
Quantum Turing Machines and
Quantum Prover-Verifier Interactions

by

Abel Molina Prieto

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science (Quantum Information)

Waterloo, Ontario, Canada, 2020

c© Abel Molina Prieto 2020

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Simon Perdrix
Chargé de Recherche,
Institut des Sciences de l’Information et de Leurs Interactions,
Centre National de la Recherche Scientifique

Supervisor: John Watrous
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Member: Richard Cleve
Professor and IQC Chair, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: David Gosset
Associate Professor, Department of Combinatorics & Optimization,
University of Waterloo

Other Member(s): Ashwin Nayak
Professor, Department of Combinatorics & Optimization,
Cross-Appointed Faculty, Cheriton School of Computer Science,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

We present results on quantum Turing machines and on prover-verifier interactions.

In our work on quantum Turing machines, we continue the line of research opened by
Yao (1993), who proved that quantum Turing machines and quantum circuits are poly-
nomially equivalent computational models: t ≥ n steps of a quantum Turing machine
running on an input of length n can be simulated by a uniformly generated family of quan-
tum circuits with size quadratic in t, and a polynomial-time uniformly generated family of
quantum circuits can be simulated by a quantum Turing machine running in polynomial
time. We then first revisit the simulation of quantum Turing machines with uniformly gen-
erated quantum circuits, and present a variation on the simulation method employed by
Yao together with an analysis of it. This analysis reveals that the simulation of quantum
Turing machines can be performed by quantum circuits having depth linear in t, rather
than quadratic depth, and can be extended easily to many variants of quantum Turing ma-
chines, such as ones having multi-dimensional tapes. Our analysis is based on an extension
of a method of Arrighi, Nesme, and Werner (2011) that allows for the localization of causal
unitary evolutions, involving abstract lemmas that might be of independent interest.

We also consider the more complex extension of our variant to the circuit simulation of
multi-tape quantum Turing machines, where our variant provides a circuit with O(tk) size
and O(tk−1) depth for the simulation of t steps of a machine with k tapes. This can be
contrasted with the O(tk) depth corresponding to the generalization of Yao’s simulation by
Nishimura and Ozawa (2002). Our usage of abstract techniques regarding the localization
of causal unitary evolutions allows again for a simplification of the algebraic manipulation
aspects of the construction. We also discuss the further extension to the case of oracle
quantum Turing machines.

In our work on prover-verifier interactions, we first consider a protocol under the name of
perfect/conclusive quantum state exclusion. This means to be able to discard with certainty
at least one out of n possible quantum state preparations by performing a measurement
of the resulting state. When all the preparations correspond to pure states and there are
no more of them than their common dimension, it is an open problem whether POVMs
give any additional power for this task with respect to projective measurements. This is
the case even for the simple case of three states in three dimensions, which is discussed
by Caves, Fuchs and Schack (2002) as unsuccessfully tackled. In our work, we give an
analytical proof that in this case POVMs do indeed not give any additional power with
respect to projective measurements. We also discuss possible generalizations of our work,
including an application of Quadratically Constrained Quadratic Programming that might
be of special interest.

iv

We additionally consider the problem of quantum hedging, a particular kind of quantum
correlation that arises between parallel instances of prover-verifier interactions. M. and
Watrous (2012) studied a protocol that exhibited a perfect form of quantum hedging, where
the risk for the prover of losing a first game can completely offset the corresponding risk for
a second game. We take a step towards a better understanding of this hedging phenomenon
by giving a characterization of the prover’s optimal behavior for a natural generalization
of this protocol. Furthermore, we discuss how the usage of the logarithmic utility principle
to analyze prover-verifier interactions could justify further study of quantum hedging.

v

Acknowledgements

The research presented in this thesis was conducted under the supervision and with
the collaboration of John Watrous. Thanks to him are due for numerous insightful con-
versations, without which this research would not have been possible. I thank as well the
home members of the committee Richard Cleve, David Gosset and Ashwin Nayak for their
time and feedback during my completion of the PhD program. Thanks for his time and
willingness to participate in the defense procedure are due as well to the external examiner
Simon Perdrix.

This research did also benefit from feedback and conversations with Juani Bermejo
Vega, Jonathan Buss, Andrea Coladangelo, Alessandro Cosentino, Ronald de Wolf, Philippe
Faist, Alex B. Grilo, Nicolás Guaŕın-Zapata, Stacey Jeffery, Nathaniel Johnston, Artem
Kaznatcheev, George Knee, Robin Kothari, Debbie Leung, Sanketh Menda, Alexandre
Nolin, Christopher Perry, Jitendra Prakash, Daniel Puzzuoli, Burak Şahinoğlu, Luke Scha-
effer, Jamie Sikora and Jon Tyson, as well as coauthors Srinivasan Arunachalam and
Vincent Russo, and anonymous referees.

The work presented here was partially conducted during visits hosted by the Center
for Quantum Technologies in Singapore and the Institut de Recherche en Informatique
Fondamentale in Paris. Thanks are due to hosts Rahul Jain and Frédéric Magniez, as well
as to Ashwin Nayak and the rest of the team handling the regular collaboration between
the Institute for Quantum Computing and these host institutions.

This research was funded through the Natural Sciences and Engineering Research Coun-
cil of Canada, the Mike and Ophelia Lazaridis Graduate Fellowship program, the David
R. Cheriton Graduate Scholarship program and the University of Waterloo President’s
Graduate Scholarship program.

vi

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Quantum Turing machines . 1

1.2 Quantum prover-verifier interactions . 3

1.3 Summary of results . 4

1.3.1 Quantum Turing machines . 4

1.3.2 Prover-verifier interactions . 5

1.4 Notation . 5

I Quantum Turing machines 7

2 Causality and locality 8

2.1 Setting . 9

2.2 Results . 10

3 Single-tape quantum Turing machines 16

3.1 Deterministic Turing Machines . 16

3.1.1 Definition . 17

3.1.2 The classic Boolean circuit simulation of deterministic Turing machines 17

3.2 Quantum Turing machines . 22

vii

3.2.1 Definition . 22

3.2.2 Looped-tape quantum Turing machines 25

3.2.3 Other variants of quantum Turing machines 27

3.3 A variant of the simulation of quantum Turing machines by a quantum circuit 27

3.3.1 Registers in the simulation . 28

3.3.2 Operators in the simulation . 31

3.3.3 Locality and parallelism . 32

3.3.4 Behaviour of the local gate G . 35

3.3.5 Recapitulation of the simulation procedure 37

3.3.6 Complexity analysis . 37

3.3.7 Differences with Yao’s original simulation 41

3.3.8 Sensitivity to model choice . 43

3.4 Equivalence between unitarity and isometricity for QTM evolution operators 46

3.4.1 Setting . 46

3.4.2 Result and proof . 47

3.4.3 Generalizations . 48

4 Multi-tape quantum Turing machines 49

4.1 Setting . 49

4.2 Extension to standard multi-tape quantum Turing machines of our variant
for the simulation of quantum Turing machines 51

4.2.1 Setup for extension . 51

4.2.2 Obstacle to naive proof for the extension 55

4.2.3 Making the extension work . 56

4.2.4 Parallelism and complexity . 58

4.3 Oracle quantum Turing machines . 62

4.3.1 Definition . 62

4.3.2 A first circuit simulation . 64

viii

4.3.3 More complex circuit simulations with more standard oracle gate
models . 67

4.3.4 Other models and further work . 76

II Quantum prover-verifier interactions 78

5 Quantum state exclusion 79

5.1 Setting . 79

5.2 Main derivation . 82

5.2.1 Restrictions that can be imposed without loss of generality on POVMs
that achieve perfect exclusion . 82

5.2.2 Verification that any states perfectly excluded by our parametrized
optimal POVM satisfy the Caves-Fuchs-Schack inequality 84

5.3 Perspectives for generalization . 87

5.3.1 Usage of Quadratically Constrained Quadratic Programs (QCQPs) 87

5.3.2 Direct generalizations of our proof 90

5.3.3 Other considerations . 91

6 Quantum hedging 94

6.1 Setting . 94

6.1.1 Background and motivation . 94

6.1.2 Semidefinite programming formulation 98

6.2 Main result . 99

6.2.1 Formal statement of main result . 99

6.2.2 Proof of Theorem 3 . 101

6.3 A motivation from mathematical finance for further study of quantum hedging110

6.3.1 The logarithmic utility principle . 111

6.3.2 Payoff regimes that encourage quantum hedging when two parallel
instances of a protocol are conducted in parallel 112

References 120

ix

List of Figures

3.1 The information corresponding to cell i in the Turing machine at any given
time step can be written as a function of the information corresponding to
the previous time step for cells {i−1, i, i+1}. We represent with a box f the
function that computes the content of (Si,Ti) given the previous contents
of (Si−1,Ti−1), (Si,Ti), and (Si+1,Ti+1). 19

3.2 In the simulation of one step in a Turing machine computation, each register
pair is updated in parallel. This update is described by the same function
f for all register pairs. 20

3.3 3 steps in the simulation of a classical Turing machine, illustrating the con-
nectivity pattern between the layers in the simulation. 21

3.4 Each step of a quantum Turing machine computation is simulated by an
identical circuit layer, with a general pattern of unitary operations as il-
lustrated here. Observe however that if N is not divisible by 3, one must
have one or two additional G operators on separate levels, so that G is
applied once to each triple of adjacent register pairs (Si−1,Ti−1), (Si,Ti),
(Si+1,Ti+1). Alternatively, one can increase N to the next multiple of 3
without affecting the performance or correctness of the simulation. 29

6.1 Illustration of the quantities involved in Theorem 3, for the case where n = 2. 100

6.2 Below the curve, we have the region of the (p, d/x) plane where perfect
hedging in our 1-out-of-2 scenario is worth it under the logarithmic utility
principle. 114

x

Chapter 1

Introduction

Quantum information processing has received an increasing amount of attention over the
last decade, with the development of a large ecosystem of research centers and commercial
ventures, and meaningful breakthroughs both regarding theoretical and experimental con-
cerns (see e.g. [57, 70, 96] as recent examples of the former, and [24, 52] as recent examples
of the latter).

In the research presented in this thesis, we aim to contribute to progress in quantum
information processing through theoretical study. This study centers on two concepts:
quantum Turing machines and quantum prover-verifier interactions. We present in Part I
the aspects regarding quantum Turing machines, and in Part II the aspects regarding
quantum prover-verifier interactions. Part I partially overlaps with the material published
in [78], while Part II partially overlaps with the material published in [10] and [76]. An
introduction to the results presented in each of the parts follows.

1.1 Quantum Turing machines

Turing machines [106] are an elegant abstraction that is key to the fundamentals of com-
puting theory. Therefore, quantum variants of the Turing machine model were sought
after and studied in the early days of quantum information processing [35, 22, 23]. This
led to a model where the transition function has a similar structure to the transition func-
tion for classical Turing machines, but now allows for taking transitions in superposition
with each other. However, there are non-trivial constraints on the amplitudes for those
superpositions, which enforce that the global evolution of the quantum Turing machine be
unitary.

1

The resulting model proved to be cumbersome to handle mathematically, which led to
the adoption of the quantum circuit model as the standard for most theoretical work on
quantum information processing. This switch was possible due to seminal research from
Yao [119], who established that polynomial time quantum Turing machines are equivalent
to polynomial time uniformly generated acyclic quantum circuits. In our work, we study
quantum Turing machines with the main focus of further improving our understanding of
the relationship between quantum circuits and quantum Turing machines.

We present then in Chapter 3 a new variant of the simulation method employed by Yao,
together with an analysis of it. This analysis reveals that the simulation of quantum Turing
machines can be performed by quantum circuits having depth linear in t (the number of
steps to simulate), rather than quadratic depth, and can be extended to variants of quantum
Turing machines, such as ones having multi-dimensional tapes. Another positive attribute
of our construction is that it is completely explicit – there is a closed formula that will
indicate the output for any input to the gates in our circuit. Yao’s original construction
only specifies such a closed formula for a subset of possible inputs, and then argues for the
ability to solve a linear system in order to obtain valid outputs for the remaining cases.
We also fill a gap in the literature in terms of detail, since Yao’s paper appeared only as
an extended abstract in a conference proceedings, with some details of the proofs left to
the reader.

We also introduce in Chapter 3 a model of quantum Turing machines with a finite
looped tape, which might be of independent interest for further work on Turing machine
computations with a bounded time length. Through the usage of this tool, we present
a simpler and more abstract proof of a result from Bernstein and Vazirani [23]. This
result establishes that a candidate transition function for a quantum Turing machine will
induce a global unitary evolution on the quantum Turing machine if and only if it induces
a global isometric evolution, despite the corresponding configuration space being infinite-
dimensional.

In Chapter 4, we extend the new variant for the circuit simulation of quantum Turing
machines to the case of multi-tape quantum Turing machines with k tapes. If t is the
number of steps to be simulated, the resulting circuit has size O(tk+1) with depth O(tk),
improving on the O(tk+1) depth from a previous construction by Nishimura and Ozawa [81].
We also discuss extensions of this circuit simulation of multi-tape quantum Turing machines
to the oracle quantum Turing machine model.

Our analysis in both Chapter 3 and Chapter 4 builds upon the generalization of a
result from Arrighi, Nesme and Werner [8] that starts with global causality properties of
a unitary evolution operator acting on a composite system, and derives from there non-

2

trivial locality properties for a family of operators that is related to the unitary evolution
we start with. Our generalization, presented in Chapter 2, weakens the conditions needed
to derive such localizations, and might potentially be of use in other situations beyond the
study of quantum Turing machines.

1.2 Quantum prover-verifier interactions

The computational model of prover-verifier interactions considers two agents Alice and
Bob who exchange a series of messages, with Alice making a final decision out of a finite
set of options.

In Chapter 5, we consider a prover-verifier protocol that goes under the name of quan-
tum state exclusion. In this protocol, Alice first gives Bob a quantum system. The state
of this system is chosen at random between n options {ρ1, . . . , ρn}, with corresponding
non-zero probabilities {p1, . . . , pn}. It is unknown to Bob which of the ρi was chosen, but
he does know the {ρ1, . . . , ρn} and {p1, . . . , pn} values characterizing the corresponding
distribution. Bob returns an index between 1 and n to Alice, and Alice determines Bob to
have won if he returned an index j such that the state was not prepared in the state ρj.
Otherwise, Bob loses. When Bob can win with probability 1, we will say that we have per-
fect state exclusion. This state exclusion protocol is connected to quantum communication
complexity [90, 67, 49] and to foundational questions in quantum information [30, 93].

In our work in Chapter 5, we establish that when n = 3 and the states {ρ1, ρ2, ρ3} are
pure states in 3 dimensions, the set of state choices that can be excluded perfectly will not
change if Bob’s actions are restricted to correspond to a projective measurement. This an-
swers a question left open by Caves, Fuchs and Schack [30]. We have additionally considered
different approaches through which one might be able to tackle higher-dimensional ques-
tions regarding quantum state exclusion, some of which are known [49] to have meaningful
implications in quantum communication complexity. Of special interest are our findings
on the usage of Quadratically Constrained Quadratic Programming (QCQP) to model the
n-dimensional case of quantum state exclusion restricted to projections and pure states.
QCQP is a type of mathematical optimization formalism that has seen a large number of
applications in recent years, but only limited usage so far within the context of quantum
information processing. To our knowledge, this is the first time that the state exclusion of
quantum states through projections is expressed through a problem in a standard form of
a mathematical optimization framework.

In Chapter 6, we present results related to quantum hedging, a phenomena where in
order to win at least k out of n parallel instances of a quantum prover-verifier interaction

3

with a binary win/lose outcome, it is advantageous for Bob to correlate behavior between
the instances. This phenomena was discovered during previous Master’s work [77], and
has been shown to be relevant to the study of quantum coin-flipping protocols [43].

In our work in Chapter 6, we provide tight bounds on the optimal chance of hedging
whenever k = 1 for a natural family of protocols that generalizes an example previously
studied in [77]. This completes our understanding of 1-out-of-n hedging for this family of
protocols when put together with results previous to this PhD work. We also provide in
this chapter a proof-of-concept analysis of the rationality of engaging in perfect hedging
through the lens of the logarithmic utility principle, and discuss how this line of thinking
provides a motivation for further analysis of quantum hedging.

1.3 Summary of results

For ease of navigation, we present here a summary of the key results in this thesis, together
with pointers to the location where they might be found:

1.3.1 Quantum Turing machines

• Extension to a wider class of systems of the work from [8] regarding locality properties
and causal unitary evolutions. Chapter 2.

• Introduction of a finite looped tape QTM model. Section 3.2.

• Description, proof and analysis of a new variant for the simulation of quantum Tur-
ing machines by quantum circuits, including a description of the extension of our
simulation variant to multi-dimensional tape settings and other similar variants of
quantum Turing machines. Section 3.3.

• A simpler proof of a result from [22] regarding the equivalence of isometricity and
unitarity for quantum Turing machine evolutions. Section 3.4.

• A generalization of the variant for the simulation of quantum Turing machines to the
multi-tape setting. Section 4.2.

• A discussion of tweaks for the parallelization of previous simulation methods, and
the compatibility of our simulation variant with oblivious techniques. Sections 3.3.6
and 4.2.4.

4

• Further generalizations of this variant to multi-tape settings that involve the usage
of oracles. Section 4.3.

1.3.2 Prover-verifier interactions

• A proof that POVMs are equivalent to projections for the perfect state exclusion of
3 states in 3 dimensions, solving a problem left open in [30]. Section 5.2.

• A formalization of state exclusion through projections through the QCQP mathe-
matical optimization framework. Section 5.3.1.

• A tight bound on the possibility of achieving quantum hedging for a 2-parameter
family of 2-message prover-verifier protocols. Section 6.2.

• A proof-of-concept motivation for further study of quantum hedging through the
logarithmic utility principle. Section 6.3.

1.4 Notation

We use standard quantum information processing notation, as presented in standard texts
[59, 79, 114, 118] on the subject. For convenience, we provide now a brief overview of some
of the key elements of our notation.

The main mathematical concept of interest in our studies will be finite-dimensional
complex Hilbert spaces, denoted by curly capital letters H,K,X ,Y , etc. L(H1,H2) refers
to the set of all linear maps mapping elements of the space H1 to elements of the space
H2, while L (H) corresponds to the set of all linear maps mapping elements from the space
H to elements of that same space.

Im(A) refers to the image of a map A ∈ L (H) (i.e. the set of all its possible outputs),
while Supp(A) refers to its support (i.e. the set of all inputs that are not mapped to 0).
U(H), Proj(H), Herm(H) and Pos(H) refer to those subsets of L (H) corresponding to
the maps that are unitary, orthogonal projections, Hermitian, and positive-semidefinite,
respectively. For two maps A,B ∈ L (H), [A,B] refers to the commutator AB −BA.

H1 ⊗ H2 is the tensor product of the spaces H1 and H2. H⊗n is the tensor product
of n copies of the space H. For example, H⊗3 corresponds to H ⊗H ⊗H. Similarly, for
u ∈ H, u⊗n is the element of H⊗n corresponding to the tensor product of n copies of u.

5

Given a spaceH1⊗H2, the partial trace TrH2 maps elements of L (H1 ⊗H2) to elements
of L (H1). For A ∈ L (H1) and B ∈ L (H2), TrH2(A ⊗ B) = Tr(B)A , which defines by
linearity the action of TrH2 on all members of L (H1 ⊗H2). TrH1 has a symmetric definition,
mapping L (H1 ⊗H2) to L (H2). For A ∈ L (H1 ⊗H2), A[H1] is defined as TrH2(A).

6

Part I

Quantum Turing machines

7

Chapter 2

Causality and locality

In this chapter, we connect causality and locality properties for linear operators, obtaining
results that will be useful for the study of quantum Turing machines in Chapter 3 and
Chapter 4.

When researchers express in formal terms the evolution of composite systems, some-
times they employ a top-down view with a global evolution that in some ways respects the
local structure. In other occasions, they employ a bottom-up view where local evolutions
within the composite system are considered, and together, those local evolutions define
the global evolution. It is valuable then to establish connections between the objects and
results corresponding to the bottom-up and top-down approaches.

Our main theorem here (Theorem 1) goes in that direction, and establishes that if one
considers a global unitary evolution with certain causality properties, then some non-trivial
locality properties hold for a family of operators derived from the global unitary evolution.
This theorem generalizes a result in [8] under assumptions that are a particular case of
ours, as will be discussed in more detail later. We will use this theorem in Chapter 3
and Chapter 4 in order to obtain local properties of operators involved in the simulation
of quantum Turing machines. These local properties will be derived from a definition of
quantum Turing machine that focuses on the global properties of its evolution operator.
While it is key to the simulations we consider later, this section does not make usage of
the concept of quantum Turing machines, and might also potentially be useful in other
contexts.

We present in Section 2.1 the basic setting and definitions needed to present Theorem 1,
and then begin Section 2.2 with a statement of the theorem. The remainder of Section 2.2

8

is devoted to a proof of the theorem, and readers that are not interested in the technical
details of this proof may safely skip to the next chapter.

2.1 Setting

Our setting will correspond to the split of a composite system into three parts. These three
parts will be denoted as registers X, Y, and Z, and they will have state spaces corresponding
to the Hilbert spaces X , Y and Z, which we take to be finite-dimensional.1 In this setting,
we will say that a unitary operator on the whole system is Y → X causal if the state of
register X after the evolution depends only on the states of registers X and Y before the
evolution, but not that of register Z. Furthermore, we will allow for the option where such
a causality relation holds only relative to a subspace of the complete state space. More
formally, we have the following definition:

Definition 1. Let X, Y, and Z be registers having associated Hilbert spaces X , Y, and Z,
respectively, and let U ∈ U(X ⊗ Y ⊗ Z) be a unitary operator.

1. The operator U is Y → X causal if, for every pair of states ρ, σ ∈ D(X ⊗ Y ⊗ Z)
satisfying TrZ(ρ) = TrZ(σ), one has

TrY⊗Z(UρU∗) = TrY⊗Z(UσU∗). (2.1)

2. The operator U is Y → X causal on a subspace V ⊆ X ⊗ Y ⊗ Z if, for every pair of
states ρ, σ ∈ D(X ⊗Y ⊗Z) satisfying Im(ρ) ⊆ V, Im(σ) ⊆ V, and TrZ(ρ) = TrZ(σ),
one has

TrY⊗Z(UρU∗) = TrY⊗Z(UσU∗). (2.2)

In our later application of the concepts here to the study of quantum Turing machines,
we will apply this definition repeatedly, with different choices each time about which parts
of the system fall under X, Y, and Z.

One might ask why are we using a density operator formalism here when our application
domain is that of quantum Turing machines, which are typically described in a framework of
pure states and unitary operators. The answer to this question is that while the global state
of a composite quantum system may be pure, the corresponding states of local subsystems
will generally be mixed.

1As will be discussed later, Theorem 1 does still apply if one takes Z to be an infinite dimensional
separable Hilbert space.

9

2.2 Results

In our main result here, we examine the situation when we take an operator X that is
local to the space X , and then conjugate it by a unitary U that is Y → X causal on a
subspace with a certain tensor product structure. We find that what one obtains through
this process is an operator that, as far as the causality subspace is concerned, is local to the
spaces X and Y . Under a couple of extra assumptions, the corresponding local operator
will in fact be unitary. The formal statement of our main result here is then as follows:

Theorem 1. Let X , Y, and Z be complex Euclidean spaces, consider orthogonal sets of
nonzero projection operators given by

{∆1, . . . ,∆n} ⊆ Proj(X ⊗ Y), {Λ1, . . . ,Λn} ⊆ Proj(Z), (2.3)

and let

Π =
n∑
k=1

∆k ⊗ Λk. (2.4)

Let U ∈ U(X ⊗ Y ⊗ Z) be a unitary operator that is Y → X causal on Im(Π). For every
operator X ∈ L(X), there exists an operator W ∈ L(X ⊗ Y) such that

ΠU∗(X ⊗ IY⊗Z)UΠ = Π(W ⊗ IZ)Π. (2.5)

If, in addition, X is unitary and [U∗(X ⊗ IY⊗Z)U,Π] = 0, then W may also be taken to
be unitary.

Note that given a closed-form description of Π, U and X, we can use Equation (2.5)
in order to obtain a closed-form description of W (or more precisely, of W ’s action on
elements of Im(Π)). This type of analysis will be performed later in Chapter 3, in the
context of our application of Theorem 1 to the simulation of quantum Turing machines.

Arrighi, Nesme and Werner obtain in [8] this result in the particular case where the
projection Π is equal to IX⊗Y⊗Z . Note that even in that setting, it is possible to find
limits to the localization of non-unitary isometries with a causal structure, as discussed in
Section 2 of [19].

As a warmup for the proof of Theorem 1, we will first discuss a proof for this case where
Π = IX⊗Y⊗Z .

We begin by using the assumption that U is Y → X causal. In particular, let us consider
an arbitrary unitary Z ∈ U(Z), as well as an arbitrary pure state s ∈ X ⊗ Y ⊗Z. Then,
we have that since

TrZ(ss∗) = TrZ ((IX⊗Y ⊗ Z)ss∗(IX⊗Y ⊗ Z∗)) , (2.6)

10

X→ Y causality gives us that

TrY⊗Z(Uss∗U∗) = TrY⊗Z (U(IX⊗Y ⊗ Z)ss∗(IX⊗Y ⊗ Z∗)U∗) , (2.7)

which implies since X is local to X that

〈X ⊗ IY⊗Z , Uss∗U∗〉 = 〈X ⊗ IY⊗Z , U(IX⊗Y ⊗ Z)ss∗(IX⊗Y ⊗ Z∗)U∗〉 . (2.8)

By rearranging terms, this establishes that

〈U∗(X ⊗ IY⊗Z)U, ss∗〉 = 〈U∗(X ⊗ IY⊗Z)U, (IX⊗Y ⊗ Z)ss∗(IX⊗Y ⊗ Z∗)〉 . (2.9)

We now write as
A = U∗(X ⊗ IY⊗Z)U

the operator whose locality we want to establish. This allows us to write Equation (2.9)
as

〈A, ss∗〉 = 〈A, (IX⊗Y ⊗ Z)ss∗(IX⊗Y ⊗ Z∗)〉 , (2.10)

or what is the same after moving (IX⊗Y ⊗Z) and (IX⊗Y ⊗Z∗) to the left-hand side of the
inner product,

〈A− (IX⊗Y ⊗ Z∗)A(IX⊗Y ⊗ Z), ss∗〉 = 0. (2.11)

Since Equation (2.11) does hold for all choices of pure state s, it must follow that

A− (IX⊗Y ⊗ Z∗)A(IX⊗Y ⊗ Z) = 0. (2.12)

Through basic algebraic manipulation, this is equivalent to the statement that A commutes
with (IX⊗Y ⊗ Z), that is to say,

[A, IX⊗Y ⊗ Z] = 0. (2.13)

Since this holds for any unitary Z, and these unitaries span all of L (Z), it follows from
standard linear algebra results that

A = W ⊗ IZ , (2.14)

for W ∈ L (X ⊗ Y). In particular, these results correspond to a simple case of Tomita’s
Commutant Theorem, and determine that if an operator A1 commutes with the operator
A2 ⊗ I for all choices of A2, it must be of the form I ⊗ A3 for some choice for A3.

11

It is finally clear that if A is unitary, W must be unitary as well in order for Equation
(2.14) to hold.

The main issue when coming up with a proof for the more complex setting in Theorem 1
is that one can at the start only choose s to be an arbitrary pure state in Im(Π), which
requires some level of care when trying to formulate the exact next steps (since for example,
we do not know that the (X⊗IY⊗Z) operator will necessarily leave the space Π invariant).
In our approach to prove Theorem 1 that we will now present, we split a generalization
of the reasoning for the Π = IX⊗Y⊗Z case into 2 lemmas. The first of these lemmas
establishes a consequence of our causality assumptions in terms of the properties of the
operator U∗(X ⊗ IY⊗Z)U . The second of the lemmas uses these resulting properties in a
black-box fashion (i.e. without using the knowledge that we are dealing with the product
of 3 operators each of which has their own non-trivial properties) in order to obtain the
locality characterization that we seek. After both lemmas are established, Theorem 1 will
be proved by chaining the two lemmas.

Lemma 1. Let X, Y, and Z be registers having associated Hilbert spaces X , Y, and Z,
respectively, let V ⊆ X ⊗Y⊗Z be a subspace, and let U ∈ U(X ⊗Y⊗Z) be a Y → X causal
unitary operator on the subspace V. For every Hermitian operator H ∈ Herm(X ⊗Y ⊗Z)
satisfying Im(H) ⊆ V and TrZ(H) = 0, and every operator X ∈ L(X), one has

〈H,U∗(X ⊗ IY ⊗ IZ)U〉 = 0. (2.15)

Proof. Note first that the statement is clear when H = 0, and assume from this point on
that H 6= 0.

Let Π be a projector on V . Since H is Hermitian, by the Jordan-Hahn decomposition
we can write it as P −Q, where PQ = 0, P ≥ 0, Q ≥ 0. Furthermore, it will be the case
that Im(P) ⊆ Im(H), and therefore ΠP = P . The same will be the case for Q. Note also
that Tr(H) = TrX⊗Y(TrZ(H)) = TrX⊗Y(0) = 0.

Therefore, Tr(P) = Tr(Q), and for some real constant c > 0 (since H 6= 0), we can write
P and Q as cρ and cγ, respectively, with ρ and γ being density matrices on V . Furthermore,
note that TrZ(ρ)− TrZ(γ) = 1

c
TrZ(H) = 0. Then, from our causality assumptions, it will

hold that TrY⊗Z(U∗ρU) = TrY⊗Z(U∗γU).

Since
〈U∗(X ⊗ IY ⊗ IZ)U, P 〉 = c 〈X,TrY⊗Z(U∗ρU)〉 (2.16)

and
〈U∗(X ⊗ IY ⊗ IZ)U,Q〉 = c 〈X,TrY⊗Z(U∗γU)〉 , (2.17)

12

we have then that 〈U∗(X ⊗ IY ⊗ IZ)U, P 〉 = 〈U∗(X ⊗ IY ⊗ IZ)U,Q〉, and we obtain that

〈U∗(X ⊗ I)U,H〉 = 〈U∗(X ⊗ I)U, P −Q〉 = 0. (2.18)

Lemma 2. LetW and Z be finite-dimensional Hilbert spaces, let {∆1, . . . ,∆n} ⊆ Proj(W)
and {Λ1, . . . ,Λn} ⊆ Proj(Z) be orthogonal sets of nonzero projection operators, and let

Π =
n∑
k=1

∆k ⊗ Λk. (2.19)

For every operator A ∈ L(W⊗Z) such that 〈H,A〉 = 0 for all Hermitian operators H with
Im(H) ⊆ Im(Π) and TrZ(H) = 0, there exists an operator W ∈ L(W) such that

ΠAΠ = Π(W ⊗ IZ)Π. (2.20)

If, in addition, A is a unitary operator and [A,Π] = 0 (i.e., A and Π commute), then there
exists a unitary operator W that satisfies (2.20).

Proof. Let Z ∈ U(Z) be an arbitrary unitary operator such that

[IW ⊗ Z,Π] = 0. (2.21)

Let then H be an arbitrary Hermitian operator H ∈ Herm(W ⊗ Z). It follows from
(2.21) that we can write

〈H,ΠAΠ− (IW ⊗ Z)ΠAΠ(IW ⊗ Z∗)〉 = 〈K,A〉 , (2.22)

where

K = ΠHΠ− (IW ⊗ Z∗)ΠHΠ(IW ⊗ Z). (2.23)

The operator K is Hermitian and it is such that Im(K) ⊆ Im(Π) and TrZ(K) = 0.
Therefore, by our assumptions in Lemma 2 regarding A, it holds that the value of the
inner product in (2.22) is equal to 0. Since H is an arbitrary Hermitian operator, it must
hold that the operator we are taking its inner product with is equal to zero, which can be
written as

13

[IW ⊗ Z,ΠAΠ] = 0. (2.24)

Note now that for all unitary operators Z ∈ U(Z) with a block structure such that
[Z,Λk] = 0 for all values of k, the condition in (2.21) holds. Therefore (2.24) holds as well.
Following a similar logic as in our earlier transition from (2.13) to (2.14), it follows in turn
that we can write

ΠAΠ =
n∑
k=1

Wk ⊗ Λk, (2.25)

withW1, . . . ,Wn being linear operators onW such thatWk = ∆kWk∆k for each k ∈ {1, . . . , n}.
If we then consider the operator

W = W1 + · · ·+Wn + (IW −∆1 − · · · −∆n), (2.26)

it follows that

Π(W ⊗ IZ)Π =
n∑
k=1

∆kW∆k ⊗ Λk = ΠAΠ, (2.27)

where the second equality follows from (2.25).

When A is unitary and [A,Π] = 0, A is also unitary when restricted to Im(Π). We
have then from (2.27) that each operator Wk must be unitary when restricted to Im(∆k).
The operator W defined in (2.26) will then in turn be unitary, which completes our proof
of the claims in Lemma 2.

Note that even if we did not assume that {∆1, . . . ,∆n} is a set of mutually orthogonal
operators in (2.19), we would still obtain the decomposition for ΠAΠ in (2.25). However,
then the operator W defined in (2.26) would not necessarily satisfy the equality in (2.27),
since the images of the operators W1, . . . ,Wn might overlap.

Once we have established Lemma 1 and Lemma 2, it is straightforward to proceed with
the proof of Theorem 1:

Proof of Theorem 1. Consider the operator A = U∗(X ⊗ IY⊗Z)U , and the space W =
X ⊗ Y . It follows from Lemma 1 that the assumptions of Lemma 2 are satisfied. The
consequences of Lemma 2 do imply then Theorem 1.

14

While the consideration of finite-dimensional Hilbert spaces is the main concern of this
work, we note that Theorem 1 is true even if one allows the space Z to be an infinite-
dimensional separable complex Hilbert space. This follows from the consideration of ex-
tended versions of Lemma 1 and Lemma 2, with the operator H in their statement now
constrained to be trace-class (and therefore bounded) in addition to Hermitian. Our proofs
go through in these extended settings without any additional issues, as a consequence of
basic facts such as those determining that unitaries are bounded, trace-class operators are
closed under the product and self-adjoint operations, and the inner product of a trace-class
operator and a bounded operator will always be finite. As for the facts that allow the tran-
sition from (2.24) to (2.25), they also hold in this case where Z is an infinite-dimensional
separable complex Hilbert space (and in even some more general situations), as discussed
for example in Chapter 1, Section 3 of [33] and the notes to Chapter VI of [102].

We will finally note that it is possible to obtain a proof for Theorem 1 more similar to our
reasoning in the Π = IX⊗Y⊗Z case. In particular, the reasoning for the Π = IX⊗Y⊗Z case
can be modified so that it starts with an arbitrary Z ∈ U(Z) such that [IX⊗Y ⊗Z,Π] = 0,
together with any pure state s ∈ Im(Π). Then, each step goes through in the process to
derive the relation in (2.11). From there, one obtains that

Π(A− (IX⊗Y ⊗ Z∗)A(IX⊗Y ⊗ Z))Π = 0, (2.28)

which gives us Equation (2.24) after simple algebraic manipulation.

In light of this remark, it is reasonable to consider the motivations for presenting the
proof of Theorem 1 as we did in this chapter. The first reason is that the proof here is
the one that we did publish in a peer-review journal publication during the PhD research
presented in this thesis, before we had phrased a proof for the Π = IX⊗Y⊗Z case in the
way that is presented here after the statement of Theorem 1. The second reason is that
it is of independent conceptual interest to present the approach seen here where we split
the proof into two lemmas. For the first of these lemmas it is particularly interesting that
its statement cannot be trivially derived from any of the equations in the shorter proof,
while for the second lemma it is of interest that it is able to use the consequences from
the first lemma in a completely black-box fashion. The third reason is that even if we can
reach (2.24) by adapting the reasoning for the Π = IX⊗Y⊗Z case, it is convenient later in
the context of our proof to be able to make usage of the consequences of Lemma 1. In
particular, it is convenient to do so if one performs a step-by-step process of elementary
algebraic manipulations in order to reach (2.25) from (2.24).

15

Chapter 3

Single-tape quantum Turing
machines

This chapter is organized as follows. In Section 3.1, we discuss introductory concepts
related to deterministic Turing machines and their simulation by a circuit. In Section 3.2,
we discuss quantum Turing machines and their corresponding state spaces. In Section 3.3,
we present and analyze the main result for this chapter. This result is a new variant for the
simulation of quantum Turing machines by quantum circuits with some positive properties
when compared to previous work in the literature. In Section 3.4, we present a new and
computationally simpler proof for a known isometricity vs unitarity equivalence concerning
the state space evolutions induced by a QTM transition function candidate.

3.1 Deterministic Turing Machines

In addition to providing some intuition about the circuit simulation of Turing machines,
our explanation here introduces notation that will be useful in the context of both defining
quantum Turing machines and describing a variant for their circuit simulation. We also
discuss the roadblocks to a trivial extension to the quantum realm of the classic Boolean
circuit simulation of deterministic Turing machines.

16

3.1.1 Definition

We will take deterministic Turing machines to use a state set Q = {1, . . .m} and a tape
alphabet Γ = {0, . . . , k− 1}. The machine consists of a two-way infinite tape with its cells
indexed by the elements of Z. These cells each contain one of the elements of the tape
alphabet Γ. There is also a tape head that is at each time step above one of the cells in
the tape and which reads and writes to that cell in the Turing machine computation. A
Turing machine computation begins with the tape head over the tape cell indexed by 0,
the input to the computation x written in cells 1, . . . , |x|, and all other cells set to the
0 symbol, which we will refer to as the blank symbol 1. The initial internal state of the
head is state 1. At each step, the logic of the Turing machine evolution is specified by a
transition function

δ : Q× Γ→ Q× Γ× {−1, 1}. (3.1)

If the machine is in the state p ∈ Q before the transition with the head over a cell indexed
by i containing the symbol a, and

δ(p, a) = (q, b,D), (3.2)

then after a step of the Turing machine evolution the head will be in state q and over the
cell indexed by i+D, while cell i will have been updated to contain the symbol b.

3.1.2 The classic Boolean circuit simulation of deterministic Tur-
ing machines

We examine here the situation where the first t steps of the computation of a Turing
machine are to be simulated. Our goal here then is to describe a circuit that simulates t
of the machine’s steps and which can be computed efficiently from a description of the
transition function δ, following the standard construction described for example in [5].

To begin with, one can observe that during the first t steps of the computation of a
Turing machine, the head will be in positions indexed by integers in the set {−t, . . . , t}.

1In order to simplify our basic mathematical framework, we are using here the symbol 0 to denote
blanks. In other contexts that deal with computing specific binary functions in a Turing machine, it is
generally easier to denote blanks through the symbol � or #, and use the symbol 0 to denote the logical
binary 0. We will do this ourselves in Section 4.3 when considering oracle quantum Turing machines.

17

We will further assume for simplicity that the input is of length n ≤ t, which means
that all cells outside of the {−t, . . . , t} index range will be blank during all t steps of
the computation.2 We need then only concern ourselves with the 2t + 1 cells indexed by
{−t, . . . , t}.

For each cell in the {−t, . . . , t} index range, one will consider two registers in the circuit
simulation of the Turing machine computation. One of the registers stores whether the
head is or is not over the cell at the moment, and if so the state of the head. The other
register stores the value of the symbol that is currently written in that tape cell. More
formally, we have the registers

S−t, . . . , St and T−t, . . . ,Tt (3.3)

where registers Si and Ti, corresponding to the cell indexed by position i, hold a value
from the sets {0, . . . ,m} and {0, . . . , k − 1}, respectively. Register Si will contain the
value 0 when the head is not in the cell indexed by i, and will contain a value from the set
Q = {1, . . .m} when the head is in the cell indexed by i. Register Ti will simply contain
the symbol stored in the cell indexed by i. If one wants the circuit simulating a Turing
machine to receive the input x as its only input, one can prepend to the rest of our circuit
a pre-processing circuit that initializes the Si and Ti registers to the right value. This is
the value corresponding to the input x and the fixed initial position and state for the head.

One then proceeds in the circuit by simulating t steps of the computation of a Turing
machine, one step at a time. In the simulation of each individual step of the Turing machine
computation, each of the registers in (3.3) will be updated simultaneously. The key fact
to consider when examining the structure of such an update is the fact that the Turing
machine’s head moves one cell at a time, and operates in its reading and writing using
only the cell below at the beginning of the step. Therefore, for register Si, updates are
necessary only in case the head was in a position corresponding to registers Si−1, Si, or
Si+1 before the step – otherwise, the head was not in the cell indexed by position i before
the transition, and it is not going to be there after the transition either. In case that the
head was in a position corresponding to registers Si−1, Si, or Si+1 before the transition,
one can just use the function δ to see whether the Si register will take on a nonzero value
after the step, and if so what should be the corresponding state. For example, if before
the evolution the register pair (Si+1,Ti+1) stores (p, a), and δ(p, a) = (q, b,−1), then after

2Observe that if this is not the case, a simulation procedure can simply use the fact that the final value
of input cells outside the {−t, . . . , t} index range will be equal to their initial value, and the head will
never reach them. The simulation procedure can therefore first record the initial value of those cells in
O(n) time and space, and then proceed under our assumption.

18

f

Si−1 Ti−1 Si Ti Si+1 Ti+1

Si Ti

Figure 3.1: The information corresponding to cell i in the Turing machine at any given
time step can be written as a function of the information corresponding to the previous
time step for cells {i− 1, i, i+ 1}. We represent with a box f the function that computes
the content of (Si,Ti) given the previous contents of (Si−1,Ti−1), (Si,Ti), and (Si+1,Ti+1).

the evolution the register Si will store the value q, representing that the head has moved
from position i+ 1 to position i and has state q as its internal state. For Ti, there are only
updates to do in case that the head was in position i before the update, and again one can
just apply δ in order compute these updates.

There is then a function f :
(
{0, . . . ,m}×{0, . . . , k−1}

)3 → {0, . . . ,m}×{0, . . . , k−1}
that can be computed straightforwardly from δ and which describes the update rule for
the register pair (Si,Ti), given the values before the transition of the three register pairs
(Si−1,Ti−1), (Si,Ti), and (Si+1,Ti+1). The circuit structure of this update is depicted in
Figure 3.1. At each time step of the simulation, all (Si,Ti) pairs of registers are updated in
parallel, as depicted in Figure 3.2. The one caveat to consider regarding the computation
of f is that all inputs ((q1, a1), (q2, a2), (q3, a3)) to f that arise in the circuit simulation of
a Turing machine will be such that at most one out of q1, q2 and q3 will be nonzero, given
there is only one head in the machine. On non-valid inputs that represent the existence of
more than one head, f can then be taken to have any arbitrary behaviour (similar issues
related to the handling of values representing an invalid multi-headed situation will also
need to be handled in the quantum case, with less immediate solutions in that case). Note
also that at the edges (i.e. when updating the register pairs (S−t,T−t) and (St,Tt)), the
copies of f will be need to be slightly modified so that they hard code the (0, 0) values
corresponding to the (non-existent) pairs of registers (S−t−1,T−t−1) and (St+1,Tt+1).

19

f f f f

Si−1 Ti−1 Si Ti Si+1 Ti+1 Si+2 Ti+2

Si−1 Ti−1 Si Ti Si+1 Ti+1 Si+2 Ti+2

Figure 3.2: In the simulation of one step in a Turing machine computation, each register
pair is updated in parallel. This update is described by the same function f for all register
pairs.

In order to simulate t steps of a Turing machine computation, t copies of the pattern in
Figure 3.2 will be concatenated with each other. This will result in the circuit structure that
can be seen in Figure 3.3. Assuming that |Q| and |Γ| are constants, f can be represented
as a constant-size circuit. This circuit has a regular pattern then such that it can be
generated by a deterministic Turing machine with space consumption logarithmic in t
(and therefore time consumption polynomial in t). In the simulation of a Turing machine
computation, this can be preceded by the (also efficiently generated) preprocessing step
mentioned earlier, and if one desires, by a postprocessing step that changes the format of
the output from that offered by the (Si,Ti) register pairs. Provided that the postprocessing
step can be implemented with size O(t2) and depth O(t) (which is a constraint that allows
for a reasonable variety of output formats), the overall circuit will have size O(t2) and
depth O(t).

This construction cannot be easily adapted to the quantum case, where the global
evolution of the quantum Turing machine resulting from the local transition function must
correspond to a unitary operator. To see why, observe first that there is no exact quantum
gate equivalent of the function f , since the dimensionality of its input is not equal to the
dimensional of its output, and quantum operations in a standard quantum circuit with
unitary gates must be reversible (and therefore have equal dimensions of their input and
output spaces). One could imagine a solution to this issue that expands the output space
for the quantum equivalent of f so that it includes those registers indexed by i − 1 and
i + 1. However, then we would run into the issue of several potentially non-commuting

20

f f f f

f f f f

f f f f

Si−1 Ti−1 Si Ti Si+1 Ti+1 Si+2 Ti+2

Si−1 Ti−1 Si Ti Si+1 Ti+1 Si+2 Ti+2

Si−1 Ti−1 Si Ti Si+1 Ti+1 Si+2 Ti+2

Figure 3.3: 3 steps in the simulation of a classical Turing machine, illustrating the con-
nectivity pattern between the layers in the simulation.

applications of the operator affecting the same register pair. Also, more subtlety is needed
than in the classical case when limiting our study to a finite section of the tape, since
a global unitary evolution need not be unitary within the context of a truncated tape
(consider for example the case of a simple quantum Turing machine that simply ignores
the input and always moves its head to the right). It is nontrivial to overcome these
obstacles, and it was only with Yao’s seminal work [119] that this was achieved. The key
tool for this is the expansion of the state space for the Si registers, as will be further

21

described in Section 3.3.1.

3.2 Quantum Turing machines

3.2.1 Definition

Quantum Turing machines were first formally considered by Deutsch [35], and later defined
and examined in further detail by Bernstein and Vazirani [23]. They generalize determinis-
tic Turing machines by allowing for the possibility of making different choices in a transition
in superposition with each other, subject to the constraint that the global evolution of the
Turing machine be unitary (and therefore reversible).

More formally, we again take quantum Turing machines to use a state set Q = {1, . . .m}
and a tape alphabet Γ = {0, . . . , k−1}. Similarly, the machine consists of a two-way infinite
tape with two components. The first component are the cells, indexed by the elements of
Z and each containing at a time one of the elements of the tape alphabet Γ. The other
component is the single tape head. A Turing machine computation begins again with the
tape head over the tape cell indexed by 0, the input to the computation x written in cells
1, . . . , |x|, and all other cells set to the 0 symbol, which we will refer to as the blank symbol.
The initial internal state of the head is state 1.

The fact that different choices of transition can occur in superposition with each other
is reflected in the fact that the logic at each step of the Turing machine evolution will now
be specified by a transition function of the form:

δ : Q× Γ→ CQ×Γ×{−1,+1}. (3.4)

In this function, δ(p, a) represents the behavior of the tape head when it is in the state p
and over a cell containing the symbol a. If δ(p, a)[(q, b,D)] = α, we have that in such a
situation α is the amplitude for the machine to write the symbol b to the tape, transition
into state q and move in direction D. However, not all transition functions with the
signature described in (3.4) will be valid transition functions for a quantum Turing machine.
Instead, as will be described in detail later, there will be constraints on δ that ensure that
the global evolution of the quantum Turing machine remains unitary.

Note that in order to define standard quantum computational complexity classes, one
must constraint the complex amplitudes in the output of δ so that they do not for example
encode the answer to undecidable problems. A simple way of doing so is to constraint the

22

amplitudes to the set
{

0,±1,±i,± 1√
2
,± i√

2

}
. A more subtle way is to limit the amplitudes

to complex numbers that can be efficiently approximated by rational complex numbers.
See [2] for further discussion of this matter. In our case, we will in principle describe a
construction that given a function δ builds a circuit for a simulation of the corresponding
quantum Turing machine, and then discuss further in Section 3.3.6 how limits to the
amplitudes in δ will be inherited by the amplitudes in the gates that simulate the quantum
Turing machine.

To represent the constraint that δ induces a global unitary evolution for the quantum
Turing machine, we must first introduce the concept of configuration of a quantum Turing
machine. A configuration will be a specification of the position of the head, its internal
state, and the contents of the tape. The position of the head will be an integer i ∈ Z,
while its internal state q will be a member of the set Q. The contents of the tape will
be represented by a function from Z to Γ that maps each cell index to the corresponding
alphabet symbol. This function must belong to a subset F of all possible such functions.
In particular, this subset is that of functions from Z to Γ where only a finite number of
integers are mapped to symbols other than the blank symbol 0. This constraint is justified
by the fact that we only consider Turing machine computations that run for a finite number
of steps t, and the computations begin with all cells outside the finite input containing the
blank symbol.

The constraint that only a finite number of tape cells contain a non-blank symbol means
that the set F is countable, as can be proved through a standard interleaving argument.
Therefore, the set Z×Q×F of all configurations is countable as well. Their complex linear
combinations define then a Hilbert space H. This space will be the configuration space for
the quantum Turing machine. A candidate transition function δ will induce an operator
Uδ on H as will be detailed next, and we will require that this operator be unitary in order
for δ to be a valid QTM transition function.

In order to define the action of Uδ on H, we first introduce for each value of i ∈ Z and
a ∈ Γ a transformation that maps a symbol assignment T ∈ F to Ti,a ∈ F such that:

Ti,a(j) =

{
a if j = i

T (j) if j 6= i.
(3.5)

This transformation simply changes the assignment in T so that the cell in position i is
now assigned the symbol a.

23

Then, the action of Uδ on basis states of H is given by

Uδ |i, p, T 〉 =
∑
q,a,D

δ(p, T (i))[(q, a,D)] |i+D, q, Ti,a〉 (3.6)

and is expanded by linearity to the rest of H, with the square brackets in (3.6) denoting
vector indexing. The condition that Uδ be unitary can be turned into more explicit con-
straints on the amplitudes in δ, as described in [23]. The corresponding conditions on the
entries of δ are not directly relevant to our work, but are stated here for the sake of clarity:

1. The set of vectors
{
δ(p, a) : p ∈ Q, a ∈ Γ

}
is an orthonormal set.

2. For all (p0, a0, b0) and (p1, a1, b1) ∈ Q× Γ× Γ, it holds that∑
q∈Q

δ(p0, a0)[q, b0,+1] δ(p1, a1)[q, b1,−1] = 0. (3.7)

At a high level, these conditions check that the columns in the infinite matrix corresponding
to Uδ form an orthonormal set. In an infinite-dimensional context, one would generally also
need to check that the rows in the matrix form an orthonormal set, but the structure of Uδ
makes that redundant in this case, as proved in [23]. We will also later give an alternative
proof of this fact in Section 3.4.

The reason why these conditions are not directly involved with our work is because
we do simply assume that the transition function δ that is provided to our simulation
procedure is such that it corresponds to a quantum Turing machine, and that will be
enough to derive that the operators in the circuit simulation correspond to unitary gates.
If given a function δ that does not correspond to a quantum Turing machine, one follows
the procedure we describe, then the circuit that is generated will have non-unitary gates.

The last aspect of the definition of quantum Turing machines that we must consider is
the fact that one needs to specify appropriate stopping conditions when discussing Turing
machine computations. There are two main approaches to this matter for quantum Turing
machines. The first of these approaches, considered in [35], has periodic measurements that
determine whether the computation is to be terminated. The second approach, considered
in [23], is to have computations that run for a predetermined number of steps (which can be
chosen to be a specific function of the size of the input corresponding to the computation).
We follow the ideas in this second approach, and assume that the number of steps t to be
simulated is part of the input to the algorithm that builds the circuit simulating a Turing
machine.

24

Note that simulation techniques for quantum Turing machines can also be applied to re-
versible classical Turing machines, since they form a subset of all quantum Turing machines.
As for standard classical Turing machines, the work in [17] considers how to simulate t steps
of a standard classical Turing machine that use s cells in their space consumption. It finds
that for any c > 0, this computation can be simulated by a computation on a reversible
Turing machine that takes O(t1+c) steps and uses O(s log t) cells in its space consumption,
or alternatively, by a computation that takes O(t) steps and uses O(stc) cells. The work in
[64] establishes that it is also possible to use O(s) cells with a number of steps exponential
in s, while [28] examines tightness concerns regarding the time vs space tradeoff.

Note too that even if uniformly generated quantum circuits are the standard funda-
mental model for quantum computing, there are also standard aspects of reasoning about
quantum algorithms such as loops and conditionals that match quantum Turing machines
more closely than they match quantum circuits. There is then work [86, 87, 109, 110]
that seeks to move the standard quantum Turing machine model we study here in a di-
rection more amenable to practical work. This often involves the usage of classical control
elements, along the lines of measurement-based quantum computing [26].

3.2.2 Looped-tape quantum Turing machines

As we saw before, the configuration space H corresponding to a quantum Turing machine
is infinite-dimensional, since the set F of valid tape contents is infinite. For simplicity,
in Section 3.3 we will then work instead with a looped-tape model for quantum Turing
machines when discussing their circuit simulation. Note that this not necessary for our
results to go through – informally, one could start using an infinite number of wires in
the circuit simulation, use causality tools in the corresponding infinite dimensional spaces
as we discussed after the proof of Lemma 2, and then finally argue that it is possible
to trim all but a finite number of the wires from the circuit. However, we believe that
the simplicity of dealing with finite-dimensional spaces all through our discussion of the
simulation procedure makes the usage of looped-tape quantum Turing machines worth
introducing. This looped-tope model is also new as far as we know, and it seems plausible
that its consideration might be of use for future work in quantum information processing.

In a looped-tape quantum Turing machine, we have a circular tape with N cells, indexed
by the elements of Z/NZ. Since the tape is circular, moving to the right from position
N − 1 takes one to position 0, and moving left from position 0 takes one to position N − 1.
This corresponds to the standard addition of ±1 to the tape index in Z/NZ. Therefore,
the meaning of the transition function remains the same as for a two-way infinite tape

25

– for a ∈ Γ and p ∈ Q, δ(p, a) represents again the behavior of the tape head when it
is in the state p and over a cell containing the symbol a. If δ(p, a)[(q, b,D)] = α for
(q, b,D) ∈ Q × Γ × {−1,+1}, we have that in such a situation the machine will with
amplitude equal to α write the symbol b to the tape, transition into state q and move in
direction D.

The new configuration space HN will be spanned then by all the vectors |q, i, f 〉 cor-
responding to all the possible different choices of q ∈ Q, i ∈ Z/NZ, f ∈ ΓZ/NZ. Since
Z/NZ is a finite group, this is a finite-dimensional complex vector space, as intended. A
transition function δ will induce an operator Uδ,N on HN in the same way that it induces
an operator Uδ on H. As for the conditions that δ must satisfy in order to be a valid
transition function (i.e. for Uδ,N to be unitary), it is not hard to prove that for N ≥ 5,
Uδ,N will be unitary if and only if Uδ is unitary (a short proof of a similar statement is
later given in Lemma 4 along the process of further studying the structural properties of
quantum Turing machines). The basic idea behind this is that if we consider two standard
basis configurations where the head is in different positions, the results of applying Uδ,N to
these two configurations when N ≥ 5 will overlap in at most one possible head position.
This is the same as in the infinite-dimensional case, while for N = 4 there can be overlap
in up to two head positions.

As for the usage of this model in the simulation of quantum Turing machines, observe
that if a quantum Turing machine runs for t steps, all tape squares outside the segment
of the tape corresponding to indices {−t, . . . , t} will remain with their initial tape content
and never contain the tape head. Furthermore, under the assumption that the input
to the computation is of length n ≤ t (so that the whole input can be read), all tape
squares outside this region will in fact remain blank during the computation. Therefore,
the computation will be equivalent to a looped-tape QTM computation on a tape of length
N ≥ 2t + 1. We will then simulate this looped-tape computation in the circuits that will
be describe in Section 3.3.

Note finally that in order to achieve our goal of working with finite-dimensional spaces,
one might naively suggest the alternative approach of truncating the tape to 2t + 1 cells.
This results in a configuration space whose standard basis corresponds to those tuples
(q, i, f) ∈ Q × {−t, . . . , t} × F where Supp(f) ⊆ {−t, . . . , t}. However, this has the issue
that this subspace of H will generally not be invariant under the action of the operator Uδ.
The most immediate method to tackle this problem would be to discard those rows and
columns from the matrix for Uδ that correspond to tape heads or non-blank tape symbols
outside of the region indexed by {−t, . . . , t}. This does however not work either, since the
resulting operator might not be unitary.

26

3.2.3 Other variants of quantum Turing machines

Similar to classical Turing machines, one can consider variants of quantum Turing ma-
chines, such as quantum Turing machines with multiple tapes, with tapes having a fixed
dimension larger than one, with tape heads that have greater freedom in their movements,
and so on. For example, Nishimura and Ozawa [82] alter the standard definition of quan-
tum Turing machine so that the head can remain stationary in addition to moving left or
right, and provide an equivalent of the condition in Equation (3.7). In this setting, δ will
be a function of the type:

δ : Q× Γ→ CQ×Γ×{−1,0,+1}. (3.8)

Similarly, one can consider a QTM with k-dimensional tapes, where δ will be a function
of the type:

δ : Q× Γ→ CQ×Γ×{−1,+1}k . (3.9)

Our method will very straightforwardly extend to these and similar variants, as will be
discussed in Section 3.3.8. Multi-tape quantum Turing machines are another common
variant of quantum Turing machines, also considered in [82]. In the context of multi-
tape quantum Turing machines, complications prevent a naive extension of our simulation,
but these complications can be overcome with a subtler approach, and our simulation
consequently extended, as described in Chapter 4.

3.3 A variant of the simulation of quantum Turing

machines by a quantum circuit

We present here a variant for the simulation of quantum Turing machine circuits. Our
purpose is to describe an efficient constructive procedure that given a Turing machine M ,
an input x with length n, and a number of steps t, generates a circuit that simulates the
action of M on x for t steps. The initial setup for the simulation is similar to that from
Yao [119], but there are some differences regarding the local operators involved in the
simulation, as discussed in Section 3.3.7.

The key property of the simulation is that a step of a quantum Turing machine com-
putation can be simulated through repeated applications of a gate G, whose locality is

27

established using our abstract causality results in Theorem 1. This gate will be defined
in such a way that those applications correspond to commuting operators, leading to the
parallelization structure that can be seen in Figure 3.4.

As for the positive aspects of the variant when compared to the standard construction
from Yao [119], there are three main such aspects. The first of these is that it relies
on tools concerning abstract properties of causal unitary evolutions, rather than on the
specific algebraic structure of a quantum Turing machine. This makes it very easy to
extend to variants of quantum Turing machines, as demonstrated in Section 3.3.4. The
second aspect is that it is fully explicit, in that we characterize the amplitudes for the gates
in the circuit through specific polynomials in the entries of the transition function δ, as
shown in Section 3.3.7. This contrasts with the standard construction, where a constructive
but non-explicit algorithmic procedure to find all the amplitudes is specified, with some
parts of its proof of correctness left themselves as a sketch in its (proceedings) proof. Last
but not least, the circuit we present has depth O(t) and size O(t2) for the simulation of t
steps of a quantum Turing machine. A direct implementation of the standard construction
would in contrast have depth O(t2) and size O(t2), but it is possible to bring this down
to O(t) depth through modifications that are minor relative to the differences with our
construction, as further discussed in Section 3.3.6.

3.3.1 Registers in the simulation

We will describe our simulation as if we were dealing with simulating a looped-tape quan-
tum Turing machine with length N = 2t + 1 and transition function δ, as defined and
justified in Section 3.2.2. We assume t ≥ 2 so that N ≥ 5 and the global evolution of the
looped-tape quantum Turing machine can be taken to be unitary. We will use the symbol
U to refer to the configuration space evolution Uδ,N for this looped-tape quantum Turing
machine.

In the circuit that we generate, depicted in Figure 3.4 (and whose gates we will describe
later in this Section 3.3), we follow the standard technique discussed in Section 3.1.2 and
use a pair of registers Si and Ti to represent each position i ∈ {0, . . . , N − 1} in the
(looped-tape) quantum Turing machine. As in the work from Yao [119], we consider an
expanded state space for the Si registers. Such a expanded state space has basis elements
corresponding to the set

{−|Q|,−|Q|+ 1, . . . , 0, . . . , |Q| − 1, |Q|}, (3.10)

rather than the set {0, . . . , |Q| − 1, |Q|}. Non-negative values have the same meaning as
in the classical case: 0 represents that the head is not in position i, while a positive value

28

G

G

G

F ⊗ I F ⊗ I F ⊗ I F ⊗ I F ⊗ I

G

G

Si−2 Ti−2 Si−1 Ti−1 Si Ti Si+1 Ti+1 Si+2 Ti+2

Si−2 Ti−2 Si−1 Ti−1 Si Ti Si+1 Ti+1 Si+2 Ti+2

Figure 3.4: Each step of a quantum Turing machine computation is simulated by an
identical circuit layer, with a general pattern of unitary operations as illustrated here.
Observe however that if N is not divisible by 3, one must have one or two additional G
operators on separate levels, so that G is applied once to each triple of adjacent register
pairs (Si−1,Ti−1), (Si,Ti), (Si+1,Ti+1). Alternatively, one can increase N to the next
multiple of 3 without affecting the performance or correctness of the simulation.

s represents that the head is in position i and it is in a state s. A negative value −s will
represent that the head is in position i, it is in a state s, and it has already been moved
during this step of the quantum Turing machine simulation and should not be moved again.
As for the Ti registers, the standard basis for its state space is labeled by the elements of
the alphabet Γ.

The state space for the registers Si and Ti will be denoted as Si and Ti, respectively.
Of course, for different values of i these states spaces will merely be different copies of the
same state spaces S and T . The global state space for all the registers in the circuit will
be

KN = S0 ⊗ T0 ⊗ S1 ⊗ T1 ⊗ . . .⊗ SN−1 ⊗ TN−1. (3.11)

29

We now define an isometry A that transforms elements of the state space HN for the
QTM (see Section 3.2.2 for its definition) into elements of the state space KN for the wires
in our circuit. This mapping will be essential in Section 3.3.2 in order to algebraically
formulate what it means to simulate a step of a QTM with a circuit. We define the
mapping based on its action on the standard basis elements of HN . In particular, if we
consider the standard basis element of HN associated with the configuration

(p, i, T) ∈ Q× Z/NZ× ΓZ/NZ, (3.12)

then it will be mapped to the standard basis element of KN corresponding to a classical
state

f(p, i, T) ∈ ({0, . . . , |Q|} × {0, . . . , |Γ| − 1})N . (3.13)

This classical state f(p, i, T) is determined following the same logic as in the classical
simulation described in Section 3.1.2. Therefore, f(p, i, T) will assign to register Tj a value
between 0 and |Γ| − 1 as determined by T (j). As for the register Sj, it will contain 0 if
j 6= i, and it will contain the value of p (between 1 and |Q|) when j = i. No register
contains a negative value. Using this definition of f , we write A formally as

A =
∑

(p,i,T)

|f(p, i, T)〉 〈p, i, T | , (3.14)

where the sum iterates over all standard basis elements (i.e. classical configurations) of the
configuration space HN for the (looped-tape) quantum Turing machine. AA∗ will then be
a projection into the subspace of the state space KN for the registers in the simulation that
corresponds to valid quantum Turing machine configurations (i.e. the subspace spanned
by the standard basis representations in KN of the classical configurations for HN). In
that subspace, there is exactly one Si register indicating that the head is there, and the
head is not marked as having already moved.

Note finally that one might want to use a different encoding for the input and out-
put configurations in the circuit from that implied by the usage of S0, . . . , SN−1 and
T0, . . . ,TN−1. If so, such an encoding can be combined without issues with our simu-
lation by appending pre-processing and post-processing circuits, as further discussed in
Section 3.3.6.

30

3.3.2 Operators in the simulation

The goal in the circuit simulation is to efficiently implement with quantum gates a unitary
evolution that simulates U . This can be framed algebraically as implementing a unitary
evolution that agrees with AUA∗ on Im(A). This implementation is then concatenated re-
peatedly to simulate several steps of the quantum Turing machine (i.e. several applications
of U).

The first of the gates that we will consider corresponds to an operator F acting on Si
for an arbitrary tape position i. This operator performs the mapping

F |s〉 = |−s〉 , (3.15)

for s ∈ {−|Q|,−|Q| + 1, . . . , 0, . . . , |Q| − 1, |Q|}. This corresponds to a permutation of
basis states, and is therefore a valid unitary operator. We will write as Fi ∈ L (KN) the
operator that acts as F on register Si and as the identity on all other registers. Note that
F0, . . . , FN−1 will commute with each other, since they each act in a non-trivial way on a
different register. They are also each their own inverse.

In order to define the other gate that we use in the simulation, we must first introduce
unitary operators V and W defined as

V = AUA∗ + (I − AA∗), (3.16)

W = (F0F1 . . . FN−1)V ∗(F0F1 . . . FN−1)V. (3.17)

V has the purpose of translating the QTM evolution operator U to the state space for the
registers in the circuit. W represents an intermediate step in our search for an implemen-
tation of this evolution that makes usage of local gates.

It is clear from its definition that V agrees with AUA∗ on Im(A). That is to say, for
all values x ∈ Im(A), V x = AUA∗x. That means that for all configurations y ∈ HN ,
V (Ay) = A(Uy), and V accurately reflects the result of the QTM evolution.

It also holds that W agrees with V (and therefore with AUA∗) on Im(A). In order to
see why, the key insight is that F0F1 . . . FN−1 will map elements in Im(A) to elements in
Im(A)⊥, on which V ∗ will act as the identity. Therefore, when an element x ∈ Im(A) is
considered, it holds that

Wx = (F0F1 . . . FN−1)(F0F1 . . . FN−1)V x = (F0F0) . . . (FN−1FN−1)V x = V x. (3.18)

31

It follows then that in order to simulate the QTM evolution U , it is sufficient to imple-
ment a circuit that agrees with W on its action on Im(A). In order to achieve this, we de-
compose W into operators suitable to a local implementation. The left-most F0F1 . . . FN−1

term in W can just be implemented by applying for all tape positions i the gate F to the
register Si. As for the rest of W , we rewrite it by adding canceling pairs of V and V ∗,
arriving to the equation

V ∗(F0F1 . . . FN−1)V = (V ∗F0V)(V ∗F1V) . . . (V ∗FN−1V). (3.19)

We then write V ∗FiV as Ci. Observe that the operators Ci and Cj will commute with
each other for any arbitrary values of i and j, as

[Ci, Cj] = [V ∗FiV, V
∗FjV] = V ∗[Fi, Fj]V = V ∗0V = 0. (3.20)

Ci and Cj can therefore be implemented in arbitrary order. Next, we will prove in Sec-
tion 3.3.3 that the operator Ci can be implemented with a local gate Gi that acts on the
three register pairs corresponding to positions i − 1, i and i + 1 (where the sum of ±1 is
of course performed in Z/NZ arithmetic). Since all the Ci operators are the same up to a
positional change, they can then be all represented by the same local gate G, in a different
position each time. This gate G is then the second gate that we will use in the simulation.

Looking back, we can see that the repeated application of the F operator has been in-
troduced in the definition of W in order to later obtain the decomposition in Equation 3.19
and therefore be able to simulate the global evolution V with a composition of local op-
erators. This parallels the application of a similar operator in [8] when looking into the
simulation of Quantum Cellular Automata (QCA) by circuits. A similar trick is also used
in [42] while discussing the classification of two-dimensional QCA, with its usage being
first attributed to unpublished work by Kitaev.

3.3.3 Locality and parallelism

Our goal here is to make a successful appeal to Theorem 1 in order to show that for
i ∈ {0, . . . , N − 1} the operator Ci can be implemented with a local gate G acting on the
register pairs (Si−1,Ti−1), (Si,Ti), and (Si+1,Ti+1).

In our application of Theorem 1, X corresponds to the state space for the register
pair (Si,Ti), while Y corresponds to the state space for the register pairs (Si−1,Ti−1) and

32

(Si+1,Ti+1), and Z corresponds to the state space for all other registers. In other words,
we have that

X = Si ⊗ Ti, Y = Si−1 ⊗ Ti−1 ⊗ Si+1 ⊗ Ti+1, Z =
⊗

j /∈{i−1,i,i+1}

Sj ⊗ Tj. (3.21)

Registers X, Y and Z in Theorem 1 are associated then with the registers corresponding to
X , Y and Z, respectively.

The projector Π will project in our application of Theorem 1 into the subspace of
KN spanned by the basis states where there is exactly one index i such that the register
Si contains a non-zero value (i.e., the basis states representing only one head, no matter
whether it has already moved or not). This subspace is left invariant by the application of
V , and is also left invariant by the application of Fj and Cj, for any j ∈ {0, . . . , N − 1}.
Therefore, states at any point in the execution of our simulating circuit will always belong
to that subspace Im(Π). Note that this is not the case if one was to consider the subspace
Im(A). For example, the operator Fj can map some inputs in Im(A) to outputs in Im(A)⊥,
by marking the head as already moved.

As for the decomposition of the projector Π with the structure displayed in Equation
2.4 that must exist in order to apply Theorem 1, we write

Π = ∆0 ⊗ Λ1 + ∆1 ⊗ Λ0. (3.22)

In this decomposition, for k ∈ {0, 1} we have that ∆k ∈ Proj(X ⊗ Y) projects into the
subspace of X ⊗ Y representing exactly k heads in registers Si−1, Si, and Si+1. For
k ∈ {0, 1}, Λk ∈ Proj(Z) has a similar meaning but now considering all registers Sj
for j /∈ {i− 1, i, i+ 1}.

The local operator X ∈ L(X) in Theorem 1 will correspond to F in our application. As
for the unitary operator U , it will correspond to V here. We observe that since the head in
a quantum Turing machine moves one step at a time, V is X→ Y causal relative to Im(Π).
That is to say, for ρ ∈ D (X ⊗ Y ⊗ Z) such that ΠρΠ = ρ (i.e. such that Im(ρ) ⊆ Im(Π)),
it follows from the one-step-at-a-time movement pattern that TrY⊗Z(V ∗ρV) is uniquely
determined by TrZ(ρ). Note that this can be false without the assumption that ΠρΠ = ρ.
The reason for this is that without assuming that Im(ρ) ⊆ Im(Π) the behavior of V will
depend on the number of registers Sj with j /∈ {i−1, i, i+1} that contain a non-zero value,
since the action of V depends on whether its input is in Im(A) or not, by the definition in
Equation (3.16).

33

Finally, F is unitary by definition, and [V ∗(F ⊗ IY⊗Z)V,Π] = 0. The commutation
relation follows from the fact that V , F ⊗IY⊗Z and V ∗ are all block diagonal with respect
to the blocks defined by Im(Π) and Im(Π)⊥.

We obtain then by the application of Theorem 1 that there is an operator G ∈ U(X⊗Y)
such that

ΠV ∗(F ⊗ IY⊗Z)VΠ = Π(G⊗ IZ)Π. (3.23)

Since Ci = V ∗FiV = V ∗(F ⊗ IY⊗Z)V , this gives us a gate G that can be used to
implement the operator Ci as long as inputs in Π are concerned, when applied to registers
(Si−1,Ti−1), (Si,Ti), (Si+1,Ti+1). As discussed before, only inputs in Π will occur during
intermediate steps in the application of the operators in W , given an input in Im(A) to
W . The gate G suffices then for our purpose of simulating U by implementing W (or more
exactly, implementing an evolution that agrees with W as far as inputs in Im(A) ⊆ Im(Π)
are concerned). Note that the application of Theorem 1 allow us to find this gate G without
directly manipulating any algebraic expressions corresponding the entries of Fi and V .

For the overall degree of parallelism for the circuit, we can see in Figure 3.4 that we can
completely parallelize the final applications of the F gates, since they all act on different
registers. Since the G gates commute with each other and act on three pairs of registers
each, we can generally parallelize them into three layers (with up to two additional layers
with one operator each in order to deal with boundary cases).

Naively, one might say that for our gates to be geometrically local, we would need
to arrange our wires in a circle or cylinder, in order to match the loop structure of the
tape. There are however several ways of slightly modifying our construction so that the
gates are geometrically local while in a standard linear layout. One way is by flattening
such a cylinder, interweaving its two sides after the flattening, and increasing the local
neighborhood size from 3 to 5. Alternatively, one can instead use the fact that in a
standard quantum Turing machine computation the head begins in the 0 position, and
then make this position correspond to cell bN/2c = t in the looped tape. If so, one can
add a constant number of wires adjacent to the wires for registers 0 and M − 1, and keep
the circuit as it is, but without implementing the G and F gates corresponding to those
new wires. This is valid because the head is never going to reach those positions within
t steps, and therefore all the gates in that part of the circuit will just then act trivially in
the simulation.

Note that 7-locality for the implementation of Ci = V ∗(F ⊗ IY⊗Z)V would be con-
siderably easier to establish, relative to the assumption that inputs belong to Im(Π). In
brief, the reason for this is that in the product V ∗(F ⊗ IY⊗Z)V , the actions of V ∗ and V

34

will cancel unless F ⊗ IY⊗Z does not act as the identity. However, since V can only move
the head one step at a time, the only way in which this can happen is if the head is in a
position corresponding to the range {i−1, i, i+1} before the application of V . Since V and
V ∗ each move the head one step at a time, this means that the corresponding output of
V ∗(F⊗IY⊗Z)V will have the head in a position corresponding to the range {i−3, . . . , i+3}.
Furthermore, both V and V ∗ read/write to only the registers in the simulation within the
head’s range of movement. Therefore, the product of operators V ∗(F ⊗ IY⊗Z)V will nei-
ther modify the registers outside the range {i − 3, . . . , i + 3}, nor use their content in
order to determine its action. This 7-locality would not however give us a full conceptual
understanding of the operators in our simulation. Furthermore, it would not lead to the
explicit expression for the action of G that we present in Section 3.3.4 (it would lead to
an algebraically more complex expression), since the computation there implicitly uses the
fact that G is known to be 3-local.

3.3.4 Behaviour of the local gate G

We can easily read off from Equation (3.23) the action of G when it acts on standard basis
states. By linearity, this characterizes the action of G on all input states:

1. For input standard basis states of one of the forms

|0, a1〉 |p2, a2〉 |0, a3〉 , (3.24)

|−p1, a1〉 |0, a2〉 |0, a3〉 , (3.25)

|0, a1〉 |0, a2〉 |−p3, a3〉 , (3.26)

with p1, p2, p3 ∈ Q, G acts as the identity. In the first of these cases, the reason for
this is that after V is applied F acts as the identity, and V ∗ then cancels V . In the
other two cases, all three of those operators act as the identity.

We also take G to act as the identity on input standard basis states of the form
|q1, a1〉 |q2, a2〉 |q3, a3〉 where two or more of the values q1, q2, and q3 are nonzero (i.e.
standard basis states representing more than one head in the local range that G acts
upon and therefore not included in Im(Π)). Note that we are free to chose the action
of G on these basis states, as long as unitarity is maintained and the space that the
states span remains invariant.

35

2. For input standard basis states of the form |0, a1〉 |−p2, a2〉 |0, a3〉, where p2 ∈ Q, and
a1, a2, a3 ∈ Γ, G performs the following transformation:

G : |0, a1〉 |−p2, a2〉 |0, a3〉 7→∑
p1∈Q
b1∈Γ

δ(p1, b1)[p2, a1,+1] |p1, b1〉 |0, a2〉 |0, a3〉

+
∑
p3∈Q
b3∈Γ

δ(p3, b3)[p2, a3,−1] |0, a1〉 |0, a2〉 |p3, b3〉 .

(3.27)

3. For input standard basis states of the form |p1, a1〉 |0, a2〉 |0, a3〉 or |0, a1〉 |0, a2〉 |p3, a3〉,
where p1, p3 ∈ Q and a1, a2, a3 ∈ Γ, G performs the following transformation:

G : |p1, a1〉 |0, a2〉 |0, a3〉 7→∑
q2∈Q
b1∈Γ

δ(p1, a1)[q2, b1,+1] |0, b1〉 |−q2, a2〉 |0, a3〉

+
∑

q1∈Q, r0∈Q
b1∈Γ, c1∈Γ

δ(p1, a1)[r0, c1,−1]δ(q1, b1)[r0, c1,−1] |q1, b1〉 |0, a2〉 |0, a3〉 .

(3.28)

and

G : |0, a1〉 |0, a2〉 |p3, a3〉 7→∑
q2∈Q
b3∈Γ

δ(p3, a3)[q2, b3,−1] |0, a1〉 |−q2, a2〉 |0, b3〉

+
∑

q3∈Q, r4∈Q
b3∈Γ, c3∈Γ

δ(p3, a3)[r4, c3,+1]δ(q3, b3)[r4, c3,+1] |0, a1〉 |0, a2〉 |q3, b3〉 .

(3.29)

We can observe that the amplitudes in G have a fairly straightforward dependencies on
the amplitudes for δ that just involves taking products, sums, and complex conjugations.

Note that in the third case, one might expect from the expression in the left-hand
side of (3.23) that there would be terms where the head ends up outside the considered
range of registers. For example, in (3.28) we might expect to have a term where the head
first goes left with the application of V and then goes left again with the application

36

of V ∗. However, we know from our application of Theorem 1 and the corresponding
structure of the right-hand side of (3.23) that such terms cannot exist, which means that
the corresponding coefficients that would be derived from δ must be zero for any choice of
quantum Turing machine. The correctness of our construction gives then a method to arrive
to this knowledge without explicitly using the properties of the entries in δ determined
in [23] and presented in Section 3.2.1. Note that one could also aim to use those properties
in order to further simplify the expressions in (3.28) and (3.29), which we have not done
in light of our purpose of illustrating how the amplitudes in G can be read off in a simple
manner from Equation (3.23).

3.3.5 Recapitulation of the simulation procedure

In short, the procedure that we consider in order to simulate with a circuit a quantum
Turing machine M for t steps, given a string x of length n ≤ t, is the following:

1. We simulate an equivalent computation on a looped-tape quantum Turing machine
of length N = 2t+1. In order to represent the cells in this tape, we use in our circuit
N = 2t+ 1 register tuples (S0,T0), . . . , (SN−1,TN−1).

2. Let G be the gate defined by the entries in δ as specified in Section 3.3.4. The
simulating circuit applies the gate G to each set of three adjacent register pairs
(Si−1,Ti−1), (Si,Ti), (Si+1,Ti+1), where adjacency is determined in Z/NZ arithmetic.
These applications commute with each other and can be parallelized when they act
on non-overlapping sets of registers, as illustrated in Figure 3.4. Then, a copy of the
F gate is applied to each of the registers S0, . . . , SN−1. These applications of the G
gates and F gates are repeated t times.

3. The final configuration of the machine M after t steps will correspond now to the
state of the registers (S0,T0), . . . , (SN−1,TN−1). If desired, an additional circuit can
be appended in order to transform the encoding of the output configuration (same
applies to prepending a circuit for translating the encoding of the initial configura-
tion).

3.3.6 Complexity analysis

The applications of the gate G for one step of the simulation can be parallelized to a
small constant number of layers (3 to 5, see caption of Figure 3.4). This follows from

37

the facts that they all commute with each other and act each on a set of 3 register pairs.
Together with the one layer of applications of the gate F , this gives us O(1) circuit depth
and O(N) = O(t) circuit size for simulating one step of a QTM. Concatenating t times we
obtain a circuit with O(t) depth and O(t2) size.

Regarding the generation of the circuit, we take it that the state set and alphabet for the
quantum Turing machine M are of constant size (if they are not, the circuit generation will
still run in polynomial time as a function of their size). We also assume that the entries
of δ are provided and of constant size. If one wishes to instead encode the amplitudes
for δ in a non-explicit way, then any negative properties of the computation process for
these amplitudes would be inherited by the procedure here that builds the simulating
circuit. Related to this concern, note that in order to consider a set of quantum Turing
machines that covers the complexity class BQP, it is enough to consider those with rational
amplitudes, as earlier discussed in Section 3.2.1 and proved in [2]. Note also that if the
amplitudes in δ are restricted to be in a finite set, the amplitudes in G will also similarly
be restricted to a finite set. In particular, the structure of G examined in Section 3.3.4
determines that it suffices to consider the finite set obtained by starting with the amplitudes
in δ, adding to the set their conjugates, then adding all pairwise products, taking the closure
under addition restricted to membership within the complex unit disk, and finally adding
the numbers 0 and 1 if needed.

The regularity of our circuit guarantees the uniformity of our construction. More
precisely, for any quantum Turing machine M to simulate, there is a deterministic Turing
machine with a logarithmic amount of writable space (and a separate output tape) such
that on input 1n01t, produces a description of a quantum circuit that simulates M on
inputs of length n for t steps. This corresponds to the fact that due to the regularity of the
circuit pattern, the bottleneck for space consumption in the circuit generation is simply
to store counters about where in the process are we along the vertical and horizontal axis.
Note that one could instead consider the specification of M as a constant-sized input to the
deterministic Turing machine that builds the circuit, given our assumptions in the previous
paragraph.

Retaining the asymptotic performance of the simulation adds constraints to the space of
possible alternative encodings that can be used through preprocessing and postprocessing
operations. However, these constraints are fairly minor and still allow for a wide variety of
encodings. In particular, the complexity of the construction will not change as long as we
have (uniform) preprocessing and postprocessing circuits with size O(t2) and depth O(t),
which allows for a wide variety of procedures.

In particular, it is possible to accommodate without changing the simulation the (ar-

38

guably) most obvious alternative output encoding idea. In this alternative, we express
the output through classical configurations for a (looped-tape) quantum Turing machine.
These classical members of HN can be represented through a function f as a sequence of
N + 2 integers corresponding to q ∈ Q, i ∈ Z/NZ, and T (j) ∈ Γ ∈ for j ∈ Z/NZ. We
will refer as G to the state space spanned by the linear combinations of these tuples. It is
possible to express the output of our circuit in this format with a circuit of O(t log t) size
and O(log t) depth. To see why, one can first consider a classical circuit with the desired
performance, and then convert this to a reversible circuit using standard techniques (see
e.g. [16, 105]).

Such a classical circuit can be obtained by recursively combining the information in the
Si registers (note that for the content of the tape in the Ti registers, the encoding does
not change). This recursion technique results in a circuit with depth O(logN) = O(log t)
and size O(t log t). After making usage of standard reversible techniques, this turns into
a reversible circuit with the same complexity that for each standard basis configuration
h ∈ Im(A), maps |h〉 |y〉 to |h〉 |y ⊕ f(x)〉, where f is the encoding transformation specified
in the previous paragraph, y is an arbitrary standard basis member of G, and the ⊕
operation is executed bitwise on each of the N + 2 integers in the tuple. This circuit
might also make usage of a O(t log t) number of auxiliary inputs set to a fixed |0〉 state
and returned to this state after the execution of the circuit. Quickly summarizing those
standard techniques, this reversible circuit can be obtained by first expressing each classical
gate through reversible (e.g. CNOT or Toffoli) gates, then using CNOT gates to write
the answer into the output bits (this is the part that takes y to y ⊕ f(x)), and finally
concatenating in reverse order the reversible gates we used to compute the answer, which
sets all other registers back to their initial state.

One might object to the fact that the gate G in our circuit depends on the structure
of δ, instead of belonging to a standard gate set. If one is instead interested in a simulation
with overall error ε using a fixed universal set of gates, then each copy of G must be
implemented with accuracy on the order of O(ε/t2). Implementing G with this accuracy is
possible with circuits of size polylogarithmic in t and 1/ε, as established (constructively and
efficiently) by the Solovay–Kitaev theorem [34, 60]. That will increase the size and depth
bounds for our circuits by this polylogarithmic factor. Alternatively, if we assume that
arbitrary single-qubit gates can be implemented, then one can build the gate G exactly
out of a constant number of CNOT and single-qubit gates (the single-qubit gates will
depend on the entries in δ, as does G). This follows from the work in [13]. Regarding
the implementation of single-qubit gates themselves, it is of interest to consider the main
result in [61], which shows how to optimally use Clifford and T gates in order to implement
those single-qubit unitaries that have all of their entries in the ring Z[1√

2
, i].

39

It is also natural to consider possible tradeoffs between circuit size and circuit depth,
following the existence of such improvements in the classical context. More in detail, one
can classically improve on the circuit corresponding to Figure 3.3, and obtain a circuit
size of O(t log t) [98, 91]. Doing so is non-trivial, and involves a reduction from Turing
machines to oblivious Turing machines. These are a subcategory of Turing machines with
the additional property that the position of the tape head at time t follows a fixed pattern
as a function of t that is independent of the input to the machine, given a fixed input
length. In order to simulate such a Turing machine by a uniformly generated circuit, one
can start with the circuit pattern in Figure 3.3, and then trim all but a constant number
of applications of f per time step of the simulation. In particular, if at time t the head is
known to be in position pt, one can only keep the three instances of f that write to registers
indexed by positions pt − 1, pt and pt + 1. It is known that for any Turing machine M
we can efficiently construct a 2-tape oblivious Turing machine that simulates t steps of M
while taking O(t log t) steps itself. While the construction in Figure 3.3 does not trivially
extend to the multi-tape case, it does so in the trimmed case where we assume we know
the position of the heads at each time. By simulating in this way the oblivious 2-tape
machine with a circuit, one can then obtain uniformly generated circuits that simulate t
steps of M with size O(t log t) and depth O(t log t) (observe that the bound on the depth
increases from the original O(t)-depth construction, while the size bound decreases). It is
an open problem [1] whether this circuit size can be improved upon.

In the quantum case, Carpentieri has presented [29] a construction for simulating a
standard quantum Turing machine with an oblivious 4-tape quantum Turing machine (i.e.
a quantum Turing machine where after any step, the machine is in a superposition of
classical configurations for which the positions of the 4 heads are all equal to a given
predetermined position). Based upon the correctness of the construction in [29], one can
then obtain a circuit for the simulation of quantum Turing machines by a quantum circuit
with size and depth O(t log t). This follows from considering that in the multi-tape version
of our Turing machine simulation variant (to be presented in Chapter 4), all but a constant
number of the applications of G can be removed if the machine to simulate is oblivious
and has a constant number of tapes. The reasoning for this follows a similar logic as
in the classical case together with the observation that the applications of G commute
with each other, and is presented in more detail in Section 4.2.4. Note that the oblivious
quantum Turing machine in [29] allows for stationary tape movements, but this minor
change does not prevent the application of our simulation technique (see Section 3.3.8 for
further discussion of how the steps in our construction and proof go through with a possibly
stationary tape head or other similar modifications).

One can also use the techniques in [112] that convert between quantum Turing machines

40

and a subclass of one-dimensional quantum cellular automata in order to make the position
of the tape-heads deterministic, but this would not help us improve on the O(t2) circuit
size. In particular, we can first simulate t steps of a QTM with O(t) steps of a QCA,
and then simulate those steps with O(t2) steps of a QTM such that the head position
is deterministic. However, the extra number of steps cancels then the advantage from
knowing that the head position is deterministic. These techniques could also be used in
an alternative method for obtaining a circuit that simulates t steps of a quantum Turing
machine while having O(t2) size O(t) depth. This would be by first simulating t steps of a
QTM with O(t) steps of a QCA, and then composing that with the method in [8] for the
simulation of quantum cellular automata.

One final observation regarding the circuit size of our simulation variant is that if one
compares with the quantum cellular automata simulation in [8], there is a reduction of
the multiplicative constant associated with certain space costs. This corresponds to the
replacement in the cellular automata case of the state space Γ associated with each cell
by the state space Γ2 in the corresponding circuit simulation, which is not necessary here
(we do however need to explicitly store an element of {−|Q|, . . . , 0, . . . , |Q|} for each cell).
As discussed in Section 4.2.2 of [71], such a saving in half of space consumption is also
present in the work published in [7] that looks into the simulation of reversible causal graph
evolutions that generalize cellular automata.

3.3.7 Differences with Yao’s original simulation

There is a gate in Yao’s construction that plays a role similar to G here, and it is then
of interest to compare G with that gate. The most relevant observation from such a
comparison is that in Yao’s definition, unlike our case, there is a non-trivial transition out
of the situation where the head is on the middle cell out of the 3, and it has not been
moved yet, as follows:

G : |0, a1〉 |p2, a2〉 |0, a3〉 7→∑
q2∈Q
b2∈Γ

δ(p2, a2)[q2, b2,−1] |−q2, a1〉 |0, b2〉 |0, a3〉

+
∑
q2∈Q
b2∈Γ

δ(p2, a2)[q2, b2,+1] |0, a1〉 |0, b2〉 |−q2, a3〉 .

(3.30)

(More precisely, Yao does this for QTMs that allow for stationary tape heads, and we
present here the simplified form when such transitions are not allowed).

41

The rest of the action of the gate in Yao’s construction (about which we will say more
later in this section) is defined first so that there is a certain subspace where the gate acts
as the identity, and then an existence proof is provided for the possibility to complete the
rest of entries for the corresponding unitary through solving a linear system.

Yao’s construction does however involve a different circuit pattern to that in Figure 3.3.
In Yao’s construction, the corresponding gate G is also being applied to each tuple of
three adjacent register pairs, but these operators are being applied in a cascading pattern,
rather than in parallel, which does naively leads to a O(t2) depth with a O(t2) circuit
size in order to simulate t steps of a quantum Turing machine. It is however possible
to perform only minor modifications to this construction to achieve parallelism similar to
the O(t) depth for the variant we present. One approach to doing this is to parallelize
the cascades corresponding to each of the steps in the simulation, similar to pipelining in
computer architecture. A second approach is to alter the definition of the subspace where
the equivalent of the gate G acts as the identity in order to make this definition symmetrical
with respect to the leftmost and rightmost register tuples in the neighbourhood that the
gate acts upon, which leads to commutation properties similar to the ones that allow
parallelism in our variant.

We now discuss at a high level the reasons that guide the structure of Yao’s construction.
This discussion will be helpful in Chapter 4 when we consider how does our analysis of
parallelism modifications to Yao’s construction extend to the multi-tape generalization of
the construction.

The main guiding force behind the structure of the definition is that we want the output
states obtained in Equation (3.30) not to be perturbed by other copies of G applied later
in the simulation. However, we cannot say that G will act as the identity on all input
states that represent a head that has already been moved. In particular, G cannot act as
the identity on the outputs in (3.30) that are of the form∑

q2∈Q
b2∈Γ

δ(p2, a2)[q2, b2,−1] |−q2, a1〉 |0, b2〉 |0, a3〉

+
∑
q2∈Q
b2∈Γ

δ(p2, a2)[q2, b2,+1] |0, a1〉 |0, b2〉 |−q2, a3〉 ,
(3.31)

since then it would not correspond to an injective function. We need then G to act as
the identity on a space that is wide enough to encompass what such states in (3.31) look
like to future copies of G, but which also remains orthogonal to the states of the form in
(3.31) themselves. Such a space is found in the work from Yao, with the orthogonality with

42

respect to the space spanned by the outputs in (3.31) being derived using the Bernstein-
Vazirani conditions that we discussed in Section 3.2.1. At a more abstract level, the
orthogonality corresponds to the fact that the inner product between the evolution under
U of different standard basis states in HN must be 0. Since neither this general principle
nor the Bernstein-Vazirani conditions have a sense of directionality, the reasoning can also
be extended to the space corresponding to what the entry of G corresponding to position
i− 1 could see if we first move the head from position i. This justifies the definition tweak
that we previously described to Yao’s version of the gate G in order to make all of its
applications in a step of the simulation commutative.

Finally, we note that the work in [119] also briefly considers the natural question of
finding an inverse transformation: generating a quantum Turing machine computation
equivalent to a quantum circuit computation. It observes that there are two parts to the
work involved in such a simulation. The first part consists of simulating elementary quan-
tum gates with a quantum Turing machine computation, for which one can make usage of
the ideas discussed in Section 6 of [23]. The second part corresponds to deterministically
following the circuit diagram. This will determine the overall complexity of the construc-
tion, and will be reliant on the specific choice of encoding for the circuit diagram. For each
choice of encoding, optimizing this step will then correspond to an exercise in the design
of reversible deterministic Turing machine computations.

3.3.8 Sensitivity to model choice

As previously mentioned in Section 3.2.3, it is reasonable to consider modifications to
quantum Turing machines and see whether our construction and proof extends to the
simulation of these modified models.

It is easy to see that if one allows stationary tape movements, none of the general facts
about causality that we use in of our simulation to apply Theorem 1 are violated, and
the proof of correctness goes through without issues, with the only change being in the
structure of G that we get when we read off its entries from δ.

Even further, if we have a 2-dimensional tape, our results on unitary causal systems
can be applied as well. We provide more detail below of the extension of our construction
to 2-dimensional tapes with a possibly stationary head. This level of specific detail is not
provided as an endorsement of that particular modification, but rather as an explicit step-
by-step example illustrative of the straightforward extension of our work to other models.
The reasoning there can be extended to many other hypothetical situations (like say a

43

head that reads and writes to two adjacent cells), which can also then be handled within
the causality framework involved in our proof.

However, a case where our proof here cannot be trivially extended is the 2-tape case,
since as far as one of the heads is concerned, the other head can be anywhere on the other
tape, which conflicts with the definition of causality that is involved in our construction.
However, it is possible with some work to get around this obstacle, as will be discussed
further in Chapter 4.

Extension to 2-dimensional tapes

A quantum Turing machine on a 2-dimensional tape with a possibly stationary head cor-
responds to a transition function of the form

δ : Q× Γ→ CQ×Γ×{−1,0,+1}×{−1,0,+1}. (3.32)

Now there is a second decision to make regarding the movement of the head, since there
is one decision for each of the axes of movement. More in detail, for a ∈ Γ and p ∈ Q,
δ(p, a) represents again the behavior of the tape head when it is in the state p and over
a cell containing the symbol a. If δ(p, a)[(q, b,D1, D2)] = α for (q, b,D1, D2) ∈ Q × Γ ×
{−1,+1}× {−1,+1}, we have that in such a situation α is the amplitude for the machine
to write the symbol b to the tape and transition into state q, while its coordinate along the
first axis of movement changes by D1 and its coordinate along the second axis of movement
changes by D2.

The configuration space is now spanned by all possible tuples of the form (i, j, q, T),
where i, j ∈ Z, q ∈ Q, and T : Z×Z→ Γ is a function that assigns the blank symbol to all
but a finite number of elements of Z×Z. The finite-dimensional equivalent of the machine
used for the purposes of our simulation will now run on a torus-shaped tape. The cells in
this tape will then be indexed by the elements of Z/NZ × Z/NZ, for N = 2t + 1. The
configuration space for the torus-tape machine will meanwhile be spanned by all tuples of
the form (i, j, q, T), where i, j ∈ Z, q ∈ Q, and T : Z/NZ× Z/NZ→ Γ.

As for the registers in the simulation, there will be a register tuple (Si,j,Ti,j) for each
tape position (i, j) ∈ Z/NZ×Z/NZ, with a similar meaning as in the standard tape case.
The global state space for these registers will be denoted as KN , and there will be again a
unitary V ∈ U(KN) that acts on them as derived from the QTM transition function δ. This
unitary V will again act non-trivially only on the subspace of KN spanned by standard
basis states where exactly one of the Si,j registers has a nonzero value, and that value is

44

positive. That subspace will remain invariant under the action of V , and it suffices again
to implement a circuit that agrees with V on it.

The operator F is exactly the same as in the standard case, and so is the product
of operations W described in Equation (3.17) and Equation (3.19) that is applied in the
circuit in order to simulate one step of the quantum Turing machine. The applications of a
F conjugated by V do again commute with each other since the applications of F commute
with each other, and it is proved through Theorem 1 that they can be implemented through
a 9-local gate G. More in detail, there is one application of Theorem 1 for each position
(i, j) ∈ Z/NZ × Z/NZ. In this application, Π projects again into the subspace for KN
where exactly one of the Si,j registers contains a non-zero value (either positive or negative).
X corresponds again to the state space Si,j for register X = Si,j, while Y corresponds to the
state space for its neighbours (including diagonal ones), and Z corresponds to the state
space for the rest of registers, bundled in a register Z. Graphically, we can represent this
by saying that the state space Y corresponds to the following range of registers:

Y =

 (Si−1,j−1,Ti−1,j−1) (Si,j−1,Ti,j−1) (Si+1,j−1,Ti+1,j−1)

(Si−1,j,Ti−1,j) (Si+1,j,Ti+1,j)

(Si−1,j+1,Ti−1,j+1) (Si,j+1,Ti,j+1) (Si+1,j+1,Ti+1,j+1)

 . (3.33)

Y → X causality follows again from the one-cell-at-a-time movement of the head along each
of the two axes of movement, and Π can be decomposed into two terms corresponding to
the case where the one head is in (X,Y) and the case where it is in Z, respectively. After
consequently applying Theorem 1, the copy of G corresponding to each value of i and j
is then being applied to the 3× 3 grid of registers corresponding to X and Y. Since there
are O(t2) possible choices of (i, j), this leads to a O(t3) total size for the circuit, while the
depth remains O(t), since each application of G overlaps only with a constant number of
the other applications.

As for the specific action of G, it can again be read off from the fact that

Π(G⊗ IZ)Π = ΠV ∗((F ⊗ I)⊗ IY⊗Z)VΠ. (3.34)

One observes then that the action of G will be non-trivial only in the case where there is
exactly one non-zero value in the Si′,j′ registers included in X or Y, and furthermore, the
value is negative when it corresponds to Si,j, and positive otherwise.

In k-dimensional settings, the construction here would again go ahead, with the main
difference that Y would now contain 3k − 1 register tuples, and G would consequently be
3k-local.

45

Yao’s original method can also be extended to a 2-dimensional tape setting. However,
the polynomials in the entries of δ (and their conjugates) that one needs to considerate
explicitly in order to extend the construction and its proof do increase substantially in
their complexity, and would so even further if one was to increase the dimension k of the
tape.

3.4 Equivalence between unitarity and isometricity

for QTM evolution operators

As shown in [22, 23], any candidate transition function δ for a quantum Turing machine
will induce a global unitary evolution in configuration space if and only if it induces a
global isometric evolution. We will use our introduction of a looped-tape quantum Turing
machine model in order to give a more abstract and computationally simpler proof for this
statement.

3.4.1 Setting

For an arbitrary finite set of states Q and alphabet Γ, we consider a QTM transition
function candidate δ : Q × Σ → CQ×Γ×{−1,1} such that ‖δ(q, σ)‖ = 1 for all q ∈ Q, σ ∈ Γ.
This function δ induces a configuration space evolution Uδ ∈ L (H), with H and Uδ defined
as in Section 3.2.1. We will also similarly refer to Uδ,N ∈ L (HN) as the evolution operator
associated with using δ in a looped-tape QTM with N cells.

In order to transform between the looped-tape QTM setting and the standard QTM
setting, we define for each value of M ∈ Z/NZ the linear operator VN,M : HN → H, which
embeds the finite tape into the infinite one by aligning the 0 position, and cutting the loop
between position M and position M + 1. More rigurously, this operator is of the form∑

(p,i,T)

|p, i, TM 〉 〈p, i, T | , (3.35)

where the sum iterates over all standard basis states for HN (i.e. all classical configura-
tions), and

TM(i) =


T (i), if 0 ≤ i ≤M

T (i+N), if M − (N − 1) ≤ i ≤ −1

0 (i.e. the blank symbol) otherwise

(3.36)

46

For convenience, we will refer to VN,N−1 (which simply assigns cell i in the looped tape to
cell i in the infinite tape) as VN .

3.4.2 Result and proof

The statement that we prove here is the following:

Theorem 2. The operator Uδ ∈ L (H) induced by a transition function candidate δ is a
unitary if and only if it is an isometry.

This statement is non-trivial since L (H) is an infinite-dimensional space. Note however
that ∀N , Uδ,N is an isometry if an only if it is unitary, since it operates on a finite-
dimensional Hilbert space. The statement in Theorem 2 follows then from the following
statements, since the right-hand-side of the if and only conditions are equivalent, which
establishes the equivalence of the left-hand-side conditions:

Lemma 3. The operator Uδ induced by a transition function candidate δ is an isometry if
and only if Uδ,N is an isometry for all values of N ≥ 5.

Lemma 4. The operator Uδ induced by a transition function candidate δ is unitary if and
only if Uδ,N is unitary for all values of N ≥ 5.

The proofs of these lemmas follow:

Proof of Lemma 3. Uδ will be an isometry if and only if for any two distinct elements x1

and x2 of the standard basis for H, it holds that 〈Uδx1, Uδx2〉 = 0. Similarly, Uδ,N will be
an isometry if and only if for any two distinct elements y1 and y2 of the standard basis for
HN , it holds that 〈Uδ,Ny1, Uδ,Ny2〉 = 0.

To prove the ⇐ direction of the lemma, observe that since Uδ moves the head one step
at a time, there is a value of N ′ ∈ N such that ∀N ≥ N ′,

〈Uδx1, Uδx2〉 = 〈V ∗NUδx1, V
∗
NUδx2〉 = 〈Uδ,NV ∗Nx1, Uδ,NV

∗
Nx2〉 . (3.37)

Since V ∗Nx1 and V ∗Nx2 are members of the standard basis for HN , the desired statement
follows.

To prove the ⇒ direction of the lemma, consider two different states y1 and y2 of the
standard basis for HN . If N ≥ 5, then either the head position is the same for y1 and y2,

47

or the sets of possible head positions corresponding to Uδ,Ny1 and Uδ,Ny2 can overlap in at
most one cell of the tape. Therefore, there exists a value M ∈ Z such that

〈Uδ,Ny1, Uδ,Ny2〉 = 〈VN,MUδ,Ny1, VN,MUδ,Ny2〉 = 〈UδVN,My1, UδVN,My2〉 . (3.38)

(i.e. one can pick a value of M such that the mapping VN,M does not cut-off the part
of the looped tape through which Uδ,Ny1 and Uδ,Ny2 meet each other when mapping to a
conventional two-way infinite Turing machine tape). The desired statement then follows.

Proof of Lemma 4. The lemma follows from Lemma 3 together with the following claim: if
Uδ,N is unitary for all N ≥ 5, then every standard basis element in H has a pre-image in Uδ.

We will now prove that claim. To do so, we consider an arbitrary element x in the
standard basis for H. For N large enough, and any value of M ∈ {0, . . . , N − 1}, we have
that V ∗N,Mx 6= 0, and therefore ∃y ∈ HN , ‖y‖ = 1, such that y = U−1

δ,NV
∗
N,Mx. Note that

since U−1
δ,N = U∗δ,N , all head positions in y must be adjacent in the looped tape to the head

position for V ∗N,Mx. Then, there will be at least one value of M such that VN,M does not
change the distance between the possible head positions for y when applied, and it will
hold then that Uδ(VN,My) = VN,MUδ,Ny = x, so x has a pre-image in Uδ, as desired.

3.4.3 Generalizations

The proof given here extends without issues to the case of quantum Turing machines with
a multi-dimensional tape, as well as quantum Turing machines where the tape must remain
stationary, since each of the individual steps in the reasoning will go through with only
cosmetic modifications.

However, there are limits to the extent to which the statement we prove can be applied
to families of automata-like systems. For a simple construction of an automata-like system
whose global evolution is isometric but not unitary, one can consider a one-way infinite
tape where the system’s evolution transfers the state of a cell into the cell to its right,
and assigns a blank state to the left-most cell. For a more complex example in a two-way
infinite tape, one can find an example in Section 2 in [19] that uses the introduction of an
entanglement pair in distant parts of the system.

It might be then of interest to further characterize the set of quantum cellular au-
tomata evolutions (giving e.g. sufficient conditions in terms of symmetries) for which a
characterization like the one here can be conducted.

48

Chapter 4

Multi-tape quantum Turing machines

This chapter is organized as follows. In Section 4.1 we introduce multi-tape quantum Turing
machines, while in Section 4.2 we examine the extension to that setting of our variant for
the circuit simulation of quantum Turing machines. Then, we consider in Section 4.3 the
additional presence of oracles.

This consideration of multi-tape quantum Turing machines represents a natural exten-
sion of the study of single-tape ones, as seen by the presence of work [81] that extends Yao’s
circuit simulation method to the multi-tape case. More generally, the naturalness of this
extended study can also be observed in the presence of multi-tape machines in standard
computing texts [5, 100] when discussing classical Turing machines. As we will further dis-
cuss in Section 4.2.4, the advantages of our variant here will be particularly notable in this
multi-tape case in terms of simplification of the corresponding algebraic manipulations.

4.1 Setting

A multi-tape quantum Turing machine still has at any point a single state chosen from a
set Q, but now reads and writes from k two-way infinite tapes in each time step. These
tapes correspond each to its own alphabet {Γ0 . . . ,Γk−1} . Formally, this corresponds to a
transition function of the form

δ : Q× Γ0 × . . .× Γk−1 → CQ×Γ0×...×Γk−1×{−1,1}k . (4.1)

49

This transition function has a similar meaning as that seen in Chapter 3 for a standard
quantum Turing machine. More in detail, for

p ∈ Q, (a0, . . . , ak−1) ∈ Γ0 × . . .× Γk−1, (4.2)

δ(p, a0, . . . , ak−1) represents the behavior of the tape head when it is in the state p and the
k heads are reading the symbols a0, . . . ak−1 respectively. If

δ(p, a0, . . . , ak−1)[(q, b0, . . . , bk−1, D0, . . . , Dk−1] = α (4.3)

for
(q, b0, . . . , bk−1, D0, . . . , Dk−1) ∈ Q× Γ0 × . . .× Γk−1 × {−1,+1}k, (4.4)

this means that in such a situation α is the amplitude with which the state of the machine
changes into q, and for all i ∈ {0, . . . , k − 1} the head for tape i writes the symbol bi to
the tape, while adjusting its position in the tape as determined by Di.

Similar to the single-tape case, we define a configuration space H. Its standard basis
corresponds now to the elements of the set

Q× Zk ×F0 × . . .×Fk−1, (4.5)

where Fj corresponds to the set of mappings of the form Z → Γj such that only a finite
numbers of inputs correspond to a non-blank value.

The transition function δ does again induce a transformation Uδ ∈ L (H) by its action
on the standard basis elements of H, and this transformation must be unitary in order for
δ to be a valid transition function. In order to define Uδ explicitly, we now re-introduce
some notation regarding tape updates. In particular, given a tape assignment T ∈ Fj and
(i, a) ∈ Z× Γj, Ti,a ∈ Fj will refer to a derived tape assignment. In this tape assignment,
the symbol in position i is assigned to be a, while all other positions take the same symbol
as in assignment T .

Then, we have that Uδ performs the mapping where a standard basis element of H
given by

∣∣p, i, T 0, . . . , T k−1
〉

is mapped to∑
q,a,D

δ(p, T 0(i0), . . . , T k−1(ik−1))[q, a,D]
∣∣∣q, i+D,T 0

i0,a0
, . . . T k−1

ik−1,ak−1

〉
. (4.6)

considering in the sum all choices of new state q ∈ Q, updated content under the heads
a ∈ Γ0 × . . .× Γk−1, and direction of movement of the heads D ∈ {−1, 1}k.

50

We again use looped tapes in order to more easily work with the spaces that arise
during our work. For a tape length N , the corresponding configuration space will then be
spanned by all tuples in the set

Q× (Z/NZ)k ×FN,0 × . . .×FN,k−1, (4.7)

where FN,j is the set of all mappings of the form Z/NZ → Γj. The transition function δ
induces as in the standard a unitary evolution Uδ,N on this configuration space, and the
fact that each head moves one step at a time means again that for N ≥ 5, Uδ,N will be
unitary if and only if Uδ was already unitary.

4.2 Extension to standard multi-tape quantum Tur-

ing machines of our variant for the simulation of

quantum Turing machines

4.2.1 Setup for extension

Similar to the single tape case, our goal here is to describe (through a constructive and effi-
cient procedure) a circuit that for a given multi-tape quantum Turing machine M simulates
for t steps its computation on inputs of length n ≤ t.

We assume that inputs are initially written on tape 0 starting on position 1, with their
elements belonging to the corresponding alphabet Γ0. Before the start of the computation,
the head initially points to position 0 in all of the k tapes. Also, we do again describe our
circuit simulation in terms of simulating an equivalent looped-tape computation. There
are k such looped-tapes, with their length equal to N = 2t+ 1, and their elements indexed
for each tape by the elements of Z/NZ, which we will also write as {0, . . . , N − 1} while
implicitly assuming that index arithmetic is performed modulo N .

Circuit representation of the QTM components

Each tape cell there will be represented in our circuit by two registers. For the a cell in
position i ∈ {0, . . . , N − 1} of tape j ∈ {0, . . . , k − 1}, these registers will be labeled as Tji
and Sji . Tji stores the contents of the tape at that cell, while Sji contributes towards storing
the current state and position of the head.

51

The state space for a register Tji is then such that the classical states for the register
will be given by the members of Γj. These members will correspond then to the basis
states for the state spaces T ji associated with each of the Tji registers, which within the
same tape are all copies of the same state space T j. For example, in a machine with at
least 3 tapes, the state spaces T 2

0 , T 2
1 , . . . , T 2

N−1 will all be a copy of the same space T 2.

As for the state space for a register Sji , the structure of the space Sji associated with the
register will be a bit more complex. More in detail, for i ∈ {0, . . . , N−1} the state space for
S0
i will be spanned by standard basis elements labeled by the set {−|Q|, . . . , 0, . . . , |Q|}.

The 0 label means that the head for tape 0 is not in position i. Otherwise, non-zero
values represent the state of the head, and negative values represent additionally that the
head has already moved. We denote the corresponding state space as S0. However, for
j ∈ {1, . . . , k− 1}, we have that the classical state space for Sji corresponds to the simple
set {0, 1}. 1 means that the head for tape j is in position i (no matter whether it has
already been moved or not), while 0 means that it is not in cell i. The state space Sji for
all values of i ∈ {0, . . . , N − 1} and j ∈ {1, . . . , k − 1} will then be a 2-dimensional state
space, which we denote as Sb.

In other words, the information about the current state and whether the heads have al-
ready moved will be kept in the registers associated with tape 0, while registers associated
with the other tapes will only store information about the position of the corresponding
heads. The Sji registers do then have for j = 0 a similar structure to that of the corre-
sponding registers in the single-tape case, while for j > 0 they do have a different and
simpler structure. This differs from the case of the Tji registers, where all registers have a
similar structure to that of the corresponding registers in the single-tape case.

The global state space for all of the registers in the circuit will be denoted as

KN = S0
0 ⊗ T 0

0 ⊗ S0
1 ⊗ T 0

1 ⊗ . . .⊗ Sk−1
N−1 ⊗ T

k−1
N−1. (4.8)

We now translate the evolution of the QTM configuration space HN to the evolution
of the state space KN for the circuit. We do this again by introducing an isometry A that
translates to the corresponding state in KN the standard basis configurations of HN . The
adjoint operator A∗ translates then to basis states of HN those standard basis elements
of KN in which for every value of j ∈ {0, . . . , k − 1}, exactly one of the Sji registers has
a non-zero value, and furthermore that value is positive in the case where j = 0 (i.e. it
translates to HN the basis states for KN representing one head per tape, with the heads
not marked as having been already moved). Then, the operator

V = AUA∗ + (I − AA∗), (4.9)

52

where U = Uδ,N , corresponds to the evolution of the state space KN that we want to match
with our circuit, as far as inputs in Im(A) are concerned. One can see that this translation
is done in exactly the same way as in the single-tape case.

Operators in simulation and their parallelization

A description of the operators involved in our variant for the circuit simulation of a multi-
tape quantum Turing machine follow. The steps involved in their definition and analysis
can be seen as generalizations of the steps taken for the single tape case in Chapter 3, with
a varying level of complexity for those generalizations.

We first define an operator F , acting on S ⊗ S⊗k−1
b (i.e., on one head-storing register

per tape). For standard basis states labeled by |q, 1, . . . , 1〉, with q ∈ Q, this operator will
transform the state into the one labeled by |−q, 1, . . . , 1〉, and vice-versa. For all other
computational basis states (those where at least one head is not in one of the registers that
F is acting upon), this operator will act as the identity. Note that as in the single-tape
case, F maps standard basis states to standard basis states, and it is equal to its own
inverse. For any value of i = (i0, . . . , ik−1) ∈ {0, . . . , N − 1}k, we label as Fi = Fi0,...ik−1

the operator that applies F to registers S0
i0
, . . . , Sk−1

ik−1
, and acts as the identity on all other

registers. The action of Fi can be seen then as a unitary that can modify register S0
i0

and

is controlled by the state in registers {S1
i1

, . . . , Sk−1
ik−1
}.

The parallelization of the Fi operators in our circuit is not obvious at first sight, since
for different values of i they can act on overlapping sets of registers, which makes their
commutation properties non-trivial. In order to deal with this, we introduce the projection
Π ∈ Proj(KN). This projection projects into the subspace spanned by standard basis states
such that there is exactly one head per tape, no matter whether they have been marked as
already moved or not (i.e., the subspace of KN spanned by basis states such that for each
value of j ∈ {0, . . . , k− 1}, there is exactly one value of i such that Tji contains a non-zero
value. We now claim that for any values of i, i′ ∈ {0, . . . , N − 1}k, it holds that

Π[Fi, Fi′]Π = 0. (4.10)

and furthermore observe that the space Im(Π) is invariant under the action of Fi. This
(partial) commutation claim follows from the fact that for any of the standard basis states
x that span Im(Π) there will be exactly one value i′′ ∈ {0, . . . , N−1}k such that Fi′′x 6= x
(the value of i′′ that corresponds to the position of the heads in x). Then, we combine this
with the previously mentioned fact that for any value of i′′′, Fi′′′ is equal to its own inverse
and corresponds to a permutation of the standard basis. Based on this, we can see that

53

for any standard basis state x in Im(Π), FiFi′x = Fi′Fix, which suffices to establish the
relation in (4.10).

We have then that the product FiFi′ (or Fi′Fi) of two operators Fi and Fi′ can be
implemented in our circuit with two parallel applications of a gate F , provided that Fi
and Fi′ act on non-overlapping sets of registers and that all intermediate states during the
execution of the circuit can be assured to belong to Im(Π) (which will be the case, as in
the single-tape situation).

One can observe that this study of the parallelization properties of the Fi operators
was somewhat more involved than its equivalent in the single-tape case, and needed the
introduction of the projection Π at an earlier point of our analysis.

As our next step, we observe that in order to implement V , it will be equivalent to
implement a circuit that agrees on Im(A) ⊆ Im(Π) with the product of operators

W = F0,...,0F0,...,0,1 . . . FN−1,...,N−1(V ∗F0,...,0V)(V ∗F0,...,0,1V) . . . (V ∗FN−1,...,N−1V), (4.11)

where the subscripts for F iterate in lexicographical order over all subindex choices of
one position per tape. This follows from considering the action of W on standard basis
states. More in detail, for every F0F1 . . . FN−1 will map elements in Im(A) to elements in
Im(A)⊥, on which V ∗ will act as the identity. Furthermore, those elements of Im(A)⊥ will
be in Im(Π), since F does not modify the number of heads. Therefore, when an element
x ∈ Im(A) is considered, it holds that

Wx = (F0,...,0F0,...,0,1 . . . FN−1,...,N−1)(F0,...,0F0,...,0,1 . . . FN−1,...,N−1)V x (4.12)

= (F0,...,0F0,...,0)(F0,...,0,1F0,...,0,1) . . . (FN−1,...,N−1FN−1,...,N−1)V x (4.13)

= V x. (4.14)

We now observe that for any i ∈ {0, . . . , N − 1}k

Ci = V ∗FiV (4.15)

is the product of three unitary operators that each leave Im(Π) invariant, and therefore
is itself a unitary operator that leaves Im(Π) invariant. We have then that for i, i′ ∈
{0, . . . , N − 1}k,

Π[Ci, Ci′]Π = V ∗Π[Fi, Fi′]ΠV = 0. (4.16)

It follows then that the operators Ci and Ci′ can be applied in any order when implementing
the product CiCi′ (or Ci′Ci).

54

Furthermore, we know that if we have local implementations for the operators Ci and
Ci′ that do not act on overlapping sets of registers, they can be applied in parallel. It
remains then to appeal to Theorem 1 to find local implementations for these operators.
We will see in Section 4.2.2 how an approach that naively generalizes the setup for applying
Theorem 1 in the single-tape case fails to establish this localizability. Then, in Section 4.2.3
we show how to modify this approach in order to make it go through in the multi-tape
case.

4.2.2 Obstacle to naive proof for the extension

We are looking for a local implementation of the operator Ci = V ∗FiV , for an arbitrary
value of i = (i0, . . . , ik−1) ∈ {0, . . . , N − 1}k. A generalization of our single-tape proof
approach results then in an invocation of Theorem 1 where the registers X, Y, Z, with
matching state spaces X , Y and Z, are as follows:

• X corresponds to {(S0
i0
,T0

i0
), . . . , (Sk−1

ik−1
,Tk−1

ik−1
)}.

• Y corresponds to {(S0
i0−1,T

0
i0−1), (S0

i0+1,T
0
i0+1), . . . , (Sk−1

ik−1−1,T
k−1
ik−1−1), (Sk−1

ik−1+1,T
k−1
ik−1+1)}.

• Z corresponds to all other registers.

In other words, X corresponds to the (Sji ,T
j
i) register pairs that the F operator is being

applied to, while Y corresponds to the register pairs for the adjacent cells in each of the
tapes, and Z corresponds to the rest of cells in the tapes.

The subspace within which our localization must work is the subspace Π where there
is one head per tape, as discussed and defined in Section 4.2.1. Informally, one can find
a decomposition of Π of the type required by the conditions in Theorem 1 by taking the
decomposition for the single-tape case and raising it to the kth tensor product, while ad-
justing for the slightly different nature in the multi-tape case of the state spaces associated
with the Sji and Tji registers.

More rigorously, we start with the tape j = 0, and consider projection families {∆0
0,∆

0
1}

and {Λ0
0,Λ

0
1}, defined along similar lines as {∆0,∆1} and {Λ0,Λ1} were in the single-tape

case. For h ∈ {0, 1}, ∆0
h projects then into the standard basis elements of X ⊗ Y where

there is exactly one value of i′0 ∈ {i0− 1, i0, i0 + 1} (i.e. corresponding to the index range
for X,Y) such that (S0

i′0
,T0

i′0
) represents a head. Meanwhile, Λ0

h has a similar meaning in

terms of the basis elements of Z and the range of indices corresponding to Z. We have then

55

that ∆0
h projects into a copy of (S ⊗T 0)⊗3, while Λ0

h projects into a copy of (S ⊗T 0)⊗N−3.
For the tape j > 0, we similarly define projector families {∆j

0,∆
j
1} and {Λj

0,Λ
j
1}. The

only difference with the j = 0 case is that for h ∈ {0, 1}, ∆j
h and Λj

h do now project
into copies of (Sb ⊗ T j)⊗3 and (Sb ⊗ T j)⊗N−3 respectively, as opposed to (S ⊗ T 0)⊗3 and
(S ⊗ T 0)⊗N−3. From this, we derive a global decomposition of Π of the type required by
Theorem 1. More explicitly, we can consider for example the case where k = 2, where the
global decomposition of Π is then given by∑

h0,h1∈{0,1}

(∆0
h0
⊗∆1

h1
)⊗ (Λ0

1−h0 ⊗ Λ1
1−h1). (4.17)

The family of operators {∆1, . . . ,∆n} in the statement of Theorem 1 is then identified in
the k = 2 case with

{∆0
0 ⊗∆1

0,∆
0
0 ⊗∆1

1,∆
0
1 ⊗∆1

0,∆
0
1 ⊗∆1

1}, (4.18)

while the family of operators {Λ1, . . . ,Λn} is identified with

{Λ0
1 ⊗ Λ1

1,Λ
0
1 ⊗ Λ1

0,Λ
0
0 ⊗ Λ1

1,Λ
0
0 ⊗ Λ1

0}. (4.19)

We do however find a problem when we try to complete this setup for the application
of Theorem 1. The problem is that V is in fact not X→ Y causal within the one-head-per-
tape subspace corresponding to Im(Π). To find an example of this, we can consider the
two-tape case, and the situation where one head is with certainty in the region of tape 0
indexed by {i0 − 1, i0, i0 + 1}, while the other head is with certainty not in the region of
tape 1 indexed by positions {i1 − 1, i1, i1 + 1}. Under those constraints, there are pairs of
states ρ and σ that agree on their content in (X,Y) before applying V , but that due to
disagreement about the tape content under the second head will not agree on the content
of X after applying V .

It is possible in particular that for both V ρV ∗ and V σV ∗ there is a head in position
i0 + 1 of tape 0 with certainty, and that the head gets moved to position i0 by V , but in
different states when comparing V ρV ∗ and V σV ∗. This would be due to the head having
read different symbols from tape 1 in the multi-tape QTM transition that V represents. In
other words, through the head in tape 1, what happens in Z affects the evolution of X. It
is necessary in light of this situation to make some tweaks in the proof approach in order
to extent our construction to the multi-tape case, as will now be discussed in Section 4.2.3.

4.2.3 Making the extension work

The key step in order to successfully find a local implementation of Ci, therefore extending
our simulation of quantum Turing machines to the multi-tape case, is to split the projection

56

Π as a sum of two projections Π1 +Π2. In this sum, Π1 projects into the subspace spanned
by standard basis states where there is only exactly head per tape, and all heads are in a
position corresponding to X ⊗Y (i.e., the head for tape j is in the range {ij − 1, ij, ij + 1}
for all values of j ∈ {0, . . . , k − 1}. Π2 corresponds to the complementary subspace of Π1

relative to Π, spanned by the classical states where there is exactly one head per tape, and
at least one head is not in a position corresponding to X ⊗ Y (i.e., the head for tape j is
not in the region indexed by {ij − 1, ij, ij + 1} for at least one value of j ∈ {0, . . . , k − 1}.

For example, in the two-tape case we have that now

Π1 = (∆0
1 ⊗∆1

1)⊗ (Λ0
0 ⊗ Λ1

0), (4.20)

while

Π2 = (∆0
0 ⊗∆1

0)⊗ (Λ0
1 ⊗ Λ1

1) + (∆0
0 ⊗∆1

1)⊗ (Λ0
1 ⊗ Λ1

0) + (∆0
1 ⊗∆1

0)⊗ (Λ0
0 ⊗ Λ1

1). (4.21)

We next apply Theorem 1 using the causality of V relative to Π1. The registers X,Y,Z
and matchings state spaces X , Y and Z are the same as in Section 4.2.2. The reason why
we can take this step now is that the type of counter-example presented in Section 4.2.2
cannot happen any more by definition of Π1, and those are the only obstacles to having
X→ Y causality hold, given the one-step-at-a-time movement of the heads. This gives us
then a gate G that can be used to implement Ci as far as inputs in Im(Π1) are concerned.

We must now deal with the case where inputs to the local gate G belong to Im(Π2). Our
argument to deal with that is that even if the statement of Theorem 1 does not guarantee
it, the operator G obtained from the previous application of Theorem 1 will work. That
is to say, even if G is derived in the context of using causality relative to Π1, it does also
give a correct output when it receives inputs belonging to Im(Π2). In order to verify that
this is the case, we examine the structure of the gate G as determined by Equation (2.26)
in Lemma 2. From this examination, one can see that G ⊗ IZ will act as the identity on
any state of the standard basis for X ⊗ Y ⊗ Z that is in

ker((∆1 + . . .+ . . .+ ∆n)⊗ IZ) = (ker(∆1) ∩ . . . ∩ ker(∆n))⊗Z. (4.22)

It is easy to see that the standard basis states that span Im(Π2) do all belong to
(ker(∆1) ∩ . . . ∩ ker(∆n)) ⊗ Z, which corresponds for our invocation of Theorem 1 to
ker(∆0

1 ⊗ ∆1
1) ⊗ Z. This is due to the split between Im(Π1) and Im(Π2) in terms of the

content of the Sji registers corresponding to (X,Y). In particular, this split means that such
standard basis states are orthogonal not only to all the standard basis states that span
Im(Π1), but also to all the standard basis states that are obtained by starting with an

57

element of Im(Π1) and then altering the content of register Z. We have then by linearity
that

Im(Π2) ⊆ (ker(∆1) ∩ . . . ∩ ker(∆n))⊗Z (4.23)

and therefore (by (2.26)), that for all states x ∈ Im(Π2), (G ⊗ IZ)x = x. It remains to
verify that this is the correct output of Ci when applied to x. This follows from the fact
that the Fi will act as the identity. More in detail, we observe that for any standard basis
state x in Im(Π2), if we compute V x and then measure the registers Sjij for all values of
j ∈ {0, 1, . . . , k − 1}, we will with probability 0 obtain the outcome where all of those
registers contain a non-zero value (i.e. the outcome where all the registers represent a
head). This follows from the fact that each of the heads in the machine move one step at a
time, and for at least one tape j, the corresponding head is at least two positions away from
position ij in x, as a pre-requisite of x belonging to Im(Π2). Therefore Fi(V x) = (V x),
and Cix = V ∗(FiV x) = V ∗V x = x.

It holds then that Ci = V ∗Fi0,...,ik−1
V agrees with G ⊗ IZ on Im(Π1) ∪ Im(Π2), which

implies by linearity that it also does so on Im(Π) = Im(Π1 + Π2). We have then now suc-
cessfully extended to the multi-tape case our argument for the ability to locally implement
Ci with a gate G.

Note that our work reveals that our reasoning in the single-tape case could have been
modified so that in the invocation of Theorem 1 we have Π = ∆1⊗Λ0. Then, the correctness
of the action of G for inputs within the subspace Im(∆0⊗Λ1) would be argued separately,
as we do here for the multi-tape case.

4.2.4 Parallelism and complexity

In our complexity analysis, we take k to be a constant, as well as the size of the state set
and the size of the alphabet set for each of the tapes.

Regarding the complexity of the simulating circuit, we have that the total number of
gates in the simulating circuit for a step of the multi-tape QTM is O(tk), counting all
possible choices of i for the Fi and Ci operators. The depth will be O(tk−1), since any
two of the Ci = V ∗Fi0,...,ik−1

V operators can be applied in parallel when they act on non-
overlapping registers. This follows from the fact that this can be done as well with the
Fi0,...,ik−1

operators, as discussed earlier in Section 4.2.1. This means then that we can
implement Θ(t) of the Ci operators in parallel, reaching then the desired depth of O(tk−1).
After we multiply that by the factor of t corresponding to simulating t steps, we have then
O(tk+1) gates with O(tk) depth.

58

We will not address concerns about uniformity, alternate encodings and implementa-
tions with standard gate sets in depth in this section, since the discussion is not substan-
tially affected when moving to the multi-tape case from the single-tape case. We refer the
reader interested in those aspects to our previous analysis in Section 3.3.6 We note that
asymptotic precision requirements for a standard gate set approximation do change, in
that now the accuracy needed for each gate will be O(ε/tk+1), rather than O(ε/t2). How-
ever, the qualitative result of then applying the Solovay-Kitaev theorem will not change,
since such a precision is still possible to achieve with a size and depth blowout that is of
polylogarithmic order in t and 1/ε.

We can now verify that the depth of the circuit for simulating a single step of the
simulation is O(1) under the oblivious assumption that the tape positions at any point t
in the simulation are deterministic as a function of t. In particular, if the heads are known
to be in position i = (i0, . . . , ik−1) at time t, one can remove in the corresponding step of
the simulation all gates except a number of them that is constant as a function of t (but
exponential as a function of k, which is a constant). The way to argue this is to remember
that in the product

W = F0,...,0F0,...,0,1 . . . FN−1,...,N−1C0,...,0C0,...,0,1 . . . CN−1,...,N−1, (4.24)

as far as inputs in Im(Π) are concerned we can reorder the product of C operators as we
prefer, and the same holds for the product of F operators. This is due to the partial com-
mutativity relations we established earlier. We can then write the product of C operators
so that it applies at the end the 3k terms corresponding to i′ ∈ (Z/NZ)k such that

|i′j − ij| ≤ 1,∀j ∈ {0, . . . , k − 1}. (4.25)

That is to say, we can move those terms to the left-most part of the product. Then, it is
clear that all other C operators will act as the identity, since for any such values of i′, we
have that Fi′ will act as the identity in the product Ci′ = V ∗Fi′V , and V and V ∗ will then
cancel each other. We can then remove all of those other C operators. Similarly, we have
that only the 5k instances of F corresponding to registers in the output of the non-removed
C operators might act non-trivially. Therefore, we can remove all other F operators. This
completes then our justification, and proves the corresponding claim in Section 3.3.6.

When comparing with previous knowledge in the literature, the key research to consider
is that of Nishimura and Ozawa [81]. In that work, they extend the original single-tape
construction from Yao [119] to the multi-tape setting. This results in a circuit with O(tk+1)
gates and O(tk) depth. The extension keeps the approach where part of the entries for the
gate G that is applied repeatedly are defined explicitly, while it is justified that a system of

59

equations used to find the rest of the entries must have a solution. In the multiparty case,
the algebraic complexity of explicitly specifying a part of the entries before proceeding
with the rest of the proof of correctness grows notably when compared with the single-
tape case. In particular, the space where the gate G acts as the identity has now a more
complex structure, with the mathematical formulas in its description spanning more than
half a page. At a high level, this complexity comes from a more involved structure for
the subspace of what a copy of G sees after a copy corresponding to a previous value of
i ∈ {0, . . . , N − 1}k moves the head.

Something interesting is that in this multi-tape extension, the circuit is structured so
that there is a single register to store the state that the head is in, as opposed to storing
that in a register corresponding to one of the cells that the heads are in. When compared to
our approach here, this is an interesting constant-order optimization to space storage that
avoids duplicating space between the different T0

i registers, which are zeroed when they do
not correspond to a cell that the tape is currently reading from. Furthermore, it avoids
the assignment of the state to one specific tape out of the k tapes, which is asymmetric
and therefore might be seen as a less elegant approach

However, this optimization makes it non-viable to perform the simple modifications
to allow parallelism that we described in the case of Yao’s original construction. This is
because under the centralization of state storage we just described, each of the copies of
G needs to operate on the register that is storing the state, which means that only one of
those gates can be applied at any given time, closing any avenues to parallelism.

If we modify the construction from [81] so that it instead stores the state together with
the indicators about the position of the head, as the multi-tape version of our simulation
variant does, we can then examine whether the tweaks for the parallelization of Yao’s
construction that we described in the single-tape case can be applied here to increase the
degree of parallelism.

First, we need to consider the approach where we alter the definition of the space
where Yao’s gate G acts as the identity. This works again in the multi-tape case, with
the outcome that the output state after we move the heads using one copy of G is not
only left undisturbed by posterior copies of G (in terms of lexicographical order for the
corresponding index i ∈ {0, . . . , N − 1}k), but also by previous copies of G under that
lexicographical order. The reasoning is substantially the same as in the single-tape case,
relying again on the orthogonality of two subspaces of X ⊗ Y . These two spaces are the
space of what G produces of its output after moving the heads, and the space of local
states that G could see as its input after the heads are moved by another copy of G. Since
the head moves one step at a time, the overlap between two states that are respectively

60

in these two spaces will be equal to a linear combination where each term is a multiple of
the global overlap 〈Ux, Uy〉 between the evolution under U of two standard basis states
x, y ∈ HN . All of those global overlaps must be 0, given the unitarity of U , leading to the
orthogonality of the two subspaces.

It remains to discuss whether one can extend the cascading approach that in the case
of Yao’s construction allows one to achieve O(1) amortized depth per simulation step
without modifications to the gate G. This approach does not carry well to the multi-tape
generalization of Yao’s construction in [81]. The reason for this difference is that in the
single-tape case, once that we have applied to the register pair (Si,Ti) representing the cell
indexed by i those instances of G centered on positions {i− 1, i, i+ 1}, we are ready (after
the application of a 1-local gate F) to start with the second step of Yao’s simulation as far
as the processing of the register pair (Si,Ti) is concerned. This means that by the time
we have finished the O(t) gates in the first step of the simulation, we have also finished all
but a O(1) number of the number of gates for the second step of the simulation, leading
to the amortized complexity advantage we described. The situation in the [81] case is
more complex. This is because of the fact that there is one copy of the corresponding
G gate for each choice of central indices i = (i0, . . . , ik−1) ∈ {0, . . . , N − 1}k, and these
gates are applied in lexicographical order. This means in particular that no cell in tapes
{1, . . . , k− 1} is done with its processing until we have processed all gates with a choice of
index i0 in the first tape belonging to {0, . . . , N − 2}. At that point in the simulation step,
only O(nk−1) gates remain to apply, which means that by the time we are done with the
step, even if we cascade the next step there will still be at least O(nk) gates left to apply
for it, with no amortized complexity gain.

In order to adapt the cascading approach to the parallelization of Yao’s construction to
the multi-tape case, one would then need to change the order in which the copies of G can
be applied, so that it is a better order for cascading purposes than the lexicographical order.
To make the proof of correctness work, one would afterwards also need change the space
on which G is defined to act as the identity. But this is not any simpler than modifying
those spaces to have full commutativity between the applications of G, as we described
for the other parallelization approach, and would involve in fact more complicated algebra
in the corresponding definition. We have then that the cascading approach to achieving
parallelization of Yao’s construction does now fall short of its single-tape advantage versus
the definition-modification approach in terms of conceptual complexity.

61

4.3 Oracle quantum Turing machines

In this section, we discuss the adaptation of our multi-tape simulation variant to the case of
oracle quantum Turing machines. After giving basic definitions in Section 4.3.1, we present
an initial construction for this simulation in Section 4.3.2. This construction goes along
similar lines to the standard multi-tape construction that we just described in Section 4.2,
but now needs to deal with the more complex structure for the operator U specifying the
configuration space evolution. Then, we discuss in Section 4.3.3 how to improve on this
construction by using a more standard model for oracle gates. Note that the material in this
Section 4.3 represents a first step in the study of the circuit simulation of oracle quantum
Turing machines, and the definitions and style might be less appealing than elsewhere in
the thesis.

4.3.1 Definition

The standard model for oracle quantum Turing machines corresponds to work [18] from
Bennett, Bernstein, Brassard, and Vazirani (BBBV), and takes them to be k-tape quantum
Turing machines with a special oracle tape, which we will assume to be tape k − 1. The
alphabet Γk−1 for this tape is taken to be the set {0, 1,�}, where � denotes the blank
symbol (this breaks the convention generally followed in our work of denoting the blank
symbol as 0, but will make the exposition in this section easier to follow). The oracle tape
corresponds to a function O from all binary strings to the binary set, which we denote as

O : {0, 1}∗ → {0, 1}. (4.26)

There are also two special states, which we will refer to as qq and qa. The way through
which f is computed is that if the machine is not in the state qq, it evolves like a standard
multi-tape quantum Turing machine. However, if the machine is in state qq, and the oracle
tape contains a binary substring y = xb, with b ∈ {0, 1}, then the state becomes qa and
the oracle tape now contains y′ = xb′, where b′ = b ⊕ O(x).

The configuration space H is the same one as for a standard k-tape quantum Turing
machine. As for the evolution of the configuration space, we have now for oracle quantum
Turing machines an operator Uδ,O, depending on a oracle function O and a transition
function δ. Its action on standard basis states will be as follows:

• If p 6= qq,
∣∣p, i, T 0, . . . , T k−1

〉
is mapped by Uδ,O to∑

q,a,D

δ(p, T 0(i0), . . . , T k−1(ik−1))[q, a,D]
∣∣∣q, i+D,T 0

i0,a0
, . . . , T k−1

ik−1,ak−1

〉
(4.27)

62

where T ji,a denotes the same modification of the tape assignment T j for tape j as in
the standard multi-tape case, with the character in position i being replaced by a,
and all other characters remaining the same.

•
∣∣qq, i, T 0, . . . , T k−1

〉
is mapped by Uδ,O to

∣∣qa, i, T 0, . . . , T k−2, fO(T k−1)
〉
, where fO is

a transformation of the tape assignment T k−1 that computes the function O on tape
k−1. More precisely, if the contents of tape k are not of the form �∗{0, 1}∗{0, 1}�∗,
where ∗ denotes the Kleene star, fO acts as the identity. Otherwise, we can write the
non-blank contents of tape k as the concatenation of a string x ∈ {0, 1}∗ and a bit
b. Then, fO will rewrite the cell containing bit b so that it now contains the binary
value given by b⊕O(x).

Note that the definition in [18] does not explicitly state how the oracle QTM acts on
oracle tape strings that have blanks interspersed with 0s and 1s, and instead constraints
the transition function δ for a oracle quantum Turing machine to never give rise to such a
situation. For completeness, we have specified the configuration space evolution to be the
identity in those situations. However, we will make usage for our convenience of this fact,
and only require in Section 4.3.3 from our circuit implementation of the oracle queries that
it reproduces the correct behavior of the BBBV oracle QTM for the cases where its action
was originally defined.

In our simulation, we will again consider an equivalent quantum Turing machine com-
putation with looped tapes, with the same configuration space HN as in the standard
multi-tape case. This is allowed by the usual reasoning regarding the one-cell-at-a-time
movement of the head. Note that it additionally implies now that only inputs of length
≤ N to the oracle (including the bit where the answer is written) are relevant in the corre-
sponding simulation. The evolution U = Uδ,O,N of this configuration space will be extended
from Uδ,O as usual for non-oracle tapes, having index arithmetic regarding the movements
of the head now performed modulo N . In the oracle tape, we additionally need to specify
how the looped-tape aspect interacts with the need to have only one segment of binary
text in the string. We need this to match the behavior of a corresponding non-looped tape
during the t simulation steps that we want to perform. Therefore, for a classical state of the
registers of our simulation, we look at the input to the oracle as the string associated with
the content of the sequence of registers (T−t,T−t+1, . . . ,Tt−1,Tt). This means a standard
basis input state will be acted upon non-trivially by U whenever the sequence of symbols
corresponding to this sequence of registers is of the form �∗{0, 1}∗{0, 1}�∗.

63

4.3.2 A first circuit simulation

We use two registers Sji and Tji to represent cell i in tape j in the oracle Turing machine,
with the same state spaces associated with these registers as in the standard multi-tape
case described in Section 4.2. The global state space KN associated with all the registers
in our simulation will also be the same as in the standard multi-tape case.

We will denote again as A the mapping that takes classical state configurations for
HN into standard basis elements of KN . In order to describe our circuit simulation for
the oracle case, we must now introduce three new families of operators. In particular,
for q ∈ Q, we will take Πq to be the projector that projects into the subspace of Im(A)
where the corresponding QTM state is equal to q. Similarly, we will take Π−q to be the
projector into the subspace of Im(A) where the corresponding QTM state is not equal
to q. Πq will then map to themselves standard basis elements of KN in which for every
value of j ∈ {0, . . . , k − 1}, exactly one of the Sji registers has a non-zero value and the
one for the tape k = 0 contains a value equal to q. All other standard basis states in KN
will be mapped to 0 by Πq. A similar relation holds for Π−q , but now looking at the case
where a positive value for the tape k = 0 is not equal to q. We also define the operator
Πq→q′ , which is parametrized by q, q′ ∈ Q, and takes Im(Πq) to Im(Πq′), while mapping
everything else to 0. In particular, Πq→q′ will first project its input into Im(Πq), and then
change the value of the S0

i register storing the state to be the value corresponding to q′.

Using the mapping A, we again extend the quantum Turing machine evolution operator
to an operator on the simulation’s registers by defining

V = AUA∗ + (I − AA∗), (4.28)

Our goal now is to better understand the structure of V so that we can see how to
adapt the construction for the standard multi-tape case. We begin by writing

V = Vδ + VO + (I − AA∗), (4.29)

where Vδ is a unitary with support equal to Im(Π−qq) and image equal to Im(Π−qa), VO is a
unitary with support equal to Im(Πqq) and image equal to Im(Πqa). There is no dependance
of Vδ on O or of VO on δ. This block structure follows from the definition of V , together
with the structure of U = Uδ,O,N that was described in Section 4.3.1.

We want to go from this decomposition of V as a sum to a decomposition that expresses
V through multiplication, which will allow us then to have a circuit implementation of V
where one of the layers implements the part of the evolution corresponding to δ, and the

64

other layer implements the part of the evolution corresponding to O. In order to get to
such a multiplicative decomposition, we define operators Rδ and RO, given by

Rδ = Vδ + Πqq→qa + IIm(A)⊥ (4.30)

RO = VOΠqa→qq + IIm(Πqa)⊥ . (4.31)

It holds then that RORδ = V . In order to verify the correctness of this decomposition, one
can simply appeal to linearity and check it for each element of the computational basis of
KN . As for the verification that Rδ and RO are both unitaries, one can observe that they
are defined by a block decomposition, with each block being unitary itself, since Vδ and
VO are unitary themselves. The reason why we must have the Πqq→qa additive term in Rδ

and the consequent Πqa→qq multiplicative term in RO is to produce a block structure that
maintains unitarity.

Our goal at this point is similar to the basic quantum Turing machine case. We want to
describe a sequence of local gates and oracle gates such that for their product P , it holds
that

A∗PA = A∗RδROA = A∗V A (4.32)

Since Rδ and RO both leave invariant the subspace Im(A), we can do so by coming up
with two circuits that correspond to operators Pδ ∈ U(KN) and PO ∈ U(KN) such that
A∗PδA = A∗RδA and A∗POA = A∗ROA.

For the circuit corresponding to PO, we make usage of a model of oracle gates in which
we assume that we have one gate (labeled as GO) for which the corresponding operator acts
on all of KN . The gate acts then acts on all the registers for the circuit, and it reproduces
the effects of the oracle on the corresponding quantum Turing machine. That is to say,
it corresponds to the operator VO in the decomposition appearing in Equation (4.29) that
maps Im(Πqq) to Im(Πqa). We then complete VO to make it unitary, which results in the
following definition:

GO = VO + Πqa→qq + IIm(Πqa+Πqq)⊥ . (4.33)

The only standard basis states of KN where GO acts non-trivially are therefore those on
Im(A) where the only register S0

i containing a non-zero value contains the value corre-
sponding to qq or qa. In the case where the value is qq, the action of GO on those basis
will update the value of the state so that it is equal to qa, together with an update of the
contents of the registers Tk−1

i associated with the last tape. On the case where the value
of the state is equal to qa, it is simply changed to qq, with no additional updates. All other
standard basis inputs will be mapped to themselves, with GO acting as the identity.

The circuit corresponding to PO can then be implemented with one copy ofGO, preceded
and followed by an application of a 1-local gate Fqq ,qa to each register S0

i corresponding to

65

the first tape. This gate Fqq ,qa acts on one copy of S0, mapping |qq〉 to |qa〉 and viceversa,
while acting as the identity on all other standard basis states. The justification for cor-
rectness follows from considering every standard basis element of Im(A), and comparing
the action of the circuit described here with that of the operator RO in Equation (4.31).
Note that the entries in the matrix corresponding to GO depend exclusively on O, not δ.

One might object that this gate GO can handle all queries to the oracle of length at
most N − 1, rather than queries of a specific length as it would be more standard. We will
later address this matter in Section 4.3.3.

It suffices at this point for the purpose of our simulation to give a circuit with local
gates such that for the induced operator Pδ, it holds that A∗PδA = A∗RδA, as discussed
before. In order to tackle this question, we use exactly the same approach as taken for the
standard multi-tape case. The modifications that must be made are those corresponding
to the fact that the operator Rδ in Equation (4.30) is not exactly the same operator as the
one defined as V in Equation (4.9).

In our simulation, we then still have two families of operators Fi and Ci, indexed by all
possible values of i ∈ {0, . . . , N − 1}k. The Fi operators are defined to be exactly the same
as in the standard multi-tape case. The definition of Ci needs to be modified to account
for the fact that we now want to simulate Rδ, with the following definition:

Ci = R∗δFiRδ (4.34)

The circuit corresponding to Pδ is the same as that used to simulate V in the standard
multi-tape case, and corresponds then to the product

F0,...,0F0,...,1 . . . FN−1,...,N−1C0,...,0C0,...,1 . . . CN−1,...,N−1, (4.35)

with the same justification by considering all standard basis elements in Im(A). Going
forwards requires again introducing the projector Π ∈ Proj(KN), with the same definition
as in the standard multi-tape case (i.e. projecting into the subspace of KN with one
head per tape, no matter whether moved or not). It holds again that for any value of
i ∈ {0, . . . , N − 1}, Ci and Fi leave Im(Π) ⊆ Im(A) invariant, even after we changed the
definition of Ci. It follows through the same reasoning as in the standard case that for any
i, j ∈ {0, . . . , N − 1},

Π[Fi, Fj]Π = 0 (4.36)

and therefore
Π[Ci, Cj]Π = 0, (4.37)

which gives us the commutativity relations needed for parallelization.

66

The final step is to apply Theorem 1 in order to achieve a local implementation of the
operator Ci for inputs in Im(Π). We follow the same approach as in Section 4.2, with
the same assignment of registers to X, Y and Z, and the same split of Π = Π1 + Π2 with
Π1 corresponding to the case where all of the heads are in the registers corresponding to
X and Y). The only consideration that does then need to be double-checked is the one
regarding Rδ being X→ Y causal relative to Π1. This is indeed true, since the action of Rδ

will either write under the heads and move them one step following the rules in δ, or simply
leave the heads where they are and change the state to from qq to qa, and differentiating
between these two cases requires no information outside that contained in the registers
associated with the initial position of the heads.

4.3.3 More complex circuit simulations with more standard or-
acle gate models

One can reasonably object to the circuit simulation in Section 4.3.2 by pointing out that
while having oracle gates not be local is standard, our choice of oracle gate GO does
not match some of the other aspects of standard oracle gate models. In particular, in
standard oracle gate models there is one gate for each input length, as discussed for example
in [113, 31]. We will now discuss the subject of achieving a circuit simulation with an oracle
gate model where there is a separate gate for each input length.

In this discussion, we will take advantage of the flexibility provided by the standard
definition of oracle QTMs in [18], and not consider the region of the configuration space
spanned by standard basis elements where the content of the oracle tape contains several
binary strings. We consider then an operator ABBBV that translates into the corresponding
assignment to our registers those standard basis elements of the configuration space HN

where the content of the oracle tape is well-formed (i.e. of the form �∗{0, 1}∗�∗). The
image of this operator corresponds then to the subspace of concern regarding the correctness
our simulation.

For each value of l ∈ {0, . . . , N − 1} we consider then an oracle gate GO,l, which
communicates the value of O for inputs of length l. Each copy of this gate will act on l+ 1
of the Tk−1

i registers, with the extra register corresponding to the one where the answer to
the query is written. The input state space for GO,l is then (Tk−1)⊗(l+1). A standard basis
state |y, b〉 representing a binary sequence y ∈ {0, 1}l and a bit b ∈ {0, 1} is mapped by
GO,l to the standard basis state |y, b⊕O(y)〉. On other standard basis inputs (i.e. those
representing a string in Γl+1

k that contains blanks), the action of GO,l might be taken to be
the identity.

67

Our goal now is then to provide a circuit corresponding to an operator PO such that
A∗BBBV POABBBV = A∗BBBVROABBBV , where RO is defined as in Equation (4.31). The
part Pδ of the simulating circuit that corresponds to the transition function δ does not
need to be modified from Section 4.3.2.

The main issue that we face now is that the content of tape k − 1 can represent a
binary query string of any length between 0 and N − 1, so we must be able to select in
the circuit corresponding to PO which of the oracle gates should be used for each of the
possible inputs. Furthermore, we need to select the specific registers to which this gate
should be applied. In line with our general approach to the simulation of quantum Turing
machines, our goal is also to parallelize these choices as much as possible.

Our approach to dealing with these matters is to design classical (irreversible) circuits
that each implement part of the corresponding logic, and then use standard constructions
that transform these into reversible circuits suitable for integration in a quantum circuit.
Those reversible circuits will each write their output through XOR operations on auxiliary
inputs, and after using these outputs we must also be able to bring back the auxiliary
inputs to their starting state, so that no interference patterns in the circuit are unduly
altered.

First reversible circuit

The first reversible circuit that we create has the purpose of determining where the end-
points of the query string are (and implicitly what its length is). The operator associated
with this circuit will operate on all of the Tk−1

i registers associated with tape k − 1, to-
gether with (N2 +N)/2 auxiliary qubits, initialized to the all-zero state. The state space
associated with the input and the output of the circuit is then

(Tk−1)⊗N ⊗ (C2)(N2+N)/2. (4.38)

We define the operator by its action on the standard basis state |x〉 |y〉 corresponding to a
classical assignment x ∈ �∗{0, 1}∗�∗ of length N to the oracle tape values, together with a
binary sequence y of length (N2+N)/2. This state will be mapped to a standard basis state
|x〉 |y ⊕ g(x)〉, where g(x) is a binary sequence indexed by all pairs (p1, p2) ∈ {−t, . . . , t}2

such that p1 ≤ p2. g(x) is such that the corresponding binary value is 1 only for the
index value (p1, p2) that represents the first and last non-blank position in the oracle tape.
g(x) acts then as a sequence of indicator variables representing the position in the oracle
tape of the query string. If x is the all-blank string, g(x) is the all-zero sequence.

68

In order to obtain an implementation of this first circuit, it follows by standard re-
sults [16, 105] in reversible computing that it suffices to obtain an irreversible circuit that
computes g(x) given x. We now describe such a circuit with O(log t) depth.

The circuit starts by computing the integers p1 and p2 such that the non-blank section
in the oracle tape is between positions p1 and p2, inclusive (if the query string is all-blank,
we have that p1 = p2 = t+ 1). We describe this computation process for p1, with p2 being
calculated in a similar manner.

To do this, we first consider a gate for each two adjacent positions in {−t, . . . , t}. Except
in one corner case, these gates are such if the left position out of the two has a blank in its
corresponding register of the oracle tape and the right position out of the two does not, we
output the index corresponding to the right position, and otherwise we output t+ 1. The
corner case corresponds to the pair (−t,−t+1), in which we case we first output the index
corresponding to the left position in case that the corresponding register does not contain
a blank, before proceeding with the previously described general logic. These gates can be
implemented in two layers.

To finish computing p1, we group the outputs of the previous step into adjacent pairs
(if an output remains unmatched due to an odd number of outputs, it can be ignored and
passed to the next step), and have a gate on each group. Given the two inputs to this
gate, if one of them is not t+ 1 we output it, otherwise we output t+ 1 (if both inputs are
not t+ 1 we output the smallest input, for completeness, but this case will not be relevant
for our inputs of concern to PO in Im(ABBBV)). These operators can all be implemented
in a single layer. We then repeat this process recursively, until only one combined output
remains. This computes p1 as a number between −t and t + 1. p2 can be computed in a
similar manner.

Now that we have p1 and p2, it remains to transform this into a binary sequence of
indicator variables corresponding to g(x). In order to do this, we first recursively use fan-
out gates in order to make in O(logN) = O(log t) depth (N2 + N)/2 copies (i.e. one per
entry in g(x)) for each of the O(log t) bits corresponding to p1 and p2, including the sign
bit. We then consider (N2 +N)/2 output wires, one for each of the entries in g(x). Each
output wire corresponding to an index tuple (p′1, p

′
2) is initially set to 1, and we then have

a sequence of O(log t) gates than can set it to 0. Each of the gates corresponds to a bit of
the values p1 and p2 that we computed. The gate takes the copy of this bit that matches
the current index in g(x), and it compares it against the corresponding bit in p′1 or p′2,
respectively (which is a fixed constant hard-wired into the definition of the gate). If the
bits do not match, the corresponding entry of g(x) is set to 0.

69

Second reversible circuit

The second reversible circuit that we create has the role of applying O(t2) oracle gates in
parallel. There will be (N2 +N)/2 of these oracle gates, one for each of the possible tuples
(p1, p2) indicating a beginning and an end of the query string in the oracle tape

This circuit will act on all of the Tk−1
i registers corresponding to the content of the

oracle tape, as well as on (N2 +N)/2 auxiliary qubits initialized to the all-zero state. The
state space associated with the input and the output of the circuit is then

(Tk−1)⊗N ⊗ (C2)(N2+N)/2. (4.39)

We now discuss the behavior of this operator on inputs of the form |x〉 |y〉, where
|x〉 corresponds to a classical assignment x to the oracle tape content of length N and
with form �∗{0, 1}∗�∗, and y is a binary sequence of length (N2 + N)/2. Such inputs
will get mapped to |x〉 |y ⊕ h(x)〉, where h(x) is a binary sequence indexed by all pairs
(p1, p2) ∈ {−t, . . . , t}2 such that p1 ≤ p2. To describe h(x), we introduce the notation
x[p1, p2] to denote the substring of x between positions p1 and p2, inclusive (if p1 > p2,
x[p1, p2] is the empty string, and x[p1, p1] can also be written as x[p1]). The element of h(x)
corresponding to the index pair (p1, p2) will be equal to O(x[p1, p2 − 1]) whenever x[p1, p2]
is a binary string, with O being the oracle function. Otherwise, that element of h(x) will
be equal to 0.

Regarding the implementation of this operator, we again begin by describing how to
compute h(x) with a circuit that includes irreversible classical gates. This circuit begins
by computing (N2 + N)/2 copies of x by recursively using classical fanout gates, with a
total depth of order O(logN) = O(log t). We again index these copies of x by the set of
all pairs (p1, p2) ∈ {−t, . . . , t}2 such that p1 ≤ p2. We then act with an oracle gate on each
of these copies of x, which takes O(1) depth.

In particular, given the copy of x corresponding to an index (p1, p2), we will act with
a copy of GO,p2−p1 on the registers between position p1 and position p2 − 1, together with
an auxiliary register with state space Tk−1 that is initialized to the |0〉 state. Since the
value in the last register is initialized to |0〉 before applying GO,p2−p1 , it will now contain
|O(x[p1, p2 − 1])〉 whenever x[p1, p2−1] is a binary string, and |0〉 otherwise. We must now
adapt this to the definition of h(x), which is conditional on x[p1, p2] being a binary string,
rather than x[p1, p2 − 1] being so. This can be done by checking the value of x[p2]. If it is
a blank, we set the value in this auxiliary register to |0〉. Then, we output the value in the
auxiliary register as the corresponding element of h(x).

70

We then apply again standard constructions [16, 105] to make the circuit reversible.
These techniques do embed each non-reversible gate into a larger reversible gate. Since
we only have access to oracle gates in a black-box fashion, this might at first sight look
problematic, but the fact that oracle gates are already reversible makes it not an issue.
The techniques also require us to have access to the inverse of each resulting reversible
gate, but since the oracle gates are involutory (i.e. equal to their own inverse), this is not
an issue either.

Third reversible circuit

The third reversible circuit has the role of translating the output of the previous steps into
choices about whether to leave as constant or flip each binary digit in the oracle tape. Note
that for any standard basis input to PO in our subspace of concern Im(ABBBV), at most
one of the bits in the oracle tape will be flipped (the bit corresponding to a last position
in the binary substring of the oracle tape). Making these choices involves access to the
state for the oracle quantum Turing machine, so that we know whether an oracle query is
being made in this step of the simulation. The state space for the input and output of this
circuit is then

(S0)⊗N ⊗ (C2)(N2+N)/2 ⊗ (C2)(N2+N)/2 ⊗ (C2)N . (4.40)

The first term correspond to the registers {S0
−t, . . . , S

0
t} that store information about the

state of the machine. The second term corresponds to the registers where the output was
written in the first reversible circuit. The third term does similarly correspond to the
registers where the output was written in the second reversible circuit. The fourth term
corresponds to auxiliary qubits that are initialized to the all-zero state before we apply
this third reversible circuit, and where we write the answers it computes.

As for the specific action of the reversible circuit, it will map a standard basis state
|s〉 |w〉 |y〉 |z〉 to |s〉 |w〉 |y〉 |z ⊕ o(s, w, y)〉, where o(s, w, y) is a binary sequence of length
N . This binary sequence is equal to the all-zero sequence if none of the symbols in s is
equal to qa. This has the role of implementing the part of RO in (4.31) that corresponds to
the control on the state being qq in VO, as well as the term Πqa→qq . It remains then to define
the behavior when at least one of the symbols in s is equal to qa. In this case, the element
of the sequence o(s, w, y) corresponding to position p2 ∈ {−t, . . . , t} will be 1 if there is
a value of p1 ∈ {−t, . . . , p2} such that the digits in w and y indexed by the pair (p1, p2)
are both equal to 1. Otherwise, the element of the sequence o(s, w, y) corresponding to
position p2 will be equal to 0.

More specifically and relevant to the correctness of our simulation, if we consider a stan-
dard basis input to PO in Im(ABBBV), it will correspond to an assignment |x〉 to the Tk−1

i

71

registers that store the content of the oracle tape, with x of the form �∗{0, 1}∗�∗. It will
also correspond to an assignment |s〉 to the S0

i registers that store the current state of the
machine, with exactly one positive element in the sequence s, and all other elements equal
to 0. Then, the input to this third reversible circuit will be |s〉 |g(x)〉 |h(x)〉

∣∣0N〉, where
g(x) and h(x) are the binary sequences computed in the first second reversible circuits. The
output of the circuit will be |s〉 |g(x)〉 |h(x)〉 |o(s, g(x), h(x))〉 = |s〉 |g(x)〉 |h(x)〉 |o′(s, x)〉.
If the one positive value in s is not qa, then o′(s, x) = 0N , and the circuit just acts as
the identity. If the one positive value in s is qa, then we consider that at most one value
of g(x) will be non-zero – the one that matches the position of a binary sequence in the
oracle tape. If there is such a value, it corresponds to a specific pair of indices (p1, p2).
Then, the value of o′ indexed by p2 will be set to 0 or 1 depending on whether the entry
of h(x) also indexed by (p1, p2) is equal to 0 or equal to 1 (i.e. depending on the value of
O(x[p1, p2− 1]), with O the oracle function). All other values in o′(s, x) will be equal to 0.

As for the implementation of this circuit, we approach it again by describing a classical
circuit that computes o(s, w, y) given the value of s, w and y, and whose conversion to a
reversible circuit of the type we desire is then straightforward through the usage of standard
techniques.

The first step of the circuit is to extract a value q ∈ {−|Q|, . . . |Q|} from the string s by
combining adjacent pairs of symbols recursively, with a total depth of O(logN) = O(log t).
In this combination process, the circuit advances non-zero inputs to the next step when
one input is zero while the other one is not, and it advances a zero when both inputs
are zero. Other behaviors can be defined for completeness as returning the smaller of the
inputs, but are irrelevant for the values of s that may occur in our simulation, given the
restriction to Im(ABBBV) as our subspace of concern. Similarly, non-positive values of q
will also never occur as the output of this step within the scope of our simulation.

The second step in the circuit is to take in one single layer of parallel gates the bitwise
AND of w and y. We label the corresponding binary sequence as wy. Then, for each index
p ∈ {−t, . . . t}, the corresponding element of o(s, w, y) is taken to be the OR of the O(N)
values in wy that are indexed by pairs of the form (p1, p2), where −t ≤ p1 ≤ p2 = p. This
can be computed again in O(log t) depth by recursively combining those values in wy.

Finally, we set all elements of o(s, w, y) to 0 if the state q computed in the first step
of this third circuit does not correspond to the state qa. This takes O(1) depth for the
comparison of q with qa, then O(log t) depth for creating t copies of the comparison’s result,
and finally O(1) depth for acting in parallel on each value of o(s, w, y).

72

Writing the answer and reversing auxiliary registers to their initial state

We now write the output bits from the previous step into the oracle tape. In particular,
for each value of p2 ∈ {−t, . . . , t}, the value of h(x) indexed by p2 ∈ {−t, . . . , t} is now
combined with the value of the register Tk−1

p2
through a reversible 2-local operation that

we label as P −CNOT . This operator has as the state space for its input and output the
space Tk−1 ⊗ (C2). It will map |a〉 |b〉 to |a⊕g b〉 |b〉 for a ∈ {�, 0, 1}, b ∈ {0, 1}, where
a ⊕g b is equal to � if a = �, and equal to a ⊕ b otherwise. This is equivalent to acting
as the identity on standard basis inputs of the form |�〉 |b〉, for b ∈ {0, 1}, while mapping
|a〉 |b〉 to |a⊕ b〉 |b〉 for a, b ∈ {0, 1}, similar to a standard CNOT gate. It follows from
our discussion regarding the output of the third reversible circuit for inputs in Im(ABBBV)
that this accurately represents the action of an oracle transition on the contents of the
oracle tape.

At this point, the only thing that remains to do is to reverse to the all-zero state those
auxiliary inputs where the outputs for the first, second and third reversible circuits were
written. We do this by applying these three circuits themselves again, starting with the
third circuit. The correctness of this approach follows partially from the fact that all
of these circuits are equal to their own inverse, which follows from the similar property
of the bitwise XOR operation. However, this correctness is non-trivial, since we have
now potentially modified the value of the Tk−1

i registers, which are part of the input and
output for the first and second reversible circuits. We must then verify that this reversion
procedure works for each standard basis state of concern in the input to PO.

As the setup for our verification of correctness, we consider an arbitrary standard basis
input state to PO in Im(ABBBV). As described earlier, this corresponds to an assignment
|x〉 with x of the form �∗{0, 1}∗�∗ to the Tk−1

i registers that store the content of the
oracle tape. Similarly, it corresponds to an assignment |s〉 to the S0

i registers that store
the current state of the machine, such that there is exactly one positive element in the
sequence s, and all other elements are equal to 0. At the end of the third reversible circuit,
the state of the registers in the circuit will then be equal to

|x〉 |s〉 |g(x)〉 |h(x)〉 |o(s, g(x), h(x))〉 , (4.41)

where the first two terms correspond to the Tk−1
i and S0

i registers, and the last three terms
correspond to the output registers for the three reversible circuits. After the application
of the P − CNOT gates, the content of these registers will be equal to

|x⊕g o(s, g(x), h(x))〉 |s〉 |g(x)〉 |h(x)〉 |o(s, g(x), h(x))〉 , (4.42)

73

For convenience, we will denote x⊕g o(s, g(x), h(x)) as x′. Note that in this expression, the
operator ⊕g in the definition of P − CNOT is being applied pair-wise to those elements
in the sequences x and o(s, g(x), h(x)) that correspond to a matching index.

Then, the correctness of our approach for reversing the output register of the third
reversible circuit from |o(s, g(x), h(x))〉 back to

∣∣0N〉 is not affected by the update from

|x〉 to |x′〉 of the oracle tape content, since the Tk−1
i registers are not involved in the third

reversible circuit.

As for the correctness of reverting |h(x)〉 back to |0〉(N
2+N)/2 by then applying the

second reversible circuit again, the situation is more complex, since the Tk−1
i registers are

involved in this circuit. However, it holds that h(x′) = h(x), which makes it work. To
see why h(x′) = h(x), consider that each entry in the output of h corresponds to one
index pair (p1, p2) with −t ≤ p1 ≤ p2 ≤ t. The set of those pairs (p1, p2) such that x[p1, p2]
contains blanks is the same if we were to take substrings in x′ instead, so the corresponding
entries of the output of h are equal to zero in both h(x) and h(x′). Otherwise, x[p1, p2]
contains only binary digits. Then, it holds that x[p1, p2 − 1] = x′[p1, p2 − 1], and therefore
h(x) = h(x′). The reason why x[p1, p2−1] = x′[p1, p2−1] is that we know by the definition
of o(s, g(x), h(x)) that the transformation x → x ⊕g o(s, g(x), h(x)) can only modify the
last symbol in the one binary segment of x (or no symbol, if x was the all-blank string).
The index for this last symbol can never be between p1 and p2 − 1 under the assumption
that x[p1, p2] is a binary string, since x[p2] is then a binary symbol.

The fact that g(x) = g(x′) does similarly make our approach work for reverting back
to the all-zero state the auxiliary qubits where the answer to the first reversible circuit is
written. In this case, it is an easy observation that g(x) = g(x′), since the endpoints of
the non-blank segment in the oracle tape are the same in the states |x〉 and |x′〉. This
follows from the fact that the transformation x → x ⊕g o(s, g(x), h(x)) does only modify
non-blank values in x, by the definition of ⊕g.

Discussion

One can observe that our usage of classical low-depth circuits that are then transformed
into reversible circuits is similar to the adaptation of output encodings that was described
in Section 3.3.6, but with a significantly more complex chaining of transformations involved
in the details of the construction here.

As for the complexity of the resulting oracle QTM simulation circuit, the circuit for the
implementation of PO that we have described here in Section 4.3.3 has a depth of O(log t),
with a width (i.e. space consumption) of O(t2). This space consumption takes into account

74

both the number of registers we explicitly use, and the number of classical irreversible local
gates before we make each of the circuits reversible (since the space overhead introduced
by the usage of standard techniques for making circuits reversible is proportional to that
number of irreversible local gates).

We now put this together with the costs for the non-oracle part of simulating a step of
the oracle QTM, corresponding to Pδ as implemented in Section 4.3.2. Then, the O(tk−1)
depth for Pδ absorbs the O(log t) depth for this step. The same happens for the O(tk)
circuit size, since k ≥ 2. However, the width grows from O(t) to O(t2). The depth and
size for a complete circuit simulating t steps of an oracle QTM remain then at O(tk) and
O(tk+1) when compared with the construction in Section 4.3.2 that uses a less standard
oracle gate model. However, the circuit width grows from O(t) to O(t2).

If one wants to reduce the width of the circuit while possibly increasing its depth,
it is possible to do so by slightly modifying the circuit that we have described here in
Section 4.3.3 and exploiting tradeoffs between depth and width. In particular, we can
exploit the fact that the value indexed by p ∈ {−t, . . . , t} in the output o(s, g(x), h(x))
of the third reversible circuit depends only on the values within g(x) and h(x) (i.e. the
output of the first and second circuits) that are indexed by the O(N) = O(t) pairs (p1, p2)
such that −t ≤ p1 ≤ p2 = p.

Using this property, one can replace the circuit that we have described here in Sec-
tion 4.3.3 by a concatenation of N = 2t+ 1 circuits, one for each value of p ∈ {−t, . . . , t}.
In the circuit corresponding to a particular of p, the first and second reversible circuits
are modified so that they only compute outputs for the O(t) pairs (p1, p2) such that
−t ≤ p1 ≤ p2 = p, with a reduction from O(t2) to O(t) in the output size and circuit
size. Then, the third reversible circuit uses the outputs from the first and second reversible
steps to perform the computation of its output bit corresponding to position p, without any
modifications to the construction we have described in Section 4.3.3. All of its other output
bits are simply set to zero. Note that for any standard basis input state in Im(ABBBV),
only the circuit that corresponds to the value of p that matches the end position of the
binary segment in the oracle tape will act non-trivially, since in all other cases all output
bits of the third reversible circuit will be set to 0 (if the oracle tape is all blank, then all
circuits will act trivially).

Through this tradeoff, the depth for the circuit implementing PO rises to O(t log t) and
the width goes down to O(t), with the size remaining constant at O(t2) after the split we
have described. The result of exploiting the tradeoff is then that the width of the overall
circuit for the simulation of t steps of an oracle quantum Turing machine goes down from
O(t2) to O(t), while the depth goes up from O(tk) to max(O(tk), O(t2 log t)). The circuit

75

size remains unchanged at O(tk+1).

4.3.4 Other models and further work

The standard oracle definition in [18] suffices for the purpose of studying standard quantum
computational complexity classes, and either in its original form or very similar variants
it is also widely used in the study of query complexity. It is however mentioned in [18]
that there exist situations where one might want to consider alternative oracle definitions,
such as example oracles in the context of computational learning theory [107]. One might
also want to consider oracles that take advantage of the power of quantum computing to
implement unitary operators. This is represented in the oracle model from [80], where
the oracle O encodes an arbitrary length-preserving unitary transformation from the space
spanned by {0, 1}∗ to itself, which can also be seen as an infinite collection {O0, O1, . . .} of
unitaries, with the unitary On acting on a space spanned by the elements of {0, 1}n.

It might be of interest to look into circuit simulation techniques for oracle quantum Tur-
ing machines where the machine makes usage of these alternative oracle models. Generally
speaking, in order to make our construction in Section 4.3.3 work in alternate settings, one
would need to be provided with inverses for each of the corresponding oracle gates, since
we relied on each size-dependent oracle gate corresponding to the BBBV oracle being its
own inverse.

It might also be of interest to consider the mixed-state model of [3], where quantum cir-
cuits make usage of subroutines that are equivalent to a probabilistic oracle (i.e. equivalent
to a normalized function from {0, 1}r to Rq

≥0, for r, q ∈ N). One could seek to model these
oracles within the context of quantum Turing machines, which would require extending
the formalism for quantum Turing machines so that it does not require that the global
evolution of the system be unitary. A path to model these oracles could then start by
considering some of the alternative classically-controlled quantum Turing machine models
previously mentioned in Section 3.2.1.

One could also seek modifications to the oracle quantum Turing machine model in order
to make the transformation of machine computations into circuit computations easier while
retaining the same computational power. One possible idea is not entering and exiting the
oracle through unique states qq and qa, but rather having all QTM transitions induce a
change in the oracle tape, which would avoid the explicit handling of the special state
values qq into qa in the circuit simulation. One might also aim to constraint the query
process by requiring oracle query strings to start in a specific position (the work in [80]
does something similar by requiring the oracle tape’s head to be in a specific position before

76

queries to the oracle occur, for subroutine nesting purposes). This could work well together
with also modifying the oracle quantum Turing machine so that it always writes the answer
to queries in the same position of the tape, no matter the length of the input query string.
Finally, another potential change is to have only binary symbols in the oracle tape, with
an escaping system that encodes the beginning and end markers for query strings.

77

Part II

Quantum prover-verifier interactions

78

Chapter 5

Quantum state exclusion

5.1 Setting

The task of quantum state exclusion corresponds to a setting where an agent Alice is
given a quantum system. The state of this system is chosen at random between n options
{ρ1, . . . , ρn}, with corresponding non-zero probabilities {p1, . . . , pn}. It is unknown to Alice
which of the ρi was chosen, but she does know the {ρi} and {pi} values characterizing the
corresponding distribution. Alice’s goal in the state exclusion task is to be able to give
an index j such that the state was not prepared in the state ρj. When Alice can achieve
this with probability 1, we will say that we have perfect state exclusion. This task of state
exclusion has recently been studied at length in [12], and is at the heart of the celebrated
PBR thought experiment [93], where [30] (the article from where we take the problem we
solve in this Section) is credited as the original source for the concept. The concept of
this task has also been used for proving results in the context of quantum communication
complexity [90, 67, 49], as well as for designing quantum signature schemes [6].

Formalizing further this concept of state exclusion, [12] obtains the following semidefi-
nite programming (SDP) formulation:

minimize:
∑
i

pi 〈Mi, ρi〉

subject to:
∑
i

Mi = I

Mi ≥ 0.

(5.1)

79

where Mi ≥ 0 means that Mi is positive semi-definite. Being able to perform perfect state
exclusion corresponds to the optimal value of this SDP being equal to 0. Similarly, any
optimal solution to the semidefinite program corresponds to an optimal positive-operator
valued measure (POVM) for state exclusion. Note that since we are only concerned with
perfect state exclusion, we can just ignore the pi in the rest of this presentation, since
whether the value of the SDP is 0 or not does not depend on them.

Perfect exclusion of quantum states is also a meaningful concept in the context of the
foundations of quantum mechanics, in particular when considering the topic of quantum
state compatibility. In that framework, one considers several quantum states {ρ1, . . . , ρn}
as different beliefs about the same system. Then, one can ask whether the outcome of
a measurement on the system will disprove some of these beliefs, or they will all still be
possible. In the latter case, we say that the states are compatible with each other. Different
ways of formalizing this idea will lead to different definitions of quantum state compatibil-
ity. [30] proposes several formalizations, one of which corresponds to the impossibility of
performing perfect state exclusion. Since this formalization is a generalization of previous
work by Peierls [85], they refer to it as post-Peierls (PP) compatibility.

In more detail, the post-Peierls compatibility of several quantum states {ρ1, . . . , ρn}
(relative to a subset S of all POVMs) means that for all measurements in S, there will be
at least one outcome that can be obtained with non-zero probability for all of the possible
states/beliefs {ρ1, . . . , ρn}. If we consider the negation of this definition, we obtain that
this negation corresponds with the existence of a measurement in S such that each outcome
of the measurement excludes at least one of the quantum states, which corresponds to an
agent being able to perform perfect state exclusion given a mixture of the quantum states
{ρ1, . . . , ρn} and access to measurements in S 1. When the set S of allowed measurements
corresponds to the set of all POVMs, the corresponding compatibility criteria is called
PP-POVM compatibility. When S is restricted to the set of projective measurements (or
more precisely, the set of measurements defined by one-dimensional orthogonal projectors),
[30] names the corresponding criteria as PP-ODOP compatibility.

One can consider the case where all of the n states/beliefs {ρ1, . . . , ρn} are known to
belong to a particular subset A of all quantum states, and ask whether for all such tuples of
n beliefs in A the PP-ODOP and PP-POVM criteria will coincide with each other. When
this happens, we will say that in that context PP-ODOP=PP-POVM. Note that this is
equivalent to projections being optimal for perfect state exclusion within the context of
input states in A.

1More formally, we can formalize PP compatibility through the equation ∀{Πi}∃i∀j 〈Πi, ρj〉 > 0, which
gives as its negation ∃{Πi}∀i∃j 〈Πi, ρj〉 = 0

80

In [30], the authors identify a necessary and sufficient condition for PP-ODOP incom-
patibility of 3 pure states {a, b, c} in 3 dimensions (i.e. they establish a condition for the
states to be perfectly excludable via a projective measurement). This condition can be ex-
pressed in terms of the magnitudes of their inner products, given by |〈a, b〉|, |〈a, c〉|, |〈b, c〉|,
and which we will denote as j1, j2 and j3, respectively. In particular, the condition obtained
in [30] is that 3 pure states will be PP-ODOP incompatible whenever

j2
1 + j2

2 + j2
3 + 2j1j2j3 ≤ 1. (5.2)

We will refer to this formula as the Caves-Fuchs-Schack inequality, after the authors
of [30]. Note that we have corrected in our presentation of this formula the original strict
inequality sign that they use, following the indications to do so in [14, 101], and we have also
merged the two conditions from the original presentation in [30] into one single condition.

When this result was introduced in [30], it was mentioned that the authors were not
able to prove that PP-ODOP = PP-POVM in the context of 3 pure states in 3 dimensions,
despite having numerical evidence that this is the case. The authors also present results
establishing that this is the first open case – they cite previous work [73] showing that for
two pure states in any dimension PP-ODOP = PP-POVM, and establish that for k > 2
pure states in 2 dimensions this will not necessarily be the case.

We will give now an analytical proof which answers the corresponding question, by
showing that PP-ODOP = PP-POVM in the context of 3 pure states in 3 dimensions.

Our work can be seen as part of the line of work that studies POVMs in the context
of low-dimensional systems of a fixed dimension. For example, [108] and [117] recently
examined 2-dimensional POVMs in the contexts of nonlocal games and quantum state
discrimination, respectively, while [120] looked into 4-dimensional POVMs in the context
of imposing symmetry conditions.

We conclude with a discussion about different ways in which our work might be gen-
eralized. Of special interest here might be our discussion on the usage of Quadratically
Constrained Quadratic Programming (QCQP) to model the n-dimensional variant of the
question we solve. This is a type of mathematical optimization formalism that has seen a
large number of applications in recent years, but only limited usage so far within the con-
text of quantum information processing. To our knowledge, this is the first time that state
exclusion of pure states through projections is expressed through a problem in a standard
form of a mathematical optimization framework.

81

5.2 Main derivation

5.2.1 Restrictions that can be imposed without loss of generality
on POVMs that achieve perfect exclusion

Our goal is to prove that for any set of 3 pure states in 3 dimensions that are perfectly
excluded by a measurement (i.e. a POVM), they are also perfectly excluded by a projective
measurement. Following Equation (5.1) and our analysis of it, we can identify the perfect
exclusion of three pure states a, b and c with obtaining an optimal value of 0 in the following
semidefinite program:

minimize: a∗M1a+ b∗M2b+ c∗M3c

subject to:
∑
i

Mi = I

Mi ≥ 0,

(5.3)

Note that all the operators involved can be represented as 3× 3 matrices. It is well-known
in convex optimization that the solution to optimizing a linear function over a non-empty
compact convex set in a finite dimensional Hilbert space can be assumed without loss of
generality to be an extreme point of the set of feasible solutions2 (note that in this case,
that feasible set is the set of POVMs). Therefore, we can assume that at most one out
of the Mi has rank greater than 1. Otherwise, assume for the sake of contradiction that
two of them (say M1 and M2) have rank at least 2, so there is a common vector u in the
images of M1 and M2. Then, for ε small enough both {M1 + εuu∗,M2 − εuu∗,M3} and
{M1 − εuu∗,M2 + εuu∗,M3} are POVMs, which implies {M1,M2,M3} is not an extreme
point of the feasible set.

Without loss of generality, we can permute indices so that the ranks of M1, M2, and M3

are sorted in non-increasing order. Also, if M1 has rank 3 it cannot exclude any quantum
state, so it must be the case that its rank is at most 2. Note too that if the ranks are of
the form (1, 1, 1), it is not hard to see that the condition M1 +M2 +M3 = I implies that
{M1,M2,M3} form a projective measurement themselves. Similarly, in the case where the
ranks are of the form (2, 1, 0), M1 = I −M2 implies that M1 and M2 form a projective
measurement (this is because for the right hand side I −M2 to have rank 2, M2 must

2This fact follows from applications of the Krein-Milman and Extreme Value theorems, which in their
most general versions require in fact constraints less strong than the ones we have here.

82

have its non-zero eigenvalue equal to 1, which implies then the same for the eigenvalues of
I −M2 = M1).

We can then focus on the case where there is an optimal POVM {M1,M2,M3} with
ranks of the form (2, 1, 1). We also choose now without loss of generality to work in a basis
such that M1 is diagonal and it perfectly excludes a = |0〉.

We have then that M1 will be determined by the choice of a real diagonal vector
(0, 1 − x, 1 − y), and M2 and M3 by a choice of complex vectors v = (v1, v2, v3) and
w = (w1, w2, w3) such that M2 = vv∗ and M3 = ww∗. We claim now that we can assume
y = 0, v1 6= 0, w1 6= 0, v2 6= 0, w2 6= 0, v3 = 0, w3 = 0. To see why, consider the following
five observations:

1. The condition M1 +M2 +M3 = I corresponds to the equations

v1v1 + w1w1 = 1 (5.4)

v2v2 + w2w2 = x (5.5)

v3v3 + w3w3 = y (5.6)

v1v2 = −w1w2 (5.7)

v1v3 = −w1w3 (5.8)

v2v3 = −w2w3. (5.9)

2. We can assume v1 6= 0 and w1 6= 0, as otherwise {M1,M2,M3} can be trivially
transformed into a projective measurement. To see this, suppose for example that
w1 = 0. Then, (5.4) implies that |v1| = 1, (5.7) that v2 = 0, and (5.8) that v3 = 0.
We have then that M2 is diagonal, and its diagonal is equal to (1, 0, 0). This implies
that M3 is diagonal as well, while w1 = 0 implies that the first term in its diagonal is
equal to 0, so we can group M1 and M3 into a single operator and obtain a projective
measurement.

3. Suppose we had v2 6= 0 and v3 6= 0. Then, (5.9) implies w2 6= 0 and w3 6= 0.
This means we can divide (5.7) by (5.8) and the conjugate of (5.9), and obtain that
v1
w1

= v2
w2

= v3
w3

. Let λ be the value of these ratios. Then, each of equations (5.7)-(5.9)
implies that λ = 0, which contradicts v1 6= 0.

4. We have then that either v2 = 0 or v3 = 0, and by symmetry we can assume without
loss of generality that v3 = 0. Then, w3 = 0 as well, since otherwise (5.8) would
imply w1 = 0, which we know not to be the case. (5.6) implies then that y = 0.

83

5. If we were now to additionally impose that v2 = 0, (5.7) would imply that w2 = 0,
which can only happen when x = 0, by (5.5). However, in the x = 0 case we have that
M1 is a projection on |1〉 and |2〉, and M2 and M3 can be merged into a projection
on |0〉, so there trivially is an optimal projection for state exclusion, and the case is
not of interest to us. We can assume then that v2 6= 0, and similarly that w2 6= 0.

We can introduce now a parameter r, which determines the distribution of the weight
x between M2 and M3, and let |v2|2 be equal to x 1

r+1
(r ∈ (0,∞)). We have then that (5.5)

implies |w2|2 = x r
r+1

, and that (5.7) and (5.4) imply then that |v1|2 = r
r+1

, |w1|2 = 1
r+1

.
The magnitudes of each element of v and w are then completely characterized by the values
of r and x.

As for the phases of the elements of v and w, we can assume that v1, w1 ∈ R without
affecting the values of M2 and M3. Then, if the phase of v2 is given by θ, (5.7) implies that
the phase of w2 is given by π + θ.

We reach then our final form for what a POVM {M1,M2,M3} for perfect state exclusion
of 3 pure states in 3 dimensions can be assumed to be without loss of generality. In matrix
form, it is given by

M1 =

0 0 0
0 1− x 0
0 0 1

 , (5.10)

M2 =
1

r + 1

 r e−iθ
√
rx 0

eiθ
√
rx x 0

0 0 0

 (5.11)

M3 =
1

r + 1

 1 −e−iθ
√
rx 0

−eiθrx rx 0
0 0 0

 (5.12)

where 0 < x < 1, r ∈ (0,∞), 0 ≤ θ < 2π.

5.2.2 Verification that any states perfectly excluded by our parametrized
optimal POVM satisfy the Caves-Fuchs-Schack inequality

We look first at the structure of the states b and c perfectly excluded by M2 and M3, and
obtain that it is enough to consider a one-parameter family for each of them. Let b be

84

given by (b1, b2, b3), and c by (c1, c2, c3). Then, our conclusion follows from the following
five observations:

1. As usual, we can get rid of unphysical global phases, and assume b1 is a real positive
number. This is because multiplying b by a phase will not affect the value of our
semidefinite program (5.3), and it will not affect either the satisfaction of the Caves-
Fuchs-Schack inequality.

2. It can be seen from (5.11) that the value of b2 is completely determined by the value
of b1 by the constraint M2b = 0 (which is equivalent to b∗M2b = 0, since M2 is positive
semidefinite, making both conditions equivalent to b ∈ Ker(M2)). In particular, one
obtains that b2 = −b1e

iθ
√

r
x
.

3. The fact that b has norm 1 (since it represents a pure state) allows us now to express
the magnitude of b3 as a function of b1. In particular, the magnitude of b3 is given

by
√

1− b2
1

(
1 + r

x

)
, while its phase, which we will denote by ϑ, can take any value.

Note that this implies an upper bound on b2
1, given by 1/

(
1 + r

x

)
.

4. A similar analysis applies to c, and we have that it can be parametrized by a real
positive value c1 such that 0 ≤ c2

1 ≤ 1/
(
1 + 1

rx

)
, together with the phase γ of c3. In

this case, the value of c2 is given by c1e
iθ
√

1
rx

, and the magnitude of c3 is given by√
1− c2

1

(
1 + 1

rx

)
.

5. We can assume now that the phases ϑ and γ of b3 and c3 are selected in order to
maximize the left hand side of the Caves-Fuchs-Schack inequality. The reason we can
do this is because we are interested in proving that the Caves-Fuchs-Schack inequality
holds, so this is a worst-case scenario in our situation.

To do so, note that j1 = b1 and j2 = c1, so they do not depend on the phases of b3 and
c3. Therefore, maximizing the left hand side of the Caves-Fuchs-Schack inequality
will be equivalent to maximizing j3 = |b∗c|. To do that, we compute first the value
of b∗c, given by

ei(γ−ϑ)

√
1− b2

1

(
1 +

r

x

)√
1− c2

1

(
1 +

1

rx

)
+ b1c1 −

1

x
b1c1 (5.13)

85

The magnitude of this expression as a function of γ and ϑ will be the largest possible
whenever the first term in the sum interferes constructively with the other terms.
This will happen whenever the first term is also real, and has the same sign as
b1c1(1− 1/x). We can in fact achieve this by picking γ = ϑ+ π, since 0 < x < 1. We
obtain then that in our worst-case situation,

j3 =

√
1− b2

1

(
1 +

r

x

)√
1− c2

1

(
1 +

1

rx

)
+ b1c1(1/x− 1). (5.14)

The Caves-Fuchs-Schack inequality is expressed then in our case as

j2
3 + b2

1 + c2
1 + 2j3b1c1 ≤ 1, (5.15)

where

x ∈ (0, 1), r ∈ (0,∞), b1 ∈
[
0,

√
1/
(

1 +
r

x

))
, c1 ∈

[
0,

√
1/

(
1 +

1

rx

))
, (5.16)

and j3 is given in (5.14). We will refer from now on to the left hand side of (5.15) as
f(x, r, b1, c1). If b1 = 0 or c1 = 0, a simple algebraic manipulation of the value of j3

gives us that f(x, r, b1, c1) ≤ 1. Expanding the value of j3, we have that f(x, r, b1, c1)
is given by

b2
1c

2
1(1 + 1/x2 − 2/x) +

(
1− b2

1

(
1 +

r

x

))(
1− c2

1

(
1 +

1

rx

))
+ 2b1c1(1/x− 1)

√
1− b2

1

(
1 +

r

x

)√
1− c2

1

(
1 +

1

rx

)

+ b2
1 + c2

1 + 2b2
1c

2
1(1/x− 1) + 2b1c1

√
1− b2

1

(
1 +

r

x

)√
1− c2

1

(
1 +

1

rx

)
=1− b2

1

r

x
− c2

1

1

rx
+ c2

1b
2
1

(
2

x2
+

1

x

(
r +

1

r

))
+ 2b1c1

1

x

√
1− b2

1

(
1 +

r

x

)√
1− c2

1

(
1 +

1

rx

)
.

86

To prove that this is less or equal than 1, we will move all terms to one side of the
inequality and write as a square the resulting expression (as an aside, this is a choice
of approach for which we took inspiration from one of the standard proofs for the
statement x+ 1

x
≥ 2).

In more detail, multiplying by x and dividing by b2
1c

2
1 our last expression, we have

that f(x, r, b1, c1) will be less or equal than 1 whenever

2

√
1

b2
1

−
(

1 +
r

x

)√ 1

c2
1

−
(

1 +
1

rx

)
≤ r

1

c2
1

+
1

r

1

b2
1

−
(

2

x
+

(
r +

1

r

))
(5.17)

Observe now that both sides of this inequality are positive. This is trivial for the
left hand side, and follows for the right hand side from the previous obtained upper
bounds on b1 and c1. If we square both sides of this inequality and simplify the
resulting expression, we obtain(

r2

(
1

c4
1

− 2

c2
1

+ 1

)
+

1

r2

(
1

b4
1

− 2

b2
1

+ 1

)
+ 2

(
1

c2
1

+
1

b2
1

− 1

b2
1c

2
1

− 1

))
≥ 0. (5.18)

This can be rewritten as

(
r

(
1

c2
1

− 1

)
− 1

r

(
1

b2
1

− 1

))2

≥ 0, (5.19)

which is true, so we have successfully proved that a, b and c satisfy the Caves-Fuchs-
Schack inequality, and therefore can be excluded by a projective measurement.

Note that x is not involved at all in (5.18), although one can verify computationally
that the difference between the left hand side and the right hand side of (5.17) does
depend on x.

5.3 Perspectives for generalization

5.3.1 Usage of Quadratically Constrained Quadratic Programs
(QCQPs)

We will now discuss how to study the perfect exclusion of n pure states by a projection
through a collection of Quadratically Constrained Quadratic Programs (QCQPs). For a

87

situation with a n-dimensional complex variable x and m constraints, the standard form
for such a program can be taken to be

minimize: x∗Gx

subject to: x∗Ckx ≥ lk, ∀k ∈ {1, . . . ,m},
(5.20)

where the lk take real values, and G and the Ck are n× n Hermitian matrices.

This is a type of mathematical optimization formalism that has received considerable
attention in recent years, with wide-ranging applications in science and engineering (see
[4, 55, 65, 25] for just a few amongst many relevant examples). There has also been a con-
siderable number of results about the theoretical structure of the corresponding problems
and the design of algorithms that can solve them (see e.g. [62, 58, 83]). However, there
have only been a handful of applications so far [66, 38, 11, 104] of the QCQP model to
quantum information processing.

In our collection of QCQPs, there will be one program for every n-combination with
repetition {s1, . . . , sn} out of the set {w1, . . . , wn} of states to be excluded. Each choice
represents a possibility for how the states excluded after obtaining different outcomes of
the projection relate to each other, and the reason why we need to consider those choices
is that two different outcomes of the projection could plausibly lead to excluding the same
state (which in the POVM case would be handled by grouping those two outcomes into
the same one). In particular, each of the corresponding QCQPs for perfect state exclusion
via projections formalizes the following two ideas:

• A projection in n dimensions corresponds to a choice of n unit vectors {v1, . . . , vn}
that are pairwise orthogonal.

• We would like for every vi to be orthogonal to the corresponding si.

These ideas are then reflected in the following QCQP:

minimize:
∑
i

v∗i (sis
∗
i)vi

subject to: v∗j vk + v∗kvj = 0,∀i, j ∈ {1, . . . , n} s.t. j < k

iv∗j vk − iv∗kvj = 0,∀j, k ∈ {1, . . . , n} s.t. j < k

v∗j vj = 1,∀j ∈ {1, . . . , n},
vj ∈ Cn,∀j ∈ {1, . . . , n}.

(5.21)

88

Note that we have written v∗j vk + v∗kvj = 0 and iv∗j vk − iv∗kvj = 0 rather than v∗j vk = 0,
in order to have the matrix representing each constraint be Hermitian, as required in (5.20)
(one can then go as usual from an equality with 0 constraint to two constraints of inequality
with respect to 0). We can also write v∗j vj ≥ 1 rather than v∗j vj = 1, making usage of the
fact that such a change does not alter whether the value of the program is 0 or not. Also,
while for ease of presentation we have stated the problem with n variables, they can be
easily combined into one single variable taking values in Cn2

in order to obtain a program
of the exact same form as (5.20).

The number of such programs in dimension n that we need to consider is given by the
number of n-combinations with repetition out of a set of length n, equal to

(
2n−1
n

)
. While

asymptotically this will scale very quickly as a function of n, it will still be computationally
tractable for values like n = 5 or n = 6, which goes beyond the theoretically understood
range of up to n = 3. To compute the final answer, one will take the minimum value
out of all the programs. If this value is equal to zero, then the states {w1, . . . , wn} can
be perfectly excluded with a projection, while if it is a non-zero value then perfect state
exclusion of the set {w1, . . . , wn} will not be possible.

As for its applications to future results, there are two main consequences of the for-
malism we just described, beyond the indirect consequence of our work possibly inspiring
further usage of the QCQP framework within quantum information processing.

The first of these consequences correspond to our newfound ability to use results about
QCQPs in order to obtain new structural results about the perfect exclusion of pure states
through projections. One can straightforwardly check that basic weak duality results will
not help, since the value of the Lagrangian dual programs will always be zero. However,
as we discussed earlier there is an ongoing stream of non-trivial theoretical results about
QCQPs, and it seems reasonable to conjecture that some of those results will eventually
apply to the highly structured programs that we consider.

The second of these consequences corresponds to the increased potential for the us-
age of standard mathematical optimization packages. While the work on solver software
supporting QCQP is not yet at a stage giving a simple path for an implementation of
the programs described by (5.21), it seems reasonable to expect that such a stage will be
reached in the near term. Then, such a piece of software could be compared with another
one that implements the program in (5.1). From this, one would obtain a numerical study
through standard solvers of the difference between POVMs and projections for perfect
state exclusion of n pure states in n dimensions.

89

5.3.2 Direct generalizations of our proof

A naive approach for generalizing our result would start by considering conditions equiva-
lent to the Caves-Fuchs-Schack inequality in the 4-dimensional case. However, this seems
far from trivial, since the original derivation in [30] presents obstacles to such a general-
ization. In particular, it relies on the fact that when using the basis determined by an
excluding projection, the sums corresponding to the inner products between two of the
perfectly excluded states {a, b, c} will have exactly one non-zero term. This makes it rela-
tively easy to obtain formulas for the coefficients of a, b and c in that basis as a function
of the inner products between the states. However, solving the corresponding equations
in 4 dimensions seems like a significantly more complicated task, as each inner product
between excluded states involves not 2 but 4 non-zero coefficients.

It could also be fruitful to take a geometrical perspective in order to better understand
the situation at hand, following the approach in [15]. To see at an intuitive level what
this might be like, one can start by observing that the space of density matrices is a
section of the convex cone of positive semidefinite matrices. Also, the space of probability
distributions with 3 outcomes can be seen as an equilateral triangle, with each vertex of
the triangle corresponding to a different deterministic distribution. Then, as one can see in
Chapter 10 of [15], for any fixed 3-outcome POVM the map which takes a density matrix
to the probability distribution associated with applying the POVM to the density matrix
will be an affine map from the convex cone section to the equilateral triangle.

In light of these facts, we can interpret any limits to state exclusion via projectors as
saying that three points close to each other in the section of the convex cone cannot be
sent to 3 different faces of the triangle by an affine map corresponding to a projection,
as otherwise some points in the section would be sent outside the triangle, which is not
allowed. Then, our result that projections are equivalent to POVMs can be seen as saying
that in the case of pure states this does not change when we also allow the affine maps
corresponding to non-projection POVMs. It might be interesting to fully formalize this
thought, mathematically prove in this framework the known results about limits to state
exclusion, and see if it is now easier to extend them to the case of 4 pure states, where the
space of outcomes of a 4-outcome POVM can be seen as a regular tetrahedron.

Another way in which a geometric perspective might useful would be for obtaining a
constructive algorithm that transforms an excluding POVM into an excluding projection
for the case we analyze in this paper (3 pure states in 3 dimensions). It seems plausible
that obtaining such an algorithm would then give insight about how to generalize our
result. Note too that the main insight that leads to our result is the fact that one can
take a POVM for perfect state exclusion to be an extremal one. This does not trivially

90

lead to an answer, since there are extremal POVMs that are not projections, such as those
in the family in Equations (5.10)–(5.12). However, an analysis of what the ranks of an
extremal POVM in 3 dimensions have to look like allows us to obtain a parametrization
of the situation that can be algebraically solved. The usage of more sophisticated facts
about the structure of extremal POVMs (such as those facts derived in [84, 48, 99]) could
be similarly involved in a generalization of our results to higher dimensionality. In fact,
these considerations seem to us a very likely ingredient of any such generalization.

It also a possibility is to look for partial characterizations for the perfect state exclusion
of pure states (by projections or by a POVM) rather than for an exact characterization like
the Caves-Fuchs-Schack. One could for example make progress along this path by proving
the following conjecture from [49], and then determining whether it holds for the case of
projective measurements:

Conjecture 1 ([49]). : If n states {v1, . . . , vn} in n dimensions are such that |〈vi, vj〉| <
n− 2

n− 1
, it is possible to perform perfect state exclusion of these states with a POVM.

Along the lines of using state exclusion characterizations alternative to the one given
by (5.1), the work in [51] considers a generalization of the explicit perfect state exclusion
criteria given in [30] for the 2-dimensional case. However, it finds this generalization to be
a sufficient condition for the n-dimensional case but not a necessary one. This work also
observes that if pure states are perfectly excluded via a POVM, they will be an eigenvector
(with eigenvalue 0) of the corresponding POVM element, and they can be assumed to
be an element of its spectral decomposition. Then, one can consider the feasibility of an
optimization program where one tries to fill in the remaining coefficients and vectors in the
spectral decomposition of the POVM elements. While one might expect at first glance that
the standard SDP framework in (5.1) would offer a greater chance of applying mathematical
optimization results, perhaps the fact that this formulation is closer in its shape to the
QCQPs in (5.21) could help make non-trivial connections between the projection case and
the POVM case.

5.3.3 Other considerations

It might also be of interest to find relations between the optimality of projections for
tasks involving POVMs, and the optimality of unitaries (without the use of ancillas) for
certain tasks involving channels, discussed for example in [20, 10], specially considering the
numerical evidence suggestive of such kind of connection identified in [12, 10]. When doing

91

so, it might also be of interest to consider results (such as those in [39]) that characterize
from a computational complexity point of view the power of computing with unitaries as
opposed to general quantum channels.

Note too that for the exclusion of k mixed states {ρ1, . . . , ρk} in n dimensions, the k-
outcome POVM M that minimizes

∑
i 〈Mi, ρi〉 will be the one that maximizes

∑
i

〈
Mi,

I−ρi
n−1

〉
– that is, the one that performs best in the state discrimination of states {I−ρ1

n−1
, . . . , I−ρk

n−1
}.

One can then apply existing results about optimal measurements for state discrimination
[37, 41], while also considering the chance of generalizing results [36, 92] that look into the
optimality of projections for state discrimination of pure states. Relatedly, as we discussed
earlier the work in [30] gives a characterization for perfect exclusion of 2-dimensional pure
states that makes it clear that for any number of k > 2 states in 2 dimensions, projec-
tions are not necessarily equivalent to POVMs. It is the case that they additionally use
a reduction to that setting to point out that for three mixed states in three dimensions,
projections are not equivalent to POVMs within the context of perfect state exclusion.

Note as well that if one considers the possibility of constraining the number of non-zero
components of a perfectly excluding POVM, the possibility of doing so simply corresponds
to being able to perfectly exclude a subset of the set of states under consideration. Another
related variation one might want to study is requiring that there are no zero components
of a perfectly excluding POVM, as considered in [51].

One could also look into determining whether the results here carry over to the gradual
measure of PP-incompatibility defined in [27], which is the value of the SDP in (5.1) when
the uniform distribution is assumed. This would correspond for example to asking whether
projections are optimal for state exclusion of 3 pure states in 3 dimensions even when perfect
exclusion cannot be achieved by POVMs. If that was successfully answered, it would be
natural to relax assumptions even further, and consider arbitrary distributions. [89] offers
a partial answer to these questions, by giving for an arbitrary number of pure states a
sufficient condition for the existence of an optimal excluding POVM that is a projection
(this is the condition that there is an optimal POVM such that none of the outcomes are
perfectly excluded, and we also have that the pure states are linearly independent).

Note that the QCQP framework discussed in Section 5.3.1 extends without issues to the
variants of the problem discussed in the previous paragraphs. In particular, if one wishes
to study the exclusion of k 6= n states, one can simply write {w1, . . . , wk} rather than
{w1, . . . , wn} for the set of states to be excluded, giving rise to

(
k+n−1
n

) (
rather than

(
2n−1
n

))
programs of the form in (5.21). Similarly, if one wishes to study mixed states rather than
pure states or introduce a probability distribution on the states, one can simply modify
the objective function in (5.21) by replacing the values of sis

∗
i with a corresponding ρi and

92

combining them with a multiplicative term pi, respectively.

Furthermore, if one wishes to study non-perfect state exclusion, the programs given
in Section 5.3.1 can be used towards that purpose without additional modifications. As
for the variant that limits the number of non-zero components of a perfectly excluding
POVM, it will correspond to limiting the number of distinct terms that can appear in the
n-combinations with repetition of {w1, . . . , wn} that characterize the programs in (5.21).
Similarly, the requirement that there are no zero components of the POVM corresponds
to requiring that every state is excluded by a measurement outcome, and therefore to only
considering the n-combination given by {s1, . . . , sn} = {w1, . . . , wn}.

93

Chapter 6

Quantum hedging

6.1 Setting

The results in this chapter concern the setting where a verifier Alice and a prover Bob
conduct several instances of the same two-round protocol in parallel. This two-round
protocol will go as follows:

1. Alice prepares a quantum state ρ, and sends part of this state to Bob, while keeping
the other part herself.

2. Bob acts with a quantum channel Φ of his choice on the part of the state that he
receives, and sends the answer to Alice.

3. Alice measures the quantum system under her control (i.e. Bob’s answer and the
share of the state ρ that she kept) through a POVM {P0, P1}. If she obtains the
outcome corresponding to P1, we say that Bob “won”, and if she obtains the outcome
corresponding to P0, we say that Bob “lost”.

6.1.1 Background and motivation

In previous work published in [77], we provided the first know protocol of this kind where
Bob can make sure that he obtains the winning outcome in one out of two parallel instances
with probability 1 by correlating his behavior, while his optimal probability of winning one

94

instance is less than 1. We name this as perfect quantum hedging. The provided protocol
corresponds to the simple case where

ρ =
1

2
(|00〉+ |11〉)(〈00|+ 〈11|) (6.1)

P1 = (cos(π/8) |00〉+ sin(π/8) |11〉)(cos(π/8) 〈00|+ sin(π/8) 〈11|) (6.2)

P0 = I − P1 (6.3)

and Alice sends to Bob one of the qubits in the standard maximally entangled state cor-
responding to ρ, while Bob also answers with a qubit. In a single instance, Bob’s optimal
chance of winning is cos(π/8)2 < 1, while in two parallel instances, he can win one out of
the two with certainty by applying the phase flip

|00〉 7→ − |00〉 , |01〉 7→ |01〉 , |10〉 7→ |10〉 , |11〉 7→ |11〉 (6.4)

to the two qubits that he receives, and then returning them back to Alice.

As pointed out in the original presentation of this result, one can consider a fictitious
scenario to see why this type of hedging behavior can be of interest to Bob. In our scenario,
Bob is offered the opportunity to take part in two potentially very lucrative (but involving
some risks) games of chance, organized by Alice. These two games are completely identical
to each other, and run independently. To earn the right to play in each of the games, Bob
must contribute $1 million of his own money, and he has an 85% chance of winning if he
plays optimally. For each game he wins, Bob receives a price of $3 million, with a total
$2 million gain over his initial investment. If Bob does not win, he loses his $1 million
investment.

Many people, if put in the place of Bob, would not hesitate to play both of the games,
even taking out a $2 million loan if necessary to do so. The expected gain from each of the
games is $1,550,000, and the only time that Bob loses money as an overall result is when
Bob loses in both of the games. If we treat the games independently, the chance for a loss
in both is 2.25%. However, Bob could be a highly risk-averse person. He would greatly
enjoy being a millionaire, but cannot or does not want to risk a 2.25% chance of losing $2
million. If the games run by Alice can be modelled classically, there is no way Bob can
avoid this risk. However, if the two games have a model using quantum information with
the same properties as the one in our protocol, Bob can be guaranteed to win in at least
one of the games, and therefore obtain at least a total $1 million gain. A choice of an
appropriate quantum strategy allows Bob to hedge his bets perfectly.

The PhD work presented in this chapter has as its main goal to deepen our understand-
ing of the quantum hedging phenomenon. The main result for this chapter is Theorem 3,

95

described in Section 6.2. This result had its original publication in [10], where it is part of
a tight characterization of Bob’s chances of winning at least 1 out of n parallel instances for
a generalization of the protocol from [77] that we just described. The purpose of the result
is to better understand what kind of situation gives rise to the hedging phenomenon. In
Section 6.3, we further discuss the combination of this hedging phenomenon with the usage
of the logarithmic utility principle, common in the financial analysis of hedging decisions.
In Claim 1 and its proof, we provide an example of how the application of this principle
can motivate the search for better parameters in quantum hedging protocols.

In terms of length, the bulk of this chapter will be of a technical character, and con-
cerned with the proofs of Theorem 3 in the case of Section 6.2, and Claim 1 in the case
of Section 6.3. These proofs are non-trivial, and might be of inspiration to others who are
in the process of construction non-trivial proofs in the setting of (quantum) prover-verifier
interactions with a single prover. Readers who find it preferable at this time to skip the
technical content are free to focus on the statement of Theorem 3 and Claim 1, together
with the surrounding discussions that provide the appropriate context.

We now discuss why this quantum hedging phenomenon is of interest, and therefore
worth being understood in a deeper way.

One key reason for the interest of quantum hedging is that this effect cannot be repli-
cated in the classical counterpart of our setting, where it will be optimal for Bob to play
independently between parallel instances. That is to say, assume that the messages ex-
changed between Alice and Bob are classical, and the optimal chance for Bob to win a
single instance is equal to p. Then, Bob’s optimal chance of winning at least k out of n
parallel instances will be given by

∑n
t=k

(
n
t

)
pt(1 − p)n−t, and this will be the case even if

the protocol has more than 2 rounds of communication (the situation does becomes more
complex if there are several provers, see [40, 53, 94]).

The existence of quantum hedging establishes then a separation between the classical
and quantum realms in a prover-verifier setting with a single prover, which can be con-
trasted with well-known separations [32, 72, 88] in the nonlocal games setting where the
messages exchanged are classical and there are multiple provers. This creates then the po-
tential of experiments based on single prover-verifier protocols that give rise to situations
that cannot be mathematically explained with a non-quantum model under reasonable
assumptions.

Beyond the opportunities for exploring this new kind of classical-quantum separation,
there are at least two additional reasons to care about quantum hedging, corresponding
respectively to our main result in Section 6.2 and the additional discussion in Section 6.3.

The first of these reasons is that the existence of the quantum hedging phenomenon

96

removes the possibility for a naive proof of the effectiveness of parallel repetition for error
reduction in the complexity class QIP(2). This complexity class is studied for example
in [95, 115, 56, 50], and corresponds to proof systems with the two-message interaction
pattern here. If it was optimal to play independently in order to win at least k out of n
parallel instances of a QIP(2) protocol, the standard proof in the classical case (see e.g. [5])
regarding the usage of parallel repetition for error reduction would apply. As found in
later Masters work [75], there are however limits to the obstacles that quantum hedging
presents to such a proof. In particular, there is a lack of ability to use quantum hedging
to increase the expected number of parallel instances won when compared with playing
independently. In light of this situation, we conducted the research presented in Section 6.2
with the purpose of gaining a better intuition of quantum hedging, and therefore of the
exact obstacles that it might present to such a proof.

These obstacles were later surmounted in work by Hornby [54], who obtained bounds to
quantum hedging that establish the effectiveness of parallel repetition for error reduction
in quantum interactive proof systems with an arbitrary number of messaging rounds. In
particular, these bounds establish that only O(log(1/δ) log(log(1/δ))) parallel instances of
an interaction are needed to bring both the soundness and completeness error below a
target value of δ via strong parallel repetition.

A second reason corresponds to a more general motivation for characterizing hedging
behavior in any kind of protocol where it is possible. While the game scenario we earlier
described is fictitious, it is well-understood in mathematical finance that there are prac-
tical situations, such as the presence of compound interest, where it is advantageous to
engage in hedging behavior rather than in naive expected-value optimization (with this
line of thought leading to the name of hedge funds for certain investment funds that use
sophisticated portfolio construction techniques).

One technique to identify when to engage in hedging behavior is to make usage of the
logarithmic utility principle [45]. It is then of interest to apply this principle in order to
better understand the situations in which quantum hedging would be rational, as we do in
our demonstration in Section 6.3. The practical application of this type of analysis is not
far-fetched, given the recent push towards the large-scale implementation of quantum com-
munication technologies [116], and parallel developments in electronic financial protocols
[63, 74] that make usage of primitives that correspond to prover-verifier interactions.

97

6.1.2 Semidefinite programming formulation

Consider n parallel instances of a two-round protocol of the type considered here, with
Alice initially preparing the state ρ, and measuring with the POVM {P0, P1} to determine
the final outcome. Denote the Hilbert space for Alice’s message to Bob in the ith instance
of the game as Xi. Similarly, denote the Hilbert space for Bob’s message to Alice in the
ith instance of the game as Yi.

It follows from the general formalism presented in [46, 47] that the optimal chance for
Bob to win at least 1 out of n parallel repetitions will be given by the following semidefinite
program:

mn,α,θ: Primal problem

minimize:
〈
Q⊗n0 , X

〉
subject to: TrY1⊗···⊗Yn(X) = IX1⊗···⊗Xn ,

X ∈ Pos(Y1 ⊗X1 ⊗ · · · ⊗ Yn ⊗Xn)

(6.5)

mn,α,θ: Dual problem

maximize: Tr(Y)

subject to: π (IY1⊗···⊗Yn ⊗ Y) π∗ ≤ Q⊗n0 ,

Y ∈ Herm(X1 ⊗ · · · ⊗ Xn)

(6.6)

where:

• π is a unitary operator that permutes the order of Hilbert spaces in a tensor product,
with the action

π(y1 ⊗ · · · ⊗ yn ⊗ x1 ⊗ · · · ⊗ xn) = y1 ⊗ x1 ⊗ · · · ⊗ yn ⊗ xn.

for any y1 ∈ Y1, · · · , yn ∈ Yn and x1 ∈ X1, · · · , xn ∈ Xn

• Q0 = (IYi ⊗Ψρ) (P0), with Ψρ the channel such that J(Ψρ) = ρ.

In [46, 47], one can see more general semidefinite programs corresponding to Bob winning
at least k out of n parallel instances, but this 1-out-of-n program will suffice for the purpose
of our analysis in this chapter.

98

6.2 Main result

6.2.1 Formal statement of main result

As discussed in Section 6.1.1, we aim here to derive results that can be used to build
intuition about the situations where quantum hedging can occur, as well as the magnitude
of the corresponding advantages. In particular, we study a generalization of the protocol
in [77] and derive the following theorem, whose proof appears in Section 6.2.2:

Theorem 3. Consider n parallel instances of a protocol where:
1. Alice prepares a quantum state ρ = |φ〉 〈φ| where |φ〉 = α |00〉 +

√
1− α2 |11〉 with

α ∈ [0, 1], and sends one qubit to Bob, while keeping the other qubit herself.

2. Bob acts with a qubit channel Φ on the qubit that he receives, and sends the resulting
qubit back to Alice.

3. Alice measures the two qubits under her control through a POVM {P0 = |ψ〉 〈ψ| , P1 =
I − P0} in order to determine whether Bob win or loses, with |ψ〉 = cos(θ) |00〉 +
sin(θ) |11〉.

Note that in these n parallel instances, Bob is not constrained to channels of the form
Φ⊗n that treat the qubit in each instance identically and independently. Instead, he can
apply any channel that maps n qubits to n qubits.

Let θn,α = tan−1
(√

1
α2 − 1

(
21/n − 1

))
, and γn,α = tan−1

(√
1
α2 − 1

(
1

21/n−1

))
.

Then, if θ ∈ [0, θn,α), the optimal chance for Bob to win at least 1 out of n parallel

instances will be given by 1− 1

2n

(
1

2

)n/2
(2 cos(θ)n − (cos(θ) + sin(θ))n).

If θ ∈ (γn,α, π/2], the optimal chance for Bob to win at least 1 out of n parallel instances

will be similarly given by 1− 1

2n

(
1

2

)n/2
(2 sin(θ)n − (cos(θ) + sin(θ))n).

Furthermore, one can obtain an optimal channel for Bob by considering the unitary
channels ΦΛ(X) = ΛnXΛ∗n and ΦΞ(X) = ΞnXΞ∗n respectively, where:

Λn =
∑

r∈{0,1}n
(−1)∧r+⊕r |r〉 〈r|

Ξn =
∑

r∈{0,1}n
(−1)∨r+⊕r |r〉 〈r| .

99

Figure 6.1: Illustration of the quantities involved in Theorem 3, for the case where n = 2.

One can see the general shape of θn,α and γn,α as a function of α in Figure 6.1, which
depicts the values of θ2,α and γ2,α. The curves would be of a similar shape for larger values
of n, but with an increasing size of the region between the two lines.

This theorem characterizes the optimal chance for Bob to win at least 1 out of n parallel
instances in the protocol under study, together with other results also appearing in [10]
that correspond to the case where θ ∈ [θn,α, γn,α] and give Bob a perfect chance of doing
so in that case.

Note that even in the θ ∈ [0, θn,α)∪ (γn,α, π/2] range that we analyze here with the con-
clusion that perfect hedging is not possible, Bob benefits from not playing independently.
For example, in the θ ∈ [0, θn,α) case, one obtains from Theorem 3 that Bob’s optimal
advantage from correlating his answers is equal to(

1− 1

2n

(
1

2

)n/2
(2 cos(θ)n − (cos(θ) + sin(θ))n)

)
−

(
1− 1

2n

(
1

2

)n/2
(cos(θ)− sin(θ))n

)

=
1

2n−1

(
1

2

)n/2 ∑
2≤a≤n
a even

(
n

a

)
sin(θ)a cos(θ)n−a

 .

100

6.2.2 Proof of Theorem 3

Proof. We will consider the case where θ < θn,α. The other case proceeds similarly. To
simplify our argument, we will occasionally incur in notation abuse in this proof, and
omit the permutation operators in the definition of the dual SDP (6.6) that remind us
that matrices at the sides of a ≤ inequality must have their entries reordered to make the
spaces on which they are defined be in the same order at both sides of the inequality. We
will also assume for convenience that α ∈ (0, 1) – the cases where α = 0 or α = 1 can be
dealt with by continuity with respect to the (0, 1) range.

To prove that perfect hedging is not possible when θ < θn,α, we prove the feasibility
in the dual SDP (6.6) of an operator Y with positive objective value. This operator is
obtained from applying complementary slackness conditions to the primal solution cor-
responding to the strategy where Bob applies the unitary operation Λn to his qubits.
Therefore, it has value for the dual equal to the value in the primal SDP (6.5) for the
solution corresponding to Λn. By weak duality, its feasibility proves then the optimality of
Λn when θ < θn,α.

In order to make parameter dependance explicit, we will write Q0,α,θ for the value of
Q0 corresponding to a specific choice of α and θ, as discussed in Section 6.1.2. A similar
meaning is associated to the symbols ρα, P0,θ, and |φα〉.

To prove the feasibility of Y , we will express Q⊗n0,α,θ−π (IY1⊗···⊗Yn ⊗ Y) π∗ as a direct sum
of smaller matrices. This reduces the question about feasibility of Y to a question about
the positive-semidefiniteness of these smaller matrices. Each of these smaller matrices will
have all proper leading principal minors be positive semi-definite, so by Sylvester’s criterion
it will suffice to check that their determinant is non-negative. We will then obtain a closed
formula for these determinants, and prove that they are indeed non-negative.

We will first consider the case with α = 1/
√

2, and then give an overview of the small
changes involved in adapting the proof to other values of α.

Study of Q⊗n
0,1/
√

2,θ

Q0,α,θ ∈ Pos(X ⊗ Y) is given by |ψ1
0〉 〈ψ1

0 | + |ψ2
0〉 〈ψ2

0 | + |ψ3
0〉 〈ψ3

0 |, where the |ψi0〉 are
defined as ∣∣ψ1

0

〉
= α sin(θ) |00〉 −

√
1− α2 cos(θ) |11〉 ,∣∣ψ2

0

〉
= α |01〉 ,∣∣ψ3

0

〉
=
√

1− α2 |10〉 .
(6.7)

101

This follows from considering the value of P0,θ, and observing that the operator Ψρα sat-

isfying J(Ψρα) = |φα〉 〈φα| (with |φα〉 = α |00〉 +
√

1− α2 |11〉 the initial state shared
between Alice and Bob) maps a state σ ∈ D (Z) to (α|0〉〈0| +

√
1− α2|1〉〈1|)σ(α|0〉〈0| +√

1− α2|1〉〈1|). We can then write Q⊗n
0,1/
√

2,θ
as

Q⊗n
0,1/
√

2,θ
=

(
1

2

)n (
(sin(θ) |00〉 − cos(θ) |11〉)(sin(θ) 〈00| − cos(θ) 〈11|)

+ |01〉〈01|+ |10〉〈10|
)⊗n

(6.8)

=

(
1

2

)n ∑
a,b,c,d∈{0,1}n

|a〉 |b〉 〈c| 〈d|
n−1∏
i=0

(
δci,1−diδai,ciδbi,di

+ δai,biδci,di

(
δai,1−ci(− sin(θ) cos(θ)) + δai,ciδai,1 cos(θ)2

+ δai,ciδai,0 sin(θ)2
))

=

(
1

2

)n ∑
a,c∈{0,1}n

|a〉〈c| ⊗
∑

b,d∈{0,1}n
|b〉〈d|

n−1∏
i=0

(
δai,1−biδci,1−diδai,ci+

δai,biδci,di

(
δai,1−ci(− sin(θ) cos(θ)) + δai,ciδai,1 cos(θ)2

+ δai,ciδai,0 sin(θ)2
))
. (6.9)

The key insight to go ahead with the proof is to notice that this matrix can be written
as a direct sum of 3n smaller matrices. Indeed, observe that (6.8) can be equivalently
written as

1

2n

∑
w∈{0,1,2}n

n−1⊗
i=0

|ψwi〉〈ψwi |, where |ψwi〉 =


sin(θ) |00〉 − cos(θ) |11〉 , if wi = 0

|01〉 , if wi = 1

|10〉 , if wi = 2

.

(6.10)

Then, the coefficient for each |a〉〈c| ⊗ |b〉〈d| term in the summation in (6.9) will receive

102

contribution from at most one of the elements in (6.10). This element will be the one where

wi =


0 if ai = bi

1 if (ai, bi) = (0, 1)

2 if (ai, bi) = (1, 0).

(6.11)

Since this only depends on |ab〉, all elements on the same row of Q⊗n
0,1/
√

2,θ
come from

the same term in (6.10). As each row of Q⊗n
0,1/
√

2,θ
has at least one non-zero term, (6.10)

implies then a decomposition of Q⊗n
0,1/
√

2,θ
into a direct sum of smaller matrices, each of

them with rank 1.

We can then identify each of these matrices by the corresponding choice of w in (6.10).
We will do so by writing them as Q⊗n

0,1/
√

2,θ
(w). We denote the number of 0s, 1s and 2s

in w by n0(w), n1(w) and n2(w), respectively. Also, note that there will be 3n matrices
in our decomposition, with the dimension of Q⊗n

0,1/
√

2,θ
(w) being given by 2n0(w). Note too

that the number of matrices of size 2k is given by
(
n
k

)
2n−k. This corresponds to choosing

on which k positions wi = 0, and what is the value of wi for the other ones.

It will be convenient later to have a formula for the restriction to the diagonal of
Q⊗n

0,1/
√

2,θ
(w). Using the description in (6.10), we have that it is given by

(
1

2

)n ∑
w′∈Mw⊆{0,1}n

g(w,w′) |w′〉 |f(w,w′)〉 〈w′| 〈f(w,w′)| (6.12)

where Mw is given by the cartesian product×n−1

i=0
Mwi , with


M0 = {0, 1}
M1 = {0}
M2 = {1}

,

g(w,w′) =
∏n−1

i=0 g(wi, w
′
i) with


g(0, 0) = sin2(θ)

g(0, 1) = cos2(θ)

g(1, 0) = 1

g(2, 1) = 1

, f(w,w′)i =

{
w′i if wi = 0

1− w′i if wi = 1
.

Note that due to the definition of Mw, it is not necessary to define g(wi, w
′
i) for the values

of (wi, w
′
i) not included in our definition of g here.

103

Presentation of our candidate for Y in the α = 1/
√

2 case

We define now our candidate solution Y for the dual problem, given by

Y = −ε

((
1√
2

sin(θ) |0〉 〈0|+ 1√
2

cos(θ) |1〉 〈1|
)⊗n
− 2

(
1√
2

cos(θ) |1〉 〈1|
)⊗n)

, (6.13)

where ε is a value > 0 given by

(
1

2

)n/2
(2 cos(θ)n − (cos(θ) + sin(θ))n). Note that the

definition of θn,1/
√

2 implies that this value is positive indeed for θ < θn,1/
√

2. We can then
write Y as

∑
a∈{0,1}n

λa |a〉 〈a| ,where λa =


−ε
(

1

2

)n/2
sin(θ)n−|a| cos(θ)|a| for a 6= 1n

ε

(
1

2

)n/2
cos(θ)n for a = 1n

(6.14)

Note that its trace (i.e., its value for the dual program) is given by

−
(

1

2

)n/2
ε
(

(sin(θ) + cos(θ))n − 2 cos(θ)n
)
, (6.15)

which will again be positive for θ < θn,1/
√

2 by definition of θn,1/
√

2.

This Y has been obtained from the strategy Λn defined in Section 6.1, and its feasibility
proves the optimality of Λn for θ < θn,1/

√
2. This is an example of complementary slackness

behavior, and follows from the observation [111] that given a feasible solution X to the
primal SDP (6.5), TrY1⊗···⊗Yn(Q⊗n0,α,θX) is an operator with the same objective value for
the dual SDP (6.6), and satisfies the feasibility constraints of the dual if and only if X
represents an optimal solution to the primal. Therefore, after we experimentally observed
that Λn seemed to be optimal for θ < θn,α, we computed the corresponding value of
TrY1⊗···⊗Yn(Q⊗n

0,1/
√

2,θ
X) to obtain our proposed Y . X is given in this computation by the

primal solution that represents the channel for the unitary in Λn,

X =
∑

i,j∈{0,1}n
|ii〉 〈jj | (−1)∧i+

⊕
i+∧j+

⊕
j. (6.16)

104

Feasibility of Y in the α = 1/
√

2 case

We want to prove that Y is feasible – that is to say, Q⊗n
0,1/
√

2,θ
− Y ⊗ I ≥ 0. Since Y is

diagonal, the direct sum decomposition of Q⊗n
0,1/
√

2,θ
corresponds to a direct sum decompo-

sition of Y . Since positive semidefiniteness is preserved by the direct sum operator, it is
then enough to prove that each of the Sw = Q⊗n

0,1/
√

2,θ
(w)− (Y ⊗I)(w) matrices are positive

semidefinite, where (Y ⊗ I)(w) denotes Y ⊗ I restricted to the rows/columns of Q⊗n
0,1/
√

2,θ

assigned to Q⊗n
0,1/
√

2,θ
(w).

Consider first the largest of these matrices. This will be S0n , with size 2n. Using (6.10),
we have that it is given by

S0n =

(
1

2

)n ∑
a,c∈{0,1}n

|aa〉 〈cc|
(n−1∏
i=0

(
δai,1−ci · − sin(θ) cos(θ)+

δai,ciδai,1 cos(θ)2 + δai,ciδai,0 sin(θ)2
)
− 2nλa

)
.

For example, for n = 2, S00 is given by

1

4


sin(θ)4 − 4λ00 − sin(θ)3 cos(θ) − sin(θ)3 cos(θ) sin(θ)2 cos(θ)2

− sin(θ)3 cos(θ) sin(θ)2 cos(θ)2 − 4λ01 sin(θ)2 cos(θ)2 − sin(θ) cos(θ)3

− sin(θ)3 cos(θ) sin(θ)2 cos(θ)2 sin(θ)2 cos(θ)2 − 4λ10 − sin(θ) cos(θ)3

sin(θ)2 cos(θ)2 − sin(θ) cos(θ)3 − sin(θ) cos(θ)3 cos(θ)4 − 4λ11


Consider now that since Q⊗n

0,1/
√

2,θ
≥ 0, and for a 6= 1n, λa < 0, the first 2n− 1 principal

minors of S0n are ≥ 0. By Sylvester’s criterion, to prove that S0n ≥ 0, it suffices then to
prove that det(S0n) ≥ 0. Note that det(S0n) is a polynomial in ε. This polynomial has all
the coefficients below the one for ε2

n−1 equal to 0. This is because Q⊗n
0,1/
√

2,θ
(0n) has rank

1 - therefore, each minor of it with at least two rows will have determinant equal to zero.
Using this, and going through the determinant formula, we see that det(S0n) is given by

ε2n−1(−1)2n−1
∑

a∈{0,1}n

(
1

2

)n
cos(θ)2|a| sin(θ)2(n−|a|)

∏
b∈{0,1}n
b6=a

λb
ε


+

ε2n(−1)2n
∏

a∈{0,1}n

λa
ε

 (6.17)

105

=ε2
n−1

ε− ∑
a∈{0,1}n

(
1

2

)n
cos(θ)2|a| sin(θ)2(n−|a|)

λa/ε

 ∏
a∈{0,1}n

λa
ε

(6.18)

=ε2
n−1

ε+
∑

a∈{0,1}n

(
1

2

)n/2
cos(θ)|a| sin(θ)n−|a| − 2

(
1

2

)n/2
cos(θ)n

 ∏
a∈{0,1}n

λa
ε

(6.19)

Since all of the λa/ε except the one for 1n are negative, we have that the ε2
n−1

∏
a∈{0,1}n

λa
ε

term is negative whenever ε > 0. Therefore,

det(S0n,0n) ≥ 0 ⇐⇒ (6.20)

ε+
∑

a∈{0,1}n

(
1

2

)n/2
cos(θ)|a| sin(θ)n−|a| − 2

(
1

2

)n/2
cos(θ)n ≤ 0 ⇐⇒ (6.21)

ε ≤
(

1

2

)n/2
(2(cos(θ))n − (cos(θ) + sin(θ))n) , (6.22)

which is true by definition of ε. We have then that our proposed feasible solution Y
produces a positive-semidefinite S0n . To verify the feasibility of Y , it remains to prove the
positive-semidefiniteness of the rest of the Sw.

To do so, consider an arbitrary Sw, w ∈ {0, 1, 2}n−{0n}, with a corresponding Mw, as
defined in (6.12). Note that Mw is the set of indices i such that λi appears in the diagonal
of Sw, and that each λi appears in the diagonal of Sw at most once, as we can see from
the expression in (6.12). If 1n /∈ Mw, then Sw is trivially positive-semidefinite, since it is
obtained by adding a positive-semidefinite diagonal matrix Y (w) to a positive-semidefinite
matrix Q⊗n

0,1/
√

2,θ
(w). Otherwise, our appeal to Sylvester’s criterion from the 0n case applies

again, and it is enough to prove that det(Sw) ≥ 0. Also, since Q⊗n
0,1/
√

2,θ
(w) has rank 1, our

argument that det(Sw) is a polynomial of minimum degree |Mw| − 1 applies again.

Then, using (6.12), and similar to the derivation for (6.17), we have that det(Sw) is
given by

106

ε|Mw|−1

(∏
c∈Mw

λc
ε

)(
ε−

(
1

2

)n ∑
d∈Mw

g(w, d)

λd/ε

)
. (6.23)

Using the definitions of Mw and g(w, d) in (6.12), and realizing that 1n ∈Mw implies that
n1(w) = 0, we have that

∑
d∈Mw

g(w, d)

|λd/ε|
=

(
1

2

)n/2
(sin(θ) + cos(θ))n0(w)

(
1

cos(θ)

)n2(w)

. (6.24)

Now, we have that

1

cos(θ)
≤ sin(θ) + cos(θ) ⇐⇒ 1

cos(θ)2
≤ tan(θ) + 1 (6.25)

⇐⇒ tan(θ)2 ≤ tan(θ) ⇐⇒ θ ≤ π/4. (6.26)

Since we are looking at the range θ < θn,1/
√

2 ≤ π/4, and n0(w) + n2(w) = n, we have that

(sin(θ) + cos(θ))n0(w)

(
1

cos(θ)

)n2(w)

≤ (sin(θ) + cos(θ))n. (6.27)

Therefore, since n2(w) ≤ n,

(
1

2

)n ∑
d∈Mw

g(w, d)

λd/ε
≥
(

1

2

)n/2
(2(cos(θ))n − (cos(θ) + sin(θ))n) . (6.28)

We see then that any ε that makes det(S0n) non-negative will make the determinant of the
other Sw non-negative as well.

107

Generalization to α 6= 1/
√

2

For α 6= 1/
√

2, the changes necessary to make the proof work are limited to arithmetic
adjustments. Q⊗n0,α,θ will now be given by

∑
a,c∈{0,1}n

|a〉〈c| ⊗
∑

b,d∈{0,1}n
|b〉〈d|

n−1∏
i=0

(
δai,1−biδci,1−diδai,ci

(
δai,1(1− α2) + δai,0α

2
)

+δai,biδci,di

(
δai,1−ci · −α sin(θ)

√
1− α2 cos(θ) + δai,ciδai,1(1− α2) cos(θ)2

+ δai,ciδai,0α
2 sin(θ)2

))
. (6.29)

Note that its direct sum decomposition is not affected, since the choice of which terms of
Q⊗n0,α,θ appear on each term does not depend on α.

Similarly, Y is given now by

∑
a∈{0,1}n

λa|a〉〈a|, where λa =

{
−ε(α sin(θ))n−|a|

(√
1− α2 cos(θ)

)|a|
for a 6= 1n

ε
(√

1− α2
)n

cos(θ)n for a = 1n

and ε = 2
(√

1− α2 cos(θ)
)n
− (
√

1− α2 cos(θ) + α sin(θ))n. (6.30)

In order to determine the feasibility of Y , we have now that det(Sw) is given by

ε|Mw|−1

(∏
c∈Mw

λc
ε

)(
ε−

∑
d∈Mw

g(w, d)α2(n−|d|)(1− α2)|d|

λd/ε

)
, (6.31)

again non-negative whenever

ε ≤
∑
d∈Mw

g(w, d)α2(n−|d|)(1− α2)|d|

λd/ε

= 2
(√

1− α2
)n

cos(θ)2n0(w)−n −
∑
d∈Mw

g(w, d)α2(n−|d|)(1− α2)|d|

|λd|/ε
. (6.32)

108

Using the definitions in (6.12), we have now that

∑
d∈Mw

g(w, d)α2(n−|d|)(1− α2)|d|

|λd|/ε
= (α sin(θ) +

√
1− α2 cos(θ))n0(w)

(√
1− α2

cos(θ)

)n2(w)

(6.33)

To prove that (6.32) holds we will need an argument slightly more involved than the
corresponding one for the α = 1√

2
case. First, we consider that for n0(w) = n, the right

hand side of (6.32) is equal to ε, by the expression in (6.33) and the definition of ε in (6.30).
Then, we prove that the right hand side of (6.32) increases as we decrement n0(w), and
increase n2(w) = n−n0(w) in parallel. This is because the positive term in the right hand
side increases with each decrease of n0(w), and it does so by a larger factor than the one
by which the negative term decreases. More rigorously, consider the expression

k =
1

cos(θ)2
−

√
1− α2(

α sin(θ) +
√

1− α2 cos(θ)
)

cos(θ)
. (6.34)

First, note that

k ≥ 0 ⇐⇒
√

1− α2 cos(θ)2 ≤
(
α sin(θ) +

√
1− α2 cos(θ)

)
cos(θ) (6.35)

⇐⇒ cos(θ) ≤ α√
1− α2

sin(θ) + cos(θ) (6.36)

⇐⇒ 0 ≤ α√
1− α2

sin(θ), (6.37)

which is always true when 0 ≤ θ ≤ π/2, which is always the case within the trigonometric
domain that we consider. Then, if we denote the right hand side of (6.32) by rn0(w), we
have the recursive relation

rn0(w) = rn0(w)+1
1

cos(θ)2
+ k(α sin(θ) +

√
1− α2 cos(θ))n0(w)

(√
1− α2

cos(θ)

)n−n0(w)

.

109

We can see indeed that this defines an increasing sequence as we decrease n0(w), since the
second summand is positive, and the first summand multiplies the previous value of r by
an amount greater than one. We have then successfully proved that (6.32) holds in the
α 6= 1√

2
case, and therefore our candidate Y is again feasible in the dual program (6.6)

corresponding to the prover-verifier interaction we study.

In this proof, we prove dual feasibility by performing a direct sum decomposition of both
the left-hand-side and right-hand-side matrices in the dual constraint for the dual program
in (6.6). This allows us to analytically compute the value of the corresponding semidefinite
program, while numerical approaches [9] using standard computational methods from the
CVX [44] toolbox soon (n = 4 or n = 5) stop being able to analyze the problem under
reasonable time constraints due to the size of the matrices involved. There are however
promising ongoing efforts [97, 103] towards creating computational methods for the analysis
of semidefinite programs that automate direct sum decompositions like the ones we perform
here, through the study of symmetries in the corresponding matrices.

6.3 A motivation from mathematical finance for fur-

ther study of quantum hedging

In [75], it was proved that quantum hedging cannot be used to increase the expected value
of a prover-verifier interaction. That is to say, if we associate a value with each outcome
of a prover-verifier interaction, it will always be optimal to play independently between
parallel instances in order to maximize the total cumulative value. 1 In light of that bound,
one might then wish to re-examine with a critical perspective the fictitious example for
quantum hedging that we provide in Section 6.1.1, and ask why would any agent rationally
decide to engage in quantum hedging behavior. It is possible to obtain an answer to
this question by using the point of view of the logarithmic utility principle. Through this
examination, one additionally obtains an answer to the question of what results concerning
quantum hedging might be interesting to obtain given the previously mentioned work [54]
that asymptotically bounds its magnitude enough to allow parallel repetition to work for
the purposes of error reduction.

1This implies a fact that we will use later: If we have a prover-verifier interaction with a winning
outcome and a losing outcome where the winning outcome can be obtained with certainty in at least one
out of two parallel instances, then it must be possible to obtain the winning outcome with probability at
least 0.5 when considering a single instance.

110

In this section, we apply then the framework of the logarithmic utility principle to the
setting where a 2-round prover-verifier interaction (as described in 6.1) is conducted twice in
parallel. The results imply that this application can strongly motivate further work on the
limits to hedging, even if we know that it cannot be used to increase expected payoffs. This
idea is exemplified by the result that we present in Claim 1, depict in Figure 6.2, and then
prove in the rest of Section 6.3.2. This result shows that the range of incentive parameters
where engaging in perfect quantum hedging is rational (as determined by the logarithmic
utility principle) expands greatly in comparison with small changes in the advantage that
the hedging provides. As earlier mentioned in Section 6.1.1, these considerations are not
only of clear mathematical interest, but could also plausibly have a practical impact.

6.3.1 The logarithmic utility principle

The logarithmic utility of principle corresponds to a line of thought in finance [69] that
believes that the utility associated with a given amount of wealth should scale linearly with
the logarithm of the amount of wealth. One possible motivation for this elegant framework
is that given a starting amount of wealth and a guaranteed periodic compounding rate,
the amount of time it takes to reach a given wealth target through compounding scales
linearly with the logarithm of the starting amount of wealth.

This framework has also the benefit of demonstrating how insurance-like transitions
can be beneficial to both parties involved. In an introductory example of Bernoulli [21],
one considers a merchant shipping goods with a value of 10,000 monetary units through
a sea with a 5% chance of non-arrival. This merchant is offered insurance for the price of
800 units. In this context, if the merchant tries to maximize the logarithm of their wealth
they will benefit from purchasing this insurance as long as their total wealth (excluding
the goods) is below 5,043 units. Similarly, an insurer agent will benefit from offering this
insurance as long as their wealth is above 14,243 units.

Finally, the logarithmic utility principle can also be used in the context of an investor
who is compounding their capital through repeated investments, and who wishes to make
choices about capital allocation for each of their possible next investment options, given
their knowledge about expected returns. Through such an application, one derives the
method that goes under the name of the Kelly criterion [68], which can be proven to be
optimal in terms of optimizing long-term return rates, providing then another motivation
for the consideration of the logarithmic utility principle itself.

111

6.3.2 Payoff regimes that encourage quantum hedging when two
parallel instances of a protocol are conducted in parallel

We will examine here when do incentives lead to quantum hedging if a prover-verifier
interaction is conducted twice in parallel, if an agent was to behave according to the
logarithmic utility principle.

In particular, one can consider a prover-verifier interaction with a cost of participation
equal to s ∈ R+ for the prover, and where a payoff of c ∈ R+ is obtained in case of obtaining
the positive outcome of the interaction (i.e., payoffs equal to −s and c − s for the prover
in the no and yes cases, respectively). Furthermore, we will let the initial wealth of the
prover be denoted by v ∈ R+, and we will denote the wealth of the prover after paying
the participation fee for two instances of the protocol as v − 2s = x. We will assume that
x > 0, since the utility of non-positive wealth amounts is not well-defined in this approach.

Let the maximum probability of winning for the prover when a single repetition occurs
be equal to p < 1. Furthermore, let us consider an arbitrary hedging (i.e. correlated)
strategy for the prover in the case where two parallel instances are considered, with the
corresponding probabilities of winning 0, 1 or 2 instances being given by p0, p1 and p2,
respectively. Then, if one uses the logarithmic utility principle, it will be better for the
prover to engage in such a strategy rather than plan independently whenever it holds 2

that

p2 log(x+ 2d) + p0 log(x) + p1 log(x+ d)

> p2 log(x+ 2d) + (1− p)2 log(x) + 2p(1− p) log(x+ d). (6.38)

One might reasonably also want to focus on situations where playing two instances of
the game is worth it at all for the prover, again from the point of view of the logarithmic
utility principle. If so, one obtains the additional condition that

p2 log(x+ 2d) + p0 log(x) + p1 log(x+ d) > log(x+ 2s). (6.39)

Payoff regimes for perfect hedging

Once armed with equations (6.38) and (6.39), we can study which payoff regimes will
incentivize known opportunities for quantum hedging. We can in particular do so in the

2Note that for convenience when taking derivatives, we will take our logarithms in base e.

112

cases where there is a non-trivial perfect hedging strategy (i.e. one where p1 = 1, with
0.5 ≤ p < 1, with the lower bound on p following from the results in [75] that we described
at the beginning of Section 6.3.1). This study is motivated by the existence of such perfect
hedging strategies. In particular, in the first example of quantum hedging in [77], we have
such a strategy in a protocol where p = cos2(π/8), and in [43], we have a strategy with
p1 = 1 in a coin-flipping setting where again p = cos2(π/8).

Then, Equations (6.38) and (6.39) tell us that there will be an incentive to engage in
perfect hedging rather than playing independently whenever it holds that

log(x+ d) > p2 log(x+ 2d) + (1− p)2 log(x) + 2p(1− p) log(x+ d) (6.40)

log(x+ d) > log(x+ 2s). (6.41)

We can then ask for which values of x and d will this hold, as function of p, x and s.
It is clear that the Equation (6.41) imposes the constraint that

d > 2s. (6.42)

As for equation (6.38), we can exponentiate each side, and obtain the equivalent con-
dition that

x+ d > (x+ 2d)p
2

(x+ d)2p(1−p)x(1−p)2 . (6.43)

If we let r denote the ratio d/x > 0, we can write this as

x(1 + r) > xp
2+2p(1−p)+(1−p)2(1 + 2r)p2(1 + r)2p(1−p) (6.44)

⇐⇒ (1 + r) > (1 + 2r)p
2

(1 + r)2p(1−p). (6.45)

While the dependence between r and p corresponding to Equation (6.45) is not clear
at first sight, one can study the inequality and characterize analytically how large must r
be as a function of p, as stated in the following claim (its proof follows after our discussion
of the consequences of the claim).

113

Figure 6.2: Below the curve, we have the region of the (p, d/x) plane where perfect hedging
in our 1-out-of-2 scenario is worth it under the logarithmic utility principle.

Claim 1. In the setting under consideration here, there will be an incentive to engage in
perfect hedging rather than playing independently whenever:

d > 2s

d > xf−1(p), where :

f(0) =
1

2
, and for x > 0

f(x) = g(x)

(
1−

√
1− 1

g(x)

)

g(x) =
log(1 + x)

log
(

(1+x)2

1+2x

)
If p = cos2(π/8) (as in the previously mentioned examples), we derive then the con-

straint that d > Cx, where C ≈ 1.68× 1010. Furthermore, if one plots f−1(p), one obtains
the graph that appears in Figure 6.2 (in logarithmic scale for the function’s output).

We can see in the graph that as p increases, the range of values of d/x for which
perfect hedging is worth it increases very quickly, even in a logarithmic plot. This graph
clearly motivates then the search for a protocol where perfect hedging between two parallel
instances is possible, and the optimal probability p of winning a single instance is as small
as possible, since that can increase greatly the range for the ratio r = d/x for which the
constraints here are satisfied.

114

Our intuition is that finding such a protocol with p < cos2(π/8) should not be possible.
Using the SDP formalism discussed in Section 6.1.2, this is equivalent to the following
linear algebraic conjecture:

Conjecture 2. Let X and Y be arbitrary finite-dimensional complex Hilbert spaces. Let
ρ ∈ D (X) be an arbitrary density matrix operator. Let Q0 ∈ Pos(Y⊗X), Q1 ∈ Pos(Y⊗X),
X ∈ Pos(Y ⊗ X ⊗ Y ⊗ X), Y ∈ Herm(X) be such that

Q0 +Q1 = IY ⊗ ρ
〈X,Q0 ⊗Q0〉 = 0

TrY⊗Y(X) = IX⊗X
IY ⊗ Y ≥ Q1.

Then, Tr(Y) ≥ cos2(π/8).

Furthermore, we believe that it would not be possible to get past this barrier even if one was
to increase the number of rounds allowed in the quantum prover-verifier interaction. Using
the more algebraically complex formulation in [46, 47] for this n-round setting to represent
this idea, one would then obtain a more algebraically complex extension of Conjecture 2.

We proceed now with the proof of Claim 1.

Proof of Claim 1. From Equation (6.45), it suffices to examine here the function h(r, p) =
(1 + r)− (1 + 2r)p

2
(1 + r)2p(1−p) in the domain where r × p ∈ (0,+∞)× [0.5, 1). We seek

to determine when is this function positive.

Observe that in our domain of concern, the function h is continuous, since it is a
composition of continuous functions (note that the function exp(a, b) = ab does not include
(0, 0) in its domain, but that is not an issue for us since the base in the exponentiations
here is always ≥ 1).

We can then first characterize the boundary within the R+ × [0.5, 1) subregion of the
(r, p) plane where h(r, p) = 0, and then examine the sign of the function h in the regions
in which this boundary divides the subregion. We have that:

115

h(r, p) = 0

⇐⇒ (1 + r) = (1 + 2r)p
2

(1 + r)2p(1−p)

⇐⇒ log(1 + r) = p2 log(1 + 2r) + 2p(1− p) log(1 + r) (taking logarithms)

⇐⇒ p2(− log(1 + 2r) + 2 log(1 + r))− 2p log(1 + r) + log(1 + r) = 0

⇐⇒ p2 log

(
(1 + r)2

1 + 2r

)
− 2p log(1 + r) + log(1 + r) = 0

(6.46)

⇐⇒ p =

2 log(1 + r)±
√

4 log2(1 + r)− 4 log(1 + r) log
(

(1+r)2

1+2r

)
2 log

(
(1+r)2

1+2r

) (by quadratic formula)

⇐⇒ p =
log(1 + r)

log
(

(1+r)2

1+2r

)
1±

√√√√
1−

log
(

(1+r)2

1+2r

)
log(1 + r)

 . (6.47)

We can now take the quadratic root corresponding to the minus-sign choice in Equation
(6.47). This is because for the plus-sign choice, the corresponding value of the variable p
will be greater than 1, and not relevant to the boundary calculation we are concerned with
here. One derives that by observing that since r > 0, 1 + 2r > 1 + r, so log(1+r)

log
(

(1+r)2

1+2r

) > 1.

Since
√

1− 1
x
> 1− 1

x
for x > 1, the value of p must then be greater than 1.

After this choice of quadratic root, Equation (6.47) determines a function f in the (r, p)
plane that associates a value of p to every value of r > 0, given by

f(r) = g(r)

(
1−

√
1− 1

g(r)

)
(6.48)

where g(r) =
log(1 + r)

log
(

(1+r)2

1+2r

) .

116

(note that our previous observation about the value of log(1+r)

log
(

(1+r)2

1+2r

) gives us that g(r) > 1).

By the continuity of h, the sign of h will then be the same for all values of (r, p) ∈
(0,+∞) × [0.5, 1) where p > f(r), and it will also be the same for all values of where
p < f(r). In order to prove that h(r, p) < 0 when p > f(r) and h(r, p) > 0 when
p < f(r), one can compute then that for r = 1, f(r) ≈ 0.57, h(1, 0.60) ≈ −0.071 < 0, and
h(1, 0.55) ≈ 0.035 > 0.

We now prove that f−1 exists and maps the interval (0.5, 1) to (0,+∞). We will derive
this by establishing that f is an increasing monotone function that maps the interval
(0,+∞) to (0.5, 1).

In order to determine that f is increasing, it is enough to determine that g is decreasing.
This is because we can write

f(r) = g(r)−
√
g(r)2 − g(r), (6.49)

and therefore we can also write

f(r)′ > 0 (6.50)

⇐⇒ g′(r)− 2g(r)g′(r)− g(r)′

2
√
g(r)2 − g(r)

> 0 (6.51)

⇐⇒ 2g′(r) >
2g(r)g′(r)− g(r)′√

g(r)2 − g(r)
(6.52)

⇐⇒ 2g′(r) > g′(r)
2g(r)− 1√
g(r)2 − g(r)

. (6.53)

We next check that

(2g′(r)
√
g(r)2 − g(r))2 − (g′(r)(2g(r)− 1))2 (6.54)

= 4g′(r)2(g(r)2 − g(r))− g′(r)2(4(g(r)2 − 4g(r) + 1) (6.55)

= − g′(r)2 (6.56)

< 0. (6.57)

117

Therefore, |2g′(r)| < |g′(r) 2g(r)−1√
g(r)2−g(r)

|. Since g(r) > 1, this means that the inequality

in (6.53) will hold if and only if g′(r) < 0.

We have then proved that if g is decreasing, f is increasing. We now check that g(r) is
indeed decreasing at all values of r ∈ (0,+∞). In order to do so, we compute

g′(r) =
(1 + 2r) log((1 + r)2/(1 + 2r))− 2r log(1 + r)

(1 + r)(1 + 2r) log2((1 + r)2/(1 + r))
. (6.58)

It is clear from (6.58) that g′(r) will be negative if and only if numerator is negative.
We denote this numerator as g′num(r). When we examine its sign, we find that

g′num(r) < 0 (6.59)

⇐⇒ (1 + 2r)(2 log(1 + r)− log(1 + 2r))− 2r log(1 + r) < 0 (6.60)

⇐⇒ 2(1 + r) log(1 + r)− (1 + 2r) log(1 + 2r) < 0. (6.61)

In order to verify that the inequality in (6.61) holds for all values of r ∈ (0,+∞), it is
enough to establish that

lim
r→0+

2(1 + r) log(1 + r)− (1 + 2r) log(1 + 2r) = 0 (6.62)

and

d

dr
(2(1 + r) log(1 + r)− (1 + 2r) log(1 + 2r)) = 2(log(1 + r)− log(1 + 2r)) (6.63)

= 2 log

(
1 + r

1 + 2r

)
(6.64)

< 0. (6.65)

Finally, we have by L’Hospital’s rule that:

lim
r→∞

g(r) = lim
r→∞

d
dr

log(1 + r)

d
dr

log
(

(1+r)2

1+2r

) = lim
r→∞

1
1+r
2r

2r2+3r+1

= 1 (6.66)

118

lim
r→0+

g(r) = lim
r→0+

d
dr

log(1 + r)

d
dr

log
(

(1+r)2

1+2r

) = lim
r→0+

1
1+r
2r

2r2+3r+1

= +∞ (6.67)

lim
r→0+

f(r) = lim
r→0+

d
dr

(
1−

√
1− 1

g(r)

)
d
dr

1
g(r)

= lim
r→0+

1

2
√

1− 1
g(r)2

=
1

2
. (6.68)

Equations (6.66)-(6.68) imply then that limr→∞ f(r) = 1 and limr→0+ f(r) = 1/2, so
we have that f is surjective into the interval (0.5, 1), as desired.

The last step is to verify that when p = 1
2
, it is true for any value of r > 0 that

h(r, 1/2) > 0. We have indeed that:

(1 + r)− (1 + 2r)1/4(1 + r)1/2 > 0 (6.69)

⇐⇒ (1 + r)1/2 > (1 + 2r)1/4 (6.70)

⇐⇒ (1 + r)2 > (1 + 2r) (6.71)

⇐⇒ r2 > 0. (6.72)

We arrive then to the region identified in the statement of Claim 1.

Other models and questions

The analysis here serves as a proof-of-concept for the application of the logarithmic utility
principle to quantum hedging situations, where we have limited ourselves to standard
quantum prover-verifier applications with two parallel copies of an interaction. One could
aim to repeat this analysis then (analytically or numerically) in more complex cases where
n instances of a protocol are conducted in parallel, or even seek its application in variations
of our prover-verifier setting (e.g. with multiple cooperating or competing provers).

In order to obtain an answer to Conjecture 2, and more generally obtain a better
understanding of quantum hedging, it might be of interest to consider the object of all
correlation patterns that can arise from quantum-hedging. For example, one can consider
the object of all tuples (p0, p1, p2) indicating the probability of 0, 1 and 2 wins after a
given strategy is used when playing two parallel instances of a prover-verifier interaction,
and aim for tight bounds on this object over all prover-verifier interactions as a function
of the optimal probability p of winning a single instance and the optimal probability q of
achieving the losing outcome in a single instance.

119

References

[1] Oblivious Turing machine emulation lower bound. Theoretical Computer Science
Stack Exchange. URL:https://cstheory.stackexchange.com/q/10645 (version: 2019-
06-09).

[2] Leonard M Adleman, Jonathan DeMarrais, and Ming-Deh A Huang. Quantum com-
putability. SIAM Journal on Computing, 26(5):1524–1540, 1997.

[3] Dorit Aharonov, Alexei Kitaev, and Noam Nisan. Quantum circuits with mixed
states. In Proceedings of the thirtieth annual ACM symposium on Theory of comput-
ing, pages 20–30, 1998.

[4] Chris Aholt, Sameer Agarwal, and Rekha Thomas. A QCQP approach to trian-
gulation. In European Conference on Computer Vision, pages 654–667. Springer,
2012.

[5] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[6] Juan Miguel Arrazola, Petros Wallden, and Erika Andersson. Multiparty quantum
signature schemes. Quantum Information & Computation, 16(5-6):435–464, 2016.

[7] Pablo Arrighi, Simon Martiel, and Simon Perdrix. Reversible causal graph dynamics:
invertibility, block representation, vertex-preservation. Natural Computing, pages 1–
22, 2019.

[8] Pablo Arrighi, Vincent Nesme, and Reinhard Werner. Unitarity plus causality implies
localizability. J. Comput. Syst. Sci., 77(2), March 2011.

[9] Srinivasan Arunachalam, Abel Molina, and Vincent Russo. Semidefinite pro-
grams for quantum hedging framework. https://bitbucket.org/vprusso/

quantum-hedging/src/master/Code/, 2016.

120

https://bitbucket.org/vprusso/quantum-hedging/src/master/Code/
https://bitbucket.org/vprusso/quantum-hedging/src/master/Code/

[10] Srinivasan Arunachalam, Abel Molina, and Vincent Russo. Quantum hedging in
two-round prover-verifier interactions. In 12th Conference on the Theory of Quantum
Computation, Communication and Cryptography, 2018.

[11] Koenraad MR Audenaert and Stefan Scheel. Quantum tomographic reconstruction
with error bars: a Kalman filter approach. New Journal of Physics, 11(2):023028,
2009.

[12] Somshubhro Bandyopadhyay, Rahul Jain, Jonathan Oppenheim, and Christopher
Perry. Conclusive exclusion of quantum states. Physical Review A, 89(2):022336,
2014.

[13] Adriano Barenco, Charles Bennett, Richard Cleve, David DiVincenzo, Norman Mar-
golus, Peter Shor, Tycho Sleator, John Smolin, and Harald Weinfurter. Elementary
gates for quantum computation. Physical Review A, 52:3457–3467, 1995.

[14] Jonathan Barrett, Eric G Cavalcanti, Raymond Lal, and Owen JE Maroney. No ψ-
epistemic model can fully explain the indistinguishability of quantum states. Physical
Review Letters, 112(25):250403, 2014.

[15] Ingemar Bengtsson and Karol Zyczkowski. Geometry of Quantum States: An Intro-
duction to Quantum Entanglement. Cambridge University Press, 2007.

[16] Charles H Bennett. Logical reversibility of computation. IBM journal of Research
and Development, 17(6):525–532, 1973.

[17] Charles H Bennett. Time/space trade-offs for reversible computation. SIAM Journal
on Computing, 18(4):766–776, 1989.

[18] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–
1523, 1997.

[19] Cedric Beny. Causal structure of the entanglement renormalization ansatz. New
Journal of Physics, 15(2):023020, 2013.

[20] Michael R Beran and Scott M Cohen. Nonoptimality of unitary encoding with quan-
tum channels assisted by entanglement. Physical Review A, 78(6):062337, 2008.

[21] Daniel Bernoulli. Exposition of a new theory on the measurement of risk (translation
to english). Econometrica, 22(1):23–36, 1954.

121

[22] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings
of the 25th Annual ACM Symposium on Theory of Computing, ACM, pages 11–20,
1993.

[23] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal
on Computing, 26(5):1411–1473, 1997.

[24] Sergio Boixo, Vadim N Smelyanskiy, Alireza Shabani, Sergei V Isakov, Mark Dyk-
man, Vasil S Denchev, Mohammad H Amin, Anatoly Yu Smirnov, Masoud Mohseni,
and Hartmut Neven. Computational multiqubit tunnelling in programmable quan-
tum annealers. Nature Communications, 7:10327, 2016.

[25] Subhonmesh Bose, Dennice F Gayme, K Mani Chandy, and Steven H Low. Quadrat-
ically constrained quadratic programs on acyclic graphs with application to power
flow. IEEE Transactions on Control of Network Systems, 2(3):278–287, 2015.

[26] Hans J Briegel, David E Browne, Wolfgang Dür, Robert Raussendorf, and Maarten
Van den Nest. Measurement-based quantum computation. Nature Physics, 5(1):19–
26, 2009.

[27] Todd A Brun, Min-Hsiu Hsieh, and Christopher Perry. Compatibility of state as-
signments and pooling of information. Physical Review A, 92(1):012107, 2015.

[28] Harry Buhrman, John Tromp, and Paul Vitányi. Time and space bounds for re-
versible simulation. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 1017–1027. Springer, 2001.

[29] Marco Carpentieri. On the simulation of quantum Turing machines. Theoretical
Computer Science, 304(1-3):103–128, 2003.

[30] Carlton M Caves, Christopher A Fuchs, and Rüdiger Schack. Conditions for com-
patibility of quantum-state assignments. Physical Review A, 66(6):062111, 2002.

[31] Andrew M Childs. Lecture notes on quantum algorithms. 2017. Available at https:
//www.cs.umd.edu/~amchilds/qa/qa.pdf.

[32] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. Proposed
experiment to test local hidden-variable theories. Physical Review Letters, 23:880–
884, 1969.

[33] John Conway. A Course in Operator Theory. American Mathematical Society, 2000.

122

https://www.cs.umd.edu/~amchilds/qa/qa.pdf
https://www.cs.umd.edu/~amchilds/qa/qa.pdf

[34] Christopher M Dawson and Michael A Nielsen. The Solovay-Kitaev algorithm. Quan-
tum Information & Computation, 6(1):81–95, 2006.

[35] David Deutsch. Quantum theory, the Church–Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 400(1818):97–117, 1985.

[36] Yonina C Eldar, Alexandre Megretski, and George C Verghese. Designing optimal
quantum detectors via semidefinite programming. IEEE Transactions on Information
Theory, 49(4):1007–1012, 2003.

[37] Yonina C Eldar, Mihailo Stojnic, and Babak Hassibi. Optimal quantum detectors
for unambiguous detection of mixed states. Physical Review A, 69(6):062318, 2004.

[38] Youping Fan and Bernd Tibken. Optimization problems of determining the C-
numerical range. IFAC Proceedings Volumes, 41(2):10051–10056, 2008.

[39] Bill Fefferman and Cedric Yen-Yu Lin. A complete characterization of unitary quan-
tum space. In 9th Innovations in Theoretical Computer Science Conference (ITCS
2018), 2018.

[40] Uriel Feige. On the success probability of the two provers in one-round proof systems.
In Proceedings of the Sixth Annual Structure in Complexity Theory Conference, pages
116–123. IEEE, 1991.

[41] Jaromı́r Fiurášek and Miroslav Ježek. Optimal discrimination of mixed quantum
states involving inconclusive results. Physical Review A, 67(1):012321, 2003.

[42] Michael Freedman and Matthew B Hastings. Classification of quantum cellular au-
tomata. 2018.

[43] Maor Ganz and Or Sattath. Quantum coin hedging, and a counter measure. In 12th
Conference on the Theory of Quantum Computation, Communication and Cryptog-
raphy, 2018.

[44] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1, 2014.

[45] Greg N Gregoriou. Funds of hedge funds: performance, assessment, diversification,
and statistical properties. Elsevier, 2011.

123

[46] Gus Gutoski and John Watrous. Toward a general theory of quantum games. In
Proceedings of the 39th annual ACM symposium on Theory of computing, pages
565–574. ACM, 2007.

[47] Gustav Gutoski. Quantum Strategies and Local Operations. PhD thesis, University
of Waterloo, 2010.

[48] Erkka Haapasalo, Teiko Heinosaari, and Juha-Pekka Pellonpää. Quantum measure-
ments on finite dimensional systems: relabeling and mixing. Quantum Information
Processing, 11(6):1751–1763, 2012.

[49] Vojtěch Havĺıček and Jonathan Barrett. Simple communication complexity sep-
aration from quantum state antidistinguishability. Physical Review Research,
2(1):013326, 2020.

[50] Patrick Hayden, Kevin Milner, and Mark M Wilde. Two-message quantum interac-
tive proofs and the quantum separability problem. Quantum Information & Com-
putation, 14(5&6):384–416, 2014.

[51] Teiko Heinosaari and Oskari Kerppo. Antidistinguishability of pure quantum states.
Journal of Physics A: Mathematical and Theoretical, 51(36):365303, 2018.

[52] Bas Hensen, Hannes Bernien, Anäıs E Dréau, Andreas Reiserer, Norbert Kalb,
Machiel S Blok, Just Ruitenberg, Raymond FL Vermeulen, Raymond N Schouten,
Carlos Abellán, et al. Loophole-free Bell inequality violation using electron spins
separated by 1.3 kilometres. Nature, 526(7575):682, 2015.

[53] Thomas Holenstein. Parallel repetition: Simplification and the no-signaling case.
Theory of Computing, 5(1):141–172, 2009.

[54] Taylor Hornby. Concentration bounds from parallel repetition theorems. Master’s
thesis, University of Waterloo, 2018.

[55] Yongwei Huang and Daniel P Palomar. Randomized algorithms for optimal solutions
of double-sided QCQP with applications in signal processing. IEEE Transactions on
Signal Processing, 62(5):1093–1108, 2014.

[56] Rahul Jain, Sarvagya Upadhyay, and John Watrous. Two-message quantum interac-
tive proofs are in PSPACE. In 2009 IEEE 50th Annual Symposium on Foundations
of Computer Science (FOCS), pages 534–543. IEEE, 2009.

124

[57] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen.
MIP∗= RE. arXiv preprint arXiv:2001.04383, 2020.

[58] Cédric Josz and Daniel K Molzahn. Moment/sum-of-squares hierarchy for complex
polynomial optimization. arXiv preprint 1508.02068, 2015.

[59] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An introduction to quantum
computing. Oxford university press, 2007.

[60] Alexei Kitaev, Alexander Shen, and Mikhail Vyalyi. Classical and quantum com-
putation, volume 47 of Graduate Studies in Mathematics. American Mathematical
Society, 2002.

[61] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Fast and efficient exact
synthesis of single-qubit unitaries generated by clifford and t gates. Quantum Infor-
mation & Computation, 13(7-8):607–630, 2013.

[62] Aritra Konar and Nicholas D Sidiropoulos. Hidden convexity in QCQP with Toeplitz-
Hermitian quadratics. IEEE Signal Processing Letters, 22(10):1623–1627, 2015.

[63] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts. In 2016 IEEE Symposium on Security and Privacy (SP), pages 839–858.
IEEE, 2016.

[64] Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals deter-
ministic space. Journal of Computer and System Sciences, 60(2):354–367, 2000.

[65] Quanzhong Li, Qi Zhang, and Jiayin Qin. A special class of fractional QCQP and its
applications on cognitive collaborative beamforming. IEEE Transactions on Signal
Processing, 62(8):2151–2164, 2014.

[66] Yeong-Cherng Liang and Andrew C Doherty. Bounds on quantum correlations in
Bell-inequality experiments. Physical Review A, 75(4):042103, 2007.

[67] Zi-Wen Liu, Christopher Perry, Yechao Zhu, Dax Enshan Koh, and Scott Aaronson.
Doubly infinite separation of quantum information and communication. Physical
Review A, 93(1):012347, 2016.

[68] Leonard C MacLean, Edward O Thorp, and William T Ziemba. Good and bad
properties of the Kelly criterion. Risk, 20(2):1, 2010.

125

[69] Leonard C MacLean, Edward O Thorp, and William T Ziemba. The Kelly capital
growth investment criterion: Theory and practice, volume 3. World Scientific, 2011.

[70] Urmila Mahadev. Classical verification of quantum computations. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 259–
267. IEEE, 2018.

[71] Simon Martiel. Algorithmical and mathematical approaches of causal graph dynamics.
PhD thesis, Université Nice Sophia Antipolis, 2015.

[72] N David Mermin. Simple unified form for the major no-hidden-variables theorems.
Physical Review Letters, 65:3373–3376, 1990.

[73] N David Mermin. Whose knowledge? In Quantum [Un] speakables, pages 271–280.
Springer, 2002.

[74] Andrew Miller and Iddo Bentov. Zero-collateral lotteries in bitcoin and ethereum. In
2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
pages 4–13. IEEE, 2017.

[75] Abel Molina. Parallel repetition of prover-verifier quantum interactions. Master’s
thesis, University of Waterloo, 2012.

[76] Abel Molina. POVMs are equivalent to projections for perfect state exclusion of
three pure states in three dimensions. Quantum, 3:117, 2019.

[77] Abel Molina and John Watrous. Hedging bets with correlated quantum strategies.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
468(2145):2614–2629, 2012.

[78] Abel Molina and John Watrous. Revisiting the simulation of quantum Turing ma-
chines by quantum circuits. Proceedings of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, 475(2226), 2019.

[79] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum informa-
tion. Cambridge University Press, 2002.

[80] Harumichi Nishimura and Masanao Ozawa. Quantum oracles and computational
complexity. Departmental Bulletin Paper- Research Institute for Mathematical Sci-
ences, Kyoto University, 2000.

126

[81] Harumichi Nishimura and Masanao Ozawa. Computational complexity of uniform
quantum circuit families and quantum Turing machines. Theoretical Computer Sci-
ence, 276(1-2):147–181, 2002.

[82] Masanao Ozawa and Harumichi Nishimura. Local transition functions of quantum
Turing machines. RAIRO-Theoretical Informatics and Applications, 34(5):379–402,
2000.

[83] Jaehyun Park and Stephen Boyd. General heuristics for nonconvex quadratically
constrained quadratic programming. arXiv preprint 1703.07870, 2017.

[84] Kalyanapuram R Parthasarathy. Extremal decision rules in quantum hypothesis
testing. Infinite Dimensional Analysis, Quantum Probability and Related Topics,
2(04):557–568, 1999.

[85] Rudolf Ernst Peierls. More Surprises in Theoretical Physics, volume 19. Princeton
University Press, 1991.

[86] Simon Perdrix. Towards Observable Quantum Turing Machines: Fundamentals,
Computational Power, and Universality. International Journal of Unconventional
Computing, 7(4):291–311, 2011.

[87] Simon Perdrix and Philippe Jorrand. Classically controlled quantum computation.
Mathematical Structures in Computer Science, 16(4):601–620, 2006.

[88] Asher Peres. Incompatible results of quantum measurements. Physics Letters A,
151:107–108, 1990.

[89] Christopher Perry. Conclusive exclusion of quantum states and aspects of thermo-
majorization. PhD thesis, UCL (University College London), 2016.

[90] Christopher Perry, Rahul Jain, and Jonathan Oppenheim. Communication tasks
with infinite quantum-classical separation. Physical Review Letters, 115(3):030504,
2015.

[91] Nicholas Pippenger and Michael Fischer. Relations among complexity measures.
Journal of the ACM, 26(2):361–381, 1979.

[92] Maximilian Puelma Touzel, Rob Adamson, and Aephraim Steinberg. Optimal
bounded-error strategies for projective measurements in nonorthogonal-state discrim-
ination. Physical Review A, 76(6):062314, 2007.

127

[93] Matthew F Pusey, Jonathan Barrett, and Terry Rudolph. On the reality of the
quantum state. Nature Physics, 8(6):475–478, 2012.

[94] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–
803, 1998.

[95] Ran Raz. Quantum information and the PCP theorem. In 2005 IEEE 46th Annual
Symposium on Foundations of Computer Science (FOCS), pages 459–468. IEEE,
2005.

[96] Ran Raz and Avishay Tal. Oracle separation of BQP and PH. In Proceedings of the
51st Annual ACM Symposium on Theory of Computing, pages 13–23, 2019.

[97] Denis Rosset. Symdpoly: symmetry-adapted moment relaxations for noncommuta-
tive polynomial optimization. arXiv preprint arXiv:1808.09598, 2018.

[98] John Savage. Computational work and time on finite machines. Journal of the ACM,
19(4):660–674, 1972.

[99] Gael Sent́ıs, Bernat Gendra, Stephen D Bartlett, and Andrew C Doherty. Decom-
position of any quantum measurement into extremals. Journal of Physics A: Math-
ematical and Theoretical, 46(37):375302, 2013.

[100] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

[101] Blake C Stacey. SIC-POVMs and compatibility among quantum states. Mathematics,
4(2):36, 2016.

[102] Masamichi Takesaki. Theory of Operator Algebras II, volume 125 of Encyclopaedia
of Mathematical Sciences. Springer, 2013.

[103] Armin Tavakoli, Denis Rosset, and Marc-Olivier Renou. Enabling computation of
correlation bounds for finite-dimensional quantum systems via symmetrization. Phys-
ical review letters, 122(7):070501, 2019.

[104] Guo Chuan Thiang. Some attempts at proving the non-existence of a full set of
mutually unbiased bases in dimension 6. arXiv preprint 1012.3147, 2010.

[105] Tommaso Toffoli. Reversible computing. In International Colloquium on Automata,
Languages, and Programming, pages 632–644. Springer, 1980.

128

[106] Alan Mathison Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(1):230–265, 1937.

[107] Dan Ventura and Tony Martinez. Quantum harmonic sieve: Learning dnf with a
classical example oracle. arXiv preprint quant-ph/9805043, 1998.

[108] Támas Vértesi and Erika Bene. Two-qubit Bell inequality for which positive operator-
valued measurements are relevant. Physical Review A, 82(6):062115, 2010.

[109] Dong-Sheng Wang. A local model of quantum Turing machines. Quantum Informa-
tion & Computation, 20(3-4):213–229, 2020.

[110] Qisheng Wang and Mingsheng Ying. Quantum random access stored-program ma-
chines. arXiv preprint arXiv:2003.03514, 2020.

[111] John Watrous. Personal Communication.

[112] John Watrous. On one-dimensional quantum cellular automata. In Proceedings of
the IEEE 36th Annual Symposium on Foundations of Computer Science (FOCS),
pages 528–537. IEEE, 1995.

[113] John Watrous. Quantum computational complexity. Encyclopedia of complexity and
systems science, pages 7174–7201, 2009.

[114] John Watrous. The theory of quantum information. Cambridge University Press,
2018.

[115] Stephanie Wehner. Entanglement in interactive proof systems with binary answers.
In STACS 2006, pages 162–171. Springer, 2006.

[116] Stephanie Wehner, David Elkouss, and Ronald Hanson. Quantum internet: A vision
for the road ahead. Science, 362(6412):eaam9288, 2018.

[117] Graeme Weir, Stephen M. Barnett, and Sarah Croke. Optimal discrimination of
single-qubit mixed states. Physical Review A, 96(2):022312, 2017.

[118] Mark M Wilde. Quantum information theory. Cambridge University Press, 2013.

[119] Andrew Yao. Quantum circuit complexity. In Proceedings of the 34th Annual IEEE
Symposium on Foundations of Computer Science, pages 352–361, 1993.

129

[120] Huangjun Zhu, Yong Siah Teo, and Berthold-Georg Englert. Two-qubit symmet-
ric informationally complete positive-operator-valued measures. Physical Review A,
82(4):042308, 2010.

130

	List of Figures
	Introduction
	Quantum Turing machines
	Quantum prover-verifier interactions
	Summary of results
	Quantum Turing machines
	Prover-verifier interactions

	Notation

	I Quantum Turing machines
	Causality and locality
	Setting
	Results

	Single-tape quantum Turing machines
	Deterministic Turing Machines
	Definition
	The classic Boolean circuit simulation of deterministic Turing machines

	Quantum Turing machines
	Definition
	Looped-tape quantum Turing machines
	Other variants of quantum Turing machines

	A variant of the simulation of quantum Turing machines by a quantum circuit
	Registers in the simulation
	Operators in the simulation
	Locality and parallelism
	Behaviour of the local gate G
	Recapitulation of the simulation procedure
	Complexity analysis
	Differences with Yao's original simulation
	Sensitivity to model choice

	Equivalence between unitarity and isometricity for QTM evolution operators
	Setting
	Result and proof
	Generalizations

	Multi-tape quantum Turing machines
	Setting
	Extension to standard multi-tape quantum Turing machines of our variant for the simulation of quantum Turing machines
	Setup for extension
	Obstacle to naive proof for the extension
	Making the extension work
	Parallelism and complexity

	Oracle quantum Turing machines
	Definition
	A first circuit simulation
	More complex circuit simulations with more standard oracle gate models
	Other models and further work

	II Quantum prover-verifier interactions
	Quantum state exclusion
	Setting
	Main derivation
	Restrictions that can be imposed without loss of generality on POVMs that achieve perfect exclusion
	Verification that any states perfectly excluded by our parametrized optimal POVM satisfy the Caves-Fuchs-Schack inequality

	Perspectives for generalization
	Usage of Quadratically Constrained Quadratic Programs (QCQPs)
	Direct generalizations of our proof
	Other considerations

	Quantum hedging
	Setting
	Background and motivation
	Semidefinite programming formulation

	Main result
	Formal statement of main result
	Proof of Theorem 3

	A motivation from mathematical finance for further study of quantum hedging
	The logarithmic utility principle
	Payoff regimes that encourage quantum hedging when two parallel instances of a protocol are conducted in parallel

	References

