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Abstract 

Background: The proliferation of wearable and mobile devices in recent years has led to the 

generation of unprecedented amounts of health-related data. Together with the growing 

population of older adults in Canada, the increasing adoption of these technologies created a 

momentous opportunity to improve the way we deliver, access, and interact with the health care 

system. Many have recognized the opportunity, yet there is a lack of evidence on how these 

devices and the growing size of health data can be used to transform health care and benefit us.  

 

In Chapter 2, a review of the literature was presented to identify the current evidence of wearable 

technology and gaps that exist in aging research. Based on the literature review, one promising 

way to use wearable devices is to assess frailty, which can contribute to improving care and 

enhancing aging-in-place. Chapter 3 summarizes key concepts related to wearable devices 

including mobile health, patient-generated health data, big data, predictive algorithms, machine 

learning, and artificial intelligence. While in-depth mathematical representation of these big data 

analytics is outside the scope of this dissertation, this chapter provides foundational information 

along with examples found in health care settings. 

 

Objective: The overall aim of this dissertation was to investigate possible use of consumer-grade 

wearable devices and the patient-generated health data to improve the health of older adults.  

 

Methods: This thesis is presented as three individual studies included in Chapters 4 to 6. Study 

1 aimed to investigate use of wearable devices to predict and find associations with frailty for 

community-dwelling older adults receiving home care service. Participants were asked to wear 
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wearable device for 8 days in their home environment and no supervision was provided. Frailty 

level was assessed using the Fried Frailty Index. Other variables were collected including 

Charlson Comorbidity Index, independence using the Katz Index, and home care service 

utilization level. A sequential stepwise feature selection method was used to determine variables 

that are fitted in multiple variable logistic regression model to predict frailty. Study 2 extended 

the investigation of possible use of wearable devices for understanding frailty by examining the 

relationship between wearable device data and frailty progression among critical illness 

survivors from an intensive care unit at Kingston General Hospital. Participants were assessed 

for frailty using the Clinical Frailty Scale three times; at admission, at hospital discharge, and at 

4-weeks post-hospital discharge. The changes in frailty level between the three time points were 

used to identify association with wearable device data that was collected for 4 weeks post-

hospital discharge. Demonstrating evidence for wearable devices and patient-generated health 

data in research does not guarantee its use in real life. In Study 3, a mixed method study was 

conducted to explore clinicians’ and older adults’ perceptions of patient-generated health data. 

Focus group interviews were conducted with older adults and health care providers from the 

Greater Toronto Area and the Kitchener-Waterloo region. A questionnaire that aimed to explore 

perceived usefulness of a range of different patient-generated health data was embedded in the 

study design. Focus group interviews were transcribed verbatim. Line by line coding was 

conducted on all interviews followed by thematic analysis.  

 

Results: Results from Study 1 indicate data generated from wearable devices are closely linked 

to frailty level. Results showed a significant difference between frail and non-frail participants in 

age (p<0.01), home care service utilization (p=0.012), daily step count (p=0.04), total sleep time 
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(p=0.010), and deep sleep time (p<0.01). Total sleep time (r=0.41, p=0.012) and deep sleep time 

(r=0.53, p<0.01) were associated with frailty level. A receiver operating characteristics area 

under the curve of 0.90 was achieved using deep sleep time, sleep quality, age, and education 

level (Hosmer-Lemeshow p=0.88), demonstrating that data from wearable devices can augment 

the demographic and conventional clinical data in predicting frailty status.  

 

Results from Study 2 demonstrated that frailty level increases significantly following a critical 

illness (p=0.02). Frail survivors had significantly lower daily step counts (p=0.02). Daily step 

count (r=-0.72, p=0.04) and mean heart rate (r=-0.72, p=0.046) were strongly correlated with 

frailty level at admission and discharge. Mean standard deviation of heart rate was correlated 

with the change in frailty status from admission to 4-week follow-up (r=0.78, p<0.05). The 

results demonstrated a relationship between the worsening of frailty due to critical illness and the 

pattern of increasing step count (r=0.65, p=0.03) and heart rate (r=0.62, p=0.03) over the 4-week 

observation period. 

 

Results from Study 3 provided an understanding of what older adults and clinicians considered 

barriers to using patient-generated health data in their care and clinical settings. Four main 

themes were identified from the focus group interviews: influence of patient-generated health 

data on patient-provider trust; reliability of patient-generated health data; meaningful use of 

patient-generated health data and decision support system; and perceived clinical benefits and 

intrusiveness of patient-generated health data. Results from the questionnaire and focus group 

interviews demonstrated that older adults and clinicians perceived blood glucose, step count, 
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physical activity, sleep, blood pressure, and stress level as the most useful data for managing 

their health and delivering high quality care.  

 

Discussion: This dissertation provides evidence for using consumer-grade wearable device to 

assess, monitor, and predict frailty for older adults who receive home care or survived critical 

illness. The possibility of using a wearable device to assess frailty can enable health care 

providers to obtain frailty information in a timely manner, which is challenging to acquire 

otherwise due to a lack of appropriate tools in primary care, ambulatory care, home and 

community care, critical illness care, and other sectors. There was a distinct relationship between 

failure to recover frailty level from critical illness and the pattern of daily step count and heart 

rate. This can enable early detection of critical illness survivors who may not return to pre-

critical illness level. It can provide guidance to identify those who may benefit the most from 

follow-up visits and elevated treatment. To ensure the benefits of patient-generated health data 

are realized, it must be integrated into health care. There are technical challenges that prevent 

such integration and discussion around policies and regulations must begin to make progress.  

 

Conclusion: This dissertation demonstrated use of wearable devices to assess frailty and 

identified factors that can hinder the integration of patient-generated health data into health care. 

It opened a possibility of assessing frailty, expanding the boundaries of current use of consumer-

grade wearable devices.  
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Chapter 1. Introduction and Overview 

1.1. Introduction 

In medicine, technology has always played a key role. The invention of a microscope in the 

1500s led to the birth of cellular and microcellular biology (Poppick, 2017). Refinement of the 

stethoscope from the early- to mid-1800s enabled direct observation of acoustic signals of the 

human body, shifting the paradigm of the definition of disease as a combination of symptoms 

that were externally observed to issues with internal components of a human body without 

visible symptoms (Duffin, 2012). In modern medicine, technology has established a symbiotic 

relationship where its importance cannot be overstated. We can now see and track a single 

protein in a cell through a fluorescence microscope and see inside the body non-invasively 

clearer than ever using magnetic resonance imaging (Poppick, 2017).  

 

In the last couple of decades, medicine and health care have faced the new challenges of 

organizing and sharing information more effectively through the use of computers and via the 

internet. A host of health information tools, including electronic health records (EHR), were 

introduced to collect and merge health information in a centralized way. It has contributed to the 

improved efficiency in managing health information, which brought benefits to patient care (The 

Office of the National Coordinator for Health Information Technology, 2019). It has also led to 

an accumulation of health information in the size we have never seen before. Big health data has 

opened new opportunities to analyze the data using advanced mathematical approaches, leading 

to the birth of new concepts such as precision medicine and personalized medicine (Joon Lee, 

Maslove, & Dubin, 2015; Sharafoddini, Dubin, & Lee, 2017). In recent years, we observed an 
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unprecedented advancement in sensor technology. Sensors found their way into many mobile 

phones and wearable devices that most of us use daily to collect data in hopes of improving our 

health and behaviours (Paré, Leaver, & Bourget, 2018). It has led to an explosion of patient 

generated health-related data, collected and shared from mobile and wearable devices.  

 

The accumulation of patient-generated health data from mobile and wearable devices has earned 

the interest from a range of stakeholders of the health care system including patients, care 

providers, funders, governments and policy-makers, and technology developers (Accenture, 

2016; Chung et al., 2016; Kelsey & Cavendish, 2014; Piwek, Ellis, Andrews, & Joinson, 2016; 

Swan, 2009). Many envision a future where deeper insights into the health of individuals and 

personalized care plans are procured from patient-generated health data to advance patient care. 

Yet, gaps remain in our understanding of what we can do with such data, how we can use the 

information, and how we can best implement it in the health care system. 

 

1.2. Philosophical Worldview 

For the work included in this dissertation, I espoused a pragmatic worldview (Creswell, 2013). 

The pragmatic view of the world enabled me to focus on problems while allowing me to choose 

research methods freely (Creswell, 2013). This pragmatic approach recognizes that research is 

not independent of the social, historical, political and other contexts it is situated in. Aligned with 

this view, the methodology of this dissertation was selected to best answer the research questions 

given the context of the research topic. I am a male researcher with a primary background in 

health information system projects. I am primarily a quantitative researcher and have 

appreciation and experience with qualitative research. My initial interest in this topic originated 
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from the experience of mobile device-based health information system implementation. The 

focus of my dissertation solidified as my interest evolved with my recognition and interest in 

wearable devices as their adoption among general populations increased exponentially along 

with a need to better understand ways to harness the patient-generated health data. I position 

myself as an explorer of the new ways of using patient-generated health data to improve its 

integration into health care and ultimately improve patient care.   

 

1.3. Research Rationale 

The population of Canada is aging and an unprecedented demand for health care is expected 

(Statistics Canada, 2016a). Of particular concern is the increasing prevalence of frailty among 

the aging population and the current ill-prepared health care system to treat frailty effectively 

(Muscedere et al., 2016). Technology has demonstrated its role in bridging this gap by 

supporting older adults to stay independent and healthy longer in the community (Reeder et al., 

2013).  

 

Frailty is linked to adverse health outcomes especially for older adults (Heyland et al., 2015). 

Improving frailty gets exponentially less likely as frailty status worsens and identifying at risk 

persons is paramount to preventing further deterioration (Gill, Gahbauer, Allore, & Han, 2006). 

Identifying at-risk populations is difficult among community-dwelling older adults as the 

implementation of routine frailty screening has been hampered by the lack of consensus on tools 

and questionable feasibility in different health care settings (Lee, Heckman, & Molnar, 2015).  
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There is evidence that frailty can be assessed with measures that have not been examined 

previously but are now possible with new technologies. Gait analysis, step count, physical 

activity level, and sedentariness have demonstrated their high correlation with frailty level 

(Dasenbrock, Heinks, Schwenk, & Bauer, 2016). Data generated from wearable devices such as 

continuously measured heart rate have been shown to improve the understanding of frailty status 

when analyzed together with physical activity level (Theou, Jakobi, Vandervoort, & Jones, 

2012). Sleep quality measures from wearable devices including total sleep time and nocturnal 

awakenings were associated with frailty  (Ensrud et al., 2009; M. Kim, Yoshida, Sasai, Kojima, 

& Kim, 2015). However, these studies were conducted in a laboratory setting with medical- and 

research-grade devices. This limits their generalizability and there is a need for evidence for 

consumer-grade wearable devices used in-situ for assessing frailty. There is growing evidence 

for the reliability of data generated from consumer-grade wearable devices for the measures 

demonstrated in these previous studies (Evenson, Goto, & Furberg, 2015; Shcherbina et al., 

2017; Wang et al., 2016). Furthermore, the quality of data is only expected to improve as the 

sensor technology advances. Coupled with the increase in interest for such devices and 

anticipation of added clinical value from the data, this momentous opportunity provides a new 

avenue for researchers and clinicians to further investigate frailty.  

 

1.4. Dissertation Overview 

This dissertation begins with the introduction to background information and a review of the 

literature in Chapter 2. The literature review focuses on the current evidence on the need for 

improved care for older adults of Canada, the impact of frailty on health outcomes of older 

adults, and the demonstrated ways of using mobile and wearable devices to augment care in 
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home and community healthcare and critical illness care settings. In Chapter 3, a portion of a 

white paper presented at the 2018 AGE-WELL conference is included. This white paper 

summarizes the key concepts related to mobile health, wearable devices, and patient-generated 

health data including big data, machine learning and artificial intelligence. In-depth review of 

these concepts is beyond the scope of this dissertation, but they are imperative to understanding 

the current state of the patient-generated health data. The purpose of this white paper was to 

unpackage these concepts in a manner that can be understood by the conference attendees, 

consisting of older adults, caregivers, clinicians, researchers, and industry representatives. This 

white paper was a product of knowledge translation of this thesis. This work is included in this 

thesis to be informative for the readers who are not familiar with such concepts. Chapters 4-6 

have been written for publication and present the three primary research studies conducted. 

Chapters 4 and 5 have been submitted for publication and Chapter 4 has been accepted for 

publication and Chapter 5 is currently under review. Chapter 6 will be prepared to be submitted. 

Chapter 7 connects all three primary studies and discusses the implications of this dissertation 

and future research studies. The concluding remark is presented in Chapter 8.  

 

1.5. Overarching Purpose and Objectives 

The overall aim of the dissertation was to investigate the possible uses of patient-generated 

health data collected from mobile and wearable devices to improve the health of older adults. 

This dissertation examined what we can do with such data, how we can use the information, and 

how best we can integrate it into the current health care system. Each study included in this 

thesis had its own objectives that provided evidence for this purpose. Table 1.1 illustrates the 
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relationship between the studies and how they collectively support the purpose of this 

dissertation.  

 

Study 1: Predicting frailty with a consumer-grade wearable device in Canadian home care 

clients: A proof-of-concept study 

Objectives 

1. To investigate the relationship between the data from consumer-grade wearable devices 

and frailty 

2. To identify key wearable device measures that can predict the status of frailty 

 

Study 2: Using a consumer-grade wearable device to assess frailty transitions in critical 

care survivors: An exploratory observational study 

Objective 

1. To examine the data generated from wearable devices for their relationship with the 

progression of frailty for the critical illness survivors. 

 

Study 3: Comparing and contrasting clinicians’ and older adults’ perceptions of patient-

generated health data: A mixed-method study 

Objectives 

1. To explore the perceptions of older adults and clinicians on patient-generated health data. 

2. To compare the perceived usefulness of a range of patient-generated health data by older 

adults and clinicians. 
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Table 1.1. The overall aim of the dissertation and the objectives for each study 

What is the 

problem? 

Potential 

opportunity 

How can we 

begin to 

address the 

problem? 

How is the 

patient-

generated 

health data 

perceived 

by 

clinicians 

and older 

adults? 

What are some next 

steps? 

LITERATURE 

REVIEW: 

• Assessing 

frailty in 

community-

dwelling older 

adults 

• Understanding 

frailty 

transitions 

among critical 

illness 

survivors 

LITERATURE 

REVIEW: 

Patient-generated 

health data from 

wearable and 

mobile devices: 

• Highly 

adopted and 

accepted 

• Affordable 

• Measures 

physiological 

and kinematic 

data that are 

independently 

associated 

with frailty 

• Generates big 

data for 

advanced 

statistical 

approaches 

such as 

machine 

learning 

STUDY 

ONE: To 

predict 

frailty 

among 

community-

dwelling 

older adults 

using 

wearable 

devices  

 

STUDY 

TWO: To 

investigate 

frailty 

transition 

among 

critical 

illness 

survivors 

using 

wearable 

devices 

STUDY 

THREE: To 

explore the 

perception 

of older 

adults and 

clinicians 

toward 

using 

patient-

generated 

health data; 

and to 

identify 

perceived 

usefulness 

of different 

types of 

patient-

generated 

health data 

DISCUSSION & 

CONCLUSIONS: 

• Identification of 

contributions to 

current knowledge 

gaps 

• Recommendations 

for the focus of 

future research 
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Chapter 2. Literature Review 

2.1. Aging in Canada 

As of 2017, Canada has a larger population of persons aged 65 and older than of persons aged 15 

and younger (Statistics Canada, 2016a). Almost 18% of Canadians are 65 years of age and older, 

while 16% are 14 years of age and younger (Statistics Canada, 2020). The number of Canadians 

who are 85 and older grew almost 20% from 2011 to 2016, which is four times the overall 

population growth (Statistics Canada, 2017). The rapid growth of this population of Canadians is 

expected to continue; by 2051, one in 4 seniors will be 85 and older (Statistics Canada, 2017).  

 

The aging Canadian population provides many opportunities and poses new challenges. One of 

the major challenges associated with aging populations is the increasing demand on the health 

care system (Denton & Spencer, 2010). Chronic conditions are much more prevalent among 

Canadians aged 65 and over compared to those aged 45 to 64, while over 80% of those 71 years 

old and over have at least one chronic condition (Statistics Canada, 2016b). Population aging is 

followed by a significant rise in the prevalence of chronic diseases and it shifted the paradigm of 

healthcare that traditionally focused on acute and episodic treatment to prevention and chronic 

care (Canadian Institute for Health Information, 2011). The shifting needs for health care 

resources introduced challenging demands and many innovative solutions are pursued. In 

particular, technology is at the core of the strategic transformation of the health care system to 

improve the efficiency of health care and to deliver high-quality care to older adults.  
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2.2. Aging and Technology 

Aging-in-place emphasizes the continuation of living at home and maximizing the independence 

and dignity of older adults (Bacsu et al., 2012). Encouraging aging-in-place has multiple benefits 

including physical and mental health (Chappell, Dlitt, Hollander, Miller, & McWilliam, 2004; 

Graybill, McMeekin, & Wildman, 2014; Hollander & Chappell, 2010), quality of life (Bacsu et 

al., 2012; Chapin & Dobbs-Kepper, 2001; Wiles, Leibing, Guberman, Reeve, & Allen, 2012), 

and cost-effectiveness of health care (Graybill et al., 2014; Marek, Stetzer, Adams, Popejoy, & 

Rantz, 2012). Older adults also prefer aging-in-place over institutions or nursing homes as it is 

closely linked to sense of identity, independence, autonomy, and security (Wiles et al., 2012).  

 

Technology can support aging-in-place by improving and maintaining the independence of older 

adults at home. Telehealth technologies demonstrated the potential to remotely monitor and 

provide healthcare services to manage chronic diseases (Paré, Jaana, & Sicotte, 2007). Sensor 

technologies support physiological and functional monitoring such as blood pressure and falls, 

home environment control such as automatic lights, and social interaction and cognitive memory 

aids (Demiris & Hensel, 2008; Peek et al., 2014; Reeder et al., 2013). These technologies utilize 

an array of sensors such as thermometers and infrared detectors placed in the home environment, 

embedded in furniture such as mattresses, or worn by older adults (Demiris & Hensel, 2008; 

Reeder et al., 2013). The benefits of technology-supported aging-in-place interventions include 

increased physical activity level, higher cognitive function level, improved quality of life, 

reduced hospital admission, and enhanced perceived security (Reeder et al., 2013).  
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2.3. Wearable Devices 

A ubiquitous health system is a collection of wearable sensors that monitors health 

(Pantelopoulos & Bourbakis, 2010). This idea of on-body sensors is more commonly referred to 

as wearable devices for the general public. Wearable devices, however, are different from 

ubiquitous health systems in that they are frequently used to refer to consumer-grade off-the-

shelf devices (Motti & Caine, 2016). Although many terms loosely define varying types of 

sensor technologies, for the purpose of this dissertation, they will be referred to as wearable 

devices. Wearable devices are defined as portable integrated electronic and computing 

technologies that are wearable or attachable on the body or clothes and collect some form of data 

(Office of the Privacy Commissioner of Canada, 2014).  

 

Wearable devices can be categorized into medical-grade devices and consumer-grade off-the-

shelf devices. Medical-grade wearable devices, according to the Food and Drug Administration 

of the U.S under the Food, Drug and Cosmetic Act, are the devices that received government 

approval for their accuracy and validity, and for their use for diagnosis and treatment (U.S. Food 

and Drug Administration, 2015). On the other hand, consumer level wearable devices can be 

used for weight management, physical fitness, stress management, mental acuity, sleep 

management and other general wellness (U.S. Food and Drug Administration, 2015). In 2019, 

Health Canada announced the guiding document for software for medical devices, where a 

similar distinction is made for wearable devices based on the purpose of the software (Health 

Canada, 2019).  
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Medical-grade and consumer-grade wearable devices differ tremendously in their price range, 

availability, accuracy and purpose. Medical-grade wearable devices have been commonly used 

in human kinesiology and kinematic research to analyze gait characteristics (Schwenk et al., 

2013) and for physical rehabilitation (Jovanov, Milenkovic, Otto, & Groen, 2005). In recent 

years, use of sensor technologies has expanded its capability to detect stress level (Martinez-

Rodrigo, Roberto Zangroniz, Pastor, & Fernandez-Caballero, 2015; Muaremi, Bexheti, 

Gravenhorst, Arnrich, & Troster, 2014; Sano & Picard, 2013), mood state (Lanata, Valenza, 

Nardelli, Gentili, & Scilingo, 2014; Valenza et al., 2014) and convulsive seizure (Poh et al., 

2012). These new technologies promise continuous monitoring and early detection for 

deteriorating mental health and epileptic activities. On the other hand, consumer-grade wearable 

devices are easily accessible and affordable. Their main purpose is to enhance general wellness, 

often through increasing self-awareness by monitoring step count, physical activity level, energy 

expenditure, heart rate, and sleep patterns. In recent years, the line between medical- and 

consumer-grade wearable devices has blurred. A number of wearable devices that are intended 

for consumers received the U.S. Food and Drug Administration’s De Novo clearance for Class II 

medical device for their capability to monitor blood pressure and to diagnose atrial fibrillation 

through the built-in electrocardiogram (ECG) sensors (U.S. Food and Drug Administration, 

2018a, 2018b).  

 

Consumer-grade off-the-shelf wearable devices have been increasingly adopted by the general 

public and older adults alike in recent years (Salah, MacIntosh, & Rajakulendran, 2014). It is 

estimated that one in six U.S. consumers wears a wearable device on a daily basis (Piwek et al., 

2016). The greater adoption of wearable devices has also increased their use for research and 
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clinical uses (Zhu, Colgan, Reddy, & Choe, 2016). Research studies have begun to establish the 

validity and reliability of data from consumer-grade wearable devices (Evenson et al., 2015; 

Shcherbina et al., 2017). These studies have reported comparable reliability to gold standard 

measures that are frequently used in the laboratory and the clinical settings for measuring step 

count, sleep quality, and heart rate (Evenson et al., 2015; Shcherbina et al., 2017; Wang et al., 

2016). Further validation studies demonstrated a high agreement between consumer-grade and 

medical-grade devices among specific populations including chronic obstructive pulmonary 

disease (COPD) patients (Vooijs et al., 2014), pediatric patients (Gardner, Voss, Dean, & Harris, 

2016), intensive care unit (ICU) patients (Kroll, Boyd, & Maslove, 2016), and cardiac 

rehabilitation patients (Alharbi, Bauman, Neubeck, & Gallagher, 2016). Furthermore, consumer-

grade wearable devices demonstrated high acceptability among older adults (McMahon et al., 

2016) and chronic disease patients (Mercer et al., 2016).  

 

2.4. Patient-Generated Health Data 

Logging information to address a health concern is not a new phenomenon. Patients have always 

participated in self-care and logging information such as weight, blood pressure, and blood 

glucose meter. With the introduction of mobile and wearable devices, the number of people 

engaged in tracking health-related data via such devices also increased. A recent national survey 

reported almost 40% of older adults who are 55 years and older self-track health-related data 

digitally using mobile health (mHealth) apps, consumer-grade wearable devices, and smart 

medical devices (Paré et al., 2018). As the number of people using such devices has increased in 

recent years, the volume of data generated and collected has also increased exponentially. These 

data are termed patient-generated health data with the definition of “data created, recorded, 
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gathered or inferred by or from patients or their designees to help address a health concern” 

(Shapiro, Johnston, Wald, & Mon, 2012). The potential clinical benefits of patient-generated 

health data for improving health outcomes and efficiency of health care systems stimulated many 

actors to initiate foundational work (Kelsey & Cavendish, 2014; Piwek et al., 2016; Shapiro et 

al., 2012; Swan, 2009). 

 

2.5. Frailty 

2.5.1. Definition of Frailty 

Frailty is a concept that captures the variability in health status given the same age among 

individuals (Rockwood, Fox, Stolee, Robertson, & Beattie, 1994). This disassociation between 

biological and chronological age is observable even when there is no distinguishable physical 

illness. Reflecting on this phenomenon, frailty is defined as a clinically recognizable biological 

state of increased vulnerability that puts an individual at higher risk for adverse health outcomes 

(Clegg, Young, Iliffe, Olde Rikkert, & Rockwood, 2013; Xue, 2011).  

 

2.5.2. Theoretical Frameworks 

Frailty can be viewed from different perspectives. One approach to view frailty focuses on 

physiologic and phenotypic characteristics. This theoretical approach, known as the phenotype 

model, defines frailty as a biologic syndrome where there is a decline of the physiologic reserve 

due to the accumulation of stressors across multiple physiological systems (Fried et al., 2001). 

The phenotype model allows the identification of biological and physiological markers of frailty. 

This view is more compatible with the idea that frailty is a clinical concept (Fried et al., 2001). 

Figure 2.1 depicts the cycle of frailty, which consists of core clinical signs, including sarcopenia, 
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strength, walking speed, exhaustion, and low energy expenditure (Fried et al., 2001). This cycle 

highlights the impact of aging, disease, and undernutrition on sarcopenia, which decreases 

resting metabolic rate, strength and power, and maximal oxygen uptake volume. They can 

negatively affect walking speed, which subsequently lead to a decreased activity level. These 

factors cause a decrease in total energy expenditure. Decreased total energy expenditure, along 

with the aging-related reduction in caloric intake, can lead to chronic undernutrition. The cycle 

completes as chronic undernutrition instigates further sarcopenia. From this model, the Fried 

Frailty Scale was developed (Fried et al., 2001). The phenotype model and the Fried Frailty 

Scale have been validated to successfully capture the relationship between frailty and increased 

mortality, hospitalization, and disabilities among frail older adults (Fried et al., 2001). Other 

independent studies further validated the phenotype model (Guilley et al., 2008; Sourial et al., 

2010). This model is significant in that it provides an easy and feasible method to screen for 

frailty in routine care (Clegg et al., 2013). However, this theoretical model has been criticized for 

neglecting other potential factors for frailty such as cognitive and social aspects (Rothman, Leo-

Summers, & Gill, 2008).  
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Figure 2.1. The cycle of phenotypic characteristics of frailty 

 

The accumulation of deficits model is another model of frailty (Mitnitski, Mogilner, & 

Rockwood, 2001). It defines frailty as an accumulation of deficits, but rather than examining the 

core clinical markers, it statistically analyzes the proportion of deficits that an individual can 

have out of the total variables assessed. The concept of deficit was derived from the view of 

frailty that emphasizes the dynamic balancing between assets and deficits (Rockwood et al., 
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1994). Health deficits should be associated with health status, increase with age but not suffer 

from a ceiling effect with age, and are inclusive of multiple aspects of health (Searle, Mitnitski, 

Gahbauer, Gill, & Rockwood, 2008). To calculate the frailty index, one divides the number of 

deficits observed by the total number of deficit variables. For example, if an individual has 40 

out of 92 deficit variables, the score would be 40/92=0.43. The number of deficits varies between 

studies, but 30 to 40 variables are considered sufficient to estimate adverse health outcomes 

(Searle et al., 2008). Moreover, the maximum frailty index score is not 1.0, but rather around 

0.65 as demonstrated in a study that used 40-item frailty index (Rockwood & Mitnitski, 2006). 

This study showed that 99% of the study population is accounted for when the frailty index of 

0.65 is reached. The main advantage of this model is that it can express frailty in gradation with a 

mathematical basis, which aligns with the theoretical perspective that frailty is a progressive 

accumulation of deficits. This model can also better identify, in mathematical form, the 

precarious threshold where an individual can no longer sustain additional deficits (Rockwood & 

Mitnitski, 2006). Its mathematical nature often cause unpopularity among clinicians (Dent, 

Kowal, & Hoogendijk, 2016). This is changing in recent years as the tool is being integrated into 

EMR systems, making it time-efficient (Clegg et al., 2016). Another limitation of this model is 

its heavy reliance on deficit information that are often not available readily in settings such as 

critical care (Pugh et al., 2018). It increases the reliance on proxy for obtaining information and a 

lack of proxy often results in the incomplete frailty assessment (Pugh et al., 2018). To overcome 

this challenge, a tool that solely relies on the clinical judgment was developed and has 

demonstrated its validity against the frailty index (Rockwood et al., 2005).  
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2.5.3. Challenges with Assessing Frailty 

Assessing frailty and implementing a routine screening practice have been lagging in the 

Canadian health care system. The challenges of incorporating frailty assessments are complex 

and multifaceted. In primary care settings, frailty screening is difficult as the manifestation of 

frailty is frequently dismissed as normal aging due to the high resemblance to normal aging, 

subtle onset, and slow progress (L. Lee et al., 2015). Family physicians mostly have closest 

relationships with patients and should be best equipped to identify frailty. A challenge that is not 

unique to primary care is the lack of appropriate or feasible tools. Frailty assessment tools that 

rely on performance such as the Fried scale requires walking and hand gripping; tools that rely 

on self-report are not feasible for people with functional or cognitive impairments (Muscedere et 

al., 2016). Similarly, the comprehensive geriatric assessment (CGA) is an accepted and validated 

tool to measure frailty in long-term care facilities but the limited number of specialists hinders its 

feasibility for widespread use (Muscedere et al., 2016). Assessing frailty in critical care settings 

has its own challenges. Pre-critical illness frailty level is important information to determine and 

direct tailored medical treatments, but this has not been studied (Muscedere et al., 2016). 

Available tools such as the frailty index are too resource-intensive and performance-based tools 

are often not feasible in this setting and with this population. Furthermore, there is a knowledge 

gap in what specialized care is appropriate for frail patients, which further hampers incentivizing 

frailty assessment. These challenges with frailty assessment are well-acknowledged within the 

scientific communities of many disciplines and efforts have been made to find consensus on 

tools and standards to use (Kelaiditi et al., 2013; Rodríguez-Mañas et al., 2013). It is also 

recognized that no single tool can be used across all healthcare sectors (Muscedere et al., 2016), 

and, hence, novel ways to assess frailty need further exploration.  
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2.5.4. Transitions in Frailty States  

The challenges with assessing frailty and the lack of tools that are sensitive to detect changes in 

frailty status have slowed down the study of frailty transitions. Gill and colleagues (Gill et al., 

2006) monitored community-dwelling older adults for 54 months with frailty assessed every 18 

months. This study reported that frailty improves extremely infrequently once an individual 

progresses into the most-frail state while transitions between non-frail and pre-frail state were 

frequent occurrences. Another study that monitored community-dwelling older adults for 48 

months with 24-month frailty screening intervals examined the factors associated with the 

transitions of frailty states (J Lee, Auyeung, Leung, Kwok, & Woo, 2014). This study identified 

that men are more likely to decline in frailty status than women. Hospitalization, older age, 

previous stroke, lower cognitive function, diabetes, and osteoarthritis were associated with a 

negative transition of frailty status while high socioeconomic status was protective (Lee et al., 

2014). However, evidence suggests a transition of frailty status may occur more frequently 

among pre-frail patients (Gill et al., 2006). Studies that examined the state of disability and 

independence reported frequent transitions occur at as short as monthly intervals (Gill & 

Kurland, 2003; Hardy, Dubin, Holford, & Gill, 2005). However, it is unknown whether the 

currently available frailty assessment tools are sensitive enough to detect changes in shorter 

intervals (de Vries et al., 2011).  
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2.6. Wearable Devices for Assessing Frailty  

2.6.1. Physical Activity and Frailty 

Technologies have been explored to objectively measure criteria for frailty including gait 

characteristics, physical activity level and step count (Chang, Lin, Chen, & Lee, 2011; Chen et 

al., 2015; Dasenbrock et al., 2016; Schwenk et al., 2013, 2015; Song et al., 2015; Theou et al., 

2012). Technologies involved in these studies varied. Sensors such as electronic walkways, 

camera systems, and force plates were used to analyze gait characteristics (Schwenk et al., 2013, 

2015). Tri-axial accelerometers were used in a research study to measure physical activity levels, 

step count, and sedentariness in free-living environments (Chen et al., 2015; Schwenk et al., 

2015; Song et al., 2015; Theou et al., 2012). Gait parameters such as gait speed, variability, 

stride lengths, and cadence demonstrated a high discrimination power between frailty levels. 

Frailty level was highly correlated with the level of physical activity measures including step 

count, walking bout duration, and energy expenditure for community-dwelling older adults 

(Theou et al., 2012) and critical illness survivors (McNelly et al., 2016). A sedentary lifestyle 

was reported to be a risk factor for frailty for older adults (Song et al., 2015).  

 

2.6.2. Heart Rate and Frailty 

Heart rate variability (HRV) is a measure of fluctuations in the interval between regular 

heartbeats. Having a diminished fluctuation in heart rate may indicate a disrupted homeostatic 

balance among complex regulatory systems, which may be a surrogate marker for frailty (Chaves 

et al., 2008). Chaves and colleagues (2008) examined this hypothesis using a two-channel ECG 

and reported community-dwelling older adults with a lower HRV had a high likelihood of being 

frail. Another study that examined older women also reported a high correlation between frailty 
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and HRV (Varadhan et al., 2009). However, long-term continuous ECG monitoring is often not 

feasible as ECG monitors are too bulky and uncomfortable for long-term wear. Moreover, no 

consumer wearable devices could monitor ECG up until very recently.  

 

Monitoring HRV was not possible but wearable devices are capable of measuring heart rate. No 

study to date has examined the relationship between wearable device-measured longitudinal 

heart rate data and frailty. However, one study that examined 10-second recordings of heart rate 

of older adults identified that higher resting heart rate was associated with a higher body mass 

index (BMI), a higher prevalence of diabetes, and current smoking (Ogliari et al., 2015). Frailty 

and disability as measured by an activities of daily living (ADL) score are closely related 

concepts and highly associated with each other (Fried, Ferrucci, Darer, Williamson, & Anderson, 

2004). Another way to use heart rate data is to supplement the accelerometry data to better 

understand the physical activity level and sedentariness. Theou and colleagues (2012) used a 

research-grade wearable device to capture heart rate among community-dwelling older adults 

and defined sedentariness as the bottom 20% of heart rate reserve. Unfortunately, this approach 

to measure physical activity and sedentariness levels was not correlated with the physical activity 

level measured by electromyography, global positioning system (GPS), and the Minnesota 

Leisure Time Activity Questionnaire (MLTAQ) (Theou et al., 2012). To date, this is the only 

study that utilized heart rate measured by a wearable device to assess frailty.  

 

2.6.3. Sleep Quality and Frailty 

Sleep quality is a measure that is not included in many frailty assessment tools but the 

relationship between poor subjective sleep quality and frailty has been reported to be significant 
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(Del Brutto et al., 2016; Ensrud et al., 2012; Nobrega, Maciel, de Almeida Holanda, Oliveira 

Guerra, & Araujo, 2014). Such a significant relationship was found for institutionalized older 

adults (Nobrega et al., 2014) and community-dwelling older adults (Del Brutto et al., 2016; 

Ensrud et al., 2012). In recent years, polysomnography and actigraphy have been used to 

objectively measure sleep quality and confirmed the association with frailty (Ensrud et al., 2009; 

Kim et al., 2015). Using such technologies to measure sleep quality resulted in a detailed 

breakdown of sleep quality measures including total sleep time, nocturnal awakenings, sleep 

efficiency, and sleep latency (Kim et al., 2015). These sleep quality measures identified more 

granular details of the relationship between sleep and frailty. While poor sleep efficiency and 

frequent and long duration of nocturnal awakenings have been associated with frailty, short total 

sleep time and prolonged sleep latency were not (Ensrud et al., 2012; M. Kim et al., 2015). Only 

a few research studies have examined the relationship between frailty and sleep quality, requiring 

cautious interpretation and more research to validate these findings. 
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Chapter 3. White Paper: Mobile & Sensor Technology, Big Data and 

Artificial Intelligence for Healthy Aging 

 

Kim, B. & Lee, J. (2018, October). White Paper: Mobile & Sensor Technology, Big Data and 

Artificial Intelligence for Healthy Aging. Paper presented at the AGE-WELL’s 4th 

Annual Conference: Innovation in Action. Vancouver, Canada. Retrieved from 

https://bit.ly/3heSDBv 

 

This chapter includes a white paper submitted and presented at the AGE-WELL’s 4th Annual 

Conference: Innovation in Action. This white paper was developed with the audience in mind, 

consisting of older adults, caregivers, clinicians, researchers, and industry representatives. The 

white paper summarizes the important concepts associated with mobile health, wearable devices, 

and patient-generated health data including big data, machine learning, and artificial intelligence. 

As the purpose of the white paper was to convey these scientific terms to non-domain experts, 

they were supplemented by real-life examples both in and outside of health care. These examples 

highlight the underlying technology and mathematical approaches.  

 

Since the white paper was presented, the understanding and the reception of the term personal 

sensing and patient-generated health data have evolved. The term personal sensing was used to 

encompass all data captured by sensor technology as well as health-related data (white paper 

page 5; Table 3.1). Correction should be made to have patient-generated health data as the 

umbrella term that encompasses sensor data as well as patient recorded data. The evolved 

understanding of these concepts is based on the definition of patient-generated health data as 

inclusive of all data created by patients or family members to address a health concern (Shapiro 

et al., 2012). It was decided to present the original white paper presented at the conference 

https://bit.ly/3heSDBv
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without revising these terms to reflect the rapidly evolving nature of the topic of patient-

generated health data.  
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3.1. Introduction 

We live in a world where more people own a mobile device than own a toothbrush. Mobile 

devices such as smartphones and wearable devices are packed with sensors as simple as a 

compass to state-of-the-art biometric scanners such as fingerprint and iris scanners. The 

ubiquitous nature of mobile devices and rapid advancements in sensor technology have shifted 

their primary use from communication to information gathering and sharing. Various sensors on 

mobile devices can collect data on location, orientation and direction, altitude, and many more. 

These powerful and abundant tools are changing how researchers observe and conduct research 

studies, how clinicians deliver healthcare, and how we come to understand our health and well-

being. In this report, we provide you with the latest development amongst researchers and 

clinicians on mHealth, big data, and artificial intelligence. We will give examples of what is 

currently possible and what the future holds for the health of older adults and aging, in particular. 

 

3.2. Mobile Health 

mHealth is a term that describes the use of mobile devices to support medical and health practice 

(World Health Organization, 2011). mHealth is a very broad concept. mHealth systems can be as 

simple as an app on smartphones for educational purposes and it can also be a complex system 

where doctors monitor vital signs and symptoms in real time to update prescription medications. 

We habitually link mHealth and smartphones, tablets, and laptops, but it is not limited to these 

devices. 

 

Wearable devices are devices that are designed to be worn and equipped with multiple sensors 

(Mohr, Zhang, & Schueller, 2017). They are made small and discrete, and used for health and 
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fitness. Many of us are familiar with wearable devices such as activity trackers and smart 

watches but there are also smart clothes, smart shoes, smart glasses and so on. The term 

wearables is most frequently used to refer to consumer-level devices such as Fitbit and Apple 

Watch, but they are sometimes used to refer to medical devices. We will be referring to them as 

consumer-grade wearable devices.  

 

Smartphones and wearable devices are closely integrated to each other. Most wearable devices 

are developed to work together with smartphones to show graphs of, for example, physical 

activity level over a week. Wearable device data can be viewed through ‘apps’ in most cases.  

 

Sometimes, the apps ask for additional information. For example, they ask to record how we felt 

when we woke up on the phone. It asks to record blood pressure in the morning, blood sugar 

level before and after a meal, or symptoms of chronic conditions. Such health data is collected by 

patients. They are called patient-generated health data (Wood, Bennett, & Basch, 2015). They 

need us to measure and record the data on a smartphone, which are often shared with doctors and 

clinicians.  

 

Combination of multiple data – one measured automatically by sensors on wearable devices and 

the other reported by you, patient-generated health data, can tell clinicians a more complete 

picture of your health than either one alone.  

 

mHealth and wearable devices open new possibilities for researchers. They are minimally 

obtrusive and can be worn for a long period of time. They can collect data continuously, 
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repeatedly over time, and frequently. Researchers can use wearable devices to measure 

participants and their behaviours outside laboratory settings. Researchers can observe patterns of 

human behaviours in real world with the level of details that was never possible. This is different 

from how human research studies are commonly conducted. Conventionally, researchers relied 

on participants’ memory and honesty to understand behaviour patterns such as their physical 

activity level. Researchers could only assess participants periodically.  

 

mHealth and wearable devices offer a new way of measuring human behaviours and individual 

health and wellbeing with unprecedented level of details. As such, we need a new way of making 

sense of the vast amount of data and information to understand what its implications to healthy 

aging. 

 

3.3. Personal Sensing 

Making sense of vast amount of data from smartphones and services, sensors on wearable 

devices, and other sources to evaluate human behaviours is called personal sensing (Mohr et al., 

2017). It is often called reality mining, personal informatics or digital phenotyping.  

 

Personal sensing is, in a way, a method to make sense of a large amount of data from mHealth 

and wearable devices. Personal sensing is unique in that it can use both health and non-health-

related data to provide insight into human behaviours. These health and non-health data include a 

variety of sensor data, patient-generated health data, and other data from different sources (Table 

3.1).  
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Table 3.1. Sources and types of data potentially useful for research and clinical practice 

Data sources Data type 

Sensor – passive Accelerometry 

Heart rate 

Temperature 

UV exposure 

Geolocation 

Noise level 

Sensor – active Weight 

Blood pressure 

Blood glucose level 

Patient-generated health data Diet 

Mood/stress level 

Symptoms 

Medications 

Behaviours 

– Tobacco/alcohol consumption 

Others Social connectedness  

– Phone logs, texts, social media 

Financial data 

 

3.4. Data to Knowledge   

A data to knowledge sensemaking framework is a visual representation of the data, information, 

and knowledge cycle (Figure 3.1). It shows how raw data is processed to information, then to 

knowledge that can be used by researchers and clinicians.  
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Figure 3.1. Data to knowledge sensemaking framework with examples of personal sensing 

 

The cycle of data to knowledge begins with raw data. Raw data is generated by sensors on 

mobile phones and wearable device. Sensor data are often incomprehensible and meaningless. 

For example, GPS on the phone gets latitudinal and longitudinal coordinates. They are simply 

two numbers that are not clinically relevant.  

 

Raw data is processed to become understandable information. This initial processing is often 

done by applying mathematical algorithms or by combining with other data. For example, GPS 

coordinates can be put on a map which can tell us information about the location.  

 

Processed data are often not clinically meaningful. They require further processing to become 

clinically relevant information. For example, processed GPS can tell us whether the person was 

at home, work, gym, restaurant, and so on. Accelerometer sensor data measures physical activity 
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level. Combining two information sources more accurately distinguishes between gym exercise 

and other physical activities outside the gym for example.  

 

Clinically relevant information can help clinicians identify and evaluate clinical conditions. For 

example, sleep duration, disturbances, social avoidance, depressed mood, and stress level may be 

able to tell the severity of depression. Such information can help clinicians design treatment 

plans that are customized and personalized. 

 

Sense-making framework helps us visualize the journey of raw data that gets processed to 

become clinically meaningful information, which can be used by clinicians to evaluate and 

understand clinical conditions. Next, we will describe how data are processed to become 

meaningful information. 

 

3.5. Artificial Intelligence, Machine Learning, Deep Learning, and Big Data in Healthcare 

Artificial intelligence, machine learning, deep learning, big data; we will briefly describe each, 

current uses in our lives and in healthcare, and the future they hold.   

 

We have seen examples of artificial intelligence (AI) in movies: C3PO and R2D2 in Star Wars. 

They are fictional examples of general AI. General AI possess human like characteristics such as 

senses, cognition, and intelligence. We have yet to achieve this level of AI in the modern world. 

 

However, we have developed very good narrow AI. Narrow AI is an intelligence in a very 

focused topic. One example is handwriting recognition on letters by postal offices. How does a 
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computer read handwriting when everyone has different writing patterns and penmanship? What 

happens when they are very poorly written and illegible? Where does this intelligence come 

from?   

 

Machine learning and deep learning are the answers to the question. They can examine a set of 

data, learn patterns, and make predictions. It is different from traditional programs, which 

operate based on explicit rules and defined parameters. For the example of mailing address, a 

machine learning algorithm examines a set of handwritten mailing addresses, learns different 

ways people write letters, and makes a very accurate prediction of each letter of handwritten 

mailing address. Machines need hundred thousands, if not millions, of examples of different 

hand writings before it can almost always correctly identify mailing addresses. A large dataset 

that has millions of examples, often called big data, is an essential ingredient for successful 

artificial intelligence.  

 

Big data is defined as a vast amount of data that is ever increasing in its size, very complex, and 

most importantly, adds value to the intended use (Demchenko, Grosso, De Laat, & Membrey, 

2013). Wearable device data is one example. Wearable devices generate enormous amounts of 

data. The data are increasing in their size at a very fast rate. Wearable devices data are getting 

more complex as more sensors are used. In recent years, the term big data analytics is frequently 

used to imply machine learning and deep learning methods that help us process a large amount of 

data into meaningful information. These terms are increasingly used interchangeably, blurring 

the original definitions. 
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3.6. Machine Learning and Wearable Devices 

In a very similar way a postal office system can learn hand writings from millions of examples 

and read mailing addresses automatically, wearable devices recognize when you walk, run, sleep, 

swim, golf, and so on (Kamada, Shiroma, Harris, & Lee, 2016).  

 

An accelerometer is a sensor embedded in wearable devices that measures movements in three 

directions: up and down, backwards and forward, and side by side. An accelerometer records 

your wrist movements in different directions every second. Imagine the pattern of your wrist 

movement when you walk. It creates a similar pattern for every cadence. A machine learning 

algorithm is used on a large dataset collected from people’s wrist movement while they walk. A 

machine learning algorithm will learn the pattern and when next time a similar pattern is made, it 

will know that you took a step.  

 

Similarly, machine learning is used to measure sleep duration and quality. Our nerve systems go 

through different phases while we sleep, which creates unique patterns of body movements. 

Certain patterns of body movements are associated with deep sleep stage. Machine learning 

algorithms learn body movement patterns and are able to determine your sleep quality.  

 

Machine learning, coupled with wearable devices have opened a wide array of new possibilities 

for clinicians and researchers. A few examples that are currently available and being researched 

include detecting fall incidents (Chaudhuri, Thompson, & Demiris, 2014), detecting seizure 

episodes (Johansson, Malmgren, & Alt Murphy, 2018), emotional arousal (i.e. stress level and 
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mood swings) (Di Lascio, Gashi, & Santini, 2018), and nutritional intake (Vu, Lin, Alshurafa, & 

Xu, 2017).  

 

mHealth is a source of big health and wellness data. Research studies have only begun to scratch 

the surface of its potential uses with powerful machine learning algorithms. It can drastically 

change how we access health care at home and in the community. It also holds unimaginable 

promise for future of health care.  

 

3.7. Machine Learning in Current and Future Health Care  

Artificial intelligence is embedded in many aspects of health care and it holds enormous 

potential for future. It is not immediately clear to most of us where in health care and how 

machine learning and artificial intelligence are currently used. They are used in a very broad 

range of health care services and research areas such as medical imaging, critical care, oncology, 

and many others. We will provide examples of current uses as well as the most cutting-edge 

research studies that hold great promise. 

 

3.7.1. Example 1: Predicting patient outcomes in ICU 

One area where machine learning plays a large role is in ICUs (Sharafoddini et al., 2017). ICU 

physicians are faced with difficult clinical decisions such as which patients require longer ICU 

stay or can they be moved to regular hospital beds; which patients can tolerate and benefit from 

invasive treatments; which patients will develop complications from treatments and so on. 

Predicting these outcomes are very important to patients and family members to make informed 

decisions for their treatments. ICU stays are extremely expensive and accurate predictions on 
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medical outcomes can help manage resource efficiently. These medical outcome predictions can 

be made based on thousands of patient records using machine learning and such information 

guides physicians, patients and family, and hospital administrators to make accurate decisions.  

 

3.7.2. Example 2: A.I. – Making diagnosis 

One research study examined close to 100,000 images of retinas (i.e. eyes) of diabetic patients 

who suffer from retinopathy which can lead to blindness (Gulshan et al., 2016). Using deep 

learning methods, the program learned the patterns within the images of retinas. When it was 

tested with new images, it was able to determine retinopathy at 99% accuracy. 

 

Using a neural network - a type of machine learning method – a system learned over 120,000 

images of skin cancer (Esteva et al., 2017). This system could tell differences between the most 

common type of skin cancer from the deadliest form of skin cancer. This system can make a 

diagnosis as accurate as 21 trained dermatologists. This study is especially remarkable as the 

service can be provided to the public, using smartphone apps.  

 

3.7.3. Example 3: Finding effective drugs just for you with machine learning 

Drugs are developed meticulously and they go through rigorous testing for their safety and 

effectiveness. One downside of this is that many times, they are only tested on a group of people 

who are very similar biologically and physiologically. This raises a question: how will a drug 

work for a 90-year-old individual when it was only tested for, for example, 40 to 65-year-old 

individuals? With machine learning, we can examine previous effects of the drug on patients 

who have very similar characteristics as you. In this case, machine learning determines the group 
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of individuals who have similar characteristics as you (Ding, Takigawa, Mamitsuka, & Zhu, 

2013). 

 

3.8. Conclusion 

We have summarized the current state of mobile and wearable technology, big data, machine 

learning and artificial intelligence for healthy aging. The field of mHealth is undergoing a 

revolutionary change. Sensor technology has greatly advanced recently, and it has introduced 

wearable devices as a new tool to collect a large amount of patient-generated health data. 

Machine learning and deep learning enable the interpretation of big data generated from them, 

allowing us to understand human behaviours in a whole different way. We have also examined 

the current research studies that attempt to bridge these new technologies into healthy aging. The 

potential for technology is immense but unrealized. Collaborative efforts by all stakeholders, 

including patients, caregivers, clinicians, researchers, and policymakers are warranted to reach a 

future where we can fully leverage the benefits of these technologies for healthy aging. 
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Chapter 4. Predicting frailty with a consumer-grade wearable device in 

Canadian home care clients: A proof-of-concept study 
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4.1. Chapter Overview 

Background: Frailty has detrimental health impacts on older home care clients and is associated 

with increased hospitalization and long-term care admission. The prevalence of frailty among 

home care clients is poorly understood and ranges from 4.0% to 59.1%. Although frailty 

screening tools exist, their inconsistent use in practice calls for more innovative and easier-to-use 

tools. Owing to increases in the capacity of wearable devices, as well as in technology literacy 

and adoption in Canadian older adults, wearable devices are emerging as a viable tool to assess 

frailty in this population. 

Objective: The objective of this study is to prove the concept of using a wearable device for 

assessing frailty for older home care clients.  

Methods: We recruited home care clients from June 2018 to September 2019 aged 55 years and 

older to be monitored over a minimum of 8 days using a wearable device. Detailed 

sociodemographic information, and patient assessments including degree of comorbidity and 
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activities of daily living were collected. Frailty was measured using the Fried Frailty Index. Data 

collected from the wearable device was used to derive variables including daily step count, total 

sleep time, deep sleep time, light sleep time, awake time, sleep quality, heart rate, and heart rate 

standard deviation. Using both wearable and conventional assessment data, multiple logistic 

regression models were fitted via a sequential stepwise feature selection method to predict 

frailty.  

Results: A total of 37 older home care clients completed the study. The mean age was 82.27 

(SD: 10.84) years and 75.68% were female. Thirteen participants were frail, significantly older 

(p<0.01), utilized more homecare service (p=0.012), walked less (p=0.04), slept longer (p=0.01) 

and had longer deep sleep time (p<0.01). Total sleep time (r=0.41, p=0.012) and deep sleep time 

(r=0.53, p<0.01) were moderately correlated with the frailty. The logistic regression model fitted 

with deep sleep time, step count, age, and education level yielded the best predictive 

performance with an AUC of 0.90 (Hosmer-Lemeshow p=0.88).   

Conclusions: We proved the concept of using a wearable device to assess frailty for older home 

care clients. Wearable data complemented the existing assessments and enhanced predictive 

power. Wearable technology can be used to identify vulnerable older adults who may benefit 

from additional home care services. 

 

Keywords: frailty, wearable device, home care 

 

4.2. Introduction 

Frailty has detrimental health impacts among community-dwelling older adults. Frailty is 

associated with higher mortality (Campitelli et al., 2016; Fried et al., 2001; Shamliyan, Talley, 
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Ramakrishnan, & Kane, 2013), functional impairment (Fried et al., 2004; Vermeulen, Neyens, 

van Rossum, Spreeuwenberg, & de Witte, 2011), hospitalization (Campitelli et al., 2016; 

Shamliyan et al., 2013), long term care facility admission (Campitelli et al., 2016) and disability 

in activities of daily living (ADL) (Vermeulen et al., 2011). Frailty also increases the demand on 

formal and informal caregivers including home and community care services and family 

members (Sinha, 2012). A recent study identified that caregiver burden can be predicted based 

on the physical frailty level of geriatric patients (Ringer et al., 2016). Due to its significant 

impact on health outcomes and its burden on healthcare systems, improved screening and 

monitoring of frailty for community-dwelling older adults is deemed vital (Muscedere et al., 

2016). 

 

The prevalence of frailty among community-dwelling older adults is poorly understood. A 

systematic review reported that frailty prevalence ranges between 4.0% and 59.1% (Collard, 

Boter, Schoevers, & Oude Voshaar, 2012). Varying operational definitions and the heterogeneity 

of tools used in the studies resulted in a wide range of estimates. However, the prevalence range 

narrows to 4.0% to 17.0% when only the prevalence of  physical phenotype frailty is aggregated, 

excluding social or cognitive deficits (Collard et al., 2012).   

 

Home and community healthcare is challenged with increased demand, primarily due to the 

aging population and emphasis on aging-in-place (Keefe, 2011). The demand for home and 

community healthcare service is expected to continue to rise in an effort to keep patients in their 

community to reduce health care costs (Canadian Home Care Association, 2008). Screening and 

monitoring frailty in this population can benefit the home and community healthcare sector in 
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multiple ways. Effective frailty intervention programs involve lifestyle changes including 

improving nutritional status, increasing physical activity, and home environment modifications 

(Puts et al., 2017). Home and community healthcare clinicians are uniquely situated to deliver 

and monitor such interventions in a longitudinal manner, which can contribute to successful 

lifestyle changes. Screening for frailty at the community level can also help the home and 

community healthcare sector to identify vulnerable groups and allocate resources more 

efficiently.   

 

Tools to screen community-dwelling older adults for frailty exist, but they have been used 

inconsistently and are often impractical or invalidated (Dwyer, Gahche, Weiler, & Arensberg, 

2019). Wearable devices have been suggested as a potential tool to monitor frailty and a few 

research studies have explored this possibility (Mohler, Wendel, Taylor-Piliae, Toosizadeh, & 

Najafi, 2016; Parvaneh, Mohler, Toosizadeh, Grewal, & Najafi, 2017; Razjouyan et al., 2018; 

Rumer, Saraswathula, & Melcher, 2016). These studies explored the feasibility of using 

research-grade wearable devices such as ActiGraph or independently developed wearable 

devices. These studies provide evidence for the internal construct validity of research-grade 

wearable devices to screen for frailty (Chen et al., 2015), as well as a strong association between 

varying sleep quality parameters and frailty (Ensrud et al., 2009; Nobrega et al., 2014; Vaz 

Fragoso, Gahbauer, Van Ness, & Gill, 2009). Consumer-grade wearable devices are a promising 

tool to monitor frailty as they have become smaller, cheaper, and ever more accessible in recent 

years (Baig, Afifi, GholamHosseini, & Mirza, 2019), with older adults being the fastest growing 

group of wearable device users (“Older Americans Drive Growth of Wearables,” 2018). 

Research studies have demonstrated the reliability of these devices for measuring step count, 
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sleep quality, and heart rate compared to gold standard measures that are frequently used in 

laboratory and clinical settings (Evenson et al., 2015; Shcherbina et al., 2017; Wang et al., 2016). 

Further validation studies demonstrated a high agreement between consumer-grade and medical-

grade devices among specific populations, including chronic obstructive pulmonary disease 

patients (Vooijs et al., 2014), pediatric patients (Gardner et al., 2016), intensive care unit patients 

(Kroll et al., 2016), and cardiac rehabilitation patients (Alharbi et al., 2016). 

 

Recognizing the need for an innovative solution to measure frailty for community-dwelling older 

adults, we set out to investigate the possibility of using consumer-grade wearable devices. We 

examined the data generated from a wearable device worn by home care clients to identify 

associations with frailty. We also aimed to identify key wearable device measures that can 

predict the status of frailty. In the following Methods section, a description of the study 

procedure, tools, and statistical analysis used are described. The results of the study are 

presented, followed by the Discussion section where new findings are interpreted and compared 

to existing knowledge. Discussions are made about the implications on frailty research studies, 

wearable device research studies, and home and community health care sector, and the 

limitations of the study are presented.   

  

4.3. Methods 

4.3.1. Study Design 

A prospective observational study was conducted to meet the study objectives. Participants were 

asked to wear a wearable device for a minimum of 8 days with details of the device described in 
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Section 4.3.3. At the end of the study, participants were assessed for frailty, ADL, and the level 

of comorbidity. 

 

4.3.2. Recruitment 

Home care clients in the Greater Toronto Area were recruited through VHA Home Healthcare 

from August 2018 to September 2019. VHA Home Healthcare is a home care agency that serves 

over 3,000 clients throughout the Greater Toronto Area and other metropolitan areas in Ontario, 

Canada. Patients 55 years or older who had been receiving personal support service for more 

than 3 months were eligible for the study. Patients who were diagnosed with primary 

neuromuscular pathology, dependent on wheelchair, in an end-of-life program, or had cognitive 

impairments that could interfere with the use of wearable devices were excluded. Eligible home 

care patients were identified using VHA’s electronic medical record (EMR) system.  

 

4.3.3. Wearable Device 

The Xiaomi Mi Band Pulse 1S (Mi Band hereafter) is a commercially available wearable device 

that is worn on the wrist. It uses a tri-axial accelerometer to monitor motions to approximate step 

counts and sleep events. It is equipped with an optical heart rate sensor (i.e. 

photoplethysmography) to measure minute-by-minute heart rate. While the Mi Band can be worn 

on either the wrist or neck as a pendant, the placement was limited to the wrist for the study. The 

reliability and internal consistency of Mi Band’s performance for measuring step counts over 

walking and jogging has been validated  (Paradiso, Colino, & Liu, 2020; Ricchio, Lyter-

Antonneau, & M. Palao, 2018). Wrist worn wearable devices displayed systematically lower 
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heart rate during exercise but the Mi band demonstrated the highest accuracy (Ricchio et al., 

2018). 

 

We collected daily step count, light sleep time, deep sleep time, total sleep time, awake time, 

sleep quality, mean heart rate, and heart rate standard deviation (SD). Sleep quality was 

calculated as the percentage of sleep duration over total sleep time; sleep duration was 

determined by subtracting awake time from total sleep time (Duncan et al., 2016; Kroll et al., 

2017). Minute-by-minute heart rate measurements throughout the study period were used to 

calculate the mean and standard deviation. A pool of 10 devices were used and sanitized in 

rotation throughout the study. The compliance to wearing the device was defined as 10 hours or 

more of wear time per day (Tudor-Locke et al., 2015). 

 

4.3.4. Frailty Assessment 

Frailty was assessed using the Fried Frailty Index, a tool that has been built and used widely for 

community-dwelling older adults  (Fried et al., 2001). The Fried Frailty Index assesses 

phenotypic frailty based on five criteria: weight loss, exhaustion, slowness, weakness, and low 

physical activity. The index categorizes frailty into three stages based on the number of criteria 

that has been fulfilled: non-frail, pre-frail, and frail corresponding to scores of 0, 1-2, and 3-5, 

respectively (Fried et al., 2001). We dichotomized the Fried Frailty Index  into a frail group with 

a score of 3 or higher and a non-frail group with a score of 2 or lower (Fried et al., 2001).  
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4.3.5. Other Variables 

Sociodemographic variables were collected using a short background questionnaire and review 

of the patient’s medical chart. Collected information included age, sex, weight, height, ethnicity, 

level of education, income, and marital status. The degree of comorbidity was assessed using the 

Charlson Comorbidity Index (CCI) (J. N. Katz et al., 1996). The ADL level was assessed with 

the Katz index of independence (S. Katz, Downs, Cash, & Grotz, 1970). The number of hours of 

service received per week was collected from reviewing the patient’s medical chart.  

 

4.3.6. Statistical Analysis 

Descriptive statistics and univariate comparisons of means, medians, and proportions were 

performed to describe the sociodemographic information and patient assessments according to 

their frailty status. The level of education was condensed into two levels; high school or below, 

and post-secondary or higher. Household income was categorized into a lower income group for 

those earned $30,000 per year or less, and a higher income group who earned $30,000 or higher 

per year. Ethnicity was categorized into two levels: Caucasian and others. Wearable device data 

were examined for their compliance level and days with less than 10 hours of wear time were 

excluded. Heart rate measurements of zero were generated when the device failed to have good 

skin contact. Such measurements were treated as missing and removed from the analyses.  

 

The Shapiro-Wilk normality test was performed to check for normality. When the assumption of 

normal distribution was met, student’s T test was performed while the Mann-Whitney U test was 

performed otherwise to check for significant differences between frail and non-frail patients. The 

chi-square test was performed for categorical variables. The post-hoc chi-square test was 
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performed when more than two levels were present in the chi-square test and a significance was 

observed.  

 

Pearson and Spearman correlation statistics were used to examine the relationship between 

frailty, sociodemographic information, patient assessments, and the data collected from the 

wearable devices.   

 

Multiple variable logistic regression models were generated to predict frailty status. A sequential 

stepwise feature selection method was used to select the variables to be fitted into the models. 

The feature selection was used on the pool of sociodemographic and patient assessment variables 

to determine the features to be included in Model 1. Model 2 was built by applying feature 

selection to the variables derived from the wearable device data. Models 3 used all available 

variables for the feature selection method and the selected variables were used to build the 

logistic regression model. The Hosmer-Lemeshow test was performed to test the goodness-of-fit 

for each model. The predictive performance of each model was evaluated and compared using 

the area under the receiver operating characteristic curve (AUC).  

 

Statistical significance was set at alpha=0.05 for all statistical results. The significance level for 

post-hoc tests were corrected using the Bonferroni method. All statistical analyses were 

performed using R in the R studio environment (R version 3.6.0, R Studio version 1.2.1335, R 

Studio, Inc., Boston, MA). Stepwise feature selection method was performed using the stepAIC 

function from the MASS package (Version 7.3-51.4) (Venables & Ripley, 2002).  
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4.3.7. Ethics, Consent, and Permissions 

This study received ethics clearance from the Office of Research Ethics at the University of 

Waterloo (ORE22842). 

 

4.4. Results 

4.4.1. Recruitment 

A total of 72 older adults responded to the mailed recruitment brochure. All 72 older adults were 

contacted, and 45 of the total contacted older adults agreed to participate in the study. Four 

participants withdrew before the completion of the 8-day study period. Study suffered data 

attrition due to technical issues for four participants. In total, 37 older home care clients were 

included in the study. 

 

4.4.2. Participant Characteristics 

Participants were 57 to 96 years of age, with a mean age of 82.23  10.84 years and 75.68% 

(28/37) were female. The prevalence of frailty among the study population was 35.13% (13/37). 

On average, participants were observed for 9.43 (1.99) days. Frail participants were significantly 

older than their non-frail counterparts (mean ages: 83.92 vs. 80.61, p<0.01). The chi-square test 

identified a significant difference in the income level between frail and non-frail older adults. 

Post-hoc comparisons within each of the three income levels showed no statistical significance 

after correcting the alpha level with the Bonferroni method. Frail patients received significantly 

greater hours of homecare services per week compared to non-frail patients (Table 4.1). The 

resulting p-values of the Shapiro-Wilk normality tests are presented in Appendix A. The results 

of group difference tests are presented in Appendix B. 
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Table 4.1. Baseline sociodemographic and patient characteristics stratified by frailty status 

(n=37) 

 
Frail, 

n=13 

Non-frail, 

n=24 

p-value 

Age, years (SD) 83.92 (9.66) 80.61 (13.96) <0.01* 

Sex (female), n 10 18 >0.99 

BMI, kg/m2 (SD) 26.96 (6.70) 28.54 (5.43) 0.44 

ADL score (SD) 4.62 (1.45) 5.08 (0.88) 0.43 

CCI score (SD) 1.92 (1.26) 1.25 (1.11) 0.11 

Marital status   0.29 

Single, n (%) 1 (7.69) 7 (29.17) 
 

Divorced or separated, n (%) 2 (15.38) 5 (20.83)  

Widowed, n (%) 4 (30.77) 7 (29.17) 
 

Currently married, n (%) 6 (14.15) 5 (20.83) 
 

Education   0.12 

High school or less, n (%) 8 (61.54) 7 (29.17)  

Post-secondary or higher, n (%) 5 (38.46) 17 (70.83) 
 

Income   0.025* 

Income - Prefer not to answer, n (%) 7 (53.85) 3 (12.50) 0.06a 

Low income, n (%) 4 (30.77) 13 (54.17) 0.93a 

Mid to high income, n (%) 2 (15.38) 8 (33.33) >0.99a 

Ethnicity   0.71 

White, n (%) 10 (76.92) 21 (87.50) 
 

Others, n (%) 3 (23.08) 3 (12.50) 
 

Homecare Utilization    

Personal support service, hours per 

week 

5.15 (3.51) 2.77 (1.85) 0.01* 

*p<0.05 
a Post-hoc chi-square test 

 

4.4.3. Frailty and Wearable Device Data 

The Mann-Whitney U-test and T-test were conducted to find the difference between wearable 

device data between frail and non-frail participants. On average, older adults wore the device for 

20.03 (1.64) hours per day. Home care clients who were living with frailty reported significantly 
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lower daily step counts than their non-frail counterparts (mean steps per day: 367.11 vs. 1023.95, 

p=0.04). Total sleep time and deep sleep time were significantly longer for frail older adults, but 

no difference was found for light sleep time (Table 4.2). No difference was found for heart rate 

measures. Box plots corresponding to Table 4.2 are presented in Appendix C.  

 

Table 4.2. Difference in the data collected from the wearable device between frail and non-frail 

participants(n=37) 
 

Frail (SD),  

n=13 

Not frail (SD),  

n=24 

p-value 

Worn time, hours per 

day 
20.66 (1.03) 19.69 (1.82) 0.16 

Daily step count, n 367.11 (272.63) 1023.95 (863.83) 0.04* 

Deep sleep time, min 138.90 (64.00) 75.65 (39.12) <0.01* 

Light sleep time, min 350.88 (130.56) 312.78 (82.32) 0.35 

Total sleep time, min 489.78 (139.54) 388.44 (93.28) 0.01* 

Awake time, min 36.03 (24.27) 65.05 (57.97) 0.17 

Sleep quality, % 92.48 (5.62) 78.95 (26.53) 0.08 

Heart rate, bpm a 82.77 (10.25) 77.43 (8.66) 0.13 

Heart rate SD, bpm a 22.12 (7.61) 18.78 (4.54) 0.17 

*  p<0.05 
a beats per minute 

 

4.4.4. Factors Correlated with Frailty 

The correlation between wearable data and frailty is summarized in Table 4.3. Daily step count 

was negatively correlated with frailty level (r=-0.52, p<0.01). All five sleep measures were 

moderately correlated with frailty. Education level was moderately correlated with the frailty 

status (r=-0.40, p=0.02). No relationship was found between heart rate measures and the frailty 

status.  

 

Table 4.3. Correlations between wearable device data, patient characteristics and frailty 
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 Frailty 

 Correlation 

coefficient 

p-value 

Physical activity   

Daily step count -0.52 <0.01* 

Sleep measures   

Total sleep time 0.52 <0.01* 

Deep sleep time 0.47 <0.01* 

Light sleep time 0.35 0.03* 

Sleep quality 0.56 <0.06* 

Awake time -0.54 <0.01* 

Heart rate measures   

Average heart rate 0.11 0.54 

Heart rate SD -0.25 0.16 

Sociodemographic   

Age 0.29 0.08 

Sex 0.074 0.66 

BMI -0.068 0.69 

Income level -0.066 0.74 

Education level -0.40 0.02* 

Patient assessments   

ADL score -0.18 0.27 

CCI score 0.16 0.33 

Service utilization   

Personal support hours 0.23 0.17 

* p<0.05 

 

4.4.5. Frailty Prediction 

4.4.5.1. Model description 

A total of three multiple logistic regression models were fitted to predict frailty with the 

sociodemographic variables, patient assessments, and wearable data (Table 4.4). Income was 

excluded from the feature selection method since a high number of participants declined to 

answer. Model 1 formulation began by fitting the sociodemographic variables and patient 

assessments. The feature selection method resulted in a model that contains CCI and education 

level. Model 2 used variables derived from the wearable device data only. The resulting model 
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contained step count, deep sleep time, awake time, and heart rate SD. Model 3 used all available 

variables and the final model ultimately contained deep sleep time, step count, age, and 

education level.  

 

Table 4.4. Three frailty prediction models and the variables selected by the stepwise feature 

selection method 

Models  Variable pool Selected variables 

Model 1 Sociodemographic and patient 

assessment variables 

CCI +education level 

 

Model 2 Wearable device derived variables Step count + Deep sleep time + light 

sleep time + heart rate SD 

Model 3 Sociodemographic, patient 

assessment, and wearable device 

derived variables  

Deep sleep time + step count + age + 

education level 

 

4.4.5.2. Frailty prediction model evaluation 

Table 4.5 shows the results of multiple logistic regression analyses and the factors predictive of 

frailty. Model 1 showed no significant association. For Model 2, deep sleep time was a 

significant predictor of frailty (p<0.01). Increasing deep sleep time was significantly associated 

with increased odds of frailty (AOR 1.02, 95% CI 1.01-1.05, p<0.01). For Model 3, deep sleep 

time (p=0.02) and age (p=0.03) were two significant predictors. Increasing deep sleep time was 

associated with an increase in the odds of frailty (AOR 1.03, 95% CI 1.01 – 1.07, p=0.02), 

whereas increasing age was associated with a decrease in the odds of frailty (AOR 0.90, 95% CI 

0.80 – 0.99, p=0.03).  

 

Table 4.5. Multiple logistic regression of factors associated with frailty 

Model Variable Adjusted 

OR 

Lower 95 % 

CI 

Upper 95% 

CI 

p-value 
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Model 

1 

     

 CCI 1.78 0.95 3.66 0.09 

 Education level –  

High school or below 

(reference) 

- - - - 

 Education level –  

Post-secondary education or 

higher 0.22 0.04 0.96 0.05 

      

Model 

2 

     

 Step count 1.00 1.00 1.00 0.17 

 Deep sleep time 1.02 1.01 1.05 0.02* 

 Awake time 0.97 0.93 1.01 0.18 

 Heart rate SD 1.17 0.99 1.46 0.10 

      

Model 

3 

     

 Deep sleep time 1.03 1.01 1.07 0.04* 

 Step count 1.00 1.00 1.00 0.06 

 Age 0.90 0.80 0.99 0.04* 

 Education level –  

High school or less 

(reference) 

- - - - 

 Education level –  

Post-secondary education or 

higher 

0.11 0.01 0.94 0.06 

* p < 0.05  

 

All three models were evaluated for their goodness of fit using the Hosmer-Lemeshow statistic. 

Overall, no model showed statistical significance on this test, indicating they had acceptable 

goodness-of-fit and the predicted frailty matched the observed frailty status (Table 4.6).   

 

When the predictive performance was evaluated by AUC, all three models showed medium to 

high AUCs. Model 1, based on sociodemographic and patient assessment variables, was 

outperformed by the Model 2, which was fitted with wearable device variables (AUC 0.77 vs. 
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0.88). Model 3 had the best predictive performance with an AUC of 0.90 (Table 4.6). The 

receiver operating characteristic curves are shown in Figure 1 for each Model.  

 

Table 4.6. Summary of model performance in predicting frailty status.  

Models Accuracy Sensitivity Specificity AUC Hosmer-

Lemeshow 

Test p-value 

Model 1. 

Sociodemographic and 

patient assessment 

variables 

0.76 0.46 0.92 0.77 0.73 

Model 2. Wearable device 

derived variables 

0.81 0.69 0.88 0.88 0.95 

Model 3. All variables 

from Models 1 and 2 

0.81 0.69 0.88 0.90 0.85 

 

 

 

Figure 4.1. The receiver operating characteristics curves for all Models fitted to predict frailty 

 

4.5. Discussion 

4.5.1. Principal Findings 

The growing aging population in Canada and the emphasis on aging-in-place call for innovative 

ways to improve efficiency in the home and community healthcare sector. There is an increasing 
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interest in integrating information and communication technology such as consumer-grade 

wearable devices into healthcare delivery due to their rising popularity, ease-of-use, and the 

potential usefulness of continuously collected data (Kelsey & Cavendish, 2014). The aim of this 

study was to investigate the possibility of assessing and predicting frailty using a wearable 

device.  

 

We observed 37 older home care clients for a minimum of 8 days. The prevalence of frailty in 

the study sample, 35.13%, was similar to other research studies that examined home care clients 

(Campitelli et al., 2016; Kelly, O’Brien, Smuts, O’Sullivan, & Warters, 2017). Many research 

studies (Ávila-Funes et al., 2008; Collard et al., 2012) reported a significantly higher prevalence 

rate of frailty in older female adults compared to males, but this was not observed in our study 

sample. However, another study that examined the same population did not find any significant 

difference between the sexes (Campitelli et al., 2016). Overall, the study sample seemed 

reasonably representative of the home care population. Previous research studies reported an 

association between income and education level and frailty (Fried et al., 2001; St. John, 

Montgomery, & Tyas, 2013). Our study sample had a significant difference in income level 

between the two frailty groups. However, the post-hoc chi-square analysis results did not reach 

statistical significance. Education level was moderately correlated with frailty level. Overall, our 

study sample displayed the general characteristics of frail populations (Fried et al., 2001; St. 

John et al., 2013).  

 

Our study found a significantly higher utilization of home care service by frail older adults 

compared to non-frail older adults (mean hours per week: 5.15 vs 2.77). Unfortunately, the 
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current system fails to meet all care needs of home care clients as indicated by the increased 

hours of informal care and caregiver distress for the home care client’s with the more severe 

frailty (Maxwell et al., 2018). Resulting adverse health outcomes and increased healthcare 

utilization (Campitelli et al., 2016) highlight the need for a better allocation of home care service 

to those who stand to benefit the most.  

 

In our study sample, non-frail older adults walked significantly more than the frail older adults. 

This result is in line with the findings of previous research studies where reduced daily step 

count and physical activity were observed for frail community-dwelling older adults 

(Cavanaugh, Coleman, Gaines, Laing, & Morey, 2007) and ICU patients (McNelly et al., 2016). 

In a previous study, daily step count was significantly related to frailty (Theou et al., 2012). Our 

study extended this evidence outside the controlled settings and beyond 24-hour monitoring 

period (Cook, Thompson, Prinsen, Dearani, & Deschamps, 2013; Schwenk et al., 2015), and 

demonstrated the relationship in an unsupervised setting.  

 

Sleep measures including longer total sleep, deep sleep and light sleep durations, awake time and 

sleep quality were shown to be related to more severe frailty. This is contrary to the common 

knowledge of deterioration of sleep quality and quantity with aging (Espiritu, 2008). However, in 

epidemiological studies, a longer sleep duration was associated with an increased risk of heart 

disease and all-cause mortality (Gallicchio & Kalesan, 2009). The lowest mortality risk was 

found for those who sleep about 7 hours a night (Tamakoshi & Ohno, 2004), while men who 

slept more than 8 hours per day had a tripled risk of heart disease (Burazeri, Gofin, & Kark, 

2003). This relationship was shown in our study sample where non-frail and frail older adults 



53 

 

had significantly different total sleep durations. Non-frail older adults had a mean total sleep 

duration of 6.48 hours (close to 7 hours), while their frail counterparts slept for 8.16 hours. These 

findings demonstrate the additional information wearable devices provide over conventional 

sleep quality assessments.  

 

In this study, we built logistic regression models using a sequential stepwise feature selection 

method. Feature selection in general can help improve predictive performance (Kassambara, 

2018). It minimizes the number of features needed in a model, which was critical given the small 

sample size of this study. While manual feature selection based on expert knowledge could have 

been a feasible alternative, our goal was to maximize frailty prediction performance in our data 

set by utilizing an empirical feature selection method. The analysis of multiple logistic regression 

models showed that wearable device data were a superior source of information for predicting 

frailty than sociodemographic information and patient assessments. However, the highest AUC 

of 0.90 was achieved with the model that used wearable device data, sociodemographic, and 

patient assessment information. Previously, a similar study that used a neck-worn wearable 

device to obtain step count and physical activity-related variables achieved an AUC of 0.88 in 

discriminating the pre-frail subgroup from the frail and non-frail subgroups (Razjouyan et al., 

2018). Another study used two research-grade wearable devices concurrently and achieved an 

AUC of 0.86 in discriminating three frailty states, using stride length (Schwenk et al., 2015). 

Both studies were limited due to their short 48-hour observational period and being conducted in 

a laboratory setting. Our study demonstrated that unsupervised monitoring of frailty at home 

using a wearable device is possible. Our results corroborate that wearable technology should 

complement, rather than replace, the existing practice (Fasano & Mancini, 2020). 
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Many mobile health and telehealth applications have been successful at delivering healthcare 

while improving its efficiency (Iribarren, Cato, Falzon, & Stone, 2017). A study that examined 

telehealth for frail older adults found the most cost-effective telehealth program uses automated 

monitoring of vital signs to reduce health service use and facilitate remote follow-up (Barlow, 

Singh, Bayer, & Curry, 2007). Wearable devices are becoming increasingly affordable and are 

capable of offering a similar use-case as telehealth applications with their automated monitoring 

of physical activities, sleep and heart rate. The range of information collected from wearable 

devices are also increasing with the advancement of sensor technology such as 

electrocardiogram, blood glucose level, oxygen saturation level, and electrodermal activity. 

When coupled with well-calibrated algorithms that enable early detection of health deteriorations 

such as frailty, cost savings can be further increased. The added value of wearable devices in 

assessing frailty for home care clients and community-dwelling older adults should be carefully 

evaluated for their feasibility in real-life settings. Each home and community healthcare system 

is unique, including but not limited to the target population, geographical area, and funding 

structure. Future research should consider these factors when evaluating the clinical value and 

cost savings of wearable devices.  

 

Future research should confirm the predictive power of data derived from wearable devices and 

extend it beyond the home and community care sector. Our results indicated that wearable 

devices are a valid tool when an adequate analytical process is used. We recommend future home 

care research studies to leverage the potential of consumer-grade wearable devices and help 
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identify vulnerable and frail subgroups who may benefit from additional home care services and 

increased access to healthcare. 

 

4.5.2. Limitations 

Our study has several limitations. First, the small study sample prevented us from stratifying 

patients into non-frail, pre-frail, and frail subgroups. A third frailty state could have helped us 

demonstrate gradient measures of wearable data. The small sample size also limited the number 

of variables that could be used in developing multiple logistic regression models. The three 

logistic regression models were fitted with two to four features. They have exceeded the 

common rule of one-in-ten and may have increased the risk of overfitting (Peduzzi, Concato, 

Kemper, Holford, & Feinstem, 1996). The small sample size precluded partitioning our data into 

training and test sets. As a result, the reported predictive performance overestimated the true 

performance on a different sample of older adults. A further caution should be taken when 

interpreting the results of the Hosmer-Lemeshow test due to the small sample size. 

 

Our research adopted an 8-day observation period. While this was longer than the observation 

periods of most other studies using wearable devices, an even longer observational period may 

be required to reveal new patterns that are not observable within 8 days such as weekdays versus 

weekends and seasonal differences. Lastly, the validation studies that examined the Mi Band 

(Paradiso et al., 2020; Ricchio et al., 2018) were conducted in younger participants, limiting their 

generalizability to older adults of this study. 
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4.6. Conclusions 

In this study, we proved the concept of using a wrist-worn consumer-grade wearable device to 

assess frailty among older home care clients. Data collected from the wearable device, such as 

total sleep time and deep sleep time, were associated with frailty. The frailty prediction model 

based on variables selected from wearable devices, sociodemographic, and patient assessments 

achieved the highest AUC of 0.90, compared to other predictive models using either only 

sociodemographic and assessment variables, or only wearable device derived variables. 
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Chapter 5. Using consumer-grade wearable devices to measure frailty 

transitions in critical care survivors: An exploratory observational study 

 

This chapter is currently under review with JMIR mHealth and uHealth. The full citation of the 

manuscript is: 

 

Kim B, Hunt M, Muscedere J, Maslove DM, Lee J. (under review). Using consumer-grade 

wearable devices to measure frailty transitions in critical care survivors: A proof-of-concept 

study. JMIR mHealth and uHealth #19859 

 

 

5.1. Chapter Overview 

Background: Critical illness has been suggested as a sentinel event for frailty development for 

at-risk older adults. Frail critical illness survivors suffer increased adverse health outcomes but 

monitoring the recovery post-ICU is challenging. Wearable devices offer a possibility of 

measuring frailty.  

Objectives: To examine the data collected from wearable devices for the progression of frailty 

among the critical illness survivors.  

Methods: A prospective observational study was conducted with 12 critical illness survivors 

from Kingston General Hospital in Canada. Frailty was measured by Clinical Frailty Scale (CFS) 

at ICU admission (AD), hospital discharge (DC), and 4-week follow-up (FU). Wearable device 

was worn between DC and FU. The wearable device collected data on steps, physical activity, 

sleep and heart rate.  
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Results: The CFS increased significantly following critical illness compared to pre-ICU frailty 

level (p=0.02, d=-0.53). Frail survivors over the 4-week follow-up period had significantly lower 

daily step counts than non-frail survivors (p=0.02, d=1.81). There was no difference in sleep and 

heart rate measures. Daily step count was strongly correlated with the CFS at FU (r=-0.72, 

p=0.04). Average heart rate was strongly correlated with the CFS at DC (r=-0.72, p=0.046). 

Heart rate SD was strongly correlated (r=0.78, p<0.05) with the CFS change from AD to FU. No 

relationship was found between the CFS and sleep measures. The pattern of increasing step 

count over the FU period was correlated with the worsening of frailty (r=0.65, p=0.03). The 

trend of increasing heart rate over this period was correlated with the worsening of frailty 

(r=0.62, p=0.03).  

Conclusions: This study demonstrated a possibility of monitoring frailty and physical recovery 

using a consumer-grade wearable device. Daily step count and heart rate showed strong 

relationships with the frailty progression of critical illness survivors over time. Understanding 

this relationship could unlock a new avenue for clinicians to monitor and identify a vulnerable 

subset of the population that might benefit from an early intervention.  

 

Keywords: frailty progression, step counts, heart rate, sleep quality, wearable devices 

 

Strength and limitations of the study 

• This study evaluates the possibility of using data collected from a consumer-grade 

wearable device to understand the frailty level of critical illness survivors. 

• One of the first studies that examined frailty progression among critical care survivors. 

• Exploratory nature of the study resulted in a restrictive sample size from a single 

intensive care unit, which likely limits generalizability to other populations. 
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5.2. Introduction 

Frailty is a state of increased vulnerability to adverse health outcomes due to the loss of 

physiological and cognitive reserves (Rockwood et al., 2005). While the term frailty often 

overlaps with terms such as disability and comorbidity, it has been well described that frailty is 

an independent concept that can be quantitatively separated (Fried et al., 2004). Frailty is 

recognized as a dynamic state and recent studies have highlighted the need to quantify changes 

between the stages of frailty to better inform clinicians with the development of tailored 

treatments (McDermid, Stelfox, & Bagshaw, 2011).  

 

Critical illness has been suggested as a sentinel event for the development of frailty, especially 

for at-risk older adults (Muscedere et al., 2016). Frailty is frequently evaluated as a prognostic 

tool in critical care settings to better guide decision making by clinicians and to manage 

expectations of patients and families of health outcomes (Bagshaw et al., 2014). Critical illness 

survivors who were frail before the illness, in comparison to non-frail survivors, have a 

significantly higher mortality rate (Bagshaw et al., 2014, 2015; Zeng et al., 2015), and are more 

likely to acquire functional dependence (Bagshaw et al., 2014; Ehlenbach et al., 2010), suffer 

from lower quality of life (Bagshaw et al., 2014), and are more frequently re-hospitalized within 

12 months (Zeng et al., 2015). However, no studies have examined the progression of frailty 

throughout and beyond critical illness and how physical and functional recovery is related to the 

changes in frailty.  

 

Monitoring critical illness survivors’ functional recovery in clinical settings is challenging 

logistically and financially for patients, care providers, and healthcare organizations. New studies 
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have used wearable devices as a tool to objectively measure physical activity level (Baldwin, 

Johnston, Rowlands, & Williams, 2018; McNelly et al., 2016), sedentary behaviours (Baldwin, 

Johnston, Rowlands, Fraysse, & Williams, 2019), mobility (Cook et al., 2013), and to screen for 

frailty (Chen et al., 2015). We leveraged a consumer-grade wearable device to monitor physical 

recovery of critical illness survivors.  

 

We examined the data generated from the wearable device for their relationship with the 

progression of frailty post-hospital discharge. We hypothesized that frail survivors would have 

lower physical activity, diminished sleep quality, and impaired heart rate control compared to 

non-frail survivors. We also hypothesized the survivors whose frailty returns to the pre-critical 

illness level would have a higher physical activity level, better sleep quality, and tighter heart 

rate control than those who have a persistent increase in frailty level after hospital discharge.  

 

5.3. Methods 

5.3.1. Study Design and Settings  

This prospective observational study was conducted at Kingston General Hospital in Kingston, 

Ontario, Canada. Patients were recruited from the Frailty, Outcomes, Recovery and Care Steps 

of Critically Ill Patients (FORECAST) study, which assessed an array of clinical measurements 

and frailty. For the current study, patients were recruited at admission to the ICU from July 2017 

to August 2018. Participants were followed up at 4-weeks post-hospital discharge.  

 

A convenience sampling method was used to recruit patients aged 55 years and older. They were 

included in this study if they lived within or close to the hospital to ensure feasibility of attending 
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the 4-week follow-up session. Patients were excluded if shared decision makers were not 

available to collect collateral history. We also excluded patients who had medical conditions that 

may interfere with proper use of the wearable devices including those admitted to the ICU with 

catastrophic neurological illness that is not likely to be altered by ICU care (e.g., massive stroke 

requiring ICU care, spinal cord injury with neurological deficit), those diagnosed with primary 

neuromuscular pathology or atrial fibrillation, or those dependent on a wheelchair for mobility. 

Patients were further excluded if they had an expected survival of less than 1 month.  

 

5.3.2. Data Collection and Instrumentation 

5.3.2.1. Determination of frailty 

Frailty was assessed using the CFS, a tool that has been widely used in critical care settings 

(Rockwood et al., 2005). The CFS has been shown to outperform other frailty assessment tools 

in the geriatric population in correctly differentiating major health outcomes such as hospital 

admission and fall incidents (Ritt et al., 2015). The CFS ranges from 1 to 9 where 1 denotes very 

fit and 9 represents terminally ill. The CFS score of 1 to 3 are considered not frail, the score of 4 

is considered pre-frail, and 5 or higher is considered frail. A CFS score of 4 or higher was 

considered frail in this study. Frailty was assessed by one of the three experienced research 

coordinators.  

 

5.3.2.2. Wearable device 

Fitbit Charge HR (Fitbit, San Francisco, CA, USA) (Hereafter: Fitbit) is a commercially 

available wearable device that is worn on the wrist. It uses a tri-axial accelerometer to measure 
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motion. These data are used to estimate physical activity, sedentariness, and sleep quality. Fitbit 

also measures the changes in elevation using an altimeter. Fitbit uses an optical heart-rate sensor 

(i.e., photoplethysmography) to measure heart rate between 30 to 220 beats per minute.  

 

In this study, we collected physical activity level including daily step count, active time, and 

sedentary time. Fitbit automatically deems active time to be when a physical activity of at least 3 

metabolic equivalents is performed. Sleep related information is generated including total time in 

bed, total sleep time (TST), awake time, and awake count. Sleep quality was calculated as the 

percentage of the sleep time over the TST. The sleep time was determined by subtracting awake 

time from the TST. Heart rate was measured every minute. Heart rate data were used to assess 

average daily heart rate, average daily heart rate SD, and average nocturnal heart rate. The 

average nocturnal heart rate was calculated by only using the heart rate recorded during sleep as 

classified by the TST.  

 

5.3.2.3. Other variables 

The research coordinators reviewed the patients’ medical charts and collected demographic 

information including age, sex, height and weight. The degree of comorbidity and ability to 

perform activities of daily living (ADL) were calculated using the Charlson Comorbidity Index 

(CCI) (Charlson, Pompei, Ales, & MacKenzie, 1987) and the Katz index (S. Katz, Ford, 

Moskowitz, Jackson, & Jaffe, 1963), respectively. The severity of illness and delirium were 

collected and calculated using the Acute Physiology and Chronic Health Evaluation II 

(APACHE II) (Knaus, Draper, Wagner, & Zimmerman, 1985) and the Confusion Assessment 
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Method-ICU (CAM-ICU) (Ely et al., 2001), respectively. The major critical care treatments 

received during the ICU stay including invasive mechanical ventilation, non-invasive ventilation, 

vasopressor use, corticosteroid use, continuous renal replacement therapy and intermittent 

hemodialysis were collected. The ICU length of stay (ICU LOS) and hospital LOS were 

calculated from chart review.  

 

5.3.3. Procedure 

Three trained research coordinators interviewed patients at three different time points: ICU 

admission (T1), hospital discharge (T2), and 4-week follow-up (T3). The assessment conducted 

at T1 was used to establish the baseline information (i.e., pre-ICU admission). Figure 5.1 

outlines the study procedure and time points for assessments and measurement tools. All 

participants received a wearable device at ICU discharge and were trained on its use during the 

hospital ward stay prior to hospital discharge. Participants were encouraged to wear the device 

during the ward stay but only the post-hospital discharge data were used for analyses. Time 

between T1 and T2 is referred to as D1; T2 and T3 as D2; and T1 and T3 as D3, hereafter.   
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Figure 5.1. Study procedure and time points of assessment and measurement tools 
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5.3.4. Data Analyses and Interpretation 

Descriptive statistics and univariate comparisons of means, medians, and proportions were 

performed to describe the demographic information and patient characteristics according to 

frailty status. The Shapiro-Wilk normality test was performed to check for normality. Student’s t 

test, Mann-Whitney U test, or Chi-square test was performed to check for independence between 

frail and non-frail survivors at T3. Cohens’ D was used to evaluate the effect size when a 

statistically significant difference was found.  

 

The Pearson correlation coefficient and Spearman’s rank correlation coefficient were calculated 

to analyze the correlation between the data collected from the wearable devices and the changes 

in the CFS score over D1, D2, and D3. Their relationships with the patient demographic 

information and medical data were further examined.  

 

A linear regression was performed for individual patients’ daily step count, daily total sleep time, 

daily awake duration, and heart rate over D2. The slope of the regression line (hereafter: slope) 

was examined for its relationship with the changes in the CFS score over D1, D2, and D3 by 

performing Spearman’s rank correlation analysis. Patients with fewer than five days of the 

wearable device data were excluded from this analysis.  

 

Statistical significance was set at alpha=0.05 for all statistical results. Statistical analysis was 

performed using R in the R studio environment (R version 3.6.0, R Studio version 1.2.1335, R 

Studio, Inc., Boston, MA).  
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5.3.5. Ethics, Consent, and Permissions 

This study received ethics clearance from the Office of Research Ethics at the University of 

Waterloo (ORE22219) and the Queen's University Health Sciences & Affiliated Teaching 

Hospitals Research Ethics (ROMEO/TRAQ 6020644). 

 

5.3.6. Patient and Public Involvement 

No patient was involved in the development of the research questions, design, and outcome 

measures of this study.  

 

5.4. Results 

5.4.1. Recruitment 

A total of 16 patients admitted to the ICU were recruited and provided informed consent between 

July 2017 and August 2018. Two patients withdrew from the study and two patients’ data were 

lost due to technical issues. In total, we had 12 patients with wearable device data successfully 

collected (Table 5.1).  

 

Patients were 55 to 77 years of age, with a mean age (SD) of 66.75 (6.80) years and 7 were 

female. The mean ICU LOS was 14.50 days and hospital LOS was 22.92 days. The mean 

APACHE II score (SD) at T1 was 27.67 (5.25). Overall, 7 out of 12 patients were classified as 

frail at T3. There was no major difference in baseline characteristics between frail and non-frail 

patients at T3.  

 



67 

 

Table 5.1. Baseline characteristics, frailty, disability, and co-morbidity scores 

 Frail at T3  Non-frail at T3  p-value 

Demographics    

Patients, n 7 5  

Age, years (SD) 66 (8.12) 67.8 (5.07) 0.81 

Sex, female 6 1 0.09 

BMI, kg m-2 30.22 (8.36) 26.34 (16.01) 0.21 

Type of admission    

Medical, n 1 10 N/Aa 

Surgical, n 0 1  

ICU LOS 15.29 (5.19) 13.40 (9.63) 0.67 

Hospital LOS 24.57 (10.49) 20.60 (16.32) 0.62 

APACHE II 26.71 (6.63) 29.00 (2.45) 0.81 

Glasgow coma scale 7.43 (4.54) 5.20 (2.28) 0.56 

Charlson comorbidity index 1.57 (2.07) 1.00 (1.22) 0.21 

Katz score at T1 5.00 (1.29) 5.60 (0.55) 0.59 

Katz score at T3 5.71 (0.76) 6.00 (0.00) 0.50 
a p-value cannot be computed 

 

5.4.2. Clinical Frailty Scale  

Critical illness had a profound effect on patient’s frailty level (Figure 5.2). Compared to the 

baseline CFS score at T1, the CFS score at T2 increased significantly (p<0.01, d=-1.13). A 

general trend of the improvement in the frailty level was observed over D2 but the difference 

was not statistically significant (p=0.10, d=0.59). At T3, the frailty level returned to the baseline 

for 6 patients while it worsened for 6 patients. Overall, the CFS score increased significantly 

over D3 (p=0.02, d=-0.53). The changes in the frailty level at different time points are 

summarized in Table 5.2.  
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Figure 5.2. A spaghetti plot of the CFS score at T1, T2, and T3 (n=12) 

 

Table 5.2. Changes in CFS score over D3 

Frailty changes D1: Pre-

hospitalized to 

Hospital 

Discharge, n 

D2: Hospital 

Discharge to 4-

week follow-up, 

n 

D3: Pre-

hospitalized to 

4-week follow-

up, n 

Improved 0 2 0 

No change 5 4 6 

Worsened 7 6 6 
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5.4.3. Frailty and Wearable Device Data 

Of the 12 patients, 3 patients wore the wearable devices for fewer than 5 days over D3 (Table 

5.3). On average, patients wore the wearable devices for 26.33 days. Frail patients at T3 had 

significantly lower daily step counts than non-frail patients (1336.40 vs 3781.04 steps, p=0.02, 

d=1.81). They engaged in daily physical activity for lesser amount than their counterparts (2.02 

vs 16.34 minutes per day, p=0.04, d=0.94). There was no difference in sleep and heart rate 

measures between frail and non-frail.  

 

Table 5.3. Data collected from the wearable device (n=9) 

Wearable device measures Frail at T3 Non-frail at T3 p-value 

Patients, n 5 4  

Days worn, days (SD) 30.20 (8.73) 21.50 (8.27) 0.17 

Physical activity variables    

Daily step count (SD) 1336.40 

(1091.07) 

3781.04 

(1389.37) 

0.02* 

Sedentary time, minutes per day (SD) 84.11 (55.75) 104.95 (49.78) 0.58 

Active duration, minutes per day (SD) 2.02 (3.83) 16.34 (10.66) 0.04* 

Sleep measures    

Total sleep time, minutes per night 

(SD) 

419.71 

(166.62) 

336.25 (134.07) 0.81 

Total time in bed, minutes per night 

(SD) 

456.31 

(182.49) 

362.16 (144.88) 0.84 

Awake time, minutes per night (SD) 24.427 (11.20) 21.30 (11.33) 0.69 

Awake count, times per night (SD) 1.65 (0.62) 1.54 (1.10) 0.85 

Sleep quality, % (SD) 91.72 (2.35) 92.70 (2.00) 0.53 

Heart rate measures    

Average heart rate, bpm (SD) 86.93 (7.10) 80.38 (13.18) 0.38 

Heart Rate SD, bpm (SD) 8.81 (1.97) 10.66 (3.16) 0.32 

Average nocturnal heart rate 86.42 (5.87) 74.10 (20.27) 0.27 

* p <0.05 

 

The correlation between the wearable device data and frailty is summarized in Table 5.4. Daily 

step count was strongly correlated with the baseline CFS score at T1 (r=-0.76, p=0.03) and the 
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CFS score at T3 (r=-0.72, p=0.006). Sedentary time was strongly correlated with the CFS score 

at T1, but did not reach statistical significance (r=-0.66, p=0.07). Average heart rate was strongly 

correlated (r=-0.72, p=0.046) with the CFS score at T2, and heart rate SD was also strongly 

correlated (r=0.78, p=0.02) with the CFS change over D3. No relationship was found between 

sleep measures and the CFS scores. No patient characteristics had significant relationship with 

the CFS score (See Appendix D for the exact p-values for observed). 

 

Table 5.4. Correlations between the data collected from the wearable devices and the frailty level 

and its change (n=9) 
 

Frailty 

at T1 

Frailty 

at T2 

Frailty 

at T3 

Frailty 

change 

over 

D1 

Frailty 

change 

over 

D2 

Frailty 

change 

over 

D3 

Physical activity data       

Daily step count -0.76* -0.35 -0.72* 0.55 -0.46 0.14 

Active time, minutes per day -0.62 0.03 -0.53 0.63 -0.56 0.18 

Sedentary time, minutes per day -0.66+ -0.39 -0.53 0.41 -0.24 0.25 

Sleep data       

In bed, minutes per night 0.10 0.13 0.42 -0.01 0.32 0.45 

Total sleep time, minutes per night 0.08 0.13 0.40 0.01 0.31 0.46 

Awake time, minutes per night -0.26 -0.07 0.07 0.22 0.13 0.50 

Awake count, times per night -0.31 0.06 -0.10 0.37 -0.15 0.33 

Sleep quality 0.23 -0.10 0.12 -0.32 0.20 -0.19 

Heart rate data       

Average heart rate -0.24 -0.72* -0.16 -0.28 0.37 0.13 

Heart rate SD  -0.55 -0.05 -0.05 0.54 -0.01 0.78* 

Average nocturnal heart rate 0.06 -0.21 -0.19 -0.22 -0.04 -0.37 

       

Patient characteristics       

Age 0.18 0.56+ <0.01 0.24 -0.45 -0.27 

BMI 0.42 0.38 0.47 -0.11 0.15 0.04 

ICU LOS -0.01 0.21 <0.01 0.17 -0.17 0.02 

Hospital LOS 0.15 0.15 0.05 -0.03 -0.07 -0.14 
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Charlson Comorbidity Index 0.56 0.12 0.29 -0.44 0.19+ -0.44+ 

Glasgow Coma Scale 0.24 -0.06 0.15 -0.27 0.19 -0.16 

Changes in ADL 0.06 0.34 0.05 0.20 -0.23 -0.02 

APACHE II score 0.19 0.47 -0.12 0.17 -0.50 -0.47+ 

*  p<0.05 

+ p<0.10 

 

5.4.4. Frailty and Wearable Device Data Trends over Time 

The slope of the linear regression line for daily step count, TST and heart rate was calculated to 

investigate the relationship between frailty and wearable device data trends over time (Figure 

5.3). The slope of daily step count demonstrated strong correlations with the CFS change over 

D1 (r=0.71, p=0.01) and D3 (r=0.65, p=0.03) (Table 5.5). The slope of heart rate was strongly 

correlated with frailty change over D3 (r=0.62, p=0.03). 

 

 

Figure 5.3. Example of the slope of linear regression line for daily step count, total sleep time, 

and heart rate. The slope of linear regression line represents the changes over D2 

 

Table 5.5. Correlation between the slope of daily step count and the CFS scores at T1, T2, and 

T3 and changes in CFS over D1, D2, and D3 

 Slope  
Step count (p-value) Total sleep time (p-value) HR (p-value) 

CFS score at T1 -0.55+ (0.08) 0.59+ (0.07) -0.31 (0.32) 
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CFS score at T2 0.27 (0.43) 0.12 (0.74) -0.12 (0.72) 

CFS score at T3 -0.18 (0.60) 0.32 (0.36) 0.10 (0.75) 

CFS change over D1 0.71* (0.01) -0.49 (0.15) 0.21 (0.52) 

CFS change over D2 -0.38 (0.25) 0.21 (0.56) 0.20 (0.54) 

CFS change over D3 0.65* (0.03) -0.52 (0.13) 0.62* (0.03) 

* p<0.05 

+ p<0.10 

 

5.5. Discussion 

In this exploratory observational study, we observed 12 elderly survivors of critical illness from 

the time of their admission to the ICU until 4-weeks after their hospital discharge. Physical 

recovery was monitored through the use of a wearable device. Frailty was assessed at multiple 

time points throughout their ICU and hospital stay and 4-weeks after discharge. Six patients 

became more frail after critical illness, while the frailty of the other six returned to their pre-

critical illness levels. No participant’s frailty improved above their pre-ICU baseline state. 

Incidence rate for the moderate level of frailty over three years is reported to be around 6.2% and 

12.8% for men and women, respectively (Peterson et al., 2009). A systematic review of 16 

studies that investigated frailty among community-dwelling older adults reported that 29.1% 

worsened over the average of 3.9 years. A noticeably higher rate of worsening frailty in the study 

sample confirms the notion that critical illness is a triggering event in the transition to a frail state 

(Muscedere et al., 2016). 

 

We demonstrated the relationship between a lower physical activity level and an increased frailty 

level. This was evident in a significantly lower daily step count and active time by the frail 

survivors compared to their non-frail counterparts. This finding is consistent with a previous 

study that used a wearable device worn on the upper arm and reported a significantly reduced 
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step count by frail survivors compared to a healthy control group (McNelly et al., 2016). Our 

results suggest the rate at which an individual increases daily step count following critical illness 

may be an important indicator for the recovery of frailty back to pre-critical illness level. Those 

whose frailty worsened showed a significantly higher rate of increase in their daily step counts 

(p=0.03). We initially suspected the magnitude of the positive slope was amplified due to lower 

step counts among those whose frailty worsened. However, the average step count was not 

significantly different between those whose frailty worsened and those whose frailty did not 

change (p=0.63). We further speculated the difference in baseline frailty level may be 

contributing to this finding but there was no significant difference in the baseline frailty between 

two groups (p=0.49). Another possible explanation may be an increase in frailty is due to non-

physical characteristics such as impaired cognitive function. Future research should confirm the 

relationship and investigate possible explanations. Understanding this relationship may help 

clinicians to accurately identify patients who will benefit from strengthened transitional care. 

 

The pattern of increasing heart rate and the standard deviation of the heart rate was shown to 

relate to the worsening of frailty following critical illness. These findings are in line with the 

theoretical understanding of frailty as a concept of impaired homeostasis (Rockwood et al., 

1994). These patterns may be caused by the inability to evoke dynamic physiologic processes to 

restore equilibrium. Studies that examined heart rate variability concluded that frailty is 

associated with impaired cardiac autonomic control (Chaves et al., 2008; Varadhan et al., 2009). 

However, the empirical evidence for the relationship between heart rate and frailty is lacking. 

Increased resting heart rate was found to be associated with the functional decline of older adults 
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(Ogliari et al., 2015), increased inflammatory markers (Sajadieh et al., 2004), and an increased 

mortality rate among trauma patients (Curtis, Romanowski, Sen, Hill, & Cocanour, 2018). 

 

To the best of our knowledge, this is the first study to investigate frailty by collecting and 

analyzing longitudinal heart rate data from a consumer-grade wearable device. Use of consumer-

grade wearable devices to monitor heart rate has garnered the interest of many researchers in 

recent years. Its feasibility and accuracy have been researched in different populations, including 

critically ill patients (Kroll et al., 2017). Many studies have demonstrated its feasibility and 

acceptable compliance level, but its capacity to measure heart rate accurately has been 

questioned, especially for the detection of non-sinus rhythms such atrial fibrillation (Kroll et al., 

2017; Shcherbina et al., 2017). Despite this, our study used longitudinal heart rate data to 

successfully confirm the relationship between frailty, heart rate, and its standard deviation. 

Future studies should expand on this relationship and its potential use as a screening and 

monitoring tool for frailty and detection of early signs of clinical deterioration amongst critical 

illness survivors. 

 

Poor sleep quality, particularly night time disturbances, was reported to be associated with an 

increased risk of frailty among community-dwelling older adults (Ensrud et al., 2012; Vaz 

Fragoso et al., 2009). Frequent perturbed sleep in hospitals adversely impacts patient recovery 

(Young, Bougeois, Hilty, & Hardin, 2008). However, we found no significant relationship 

between sleep measures and change in frailty. This may be explained by inaccurate measures of 

sleep quality by wearable devices. The exact model of the device used in this study has been 

validated against polysomnography (PSG) for healthy adolescents and the same device brand 
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among young adults (Mantua, Gravel, & Spencer, 2016; de Zambotti et al., 2016). However, it 

was noted that the performance of these devices may be poor in populations with low sleep 

quality or a high number of motionless wake episodes. Continued efforts to use consumer-grade 

wearable devices for routine sleep monitoring should be encouraged since current methods such 

as PSG and sleep journals are not feasible due to their high cost and inaccuracy amongst 

critically ill patients (Kroll et al., 2017). 

 

Our study explored the possibility of using a consumer-grade wearable device to monitor 

changes in frailty from critical illness survivors and identified the relationship between them. 

Critical illness survivors are uniquely situated as their physiological and cognitive reserve (i.e. 

frailty) have been disturbed from the critical illness. The successful recovery of the frailty back 

to pre-critical illness level is crucial for the protection from subsequent critical illness. 

Unsuccessful recovery of frailty puts the individual at a vulnerable state where a lesser illness 

may lead to amplified adverse health outcomes, thereby requiring greater healthcare resources  

(McIsaac, Beaulé, Bryson, & Van Walraven, 2016; Zampieri et al., 2018). Our study 

demonstrated the possibility of early detection of unsuccessful frailty recovery in the first 4 

weeks of post-ICU discharge using a wearable device. Identifying such a vulnerable subset of 

critical illness survivors warrants timely delivery of frailty interventional programs that have 

been shown to improve frailty as well as various functional capabilities for community-dwelling 

older adults (Puts et al., 2017). Furthermore, wearable devices have the potential to enhance 

monitoring of the physical activities in ecological settings, which can guide clinicians and 

researchers further by complementing the supervised data acquired in the traditional settings 

(Fasano & Mancini, 2020). 
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5.6. Limitations 

Our study has several limitations. The study sample likely is not representative of the entire 

critically ill population due to its small sample size and that the sample came from a single 

hospital. Other research studies reported significant differences in the age and sex between frail 

and non-frail patients, but our study sample did not. The small sample size prevented us from 

stratifying patients into non-frail, at risk, and frail groups. The addition of another level of frailty 

may have helped us interpret the slope of linear regression in more detail for daily step count, 

sleep time and heart rate. Furthermore, critically ill patients were discharged from the ICU to a 

hospital ward before being discharged, which led to varied hospital ward LOS. This may have 

impacted the assessment of frailty at the 4-week follow-up session. However, the hospital ward 

LOS was not statistically different between frail and non-frail patients (13.4 vs. 7.0 days, 

p=0.20). We chose 4-week follow-up to investigate the early recovery process immediately 

following the critical illness. A longer observation period of critical illness survivors will benefit 

future studies as full functional and physical recovery is achieved over 6 to 12 month periods for 

25 to 50% of older critical illness survivors (Ferrante et al., 2016; Heyland et al., 2015). 

 

5.7. Conclusions 

In this study, we observed the physical recovery of ICU survivors using a wearable device. 

Monitoring physical activity, heart rate, and sleep through the wearable devices was feasible and 

participants showed a high compliance level. Unsuccessful recovery of frailty to pre-critical 

illness level was related to a significantly high rate of increase of daily step count during the 4-

week follow-up period. This unsuccessful recovery was also related to increase in heart rate over 
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the same period of time. Sleep measures were not correlated with frailty. Our study demonstrated 

the possibility of using consumer-grade wearable devices as a tool to understand frailty 

progression for critical illness survivors. We also demonstrated the added value of longitudinal 

wearable device data. Consumer-grade wearable devices evolve rapidly and future research 

should focus on leveraging new features such as electrocardiogram, and more accurate measures 

of physical activity, sleep, and heart rate.  
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Chapter 6. Comparing and contrasting clinicians and older adults’ 

perceptions of patient-generated health data: A mixed-method study 

 

6.1. Background 

A recent national survey showed that Canadians who are 55 years and older have the highest rate 

of self-tracking of health data at 62.9% while 38.7% track the data digitally using mHealth apps, 

consumer wearable devices, and smart medical devices (Paré et al., 2018). Many self-trackers are 

motivated to track their health out of concern and to optimize their wellbeing including physical 

activity and sleep quality (Swan, 2013). The diversity and complexity of collected data evolved 

over time with the advancement of sensors. Self-tracking of health data began with a collection 

of simple measurements such as weight, step counts, hours slept, and exercise logs, has now 

demonstrated successful tracking of qualitative and subjective assessments such as mood and 

emotion (Swan, 2013). The added complexity of self-tracked health data demonstrates the level 

of motivation and interest of the general population and desire to improve one’s health and well-

being.  

 

Self-tracking of health data results in a large amount of data and it is often referred to as patient-

generated health data. Patient-generated health data is defined as data created and managed by 

patients or shared decision makers to help address a health concern (Shapiro et al., 2012). A key 

characteristic of patient-generated health data is the fact that its management and sharing are 

directed by patients. Similar concepts about collecting data from patients in natural settings exist 

such as patient reported outcome measures (PROM) and ecological momentary assessment 
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(EMA). PROMs are a standardized data collection method that is initiated by healthcare 

providers with the aim of evaluating the effectiveness of care (Canadian Institute for Health 

Information, 2015). Patient-generated health data differs from PROMs in its use of consumer 

technologies and that the collection and sharing are patient-directed. EMAs are a research-driven 

data collection method that allows participants to report the occurrence of research interest 

phenomena in the natural environment at the moment such as symptoms, behaviours, or 

cognitive processes (Stone & Shiffman, 1994). As with the PROMs, the EMAs are not patient-

driven and its purpose is to provide data for research studies.  

 

Patients, healthcare providers, researchers, private industry and governments share a similar 

vision of future healthcare where patient-generated health data plays an important and significant 

role (Accenture, 2016; Chung et al., 2016; Kelsey & Cavendish, 2014; Piwek et al., 2016; Swan, 

2009). In the United Kingdom, patient-generated health data is envisioned to be one of the 

foundations to improving the quality of care and decreasing healthcare costs under the 

Personalised Health and Care 2020 policy (Kelsey & Cavendish, 2014). The plan to integrate 

patient-generated health data into healthcare practice has been also shared by the United States 

government where patient-generated health data will provide a holistic and longitudinal view on 

patients’ health (The Office of the National Coordinator for Health Information Technology, 

n.d.). While the increased interest in using patient-generated health data is evident in strong 

commitment by governments, successful adoption of health information system implementation 

hinges on the buy-in from the providers and users.  
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Despite the increased interest in patient-generated health data, little is known about clinicians’ 

opinions and patients’ opinions, even more scarcely. Common barriers to using patient-generated 

health data by clinicians include unfamiliarity with the data, insufficient expertise in interpreting 

the data, and concerns around data completeness, reliability, and relevance (West, Van Kleek, 

Giordano, Weal, & Shadbolt, 2018). Furthermore, the lack of time for any task outside of the 

routine clinical practice, technical challenges including incompatibility between patient-

generated health data and EMR systems, and uncertainty around privacy regulatory practice 

hampered the clinicians’ willingness to work with patient-generated health data (Kim et al., 

2016; West, Giordano, Van Kleek, & Shadbolt, 2016; Zhu et al., 2016). While these factors 

hinder clinicians from utilizing patient-generated health data, little is known about older patients’ 

opinion and common barriers to adopting patient-generated health data. Understanding the 

factors associated with the use of patient-generated health data by older adults can inform policy 

makers, healthcare providers, software developers and other stakeholders about the patient-

generated health data and provide necessary guidance.  

 

6.2. Research Objective 

In this study, we set out to investigate the similarities and differences in the perceptions older 

adults and clinicians have on patient-generated health data. We compared and contrasted the 

attitudes toward different types of patient-generated health data. This study extends the current 

literature by investigating the opinions of older adults on the key factors that facilitate and hinder 

the use of patient-generated health data.  

 



81 

 

6.3. Methods 

6.3.1. Study Design 

An embedded mixed-method design was used with the one-phase QUAL(quan) approach 

(Creswell, 2013) to explore the study objective. To introduce the topic of patient-generated 

health data to the participants and set the scope of the focus group, we presented a case study that 

described an older patient asked to collect patient-generated health data to manage multiple 

chronic conditions (Yarborough, 2003). The quantitative data collection was nested within the 

overall research design and it was collected after reviewing the case study through a 

questionnaire. Focus group interviews were conducted immediately following the completion of 

the questionnaire to probe the perceived barriers and key factors related to using patient-

generated health data.  

 

Research ethics clearance for this study was received from the University of Waterloo Office of 

Research Ethics (ORE# 40803). All participants gave written informed consent.  

 

6.3.2. Procedures 

A Data Rating Questionnaire, created specifically for this study, was administered to measure 

participants’ perceived usefulness of patient-generated health data. Demographic information 

and information regarding previous experience with mHealth apps and wearable technologies 

were also collected. Two focus group interviews were conducted at the University of Waterloo 

and at a conference room of a health care organization. A set of questions were prepared and 

used as a guide to probe into the participants’ perceived factors that facilitate and hinder the use 

of patient-generated health data.  
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6.3.3. Recruitment 

A convenience sample and a snowball recruitment strategies were used to recruit 5 older adults 

and 4 clinicians. They were recruited from the Greater Toronto Area and the Waterloo-

Wellington region in Ontario, Canada. An invitation email was sent out to local clinicians and a 

research support group comprised of over 60 older adults. Recruitment started in October 2019 

and focus group interviews were conducted in December 2019.  

 

6.3.4. Data Collection and Analysis 

6.3.4.1. Case study 

The case study described a 77-year old male patient newly diagnosed with congestive heart 

failure with pre-existing type 2 diabetes, hypertension, and hyperlipidemia (Appendix E). The 

case study highlights the new responsibility given to the patient to monitor a plethora of patient-

generated health data including weight, blood pressure, blood glucose level, dietary intake and 

medication log using a mix of digital tools and traditional paper journal. Participants reviewed 

the case study and were encouraged to ask questions about the types of patient-generated health 

data presented and the role of information technology in collecting the data. The case study was 

used as an anchor for the focus group as some participants were unfamiliar with the topic.  

 

6.3.4.2. Data Rating Questionnaire 

A 26-item, 5-point Likert scale questionnaire was developed based on the literature review 

(Nittas, Lun, Ehrler, Puhan, & Mütsch, 2019) and the outlined definition of patient-generated 
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health data (The Office of the National Coordinator for Health Information Technology, 2020). 

The questionnaire categorized patient-generated health data based on the mode of data collection 

as either passively collected data or actively collected data. Passively collected data are 

generated without a user input such as step count, sleep quality, and location information. 

Actively collected data are manually captured by patients and it is performed on-demand. 

Participants were asked to rate the perceived usefulness of each patient-generated health data 

based on the case study. The Data Rating Questionnaire is provided in Appendix F.  

 

6.3.4.3. Focus group interviews 

Two 30-minute long focus group interviews were conducted and audio recorded. We interviewed 

six participants in the first session and three participants in the second session. The first group 

was comprised of five older adults and one physiotherapist, while the second group had two 

nurses and one family physician. The composition of each session was based on geographical 

and logistical convenience and the division between clinicians and older adults were 

unintentional.  

 

6.3.5. Analysis 

Descriptive statistics were performed to analyze the demographic information, previous 

experience with mHealth app, wearable devices and collecting patient-generated health data, and 

the Data Rating Questionnaire results. Cases with missing data occurred as some participants 

declined answering and they were excluded from the quantitative analyses.  
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Focus group interviews were transcribed and read in their entirety. A constant comparative 

analysis strategy was used to code and categorize them into themes (Krueger & Casey, 2000). 

This inductive approach involves an iterative cycle of comparing the data to existing codes and 

themes, providing researchers a sense of the frequency of a theme. This approach further allows 

researchers to investigate other aspects of themes including its extensiveness, intensity, internal 

consistency, and perceived importance (Krueger & Casey, 2000). All quantitative analyses were 

performed using R in the R studio environment (R version 3.6.0, R Studio version 1.2.1335, R 

Studio, Inc., Boston, MA) and the qualitative analyses were performed using QSR NVivo 12.  

 

6.4. Results 

6.4.1. Participant Characteristics 

Four of the nine participants (44.4%) identified themselves as clinicians including one primary 

care physician, one registered nurse, one clinical educator and registered nurse, and one 

registered physiotherapist. The mean age of the clinicians was 38.3 years and three of the four 

were female. The remainder of participants identified themselves as healthcare users. The mean 

age of this group was 81 years and four of the five older adults were female (Table 6.1).  

 

Table 6.1. Participant characteristics 

Participants Age in years Gender 

Older adults   

P1 82 Female 

P2 78 Female 

P3 94 Male 

P4 78 Female 

P5 69 Female 

   

Clinicians   
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C1 - Physiotherapist 47 Female 

C2 - Physician 39 Female 

C3 – Registered Nurse 30 Male 

C4 - Registered Nurse/ Educator 37 Female 

 

6.4.2. Participants’ Exposure to Patient-Generated Health Data 

When clinicians were asked about the previous use of mHealth apps, three of the four reported to 

have used them to track dietary intake and calories, monitor weight changes, and improve 

exercise and training. The same three clinicians were using a wearable device. Wearable devices 

were used to monitor step counts, physical activity level, exercise intensity, sleep quality, and 

heart rate. Three of the five older adults were using either an mHealth app or a wearable device 

to monitor step counts only in spite of the understanding that their wearable devices offered 

monitoring of other patient-generated health data.  

 

6.5. Thematic Analysis 

6.5.1. Theme 1: Influence of patient-generated health data on patient-provider trust 

Older adults and clinicians had conflicting views on the impact of patient-generated health data 

on patient compliance. Older adults understood that monitoring of patient-generated health data 

increases the transparency of their (lack of) engagement in healthy behaviours. It was understood 

by older adults that the increased transparency encourages and motivates compliance although 

this was not explicitly stated.  

 

… he just sits in that chair and watching TV and he can say “Oh I walk” but you didn’t. 

from here to the washroom to the kitchen; that’s not enough. - P1 
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… [clinicians will] see whether they have done this. And that goes for the exercise 

programs too and not just say it but follow through. – P3 

 

I think the device would help the clinician know when somebody is sneaking a candy bar 

or somebody says that they go for a walk everyday but they really only go twice a week. – 

C1 

 

Clinicians expressed concerns about the increased transparency via patient-generated health data 

and how it can lead to non-compliance to the use of the system and selective disclosure of the 

patient-generated health data by patients. Clinicians also perceived that older adults were afraid 

of the negative impact that non-compliance might have on the patient-provider relationship and 

in turn, on the quality of care they receive from the providers.  

 

The biggest one I have seen as a doctor, is the fact that you’ve not been following your 

diet or your exercise plan so I’m not going to show you because now you know. – C2 

 

So, [patients] are like, okay I’m not going to, I’m just going to skip it this day, because 

having no data is better than showing that I wasn’t following directions or doing it 

properly. – C3 

 

… the perception of, you know, how much they want to help me, because of things like, 

you know, well I can only help if you help yourself and then the perception of, well you 

don’t want to help yourself, so how could that impact that relationship with the provider. 

– C3 

 

Not all older adults agreed with the tendency towards selective disclosure of patient-generated 

health data. Two older adults expressed that they are less likely to share patient-generated health 
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data when they were non-compliant and inclined to share only the compliant information. 

However, one participant was comfortable sharing their patient-generated health data regardless 

of the results.  

 

if you’re underperforming, you’re a little more likely not to want to tell everything that 

you do – P2 

 

But if I walk everyday in the good weather – not this weather – I want him to know about 

it and I wouldn’t tell him I did if I didn’t do it. – P3  

 

I would tell him. If I walk only 5000 or 6000 I will tell him too. – P1 

 

Older adults and clinicians generally agreed on the benefit that increased transparency have on 

the care they provide and receive by sharing patient-generated health data. Ultimately, clinicians 

viewed the non-compliance to collecting patient-generated health data as an issue they can help 

prevent by gaining the buy-in from patients. Patients also raised the need for additional education 

that may improve the understanding of the need for patient-generated health data.  

 

6.5.2. Theme 2: Reliability of patient-generated health data 

Clinicians recognized the issue of accuracy of the patient-generated health data from mHealth 

apps and wearable devices and understood that they may not be perfect. Despite the inaccuracies, 

the perceived clinical value outweighed the alternative of no data. However, clinicians’ concerns 

for the reliability of patient-generated health data stemmed from the perceived lack of trust in 

patients’ ability to capture the data or share the data reliably.  
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You have to assume that the patient is wearing it for the majority of the time. – C1 

 

Not remembering to do it … I was told I was supposed to track this and I’ve forgotten so 

many times – C3 

 

Older adults and clinicians perceived that lack of clinical knowledge by patients leads to 

collection of irrelevant patient-generated health data and decreases the usefulness of information. 

On the other hand, older adults viewed education on self-management as a key component to 

understanding what data to collect and monitor. 

 

I guess it depends on who is looking at the data and if the person entering it can also 

appreciate or have some clinical background, because then they can say, okay I’ll use it 

and I’ll enter it, because it has usefulness for my clinical provider. – C3 

 

they really are there to teach him, make sure that he understands what – he needs to 

understand that he needs to take his blood pressure medication everyday and they need to 

monitor that and see whether it’s working – P4 

 

Manipulating mHealth app and wearable devices by patients to gain favourable data was viewed 

as a threat to the reliability. Clinicians acknowledged that this issue is not unique to the patient-

generated health data and it can happen to any self-reported information.  

 

And how accurate is the data when it comes, so like if you learn to game the system, you 

can choose to, you know … in the case of like blood sugars, you know, take it later on, so 

that way it looks like it’s a better reading than it actually is. – C3 
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Shake your hand as though you’re walking. – C2 

 

They could be lying about writing down their values, right or they could be lying about 

the weight that they measure at their home scale or whatever, right. – C4 

 

The threat to the reliability of patient-generated health data through manipulation of mHealth and 

wearable devices was given an intense emphasis by clinicians. It was because clinicians were 

aware of the advancement in sensor technology that enabled previously actively collected 

patient-generated health data to become passive data collection such as for blood glucose level. 

The passive data collection increased the trust clinicians put in the quality of the data as it 

prevented data manipulation by the patients. 

 

Like blood glucose right now, like right now it’s under actively sensed data …  because I 

guess you would have to do like a finger prick and then we do reading and then enter it 

in, but now there is technology that exists where you, you know, you attach, and all you 

have to do is put the device. – C3 

 

I mean after having worked with patients and now having parents that are dealing with 

chronic conditions themselves, I really hope that at some point a lot of that data 

collection is passive. – C2 

 

Overall, the reliability and accuracy of patient-generated health data was disproportionately 

perceived as an issue by clinicians than older adults. Clinicians also alluded to old age as a 

potential challenge as the older generation may not be as fluent with mHealth apps and wearable 

devices.   
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6.5.3. Theme 3: Meaningful use of patient-generated health data and decision support system 

Uncertainty around the meaningful use of patient-generated health data was expressed by both 

older adults and clinicians. Older adults were reluctant to share the patient-generated health data 

with their clinicians as they were uncertain of the use of them by their clinicians and if the 

clinicians had adequate skills to use them.  

 

That’s the thing; check up are they really doing this? – P4 

 

he is not going to absorb it any more than we would. – P3 

 

A large amount of data was viewed as a major hindrance to use the data by both older adults and 

clinicians. Older adults felt ‘overwhelmed’ when trying to review and understand the data. Older 

adults also felt discouraged to share the data as they perceived that reviewing patient-generated 

health data is a time-consuming task and clinicians would not have enough time.  

 

And you want to know what’s important for you and I think people can do these things 

but you have to do it in little steps too. This is kind of overwhelming, the whole thing. – 

P2 

 

… the doctor is just simply too busy, he’ll never look at all this information that we’re 

talking about here. He won’t have the time. – P4 

 

However, clinicians did not express the lack of skills as a barrier to using patient-generated 

health data. Instead, clinicians reiterated the issue of the volume of patient-generated health data 
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and acknowledged the lack of time to review and discuss the patient-generated health data before 

or during consultations.  

 

… as a provider, like I wouldn’t want to be the one going through like excel sheets of 

data – C2 

 

If I’m looking at all of the data that’s available across like 20 different measures, how 

long do I have for a consult even, or how long do I have allocated for a meeting for this 

patient. – C3 

 

Despite the issues of large amounts of data and lack of time, clinicians saw clinical value in 

collecting more patient-generated health data. Clinicians envisioned that patient-generated health 

data can provide additional information they need when investigating the effectiveness of the 

treatment such as newly prescribed medication or behaviour changes.  

 

I would say if it wasn’t a technological or a financial cost constraint to have, at least the 

passive data stuff all included and made available to the clinician, because then you can 

correlate things like, all right well … you know, they had a blood pressure issue, right. 

What were they doing at the time, what was your physical activity at the time or did they 

get a good night’s sleep before, you may not see that directly, but having that data 

wouldn’t hurt – C3 

 

… from a clinician perspective, but when you asked about the clinician versus patients, I 

think it’d be nice to have all this data – C2 

 

Clinicians had an extensive view on decision support system as an essential part of the patient-

generated health data to effectively use it in clinical context. Decision support systems were 
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perceived as a tool that can highlight the most relevant information and reduce the time it takes 

to interpret the data. It was also viewed as an early warning system for patients that showed 

deteriorating health.   

 

From the provider perspective, how is the data presented to me, is it a whole set of charts 

and numbers I have to go find and find trends? Or is it, is there a dashboard that comes 

up that easily [find] trends for you, because then I can look at it, I’m going, oh okay, I 

see a positive trend, here’s what I can, it’s actionable like you said, I can do something 

with it and provide guidance. If it’s just a whole bunch of numbers and I have to see well 

how close is it and how much time will that take, then I may be less, I may be more 

hesitant to ask for this data or use this data. – C3 

 

… with maybe mental health issues or support issues, like depression, with their consent I 

think that would be great … if suddenly their social media usage or their call, texting has 

dropped then, you know, it should set off an alarm. – C2 

 

Older adults perceived the patient-generated health data as difficult to use as it is too large and 

time consuming to gain understanding of their health and effectiveness of care. Clinicians 

expressed the significance of decision support system to be able to take action on patient-

generated health data.  

 

6.5.4. Theme 4: Perceived clinical benefits and intrusiveness of patient-generated health data  

The monitoring aspect of patient-generated health data disturbed older adults to varying degrees. 

One older participant expressed emotionally charged negativity repeatedly towards the data 

collection and sharing with clinicians. It was further perceived as a threat to autonomy. 



93 

 

Clinicians acknowledged the tension between the clinical benefits and the intrusiveness of 

patient-generated health data systems. Clinicians also made themselves accountable to gain buy-

in from patients. 

 

It just seems to me very intrusive. Every little thing, every little step you take and so on… 

you get to a point where “I don’t want so much of you in my life.” I like the act that my 

doctor doesn’t overdo it. You thought about not wearing it and then you don’t get all the 

information. – P2 

 

And I guess I’m afraid I’m going to be told “You shouldn’t be doing this, you shouldn’t 

be doing this, you shouldn’t be doing that.” That’s hard to live with. – P2 

 

… gaining that buy-in and helping people understand that this data is going to help them 

in the long run. – C2 

 

Clinicians also had heightened sensitivity to the patient-generated health data that may intrude on 

the privacy of patients. One clinician perceived monitoring of social media usage for tracking 

mental health and GPS information for Alzheimer’s and dementia patients to be intrusive. The 

internal conflict between clinical benefits and intrusiveness of patient-generated health data was 

evident for one clinician.  

 

Yeah, the social media and the communication, I can see how that’s useful, but I know 

there’s been, there’s been kind of pushback from geriatric lines, even with the GPS 

coordinates, because they feel monitored – C2 
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When asked about the current protective regulations for patient privacy and confidentiality, 

clinicians viewed them as a necessary barrier and as a facilitator for integrating patient-generated 

health data into existing health information systems safely and securely.  

 

… talking now between patient and provider, like that definitely needs to be given the 

most security that we can… so if you want to take information from a wearable device 

and throw it to an EMR or a hospital system, there’s sometimes a lot of challenges in 

being able to do that. – C2 

 

the privacy laws are necessary … I would say it’s a, it’s definitely a barrier what between 

like healthcare provider sharing, so yeah, it is a, it’s a necessary barrier - C3 

 

6.5.5. Perceived usefulness of patient-generated health data 

When the frequency of the different patient-generated health data mentioned during the focus 

group was examined, clinicians engaged in more diverse types of patient-generated health data 

and more frequently than older adults. Table 6.2 summarizes the patient-generated health data 

asked in the Data Rating Questionnaire and the frequency they were discussed. Blood glucose 

level, step count, physical activity, sleep, and blood pressure were most frequently discussed.  

 

Table 6.2. Frequency of patient-generated health data mentioned in focus group interviews 

Patient-generated health data Frequency – how often was a concept mentioned? 

 Clinicians Older adults Total 

Blood glucose 6 3 9 

Step count 3 4 7 

Physical activity 5 2 7 

Sleep 3 4 7 

Blood pressure 2 4 6 

Gait 4 - 4 
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Heart rate 2 2 4 

Communication activity 3 - 3 

Social media usage 3 - 3 

Stress level - 3 3 

Dietary intake 2 1 3 

Body temperature 2 - 2 

Body weight 1 1 2 

GPS 1 - 1 

Air quality 1 - 1 

Ambient light 1 - 1 

Air pressure 1 - 1 

Body fat percentage 1 - 1 

Mood - 1 1 

Typing pattern 1 - 1 

Wound pictures 1 - 1 

Sedentariness - - - 

EDA - - - 

PEF - - - 

Inhaler usage - - - 

Total 45 24 69 

 

In addition to the frequency, the extensiveness (i.e. how many people said something) of a topic 

was examined. Stress level was discussed only by older adults and it was portrayed with a 

significant importance for overall well-being. Older adults also made a distinction between acute 

stress and chronic stress.  

 

If you have high stress and you have, what we would call a bad day, that affects your 

whole being, your whole body and your mind more. – P3 

 

We get to this stage and many people have lost their spouse and it seems to take a really 

long – well, it never goes away. But to deal with stress is a high component. – P2 

 

The Data Rating Questionnaire results showed that on average, participants rated the usefulness 

of patient-generated health data at 3.35 in between Moderately Useful and Very Useful. The five 
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most frequently mentioned patient-generated health data including blood pressure, step count, 

physical activity, sleep, and blood pressure had the higher average score of 3.83. The 

questionnaire results were significantly correlated with the frequency of patient-generated health 

data mentioned in the focus group interviews (r=0.42, p=0.034). Table 6.3 describes the average 

rating of patient-generated health data for older adults and clinicians. Figure 6.1 shows the 

overall distribution of ratings for each patient-generated health data. 

 

Clinicians tended to rate patient-generated health data higher than older adults (mean 3.55 vs. 

3.18, p<0.01). The actively collected patient-generated health data was rated significantly higher 

than passively collected patient-generated health data (mean 3.80 vs. 3.05, p<0.049). Clinicians 

perceived passively collected patient-generated health data as more trustworthy as it prevented 

data manipulation by patients. However, the clinicians’ ratings for actively and passively 

collected patient-generated health data were not statistically different (p=0.15).  

 

Table 6.3. Average rating of patient-generated health data by older adults and clinicians 

Patient-generated health data Average rating 

(1 = Not at all useful and 5 = Extremely useful) 

 Older adults Clinicians Both older adults 

and clinicians 

Passively collected patient-generated 

health data 

   

Step count 2.8 4 3.33 

Gait 2.75 3.25 3.00 

Physical activity 3.8 4.5 4.11 

Sleep 2.9 3.38 4.44 

Heart rate 4 5 3.63 

Sedentariness 3.75 3.5 3.56 

Body temperature 3.2 4 4.00 

EDA 3.6 4.5 3.11 
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GPS 2.8 3.5 2.67 

Air quality 2.8 2.5 2.56 

Ambient light 2.8 2.25 1.75 

Air pressure 2 1.5 2.38 

Communication activity 2.25 2.5 1.71 

Social media usage 1.67 1.75 2.38 

Typing pattern 1.75 3 3.11 

Actively collected patient-generated 

health data 

   

Body weight 4.2 4.75 4.44 

Body fat percentage 4.2 4.5 4.33 

Blood glucose 4.4 5 4.67 

Blood pressure 4.2 4.75 4.44 

PEF 3.75 3.5 3.63 

Inhaler usage 3.2 1.75 2.56 

Wound pictures 2.25 2 2.13 

ECG 4 5 4.44 

Mood 2.4 3.75 3.00 

Dietary intake 4 4.75 4.33 

Mean 3.18 3.56 3.35 
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Figure 6.1. Bar graph showing the distribution of the Data Rating Questionnaire answers 

 

6.6. Discussion 

6.6.1. Principal Findings 

In this study, we aimed to explore the perceptions of older adults and clinicians on patient-

generated health data and their perceived usefulness. The embedded mixed method design 
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allowed us to investigate the viewpoints of participants qualitatively and added specificity by 

quantitatively measuring the perceived usefulness for patient-generated health data. This 

approach augmented the findings from the focus group interviews with the quantitative results by 

examining additional aspect of patient-generated health data while testing for the convergence of 

results from two data sources.  

 

Overall, we identified four major themes that older adults and clinicians perceive to influence the 

use and sharing of patient-generated health data. Participants perceived that the objective nature 

of patient-generated health data provided transparency to the patient and provider relationship. 

From clinicians’ experience, patients tended to react negatively to the added transparency by 

stopping collecting patient-generated health data, selectively disclosing favourable data, and 

manipulating the system. This view was reiterated by the patients. In general, people seek 

positive social interaction and the patient-provider relationship is not an exception (Klitzman, 

2007). Patients display natural tendency to “please the doctor” and the older adults expressed the 

fear and anxiety around the patient-generated health data’s capacity to highlight the non-

compliance to care plan. As a result, it was perceived to have negative impacts on the patient-

provider relationship. This finding expanded a recent interview study that called for exploration 

of unintended consequences of patient-generated health data which may include a feeling of 

failure or inadequacy by healthcare consumers (Lavallee et al., 2020). However, our study 

finding directly contradicts previous studies (Reading & Merrill, 2018). Previously, patient-

generated health data was mainly viewed as a facilitator to enhancing patient-provider 

relationship with evidence for engaging patients in their care and increasing timely 

communication (Lai, Hsueh, Choi, & Austin, 2017). The difference in findings may be due to the 
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fact that previous studies focused on the effectiveness of patient-generated health data from the 

perspective of system implementation and evaluation with a limited insight into the patients’ 

perception. Additionally, our study sample showed contradicting views on their comfort level 

around disclosing non-compliant patient-generated health data. This indicates the need for 

careful consideration on the user preferences for data sharing and the need for flexibility of 

system design.  

 

The accuracy, reliability and validity of mHealth and wearable device-based patient-generated 

health data has been previously identified as a common barrier for clinical use (West et al., 

2018). Our analyses identified the reliability of data to be a barrier, but the root cause for concern 

was the perceived lack of patient self-efficacy to carry out the collection of patient-generated 

health data rather than technical inaccuracies with the tools. Clinicians also voiced the concern 

around the perceived lack of understanding on the clinical relevance of patient-generated health 

data collected by patients. Inadequate levels of trust on mHealth and wearable systems were 

identified where clinicians expressed the issue of inaccurate self-reported data with an intensity. 

This theme highlighted the overall need for training as well as uncertainty around who is 

accountable for training the users. The need for patient training on collecting and recording 

patient-generated health data has been a repeating theme in the literature review (Reading & 

Merrill, 2018). Proper education may alleviate the issue but the responsibility of educating 

patients becomes unclear when the tracking of patient-generated health data is patient-initiated 

rather than clinician-initiated. Transferring the responsibility of educating patients about the 

proper use of patient-generated health data systems to clinicians may not be an efficient use of 

resources as the lack of expertise in patient-generated health data is a commonly reported barrier 
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for clinicians  (West et al., 2018). This highlights the need for strong technical support for 

patients from healthcare organizations and for a higher standard for user-friendly interfaces 

especially for older adults from system developers.  

 

Clinicians and older adults alike expressed their uncertainty around efficient ways to interpret 

patient-generated health data. Older adults had concerns about how the data are used by 

clinicians to benefit the care they receive. Clinicians voiced their lack of expertise in managing 

data to extract relevant information. This was perceived as the main barrier for the realizing of 

added clinical values of patient-generated health data. As a result, a decision support system was 

viewed as an essential component of patient-generated health data systems. This is in line with 

the recommendation that prioritizes decision support systems that can readily summarize the 

patient-generated health data and present the most relevant information as a key to integration 

into EHR (Cresswell, McKinstry, Wolters, Shah, & Sheikh, 2018). The need for decision support 

systems also extends to patients’ use of patient-generated health data. It can help them easily 

extract the most relevant and helpful information. However, only a handful of mHealth and 

wearable device systems have integrated decision support that can guide users to effectively 

interpret information into meaningful actions (Kim & Lee, 2017; Lai et al., 2017). Future studies 

should investigate the types of decision support that can be effectively delivered via mHealth.  

 

Protecting patient privacy and confidentiality goes beyond complying with the bare minimum 

requirements of local regulations. Some older adults perceived the monitoring of patient-

generated health data to be intrusive and perceived it as a risk to their autonomy. Similar 

sentiments were shared by clinicians and a particular sensitivity was displayed towards GPS 
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information, communication tracking, and social media usage. Although concerned about its 

intrusiveness, clinicians saw the clinical benefits and the role of privacy regulations in enabling 

collection of such information safely and securely. Furthermore, clinicians perceived that privacy 

regulations can facilitate safe and secure integration of patient-generated health data into health 

information systems. This view from clinicians contradicted findings from the literature where 

many stakeholders view privacy concerns as a hindrance to successful use of patient-generated 

health data in clinical settings (Reading & Merrill, 2018; West et al., 2018; Zhu et al., 2016). For 

example, patients were often unsure of the privacy and confidentiality standards and regulations 

(Reading & Merrill, 2018). Patient-generated health data was sometimes shared with clinicians 

in non-compliant ways, further hindering the use by clinicians (Zhu et al., 2016). Privacy 

regulations are localized and each system faces unique challenges. There exists knowledge and 

expertise in health care for the integration of electronic medical record systems and parallels can 

be drawn with the integrating of patient-generated health data to EHR. Future studies should 

draw on this expertise to find efficient solutions. 

 

Older adults and clinicians tended to discuss familiar patient-generated health data and they were 

rated higher and more useful than other unfamiliar patient-generated health data. The diversity in 

the patient-generated health data discussed differed significantly. Clinicians adventured into the 

discussion of patient-generated health data that were new to them more frequently than older 

adults and also explored how they may add clinical value. This result was different from a 

previous study that tracked a range of patient-generated health data collected by healthcare 

consumers and healthcare providers (Lavallee et al., 2020). They found healthcare consumers 

tracked a larger number of patient-generated health data and clinicians focused on patient-
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generated health data related to their clinical specialty. The authors of this study did not identify 

the detailed information of the healthcare consumers, but we suspect the difference may be due 

to differences in the study population. This was suggested when the most commonly tracked 

patient-generated health data were wellness-focused such as dietary intake, physical activity, and 

heart rate while more clinical patient-generated health data including blood pressure and blood 

glucose were less frequently mentioned. However, we noted the similarity in the overall type of 

patient-generated health data tracked.  

 

Clinicians carried out more extensive and detailed discussions around clinical use for a range of 

patient-generated health data than older adults. Significantly higher average ratings of patient-

generated health data by clinicians supports this finding. Clinicians indicated increased 

trustworthiness of passively collected data over actively collected data as they prevent patients 

from incorrectly reporting the value. However, passively collected data were not rated more 

useful by clinicians. This may be because the most highly rated patient-generated health data 

including blood glucose, blood pressure, body weight, and dietary intake were classified as 

actively collected data. This represents the unmet technology requirements by mHealth and 

wearable devices to the need of patients and clinicians. It was explicitly mentioned that they 

hoped an advancement in sensor technology would lead to the expansion of passively collected 

data such as blood pressure and blood test results. This finding provides evidence to medical 

technology developers of the data needs of clinicians.  
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6.6.2. Limitations 

Several limitations are present in this study. The small number of focus group interviews limited 

the concepts from reaching its saturation. This limitation was partly alleviated since more than 

80% of all themes are discovered within two to three focus group sessions (Guest, Namey, & 

McKenna, 2017) and partly through the collection of quantitative data to augment the qualitative 

results. The composition of the focus group sessions between older adults and clinicians was 

uneven. This may have influenced the dynamic of discussion to be narrower in scope as one 

group of participants may have not been able to express their opinions freely. The analyses of the 

study results were conducted by a single reviewer, which may have introduced biases and 

personal views in the coding process and in synthesizing themes. The older participants were a 

member of a research support group and it may have presented a representative bias. Very 

limited information about the topic was provided prior to the focus group and some participants 

were unfamiliar with the topic of patient-generated health data. The lack of understanding of 

patient-generated health data may have limited the breadth and depth of discussion. However, 

this was intentional to capture the true perceptions of older adults and clinicians.  

 

6.7. Conclusion 

This embedded mixed method designed study generated several important findings about older 

adults and clinicians’ perception and perceived usefulness on a range of patient-generated health 

data. The increasing popularity and adoption of consumer wearable devices and health-oriented 

mHealth apps, especially among older adults, will continue to put the demand for better 

integration of patient-generated health data into healthcare systems. The size and complexity of 

patient-generated health data will also continue to rise with the advancement of sensor 
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technologies and it has already begun to blur the line between consumer and medical devices. It 

presents new opportunities to improve the care clinicians provide and to increase the efficiencies 

of the healthcare system. Such momentous opportunity has been recognized by governments 

around the world and the foundational work has begun. Nevertheless, there exists a need for 

more evidence for identifying obstacles for healthcare users, providers, organizations and 

funders. Greater insight into these barriers can inform users, providers, developers, and other 

stakeholders of the priorities for effective integration of patient-generated health data into 

healthcare. 
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Chapter 7. Discussion and Key Contributions 

 

7.1. Implications for Health Care Practice 

The first two studies of this dissertation were designed to investigate the use of wearable device 

data to assess frailty with older adults receiving home care services and recovering from critical 

illness. Assessing and predicting frailty from data generated from consumer-grade wearable 

devices have implications on multiple sectors of the health care system.  

 

In primary and ambulatory care settings, screening for frailty is faced with challenges of finding 

the right assessment tool. Undeniably, the comprehensive geriatric assessment is viewed as the 

most extensive tool to assess the health of an older adult, identify risk factors, and develop a 

management plan (Lacas & Rockwood, 2012). However, it is generally perceived as infeasible in 

primary care due to its resource intensiveness. The right tools must have the sensitivity to 

overcome the subtle onset and slow progression that mimics normal aging (Lee et al., 2015), yet 

it must also be efficient with time it takes. The results from Chapter 4 demonstrated that 

wearable device driven frailty assessment has the potential to fulfill these requirements. The 

evaluation of wearable device data can be seamlessly and instantaneously carried out. Many 

discussions in primary and ambulatory care settings are concerned with preventive measures, 

such as lifestyle changes, screening tests, or other medical investigations. Identifying frailty 

levels in primary care settings can bring a host of benefits. Frailty adds prognostic value and 

facilitates open dialogue with patients that can help make informed decisions for both patients 

and clinicians (Singh et al., 2008). It can guide clinicians in making decisions around how 

aggressively to seek further screening tests. It provides clinicians an opportunity to manage 
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conditions that underlie frailty to prevent adverse health outcomes (Lee et al., 2015). 

Interventions for frailty range from behavioural changes such as exercise and nutrition to 

pharmaceuticals such as angiotensin converting enzyme (ACE) inhibitors (Clegg et al., 2013) 

and Vitamin D supplements  (Wicherts et al., 2007). Moreover, many interventions have 

demonstrated their effectiveness in improving independence, preventing falls, enhancing 

physical function, and reducing mortality (Beswick et al., 2008). They require the involvement 

of home care providers to deliver the intervention such as home-based rehabilitation programs 

(Crotty, Whitehead, Miller, & Gray, 2003; Cunliffe et al., 2004).  

 

Critical care settings suffer from the same issues as the primary and ambulatory care settings, 

where they lack appropriate frailty assessment tools (Muscedere et al., 2016). Some tools are too 

time-consuming to be feasible for clinicians to conduct and the others are dependent on patient 

performance which limits their feasibility for critically ill patients. For patients who are too 

critically ill to obtain some necessary information, frailty was often estimated using available 

data that may indicate an elevated risk of frailty (Muscedere et al., 2016) or by asking a surrogate 

decision-maker (Flaatten et al., 2017; Hope et al., 2017). Estimation of frailty levels from 

wearable devices provides exciting opportunities for critical care settings. More accurate 

estimation of frailty can provide more precise prognoses (Bagshaw et al., 2015). Unfortunately, 

the current evidence for specialized treatments for frail patients is weak and many interventions 

such as early rehabilitation programs have failed to produce a meaningful impact on health 

outcomes (Wright et al., 2018). It may be due to failure to identify the population that can benefit 

the most (Muscedere et al., 2016), highlighting the potential benefit of wearable devices to 

estimate the pre-critical illness frailty level. Assessing frailty using wearable devices has another 
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implication to critical illness survivors. The results from Chapter 5 demonstrated the potential for 

wearable devices to act as an early detection tool for delayed recovery. In particular, the pattern 

of increasing step count and average heart rate over the 4-week period following the hospital 

discharge were correlated with failure to recover to pre-critical illness level. Some critical care 

teams provide follow up consultations to critical survivors. The results from the wearable devices 

can guide targeted follow-up visits to those who are failing to recover to the pre-critical illness 

level. Noting the limitations of Chapter 5, this finding should be confirmed and replicated by 

future research studies.  

 

7.2. Implications for Technology Development and Policy 

The potential benefits of patient-generated health data including wearable and mobile devices are 

unrealized in the current health care system. As discussed previously, timely evaluation of 

patient-generated health data can have positive implications in various health care sectors. The 

results from Chapter 6 also demonstrated the need for a carefully designed system that can 

transform patient-generated health data into clinically relevant information. However, this is only 

possible when patient-generated health data is integrated with existing health information 

systems.  

 

There are complex and multi-faceted technical challenges that prevent integration at a larger 

scale including lack of standards in data definitions, data analytics, and interoperability between 

multiple systems (Cortez, Hsii, Mitchell, Riehl, & Smith, 2018; Shapiro et al., 2012). As it was 

found in Chapter 6, one of the major concerns is the reliability and accuracy of the data. 

Consumer-grade wearable devices are not subject to the Food, Drug, and Cosmetic Act in the US 
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(U.S. Food and Drug Administration, 2015) or the Food and Drugs Act in Canada (Health 

Canada, 2019). This raises challenging questions around accountability and liability despite 

research studies reporting high validity and inter-device reliability for data quality (Evenson et 

al., 2015). Another issue revolves around the interoperability of patient-generated health data and 

existing health information systems. There is a lack of a standardized definition of patient-

generated health data and it is preventing the merger of data from multiple sources for clinical 

and research use (Cortez et al., 2018). To overcome these issues, professional associations are 

developing wearable activity tracker performance standards (Cortez et al., 2018). Moreover, key 

industry players of wearable devices such as Apple, Google, and Samsung have made 

accommodations and released platforms to enable the sharing of patient-generated health data in 

a standardized way (Farshchian & Vilarinho, 2017). These initiatives shine positive light into the 

future of patient-generated health data but they also raise concerns for the need for regulatory 

oversight over these platforms for clinical and research use. Future discussions must focus on the 

need for regulatory oversight over the design and use of these platforms to share patient-

generated health data that can potentially be used to inform clinical decisions.  

 

7.3. Implications for Consumer Health Informatics Research 

Researchers of diverse backgrounds recognized a good fit between the needs of older adults for 

healthy aging and the offers of wearable devices (Kim & Lee, 2017; Lewy, 2015; Majumder, 

Mondal, & Deen, 2017). To date, the majority of wearable device research effort in health has 

focused on investigating validity (Alharbi et al., 2016; Bai, Hibbing, Mantis, & Welk, 2018; de 

Bruin, Hartmann, Uebelhart, Murer, & Zijlstra, 2010; Evenson et al., 2015; Shcherbina et al., 

2017) and acceptability (Mercer et al., 2016; Puri et al., 2017; Zhang & Li, 2017). There are 
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fewer intervention studies (de Bruin et al., 2010). Most studies employed the use of a device as 

an intervention in itself and examined the processed data such as step count and physical activity 

level (Allet, Knols, Shirato, & de Bruin, 2010; de Bruin et al., 2010; Stephenson, McDonough, 

Murphy, Nugent, & Mair, 2017). There are only a handful of examples of using wearable 

devices to assess clinical conditions. Examples include Parkinson’s disease (Hubble, Naughton, 

Silburn, & Cole, 2015), epilepsy, and stroke (Johansson et al., 2018), where accelerometer-

driven information is used to assess the severity of episodic events. The results from this 

dissertation add to the list of clinical conditions that can be assessed and expands the boundaries 

of the current use of wearable devices for clinical purposes. There are plentiful topics where 

patient-generated health data showed promising evidence. Assessment of mental health 

conditions and symptoms is one area that is also quickly gaining traction (Mohr et al., 2017; 

Seppälä et al., 2019). Advancing sensor technology and innovative use of the data and analytics 

should be focused in future research to expand this list further.   

 

7.4. Future Research 

Technology is present in frailty research. It is used to prevent, assess, and treat frailty (Mugueta-

Aguinaga & Garcia-Zapirain, 2017, 2019). Previously, many frailty research studies used 

technologies to automate assessments of gait, balance, sit-to-stand and stand-to-sit performance, 

and other kinematic characteristics (Dasenbrock et al., 2016). Research studies that used an 

accelerometry data begun to emerge in recent years and indicated evidence for frailty assessment 

using this technology although refined to controlled laboratory settings (Fontecha, Navarro, 

Hervás, & Bravo, 2013; Theou et al., 2012). The results of Chapter 4 extended these studies and 

demonstrated that frailty could be predicted using wearable device data and easily obtainable, if 
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not already exist, health assessments for comorbidity and independence among community-

dwelling older adults. One of the key issues of wearable and mobile research studies is the 

abundance of pilot studies, while there is a lack of larger-scale studies (Brickwood, Watson, 

O’Brien, & Williams, 2019; B. Kim & Lee, 2017). In order to progress research beyond the pilot 

phase, there should be an effort to develop a research purpose wearable device database that can 

scale-up the research activities. It can support innovative research studies using big data 

analytics. A recent study that used an administrative health database containing information from 

over a million older adults demonstrated the powerful predictive performance of an array of 

machine learning techniques (Tarekegn, Ricceri, Costa, Ferracin, & Giacobini, 2020). Such 

analytic performance can be improved by using data from wearable devices, as demonstrated in 

Chapter 4. Developing such research infrastructure for patient-generated health data requires 

funding, commitment, and most importantly, evidence. The evidence generated from this 

dissertation may be small but is an essential step in the right direction.   

 

7.5. Limitations 

Limitations for specific studies are included within each chapter. The purpose of this dissertation 

was to push the boundaries of the current practices with wearable devices and patient-generated 

health data in health care for older adults. This topic has gained much attention in health care 

research. Yet the topic has only begun and this dissertation carried out much needed exploratory 

investigation. As a result, the sample sizes for the studies were small. This limited the range of 

statistical analyses that could be used and made the results vulnerable to statistical assumptions. 

Despite the small sample sizes, evidence was successfully generated to prove the concept and it 
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warrants future work. Future research should build on the evidence from this dissertation, scale-

up the research effort with larger sample size and also extend the findings in other populations.  

 

Wearable technology is advancing continually, including since the beginning of the work for this 

this dissertation. Two different wearable devices were used but they have been replaced with 

their successors from their manufacturers. New types of sensors such as ECG, blood pressure 

monitors and glucometers have entered the consumer market. This adds complexity to the 

patient-generated health data but opens new research opportunities. While this demonstrates 

wearable technologies are evolving very quickly and may threaten the specific results of 

Chapters 4 and 5 by making the devices used obsolete, the evidence it generated here can 

contribute to guiding future research studies on new wearable technologies.  

 

Participants of the research studies were recruited from the Greater Toronto Area, the city of 

Kingston and its surrounding areas, and the Kitchener-Waterloo region, which are all urban areas 

of Ontario. Hence, the results may not be generalizable to older adults in rural settings. Future 

research is recommended to validate the generalizability to other populations of interest.  
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Chapter 8. Conclusion 

 

Today, more health data are being generated than ever through wearable devices and mobile 

apps. As the technology advances, patient-generated health data will increase in size, the number 

of types and complexity. When these data are integrated with electronic health records, 

connected with strong data analytics and facilitated by sound regulatory policies, they can lead to 

innovative changes to the ways we access and interact with health care. The three studies of this 

dissertation collectively demonstrate a new way of using wearable device data to assess, monitor 

and predict frailty, and identified opportunities and challenges of patient-generated health data 

from the perspectives of healthcare professionals and older adults. The evidence generated by 

this dissertation work contributes to building a new way of health care. Integration of patient-

generated health data will be difficult and face many challenges, but it is possible. As many of us 

witnessed the uptake of electronic health records in health care systems, successful 

implementation requires a shared vision across all stakeholders, strong commitment from 

government and leadership, and most importantly, guidance based on evidence from rigorous 

research and science.  
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Appendices 

Appendix A.  

The results of Shapiro-Wilk normality tests for all continuous variables 

 

 W statistic value (p-value)   
Non-frail Frail  Selected statistical test 

Age 0.94 (0.17) 0.84 (0.02*) Mann-Whitney U 

BMI 0.98 (0.90) 0.92 (0.24) t-test 

ADL 0.77 (<0.01*) 0.85 (0.03*) Mann-Whitney U 

CCI 0.88 (0.01*) 0.93 (0.30) Mann-Whitney U 

Home care utilization 0.88 (<0.01*) 0.79 (<0.01*) Mann-Whitney U 

Worn time, hours per day 0.89 (0.01*) 0.92 (0.26) Mann-Whitney U 

Daily step count, n 0.90 (0.02*) 0.87 (0.06) Mann-Whitney U 

Deep sleep time, min 0.84 (<0.01*) 0.94 (0.43) Mann-Whitney U 

Light sleep time, min 0.97 (0.78) 0.90 (0.16) t-test 

Total sleep time, min 0.95 (0.29) 0.77 (<0.01*) Mann-Whitney U 

Awake time, min 0.86 (<0.01*) 0.87 (0.06) Mann-Whitney U 

Sleep quality, % 0.69 (<0.01*) 0.81 (0.01*) Mann-Whitney U 

Heart rate, bpm 0.97 (0.65) 0.95 (0.53) t-test 

Heart rate SD, bpm 0.96 (0.49) 0.91 (0.16) t-test 
* p<0.05 
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Appendix B.  

T-statistics and chi-square statistics for comparisons between the frail and non-frail participants 

with respect to baseline sociodemographic and patient characteristics (n=37)  
Statistic 

value (df) 

p-value Performed 

statistical analysis 

Age, years 1369.00 <0.01* Mann-Whitney U 

Sex <0.01 (1) 1.00 Chi-square 

BMI, kg/m2  0.73 (20.70) 0.44 t-test 

ADL score 180.00 0.43 Mann-Whitney U 

CCI score 106.50 0.11 Mann-Whitney U 

Marital status 3.76 (3) 0.29 Chi-square 

Education 2.45 (2) 0.12 Chi-square 

Income 7.34 (2) 0.03* Chi-square 

Income - Prefer not to answer, n=10 5.36 (1) 0.06 Post-hoc 

Low income, n=17 1.04 (1) 0.93 Post-hoc 

Mid to high income, n=10 0.62 (1) 1.00 Post-hoc 

Ethnicity 0.13 (1) 0.71 Chi-square 

Homecare Utilization    

Personal support service, hours per 

week 

77.50 0.01* Mann-Whitney U 

*p<0.05 
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Appendix C.  

Boxplots of the wearable device data comparing frail and non-frail participants 
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Appendix D 

Correlation between the data collected from the wearable devices and the frailty level and its 

change with exact p-values 

  
Frailty 

at T1 

p-

value 

Frailty 

at T2  

p-

value 

Frailty 

at T3  

p-

value 

Physical activity data       

Daily step count -0.76* 0.02 -0.35 0.11 -0.72* .006 

Active time, minutes per day -0.62 0.12 0.03 0.43 -0.53  .061 

Sedentary time, minutes per day -0.66+ 0.06 -0.39 0.36 -0.53  0.13 

Sleep data       

In bed, minutes per night 0.10 0.42 0.13 0.75 0.42  0.53 

Total sleep time, minutes per night 0.08 0.43 0.13 0.74 0.40  0.53 

Awake time, minutes per night -0.26 0.76 -0.07 0.78 0.07 0.76 

Awake count, times per night -0.31 0.91 0.06 0.23 -0.10 0.74 

Sleep quality 0.23 0.46 -0.10 0.50 0.12 0.27 

Heart rate data       

Average heart rate -0.24 0.91 -0.72*  0.046 -0.16 0.94 

Heart rate SD  -0.55 0.88 -0.05 0.30 -0.05 0.99 

Average nocturnal heart rate 0.06 0.62 -0.21 0.81 -0.19 0.99 

       

Patient characteristics       

Age 0.18 0.61 0.56+ 0.06 <0.01 0.99 

BMI 0.42 0.481 0.38 0.23 0.47 0.12 

ICU length of stay -0.01 0.409 0.21 0.51 0.00 0.99 

Hospital length of stay 0.15 0.183 0.15 0.64 0.05 0.87 

Charlson comorbidity index 0.56 0.206 0.12 0.706 0.29 0.36 

Glasgow Coma Scale 0.24 0.155 -0.06  0.848 0.15 0.65 

Changes in ADL 0.06 0.772 0.34  0.279 0.05 0.89 

APACHE II score 0.19 0.636 0.47  0.123 -0.12 0.71 

  
Frailty 

change 

over 

D1  

p-

value 

Frailty 

change 

over 

D2  

p-

value 

Frailty 

change 

over 

D3  

p-

value 

Physical activity data       

Daily step count 0.55 0.13 -0.46 0.23 0.14  0.57 

Active time, minutes per day 0.63 0.56 -0.56 0.32 0.18 0.97 

Sedentary time, minutes per day 0.41 0.20 -0.24 0.38 0.25 0.98 

Sleep data       

In bed, minutes per night -0.01 0.14 0.32 0.99 0.45 0.88 

Total sleep time, minutes per night 0.01 0.16 0.31 0.97 0.46 0.89 

Awake time, minutes per night 0.22 0.64 0.13 0.69 0.50 0.94 
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Awake count, times per night 0.37 0.79 -0.15 0.75 0.33 0.27 

Sleep quality -0.32 0.35 0.20 0.52 -0.19 0.40 

Heart rate data       

Average heart rate -0.28 0.32 0.37 0.11 0.13 0.47 

Heart rate SD  0.54 0.57 -0.01 0.89 0.78* 0.02 

Average nocturnal heart rate -0.22 0.43 -0.04 0.26 -0.37 0.73 

       

Patient characteristics       

Age 0.24 0.48 -0.45 0.16 -0.27 0.55 

BMI -0.11 0.85 0.15 0.27 0.04 0.71 

ICU length of stay 0.17 0.56 -0.17 0.61 0.02 0.88 

Hospital length of stay -0.03 0.95 -0.07 0.87 -0.14 0.62 

Charlson comorbidity index -0.44 0.15 0.19 0.48 -0.44+ 0.09 

Glasgow Coma Scale -0.27 0.83 0.19 0.24 -0.16 0.57 

Changes in ADL 0.20 0.21 -0.23 0.52 -0.02 0.84 

APACHE II score 0.17 0.32 -0.50 0.10 -0.47 0.08 

* p<0.05 

+ p<0.10  
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Appendix E 

Case study 

Mr. Greg McDonald, 77-year-old man, was diagnosed with a congestive heart failure a year 

ago after experiencing chest pain following a big family dinner. His multiple medical conditions 

include type 2 diabetes, high blood pressure, and high cholesterol.  

Before being discharged from the hospital, Mr. MacDonald was counselled on a home diuretic 

protocol by a care coordinator. Mr. McDonald was given a logbook and asked to measure his 

weight, blood pressure, heart rate, blood oxygen level, and body temperature twice a day; once in 

the morning and again at night. He was also asked to answer questions about heart failure 

symptoms daily. The first few pages of the logbook are Mr. McDonald’s personalized treatment 

plan as filled out and explained by his cardiologist and the care coordinator on site. It instructs on 

when to increase the dose of diuretic drugs and take additional drugs.  

 

Mr. McDonald was also referred to a pharmacist (on site) for pharmacotherapy assessment and 

diabetes management. His diabetes is currently being treated with a fast-acting insulin. Mr. 

McDonald occasionally “takes a little more” insulin when he notes high blood sugar readings. 

The pharmacist changed to a slow acting insulin and he was explained the dosing concept on the 

new medications and how this regimen can give him greater flexibility.  

 

The care coordinator signed out an iPad and glucometer and showed how to use the patient portal 

app to record the measurements. Through the app, he can access a sliding scale to correct for any 

temporary elevation of blood glucose. He was told to test four times daily and to record his blood 

glucose results, carbohydrate intake, and insulin doses in the app. Mr. McDonald was told that 

these data are accessible by the pharmacist who will adjust the insulin based on the recordings. 

Mr. McDonald was advised to pick up the adjusted doses when the pharmacist contact him and 

continue with the iPad. 

 

Mr. McDonald was discharged and made his way home with help of his family. With him, he has 

a stack of information brochure, a logbook, and pulse oximeter for his new heart condition along 

with an iPad and glucometer for his diabetes.   
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Appendix F 

Data Rating Questionnaire 

Data Rating Questionnaire 

Please rate the following personal sensing data based on your opinion on 

their usefulness to the case scenario.  

 

Passively-sensed data: Data that are collected without user input. Minimal 

effort. 

 

      

Data Type Not 

at all 

useful 

Slightly 

useful 

Moderately 

useful 

Very 

useful 

Extremely 

useful 

      

Step count      

      

Gait information (e.g. stride)      

      

Physical activity level (e.g., 

duration, frequency, intensity) 

     

      

Sleep quantity (e.g. total sleep 

time, time took to fall asleep) 

     

      

Sleep quality (e.g. sleep 

efficiency, deep sleep and light 

sleep, nighttime awakenings) 

     

      

Heart rate (e.g. average heart 

rate, resting heart rate) 
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Sedentariness level (i.e. duration, 

frequency) 

     

      

Body temperature      

      

Electrodermal activity (measures 

stress level and emotional 

arousal) 

     

      

GPS/Location      

      

Air quality      

      

Ambient light      

      

Barometer (i.e. air pressure)      

      

Communication activities (i.e. 

call, texting) 

     

      

Social media uses (i.e. Facebook, 

Twitter) 

     

      

Typing patterns (i.e. text 

linguistic, speed, accuracy) 
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Actively-sensed data: Data that are collected with user input. More effort 

needed. 

 

Data Type Not 

at all 

useful 

Slightly 

useful 

Moderately 

useful 

Very 

useful 

Extremely 

useful 

      

Weight      

      

Body fat %      

      

Blood glucose level      

      

Blood pressure      

      

Peak expiratory flow      

      

Inhaler usage (i.e. puffer for 

asthma) 

     

      

Pictures (i.e. skin cancer, wound)      

      

Electrocardiography (i.e. 

smartphone paired ECG device) 

     

      

Mood (i.e. Mood journal)      

      

Dietary intake (i.e. Food journal)      

 

Other data types: What other data you may find useful? Tell us what they 

are. 
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Data Type Not 

at all 

useful 

Slightly 

useful 
Moderately 

useful 
Very 

useful 
Extremely 

useful 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 


