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Abstract

We analyze the Commutative Supersingular Isogeny Diffie-Hellman protocol (CSIDH),
a novel supersingular isogeny-based key establishment protocol. Our analysis is from three
perspectives:

Quantum Cryptanalysis. Building upon quantum attacks on ordinary isogeny-based
cryptography, we propose a subexponential-time quantum algorithm for inverting
the complex multiplication group action for supersingular elliptic curves, which uses
only polynomial quantum space. This improves upon previously-known algorithms
which required subexponential quantum space.

Optimization. We develop more efficient algorithms for evaluating the class group ac-
tion in the context of CSIDH. We consider “strategies”—formerly only considered
for Supersingular Isogeny Diffie-Hellman (SIDH)—in the context of CSIDH, and de-
velop systematic methods for optimizing “permutations” of the small primes used
in CSIDH, which previously had been treated only in an ad hoc fashion. We also
develop a systematic technique to optimize the CSIDH keyspace. These optimiza-
tions are complementary to prior work on optimizing CSIDH, including improved
field arithmetic, Splitting Isogenies into Multiple Batches (SIMBA), and the two-
point method. We apply our optimizations to the CSIDH-512 parameter set and
give experimental results.

Fault Attacks. We consider physical attacks on static/ephemeral CSIDH in which limited
information about which isogenies are “real” and which are “dummy” is revealed.
We determine bounds on the number of fault injections required to recover the static
secret key, and show that simply reordering the real and dummy isogenies from the
ubiquitous “real-then-dummy” ordering to a dynamic random ordering dramatically
increases the number of faults required, with negligible impact on the running time
of the key exchange protocol (in contrast with prior fault attack countermeasures,
which prevent fault attacks entirely at the cost of doubling the running time for key
exchange).
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Chapter 1

Introduction

Public-key cryptographic protocols whose security is based on the hardness of factoring
or discrete logarithms—including the vast majority of protocols in use today—are sus-
ceptible to attacks using quantum algorithms. In order to ensure the continued security
of digital communications, we must transition to protocols which cannot be broken by
quantum computers, before large-scale quantum computers are readily available. To that
end, cryptographers have developed post-quantum cryptosystems, which are conjectured
to be secure against attacks by quantum computers. At present, the vast majority of
post-quantum schemes fit into one of five categories:

1. Code-based cryptography;

2. Lattice-based cryptography;

3. Hash-based cryptography;

4. Multivariate cryptography; and,

5. Isogeny-based cryptography.

The focus of this thesis is isogeny-based cryptography. Isogeny-based protocols are
based on the mathematics of elliptic curves: objects which are ubiquitous in classical (that
is, not post-quantum) cryptography. In contrast with classical elliptic curve cryptography—
where, typically, a single elliptic curve is used as a base group over which to instanti-
ate a cryptographic protocol (for instance, Diffie-Hellman [25] or ElGamal [29])—isogeny-
based cryptography uses maps between elliptic curves with certain algebraic and algebraic-
geometric properties: isogenies. In particular, while the underlying hard problem of classi-
cal elliptic curve cryptography is typically the discrete logarithm problem (given two points

1



P,Q ∈ E, find a ∈ Z such that Q = aP ), in isogeny-based cryptography the problem is,
given two elliptic curves E and E ′, to find an isogeny φ : E → E ′.

Elliptic curves over finite fields can be divided into two categories: ordinary and su-
persingular. In classical cryptography, supersingular elliptic curves are undesirable, since
on such curves the discrete logarithm problem can be reduced to the discrete logarithm
problem in the multiplicative group of a finite field, [73] where non-generic algorithms [70]
can be used. In contrast, in isogeny-based cryptography, supersingular elliptic curves are
preferred, since for ordinary curves the ring of endomorphisms is commutative, leading to
subexponential attacks [16].

At present there are two prominent supersingular isogeny-based protocols: supersin-
gular isogeny Diffie-Hellman (SIDH) [23] and commutative supersingular isogeny Diffie-
Hellman (CSIDH) [14]. As their names imply, both are superficially-Diffie-Hellman-like
key establishment protocols which use isogenies of supersingular elliptic curves. Both
protocols have been the subject of many analyses leading to attacks, optimizations, and
improved implementations. In this thesis we add to that body of work, with a particular
focus on CSIDH. The thesis is organized as follows:

In Chapter 2 we cover the necessary algebraic-geometric background required to un-
derstand the protocols SIDH and CSIDH, which we detail in Chapter 3. In Chapter 4, we
extend the results of [16] to the class of isogenies used in CSIDH, and reduce its quantum
space complexity from subexponential to polynomial. In Chapter 5 we give some novel
methods to optimize implementations of CSIDH, including improved algorithms for per-
forming the fundamental operation (evaluation of the class group action) and for choosing
parameter sets. In Chapter 6 we discuss fault attacks on SIDH and CSIDH, and study the
efficacy of reordering the isogenies as a countermeasure for a class of attacks on CSIDH.
Finally, we consider future work in Chapter 7.
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Chapter 2

Algebraic Geometric Background

2.1 Fundamentals of Algebraic Geometry

To begin, we review the fundamental concepts of algebraic geometry and the theory of
elliptic curves required for isogeny-based cryptography. The material is this section is
taken primarily from [69, Chapters I–III].

2.1.1 Affine Varieties

Definition 2.1 (Affine n-Space). Affine n-space over a field K is the set

An = An(K) = {P = (x1, x2, . . . , xn) : xi ∈ K ∀ 1 ≤ i ≤ n}

where K is the algebraic closure of K.

The set of K-rational points of An is the set

An(K) = {P = (x1, x2, . . . , xn) ∈ An : xi ∈ K ∀ 1 ≤ i ≤ n}.

Denote by K[X] = K[X1, X2, . . . , Xn] the polynomial ring over K in n indeterminates.

Definition 2.2 (Affine Algebraic set). A set V ⊆ An(K) is called (affine) algebraic if there
is an ideal I ⊆ K[X] such that

V = VI := {P ∈ An(K) : f(P ) = 0 ∀ f ∈ I}.

3



Definition 2.3 (Ideal of an Affine Algebraic Set). If V ⊆ An(K) is an affine algebraic set,
we define its ideal as

I(V ) = {f ∈ K[X] : f(P ) = 0 ∀ P ∈ V }.

Note that I(V ) really is an ideal in An[K] since if f(P ) = g(P ) = 0 then (f+g)(P ) = 0,
and for any h ∈ K[X], (fh)(P ) = 0.

We say that an algebraic set V is defined over K if its ideal can be generated by
polynomials in K[X]; that is, if

∃ S ⊆ K[X] such that I(V ) = (S);

notably, any ideal of K[X] is finitely-generated by Hilbert’s Basis Theorem, and so S can
always be chosen to be finite.

When V ⊆ An is defined over K, we write V/K, and define the set of K-rational points
of V as V (K) = V ∩ An(K). We also define the ideal I(V/K) = I(V ) ∩K[X].

Definition 2.4 (Affine Algebraic Variety). We say that an affine algebraic set V is an
(affine) variety if I(V ) is a prime ideal.

Definition 2.5 (Affine Coordinate Ring). Let V/K be a variety. The affine coordinate
ring of V/K is

K[V ] = K[X]/I(V ).

The ring K[V ] is an integral domain, and its quotient field (the function field of V/K)
is denoted K(V ).

Definition 2.6 (Dimension). Let V be a K-variety. The dimension of V—denoted
dim(V )—is defined to be the transcendence degree of the extension K(V )/K.

Definition 2.7 (Jacobian Matrix). Let f = (f1, f2, . . . , fr)
T ∈ K[X1, X2, . . . , Xn]r be a

vector-valued polynomial function. Its Jacobian matrix at a point P ∈ An is

J(f)(P ) =

[
∂fi
∂Xj

(P )

]
1≤i≤r
1≤j≤n

.

Definition 2.8 (Nonsingular Variety). Let V ⊆ An be a variety with I(V ) = (f1, f2, . . . , fr).
Let f = (f1, . . . , fr)

T . We say that V is nonsingular (or smooth) at a point P ∈ V if

rank(J(f)(P )) = n− dim(V ).

4



Notably, if V ⊆ An is a variety whose ideal is generated by a single polynomial f , then
dim(V ) = n − 1 and J(f)(P ) = ∇f(P ) for all P ∈ V. Thus a point P ∈ An is a singular
point of V if and only if {

f(P ) = 0
∇f(P ) = 0

.

Put another way, to check that such V is nonsingular, it suffices to verify that the above
system of equations has no solution P ∈ An.

For P ∈ V define
MP = {f ∈ K(V )) : f(P ) = 0}.

We note that K[V ]/MP
∼= K (with the isomorphism being the “evaluation-at-P” map)

and so MP is maximal. The quotient MP/M
2
P is a finite-dimensional vector space over K.

This maximal ideal can be used to give another characterization of nonsingularity:

Proposition 2.9 ([69, Chapter I, Proposition 1.7]). Let V be a K-variety. A point P ∈ V
is nonsingular if and only if

dimKMP/M
2
P = dim(V ).

Proof. See [36, Section I.5.1]

Definition 2.10 (Local Ring of a Variety at a Point). The local ring of V at P—denoted
K[V ]P—is the localization of K[V ] at MP ; that is

K[V ]P =
{
F ∈ K(V ) : ∃ f, g ∈ K[V ] such that g(P ) 6= 0 and F = fg−1

}
.

If F ∈ K[V ]P , then F (P ) is well-defined; we say that the functions in K[V ]P are regular
or defined at P .

2.1.2 Projective Varieties

Definition 2.11 (Projective n-space). Projective n-space over a field K is defined as
Pn = Pn(K) = (An+1\{0})/ ∼, where ∼ is the equivalence relation

(x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn) ⇐⇒ ∃ λ ∈ K\{0} such that λxi = yi for 1 ≤ i ≤ n.

We use the notation

[x0, x1, . . . , xn] =
{

(λx0, λx1, . . . , λxn) : λ ∈ K\{0}
}
.
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The x0, x1, . . . , xn are called homogeneous coordinates of the point [x0, x1, . . . , xn] ∈ Pn.

As in the case of affine varieties, we define the set of K-rational points of Pn as

Pn(K) =
{

[x0, x1, . . . , xn] ∈ Pn : ∃ λ ∈ K\{0} such that λxi ∈ K ∀ 1 ≤ i ≤ n
}
.

Note that [x0, x1, . . . , xn] ∈ Pn(K) does not imply that each xi ∈ K; rather, some repre-
sentative of the congruence class must have all its entries in K. In particular, for any i
such that xi 6= 0, we have

xj
xi
∈ K for all 1 ≤ j ≤ n.

Definition 2.12 (Minimal Field of Definition). The minimal field of definition (over K)
for P = [x0, x1, . . . , xn] ∈ Pn(K) is

K(P ) = K

(
x0

xi
,
x1

xi
, . . . ,

xn
xi

)
for any i such that xi 6= 0.

Equivalently, K(P ) is the smallest extension of K for which [x0, x1, . . . , xn]∩K(P )n+1 6= ∅.

We want to translate the concept of an algebraic set to the projective setting. Since
the coordinates of a projective point are defined only up to multiplication by a scalar, we
need to consider a class of polynomials whose roots are preserved by maps of the form
X 7→ λX. The most natural such class are homogeneous polynomials :

Definition 2.13 (Homogeneous Polynomial). A polynomial f ∈ K[X] is called homoge-
neous of degree d if

f(λX0, λX1, . . . , λXn) = λdf(X0, X1, . . . , Xn) for all λ ∈ K.

If f is homogeneous (of any degree) it makes sense to ask whether f(P ) = 0 for some
P ∈ Pn, since the choice of homogeneous coordinates for P does not affect the answer.

Definition 2.14 (Projective Algebraic Set). A set V ⊆ Pn is called (projective) algebraic
if there exists some I ⊆ K[X1, X2, . . . , Xn] which is homogeneous (i.e., it has a generating
set all of whose elements are homogeneous) and such that

V = VI = {P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ I} .

Definition 2.15 (Homoegenous Ideal of a Projective Algebraic Set). If V is a projective
algebraic set we define its corresponding (homogeneous) ideal by

I(V ) =
({
f ∈ K[X] : f is homogeneous and f(P ) = 0 for all P ∈ V

})
.
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As in the affine case, we say that V is defined over K if I(V ) can be generated by a set
of homogeneous polynomials in K[X], and in this case we write V/K. When V is defined
over K its set of K-rational points is

V (K) = V ∩ Pn(K).

Definition 2.16 (Projective Variety). A projective algebraic set V is called a (projective)
variety if I(V ) is prime.

There are many naturally-isomorphic copies of An in Pn; we describe the most natural
such class here. Define the embeddings

εi : An → Pn

(x1, x2, . . . , xn) 7→ [x1, x2, . . . , xi−1, 1, xi, . . . , xn]

We see that the image of εi is

image(εi) = Ui = {[x0, x1, . . . , xn] : xi 6= 0}

and, moreover, εi is injective; hence we can define an inverse on its image:

ε−1
i : Ui → An

[x0, x1, . . . , xn] 7→
(
x0

xi
,
x1

xi
, . . . ,

xn
xi

)
.

We identify An with Ui ⊆ Pn via εi when it is convenient. In particular, associated to each
projective variety V ⊆ Pn is an affine variety—denoted V ∩An—defined as V ∩An = ε−1

i (V )
for a fixed i. Its ideal is

I(V ∩ An) = {f(Y1, Y2, . . . , Yi−1, 1, Yi, . . . , Yn) : f(X0, X1, . . . , Xn) ∈ I(V )} ⊆ K[Y]

The process of replacing f(X0, X1, . . . , Xn) with f(Y1, Y2, . . . , Yi−1, 1, Yi, . . . , Yn) is called
dehomogenization with respect to Xi; the reverse process—homogenization—is defined as
follows: the homogenization of f(X1, X2, . . . , Xn) ∈ K[X] with respect to Xi is

f ∗(X0, X1, . . . , Xn) = Xd
i f

(
X0

Xi

,
X1

Xi

, . . . ,
Xi−1

Xi

, 1,
Xi+1

Xi

, . . . ,
Xn

Xi

)
where d = deg f .
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Definition 2.17 (Projective Closure). Let V ⊆ An be an affine algebraic set, considered
as a subset of Pn by applying εi. The projective closure of V—denoted V—is the projective
algebraic set whose homogeneous ideal is

I(V ) = ({f ∗(X) : f ∈ I(V )}) .

Proposition 2.18 ([69, Chapter I, Proposition 2.6]).

(a) If V is an affine variety, then V is a projective variety and V = V ∩ An.

(b) If V is a projective variety, either

i. V ∩ An = ∅; or,

ii. V = V ∩ An.

(c) If an affine (respectively, projective) variety V is defined over K, then V (respectively,
V ∩ An) is also defined over K.

Proof. See [36, Section I.2.3].

Proposition 2.18 allows us to identify each affine variety with a unique projective variety,
and vice versa. It is usually easier to deal with affine coordinates rather than projective
ones, and so we will always do so. In particular, when we write “V is a projective variety”
defined by an inhomogeneous ideal, what we really mean is that V is the projective closure
of the indicated variety W . The points in V \W are called the points at infinity of V , where
in this last expression we identify W with εi(W ) for some i.

Now we can define many concepts we defined for affine varieties again for projective
varieties, by appealing to this correspondence. In particular:

Definition 2.19 (Dimension of a Projective Variety). Let V ∈ Pn be a projective variety,
and choose a copy of An ⊆ Pn such that V ∩ An 6= ∅. The dimension of V defined to be

dim(V ) = max
i

dim(ε−1
i (V ∩ image(εi))).

Definition 2.20 (Nonsingular Projective Variety; Local Ring of a Projective Variety;
Regular Map). Let V ⊆ Pn be a projective variety, P ∈ V , and choose a copy of An ⊆ Pn

such that P ∈ An. Then

1. V is nonsingular at P if V ∩ An is nonsingular at P .

2. The local ring of V at P is K[V ]P = K[V ∩ A]P .

3. A function F ∈ K(V ) is regular at P if it is in K[V ]P .
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2.1.3 Maps Between Varieties

Definition 2.21 (Rational Map of Projective Varieties). Let V1, V2 ⊆ Pn be varieties. A
rational map from V1 to V2 is a sequence of functions φ = [f0, f1, . . . , fn] such that

i. f0, f1, . . . , fn ∈ K(V1); and,

ii. For all P ∈ V1 at which f0, f1, . . . , fn are defined, [f0(P ), f1(P ), . . . , fn(P )] ∈ V2.

We denote φ(P ) = [f0(P ), f1(P ), . . . , fn(P )].

We say that φ is defined over K if there is λ ∈ K\{0} such that λf0, λf1, . . . , λfn ∈
K(V1).

Definition 2.22 (Regular Rational Map). A rational map φ : V1 → V2 is regular (or
defined) at a point P ∈ V1 there is a function g ∈ K(V1) such that

i gfi is regular at P for 0 ≤ i ≤ n; i.e., gfi ∈ K[V1]P for all i; and,

ii There is 0 ≤ i ≤ n such that (gfi)(P ) 6= 0.

Remark 2.23. For different P ∈ V1, we may need different g in the definition of regular.

Definition 2.24 (Morphism). A rational map which is regular everywhere is called a
morphism.

Definition 2.25 (Isomorphism, Isomorphic Varieties). A morphism φ : V1 → V2 is called
an isomorphism if there is another morphism ψ : V2 → V1 such that φ ◦ ψ = ιV2 and
ψ ◦ φ = ιV1 (identity maps).

Two varieties V1 and V2 are isomorphic if there is a pair of isomorphisms between them.

2.2 Elliptic Curves

We begin by briefly discussing curves in general, and then restrict our attention to elliptic
curves in particular.

Definition 2.26 (Curve). A curve is a projective variety of dimension 1.
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Proposition 2.27 ([69, Chapter II, Proposition 2.1]). Let C be a curve, and let V ⊆ Pn

be a variety. Let P be a nonsingular point of C, and let φ : C → V be a rational map.
Then φ is defined at P .

In particular, if C is smooth, then φ is a morphism.

Proof. See [69, Section II.2].

Theorem 2.28 ([69, Theorem 2.3]). Let C1 and C2 be smooth curves, and let φ : C1 → C2

be a morphism. Then either:

i. φ is constant; or,

ii. φ(C1) = C2.

Proof. See [36, Section II.6.8].

Definition 2.29 (Degree of a Morphism of Curves; Separable, Inseparable, and Purely
Inseparable Morphisms). Let φ : C1 → C2 be a morphism of curves. If φ is constant, we
define the degree of φ as deg(φ) = 0. Otherwise φ is surjective, and φ induces an injection
φ∗ of function fields fixing K:

φ∗ : K(C2)→ K(C1)

f 7→ f ◦ φ;

in this case we define deg(φ) = [K(C1) : φ∗(K(C2))].

We say that φ is separable (respectively, inseparable; purely inseparable) if the extension
K(C1)/φ∗(K(C2)) is separable (respectively inseparable; purely inseparable).

We are finally equipped to discuss elliptic curves.

Definition 2.30 (Elliptic Curve). An elliptic curve is a pair (E,O) where E is a nonsin-
gular curve of genus1 1, and O ∈ E.

We typically omit O when it is understood from context.

We say that E is defined over K—written E/K—if E is defined over K as a projective
curve, and O is K-rational.

In practice we use a particular representation of an elliptic curve, which the following
proposition describes.

1Nonsingular curves in P2 (the only case we are concerned with) are defined by a single homogeneous
polynomial f(X,Y, Z). By the Plücker formula [57, Proposition 2.6], the genus of such a curve is g =

(
d−1
2

)
where d = deg f .
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Proposition 2.31 (Weierstrass Coordinates, [69, Chapter III, Proposition 3.1]).

(a) Let E be an elliptic curve defined over K. There exist functions x, y ∈ K(E) such
that the map

φ : E → P2

X 7→ [x(X), y(X), 1]

is an isomorphism of E/K onto a curve given by a Weierstrass equation

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

where a1, . . . , a6 ∈ K and φ(O) = [0, 1, 0]. The functions x and y are called the
Weierstrass Coordinates of E/K.

(b) Every smooth cubic curve C given by a Weierstrass equation

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

is an elliptic curve defined over K with base point O = [0, 1, 0].

Proof. See [69, Section III.3].

If the field of definition K of an elliptic curve has characteristic different from 2 and 3,
a change of coordinates allows us to write it in the form

E : y2 = x3 + ax+ b.

In this work, we will only work in fields of characteristic strictly larger than 3, and so we
will always consider elliptic curves to have a defining equation of this form, which we call
short Weierstrass form.

Associated to an elliptic curve are three fundamental quantities, which we define here
for curves in short Weierstrass form:

1. The discriminant : ∆ = −16(4a3 + 27b2).

2. The j-invariant : j(E) = −1728(4a)3

∆
.

3. The invariant differential : ω = dx
(2y)

.
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For any elliptic curve E we can define an addition law +: E × E → E which is a
morphism of varieties and under which E and E(K) are abelian groups. For an elliptic
curve in short Weierstrass form, the law is particularly easy to write down, and so we
present it here.

Definition 2.32 (Addition Law on Elliptic Curves in Short Weierstrass Form). Let E/K
be an elliptic curve with defining equation E : y2 = x3 + ax + b. If P = (xP , yP ), Q =
(xQ, yQ) ∈ E, we define P +Q in the following way:

(a) If P = O, then P +Q = Q; otherwise,

(b) If Q = O, then P +Q = P ; otherwise,

(c) If yQ = −yP , then P +Q = O; otherwise,

(d) If P = Q, then P +Q is given by(
x4
P − 2ax2

P − 8bxP + a2

4(x2
P + axP + b)

,
(x6

P + 5ax4
P + 20bx3

P − 5a2x2
P − 4abxP − a− 8b)yP

8(x3
P + axP + b)2

)
;

otherwise,

(e) If P 6= Q, then P +Q is given by(
(yQ − yP )2 − x3

P + x2
PxQ + xPx

2
Q − x3

Q

(xQ − xP )2
,
xPyQ − xQyP + xP+Q(yP − yQ)

xQ − xP

)
.

2.2.1 Isogenies

Definition 2.33 (Isogeny). Let E1, E2 be elliptic curves. An isogeny φ : E1 → E2 is a
morphism satisfying φ(O) = O.

We say that an elliptic curve E2 is isogenous to an elliptic curve E1 if there is a surjective
isogeny φ : E1 → E2.

Definition 2.34 (Kernel of an Isogeny). Let φ : E1 → E2 be an isogeny. Its kernel is

ker(φ) = {P ∈ E1 : φ(P ) = O}.

Remark 2.35. It is known (see [69, Chapter III, Proposition 4.10(c)]) that whenever
φ : E1 → E2 is a non-constant isogeny, ker(φ) is a finite subgroup of E1.
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Conversely to Remark 2.35, all finite subgroups of E1 are the kernels of isogenies. In
particular, we have the following proposition:

Proposition 2.36 ([69, Chapter III, Proposition 4.12]). Let E be an elliptic curve and let
Φ ⊆ E be a finite subgroup. Then there is a unique elliptic curve E ′ and a unique isogeny
φ : E → E ′ (up to isomorphism of isogenies) with ker(φ) = Φ. The curve E ′ is denoted
E/Φ.

Remark 2.37. Vélu’s formulas [75] describe how to explicitly write the defining equation
of E/Φ and the isogeny φ : E → E/Φ.

We also have the following relationship between the degree of a separable isogeny and
the size of its kernel:

Theorem 2.38 ([69, Chapter III, Theorem 4.10]). Let φ be a non-constant separable
isogeny. Then

| ker(φ)| = deg(φ).

Associated to each non-constant isogeny φ : E1 → E2 is a unique second isogeny
φ̂ : E2 → E1 satisfying

φ̂ ◦ φ = [deg φ]

(see [69, Chapter III, Theorem 6.1(a)]), where for each m ∈ Z, [m] is the “multiplication-
by-m” map:

[m] : E1 → E1

P 7→ mP

We call φ̂ the dual isogeny of φ. Notably, the existence of the dual isogeny shows that the
property of “being isogenous” is an equivalence relation on the set of elliptic curves.

The dual isogeny has the following properties:

Theorem 2.39 (Properties of the Dual Isogeny, [69, Chapter III, Theorem 6.2]). Let
φ : E1 → E2 be an isogeny of degree d. Then:

(a) φ ◦ φ̂ = [d] (on E2).

(b) If λ : E2 → E3 is an isogeny then λ̂ ◦ φ = φ̂ ◦ λ̂.

(c) If ψ : E1 → E2 is an isogeny then φ̂+ ψ = φ̂+ ψ̂.
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(d) deg φ̂ = d.

(e)
ˆ̂
φ = φ.

We present three important examples of isogenies here:

Example 2.40 (Multiplication by m). For an elliptic curve E : y2 = x3 + ax + b defined
over K, the multiplication-by-m map [m] is an isogeny. We use properties of this isogeny to
determine the isomorphism class of the m-torsion subgroup of E for m coprime to char(K):

E[m] = ker([m]) = {P ∈ E : mP = O};

This group plays an important role in isogeny-based cryptography.

Note first that deg([0]) = 0 by definition, and it is clear that deg([1]) = 1. Assume for

induction that for some m ∈ Z, [̂m] = [m]; then by Theorem 2.39(c), for any m ∈ Z we
have

̂[m+ 1] = [̂m] + [̂1] = [m] + [1] = [m+ 1]

and so by induction, [̂m] = [m] for all m ∈ Z. Then

[deg[m]] = [m] ◦ [m] = [m2]

and so [m2−deg[m]]P = O for all P ∈ E. It can be shown (see [69, Chapter III, Proposition
4.2(b)]) that the only constant multiplication map on an elliptic curve is [0], and so we
must have deg[m] = m2.

Now, the assumption that p - m implies that [m] is separable, and so |E[m]| = deg[m] =
m2. We will show that

E[m] ∼= Z/mZ⊕ Z/mZ.

For prime q, |E[q]| = q2. Now, the only abelian groups of order q2 are

Z/q2Z and Z/qZ⊕ Z/qZ,

and clearly E[q] 6∼= Z/q2Z, since that group contains elements of order q2 > q. So for
primes q which are different from p, E[q] ∼= Z/qZ⊕ Z/qZ.

Suppose for induction that for some n ∈ N, E[qn] ∼= Z/qnZ ⊕ Z/qnZ. Then E[qn] ⊆
E[qn+1], and so E[qn+1] must be isomorphic to one of

i. Z/qnZ⊕ Z/qnZ⊕ Z/qZ⊕ Z/qZ,
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ii. Z/qnZ⊕ Z/qnZ⊕ Z/q2Z,

iii. Z/qn+1Z⊕ Z/qnZ⊕ Z/qZ, or

iv. Z/qn+1Z⊕ Z/qn+1Z.

In the first two cases, all elements of the groups have order dividing qn, and so we would
have Z/qnZ⊕ Z/qnZ⊕ Z/qZ⊕ Z/qZ ⊆ E[qn] or Z/qnZ⊕ Z/qnZ⊕ Z/q2Z ⊆ E[qn], which
is impossible because we know the group structure of E[qn]. The third case is impossible
because Z/qn+1Z ⊕ Z/qnZ ⊕ Z/qZ contains q3 elements of order q, but |E[q]| = q2. Thus
we must have

E[qn+1] ∼= Z/qn+1Z⊕ Z/qn+1Z

and so, by induction, E[qn] ∼= Z/qnZ⊕ Z/qnZ for all n ∈ N.

From here, it is easy to see that for m = qn1
1 qn2

2 . . . qntt , with p - m we must have

E[m] ∼=
t⊕

j=1

(
Z/qnjj Z⊕ Z/qnjj Z

) ∼= Z/mZ⊕ Z/mZ.

Example 2.41 (The Frobenius Map). Let E : y = x3 + ax+ b be defined over GF (pn) for
some prime p and n ∈ N. The pn-power Frobenius map is

πpn : E → E

(x, y) 7→ (xp
n

, yp
n

).

It is clear that ker(πpn) = {O}, and so | ker(πpn)| = 1. But deg(πpn) = pn, and so πpn must
be inseparable.

Example 2.42 (Complex Multiplication by Z[ζ3]). Let E : y2 = x3 + 1 be defined over a
field K of characteristic p > 2 which contains a primitive cube root of unity; that is

∃ γ ∈ K such that γ3 = 1 and γ 6= 1.

Then the map φ : (x, y) 7→ (γx, y) maps E to E, since (γx)3 + 1 = γ3x3 + 1 = x3 + 1 = y2.
Moreover, φ(O) = O, and so φ is an isogeny.

This map satisfies φ3 = ιE and φ 6= ιE, and can be thought of a way to extend the map
m 7→ [m] from Z to the Eisenstein integers Z[ζ3], where ζ3 = e

2πi
3 .

The following theorem tells us when there is an isogeny between two given curves
defined over a given finite field.
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Theorem 2.43 ([72, Section 3]). Let E1 and E2 be elliptic curves defined over GF (q).
Then there exists an isogeny φ : E1 → E2 defined over GF (q) if and only if

|E1(GF (q))| = |E2(GF (q))|.

2.2.2 The Endomorphism Ring

The set of isogenies from an elliptic curve to itself is a ring under the operations of pointwise
addition and function composition. We denote

End(E) = {φ : E → E : φ is an isogeny};

this ring is called the endomorphism ring of E. We can consider the subring of isogenies
which are defined over K; we denote this by

EndK(E) = {φ : E → E : φ is an isogeny defined over K}.

As mentioned earlier, for any elliptic curve E, End(E) contains a copy of Z from the
embedding m 7→ [m]. In the case of elliptic curves defined over finite fields, we know more:

Theorem 2.44 (Rank of the Endomorphism Ring, [69, Chapter V, Theorem 3.1]). Let E
be an elliptic curve defined over GF (q) for some prime power q. Then, as a Z-module,
End(E) has dimension 2 or 4.

Proof. See [69, Section V.3].

We say that an elliptic curve defined over GF (q) is ordinary if dimZ End(E) = 2 and
that it is supersingular if dimZ End(E) = 4.

Traditional applications of elliptic curves in cryptography have been based on the hard-
ness of the discrete logarithm problem. On supersingular elliptic curves, this problem re-
duces in probabilistic polynomial time to a discrete logarithm problem in the multiplicative
group of a finite field [55, Sections 3–4], where non-generic algorithms can be used. Thus in
this context ordinary curves are more secure than supersingular ones. On the contrary, in
isogeny-based cryptography an attack due to Childs, Jao, and Soukharev [16] demonstrates
that against quantum adversaries, ordinary curves offer only subexponential (rather than
fully-exponential) security, and so supersingular elliptic curves are the standard. The algo-
rithm proposed in [16] unfortunately requires subexponential quantum space; in Chapter 4
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we present a generalization of their algorithm which works for a certain kind of isogeny on
supersingular curves and which requires only polynomial quantum space.

The structure of the endomorphism rings of elliptic curves play a vital role in the
security of isogeny-based key establishment protocols. In the following two sections we
explain the structure of these endomorphism rings.

Structure of the Endomorphism Ring of an Ordinary Elliptic Curve

This material appears in [22, Sections 5.A and 7.A].

Definition 2.45 (Algebraic Number Field). An algebraic number field K is an algebraic
extension of Q of finite degree.

We say that K is a quadratic number field if [K : Q] = 2; in this case K can be written
as K = Q(

√
N) for some square-free integer N . If N > 0 we say that K is a real quadratic

field, and we say that it is imaginary otherwise.

Define the discriminant dK of K as

dK =

{
N if N ≡ 1 (mod 4)

4N otherwise
.

Then dK is congruent either to 0 or 1 (mod 4), and K can be written K = Q(
√
dK); that

is, a quadratic field is determined uniquely by its discriminant.

The ring of integers OK of K = Q(
√
N) is

OK = Z

[
dK +

√
dK

2

]
=

{
Z[
√
N ] if N 6≡ 1 (mod 4)

Z
[

1+
√
N

2

]
otherwise

.

Definition 2.46 (Order in a Quadratic Number Field). An order O in a quadratic number
field K is a subset satisfying:

1. O is a unital subring of K;

2. As a Z module, dimZ(O) is finite; and,

3. O contains a Q-basis of K.

We note that
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1. O is torsion-free (since K is torsion-free);

2. O is a free Z-module of rank 2; and,

3. K = Quot(O).

Any order O of K is contained in OK , and so OK is maximal. We can describe the structure
of O in terms of c = [OK : O]:

Lemma 2.47 ([22, Lemma 7.2]). Let O be an order in a quadratic field K of discriminant
dK , and let c = [OK : O]. Then:

i. c is finite; and,

ii. O = Z + cOK = Z
[
cdK+

√
dK

2

]
We call c = [OK : O] the conductor of O. Another important invariant of an order in a

quadratic field is the discriminant, defined as follows. If O = 〈α, β〉, then its discriminant
is

∆O =

∣∣∣∣ α β

α β

∣∣∣∣2
where α → α is the nontrivial automorphism of K fixing Q. This expression for ∆ is
independent of the basis (α, β) chosen for O; choosing the particular basis (1, cdK+

√
dK

2
)

gives

∆O =
( c

2

)2
∣∣∣∣ 1 dK +

√
dK

1 dK −
√
dK

∣∣∣∣2 = c2dK

Since c ∈ Z and K = Q(
√
dK) we see that K = Q(

√
∆O) as well for any order O of K.

Moreover, ∆O > 0 if K is real, and ∆O < 0 if K is imaginary. In fact, ∆O determines O
uniquely, and for any ∆ ≡ 0, 1 (mod 4) there is an order O∆ ⊂ K with ∆O∆

= ∆.

We are finally prepared to described the endomorphism ring of an ordinary elliptic
curve.

Theorem 2.48 (Structure of Ordinary Endomorphism Rings [69, Theorem V.3.1]). Let E
be an ordinary elliptic curve defined over GF (q). Then there exists an imaginary quadratic
field K and an integer ∆ < 0 such that

End(E) ∼= O∆ ⊆ K.
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Structure of the Endomorphism Ring of a Supersingular Elliptic Curve

We first require two definitions.

Definition 2.49 (Quaternion Algebra). A quaternion algebra is a Q-algebra of the form

A = Q + αQ + βQ + αβQ

where α, β ∈ A satisfy α2, β2 ∈ Q, α2, β2 < 0, and αβ = −βα.

Definition 2.50 (Order in an Algebra). An order O in a Q-algebraA is a subset satisfying:

1. O is a unital subring of A;

2. As a Z-module, O is finite-dimensional; and,

3. O contains a Q-basis of A.

We have the following result characterizing the structure of endomorphism rings of
supersingular elliptic curves:

Theorem 2.51 (Structure of Supersingular Endomorphism Rings [69, Corollary III.9.4]).
Let E be a supersingular elliptic curve defined over a finite field. Then there exists a
quaternion algebra A and an order O ⊆ A such that End(E) ∼= O.

Theorems 2.48 and 2.51 together tell us that End(E) is a commutative ring if and
only if E is ordinary. This commutativity enables the construction of Couveignes and
Rostovstev-Stolbunov [21, 66] (which use ordinary curves). When we restrict to GF (p)-
rational endomorphisms of supersingular elliptic curves defined over GF (p), however, we
have the following result:

Theorem 2.52 (Supersingular GF (p)-rational Endomorphism Rings [24, Theorem 2.1]).
Let E/GF (p) be supersingular. Then

EndGF (p)(E) ∼= Z
[√
−p
]

;

in particular, EndGF (p)(E) is an order in Q[
√
−p] and is thus commutative.

Applying Theorem 2.52, Castryck, Lange, Martindale, Panny, and Renes construct
a supersingular analogue of the scheme of Couveignes over supersingular curves, called
CSIDH [14]. We detail this construction in Chapter 3.
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2.2.3 The Ideal Class Group

CSIDH is built upon the action of a group—the ideal class group—on certain sets of elliptic
curves. In this section we cover the necessary background to describe the scheme.

Before getting to the definition of ideal class group, we state the following lemma

Lemma 2.53 ([14, Lemma 6]). Let E/GF (p) be an elliptic curve and G ≤ E be finite and
GF (p)-rational. Then, up to GF (p)-isomorphism there exist exactly one curve E ′/GF (p)
and separable isogeny ψ : E → E ′ defined over GF (p) with kerψ = G.

Let O be an order in a quadratic number field K. If a ⊆ O is an ideal then it is of
finite index, and we define its norm to be N(a) = |O/a|. For any such ideal we necessarily
have

O ⊆ {β ∈ K : βa ⊆ a}

since a is an ideal in O. We say that a is a proper ideal of O if

O = {β ∈ K : βa ⊆ a}

Notably:

1. Any principal ideal is proper; and,

2. All ideals of OK are proper.

This terminology extends to fractional ideals : sets of the form αa where α ∈ K\{0}.
In particular, we call a fractional ideal b ⊆ O proper if

O = {β ∈ K : βb ⊆ b}.

We call a fractional ideal b invertible if there is another fractional ideal a such that ab = O.
We say that a fractional ideal is principal if it takes the form b = βO for some β ∈ K\{0}.
Clearly all principal fractional ideal are invertible (take a = β−1O.). We have the following
result related properness and invertibility:

Proposition 2.54 ([22, Proposition 7.4]). Let O be an order in a quadratic number field
K, and let a be a fractional O-ideal. Then a is proper if and only if it is invertible.

Let I(O) denote the set of proper fractional ideals of O. By Proposition 2.54, I(O) is a
group under ideal multiplication. The set P (O) of principal ideals of O forms a subgroup
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of I(O), and we define the ideal class group of O as

cl(O) = I(O)/P (O).

It is known that each ideal class [a] ∈ cl(O) has an integral representative (i.e., a repre-
sentative a which is truly an ideal in O, rather than a fractional ideal); moreover, for each
M ∈ Z there is such a representative with norm coprime to M ([22, Corollary 7.7]). This
is a useful result since ideals of norm coprime to the conductor are invertible and factor
uniquely into prime ideals [22, Proposition 7.20 and Exercise 7.26].

The following is taken from [14, Section 3]. Fix a prime p ≥ 5 and an elliptic curve
E/GF (p). The Frobenius endomorphism satisfies

π2
p − tπp + p = 0

where t ∈ Z is the trace of πp. The curve E is supersingular if and only if t = 0 [69,
Exercise 5.10(a)], in which case we obviously have π2

p = −p. Since πp ∈ EndGF (p)(E) ∼= O,
we have Z[πp] ⊆ O, since O is an order.

Any invertible ideal a ⊆ O factors as a = (πpO)ras for some r ∈ Z and as 6⊆ πpO. This
allows us to define an isogeny

φa : E → E/a

of degree N(a) as φ
(s)
a ◦ πrp, where φ

(s)
a (the separable part of φa) has kernel

⋂
α∈as kerα. It

is known [76, Theorem 3.11] that if a is a principal ideal then φa is an endomorphism, and
so this construction defines an action of the ideal class group cl(O) on the set È `p(O)of
elliptic curves with GF (p)-rational endomorphism ring isomorphic to O:

cl(O) �È `p(O)

([a], E) 7→ E/a =: [a] ∗ E

where a is an integral representative of [a]. Moreover, this action is free and transitive.
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Chapter 3

Isogeny-Based Key Establishment

Chapters 4, 5 and 6 build on and discuss previously-constructed isogeny-based key es-
tablishment protocols: Supersingular Isogeny Diffie-Hellman (SIDH) and Commutative
Supersingular Isogeny Diffie-Hellman (CSIDH). We describe these protocols here, and dis-
cuss the computational problems that underlie their security.

3.1 Supersingular Isogeny Diffie-Hellman

Supersingular Isogeny Diffie-Hellman (SIDH) was introduced by De Feo, Jao, and Plût in
2011 [23]. Superficially the protocol resembles the classical Diffie-Hellman protocol [25],
with the base group replaced by a set of elliptic curves, and the group operation replaced
with isogeny codomain construction. We detail the protocol here and then discuss the
computational problems that underlie its security.

3.1.1 The Protocol

The protocol description is as follows:

Setup: We require the following global parameters:

1. A prime p = `eAA `
eB
B f ± 1 where `A and `B are small primes, and `eAA ≈ `eBB ;

2. A supersingular elliptic curve E/GF (p2); and,
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3. Four points PA, PB, QA, QB ∈ E(GF (p2)) such that E[`eAA ] = 〈PA, QA〉 and
E[`eBB ] = 〈PB, QB〉.

One party (Alice) will use the `eAA -torsion subgroup, and the other (Bob) will use the
`eBB -torsion subgroup.

Key Generation: Alice:

1. Selects α ∈ Z/`eAA Z uniformly at random;

2. Constructs the isogeny φA : E → EA = E/ 〈PA + αQA〉; and,

3. Constructs the auxiliary points RA = φA(PB) and SA = φA(QB).

Alice’s private/public keypair is

skA = α and pkA = (EA, RA, SA).

Bob proceeds analogously.

Communication: The parties exchange their public keys.

Key Establishment: Alice computes

KA = j (EB/〈RB + αSB〉)

Bob proceeds analogously to find his key KB. We have KA = KB.

The protocol is depicted in Figure 3.1.

3.1.2 Computational Problems for SIDH

As with all public-key cryptography, the security of SIDH is predicated on the difficulty
of certain computational problems. As is typical, these problems have decisional and
computational variants; we present these problems here.

Problem 3.1 (Supersingular Isogeny Problem). Let φA : E → EA be an isogeny with
kernel 〈PA + αQA〉 where α is chosen uniformly at random from Z/`eAA Z. The supersingular
isogeny problem (SSI) is, given E,EA, φA(PB), and φA(QB), to find a generator of ker φA.
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E

EA

EB

EAB ∼= EBA

kerφA
= 〈PA

+ αQA〉

kerφB = 〈PB + βQ
B 〉

kerφA,BA = 〈R
A + βSA〉

kerφB,A
B

= 〈RB
+ αSB

〉

Figure 3.1: A depiction of the computations involved in SIDH. Alice follows the solid,
plain blue arrows by finding the codomain curve of the indicated isogeny, and follows the
dashed, plain blue arrow by reading the message she receives from Bob. Bob analogously
follows the wavy red arrows.

The supersingular isogeny problem can be thought of as a supersingular isogeny ana-
logue of the classical discrete logarithm problem, in the sense that it corresponds to key
recovery in the SIDH scheme. In order to prove security of SIDH key establishment, we also
require supersingular isogeny analogues of the computational and decisional Diffie-Hellman
problems.

Problem 3.2 (Supersingular Computational Diffie-Hellman Problem). Let φA : E → EA
be an isogeny with kernel 〈PA + αQA〉 where α is chosen uniformly at random from Z/`eAA Z.
Similarly, let φB : E → EB be an isogeny with kernel 〈PB + βQB〉 where β is chosen uni-
formly at random from Z/`eBB Z. The supersingular computational Diffie-Hellman problem
(SSCDH) is to find the j-invariant of

EAB = E/ 〈PA + αQA, PB + βQB〉

given E,EA, EB, φA(PB), φA(QB), φB(PA), and φB(QA).

Problem 3.3 (Supersingular Decisional Diffie-Hellman Problem). Let φA : E → EA be
an isogeny with kernel 〈PA + αQA〉 where α is chosen uniformly at random from Z/`eAA Z.
Similarly, let φB : E → EB be an isogeny with kernel 〈PB + βQB〉 where β is chosen
uniformly at random from Z/`eBB Z. Given a tuple

(E,EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC)

where either EC = EAB = E/ 〈PA + αQA, PB + βQB〉 or EC is sampled uniformly at
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random from the set of all curves of the form

E/ 〈PA + yAQA, PB + yBQB〉

where yA and yB are chosen with the same conditions as α and β, respectively, each
with probability 1

2
, the supersingular decisional Diffie-Hellman problem (SSDDH) is to

determine which is the case.

The security of SIDH is directly based on the assumed hardness of SSDDH; in particular,
we have the following result:

Theorem 3.4 (Security of SIDH [23, Theorem 6.1]). Under the assumption that the SS-
DDH problem cannot be solved in polynomial time, the SIDH key establishment protocol is
secure in the authenticated links security model of Canetti and Krawczyk [13].

Remark 3.5 (On the Security of SIKE). While the security of SIDH relies on the SSDDH
assumption, SIKE—the NIST post-quantum standardization candidate which is built upon
SIDH—[2] requires only the weaker SSCDH assumption.

Hardness of Isogeny Problems Related to SIDH

To begin, we have the following polynomial-time reductions between the SSI, SSCDH, and
SSDDH problems:

SSI ≥P SSCDH ≥P SSDDH.

Thus the assumption that SSDDH is a difficult problem (required for the security proof
of Theorem 3.4) also requires that SSCDH and SSI also be hard problems. There are no
known reductions in the opposite direction; however, the fastest known quantum algorithms
for solving the SSDDH problem work by solving the underlying instances of SSI. The
fastest known quantum algorithms for SSDDH run in fully-exponential time Θ( 6

√
p) [71],

thus these isogeny problems seem well-suited to being cryptographic primitives. Moreover,
recent analysis due to Jaques and Schnack [42] suggests that the classical control resources
required to execute the claw-finding attack of [71] would make the parameter choices that
allow it to achieve time Θ( 6

√
p) infeasible; instead, a feasible parameter choice or a different

attack (such as that of [9]) should be considered—these alternatives have even larger time
complexity of Θ( 4

√
p).

So far, algorithms for the SSDDH, SSCDH, and SSI problems have not made use
of the auxiliary points φA(PB), φA(QB), φB(PA), φB(QA). Since E[`eAA ] = 〈PA, QA〉 and
E[`eBB ] = 〈PB, QB〉, any `eAA -torsion point X can be written as X = mAPA+nAQA for some
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mA, nA ∈ Z/`eAA Z; moreover, since extended discrete logarithms are easy on supersingular
elliptic curves [73, 70], these coefficients mA, nA are easy to compute; thus the auxiliary
points give an adversary enough information to compute the image of any point in E[`eAA ]
under φB, and the image of any point in E[`eBB ] under φA. While it is known (e.g., [74])
that the images of random points of E under φA (respectively, φB) can be used to recover
its kernel, it is not clear how the images of `eBB -torsion (respectively, `eAA -torsion) points
can be used, since none of these points (other than the point at infinity) are annihilated
by φA (respectively, φB)—in particular, “hidden subgroup” techniques (such as those of
[47, 65]) cannot be used in this setting. However, in the static/ephemeral setting (where
one party’s key pair is fixed), active attacks have used invalid auxiliary points to recover
the static secret key [31, 26], rendering static/ephemeral SIDH insecure. We discuss these
attacks in Chapter 6.

Though the auxiliary points have not successfully been used to attack SIDH, they have
been shown to be useful to attack protocols that resemble SIDH but use parameters which
are, in a certain sense, “unbalanced.” To discuss these attacks, we must consider the
following generalization of Problem 3.1.

Problem 3.6 (Generalized Supersingular Isogeny Problem [49, Problem 1]). Given a prime
p, smooth coprime integers A and B, two supersingular elliptic curves E0/GF (p2) and
E/GF (p2) connected by an A-isogeny φ, and the action of φ on E0[B], recover φ.

When A = `eAA , B = `eBB for small primes `A, `B with A ≈ B and p = AB · f − 1,
Problem 3.6 is precisely Problem 3.1.

In [63], Petit is establishes (among other things) that, under certain heuristic assump-
tions, in the case that B > A4 > p4 and j(E0) = 1728 (which was originally used as the
base curve in SIKE, although the current version uses a different based curve which is
2-isogenous to that curve; this does not have any affect on the asymptotic complexity of
the attack) there is a polynomial-time algorithm to solve Problem 3.6. In [49] this attack

is extended to the cases B > A2 > p2 or B > A3 > p
3
2 . We explain the basic structure of

the attack here; this material is based on [49, Section 2.3].

There are three main steps of the attack of [63]:

1. Compute a non-scalar θ ∈ End(E0) such that there exist d, e ∈ Z such that

deg(φ ◦ θ ◦ φ̂+ [d]) = Be

for e smooth and small.
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2. Compute τ = φ ◦ θ ◦ φ̂+ [d] using the (known) action of φ|E0[B].

3. Compute ker(τ − [d]) ∩ E[A], and hence compute φ.

By considering the endomorphisms π : (x, y) 7→ (xp, yp) and ι : (x, y) 7→ (−x,
√
−1y),

finding a θ as required in step 1 can be reduced to solving a Diophantine equation

A2(pa2 + pb2 + c2) = d2 = Be

for a, b, c; then we can take θ = aιπ + bπ + cι. Once this θ is found—say, by using
Cornacchia’s algorithm as proposed in [63]—we can decompose τ = η ◦ψ, where deg(ψ) =
B and deg(η) = e. Since θ and φ|E0[B] (and hence φ̂|E[B]) are known, η can then be
found using a meet-in-the-middle approach, using a number of operations which is efficient,
provided that e is smooth and small. Finally, in the third step we typically have ker(φ̂) =
ker(τ − [d]) ∩ E[A] (which is sufficient to recover φ); when this is not the case, a more
sophisticated solution is sufficient (see [63, Section 4.3]). The attack of [49] uses much the
same framework.

3.2 Commutative SIDH

In 2018, Castryck, Lange, Martindale, Panny, and Renes proposed a key exchange algo-
rithm titled Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) in [14]. CSIDH
uses the action of the ideal class group on the set of isomorphism classes of supersingular
elliptic curves defined over GF (p) to produce a key exchange algorithm reminiscent of the
Diffie-Hellman method. Specifically, fix a prime of the form p = 4`1 · · · `n − 1, where the
`i are distinct small odd primes; in practice `1, . . . , `n−1 are the first n − 1 odd primes,
and `n is chosen as small as possible while ensuring p is prime. Let O denote the GF (p)-
endomorphism ring of the supersingular Montgomery curve E : y2 = x3 + x defined over
GF (p). Then O has the property that each of the principal ideals `iO split into the product
of li = ([`i], πp − [1]) and li = ([`i], πp + [1]), where πp is the Frobenius endomorphism of
E. Since `iO is principal, the elements of the ideal class group represented by these ideals
are inverses, and so [li]

−1 = [li] in cl(O).

To begin the key exchange protocol, Alice and Bob both select private keys of the
form (eA1 , . . . , e

A
n ) and (eB1 , . . . , e

B
n ), respectively, where each eAj and eBj is an integer chosen

from some fixed interval [−bj, bj] ∩ Z. Alice uses her key to compute a curve EA, defined

as applying the action of the ideal [l1]e
A
1 · · · [ln]e

A
n on the initial curve E; Bob proceeds
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analogously, using his own key to compute a curve EB:

EA := [l1]e
A
1 · · · [ln]e

A
n ∗ E, EB := [l1]e

B
1 · · · [ln]e

B
n ∗ E, (3.1)

where ∗ denotes the ideal class group action. Alice then sends EA to Bob and Bob sends
EB to Alice. Each party then computes the action of the ideal corresponding to their own
private key on the curve they received from the other person. In particular, Alice computes
EBA and Bob computes EAB, defined by:

EBA := [l1]e
A
1 · · · [ln]e

A
n ∗ EB, EAB := [l1]e

B
1 · · · [ln]e

B
n ∗ EA. (3.2)

The two curves EBA and EAB are GF (p)-isomorphic since they both correspond to the
action of [l1]e

A
1 +eB1 · · · [ln]e

A
n+eBn on the curve E, by the commutativity of the ideal class

group. The shared key is the GF (p)-isomorphism class of EBA ∼= EAB. The protocol is
depicted in Figure 3.2.

E

EA

EB

EAB ∼= EBA

[l1]
eA1 · · · [ln

]e
A
n

[l1 ] eB1 · · · [ln ] eBn

[l1 ] eB1 · · · [ln ] eBn

[l1]
eA1 · · · [ln

]e
A
n

Figure 3.2: A depiction of the computations involved in CSIDH. Alice follows the solid,
plain blue arrows by evaluating the action of the indicated class group element, and fol-
lows the dashed, plain blue arrow by reading the message she receives from Bob. Bob
analogously follows the wavy red arrows.

The original method proposed in [14] for carrying out the actions in (3.1) and (3.2) is to
first choose a random point P ∈ E[πp±[1]], where E is the current curve and πp denotes the
Frobenius endomorphism. The point P will have some order ord(P ) = `c11 · · · `cnn , where
ci ∈ {0, 1} (after multiplication by 4). The curve

∏
ci=1[li]

ci ∗ EA can be computed by
iteratively multiplying out all but one prime from P to yield a point Q, constructing the
isogeny ϕ : E → E/〈Q〉 via Vélu’s formulas, and updating P ← ϕ(P ) and E ← E/〈Q〉.
One then repeats this procedure with a fresh point P , skipping any primes `i for which the
action of the target ideal [li]

ei has been completed. Since the work of [14], there has been
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much focus on making the evaluation of the group action more efficient; our contributions
to optimizing the implementation of CSIDH appears in Chapter 5.

3.2.1 Computational Problems for CSIDH

As with SIDH, there are two computational problems and one decisional variant which are
closely related to the security of CSIDH.

Problem 3.7 (Complex Multiplication Action Inversion [14, Problem 10: Key Recovery]).
Given two supersingular elliptic curves E/GF (p) and E ′/GF (p) with EndGF (p)(E) ∼= O ∼=
EndGF (p)(E

′), find an ideal a ∈ O—represented in a way which allows the action of [a] to
be evaluated efficiently—such that E ′ = [a] ∗ E.

What is meant by “efficient” in Problem 3.7 is a matter of context—in Chapter 4, we

solve the problem in time 2O(
√

log |cl(O)| log log |cl(O)|), finding a representation of [a] whose

action can be evaluated in time 2O(
√

log |cl(O)|).

Problem 3.7 is the discrete logarithm analogue for CSIDH. The analogues of the com-
putational and decisional Diffie-Hellman problems are as follows.

Problem 3.8 (CSIDH Shared Key Computation). Given supersingular elliptic curves
E/GF (p), EA/GF (p), and EB/GF (p) with the same GF (p)-rational endomorphism ring
O, find EC = [a][b] ∗ E, where [a] and [b] satisfy

EA = [a] ∗ E EB = [b] ∗ E.

Problem 3.9 (CSIDH Shared Key Decision). Given supersingular elliptic curves E/GF (p),
EA/GF (p), EB/GF (p), and EC/GF (p), where EC is chosen either uniformly at random
from È `GF (p)(O) or is equal to [a][b] ∗ E, where [a] and [b] satisfy

EA = [a] ∗ E EB = [b] ∗ E,

each with probability 1
2
, the CSIDH Shared Key Decision problem is to determine which

is the case.

So far, there are no proposed methods to tackle Problems 3.8 and 3.9 which do not
involve solving Problem 3.7, though the problems are not known to be equivalent.
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Chapter 4

A Quantum Algorithm for Inverting
Complex Multiplication

In this chapter we describe a subexponential-time, polynomial quantum space algorithm
which inverts the complex multiplication group action used in CSIDH. In particular,
given a prime p of the form used in CSIDH and pair of supersingular elliptic curves
E/GF (p), E ′/GF (p), our algorithm finds the element [a] ∈ cl(O) such that E ′ = [a] ∗ E;
moreover the representation of [a] is such that its action can be computed in subexponen-
tial time. The algorithm uses Kuperberg’s algorithm [47] and its extension due to Regev
[65] to solve an instance of the dihedral hidden subgroup problem, and inherits its time and
space complexity; in particular, it runs in subexponential time and polynomial quantum
space.

In Section 4.1 we discuss the hidden subgroup problem in general, the dihedral case in
particular, and Kuperberg’s algorithm, and briefly mention the time and space complexity
of Regev’s extension. In the remaining sections we lay the groundwork for applying the
algorithms in the context of CSIDH and analyze the time and space complexity of our
algorithm. In particular, we give considerable attention to the question of how efficiently
construct quantum states of the form

1√
|cl(O)|

∑
[a]∈cl(O)

|[a]〉|[a] ∗ E〉

which are required by Kuperberg’s algorithm; underlying this is a careful analysis of a
quantum implementation of the action of cl(O) on È `GF (p)(O). The fundamental technique
that allows us to efficiently construct these states is a classical preprosessing stage whose
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output is used to convert between a “cyclic representation” of the class group elements—
which are easy to enumerate, but whose action is not easy to evaluate—and a “prime
decomposition” representation—whose action is easy to evaluate, but which are not easy
to enumerate without knowing more about the structure of the class group.

4.1 Background

4.1.1 The Dihedral Hidden Subgroup Problem

To begin, we define the notion of a hidden subgroup problem.

Definition 4.1 (Hidden Subgroup Problem [58, Section 5.4.3]). Let X be a finite set, G
be a finitely-generated group, and H ≤ G. Let f : G → X be a function which satisfies
f(a) = f(b) ⇐⇒ ab−1 ∈ H. The hidden subgroup problem is to find H given X, G, and
(quantum) black-box access to f .

The hidden subgroup framework encodes a very broad class of problems which are far
from being solved in general. A number of well-known quantum algorithms can be cast in
this framework by choosing particular groups X, G, H, and f , such as Shor’s algorithm
for discrete logarithms [68]. It is known (q.v. [52, Theorem 3.13]) that, when G is abelian,
the problem can be solved in quantum polynomial time; moreover, it is known that the
problem can always be solved using a polynomial number of quantum queries to f [30].

In this chapter we will be concerned with the case when G is a dihedral group; that is,
when G is of the form

G ∼= D2n = 〈x, y|xn, y2, xyxy〉.

Equivalently, D2n is the group D2n = ZN oθ Z2 where θ(b)(k) = (−1)bk for all k ∈ ZN .

We can encode the problem of recovering a CSIDH ephemeral secret key as an instance
of the hidden subgroup problem in the group D2N , where N = |cl(O)|, assuming that cl(O)
is cyclic (we justify this assumption in Note 4.2). In particular, let E be the global base
curve and let EA be Alice’s ephemeral public key. Suppose that cl(O) = 〈[g]〉, and define
the function f : ZN oθ Z2 → È `p(O) by

f(k, b) =

{
[gk] ∗ E if b = 1

[gk] ∗ EA if b = 0
. (4.1)
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Since the action of cl(O) on È `p(O) is free and transitive, we have that

f(s1, b) = f(s2, b) ⇐⇒ s1 = s2, and f(s1, 0) = f(s2, 1) ⇐⇒ EA = [gs2−s1 ] ∗ E.

Consequently, f hides the subgroup H = {(0, 0), (sA, 1)}, where sA satisfies EA = [gsA ]∗E.
Thus if we can solve this instance of the dihedral hidden subgroup problem, we can recover
Alice’s ephemeral secret key.

4.1.2 Kuperberg’s Algorithm

Kuperberg’s algorithm is a quantum algorithm which solves the hidden subgroup problem
in dihedral groups. As originally described [47] the algorithm requires subexponential
time and space; later, Regev [65] reduced the quantum space complexity to polynomial.
Kuperberg’s algorithm is integral to the attack on CSIDH that we develop in this chapter,
and so we describe it here and discuss Regev’s extension in the next section.

We consider only the simplest case of the algorithm; in particular, we:

1. Suppose that N is a power of 2;

2. Suppose that the subgroup is of the form H = {(0, 0), (sA, 1)} for some sA; and,

3. Only find the lowest order bit of sA.

We can generalize from these simplifying assumptions using [47, Section 5, Algorithm 2],
[47, Proposition 2.1], and [47, Algorithm 1, Step 4], respectively.

The algorithm requires the construction of many copies of a certain type of one-qubit
quantum state; before stating the algorithm we will detail how they can be constructed and
manipulated. Given that we want to solve the hidden subgroup problem in D2N , initialize
the registers and ancilla to 1√

2N

∑
(s,b)∈D2N

|s, b〉|0〉. Using the quantum oracle for f , write
f to the zero register to obtain

1√
2N

∑
(s,b)∈D2N

|s, b〉|f(s, b)〉

Because f has a hidden subgroup H = 〈(sA, 1)〉, measuring out the ancillary qubits
will yield a random coset state |(s, b) +H〉 := 1√

2

(
|s, b〉+

∣∣s+ (−1)bsA, b⊕ 1
〉)

for some
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(s, b) ∈ D2N . Without loss of generality we can take b = 1, since every coset of H has a
representative of this form. Then

|(s, 1) +H〉 =
1√
2

(|s, 1〉+ |s− sA, 0〉).

Applying the quantum Fourier transform on the second register transforms the state to

1√
2N

(
N∑
k=0

e
2πik(s−sA)

N |k, 0〉+
N∑
k=0

e
2πiks
N |k, 1〉

)

which, after measuring all but the last qubit, becomes a state of the form

|φk〉 = e
2πik(s−sA)

N |0〉+ e
2πiks
N |1〉

where k is chosen uniformly at random. For computational purposes we can ignore global
phase, and so we will instead say that we have a state

|ψk〉 = |0〉+ e
2πiksA
N |1〉.

These |ψk〉 are exactly the states required for the slope-finding algorithm. Given |ψk〉 and
|ψ`〉, their joint state is

|ψk〉 ⊗ |ψ`〉 = |00〉+ e
2πi`sA
N |01〉+ e

2πiksA
N |10〉+ e

2πi(k+`)sA
N |11〉.

Applying CNOT to this state we obtain the state

CNOT|ψk〉 ⊗ |ψ`〉 = |00〉+ e
2πi`sA
N |01〉+ e

2πi(k+`)sA
N |10〉+ e

2πiksA
N |11〉.

Measuring out the second qubit, we obtain either

|0〉+ e
2πi(k+`)sA

N |1〉 = |ψk+`〉, if 0 is measured, or

e
2πi`sA
N

(
|0〉+ e

2πi(k−`)sA
N |1〉

)
= |ψk−`〉, if 1 is measured,

each with 50% probability. This “combining” operation is vital to the slope-finding algo-
rithm, which is as follows:

1. Let n =
⌈√

log2N
⌉
. Construct a list L0 of 3 · 22n states of the form |ψk〉, for k
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uniformly randomly selected.

2. For j between 0 and n − 1, suppose we have a list Lj of qubits |ψk〉 such that each
k has at least nj trailing zeros. Divide the list into pairs (|ψk1〉, |ψk2〉) such that k1

and k2 agree in their last min{n(j + 1), log2N − 1} bits. Combine these pairs and,
if the state |ψk1−k2〉 is produced, add it to the new list Lj+1

3. The final list Ln contains qubits which are either in the state |ψ0〉 or |ψN
2
〉. With

high probability, at least one will be of the form |ψN
2
〉. Measure such a state in the

Hadamard basis; the measured value is the value of the lowest-order unknown bit of
sA.

4.1.3 Regev’s Extension

It is clear from the description of Kuperberg’s algorithm that the quantum space required
is Ω(2

√
logN), which is subexponential in logN . Regev [65] proposes a new “combining”

operation which takes a larger number of states with uniformly random labels and outputs
with high probability a state whose label has a certain number of trailing zeros. Though
Regev states the algorithm only when N is a power of 2 which satisfies log2N = k1k2 + 1

with k1 = O
(√

logN
log logN

)
and k2 = O(

√
logN log logN), this can be extended to arbitrary

N using the results of [17, Appendix A]. Regev’s algorithm trades time for quantum space,
requiring time Θ(2

√
logN log logN) but space only O(log2N log2 logN).

4.2 Classical Preprocessing

Let p = 4`1`2 · · · `t − 1 be a prime of the form used in CSIDH, E/GF (p) : y2 = x3 + x,
and O ∼= EndGF (p)(E). Suppose cl(O) is a cyclic group (q.v. Note 4.2) of size N and with
generator [g]. We describe a procedure to find, for each positive integer j, an expression
[g2j ] =

∏t
i=1[leii ], with |ei| subexponential with respect to logN . Here, as in the description

of CSIDH, the [li], i = 1, . . . , t denote the ideals classes containing li = ([`i], πp − 1). The
idea of the algorithm is to find enough samples of the form [gk] =

∏t
i=1[leii ] where the ei

are chosen at random and subexponentially large, and then use a BKW-like algorithm to
express [g2j ] as a subexponentially-short product of the samples [gk].

Note 4.2 (On the cyclicity of cl(O)). In general, the class group is not always cyclic,
but heuristically it is cyclic in the vast majority of cases (97% of the time per Cohen-
Lenstra [20]), and in the case of CSIDH-512 [6], which is the CSIDH parameter set we
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consider throughout this work. We conjecture that standard techniques such as [16, Ap-
pendix A] could be used to extend to the non-cyclic case.

4.2.1 A Heuristic Assumption

In order to construct the samples we require in the following sections, we require a heuristic
assumption on the size of t relative to logN , which ensures that there are sufficiently
many random vectors of length t and entries bounded in magnitude by poly(logN). This
assumption can more intuitively be phrased in terms of the size of `t relative to p+1

`t
, under

the heuristic assumption that N =
√
p (as in [14]). We present the two assumptions here

and prove the link between them; in Section 4.2.2, we make use of these assumptions.

Heuristic 4.3. For a prime p of the form p = 4`1`2 . . . `t − 1 where `1, `2, . . . , `t−1 are the
first t− 1 odd primes and `t is the smallest prime larger than `t−1 for which the expression
is prime, and N =

√
p, for all t large enough one has

t ≥ 3
√

logN.

Heuristic 4.4. Let `1, `2, . . . , `t−1 be the first t − 1 odd primes. For all t large enough,
there exists a prime `t > `t−1 for which p = 4`1`2 · · · `t − 1 is prime, and

log `t ≤
2

3

√
logN − 1.

Essentially, Heuristic 4.4 says that if the largest prime `t used in the construction of the
prime p is chosen as small as possible, it cannot contribute “too much” to the bit length
of N . We note that this heuristic is satisfied for all currently-proposed CSIDH parameter
sets.

Claim 4.5. Heuristic 4.4 implies Heuristic 4.3.

Proof. Let t be large enough so that Heuristic 4.4 holds, and that t ≥ 2 log 2. We have

N =
√

4`1`2 · · · `t − 1 ≤
√

4`1`2 · · · `t ≤ 2`
t
2
t ;

taking logarithms, we obtain

logN ≤ t

2
log `t + log 2 ≤ t

3

√
logN
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(where we have used the fact that t ≥ 2 log 2), so that t ≥ 3
√

logN , as required.

It is essentially impossible to complete the proof in this chapter without some heuris-
tic assumption, though the ones we have chosen are not the only acceptable ones. In
particular, very similar algorithms to ours appear in [8] and [11], each using a different
heuristic argument. We note that our argument can be adapted to use [8, Heuristic 1] by
replacing the ideal classes [l1], [l2], . . . , [lt] in the sections that follow by the ideal classes
[p1], [p2], . . . , [ps] of that work.

4.2.2 Expander Graphs

It is known [41, Theorem 3.2] that isogeny graphs of (isomorphism classes of) elliptic curves
with complex multiplication by an imaginary quadratic order O∆ with edges corresponding
to isogenies with prime degree less than some fixed bound (log |∆|)B are in fact expander
graphs. The following well-known result about expander graphs then tells us about the
distribution of elliptic curves chosen from this set by taking short random walks.

Lemma 4.6 ([41, Lemma 2.1]). Let Γ be a finite d-regular graph for which the non-trivial
eigenvalues λ of the adjacency matrix are bounded by |λ| ≤ c, for some c < d. Let S be
any subset of the vertices of Γ, and v any vertex in Γ. A random walk of any length at

least log 2|Γ|/|S|1/2
log d/c

starting from v will land in S with probability between 1
2
|S|
|Γ| and 3

2
|S|
|Γ| .

When creating the states required by Kuperberg’s algorithm (q.v. Section 4.3.2) we
must evaluate the subgroup-hiding function f on a uniform superposition over cl(O). In
order to do so we must consider two representations of the elements of cl(O): the “cyclic
representation” [gj], which is easy to enumerate, and the “prime decomposition” repre-
sentation

∏
i[l
ei ], whose action is easy to evaluate, provided that the ei are sufficiently

small. In this section we present an algorithm which allows us to switch between these
presentations.

To begin our algorithm, we must sample values of [gj] for which 0 ≤ j ≤ |cl(O)| − 1

is (nearly) uniform, and the decomposition [gj] =
∏

i[l
eji
i ] has eji = poly(logN). First, we

solve [gai ] = [li] for each 1 ≤ i ≤ t in terms of our generator [g] using Shor’s algorithm [68]
(see [67] for more a more detailed explanation of how Shor’s algorithm applies in this
setting). Then, choosing random (e1, . . . , et) with each |ei| = Θ(log2N), we can determine
j := log[g]

∏t
i=1[leii ] =

∑t
i=1 aiei. Lemma 4.6 tells us that these j are chosen nearly uniformly

at random from the range {0, . . . , N − 1}. Moreover, the eji are polynomial, and there are
still Ω(23

√
logN) possible values of the discrete logarithm, given that t ≥ 3

√
logN .
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Given that we can construct samples [gj] of the form described, we can use a version of

the BKW algorithm [10] to compute [g2k ] =
t∏
i=1

[leii ], where the exponents are subexponential

in logN . Our algorithm uses two subroutines—upper and lower compression—which we
describe now. Let n =

⌈√
logN

⌉
. The idea of both subroutines is to take as input a

collection of uniformly chosen positive integers bounded by N ≈ 2n
2
, and reduce the

number of non-zero coefficients of their expression in base 2n.

Lemma 4.7 (Upper compression). Let k ∈ {0, . . . , n−1}, let c > 0 and let m = (c+ 1)2n.
There exists an algorithm that takes as input a = (a1, . . . , am) ∈ {0, . . . , 2n(k+1)− 1}m and
outputs b = ((v1, w1, b1), . . . , (vm′ , wm′ , bm′)) where bi = awi − avi < 2nk and m′ ≥ c(2n).

Proof. For each i ∈ {0, . . . , 2n − 1} let Bi be the set of pairs (av, v) such that i2nk ≤
av < (i + 1)2nk, let ci = max{a : (a, v) ∈ Bi} and wi be such that (ci, wi) ∈ Bi. Notice
that for any (av, v) ∈ Bi, 0 ≤ ci − av, moreover, since i2nk ≤ ci, av < (i + 1)2nk, the
difference is bounded by 2nk. The output of the algorithm is a vector consisting of the
tuples (v, wi, ci − av), with (av, v) ∈ Bi \ {(ci, wi)}, for each i ∈ {0, . . . , 2n − 1}.

Lemma 4.8 (Lower compression). Let k ∈ {0, . . . , n− 1}, let c > 0 and let m = (c+ 1)2n.
There exists an algorithm that on input a vector a = (a1, . . . , am) ∈ 2knZm outputs a
vector b = ((v1, w1, b1), . . . , (vm′ , wm′ , bm′)) where 2nk+1 | bi = awi − avi and m′ ≥ c(2n).

Proof. For each i ∈ {0, . . . , 2n − 1} let Bi be the set of pairs (av, v) such that i2kn ≡ av
mod 2(k+1)n, let ci = max{a : (a, v) ∈ Bi} and wi be such that (ci, wi) ∈ Bi. Note that
for any (av, v) ∈ Bi, we have 0 ≤ ci − av ≡ 0 mod 2(k+1)n. The output of the algorithm
is a vector consisting of the tuples (v, wi, ci − av), with (av, v) ∈ Bi \ {(ci, wi)}, for each
i ∈ {0, . . . , 2n − 1}.

For our purposes, we assume that the input of these algorithms is drawn from the uni-
form distribution (see Subsection 4.2.2). Suppose that one of the compression algorithms is
called on an input a whose entries are sampled uniformly at random from {0, . . . , 2kn− 1}.
Then for any i ∈ {0, . . . , 2n − 1}, the expected cardinality of Bi is (c + 1); therefore the
expected value of ci = max{a : (a, v) ∈ Bi} is c+1

c+2
2n. This implies that the expected sta-

tistical distance of the distribution ci − a and uniform is 2(1 − c+1
c+2

). By summing over
all i, the expected statistical distance of the output distribution and uniform is at most
2n+1( 1

c+2
).

Now our aim is to write 2`, for ` ∈ {0, . . . , n2− 1}, as a short linear combination of the
given samples. The idea is to write ` = nq+ r, and call the lower compression algorithm q
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times and the upper compression algorithm n− q+ 1 times, to obtain samples of the form
a2nq, and find a = 2r among the samples.

Proposition 4.9 (Iteration). Let ` ∈ {0, . . . , n2 − 1} and let m = 23n. There exists an
algorithm A that takes a = (a1, . . . , am) as input, and outputs a vector s ∈ Zm such that
〈a, s〉 = 2`, and whose expected infinity norm ‖s‖∞ is bounded by 2n.

Proof. Let ` = nq + r with 0 ≤ r < n. Let A′, A′′ be the algorithms described in Lemmas
4.7 and 4.8, respectively. The algorithm A starts by initializing a(0) = (a1, . . . , am). For i =

1, . . . , q, A calls A′′ on input a(i−1) to obtain b(i) = ((v
(i)
1 , w

(i)
1 , b

(i)
1 ), . . . , (v

(i)

m(i) , w
(i)

m(i) , b
(i)

m(i)))

and sets a(i) = (b
(i)
1 , . . . , b

(i)

m(i)). For j = 0, . . . , n − q + 2, the algorithm calls A′ on input

a(i+j) to obtain b(i+j) = ((v
(i+j)
1 , w

(i+j)
1 , b

(i+j)
1 ), . . . , (v

(i+j)

m(i+j) , w
(i+j)

m(i+j) , b
(i+j)

m(i+j))) and sets a(i+j) =

(b
(i+j)
1 , . . . , b

(i+j)

m(i+j)). By Lemmas 4.7 and 4.8, the lengthm(n−1) of b(n−1) is (22n−n+1)2n, and
its entries are of the form a2nq, for a ∈ [0, . . . , 2n − 1]. Moreover, following the discussion
above, the distribution of a in this set is statistically close to uniform; therefore we can find
2` with high probability. Without loss of generality assume a

(n−1)
0 = 2`; then by definition

we have that 2` is written as a difference of two entries of a(n−2). Following this recursively,
after n− 1 steps we can find 2` as a linear combination of 2n (possibly repeated) entries of
a. Hence the largest coefficient of the linear combination is bounded by 2n.

Each of the compression steps takes O(23n) time and O(23n) space; the overall com-
plexity is O ((n− 1)23n) = 2O(

√
logN) time and space.

4.3 The Quantum Algorithm

4.3.1 Instantiating the Action of cl(O) in Polynomial Space

Since [14, Alg. 2] for computing the action of cl(O) on È `p(O) is not amenable to being
instantiated quantumly, we present a modified algorithm here. While [14, Alg. 2] suc-
ceeds with probability 1 but has variable time, our algorithm has (tunable) fixed time but
succeeds with (tunable) probability less than 1.

To begin, we give an algorithm for computing EB = [l±1]∗EA for prime `. We emphasize
that this (classical) algorithm is designed with translation to a quantum algorithm—rather
than efficiency—in mind.

Algorithm 1 succeeds if and only if there is i∗ ∈ {1, 2, . . . , r} such that
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Algorithm 1: A classical algorithm for computing [l(−1)s ]∗EA for prime `, suitable
for implementing on a quantum computer.

input : A ∈ GF (p), and s ∈ {0, 1}
output: B ∈ GF (p) such that [l(−1)s ] ∗ EA = EB, where EB : y2 = x3 +Bx2 + x

1 x1, x2, . . . , xr
$←− GF (p)

2 c← 0
3 for i from 1 to r by 1 do

4 yi ←
√
x3
i + Ax2

i + xi . In the extension field GF (p2).

5 Pi ← (xi, yi), Qi ←
[
p+1
`

]
Pi

6 if
(
x3
i+Ax

2
i+xi

p

)
= (−1)s and Qi 6=∞ and c = 0 then

7 Compute B, where φ : EA → EB : y2 = x3 +Bx2 + x is an isogeny with
kerφ = 〈Qi〉

8 end

9 if
(
x3
i+Ax

2
i+xi

p

)
= (−1)s and Qi 6=∞ then

10 c← c+ 1
11 end

12 end

1.
(
x3
i∗+Ax2

i∗+xi∗

p

)
= (−1)s; and,

2. ` - ordEA(Pi∗).

For uniformly random x, these conditions hold with probability 1
2

and `−1
`

, respectively,

since E(GF (p)) ∼= Z/4Z ⊕
⊕t

k=1 Z/`kZ. Thus the total probability that Algorithm 1
succeeds is 1 −

(
`+1
2`

)r
. Later we shall choose a value of r so that our final quantum

algorithm succeeds with sufficient probability.

Next we build upon Algorithm 1 to construct an algorithm which computes EB = [l±e]∗
EA for e ∈ N. It is easy to see that Algorithm 2 succeeds with probability

(
1−

(
`+1
2`

)r)e
.

Finally, Algorithm 3 computes [l±e11 l±e22 · · · l±ett ] ∗ EA.

Then

P[Algorithm 3 succeeds] =
t∏

k=1

(
1−

(
`k + 1

2`k

)r)ek
≥
(

1−
(

3

4

)r)‖e‖1
.
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Algorithm 2: A classical algorithm for computing [l(−1)se] ∗EA for prime `, suit-
able for implementing on a quantum computer.

input : A ∈ GF (p), s ∈ {0, 1}, and e ∈ N
output: B ∈ GF (p) such that [l(−1)se] ∗ EA = EB, where EB : y2 = x3 +Bx2 + x

1 x1, x2, . . . , xr
$←− GF (p)

2 B ← A
3 for i from 1 to e by 1 do
4 B ← C, where [l(−1)s ] ∗ EB = EC : y2 = x3 + Cx2 + x, computed using random

values x1, x2, . . . , xr
5 end

Algorithm 3: An algorithm for computing [l
(−1)s1e1
1 l

(−1)s2e2
2 · · · l(−1)stet

t ] ∗ EA for
primes `1, `2, . . . , `t, suitable for implementing on a quantum computer.

input : A ∈ GF (p), s ∈ {0, 1}t, and e ∈ Nt

output: B ∈ GF (p) such that [l
(−1)s1e1
1 l

(−1)s2e2
2 · · · l(−1)stet

t ] ∗ EA = EB, where
EB : y2 = x3 +Bx2 + x

1 x1, x2, . . . , xr
$←− GF (p)

2 B ← A
3 for k from 1 to t by 1 do

4 B ← C, where [l
(−1)skek
k ] ∗ EB = EC : y2 = x3 + Cx2 + x, computed using

random values x1, x2, . . . , xr.

5 end

From here we briefly describe how to instantiate this quantumly. First we describe the
quantum instantiation of Algorithm 1. For brevity of notation we consider an input
|s〉|EA〉|0〉 which is not in superposition, but of course the algorithm extends linearly to su-

perpositions. Before the quantum part of the algorithm begins, we sample x1, x2, . . . xr
$←−

GF (p) classically and include them as part of the initial state. We will use them in the
quantum instantiation of all three algorithms.

1. In the notation of Algorithm 1, write (Qi)
r
i=1 to a new register to obtain

|s〉|EA〉|x1, x2, . . . , xr〉|Q1, Q2, . . . , Qr〉|0〉
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2. In the notation of Algorithm 1, define wi = 1 if
(
x3
i+Ax

2
i+xi

p

)
= (−1)s and Qi 6= ∞,

and wi = 0 otherwise. Write w1, w2, . . . wr to a new register to obtain

|s〉|EA〉|x1, x2, . . . , xr〉|Q1, Q2, . . . , Qr〉|w1, w2, . . . , wr〉|0〉.

This can be done by writing the results of each of the Boolean functions [Qi 6=∞] and[(
x3+Ax2+x

p

)
= (−1)s

]
to new registers, applying a Toffoli gate from these registers

onto another new register, and then uncomputing the results of the two Boolean
functions.

3. Set aside a new 0-initialized register to contain c. For i = 1, 2, . . . , r apply Vélu’s
formulas [75] conditioned on wi = 1 and c = 0, and increment c conditioned on
wi = 1. Essentially, we look down the list of points until we find xi∗ which is
“appropriate” (has wi = 1) and, when we find the first appropriate point, we set a
flag which indicates that we have computed [l] ∗ EA, and so we should not compute
more. The resultant state is

|s〉|EA〉|x1, x2, . . . , xr〉|Q1, Q2, . . . , Qr〉|w1, w2, . . . , wr〉|ĉ〉|[l] ∗ EA〉|0〉.

where ĉ counts the number of wi which are equal to 1.

4. Uncompute ĉ by subtracting 1 from it conditioned on wi = 1, for i = r, r − 1, . . . , 1.
Then uncompute (Qi)

r
i=1 and (wi)

r
i=1 by reversing the circuit of step (ii). Rearranging

the registers, the final state is

|s〉|EA〉|[l] ∗ EA〉|x1, x2, . . . , xr〉|0〉,

as required.

For fixed `, call the algorithm aboveQ(1)
` . We shall use it is a subroutine in the quantum

instantiation of Algorithm 2. For input |s〉|e〉|EA〉|x1, x2, . . . , xr〉|0〉:

1. Conditioned on register 2 being positive, apply Q(1)
` to registers 1, 3, and 4 targeting

a new register. Then decrement register 2, yielding

|s〉|e− 1〉|EA〉|x1, x2, . . . , xr〉
∣∣[l(−1)s ] ∗ EA

〉
|0〉

2. Swap registers 3 and 5, and conditioned on register 2 being positive, apply Q(1)
` again
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to registers 1, 2, 3, and 4 targeting a new register. Decrement register 2 to obtain

|s〉|e− 2〉
∣∣[l(−1)s ] ∗ EA

〉
|x1, x2, . . . , xr〉|EA〉

∣∣[l(−1)s2] ∗ EA
〉
|0〉.

3. Given a state

|s〉|e− z〉
∣∣[l(−1)s(z−1)] ∗ EA

〉
|x1, x2, . . . , xr〉|EA〉

∣∣[l(−1)sz] ∗ EA
〉
|0〉

swap registers 3 and 6, and apply the Pauli X to register 1. This yields

|1− s〉|e− z〉
∣∣[l(−1)sz] ∗ EA

〉
|x1, x2, . . . , xr〉|EA〉

∣∣[l(−1)s(z−1)] ∗ EA
〉
|0〉.

Apply Q(1)
` to registers 1, 3, and 4 targeting register 6 conditioned on register 2 being

positive. Notice that the output of Q(1)
` in this case is [l(−1)s(z−1)] ∗ EA since we are

applying [l−(−1)s ] in this case. This effectively erases the contents of register 6. We
can then apply Pauli X to register 1 again, and, conditioned on register 2 being
positive, we apply Q(1)

` and decrement register 2 to obtain

|s〉|e− (z + 1)〉
∣∣[l(−1)sz] ∗ EA

〉
|x1, x2, . . . , xr〉|EA〉

∣∣[l(−1)s(z+1)] ∗ EA
〉
|0〉

4. Repeat step 3 L− 2 times, where L ≥ e. The result is

|s〉|e− L〉
∣∣[l(−1)s(e−1)] ∗ EA

〉
|x1, x2, . . . , xr〉|EA〉

∣∣[l(−1)se] ∗ EA
〉
|0〉

Copy register 6 onto a new register to obtain

|s〉|e− L〉
∣∣[l(−1)s(e−1)] ∗ EA

〉
|x1, x2, . . . , xr〉|EA〉

∣∣[l(−1)se] ∗ EA
〉∣∣[l(−1)se] ∗ EA

〉
|0〉.

From here, we can simply reverse the iterations of step (iii) and steps (ii) and (i),
erasing the ancillary registers. Rearranging registers yields

|s〉|e〉|EA〉
∣∣[l(−1)se] ∗ EA

〉
|x1, x2, . . . , xr〉|0〉, as required.

For fixed [l], call this algorithm Q(L)
` . To evaluate [l

(−1)s1e1
1 l

(−1)s2e2
2 · · · l(−1)stet

t ] ∗ EA, it

suffices to apply each Q(Li)
`i

in turn to the appropriate registers of

|s1, s2, . . . , st〉|e1, e2, . . . , et〉|EA〉|x1, x2, . . . , xr〉|0〉

where Li ≥ ei. It is easy to see that this computes the correct value.
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Remark 4.10. When we want to compute the action in superposition, we need to apply
Q(L)
` for L greater than all the e values supported in the superposition. For unknown

states, this is not possible, but for our purposes it suffices to be able to compute the action
for known superpositions; we can then choose L appropriately.

4.3.2 Constructing the States

In this subsection we show how to use the algorithms previously described to construct the
states required to apply Kuperberg’s algorithm.

Given curves E = EA : y2 = x3 + Ax2 + x and E ′ = EB : y2 = x3 + Bx2 + x where
EB = [a] ∗ EA, and [a] = [ga], Kuperberg’s algorithm uses states of the form

|ψk〉 =
1√
2

(
|0〉+ exp

(
2πiak

N

)
|1〉
)

for k sampled uniformly at random from {0, 1, . . . , N − 1}.
Using the method described in Section 4.2 we can construct a table {(2j,v(j)) ∈ N ×

Zt}nj=1 with ‖v(j)‖∞ = 2O(n) and

[g2j ] =
[
l
v

(j)
1

1 l
v

(j)
2

2 · · · lv
(j)
t
t

]
for 1 ≤ j ≤ N . From this table, we construct the following quantum circuit, which converts
from “cyclic notation” [gm] to “prime decomposition notation” [lv1

1 lv2
2 · · · lvtt ]:

|m0〉 • . . . |m0〉
|m1〉 • . . . |m1〉

...
...

...
...

|mn〉 . . . • |mn〉
|0〉

+v0 +v1

. . .
+vn

|v(m)〉

|0〉 . . .
C
|0〉

where m = mn · · ·m1m0 is the bit decomposition of m, and v(m) satisfies

[gm] = [l
v1(m)
1 l

v2(m)
2 · · · lvt(m)

t ].
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This circuit can be implemented in polynomial space using standard techniques. Using this
circuit and the one from Section 4.3.1, we can give a complete algorithm for constructing
the states |ψk〉.

1. Construct the state

|Ψ0〉 =
1√
2N

N−1∑
m=0

|m〉|0〉|0〉+ |m〉|1〉|0〉.

2. Apply C to the first and third registers above to obtain

|Ψ1〉 =
1√
2N

N−1∑
m=0

|m〉|0〉|v(m)〉|0〉+ |m〉|1〉|v(m)〉|0〉.

3. Apply the gate |0, y〉 7→ |0, y ⊕ EB〉, |1, y〉 7→ |1, y ⊕ EA〉 to the second and fourth
registers above to obtain

|Ψ2〉 =
1√
2N

N−1∑
m=0

|m〉|0〉|v(m)〉|EB〉|0〉+ |m〉|1〉|v(m)〉|EA〉|0〉.

4. Apply the class group action gate to registers three, four, and five. If it is successful
for each m, the resultant state is

|Ψ3〉 =
1√
2N

N−1∑
m=0

[
|m〉|0〉|v(m)〉|EB〉|[lv1(m)

1 l
v2(m)
2 · · · lvt(m)

t ] ∗ EB〉|0〉

+ |m〉|1〉|v(m)〉|EA〉|[lv1(m)
1 l

v2(m)
2 · · · lvt(m)

t ] ∗ EA〉|0〉
]
.

5. Measure the fifth register. This gives a curve EC , and the state will collapse to

|Ψ4〉 =
1√
2

(|m〉|0〉|v(m)〉|EB〉|0〉+ |m+ a〉|1〉|v(m+ a)〉|EA〉|0〉) ,

and a satisfies [ga] ∗ EA = EB.

6. Apply C again to uncompute the v-values, and discard the (now empty) third register
to obtain

|Ψ5〉 = 2−
1
2 (|m〉|0〉|EB〉|0〉+ |m+ a〉|1〉|EA〉|0〉)
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for unknown random m.

7. Apply the Quantum Fourier Transform over Z/NZ to the first register to obtain

|Ψ6〉 =
1√
2N

N−1∑
k=0

ωmk|k〉|0〉|EB〉|0〉+ ω(m+a)k|k〉|1〉|EA〉|0〉,

where ω = exp
(

2πi
N

)
.

8. Measure the first register to get a uniformly random k and the state

|Ψ7〉 = 2−
1
2ωmk

(
|0〉|EB〉|0〉+ ωak|1〉|EA〉|0〉

)
.

9. Uncompute EA and EB using the gate from part (iii), and discard auxiliary qubits
to yield

2−
1
2ωmk

(
|0〉+ ωak|1〉

)
∝ |ψk〉,

as required.

Remark 4.11. In step (iv) we evaluate the class group action on a uniform superposition
over cl(O) × Z/2Z (with the second coordinate determining to which curve we apply the
element of cl(O)) with fixed randomness for each such input, using the prime decomposition
presentation of the group elements. We find that the probability of evaluating the function
correctly over the entire superposition is

∏
[h]∈cl(O)

t∏
k=1

(
1−

(
`k + 1

2`k

)r)|vk([h])|

≥
(

1−
(

3

4

)r)N maxh∈cl(O) ‖v([h])‖1

≥ 1−
(

3

4

)r
N max

h∈cl(O)
‖v([h])‖1

≥ 1− 2
− log2N+O

(√
log2 N

)
for r ≥ 2(2− log2 3) log2N ;

in particular, the success probability is negligibly different from 1 using only a polynomial
number of random points {xi}i.

4.3.3 Using the States to Find the Hidden Shift

Now that we have a method to obtain states of the form |ψk〉 for uniformly random k, we can
apply Regev’s sieve [65] to extract the states |ψ1〉, |ψ2〉, . . . , |ψ2m−1〉 where m = dlog2Ne.
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As discussed in Section 4.1.3, this method requires only polynomial quantum space. From
here we proceed using [47, Remark 5.2]; we note that

m−1⊗
k=0

|ψ2k〉 = 2−
m
2

2m−1∑
y=0

ωay|y〉, and FN |a〉 = N−
1
2

N−1∑
y=0

ωay|y〉

where FN is the quantum Fourier transform. Since these states have inner product 2blogNc

N
=

Ω(1) and this inner product is preserved by the inverse Fourier transform, it follows that
measuring F †N

⊗k−1
j=0 |ψ2j〉 in the computational basis will yield a with probability Ω(1).

4.3.4 More Precise Time and Space Analysis

We briefly explain the time and space analysis of the algorithms.

The classical portions of the algorithm are:

1. Generating a subexponential number m of samples
∑t

i=1 aiei = k, for small random
ei and known ai = logg[li].

2. Using a BKW-like algorithm to find an expression
∑m

j=1 sjkj = 2`, with sj subex-
ponential and kj from the given samples above. Its time and space complexity is
2O(
√

logN).

As for the quantum portion, we have1:

1. Computing N = |cl(O)| requires time O(log2 p) (assuming the Generalized Riemann
Hypothesis) [7, Theorem 1.2].

2. For a given `, Algorithm 1 runs in time O(r` · polylog(p)) and uses quantum space
O(r · polylog(p)) = O(logN · polylog(p)).

3. For Algorithm 2, we repeat Algorithm 1 2O(
√

logN) times. So this algorithm runs in
time O(r`t · polylog(p))2O(

√
logN) = 2O(

√
logN) (for r, `t, log p = 2O(

√
logN)) and space

O(logN · polylog(p)).

4. For Algorithm 3, apply Algorithm 2 t times. This requires time 2O(
√

logN) (for t =
2o(
√

logN)) and space O(logN · polylog(p)).

1In each of these steps, the polylog(p) terms account for time required to implement field arithmetic
and related algorithms (in the case of time complexity) and the associated scratch space required for those
algorithms (in the case of space complexity).
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5. Each sample in Regev’s algorithm [65] invokes Algorithm 3 once, and so all our calls
to Algorithm 3 take total time 2O(

√
logN log logN). The space complexity is O(log2N ·

polylog(p) · log2 logN).

4.4 Related Work

There are a number of works that address the security of CSIDH, and give attacks similar
to the one presented here. In particular, [8] and [11] were originally developed contempora-
neously with our work, while [5] and [62] came slightly later and build upon our work, [8],
and [11]. We discuss the differences between our work and those works, and explain how
these works extend ours.

To begin, we consider [8]. As mentioned in Section 4.2 in this work the authors con-
sider a different heuristic assumption on the structure of cl(O). This assumption, along
with a different classical precomputation routine based on lattice reduction allows them
to implement the hiding function defined in Equation 4.1 in time 2O( 3√logN) rather than
2O(
√

logN). The asymptotic running time of their attack on CSIDH is essentially the same
as in this chapter.

In [11], the authors give an attack with the same asymptotic running time, also based on
Kuperberg’s algorithm. They also perform a non-asymptotic analysis of their attack and
conclude that none of the CSIDH parameter sets presented in [14] (CSIDH-512, CSIDH-
1024, CSIDH-1792) achieve NIST level 1 security. They suggest that a 2260-bit prime
(optimistically) or a 5280-bit prime (pessimistically) should be used to achieve that level
of security.

In [62], the authors further develop the algorithm by generalizing the collimation sieve
of [48] and applying it in the context of CSIDH. With this new development the authors
suggest that CSIDH-512 can be broken using approximately 260 T-gates (a standard mea-
sure of the complexity of quantum algorithms) which falls far short of even the most gen-
erous estimates required for NIST level 1 security; similarly, they show that CSIDH-1024
and CSIDH-1792 are only secure at NIST level 1 for optimistic values of MAXDEPTH.

Finally, the primary results of [5] are to develop improved quantum circuits for field
arithemtic, isogeny evaluation, and other low-level components of the algorithm. In the
course of this analysis, however, the authors claim that other works (particularly [11]
and [62]) are too optimistic from the attacker’s perspective, and thus that smaller primes
than those recommended in [11] would be sufficient to provide NIST level 1 security.
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4.5 Conclusion

We have presented a quantum algorithm for inverting the complex multiplication group
action which requires only subexponential time and polynomial quantum space. Conse-
quently we have shown that CSIDH—like the protocol of Couveignes—offers only subex-
ponential security against quantum adversaries. In particular, while this attack has been
known to exist in principle since the original publication of CSIDH [14], we have demon-
strated how—under a mild heuristic asssumption on the distribution of primes of the form
used in CSIDH—to implement the required subroutines efficiently on a quantum computer,
and hence actually launch the attack.
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Chapter 5

A Systematic Approach to
Optimizing CSIDH

5.1 Introduction

In this chapter we present a framework for optimizing implementations of CSIDH, in-
cluding both methods to optimize the algorithms used to compute the action of cl(O)
on È `GF (p)(O), and to optimize system parameters—in particular, a vector of integers
that defines the keyspace. We begin by covering required background from graph the-
ory and mathematical optimization, followed by a discussion of previous works on CSIDH
optimization—particularly SIMBA [56] and the two-point method [15]. Then we present
our framework, and we give benchmarks for implementations that use our optimized algo-
rithms and parameters. In Appendix B we give results in the direction of obtaining lower
bounds on estimated running times for class group action evaluations which are derived
from our optimization methods.

5.2 Non-Cryptographic Background

Our framework requires some fundamental knowledge of graph theory and mathematical
optimization, which we present here.
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5.2.1 Aspects of Graph Theory

A directed graph is a pair G = (V,E), where E ⊆ V 2. The elements of V are called vertices
and the elements of E are called edges. We use the notation V(G) = V and E(G) = E. We
frequently depict directed graphs by drawing a dot for each vertex and drawing an arrow
from u to v if and only if (u, v) ∈ E(G). A directed graph G is connected if for any two
vertices u, u′ in the graph, there is a sequence v0, v1, . . . , vn ∈ V(G) such that

1. For 1 ≤ i ≤ n, (vi−1, vi) ∈ E(G), and;

2. Either u = v0 and u′ = vn, or u′ = v0 and u = vn.

Such a sequence is called a (u, u′)−path if u = v0 and u′ = vn, or a (u′, u)−path if u′ = v0

and u = vn. Given a directed graph G, an undirected cycle in G is a list v0, v1, . . . , vn of
vertices of G satisfying

1. For 1 ≤ i ≤ n, either (vi−1, vi) ∈ E(G) or (vi, vi−1) ∈ E(G);

2. With the exception of vn, the vertices are pairwise distinct; and,

3. v0 = vn.

A subgraph H of a directed graph G is a directed graph satisfying V(H) ⊆ V(G) and
E(H) ⊆ E(G). An arborescence S in a directed graph G is a connected subgraph which
contains no undirected cycle. An arborescence is spanning if V(S) = V(G). A Steiner
Arborescence for root r ∈ V(G) and terminals T ⊆ V (G) is one which contains a path
from r to each t ∈ T .

For our work on lower bounds in Appendix B we will require the notion of a flow
network :

Definition 5.1 (Flow Network). A flow network is a tuple (G = (V,E), c, f) where:

1. G is a directed graph;

2. V has two distinguished elements s and t: the source and terminal of the flow,
respectively;

3. c ∈ (R≥0 ∪ {∞})E is a vector of capacities ;

4. f ∈ RE≥0 is a flow which is compatible with c; that is, f satisfies

(a) Compatibility: fe ≤ ce ∀ e ∈ E, and;
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(b) Flow conservation: ∑
u∈V :

(u,v)∈E

f(u,v) =
∑
w∈V :

(v,w)∈E

f(v,w) ∀ v ∈ V \ {s, t}.

The following Lemma relates Steiner arborescences to flow networks.

Lemma 5.2. Let G be a directed graph, and let S be an arborescence in G. Let r ∈ V(S)
and T ⊆ V(S). Construct S ′ from S by adding a new vertex t and edges (v, t) for all v ∈ T .
Assign capacities to S ′ as

c(u,v) =

{
1 if u ∈ T and v = t

∞ otherwise
.

Then, S is a Steiner arborescence for r and T if and only if S ′ admits a flow f with source
r, sink t, which is compatible with c and for which∑

v∈T

f(v,t) ≥ |T |.

Proof. First suppose that S is a Steiner arborescence with root r and terminals T . Begin
by setting f = 0; then for each v ∈ T , for each edge e in the unique path from r to v, set
fe ← fe + 1, and set f(v,t) = 1. It is clear that f is a flow with source r and sink t, since 0
is a flow, and for each non-root u vertex in each (r, v)-path, we always add 1 to the in-flow
of u and 1 to its outflow. As well, f is compatible with c since each f(v,t) = 1 = c(v,t), and∑

v∈T

f(v,t) =
∑
v∈T

1 = |T |

as required.

For the other direction, suppose that
∑

v∈T f(v,t) ≥ |T |. Since the capacity at each of
the |T | edges into t is exactly 1, it follows that f(v,t) = 1 for all v ∈ T , since otherwise
the total flow into t cannot reach |T |. Since r is the source, this immediately implies that
there is a path from r to v for each v ∈ T . Since S is an arborescence by assumption, it
follows that S is in fact a Steiner arborescence with root r and terminals T .

5.2.2 Aspects of Mathematical Optimization

In this section we present standard mathematical optimization terminology and definitions.
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Definition 5.3 (Mathematical Program, Decision Variables, Objective Function, Con-
straints). A problem of the form

Minimize f(x)
Subject to g(x) = 0

h(x) ≤ 0
x ∈ X ⊆ Rn

(P )

is called a mathematical program. In a mathematical program of the form (P ), we have
the following terminology:

1. x are the decision variables;

2. f is the objective function;

3. g(x) = 0 are the equality constraints;

4. h(x) ≤ 0 are the inequality constraints;

5. The equality constraints, inequality constraints, and x ∈ X are, together, the con-
straints; and,

6. The set of all x which satisfy the constraints is the feasible region.

Definition 5.4 (Linear Program, Standard Equality Form). A mathematical program of
the form (P ) is a linear program if

1. f is a linear function of x;

2. g and h are affine functions of x; and,

3. X = Rn.

A generic linear program can be written in the form

Minimize 〈c, x〉
Subject to Aeqx = beq

Ax ≤ b
(LP )

for some matrices Aeq ∈ Rmeq×n, A ∈ Rm×n and vectors beq ∈ Rmeq , b ∈ Rm. When
A = −In×n and b = 0, we say that the program is in standard equality form (SEF-LP).
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5.3 A Framework for Group Action Algorithms

For n ∈ N, let Tn denote the directed graph with

V(Tn) = {v ∈ N2 : ‖v‖1 ≤ n} and E(Tn) = {(u, v) : ‖u− v‖1 = 1, ‖u‖1 < ‖v‖1};

that is, the vertices of Tn are those integer points in the region of the plane bounded by
the lines x = 0, y = 0, and x+ y = n, with two vertices adjacent if and only if they differ
by (1, 0) or (0, 1). We call edges of the first form horizontal and edges of the second form
vertical. Each horizontal edge is directed to the right (i.e., from u to u + (1, 0)) and each
vertical edge is directed up (i.e., from u to u+ (0, 1)).

Definition 5.5 (Strategy; Well-formed Strategy). A strategy of size n is a subgraph S of
Tn such that:

1. V(S) = V(Tn);

2. For each non-isolated vertex v ∈ V(S), there is a path from (0, 0) to v; and,

3. S contains a path from (0, 0) to each vertex in L = {v ∈ N2 : ‖v‖1 = n} of V(Tn).

A strategy S is well-formed if for any directed edge e ∈ E(S), there is a vertex v ∈ L such
that the graph obtained from S by deleting e no longer contains a path from (0, 0) to v.

Remark 5.6. Any well-formed strategy of size n is an arborescence; in particular, it is a
Steiner arborescence for Tn with root (0, 0) and terminals L.

As in [23], we are particularly interested in canonical strategies, which we define here.
When S1 and S2 are strategies of size n1 and n2 respectively, define S1#S2 to be the
strategy of size n1 + n2 with

E(S1#S2) = {((x, 0), (x+ 1, 0)) : 0 ≤ x ≤ n1 − 1} ∪ {((0, y), (0, y + 1)) : 0 ≤ y ≤ n2 − 1}
∪ {(u+ (n1, 0), v + (n1, 0)) : (u, v) ∈ E(S2)}
∪ {(u+ (0, n2), v + (0, n2)) : (u, v) ∈ E(S1)}.

Intuitively, if we picture S1#S2 as being embedded in the plane, then it consists of:

1. A path from (0, 0) to (n1, 0);

2. A path from (0, 0) to (0, n2);
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3. A copy of S1, shifted up n2 units; and,

4. A copy of S2, shifted right n1 units.

The operation # is both non-commutative and non-associative. We use # in our
definition of canonical strategy.

Definition 5.7 (Canonical Strategy). A strategy S of size n is canonical if it is equal to
some parenthization of T1#T1# · · ·#T1︸ ︷︷ ︸

n times

.

It is clear that any two parenthizations yield different strategies, and so it is immediate
that the number of canonical strategies of size n is cn = 1

n+1

(
2n
n

)
: the nth Catalan number.

We have the following equivalent characterization of canonical strategies:

Lemma 5.8 (A Characterization of Canonical Strategies). A strategy S of size n is canon-
ical if and only if

1. n = 1; or,

2. n > 1 and S = S1#S2, where S1 and S2 are canonical.

In the second case we call S1 and S2 the left and right substrategies of S, respectively. We
write SL = S1 and SR = S2.

Proof. In the case that n = 1 the result is clear. Suppose that n > 1 and that S = S1#S2

with S1 and S2 canonical and of sizes n1 and n2, respectively; clearly n = n1 + n2. Since
S1 and S2 are parenthizations of T1#T1# · · ·#T1︸ ︷︷ ︸

n1 times

and T1#T1# · · ·#T1︸ ︷︷ ︸
n2 times

, respectively, it

immediately follows that S = S1#S2 is a parenthization of T1#T1# · · ·#T1︸ ︷︷ ︸
n times

, as required.

For the converse direction, suppose that S is a parenthization of T1#T1# · · ·#T1︸ ︷︷ ︸
n times

. If this

expression does not begin with an open parenthesis, then it is necessarily of the form T1#S2

where S2 is some parenthization of T1#T1# · · ·#T1︸ ︷︷ ︸
n−1 times

, and the result follows immediately.

Otherwise this expression begins with an open parenthesis; suppose that the corresponding
close parenthesis occurs after n1 instances of T1. Then either n1 = n − 1 and the result
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follows in much the same way as when n1 = 1, or the remaining n2 = n − n1 occurrences
of T1 must occur in another pair of parentheses; in sum, we have an expression

S = (S1)#(S2)

where S1 and S2 are parenthizations of T1#T1# · · ·#T1︸ ︷︷ ︸
n1 times

and T1#T1# · · ·#T1︸ ︷︷ ︸
n2 times

, respectively;

that is, S = S1#S2 where S1 and S2 are canonical strategies, as required.

This alternative characterization of canonical strategies is useful when we devise an
algorithm which finds optimal canonical strategies. Figure 5.1 depicts a strategy of size 9
as a subgraph of T9, and highlights its left and right substrategies.

SL

SR

Figure 5.1: A strategy S of size 9 (black edges) and its left and right substrategies (blue
and red shaded regions, respectively) embedded in T9 (vertices, black edges, and dashed
grey edges). For visual simplicity, we do not explicitly draw the direction of the edges;
horizontal edges are directed to the right and vertical edges are directed up.
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5.3.1 Generalized Measures

In [23], weights are assigned to graphs Tn by measures. We require a more general notion
of measure than is present there, and so we introduce generalized measures.

Definition 5.9 (Generalized Measure). A generalized measure of size n (or, simply mea-
sure) is a tuple M = ((pj)

n
j=1, fH , fV ) where

1. (pj)
n
j=1 is a sequence of non-negative real numbers, and;

2. fH , fV : R+ → R+ are a pair of weight functions.

Definition 5.9 reduces to that of [23, Section 4.2] by taking (pj)
n
j=1 to be a constant

sequence or by taking fH and fV to be constant functions. As in [23], a measure M =
((pj)

n
j=1, fH , fV ) of size n induces a weighting of Tn in the following way:

1. Each horizontal edge ((i, j), (i+ 1, j)) gets weight fH(pi+1), and;

2. Each vertical edge ((i, j), (i, j + 1)) gets weight fV (pn−j+1).

We define the action of Sym(n) on the set Mn of generalized measures of size n as
follows: if σ ∈ Sym(n) and M = ((pj)

n
j=1, fH , fV ), then σ ·M = ((pσ(j))

n
j=1, fH , fV ).

5.3.2 The Connection to CSIDH

Recall that the most basic operation required to execute CSIDH is to compute [li] ∗ E
where `i is a small prime and li = ([`i], πp− ιE). This computation is most efficiently done
by finding a generator of the isogeny φli whose kernel is kerφli = E(GF (p))[`i]; that is,
a GF (p)-rational point Qli of E of order `i. The most straightforward method to recover
such a Qli and hence compute [li] ∗ E is given in Algorithm 4.

If it were sufficient to compute [li] ∗ E for just one value of i, this would be the end of
the story. However, in general we must compute [

∏n
i=1 l

ei
i ] ∗E where each ei ∈ {0, 1}. The

most obvious method to do so is to simply execute Algorithm 4 repeatedly, updating the
curve each time. This approach requires multiplying points by each of the n primes n− 1
times each. In [14] the authors improve on this method, instead using Algorithm 5.

In the jth step of Algorithm 5, the point P is multiplied by the first n−j primes to obtain
a point of order `n−j+1, used to construct an `n−j+1-isogeny. Compared with n applications
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Algorithm 4: An algorithm to compute [li] ∗ E
input : E a supersingular elliptic curve, `1, `2, . . . , `n small primes, an index

1 ≤ i ≤ n
output: [li] ∗ E

1 p = 4`1`2 · · · `n − 1

2 P
$←− E(GF (p))

3 Qli ← [4`1`2 · · · `i−1`i+1 · · · `n]P
4 if Qli =∞ then
5 Goto 2
6 end
7 else
8 return E/ 〈Qli〉
9 end

Algorithm 5: An algorithm to compute [le11 le22 · · · lenn ] ∗ E1

input : E, `1, `2, . . . , `n small primes, an index 1 ≤ i ≤ n, a vector e ∈ {0, 1}n
output: [le11 le22 · · · lenn ] ∗ E

1 p = 4`1`2 · · · `n − 1

2 P
$←− E(GF (p)) of order `1`2 · · · `n

3 for i = n, n− 1, . . . , 1 do
4 Qli ← [`1`2 · · · `i−1]P
5 if ei = 1 then
6 φ[li] ← the isogeny with kernel 〈Qli〉
7 E ← φ[li](E)
8 P ← φ[li](P )

9 end

10 end
11 return E

of Algorithm 4, Algorithm 5 trades
(
n
2

)
point multiplications for n isogeny evaluations.

Though asymptotically isogeny evaluations cost far more than point multiplications, for
the proposed CSIDH parameter sets this tradeoff is favourable.

1Note that, in reality, P is chosen uniformly, and if some `i does not divide its order, that isogeny is
skipped and done later. For brevity of exposition in this section, we make the simplifying assumption that
P has the required order.
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We can visualize the operations that are applied to P on a labelled copy of Tn, as
depicted in Figure 5.2 (for the case n = 9). It is immediately apparent that these operations
and their outputs—interpreted as edges and vertices in Tn, respectively—form a strategy;
we call this strategy the multiplication-based strategy, since it uses the greatest number of
multiplication edges among all strategies of a fixed size.

But there is no reason that the multiplication-based strategy is the only possibility for
computing the required points; any strategy of size n yields an algorithm for computing
Ql1 , Ql2 , . . . , Qln , and vice versa. This is the connection between abstract strategies as
defined in Section 5.3, and CSIDH.

5.3.3 The Connection to Optimizing Implementations of CSIDH

So far, we have made no explicit connection to optimizing the runtime of implementations of
CSIDH. Of course, to follow each edge in a strategy incurs some cost: the cost of evaluating
some [`i] or some φ[li]. In principle this “cost” should be the running time of the algorithm
for evaluating these maps; however, this is of course platform- and hardware-dependent. A
reasonable proxy for running time is the number of underlying field operations (in GF (p))
required to implement the maps. We consider three basic field operations: multiplication
M, squaring S, and addition a. Table 5.1 contains the number of these operations re-
quired for evaluating the maps [`i] and φli . We note that this table does not account for
the improved isogeny evaluation algorithms of [4], which require less time asymptotically
than is listed in Table 5.1. The reason for this is twofold: first, the values in Table 5.1
are representative of the algorithms used in prior implementations of CSIDH-512 (ours
included), and thus are the relevant costs for our purposes. Second, the authors of [4] do
not provide exact field operation counts for their improved algorithms, and so we can not
easily model their cost in the way required for this work.

Using these formulae, given CSIDH primes (`i)
n
i=1, we define a measure

M~̀,α,β = ((`i)
n
i=1, fH , fV ) where

fH(`) = (8dlog2 `e − 4) + α(4dlog2 `e − 2) + β(8dlog2 `e − 6)

= (8 + 4α + 8β)dlog2 `e − (4 + 2α + 6β), and

fV (`) = 2`− 2 + 2α + β(`+ 1)

= (2 + β)`− (2− 2α− β)

where α and β are positive real numbers which are the ratios of the cost of S and a
against M, respectively. If we assign the corresponding weights to Tn according to the
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Figure 5.2: The multiplication-based strategy of size 9 (black edges) embedded in T9

(vertices, black edges, and dashed grey edges). Vertices in the graph correspond to points
on elliptic curves, horizontal edges to multiplication by a constant, and vertical edges to
isogeny evaluations. The points P and Ql1 , Ql2 , . . . , Ql9 from Algorithm 5 are labelled.
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Operation: M S a
Evaluating [`i] 8dlog2 `ie − 4 4dlog2 `ie − 2 8dlog2 `ie − 6

Determining kerφli 2`i − 6 `i − 3 3`i − 11
Determining codomφli `i + dlog2 `ie − 1 2dlog2 `ie+ 6 6

Evaluating φli 2`i − 2 2 `i + 1

Table 5.1: GF (p) operation counts for some algorithms required to evaluate ∗. Note
that the multiplication, squaring, and addition counts for the determining codomφ[li] are
those that are required beyond determining kerφ[li], and that the counts for evaluating φ[li]

are those that are required beyond determining codomφ[li] and determining kerφ[li]. We
separate out these components because, for a given isogeny, we must determine its kernel
and codomain only once, even if it is to be evaluated many times.

rules described in Section 5.3.1, then the total weight of any strategy in this weighted Tn is
the number of GF (p) multiplications (and equivalent operations) required to execute the
strategy.

It remains to consider permuted measures. This assignment of weights to Tn implicitly
takes a fixed ordering on the primes (as specified in [14], this ordering is from smallest to
largest, so that the isogenies are constructed in order of largest to smallest degree), but
there is no reason that the isogenies must be constructed in this order; any ordering of the
primes is valid. To find the globally-optimal CSIDH implementation, one must optimize
both the strategy and permutation of the primes simultaneously.

5.4 Prior Work

Two major optimizations for evaluating the complex multiplication action appear in the lit-
erature at present: splitting isogenies into multiple batches (SIMBA) [56] and the two-point
technique [59]; we present them in this section. These two methods are complementary to
one another and also to our optimizations—all three can be used simultaneously to best
optimize a CSIDH implementation. We also detail how our optimizations complement the
existing ones.

5.4.1 Splitting Isogenies into Multiple Batches—SIMBA

As the name implies, the fundamental idea of SIMBA is that we need not restrict ourselves
to algorithms that use “full” strategies; that is, strategies which choose one point P at
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the beginning, and then map to each point Qln , Qln−1 , . . . , Ql1 . Instead, we can split the

primes into batches S(i) = {`(i)
1 , . . . , `

(i)
ni }, for 1 ≤ i ≤ m, and execute a strategy on each

batch (starting with a fresh random point for each batch). In the nomenclature of [56],
the specification of SIMBA-m-M2 is as follows:

1. S(i) = {`j : j ≡ i (mod m)} for 1 ≤ i ≤ m.

2. At each of the first M steps, for each i, a fresh random point P is chosen and the
point Pi = [4

∏
`k 6∈S(i) `k]P is constructed. Then, the multiplication-based strategy

on Si is executed.

3. For the remaining rounds, the multiplication-based strategy on the remaining primes
is executed until all the required isogenies have been computed.

Notably, the overall order of the primes (and hence the partition sets and the order in
which the primes appear in each multiplication-based strategy) is not specified. Moreover,
the authors do not consider strategies other than the multiplication-based strategy. A
natural generalization of our technique for finding the optimal permutation for full CSIDH
strategies applies to SIMBA-m-M for any m and M . Moreover, for a given permutation
our algorithm for finding an optimal strategy applies without modification to each batch
of primes.

5.4.2 The Two-Point Technique

In the original specification of CSIDH, parties’ private keys could include both positive
and negative exponents. To evaluate [l−1

i ] ∗E requires a point Qli
∈ E which is of order `i

and GF (p2)-rational but not GF (p)-rational. In the original specification, GF (p2)-rational
points are chosen uniformly at random and, if they are GF (p)-rational, they are used in
a multiplication-based strategy to compute isogenies of degrees corresponding to positive
exponents, while if they are not, they are used in a multiplication-based strategy for those
primes whose corresponding exponents are negative. In this regime, empirically it has
been found that using only positive exponents is more efficient, as the same strategy and
permutation of the primes can be used for any private key. In [59], Onuki et al. find
improved performance by tracking two points through each strategy: one from E[πp − [1]]

2The original notation is SIMBA-m-µ; we use alternate notation to avoid confusion with our use of µ:
the vector of multiplication costs.
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and one from E[πp + [1]]. When reaching an isogeny construction, the appropriate point
is used depending on the sign of the private key in the corresponding position.

In the multiplication-based strategy, having two points results in a negligible cost in-
crease since only one of the two points needs to be multiplied to derive the kernel generator
of the isogeny (though both points are still evaluated under the isogeny). When using other
strategies this luxury is not an option since the path from the root to the leaf under consid-
eration may pass through internal branch vertices, and so both points should be multiplied
through nearly the entire strategy; the exception is horizontal paths within the strategy
that end at a leaf and contain no branch vertices, in which case one can only multiply
through whichever point is needed at the leaf node. In the regular model, this would result
in highly increased cost since it uses roughly double the number of point multiplications.

As one remedy to this, we point out that the operations on the two points are entirely
independent, and so if two processors are available all identical scalar multiplications and
isogeny evaluations for the two points may be done in parallel. Therefore if one allows
parallelizing operations, the method used by Onuki et al. could potentially be generalized
to include strategies different from the multiplication-based strategy.

If more than two processors are available, further parallelization is possible. An exten-
sive analysis of parallelizing operations within the strategies of SIDH was performed by
Hutchinson and Karabina in [38], and we expect similar results to hold in this setting. We
leave this for future examination and do not pursue this idea further in this work.

5.5 Optimization Techniques for CSIDH

We saw in Section 5.3 a framework for describing algorithms for evaluation of the class
group action for CSIDH. In this section we present three results in the direction of actually
optimizing CSIDH; in particular, we give

1. A linear programming formulation of the problem of finding the optimal permutation
for a given set of primes and strategy;

2. A dynamic programming algorithm which finds the optimal strategy for a given set
of primes and permutation; and,

3. An iterative convex programming approach to finding an approximately optimal
bound vector.
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We note that techniques 1 and 2 are used to optimize the algorithm for evaluating
the action of cl(O) on È `GF (p)(O), and thus have applications outside of CSIDH, while
technique 3 is a “protocol-level” optimization, and is essentially specific to CSIDH.

5.5.1 Encoding Strategies

In earlier works which explicitly deal with strategies [23, in particular], strategies are
encoded as explicit parenthesization of T1#T1# · · ·#T1︸ ︷︷ ︸

n1 times

. While this encoding is convenient

in certain applications, it is not particularly convenient for mathematical optimization. For
our purposes we instead encode strategies S of size n as pairs of lower triangular matrices
H(S), V (S) ∈ R(n−1)×(n−1). The matrices are defined as follows:

H(S)ij =

{
1 if ((i− 1, n− j − 1), (i, n− j − 1)) ∈ E(S)

0 otherwise
, and

V (S)ij =

{
1 if ((i− 1, n− j), (i− 1, n− j + 1)) ∈ E(S)

0 otherwise
.

More intuitively, consider the subgraphs SH and SV of S, obtained from S by keeping
only the horizontal and only the vertical edges, respectively. Consider the embedding of SH
in the plane; there are n−1 rows of n−1 “potential” horizontal edges, in which some edges
are present. We then simply fill H(S) with 1s in the positions where the corresponding edge
is present, and 0s in the remaining positions, in the same orientation as in the embedding of
SH in the plane; we construct V (S) from SV analogously. An example of this construction
is depicted in Figure 5.3.

If S is a canonical strategy, we can instead build up its strategy matrices H(S) and
V (S) from H(SL) and H(SR), and V (SL) and V (SR), respectively. If we define H(T1) and
V (T1) to be empty matrices, when |SL| = n1 and |SR| = n2, recursively we have

H(SL#T1) =

 H(SL) 0

1 1

 V (SL#T1) =

 V (SL) 0

eT1 0


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H(S) =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1


V (S) =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0


Figure 5.3: A strategy S of size 9 (black edges) embedded in T9 (vertices, black edges, and
dashed grey edges) and its corresponding matrices H(S) and V (S).
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H(T1#SR) =

 0 0

en2 H(SR)

 V (T1#SR) =

 1 0

1 V (SR)



H(SL#SR) =


H(SL) 0 0

0 0 0

en2−11T en2−1 H(SR)

 V (SL#SR) =


V (SL) 0 0

eT1 0 0

1eT1 0 V (SR)


where 0 and 1 are matrices of 0s and 1s of the appropriate sizes, and ej is the jth standard
basis vector of the appropriate length.

Encoding SIMBA Strategies. Just as we did with full strategies, it is desirable to
encode SIMBA strategies as a pair of matrices (H,V ). If S = (S1, S2) is a SIMBA strategy
on two SIMBA substrategies, we define

H(S) =


H(S1) 0 0

0 0 0

0 0 H(S2)

 and V (S) =


V (S1) 0 0

0 0 0

0 0 V (S2)


where H(Si) and V (Si) are the encoding matrices of the Si as defined in Section 5.5.1.
Then, for a SIMBA strategy S = (S1, S2, . . . , Sm) on m ≥ 3 substrategies, we define

H(S) =


H(S ′) 0 0

0 0 0

0 0 H(Sm)

 and V (S) =


V (S ′) 0 0

0 0 0

0 0 V (Sm)


where S ′ = (S1, S2, . . . , Sm−1). This definition is used to make the optimization problems
in Sections 5.5.2 and 5.5.4 compatible with SIMBA strategies.
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5.5.2 A Linear Program for an Optimal Permutation

Fix a measure M = ((`i)
n
i=1, fH , fV ). Let CM(S, σ) denote the cost of strategy S under

measure M when the primes are ordered according to σ. At the highest level, the problem
of finding an optimal permutation for a given strategy S is

Minimize CM(S, σ)
Subject to σ ∈ Sym(n)

(5.1)

where Sym(n) is the symmetric group on n symbols. To obtain an LP formulation of the
problem, we first replace the permutation σ by a permutation matrix Σ given by

Σ =
n∑
i=1

eie
T
σ(i)

where {ei}i are the standard basis vectors. To write CM(S,Σ) as a linear function of Σ,
first define

TL =
[
In−1|0

]
and TR =

[
0|In−1

]
and

µ = [fH(`i)]
n
i=1 and ι = [fV (`i)]

n
i=1.

Then

CM(S,Σ) =
n−1∑
i=1

n−1∑
j=1

Hi,jfH(`σ(j)) +
n−1∑
i=1

n−1∑
j=1

Vi,jfV (`σ(i+1))

=
n−1∑
i=1

n−1∑
j=1

Hi,jµσ(j) +
n−1∑
i=1

n−1∑
j=1

Vi,jισ(i+1)

=
n−1∑
i=1

n−1∑
j=1

Hi,j(Σµ)j +
n−1∑
i=1

n−1∑
j=1

Vi,j(Σι)i+1

=
n−1∑
i=1

n−1∑
j=1

Hi,j(TLΣµ)j +
n−1∑
i=1

n−1∑
j=1

Vi,j(TRΣι)i

= 1THTLΣµ+ 1TV TTRΣι

= 〈T TLHT1µT + T TRV 1ιT ,Σ〉F
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Finally we must enforce that Σ is a permutation matrix. In particular, a permutation
matrix is an integer doubly-stochastic matrix, and so we have

Σ is a permutation matrix ⇐⇒


Σ1 = 1

1TΣ = 1T

Σ≥ 0
Σ ∈ Zn×n

.

Altogether, we have the following formulation of the optimal permutation problem:

Minimize 〈T TLHT1µT + T TRV 1ιT ,Σ〉F
Subject to Σ1 = 1

1TΣ = 1T

Σ≥ 0
Σ ∈ Zn×n

(OPP-IP)

Of course, problem (OPP-IP) is an integer linear program rather than a linear program.
We can relax away the integrality constraint to obtain a true linear program:

Minimize 〈T TLHT1µT + T TRV 1ιT ,Σ〉F
Subject to Σ1 = 1

1TΣ = 1T

Σ≥ 0

(OPP-LP)

The feasible region of (OPP-LP) is the Birkhoff polytope of (ambient) dimension n× n:

Bn = {Σ ∈ Rn×n : Σ1 = 1, 1TΣ = 1T ,Σ ≥ 0}.

The Birkhoff polytope is integral : all its vertices have integer coordinates. By the Funda-
mental Theorem of Linear Programming [34, Theorems 2.11 and 2.12], (OPP-LP) has a
solution which is a vertex of Bn, and hence integral, and hence a solution to (OPP-IP).
Thus to solve problem (OPP-IP), we simply apply the simplex method [34, Chapter 2] or
the Hungarian algorithm [46] to problem (OPP-LP) to obtain an optimal vertex.
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An Extension to SIMBA Strategies

The same arguments apply in a straightforward fashion to the case of SIMBA strategies;
in this scenario, however, we have

(S)σM = 〈T TLHT1µT + T TRV 1ιT ,Σ〉F + (m− 1)1Tµ

where m is the number of SIMBA substrategies of S. Notably the additional term (m −
1)1Tµ is independent of the decision variables Σ, and so we can use Problem (OPP-LP)
without modification when optimizing the permutation for a given SIMBA strategy.

An Extension to the Two-Point Method

When optimizing permutations for the two point method, we cannot use Program (OPP-
LP) without a minor modification. In this setting, all vertical edges require two isogeny
evaluations and, for the horizontal edges, some require two point multiplications while
some require only one. In particular, when considering the ith row of H, let

ki = max
1≤k≤n−1

{k : Vi,k = 1}.

Then in order to be able to compute the isogeny evaluations specified by V , for each 1
among the first k entries of the ith row of H, we must multiply both torsion points by the
corresponding prime, while for the remaining 1s in that row, we only need to multiply one
torsion point (the one which corresponds to the sign of ei).

To construct the appropriate linear program for this setting, we define modified strategy
matrices Ĥ(S) and V̂ (S) by

Ĥ(S)ij =

{
Hi,j if j ≥ ki

2Hi,j if j ≤ ki − 1
V̂ (S) = 2V (S)

where ki is as defined above. We can then use Problem (OPP-LP) with the following
modified objective function:

(S)σM = 〈T TL ĤT1µT + T TR V̂ 1ιT ,Σ〉F .

We note that when S is the multiplication-based strategy (or a SIMBA strategy all
of whose SIMBA substrategies are multiplication-based), Ĥ(S) = H(S), and so we can
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apply Problem (OPP-LP) by instead modifying the cost model, using 2ι in place of ι;
since the best SIMBA substrategies we have found for the two point method have all been
multiplication-based, we employ this modification in our parameter-finding scripts.

5.5.3 An Algorithm for an Optimal Canonical Strategy

Let S∗M denote the canonical strategy of smallest weight with respect to a measure M of
size n. In [23, Section 4, Equation (5)], in the context of SIDH, the authors present the
recurrence relation for the cost of S∗M for measures M of the form M = ((`i)

n
i=1, fH , fV )

where (`i)
n
i=1 is a constant sequence (`)ni=1:

CM(S∗M) = min
1≤k<n

{
CMk

(S∗Mk
) + CM ′k(S

∗
M ′k

) + (n− k)fH(`) + kfV (`)
}

(5.2)

where for each k, Mk = ((`i)
k
i=1, fH , fV ) and M ′

k = ((`i)
n
i=k+1, fH , fV ). Intuitively, this says

that the cost of a minimal strategy is the minimum over all possible divisions into left and
right of the cost of a minimal left substrategy (CM ′k(S

∗
M ′k

)) plus the cost of a minimal right

substrategy (CMk
(S∗Mk

)) plus the cost of joining them ((n−k)fH(`)+kfV (`)). Indeed, this
intuition is precisely how the Equation (5.2) is proved.

This intuition extends to the case that fH and fV are non-constant, as is the case in
CSIDH. The result is the following recurrence for the cost of an optimal CSIDH strategy
for a measure M :

CM(S∗M) = min
1≤k<n

{
CMk

(S∗Mk
) + CM ′k(S

∗
M ′k

) +
k∑
i=1

fH(`i) +
n∑

i=k+1

fV (`i)

}
(5.3)

Equation (5.3) is an immediate consequence of the following Lemma:

Lemma 5.10. For any measure M = ((`i)
n
i=1, fH , fV ), let S∗M denote a canonical strategy

of smallest weight with respect to M . Then S∗M = S∗Mk∗
#S∗M ′

k∗
, where for any k we define

Mk = ((`i)
k
i=1, fH , fV ) and M ′

k = ((`i)
n
i=k+1, fH , fV ); S∗Mk∗

and S∗M ′
k∗

are optimal canonical

strategies for Mk∗ and M ′
k∗ , respectively, and

k∗ ∈ argmin
1≤k<n

{
CMk

(S∗Mk
) + CM ′k(S

∗
M ′k

) +
k∑
i=1

fH(`i) +
n∑

i=k+1

fV (`i)

}

Proof. By Lemma 5.8, S∗M = (S∗M)L#(S∗M)R where (S∗M)L and (S∗M)R are canonical strate-
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gies. If (S∗M)L is of size k, then of course (S∗M)R is of size n− k, and we have

CM(S∗M) = CMk
((S∗M)L) + CM ′k((S

∗
M)R) +

k∑
i=1

fH(`i) +
n∑

i=k+1

fV (`i) (5.4)

Now, it must be that (S∗M)L is an optimal canonical strategy for Mk, for if it is not, we can
construct a strategy Ŝ on M of strictly smaller weight by setting Ŝ = S∗Mk

#(S∗M)R, where
S∗M is an optimal canonical strategy for Mk; similarly, (S∗M)R must be optimal for M ′

k.

So the only candidate optimal canonical strategies for M are those of the form S∗M =
S∗Mk

#S∗M ′k
where S∗Mk

and S∗M ′k
are optimal canonical strategies for Mk and M ′

k, respec-

tively; all the remains is to choose k. By Equation (5.4), any k∗ which minimizes the
expression CMk

((S∗M)L) +CM ′k((S
∗
M)R) +

∑k
i=1 fH(`i) +

∑n
i=k+1 fV (`i) among all 1 ≤ k < n

yields an optimal canonical strategy, and no other k does; thus we indeed have

k∗ ∈ argmin
1≤k<n

{
CMk

(S∗Mk
) + CM ′k(S

∗
M ′k

) +
k∑
i=1

fH(`i) +
n∑

i=k+1

fV (`i)

}

and the proof is complete.

5.5.4 Optimizing the Bound Vector

We now leave behind the setting of full generality and return to CSIDH, where we consider
the primes M = {`1, . . . , `n}. Castryck et al. in [14] propose to select the values of the
private key (e1, . . . , en) from some common interval [−b, b]. Meyer et al. in [56] instead con-
sider sampling each value ei from its own interval [0, bi], where the vector b = (b1, . . . , bn)
is to be chosen so that a speedup is gained while still maintaining a target security level.
In [56] the authors state that trying to find optimal values of bi leads to a large integer
optimization problem which is not likely to be solvable exactly. They give some vectors
b that they found heuristically, but did not give details on the method used to find the
provided values. We give details on our version of this optimization problem now.

Informally, the optimization problem can be written

Minimize The expected cost of computing the required isogenies
Subject to The protocol is sufficiently secure

.

To rewrite this as a mathematical program for the optimal exponent bound vector b,

70



we must determine the relationship between b and the cost of computing the (real and
dummy) isogenies for the group action, using a given strategy, as well as the constraints
that must be enforced on b in order to ensure security.

The requirement to maintain security in the case of non-negative exponents (à la [56])
is that ideals of the form [le11 · · · lenn ] for 0 ≤ ei ≤ bi cover the class group nearly uniformly.
An analysis was performed in [59] when selecting ei from the intervals [−bi, bi], which can
be easily adapted to the case [0, bi]. Under this adaptation, the requirement for the vector
b when selecting each ei from the interval [0, bi] is that

∏
(bi + 1) is at least the size of the

class group. By the heuristics in [19] the size of the class group is approximately
√
p (recall

that p = 4`1 · · · `n− 1), and so we need
∏

(bi + 1) ≥ √p as a constraint in the optimization
problem. Then, sufficient security can be guaranteed by enforcing

n∏
i=1

(bi + 1) ≥ √p ⇐⇒
n∑
i=1

log2(bi + 1) ≥ 1

2
log2 p = λ.

This reformulated constraint is convex, which is computationally convenient.

In the case of exponents which are not restricted to be non-negative (à la [14, 59]) the
argument of [59] applies without modification, and we arrive at the similarly-reformulated
convex constraint.

n∏
i=1

(2bi + 1) ≥ √p ⇐⇒
n∑
i=1

log2(2bi + 1) ≥ 1

2
log2 p = λ.

All that remains is to determine the cost of computing the isogenies when executing a
given strategy. As before, let µσ(i) and ισ(i) denote the cost of evaluating multiplication-
by-`σ(i) maps and evaluating `σ(i)-isogenies, respectively. As well, let κσ(i) be the combined
cost of computing the kernel points from a given generator and computing the codomain
curve of an `σ(i)-isogeny.

We must consider two cases: rounds in which `σ(i) is ‘active’ (that is, there are still
`σ(i)-isogenies to be computed), and rounds in which `σ(i) is ‘inactive’ (that is, there are no
more `σ(i)-isogenies to compute).

`σ(i) is active. In this case, we must:

1. Compute one `σ(i)-isogeny kernel and codomain curve, incurring cost κσ(i);
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2. Evaluate [`σ(i)] for each 1 entry of the ith column of H, if i ≤ n − 1, incurring cost
(1TH)iµσ(i); and,

3. Evaluate an `σ(i)-isogeny for each 1 entry of the (i− 1)th row of V , if i ≥ 2, incurring
cost (V 1)i−1ισ(i).

`σ(i) is inactive. In this case, we must evaluate [`σ(i)] once at the beginning of the
strategy, incurring cost µσ(i).

Let ci denote the cost associated with prime `i in an active round, and di denote the
cost associated with prime `i in an inactive round. In the event that the starting point
in every round is of full order (so that an isogeny of each order can be computed in each
round), there are bi active rounds for `i and maxj{bj}− bi inactive rounds for `i. Thus the
total cost associated with `i is

ci · bi + di · (max
j
{bj} − bi) = (ci − di) · bi + max

j
{bj}di

so that the total cost across all i is 〈c−d,b〉+maxj{bj}1Td where, by the above arguments

c = Σ−1
(
(1THTL)T ◦ (Σµ) + (T TRV 1) ◦ (Σι) + Σκ

)
and

d = µ

where ◦ is the Hadamard product.

So far, we have accounted only for the cost incurred in the first maxj{bj} strategy
executions. If each execution of a strategy successfully lets us evaluate isogenies of each
active degree `i, this would be sufficient. However, when selecting our initial points P0, we
are not guaranteed that they will be of full order, and thus it is possible that there will be
some active primes for which we are not able to construct the required isogenies. When
this happens, we necessarily must perform additional rounds of computation. In order to
account for the cost of these additional rounds, we must estimate the number of additional
rounds required and the cost of one round.

For each i, the point P0 will allow us to compute the required `σ(i)-isogeny if and only
if:

1. P0 ∈ E[πp− [1]] (in the case bσ(i) > 0), or P0 ∈ E[πp+[1]] (in the case bσ(i) < 0); and,

2. `σ(i) divides the order of P0.
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If we choose b ≥ 0 (as proposed in [56]), or use the two-point technique of [59], at the

beginning of each strategy round these conditions are satisfied with probability
`σ(i)−1

`σ(i)
,

since for each i we have E[[`i], πp ± [1]] ∼= Z/`iZ. For large `σ(i) the success probability
is relatively high, and so we expect most of the isogenies will be computed during the
maxj{bj} rounds. Though we can in principle compute the expected cost of each additional
round for a given bound vector b, this cost is not a convex function of b, and its inclusion
in the mathematical program would make it difficult to solve. Instead, acknowledging that
few isogenies need to be computed, and that these isogenies will likely correspond to small
primes for which isogeny evaluations are cheap, we approximate the expected cost of an
additional round by 1Tµ.

It remains to determine the expected number of required additional rounds. The ex-

pected total number of rounds required to complete the required `σ(i)-isogenies is
`σ(i)

`σ(i)−1
bσ(i),

and bσ(i) rounds which include the prime `σ(i) are completed. Thus the number of addi-

tional rounds required for `σ(i) is expected to be
bσ(i)

`σ(i)−1
. The maximum of this quantity

over all i is then the number of additional rounds expected to be required to finish the
algorithm.

From the above, given a pair (H,V ) of strategy matrices and a permutation matrix Σ,
we use the following program to estimate the optimal bound vector when using SIMBA
with only one torsion point:

Minimize 〈c− d,b〉+ maxj{bj}1Td + maxj

{
bj
`j−1

}
1Tµ

Subject to
∑n

i=1 log2(bi + 1) ≥ λ
b≥ 0
b ∈ Zn

. (5.5)

We note that the program does not take into account the additional multiplications required
to construct the starting points for the SIMBA substrategies. This term is (m− 1) · 1Tµ,
where m is the number of SIMBA substrategies. Notably, this term is constant as a
function of the decision variables b and so the optimal solution does not change. Though
the objective function and constraints are convex, it is not obvious how to solve this
program because the variables are constrained to be integer. To approximate the solution,
we begin by relaxing to a continuous convex program by removing the constraint b ∈ Zn

before solving. Let the relaxed problem be denoted (CP0) and let its solution b̂
(0)

. We

construct a new program (CP1) by adding the constraint bi0 =
⌈
b̂

(0)
i0

⌋
, where i0 is the index

of the entry of b̂
(0)

which is closest to integer. Then for 1 ≤ k ≤ n − 1, we repeat this
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process: solve (CPk) and fix the entry of b which is nearest to an integer in b̂
(k)

. Finally,
in (CPn), all but one variable is fixed; we solve the problem and round the only unfixed
variable up to ensure sufficient security.

At the end of this process the bound vector may be ‘too secure;’ that is, it may be
possible to reduce some entries of b (and hence reduce the expected running time of key
exchange) while maintaining the required security level. Our ad hoc solution in this scenario
is to repeatedly reduce the entry of b which has the largest index among all the entries of b
which take on the value maxj{bj}, until no entry of b can be decreased while maintaining
the required security level; we make this heuristic choice because larger indices correspond
to larger primes and hence more expensive isogeny computations, and thus decreasing the
bound vector entry of the largest possible.

An Extension to the Two-Point Technique. When using two torsion points in each
strategy, the process is the essentially the same, except that the coefficient vectors change
slightly (because we sometimes have to perform two computations—one for each torsion
point—rather than one), and the mathematical program uses a different bound to ensure
security. In particular, the coefficient vectors are given by

c = Σ−1
(

(1T ĤTL)T ◦ (Σµ) + (T TR V̂ 1) ◦ (Σι) + Σκ
)

and

d = 2µ

(where Ĥ and V̂ are as defined in Section 5.5.2), and the new mathematical program is

Minimize 〈c− d,b〉+ maxj{bj}1Td + 2 maxj

{
bj
`j−1

}
1Tµ

Subject to
∑n

i=1 log2(2bi + 1) ≥ λ
b ≥ 0
b ∈ Zn

. (5.6)

As in Section 5.5.2, in the special case that S is the multiplication-based strategy or a
SIMBA strategy all of whose SIMBA substrategies are multiplication-based, we can instead
alter the definition of c to use a modified cost model with 2ι in place of ι.

5.5.5 The Complete Optimization Methodology

So far we have defined the optimization methodology only piecewise; in this section we
present the full optimization ‘pipeline,’ starting from a measure M = ({`i}ni=1, f, g) and
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ending with a complete parameter set: a bound vector which defines the keyspace, and a
collection of SIMBA strategies and permutations to use for each round of the algorithm.
We first present the routine we used for plain SIMBA (à la [56]) and then discuss modifi-
cations we make when optimizing for the two-point technique. We note that in this section
the “big-picture” optimization problem is too intractable to solve exactly, and we must
unfortunately rely on more ad hoc techniques; nevertheless, our procedure does result in
permutations, strategies, and bound vectors that give a noticable speedup in the context
of CSIDH-512.

Plain SIMBA

1. We first search for a SIMBA strategy S = (S1, S2, . . . , Sm) and corresponding per-
mutation Σ. In particular, we apply Algorithm 6 on measure M = ({`i}ni=1, f, g).
We chose T = 1000 (here, T is the number of iterations of the outer loop),mmin =
1,mmax = 5. In initial searches, we did not bound the sizes of the SIMBA sub-
strategies; going forward, we chose to bound the size of each SIMBA substrategy
by

max

{
2,

⌊
n

m+ 2

⌋}
≤ |Sj| ≤

⌈ n
m

⌉
+ 15 ∀1 ≤ j ≤ m.

(where m is the number of SIMBA substrategies in consideration), because initial
searches suggested that this range was most promising. This S will be the SIMBA
strategy that is used in the first round of computing the class group action.

2. Using the strategy and permutation obtained in step 1, we approximately solve the
program (5.5) using the iterative rounding technique described in Section 5.5.4 to
obtain a bound vector b.

3. For 2 ≤ k ≤ maxj{bj}, let M
(b)
k = ({`i}i : bi≥k, f, g). To obtain a permutation and

SIMBA strategy for the kth round of computation, we run Algorithm 6 on the measure
M

(b)
k . We used T = 100,mmin = 1,mmax = 5. As in Step 1., for each number m of

substrategies, we bound the size of each SIMBA substrategy by

max

{
2,

⌊
n

m+ 2

⌋}
≤ |Sj| ≤

⌈ n
m

⌉
+ 15 ∀1 ≤ j ≤ m.
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Algorithm 6: A stochastic search algorithm for an optimal strategy and permu-
tation.

input : A measure M of size n. Natural numbers T,mmin,mmax. A permutation
σ∗.

output: A permutation σ and SIMBA strategy S
1 Choose m∗ ← {mmin,mmin + 1, . . . ,mmax} uniformly at random
2 Choose P ∗ = (n1, n2, . . . , nm∗), a partition of n, uniformly at random
3 Set S∗ = (S∗1 , S

∗
2 , . . . S

∗
m∗) to be the optimal SIMBA strategy with SIMBA

substrategies of size (n1, n2, . . . , nm) for the measure σ∗M
4 Set C∗ = (S∗)σ∗M
5 for i from 1 to T do
6 Set (σ,C)← (σ∗, C∗)
7 Choose m← {mmin,mmin + 1, . . . ,mmax} uniformly at random
8 while C < C ′ do
9 Set C ′ ← C

10 Choose P = (n1, n2, . . . , nm), a partition of n, uniformly at random
11 Set S = (S1, S2, . . . Sm) to be the optimal SIMBA strategy with SIMBA

substrategies of size (n1, n2, . . . , nm) for the measure σM
12 Set σ to be the optimal permutation for S and M
13 Set C ← (S)σM
14 end
15 if C < C∗ then
16 Set (σ∗,m∗, P ∗, S∗, C∗)← (σ,m, P, S, C)
17 end

18 end

SIMBA and the Two-Point Technique

The algorithm above applies essentially unchanged when the two-point technique of [59] is
used. In this setting the best SIMBA substrategies we found were consistently multiplication-
based. Seeing this, we decided to do an exhaustive search for the optimal SIMBA de-
composition and permutation when all SIMBA substrategies are multiplication-based. In
particular, our process was:

1. For each m between 1 and 5 and each partition P = (n1, n2, . . . , nm) of n with parts of
size at least 2, compute the optimal permutation σ for the SIMBA strategy S whose
substrategies are the multiplication-based strategies of size n1, n2, . . . , nm. Choose
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the partition, permutation, and strategy with the lowest cost among these.

2. Using the strategy and permutation obtained in step 1., we approximately solve the
program (5.6) using the iterative rounding technique described in Section 5.5.4 to
obtain a bound vector b.

3. For 2 ≤ k ≤ maxj{bj}, let M
(b)
k = ({`i}i : bi≥k, f, g). Applying the same technique as

in step 1., find the optimal permutation and partition for each M
(b)
k .

Considerations when Optimizing for Submeasures. Suppose M ′ is a proper sub-
measure of M . We note that the cost of evaluating a strategy S under M ′ is (S)M ′ +
m1TµM ′′ , where M ′′ is the complement of M ′ in M and µM ′′ is the subvector of µ corre-
sponding to the indices present in M ′′. This additional term accounts for the multiplica-
tions that must be performed to remove the prime factors present in M ′′ from the order
of the initial points of the SIMBA substrategies. It is important to correctly account for
this additional cost during algorithms which will compare the cost of SIMBA strategies
that consist of different numbers of SIMBA substrategies—in particular, when computing
costs in Algorithm 6, we must modify lines (4) and (13) to include this term. When using
the two-point method, the additional term is instead 2m1TµM ′′ , since the primes of M ′′

must be eliminated from the orders of both torsion points at the beginning of each SIMBA
substrategy.

5.6 Results

In this section we detail the performance results of our optimizations. In particular, we
adapt two implementations from the literature—that of Meyer, Campos and Reith [56],
which uses SIMBA but not the two-point method, and which we refer to as the MCR im-
plementation; and that of Cervantes-Vázquez, Chenu, Chi-Domı́nguez, De Feo, Rodŕıguez-
Henŕıquez and Smith [15], which uses SIMBA and the two-point method, and which we
refer to as the CCCDRS implementation—to use optimized permutations and bound vec-
tors. We also implement arbitrary SIMBA strategies in the MCR implementation; however,
for the two-point technique we could not find strategies that improve on multiplication-
based SIMBA strategies, so we do not implement arbitrary SIMBA strategies there. We
have four major implementations based on these:

1. MCR-improved (MCRim): We use the MCR code as a base, and implement an
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optimized SIMBA strategy, permutation, and bound vector. We also employ nested
strategies.

2. CCCDRS-1: We use the CCCDRS code as a base, and implement optimal permuta-
tions, with no other modifications.

3. CCCDRS-2: We build upon the CCCDRS-1 code and additionally use nested strate-
gies (for the bound vector of [15]).

4. CCCDRS-3: We build upon the CCCDRS-2 code and additionally use an optimized
bound vector (and corresponding nested strategies).

We benchmarked all four algorithms using two different field arithmetic libraries: one
“generic” and one “optimized.” Table 5.2 contains details of the running times and opera-
tion counts for our implementations and for implementations from the literature (including
the implementation of [14], which is not constant-time) using generic arithmetic, while Ta-
ble 5.3 contains running times for the six relevant constant-time implementations with
optimized field arithmetic.

Implementation M S a
Latency Speedup

(Mcycles) (%)
CSIDH [14] 463 287 136 654 416 891 610.2 -
MCR [56] 1 036 675 425 377 1 020 712 1483.9 -

This work (MCRim) 905 200 312 483 859 759 1233.9 16.85
CCCDRS [15] (Two point) 664 936 224 081 750 992 879.1 -

This work (CCCDRS-1) 659 816 223 793 745 710 874.4 0.53
This work (CCCDRS-2) 637 352 218 635 724 958 846.3 3.73
This work (CCCDRS-3) 632 444 209 310 704 576 834.4 5.08

Table 5.2: Field operation counts and latency for seven relevant implementations of CSIDH-
512 using generic field arithmetic. Note that the implementation labelled “CSIDH” is not
constant-time, and is included only for reference.

5.7 Conclusions

We developed systematic techniques for optimizing three parameters used in the CSIDH
group action evaluation algorithm: the strategy, permutation of the primes `i, and bound
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Implementation
Latency Speedup

(Mcycles) (%)
MCR [56] 407.9 -

This work (MCRim) 355.8 12.78
CCCDRS [15] (Two point) 251.2 -

This work (CCCDRS-1) 248.5 1.09
This work (CCCDRS-2) 241.7 3.77
This work (CCCDRS-3) 238.5 5.06

Table 5.3: Latency for six relevant implementations of CSIDH-512 using optimized field
arithmetic.

vector from which private key values are chosen. Prior works in this area have used ad
hoc methods to determine these parameters, and as far as we are aware this work is the
first step in the direction of determining an optimal parameter set. Our implementation
results show that significant speedups can be achieved when using our techniques to find
efficient parameter sets. In light of recent cryptanalysis (in particular, [62]), new CSIDH
parameter sets may have to be derived to meet NIST security levels. The optimization
methods presented here can be used to contribute to these parameter sets (in the form of
the bound vector) and to efficient class group action evaluation algorithms.
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Chapter 6

An Analysis of Fault-Injection
Attacks on Static/Ephemeral CSIDH

6.1 Introduction

This chapter concerns key establishment protocols in the static/ephemeral setting; that is,
in applications where Alice’s secret key is fixed. In this setting an adversary can try to
learn information about Alice’s fixed secret by repeatedly engaging in key establishment
sessions with her. In the simplest possible kind of attack, sufficiently-many honestly-
generated shared secrets in which Alice’s secret key is fixed allow the adversary to learn
(partial information about) that secret; more sophisticated attacks may use dishonestly-
generated public keys, or even physical attacks, such as side-channel attacks (attacks in
which physical information about an implementation of a protocol, such as timing or power
consumption, is used to attack the protocol) or fault injection (attacks in which external
means are used to introduce errors into a protocol that can be exploited to break security).

Static/Ephemeral SIDH has been the target of attacks using dishonestly-generated
public keys, while both SIDH and CSIDH have been the target of side-channel and fault-
injection attacks. In this chapter we discuss these attacks on SIDH and CSIDH and the
presently-existing countermeasures, and propose new countermeasures for fault-injection
attacks on CSIDH. We consider our countermeasures in the context of a “weak” model,
where currently-existing countermeasures are perfect (that is, they completely prevent this
kind of fault attack) but expensive (in particular, they approximately double the running
time of the protocol) whereas ours is imperfect (that is, they merely increase the number
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of fault attacks required for a high success probability, rather than preventing the attack
entirely) but cheap (leaving the running time essentially unchanged).

To begin, we discuss a number of background topics required to understand our attack
and analysis, including Gray codes, some topics in statistics, and some concepts in opti-
mization. Then, we give some background on attacks on static/ephemeral isogeny-based
key establishment protocols; in particular, those attacks on SIDH which use dishonestly-
generated auxiliary points [31, 26], and then a number of fault attacks on SIDH [74, 32].
We discuss fault attacks on the “dummy” isogenies of CSIDH, and the currently-known
countermeasure [15], and then discuss a new potential countermeasure in which the real
and dummy isogenies are reordered. We examine the efficacy of this countermeasure both
by simulating an attack based on maximum a posteriori learning and by deriving upper
and lower bounds on the number of faults required (as a function of the bound vector and
desired certainty level) of a slightly more näıve attack. Our analyses apply in both the
signed key and unsigned key settings, and our simulations include six bound vectors (three
in each setting) from the literature and consider certainty thresholds from 0.1% to 99.9%.
Finally, we discuss how, in the signed setting, the key signs can be recovered from the key
magnitudes using a standard meet-in-the-middle approach. To improve the efficiency, we
use Gray codes to determine an optimal order in which to compute the entries of the tables
used in the meet-in-the-middle attack, and prove its optimality.

6.2 Combinatorial Background: Gray Codes

In discussing algorithms to recover the sign of a key after recovering its magnitude, we will
need to be familiar with the concept of a Gray code, so we define it here.

Definition 6.1 (Gray Code). A Gray code of length k is an ordering of the elements of
Zk

2 such that:

1. Each element appears exactly once in the list; and,

2. Consecutive elements in the list differ in only one index.

The canonical Gray code of length k is the reflected binary Gray code RBGCk, con-
structed recursively by the following process:

1. RBGC1 = (0, 1)
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2. RBGCk is obtained by listing the elements of RBGCk−1 in order, with a 0 appended
at the beginning of each, followed by the elements of RBGCk−1 in reverse order, with
a 1 appended at the beginning of each.

6.3 Statistical Background

In this section we cover some basic statistical concepts that will be required to understand
the fault attacks presented in later sections and their analysis. In particular, we need
some introductory concepts in parameter estimation, as well as some concentration and
anticoncentration inequalities.

6.3.1 Parameter Estimation

Given a probability distribution pθ(x) for an unknown parameter θ, it is natural to ask
how we can learn the value of θ by drawing samples of a random variable X distributed
according to pθ. In this work we will use maximum a posteriori estimation, which we
describe here.

Suppose that we have an a priori belief that the true parameter θ was chosen according
to a distribution q(θ). Then, after drawing samples x1, x2, . . . , xm independently accord-
ing to the distribution pθ, from the Bayesian perspective, the a posteriori belief on the
distribution of θ is

qMAP(θ|x1, x2, . . . , xm) =

q(θ)
m∏
j=1

pθ(xi)∫
Ω

q(ω)
m∏
i=1

pω(xi) dω

where Ω is the space from which θ is drawn. Given this, the most likely value of θ—the
maximum a posteriori estimate—is

θMAP = argmax
θ∈Ω

qMAP(θ|x1, x2, . . . , xm) = argmax
θ∈Ω

q(θ)
m∏
j=1

pθ(xi)

where the second equality comes from the fact that
∫

Ω
q(ω)

∏m
i=1 pω(xi) dω is independent

of θ. Intuitively, θMAP is the best guess at the true value of the parameter, given all the
samples we have drawn from pθ and the a priori distribution of θ.
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6.3.2 Some Inequalities

To begin, we define the following distributions, each parameterized by a single parameter
p ∈ [0, 1]:

Bernoulli: X ∼ B(p) ⇐⇒ P[X = b] =

{
1− p if b = 0

p if b = 1

Modified Rademacher: X ∼ B±(p) ⇐⇒ P [X = b] =

{
1− p if b = −1

2(1−p)

p if b = 1
2p

These random variables will encode the outcome of a fault attack, where the parameter
p depends on the bound vector entry bj and key entry ej.

Concentration and Anticoncentration Inequalities

Providing bounds on the number of faults required to recover a static secret key with
a certain guaranteed success probability requires us to analyze the behaviour of certain
random variables. In particular, we need results which bound the probability that a random
variable takes on values near its mean.

A lower bound on the probability that a random variable takes a value sufficiently close
to its mean is commonly called a concentration inequality. In our analysis, we use the
following bound to obtain an upper bound on the number of faults required to guarantee
any given success probability of a certain kind of fault attack.

Theorem 6.2 (Hoeffding’s Inequality (for iid Bernoulli Random Variables) [37]). Let
p ∈ [0, 1], and let ζi ∼ B(p) for i ∈ N. For m ∈ N, let Zm = 1

m

∑m
i=1 ζi. Then for any

t ∈ R,
P
[
|Zm − p| < t

]
≥ 1− 2e−2mt2

On the other hand, an upper bound on the probability that a random variable takes
a value sufficiently close to its mean is commonly called an anticoncentration inequality.
We apply the following bound to obtain a lower bound on the number of faults required
to guarantee a given success probability of a fault attack:

Theorem 6.3 (The Paley-Zygmund Inequality [61]). Let X ≥ 0 be a random variable with
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finite variance, and let ϑ ∈ [0, 1]. Then

P
[
X ≥ ϑE[X]

]
≥ (1− ϑ)2 E[X]2

E[X2]
.

Mean Estimates for Absolute Sums of Modified Rademacher Random Variables

We will apply the Paley-Zygmund inequality to random variables of the form Ξm =∣∣ 1
m

∑m
i=1 ξi

∣∣ where the ξi are iid B±(p). This will require estimates on E [Ξm], which we
obtain using the following inequalities:

Theorem 6.4 (The Khintchine Inequality [44]). Let a ∈ Rm, and let ξi ∼ B±(1
2
) be a

sequence of iid random variables. Then for any p > 0 there exist absolute constants Ap, Bp

such that

Ap‖a‖p2 ≤ E

[∣∣∣∣∣
m∑
i=1

aiξi

∣∣∣∣∣
p]
≤ Bp‖a‖p2

Theorem 6.5 (The Marcinkiewicz-Zygmund Inequality [53]). Let ξi be a sequence of in-
dependent random variables with mean 0, and let p ≥ 1 be such that E[|ξi|p] < ∞. Then
there exist absolute constants A′p, B

′
p such that

A′p E

( m∑
i=1

ξ2
i

) p
2

 ≤ E

[∣∣∣∣∣
m∑
i=1

ξi

∣∣∣∣∣
p]
≤ B′p E

( m∑
i=1

ξ2
i

) p
2


Of course, in order to provide concrete estimates, we will need the values of A1, B1, A

′
1,

and B′1. From [35] (for A1, B1) and [18, Theorem 10.3.2] (for A′1, B
′
1) we find that we can

take

A1 =
1√
2

B1 = 1 A′1 =
1

2
√

2
B′1 = 2.

6.4 Optimization Background

Here we discuss some fundamental concepts in optimization that come up in our arguments
in Sections 6.8.3 and 6.8.4; particularly the Lagrangian, the KKT conditions, and linear
programming duality. For a more in-depth discussion of these topics, see, for instance, [12].
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Throughout this section, let (P ) refer to the following mathematical program:

Minimize f(x)
Subject to g(x) = 0m

h(x) ≤ 0t
(P )

To begin, we define the Lagrangian:

Definition 6.6 (Lagrangian). The Lagrangian of problem (P ) is defined as

L(x;λ,µ) = f(x) + λTg(x) + µTh(x)

for vectors λ ∈ Rm and µ ∈ Rt with µ ≥ 0.

Note that for all feasible x, λ ∈ Rm and µ ∈ Rt with µ ≥ 0 we have

L(x;λ,µ) ≤ f(x).

The Lagrangian has many useful properties and applications; we will use the KKT condi-
tions and the concept of a dual program, which we define here.

Definition 6.7 (KKT Conditions). The KKT conditions for the problem (P ) and vectors
x ∈ Rn, λ ∈ Rm, and µ ∈ Rt are:

Stationarity: ∇xL(x;λ,µ) = 0n;

Primal Feasibility: g(x) = 0m, h(x) ≤ 0t;

Dual Feasibility: µ ≥ 0t; and,

Complementary Slackness: µih(x)i = 0 for all 1 ≤ i ≤ t.

The connection between the KKT conditions and optimality are given in the following
two theorems:

Theorem 6.8 (KKT Conditions—Sufficiency). Suppose that f, g, and h are continuously
differentiable (componentwise, in the case of g and h) at a point x, and moreover that there
exist λ ∈ Rm and µ ∈ Rt which, together, satisfy the KKT conditions for (P ). Then x is
optimal for (P ).
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Theorem 6.9 (KKT Conditions—Necessity in the Presence of a Constraint Qualification).
Suppose that f, g, and h are continuously differentiable (componentwise, in the case of g
and h) at a point x, and that x is optimal for (P ). Moreover, suppose that either1:

• g and h are affine; or,

• f and h are convex, g is affine, and there exists a point x(s) which satisfies g(x(s)) =
0m and h(x(s)) < 0t (a Slater Point).

Then there exist λ ∈ Rm and µ ∈ Rt which, together with x, satisfy the KKT conditions
for (P ).

In particular, Theorem 6.9 says that in the presence of an appropriate constraint qual-
ification, in order to solve (P ), it suffices to solve for x,λ and µ which satisfy the KKT
conditions.

The Lagrangian can be used to derive the dual program to a linear program. Here we
present only the special case of linear programming duality that we will require in this
chapter, along with a fundamental result concerning dual linear programs.

For a linear program of the form

Minimize 〈c,x〉
Subject to Ax ≥ b

(P )

where c,x ∈ Rn, b ∈ Rm, and A ∈ Rm×n its corresponding dual program is

Maximize 〈b,λ〉
Subject to ATλ = c

λ ≥ 0
(D)

We have the following result concerning these linear programs:

Theorem 6.10. Let x be feasible for (P ) and let λ be feasible for (D). The following two
statements are equivalent:

1. x is optimal for (P ) and λ is optimal for (D)

2. λi · (Ax− b)i = 0 for all 1 ≤ i ≤ n.

We will use Theorem 6.10 in our discussion of optimal Gray codes in Section 6.8.4.

1A condition that ensures that the KKT conditions are necessary for optimality is called a constraint
qualification. Here we give the two constraint qualifications that are relevant in this chapter; they are far
from the only such conditions.
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6.5 Multiple Protocol Instances for Static/Ephemeral

Key Establishment

In response to attacks on static/ephemeral SIDH (described in Section 6.6), the use of
multiple simultaneous protocol instances was proposed as a countermeasure [3]. The idea
is general enough to be applied to any key establishment protocol: to establish a key, each
party chooses k private keys, construct and exchanges the corresponding public keys, and
constructs k2 shared secrets: one for each combination of the parties’ keys. To construct
the shared key, both parties hash together the k2 shared secrets constructed this way.

For clarity, we describe explicitly the result of applying this construction to SIDH.

Example 6.11 (k-SIDH).

Setup: We require the following global parameters:

1. A prime p = `eAA `
eB
B f ± 1 where `A and `B are prime and `eAA ≈ `eBB ;

2. A supersingular elliptic curve E/GF (p2);

3. Four points PA, PB, QA, QB ∈ E(GF (p2)) such that E[`eAA ] = 〈PA, QA〉 and
E[`eBB ] = 〈PB, QB〉; and,

4. A preimage-resistant hash function H.

One party (Alice) will use the `eAA -torsion subgroup, and the other (Bob) will use the
`eBB -torsion subgroup.

Key Generation: For 1 ≤ i ≤ k, Alice:

1. Selects αi ∈ Z/`eAA Z uniformly at random;

2. Constructs the isogeny φ
(i)
A : E → E

(i)
A = E/ 〈PA + αiQA〉; and,

3. Constructs the auxiliary points R
(i)
A = φ

(i)
A (PB) and S

(i)
A = φ

(i)
A (QB).

Alice’s private/public keypair is

skA = (α1, . . . , αk)

pkA =
(

(E
(1)
A , R

(1)
A , S

(1)
A ), . . . , (E

(k)
A , R

(k)
A , S

(k)
A )
)
.

Bob proceeds analogously.
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Communication: The parties exchange their public keys.

Key Establishment: Alice computes

zi,i′ = j
(
E

(i′)
B /〈R(i′)

B + αiS
(i′)
B 〉
)

for each 1 ≤ i, i′ ≤ k. She computes the shared key

KA = H(z1,1, z1,2, . . . , z1,k, z2,1, z2,2, . . . , z2,k, . . . , zk,1, zk,2, . . . , zk,k).

Bob proceeds analogously.

Typically k-SIDH also includes key validation; in particular, Alice verifies that:

1. Each E
(i′)
B is a supersingular elliptic curve defined over GF (p2); and,

2. e`eAA
(R

(i′)
B , S

(i′)
B ) = e`eAA

(PA, QA)`
eB
B for each i′, where e`eAA

is the Weil pairing on

E[`eAA ] [69, Section III.8].

and Bob performs the analogous verifications.

6.6 Prior Work

Before discussing our fault attack techniques and countermeasures, we briefly discuss prior
attacks on static/ephemeral isogeny-based key establishment protocols—particularly SIDH
(and variants) and CSIDH. The attacks fall into two major categories: fault attacks, and
attacks on SIDH-like schemes using invalid auxiliary points (which are not fault attacks)—
these latter attacks do not extend to CSIDH since CSIDH does not use auxiliary points.

6.6.1 Attacks Using Invalid Auxiliary Points

Galbraith, Petit, Shani, and Ti [31] presented two adaptive attacks on static/ephemeral
SIDH: a “simple” attack when no key validation is present, and a “difficult” attack which
succeeds even when the best-known direct key validation measure due to Kirkwood, Lackey,
McVey, Motley, Solinas, and Tuller [45] is employed. We present both attacks here and
explain why the simple attack works; for the complete details of the difficult attack, see [31].
We also briefly discuss Dobson, Galbraith, LeGrow, Ti, and Zobernig’s extension of this
attack to k-SIDH [26].
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The Simple Attack. We suppose that the SIDH prime is of the form p = 2n3mf ± 1,
that Alice is using the 2-torsion subgroup, and that Alice’s key is of the form (1, α)—the
extension to other scenarios is straightforward. In the simple attack, we learn the value of
α bit-by-bit by sending invalid auxiliary points; in particular, one point is of small order.
To learn the least significant bit of α, we first select an ephemeral SIDH key (1, β) and
construct the corresponding valid SIDH message (EB, XB, YB); then, we send the message
(EB, XB, [2

n−1]YB) to Alice. Notice that

XB + [α][2n−1]YB =

{
XB if α0 = 0

XB + [2n−1]YB if α0 = 1

since YB has order 2n. Now, Alice computes the secret

EB/〈XB + [α][2n−1]YB〉 =

{
EB/〈XB〉 if α0 = 0

EB/〈XB + [2n−1]YB〉 if α0 = 1

Since XB and YB are known to us, we can simply compute both possible curves, reveal
Alice’s computed key2, and compare to recover the value of α0.

Inductively, suppose that the first i bits α0, α1, . . . , αi−1 of α are known. Define Ki =∑i−1
k=0 αk2

k and note that this quantity is known to us; to learn αi, we will proceed as
for α0, except sending the message (EB, XB − [2n−i−1Ki]YB, [2

n−i−1]YB). Then Alice will
compute

EB/〈XB − [2n−i−1Ki]YB + [α][2n−i−1]YB〉 = EB/〈XB + [2n−1αi + 2n−i−1Ki − 2n−i−1Ki]YB〉

=

{
EB/〈XB〉 if αi = 0

EB/〈XB + [2n−1]YB〉 if αi = 1

and we can use the same technique as for α0 to recover αi. Altogether, we recover α in its
entirety.

2In a practical setting, an adversary is unlikely to be able to simply “reveal” Alice’s key. Rather, we
imagine that Alice would send a message m and corresponding MAC tag σ = MAC(skA,m), and the
adversary can simply test her two candidate values of skA against σ to determine Alice’s key.
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The Difficult Attack. The simple attack is thwarted in a straightforward fashion; if
Alice computes the Weil pairing of the points she is sent, she will find that the output is

e2n(XB − [2n−i−1Ki]YB, [2
n−i−1]YB) = e2n(XB, YB)2n−i−1

6= e2n(XB, YB)

since e2n(XB, YB) is a primitive (2n)th root of unity. However, the simple attack can be
modified to thwart this countermeasure; that is, it is possible to send invalid auxiliary
points X ′B, Y

′
B which satisfy e2n(X ′B, Y

′
B) = e2n(XB, YB) and from which we can learn the

bits of α. In particular, to learn αi it is sufficient to send the points

X ′B = [ϑ](XB − [2n−i−1Ki]YB)

Y ′B = [ϑ(1 + 2n−i−1)]YB

where ϑ satisfies ϑ2 ≡ 1 + 2n−i−1 (mod 2n).

A Partial Extension to k-SIDH. It is folklore that the attack of [31] can be thwarted
using multiple protocol instances. Azarderakhsh, Jao, and Leonardi [3] proposed to use
92-SIDH to thwart the attack, while Kayacan [43] asserted that 2-SIDH was sufficient.
Dobson, Galbraith, LeGrow, Ti, and Zobernig [26] demonstrate that the attack of [31]
can be extended to an attack on k-SIDH with asymptotic cost O(16k) times the original
cost; in particular, it yields a feasible attack on 2-SIDH. They conjecture that it would be
infeasible to attack k-SIDH using the same techniques as long as k ≥ 49.

6.6.2 Fault Attacks

In this section, we discuss the basic kinds of faults that we consider, and attacks that use
these faults to recover static secret key information for SIDH and CSIDH.

Fundamentals of Fault Injection. At the highest level, a fault attack uses physical
means to tamper with the execution of a cryptographic algorithm in order to learn about
a static secret. For some examples of the kinds of physical means used to induce faults (in
the context of smart cards), see [51].

There are essentially three kinds of faults that can be injected at the bit level (see, for
instance, [51, Chapter 6]):

1. Bit randomization: A given bit’s value is changed to a value chosen at random from
{0, 1}.
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2. Bit set/reset: A given bit’s value is forced to become 0 (bit resetting) or 1 (bit
setting).

3. Bit flip: A given bit’s value is flipped, from 0 to 1 or from 1 to 0.

Some authors (e.g., [74, 32]) consider contexts in which fault attacks are less precise;
in particular, they consider byte-level randomization, where the value of a given byte of
memory is randomized. In practice this is a more achievable outcome than a bit-level
attack, but the lack of precision may make it more difficult to use or interpret the outcome
of the attack, or require more individual fault injections to learn enough about the static
secret material.

Attacks on SIDH and Variants. The first fault attack on static/ephemeral SIDH
was due to Ti [74]. The attack uses bit or byte randomization to obtain the image of a
random point under Alice’s secret isogeny; if the point has order divisible by `eAA then the
adversary can use this information to find the image of an `eAA -torsion point under Alice’s
secret `eAA -isogeny. By [74, Section 4], this point generates a subgroup which is the kernel
of an isogeny which is “close to” the dual isogeny of Alice’s secret isogeny, and the correct
dual can be found efficiently by a brute-force search with high probability.

Subsequently, Gélin and Wesolowski [32] propose “loop-abort” fault attack using bit
set/reset and bit randomization; that is, a kind of fault attack that targets a loop counter,
with the hope of causing the loop to end before the necessary iterations are completed. Loop
abort fault attacks have a long history in elliptic curve and post-quantum cryptography;
they were first introduced in the context of pairing-based cryptography [60] and have
also been considered for lattice-based schemes employing the Fiat-Shamir protocol (in
particular, BLISS [27] and Ring-TESLA [1]) and the hash-and-sign paradigm (in particular,
GPV [33, 28]).

In SIDH, Alice constructs her secret iteratively; in particular, after the kth round of
computation, Alice has computed

E
(k)
A := E/〈`eA−kA (PA + αQA)〉

where α is her secret key. To learn the least significant bit of α, Gélin and Wesolowski use
loop abort faults to terminate the computation after the first round of computation; since
QA has order `eAA , we know that `eA−1

A (PA + αQA) must be one of `eA−1
A PA + t · `eA−1

A ·QA

for t ∈ {0, 1, . . . , `A − 1}, and an attacker can determine which is the case using Alice’s
output shared secret (access to which is modelled in a number of ways) and trial and error.
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From there, once the k − 1 low order bits of α are known to the attacker, the kth can be
learned using a similar method; the attacker repeats the process until they learn all n bits
of Alice’s secret.

Attacks on CSIDH and a Countermeasure. Recall, as discussed in Chapter 5 that
in order for CSIDH to run in constant-time, a constant number (as a function of the secret
key) of isogenies of each degree must be computed. In order to make this happen, in each
round of key establishment exactly bj `j-isogenies are constructed, of which |ej| are “real”
(that is, they actually contribute to the construction of the shared secret) and bj − |ej|
are “dummy” (that is, they do not contribute to the construction of the shared secret).
Though it has not been described in great detail, the fundamental idea that has been
explored (particularly in [15]) is to inject faults during isogeny computations and use an
honest party’s output to differentiate real isogenies from dummy isogenies. In all prior
implementations of CSIDH that use these dummy isogenies, the isogenies are performed
in a fixed order: all real isogenies, followed by all dummy isogenies. This allows a binary
search for the key value ej (up to sign) and so, in principle the key can be recovered using
very few faults—on the order of 300 for CSIDH-512 (see Table 6.1 in Section 6.9).

In [15, Section 5] the authors propose a “dummy-free” but still constant-time variant
of CSIDH, arguing that if every isogeny is real, there is nothing to be learned from a fault
attack of the kind discussed above. To maintain the constant-time nature of the algorithm,
the authors first modify how the keyspace is derived from the bound vector; in particular,
if the jth bound vector entry is bj, then the jth key entry is chosen as

ej
$←− Kj(bj) = {e ∈ [−bj, bj] ∩ Z : |e| ≡ bj (mod 2)} .

Then, to evaluate [l
ej
j ] ∗ E, the authors propose to first evaluate the action of [l

sgn(ej)
j ] |ej|

times, and then to alternate evaluating the action of [l
sgn(ej)
j ] and [l

−sgn(ej)
j ] a total of bj−|ej|

times. Since |ej| ≡ bj (mod 2), these alternating applications of [l
sgn(ej)
j ] and [l

−sgn(ej)
j ] will

cancel one another out, and so the output curve will be correct. In order to maintain
the security level, the bound vector must be doubled, and so this “dummy-free” technique
leads to a roughly 100% increase in the time required for key establishment.
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6.7 Preliminaries for Our Work

6.7.1 Our Contributions

Our contributions in this work can be summarized as follows:

1. We demonstrate how current implementations of CSIDH which use a “real-then-
dummy” approach can be vulnerable to fault injection attacks, in which an attacker
can achieve a complete break of the system under ideal conditions by recovering the
private key using

∑n
j=1dlog2(bj) + 1e many faults via a binary search attack in a

static key setting.

2. As a remedy to the above attack, for a fixed key e we propose randomly mixing the
constructions of the |ej| many degree `j real isogenies with the dummy isogenies. At
the time of evaluation of the group action, we choose a binary-valued decision vector
xj = (xj1, . . . , x

j
bj

) with weight |ej| uniformly at random; we then construct the ith

isogeny of degree `j as real if xji = 1 and dummy otherwise.

3. We analyze attacking the randomized protocol described above using an oracle O, in
which O(j, i) reveals xji . We derive formulas for the distribution on the key ej given a
string of outputs from O(j, ·) from pairwise different instances of xj under the same
key e. We derive an upper bound on the number of faults required to achieve any
desired error threshold ε for any given bound vector in this setting.

4. In the setting of signed keys, we discuss how to determine the signs of the key entries
once their magnitudes have been determined using fault attacks. We introduce an
approach based on Gray codes which we estimate (based on numerical experiments)
to be, on average, 88% more efficient than the näıve approach, even when the näıve
approach uses per-key-magnitude optimized permutations and strategies.

5. We simulated attacking this randomized version of CSIDH under ideal conditions
with 6 different bound vectors b used in previous implementations of CSIDH-512.
We found that an attacker can learn the key up to sign with absolute certainty in the
real-then-dummy setting using between 260–300 fault attacks in the signed setting
and between 340–370 attacks in the unsigned setting depending on the bound vector.
In contrast, by using a uniformly random decision vector the number of attacks
needed to learn the key up to sign with only 1% certainty on average increases
to a range of 2 400–3 600 in the signed setting and 10 500–16 000 in the unsigned
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setting. To achieve 99% certainty, the number of attacks increases to 7 600–12 700
in the signed setting and 30 700–45 600 for the unsigned setting. Based on our data
and the minimal overhead required for this modification, we recommend that future
implementations of CSIDH utilizing dummy isogeny constructions randomize the
constructed isogenies in this manner.

6.7.2 The Decision Vector

Let p = 4`1 · · · `n− 1 be prime with `1, . . . , `n pairwise distinct small odd primes. For each
prime `j, we encode the choice of constructing the ith degree `j isogeny ϕi,j as either a
real or dummy into a binary decision vector xj = (xj1, . . . , x

j
bj

), in which xji = 1 denotes

that the ith degree `j isogeny shall be constructed as real, and xji = 0 denotes that the
ith degree `j isogeny shall be constructed as a dummy. For correctness of the algorithm,
the Hamming weight H(xj) of xj must be equal to |ej|. This vector xj represents only
the choice of the type of isogeny constructed and may be explicitly or implicitly stored in
memory for a given implementation of the group action, and it is this vector which our
attacks target. As an example Algorithm 7 depicts the constant time algorithm given by
Onuki et al. in [59]. Line 12 of Algorithm 7 computes the boolean value “ei 6= 0”, which
is used as a mask bit to determine the type of isogeny to be constructed. We consider
this boolean as one of the values in the decision vector xi. The decision vector for other
dummy-based constant time algorithms for CSIDH, such as those given in [39, 56], are
defined similarly.

6.7.3 General Structure of the Attack

We target our attacks on the second round of the key exchange when one party is computing
the action of their private key on the curve they received from the other party. Through
most of this work we consider only the scenario where an attacker targets a single isogeny
constructed for a specific prime and iteration; i.e., the attacker carries out a bit-flip fault
attack which changes the value of xji for one particular i and j. We assume an ideal setting
in which the attacker can precisely target this decision vector using the methods described
in the next two sections for their choice of any single pair (j, i). If an adversary performs
multiple attacks on pairs (j1, i1), . . . , (jm, im), we assume that each pair references a distinct
evaluation of (e, E) 7→ [

∏
i l
ei
i ] ∗ E, with the private key e static and E allowed to vary.

This would be the case for example when a static key is used over multiple sessions.
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Algorithm 7: Constant time version of CSIDH group action evaluation.

Input : A ∈ GF (p), b ∈ N, a list of integers (e1, . . . , en) s.t. −b ≤ ei ≤ b for
i = 1, . . . , n, and distinct odd primes `1, . . . , `n s.t. p = 4

∏
i `i − 1.

Output: B ∈ GF (p) s.t. EB = (le11 · · · lenn ) ∗ EA, where li = (`i, π − 1) for
i = 1, . . . , n, and π is the pth power Frobenius endomorphism of EA.

1 Set e′i = b− |ei|.
2 while some ei 6= 0 or some e′i 6= 0 do
3 Set S = {i | ei 6= 0 or e′i 6= 0}.
4 Set k =

∏
i∈S `i.

5 Generate points P0 ∈ EA[π − 1] and P1 ∈ EA[π + 1] by Elligator.
6 Let P0 = [(p+ 1)/k]P0 and P1 = [(p+ 1)/k]P1.
7 for i ∈ S do
8 Set s be the sign bit of ei.
9 Set Q = [k/`i]Ps.

10 Let P1−s = [`i]P1−s.
11 if Q 6=∞ then
12 if ei 6= 0 then
13 Compute an isogeny ϕ : EA → EB with ker(ϕ) = 〈Q〉.
14 Let A← B, P0 ← ϕ(P0), P1 ← ϕ(P1), and ei ← ei − 1 + 2s.

15 else
16 Dummy computation.
17 Let A← A, Ps ← [`i]Ps, and e′i ← e′i − 1.

18 end

19 end

20 end
21 Let k ← k/`i.

22 end
23 Return A

6.7.4 Fault Attack Method and Oracle: Unsigned Setting

We now define an oracle which models fault attacks in the setting of unsigned private keys
(that is, ej ∈ [0, bj] ∩ Z). An intuitive attack to consider is flipping the value of xij. In
Algorithm 7, this can be accomplished by influencing the value of the boolean computed
in line 12 on a particular iteration. If xji is changed from 0 (dummy construction) to 1
(real construction), then the output curve will likely have an extra factor of [lj] applied
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compared to the correct shared key because keys here are unsigned. In the event the
construction is skipped due to the point lacking the proper order, the correct output curve
will be computed. If xji is modified from 1 to 0, then the output curve will be lacking a
factor of [lj]. Upon a key reveal query the attack can determine which situation they are
in and learn the true value of xji .

Other implementations of CSIDH, such as that of [39], use non-multiplication based
strategies for evaluating the group action, and in such an implementation the point multi-
plication performed in line 17 of Algorithm 7 is moved for efficiency to be included in line 6
(in a constant time fashion) for any indices for which a dummy computation is performed.
As a consequence, if the attacker attempts to change the value of xji from 0 to 1 at the time
of isogeny construction, the construction will automatically be skipped because the point
to be used as the kernel generator is actually trivial and the correct shared key will be
computed. On the other hand if xji is changed from 1 to 0 in such a generalized algorithm,
the point to be used to normally construct the isogeny will retain a factor of `j in its order
(assuming it was present to begin with) throughout the remainder of the algorithm until
a fresh point is chosen. Therefore all further isogeny constructions derived from this point
will be corrupted and the final output of the algorithm will be incorrect. One option for
the attacker is to change both xji and the decision on multiplying the point by `j, but this
may or may not be practical to achieve.

In both settings above, the attacker can target xji and subsequently learn its value. We
therefore define an oracle O which reveals the value of x at the desired pair of indices:
O(j, i) = xji for 1 ≤ j ≤ n and 0 ≤ i ≤ bj.

6.7.5 Fault Attack Method and Oracle: Signed Setting

Here we describe an attack and an oracle for the setting of signed private keys (so ej ∈
[−bj, bj] ∩ Z). As in the previous subsection, we formulate an attack which reveals the
value of xji .

For Algorithm 1, changing the value of the boolean in line 12 will produce an output
curve that is off by either a factor of [lj] or [lj]

−1 depending on both xji and the sign of
ej. To get an outcome with more information, we instead target the sign bit s computed
in line 8. Let E be the curve determined at the end of the algorithm when no attack is
performed and let Êi,j be the final resulting curve when the sign bit s used for constructing
isogeny (j, i) is flipped. If xji is 0, then a dummy construction is performed regardless of
how s is modified and we have E = Êi,j. If xji is 1, we will have Êi,j = [lj]

2 ∗E if ej > 0 or

96



Êi,j = [lj]
−2 ∗ E if ej < 0. After a key reveal query, the attacker can check which equality

holds, learn the value of xji , and additionally learn the sign of ej when xji = 1.

In the context of a generalized algorithm using a non-multiplication based strategy
such as the algorithm of [39], the attack described in the previous subsection still applies
here and one may formulate the same oracle as shown there. The attack described above
which modifies s will only work if the attacker modifies both s and prevents `j from being
multiplied to the points after they are randomly generated, for otherwise the resulting
kernel generator will be trivial and the isogeny construction skipped.

Based on this discussion, the attacker has the ability to learn the value of xji using
a fault attack, but not necessarily the sign of ej. To address the most general case, we
assume the oracle does not reveal the sign of the key and define O(j, i) = xji as before.

6.8 Attack Analysis

In this section, we analysis how individual attacks from Section 6.7 which target particular
isogenies ϕi,j can be performed together for varying i and j to gain information about
the private key vector e. Going forward, we will use O to refer to the proper oracle from
Section 6.7; that is, O refers to OSigned when considering the setting of signed private key
values, and O will refer to OUnsigned when considering the unsigned setting. The analysis is
essentially the same in both cases since in the signed case a single query OSigned(j, ·) which
results in 0 can be used to determine the sign of ej, and so effectively the signed setting
reduces to the unsigned setting.

We consider cases based on how x is generated. Section 6.8.1 examines the setting in
which all real isogeny are constructed first, followed by any remaining dummy isogenies.
The remainder of the section analyzes when each xj is chosen uniformly at random with
the correct Hamming weight. In Sections 6.8.2 and 6.8.3, we look at subcases based on
whether each xj is fixed or dynamic.

6.8.1 “Real-then-dummy” Decision Vector

In this section we consider the “real-then-dummy” method, which every instantiation of
CSIDH in the literature has used so far at the time of this writing. Here, xj has exactly
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the form

xj = (1, 1, . . . , 1︸ ︷︷ ︸
|ej |

, 0, 0 . . . , 0).

For this scenario the attack is extremely simple: the private key ej corresponds exactly
to the position in which the last 1 appears, and so a simple binary search can determine
ej with absolute certainty in exactly dlog2(bj)e + 1 many queries to the oracle O(j, ·). It

follows that the entire key e can be determined exactly using
n∑
j=1

(dlog2(bj)e+ 1) calls to O.

As the above shows, the real-then-dummy case is susceptible to a very simple attack.
The most obvious change to make to attempt to counter the binary search attack is to
randomize the value of each xj. In the following subsections, we consider the case when
xj is drawn from the set Xj := {xj ∈ {0, 1}bj : H(xj) = |ej|} uniformly at random, where
H denotes Hamming weight.

6.8.2 Fixed Uniformly Random Decision Vector

We briefly remark on the approach of generating xj randomly from the set Xj at the time
of key generation, and using this same xj for every evaluation of the action [

∏
i l
ei
i ] ∗ E.

Effectively xj becomes part of the key in this scenario. The most straightforward attack
to learn |ej| would query O at (j, i) for i = 1, 2, . . . , bj to find each value of xj, which is
possible since the value of xj never changes among subsequent group actions. Therefore
in this setting |ej| can be learned using bj calls to O(j, ·), and the total key e can be
learned up to sign using

∑n
j=1 bj many calls to O. Asymptotically this is better than the

real-then-dummy approach, but in practice offers little extra security for actual values of
b. See Section 6.9 for a comparison.

6.8.3 Dynamic Uniformly Random Decision Vector

We now consider the primary focus of this work, which is when the decision vector xj

is chosen from Xj = {xj ∈ {0, 1}bj : H(xj) = |ej|} uniformly at random during every
evaluation (e, E) 7→ [

∏
i l
ei
i ] ∗ E of the group action. We refer to this setting as having a

dynamic decision vector. If one views the decision vector xj as a means of permuting the
constructions of the real and dummy isogenies, then the oracle calls O(j, i1) and O(j, i2)
for i1 6= i2 on different computations of the group action may actually correspond to the
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construction of the same isogeny, and so multiple calls to O(j, ·) yield less information
than in the previous settings.

Unsigned exponents

For ` ∈ N, let β(`) denote the string of outputs of the first ` queries of O, and let q
(β(`))
j

denote the adversary’s a posteriori distribution on ej, having seen β(`). That is,

q
(β`)
j,k := P[ej = k|β(`)].

Theorem 6.12. In the unsigned exponent setting, for every 1 ≤ j ≤ n, 0 ≤ k ≤ bj, and
binary string β` of length ` ≥ 1 we have

q
(β`)
j,k =

P[xji = β
(`)
` |ej = k] · q(β(`−1))

j,k

bj∑
t=0

P[xjj = β
(`)
` |ej = t] · q(β(`−1))

j,t

, (6.1)

where β(0) is the empty string and qβ
(0)

j,k := P[ej = k] = 1/(bj + 1) for every k. A non-

recursive form of q
(β(`))
j,k for any β(`) with ` ≥ 0 is

q
(β`)
j,k =

(bj − k)`−H(β(`))kH(β(`))∑bj
t=0(bj − t)`−H(β(`))tH(β(`))

, (6.2)

where H denotes Hamming weight.

Proof. We first prove equality (6.1) using Bayes’ Theorem, the Law of Total Probability,
and the fact that the ej are chosen uniformly at random.

q
(β(`))
j,k = P[ej = k|β(`)]

=
P[β(`)|ej = k] · P[ej = k]

P[β(`)]
(Bayes’ theorem)

=
P[β(`)|ej = k] · P[ej = k]
bj∑
t=0

P[β(`)|ej = t] · P[ej = t]

(Law of total probability)
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=
P[β(`)|ej = k]
bj∑
t=0

P[β(`)|ej = t]

(ej is a priori uniform)

=
P[xji = β

(`)
` |ej = k] · P[β(`−1)|ej = k]

bj∑
t=0

P[xji = β
(`)
` |ej = t] · P[β(`−1)|ej = t]

(
β

(`)
` |ej and β(`−1)|ej
are independent

)

Equality (6.1) follows from the last line above since for all t (including k) we have

P[β(`−1)|ej = t] = q
(β(`−1))

j,t · P[β(`−1)]/P[ek = t]

= q
(β`−1)
j,t · P[β(`−1)]/P[ek = k].

again by Bayes’ Theorem.

We now prove equality (6.2) by induction on ` using equality (6.1). When ` = 0 it is
easy to see that the expression in Equation (6.2) simplifies to 1/(bj + 1) = P[ej = k] with
the understanding that 00 = 1. Assume now that ` ≥ 1 and Equation (6.2) holds for any

binary string of length less than `. In the case that β
(`)
` = 1, we have that

q
(β(`))
j,k =

P[xji = 1|ej = k] · q(β(`−1))
j,k∑bj

t=0 P[xji = 1|ej = t] · q(β(`−1))
j,t

(by Equation (6.1))

=

k
bj
· (bj−k)`−1−H(β(`−1))kH(β(`−1))∑bj

t=0(bj−t)`−1−H(β(`))tH(β(`−1))∑bj
t=0

t
bj

(bj−t)`−1−H(β(`−1))tH(β(`−1))∑bj

t′=0
(bj−t′)`−1−H(β(`))t′H(β(`−1))

(inductive hypothesis)

=
(bj − k)`−(H(β(`−1))+1)kH(β(`−1))+1∑bj
t=0(bj − t)`−(H(β(`−1))+1)tH(β(`−1))+1

(denominators cancel)

=
(bj − k)`−H(β(`))kH(β(`))∑bj
t=0(bj − t)`−H(β(`))tH(β(`))

since H(β(`)) = H(β(`−1)) + 1 in this case. The case β
(`)
` = 0 is similar and we omit the

details.
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Attack Model

Here we detail an attack on CSIDH in the setting of dynamic decision vectors in both the
signed and unsigned settings which makes use of the probabilities previously computed in
this section. In the attack, referred to as least certainty, the attacker chooses a key index
1 ≤ j∗ ≤ n in which to inject a fault on each iteration, where in the unsigned setting the
index is chosen through the formula

j∗ = argmin
1≤j≤n

(
max

0≤k≤bj
q
β

(`)
j

j,k

)
.

where β
(`)
j is the string of oracle outputs for the index j (with ` also depending on j). That

is, the attacker targets the index for which they are least certain about the value of the
key. The variables qj are initialized as the uniform distribution on bj + 1 elements.

For the signed setting, our oracle O(j, ·) only gives information on ej up to sign, and
so our attack attempts only to learn the key up to sign. For 1 ≤ k ≤ bj we therefore define

r
β

(`)
j

j,k = q
β

(`)
j

j,k + q
β

(`)
j

j,−k = 2q
β

(`)
j

j,k

and r
β

(`)
j

j,0 = q
β

(`)
j

j,0 , and the attacker chooses the index

j∗ = argmin
1≤j≤n

(
max

0≤k≤bj
r
β

(`)
j

j,k

)
.

to attack on each round. Here we initialize qj as the uniform distribution on 2bj + 1
elements.

In both settings the index i for which to call O(j, ·) on is chosen uniformly at random,
but the index may be selected in any other manner without affecting the overall efficiency
of the attack.

In both the signed and unsigned setting, the attacker performs some desired number of
iterations, with each iteration choosing the index j∗ to attack based on the above formulas.
Once these iterations are complete, the attacker is left with a probability distribution on the

(absolute value of the) key, in which the most likely value for |ej| is given by argmax
0≤k≤bj

r
β

(`)
j

j,k ,

with r
β

(`)
j

j,k = q
β

(`)
j

j,k in the unsigned setting.

These attacks are detailed in Algorithms 8 and 9 in the unsigned and signed settings,
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respectively. Both algorithms keep variables `[j] and w[j] tracking the number of attacks
on index j and number of 1’s seen from the oracle O(j, ·), respectively (so, the information

contained in β
(`)
j above). Variables q[j][k] store the probabilities r

β
(`)
j

j,k for 1 ≤ j ≤ n and
0 ≤ k ≤ bj and the current value of `. In the signed context of Algorithm 9, the probability

qβ
(`)

j,0 = P[ej = 0|β(`)] is computed as a special case since all other qβ
(`)

j,k have their values
doubled as discussed previously.

Both Algorithms 8 and 9 perform attacks until some desired certainty threshold on the
total key is obtained. The certainty on the key is given by the quantity

n∏
j=1

max
0≤k≤bj

q[j][k],

which represents the probability that the key e (up to sign) is equal to(
argmax
0≤k≤bj

q[1][k], . . . , argmax
0≤k≤bj

q[n][k]

)
.

Bounds on Näıve Attacks.

In this section we seek to determine bounds on the number of faults required to guarantee
a given success rate 1 − ε in a fault attack. To that end, we consider a particular kind
of attack—which we call the “näıve” method—which is simultaneously effective, intuitive,
and easy enough to analyze. Throughout this section we implicitly assume that we are
working in the setting of unsigned keys; the techniques in this section extend in a very
straightforward fashion to determining the magnitude of a given key entry in the signed
setting. We consider the problem of determining the sign of the key given its magnitude
in Section 6.8.4.

Our näıve attack in this setting is as follows: choose a vector m ∈ Nn in advance3, and
for 1 ≤ j ≤ n, apply mj fault attacks on isogenies of degree `j. Then, suppose that we

observe a sequence β(mj) of outputs in which wj such isogenies are revealed to be real; we
then guess that

ej = e∗j :=

⌈
bj
wj
mj

⌋
;

3This is in contrast with Algorithms 8 and 9, where the number of attacks is not determined in advance,
and instead we stop once we are sufficiently certain about the key.
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Algorithm 8: Least Certainty Attack (Unsigned Dynamic)

Parameters: Bound vector b = (b1, . . . , bn) from which keys ej ∈ [0, bj] are drawn.
Input : Certainty bound ε ∈ (0, 1), unknown private key e = (e1, . . . , en)

accessed through oracle O.
Output : Probability distribution qj,k on key e.

1 `← [0 : j = 1, 2, . . . , n].
2 w ← [0 : j = 1, 2, . . . , n].
3 q ← [ [1/(bj + 1) : k = 0, 1, . . . , bj] : j = 1, 2, . . . , n].
4 certainty← 0.
5 while certainty < ε do

/* Choose index and attack. */

6 j∗ ← argmin
1≤j≤n

(
max

0≤k≤bj
q[j][k]

)
.

7 w[j∗]← w[j∗] +O(j∗,Random(1, 2, . . . , bj)).
8 `[j∗]← `[j∗] + 1.

/* Update probabilities for index j∗. */

9 den←
bj∗∑
k=0

(bj∗ − k)`[j
∗]−w[j∗] · kw[j∗].

10 q[j∗]←
[
(bj∗ − k)`[j

∗]−w[j∗] · kw[j∗]/den : k = 0, 1, . . . , bj∗
]
.

11 certainty←
n∏
j=1

max
0≤k≤bj

q[j][k].

12 end
13 Return q

that is, we guess the ej which minimizes
∣∣∣ ejbj − wj

mj

∣∣∣. This value of ej is what we would

obtain by rounding the maximum likelihood estimate for ej, if the a priori distribution of
ej were uniform on [0, bj] rather than [0, bj] ∩ Z—note that this is not always the same as
the maximum likelihood estimate of ej for our a priori distribution. This is most easily
seen by considering the case when 0 < wj <

mj
2bj

, in which the näıve method recommends

guessing ej = 0, while the maximum likelihood method knows that ej = 0 is impossible.

A natural question is this: how large should each mj be chosen to ensure that we have
a reasonable probability (say, 1

2
; more generally, ε) of guessing the final key correctly?

We approach this problem from two directions: how large must mi be to have a suffi-
ciently large guaranteed success probability, and how small can mi be before the guaranteed
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Algorithm 9: Least Certainty Attack (Signed Dynamic)

Parameters: Bound vector b = (b1, . . . , bn) from which keys ej ∈ [−bj, bj] are
drawn.

Input : Certainty bound ε ∈ (0, 1), unknown private key e = (e1, . . . , en)
accessed through oracle O.

Output : Probability distribution qj,k on key e.
1 `← [0 : j = 1, 2, . . . , n].
2 w ← [0 : j = 1, 2, . . . , n].
3 q ← [ [1/(2bj + 1)] || [2/(2bj + 1) : k = 1, 2, . . . , bj] : j = 1, 2, . . . , n].
4 for certainty < ε do

/* Choose index and attack. */

5 j∗ ← argmin
1≤j≤n

(
max

0≤k≤bj
q[j][k]

)
.

6 w[j∗]← w[j∗] +O(j∗,Random(1, 2, . . . , bj)).
7 `[j∗]← `[j∗] + 1.

/* Update probabilities for index j∗. */

8 den← b
`[j∗]−w[j∗]
j∗ · 0w[j∗] +

bj∗∑
k=1

2(bj∗ − k)`[j
∗]−w[j∗] · kw[j∗].

9 q[j∗][0]← b
`[j∗]−w[j∗]
j∗ · 0w[j∗]/den

10 q[j∗][k]← 2(bj∗ − k)`[j
∗]−w[j∗] · kw[j∗]/den for k = 1, 2, . . . , bj∗ .

11 certainty←
n∏
j=1

max
0≤k≤bj

q[j][k].

12 end
13 Return q
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failure probability is too large.

In order to develop these arguments, we must first determine a more convenient ex-
pression for when our näıve guess is correct. To begin, our näıve guess is correct exactly

when ej =
⌈
bj

wj
mj

⌋
. Written more explicitly, we require

ej −
1

2
≤ bj

wj
mj

< ej +
1

2

or, equivalently
ej
bj
− 1

2bj
≤ wj
mj

<
ej
bj

+
1

2bj
;

that is, we guess ej correctly if the empirical probability of detecting a real isogeny (
wj
mj

)

differs from the true probability (
ej
bj

) by at most 1
2bj

(on the left) or by strictly less than
1

2bj
on the right. We can loosen this bound slightly to obtain the following convenient

inequalities:

P

[∣∣∣∣ejbj − wj
mj

∣∣∣∣ < 1

2bj

]
≤ P

[
ej =

⌈
bj
wj
mj

⌋]
≤ P

[∣∣∣∣ejbj − wj
mj

∣∣∣∣ ≤ 1

2bj

]
(6.3)

These sandwiching probabilities are of convenient forms for applying generic probability
theoretic results.

Guaranteeing sufficient success probability. We begin by determining an upper
bound on the number of attacks required in order to guarantee success probability 1 − ε.
We have the following theorem:

Theorem 6.13. Let b be a bound vector. For any ε ∈ (0, 1), in order to guarantee success
probability at least 1− ε in a näıve attack on a key chosen from the keyspace defined by b,
it suffices to inject

n∑
j=1

mj ≤ min

{
n∑
j=1

⌈
2b2
j loge

2

1− n
√

1− ε

⌉
,

n∑
j=1

⌈
2b2
j loge

(
2 +

2
ε
‖b‖2 − 2 mink{bk}2

b2
j

)⌉}

individual faults.
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Proof. We note that in order for the attack on the full key e to succeed with this probability
it suffices that the attack on each individual key entry ej succeeds with probability n

√
1− ε,

and so we proceed to determine the number of fault attacks required on ej to have this
success probability.

When performing fault attacks on ej, the outcome of the ith attack is modelled by a
Bernoulli random variable ζi ∼ B(

ej
bj

). For mj ∈ N, let Zmj = 1
mj

∑mj
i=1 ζi. Note first that

E[Zmj ] =
ej
bj

; then, by Equation (6.3), we have

P

[∣∣Zmj − E[Zmj ]
∣∣ < 1

2bj

]
= P

[∣∣∣∣ejbj − wj
mj

∣∣∣∣ < 1

2bj

]
≤ P

[
ej =

⌈
bj
wj
mj

⌋]
We will apply a Hoeffding bound [37] to the lefthand side; in particular, for any t ≥ 0 we
have

P
[∣∣Zmj − E[Zmj ]

∣∣ < t
]
≥ 1− 2e−2mjt

2

.

Substituting E[Zmj ] =
ej
bj

and t = 1
2bj

we find that

P

[∣∣∣∣Zmj − ej
bj

∣∣∣∣ < 1

2bj

]
≥ 1− 2e

−
mj

2b2
j .

Thus to ensure sufficient success probability, it suffices to ensure that for each j we have

1− 2e
−
mj

2b2
j ≥ n
√

1− ε; that is, that

mj ≥ 2b2
j loge

2

1− n
√

1− ε
.

Since we must inject an integer number of faults, we round the righthand side up to obtain
a lower bound.

Of course, there is no reason that the probability of success of each key entry be equal;
indeed, it may be possible to achieve the required success probability using fewer total
fault injections by achieving higher certainty on some key entries and lower certainty on
others. We can formulate an integer convex program which minimizes the total number of
fault attacks required to ensure probability 1 − ε of guessing the key correctly, using the
Hoeffding bound to lower bound the success probability of guessing each key entry. Note
that

P [e = (e∗1, . . . , e
∗
n)] =

n∏
j=1

P[ej = e∗j ] ≥
n∏
j=1

(
1− 2e

−
mj

2b2
j

)
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and so to guarantee success probability 1− ε it suffices to have

n∏
j=1

(
1− 2e

−
mj

2b2
j

)
≥ 1− ε, or, equivalently,

n∑
j=1

loge

(
1− 2e

−
mj

2b2
j

)
≥ loge(1− ε).

This constraint is convex; our final integer convex program is

Minimize
∑n

j=1mj

Subject to
∑n

j=1 loge

(
1− 2e

−
mj

2b2
j

)
≥ loge(1− ε)

m ∈ Zn

(P)

This program is difficult to solve in general, but we can use duality to find an upper bound
on its optimal value.

The Lagrangian for the convex relaxation of (P) is

L(m;λ) = λ loge(1− ε) +
n∑
i=1

(
mi − λ loge

(
1− 2e

−
mj

2b2
j

))
We know from the KKT conditions [12, Section 5.5.3] that at the optimal m = m∗, there
will exist a corresponding multiplier λ∗ ≥ 0 which satisfies ∇mL(m∗;λ∗) = 0. We compute

∂

∂mj

L(m∗;λ∗) = 1 +

λ∗

b2j

e

m∗
j

2b2
j − 2

so that

∇mL(m∗;λ∗) = 0 ⇐⇒ m∗j = 2b2
j loge

(
2 +

λ∗

b2
j

)
for all j.

We have thus reduced the problem to determining λ∗. Moreover, noting that if m ≥ m∗

then m is also feasible for (P), in fact it suffices to find a lower bound on λ∗.

Substituting the form of m∗j into the constraint, we find that λ∗ must satisfy

n∑
j=1

loge

1− 2e
−

2b2j loge

2+λ∗
b2
j


2b2
j

 =
n∑
j=1

loge

(
1−

2b2
j

λ∗ + 2b2
j

)
≥ loge(1− ε). (6.4)
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(indeed, it is the smallest solution to the above). Exponentiating both sides of the inequal-
ity above, we find that λ∗ satisfies

n∏
j=1

(
1−

2b2
j

λ∗ + 2b2
j

)
≥ 1− ε

From here we must bound the quantity on the left from below in order to find a lower
bound for λ∗. We apply the following straightforward lemma:

Lemma 6.14. Let n ≥ 2 and α1, α2, . . . , αn ∈ [0, 1]. Then

1−
n∑
j=1

αj ≤
n∏
j=1

(1− αj)

Proof. We proceed by induction on n. When n = 2 we have

(1− α1)(1− α2) = 1− α1 − α2 + α1α2 ≥ 1− (α1 + α2)

as required. For induction suppose the statement holds up to some n− 1; then

n∏
j=1

(1− αj) = (1− αn)
n−1∏
j=1

(1− αj)

≥ (1− αn)

(
1−

n−1∑
j=1

αj

)
(By the inductive hypothesis)

= 1−
n∑
j=1

αj + αn

n−1∑
j=1

αj

≥ 1−
n∑
j=1

αj

as required.

Now for λ ≥ 0 we have
2b2j

λ+2b2j
∈ [0, 1] for all bj ∈ R, and so we can write

n∏
j=1

(
1−

2b2
j

λ+ 2b2
j

)
≥ 1−

n∑
j=1

2b2
j

λ+ 2b2
j

≥ 1−
n∑
j=1

2b2
j

λ+ 2 mink{bk}2
= 1− 2‖b‖2

λ+ 2 mink{bk}2
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Thus to guarantee sufficient success probability it suffices to enforce

1− 2‖b‖2

λ+ 2 mink{bk}2
≥ 1− ε

for which we can take λ = 2
ε
‖b‖2 − 2 mink{bk}2, and hence

mj = 2b2
j loge

(
2 +

2
ε
‖b‖2 − 2 mink{bk}2

b2
j

)
∀ j.

Of course, the number of faults targeted at each key entry must be integer, so for the
purposes of the bound we round up each mj.

Taking the smaller of the two upper bounds we have derived yields the result of Theo-
rem 6.13.

Remark 6.15. In numerical experiments the second of the two bounds we derived tends
to yield a smaller upper bound at higher certainty levels and when the bound vector has
a few large entries and many small entries; in contrast, the first bound performs better at
smaller certainty levels and when the bound vector is more uniform.

Guaranteeing sufficient failure probability. We now move on to the following ques-
tion: how many fault attacks are provably not enough to allow a desired success proba-
bility? We first consider the “worst case” variant of this question; in particular, for any
desired success probability 1

2
≤ 1 − ε ≤ 1, we determine a key e and a number of fault

attacks m for which the success probability of the näıve attack is less than 1− ε for key e.

We first consider the special case when each entry of the bound vector b is even, since
this case allows us to apply tighter estimates, leading to stronger overall results. We first
state a theorem regarding fault attacks on a single key entry, which we later extend to full
keys.

Theorem 6.16. Let 1 ≤ j ≤ n, and let b be a bound vector with bj even. Consider a key
e whose jth key entry is ej = 1

2
bj. Suppose that the näıve attack is launched, and that mj

faults are targeted at the jth entry of the key. Suppose further that

mj <
1

2
b2
j

(
1−
√

2ε
)2

for some ε ≤ 1
2
. Then the attack will return the incorrect value for the jth key entry with

probability at least ε.
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Proof. Let {ξi}∞i=1 be a sequence of iid random variables following the B±(1
2
) distribution;

that is, for all i ∈ N

P[ξi = 1] = P[ξi = −1] =
1

2
.

For each m ∈ N, define the random variable Ξm =
∣∣ 1
m

∑m
i=1 ξi

∣∣. In particular, Ξmj is the
quantity by which the fraction of real isogenies or dummy isogenies detected (whichever
is greater) exceeds the fraction of dummy isogenies or real isogenies (whichever is smaller)
after m fault attacks are performed; equivalently, it is twice the quantity by which fraction
of real isogenies or dummy isogenies (whichever is greater) exceeds the expected fraction,
1
2
. We know that after m fault attacks, the probability of failure is at least the probability

that Ξmj differs from 0 by more than 1
bj

; we will bound this probability from below.

We first require bounds on E[Ξm]. Applying Khintchine’s Inequality [44] with optimal
constants [35], we find that

1√
2mj

≤ E[Ξmj ] ≤
1
√
mj

.

We are now in a position to apply the Paley-Zygmund inequality [61]. In particular, for
any ϑ ∈ [0, 1] we have

(1− ϑ)2 E[Ξmj ]
2

E[Ξ2
mj

]
≤ P

[
Ξmj > ϑE[Ξmj ]

]
≤ P

[
Ξmj >

ϑ√
2mj

]
.

Taking ϑ =

√
2mj

bj
(which is valid for the Paley-Zygmund inequality as long as mj ≤

b2j
2

,

which is guaranteed from the hypotheses of the theorem) yields

P[We guess incorrectly] ≥ P

[
Ξmj >

1

bj

]
≥

(
1−

√
2mj

bj

)2
E[Ξmj ]

2

E[Ξ2
mj

]
. (6.5)

Since we know 1
2mj
≤ E[Ξmj ]

2 ≤ 1
mj

, to obtain a lower bound on our failure probability, it

suffices to determine E[Ξ2
mj

]. We have

Ξ2
mj

=
1

mj

(
mj∑
i=1

ξi

)2

=
1

m2
j

mj∑
i=1

ξ2
i +

1

m2
j

mj∑
i=1

mj∑
i′=i+1

ξiξi′
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so that

E[Ξ2
mj

] =
1

mj

+
1

m2
j

E

[
mj∑
i=1

mj∑
j=i+1

ξiξj

]
=

1

mj

.

since the ξi are independent with mean 0 and satisfy ξ2
i = 1. Substituting this into Equation

(6.5) we obtain the following lower bound on the failure probability of the näıve attack on
the jth entry of the given key:

P

[
Ξmj >

1

bj

]
≥ 1

2

(
1−

√
2mj

bj

)2

. (6.6)

Thus to ensure that the failure probability is sufficiently high for this particular key entry,

it suffices to solve 1
2

(
1−
√

2mj

bj

)2

> ε, whose solution is readily seen to be

mj <
1

2
b2
j

(
1−
√

2ε
)2

provided that ε ≤ 1
2
, as required.

Theorem 6.16 has the following immediate corollary:

Corollary 6.17. Let b be a bound vector in which the entries labelled by Ieven are even,
and let T ⊆ Ieven with |T | = t. Then for any näıve attack which targets mj fault attacks
at the jth key entry for each j ∈ T and succeeds in recovering the full key with probability
at least 1− ε for some ε ≤ 1− 2−t when the true key e satisfies ej = 1

2
bj ∀j ∈ T , we must

have

∃j ∈ T such that mj ≥
1

2
b2
j

(
1−

√
2
(
1− t
√

1− ε
))2

.

Proof. Suppose for contradiction that

mj <
1

2
b2
j

(
1−

√
2
(
1− t
√

1− ε
))2

∀j ∈ T.

Applying Theorem 6.16 (noting that ε ≤ 1−2−t implies 1− t
√

1− ε ≤ 1
2
), for each j ∈ T , the

probability that the jth key entry is not guessed correctly is strictly greater than 1− t
√

1− ε.
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Noting that in order to recover the full key correctly we must recover the key entries from
T correctly, we find that the probability of recovering the full key correctly is at most

P[The attack recovers e] <
∏
j∈T

(
1− (1− t

√
1− ε)

)
= 1− ε

as required.

Taking sets of the form T = {j} in Corollary 6.17, we obtain the following result:

Corollary 6.18. Let b be a bound vector in which the entries labelled by Ieven are even.
Then in any näıve attack which targets mj fault attacks at the jth key entry for each
j ∈ Ieven and succeeds in recovering the full key with probability at least 1 − ε for some
ε ≤ 1

2
when the true key e satisfies ej = 1

2
bj ∀j ∈ Ieven, we must have

mj ≥
1

2
b2
j

(
1−
√

2ε
)2

∀j ∈ Ieven.

Corollary 6.18 yields the following straightforward lower bound on the number of faults
required to ensure success probability 1 − ε, for any ε ≤ 1

2
, when the key satisfies ej =

1
2
bj ∀j ∈ Ieven: ∑

j∈Ieven

mj ≥
1

2

(
1−
√

2ε
)2 ∑

j∈Ieven

b2
j .

However, with more care, Corollary 6.17 can also be used to obtain the following,
stronger result:

Corollary 6.19. Let b be a bound vector in which the entries labelled by Ieven = {1, 2, . . . , t}
are even. Then in any näıve attack which targets mj fault attacks at the jth key entry for
each j ∈ Ieven and succeeds in recovering the full key with probability at least 1 − ε for
some ε ≤ 1

2
when the true key e satisfies ej = 1

2
bj ∀j ∈ Ieven, we must have

∑
j∈Ieven

mj ≥
1

2

t∑
j=1

b2
j

(
1−

√
2
(
1− j
√

1− ε
))2

where b is ordered such that b1 ≥ b2 ≥ · · · ≥ bt.
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Proof. To begin, consider the following mathematical program:

Minimize
∑

j∈Ieven

mj

Subject to max
j∈T

{
mj − 1

2
b2
j

(
1−

√
2
(
1− |T |

√
1− ε

))2
}
≥ 0 ∀T ⊆ Ieven

(6.7)

By Corollary 6.17, for any fault attack which targets mj faults at the jth key entry for
each j ∈ Ieven and which satisfies the assumptions of Corollary 6.19, the tuple (mj)j∈Ieven

is feasible for (6.7). We will prove Corollary 6.19 by solving (6.7) and demonstrating that

its optimal value is precisely 1
2

∑t
j=1 b

2
j

(
1−

√
2
(
1− j
√

1− ε
))2

.

First, this objective value is clearly achievable: simply take

mj =
1

2
b2
j

(
1−

√
2
(
1− j
√

1− ε
))2

. (6.8)

This is feasible for (6.7) since for each 1 ≤ k ≤ t, each subset T of Ieven of size k contains
at least one element of {t, t− 1, . . . , k}, say j∗. Then,

mj∗ =
1

2
b2
j∗

(
1−

√
2
(
1− j∗

√
1− ε

))2

≥ 1

2
b2
j∗

(
1−

√
2
(
1− k
√

1− ε
))2

since j∗ ≥ k, establishing the feasibility of (6.8).

To demonstrate that (6.8) is optimal for (6.7), we first have the following claim.

Claim 6.20. Let m̂ be feasible for (6.7). Then there exists m̃ which:

• Is feasible for (6.7);

• Has objective value no larger than m̂, and;

• Satisfies

m̃k′j
=

1

2
b2
kj

(
1−

√
2
(
1− j
√

1− ε
))2

for j = 1, 2, . . . t, where (k1, k2, . . . , kt) is a permutation of {1, 2, . . . , t} such that

2m̂k1

b2
k1

≤ 2m̂k2

b2
k2

≤ · · · ≤ 2m̂kt

b2
kt
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Proof. Let (k1, k2, . . . , kt) be a permutation of {1, 2, . . . , t} such that

2m̂k1

b2
k1

≤ 2m̂k2

b2
k2

≤ · · · ≤ 2m̂kt

b2
kt

.

Let αj =
2m̂kj
b2kj

for each j ∈ {1, 2, . . . , t}. If αj =
(

1−
√

2
(
1− j
√

1− ε
))2

for all j, we are

done; if not, let

J =

{
j∗ : αj∗ 6=

(
1−

√
2
(
1− j∗

√
1− ε

))2
}
6= ∅.

There are then two cases:

Case 1: ∃j∗ ∈ J such that αj∗ <
(

1−
√

2
(
1− j∗

√
1− ε

))2

.

Choose the smallest such j∗ and let T ∗ = {k1, k2, . . . , kj∗}. By our choice of j∗, we

have αj <
(

1−
√

2
(
1− j∗

√
1− ε

))2

for all j ≤ j∗; that is,

m̂kj <
1

2
b2
kj

(
1−

√
2
(
1− j∗

√
1− ε

))2

for all j ∈ {1, 2, . . . , j∗}. Thus m̂ violates the constraint

max
j∈T ∗

{
mj −

1

2
b2
j

(
1−

√
2
(
1− |T∗|

√
1− ε

))2
}
≥ 0

so that m̂ was not feasible to begin with.

Case 2: αj >
(

1−
√

2
(
1− j
√

1− ε
))2

∀j ∈ J .

In this case, consider the new vector m̃ defined by

m̃kj =

1
2
b2
kj

(
1−

√
2
(
1− j
√

1− ε
))2

if j ∈ J
m̂j otherwise

.

It is clear that m̃ ≤ m̂ and so m̃ achieves a better objective value, and so it only
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remains to show that m̃ is feasible. Let T ⊆ {1, 2, . . . , n}, and consider the constraint
of (6.7) indexed by T . We consider three cases:

Case a: T ∩ J = ∅.

In this case the constraint is clearly satisfied since m̃kj = m̂kj as long as j 6∈ J .

Case b: T ∩ J 6= ∅ and |T | ≤ maxj∈T∩J{j}.
Let j∗ = maxj∈T∩J{j}. In this case the constraint is satisfied because j∗ ∈ T
and

m̃j∗ =
1

2
b2
kj∗

(
1−

√
2
(
1− j∗

√
1− ε

))2

≥ 1

2
b2
kj∗

(
1−

√
2
(
1− |T |

√
1− ε

))2

since |T | ≤ j∗.

Case c: kj∗ ∈ T and |T | > maxj∈T∩J{j}.
Again, let j∗ = maxj∈T∩J{j}. There are two possibilities:

Case i: αj∗ <

(
1−

√
2(1− |T |

√
1− ε)

)2

.

Since m̂ was feasible for (6.7), we know that ∃kjT ∈ T such that

m̂kjT
≥ 1

2
b2
kjT

(
1−

√
2(1− |T |

√
1− ε)

)2

.

Since this inequality is not satisfied when jT = j∗ (by the assumption of the
case), we have jT 6= j∗. Then, since m̃kjT

= m̂kjT
, the constraint indexed

by T is indeed satisfied.

Case ii: αj∗ ≥
(

1−
√

2(1− |T |
√

1− ε)
)2

.

Since |T | > j∗, ∃jT > j∗ with kjT ∈ T . By the ordering of the αj, this
implies that

m̂kjT
≥ 1

2
b2
kjT

(
1−

√
2(1− |T |

√
1− ε)

)2

so that the constraint indexed by T is indeed satisfied.

The m̃ constructed in case 2 is precisely what is hypothesized.

In light of Claim 6.20, it suffices to demonstrate that our proposed solution m has the
smallest objective value among all vectors of the form m̃. We use the following claim:
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Claim 6.21. Let m̃ satisfy

m̃kj =
1

2
b2
kj

(
1−

√
2
(
1− j
√

1− ε
))2

for j = 1, 2, . . . t, where (k1, k2, . . . , kt) is a permutation of {1, 2, . . . , t} such that

2m̂k1

b2
k1

≤ 2m̂k2

b2
k2

≤ · · · ≤ 2m̂kt

b2
kt

.

Suppose that (k1, k2, . . . , kt) has at least one inversion (that is, there exists j1 < j2 with
kj1 > kj2). Then there exists m′ which

• Has objective value no greater than that of m̃, and;

• Satisfies the above condition, with a new permutation (k′1, k
′
2, . . . , k

′
t) which has fewer

inversions than (k1, k2, . . . , kt).

Proof. Let j1, j2 be an inversion in (k1, k2, . . . , kt). Define

k′j =


kj2 if j = j1

kj1 if j = j2

kj otherwise

.

and m′k′j
= 1

2
bk′j

(
1−

√
2
(
1− j
√

1− ε
))2

for j = 1, 2, . . . , t. Clearly (k′1, k
′
2, . . . , k

′
t) has

fewer inversions than (k1, k2, . . . , kt), since we have swapped two entries of an inversion
and left the other entries alone. As for their objective values, we have∑
j∈Ieven

m̃j −
∑
j∈Ieven

m′j

=
1

2
(b2
kj1
− b2

kj2
)︸ ︷︷ ︸

≥0

((
1−

√
2(1− (1− ε)1/kj1 )

)2

−
(

1−
√

2(1− (1− ε)1/kj2 )

)2
)

︸ ︷︷ ︸
≥0

≥ 0

so that m′ has objective value at most that of m̃, as required.
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Thus the optimal solution m to (6.7) must satisfy

mkj =
1

2
b2
kj

(
1−

√
2
(
1− j
√

1− ε
))2

for j = 1, 2, . . . t, where (k1, k2, . . . , kt) is a permutation of {1, 2, . . . , t} such that

2m̂k1

b2
k1

≤ 2m̂k2

b2
k2

≤ · · · ≤ 2m̂kt

b2
kt

;

moreover, there exists such an optimal solution for which (k1, k2, . . . , kt) has no inversions;
that is, it is the identity permutation. This is precisely our proposed solution, and hence
the proof is complete.

The hypothesis that the error probability ε satisfies ε ≤ 1
2

is required for Corollary 6.19
in order for the lower bound of Corollary 6.18 to be valid. When ε > 1

2
, however, we can

still obtain a lower bound on the number of faults required in the worst case by considering
the inequalities of Corollary 6.17 which remain valid. In particular, we have the following
result.

Corollary 6.22. Let b be a bound vector in which the entries labelled by Ieven = {1, 2, . . . , t}
are even. Then in any näıve attack which targets mj fault attacks at the jth key entry for
each j ∈ Ieven and succeeds in recovering the full key with probability at least 1−ε for some
ε ≤ 1 − 2−s for some integer 1 ≤ s ≤ t when the true key e satisfies ej = 1

2
bj ∀j ∈ Ieven,

we must have
t∑

j=s

mj ≥
1

2

t∑
j=s

b2
j

(
1−

√
2
(
1− j
√

1− ε
))2

where b is ordered such that b1 ≥ b2 ≥ · · · ≥ bt.

Proof. By Corollary 6.17, for each subset T of Ieven of size at least s, we must have

∃j ∈ T such that mj ≥
1

2
b2
j

(
1−

√
2
(
1− |T |

√
1− ε

))2

.

For sets T of size less than s we cannot apply Corollary 6.17 because ε may be too large;
the lower bound of this corollary compared with Corollary 6.19 is a consequence of this
fact.
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From here, the result follows by applying the technique of the proof of Corollary 6.19
to the candidate solution m defined by

mj =

0 if j < s

1
2
b2
j

(
1−

√
2
(
1− j
√

1− ε
))2

if j ≥ s
.

From here, we continue our “worst-case” analysis by extending to bound vectors whose
entries may be even or odd, and arbitrary key values. In particular, we have the following
result:

Theorem 6.23. Let b be a bound vector entry and let ej ∈ {1, 2, . . . , bj − 1} be a possible

value of jth key entry. Let êj = min{ej, bj − ej}, and 0 ≤ ε ≤ êj
8(bj−êj) . Then for a näıve

attack which targets mj faults at the jth key entry and which correctly recovers its value
with probability at least 1− ε when it is equal to ej, we have

mj ≥
1

2
ê2
j

(
1− 2

√
2(bj − êj)

êj
ε

)2

,

Proof. Let Ξmj = |
∑mj

i=1 ξi| for ξi ∼ B±(p) independent and identically distributed. Note
that each E[ξi] = 0, so we are able to apply the Marcinkiewicz-Zygmund inequality [53]
with optimal constants [18, Theorem 10.3.2], which states that

1

2
√

2
E


√√√√ mj∑

i=1

ξ2
i

 ≤ E[Ξmj ] ≤ 2E


√√√√ mj∑

i=1

ξ2
i


for all mj ≥ 1. We note that these constants are precisely half (on the left) and twice (on
the right) the corresponding constants from the Khintchine inequality; this will lead us to

looser bounds, which is why we considered the case of ej =
bj
2

separately. We have that

E


√√√√ mj∑

i=1

ξ2
i

 =

mj∑
k=0

(
mj

k

)
pk(1− p)mj−k

√
k

4p2
+

mj − k
4(1− p)2

.

For simplicity, assume that p ≤ 1
2

(the p > 1
2

case can be treated similarly); then from the
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above we can write
√
mj

2(1− p)
≤ E


√√√√ mj∑

i=1

ξ2
i

 ≤ √mj

2p

from which it follows by the Marcinkiewicz-Zygmund inequality that

√
mj

4
√

2(1− p)
≤ E[Ξmj ] ≤

√
mj

p
.

Now, we would like to apply the Paley-Zygmund inequality again; to do so, we must
compute E[Ξ2

mj
]. We have

Ξ2
mj

=

mj∑
i=1

ξ2
i +

mj∑
i=1

mj∑
k=i+1

ξiξk

=⇒ E[Ξ2
mj

] =

mj∑
i=1

E[ξ2
i ] +

mj∑
i=1

mj∑
k=i+1

E[ξi]E[ξk]

= mj ·
(

p

4p2
+

1− p
4(1− p)2

)
+

(
mj

2

)
· 02 =

mj

4p(1− p)
.

Thus for any ϑ ∈ [0, 1] we have

P

[
Ξmj > ϑ

√
mj

4
√

2(1− p)

]
≥ P

[
Ξmj > ϑE[Ξmj ]

]
≥ (1− ϑ)2 E[Ξmj ]

2

E[Ξ2
mj

]

≥ (1− ϑ)2

mj
32(1−p)2

mj
4p(1−p)

= (1− ϑ)2 p

8(1− p)
. (6.9)

How does this connect to fault attacks on CSIDH? Suppose that the jth key entry is
ej ∈ [1,

bj
2

]; letting p =
ej
bj

, we can think of ξi as reporting the result of the ith fault attack

on ej, returning the positive result if the corresponding isogeny is real, and the negative
result if the isogeny is dummy.

Let wj be the number of real isogenies detected; if we can express P[| wj
mj
− ej

bj
| > 1

2bj
] in
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terms of the behaviour of Ξmj , we can lower bound our failure probability. Note that

Ξmj =

∣∣∣∣wj2p
− mj − wj

2(1− p)

∣∣∣∣ =

∣∣∣∣ wj
2p(1− p)

− mj

2(1− p)

∣∣∣∣ =
mj

2p(1− p)

∣∣∣∣wjmj

− p
∣∣∣∣

and so ∣∣∣∣wjmj

− ej
bj

∣∣∣∣ > 1

2bj
⇐⇒ Ξm >

mj

4p(1− p)bj
=

mjbj
4ej(bj − ej)

.

Now, taking ϑ =

√
2mj

ej
in Equation (6.9) we obtain

P

[∣∣∣∣wjmj

− ej
bj

∣∣∣∣ > 1

2bj

]
= P

[
Ξmj >

mjbj
4(bj − ej)ej

]
≥

(
1−

√
2mj

ej

)2
ej

8(bj − ej)

whenever ej ≤ bj
2

and 1 ≤ mj ≤ 1
2
e2
j . Similarly we find that when ej >

bj
2

we have

P

[∣∣∣∣wjmj

− ej
bj

∣∣∣∣ > 1

2bj

]
= P

[
Ξmj >

mjbj
4ej(bj − ej)

]
≥

(
1−

√
2mj

bj − ej

)2
bj − ej

8ej

whenever 1 ≤ mj ≤ 1
2
(bj − ej)2. We can unify these statements as

P

[∣∣∣∣wjmj

− ej
bj

∣∣∣∣ > 1

2bj

]
≥

(
1−

√
2mj

min{ej, bj − ej}

)2
min{ej, bj − ej}

8 max{ej, bj − ej}

for all ej ∈ {1, . . . , bj − 1}, provided that 1 ≤ mj ≤ 1
2

min{e2
j , (bj − ej)

2}. Thus, if

1 ≤ mj <
1

2
min{e2

j , (bj − ej)
2}

(
1− 2

√
2 max{ej, bj − ej}
min{ej, bj − ej}

ε

)2

we are guaranteed that the attack will fail to correctly recover the jth key entry with
probability greater than ε, as required.

We can extend these results to the “average-case” (over uniformly random key entries)
by noting that the a priori probability that the jth key entry is any particular value
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e∗j ∈ {1, 2, . . . , bj − 1} is 1
bj+1

; then, we have the lower bound

P[We guess ej incorrectly] ≥ P
[
ej = e∗j

]
· P
[
We guess ej incorrectly

∣∣ ej = e∗j
]

≥


1

2(bj+1)

(
1−
√

2mj

bj

)2

if e∗j =
bj
2

min{e∗j ,bj−e∗j}
8(bj+1) max{e∗j ,bj−e∗j}

(
1−

√
2mj

min{e∗j ,bj−e∗j}

)2

otherwise

whenever mj ≤ 1
2
min{e∗j , bj − e∗j}

2. From there, one could perform an analogous analysis
to the worst-case case.

6.8.4 Determining the Signs of the Key

When the key entries are signed, the techniques of the previous section can be used to
determine the key up to sign. To determine the sign of the key entries, we use a standard
meet-in-the-middle approach; in particular, we split the primes into two batches

BL = {`1, `2, . . . , `k} and BR = {`k+1, `k+2, . . . , `n}

(where k =
⌈
n
2

⌉
) and populate two tables TL and TR with curves of the form

EL = [l
(−1)s1 |e∗1|
1 · · · l(−1)sk |e∗k|

k ] ∗ E0 and ER = [l
(−1)sk+1 |e∗k+1|
k+1 · · · l(−1)sn |e∗n|

n ] ∗ EA

respectively, for s1, s2, . . . , sn ∈ {0, 1}. When a match between the tables is found at
s∗1, s

∗
2, . . . , s

∗
n, the correct key is

e∗ = ((−1)s
∗
1 |e∗1|, . . . , (−1)s

∗
k |e∗k|,−(−1)s

∗
k+1|e∗k+1|, . . . ,−(−1)s

∗
n|e∗n|).

Näıvely, populating these tables requires evaluating the class group action 2k + 2n−k times,
using ideals whose product decomposition contains

∑k
i=1 |e∗i | terms (for TL) or

∑n
i=k+1 |e∗i |

terms (for TR). However, we can make this more efficient by constructing the entries of
the tables in a better order.

In particular, if we order our choices of s1, s2, . . . , sk according to a length-k binary Gray
code C, we need only apply a class group element of the form [lj]

±2|e∗j | when sj changes.
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This reduces the cost to

k∑
i=1

2τi|e∗i |κi (6.10)

where τ are the transition numbers of C—that is, τi is the number of times that the ith

bit flips in C—and κi is the cost of evaluating (E, `i) 7→ [li] ∗ E.

It remains to determine the Gray code C that, for a given κ and e∗, minimizes the cost
of constructing the required curves. We have the following result:

Lemma 6.24. Suppose the primes `1, `2, . . . , `k are ordered such that

|e∗1|κ1 ≤ |e∗2|κ2 ≤ · · · ≤ |e∗k|κk.

Then, the reflected binary code minimizes the quantity of Equation (6.10) over Gray codes
of length k.

Proof. Recall that the reflected binary code has transition numbers

τ ∗ = (2k−1, 2k−2, . . . , 1).

We have the following result regarding transition numbers:

Claim 6.25. Let τ be the transition numbers of a binary Gray code of length k. Then
for any T ⊆ {1, 2, . . . , k} we have ∑

t∈T

τt ≥ 2|T | − 1.

Proof (of claim). Consider the “code” C|T obtained from C by:

1. Removing ci whenever ci−1 ⊕ ci = êj for some j 6∈ T ; and,

2. Replacing ci by ci|T for 1 ≤ i ≤ 2k.

We note that C|T has exactly 2k −
∑

j 6∈T τj =
∑

t∈T τt + 1 codewords, and that each

word v ∈ {0, 1}|T | is a codeword of C|T , since C was a Gray code. Thus we have∑
t∈T

τt + 1 ≥ 2|T | =⇒
∑
t∈T

τt ≥ 2|T | − 1
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as required.

Now define the linear program

Minimize
k∑
i=1

(2|e∗i |κi)τi

Subject to
∑
t∈T

τt ≥ 2|T | − 1 for all T ⊆ {1, 2, . . . , k}
(GC)

By the claim above, any τ which is the transition numbers of a Gray code will be
feasible for (GC); moreover, its objective value is precisely will be precisely the expression
(6.10). Thus to prove that the reflected binary code is optimal, it suffices to show that τ ∗

is optimal for (GC).

The dual program to (GC) is

Maximize
∑

T⊆{1,2,...,k}
(2|T | − 1)yT

Subject to
∑

T⊆{1,2,...,k}
s.t. t∈T

yT = 2|e∗i |κi for all t ∈ {1, 2, . . . , k}

y ≥ 0

(GCD)

In order to prove that τ ∗ is optimal for (GC) it suffices to find y∗ which is feasible for
(GCD) and which satisfies the complementary slackness conditions

y∗T ·

(∑
t∈T

τ ∗t − (2|T | − 1)

)
= 0 for all T ⊆ {1, 2, . . . , k}. (6.11)

Claim 6.26. The vector y∗ defined by

y∗T =


2|e∗1|κ1 if T = {1, 2, . . . , k}
2|e∗i |κi − 2|e∗i−1|κi−1 if T = {i, i+ 1, . . . , k} with i ≥ 2

0 otherwise

is feasible for (GCD) and satisfies Equation (6.11), and hence proves the optimality of τ ∗

in (GC).
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Proof (of claim). To begin, we note that y ≥ 0 since 2|e∗i |κi ≥ 2|e∗i−1|κi−1 for all i ≥ 2 by
our choice of ordering of the `i, and 2|e∗1|κ1 > 0. As well, for all t we have

∑
T⊆{1,2,...,k}

s.t. t∈T

yT = 2|e∗1|κ1 +
t∑
i=2

(2|e∗i |κi − 2|e∗i−1|κi−1) = 2|e∗t |κt

as required, and so y∗ really is feasible for (GCD). As for the complementary slackness
conditions, it is clear that they hold for each T with y∗T = 0, and so we only need to
consider T = {t, t+ 1, . . . , k} for t = 1, 2, . . . , k.

For each such T we have

∑
j∈T

τ ∗t =
k∑
j=t

2k−j = 2k−t+1 − 1 = 2|T | − 1

so that the complementary slackness condition is indeed satisfied, completing the proof of
the claim.

Since τ ∗ is optimal for (GC), the reflected binary code is indeed the optimal code for
populating the tables, as required.

The reflected binary code yields an optimal order in which to populate the table for
the claw-finding attack if we restrict ourselves to algorithms which must construct the
next entry of the table using the current entry as the starting point. However, at least
for the left batch of primes, we are storing all curves in memory simultaneously; thus we
can in principle start the computation of the next table entry from any of the previously-
computed curves. Such an algorithm does not necessarily correspond to a Gray code;
rather, it corresponds to a spanning tree in the hypercube graph Hk = (V,E) defined by

V = Zk
2 and E = {{u,v} : u⊕ v = êj for some j}.

(where {êj}j is the standard basis of Rk) with edge weights defined by

u⊕ v = êj =⇒ w{u,v} = 2|e∗j |κj.

Gray codes of length k are Hamilton paths in Hk, which are a particular kind of spanning
tree; however, in principle we can do better by considering other kinds of spanning trees.
In reality, we have the following result.

124



Lemma 6.27. Suppose the primes `1, `2, . . . , `k are ordered such that

|e∗1|κ1 ≤ |e∗2|κ2 ≤ · · · ≤ |e∗k|κk.

Then, the Hamilton path constructed from the reflected binary code is a minimal spanning
tree for Hk, with the edge weights defined above.

Proof. We begin by defining the analogue of the transition numbers τ for a spanning tree
T = (VT , ET ) of Hk:

τj = |{{u,v} ∈ ET : u⊕ v = êj}|.

We have the following analogue of the first claim from Lemma 6.24

Claim 6.28. Let τ be the transition numbers of a spanning tree T in Hk. Then for any
T ⊆ {1, 2, . . . , k} we have ∑

t∈T

τt ≥ 2|T | − 1.

Proof (of claim). Consider the graph T |T constructed from T by identifying each collection
of vertices that differ only in their entries indexed by {1, 2, . . . , k}\T , relabelling each vertex
v by v|T , and eliminating any loops (edges incident at only one vertex). The graph T |T :

• Has vertex set Z|T |2 , and hence has 2|T | vertices;

• Is connected, because T was connected; and,

• Has exactly |ET | −
∑

j 6∈T τj =
∑

t∈T τt edges.

Since any connected graph on 2|T | vertices has at least 2|T | − 1 edges, it follows imme-
diately that ∑

t∈T

τt ≥ 2|T | − 1

as required.

It follows then that the transition numbers τ of any spanning tree in Hk are feasible
for the program (GC); we already know from Lemma 6.24 that τ ∗ (the transition numbers
for the reflected binary code) is optimal for (GC); thus the corresponding Hamilton path
in Hk is indeed a minimum spanning tree.
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Given that for a given partition BL, BR of the primes into two sets, we know how to
order the primes in each set, it remains to determine how to determine the sets themselves.
It is clear from Lemma 6.24 that, if the full set of primes is ordered so that

|e∗1|κ1 ≤ |e∗2|κ2 ≤ · · · ≤ |e∗n|κn

that we should alternately assign the primes to BL and BR, so that

BL = {`j : j ≡ 1 (mod 2) and 1 ≤ j ≤ n}
BR = {`j : j ≡ 0 (mod 2) and 1 ≤ j ≤ n}.

6.9 Simulation Results

Table 6.1 reports on the mean number of attacks used in our simulations for each vector
to reach a certainty level of 1%, 50%, 99%, and 99.9%. In particular, for the unsigned
setting we found that the mean number of faults required for the attacker to reach 1%
certainty was 15921 for HLKA, 12067 for MCR, and 10584 for Uniform, while reaching
99.9% certainty required a mean of 52092 attacks for HLKA, 39738 for MCR, and 35129
for Uniform. In contrast, this is a drastic improvement over the attacks needed in the
real-then-dummy setting (exactly

∑
jdlog(bj) + 1e; see Section 6.8.1), in which the number

of attacks required to reach 99.9% certainty increased by a factor of about 146 for HLKA,
116 for MCR, and 95 for Uniform. Reaching the same certainty levels in the signed setting
requires fewer attacks since the key is only learned up to sign and the bound vector entries
are typically smaller. Reaching a certainty level of 1% in the signed setting used 3039
faults for HLKA, 3552 for OAYT, and 2484 for Uniform, while a certainty level of 99.9%
needed 10734 faults on average for HLKA, 12447 for OAYT, and 8890 for Uniform. In the
signed setting, the number of attacks used to learn the key up to sign with 99.9% certainty
increased by a factor of 40 for HLKA when using a dynamic decision vector, a factor of 46
for OAYT, and of 30 for Uniform.

Table 6.2 contains the upper bounds on the number of faults required at the four
certainty levels 1%, 50%, 99%, 99.9% for the six bound vectors listed here. At each
certainty level these upper bounds are on the order of 3 to 5 times as large as the number
of faults required in our simulations.
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Figure 6.1: Box plots depicting the distribution of the number of faults required to achieve
four certainty levels for three bound vectors in the unsigned setting, over 1000 trials.
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Figure 6.2: Box plots depicting the distribution of the number of faults required to achieve
four certainty levels for three bound vectors in the signed setting, over 1000 trials.
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Figure 6.3: Histograms depicting the distribution of the number of faults required to
achieve four certainty levels for three bound vectors in the unsigned setting, over 1000
trials.
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Figure 6.4: Histograms depicting the distribution of the number of faults required to
achieve four certainty levels for three bound vectors in the signed setting, over 1000 trials.
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Certainty: 1% 50% 99% 99.9%
∑
dlog(bj) + 1e

∑
bj

Unsigned
Setting

HLKA 15921 28865 45561 52062 356 815
MCR 12067 21872 34855 39738 342 763

Uniform 10584 19387 30760 35129 370 740

Signed
Setting

HLKA 3039 5708 9272 10734 263 388
OAYT 3552 6574 10741 12447 266 404

Uniform 2484 4667 7686 8890 296 370

Table 6.1: Mean number of attacks used to reach specified certainty thresholds for various
bound vectors over 1000 randomly generated private keys. For each bound vector b =
(b1, . . . , bn) the sums

∑n
j=1dlog(bj) + 1e (a sufficient number of attacks to learn the key

with 100% certainty in the real-then-dummy setting) and
∑n

j=1 bj (a sufficient number of
attacks to learn the key with 100% certainty when the decision vector x is fixed) are also
reported.

Certainty: 1% 50% 99% 99.9%

Unsigned
Setting

HLKA 76058 116125 200531 250326
MCR 58808 90067 158754 197264

Uniform 52022 79698 142154 176194

Signed
Setting

HLKA 15679 23981 42043 52270
OAYT 18177 27812 48157 60024

Uniform 13024 19980 35594 44104

Table 6.2: Upper bounds on the number of required faults to achieve certainty 1%, 50%,
99%, and 99.9% for six bound vectors, obtained using Theorem 6.13.

6.9.1 Performance of Gray Code Method

Here we compare the standard meet-in-the-middle approach to determining the signs of
the private key to the Gray code approach of Section 6.8.4. It is difficult to analytically
estimate the cost of the näıve method for iterating through the sets TL and TR of Section
6.8.4 since the adversary is not obligated to use constant-time algorithms to construct the
curves, and thus can use a permutation and strategy which is optimized for the computed
key magnitudes (see [39] for a discussion of permutations and strategies). Hence, we were
not able to analytically compare the cost of the Gray code method to the näıve method.

Instead, we estimated the cost of the näıve method as follows. Since for a fixed key
e the curves in TL each require roughly the same amount of work to compute under
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the näıve method, the cost for computing all curves in TL is approximately 2k times the
cost of computing a single curve, and the latter cost is that of performing the action

(e, E) 7→
[∏k

i=1 l
ei
i

]
∗ E in non-constant time. A similar statement holds for TR. To

approximate this, we sampled 1000 random keys from the keyspace defined by the HLKA
signed setting bound vector from [39]. For each key, we found an optimal non-constant
time strategy (i.e., a strategy not employing dummy isogenies) and permutation using the
code publicly provided in [39], and estimated the cost of executing the optimal strategy
under the optimal permutation using the cost model of [39, Table 1]. Over the 1000 keys,

the average cost of computing (e, E) 7→
[∏k

i=1 l
ei
i

]
∗ E was about 150 000 many GF (p)

multiplications, where we have assumed 1M = 0.8S and ignored additions. The total cost
of computing both TL and TR for HLKA is then (237 + 236) · 1.5 × 105 ≈ 254.87, assuming
on average only half of TR needs to be computed before a collision is found.

For particular values of b and κ, we can estimate the cost of method based on Gray
codes as follows. As before, let k =

⌈
n
2

⌉
. First note that since the ordering based on Gray

codes is optimal, we can upper bound the expected cost by instead computing the expected
cost when the ordering is such that BL = {`1, . . . , `k} and BR = {`k+1, . . . , `n} and

b1(b1 + 1)

2b1 + 1
κ1 ≤

b2(b2 + 1)

2b2 + 1
κ2 ≤ · · · ≤

bk(bk + 1)

2bk + 1
κk, and

bk+1(bk+1 + 1)

2bk+1 + 1
κk+1 ≤

bk+2(bk+2 + 1)

2bk+2 + 1
κk+2 ≤ · · · ≤

bn(bn + 1)

2bn + 1
κn.

Then, noting that in expectation only half of the right table will need to be computed, we
have

E[Gray code cost] ≤ Ee

[
k∑
j=1

2 · 2k−j · |ej|κj +
1

2

n−k∑
j=1

2 · 2(n−k)−j · |ej+k|κj+k

]

=
k∑
j=1

2 · 2k−j · Ee[|ej|]κj +
1

2

n−k∑
j=1

2 · 2(n−k)−j · Ee[|ej+k|]κj+k

=
k∑
j=1

2 · 2k−j · bj(bj + 1)

2bj + 1
κj +

1

2

n−k∑
j=1

2 · 2(n−k)−j · bj+k(bj+k + 1)

2bj+k + 1
κj+k.

This cost only accounts for the “transition costs;” that is, the total costs of moving from
each element to the next within each table. To account for finding the first curve in the table
(which is done by using the näıve technique starting from the base curve E), we would add
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the expected cost of evaluating the action of [
∏k

i=1 l
|e∗i |
i ] and the expected cost of evaluating

the action of [
∏n

i=k+1 l
|e∗i |
i ]. Again, because we cannot analytically determine these costs,

we instead use the experimentally-determined mean cost. Substituting the values of the
κi and bi using the cost model and bound vector of [39] (noting that these κi are not the
same as those from [39]) we arrive at an upper bound of 1.725 × 104 field-multiplication-
equivalent operations per table entry, with an average-case cost of approximately 251.66

GF (p) multiplication-equivalent operations for computing TL and TR. The bound on the
expected cost of the Gray code method is approximately 88% less than the estimated
expected cost of the näıve technique using per-key optimized permutations and strategies.

6.10 Conclusions and Future Work

Based on our analysis, randomizing the order of real and dummy isogeny computations
in constant-time CSIDH implementations dramatically increases the number of faults to
required to achieve a reasonable success probability in a fault attack of the types we have
described. We do not expect that reordering isogeny computations will have an appreciable
impact on the running time of CSIDH, and thus recommend that future implementations
implement this feature for added fault attack resilience.

134



Chapter 7

Conclusions and Future Work

We have seen a number of analyses of the post-quantum key establishment protocol
CSIDH—including quantum cryptanalysis, optimizations, and fault attack analysis—which
have yielded a better understanding of the security of CSIDH, and faster, more secure im-
plementations. Moreover, in the course of these analyses we have introduced formalisms
that faciliate further development of isogeny-based cryptography.

There are a number of possible directions for future work; we give a few such directions
here.

Implementation of New CSIDH Parameter Sets. In light of recent research due to
Peikert [62], CSIDH-512 may not provide security at the level of NIST Category
1. Recent analyses [11] suggest that a base field GF (p) with log2 p ≈ 2260 (in an
optimistic estimate) or log2 p ≈ 5280 (in a conservative estimate) is required for that
security level. Once appropriate primes are found, the techniques of Chapter 5 can
be used to find optimized algorithms for implementing the class group action, and
optimized bound vectors. One should also consider whether non-multiplication-based
strategies are useful for the two-point technique in the setting of larger primes.

Improved Techniques for Optimization of Complex Multiplication Algorithms.
The techniques of Chapter 5 do not generally yield globally-optimal (permutation,
strategy) pairs to use to evaluate the action of cl(O). A method to find optimal
(or simply better) solutions to this optimization problem would likely yield faster
implementations of CSIDH.
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Lower Bounds for Estimated Costs of Complex Multiplication. If it is not possi-
ble to find globally-optimal (permutation, strategy) pairs, it would be useful to un-
derstand how suboptimal our solutions are. In Appendix B we discuss an approach
to this problem based on duality, but it has unfortunately been fruitless so far. More
careful analysis may lead to duality lower bounds; moreover, it may be possible to
derive bounds on the extent to which our alternating algorithm yields suboptimal
solutions using the theory of approximation algorithms.

Fault Attack Analysis in More General Fault Models. The fault attacks we con-
sider in Chapter 6 use bit-level faults (and, implicitly, faults that always succeed).
It is straightforward to show that our analyses also apply almost unchanged to the
weaker, byte-level faults considered in [15], and also that they can be extended (with
some modifications) and fault models where faults do no always succeed are likely
sufficient to launch a fault attack on CSIDH. This would yield a better understanding
of the fault attack resilience of CSIDH under more realistic assumptions.

New Fault Attack Countermeasures. The fault attack countermeasure of [15] per-
fectly prevents a certain variety of fault attack, at the cost of approximately dou-
bling the running time of CSIDH. Some preliminary results suggest that there exists
a countermeasure which prevents the same variety of attack, and which runs in sig-
nificantly less than twice the running time of CSIDH, at the cost of doubling its
communication requirement. At present CSIDH is quite slow, but has extraordinar-
ily small communication cost, and so this tradeoff is likely to be favourable. We
would like to develop and implement this countermeasure.
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[49] Péter Kutas, Chloe Martindale, Lorenz Panny, Christophe Petit, and Katherine E.
Stange. Weak instances of sidh variants under improved torsion-point attacks. Cryp-
tology ePrint Archive, Report 2020/633, 2020. https://eprint.iacr.org/2020/633.

[50] Jason LeGrow. Post-quantum security of authenticated key establishment proto-
cols. Master’s thesis, University of Waterloo, 2016. http://hdl.handle.net/10012/
10386.

[51] Leibo Liu, Bo Wang, and Shaojun Wei. Reconfigurable Cryptographic Processor.
Springer Singapore, 2018.

[52] Chris Lomont. The hidden subgroup problem - review and open problems. ePrint
arXiv:quant-ph/0411037, 2004.
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Appendix A

Optimized CSIDH Parameters

In this appendix we give the optimized CSIDH parameter sets we found using the tech-
niques of Chapter 5. We give the parameter sets used in MCRim, and in CCCDRS-3. Since
the CCCDRS-3 SIMBA strategies are all multiplication-based, we give only the SIMBA
substrategy sizes, rather than depicting the SIMBA strategies themselves.

A.1 MCRim

A.1.1 Bound Vector

bMCRim = [8, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,

18, 18, 17, 16, 15, 13, 13, 13, 13, 13, 12, 12, 11, 11, 11, 10, 11, 10,

10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 6, 7, 7, 6, 6, 6, 6, 6, 6,

6, 5, 5, 5, 6, 5, 5, 5, 6, 4]

A.1.2 Permutations

These permutations should be intepreted in the following way:

(σi,j)k = t ⇐⇒ The kth prime in SIMBA substrategy j of the ith SIMBA strategy is `t.

Note that the primes are indexed from 0.
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σ1,1 = [72, 46, 45, 51, 42, 66, 62, 63, 65, 22, 67, 20, 28, 37, 64, 19, 23, 17, 38, 12, 6]

σ1,2 = [71, 44, 52, 50, 43, 56, 60, 16, 61, 21, 57, 33, 58, 34, 35, 59, 15, 24, 9, 40, 41,

13, 30, 18]

σ1,3 = [73, 47, 48, 49, 69, 68, 53, 25, 54, 26, 55, 29, 31, 14, 70, 27, 32, 36, 11, 39, 8,

7, 10, 4, 5, 3, 2, 0, 1]

σ2,1 = [72, 46, 45, 51, 42, 66, 62, 63, 65, 22, 67, 20, 28, 37, 64, 19, 23, 17, 38, 12, 6]

σ2,2 = [71, 44, 52, 50, 43, 56, 60, 16, 61, 21, 57, 33, 58, 34, 35, 59, 15, 24, 9, 40, 41,

13, 30, 18]

σ2,3 = [73, 47, 48, 49, 69, 68, 53, 25, 54, 26, 55, 29, 31, 14, 70, 27, 32, 36, 11, 39, 8,

7, 10, 4, 5, 3, 2, 0, 1]

σ3,1 = [72, 46, 45, 51, 42, 66, 62, 63, 65, 22, 67, 20, 28, 37, 64, 19, 23, 17, 38, 12, 6]

σ3,2 = [71, 44, 52, 50, 43, 56, 60, 16, 61, 21, 57, 33, 58, 34, 35, 59, 15, 24, 9, 40, 41,

13, 30, 18]

σ3,3 = [73, 47, 48, 49, 69, 68, 53, 25, 54, 26, 55, 29, 31, 14, 70, 27, 32, 36, 11, 39, 8,

7, 10, 4, 5, 3, 2, 0, 1]

σ4,1 = [72, 46, 45, 51, 42, 66, 62, 63, 65, 22, 67, 20, 28, 37, 64, 19, 23, 17, 38, 12, 6]

σ4,2 = [71, 44, 52, 50, 43, 56, 60, 16, 61, 21, 57, 33, 58, 34, 35, 59, 15, 24, 9, 40, 41,

13, 30, 18]

σ4,3 = [73, 47, 48, 49, 69, 68, 53, 25, 54, 26, 55, 29, 31, 14, 70, 27, 32, 36, 11, 39, 8,

7, 10, 4, 5, 3, 2, 0, 1]

σ5,1 = [72, 52, 51, 49, 46, 54, 68, 66, 65, 36, 58, 20, 21, 33, 67, 18, 37, 13, 41, 11]

σ5,2 = [71, 50, 47, 44, 0, 61, 62, 63, 29, 64, 31, 60, 14, 17, 34, 35, 55, 38, 39, 40]

σ5,3 = [70, 42, 43, 48, 45, 16, 57, 69, 19, 56, 28, 32, 53, 15, 24, 22, 23, 12, 59, 25, 26,

27, 10, 30, 9, 6, 8, 5, 7, 4, 3, 2, 1]

σ6,1 = [72, 50, 43, 44, 53, 63, 49, 16, 20, 58, 25, 36, 39, 27, 29, 9, 35, 19, 10, 17]

σ6,2 = [65, 51, 41, 52, 40, 57, 56, 42, 28, 30, 62, 23, 33, 34, 13, 59, 15, 26, 8, 37, 31,

14, 18]

σ6,3 = [64, 45, 46, 47, 48, 60, 61, 54, 24, 21, 11, 55, 22, 32, 12, 38, 7, 6, 4, 5, 3,

2, 0, 1]

σ7,1 = [56, 47, 48, 43, 36, 50, 45, 20, 35, 46, 18, 33, 31, 39, 29, 23, 30, 11, 32, 17]
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σ7,2 = [55, 40, 38, 41, 44, 26, 53, 28, 42, 15, 19, 27, 8, 34, 10, 7, 37, 16, 24, 21, 25,

9, 14, 6, 22, 13, 12, 5, 4, 3, 2, 0, 1]

σ8,1 = [44, 29, 40, 41, 42, 39, 27, 35, 23, 22, 37, 28, 32, 33, 14, 38, 16, 21, 19, 30, 20,

17, 18, 36, 24, 25, 26, 8, 9, 4, 31, 13, 15, 7, 34, 12, 6, 11, 10, 5, 3, 2, 0, 1]

σ9,1 = [39, 29, 28, 36, 38, 37, 14, 33, 15, 21, 34, 22, 19, 30, 32, 16, 26, 18, 13, 20, 9,

17, 35, 23, 24, 25, 8, 27, 12, 7, 6, 31, 11, 10, 4, 5, 3, 2, 0, 1]

σ10,1 = [35, 29, 28, 33, 34, 27, 16, 26, 32, 21, 19, 31, 18, 22, 24, 13, 14, 6, 30, 15, 8,

23, 9, 4, 25, 11, 12, 7, 20, 17, 10, 5, 3, 2, 1]

σ11,1 = [29, 28, 27, 26, 24, 9, 2, 25, 14, 15, 7, 31, 20, 22, 32, 16, 17, 8, 19, 13, 4,

3, 30, 23, 21, 12, 18, 11, 10, 6, 5, 1]

σ12,1 = [30, 27, 28, 23, 26, 16, 21, 24, 14, 19, 18, 13, 25, 15, 20, 17, 10, 9, 4, 5, 22,

8, 11, 12, 7, 6, 3, 2, 1]

σ13,1 = [28, 25, 21, 26, 15, 7, 23, 12, 13, 9, 2, 24, 14, 17, 22, 16, 18, 19, 8, 4, 5,

20, 10, 11, 6, 3, 1]

σ14,1 = [26, 24, 21, 25, 23, 12, 15, 4, 2, 22, 9, 13, 14, 8, 16, 7, 10, 5, 20, 19, 18,

17, 11, 6, 3, 1]

σ15,1 = [24, 22, 23, 20, 16, 21, 15, 18, 19, 13, 12, 11, 14, 7, 9, 5, 17, 10, 8, 6, 4,

3, 2, 1]

σ16,1 = [23, 16, 19, 22, 14, 20, 9, 15, 18, 11, 21, 12, 13, 7, 4, 2, 17, 10, 8, 6, 5,

3, 1]

σ17,1 = [21, 20, 19, 15, 18, 14, 17, 16, 9, 11, 12, 8, 4, 5, 13, 10, 7, 6, 3, 2, 1]

σ18,1 = [21, 18, 20, 16, 19, 13, 12, 8, 4, 17, 9, 7, 14, 11, 15, 10, 6, 5, 2, 3]

σ19,1 = [18, 13, 12, 15, 7, 4, 14, 9, 8, 2, 3, 17, 10, 11, 6, 5]
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A.1.3 SIMBA Strategies

(a) The SIMBA strategy used in round 1. (b) The SIMBA strategy used in round 2.

(c) The SIMBA strategy used in round 3. (d) The SIMBA strategy used in round 4.
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(e) The SIMBA strategy used in round 5. (f) The SIMBA strategy used in round 6.

(g) The SIMBA strategy used in round 7. (h) The SIMBA strategy used in round 8.
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(i) The SIMBA strategy used in round 9. (j) The SIMBA strategy used in round 10.

(k) The SIMBA strategy used in round 11. (l) The SIMBA strategy used in round 12.
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(m) The SIMBA strategy used in round 13. (n) The SIMBA strategy used in round 14.

(o) The SIMBA strategy used in round 15. (p) The SIMBA strategy used in round 16.
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(q) The SIMBA strategy used in round 17. (r) The SIMBA strategy used in round 18.

(s) The SIMBA strategy used in round 19.

Figure A.1: The SIMBA strategies used in MCRim.
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A.2 CCCDRS-3

A.2.1 Bound Vector

bCCCDRS-3 = [3, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6,

6, 7, 6, 6, 6, 6, 6, 5, 6, 5, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2]

A.2.2 Permutations

These permutations should be intepreted in the following way:

(σi,j)k = t ⇐⇒ The kth prime in SIMBA substrategy j of the ith SIMBA strategy is `t.

Note that the primes are indexed from 0.

σ1,1 = [70, 2, 5, 16, 10, 19, 17, 18, 44, 43, 42, 41, 40, 39, 59, 56, 57, 58]

σ1,2 = [73, 3, 7, 14, 11, 24, 25, 26, 45, 34, 35, 30, 31, 37, 64, 63, 62, 61]

σ1,3 = [72, 1, 4, 6, 13, 12, 22, 29, 23, 46, 47, 48, 49, 50, 51, 67, 68, 53, 54]

σ1,4 = [71, 0, 9, 8, 15, 20, 21, 28, 27, 33, 36, 32, 38, 52, 69, 60, 55, 65, 66]

σ2,1 = [70, 2, 5, 16, 10, 19, 17, 18, 44, 43, 42, 41, 40, 39, 59, 56, 57, 58]

σ2,2 = [73, 3, 7, 14, 11, 24, 25, 26, 45, 34, 35, 30, 31, 37, 64, 63, 62, 61]

σ2,3 = [72, 1, 4, 6, 13, 12, 22, 29, 23, 46, 47, 48, 49, 50, 51, 67, 68, 53, 54]

σ2,4 = [71, 0, 9, 8, 15, 20, 21, 28, 27, 33, 36, 32, 38, 52, 69, 60, 55, 65, 66]

σ3,1 = [71, 1, 6, 14, 15, 22, 19, 27, 36, 43, 38, 41, 40, 39, 62, 61, 60, 59]

σ3,2 = [72, 3, 8, 11, 16, 23, 24, 25, 26, 44, 32, 30, 31, 50, 58, 65, 64, 63]

σ3,3 = [69, 4, 5, 7, 12, 18, 20, 29, 37, 45, 46, 47, 48, 49, 68, 67, 66, 53]

σ3,4 = [70, 0, 2, 9, 10, 13, 17, 21, 28, 35, 34, 33, 42, 52, 51, 55, 57, 56, 54]

σ4,1 = [60, 2, 6, 10, 15, 18, 17, 29, 48, 33, 51, 52, 50, 47, 53]

σ4,2 = [61, 4, 7, 14, 20, 21, 22, 23, 38, 37, 36, 35, 34, 55, 56]

σ4,3 = [58, 8, 5, 11, 13, 26, 25, 27, 39, 40, 41, 42, 43, 44, 57]

σ4,4 = [59, 1, 3, 9, 16, 12, 19, 24, 28, 32, 30, 45, 31, 46, 49, 54]
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σ5,1 = [60, 2, 3, 9, 5, 15, 16, 11, 10, 19, 22, 23, 21, 28, 27, 37, 36, 35, 34, 33, 30]

σ5,2 = [42, 1, 4, 8, 7, 6, 14, 13, 12, 18, 29, 20, 24, 26, 17, 25, 38, 39, 40, 41, 32, 31]

σ6,1 = [37, 2, 3, 9, 5, 6, 15, 16, 10, 17, 20, 26, 25, 24, 23, 22, 34, 31]

σ6,2 = [39, 1, 4, 8, 7, 14, 13, 12, 11, 28, 29, 27, 18, 19, 21, 35, 32, 30]

σ7,1 = [31, 3, 4, 5, 6, 15, 12, 10, 11, 18, 19, 23, 21, 20]

σ7,2 = [27, 2, 9, 8, 7, 14, 16, 13, 24, 25, 26, 17, 22, 30]

A.2.3 SIMBA Substrategy Sizes

SIMBA Strategy SIMBA Substrategy Size

1

1 18
2 18
3 19
4 19

2

1 18
2 18
3 19
4 19

3

1 18
2 18
3 18
4 19

4

1 15
2 15
3 15
4 16

5
1 21
2 22

6
1 18
2 18

7
1 14
2 14

Table A.1: SIMBA substrategy sizes for each round of CCCDRS-3.
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Appendix B

Failed Attempts at Duality Lower
Bounds for CSIDH

For any mathematical program in continuous variables, we may construct dual programs
which bound the optimal value of the initial program (the so-called primal problem). When
we cannot solve the primal program to optimality, dual programs give us an way to bound
the extent to which our non-optimal solution is non-optimal. We attempted to use duality
to derive lower bounds on the estimated running time of class group action evaluation
algorithms of the form we consider; however, we were unable to derive non-trivial lower
bounds in this way. In this chapter we discuss the two approaches we considered.

B.1 Formulating the Problem

In order to derive dual programs, we must first formulate the problem of finding an opti-
mal (strategy, permutation) pair as a mathematical program. We have already seen (q.v.
Section 5.5.2) how to formulate the problem of finding the optimal permutation for a given
strategy as a linear program; in this section we proceed by first constructing a mixed-
integer linear program which encodes the problem of finding an optimal strategy (encoded
as a pair of strategy matrices as described in Section 5.5.1) for a fixed permutation, and
then we augment it to construct a mixed-integer bilinear program in which neither the
strategy nor the permutation is fixed.
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B.1.1 A Mixed-Integer Linear Program for the Optimal Strategy

When the permutation is fixed, at the highest level we wish to formulate the problem

Minimize CM(S, σ)
Subject to S is a strategy

(B.1)

We deal with the objective function in the same way as in Section 5.5.2; we substitute
strategy matrices H,V and a permutation matrix Σ, and rewrite

CM(S, σ) = 1THTLΣµ+ 1TV TTRΣι

= 〈1µTΣTT TL , H〉F + 〈TRΣι1T , V 〉F

which is clearly linear in the variables H,V .

All that remains is to introduce constraints that enforce that H, V are a valid pair of
strategy matrices. By Lemma 5.2, H and V are a pair of strategy matrices if and only
if there is a flow on T ′n which uses only the edges given by H and V , for which the flow
along each edge into the sink is at most 1, and for which the total flow into the sink is at
least n. We can encode such a flow as a pair of matrices R,U ∈ R(n−1)×(n−1) (the “right”
flow along the horizontal edges, and the “up” flow along the vertical edges, respectively)
plus an additional vector t ∈ Rn (the flow into the sink). In this formulation, the flow
constraints (not including the total flow constraint) become

Ri,j + Ui,j −Ri,j−1 − Ui+1,j = 0 ∀ 2 ≤ i, j ≤ n− 2

Ri,1 + Ui,1 − Ui+1,1 = 0 ∀ 1 ≤ i ≤ n− 2

Rn−1,j + Un−1,j −Rn−1,j−1 = 0 ∀ 2 ≤ j ≤ n− 1

U1,1 − t1 = 0

Ri−1,i−1 + Ui,i − ti = 0 ∀ 2 ≤ i ≤ n− 1

Rn−1,n−1 − tn = 0

t ≤ 1

R,U, t ≥ 0

To enforce that the flow only uses the edges specified by H and V , we require Ri,j = 0
if Hi,j = 0 and Ui,j = 0 if Vi,j = 0. The most straightforward approach to enforcing this
is to use quadratic equality constraints; however, such constraints do not generally lead
to easily-solved optimization problems. Instead, we note that for any flow on a Steiner
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arborescence for (0, 0) and L, we will necessarily have Ri,j, Ui,j ≤ n for all i and j; thus we
can instead enforce that

R ≤ nH and U ≤ nV ;

since H and V are binary matrices, this forces Ri,j = 0 when Hi,j = 0 and Ui,j =
0 when Vi,j = 0 (that is, the flow only uses the strategy edges), and restricts Hi,j, Ui,j ≤ n
otherwise—as noted above, this condition will always be satisfied by any flow on an appro-
priate Steiner arborescence, and thus does not constrain the flow through strategy edges
(that is, any flow that uses only the strategy edges remains feasible, as desired).

The complete problem formulation is then

Minimize 〈1µTΣTT TL , H〉F + 〈TRΣι1T , V 〉F
Subject to R− nH ≤ 0

U − nV ≤ 0
Ri,j + Ui,j −Ri,j−1 − Ui+1,j = 0 ∀ 2 ≤ i, j ≤ n− 2

Ri,1 + Ui,1 − Ui+1,1 = 0 ∀ 1 ≤ i ≤ n− 2
Rn−1,j + Un−1,j −Rn−1,j−1 = 0 ∀ 2 ≤ j ≤ n− 1

U1,1 − t1 = 0
Ri−1,i−1 + Ui,i − ti = 0 ∀ 2 ≤ i ≤ n− 1

Rn−1,n−1 − tn = 0
1T t = n

t≤ 1
H, V ∈ {0, 1}(n−1)×(n−1)

R,U, t≥ 0

(OSP -MILP )

B.1.2 A Mixed-Integer Bilinear Program for the Optimal Per-
mutation and Strategy

In order to model we problem of finding an optimal strategy and permutation and strategy,
we simply modify (OSP -MILP ) by allowing Σ to be a variable, and adding the necessary
constraints to ensure that it encodes a permutation matrix. The results of Sections 5.5.2
and B.1.1 immediately yield the following MIBLP formulation of the problem:
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Maximize 〈1µTΣTT TL , H〉F + 〈TRΣι1T , V 〉F
Subject to Σ1 = 1

1TΣ = 1T

R− nH ≤ 0
U − nV ≤ 0

Ri,j + Ui,j −Ri,j−1 − Ui+1,j = 0 ∀ 2 ≤ i, j ≤ n− 2
Ri,1 + Ui,1 − Ui+1,1 = 0 ∀ 1 ≤ i ≤ n− 2

Rn−1,j + Un−1,j −Rn−1,j−1 = 0 ∀ 2 ≤ j ≤ n− 1
U1,1 − t1 = 0

Ri−1,i−1 + Ui,i − ti = 0 ∀ 2 ≤ i ≤ n− 1
Rn−1,n−1 − tn = 0

1T t = n
t≤ 1
Σ ∈ {0, 1}n×n

H, V ∈ {0, 1}(n−1)×(n−1)

R,U, t≥ 0

(CSIDH-MIBLP)

B.1.3 A Compact Reformulation

Before computing dual programs, we simplify and reformulate the program (CSIDH-
MIBLP) as a more standard mixed-integer bilinear program.

The Variables. We vectorize and bundle the variables as

x = vec(Σ) ∈ Rn
2

y =
[
vec(HT )T , vec(V )T

]T ∈ R2(n−1)2

z =
[
vec(RT )T , vec(U)T , tT

]T ∈ R2(n−1)2+n

We let ΠHT ,ΠV ,ΠRT ,ΠU and Πt be the projectors onto the corresponding subvectors of
y and z; these projectors allow us to more easily express the objective function and con-
straints of the program (CSIDH-MIBLP).
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The Objective Function. Applying the identity vec(ABC) = (CT⊗A)vec(B), we have

〈T TLHT1µT + T TRV 1ιT ,Σ〉F = xTPy

where

P = (µ1T ⊗ T TL )ΠHT + (ι1T ⊗ T TR )ΠV

The Constraints. We consider the following types of linear constraints that appear in
(CSIDH-MIBLP):

1. Permutation Constraints

1TΣ = 1T

Σ1 = 1
⇐⇒

[
In ⊗ 1T

1T ⊗ In

]
x =

[
1
1

]
2. Strategy Constraints

R− nH ≤ 0
U − nV ≤ 0

⇐⇒ ΠRT z− nΠHTy ≤ 0
ΠUz− nΠV y ≤ 0

3. Flow Constraints

(a) The flow constraints for the vertices not on the x- or y-axes are

Ri,j + Ui,j −Ri,j−1 − Ui+1,j = 0 ∀ 2 ≤ i, j ≤ n− 2

This is readily seen to be equivalent to((
eTi ⊗ (ej − ej−1)T

)
ΠRT +

(
eTj ⊗ (ei − ei+1)T

)
ΠU

)
z = 0 ∀ 2 ≤ i, j ≤ n− 2

where {ei}n−1
i=1 are the standard basis vectors in Rn−1.

(b) The flow constraints for vertices on the axes are

Ri,1 + Ui,1 − Ui+1,1 = 0 ∀ 1 ≤ i ≤ n− 2

Rn−1,j + Un−1,j −Rn−1,j−1 = 0 ∀ 2 ≤ j ≤ n− 1
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which are equivalent to((
eTi ⊗ eT1

)
ΠRT +

(
eT1 ⊗ (ei − ei+1)T

)
ΠU

)
z = 0 ∀ 1 ≤ i ≤ n− 2((

eTn−1 ⊗ (ej − ej−1)T
)
ΠRT +

(
eTj ⊗ eTn−1

)
ΠU

)
z = 0 ∀ 2 ≤ j ≤ n− 1

(c) The flow constraints at the terminal are

U1,1 − t1 = 0

Ri−1,i−1 + Ui,i − ti = 0 ∀ 2 ≤ i ≤ n− 1

Rn−1,n−1 − tn = 0

which are equivalent to (
(eT1 ⊗ eT1 )ΠU − êT1 Πt

)
z = 0(

(eTi−1 ⊗ eTi−1)ΠRT + (eTi ⊗ eTi )ΠU − êTi Πt

)
z = 0 ∀ 2 ≤ i ≤ n− 2(

(eTn−1 ⊗ eTn−1)ΠRT − êTnΠt

)
z = 0

where {êi}ni=1 are the standard basis vectors in Rn.

(d) The total flow into the terminal must be n; this can be rewritten as

1T t = n ⇐⇒ 1TΠtz = n

4. Bounds and Binary Variables

We have x ∈ {0, 1}n2
, y ∈ {0, 1}2(n−1)2

, z ≥ 0, and Πtz ≤ 1.
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The Primal Problem. Having rewritten the objective function and constraints, we can
rewrite the primal problem as

Minimize xTPy

Subject to Axx− bx = 0
Azz− bz = 0

Cyy + Czz ≤ 0
x ∈ {0, 1}n2

y ∈ {0, 1}2(n−1)2

z ≥ 0
Πtz ≤ 1

(CSIDH-S-MIBLP)

where

P = (µ1T ⊗ T TL )ΠHT + (ι1T ⊗ T TR )ΠV ,

Ax =

[
In ⊗ 1T

1T ⊗ In

]
, bx = 12n,

Az =



[((
eTi ⊗ (ej − ej−1)T

)
ΠRT +

(
eTj ⊗ (ei − ei+1)T

)
ΠU

)]n−2

i,j=2[((
eTi ⊗ eT1

)
ΠRT +

(
eT1 ⊗ (ei − ei+1)T

)
ΠU

)]n−2

i=1[((
eTn−1 ⊗ (ej − ej−1)T

)
ΠRT +

(
eTj ⊗ eTn−1

)
ΠU

)]n−1

j=2

1T

 , bz =

[
0(n−3)3+2(n−3)

n

]

Cy =

[
−nΠHT

−nΠV

]
, and Cz =

[
ΠRT

ΠU

]

B.1.4 Relaxation and Lower Bounds

The problem (CSIDH-S-MIBLP) is still difficult to solve because of its integer variables
and non-convex objective. We relax away the difficult parts; in particular, we replace the
constraints x ∈ {0, 1}n2

, y ∈ {0, 1}2(n−1)2
by

x ≥ 0 x ≤ 1 y ≥ 0 y ≤ 1

and introduce new variables W = xyT to make the objective linear: xTPy = 〈P,W 〉.
Of course, the constraint W = xyT is non-linear, which is not desirable. We relax this
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constraint using McCormick envelopes [54] to obtain

W ≥ 0 W − x1T2(n−1)2 − 1n2yT ≥ −J W − 1n2yT ≤ 0 W − x1T2(n−1)2 ≤ 0

which yields the full relaxed program

Minimize 〈P,W 〉F
Subject to Axx− bx = 0

Azz− bz = 0
Cyy + Czz≤ 0

x ≥ 0
x ≤ 1
y ≥ 0
y ≤ 1
z≥ 0

Πtz≤ 1
W ≥ 0

W − x1T2(n−1)2 − 1n2yT ≥ −J
W − 1n2yT ≤ 0

W − x1T2(n−1)2 ≤ 0

(CSIDH-LPR)

From here we simply compute the dual. The Lagrangian is

L(x,y, z,W ;λx,λz,ν,βx,βy,βz,γx,γy,γz,Θ1,Θ2,Θ3,Θ4)

= 〈P,W 〉F + λTx (Axx− bx) + λTz (Azz− bz) + νT (Cyy + Czz)

−βTxx− βTyy − βTz z + γTx (x− 1) + γTy (y − 1) + γTz (Πtz− 1)

−〈Θ1,W 〉F − 〈Θ2,W − x1T2(n−1)2 − 1n2yT + J〉F + 〈Θ3,W − 1n2yT 〉F
+〈Θ4,W − x1T2(n−1)2〉F

= 〈W,P −Θ1 −Θ2 + Θ3 + Θ4〉F + xT (ATxλx − βx + γx + (Θ2 −Θ4)1)

yT (CT
y ν − βy + γy + (Θ2 −Θ3)T1) + zT (ATzλz + CT

z ν − βz + ΠT
t γz)

−〈J,Θ2〉F − bTxλx − bTzλz − 1Tγx − 1Tγy − 1Tγz

(B.2)
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which yields the dual objective function

g(λx,λz,ν,βx,βy,βz,γx,γy,γz,Θ1,Θ2,Θ3,Θ4)

= inf
x,y,z,W

L(x,y, z,W ;λx λz,ν,βx,βy,βz,γx,γy,γz,Θ1,Θ2,Θ3,Θ4)

=


−〈J,Θ2〉F − bTxλx − bTzλz

−1Tγx − 1Tγy − 1Tγz

if

ATxλx − βx + γx + (Θ2 −Θ4)1 = 0

CT
y ν − βy + γy + (Θ2 −Θ3)T1 = 0

ATzλz + CT
z ν − βz + ΠT

t γz = 0

Θ1 + Θ2 −Θ3 −Θ4 = P

−∞ otherwise

and hence the “näıve” Lagrangian dual program

Maximize − 〈J,Θ2〉F − bTxλx − bTzλz − 1Tγx − 1Tγy − 1Tγz

Subject to ATxλx − βx + γx + (Θ2 −Θ4)1 = 0

CT
y ν − βy + γy + (Θ2 −Θ3)T1 = 0

ATzλz + CT
z ν − βz + ΠT

t γz = 0

Θ1 + Θ2 −Θ3 −Θ4 = P

ν,βx,βy,βz,γx,γy,γz ≥ 0

Θ1,Θ2,Θ3,Θ4 ≥ 0

(CSIDH-NLD)

Noting that βx,βy,βz, and Θ1 do not appear in the objective function, the program can
be simplified to (after reindexing the Θ variables):

Maximize − 〈J,Θ1〉F − bTxλx − bTzλz − 1Tγx − 1Tγy − 1Tγz

Subject to ATxλx + γx + (Θ1 −Θ3)1≥ 0

CT
y ν + γy + (Θ1 −Θ2)T1≥ 0

ATzλz + CT
z ν + ΠT

t γz ≥ 0

Θ1 −Θ2 −Θ3 ≤ P

ν,γx,γy,γz ≥ 0

Θ1,Θ2,Θ3 ≥ 0

(CSIDH-LD)

Unfortunately, in numerical experiments for CSIDH parameter sets of very small order,
(CSIDH-LD) has optimal value 0, making it not useful as a method to obtain lower bounds.
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B.2 A Quadratic Programming Approach

In Section B.1.2 we wrote the (strategy, permutation) problem as a mixed-integer bilinear
program in order to obtain duality lower bounds. Notably, we can also write the problem
as a quadratic program and attempt to get duality lower bounds from there; we detail the
formulation here. As before, we will bundle variables together; in particular, we define

x =
[
vec(Σ)T , vec(HT )T , vec(V )T , vec(RT )T , vec(U)T ,yT

]T ∈ Rn
2+4(n−1)2+n

We let ΠΣ,ΠHT ,ΠV ,ΠRT ,ΠU and Πy be the projectors from Rn
2+4(n−1)2+n onto the

corresponding subvectors of x; these projectors allow us to more easily express the objective
function and constraints of CSIDH-MIBLP

The Objective Function. Applying the identity vec(ABC) = (CT⊗A)vec(B), we have

〈T TLHT1µT + T TRV 1ιT ,Σ〉F =
1

2
xTPx

where

P =
(
ΠT
V (1ιT ⊗ TR) + ΠT

HT (1µT ⊗ TL)
)
ΠΣ + ΠT

Σ

(
(µ1T ⊗ T TL )ΠHT + (ι1T ⊗ T TR )ΠV

)
The Constraints. We consider the following types of linear constraints that appear in
(CSIDH-MIBLP):

1. Permutation Constraints

1TΣ = 1T

Σ1 = 1
⇐⇒

[
(In ⊗ 1T )ΠΣ

(1T ⊗ In)ΠΣ

]
x =

[
1
1

]
2. Strategy Constraints

R− nH ≤ 0
U − nV ≤ 0

⇐⇒ (ΠRT − nΠHT )x ≤ 0
(ΠU − nΠV )x ≤ 0

3. Flow Constraints
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(a) The flow constraints for the vertices not on x or y axes are

Ri,j + Ui,j −Ri,j−1 − Ui+1,j = 0 ∀ 2 ≤ i, j ≤ n− 2

This is readily seen to be equivalent to((
eTi ⊗ (ej − ej−1)T

)
ΠRT +

(
eTj ⊗ (ei − ei+1)T

)
ΠU

)
x = 0 ∀ 2 ≤ i, j ≤ n− 2

where {ei}n−1
i=1 are the standard basis vectors in Rn−1.

(b) The flow constraints for vertices on the axes are

Ri,1 + Ui,1 − Ui+1,1 = 0 ∀ 1 ≤ i ≤ n− 2

Rn−1,j + Un−1,j −Rn−1,j−1 = 0 ∀ 2 ≤ j ≤ n− 1

which are equivalent to((
eTi ⊗ eT1

)
ΠRT +

(
eT1 ⊗ (ei − ei+1)T

)
ΠU

)
x = 0 ∀ 1 ≤ i ≤ n− 2((

eTn−1 ⊗ (ej − ej−1)T
)
ΠRT +

(
eTj ⊗ eTn−1

)
ΠU

)
x = 0 ∀ 2 ≤ j ≤ n− 1

(c) The flow constraints at the terminal are

U1,1 − y1 = 0

Ri−1,i−1 + Ui,i − yi = 0 ∀ 2 ≤ i ≤ n− 1

Rn−1,n−1 − yn = 0

which are equivalent to (
(eT1 ⊗ eT1 )ΠU − êT1 Πy

)
x = 0(

(eTi−1 ⊗ eTi−1)ΠRT + (eTi ⊗ eTi )ΠU − êTi Πy

)
x = 0 ∀ 2 ≤ i ≤ n− 2(

(eTn−1 ⊗ eTn−1)ΠRT − êTnΠy

)
x = 0

where {êi}ni=1 are the standard basis vectors in Rn.

(d) The total flow into the terminal must be n; this can be rewritten as

1Ty = n ⇐⇒ 1TΠyx = n
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4. Bounds

We have

x ≥ 0 and


ΠΣ

ΠHT

ΠV

Πy

x ≤ 1

The Primal Problem. Having rewritten the objective function and constraints, we can
rewrite the primal problem as

Minimize 1
2
xTPx

Subject to Aeqx− beq = 0
Ax− b ≤ 0

(CSIDH-MIQP)

where

P =
(
(ΠT

V (1ιT ⊗ TR) + ΠT
HT (1µT ⊗ TL)

)
ΠΣ + ΠT

Σ

(
(µ1T ⊗ T TL )ΠHT + (ι1T ⊗ T TR )ΠV

)

Aeq =



(In ⊗ 1T )ΠΣ

(1T ⊗ In)ΠΣ[((
eTi ⊗ (ej − ej−1)T

)
ΠRT +

(
eTj ⊗ (ei − ei+1)T

)
ΠU

)
x
]n−2

i,j=2[((
eTi ⊗ eT1

)
ΠRT +

(
eT1 ⊗ (ei − ei+1)T

)
ΠU

)
x
]n−2

i=1[((
eTn−1 ⊗ (ej − ej−1)T

)
ΠRT +

(
eTj ⊗ eTn−1

)
ΠU

)
x
]n−1

j=2



A =



ΠRT − nΠHT

ΠU − nΠV

−In2+4(n−1)2+n

ΠΣ

ΠHT

ΠV

Πy


beq =

 12n

0(n−3)2+3(n−2)

n


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b =

 02(n−1)2

0n2+4(n−1)2+n

1n2+2(n−1)2+n


Dual Programs. To begin, we have the Lagrangian

L(x;λ,µ) =
1

2
xTPx + (ATeqλ+ ATµ)Tx− bTeqλ− bTµ

We first derive the Lagrangian dual program. The Lagrangian dual function is

g(λ,µ) = inf
x∈Rn2+4(n−1)2+n

L(x;λ,µ)

=

{
−∞ if P 6� 0 or (ATeqλ+ ATµ) 6∈ R(P )

−1
2
(ATeqλ+ ATµ)TP+(ATeqλ+ ATµ)− bTeqλ− bTµ otherwise

Unfortunately, we have the following result:

Claim B.1. For any generalized measure M = ((`i)
n
i=1, fH , fV ), P 6� 0.

Proof. Note that

1. P = P T ,

2. eT1 Pe1 = 0, and

3. eT1 Pen2+1 = eTn2+1Pe1 = µ1 > 0,

so that P 6� 0 by Sylvester’s Criterion (for positive semidefiniteness) [64].

Having failed to obtain a lower bound using the Lagrangian dual of the exact primal
problem, we relax the primal and try again.

Consider the following semidefinite programming relaxation of (CSIDH-MIQP)

Minimize 1
2
〈P,X〉F

Subject to 1
2
〈Q,X〉F + qTx ≤ 0

Aeqx− beq = 0
Ax− b ≤ 0[
1 xT

x X

]
� 0

(CSIDH-SDPR)
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We see that whenever x is feasble for (CSIDH-MIQP), the pair (x, X = xxT ) is feasible
for (CSIDH-SDPR), and has the same objective value; thus (CSIDH-SDPR) really is a
relaxation of (CSIDH-MIQP). Any lower bound for (CSIDH-SDPR) thus yields a lower
bound for (CSIDH-MIQP).

The Lagrangian for this problem is

L(x, X;ν,µ,λ0,λ,Λ) =
1

2
〈P − Λ, X〉F + xT (ATeqν + ATµ− 2λ)− bTeqν − bTµ− λ0

As before, we compute the Lagrangian dual function

g(ν,µ,λ0,λ,Λ) = inf
X∈R(n2+4(n−1)2+n)2

x∈Rn
2+4(n−1)2+n

L(x, X;ν,µ,λ0,λ,Λ)

=

{
−bTeqν − bTµ− λ0 if Λ = P and ATeqν + ATµ− 2λ = 0

−∞ otherwise

and thus construct the näıve Lagrangian dual program

Maximize −bTeqν − bTµ− λ0

Subject to ATeqν + ATµ+−2λ = 0
µ≥ 0[

λ0 λT

λ P

]
� 0

(SDPR-NLD)

Unfortunately, Claim B.1 immediately implies that (SDPR-NLD) is infeasible, since
again we require P � 0. To overcome this problem, we slightly modify the näıve semidef-
inite relaxation (CSIDH-SDPR) by introducing the constraint X ≥ 0; we note that this
new program is still a relaxation of (CSIDH-MIQP) since the pair (x, X = xxT ) remains
feasible whenever x is feasible for (CSIDH-MIQP) (recall that x ≥ 0 is a subsystem of
Ax− b ≤ 0). The new Lagrangian dual is

Maximize −bTeqν − bTµ− λ0

Subject to ATeqν + ATµ− 2λ = 0
Λ ≤ P
µ ≥ 0[

λ0 λT

λ Λ

]
� 0

(SDPR-NLD’)
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The program (SDPR-NLD’) is clearly feasible (take all variables to be 0). We can simplify
the program considerably by noting that diag(P ) = 0 so that the only solution to Λ ≤
P,Λ � 0 is Λ = 0 (by Sylvester’s criterion). This then requires λ = 0, so that the program
becomes

Maximize −bTeqν − bTµ− λ0

Subject to ATeqν + ATµ = 0
µ≥ 0
λ0 ≥ 0

(S-SDPR-NLD)

Unfortunately, we have the following result.

Claim B.2. The optimal value of (S-SDPR-NLD) is 0.

Proof. The dual of (S-SDPR-NLD) is

Maximize 0T x̂
Subject to Aeqx̂ = −beq

Ax̂ ≥ −b
(S-SDPR-NLDD)

Since (S-SDPR-NLD) is feasible (take ν = 0,µ = 0, and λ0 = 0), by the strong duality
theorem for linear programs, (S-SDPR-NLDD) is also feasible. But any feasible point for
(S-SDPR-NLDD) has objective value 0; thus by strong duality (S-SDPR-NLD) has optimal
value 0.
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