a)λg

is ucp. If the map ϕ is a complete order embedding, then the map ϕ̃ is also a complete
order embedding.

Proof. It is clear that ϕ̃ is unital. Since the amplifications ϕ(n) : Mn(S)→ Mn(T ) are G-
equivariant, it suffices to show that ϕ̃ is positive. If x =

∑
g∈g xgλg is positive in S oα,λ g,

then for each finite F ⊆ G the matrix

P :=

 αg−1(xgh−1)


g,h∈F

.

is positive in MF (S). Since ϕ is ucp, ϕ(F )(P ) ≥ 0 in T . By G-equivariance, this means
that the matrix  βg−1(ϕ(xgh−1))


g,h∈F

is positive in MF (T ). This occurs if and only if the element
∑

g∈g ϕ(xg)λg is positive in

T oβ,λ g. A similar argument shows that φ̃ is a complete order embedding whenever φ is
a complete order embedding.

In the case of C*-algebras, a G-equivariant quotient map between two C*-algebras
produces a quotient map on the reduced crossed product. This fails in the case of operator
systems. For example, let z := {1, 0,−1} ⊆ Z. Let E00, E01, E10, E11 enumerate the
canonical system of matrix units for M2. Define

ϕ : M2 → S(z) : Eij 7→
1

n
uiu
∗
j .

It was shown in [28, Theorem 2.4] that ϕ is a complete quotient map. However, the
following holds.

Proposition 3.1.25. [27, Proposition 3.10] The map ϕ⊗ϕ : M2⊗minM2 → S(z)⊗minS(z)
is not a complete quotient map.
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Proposition 3.1.26. Let z = {1, 0,−1} ⊆ Z. There is a G-equivariant complete quotient
map

ϕ : (M2, id, z,Z)→ (S(z), id, z,Z)

which does not induce a complete quotient map on the reduced crossed product.

Proof. Let ϕ : M2 → S(z) be the complete quotient map as above, and suppose that the
induced ucp map

ϕoid z : M2 oid,λ z→ S(z) oid,λ z

is a complete quotient map. Observe that, since the Z-action is trivial, under the canonical
isomorphisms we have M2 oid,λ z = M2⊗min S(z) and S(z)oid,λ z = S(z)⊗min S(z). In this
way, we can identify ϕoid z = ϕ⊗min idS(z). If ϕoid z were a complete quotient map, then
by an amplification, idM2 ⊗minϕ would also be a complete quotient map. This would imply
that ϕ ⊗min ϕ = (idM2 ⊗minϕ) ◦ (ϕ ⊗min idS(z)) is a complete quotient map, contradicting
Proposition 3.1.25. Hence, φoid z is not a complete quotient map.

3.2 Full Crossed Products

In this section we turn to the theory of full crossed products, motivated by the approach
for operator algebras in [47]. In general, there are many choices for a relative full crossed
product for operator systems. We will focus on those regarding the smallest C*-cover of
an operator system (the C*-envelope) and the largest C*-cover (the universal C*-algebra
of an operator system).

Definition 3.2.1. Suppose that (S, G, g, α) is a dynamical system. If (C, ρ, α) is an α-
admissible C*-cover of (S, G, g, α), then define the full crossed product relative to C to be
the subsystem

S oCα g := span{aug : a ∈ S, g ∈ g} ⊆ C oα G .

The full enveloping crossed product of (S, G, g, α) is the crossed product

S oα,env g := S oC∗env(S)
α g.
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Remark 3.2.2. The analogue of Remark 3.1.2 holds for relative full crossed products
as well. Whenever (S, G, g, α) is an operator system dynamical system, (C, ρ) is an α-
admissible C*-cover and h is another generating set for G with g ⊆ h, then there is a
canonical complete order embedding

S o(C,ρ)
α g ↪→ S o(C,ρ)

α h.

Remark 3.2.3. Remark 3.1.3 also applies to relative full crossed products. That is to
say, if A is a unital operator algebra, G is a discrete group and (A, G, α) is an operator
algebraic dynamical system with α-admissible C*-cover (C, ρ, α), then

(ρ(A) + ρ(A)∗) o(C,ρ̃)
α̃ G = (Ao(C,ρ)

α G) + (Ao(C,ρ)
α G)∗ ⊆ C oα G.

To define the relative full crossed product with respect to C∗u(S), we need the following
proposition.

Proposition 3.2.4. Suppose that (S, G, g, α) is a dynamical system. Then there is a
unique G-action α on C∗u(S) which extends the action on S. Moreover, if j : S → C∗u(S)
is the canonical complete order embedding, then (C∗u(S), j, α) is an α-admissible C*-cover
for (S, G, g, α).

Proof. Suppose that g ∈ G. By the universal property of C∗u(S), there is a unique ∗-
homomorphism αg on C∗u(S) for which the diagram

C∗u(S) C∗u(S)

S S

αg

j

αg

j

commutes. It is not hard to check that α defines a G-action on C∗u(S).

For an operator system dynamical system (S, G, g, α), we will often denote the associ-
ated G-action on C∗u(S) by the same letter α.

Definition 3.2.5. Suppose that (S, G, g, α) is a dynamical system. Define the full crossed
product to be the subsystem

S oα g := span{aug : a ∈ S, g ∈ g} ⊆ C∗u(S) oα G .
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The following fact gives us a universality for the full crossed products of operator
systems.

Proposition 3.2.6. Let (S, G, g, α) be a dynamical system, and let (C, ι) be any α-admissible
C*-cover for (S, G, g, α). Then there is a unique surjective ucp map ιoα : Soαg→ SoCαg
such that ιo α(aug) = ι(a)ug for all a ∈ S and g ∈ g.

Proof. Note that the map ι : S → C is G-equivariant with respect to α. By the universal
property of C∗u(S), there is a unique unital ∗-homomorphism map Φ : C∗u(S) → C such
that Φ|S = ι. It is easy to see that Φ is still G-equivariant, so we obtain a unital ∗-
homomorphism Φ o α : C∗u(S) oα G → C oα G. Restricting to S oα g yields the desired
map.

Recall from [27] that for a group G with generating set g,

S(g) := span{ug : g ∈ g} ⊆ C∗(G) .

There are two difficulties in working with full crossed products. The first is that surjective
ucp maps between operator systems are not, in general, quotient maps of operator systems.
This problem arises even in low dimensions, such as in Proposition 3.1.25. The other key
difficulty can be seen by considering any dynamical system (S, G, g, α) equipped with the
trivial action α = id. Proposition 3.2.12 below shows that S oid,env g ' S ⊗ess S(g), while
Proposition 3.1.5 shows that S oid,λ g = S ⊗min Sλ(g). On the other hand, the tensor
product structures arising from S oid g are not as well understood.

Proposition 3.2.7. Let (S, G, g, id) be a dynamical system with the trivial action. Then
Soidg is completely order isomorphic to the inclusion of the subspace S⊗S(g) ⊆ C∗u(S)⊗max

C∗(G).

Proof. We note that C∗u(S)oidG is canonically isomorphic to C∗u(S)⊗maxC
∗(G), and that

this isomorphism maps S oα g onto S ⊗ S(g), which completes the proof.

One could define a universal-enveloping tensor product of operator systems S and T to
be the operator system structure S ⊗ue T arising from the inclusion S ⊗ T ⊆ C∗u(S)⊗max

C∗env(T ). In this way, for any trivial dynamical system (S, G, g, id), we have Soidg ' S⊗ue
S(g). However, the properties of this tensor product are unclear. If πS : C∗u(S)→ C∗env(S)
and πT : C∗u(T )→ C∗env(T ) are the canonical quotient maps, then we obtain the sequence
of ucp maps
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C∗u(S)⊗max C
∗
u(T ) C∗u(S)⊗max C

∗
env(T ) C∗env(S)⊗max C

∗
env(T )

S ⊗c T S ⊗ue T S ⊗ess T .

id⊗πT πS⊗id

In particular, we have ess ≤ ue ≤ c. Similarly, one can define the enveloping-universal
tensor product of operator systems S and T to be the operator system structure S ⊗eu T
arising from the inclusion S⊗T ⊆ C∗env(S)⊗maxC

∗
u(T ). Clearly, the flip map S⊗T → T ⊗S

induces a complete order isomorphism S ⊗ue T → T ⊗eu S. On the other hand, we can
at least distinguish ue from c. To this end, we need a slight generalization of a result
of Kavruk [50, Corollary 5.8]. The proof is almost identical to [28, Proposition 3.6]; we
include it for completeness.

Proposition 3.2.8. Let S be an operator system, and let T ⊆ C be an operator system
that contains enough unitaries in a unital C*-algebra C. If S ⊗min T = S ⊗c T , then
S ⊗min C = S ⊗max C.

Proof. As every unital C*-algebra is (c,max)-nuclear [52, Theorem 6.7], we need only show
that S ⊗min C = S ⊗c C. Let X ∈ Mk(S ⊗min C) be positive, and let φ : S → B(H) and
ψ : C → B(H) be ucp maps with commuting ranges. We consider a minimal Stinespring
representation ψ = V ∗π(·)V of ψ on some Hilbert space Hπ. We apply the commutant
lifting theorem [2, Theorem 1.3.1] to obtain a unital ∗-homomorphism ρ : ψ(C)′ → B(Hπ)
such that V ∗ρ(a) = aV ∗ for all a ∈ ψ(C)′. The fact that φ(S) ⊆ ψ(C)′ implies that
γ := ρ ◦ φ : S → B(Hπ) is ucp and its range commutes with the range of π. Since
the restriction of γ · π to S ⊗c T is ucp and S ⊗min T = S ⊗c T , it follows that γ · π
is ucp on S ⊗min T . We extend γ · π by Arveson’s extension theorem [2] to a ucp map
η : C∗env(S) ⊗min C → B(Hπ). Let {uα}α∈A be a collection of unitaries in T that generate
C as a C*-algebra. Then for each α ∈ A, we have

η(1⊗ uα) = γ · π(1⊗ uα) = π(uα),

which is unitary. Then each uα is in the multiplicative domain Mη of η, from which it
follows that 1⊗ C ⊆Mη. Therefore, for s ∈ S and b ∈ C, we obtain

η(s⊗ b) = η(s⊗ 1)η(1⊗ b) = γ(s)π(b).

In particular, it follows that

φ · ψ(s⊗ b) = φ(s)ψ(b) = φ(s)V ∗π(b)V = V ∗ρ(φ(s))π(b)V = V ∗γ · π(s⊗ b)V.

Therefore, φ · ψ = V ∗η(·)|S⊗minCV is ucp, so that φ · ψ(X) ∈ Mk(B(H))+. Hence, X is
positive in Mk(S ⊗c C) as well, which completes the proof.
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To show that ue 6= c, we consider the operator system

W3,2 :=




a b 0 0 0 0
b a 0 0 0 0
0 0 a c 0 0
0 0 c a 0 0
0 0 0 0 a d
0 0 0 0 d a

 : a, b, c, d ∈ C


⊆M6(C).

If Z2 ∗ Z2 ∗ Z2 is the free product of three copies of Z2 and hi is the generator of the
i-th copy of Z2, and NC(3) is the operator subsystem of C∗(∗3Z2) spanned by h1, h2, h3,
then the dual operator system NC(3)d is unitally completely order isomorphic toW3,2 [27,
Proposition 5.13]. Moreover,W3,2 is a nuclearity detector [51, Theorem 0.3], and sinceW3,2

has a finite-dimensional C*-cover, it follows that C∗env(W3,2) is nuclear. By [34, Proposition
4.2], W3,2 is (min, ess)-nuclear.

Proposition 3.2.9. Let G be a discrete group with generating set g. If G is not amenable,
then W3,2 ⊗ue S(g) 6=W3,2 ⊗c S(g).

Proof. Suppose that W3,2 ⊗ue S(g) = W3,2 ⊗c S(g). Note that the commuting tensor
product is symmetric [52, Theorem 6.3]. Thus, if W3,2 ⊗ue S(g) is not completely order
isomorphic to S(g)⊗ueW3,2 via the flip map, then we are done. Suppose that this flip map
is a complete order isomorphism with respect to the ue-tensor product. Then W3,2 ⊗ue
S(g) ' S(g) ⊗ue W3,2. Since C∗env(W3,2) is C*-nuclear and S(g) ⊗ue W3,2 ⊆ C∗u(G) ⊗max

C∗env(W3,2) = C∗u(G) ⊗min C
∗
env(W3,2), we see that S(g) ⊗min W3,2 = S(g) ⊗ue W3,2. In

particular, S(g) ⊗essW3,2 = S(g) ⊗ueW3,2. Since ess is also symmetric, applying the flip
map, we have that

W3,2 ⊗ess S(g) =W3,2 ⊗ue S(g).

Since W3,2 is (min, ess)-nuclear, it follows that W3,2 ⊗min S(g) =W3,2 ⊗c S(g). By Propo-
sition 3.2.8, we have W3,2 ⊗min C

∗(G) = W3,2 ⊗max C
∗(G), which implies that C∗(G)

is nuclear [51, Theorem 0.3], which is a contradiction since G is not amenable. Hence,
W3,2 ⊗ue S(g) 6=W3,2 ⊗c S(g).

Remark 3.2.10. In the case of operator algebraic dynamical systems (A, G, α), Katsoulis
and Ramsey proved [47, Theorem 4.1] that

C∗u(Aoα G) = C∗u(A) oα G .

It is known that in general C∗u(S(g)) does not coincide with C∗(G) (see [27]), so such a
theorem is not expected to hold for operator system dynamical systems. In fact, C∗u(S(g))
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and C∗(G) fail to coincide in the case where G = Z and g = {−1, 0, 1} [27]. Moreover,
since we are interested in C*-envelopes, we will focus on properties of the full enveloping
crossed product, rather than the full crossed product.

Like the reduced crossed product, the full enveloping crossed product preserves hyper-
rigidity. The proof is exactly the same as in Theorem 3.1.13, so we omit it. For a proof in
the operator algebraic case, see [44, Theorem 2.7].

Theorem 3.2.11. Suppose that (S, G, g, α) is a dynamical system. Suppose that S is hy-
perrigid. Then the full enveloping crossed product is hyperrigid. In particular, C∗env(Soα,env

g) ' C∗env(S) oα G.

We now give the tensor product description of the full enveloping crossed product with
respect to a trivial action.

Proposition 3.2.12. Suppose that (S, G, g, id) is a trivial dynamical system. We have the
isomorphism

S oid,env g ' S ⊗ess S(g) .

Proof. We know that

C∗env(S) oid G ' C∗env(S)⊗max C
∗(G) .

This induces an isomorphism

S oid,env g ' span{a⊗ ug ∈ C∗env(S)⊗max C
∗(G) : a ∈ S, g ∈ g} .

By definition, the span on the right hand side is S ⊗ess S(g).

For amenable groups, there is no difference between the reduced and the full enveloping
crossed products.

Proposition 3.2.13. Suppose that (S, G, g, α) is a dynamical system with G amenable.
Then S oα,λ g = S oα,env g.

Proof. Since G is amenable, we have the isomorphism C∗env(S) oα,λ G = C∗env(S) oα G
sending generators to generators. By restricting this isomorphism to S oα,λ g, we get the
identity S oα,λ g = S oα,env g.
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3.3 Two Problems of Katsoulis and Ramsey

If X is an operator space in B(H), then define the associated non self-adjoint operator
algebra U(X) (see [10, Sections 2.2.10-2.2.11] for more on this algebra) as the subalgebra
of B(H2) 'M2(B(H)) given by

U(X) :=

{[
λ x
0 λ

]
: λ ∈ C, x ∈ X

}
.

Note that the algebra U(X) does not depend on the representation chosen for X. The goal
of this section is to prove the following two theorems:

Theorem 3.3.1. Suppose that G is a locally compact group such that C∗λ(G) admits a
tracial state. Let A := U(W3,2) be the operator subalgebra of M2

(⊕3
k=1M2(C)

)
endowed

with the trivial G-action id : Gy A. The following are equivalent:

1. AoC∗env(A),id G = AoC∗u(A),id G.

2. The group G is amenable.

Theorem 3.3.1 provides a counterexample to Problem 2 in [47] for a large class of locally
compact groups. Indeed, by [55], C∗λ(G) admits a tracial state if and only if G admits an
open amenable normal subgroup. The operator algebra A = U(W3,2) is surprisingly tame.
Because A is constructed from Kavruk’s nuclearity detector, which is four-dimensional,
the operator algebra we obtain satisfies dim(A) = 5. Moreover, A is hyperrigid in its
C∗-envelope (see Theorem 3.4.10).

The counterexample of Theorem 3.3.1 allows us to give a counterexample to Problem
1 of [47].

Theorem 3.3.2. Let A = U(W3,2). If G is a discrete group, then the following are
equivalent:

1. We have the identity C∗env(A) oid G = C∗env(Aoid G).

2. The group G is amenable.

Before proving Theorems 3.3.1 and 3.3.2, we need some facts about U(X). Recall that
an operator system S detects nuclearity (or is a nuclearity detector) if, whenever D is a
unital C*-algebra and

S ⊗min D = S ⊗c D,
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then D is a nuclear C*-algebra [51]. Our first goal is to show that if S is a nuclearity
detector, then U(S) is a nuclearity detector for C*-algebras; that is, if U(S) ⊗min D =
U(S)⊗max D then D is a nuclear C*-algebra.

We first wish to interpret the relevant tensor products of an operator system S with a
unital C*-algebra as an operator space. We know that the norm arising from the operator
system S ⊗min D agrees with the minimal operator space tensor norm [52, Corollary 4.9].
For the norm arising from the commuting tensor product, we have the following result.

Lemma 3.3.3. Let S be an operator system; let D be a unital C*-algebra; and let d ∈ N.
For any element Z ∈Md(S ⊗c D) ' S ⊗cMd(D), we have

‖Z‖Md(S⊗cD) = sup
θ,π
‖θ · π(Z)‖

where the supremum is taken over all pairs of commuting maps

θ : S → B(H) and

π : Md(D)→ B(H),

where θ is ucp and π is a unital ∗-homomorphism.

Proof. Since Md(D) is itself a unital C*-algebra, by replacing Md(D) with D if necessary,
we may assume that d = 1. We know that the order structure of S ⊗c D is inherited from
the order structure of C∗u(S) ⊗max D. From this fact, it follows that the norm structure
of S ⊗c D is also inherited from the norm structure of C∗u(S) ⊗max D. Given an element
z ∈ S ⊗c D, we have

‖z‖c = sup
θ′,π′
‖θ′ · π′(z)‖,

where the supremum is taken over all unital ∗-homomorphisms θ′ : C∗u(S) → B(H) and
π′ : D → B(H), with commuting ranges. Since every unital ∗-homomorphism θ : C∗u(S)→
B(H) restricts to a ucp map on S, we obtain the inequality

‖z‖c ≤ sup
θ,π
‖θ · π(z)‖,

where the supremum is taken over all ucp maps θ : S → B(H) and unital ∗-homomorphisms
π : D → B(H) with commuting ranges. Conversely, if θ : S → B(H) is ucp and π : D →
B(H) is a unital ∗-homomorphism whose range commutes with the range of θ, then by
the universal property of C∗u(S), there is a unital ∗-homomorphism θ′ : C∗u(S) → B(H)
such that θ′|S = θ. Since the range of θ commutes with the range of π and and C∗u(S) is
generated as a C*-algebra by S, we have that θ′ and π have commuting ranges. Moreover,
‖θ′ · π(z)‖ = ‖θ · π(z)‖. Therefore, the reverse inequality holds, and the result follows.
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The next lemma is the operator system analogue of a result of Blecher and Duncan [9,
Lemma 6.3].

Lemma 3.3.4. Let S be an operator system and let D be a unital C*-algebra. If U(S)⊗min

D = U(S) ⊗max D, then S ⊗min D = S ⊗c D. In particular, if S is a nuclearity detector,
then U(S) is a nuclearity detector.

Proof. Suppose that U(S) ⊗min D = U(S) ⊗max D, and let z ∈ S ⊗ D. Since we always
have ‖z‖c ≥ ‖z‖min, it suffices to show that ‖z‖c ≤ ‖z‖min. We may write

z =
k∑
i=1

zi ⊗ di,

where zi ∈ S and di ∈ D. Let θ : S → B(H) be ucp and π : D → B(H) be a unital
∗-homomorphism whose range commutes with the range of θ. We define

θ′ : U(S)→ B(H2) :

[
λ x
0 λ

]
7→
[
λ θ(x)
0 λ

]
.

It follows from [64, Lemma 8.1] that θ′ is a unital completely contractive map. A calculation
also shows that θ′ is a homomorphism. The amplification π⊕π : D → B(H2) is a unital ∗-
homomorphism such that θ′ and π⊕π have commuting ranges. In particular, by definition
of the maximal operator algebra tensor norm,

‖θ · π(z)‖ =

∥∥∥∥∥θ′ · (π ⊕ π)

(∑
i

[
0 zi
0 0

]
⊗ di

)∥∥∥∥∥
≤

∥∥∥∥∥∑
i

[
0 zi
0 0

]
⊗ di

∥∥∥∥∥
max

=

∥∥∥∥∥∑
i

[
0 zi
0 0

]
⊗ di

∥∥∥∥∥
min

= ‖z‖min

Since this is for arbitrary pairs (θ, π), it follows that ‖z‖c ≤ ‖z‖min. A similar argument
shows that ‖Z‖c = ‖Z‖min for every Z ∈Md(S ⊗D) and d ≥ 1. Thus, S ⊗minD = S ⊗cD.

If S is a nuclearity detector and D is a unital C*-algebra such that U(S) ⊗min D =
U(S)⊗maxD, then the above proof shows that S ⊗minD = S ⊗cD. Since S is a nuclearity
detector, D must be a nuclear C*-algebra.

42



Recall that

W3,2 :=




a b 0 0 0 0
b a 0 0 0 0
0 0 a c 0 0
0 0 c a 0 0
0 0 0 0 a d
0 0 0 0 d a

 : a, b, c, d ∈ C


⊆M6(C).

Note that C∗env(W3,2) is nuclear. Indeed, if we conjugate W3,2 by the unitary matrix

1√
2

[
1 1
1 −1

]⊕3

, we have the isomorphism

W3,2 ' {diag(a+ b, a− b, a+ c, a− c, a+ d, a− d) : a, b, c, d ∈ C} .

Therefore, the C*-envelope of W3,2 must be a quotient of C6. In particular, U(W3,2) has
a nuclear C*-envelope as well. On the other hand, since W3,2 is a nuclearity detector
[51, Theorem 0.3], Lemma 3.3.4 shows that U(W3,2) is a nuclearity detector. Unlike the
situation for operator systems, the operator algebra U(W3,2) also detects nuclearity for
non-unital C*-algebras. To show this fact, we first need the following fact.

Proposition 3.3.5. Let τ be the minimal or maximal operator algebra tensor product. Let
A be a unital operator algebra and let D be a C*-algebra. If D+ is the minimal unitization
of D and π : D+ → D+/D ' C is the canonical quotient map, then the sequence

0 A⊗τ D A⊗τ D+ A 0
idA⊗π

is exact. In other words, A ⊗τ D ⊆ A ⊗τ D+ completely isometrically and idA⊗π is a
complete quotient map of A⊗τ D+ onto A.

Proof. The inclusion A ⊗min D ⊆ A ⊗min D+ holds by definition of the minimal tensor
product. The fact that A ⊗max D ⊆ A ⊗max D+ completely isometrically follows by [9,
Proposition 2.5].

The tensor product map idA⊗π : A ⊗τ D+ → A⊗τ C = A is completely contractive.
On the other hand, the map ϕ : A → A⊗τ D+ given by ϕ(a) = a ⊗ 1D+ is a completely
contractive unital homomorphism. Hence, ϕ is a completely contractive splitting of idA⊗π.
It follows that idA⊗π is a complete quotient map.
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Lemma 3.3.6. Let A be a unital operator algebra; let D be a non-unital C*-algebra, and
let D+ be its minimal unitization. Then A⊗minD = A⊗maxD if and only if A⊗minD+ =
A⊗max D+.

Proof. If A ⊗min D+ = A ⊗max D+, then applying Proposition 3.3.5 shows that A ⊗τ
D ⊆ A ⊗τ D+ completely isometrically for τ ∈ {min,max}. It immediately follows that
A⊗min D = A⊗max D.

Conversely, suppose that A⊗minD = A⊗maxD. Using the canonical maps, the following
diagram commutes:

0 A⊗max D A⊗max D+ A 0

0 A⊗min D A⊗min D+ A 0

By Proposition 3.3.5, the rows are exact. By the Five-Lemma for operator algebras [11,
Lemma 3.2], since the outer two vertical arrows are complete isometries, the middle arrow
is a complete isometry. Thus, A⊗min D+ = A⊗max D+.

Lemma 3.3.7. Suppose that A is a unital operator algebra for which for every unital C*-
algebra C, A ⊗min C = A ⊗max C if and only if C is a nuclear C*-algebra. Then for every
non-unital C*-algebra D, A⊗min D = A⊗max D if and only if D is a nuclear C*-algebra.

Proof. Let D be a non-unital C*-algebra. Let D+ be its minimal unitization. We know that
D is nuclear if and only if D+ is nuclear. Thus, D is nuclear if and only if A ⊗min D+ =
A ⊗max D+. By Lemma 3.3.6, the latter condition is equivalent to having A ⊗min D =
A⊗max D, as desired.

We are now in a position to prove Theorem 3.3.1, which gives a counterexample to the
second problem of Katsoulis and Ramsey.

Proof of Theorem 3.3.1. The implication (2) → (1) holds by [47, Theorem 3.14]. Con-
versely, suppose we have the identity A oC∗env(A),id G = A oC∗u(A),id G. Since C∗env(A) is
nuclear,

C∗env(A)⊗min C
∗(G) = C∗env(A)⊗max C

∗(G) = C∗env(A) oid G .
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Thus, AoC∗env(A),idG is completely isometrically isomorphic to the completion of A⊗C∗(G)
in C∗env(A)⊗min C

∗(G). We conclude that

AoC∗env(A,id) G = A⊗min C
∗(G).

On the other hand, by Example 2.2.4, we have

AoC∗u(A),id G = A⊗max C
∗(G).

Then we have the identity

A⊗min C
∗(G) = AoC∗env(A),id G = AoC∗u(A),id G = A⊗max C∗(G) .

Since A is a nuclearity detector, C∗(G) is nuclear. In particular, since nuclearity of C*-
algebras passes to quotients [14], it follows that C∗λ(G), which is a quotient of C∗(G), must
be nuclear. By [61, ] (see also [29, Corollary 3.3]), G is amenable if and only if C∗λ(G) is
nuclear and C∗λ(G) admits a tracial state. Therefore, G is amenable.

Theorem 3.3.1 allows for a proof of Theorem 3.3.2, which gives a counterexample to
the first problem of Katsoulis and Ramsey.

Proof of Theorem 3.3.2. The proof that (2) implies (1) was done by Katsoulis [44, Theorem
2.5]. For the converse, if C∗env(A) oid G = C∗env(A oid G), then A oC∗u(A),id G embeds
faithfully and canonically into C∗env(A) oid G. Thus, A oC∗env(A),id G = A oC∗u(A),id G. By
Theorem 3.3.1, this implies that G is amenable.

3.4 Hyperrigidity and U(W3,2)

In this final section, we show that (min, ess)-nuclearity is preserved under the full enveloping
crossed product whenever the operator system is hyperrigid. We also show that U(W3,2)
is hyperrigid, which shows that the equation C∗env(A oα G) = C∗env(A) oα G can fail even
in the case of a hyperrigid operator algebra.

Let S ⊆ C and T ⊆ D be hyperrigid operator subsystems of unital C*-algebras C
and D, respectively. By injectivity of the minimal tensor product, S ⊗min T ⊆ C ⊗min D.
Moreover, by Theorem 3.1.9, C∗env(S) = C and C∗env(T ) = D. In particular, by definition
of the essential tensor product, we have that S ⊗ess T ⊆ C ⊗max D. In fact, more is true.

45



Lemma 3.4.1. Suppose that S ⊆ C and T ⊆ D are hyperrigid operator subsystems of unital
C*-algebras C and D respectively. Then S ⊗min T ⊆ C ⊗min D and S ⊗ess T ⊆ C ⊗max D
are hyperrigid.

Proof. We prove the result for the minimal tensor product; the proof for the essential tensor
product is the same. Let ιC : C → C⊗minD : a 7→ a⊗1 and ιD : D → C⊗minD : b 7→ 1⊗b be
the canonical *-homomorphisms. Suppose that π : C ⊗minD → B(H) is a ∗-representation
and suppose that ρ : C ⊗min D → B(H) is a ucp map extending the map π|S⊗minT . Since
ρ◦ ιC agrees with π ◦ ιC on S, by hyperrigidity of S, ρ◦ ιC = π ◦ ιC. Similarly, ρ◦ ιD = π ◦ ιD.
For any a ∈ C and b ∈ D, since ιD(b) is in the multiplicative domain of ρ,

ρ(a⊗ b) = ρ(ιC(a)ιD(b)) = ρ(ιC(a))ρ(ιD(b)) = π(a⊗ b) .

Extending by linearity and continuity shows that ρ = π.

The following proposition is a generalization of a result of Gupta and Luthra [34,
Theorem 4.3].

Proposition 3.4.2. Suppose that S ⊆ C is a hyperrigid operator system. Then S is
(min, ess)-nuclear if and only if C is nuclear.

Proof. If C is nuclear, then by [34, Proposition 4.2], S is (min, ess)-nuclear. Conversely,
suppose that S is (min, ess)-nuclear, and let D be any unital C*-algebra. First, let us show
that C∗env(S ⊗min D) = C ⊗min D and C∗env(S ⊗ess D) = C ⊗max D. By Theorem 3.1.9, it
suffices to show that S ⊗min D and S ⊗ess D are hyperrigid in their C*-covers. For the
minimal case, suppose that

π : C ⊗C*-min D → B(H)

is a unital ∗-homomorphism and suppose that ϕ is the restriction of π to S ⊗minD. If ρ is
any ucp extension of ϕ to C ⊗min D, then the ucp map ρ|C is a ucp extension of ϕ|S . By
hyperrigidity of S, ρ|C = π. As well, ρ|D = ϕ|D = π|D. Thus, C ⊗ 1 and 1 ⊗ D are in the
multiplicative domain of ρ. Therefore, for all c ∈ C and d ∈ D,

ρ(c⊗ d) = ρ(c⊗ 1)ρ(1⊗ d) = π(c⊗ 1)π(1⊗ d) = π(c⊗ d).

Extending by linearity and continuity, we have ρ = π on C ⊗min D. The proof for the
maximal tensor product is the same, replacing all tensors with the appropriate type. Hence,
S ⊗min D is hyperrigid in C ⊗min D, and S ⊗ess D is hyperrigid in C ⊗max D.
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Since S ⊗min D = S ⊗ess D, and both operator systems are hyperrigid, we get

C ⊗min D = C∗env(S ⊗min D) = C∗env(S ⊗ess D) = C ⊗max D .

As D was an arbitrary unital C*-algebra, it follows that C is nuclear.

Corollary 3.4.3. Suppose that (S, G, g, α) is a dynamical system with S hyperrigid in
C∗env(S) and G amenable. Then S is (min, ess)-nuclear if and only if Soα,envg is (min, ess)-
nuclear.

Proof. By Proposition 3.4.2, S is (min,ess)-nuclear if and only if C∗env(S) is nuclear. Since
G is discrete and amenable, C∗env(S) is nuclear if and only if C∗env(S) oα G is nuclear [13,
Theorem 4.2.6]. Using Theorem 3.2.11, S oα,env g is hyperrigid in C∗env(S)oαG. Applying
Proposition 3.4.2 again, C∗env(S) oα G is nuclear if and only if S oα,env g is (min, ess)-
nuclear.

We now will work towards showing that U(W3,2) is hyperrigid in its C*-envelope. We
begin with the following helpful fact about C∗env(U(S)).

Proposition 3.4.4. Let S be an operator system with C*-cover D. Then M2(D) is a
C*-cover for U(S). Moreover, C∗env(U(S)) = M2(C∗env(S)).

Proof. Let φ : S → D be a complete order isomorphism, where D is a unital C*-algebra
such that D = C∗(φ(S)). Then there is an associated unital, completely isometric homo-
morphism ψ : U(S)→M2(D) such that

ψ

([
λ x
0 λ

])
=

[
λ φ(x)
0 λ

]
for all λ ∈ C and for all x ∈ S. The matrix units E12, E21 are in C∗(ψ(U(S))) since φ is
unital. Hence, every element of the form Eii ⊗ φ(x), for x ∈ S, is in C∗(ψ(U(S))). Thus,
Eii ⊗ a ∈ C∗(ψ(U(S))) for all a ∈ D. Using the matrix units E12 and E21, we see that
C∗(ψ(U(S))) = M2(D). Thus, M2(D) is a C*-cover for U(S) whenever D is a C*-cover for
S.

Lastly, we must show that C∗env(U(S)) = M2 (C∗env(S)). To this end, we let ρ :
M2 (C∗env(S)) → C∗env(U(S)) be a surjective, unital ∗-homomorphism that preserves the
copy of U(S). Let γ be the restriction of ρ to the subalgebra M2 ⊗ 1C∗env(S). Since γ
is a unital ∗-homomorphism and M2 is simple, γ must be injective. In particular, if
D = ρ(I2 ⊗ C∗env(S)), then M2 and D are commuting unital C*-subalgebras of C∗env(U(S))
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that generate the whole algebra. Let η be the restriction of ρ to I2 ⊗ (C∗env(S)). Since ρ
is a completely isometric homomorphism on U(S), a standard canonical shuffle argument
[64, p. 97] shows that ρ must be a complete isometry when restricted to E12 ⊗ S. As ρ is
multiplicative, we see that η is a complete isometry on I2 ⊗ S. Thus, η|I2⊗S maps S com-
pletely order isomorphically into D. Since I2 ⊗ S generates I2 ⊗ C∗env(S) as a C*-algebra,
the image of I2 ⊗ S under η generates D. By the definition of the C*-envelope, there is
a unique, surjective unital ∗-homomorphism δ : D → C∗env(S) such that δ(η(I2 ⊗ s)) = s
for all s ∈ S. The map η : C∗env(S) = I2 ⊗ C∗env(S) → D also fixes the copy of S. Hence,
δ ◦ η and η ◦ δ are the identity when restricted to S. As C∗env(S) and D are generated by
their respective copies of S, it follows that δ and η are inverses of each other. Therefore,
D ' C∗env(S). We conclude that C∗env(U(S)) = M2(C∗env(S)).

The following shows that hyperrigidity of U(S) passes to S.

Proposition 3.4.5. Let D be a C*-cover of S. If U(S) is hyperrigid in M2(D), then S is
hyperrigid in D.

Proof. Assume without loss of generality that S ⊆ D. Suppose that π : D → B(H) is a
unital ∗-homomorphism with restriction ρ = π|S : S → B(H) to S. Let ϕ : D → B(H)
be any ucp extension of ρ. Then π(2) : M2(D) → B(H2) is a unital ∗-homomorphism.
Moreover, if η = (π(2))|U(S), then ϕ(2) : M2(D) → B(H2) is a ucp extension of η, since
φ|S = ρ. By hyperrigidity of U(S), we have ϕ(2) = π(2). In particular, φ = π, as desired.

Corollary 3.4.6. Let S be an operator system with C*-cover D. If U(S) is hyperrigid in
M2(D), then C∗env(S) = D and C∗env(U(S)) = M2(D).

Proof. By Proposition 3.4.5, since U(S) is hyperrigid in M2(D), S is hyperrigid in D. By
Theorem 3.1.9, C∗env(S) = D. The fact that C∗env(U(S)) = M2(D) follows by Proposition
3.4.4.

Let S be an operator subsystem of a C*-algebra D. Suppose that any irreducible
representation π : D → B(H) of D is maximal on S. In general, it is unknown whether this
implies S is hyperrigid in D. That is, it is not known if this implies that all representations
of D, irreducible or not, have the unique extension property. In our case however, this
obstruction is not a concern.

Proposition 3.4.7. Let S be an operator system with finite-dimensional C*-cover F . If
every irreducible representation of F is maximal on S, then S is hyperrigid in F .
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Proof. Since F is finite-dimensional, it has finite spectrum; i.e., there are only finitely
many irreducible representations of F up to unitary equivalence. The desired result then
follows by a theorem of Arveson [4, Theorem 5.1].

For notational convenience, we let

B =

{[
a b
b a

]
: a, b ∈ C

}
.

Note that B ' C2 as C*-algebras; however, the given presentation of B will be most useful
for our purposes. We have the following lemma.

Lemma 3.4.8. Let S ⊆
⊕3

k=1M2(B) be the operator system defined by

S :=


3⊕

k=1


ak bk ck

ak ck bk
dk fk ak
fk dk ak

 : ak = a`, bk = b`, dk = d`, for all 1 ≤ k, ` ≤ 3


Then S is hyperrigid in its C*-cover M2(B)⊕M2(B)⊕M2(B).

Proof. Let π :
⊕3

k=1M2(B) = (
⊕3

k=1M2) ⊗ B → B(H) be an irreducible representation.
Then up to unitary equivalence, we may assume that H = K ⊗ L and π = ρ ⊗ σ, where
ρ : M2 ⊕M2 ⊕M2 → B(K) and σ : B → B(L) are ∗-homomorphisms. Since ρ ⊗ σ is
irreducible and σ(B) is abelian, we must have dim(σ(B)) = 1 and L = C. Therefore, we

may identify H = K and σ

([
0 1
1 0

])
= ωIH , where ω ∈ {1,−1}. Since π is irreducible,

it must be surjective. Hence, ρ is surjective. Thus, H is finite-dimensional and we may
write B(H) = MD for some D ∈ N. Let ρk : M2 → MD be the restriction of ρ to the k-th
summand of M2 in M2 ⊕M2 ⊕M2. Each ρk is a ∗-homomorphism, so since M2 is simple,
ρk is either injective or the zero map. If at two of the ρk’s were injective (say, ρ1 and ρ2)
and T1 ⊕ T2 ∈M2 ⊕M2 were such that ρ(T1 ⊕ T2 ⊕ 0) = 0, then we would have

0 = ρ(T1 ⊕ T2 ⊕ 0)∗ρ(T1 ⊕ T2 ⊕ 0) = ρ1(T ∗1 T1) + ρ2(T ∗2 T2).

By injectivity of each ρk, we must have T1 = T2 = 0, so that ρ|M2⊕M2⊕0 is injective. But
then this restriction would be an isomorphism of M2⊕M2 onto MD, with the latter being
simple, which is a contradiction. Similarly, it is impossible to have all three ρk’s injective.
Moreover, since ID = ρ(I2 ⊕ I2 ⊕ I2) =

∑3
k=1 ρk(I2), we must have that exactly one ρk is
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non-zero. Therefore, we may assume without loss of generality that ρ1 is non-zero (and
hence an isomorphism), while ρ2 = ρ3 = 0. In particular, we may assume that D = 2.

Up to unitary conjugation, we may assume that ρ1 = idM2 . Let φ be the restriction
of π to S, and let ψ :

⊕3
k=1 M2(B) → M2 be any ucp extension of φ. Let ψ = V ∗Π(·)V

be a minimal Stinespring representation of ψ on some Hilbert space HΠ. We consider⊕3
k=1 M2(B) as a subalgebra of

⊕3
k=1 M4.

Let X = E14 + E23 ∈ S. We note that ψ(X) = π(X) = ωE12 ∈ M2. With respect to
the decomposition HΠ = ran (V )⊕ ran (V )⊥, for i, j, k, ` ∈ Λ, we have

Π(X) =

[
φ(X) A
B C

]
=

[
ωE12 A
B C

]
,

for some operators A,B,C. Noting that X∗X +XX∗ =
∑4

i=1Eii, we have

Π

(
4∑
i=1

Eii

)
= Π(X∗X +XX∗) = Π(X)∗Π(X) + Π(X)Π(X)∗ =

[
I +B∗B + AA∗ ∗

∗ ∗

]
.

Thus, φ
(∑4

i=1Eii
)

= I + B∗B + AA∗ ≤ φ(I12) = I2. This forces B∗B + AA∗ = 0, so
that A = 0 and B = 0. Considering the (1, 1)-block, it follows that ψ(X∗X) = E22 =
ψ(X)∗ψ(X) and ψ(XX∗) = E11 = ψ(X)ψ(X)∗. Thus, X lies in the multiplicative domain
Mψ of ψ. Moreover, ψ(Eii) = 0 for all 5 ≤ i ≤ 12. It readily follows that ψ|0⊕M2(B)⊕M2(B) =
0. Replacing X with Y = E13 + E24, it is easy to see that Y ∈ Mψ as well, while
ψ(Y ) = E12. Let W = E12 + E21 and Z = E34 + E43. Then the first copy of M2(B) is
generated as a C*-algebra by the four elementsX, Y, Z,W . Since we haveW ∗W = E11+E22

and Z∗Z = E33 + E44, we need only show that ψ(W ) = π(Z) and ψ(Z) = π(Z). If
this assertion holds, then W and Z would lie in Mψ, from which it would follow that
M2(B)⊕ 0⊕ 0 ⊆Mψ and π = ψ. Since W = XY ∗, we may write

ψ(W ) = ψ(XY ∗) = ψ(X)ψ(Y )∗ = ωE12E21 = E11.

Similarly, since Z = X∗Y , we have

ψ(Z) = ψ(X∗Y ) = ψ(X)∗ψ(Y ) = ωE21E12 = ωE22.

It readily follows that ψ(Z) = π(Z) and π(W ) = ψ(W ), while Z,W ∈ Mψ. Therefore,
ψ = π. Applying Proposition 3.4.5 completes the proof.
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Lemma 3.4.9. The operator sub-algebra of
⊕3

k=1M2(B) given by

A :=


3⊕

k=1


ak bk ck

ak ck bk
ak

ak

 : ak = a`, bk = b`, ∀1 ≤ k, ` ≤ 3


is hyperrigid in M2(B)⊕M2(B)⊕M2(B).

Proof. The operator system S in Lemma 3.4.8 is precisely A + A∗ in
⊕3

k=1M2(B). The
desired result follows by Lemma 2.1.3.

We can now obtain hyperrigidity of the nuclearity detectors W3,2 and U(W3,2).

Theorem 3.4.10. The operator algebra U(W3,2) is hyperrigid in M2

(⊕3
k=1 B

)
, and W3,2

is hyperrigid in
⊕3

k=1 B.

Proof. Since W3,2 is the set of all matrices in B ⊕ B ⊕ B of the form

3⊕
k=1

[
ak bk
bk ak

]
,

where ak = a` for all 1 ≤ k, ` ≤ 3, it follows that C∗(W3,2) ⊆ ⊕3
k=1B. On the other

hand, for each k, the element Vk defined by

[
0 1
1 0

]
in the k-th summand and 0 in the

other summands is an element of W3,2, and V 2
k = V ∗k Vk is I2 in the k-th summand and 0

otherwise. It follows that C∗(W3,2) = ⊕3
k=1B. Using Proposition 3.4.4, M2(⊕3

k=1B) is a
C*-cover of U(W3,2).

To establish hyperrigidity of U(W3,2) in M2

(⊕3
k=1 B

)
, let π be the restriction of the

canonical shuffle M2(M6) ' M6(M2) to M2

(⊕3
k=1 B

)
. Then π is a ∗-isomorphism from

M2

(⊕3
k=1 B

)
onto ⊕3

k=1M2(B) that sends U(W3,2) onto the operator algebra A in Lemma
3.4.9. Applying Lemma 3.1.8, since A is hyperrigid in ⊕3

k=1M2(B), U(W3,2) is hyperrigid
in M2

(⊕3
k=1 B

)
. The analogous claim for W3,2 follows by Proposition 3.4.5. The claim

about C*-envelopes immediately follows by Corollary 3.4.6.
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Chapter 4

Characterizing hyperrigidity for
C*-correspondences

This chapter is concerned with the Hao-Ng isomorphism problem, as stated in the in-
troduction. Recall that the isomorphism problem asks: if (C, X) is a non-degenerate
C*-correspondence and G is a locally compact group acting continuously on (C, X) then
is it the case that we have the identity

OX oG = OXoG ?

At its core, the Hao-Ng isomorphism problem is asking whether the functor which maps a
C*-correspondence (C, X) to its Cuntz-Pimsner algebra OX is closed under crossed prod-
ucts. Because of this, the isomorphism problem is fundamental in the understanding of the
dynamics of Cuntz-Pimsner algebras. Our goal is to establish an intrinsic characterization
of hyperrigidity for C*-correspondences.

We say that a C*-correspondence (C, X) is hyperrigid if the operator space

S(C, X) := span{x+ a+ y∗ : x, y ∈ X, a ∈ C} ⊆ OX

has the following extension property: given a representation π : OX → B(H), if ϕ : OX →
B(H) is a completely positive and completely contractive map which agrees with π on
S(C, X) then ϕ must agree with π on OX . In [46], Katsoulis and Ramsey establish:

1. If (C, X) is a hyperrigid C*-correspondence and G is a locally compact group that
acts on (C, X) then we have the identity

OX oG = OXôG
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where (CôG,XôG) is the completion of the pair (Cc(G, C), Cc(G,X)) in OX o G.
In particular, for hyperrigid C*-correspondences, the crossed product OX o G is a
Cuntz-Pimsner algebra.

2. If (C, X) is a hyperrigid C*-correspondence and G is a locally compact group that
acts on (C, X) then we have the identity

OX or G = OXorG .

It is an open question whether (CôG,XôG) is the same as (C oG,X oG).

We denote by λ : C → L(X) the left action of C on X. Recall that the Katsura ideal
JX of a C*-correpsondence (C, X) is the ideal

JX := {a ∈ C : λ(a) ∈ K(X) and ax = 0 for all x ∈ kerλ} .

The main Theorem of this chapter is the following.

Theorem 4.0.1. Let (C, X) be a C*-correspondence. The following are equivalent:

1. The C*-correspondence (C, X) is hyperrigid.

2. We have the identity JX ·X = X.

This extends a result of Kakariadis [41, Theorem 3.3] and Dor-On and Salomon [21,
Theorem 3.5] who establish the equivalence for C*-correspondences associated to discrete
graphs and a result of Katsoulis and Ramsey who prove the forward direction of our
Theorem [46, Theorem 3.1]. Finally, we use this result to give an exact characterization
for when the C*-correspondence associated to a topological graph is hyperrigid when the
range map r is open.

4.1 Hyperrigidity of operator spaces S(C, X)

In [46, Theorem 3.1], Katsoulis and Ramsey show that to achieve hyperrigidity of a C*-
correspondence X it is sufficient for the left action of JX to act non-degenerately on X.
Our main result shows that this condition is in fact equivalent to hyperrigidity of X. The
following two definitions are in [69].
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Definition 4.1.1. Let (C, X) be a Hilbert C-module. We treat the multiplier algebra M(C)
as the C*-algebra L(C). The Hilbert M(C)-module M(X) is defined as follows: As a linear
space, M(X) consists of the space of adjointable right-C-linear maps from C into X. That
is, M(X) = L(C, X). The right action is given by composition and the inner product is
given by 〈x, y〉 := x∗ ◦ y.

If x ∈ X and y ∈ M(X) then 〈y, x〉 ∈ C and if a ∈ C then y · a ∈ X. If (C, X) is a
C*-correspondence and a ∈ C is such that λ(a) ∈ K(X) then for any x ∈ M(X), we have
a · x ∈ X. In particular, if a ∈ JX then a · x ∈ X.

Definition 4.1.2. Let (C, X) be a Hilbert C-module. We say that X is countably generated
over C if there exists a sequence (xn)n≥1 in M(X) for which the C-linear span of (xn)n is
dense in X. A standard normalized frame for (C, X) is a sequence (xn)n≥1 in M(X) for
which for every x ∈ X we have the identity

〈x, x〉 =
∑
n≥1

〈x, xn〉 〈xn, x〉 .

By [69, Corollary 3.3], whenever X is countably generated over C, a standard normalized
frame for X exists.

The reconstruction formula [69, Theorem 3.4] states that a sequence (xn)n≥1 is a stan-
dard normalized frame if and only if we have the identity

x =
∑
n≥1

xn 〈xn, x〉

for every x ∈ X.

Let (C, X) be a C*-correspondence. In the following Lemma, we consider the setM of
countably generated right C-submodules of X. This set is directed under inclusion and it
is cofinal in X.

Lemma 4.1.3. Suppose that (C, X) is a C*-correspondence. Let M denote the space of
all countably generated right C-submodules of X. For each Y ∈ M, let (xn(Y ))n≥1 denote
a standard normalized frame for Y . Let

en(Y ) :=
n∑
k=1

xk(Y ) 〈xk(Y ), ·〉 .

The set (en(Y ))(n,Y )∈N×M is an approximate unit for K(X) in the following sense: if T ∈
K(X) then we have the identity

lim
Y→∞

lim
n→∞

en(Y ) · T = T .
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Proof. Let T ∈ K(X). Let ε > 0. Suppose that y1, . . . , yn, z1, . . . , zn ∈ X is such that

‖T −
n∑
k=1

yk 〈zk, ·〉 ‖ < ε .

Let S =
∑

k yk 〈zk, ·〉. Consider any Y ∈M for which yk, zk belong to Y for all k. For any
x ∈ X, ∑

k

yk 〈zk, x〉 ∈ Y .

By the reconstruction formula, we know that

yk =
∑
n≥1

xn(Y ) 〈xn(Y ), yk〉 = lim
n→∞

en(Y )(yk) .

for all k. This means in particular, that for n large enough,

‖en(Y )S − S‖ < ε .

Therefore,

‖T − en(Y )T‖ ≤ 2‖T − S‖+ ‖S − en(Y )S‖ < 3ε .

This proves that en(Y ) is an approximate unit for K(X).

The following Lemma provides a quantitative variant of [64, Theorem 3.18].

Lemma 4.1.4. Let C be a C*-algebra. Fix m,n ≥ 1. Suppose that ϕ : C → B(H) is a
completely positive and contractive map for which for some ε > 0 and a ∈ Mm,n(C), we
have the bound

‖ϕ(aa∗)− ϕ(a)ϕ(a)∗‖ < ε .

It is then the case that for any b ∈Mm,n(C), we have the estimate

‖ϕ(ab)− ϕ(a)ϕ(b)‖ <
√
ε‖b‖ .

Proof. For a positive p ∈M2m(C), let

P (p) :=


In a∗ b∗

a
b

p

 .
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The same argument as in [64, Lemma 3.1] shows that the matrix P (M) is positive if and
only if we have the bound [

a
b

] [
a∗ b∗

]
≤ p .

Taking

p =

[
aa∗ ab∗

ba∗ bb∗

]
,

we can conclude P (p) is positive in this case. Since ϕ is contractive and completely positive,
applying the (2n+ 2)-amplification of the unitization of ϕ onto P (p), we get the bound[

ϕ(a)
ϕ(b)

] [
ϕ(a)∗ ϕ(b)∗

]
≤ ϕ(p) .

That is, the matrix [
ϕ(aa∗)− ϕ(a)ϕ(a)∗ ϕ(ab∗)− ϕ(a)ϕ(b∗)
ϕ(ba∗)− ϕ(b)ϕ(a)∗ ϕ(bb∗)− ϕ(b)ϕ(b)∗

]
is positive. Since the (1, 1) corner of this matrix is at most ε, we get positivity of the
matrix [

εI2 ϕ(ab∗)− ϕ(a)ϕ(b∗)
ϕ(ba∗)− ϕ(b)ϕ(a)∗ ϕ(bb∗)− ϕ(b)ϕ(b)∗

]
.

In particular, we have the bound

‖ϕ(ab∗)− ϕ(a)ϕ(b)∗‖2 ≤ ε‖ϕ(bb∗)− ϕ(b)ϕ(b)∗‖
≤ ε‖bb∗‖ , (4.1)

where the final inequality follows from the fact that

0 ≤ ϕ(bb∗)− ϕ(b)ϕ(b)∗ ≤ ϕ(bb∗) ≤ ‖bb∗‖1 .

Theorem 4.1.5. Let (C, X) be a C*-correspondence. The following are equivalent:

1. The left action of JX on X is non-degenerate.
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2. S(C, X) is hyperrigid.

Proof. First assume that JX acts on X non-degenerately. We denote by (i0, i1) the canon-
ical covariant pair

(i0, i1) : (C, X)→ OX .

Fix any *-homomorphism π : OX → B(H) and suppose that ϕ : OX → B(H) is any
cpcc-extension of π|S(C,X). By a multiplicative domain argument and by non-degeneracy
of JX acting on X, it suffices to show that for any a ∈ C and x ∈ X, we have

ϕ(ι1(a · x)ι1(a · x)∗) = ϕ(ι1(a · x))ϕ(ι1(a · x))∗ .

Let M and xn(Y ), en(Y ) be as in Lemma 4.1.3. Let

φι : K(X)→ OX : x 〈y, ·〉 7→ ι1(x)ι1(y)∗ .

For any a ∈ JX , since λ(a) is a compact operator, we have

ι0(aa∗) = φι

(
lim
Y→∞

lim
n→∞

λ(a) · en(Y )λ(a)∗
)

= lim
Y→∞

lim
n→∞

∑
k<n

ι1(a · xk(Y ))ι1(a · xk(Y ))∗ .

By the Schwarz inequality,

ϕ(ι0(aa∗)) = limY limn

∑
k<n

ϕ(ι1(a · xk(Y ))ι1(a · xk(Y ))∗)

≥ limY limn

∑
k<n

ϕ(ι1(a · xk(Y )))ϕ(ι1(a · xk(Y )))∗

= limY limn

∑
k<n

π(ι1(a · xk(Y )))π(ι1(a · xk(Y )))∗

= π(ι0(aa∗)) = ϕ(ι0(aa∗)) .

From this, we have the identity

limY limn

∑
k<n

ϕ(ι1(a · xk(Y ))ι1(a · xk(Y ))∗) = limY limn

∑
k<n

π(ι1(a · xk(Y ))ι1(a · xk(Y ))∗) .

By the reconstruction formula, for any x ∈ X and for any Y ∈ M with x ∈ Y , we have
for all a ∈ JX ,

a · x =
∑
n≥1

a · xn(Y ) 〈xn(Y ), x〉 .
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Let ε > 0. Fix any Y ∈M for which we have the bound

0 ≤
∑
n≥1

ϕ(ι1(a · xn(Y ))ι1(a · xn(Y ))∗)− ϕ(ι1(a · xn(Y )))ϕ(ι1(a · xn(Y )))∗ ≤ ε1 .

Let αn = ι1(a · xn(Y )) and let βn = ι1(a · x 〈x, xn(Y )〉). Observe that

ι1(a · x)ι1(a · x)∗ =
∑
n≥1

αnβ
∗
n .

Consider for fixed n ≥ 1 the 1× n-matrices An = (α1, · · · , αn) and Bn = (β1, · · · , βn).
A calculation shows that

‖BnB
∗
n‖ =

∥∥∥∥∥∑
k≤n

ι1(a · x)ι0(〈x, xk(Y )〉 〈xk(Y ), x〉)ι1(a · x)∗

∥∥∥∥∥
=

∥∥∥∥∥ι1(a · x) ι0

(∑
k≤n

〈x, xk(Y )〉 〈xk(Y ), x〉

)
ι1(a · x)∗

∥∥∥∥∥
≤ ‖a · x‖2

∥∥∥∥∥∑
k≤n

〈x, xk(Y )〉 〈xk(Y ), x〉

∥∥∥∥∥ .

Since the sequence xn(Y ) is a standard normalized frame, we have the inequality

‖BnB
∗
n‖ ≤ ‖a · x‖2‖x‖2

for any n. As well, a calculation shows that

lim
n→∞

ϕ(AnB
∗
n)− ϕ(An)ϕ(Bn)∗ = lim

n→∞

∑
k≤n

ϕ(ι1(a · xn(Y ) 〈xn(Y ), x〉)ι1(a · x)∗)

− ϕ(ι1(a · xn(Y ) 〈xn(Y ), x〉))ϕ(ι1(a · x))∗

=ϕ(ι1(a · x)ι1(a · x)∗)− ϕ(ι1(a · x))ϕ(ι1(a · x))∗ .

The above calculation with Lemma 4.1.4 give us the bound

‖ϕ(ι1(a · x)ι1(a · x)∗)− ϕ(ι1(a · x))ϕ(ι1(a · x))∗‖2 = lim
n→∞

‖ϕ(AnB
∗
n)− ϕ(An)ϕ(Bn)∗‖2

≤ ε‖a · x‖2‖x‖2 .

Since this identity is independent of the choice of Y and ε, we may conclude that for any
a ∈ JX and for any x ∈ X, the element ι1(a · x) belongs to the multiplicative domain of
ϕ, showing hyperrigidity.
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For the converse, assume that JX does not act on X non-degenerately. Fix a faithful
covariant representation (π0, π1) : (C, X) → B(H). Let N ⊆ JX,+ form a contractive
approximate unit for JX under the ordering induced by the positive operators. Define
operators P = lima∈N π

0(a) and Q = 1−P where the limit is taken in the strong operator
topology on B(H). For any isometry V ∈ B(K), let (τ 0, τ 1

V ) : (C, X)→ B(H ⊗K) be the
following pair of maps

τ 0 : A→ B(H ⊗K) : a 7→ π0(a)⊗ I
τ 1
V : X → B(H ⊗K) : x 7→ Pπ1(x)⊗ I +Qπ1(x)⊗ V .

It is immediate that τ 0 is a *-homomorphism and that τ 1
V is linear. For any a ∈ C and

x ∈ X, first observe that since P is the projection which generates the ideal π0(JX) in
π0(C), that P commutes with π0(a). Thus,

τ 0(a)τ 1
V (x) = (π0(a)⊗ I)(Pπ1(x)⊗ I +Qπ1(x)⊗ V )

= P (π0(a)π1(x))⊗ I +Qπ0(a)π1(x)⊗ V
= Pπ1(a · x)⊗ I +Qπ1(a · x)⊗ V = τ 1(a · x) .

As well, for x, y ∈ X, we have

τ 1
V (x)∗τ 1

V (x) = (Pπ1(x)⊗ I +Qπ1(x)⊗ V )∗(Pπ1(y)⊗ I +Qπ1(y)⊗ V )

= π1(x)∗Pπ1(y)⊗ I + π1(x)∗Qπ1(y)⊗ I
= π1(x)∗(P +Q)π1(y)⊗ I = π0(〈x, y〉)⊗ I
= τ 0(〈x, y〉) .

This is therefore a Toeplitz representation for (C, X). To see that this representation is
covariant, let a ∈ JX . Since λ(a) ∈ K(X), for ε > 0, let x1, . . . , xn, y1, . . . , yn ∈ X such
that for any contraction z ∈ X, we have∥∥∥∥∥a · z −

n∑
k=1

xk 〈yk, z〉

∥∥∥∥∥ < ε .

For any b ∈ N , we have ∥∥∥∥∥bab · z −
n∑
k=1

b · xk 〈b · yk, z〉

∥∥∥∥∥ < ε .

In particular, λ(bab) is within ε of the compact operator
∑

k bxk 〈byk, ·〉. Let

ϕV : K(X)→ B(H) : xi 〈yi, ·〉 7→ τ 1
V (xi)τ

1
V (yi)

∗ .
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A calculation shows

ϕV

(∑
k
bxk 〈byk, ·〉

)
=
∑

k
τ 1(bxk)τ

1(byk)
∗

=
∑

k
(Pπ1(bxk)⊗ I +Qπ1(bxk)⊗ V )(Pπ1(byk)⊗ I +Qπ1(byk)⊗ V )∗

=
∑

k
(Pπ1(bxk)⊗ I)(Pπ1(byk)⊗ I)∗

=
∑

k
(π1(bxk)⊗ I)(π1(byk)⊗ I)∗

=
(∑

k
π1(bxk)π

1(byk)
∗
)
⊗ I .

For any b ∈ N ,∥∥ϕV (λ(bab))− π0(bab)⊗ I
∥∥ ≤∥∥∥ϕV (λ(bab))− ϕV

(∑
k
bxk 〈byk, ·〉

)∥∥∥
+
∥∥∥ϕV (∑

k
bxk 〈byk, ·〉

)
− π0(bab)⊗ I

∥∥∥
<2ε .

Since this is true for arbitrary ε > 0, we conclude that ϕV (λ(bab)) = τ 0(bab) for all b ∈ N .
Since N is an approximate unit for JX and a ∈ JX , we have ϕV (λ(a)) = τ 0(a).

Let us fix the unilateral shift V ∈ B(`2(Z+)) and the bilateral shift U ∈ B(`2(Z)). Let
Φ : B(`2(Z))→ B(`2(Z+)) be the ucp map given by restriction. The diagram

B(H ⊗ `2(Z))

OX B(H ⊗ `2(Z+))

Φ
τ0×τ1U

τ0×τ1V

commutes. So long as we can show Qπ1(X) 6= 0, we are done, since Φ◦ (τ 0× τ 1
U) 6= τ 0× τ 1

V

but agree on S(C, X). Suppose that Qπ1(X) = 0 in order to derive a contradiction. Since
P+Q = I, this means that Pπ1(x) = π1(x) for every x ∈ X. If JX acts on X degenerately,
then by taking a subnet if necessary, there is some ε > 0 and some x ∈ X so that for every
b ∈ N , there is some unit vector hb ∈ H for which we have the identity〈

(π1(x)∗π1(x)− π1(x)∗π0(b)π1(x))hb, hb
〉
≥ ε .

If a ≥ b in N then we have the identity〈
(π1(x)∗π1(x)− π1(x)∗π0(b)π1(x))ha, ha

〉
≥
〈
(π1(x)∗π1(x)− π1(x)∗π0(a)π1(x))ha, ha

〉
≥ ε .
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If we could replace the net (hb)b∈N with a fixed vector hb = h ∈ H for all b then we
may conclude from the above inequality that Pπ1(x) 6= π1(x) and we would have our
contradiction.

In order to guarantee that a vector h ∈ H as above exists, we need to fix a specific
faithful representation. Take any non-principal ultrafilter U over N containing the set

S := {{a ∈ N : a ≥ b} : b ∈ N} .

Such an ultrafilter exists since S has the finite intersection property. Consider the covariant
pair

(π0, π1) : (C, X)→ B(HU)

so that π0(a)(limU kb) = limU π
0(a) · kb and π1(x)(limU kb) = limU π

1(x) · kb. Replacing
(π0, π1) with (π0, π1) and taking h = limU hb will do.

As an application, we will characterize the topological graphs with range map r open
for which the associated space S(C0(E0), X(E)) is hyperrigid. This generalizes a result
of Kakariadis [41, Theorem 3.3] and Dor-On and Salomon [21, Theorem 3.5] that give a
characterization for E discrete. First a bit of notation: let E0

fin. be the open subset of E0

for which we have the identity

C0(E0
fin.) = λ−1(K(X(E))) .

The kernel of λ consists of those elements f ∈ C0(E0) for which f |r(E1) = 0. Thus,

kerλ = C0(E0 \ r(E1)) .

This implies that JX(E) = C0(E0
fin. ∩ int(r(E1))). Let Y = int(r(E1)). Assume that

E0
fin. ∩ Y is dense in Y . I claim that JX(E)X(E) = X(E). Let ϕi be an approximate unit

for C0(E0
fin. ∩ Y ). For any f ∈ Cc(E1), I claim that ϕi · f converges to f . Consider the

positive function Fi = 〈f − ϕi · f, f − ϕi · f〉. Observe that as f is compactly supported
that all Fi are supported on a compact set K. As well, Fi(x) is a decreasing net for all
x ∈ E0. By the uniform limit theorem, the function

F : E0 → C : x 7→ lim
i→∞
Fi(x)

is continuous and compactly supported. We need to show that F = 0. If not, there is
some open set U ⊆ E0 for which F|U > 0. If x ∈ U then for any e ∈ s−1(x), r(e) 6∈ E0

fin..
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That is, if x ∈ r(s−1(U)) then x 6∈ E0
fin.. Assume that r is open. That r(s−1(U)) is an open

subset of Y and that r(s−1(U)) ∩E0
fin. = ∅ is a contradiction of the density of E0

fin. ∩ Y in
Y . Thus we have JX(E)X(E) = X(E).

If E0
fin.∩Y is not dense in Y then there is some open subset U of Y so that U∩E0

fin. = ∅.
Consider any non-zero function f ∈ Cc(E

1) supported on r−1(U). If JX(E) acts non-
degenerately on X(E), then by Cohen’s factorization theorem, there is some x ∈ X(E)
and some g ∈ JX(E) for which g · x = f . Say fi ∈ Cc(E1) for which limi fi = x. For any
point e ∈ E1, if f(e) 6= 0 then r(e) ∈ U . This implies that g(r(e)) = 0. For any i,

〈g · fi, f〉 : x 7→
∑

e∈E1:s(e)=x

g(r(e))f(e)fi(e) = 0 .

Thus we have 〈f, f〉 = limi 〈g · fi, f〉 = 0 – a contradiction.

All this proves:

Theorem 4.1.6. Let E be a topological graph and let r be open. The following are equiv-
alent:

1. The space S(C0(E0), X(E)) is hyperrigid.

2. The set E0
fin. is dense in E0.

Proof. Let Y = int(r(E1)). By the above argument, hyperrigidity of S(C0(E0), X(E)) is
equivalent to density of E0

fin. ∩ Y in Y . To finish the argument, suppose that E0
fin. ∩ Y is

dense in Y . If x is a point in E1 \ r(E1) then there is a non-negative function f supported
outside of r(E1) for which f(x) = 1. Since λ(f) = 0, we must conclude that x ∈ E0

fin.. In
particular, whenever U is an open set in E0 for which U ∩ E0

fin. = ∅ then we must have
U ⊆ Y . By our assumption, we must have U = ∅.

Indeed, at the time that the contents of this chapter has been written, Katsoulis and
Ramsey establish from different techniques than ours that the following Theorem is true
for general topological graphs:

Theorem 4.1.7 (Katsoulis-Ramsey). Let E be a topological graph. The following are
equivalent:

1. The space S(C0(E0), X(E)) is hyperrigid.

2. The map r : E1 → E0 is proper and r(E1) ⊆ int(r(E1)).
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Part II

Synchonous Correlation Sets and
Quantum Graphs
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Chapter 5

Preliminaries

In this chapter we explain the concept of a correlation set. These correlation sets arise from
different models of quantum systems where we have two isolated labs that share any number
of entangled states. Correlation sets are matrices of probabilities that are associated to
various models of quantum systems. Because correlation sets provide a description of some
part of a physical system, we will begin by talking about the physical set-up that describe
a correlation set. We will then formalize this concept using the language of C*-algebras.
At the end, we will discuss certain quantum graph parameters which arise from modifying
classical graph parameters such as the independence and chromatic number into a co-
operative game and considering whether one can have a winning strategy for such games
using different quantum systems. This, and the subsequent chapter is joint work with Vern
Paulsen and Chris Schafhauser.

5.1 Correlation Sets and Graph Parameters

Suppose that Alice has nA quantum experiments each with mA outcomes and Bob has nB
quantum experiments each with mB outcomes and that their combined labs are in some
combined, possibly entangled, state. We let p(a, b|x, y) denote the conditional probability
that if Alice conducts experiment x and Bob conducts experiment y then they get outcomes
a and b, respectively. The nAnBmAmB-tuple(

p(a, b|x, y)
)

1≤x≤nA,1≤y≤nB ,1≤a≤mA,1≤b≤mB

of real numbers is, informally, called a quantum correlation. There are several different
mathematical models that can be used to describe these values, denoted by the subscripts,
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q, qs, qa and qc. The Tsirelson problems are concerned with whether or not these different
mathematical models yield the same sets. Due to the work of [74] and the remarkable work
of [39], it seems to be the case that most of these sets are distinct.

We now recall the formal definitions of these sets. First, the different mathematical
models shall be denoted by a subscript t where t can be either q, qs, qa, or qc. We let
Ct(nA, nB,mA,mB) ⊆ RnAnBmAmB denote the set of all possible tuples

(
p(a, b|x, y)

)
that

can be obtained using the model t. We now describe each of these models.

When t = q, we have that p(a, b|x, y) ∈ Cq(nA, nB,mA,mB) if and only if there exist
finite dimensional Hilbert spaces HA and HB, orthogonal projections Ex,a ∈ B(HA), 1 ≤
x ≤ nA, 1 ≤ a ≤ mA satisfying

∑mA
a=1Ex,a = IHA , for all x, orthogonal projections Fy,b ∈

B(HB), 1 ≤ y ≤ nB, 1 ≤ b ≤ mB satisfying
∑mB

b=1 Fy,b = IHB , for all y and a unit vector
ψ ∈ HA ⊗HB such that

p(a, b|x, y) = 〈Ex,a ⊗ Fy,bψ, ψ〉.

When t = qs, the set Cqs(nA, nB,mA,mB) is defined similarly, except the condition
that the Hilbert spaces HA and HB be finite dimensional is dropped.

It is known that the closure of the set Cq(nA, nB,mA,mB) is equal to the closure of the
set Cqs(nA, nB,mA,mB), see [30, 40, 68], and we denote the closure by Cqa(nA, nB,mA,mB)

The set Cqc(nA, nB,mA,mB) is defined by eliminating the tensor product and instead
having a single Hilbert space H, a unit vector ψ ∈ H, together with orthogonal projections
Ex,a, Fy,b ∈ B(H) satisfying

1. Ex,aFy,b = Fy,bEx,a for all a, b, x, y,

2.
∑mA

a=1 Ex,a =
∑mB

b=1 Fy,b = IH for all x, y, and

3. p(a, b|x, y) = 〈Ex,aFy,bψ, ψ〉 for all a, b, x, y.

In each of the cases, i.e., for t ∈ {q, qs, qa, qc}, when nA = nB = n and mA = mB = m, we
set Ct(n,m) = Ct(n, n,m,m).

A correlation
(
p(a, b|x, y)

)
∈ Ct(n,m) is called synchronous provided that whenever

a 6= b, p(a, b|x, x) = 0, for all 1 ≤ x ≤ n. For each t, we write Cs
t (n,m) for the subset of

synchronous correlations. Characterizations of synchronous correlations in terms of traces
are known for the cases t = q, qc. In Section 6.1, we give characterizations of synchronous
correlations for the remaining cases, t = qs, qa.
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By a finite input-output game, we mean a tuple G = (IA, IB, OA, OB, V ) where IA, IB,
OA, OB are finite sets, representing the inputs that Alice and Bob can receive and the
outputs that they can produce, respectively, and a function

V : IA × IB ×OA ×OB → {0, 1}

called the rule or predicate function. Here V (x, y, a, b) = 1 means that if Alice and Bob
receive (x, y) ∈ IA × IB and produce outputs (a, b) ∈ OA × OB then they win the game
and if V (x, y, a, b) = 0, then they lose the game.

A game is called synchronous provided that IA = IB, OA = OB and the function V
satisfies V (x, x, a, b) = 0, for all x, and for all a 6= b.

Given a game, a correlation
(
p(a, b|x, y)

)
∈ Ct(|IA|, |IB|, |OA|, |OB|) is called a perfect or

winning t-correlation, if the probability that it produces a losing output is 0, i.e., provided
that whenever V (x, y, a, b) = 0, then p(a, b|x, y) = 0. When a game has a perfect t-
correlation, then we say that the game possesses a perfect t-strategy. Note that if a game
is synchronous, then any perfect correlation must be synchronous.

From the definition of the set Cqa(nA, nB,mA,mB) it readily follows that a game
possesses a perfect qa-strategy if and only if for every ε > 0, there is a q-correlation(
p(a, b|x, y)

)
in Cq(nA, nB,mA,mB) satisfying that whenever V (x, y, a, b) = 0, then we

must have p(a, b|x, y) < ε.

Every synchronous game G has a unital *-algebra A(G) [38] affiliated with it (possibly
the zero algebra), defined by generators and relations. It has generators

{Ex,a : 1 ≤ x ≤ n, 1 ≤ a ≤ m}

and relations

1. Ex,a = E∗x,a = E2
x,a for all a and x,

2.
∑m

a=1 Ex,a = I for all x, and

3. for all a, b, x, and y, if V (x, y, a, b) = 0, then Ex,aEy,b = 0.

One of the results of [38] is that a synchronous game G has a perfect q-strategy if and
only if A(G) has a unital *-representation as operators on a non-zero, finite dimensional
Hilbert space. Thus, a synchronous game G has a perfect q-strategy if and only if one can
find projections Ex,a on a finite dimensional Hilbert space satisfying the above relations
for the given rule V . Similarly, G has a perfect qc-strategy if and only if A(G) has a
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unital *-representation into a C∗-algebra with a trace. The results of Section 6.1 will
show that G has a perfect qa-strategy if and only if A(G) approximately has unital *-
representations on non-zero, finite-dimensional Hilbert spaces; more precisely, A(G) has a
unital *-representation on RU , the tracial ultrapower of the hyperfinite II1-factor R. For
readers not familiar with this ultrapower construction, more details can be found in [13,
Appendix A].

There are two families of synchronous games, both involving graphs, that we wish to
recall.

Let G = (V,E) be a finite undirected graph without loops. That is, V is a finite set of
vertices and E ⊆ V × V denotes the set of edges. Thus, for each v ∈ V , (v, v) /∈ E, and
(v, w) ∈ E =⇒ (w, v) ∈ E, since it is undirected. We let Kn denote the complete graph
on n vertices so that (v, w) ∈ E, for all v 6= w.

Given two graphs G = (V (G), E(G)) and H = (V (H), E(H)), a graph homomorphism
from G to H is a function f : V (G)→ V (H) satisfying

(v, w) ∈ E(G) =⇒ (f(v), f(w)) ∈ E(H).

We write G→ H to indicate that there is a graph homomorphism from G to H.

Many graph parameters can be defined in terms of graph homomorphisms. For an
integer c, let Kc denote the complete graph on c vertices. The chromatic number of G is

χ(G) = min{c : G→ Kc}.

The clique number of G is
ω(G) = max{c : Kc → G},

and the independence number of G is

α(G) = ω(G),

where G = (V,E) denotes the complement of G; i.e., the graph with the same vertex set
but for v 6= w, (v, w) ∈ E ⇐⇒ (v, w) /∈ E.

Given graphs G and H, the graph homomorphism game from G to H is the synchronous
game with inputs V (G), outputs V (H) and rule function

V (v, w, x, y) = 0 ⇐⇒
(
(v, w) ∈ E(G) and (x, y) /∈ E(H)

)
or
(
v = w and x 6= y

)
.

For t ∈ {q, qs, qa, qc}, we write G
t→ H to indicate that the graph homomorphism game

from G to H has a perfect t-strategy.
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In parallel with the above characterizations we set:

χt(G) = min{c : G
t→ Kc}, ωt(G) = max{c : Kc

t→ G}, αt(G) = ωt(G) .

It is not hard to verify that for complete graphs,

χ(Kn) = χq(Kn) = χqs(Kn) = χqa(Kn) = χqc(Kn) = n

and that

α(Kn) = αq(Kn) = αqs(Kn) = αqa(Kn) = αqc(Kn) = 1 .

Indeed, by [38], we have that

n = χ(Kn) ≥ χq(Kn) ≥ χqs(Kn) ≥ χqa(Kn) ≥ χqc(Kn) = n .

To see the second set of equalities, note that if Kc
t→ Kn with c > 1, then we would have

inputs v 6= w and the perfect t-correlation for this game would satisfy p(x, y|v, w) = 0 for
every x, y, contradicting

∑
x,y p(x, y|v, w) = 1.

Since for t ∈ {q, qs, qa, qc}, χt(Kn) = n, we have that if there exists Kn
t→ Kc then

n ≤ c. This in turn implies that

c = ω(Kc) ≤ ωq(Kc) ≤ ωqs(Kc) ≤ ωqa(Kc) ≤ ωqc(Kc) ≤ c ,

where the last inequality follows since ωqc(Kc) is the largest n for which Kn
qc→ Kc. Thus,

we see that for complete graphs, these quantum analogues all have the same values as their
classical counterparts.

The second game that we shall need is the (G,H)-isomorphism game defined in [6].
This game is intended to capture the concept of two graphs being isomorphic. It is a
synchronous game with input set and output set both equal to V (G) ∪ V (H) where we
view the vertex sets as disjoint. We refer the reader to [6] for the rules of this game. For
t ∈ {q, qs, qa, qc} we write G ∼=t H to indicate that there is a perfect t-strategy for the
(G,H)-isomorphism game. In [6], they only introduced and studied the cases t = q and
t = ns (which we have not introduced here).

However, we shall use the fact that since this is a synchronous game, it will have an
affiliated *-algebra with generators and relations that can be used to characterize when
perfect t-strategies exist. In fact, the generators and relations for the *-algebra of the game
are precisely the relations (IQPd) in [6]. We now recall the *-algebraA(G) corresponding to
the (G,H)-isomorphism game G. First we need some notation. Given vertices g, g′ ∈ V (G)
and h, h′ ∈ V (H), write rel(g, g′) = rel(h, h′) if any of the following hold:
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1. g = g′ and h = h′;

2. (g, g′) ∈ E(G) and (h, h′) ∈ E(H);

3. g 6= g′, (g, g′) /∈ E(G), h 6= h′, and (h, h′) /∈ E(H),

while rel(g, g′) 6= rel(h, h′) when all three fail to hold. The *-algebra A(G) is generated by
elements

{Xg,h : g ∈ V (G), h ∈ V (H)}

subject to the relations

Xg,h = X∗g,h = X2
g,h, and

∑
h′∈V (H)

Xg,h′ =
∑

g′∈V (G)

Xg′,h = 1

for all g ∈ V (G) and h ∈ V (H) and

rel(g, g′) 6= rel(h, h′) ⇒ Xg,hXg′,h′ = 0

for all g, g′ ∈ V (G) and h, h′ ∈ V (H).

5.2 Notation

Let F(n,m) denote the group freely generated by n elements of order m. That is, F(n,m) =
(Z/mZ)∗n. Let C∗(F(n,m)) denote the universal group C*-algebra of F(n,m). For x =
1, . . . , n, let ux be the unitary in C∗(F(n,m)) corresponding to the xth generator of F(n,m).
If ωm denotes a primitivemth root of unity, the spectral values of ux are ωim for i = 1, . . . ,m.
Let ex,i denote the spectral projection of ux at the spectral value ωim. Then ex,i is a
projection for all x and i and

∑
i ex,i = 1 for all x.

Conversely, given a C*-algebra A and projections ex,i ∈ A for 1 ≤ x ≤ n and 1 ≤ i ≤ n
such that

∑
i ex,i = 1 for all x, the element vx =

∑
i ω

i
mex,i is a unitary in A with order

m. Hence there is a unique *-homomorphism C∗(F(n,m))→ A determined by ui 7→ vi. A
straight forward calculation shows these constructions are inverses of each other and hence
C∗(F(n,m)) is the universal C*-algebra generated by projections ex,i for 1 ≤ x ≤ n and
1 ≤ j ≤ m such that

∑
i ex,i = 1 for all x.

Let Mn denote the vector space of n×n matrices over C. This vector space can also be
viewed as a Hilbert space using the inner product 〈A,B〉 := tr(B∗A). By a submatricial
operator system, we mean a linear subspace S of Mn for which the identity matrix I
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belongs to S and for which S is closed under the adjoint map ∗. A submatricial traceless
self-adjoint operator space is a linear subspace J ⊆ Mn for which J is closed under the
adjoint operation ∗ and for which given any A ∈ J , the trace of A is zero.

We will also be using the following graph theory terminology. A graph G = (V,E) is
an ordered pair consisting of a vertex set V and edge set E ⊆ V ×V . Since we are working
with undirected graphs we require that if (i1, i2) ∈ E then (i2, i1) ∈ E. We say vertices i1
and i2 are adjacent, or connected by an edge, and write i1 ∼ i2, whenever (i1, i2) ∈ E. An
independent set of a graph G is a subset v ⊆ V such that for any two distinct elements
i1, i2 ∈ v we have i1 6∼ i2. For a graph with n vertices it will be standard to consider the
vertex set to be V = {1, . . . , n}, which we will denote by [n].

Finally, we will always denote by U for an arbitrary free ultrafilter over N.
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Chapter 6

A synchronous game for binary
constraint systems

This chapter is about synchronous correlation sets. We start this chapter by character-
izing synchronous correlation sets in terms of tracial states on the algebra C∗(F(n,m))
as introduced in the preliminaries. We show that while the sets Cq and Cqs cannot be
distinguished by synchronous games, the case of whether Cqa and Cqc can be distinguished
by a synchronous game is equivalent to Connes’ embedding problem.

In Section 2, we describe a class of games called the synchronous BCS games. These
are games based on trying to find a solution to the linear equation Ax = b over the field
Z/2. The synchronous BCS game is a variation of the BCS game used by Slofstra to show
that Cqs cannot be closed [74]. We make a modification of Slofstra’s argument to reduce
the problem of finding a winning strategy for this game to finding a representation for a
group Γ(A, b) associated to the game. Indeed, by Slofstra’s argument, it follows that one
can separate the set Cqs from the set Cqa by a synchronous game.

Finally, in Section 3, we show that for a graph GA,b associated to a synchronous BCS
game, the synchronous BCS game has a winning t-strategy if and only if the associated
t-independence number αt(GA,b) is maximal. This, combined with the work in Section 2
demonstrates that the parameter αqa is distinct from the parameter αq.
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6.1 Characterizations of Synchronous strategies

In [67] it was shown that synchronous quantum strategies arise from various families of
traces. In particular, it was shown that p(i, j|v, w) ∈ Cs

qc(n,m) if and only if there is a
tracial state τ : C∗(F(n,m)) → C such that p(i, j|v, w) = τ(ev,iew,j) and p(i, j|v, w) ∈
Cs
q (n,m) if and only if there was a tracial state as before such that in addition the GNS

representation of
(
C∗(F(n,m)), τ

)
is finite dimensional. But at the time no characterization

were given of the traces that arise from synchronous quantum spatial correlations or syn-
chronous quantum approximate correlations. In this section we provide characterizations
of those two types of traces.

Definition 6.1.1. Let A ⊆ B(H) be a C*-algebra. A tracial state τ on A is called
amenable provided there is a state ρ on B(H) such that ρ|A = τ and ρ(uTu∗) = ρ(T ) for
all T ∈ B(H) and all unitaries u ∈ A.

Note that when A = C∗λ(G) for a discrete group G, then amenability of τe is equivalent
to amenability of G. One direction can be seen by taking a restriction of the state ρ
extending τe on B(`2(G)) to `∞(G) in order to get a G-invariant state. By an application
of Arveson’s Extension Theorem, the amenability of τ is independent of the choice of
faithful representation of A. The following is [56, Proposition 3.2] (see also Theorem 6.2.7
in [13]). Here R denotes the hyperfinite II1-factor, U is a free ultrafilter over the positive
integers, and RU is the corresponding tracial ultrapower. See Appendix A in [13] for the
relevant definitions.

Theorem 6.1.2. Suppose A is a separable C*-algebra and τ is a tracial state on A. The
following are equivalent:

1. the tracial state τ is amenable;

2. there is a *-homomorphism φ : A → RU with a completely positive, contractive lift
A → `∞(R) such that tr ◦φ = τ ;

3. there is a sequence of completely positive, contractive maps φk : A→Md(k) such that

‖φk(ab)− φk(a)φk(b)‖2 → 0 and trd(k)(φk(a))→ τ(a)

for all a, b ∈ A;

4. the linear functional ϕ : A⊗Aop → C defined by ϕ(a⊗ bop) = τ(ab) is bounded with
respect to the minimal tensor product;

72



The trace in condition (3) is the normalized trace, i.e., for A = (ai,j) ∈ Mn, trn(A) =
1
n

∑n
i=1 ai,i and the norm in condition (3) is the normalized Hilbert-Schmidt norm, i.e.,

‖A‖2 = trn(A∗A)1/2.

In condition (4), note that if ϕ is bounded then for any x =
∑

i ai ⊗ b
op
i we have that

ϕ(x∗x) =
∑
i,j

τ(a∗jaibib
∗
j) =

∑
i,j

τ((aibi)(ajbj)
∗) ≥ 0.

Since ϕ(1⊗ 1) = 1, we see that if ϕ is bounded, then ϕ is a state.

Recall that C∗(F(n,m)) is generated by a set of n unitaries, uv, 1 ≤ v ≤ n, of order m
and ev,i denotes the spectral projection of uv corresponding to the spectral value ωim where
ωm is a primitive mth root of unity.

Lemma 6.1.3. There is a *-isomorphism γ : C∗(F(n,m)) → C∗(F(n,m))op with γ(ujv) =
ujv, 1 ≤ v ≤ n, 1 ≤ j ≤ m− 1. Moreover, γ(ev,i) = ev,i for 1 ≤ v ≤ n and 1 ≤ i ≤ m.

Proof. The words of the form
un1
v1
· · ·unKvK

span a dense *-subalgebra of C∗(F(n,m)). If we set

γ(un1
v1
· · ·unKvK ) = unKvK · · ·u

n1
n1
,

and extend linearly, then it is easily checked that γ extends to the desired *-isomorphism.
The second claim is a simple computation.

Lemma 6.1.4. Suppose n ≥ 1 and p ∈ Mn is a positive contraction. If q denotes the
spectral projection of p for the interval [1/2, 1], then

‖p− q‖2 ≤ 2
√

2‖p− p2‖2.

Proof. Define p0 = (1 − q)p and p1 = qp. Note that ‖pi − p2
i ‖2 ≤ ‖p − p2‖2 for i = 0, 1.

Since 0 ≤ p0 ≤ 1
2
, we have

p0 − p2
0 = p0(1− p0) ≥ 1

2
p0

and hence ‖p0‖2 ≤ 2‖p0 − p2
0‖2. Similarly, since 1

2
q ≤ p1 ≤ 1, we have

p1 − p2
1 = p1(1− p1) ≥ 1

2
q(1− p1) =

1

2
(q − p1)

and hence ‖p1 − q‖2 ≤ 2‖p1 − p2
1‖2. Since p0 and p1 − q are orthogonal, the result follows

from the Pythagorean identity.

73



Lemma 6.1.5. Given ε > 0 and an integer m ≥ 1, there is a δ > 0 such that for
any integer d ≥ 1, if p1, . . . , pm ∈ Md are positive contractions with ‖p2

i − pi‖2 < δ and
‖pipj‖2 < δ for all i, j = 1, . . . ,m with i 6= j, then there are mutually orthogonal projections
q1, . . . , qm ∈Md such that ‖pi − qi‖2 < ε for all i = 1, . . . ,m.

If in the statement above, we further require ‖
∑

i pi − 1‖2 < δ, then we may arrange
for
∑

i qi = 1.

Proof. We prove the first statement by induction on m. When m = 1, this is immediate
from Lemma 6.1.4. Assume the result holds for an integer m ≥ 1. Fix ε > 0 and
define ε0 = ε/(40m + 3). Let δ0 > 0 be the constant obtained by applying the induction
hypothesis to m and ε0 and define δ := min{δ0, ε0}. Suppose d ≥ 1 and p1, . . . , pm+1 ∈Md

are positive contractions as above. By the choice of δ, there are mutually orthogonal
projections q1, . . . , qm ∈Md such that

‖pi − qi‖2 < ε0 < ε.

Since ‖pipm+1‖2 < δ for all i = 1, . . . ,m, we have

‖qipm+1‖2 < ε0 + δ < 2ε0.

Define r = (1− q1 − · · · qm) and define p = pm+1. Then

‖rpr − p‖2 ≤ 2‖rp− p‖2 ≤ 2
m∑
i=1

‖qip‖2 < 4mε0.

Now, note that

‖(rpr)2 − rpr‖2 ≤ ‖(rpr)2 − p2‖2 + ‖p2 − p‖2 + ‖p− rpr‖2

≤ 3‖rpr − p‖2 + ‖p2 − p‖2 < 12mε0 + δ < (12m+ 1)ε0.

By the previous lemma, if qm+1 denotes the spectral projection of rpr corresponding to the
interval [1/2, 1], then

‖qm+1 − rpr‖2 < 2
√

2(12m+ 1)ε0.

Therefore,
‖qm+1 − p‖2 < 2

√
2(12m+ 1)ε0 + 4mε0 < (40m+ 3)ε0 = ε.

Note that each of the projections q1, . . . qm are orthogonal to r by construction. As qm+1

is a spectral projections of rpr, we also have that each of the projections q1, . . . , qm is
orthogonal to qm+1. This completes the proof of the first part of the lemma.
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To see the final sentence holds, fix m ≥ 1 and ε > 0. Let ε0 = ε/(m + 2) and let
δ0 be the constant given by applying the first part of the lemma to m and ε0. Define
δ = min{ε0, δ0}. Suppose d ≥ 1 and p1, . . . , pm ∈Md are projections such that

‖pi − p2
i ‖2 < δ, ‖pipj‖2 < δ, and

∥∥∑
k

pk − 1
∥∥

2
< δ

for all i, j = 1, . . . ,m with i 6= j. By the choice of δ, there are mutually orthogonal
projections q′1, q2, q3, . . . qm ∈ Md such that ‖p1 − q′1‖2 < ε0 and ‖pi − qi‖2 < ε0 for i =
2, . . . ,m. Now, define q′′1 = 1− q′1−

∑m
i=2 qi and note that ‖q′′1‖2 < (m+ 1)ε0. To complete

the proof, define q1 = q′1 + q′′1 .

Theorem 6.1.6. Fix integers n,m ≥ 1. For
(
p(i, j|v, w)

)
∈ Rn2m2

, the following are
equivalent:

1.
(
p(i, j|v, w)

)
∈ Cs

qa(n,m);

2. there are synchronous correlations
(
pk(i, j|v, w)

)
∈ Cs

q (n,m) with

lim
k
pk(i, j|v, w) = p(i, j|v, w)

for all i, j, v, w;

3. there is an amenable trace τ on C∗(F(n,m)) such that

τ(ev,iew,j) = p(i, j|v, w)

for all i, j, v, w; and

4. there are projections fv,i ∈ RU such that
∑

i fv,i = 1 for all v and

tr(fv,ifw,j) = p(i, j|v, w)

for all i, j, v, w.

Proof. It is clear that (2) implies (1). To see (1) implies (3), assume that
(
p(i, j|v, w)

)
is a

correlation in Cs
qa(n,m). There exist correlations

(
pk(i, j|v, w)

)
in Cq(n,m) for k ≥ 1 such

that

lim
k
pk(i, j|v, w) = p(i, j|v, w)
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for all i, j, v, w. Each
(
pk(i, j, v, w)

)
has a representation on a tensor product of finite

dimensional vector spaces Cdk ⊗ Crk as

pk(i, j|v, w) = 〈Ek
v,i ⊗ F k

w,jψk, ψk〉 ,

where the matrices Ek
v,i, F

k
w,j are all orthogonal projections satisfying

∑
iE

k
v,i = Idk and∑

j F
k
w,j = Irk and each ψk is a unit vector.

Thus there is a representation πk : C∗(F(n,m)) ⊗ C∗(F(n,m))op → Mdk ⊗Mrk with
πk(ev,i ⊗ eopw,j) = Ek

v,i ⊗ F k
w,j. Setting ϕk(a ⊗ bop) = 〈πk(a ⊗ bop)ψk, ψk〉 defines a sequence

of states ϕk on C∗(F(n,m)⊗ C∗(F(n,m))op. Let ϕ be any weak*-limit point of (ϕk)k and
note that ϕ(ev,i ⊗ eopw,j) = p(i, j|v, w).

If we let π : C∗(F(n,m))⊗min C∗(F(n,m))op → B(H) and ψ ∈ H be a GNS represen-
tation of this state, then it follows by [67, Theorem 5.5], that τ(a) = 〈π(a ⊗ 1)ψ, ψ〉 is a
trace and that

π(a⊗ ew,j)ψ = π(aew,j ⊗ 1)ψ.

Hence, π(a⊗ bew,j)ψ = π(1⊗ b)π(a⊗ ew,j)ψ = π(aew,j ⊗ b)ψ and it follows that

ϕ(a⊗ bop) = 〈π(a⊗ bop)ψ, ψ〉 = 〈π(ab⊗ 1)ψ, ψ〉 = τ(ab) .

Thus, τ is an amenable trace by Theorem 6.1.2.

To see (3) implies (2), it suffices to show that if τ is an amenable trace on C∗(F(n,m)),
then there is a sequence of traces τk on C∗(F(n,m)) which factor through a finite dimen-
sional matrix algebra such that τk(a)→ τ(a) for all a ∈ C∗(F(n,m)). Since τ is amenable,
Theorem 6.1.2 yields a sequence of completely positive, unital maps φk : C∗(F(n,m)) →
Md(k) such that

‖φk(ab)− φk(a)φk(b)‖2 → 0 and tr(φk(a))→ τ(a)

for all a, b ∈ C∗(F(n,m)). By passing to a subsequence and applying Lemma 6.1.5, we
may find projections pkv,i ∈ Md(k) such that

∑
i p

k
v,i = 1 for all v and k and such that

‖φk(ev,i)−pkv,i‖2 → 0 for all v and i. There is a *-homomorphism φ′k : C∗(F(n,m))→Md(k)

such that φ′k(ev,i) = pkv,i for all v, i, and k. Using that C∗(F(n,m)) is generated as a C*-
algebra by the projections ev,i, one can show

‖φk(a)− φ′k(a)‖2 → 0

for all a ∈ C∗(F(n,m)). In particular,

lim tr(φ′k(a)) = lim tr(φk(a)) = τ(a)
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for all a ∈ C∗(F(n,m)).

To see (3) implies (4), note that if τ is an amenable trace on C∗(F(n,m)), then there is a
trace preserving *-homomorphism φ : C∗(F(n,m))→ RU by Theorem 6.1.2. Define fv,i =
φ(ev,i) ∈ RU for all v and i. Conversely, given fv,i as in (4), there is a *-homomorphism
φ : C∗(F(n,m)) → RU such that φ(ev,i) = fv,i for all v and i. As C∗(F(n,m)) has the
local lifting property, φ has a completely positive, unital lift C∗(F(n,m)) → `∞(R). By
Theorem 6.1.2, the trace τ := tr ◦φ on C∗(F(n,m)) is amenable.

Corollary 6.1.7. Let G = (I, O, V ) be a synchronous game. The following are equivalent:

(i) G has a perfect qa-strategy,

(ii) there is a unital *-representation of A(G) into RU ,

(iii) there is an amenable trace τ on C∗(F(n,m)) such that V (v, w, i, j) = 0 implies
τ(ev,iew,j) = 0 for all i, j, v, w.

Corollary 6.1.8. The following are equivalent:

(i) Connes’ embedding conjecture has an affirmative answer,

(ii) for all n,m, Cs
qa(n,m) = Cs

qc(n,m),

(iii) for all n,m, Cqa(n,m) = Cqc(n,m).

Proof. The equivalence of (i) and (ii) in Theorem 6.1.6 answers [24, Problem 3.8]. In the
remarks following Problem 3.8, [24] shows how a positive solution of the problem leads to
the above result.

Remark 6.1.9. The implication (iii) =⇒ (i) in the above corollary is due to [63].
The equivalence of (i) and (ii) follows from [24, Theorem 3.7] and our solution of their
synchronous approximation problem. Note that the implication (iii) implies (ii) is trivial,
so we have a different proof of Ozawa’s implication. Ozawa’s proof uses Kirchberg’s results
showing the equivalence of Connes’ embedding conjecture to the equality of the minimal
and maximal tensor products of certain C*-algebras of free groups. The above proof uses
the results of [24] which in turn used Kirchberg’s results about the equivalence of Connes’
embedding conjecture to finite approximability of traces, often referred as the matricial
microstates conjecture. Finally, due to the work of [39], it seems to be that the above
corollary has an answer in the negative.
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We next turn our attention to the set of synchronous quantum spatial correlations.
We prove the somewhat surprising result that any synchronous correlation that that can
be obtained using a tensor product of possible infinite dimensional Hilbert spaces has a
representation using only finite dimensional spaces.

Theorem 6.1.10. Let n,m ≥ 1. Then Cs
q (n,m) = Cs

qs(n,m).

Proof. By definition, Cs
q (n,m) ⊆ Cs

qs(n,m), so we must prove that Cs
qs(n,m) ⊆ Cs

q (n,m).

Let
(
p(i, j|v, w)

)
∈ Cs

qs(n,m) be represented as

p(i, j|v, w) = 〈Ev,i ⊗ Fw,jψ, ψ〉

where {Ev,i, 1 ≤ v ≤ n, 1 ≤ i ≤ m} are orthogonal projections on some Hilbert space H
satisfying

∑
iEv,i = IH for all v, {Fw,j : 1 ≤ w ≤ n, 1 ≤ j ≤ m} are orthogonal projections

on some Hilbert space K satisfying
∑

j Fw,j = IK for all w, and ψ ∈ H⊗K is a unit vector.

Note that if we are given any other Hilbert space G and we set F ′w,1 = Fw,1 ⊕ IG and
F ′w,j = Fw,j ⊕ 0, then p(i, j|v, w) = 〈(Ev,i ⊗ F ′w,j)ψ, ψ〉. In this manner we see that there
is no loss of generality in assuming that dim(H) = dim(K), so we assume that these two
Hilbert spaces have the same dimension.

Let
∑

k∈X αkek ⊗ fk be the Schmidt decomposition of ψ so that X is a countable set
and {ek : k ∈ X} and {fk : k ∈ X} are orthonormal sets in their respective Hilbert spaces.
By setting sufficiently many α’s equal to 0, and direct summing with additional Hilbert
spaces as needed, we may assume that these sets are orthonormal bases for their respective
spaces.

Let {rl : l ∈ Y } = {αk : k ∈ X} be an enumeration of the set of distinct non-zero
αk’s (which is at most countable) with r1 > r2 > . . . and let Sl = {k : αk = rl}. Let
El = span{ek : k ∈ Sl} and Fl = span{fk : k ∈ Sl}. Since the αk’s are square summable,
each set Sl is finite and so each of these spaces is finite dimensional.

We claim that the spaces El are reducing subspaces for {Ev,i} and that the spaces Fl
are reducing for the set {Fw,j}

First, we complete the proof assuming the claim. Let El
v,i denote the compression of

Ev,i to the space El and let F l
w,j denote the compression of Fw,j to the space Fl so that

these are orthogonal projections and
∑

iE
l
v,i = IEl for all v and

∑
j F

l
w,j = IFl for all w.

Set dl = dim(El) = dim(Fl) = card(Sl) and let ψl = 1√
dl

∑
k∈Sl ek ⊗ fk ∈ El ⊗ Fl, which is

a unit vector. Let tl = r2
l dl so that

∑
l tl =

∑
k α

2
k = 1 and set

pl(i, j|v, w) = 〈El
v,i ⊗ F l

w,jψl, ψl〉 ∈ Cq(n,m) .
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Note that ∑
l

tlpl(i, j|v, w) = p(i, j|v, w) ,

so that for i 6= j,
∑

l tlpl(i, j|v, v) = 0 from which it follows that p(i, j|v, v) = 0 for all l.
Thus, each pl(i, j|v, w) ∈ Cs

q (n,m).

Since Cs
q (n,m) is convex, by [19], p(i, j|v, w) ∈ Cs

q (n,m). The key point here is that
by [19] a convex set need not be closed to ensure that such a series remains in the set.

Thus, we need only establish that these spaces reduce the operators. Let ω = e2πi/m be
a primitive m-th root of unity and let Av =

∑m
i=1 ω

iEv,i and let Bw =
∑m

j=1 ω
jFw,j so that

these are unitaries of order m and the original projections are the spectral projections of
these unitaries. Note that these unitaries generate the same C∗-algebras as the projections
so that the projections are reduced by these subspaces if and only if these unitaries are
reduced by these subspaces.

First recall that the synchronous condition guarantees that (Ev,i ⊗ I)ψ = (I ⊗ Fv,i)ψ
by [67, Theorem 5.5i] and hence, (Av ⊗ I)ψ = (I ⊗Bv)ψ.

Now (A⊗ I)ψ = (I ⊗B)ψ implies

αj〈Aej, ei〉 = 〈(A⊗ I)ψ, ei ⊗ fj〉 = 〈(I ⊗B)ψ, ei ⊗ fj〉 = αi〈Bfi, fj〉 .
Thus for i ∈ S1, using that α1 ≥ αj, we have

α2
1 ≥

∑
j

α2
j |〈Avej, ei〉|2 =

∑
j

α2
i |〈Bvfi, fj〉|2 = α2

1‖Bvfi‖2 = α2
1 ,

and so we must have equality throughout. But equality implies that 〈Avej, ei〉 = 0 for all
j /∈ S1. Hence, A∗vei ∈ E1 for all i ∈ S1. This shows that A∗v leaves E1 invariant. Hence,

Av =
(
A∗v
)m−1

also leaves this space invariant and so E1 is a reducing subspace for every
Av and hence for the entire C*-algebra that they generate. A similar proof shows that F1

is reducing for every Bv.

Now it follows that for i ∈ S2, we have that for j ∈ S1, 〈Avej, ei〉 = 0 and so,

r2
2 ≥

∑
j

α2
j |〈Avej, ei〉|2 =

∑
j

r2
2|〈Bvfi, fj〉|2 = r2

2 .

Similar reasoning shows that A∗vei ∈ E2 and consequently that E2 reduces these unitaries.

We have now done the first two cases and the complete proof follows by induction along
these lines.

Corollary 6.1.11. A synchronous game has a perfect qs-strategy if and only if it has a
perfect q-strategy.
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6.2 Separating Cs
qs and Cs

qa

Suppose Ax = b is an m× n linear system over Z/2; that is, A = (ai,j) ∈ Mm,n(Z/2) and
b ∈ (Z/2)n. Let Vi = {j ∈ {1, . . . , n} : ai,j 6= 0} denote the variables which occur in the ith
equation for i = 1, . . . ,m. It will be convenient to write the system multiplicative notation
where we identify Z/2 with {±1} and write the ith equation of the linear system as∏

j∈Vi

xj = (−1)bi (6.1)

for i = 1, . . . ,m where xj ∈ {±1}. We recall the definition of the solution group Γ(A, b)
associated to the system Ax = b. The idea is to interpret (6.1) as the relations of a group
with generators x1, . . . , xn and a generator J used to place the role of −1. More precisely,
we make the following definition.

Definition 6.2.1. Given an m × n linear system as above, let Γ(A, b) denote the group
generated by u1, . . . , un, J with relations

1. u2
j = J2 = 1 for j = 1, . . . , n,

2. ujuk = ukuj for j, k ∈ Vi and i = 1, . . . ,m,

3. ujJ = Juj for j = 1, . . . , n, and

4.
∏

j∈Vi uj = J bi for i = 1, . . . ,m.

We call Γ(A, b) the solution group associated to the linear system Ax = b.

For i = 1, . . . ,m, let

Si = {x ∈ {±1}n :
∏
j∈Vi

xj = (−1)bi and xj = 1 for j /∈ Vi} .

We associate a synchronous game to Ax = b as follows:

Definition 6.2.2. Suppose Ax = b is an m×n linear system over Z/2 and b ∈ (Z/2)n. The
synchronous BCS game associated to Ax = b, denoted synBCS(A, b), is given as follows:

1. the input set is I = {1, . . . ,m};
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2. the output set is O = {±1}n;

3. given input (i, j), Alice and Bob win on output (x, y) if x ∈ Si, y ∈ Sj, and for all
k ∈ Vi ∩ Vj, xk = yk.

Let A ∼= C∗(F(m, 2n)) denote the universal C∗-algebra generated by projections ei,x for
i = 1, . . . ,m and x ∈ {±1}n subject to the relations

∑
x ei,x = 1 for all i = 1, . . . ,m. The

following result gives a relationship between correlations in Cs
qc(m, 2

n) and the structure
of the group Γ(A, b).

Theorem 6.2.3. Suppose every column of A contains a non-zero entry. Then there is a
surjective *-homomorphism π : A → C∗(Γ(A, b))/〈J + 1〉, where 〈J + 1〉 denotes the ideal
generated by J + 1, given by

π(ei,x) =

{∏
j∈Vi χxj(uj) x ∈ Si

0 x /∈ Si,
(6.2)

where χxj(uj) denotes the spectral projection of uj at the point xj.

Moreover, the map τ 7→ τ ◦ π is a bijection from the set of tracial states on the algebra
C∗(Γ(A, b))/〈J + 1〉 to the set of tracial states τ ′ on A satisfying τ ′(ei,xej,y) = 0 whenever
Alice and Bob lose on outputs (x, y) given inputs (i, j).

Proof. First we show that the formula for π given in (6.2) defines a *-homomorphism on
A. Note that since {uj : j ∈ Vi} is a set of commuting self-adjoint unitaries, π(ei,x) is
defined and is a projection for each i and x. Moreover, for i = 1, . . . ,m, in the algebra
C∗(Γ(A, b))/〈J + 1〉,

(−1)bi =
∏
j∈Vi

uj =
∏
j∈Vi

(χ+1(uj)− χ−1(uj)) =
∑

x∈{±1}Vi

∏
j∈Vi

xjχxj(uj) .

Note that if x ∈ {±1}Vi and
∏

j∈Vi xj 6= (−1)bi , then∏
j∈Vi

xjχxj(uj) = −
∏
j∈Vi

ujχxj(uj) = −
∏
j∈Vi

xjχxj(uj)

and hence
∏

j∈Vi xjχxj(uj) = 0. Combining these calculations, we have

(−1)bi =
∑
x∈Si

∏
j∈Vi

xjχxj(uj)
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and hence ∑
x∈{±1}n

π(ei,x) =
∑
x∈Si

∏
j∈Vi

χxj(uj) = (−1)bi
∑
x∈Si

∏
j∈Vi

xjχxj(uj) = 1 .

Thus the desired *-homomorphism π exists.

To see π is surjective, fix k ∈ {1, . . . ,m}. As the kth column of A contains a non-zero
entry, there is an i ∈ {1, . . . ,m} such that k ∈ Vi. Note that

uk = (χ+1(uk)− χ−1(uk))
∑
x∈Si

∏
j∈Vi

χxj(uj)

=
∑

x∈Si,xk=1

∏
j∈Vi

χxj(uj)−
∑

x∈Si,xk=−1

∏
j∈Vi

χxj(uj)

=
∑

x∈Si,xk=1

π(ev,x)−
∑

x∈Si,xk=−1

π(ev,x).

As C∗(Γ(A, b))/〈J + 1〉 is generated by u1, . . . , um, the result follows.

We next work to prove the claim about traces. As π is surjective, the induced map on
traces is injective. To see surjectivity, let τ ′ be a trace on A such that τ ′(ei,xej,y) = 0 if
x /∈ Si, y /∈ Sj, or there is a k ∈ Vi ∩ Vj such that xk 6= yk. Define

N = {a ∈ A : τ ′(a∗a) = 0}

and note that N is an ideal in A. We first show

1. if x /∈ Si, then ei,x ∈ N ,

2. if xk 6= yk for some k ∈ Vi ∩ Vj, then ei,xej,y /∈ N , and

3. if k ∈ Vi ∩ Vj, then
∑
x∈Si

xkei,x −
∑
y∈Sj

ykei,x ∈ N .

For (1), if x /∈ Si, then τ ′(e∗i,xei,x) = τ ′(ei,xei,x) = 0 by the assumptions on τ ′. For (2), if
xk 6= yk for some k ∈ Vi ∩ Vj, then

τ ′((ei,xej,y)
∗(ei,xej,y)) = τ ′(ej,yei,xej,y) = τ ′(ei,xej,y) = 0

by the assumptions on τ ′. For (3), fix k ∈ Vi ∩ Vj. Then

τ ′(xkykei,xej,y) =

{
τ ′(ei,xej,y) xk = yk

0 xk 6= yk
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by (2) above. Also, ∑
x∈Si

τ ′(ei,x) =
∑
x∈Sj

τ ′(ej,y) = 1

by (1) above. Now,

τ ′

∑
x∈Si

xkei,x −
∑
y∈Sj

ykei,x

∗∑
x∈Si

xkei,x −
∑
y∈Sj

ykei,x


=
∑
x∈Si

τ ′(ei,x) +
∑
y∈Sj

τ ′(ej,y)− 2
∑

x∈Si,y∈Sj

τ ′(ei,xej,y) = 0

which proves (3).

Fix k ∈ {1, . . . , n}. Since the jth column of A is non-zero, there is an i ∈ {1, . . . ,m}
such that k ∈ Vi. Define vk ∈ A/N by

vk =
∑
x∈Si

xkei,x.

By condition (3) above, the vk is independent of the choice of i. Note that vk is a self-
adjoint unitary in A/N and if k, ` ∈ Vi for some i = 1 . . .m, then vkv` = v`vk. Finally for
i = 1, . . . ,m, since the projections ei,x are orthogonal, we have

∏
k∈Vi

vk =
∏
k∈Vi

∑
x∈Si

xkei,x =
∑
x∈Si

(∏
k∈Vi

xk

)
ei,x = (−1)bi .

It follows that there is a group homomorphism ρ : Γ(A, b)→ U(A/N ) given by ρ(uk) = vk
and ρ(J) = −1. Now, ρ induces a *-homomorphism, still denoted ρ, from C∗(Γ(A, b))/〈J+
1〉 to A/N .

Let q : A → A/N denote the quotient map. Since τ ′ vanishes on N , there is a
trace τ̄ ′ on A/N such that τ̄ ′ ◦ q = τ ′. Define a trace τ on C∗(Γ(A, b))/〈J + 1〉 by
τ = τ̄ ′ ◦ ρ. By construction, ρ(π(ei,x)) = q(ei,x) for all i and x and hence ρ ◦ π = q. Now,
τ ◦ π = τ̄ ′ ◦ ρ ◦ π = τ̄ ′ ◦ q = τ ′. This completes the proof.

Corollary 6.2.4. Let Ax = b be a linear system.

1. synBCS(A, b) has a perfect qc-strategy if and only if J 6= 1 in Γ(A, b),

2. synBCS(A, b) has a perfect qa-strategy if and only if there is representation Γ(A, b)→
RU such that ρ(J) 6= 1, and
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3. synBCS(A, b) has a perfect q-strategy if and only if there is a finite dimensional
representation ρ : Γ(A, b)→ U(Md) such that ρ(J) 6= 1.

Proof. We may assume no column of A is identically zero. Assume A is an m × n linear
system.

We first prove (1). If synBCS(A, b) has a perfect qc-strategy p(x, y|i, j) ∈ Cs
qc(m, 2

n),
there is a trace τ on A such that

p(x, y|i, j) = τ(ei,xej,y) for all i, j, x, y.

By Theorem 6.2.3, there is a trace τ ′ on C∗(Γ(A, b))/〈J + 1〉 such that τ ′ ◦ π = τ . In
particular, C∗(Γ(A, b))/〈J + 1〉 is non-zero. Hence J + 1 6= 2 in C∗(Γ(A, b)) and J 6= 1 in
Γ(A, b).

Conversely, suppose J 6= 1 in Γ(A, b). As J is central, 〈J〉 ∼= Z/2 is a normal subgroup
of Γ(A, b). There is a conditional expectation E : C∗(Γ(A, b))→ C∗(〈J〉) ∼= C2 determined
by E(s) = s for s ∈ {1, J} and E(s) = 0 for s ∈ Γ(A, b)\{1, J}. Let χ : C∗(〈J〉)→ C be the
character defined by χ(J) = −1. Then χ◦E is a trace on C∗(Γ(A, b)). As (χ◦E)(J+1) = 0
and J+1 ≥ 0, the trace χ◦E vanishes on the ideal 〈J+1〉 ⊆ C∗(Γ(A, b)) and hence induces a
trace τ on C∗(Γ(A, b))/〈J+1〉. Now, the trace τ ◦π on A is a trace where π is the surjection
in Theorem 6.2.3. We define a qc-correlation by

p(x, y|i, j) = τ(π(ei,xej,y)) for all i, j, x, y.

By Theorem 6.2.3,
(
p(x, y|i, j)

)
is a perfect qc-strategy.

For (2) and (3), we let B denote either RU or Md. Suppose ρ : Γ(A, b) → U(B) is a
group homomorphism such that ρ(J) 6= 1. Let q denote the spectral projection of ρ(J)
corresponding to the eigenvalue −1. As J 6= 1, we have q 6= 0. As J is central in Γ(A, b),
the projection q commutes with the image of ρ. Now, qρ(·) is a unitary representation of
Γ(A, b) on U(qBq) and qρ(J) = −q. When B = Md, qBq ∼= Md′ for some d′ ≥ 1, and when
B = RU , qBq ∼= RU . Hence after replacing B with qBq and ρ with qρ(·), we may assume
ρ(J) = −1. Now ρ induces a *-homomorphism C∗(Γ(A, b)) → B vanishing on J + 1 and
hence induces a *-homomorphism

A π−→ C∗(Γ(A, b))/〈J + 1〉 → B .

The trace on B defines a trace on A which in turn defines a winning q-strategy when B is
finite dimensional and a winning qa-strategy when B = RU .
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Now suppose synBCS(A, b) has a perfect qa-strategy. As in Theorem 6.2.3, there is a
trace τ on C∗(Γ(A, b))/〈J + 1〉 which factors through the trace on RU . The GNS represen-
tation of τ induces a representation of C∗(Γ(A, b))/〈J + 1〉 → RU which in turn induces
a representation ρ : Γ(A, b) → RU with ρ(J) = −1. Similarly, if synBCS(A, b) has a
perfect q-strategy, one produces a representation of Γ(A, b) in the same way using a finite
dimensional algebra in place of RU .

The following result is in [74].

Theorem 6.2.5. There is a linear system Ax = b such that there is a representation
ρ : Γ(A, b) → U(RU) such that ρ(J) 6= 1 but for every finite dimensional representation
ρ0 : Γ(A, b)→ U(Md), ρ(J) = 1.

Combining Theorem 6.2.5 with Corollary 6.2.4 provides a synchronous game which has
a perfect qa-strategy but no perfect q-strategy. Hence we have the following strengthening
of Slofstra’s result[74].

Corollary 6.2.6. For sufficiently large m and n, we have Cs
q (m, 2

n) = Cs
qs(m, 2

n) 6=
Cs
qa(m, 2

n). In particular, for sufficiently large m,n, Cs
q (m, 2

n) = Cs
qs(m, 2

n) is not closed.

Remark 6.2.7. If each row of the matrix A appearing in the above result has only k
non-zero entries, then one can deduce that Cs

q (m, 2
k) = Cs

qs(m, 2
k) is not closed.

Remark 6.2.8. If Cqs(m, 2
n) or Cq(m, 2

n) was closed, then their subsets of synchronous
elements would be closed. Since Cs

q (m, 2
n) = Cs

qs(m, 2
n), the above result implies Slofstra’s

result[74] that Cq(m, 2
n) and Cqs(m, 2

n) are not closed, for sufficiently large m,n.

Remark 6.2.9. It is shown in [70] that Cs
q (3, 2) is always closed but as of the writing of

this thesis, it is still open if Cq(3, 2) must also be closed. As well, it is shown in [18] that
Cq 6= Cqs.

6.3 Separating quantum independence numbers

In this section we prove that there exists a graph G for which αq(G) < αqa(G). Recall
from the preliminaries that for t ∈ {q, qa, qc}, the independence number αt(G) is the largest
c ≥ 1 for which the graph homomorphism game Kc → G has a perfect t-strategy.

First let us recall from [6, Section 6] the graph GA,b defined for a linear system Ax = b
over Z/2.
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Definition 6.3.1. Suppose Ax = b is an m × n linear system over Z/2 and b ∈ (Z/2)n.
Define a graph GA,b with the following data:

1. the vertices of GA,b are pairs (i, x) where i ∈ {1, . . . ,m} and x ∈ Si;

2. there is an edge between distinct vertices (i, x) and (j, y) if and only if there exists
some k ∈ Vi ∩ Vj for which xk 6= yk; that is, x and y are inconsistent solutions.

Lemma 6.3.2. Suppose t ∈ {q, qa, qc}. If G and H are finite graphs and G ∼=t H then
αt(G) = αt(H).

Proof. Let V = V (G)∪V (H). It suffices to show that if G ∼=t H, then whenever αt(G) ≥ c,

we also have αt(H) ≥ c. As αt(G) ≥ c, we have Kc
t→ G. The C*-algebra of this

synchronous game is a C∗-algebra A, with a tracial state τA on A, and projections ei,v ∈ A
for i = 1, . . . , c and v ∈ V (G) such that

∑
v ei,v = 1 for all i = 1, . . . , c and τ(ei,vej,w) = 0

whenever (v, w) ∈ E(G). If t = q, we may assume τA factors through a finite dimensional
algebra and if t = qa, we may assume τA is amenable.

Similarly, since G ∼=t H, there is a C∗-algebra B, a tracial state τB on B, and projections
qv,w ∈ B for v, w ∈ V such that

∑
w∈V qv,w = 1 for all v ∈ V and such that if v, w ∈ V (G)

and x, y ∈ V (H) with rel(v, w) 6= rel(x, y) then τB(qvxqwy) = 0. (Note that there are other
relations in the graph isomorphism game; these are the only ones we will need to use here.)
Again we choose τB to factor through a finite dimensional algebra if t = q and we choose
τB to be amenable if t = qa.

For i = 1, . . . , c and x ∈ V (H), define

fi,x =
∑

v∈V (G)

ei,v ⊗ qv,x ∈ A⊗ B.

Then each fi,x is a projection and for all i = 1, . . . , c, we have
∑

x fi,x = 1. If x, y ∈ V (H)
and (x, y) ∈ E(H), then

τA ⊗ τB(fi,xfj,y) =
∑

v,w∈V (G)

τA(ei,vej,w)τB(qv,xqw,y).

For v, w ∈ V (G), if (v, w) ∈ E(G), then τA(ei,vej,w) = 0, and if (v, w) /∈ E(G), then
τB(fv,xfw,y) = 0. Hence the projections fi,x ∈ A ⊗ B and the trace τA ⊗ τB determine a
perfect qc-strategy for the graph homomorphism game from Kc to H. If τA and τB factor
through finite dimensional algebras, so does τA ⊗ τB. If τA and τB are amenable, so is
τA ⊗ τB. Hence in all cases, αt(H) ≥ c.
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It is shown in [62, Theorem 3.7] that for t ∈ {q, qa, qc} and graphs G, H and K, if

G
t→ H and H

t→ K then G
t→ K. This leads to the following:

Proposition 6.3.3. If t ∈ {q, qa, qc} and G is a finite graph, then αt(G) ≤ χt(G).

Proof. Suppose that αt(G) = c. By definition, there is a t-homomorphism Kc
t→ G. If

χt(G) = d then there is a t-homomorphism, G
t→ Kd. Since qa-homomorphisms are closed

under composition, there is a t-homomorphism Kc
t→ Kd which implies that χt(Kc) ≤ d.

As noted in the preliminaries, χt(Kc) = c and hence c ≤ d as claimed.

In the case t = q, the following result appears as Theorem 6.2 in [6]. Since the pub-
lication of this result, an error has been found the initial publication of this Theorem by
Adina Goldberg and it is rectified and generalized in [12, 32]. The following proof is an
amendment with ideas coming from their correction.

Theorem 6.3.4. Suppose t ∈ {q, qa, qc} and let Ax = b be an m × n linear system. The
following are equivalent:

1. the game synBCS(A, b) has a winning t-strategy;

2. GA,b
∼=t GA,0;

3. αt(GA,b) = m.

Proof. (1) ⇒ (2): Suppose that we have a winning t-strategy for the synBCS(A, b). Fix
a C*-algebra B, a faithful trace τ ∈ B, and projections ei,x ∈ B for i = 1, . . . ,m and
x ∈ {±1}n such that

∑
x ei,x = 1 for all i, ei,x = 0 if x /∈ Si, and ei,xej,y = 0 if there is

a k ∈ Vi ∩ Vj with xk 6= yk. If t = q, we assume B is finite dimensional and if t = qa,
we assume B ⊆ RU . Let G be the isomorphism game for (GA,b, GA,0) and let A(G) denote
the algebra associated to G as defined in the preliminaries. It suffices to construct a unital
*-homomorphism π : A(G)→ B.

Let S0
i ⊆ {±1}n denote the set of solutions to the ith equation of the linear system

Ax = 0 and let S1
i ⊆ {±1}n denote the set of solutions to the ith equation of the linear

system Ax = b. Given x, y ∈ {±1}n, let xy ∈ {±1}n denote the pointwise product of x
and y. Note that if x ∈ S1

i and y ∈ S0
i , then xy ∈ S1

i . Moreover, for x ∈ S1
i , the map

S0
i → S1

i given by y 7→ xy is a bijection.
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For (i, x) ∈ V (GA,b) and (j, y) ∈ V (GA,0), define

q(i,x),(j,y) =

{
ei,xy i = j

0 i 6= j

and note that each q(i,x),(j,y) is a projection. For (i, x) ∈ V (GA,b), we have

∑
(j,y)∈V (GA,0)

q(i,x),(j,y) =
n∑
j=1

∑
y∈S0

j

q(i,x),(j,y) =
∑
y∈S0

i

ei,xy =
∑
z∈S1

i

ei,z = 1.

A similar computation shows that for all (j, y) ∈ V (GA,0), we have∑
(i,x)∈V (GA,b)

q(i,x),(j,y) = 1.

We need to show that for all (i, x), (i′, x′) ∈ V (GA,b) and (j, y), (j′, y′) ∈ V (GA,0), the
implication

q(i,x),(j,y)q(i′,x′),(j′,y′) 6= 0 ⇒ rel((i, x), (i′, x′)) = rel((j, y), (j′, y′))

holds. To this end, suppose q(i,x),(j,y)q(i′,x′),(j′,y′) 6= 0. Then i = j, i′ = j′, and ei,xyei′,x′y′ 6= 0.
We consider several cases.

Suppose first i = i′. Then we have xy = x′y′. If x = x′, then y = y′ and we have both
(i, x) = (i′, x′) and (j, y) = (j′, y′) so the right hand side of the implication holds in the
case. Conversely, if x 6= x′ and y 6= y′, then (i, x) 6= (i′, x′) and (j, y) 6= (j′, y′). Note also
that since i = i′, x and x′ are necessarily inconsistent solutions so that (i, x) and (i′, x′)
are adjacent. Similar reasoning shows (j, y) and (j′, y′) are adjacent. Hence the right hand
side of the implication holds.

Now assume i 6= i′ so that, in particular, (i, x) 6= (i′, x′). If (i, x) and (i′, x′) are adjacent,
there is a k ∈ Vi ∩ Vi′ such that xk 6= x′k. On the other hand, as ei,xyei′,x′y′ 6= 0, we know
xkyk = (xy)k = (x′y′)k = x′ky

′
k. Therefore, yk 6= y′k so that (i, y) and (i′, y′) are adjacent.

Finally, suppose (i, x) and (i′, x′) are not adjacent. Then xk = x′k for all i ∈ Vi∩Vi′ . Again
since ei,xyei′,x′y′ 6= 0, we also know xkyk = x′ky

′
k for all k ∈ Vi ∩ Vi′ and therefore yk = y′k

for all k ∈ Vi ∩ Vi′ so that (j, y) and (j′, y′) are not adjacent. This covers all cases.

Now, the projections q(i,x),(j,y) ∈ B define a unital *-representation π : A(G) → B and
it follows that GA,b

∼=t GA,0.
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(2) ⇒ (3): Suppose that GA,b
∼=t GA,0. By Lemma 6.3.2, it suffices to show that

αt(GA,0) = m. The map f : GA,0 → {1, . . . ,m} : (i, x) 7→ i is an m-colouring of GA,0.
Indeed, suppose are (i, x) and (j, y) are distinct vertices in GA,0 with f(i, x) = f(j, y).
Then i = j and hence x 6= y. That is, there is some k ∈ Vi such that xk 6= yk and thus
there is no edge between (i, x) and (j, y) in GA,0.

For each i = 1, . . . ,m, the vector x0 = (1, . . . , 1) is in Si ⊆ {±1}n for the system
Ax = 0. Hence for i, j = 1, . . . ,m, there is no edge between the vertices (i, x0) and (j, x0)
in GA,0 and we have α(GA,0) ≥ m. Now by the previous proposition,

m ≥ χ(GA,0) ≥ χt(GA,0) ≥ αt(GA,0) ≥ α(GA,0) ≥ m,

and αt(GA,0) = m.

(3) ⇒ (1): Suppose αt(GA,b) = m. Then the graph homomorphism game from Km to
GA,b has a perfect t-strategy. Fix a C∗-algebra A with a faithful trace τ and projections
ei,k,x ∈ A for i = 1, . . . ,m, (k, x) ∈ V (GA,b) such that

1.
m∑
k=1

∑
x∈Sk

ei,k,x = 1 for all 1 ≤ i ≤ m, and

2. τ(ei,k,xe`,j,y) = 0 if there is an edge between (k, x) and (j, y) in GA,b.

If t = q, we may assume A is finite dimensional and if t = qa, we may assume A = RU .

Define for i = 1, . . . ,m and j ∈ Vi,

vi,j =
m∑
k=1

∑
x∈Si

xjek,i,x .

The vi,j are self adjoint since it is a R-linear combination of projections. Next we show
that for all i = 1, . . .m and for all j, k ∈ Vi, vi,j commutes with vi,k. An expansion of the
product gives us

vi,jvi,k =

(
m∑
s=1

∑
x∈Si

xjes,i,x

)(
m∑
t=1

∑
y∈Si

yket,i,y

)
=
∑
s,t

∑
x,y

xjykes,i,xet,i,y .
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Using the fact that τ is tracial, whenever x 6= y, τ((es,i,xet,i,y)
∗(es,i,xet,i,y)) = τ(es,i,xet,i,y) =

0. By faithfulness of τ we must have es,i,xet,i,y = 0. By the same reasoning, when s 6= t, we
must have es,i,xet,i,x = 0 since we have a synchronous game. All this lets us conclude that

vi,jvi,k =
∑
s

∑
x

xjxkes,i,x = vi,kvi,j

and hence the operators vi,j and vi,k commute. Setting j = k gives us

v2
i,j =

∑
s

∑
x

x2
kes,i,x =

∑
s

∑
x

es,i,x .

Since each es,i,x are pairwise orthogonal, v2
i,j is a projection. Beyond this,

m∑
i=1

v2
i,j =

∑
i,s

∑
x

es,i,x =
∑
s

(∑
i

∑
x∈Si

es,i,x

)
= m · 1 .

In particular, we must have v2
i,j = 1 for all i, j.

Similarly, for all i, k and j ∈ Vi ∩ Vk, from the above analysis it follows that

τ(vi,jvk,j) =
m∑

p,q=1

∑
x∈Si,y∈Sk

xjyjτ(ep,i,xeq,i,y)

=
∑
p

∑
x∈Si

τ(ep,i,x) = τ(v2
i,j) = 1 .

Hence we have

τ((vi,j − vk,j)∗(vi,j − vk,j)) = 2− 2τ(vi,jvk,j) = 0 .

From this it follows that vi,j = vk,j as τ is faithful.

Given j = 1, . . . , n, define wj = vi,j if j ∈ Vi for some i = 1, . . . ,m and wj = 1
otherwise. By the previous paragraph, since the choice of vi,j is independent of the given i,
the operator wj is well-defined. If 1 ≤ j, k ≤ n and there is an i = 1, . . . ,m with j, k ∈ Vi,
then wj = vi,j and wk = vi,k commute. Moreover, for each i = 1, . . . ,m,∏

j∈Vi

wj =
∏
j∈Vi

vi,j =
m∑
k=1

∑
x∈Si

∏
j∈Vi

xjek,i,x = (−1)bi .

Hence there is a representation ρ : Γ(A, b) → U(A) such that ρ(ui) = wi and ρ(J) = −1
for all i = 1, . . . , n. By Corollary 6.2.4, the game synBCS(A, b) has a perfect t-strategy
which proves (1).
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By Corollary 6.2.4 and Theorem 6.2.5 applied to the above Theorem, we get the fol-
lowing two Corollaries.

Corollary 6.3.5. There exists a graph G for which αqa(G) > αq(G).

Corollary 6.3.6. There exist graphs G and H for which G ∼=qa H but G 6∼=q H.
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Chapter 7

Chromatic numbers for quantum
graphs

Given a graph on n vertices one can associate two different subspaces of the n×n matrices
that encode all of the information of the graph. This has motivated the generalization of
several well known graph theoretic concepts to a larger class of objects.

In [23], Duan, Severini, and Winter describe a version of non-commutative graph theory
whose underlying objects consist of submatricial operator systems. The aforementioned
authors generalize the independence number and Lovász theta number to submatricial
operator systems.

In [75], Stahlke works with a similar but distinct definition of a non-commutative graph.
Instead of working with submatricial operator systems, Stahlke associates a subspace of
matrices whose elements all have zero trace to a graph. Stahlke generalizes several classical
graph theory concepts to these traceless subspaces including the chromatic number, clique
number and notion of graph homomorphism.

Thus, there are two quite different subspaces of matrices to associate to graphs that
lead to two different ways to create a non-commutative graph theory. In this chapter
we discuss both the submatricial operator system and submatricial traceless self-adjoint
operator space definitions of a non-commutative graph.

There is currently no notion of the complement of a non-commutative graph that gen-
eralizes the graph complement. By working with both of the above definitions we are able
to generalize the complement of a graph using the orthogonal complement with respect to
the Hilbert-Schmidt inner product. We conclude this section by reviewing the definition of
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several non-commutative graph parameters and show that some of these parameters can
be approximated by evaluating classical graph parameters.

In [59] Lovász introduced his well known theta number of a graph, θ(G). Lovász shows
that this number determines the following bounds on the independence number, α(G), and
the chromatic number of the graph complement χ(G).

α(G) ≤ θ(G) ≤ χ(G).

These two inequalities are often referred to as the Lovász sandwich theorem. In [23], it is
shown that that the independence number of a submatricial operator system is bounded
above by its Lovász number. This provides the first inequality for a generalized Lovász
sandwich theorem. In [75] Stahlke introduces a version of the chromactic number denoted
χSt, that generalizes the second inequality.

In section 7.2 we introduce new generalizations of the chromatic number, χ0 and χ̂,
that provide lower and upper bounds on χSt. Using χ̂ we provide a simplified proof of
a weaker sandwich inequality. The advantage is that we can answer a question posed by
Stahlke by generalizing the equation χ(G)ω(G) ≥ n to non-commutative graphs.

Given two graphs G and H the Cartesian product is the graph G�H with vertex set
V (G) × V (H) and edge relation given by (v, a) ∼ (w, b) if one of v ∼G w and a = b or
v = w and a ∼H b holds. A Theorem of Sabidussi tell us χ(G�H) = max{χ(G), χ(H)}
for any G and H. We introduce a Cartesian product and establish a generalization of this
result for submatricial traceless self-adjoint operator spaces in Section 7.3 . In section 7.3
we also establish a categorical product for submatricial traceless self-adjoint operator space
and extend a Theorem of Hedetniemi to submatricial traceless self-adjoint operator spaces.

7.1 Non-commutative graphs

A non-commutative graph is sometimes viewed as any submatricial operator system S.
Non-commutative graphs have also been described as any submatricial traceless self-adjoint
operator space J . In this section we review how one can view a classical graph as either
of these objects without losing information about the graph itself. We also discuss several
parameters for non-commutative graphs.
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7.1.1 Non-commutative graphs as operator systems

Definition 7.1.1. Let G = (V,E) be a graph with vertex set [n]. Define SG ⊆Mn by

SG := span{Ei,j : (i, j) ∈ E or i = j}.

Observe that for any graph G, SG will be a submatricial operator system. In [62], it is
shown that graphs G and H are isomorphic if and only if SG and SH are isomorphic in the
category of operator systems. We discuss this in more detail in 7.1.2.

Given a graph G, if vertices i, j are not adjacent, then eie
∗
j = Ei,j is orthogonal to the

submatricial operator system SG in the sense that for all X ∈ SG, the Hilbert-Schmidt inner
product 〈Ei,j, X〉 := tr(Ei,j ·X∗) is zero. Similarly if {i1, . . . , ik} is an independent set of
vertices in G then for any j 6= k we have eije

∗
ik

is orthogonal to SG. If v = (v1, . . . , vk) is an
orthonormal collection of vectors in Cn then v called an independent set for a submatricial
operator system S ⊆Mn if for any i 6= j, viv

∗
j is orthogonal to S.

Definition 7.1.2. Let S be a submatricial operator system. We define the independence
number, α(S), to be the largest integer k such that there exists an independent set for S
of size k.

A graph G = (V,E) has a k-colouring if and only if there exists a partition of V
into k independent sets. In [65] Paulsen defines a natural generalization of the chromatic
number to non-commutative graphs. We say a submatricial operator system S ⊆ Mn has
k-colouring if there exists an orthonormal basis for Cn, v = (v1, . . . , vn), such that v can
be partitioned into k independent sets for S.

Definition 7.1.3. Let S ⊆Mn be a submatricial operator system. The chromatic number,
χ(S), is the least k ∈ N such that S has a k-colouring.

For any submatricial operator system S ⊆Mn we have χ(S) ≤ n since you can partition
any basis of Cn into n independent sets. In Theorem 7.1.14 we show that both of the above
parameters provide a generalization of the classical graph theory parameters, that is we
show α(SG) = α(G) and χ(SG) = χ(G). This first equality is originally found in [23] and
the second can be found in [65].

Example 7.1.4. Consider the submatricial operator system S := span{I, Ei,j : i 6= j} ⊆
Mn. Let u1, u2 be two orthonormal vectors and let i be an element of the support of u1.
Since u∗1u2 = 0 there must be an element j 6= i of the support of u2. Then 〈u1u

∗
2, Ei,j〉 =

u1(i)u2(j) 6= 0. Thus we see that α(S) = 1. This also tell us that χ(S) = n.
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As in [23], given a graph G one can compute the Lovász theta number ϑ(G) as,

ϑ(G) = max{‖I + T‖ : I + T ≥ 0, Ti,j = 0 for i ∼ j}.

Here the supremum is taken over all n× n matrices and I + T ≥ 0 indicates that I + T is
positive semidefinite.

The following inequality is due to Lovász. For a good self-contained review please see
[58].

Theorem 7.1.5. Let G be a graph and G be the graph complement of G. Then,

α(G) ≤ ϑ(G) ≤ χ(G).

In order to obtain an generalization of 7.1.5 we need to identify the the appropriate
generalization of a graph complement. Given a submatricial operator system S ⊆ Mn

we use the orthogonal complement S⊥ to generalize the graph complement. Note that
the orthogonal complement of a submatricial operator system is no longer a submatricial
operator system since it will fail to contain the identity operator. In fact since I ∈ S we will
have tr(A) = 〈A, I〉 = 0 for every A element of S⊥. In [75], Stahlke works with precisely
these objects. We show that it is useful to consider both submatricial operator systems
and submatricial traceless self-adjoint operator spaces to generalize the graph complement.

7.1.2 The complement of a non-commutative graph

In this section, we introduce the analogue of the notion of a graph complement for non-
commutative graphs. Using this, we define a notion of clique number, independence num-
ber, and chromatic number.

Definition 7.1.6. Let G be a finite graph with vertex set [n]. The traceless self-adjoint
operator space associated to G is the linear space

JG := span{Ei,j : i ∼ j} ⊆Mn .

A traceless non-commutative graph is any submatricial traceless self-adjoint operator space.

Remark 7.1.7. The traceless self-adjoint operator space JG is the traceless non-commutative
graph SG given in [75]. Given a finite graph G with vertex set [n], we have the identity
J ⊥G = SG. This identity in particular suggests that the graph complement of a non-
commutative graph should be its orthogonal complement. In [75], Stalhke suggests that
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the graph complement of JG should be (JG + CI)⊥. However, this notion of complement
would mean that JG 6= (JG + CI)⊥ for any graph with at least two vertices. We shall see
that, so long as one is willing to pay the price of working with two different notions of a
non-commutative graph, the orthogonal complement is the correct analogue of the graph
complement.

Proposition 7.1.8. The traceless self-adjoint operator subspaces of Mn are exactly the
orthogonal complements of submatricial operator systems. That is, S is a submatricial
operator system if and only if S⊥ is a traceless self-adjoint operator space.

Proof. If S is an operator subsystem of Mn then for any X ∈ S⊥, tr(X) = 〈X, I〉 = 0.
As well, if X ∈ S⊥, for any Y ∈ S, tr(XY ) = tr(Y ∗X∗) = 0. This proves that S⊥ is a
traceless self-adjoint operator space. Conversely, if S is a traceless self-adjoint operator
space, then S⊥ contains I since for all X ∈ S, 〈X, I〉 = tr(X∗I) = 0. If X ∈ S⊥ then
〈X∗, Y 〉 = tr(XY ) = tr(Y ∗X∗) = 0. Therefore, X∗ ∈ S⊥. This proves that S⊥ is an
operator system.

Proposition 7.1.9. If G is a graph with vertex set [n] then S⊥G = JG.

Proof. Observe that for i, j, k, l ∈ [n], Eij ∈ S⊥G if and only if for all k 'G l, tr(EijEkl) = 0.
This is only possible if i ∼G j.

It is a result of Paulsen and Ortiz [62, Proposition 3.1] that two graphs G and H of
the same vertex set [n] are isomorphic if and only if there is a n× n unitary matrix U for
which USGU

∗ = SH .

Corollary 7.1.10. Suppose that G and H are graphs with vertex set [n]. The graphs G and
H are isomorphic if and only if there is an n×n unitary matrix U such that UJGU∗ = JH .

Proof. For any n× n unitary matrix U , (USGU
∗)⊥ = UJGU∗. Since G and H are isomor-

phic if and only if their graph complement is, the result follows.

Remark 7.1.11. In [78] a quantum graph is defined as a reflexive, symmetric quantum
relation on a ∗-subalgebra M ⊆ Mn. In this framework a submatricial operator system
S is indeed quantum graph when taking M = Mn. This approach fails to provide a
complement for a quantum graph since S⊥ will fail to be a reflexive quantum relation on
any M⊆Mn and hence will not be a quantum graph.
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The notion of an independent set for an submatricial operator system was described
solely in terms of an orthogonality relation. We can similarly say that an orthonormal
collection of vectors v = (v1, . . . , vn) in Cn is an independent set for a submatricial traceless
self-adjoint operator space J ⊆ Mn if for any i 6= j, viv

∗
j is orthogonal to J . We say J

has a k-coloring if there exists an orthonormal basis v = (v1, . . . , vn) of Cn, that can be
partitioned into k independent sets for J .

Definition 7.1.12. Let J ⊆Mn be a submatricial traceless self-adjoint operator space.

1. The independence number, α(J ), is the largest k ∈ N such that there exists an
independent set of size k for J .

2. The chromatic number χ(J ) is the least integer k such that J has k-colouring.

It is not hard to show that χ is monotonic and α is reverse monotonic under inclusion.
This holds when considering these as parameters on submatricial operator systems as well
as submatricial traceless self-adjoint operator spaces.

Next we show that if G is a graph, SG and JG have the same independence number and
chromatic number. We start with a lemma. The following proof is in [65, Lemma 7.28]:

Lemma 7.1.13. Let v1, . . . , vn be a basis for Cn. There exists a permutation σ on [n] so
that for each i, the σ(i)th component of vi is non-zero.

Proof. Let A = [ai,j] denote the matrix with column i equal to vi. Since we have a basis,
det(A) 6= 0. But

det(A) =
∑

σ∈Sym([n])

sgn(σ)a1,σ(1) · · · an,σ(n) .

There must therefore be some σ for which the product a1,σ(1) · · · an,σ(n) is non-zero. This
permutation works.

It has been shown that α(G) = α(SG) and χ(G) = χ(SG) in [23] and [65] respectively.
We are able to obtain the analogous results for submatricial self-adjoint operator spaces.

Theorem 7.1.14. Let G be a graph on n vertices, we have α(G) = α(SG) = α(JG) and
χ(G) = χ(SG) = χ(JG).
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Proof. The inclusion α(SG) ≤ α(JG) follow from reverse monotonicity. If i1, . . . , ik are
an independent set of vertices in the graph G then we have that the standard vectors
ei1 , . . . , eik is an independent set for SG so we get

α(G) ≤ α(SG) ≤ α(JG) .

Next suppose that v1, . . . , vk are an independent set for JG. Then since v1, . . . , vk is an
linearly independent set of vectors we can find a permutaiton σ on [n] so that

〈
vi, eσ(i)

〉
is

non-zero for all i.

We note that if vertices σ(j) and σ(k) are adjacent in G then we have Eσ(j),σ(k) ∈ JG.
But then 〈vjv∗k, Eσ(j),σ(k)〉 = 〈vj, eσ(j)〉

〈
eσ(k), vk

〉
6= 0 a contradiction. Thus σ(1), . . . , σ(k)

are an independent set for the graph G so α(JG) ≤ α(G). The proof for χ follows the
same argument.

Recall for a classical graph G the clique number, ω(G), satisfies that ω(G) = α(G).

Definition 7.1.15. Let S be a submatricial operator system and let J be a submatricial
traceless self-adjoint operator space.

1. Define the clique number, ω(S), to be the independence number of the submatricial
traceless self-adjoint operator space S⊥.

2. Define the clique number, ω(J ), to be the independence number of the submatricial
operator system J ⊥.

It should be noted that the above definition ω(J ) of a traceless submatricial operator
space is first mentioned in [75]. We can use Theorem 7.1.14 to conclude that for any graph
G we have ω(G) = ω(SG) = ω(JG).

The next proposition shows that α, ω, and χ may be computed purely from the associ-
ated parameters for graphs. We can achieve this by associating a family of graphs to each
submatricial traceless self-adjoint operator space or submatricial operator system.

Definition 7.1.16. Given a submatricial operator system S ⊆ Mn and an orthonormal
basis v = (v1, . . . , vn) we can construct two different graphs.

1. The confusability graph of v, with respect to S, denoted Hv(S), is the graph on n
vertices with i ∼ j if and only if viv

∗
j ∈ S.
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2. The distinguishability graph of v, with respect to S, denoted Gv(S) is the graph on
n vertices with i ∼ j if and only if viv

∗
j ⊥ S.

We can also define the confusability and distinguishability graphs of an orthonormal
basis v = (v1, . . . , vn) with respect to submatricial traceless self-adjoint operator spaces
J ⊆ Mn in the same way. We would then have for S = J ⊥, Gv(S) = Hv(J ) and
Hv(S) = Gv(J ). When it is clear what the underlying system or submatricial traceless
self-adjoint operator space is we simply write Gv and Hv.

Theorem 7.1.17. Let J be a submatricial traceless self-adjoint operator space in Mn and
let B denote the set of ordered orthonormal bases for Cn. We have the identities

α(J ) = sup
v∈B

α(Gv) ,

χ(J ) = inf
v∈B

χ(Gv) , and

ω(J ) = sup
v∈B

ω(Hv) .

The same identity holds if we replace J with a submatricial operator system in Mn.

Proof. Suppose v1, . . . , vc is a maximal independent set for J , that is for i 6= j we have
viv
∗
j ⊥ J . We can extend this collection to an orthonormal basis v = (v1, . . . , vc, vc+1, . . . vn).

Note that the vertices 1, . . . , c in the graph Gv are an independence set since for distinct
i, j ∈ [c] we have viv

∗
j ⊥ J . This gives i ∼ j in Gv. Thus there is no edge between i and j

in Gv. Therefore α(Gv) ≥ c so we have α(J ) ≤ supv∈B α(Gv). Conversely, for each v ∈ B
if i1, . . . , ic are an independent set for Gv then ij ∼ ik in GV . We then have vi1 , . . . , vic is
an independent set for J . This gives α(J ) ≥ α(Gv).

The proof of the second identity is similar. If χ(J ) = c then there exists orthonormal
basis v = (v1, . . . , vn) and a partition P1, . . . Pc of [n] such that viv

∗
j ⊥ J for distinct i and

j in the same partition. Define a colouring f of Gv by having f(i) = l if and only if i ∈ Pl.
We see that for i 6= j if we have f(i) = f(j) then viv

∗
j ⊥ J giving that i ∼ j in Gv so f

is indeed a c colouring of Gv. This gives χ(J ) ≥ infv∈B χ(Gv). Conversely, if f is any c
colouring of Gv for some v ∈ B then we can obtain a c colouring of J by partitioning [n]
into sets P1, . . . Pc where i ∈ Pl if and only if f(i) = l. Then if distinct i, j ∈ Pl we have
i ∼ j in Gv so viv

∗
j ⊥ J .

Lastly, suppose (v1, . . . , vk) is a collection of orthonormal vectors such that for distinc
i, j we have viv

∗
j ∈ J . We can extend this set to a orthonormal basis v = (v1, . . . vn)
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and we immediately get that the vertices {1, . . . , k} form a clique in Hv. For the other
direction note for any basis v = (v1, . . . vn) Hv has a clique i1, . . . , ik then v1, . . . vk will
satisfy viv

∗
j ∈ J for distinct i and j.

We next extend the definition of Lovász’ theta function, [59], to non-commutative
graphs. This was first extended to submatricial operator spaces in [23]. We introduce a
natural extension to submatricial operator systems as well.

Definition 7.1.18. Let S be a submatricial operator system and J be a submatricial
traceless self-adjoint operator space. Define the theta number of a submatricial operator
system, ϑ(S) and the complementary theta number of a submatricial traceless self-adjoint
operator space, ϑ as follows.

1. ϑ(S) = sup{‖I + T‖ : T ∈Mn, I + T ≥ 0, T ⊥ S}.

2. ϑ(J ) = sup{‖I + T‖ : T ∈Mn, I + T ≥ 0, T ∈ J }.

Observe that ϑ(SG) = ϑ(G) and ϑ(JG) = ϑ(G) for all graphs G.

Example 7.1.19. Recall the previously mentioned submatricial operator system S :=
span{I, Ei,j : i 6= j} ⊆ Mn. We see that ϑ(S) = n since we can take T to be the diagonal
matrix with n− 1 for the 1, 1 entry and −1 for all other diagonal entries. We also see that
if v = (e1, . . . , en) is the standard basis for Cn then v is a clqiue for S and thus we have
χ(S⊥) = 1. This shows that using the definition of the chromatic number from [65] we can
not hope to generalize the Lovász sandwich theorem.

7.2 Non-commutative Lovász inequality

We see by the previous example that one needs a different generalization of the chromatic
number in order to obtain a Lovász sandwich Theorem for non-commutative graphs. Here
we introduce the strong and minimal chromatic number of a submatricial operator system
and provide a generalization on Lovász theorem.

7.2.1 The strong chromatic number

Let J ⊆ Mn be a submatricial traceless self-adjoint operator space. A collection of or-
thonormal vectors v = (v1, . . . , vk) in Cn is called a strong independent set for J if for

100



any i, j,we have viv
∗
j is orthogonal to J . We say that J has a strong k-colouring if there

exist an orthonormal basis v = (v1, . . . , vn) of Cn that can be partitioned into k strong
independent sets for J . We will show in Corollary 7.2.8, χ̂(JG) agrees with the chromatic
number of G, for any graph G.

Definition 7.2.1. Let J ⊆Mn be a submatricial traceless self-adjoint operator space. The
strong chromatic number, χ̂(J ), is the least k ∈ N such that J has a strong k-colouring.
If J has no strong-k colouring then we say χ̂(J ) =∞.

As with χ we have χ̂ is monotonic with respect to inclusion.

Example 7.2.2. Suppose that S = C1 + span{Ei,j : i 6= j} ⊆ Mn and ζ is a nth root
of unity. Define vk = (1, ζk, ζ2k, . . . , ζ(n−1)k). Observe that the vi are orthogonal and that
vkv
∗
k belongs to S for all k. Thus S⊥ does have a strong-n colouring and we get χ̂(S⊥) ≤ n.

Example 7.2.3. Consider the submatricial traceless self-adjoint operator space J = C∆ ⊆
Mn where ∆ = diag(n − 1,−1,−1, . . . ,−1). Observe that J ⊆ S⊥. By monotonicity,
χ̂(J ) ≤ χ̂(S⊥) ≤ n. It is known that ϑ(J ) = n (see [62, Remark 4.3]). We show in
Theorem 7.2.9 that χ̂ is bounded below by ϑ Thus we have χ̂(J ) = χ̂(S⊥) = n.

In [75] Stahlke introduces a different chromatic number for submatricial traceless self-
adjoint operator spaces.

Definition 7.2.4. Let J and K be submatricial traceless self-adjoint operator spaces in
Mn and Mm respectively. We say that there is a graph homomorphism from J to K,
denoted J → K, if there is a completely positive and trace preserving map E : Mn →Mm

with associated Kraus operators E1, . . . , Er for which EiJE∗j ⊆ K for any i and j.

Stalhke’s chromatic number of a submatricial traceless self-adjoint operator space J ,
denoted χSt(J ), is the least integer c for which there is a graph homomorphism J → JKc
if one exists. We set χSt(J ) =∞ otherwise.

Observe that χSt is monotonic under graph homomorphism by construction.

Theorem 7.2.5. For any submatricial traceless self-adjoint operator space J ⊆ Mn we
have χ̂(J ) ≥ χSt(J ).

Proof. Suppose χ̂(J ) = r. There exists a orthonormal basis v1, . . . , vn that can be parti-
tioned into strong independent sets P1, . . . , Pr. By reordering the vectors, we may assume
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that whenever vi ∈ P` and vj ∈ P`+1, that i < j. By conjugating by the unitary U : vi 7→ ei,
we get the inclusion

⊕r
i=1M|Pi| ⊆ UJ ⊥U∗ = (UJU∗)⊥.

This then gives us (
⊕r

i=1M|Pi|)
⊥ ⊃ (UJU∗). We have that J → UJU∗ by conjugating

by the unitary U . Similarly we have UJU∗ → (⊕ri=1M|Pi|)
⊥ by inclusion. Since χSt is

monotonic with respect to homomorphisms we get χSt(J ) ≤ χSt((⊕ri=1M|Pi|)
⊥) = χ(G) = r

where G is the disjoint union of r complete graphs.

Corollary 7.2.6. If J ⊆ Mn is a submatricial traceless self-adjoint operator space for
which for some basis v = (v1, . . . , vn), the diagonals viv

∗
i are orthogonal to J , then χSt(J ) ≤

n.

In [66] it was shown that α(S) = α(Md(S)) for all submatricial operator systems S.
The proof they give will also work to show α(J ) = α(Md(J )) and χ̂(J ) = χ̂(Md(J )) for
submatricial traceless self-adjoint operator spaces J and d ∈ N.

Recall that for d, n ≥ 1, the partial trace map is

Md ⊗Mn →Mn : X ⊗ Y 7→ tr(X)Y .

As is the case with χ we can approximate χ̂ using the chromatic number for classical
graphs.

Theorem 7.2.7. Let J ⊆ Mn be a submatricial traceless self-adjoint operator space.
Suppose that BJ denotes the set of ordered orthonormal bases v = (v1, . . . , vn) of Cn for
which viv

∗
i ⊥ J for all i. For each v = (v1, . . . , vn) in BJ , define the graph Gv with vertices

[n] and edge relation given by i ∼ j if viv
∗
j is orthogonal to J . Then,

χ̂(J ) = inf
v∈B

χ(Gv) ,

whenever χ̂(J ) is finite.

Proof. The proof is exactly as in Theorem 7.1.17.

Corollary 7.2.8. For any finite graph G, χ̂(JG) = χ(G).

Proof. By Theorem 7.2.7, χ̂(JG) ≤ χ(Gv) where v = (e1, . . . , en). The complement of the
graph Gv is the graph G. This gets us the bound χ̂(JG) ≤ χ(G). As well, by Theorem 7.2.5,
χ(G) = χSt(JG) ≤ χ̂(JG).

102



Using the strong chromatic number we are easily able to generalize other graph inequal-
ities that for now remain unanswered for χSt. In [75] Stahlke asks if for all submatricial
traceless self-adjoint operator spaces J ⊆Mn, one can show χSt(J )ω(J c) ≥ n, where J c is
the proposed complement J c = (J +CI)⊥. The question is motivated by the simple graph
inequality χ(G)ω(G) ≥ n. Indeed for J ⊆ Mn a submatricial traceless self-adjoint opera-
tor space if we suppose χ̂(J ) = k then we can find an orthonormal basis v = (v1, . . . , vn)
and a partition of v into independent sets P1, . . . , Pk. By definition of ω(J ⊥) we know that
|Pi| ≤ ω(J ⊥) for i = 1, . . . , k. Thus we have n =

∑
i |Pi| ≤

∑
i ω(J ⊥) = χ̂(J )ω(J ⊥).

Using [75], one can establish that ϑ(J ) ≤ χSt(J ) for any submatricial traceless self-
adjoint operator space J ⊆Mn: if c = χSt(J ), then there is a graph homomorphism J →
JKc . In [75, Theorem 19], it is shown that ϑn is monotonic under graph homomorphisms.
We therefore get the inequality

ϑn(J ) ≤ ϑn(JKc) = ϑ(Kc) ≤ χ(Kc) = c .

We can now establish a Lovász sandwich Theorem for χ̂.

Theorem 7.2.9. Let S be a submatricial operator system. For any d ≥ 1, we have the
inequalities

α(S) ≤ ϑ(S) ≤ χ̂(S⊥) .

Proof. The inequality α(S) ≤ ϑ(S) is a result in [23, Lemma 7] so we will only prove the
other inequality. Let v = (v1, . . . , vn) be an orthonormal basis that can be partitioned
into k strong independent sets for S⊥. Then consider the graph Gv(S

⊥) as defined in
Theorem 7.1.17. We have χ̂(S⊥) = χ(Gv). There exists a unitary U ∈ Mn such that
we get the the inclusion S ⊃ USGvU

∗. Since ϑ is reverse monotonic under inclusion and
invariant under conjugation by a unitary, we establish the inequalities

ϑ(S) ≤ ϑ(SGv) = ϑ(Gv) ≤ χ(Gv) = χ̂(S⊥).

Similarly we get the follow inequality for any submatricial traceless self-adjoint operator
space J .

α(J ⊥) ≤ ϑ(J ) ≤ χ̂(J ).

It should be pointed out that using χSt(J ) ≤ χ̂(J ), as shown in Theorem 7.2.5 , and
the fact that ω(J ) = α(J ⊥), one can obtain the the above inequality as a corollary of
Corollary 20 in [75] . In this sense the above can be considered as a simplified proof of a
weaker result.
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7.2.2 The minimal chromatic number

In this section, we construct a concrete example of a homomorphism monotone chromatic
number. Using this concrete definition, we are able to establish analogues of two classic
identities for chromatic numbers under graph products: Sabidussi’s Theorem and Hedet-
niemi’s inequality.

Definition 7.2.10. Let J ⊆ Mn be a submatricial traceless self-adjoint operator space.
Define the minimal chromatic number of J , denoted χ0(J ), to be the least integer c
for which there exists a basis v1, . . . , vn of Cn and a partition P1, . . . , Pc of [n] for which
whenever i, j ∈ Ps, we have the relation viv

∗
j ⊥ J .

We note thatχ0 differs from χ̂ since we no longer require that we are working with
an orthonormal basis. This parameter agrees with the chromatic number for graphs. We
define the competely bounded version of this parameter by χ0,cb(J ) = infd χ0(Md(J )).

Proposition 7.2.11. Let G be a finite graph. We have the relation χ(G) = χ0(JG).

Proof. Since χ0(JG) ≤ χ(G), it suffices to show that χ(G) ≤ χ0(JG). For this proof, let
c be minimal and let v1, . . . , vn be a basis in Cn for which there is a partition P1, . . . , Pc
of [n] such that whenever i, j in Ps, viv

∗
j ⊥ JG. We then have a permutation σ of [n] for

which
〈
vi, eσ(i)

〉
is non-zero. By conjugating JG by the permutation matrix defined by σ,

assume that σ(i) = i for all i. Define the c-colouring f : V (G)→ [c] By f(i) = s for s such
that i ∈ Ps. To see that this is a colouring, suppose not. There are then i ∼ j for which
i, j ∈ Ps for some s. By definition then we have, Ei,j belongs to JG. We observe then,〈

viv
∗
j , Ei,j

〉
= tr(vjv

∗
i eie

∗
j) = 〈vi, ei〉 〈vj, ej〉 6= 0 .

This is contradicts the fact that viv
∗
j ∈ J ⊥.

We recall the following result, which arises as a consequence of the Stinespring dilation
Theorem (see [75, Definition 7]).

Lemma 7.2.12. Let J ⊆Mn and K ⊆Mm be submatricial traceless self-adjoint operator
spaces. There is a graph homomorphism J → K if and only if there is a d ≥ 1 and an
isometry E : Cn → Cm ⊗ Cd for which EJE∗ ⊆Md(K).

We use this equivalent characterization to show that χ0,cb is monotonic under graph
homomorphisms.
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Theorem 7.2.13. Let J ⊆Mn and K ⊆Mm be submatricial traceless self-adjoint operator
spaces. If there is a graph homomorphism ϕ : J → K with d associated Kraus operators,
then we have the inequality

χ0(J ) ≤ χ0(Md ⊗K) .

In particular, χ0,cb(J ) ≤ χ0,cb(K).

Proof. Suppose that P1, . . . , Pc is a partition of the set [d]× [m] and (wi : i ∈ [d]× [m]) is
a basis for which whenever i, j are in the same Ps, then wiw

∗
j ⊥Md⊗K. By lemma 7.2.12,

there is an isometry E for which the map ϕ : Mn → Md ⊗Mm : X 7→ EXE∗ sends J to
Md ⊗ K. Consider the set {E∗wi : i ∈ [d ×m]}. This set spans Cn. To see this, for any
v ∈ Cn, since Ev ∈ Cd ⊗ Cm, there are some λi for which Ev =

∑
i λiwi. Multiplying on

the left by E∗ tell us that v is spanned by the E∗wi. If i, j belong to the same Ps, then for
any X ∈ J ,

〈E∗wi(E∗wj)∗, X〉 =
〈
wiw

∗
j , EXE

∗〉 = 0 .

For each i ∈ [c], let Ci = {E∗wj : j ∈ Pi}. We will define a sequence of linear subspaces
V1, . . . , Vc for which

∑c
i=1 Vi = Cn inductively. For the base case, set V1 = spanC1. For

i > 1, let

Vi = span

{
v ∈ spanCi : v 6∈

∑
k<i

Vk

}
.

By construction, for distinct i and j, the vectors the Vi are linearly independent in relation
to the vectors of Vj and

∑
i Vi = Cn. For each s, let Qs = {vs,1, . . . , vs,ds} be a basis in Vs,

where ds = dim(Vs). Since each vector in Qs is a linear combination of the vectors in Cs,
we get that whenever, i, j ∈ [ds], given any X ∈ J ,〈

vs,iv
∗
s,j, X

〉
= 0 .

The vectors {vs,i : s ∈ [c], i ∈ [ds]} then form a basis for Cn and are partitioned by the sets
{Qs : s ∈ [c]}. This proves that χ0(J ) ≤ χ0(Md ⊗ K). If r ≥ 1 and E is an isometry for
which the map ϕ : Mn →Md ⊗Mm : X 7→ EXE∗ sends J to Md(K), then the map

1⊗ ϕ : Mr ⊗Mn →Mr+d ⊗Mm : X ⊗ Y 7→ X ⊗ ϕ(Y )
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is a map implemented by conjugation by the isometry 1 ⊗ E. By lemma 7.2.12, 1 ⊗ E
is a graph homomorphism Mr(J ) → Mr(K). By the above proof, we get the bound
χ0(Mr(J )) ≤ χ0(Mr+d(K)) ≤ χ0,cb(K) for every r ≥ 1. This establishes the inequality

χ0,cb(J ) ≤ χ0,cb(K) .

Corollary 7.2.14. Let J be a submatricial traceless self-adjoint operator space. We have
the inequality

χ0,cb(J ) ≤ χSt(J ) .

Proof. We first show that χ0,d(JG) = χ(JG) for any d ≥ 1 and any graph G. Let G[d] denote
the graph on vertices V (G) × [d] for which (v, i) ∼ (w, j) if v ∼ w in G. The projection
G[d] → G : (v, i) 7→ v and the inclusion G → G[d] : v 7→ (v, 1) are graph homomorphisms.
We therefore get by monotonicity of χ that χ(G) = χ(G[d]). On the other hand, we know
that χ0(JG) = χ(G) = χ(G[d]) = χ0(Md(JG)) = χ0,d(JG). In particular, for any c ≥ 1,
χ0,cb(JKc) = χ(Kc) = c.

Remark 7.2.15. We were unable to determine if χ0,cb = χ0. Nevertheless, by working
with χ0,cb, we can deduce our inequality since we know it is a homomorphism monotone
parameter.

7.3 Sabidussi’s Theorem and Hedetniemi’s conjecture

As an application of our new graph parameters, in this section, we generalize two results
for chromatic numbers on graph products. For convenience we will let χ(X) = χ̂(X⊥) for
X a submatricial traceless self-adjoint operator space or a submatricial operator system.

Definition 7.3.1. Let G and H be finite graphs.

1. Define the categorical product of G and H to be the graph G × H with vertex set
V (G)× V (H) and edge relation given by (v, a) ∼ (w, b) if v ∼G w and a ∼H b.

2. Define the Cartesian product of G and H to be the graph G�H with vertex set
V (G)× V (H) and edge relation given by (v, a) ∼ (w, b) if one of the following holds

(a) v ∼G w and a = b or

(b) v = w and a ∼H b.
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7.3.1 Sabidussi’s Theorem

We generalize the Theorem of Sabidussi [71].

Theorem 7.3.2 (Sabidussi). Let G and H be finite graphs. We have the identity

χ(G�H) = max{χ(G), χ(H)} .

The first step in generalizing this Theorem is to generalize the cartesian product.

Definition 7.3.3. Let J ⊆ Mn and let K ⊆ Mm be submatricial traceless self-adjoint
operator spaces. Let v ⊆ Cn and w ⊆ Cm be bases. Define the cartesian product of J and
K relative to (v, w) as the submatricial traceless self-adjoint operator space

(J�K)v,w = J ⊗Dw +Dv ⊗K

where for a basis x = (x1, . . . , xn), Dx = span{xix∗i : i ∈ [n]}.

In the case when e = (e1, . . . , en) and f = (e1, . . . , em), we define the cartesian product
J�K to be (J�K)e,f .

Lemma 7.3.4. Let G and H be finite graphs with [n] = V (G) and [m] = V (H). We have
the identity JG�JH = JG�H .

Proof. Observe that JG ⊗Dm = span{Ev,w ⊗ Ei,i : v ∼G w, i ∈ [m]} and that Dn ⊗ JH =
span{Ei,i ⊗ Ev,w : i ∈ [n], v ∼H w}. Combining these, we get that Ei,j ⊗ Ek,l ∈ JG�JH if
and only if i ∼G j and k = l or i = j and k ∼H l. This is exactly what it means to be a
member of JG�H .

Lemma 7.3.5. Suppose that J ⊆Mn and K ⊆Mm are submatricial traceless self-adjoint
operator spaces. Suppose v ⊆ Cn and w ⊆ Cm are bases. There exist graph homomorphisms
J → J ⊗ Dw and K → Dv ⊗ K. In particular, there exist graph homomorphisms J →
(J�K)v,w and K → (J�K)v,w.

Proof. Define ϕ : Mn → Mn ⊗Mm : X 7→ 1
‖w1‖2X ⊗ w1w

∗
1. This map has Kraus operator

E : Cn → Cn⊗Cm : v 7→ v⊗w1/‖w1‖. Since this Kraus operator is an isometry, we know
that ϕ is cptp. As well, ϕ(J ) = J ⊗ w1w

∗
1 ⊆ J ⊗ Dw. Similarly, K → Dv ⊗ K. Since

J ⊗ Dw ⊆ (J�K)v,w and Dv ⊗ K ⊆ (J�K)v,w, we conclude that J → (J�K)v,w and
K → (J�K)v,w.
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Theorem 7.3.6. Let J ⊆Mn and K ⊆Mm be submatricial traceless self-adjoint operator
spaces. Let v ⊆ Cn and w ⊆ Cm be bases. We have the inequality

max{χ0,cb(J ), χ0,cb(K)} ≤ χ0,cb((J�K)v,w) .

Proof. By lemma 7.3.5 and by Theorem 7.2.13, we get the inequalities

χ0,cb(J ) ≤ χ0,cb((J�K)v,w) and χ0,cb(K) ≤ χ0,cb((J�K)v,w) .

Our Theorem follows.

The reverse inequality seems to require the existence of orthogonal bases which colour
our submatricial traceless self-adjoint operator spaces. The proof mimicks the proof of
Sabidussi’s Theorem in [31].

Theorem 7.3.7. Let J ⊆Mn and K ⊆Mm be submatricial traceless self-adjoint operator
spaces. Let c = max{χ0(J ), χ0(K)}. Suppose that orthonormal bases v ⊆ Cn and w ⊆ Cm

exist for which we have maps f : [n]→ [c] and g : [m]→ [c] for which whenever f(i) = f(j),
vf(i)v

∗
f(j) ⊥ J and whenever g(l) = g(k), we have wg(l)w

∗
g(k) ⊥ K. We have the inequality

χ0((J�K)v,w) ≤ max{χ0(J ), χ0(K)} .

Proof. Let c = max{χ0(J ), χ0(K)}. Suppose that v, w,f , and g are as above. Define
h : [n] × [m] → [c] : (i, j) 7→ f(i) + g(j) mod c. I claim that whenever h(i, j) = h(k, l),
that (vi ⊗ wj)(vk ⊗ wl)∗ is orthogonal to (J�K)v,w. The identity h(i, j) = h(k, l) tell us
f(i)− f(k) ≡ g(j)− g(l) mod c. If f(i)− f(k) ≡ 0 mod c then we have nothing to check
since this means that f(i) = f(k) and g(j) = g(l). Otherwise, viv

∗
k ⊥ vsv

∗
s for all s and

wjw
∗
l ⊥ wsw

∗
s for all s. This guarantees that viv

∗
k ⊗ wjw∗l is orthogonal to (J�K)v,w.

Remark 7.3.8. The same proof as above will show us that for some orthonormal bases v
and w,

χ((J�K)v,w) ≤ max{χ(J ), χ(K)} and

χ((J�K)⊥v,w) ≤ max{χ(J ⊥), χ(K⊥)} .

We are now ready to state a generalized version of Sabidussi’s theorem. In the following
statement please recall that χ(X) = χ̂(X⊥).
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Corollary 7.3.9 (Sabidussi’s Theorem for submatricial traceless self-adjoint operator
spaces). Suppose that J ⊆ Mn and K ⊆ Mm are submatricial traceless self-adjoint op-
erator spaces. There exist orthonormal bases v ⊆ Cn and w ⊆ Cm for which we have the
inequalities

max{χ0,cb(J ), χ0,cb(K)} ≤ χ0,cb((J�K)v,w) ≤ χ((J�K)⊥v,w) ≤ max{χ(J ⊥), χ(K⊥)} .

Proof. By Remark 7.3.8, we get the inequality

χ((J�K)⊥v,w) ≤ max{χ(J ⊥), χ(K⊥)} .

By Theorem 7.2.5 and Corollary 7.2.14, we get the inequality

χ0,cb((J�K)v,w) ≤ χst((J�K)v,w) ≤ χ((J�K)⊥v,w) .

Finally, by Theorem 7.3.6 we get the final inequality.

7.3.2 Hedetniemi’s inequality

The inequality we wish to generalize in this section is a Theorem of Hedetniemi.

Theorem 7.3.10 (Hedetniemi’s inequality). Suppose that G and H are finite graphs. We
have the inequality

χ(G×H) ≤ min{χ(G), χ(H)}

This Theorem follows as a special case of the analogous result for χ0,cb, first we generalize
the categorical product.

Proposition 7.3.11. Let G and H be finite graphs. We have the identity

JG ⊗ JH = JG×H .

Proof. Observe that

JG ⊗ JH = span{Ei,j ⊗ Ek,l : i ∼G j, k ∼H l}
= JG×H .
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We now get a generalization of Hedetniemi’s inequality to χ0,cb.

Proposition 7.3.12. Suppose that J ⊆ Mn and K ⊆ Mm are submatricial traceless self-
adjoint operator spaces. We have the inequality

χ0,cb(J ⊗K) ≤ min{χ0,cb(J ), χ0,cb(K)} .

Proof. The partial trace maps produce graph homomorphisms J⊗K → K and J⊗K → J .
By Theorem 7.2.13, we get the inequality.

Remark 7.3.13. The long standing conjecture of Hedetneimi asked whether we get the
identity

χ(G×H) = min{χ(G), χ(H)}

for any finite graphs G and H. This was recently resolved in the negative by the remarkable
work of Yaroslov Shitov [73].
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