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• N. Rodŕıguez Briones, E. Mart́ın-Mart́ınez, A. Kempf, and R. Laflamme, “Correlation-
Enhanced Algorithmic Cooling”, Phys. Rev. Lett. 119 (5), 050502 (2017) [90]
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Abstract
The field of quantum information has inspired new methods for cooling physical systems

at the quantum scale by manipulating entropy in an algorithmic way, such as heat-bath
algorithmic cooling (HBAC). These methods not only provide fundamental insight into
quantum thermodynamics, but they are also at the core of practical applications in quan-
tum science and quantum technologies. Arguably, the most promising practical applica-
tions are in quantum computing, for the preparation of pure states. The ability to prepare
highly pure states is required both for initializing qubits in most quantum algorithms and
for supplying reliable low-noise ancilla qubits that satisfy the fault-tolerance threshold for
quantum error correction (achieving the high levels of purity required represents one of
the major challenges not only for ensemble implementations but also for technologies with
strong but not perfect projective measurements).

The heat bath algorithmic cooling protocols have inspired the work within this thesis,
which examines and proposes powerful new techniques that significantly enhance cooling
by taking advantage of classical and quantum correlations. These new methods go be-
yond the limits of conventional cooling techniques, providing a novel way to cool that
allows a generalized interaction of the system with the environment, which has not been
taken into account in previous work. Concretely, I have contributed to elucidating our
understanding of these algorithmic cooling mechanisms by using techniques from quantum
information theory and quantum thermodynamics. First, I found the analytical solution
of the maximum achievable cooling of these algorithmic cooling methods, which had been
a longstanding problem that remained open for almost 15 years. Then, I showed how to
circumvent the cooling limits of the conventional algorithmic cooling – which were widely
believed to be optimal –, creating novel methods that show how correlations can be used
to significantly improve cooling. On the one hand, we fundamentally changed the way
previous methods considered the interactions between the system and environment and
showed how correlated relaxation processes can be essential for enhancing cooling. On the
other hand, we demonstrated that correlations present in the initial state due to internal
interactions can be exploited to improve cooling. Finally, we showed how, by using ideas
and concepts from resource theory, it is possible to find the optimal entropy compression
required for HBAC by studying the n-to-1 distillation of athermality of two level systems.

The main contribution of these thesis is listed as follows:
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Obtaining the maximum achievable cooling of algorithmic cooling. The theoret-
ical limit of algorithmic cooling has been a longstanding open problem for more than
a decade, after Schulman et al. proved the existence of the physical limits [98], and
only bounds and numerical estimations had been provided. In particular, the limits
were studied using a specific algorithm, the Partner Pairing Algorithm [98] which is
optimal under the assumption that the interaction of the system with the environ-
ment causes individual-qubit relaxation. In my research, we completely resolved the
problem by finding the analytical solution for the achievable cooling limits and the
asymptotic steady state of the system [93].

Enhancing cooling by designing novel techniques that exploit correlated re-
laxation processes [89]. We generalized the allowed interactions of the quantum
system with the environment by including crossed relaxation processes, which is a
crucial step that had not been taken into account in previous works. We then de-
signed new tools to refresh qubits with steps where the bath only couples to certain
energy transitions during the relaxation process, and presented explicit protocols that
go beyond all previous Heat-Bath Algorithmic Cooling techniques.

Characterized the fundamental limitations for local cooling quantum sys-
tems [2]. We provided the necessary and sufficient conditions to have in a quantum
system the impossibility to extract energy by means of any general local map on a
system. We bounded the critical temperature at which below this property appears
in the system.

Enhancing cooling by taking advantage of correlations due to internal interac-
tions [90]. These results pushed beyond the cooling limits by combining techniques
from quantum field theory to exploiting internal correlations of the system. Con-
cretely, we used quantum energy teleportation protocols to extract energy locally
from the target qubit while removing correlations due to internal interactions, con-
siderably improving the final purity of the target qubit.

Explaining optimal operations of HBAC with resource theories tools We showed
how, by using ideas and concepts from resource theory, it is possible to find the
optimal entropy compression and connect with the distillation of athermality from
two level systems.
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Chapter 1

Introduction and motivation

Quantum information science gives us a new language to ponder and understand our
universe in terms of the evolution of information. This information language not only allows
us to reinterpret the laws of nature in an enriched conceptual framework of information, it
also provides us with powerful mathematical tools that can be used both to tackle some of
the major open questions in physics and to bring novel practical applications. Furthermore,
understanding the essence of information in the quantum regime, such as how information
is stored, transmitted and processed in quantum systems, allows us to develop tasks of
unprecedented capabilities with remarkable applications in quantum science and quantum
technologies. One of these tasks is cooling, which has the potential to elucidate fundamental
theoretical properties in quantum thermodynamics, lead to new experimental possibilities
with genuine quantum effects, and bring applications for quantum technologies [61, 79].

Indeed, the field of quantum information has inspired new methods for cooling physical
systems at the quantum scale by manipulating entropy in an algorithmic way [11, 100, 29,
98, 99, 105, 106], verifying that energy transport and information processing are two sides
of the same coin. These methods, known as algorithmic cooling protocols, decrease the
entropy of quantum systems by applying alternating rounds of suitable internal redistribu-
tions of entropy – through reversible entropy compression operations – and contact with
a thermal bath to pump entropy out of the system [7, 11, 78, 29]. These cooling methods
not only provide an essentially novel way to cool, but can also go beyond the cooling limits
of conventional cooling techniques [98, 93], bringing important applications in quantum
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science and technologies.

Arguably, the most promising practical applications are in quantum computing.Quantum
computing has the potential to revolutionize the way in which we process information and
communicate by harnessing the laws of quantum mechanics. Concretely, quantum features,
such as quantum superposition and entanglement, enable development of new algorithms
that considerably outperform classical algorithms, and promise the possibility of dramat-
ically speeding up computations and simulations. Some of the most important examples
are simulating quantum phenomena [31], factoring large numbers [101, 102], and increasing
speed in database searching [42] 1. However, physically constructing a quantum computer
crucially requires the ability to prepare qubits in a pure state, which is a big challenge
in quantum computing, not only for ensemble implementations but also for strong but
imperfect projective measurements. In fact, the importance of the pure state preparation
is widely known as part of the DiVicenzo criteria [24], which consists of 5 basic require-
ments that any experimental platform must meet in order to reliably perform a quantum
computer. This preparation of highly pure qubits is required in the initialization stage of
most quantum algorithms, and for supplying reliable low-noise ancilla qubits that satisfy
the fault-tolerance threshold for quantum error correction [58, 21].

In fact, the preparation of highly pure states is one of the major challenges for quantum
computing and quantum thermodynamics. On the one hand, even though, in theory, ideal
pure states can be obtained through projective measurements or cooling them to very low
temperatures, such luxury is not possible in the lab. As it has been demonstrated in
Ref. [43], ideal projective measurements have infinite resource costs, which is also deeply
related with the third law of Thermodynamics [69, 33]. On the other hand, for ensemble
implementations –such as NMR and ESR [61]– a different technique might be needed, since
it is not possible to have individual access to systems, and only average values of certain
observables are measurable. This restriction, added to the fact that in typical ensemble
systems the qubits are highly mixed at room temperature, constitutes an extremely difficult
problem.

Heat-bath algorithmic cooling (HBAC) constitutes a potential solution designed to pu-
1More breakthroughs of the quantum revolution are still expected to come, for example to solve math-

ematical problems once thought to be intractable, develop unbreakable encryption of information, build
time-keeping devices with unparalleled precision, and make ultra-sensitive detectors with extraordinary
accuracy, among others.

2



rify qubits by using a different approach that exploits tools from quantum information
processing to increase purity by cooling. This approach provides a fresh set of device-
independent protocols that work not only for ensemble implementations but also for tech-
nologies with strong but imperfect measurements [61, 7, 30, 27, 14, 15, 77, 96, 11, 100, 29,
98, 99, 61].

The question at the heart of this thesis is how to provide more refined algorithmic
cooling protocols that take advantage of correlations to enhanced cooling, which has not
been taken into account in previous protocols. In particular, I explore relaxation processes
where the bath only couples to certain energy transitions in the context of quantum in-
formation processing, to go beyond all previous HBAC techniques. Then, we show how
correlations present in the initial state due to internal interactions can be exploited to
improve cooling. Finally, by using ideas and concepts from resource theory, we show how
it is possible to find the optimal entropy compression required for HBAC by studying the
n-to-1 distillation of athermality of two level systems.

1.1 Introduction of Heat-Bath Algorithmic Cooling

Ole W. Sørensen [106, 107, 105], while studying the relation between entropy and the
bounds on the attainable states for spins 2, observed for the first time how unitary dynamics
allows to decrease the entropy of a subset of qubits at the expense of increasing the entropy
of the complementary qubits, and also provided bounds to what later would be called
reversible entropy compression –one of the building blocks for the algorithmic cooling
protocols.

An explicit way to implement this redistribution of entropy, in the context of quantum
information, was given by Schulman and Vazirani [100], who proposed cooling algorithms
for ensemble quantum computers. Their protocol, which they called the “quantum mechan-
ical heat engine” [100], carries out a reversible process in which an input of energy to the
system results in a separation of cold and hot regions. This method, particularly inspired
by Peres’s recursive algorithm [83], was a reinterpretation in thermodynamic terms of a

2Sørensen provided the so-called “universal bound on spin dynamics”. This theorem gives the maximum
possible projection of a final state in the Liouville space on any state vector, starting from an arbitrary
initial state, under only unitary transformations [107, 105]

3



simple step introduced by von Neumann to extract fair coin flips from sequences of biased
coin flips [112]. Schulman and Vazirani showed that it is possible to reach polarization
(purity – see Chapter 2, for the definitions) of order unity in the cold region using only a
number of identical qubits in the system which is polynomial in the initial polarization εb
(where the polarization ε is related to the purity P by ε =

√
2P − 1, for ε in the eigenbasis

of ρ, see background in Chapter 2). Specifically, the number of qubits scales as 1/ε2b for
very low initial polarizations εb � 1.

This scheme, later named “reversible algorithmic cooling”, was improved by adding
contact with a heat bath to cool the qubits that were heated during the process [11]. This
improved method – called “Heat-Bath Algorithmic Cooling” (HBAC) – allows entropy to
keep being pumped out of the system to the heat-bath after each irreversible entropy-
compression step in an iterative way. Beyond theoretical interest, proof-of-principle ex-
periments have demonstrated reversible algorithm cooling [17] and heat-bath algorithm
cooling [30, 7, 96, 27, 15, 77]. These studies have shown improvement in polarization for
a few qubits after a few rounds of HBAC were performed, and some studies have even
included the impact of noise [55]. Based on this idea, many other cooling algorithms have
been designed and proposed experimentally [29, 73, 98, 26, 99, 28, 55, 15].

Furthermore, while originally algorithmic cooling was mainly focused on ensemble quan-
tum computing implementations [17, 30, 27, 15, 7, 96, 77, 78], it can also be used to in-
crease the purity of quantum states up to the fault-tolerance threshold for technologies with
strong but imperfect projective measurements (e.g. in superconducting qubits, quantum
optics, etc). This technique could also be used to complement randomized benchmark-
ing techniques by distinguishing state and measurement errors. Another potential use of
algorithmic cooling is for improving the signal to noise ratio in NMR and MRI applica-
tions [30, 72] (see also the corresponding limitations analyzed in [15]). Finally, algorithmic
cooling is of interest to the community of quantum thermodynamics.

Cooling bounds for the Algorithmic cooling protocols

Even though HBAC had already been performed in the lab for several rounds and had been
studied through numerical simulations, the cooling limits of these techniques remained an
open problem for almost 15 years. The first attempts for providing bounds and numerical
evidence of the limits of the cooling algorithms were given by Schulman et al. [98, 99], and
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Moussa [73]. Moussa and Schulman observed that if the polarization of the bath (εb) is
much smaller than 2−n, where n is the total number of qubits, the asymptotic polarization
reached would be ∼ 2n−2εb. However, when εb is greater than 2−n, a polarization of order
one can be reached. Nevertheless, the actual limits of the HBAC protocols were not well
understood.

The limits of HBAC have been studied using a specific algorithm, the Partner Pairing
Algorithm (PPA), which was introduced by Schulman, Mor and Weinstein [98], and claimed
to be optimal among all possible HBAC protocols [99]. Based on this statement, it has
been claimed that the fundamental limits for all HBAC techniques under general conditions
should be given by the limits of the PPA protocol [88]. The exact steady state of the cooling
limit of PPA was recently found and presented in Refs. [93, 88]. However, we later found
and proved that the claim about the “fundamental cooling limits” is incorrect [89, 94], and
this is where the story of our contributions, presented in this thesis, begins.

1.2 Main contributions and organization of this thesis

After we solved the problem of finding the analytical solution for the achievable cooling of
the PPA method [91, 93, 79] 3, we found an implicit assumption within Schulman et al.’s
optimization of the PPA protocol , which can be removed to give a more general interaction
with the bath and improve the achievable cooling. Concretely, in Schulman’s et. al’s proof,
it was assumed that the optimal use of the heat bath was to fully thermalize the qubits
that are allowed to make contact with the bath. However, we found that better purification
can be achieved by removing the restriction of individual relaxation and include correlation
between qubits as they reset, also known as cross-relaxation.

In more detail, we introduced a novel tool that thermalizes only selected pairs of energy
3We analytically solved for the achievable cooling of the PPA HBAC method for the generalized case

of cooling a target qubit from a system setup of dimension 2d (for instance, for a target qubit withing a
string of n qubits, we have 2d = 2n) and m extra qubits that come in contact with a bath. [91, 93, 79].

The analytic result for the maximum achievable cooling of PPA can be reached for a totally mixed initial
state, which gives an achievable bound as we can always efficiently turn a state into the maximally mixed
one, while some other initial states do lead to higher polarizations.

The asymptotic polarization of order one can be reached doubly exponentially in the number of qubits
(or exponential as a function of the size of the Hilbert space of the system). See chapter 3 for a more
detailed description.

5



levels of the system, instead of completely thermalizing the qubits as in previous proto-
cols. This operation, which we have called the “reset-state operation”, can occur when
the coupling to the environment includes correlations between the qubits of the system,
making cross-relaxation processes possible. The reset-state operation uses correlated decay
processes, in contrast to the full thermalization, which requires only single qubits decay.
Furthermore, we give a physical description for how such correlations exist in real physical
systems and relate this new technique to the Nuclear Overhauser Effect (NOE).

We present explicit new cooling algorithms that lead to an increased purity beyond
the achievable cooling of the PPA, as the coupling to the environment is not limited to
independent qubit-relaxation. In our first model, we remove the restriction of individual
relaxation and include correlation between qubits as they reset to have cross-relaxation
processes. We generalize our algorithm to the case where we use both cross relaxations
and independent qubit-relaxations and show an improvement on cooling. We present the
analytical maximum achievable polarization for our methods as a function of the dimension
of the system used and the heat-bath polarization.

Our results show how by taking advantage of correlations during the refresh step, the
long standing upper bound on the limits of algorithmic cooling [98] can be surpassed.
Indeed, recent work has suggested that quantum correlations are important in work ex-
traction and entropy flows in cooling protocols [34, 16, 81, 94, 66, 36, 40, 23].

Furthermore, in our second main contribution, we relaxed another assumption under-
lying all previous HBAC methods, which is that the qubits are not interacting or initially
correlated [29, 73, 98, 26, 99, 28, 55]. In practice, the qubits typically possess correla-
tions of both classical and quantum origin, generated, respectively, thermally and through
interaction-induced entanglement. Nevertheless, algorithms such as the PPA do not make
use of correlations in the system; what is more, these PPA-like algorithms include steps
(rethermalization with the environment for resetting qubits) that break quantum and clas-
sical correlations in the system.

In our second model, we generalize HBAC to allow the presence of correlations, and we
show that these correlations provide a resource that can be used to improve the efficiency
of HBAC methods beyond previously-established limits, in particular when this interaction
is sufficiently strong. The underlying principle behind the improvement requires the notion
of local passivity, i.e. the impossibility to extract energy by using general local operations.
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Our method improves cooling by using pre-existing correlations to remove energy instead
of breaking them during the thermalization processes. In particular, we implement ideas
from the so-called Quantum Energy Teleportation (QET) protocol [51, 35, 53, 34, 50, 48,
109, 49, 52, 111].This protocol allows us to break the local passivity of a part of the system
by taking advantage of pre-existing correlations in an interacting system together with
classical communication (or quantum communication [52]).

Finally, we show how to combine ideas and concepts from resource theories in which
the thermodynamic processes are characterized by the attainable states under a restricted
set of physical operations. Concretely, we present the analytic expression of the athermal
Lorenz curve for N identical qubits. Then, we approximated it for the case of large N. We
related our result with the entropy compression needed for algorithmic cooling, and we
obtained the maximum achievable purity for a target qubit in a single shot. In particular,
we considered two different scenarios that allow the following operations: in one scenario
the thermal operations, and in the other global unitary operations. We present a proof of
the best entropy compression under the aforementioned allowed operations by using the
Thermo-majorization curves and Lorenz curves, respectively.

Other results, not included here, are the cooling limitations to local energy extraction
in quantum systems [2]. We found the necessary and sufficient conditions for CP-local
passivity, i.e. the impossibility to extract energy under the the most general type of lo-
cal access to quantum systems, which is given by the completely positive trace-preserving
(CPTP) maps. These conditions take the form of a simple inequality of operators. We
also derived simpler sufficient conditions that show definite physical situations in which
this phenomenon appears, and we provide numerical examples illustrating the general pic-
ture. We also strengthened a previous result of Frey et al. [34] by showing a physically
relevant quantitative bound on the threshold temperature at which this passivity appears.
Furthermore, we showed how this no-go result also holds for thermal states in the thermo-
dynamic limit, provided that the spatial correlations decay sufficiently fast, and we give
numerical examples.

Furthermore, our new techniques and protocols have inspired and influenced other
works to further improve cooling techniques. An example is the work of Alhambra et
al. [1], who pushed to its limits our idea of considering relaxation processes that act only on
certain energy transitions of the ancillas coupled to the bath. Alhambra et al. optimized the
corresponding strategies under general thermalization processes and found HBAC protocols
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that can obtain ground state cooling with an exponential convergence with the number of
rounds. Interestingly, the cooling enhancements are due to non-Markovian thermalisation
dynamics, which suggests that memory effects can be exploited to improve cooling, which
has been recently explored in Ref. [108]

In summary, this thesis’ main contribution can be summarized as a significant improve-
ment to previous algorithmic cooling techniques, which were believed to be optimal, by
taking advantage of correlations in two different ways. In the first protocol, the correlations
that we take advantage of are due to correlated relaxation processes between the qubit and
environment when we refresh the qubits. In the second protocol, we take advantage of the
correlations present in the initial state due to internal interactions. Furthermore, we give
a physical description of how such correlations exist in real physical systems and provide
a realistic algorithm to exploit them.

Contents of the Thesis

In this thesis, I will first review the basic ideas of algorithmic cooling (Chapter 2) and give
analytical results for the achievable cooling limits for the PPA heat-bath protocol (Chapter
3). Then, I will show how the limits can be circumvented by using correlations. In one
algorithm I take advantage of correlations that can be created during the rethermalization
step with the heat-bath (Chapter 4) and in another I use correlations present in the initial
state that are induced by the internal interactions of the system (Chapter 5). These two
algorithms show how correlations can be used to improve cooling. Then, I will show
how, by using ideas and concepts from resource theory, it is possible to find the optimal
entropy compression and connect with the distillation of athermality from two level systems
(Chapter 6).

• Chapter 2: Review of the basic ideas of algorithmic cooling

• Chapter 3: Analytical results for the achievable cooling limits for the PPA heat-bath
protocol

• Chapter 4: How the cooling limits of the PPA method can be circumvented by using
correlations. Explicit novel cooling algorithms that take advantage of correlations
created during the rethermalization step with the heat-bath
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• Chapter 5 A generalization of the HBAC methods to interacting systems. Explicit
cooling techniques that use correlations present in the initial state that are induced
by the internal interactions of the system

• Chapter 6 How, by using ideas and concepts from resource theory, it is possible to
find the optimal entropy compression and connect with the distillation of athermality
from two level systems

• Chapter 7 Conclusions

Supplemental material is presented in the appendices at the end of the thesis.
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Chapter 2

Background

In this chapter, first I provide the background needed to understand the connection between
energy, information and the purity of qubits. The profound connection between the afore-
mentioned concepts provided insights for a novel generation of cooling techniques which
manipulate information in a controlled way to reproduce cooling effects. In particular, I
present here one of these methods, known as the PPA protocol, which was introduced by
Schulman, Mor and Weinstein [98]. This protocol gives the optimal cooling algorithm with
respect to entropy extraction when the interaction with the bath is restricted to individual
qubit-relaxation.

2.1 Cooling physical systems with tools from quan-
tum information processing

A key concept for understanding how the tools from quantum information science can be
used to cool physical systems is entropy. Entropy plays a fundamental role in information
theory and is also an essential concept in thermodynamics – deeply related to the physical
properties of the system, such as temperature and energy. In fact, understanding the
relationship between entropy, energy and purity in quantum systems, allows us to design
strategies to manipulate the internal entropy of the quantum system to reproduce effects
such as energy transfer. In the next subsections, I show how the aforementioned properties
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are connected in quantum systems in general, and then in particular for a target qubit and
ensembles of qubits in a thermal state.

2.1.1 Entropy and purity of a quantum system

Entropy gives a measure of the unpredictability of a state, or equivalently, of the mixedness
of a quantum state. In quantum information theory, the von Neumann entropy for a
quantum system with state ρ is defined as S(ρ) ≡ −tr(ρlogρ). This expression can be
rewritten in terms of the eigenvalues {λx}x of the density matrix ρ as S(ρ) = −∑x λxlogλx.
As a result, for a diagonal density matrix, the von Neumann entropy is reduced to the
Shannon entropy of the probability distribution given by the diagonal entries of ρ.

Entropy equal to 0 corresponds to the case when the state of the system is perfectly
known, i.e. when the system has a probability 1 of being in a given state. This quantum
system whose state is perfectly known is said to be in a pure state.

The level of purity of a quantum system is commonly measured as P (ρ) := Tr (ρ2),
which for a system of dimension d goes from 1/d to 1, i.e. from the maximally mixed state
to a pure state. Thus, a simple criterion for determining whether a state ρ is pure or not,
is to check whether the state satisfies exactly the condition Tr (ρ2) = 1; for Tr (ρ2) < 1 the
state is said to be in a mixed state. The purity is conserved under unitary transformations
acting on the density matrix. In general for a state ρ the purity can be calculated on the
corresponding diagonalized density matrix and expressed in terms of its eigenvalues {λx}x
as P (ρ) = ∑

x λ
2
x.

In particular for our interests, it is important to identify what part of the system will be
the target subsystem to be cooled, and to which we will try to increase its purity. Given the
special simplicity and significance of systems made of qubits, in the next subsection I start
to derive the relationships between entropy and purity for the simple case of a general
individual qubit, followed by similar derivations for an ensemble of qubits in a thermal
state.
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Target qubit

Let us consider the case of having a single qubit as the target to be cooled (in general
this target qubit is assumed to be a subsystem of a larger system). A qubit, which is a
two-level quantum system, has a density matrix with two eigenvalues λ0 and λ1, that are
related as λ0 + λ1 = 1, since the state should be trace 1. Then, the corresponding entropy
and purity evaluates to

S(ρ1q) = −λ0 log [λ0]− (1− λ0) log [1− λ0] and P(ρ1q) = λ2
0 + (1− λ0)2. (2.1.1)

For the qubit case, the entropy an purity are parameterized based on the same parameter
λ0, which goes from zero to 1. Fig. 2.1 shows the entropy and purity as a function of the
eigenvalue λ0 of the target qubit. Note that, decreasing entropy is equivalent to increasing
the purity of the target qubit.

1

λ00.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Entropy

Purity

Figure 2.1: Entropy and purity of a single qubit as a function of its eigenvalue λ0, in blue
and purple, respectively. This illustrates the mapping described between the entropy and
purity, parameterized with λ0. For a state with the bath polarization εb, λ0 = (1 + εb)/2.

To describe this change of entropy (purity) in terms of the energy of the target qubit,
let us consider the local Hamiltonian of the target qubit, which in general can be written
as

H = E0|E0〉〈E0|+ E1|E1〉〈E1|, (2.1.2)

where |E0〉 and |E1〉 are the eigenstates of the Hamiltonian, with eigenenergies E0, and
E1, respectively (without loss of generality, let us assume that E0 < E1). Then, the state
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of the qubit in the eigen-energy basis is

ρ1q =
∑
i,j

ρij|Ei〉〈Ej| =
(
ρ00 ρ01

ρ∗01 1− ρ00

)
, (2.1.3)

where the properties of ρ1q (being a positive semidefinite and Hermitian operator of trace
1 1) were used on the right side of Eq. (2.1.3).

To decrease the energy of the target qubit, we have to increase the probability that the
target qubit is in its local ground state |E0〉, i.e. we should increase the value of ρ00. Then,
from the Schur–Horn theorem, the largest value than ρ00 can take, under local unitary
operations, corresponds to the biggest eigenvalue of ρ1q. So, let us allow a rotation to
diagonalize the qubit, in such a way that ρ00 takes the largest λx (let ρ00 = λ0 ≥ 1/2
without loss of generality).

Then, as it has been mentioned in order to cool it is necessary to increase the probability
ρ00 of being in the ground state, which in the basis where the target qubit is diagonal, is
equivalent to the problem of increasing the eigenvalue λ0 ≥ 1/2. Increasing the value of
λ0 ≥ 1/2, is equivalent to decreasing the entropy of the target qubit, while the purity
increases (eq.(2.1.1), and see Fig. 2.1).

2.1.2 Temperature and polarization of an ensemble of qubits

Consider an ensemble of qubits, i.e. a collection of independent, identical two-level quan-
tum systems. Let |0〉 and |1〉 be the two levels, with corresponding energy eigenvalues E0

and E1. When the system is left undisturbed for a long time, in contact with the molecular
surroundings, it reaches a state of thermal equilibrium with that environment. In thermal
equilibrium at temperature T, the following properties hold for the system [63]:

1. The probability of occupancy of a given energy level |i〉 is given by the Boltz-
mann distribution, n(Ei) = exp[−Ei/kT ]/Z, where Z is the partition function (Z =
exp[−E0/kT ] + exp[−E1/kT ]).

2. The coherences between the states are all zero.
1Also, the off-diagonal elements of the density matrix are bounded as |ρij | ≤

√
|ρii||ρjj |, then in this

case |ρ01|2 ≤ |ρ00||1− ρ00|.
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Accordingly, the average-density matrix over all members of the ensemble is given by

ρ
eq =

(
n (E0) 0

0 n (E1)

)
= 1
Z

(
exp[−E0/kT ] 0

0 exp[−E1/kT ]

)
. (2.1.4)

This density matrix is used to represent the state of any qubit of the ensemble in thermal
equilibrium [63]. In ensemble implementations only expectation values are measurable,
there is no access to individual qubits. Moreover, in most cases the state of the system is
highly mixed.

In ensemble implementations, the excess population in the energetically-favorable |0〉
state, is commonly measured with the bias ε = Tr (σzρ), also called polarization. Then,
the polarization of of the ensemble of qubits in the thermal state is as follows:

ε = n (E0)− n (E1) = e
−E0/kT − e−E1/kT

e
−E0/kT + e

−E1/kT
, (2.1.5)

ε = tanh
(
E0 − E1

2kT

)
≡ tanh (ξ) , (2.1.6)

where ξ ≡ Eδ
kT

, and Eδ is the energy splitting between the two levels, Eδ = (E0 − E1) /2.
Note that, from eq.(2.1.6), decreasing the temperature of the system leads to increasing
its polarization for a fixed energy gap (Eδ). In the limit when the temperature is zero,
the polarization is 1, taking its maximum value (the absolute value of the polarization |εb|
ranges from 0 to 1). Explicitly, the inverse temperature β is related to polarization by
β = T−1 = k

2Eδ
ln(1+ε

1−ε).

Then, the density matrix of the qubits at thermal equilibrium with the bath takes the
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following simple form, in terms of the polarization of the bath εb
2 ,

ρεb = 1
2

(
1 + εb 0

0 1− εb

)
. (2.1.8)

The corresponding entropy and purity for an ensemble of qubits with polarization εb,
then take the form given by Eq.(2.1.1) with λ0 = (1 + εb)/2, namely,

S(ρεb ) = −1 + εb
2 log2

(1 + εb
2

)
− 1− εb

2 log2

(1− εb
2

)
, (2.1.9)

and the purity evaluates to

P (ρεb) = Tr
(
ρ2
εb

)
= 1

2
(
1 + ε2b

)
. (2.1.10)

Polarization ε is related to purity by ε =
√

2P − 1, in the eigenbasis of ρ (ε is basis
dependent). From here that the following relationships between the concepts of purity,
entropy and polarization hold,

Decreasing T ⇔ Increasing P ⇔ Decreasing S ⇔ Increasing |εb|

Fig.(2.1) and Fig.(2.2) show the entropy and purity as a function of the polarization of the
system (λ0 = (1 + εb)/2) and as function of the inverse temperature β. A system with high
polarization corresponds to a system with high purity and low entropy.

Note that purification of a quantum system is not equivalent to extracting energy from
it. Indeed, by warming the target qubit to the excited state (εb → −1), it can give also a
pure state pointing in a different direction in the bloch sphere.

2Some authors, such as Schulman et al. [98, 99], use a different definition of polarization, given by
ε = arctanh (εb). For this case, the corresponding density matrix at thermal equilibrium takes the following
form

ρεb
= 1
e−ε + eε

(
eε 0
0 e−ε

)
. (2.1.7)

Note that in the high-temperature regime, the two aforementioned definitions of polarization, εb and ε, are
very close to each other, εb ≈ ε. However, for the low-temperature regime, εb and ε differ to each other
considerably (ε goes to infinity as the temperature reaches zero, while the maximum value of εb is 1).
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Figure 2.2: Entropy and purity of the target qubit, of Hamiltonian H = −1
2ωσz without

loss of generality, as a function of inverse temperature β, with ω = 1. As the temperature
of the target qubit decreases, its purity increases and its entropy decreases.

2.2 Ensemble of qubits in NMR and cooling methods

In the context of NMR quantum information processing [20, 110], the ensemble consists
of a bulk sample of identical molecules, each with n distinguishable nuclear spins. Each
molecule is considered as an individual n-qubit processor.

The interaction of a spin-1
2 with an external static magnetic field, gives the two eigen-

states required for a qubit. The energy splitting, Zeeman splitting, between those two levels
is proportional to the field strength, B, and is much smaller than thermal energy, kT , at
room temperature, where k is the Bolztmann constant. The corresponding polarization,
calculated using eq.(2.1.6), is

εb ≈
µB

2kT ≈ ε, (2.2.1)

where µ is the magnetic moment of the spin in question. For the case of larger spin, l, the
analysis is similar [63].

For protons at room temperature, in a B = 7T field, the polarization is of the order
of magnitud of 10−5. It has been shown that even with such a low polarization, it is
possible to get computational advantages over classical computation in some cases (for
example, for simulating some physical systems [57], measuring the average fidelity decay
[86], among others). However, for general purposes of quantum computing, purification
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remains necessary [3].

Different techniques have been implemented to boost the polarization of the nuclear
spins in NMR to solve the initialization problem. Most of these methods are based on
pseudo-pure state (PPS) preparation techniques [19, 38], nevertheless these procedures have
an exponential loss of signal-to-noise with the number of qubits [11]. It is still conceivable
that in conjunction with other methods, the PPS techniques would play a role in initializing
scalable ensemble quantum computing. Therefore, finding ways to produce highly polarized
states (or at least with a polarization level where it would be feasible to use PPS) remains
indispensable.

In general, decreasing the temperature, to extremely low values, is experimentally hard.
In the one side, the equation of the polarization, εb = tanh (Eδ/kT ), suggests that we can
decrease the temperature by changing the parameter of polarization, or increasing the
energy gap Eδ of the target qubit. However, these approaches are technological dependent;
for example, in NMR, that would mean increasing the magnetic field (eq.(2.2.1)), which
nevertheless, to be increased at least one order of magnitude, from the typical current
magnetic field values would require a big technological advancement.

The concepts introduced in this background establish a close interrelationship between
increasing the polarization, lowering the temperature, decreasing the entropy, and purifying
the system. From this, it is possible to plan different strategies to purify the qubits in
ensemble implementations. Algorithmic cooling techniques propose strategies that can
obtain cooling effects by directly redistributing the internal entropy of the system, which is
possible using the tools of quantum information processing. Remarkably, these procedures
are not device dependent as it is explained in the next sections. First, I will introduce
the explicit entropy compression methods used by Schulman and Vazirani [100], and then
present the standard heat-bath algorithmic cooling [11], in particular the PPA protocol.

2.3 Algorithmic Cooling (AC)

An internal redistribution of the entropy over all the qubits in the system can be obtained
through quantum logic operations to get a subset of highly-polarized qubits from an initial
set of weakly-polarized ones [11, 100, 29, 98, 99]. This carries out a reversible entropy
compression process in which the system results in a separation of cold and hot regions.
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Schulman and Vazirani [100], presented an explicit cooling method which recursively applies
majority gates, inspired by the Von Neumann’s ideas of the extraction of fair coin flips from
a sequence of biased ones.

The system setup consists of a string of identical qubits, one of them being our target
qubit, i.e. the qubit which is going to be cooled. Without loss of generality, the first qubit
of the string will be set as the target qubit. Then, the idea of AC is to first re-distribute
the entropy among the string of qubits by applying an entropy compression operation U .
This is a reversible unitary process that extracts entropy from the target qubit as much as
possible and concentrates entropy in the reset qubits of the system. This process results
in the cooling of the target qubit while warming the rest of the qubits (see Fig. 2.3).

U
Cold Hot

...

...

Figure 2.3: Entropy compression step. The idea is to redistribute the entropy within a
group of qubits using a unitary operation U . This redistribution should be optimized in
such a way that the entropy from the target qubit is extracted as much as possible and
compressed in the rest of the qubits. In the figure, the top part represents the string of
qubits before the compression. Dotted lines indicate re-distribution of entropy among all
qubits, resulting in the separation of cold and hot regions as shown in the bottom part.

2.3.1 Illustrative simple example of the AC

Let us consider the three-qubit case of identical qubits, starting in a product state each
of them with the polarization of the bath. Namely, the state of the three-qubit system is

given by ρ3q = ρ⊗3
b , where ρερb = 1

2

(
1 + εb 0

0 1− εb

)
is the state of a qubit from the thermal

bath. This state can be describe by its diagonal, in the computational basis, as
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diag(ρ0 = ρ⊗3
b ) = 1

8



(1 + εb)3

(1 + εb)2 (1− εb)
(1 + εb)2 (1− εb)
(1 + εb) (1− εb)2

(1 + εb)2 (1− εb)
(1 + εb) (1− εb)2

(1 + εb) (1− εb)2

(1− εb)3



U(ρ0)−−−−−−→ 1
8



(1 + εb)3

(1 + εb)2 (1− εb)
(1 + εb)2 (1− εb)
(1 + εb)2 (1− εb)
(1 + εb) (1− εb)2

(1 + εb) (1− εb)2

(1 + εb) (1− εb)2

(1− εb)3


(2.3.1)

To cool the first qubit, we should increase its probability to be in the ground state.
Namely, we should give the largest values to the probabilities of the first half elements of
the diagonal of ρ0, and the smallest values to the second half. Thus, in this case we can
find a very simple unitary operation that rearranges the order of the diagonal elements in
decreasing order.

The diagonal elements of ρ0 are already arranged in non-increasing order, with the
exception of the fourth and fifth elements, corresponding to the probabilities of being in
the states |011〉 and |100〉 respectively – represented in red and blue in Eq. (2.3.1). Thus,
a useful entropy compression U(ρ0) of the PPA is the unitary operation that permutes
the probability amplitudes of the states |011〉 and |100〉. The explicit form of this unitary
U(ρ0) is presented in Fig. 2.4, with its corresponding circuit.

Figure 2.4: Matrix and circuit symbol representing the unitary operation for the entropy
compression of the PPA for the 3-qubit case. This iteration boosts the target qubit polar-
ization from εb to 3

2εb −
1
2ε

3
b .

After this entropy compression, the polarization of the first qubit increases from εb
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to 3
2εb −

1
2ε

3
b , while the polarization of the scratch qubit and the reset qubit decreases to

1
2εb + 1

2ε
3
b .

In the high temperature regime, by applying this entropy compression in the system
changes the local temperature of the target from Tb to 2Tb/3, at the expense of warming
the second and third qubit from Tb to 2Tb.

2.3.2 Limitations of the AC

This AC method allows purify 1
20ε

2n qubits to a polarization of 1− 2n−10, from an initial
set of n qubits with polarization ε. They proved that the optimal adiabatic compression
is achieved with this algorithm; however, it is impractical with current technology. For
room temperature biases (εb ≈ 10−5), approximately 2x1012 qubits are required to boost
the polarization close to 1. The cooling limits of this method are imposed by the bound
Shannon entropy and the preservation of the eigenvalues.

The aforementioned limitations of AC come from having a closed system. Thus, a natu-
ral improvement on the idea of AC, which was proposed by Boykin et al.[11], is obtained by
allowing contact to a heat-bath of partially polarized qubits. The access to a thermal bath
allows the original system to be open and be able to pump entropy out into the thermal
bath. This new kind of methods are called heat-bath algorithmic cooling, and they can
transcend the previously mentioned shortcomings. In the next section, I present them in
more detail and give in particular the explicit form of the PPA protocol.

2.4 Heat Bath Algorithmic Cooling (HBAC)

Heat-bath algorithmic cooling (HBAC) purifies qubits by applying alternating rounds of
entropy compression and pumping entropy into a thermal bath of partially polarized qubits.

Setup of the system – The system setup consists of a string of qubits: one qubit which
is going to be cooled (called target qubit); one general qudit which aids in the entropy
compression (this qudit, called the scratch system, can be a spin−l in general 3, or a string

3Having the spin−l is equivalent to having n′ qubits if the dimension of their Hilbert spaces is the same,
i.e. if d = 2l + 1 = 2n′ .
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of qubits as in the standard system setup); and m reset qubits that can be brought into
thermal contact with a heat-bath of polarization εb. We will also refer to the target qubit
and the scratch qudit as the computational qubits (see Fig. 2.5).

Figure 2.5: System setup for HBAC protocol. The qubit system consists of (from left to
right) a target qubit, which is going to be cooled, a general d−dimensional quantum system
as a scratch qudit (this can be a string of n′ qubits, for example) and m reset qubits which
can make contact with a thermal bath (which is illustrated on the right).

The idea of HBAC is to first re-distribute the entropy within the qubit system by
applying an entropy compression operation that extracts entropy from the target qubit
as much as possible, at the expense of heating up the m reset qubits, as explained in the
previous section (Fig. 2.3). Then, the reset qubits can be refreshed by using the heat-bath
for removing entropy (Fig. 2.6). The heat-bath is assumed to have infinite heat capacity,
such that the action of qubit-bath interaction on the bath is negligible.

HBAC consists of the iterations of these two steps: reversible entropy compression
(which depends on the state of the system and therefore must be optimized in each round)
followed by a refreshed step with the bath. These two steps can be applied until the target
qubit reaches the desired temperature or until the cooling limit is reached. In the next
subsection, I present the explicit form of this two steps for the PPA protocol.

In the conventional HBAC, the refresh operation re-thermalizes the reset qubits to the
heat-bath temperature, which is equivalent to swapping the reset qubits with qubits of the
heat-bath. This particular refresh procedure is used in the PPA method, as explained in
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the next section (Fig. 2.6).

Figure 2.6: Refresh step. The m reset qubits are brought into thermal contact with a
heat-bath to pump entropy out from the qubit system into the bath. In the figure, two
reset qubits are used as an example.

Note that the physical requirements for the computational and the reset qubits are
different. A computational qubit should have long relaxation time to remain polarized
after being cooled through entropy compression, and a reset qubit should strongly interact
with the bath in order to rapidly relax and attain the bath temperature.

2.4.1 The Partner Pairing Algorithm (PPA)

The Partner Pairing Algorithm (PPA) protocol was invented by Schulman et al. [98, 99],
and it is optimal under the assumption that during the reset step the qubits are thermalized
individually with a Markovian process. Under these restrictions, the best use of the bath is
to fully re-thermalized individually the m reset qubits to the temperature of the heat-bath.

For the PPA protocol, the initial state of the system is assumed to be in the totally
mixed state, followed by a preliminary preparation before implementing the rounds of the
PPA algorithm. This preliminary step consists of refreshing all the qubits with the bath.
Thus, the state of the system, before the first round of PPA, is in a product state with all
the qubits at the same bath temperature. For the case of a string of qubits (a target, n′
scratch qubits and m reset qubits), this state is given by

ρ0 = ρ⊗nb = ρ1+n′+m
b
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where ρεb = 1
2

(
1 + εb 0

0 1− εb

)
is the state of a qubit from the thermal bath, and εb is the

heat-bath polarization 4. Note that this state is diagonal in the computational basis, and
will remain diagonal under the steps of the PPA, which are explained as follows:

The PPA protocol

The PPA protocol is made of iterating rounds, each round consisting of the next two
steps

1. PPA entropy compression step. An optimal reversible entropy compression
operation on the qubit system, U(ρ). Concretely, this is a unitary operations that
rearranges the diagonal elements of the state ρ of the qubit system in a descending
sort order:

ρ
Compression−−−−−−−→ ρ′ = U (ρ) ρU † (ρ) .

2. PPA Refresh step. The m reset qubits are brought into thermal contact
with the bath to be fully thermalized with the heat-bath. This step is equivalent to
tracing-over the m reset qubits, and replacing them with qubits in a thermal state at
the bath temperature:

ρ′
Refresh−−−−−→ ρ′′ = Trmqubits [ρ′]⊗ ρ⊗mεb .

The PPA entropy compression step rearranges the diagonal elements of the system state
ρ, such that the probability amplitude of its states starting with 0 (i.e. states like |0...00〉,
|0...01〉, etc.) will take the highest possible values, while the states starting with 1 will
take the lowest ones. Namely, this operation aims to increase the population of the ground
state of the first qubit, which corresponds to the target qubit. The entropy compression
can no longer improve the polarization of the first qubit once the states are already ordered
as described above. In Chapter 6, the optimization of this step is explained in the context
of resource theories.

4Some authors, such as Schulman et al. [99], use the bath polarization as arctanh [εb].
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The particular computations required in this entropy compression step vary in a com-
plex way, since they depend on the number of qubits, the heat-bath polarization, and the
particular state of the system at that moment.

Note that with this type of reset step, the maximum polarization that the reset qubits
are able to obtain is the polarization of the heat-bath, εb, which is assumed to have a
large heat capacity such that the action of qubit-bath interaction is negligible on the bath
temperature.

The total effect of applying a round of PPA on a system with state ρ can be expressed
as follows:

ΦPPA (ρ) = Trmqubits
[
U (ρ) ρ U † (ρ)

]
⊗ ρ⊗mεb (2.4.1)

Illustrative example: PPA for three qubits

In order to illustrate how the PPA method works, here it is applied on a particular system
of three qubits (one reset qubit, one scratch qubit and one reset qubit). The initial state
of the system is assumed to be in the totally mixed state, followed by a preliminary step,
before applying the rounds of the PPA. This preliminary step brings the three qubits to
a thermal state at the temperature of the heat-bath. Namely, the system will be in the
product state of the three qubits, each of the with the bath polarization, before the first

PPA round: ρ0 = ρ⊗3
b , where ρεb = 1

2

(
1 + εb 0

0 1− εb

)
is the state of a qubit at the thermal

equilibrium with the heat-bath polarization εb.

0) Preliminary preparation step for the PPA

The aforementioned state ρ0 = ρ⊗3
b is obtained by refreshing the reset qubit and swap-

ping it with the computational qubits until all the qubits of the system are in a thermal
state.

Note that, even though, the standard initial state is assumed to be in the totally mixed
state, any general initial state will be left in the state ρ⊗3

b .

1) First round of the PPA
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First, the entropy compression operation U(ρ0) permutes the diagonal elements of the
total state, sorting them in a non-increasing order. This particular step corresponds to
the entropy compression example presented in the subsection 2.3.1, eq. (2.3.1). This first
entropy compression increases the target qubit polarization from εb to 3

2εb −
1
2ε

3
b , while

decreases the polarization of the scratch qubit and reset qubit to 1
2εb + 1

2ε
3
b .

Then, a refreshing step can pump out the excess of entropy of the reset qubit into the
thermal bath to fully thermalize the reset qubit to the temperature of the bath. This step
is equivalent to trace out the reset qubit from the system and replace it with a qubit in
state ρb. Then diagonal of the total state under this step changes as follows:

1
8



(1 + εb)3

(1 + εb)2 (1− εb)
(1 + εb)2 (1− εb)
(1 + εb)2 (1− εb)
(1 + εb) (1− εb)2

(1 + εb) (1− εb)2

(1 + εb) (1− εb)2

(1− εb)3



Refresh−−−−−−−−→ diag (ΦPPA (ρ0)) = 1
4


(1 + εb)2

(1 + εb)2 (1− εb)
(1 + εb) (1− εb)2

(1− εb)2

⊗ 1
2

[
1 + εb
1− εb

]

(2.4.2)

After this refresh step, we have completed a round of PPA on the state ρ0.

2) Second round of PPA

If the state of the system after the first round allows a new entropy compression, i.e if
the diagonal elements of the state are not in a non-increasing order, then we can apply a
new round of PPA.

The diagonal elements of ΦPPA (ρ0), by expanding the eq. (2.4.2), and then permuting
them in non-increasing order under a reversible entropy compression operation, are as
follows:

25



diag (ΦPPA (ρ0)) = 1
8



(1 + εb)3

(1 + εb)2 (1− εb)
(1 + εb)3 (1− εb)
(1 + εb)2 (1− εb)2

(1 + εb)2 (1− εb)2

(1 + εb) (1− εb)3

(1 + εb) (1− εb)2

(1− εb)3



U(ΦPPA(ρ0))−−−−−−−−−−−→ 1
8



(1 + εb)3

(1 + εb)3 (1− εb)
(1 + εb)2 (1− εb)
(1 + εb)2 (1− εb)2

(1 + εb)2 (1− εb)2

(1 + εb) (1− εb)2

(1 + εb) (1− εb)3

(1− εb)3


(2.4.3)

The unitary U (ΦPPA (ρ0)) arranges the diagonal elements in non-increasing order. Con-
cretely, the compression unitary should swap the probabilities of the states |001〉 and |010〉
– represented in red and blue in eq. (2.4.3) – and the probabilities of the states |101〉 and
|110〉 – represented in pink and cyan. Note that exchanging this this elements is equivalent
to swap the the whole scratch qubit with the reset qubit. The explicit form of this unitary
is presented in Fig. 2.7, with the corresponding circuit.

Figure 2.7: Entropy compression of the second round of PPA for the 3-qubit case. This
operation effectively swaps the scratch qubit and the reset qubit.

Note that this entropy compression does not improve the polarization of the target
qubit, however it removes entropy from the scratch qubit and compresses it into the reset
qubit. This excess of entropy in the reset qubit is then sent to the thermal bath during the
refresh step of this PPA round, returning the reset qubit to the thermal state of the bath.

n) The next rounds

Upon repeating two more rounds of PPA, it is found that the entropy compression
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operations, corresponding to the third and fourth rounds, will be the exactly the same of
the ones from the first and second rounds, respectively. Indeed, for the 3-qubit case, all the
subsequent pair of rounds have the same form of the first and second rounds. Then, the
quantum circuit required to perform the PPA on the three qubits is illustrated in Fig. 2.8,
just for the first rounds (subsequent rounds are just the iteration of the first and second
round).

r r r r r

A

B

C

bath

Preliminary preparation

...

...
PPA-Round

Figure 2.8: Quantum circuit for the PPA protocol on a system of three qubits. In the
circuit diagram, the target, the scratch and the reset qubits are denoted by T, S, and R,
respectively; the dotted line at the bottom represents the heat-bath. The r gate stands for
the refresh operation. The figure shows only the first five rounds of the circuit (a round
consists of an entropy compression step followed by a refresh step), subsequent rounds are
just the repetition of the first two rounds.

Despite the simplicity and periodicity of the PPA quantum circuit for the 3-qubit case,
it is complicated to generalize the PPA for a bigger number of qubits, n > 3. Indeed, in
general the explicit form of the unitary operations for the entropy compression is different
in each round of PPA when n > 3, and depends on the specific state of the system in each
round.

The polarization evolution of the target qubit under several rounds of the PPA is
shown in Fig. 2.9, for the low polarization case. The circuit asymptotically boosts the
polarization on the target qubit up to twice the heat-bath polarization (for εb � 1); this
limit is discussed and explained in the next section.
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Figure 2.9: Polarization evolution of the target qubit obtained by the PPA protocol for the
three-qubit case as a function of the number of rounds, in the low polarization regime (εb �
1/2) for three different bath polarization values. Note that the asymptotic polarization goes
to 2εb.

PPA for the two-qubit case

The 2-qubit case was not presented as the simplest illustrative example of the PPA, since
for this case the protocol does not give gain beyond the bath temperature, obtained in the
preliminary step.

After the preliminary step, when the two qubits are in a product state both with the
bath temperature, there is no entropy compression that can cool the target qubit since the
diagonal elements of the state are already sorted in a non-increasing order:

diag
(
ρ⊗2
εb

)
= 1

4


(1 + εb)2

1− ε2b
1− ε2b

(1− εb)2

 ,

Therefore, the PPA protocol stops at this point, and there are no further improvements
beyond the bath temperature.
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2.5 Experimental implementation of HBAC

HBAC has already been experimentally tested and implemented to show improved polar-
ization in small qubit systems [30, 7, 96, 27, 14, 15, 77], where a few rounds of HBAC
were achieved, and a more realistic implementation has been studied in Ref. [55]. Further-
more, the fact that the HBAC protocols are device independent has made them successfully
tested on different platforms. In particular, it was successfully demonstrated in liquid state
NMR [30, 27, 14, 15], solid state NMR [7, 96], quantum optics [116], and ion traps [6],
and electron spin resonance (ESR) at high polarization [77], among others. In the next
subsection, I present a brief review of the HBAC experiments in liquid state NMR, in solid
state NMR and in ESR.

2.5.1 Implementing HBAC on NMR and ESR

The experiments in NMR and ESR were significant milestones towards the implementation
of HBAC. In fact, they showed and outlined the physical requirements to realize HBAC,
demonstrating high control fidelity to prepare an ancilla qubit whose polarization is higher
than the cold bath polarization [7, 96, 30, 27, 14, 15]. Nevertheless, even though they have
the required control tools, these two platforms are limited by the challenges of finding a
system (molecules) with enough qubits, and finding a stronger way to couple the qubits to
the heat-bath to remove entropy.

The experimental realization of algorithmic cooling requires high fidelity control and
the ability to reset qubits. Liquid State NMR Quantum Information Processing (LSNMR
QIP) has demonstrated precise quantum control up to 12 qubits; however, it presents
difficulties to refresh qubits. The only way to refresh qubits relies on spin-lattice relaxation,
characterized by the time scale of relaxation time T1. For a successful HBAC, the reset
qubits must have very short T1 to rapidly relax and attain the bath temperature. On the
other hand, this short T1 on the reset qubit limits its T2 and the fidelity of control. Despite
these limitations, the first preliminary steps towards full PPA was experimentally realized
in LSNMR by using protons (1H nuclei) as reset qubits and 13C nuclei as computational
qubits [14]. These experiments showed selective reset operations to polarize all three
spin qubits close to the bath temperature for the preliminary step of PPA (nevertheless,
the compression step that polarizes a target qubit colder than the heat bath was not
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implemented in this experiment). Meanwhile, Chang et al. implemented cooling solely by
the final compression gate on three fluorines in C2F3BR using LSNMR. Full implementation
of HBAC in LSNMR was accomplished much later in Ref. [4].

On the other hand, Solid State NMR (SSNMR) offers a reset step that does not re-
quire a relaxation process in the system of interest by using a network of dipolar coupled
spins as a spin bath. The decoherence rates can be made slow using refocusing techniques,
while spin-spin couplings, which are much larger than in LSNMR, can be exploited to
realize faster quantum gates [20]. Moreover, SSNMR experiments can be operated at low
temperature, providing a higher bath polarization than LSNMR. The first experimental
demonstration of HBAC using SSNMR was done by Baugh et al. in 2005 [7]. Baugh et al.
implemented the PPA for three qubits using a single crystal of malonic acid CH2(COOH)2

as a quantum processor at B0 = 7.1T and room temperature. In 2008, Ryan et al. ex-
perimentally demonstrated nine iterations of algorithmic cooling in the same experimental
system (malonic acid) [96]. Ryan et al. achieved a polarization in the target qubit of
1.69εb, while the corresponding theoretical polarization is 1.94εb. Here, the experimental
error was dominated by two factors: the imperfection of 1H decoupling and a non-ideal
process of spin diffusion in the network of dipolar coupled protons in the bath.

The fundamentals of electron spin resonance (ESR) quantum computing are analogous
to NMR quantum computing, and many of the techniques used for manipulating nuclear
spins can also be applied to control electrons. The combination of electron and nuclear
spin resonance in hyperfine-coupled quantum processors can provide more advantages.
One obvious advantage is that the higher gyromagnetic ratio of an electron γe (about
660 times greater than that of proton) leads to higher polarization. Decoherence and
relaxation rates also scale with γ and hence electron T1 relaxation rate is about 3 orders
of magnitude larger than that of nuclei. Thus, the electron spin is an excellent candidate
for the reset qubit, which can be refreshed simply by waiting for a time of about 5T1. The
anisotropic hyperfine interaction gives an advantage for designing nuclear quantum gates,
since it provides a control handle for fast manipulations of nuclear spins. On the other
hand, if the anisotropic hyperfine interaction is strong, it could represent a problem given
that the electron T1 relaxation process induces nuclear polarization decay in the presence
of anisotropic hyperfine interaction. Fortunately, the crystal orientation can be chosen to
reduce the anisotropic hyperfine coupling strength so that the nuclear spin decay induced
by electron T1 is small enough to allow cooling of a target spin below bath temperature.
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The control universality of an electron and a nuclear spin coupled system via anisotropic
hyperfine interaction was proved in Ref. [56], and demonstrated experimentally in Ref. [44]
for a single nuclear spin qubit gate and in Ref. [119] for a gate involving two nuclear spin
qubits.
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Chapter 3

Achievable cooling of the PPA

The results presented in this Chapter have been published in Ref. [93].

The theoretical limit of heat-bath algorithmic cooling was a longstanding open problem
for more than a decade, after Schulman et al. proved the existence of its physical limits [98],
and only bounds and numerical estimations had been provided (see, for example, Refs. [73,
98, 99]). In particular, the limits of heat-bath algorithmic cooling were studied using a
specific algorithm, known as the Partner Pairing Algorithm, which is optimal under the
assumption that the interaction of the system with the thermal bath fully thermalizes
the reset qubits to the bath temperature – as described in the previous Chapter. In this
Chapter, I show how we completely resolve the problem of finding the analytical solution
for the achievable cooling limits and the asymptotic steady state of the system [91, 93].

We investigate the achievable polarization by analyzing the limit when no more entropy
can be extracted from the system under the rounds of the PPA. Concretely, we provide the
cooling limit conditions of the steady states of the PPA in the asymptotic limit. From these
conditions, we obtain the exact analytical solution of the maximum polarization achievable
for the case when the initial state of the qubits is totally mixed (i.e. for the case of having
the lowest initial purity), which is the assumed initial state of the PPA. We also found that
it is possible to reach higher polarization while starting with certain states other than a
mixed state, and thus our result provides an achievable polarization. Finally, we provide
the number of steps needed to get a specific required purity.
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3.1 Cooling Limit Condition of the PPA

The PPA-HBAC, as discussed in section 2.4, purifies qubits by applying alternating rounds
of entropy compression and pumping entropy into a thermal bath of partially polarized
qubits. The assumptions under which the cooling limits were calculated are as follows:

System setup’s assumptions and allowed operations – The system setup, as described
in the Fig. 2.5, consists of a target qubit, which is assumed to have a fixed energy gap;
a general d−dimensional quantum system as a scratch qudit (which is not restricted to
return to its initial state after the rounds of PPA); and m identical reset qubits that are
allowed to interact with the heat-bath (in particular the PPA-HBAC assumes that the
reset qubits will be fully thermalized after interacting with the bath). It is assumed that
the reset qubits can have a different energy gap than the target qubit energy gap, but also
fixed. The allowed operations are global unitaries on the system (not including the bath),
and the reset qubits can be fully thermalized with the heat-bath.

The cooling limit of the PPA protocol corresponds to the moment at which it is not
possible to continue pumping entropy out of the qubit system into the bath and there is
no entropy compression that can extract more entropy from the target qubit. Namely,
this cooling limit would happen when the state of the qubit system is not changed by the
entropy compression step, with its reset qubits already at the thermal temperature of the
bath. The system achieves this limit asymptotically, converging to a steady state which
is an attractive fix point of the PPA protocol. Thus, to find the state that satisfies the
cooling conditions, it is necessary to solve for the state ρ∞ such that

ρ∞ = ΦPPA (ρ∞) , (3.1.1)

where ΦPPA (ρ) is the state of the qubit system after a round of the PPA on ρ (see
eq. (2.4.1)).

We characterized this condition in terms of the diagonal elements of the computational
qubits state ρcom, i.e. the state of the target qubit and a scratch qudit of dimension d:
diag(ρcom) = (A1, A2, A3, ..., A2d). Then, using this notation, the state of ρ after applying
a round of PPA can be described as

diag (Φ (ρ)) = (A1, A2, ..., A2d)⊗
1

2m (1 + εb, 1− εb)⊗m . (3.1.2)
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Cooling limit condition

In the cooling limit there is no reversible entropy compression operation that can ex-
tract any further entropy from the computational qubits. Equivalently, after applying
a new round of PPA, the diagonal elements of the computational qubits state are
already sorted in non-increasing order. This happens when the condition

Ai (1− εb)m ≥ Ai+1 (1 + εb)m , ∀ i = 1, 2, 3, ..., 2d− 1 (3.1.3)

is satisfied, corresponding to an attractive fixed point of the rounds of PPA.

The details of the proof are in Appendix A. The condition in Eq.(3.1.3) is achieved
asymptotically when the system starts in the totally mixed state, and also for the case
when all qubits are initially in a thermal state at bath temperature (as prepared in the
preliminary step of the PPA). In fact, it is possible to find different final states as a function
of the initial state of the system when the preliminary step of PPA is skipped and allows
for general initial states. Arguably, the most interesting steady state is given when the
initial state is totally mixed, since it corresponds to the extreme case when the initial
polarization is zero, and also because it is always possible to efficiently randomize a state
experimentally. Therefore, that asymptotic state can always be asymptotically reached.

In the next section, I present the maximum achievable cooling and the explicit form of
the state in the cooling limit.

3.2 Maximally mixed initial state

When the PPA-HBAC protocol was originally proposed by Schulman et al. [97], the cooling
limits were studied assuming that the initial state of the system should be in the maximally
mixed state. This assumption was motivated by the NMR systems, whose qubits are highly
mixed (with initial polarization of the order of 10−5). Furthermore, the corresponding limits
would give a general achievable bound, since any initial state can be driven efficiently to a
maximally mixed state before applying the PPA-HBAC protocol.

In this chapter, we solve the open question of finding the cooling limits of the PPA-
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HBAC not only for the maximally mixed initial state, but also for a larger family of initial
states that satisfy the cooling limit condition of eq. (3.1.1).

If we start with a maximally mixed state, or the product state of all the qubits in the
thermal state at the bath temperature, it is possible to show that after applying t rounds
of PPA, the diagonal elements of the computational qubits state will satisfy

Ati (1− εb)m ≤ Ati+1 (1 + εb)m , (3.2.1)

for all i = 1, 2, 3, ..., 2d− 1. This can be proved by induction, since it is true for the initial
step, as for the maximally mixed state (t = 0) all the Ai = 1

2d . Then, after applying a
round of PPA on a state that satisfies the aforementioned order, it turns out that returns
a new state that satisfy again the inequalities of eq. (3.2.1). Therefore, the same is true
for all subsequent iterations. See Appendix A, for a detailed proof.

Similarly, it is also possible to show that at each step of the protocol the polarization
of the target qubit never decreases; while the entropy of the reset qubits always increases
beyond the one from the bath after each entropy compression step. Thus, the reset qubits
always pump entropy out of the system into the bath, converging to a limit.

Comparing eq. (3.1.3) with eq. (3.2.1) indicates that the asymptotic state of the com-
putational qubits can only go towards the equality

A∞i (1− εb)m = A∞i+1 (1 + εb)m , ∀ i = 1, 2, 3, ..., 2d− 1. (3.2.2)

From this condition (3.2.2) and the property Tr (ρcom) = 1, it is possible to find all the
diagonal elements of the computational qubits that are in that asymptotic state, which are
as follows: A∞i = 1−Q

1−Q2dQ
i−1, where Q =

(
1−εb
1+εb

)m
. This result gives the exact solution of

the steady state of the computational qubits, ρ∞com, for all values of the bath polarization:

diag (ρ∞com) = A∞1
(
1, Q,Q2, ..., Q2d−1

)
. (3.2.3)
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Achievable cooling for PPA-HBAC

The maximum achievable polarization for the target qubit, for the PPA-HBAC pro-
tocol with maximally mixed initial state, is given by

ε∞1 = (1 + εb)md − (1− εb)md

(1 + εb)md + (1− εb)md
, (3.2.4)

where εb is the bath polarization, d the dimension of the scratch qudit, and m the
number of reset qubits.

Then, the corresponding lowest achievable temperature of the target qubit, in the
cooling limit, is as follows:

Tsteady = 1
md

Tb
∆Et
∆Er

(3.2.5)

Here Tb is the temperature of the bath, and ∆Et and ∆Er are the energy gaps between
the two energy levels of the target qubit, and the reset qubits, respectively. Note that,
since d is the dimension for the subsystem between the target qubit and the reset
qubits (d = 2n′ when the scratch qudit is a string of n′ qubits), the final temperature
decreases exponentially with the number of qubits used in the string. This results agree
with the third law of thermodynamics [64, 68], since they would require a system of
infinite dimension to achieve temperature zero.

The detailed proof of the achievable polarization and achievable temperature for the
target qubit can be found in Appendix A.

The achievable polarization for a target qubit when the system consists of a string of
n qubits, i.e the scratch qudit is a string of n′ qubits, is given by eq. 3.2.4 with d = 2n′ :

ε∞1
(
d = 2n′

)
= (1 + εb)m2n′ − (1− εb)m2n′

(1 + εb)m2n′ + (1− εb)m2n′
, (3.2.6)

Furthermore, the asymptotic polarization of each of the qubits in the string (numbered
from right to left, as in Fig. 2.5), has a similar form and depends on the position jth of the
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qubit in the string (going from hotter to colder as we move from right to left) as follows:

ε(j)max = (1 + εb)m2j−1
− (1− εb)m2j−1

(1 + εb)m2j−1 + (1− εb)m2j−1

In the limit for low bath polarization, εb << 1/md, the achievable asymptotic polar-
ization is proportional to the dimension of the Hilbert space of the scratch qudit (or n′
qubits), i.e. ε∞1 ≈ mdεb(= m2n′εb). As the value of εb increases beyond 1/md, we observe
a transition for the asymptotic polarization. This is shown in Fig. 3.1, as a function of
the bath polarization for different number of qubits, using eq. (3.2.4). We can observe the
transition noted by [73] and [98] at εb ∼ 2−n, for m = 1, agreeing with simulations.

In order to see how ε∞
1

approaches 1, we use ∆max = 1− ε∞
1

, and eq (3.2.4). Then,

∆max = 2

e
md ln

(
1+εb
1−εb

)
+ 1

= 2

e
m2n′ ln

(
1+εb
1−εb

)
+ 1

. (3.2.7)

This expression shows that the asymptotic polarization goes to 1 doubly exponentially in
the number of qubits n′ (or exponential as a function of the size of the Hilbert space d).
In Fig. 3.1, we show ε∞

1
as a function of εb for different values of d, with m = 1.

Even though, the asymptotic polarization ε∞
1

was obtained assuming the system qubits
started in the completely mixed state, the same asymptotic polarization would be obtained
by different initial states as long as they obey eq. (3.2.1). Numerical simulation indicates
that this could also happens with some initial states not obeying eq. (3.2.1), but having a
target qubit which after the first entropy compression gets a polarization below the value of
ε∞
1

. On the other hand, we found explicit examples of initial states that lead to asymptotic
polarizations that are higher than ε∞

1
, when the preliminary preparation of the PPA is

skipped (i.e. the standard preliminary step that thermalizes all the qubits to the bath
temperature of PPA) and we allow the protocol starts directly with an entropy compression
operation on a general initial state. Nevertheless, as any state can be efficiently maximally
randomized, it is always possible to reach the polarization given by ε∞

1
and maybe do better

if the initial state is different – without applying the preliminary step of the PPA.
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Figure 3.1: Asymptotic achievable polarization for the target qubit. This polarization
increases double exponentially in the number of qubits as the scratch qudit, n′. The dots
are located at the point of ε∞

1
which corresponds to the εb = 1

md
, where the transition can

be observed, for d = 2, 4, 8, 16, 32, and 64, and m = 1. (For εb smaller than that value,
ε∞
1

is linear in εb.)

3.2.1 Schulman’s Physical-Limit Theorem

The steady state, eq. (3.2.3), is consistent with the bounds given by the theorem of Schul-
man et al. [99]. Their theorem provides an upper bound of the probability of having any
basis state, concluding that no heat-bath method can increase that probability from its
initial value, 2−n, to more than min{2−neε2n−1

, 1}. Where ε is related to the polarization
of the heat-bath as εb = tanhε, and n is the total number of qubits (n = n′ + 2: n′ + 1
computational qubits and one reset qubit).

We improved the aforementioned theorem by finding the corresponding exact maximum
probability, pmax of having the basis state |00...0〉, namely at the cooling limit. This
polarization can be calculated from the steady state, eq. (3.2.3), and ρ = ρ∞com⊗ρεb . Then,
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pmax = A∞1 (1 + εb) /2, which can be written as a function of n and εb as follows:

pmax = εb

1−
(

1−εb
1+εb

)2n−1

Fig. 3.2 shows both the upper bound proposed by Schulman (dashed lines) and the
asymptotic value obtained here (thick lines), for different values of n. We can see that the
bound is very close to the exact solution for small values of εb, but differ for large values
of εb.

Maximum probability of being in the ground state 

pm
ax

Figure 3.2: Comparison between the exact maximum achievable cooling and the Schulman’s
upper bounds. Upper limit of the probability of any basis state for the total n qubit system
(n = n′+2: n′+1 computational qubits and one reset qubit). The dashed line corresponds
to the Schulman’s upper bound and the thick line to the exact asymptotic probability.
Orange for n = 3, purple for n = 4, and green for n = 5.
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3.2.2 Number of rounds required to get a polarization ε = ε∞
1
− δ

For the three qubit case, it is easy to derive the exact number of steps required to get a
certain polarization ε = ε∞

1
− δ, since the quantum circuit to perform the PPA method for

this case repeats the same entropy compression operation in all the iterations of the PPA
(which consists of different subsequent rounds), see Fig. 2.8. By taking the initial target
polarization as εt=0 = ε0, after j rounds of the PPA, the polarization will be

εt = ε∞
1
− qj (ε∞

1
− εb) , (3.2.8)

where q = 1−ε2b
2 . Then, by replacing the corresponding achievable polarization of this case,

i.e. ε∞
1

= 2εb
1+ε2

b
(eq. (3.2.4) with d = 2 and m = 1), it is obtained that the number of rounds

needed to get to ε = ε∞
1
− δ for the three-qubit case is as follows (See Appendix A for

details):

N3q(δ, εb) = 2
log

(
δ

ε∞
1
−εb

)
log q .

On the other hand, despite the simplicity and periodicity of the PPA’s quantum circuit
for the 3-qubit case, it is complicated to generalize the quantum circuit for a bigger number
of qubits. First, the entropy compression operation depends on the state of the system and,
thus, is different in each iteration. Second, the number of gates needed in each iteration
grows with the number of qubits.

Then, for the n-qubit case, with n > 3, we only provide an upper bound on the number
of steps required to get polarization εh,δ < εmax (with n′ = n− 2, m = 1) is

Nupper−bound =
k=[n′/2]∏
k=1

N(δk, εk), (3.2.9)

where εmax = (1+εb)d/2−(1−εb)d/2

(1+εb)d/2+(1−εb)d/2
; εk := f(εk−1) − δk; εh,δ = εh, with h = [n′/2] (the integer

part of n′/2); f(ε) = 2ε
1+ε2 ; N(δ, ε) = 2

log
(

δ
f(εb)−εb

)
logq ; and ε0 = εb. (See Appendix A for more

details.)

Fig. 3.3 shows numerical simulations of the number of steps as a function of δrel =
ε∞
1
−ε

ε∞
1

= δ/ε∞
1

. The simulations are consistent with the upper bound of the number of steps
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Figure 3.3: Number of PPA-iterations that are required to have polarization ε = ε∞
1
− δ as

a function of δ/ε∞
1

, for d=2, 3, 4, 5, and 6.

and with the exact solution for the case of three qubits.

3.3 Is this the ultimate cooling limit?

After we solved the problem of finding the analytical solution for the PPA achievable cool-
ing, we realized that the implicit assumption about the optimization of the PPA protocol
can be removed to give a more general interaction with the bath and improve the achievable
cooling. In particular, we found that better purification can be achieved by using correlated
relaxation processes between the system and the thermal bath during the refresh steps, as
explained in the next chapter.
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Chapter 4

Heat-Bath Algorithmic Cooling with
correlated qubit-environment
interactions

The limits of HBAC have been studied using, in particular, the PPA algorithm, which
was widely believed to be optimal among all possible heat-bath algorithmic cooling pro-
tocols [88, 98, 99]. These cooling limits were claimed to be the fundamental limit for all
HBAC techniques under general conditions [88]. In this Chapter, however, I show that
the long standing upper bound on the limits of the PPA algorithm [98] can be surpassed
by using a more general reset operation that takes advantage of correlations during the
relaxation processes. Our results provide a novel set of tools for the cooling techniques,
which we use to design explicit algorithms that circumvent the cooling limit by taking ad-
vantage of correlations when the coupling to the environment is not limited to independent
qubit-relaxation. The content of this chapter was published in the Ref. [89].

4.1 The PPA cooling limit for the 2-qubit case

The maximum achievable cooling of the PPA protocol, Eq.(3.2.4), indicates that, in par-
ticular for the case of two identical qubits, there is no improvement in polarization beyond
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the bath polarization. Namely, from Eq.(3.2.4), for a 2-qubit system made up of one target
qubit and one reset qubit, the maximum achievable polarization is ε∞1 (n = 2,m = 1, d =
20) = εb. However, in a recent paper [65], Jun Li and collaborators found cases/experiments
where utilizing relaxation effects does offer a polarization enhancement while they were
studying the efficiency of polarization transfer in the presence of a bath, using the vector
of coherence representation. In looking at the maximum polarization (or purity), they
(re)-discovered that it is possible to enhance the polarization of one of two qubits beyond
the bath polarization in the presence of relaxation and cross-relaxation for the quantum
system. The surprising improvement turns out to be related to the Nuclear Overhauser
Effect (NOE), discovered in 1953 [76]. This effect, even though it has been known for a
long time, had never been explicitly connected as a tool for algorithmic cooling before. 1

NOE appears in the presence of cross-relaxation and results in the boost of polarization
of one qubit when the second one is saturated, i.e. rotated rapidly so that in the relevant
timescale its polarization averages to zero (in the next section I present a description of the
NOE using the Solomon equations). So, what was the PPA method missing? In particular,
in the PPA method, the refresh step fully re-thermalizes the reset qubits to the heat-bath
temperature, which is equivalent to swapping these qubits with qubits from the bath. This
full thermalization was assumed to be the optimal refresh operation, with respect to the
entropy extraction from the system per contact with the thermal bath, which is true when
the interaction is limited to single qubit decay processes. However, there are different ways
to couple the quantum system with the heat-bath to remove entropy.

In this chapter, I show how correlated relaxation processes between the system and
environment during re-thermalization can be exploited to enhance cooling. Inspired by
these effects, we created a more general reset operation that includes correlated-qubits
interaction with the bath with cross-relaxation processes, rather than just a single qubit
decay. We introduce this reset operation as a new tool for cooling algorithms, which we
call “state-reset”. Furthermore, we present explicit improved cooling algorithms that lead
to an increase of purity beyond all previous work.

1In Ref. [15], the NOE is mentioned in the context of HBAC, however the bypass was not noted in that
work, nor was it integrated into the protocols.
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4.2 Nuclear Overhauser Effect

We have two spins (qubits), we irradiate one and the other one cools down! When first
proposed as a contributed paper at an APS meeting in April 1953, the proposal was met
with much skepticism by a formidable array of physics talent. Included among these were
notables such as: Felix Bloch (recipient of 1952 Physics Nobel Prize), Edward M. Pur-
cell (recipient of Nobel Prize 1952 with Bloch and session chair), Isidor I. Rabi (recipient
of Physics Nobel Prize, 1944) and Norman F. Ramsey (recipient of Physics Nobel Prize,
1989). Eventually everyone was won over.

Letter from Norman Ramsey to Overhauser. July 27, 1953

Dear Dr. Overhauser:
You may recall that at the Washington Meeting of the Physical Society, when you
presented your paper on nuclear alignment, Bloch, Rabi, Pearsall, and myself all
said that we found it difficult to believe your conclusions and suspected that some
fundamental fallacy would turn up in your argument. Subsequent to my com-
ing to Brookhaven from Harvard for the summer, I have had occasion to see the
manuscript of your paper. After considerable effort in trying to find the fal-
lacy in your argument, I finally concluded that there was no fundamental
fallacy to be found. Indeed, my feeling is that this provides a most in-
triguing and interesting technique for aligning nuclei. After considerable
argument, I also succeeded in convincing Rabi and Bob Pound of the validity of
your proposal and I have recently been told by Pound that he subsequently con-
verted Pearsall shortly before Pound left for Europe. I hope that you will have
complete success in overcoming the rather formidable experimental problems that
still remain. I shall be very interested to hear of what success you have with the
method.

Sincerely,
Norman F. Ramsey

In the Nuclear Overhauser Effect (NOE) it is possible the transfer of nuclear spin
polarization from one population of spin-active nuclei to another via cross-relaxation. This
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effect, although it was discovered in 1953 [76], had never been used in the context of
quantum information science, and consequently, had not been connected with algorithmic
cooling ideas.

4.2.1 NOE for two qubits

In a system of two qubits, NOE effect appears in the presence of cross-relaxation results in
a boost of polarization of one of the qubits when the second one is saturated, i.e. rotated
rapidly so that over relevant timescale its polarization averages to zero. This can be seen
from the Solomon equations [104], which describe the dipolar relaxation process of a system
consisting of two spins. These equations, so named after physicist Ionel Solomon, describe
how the population of the different spin states changes in relation to the strength of the
self-relaxation rate constant R1 and the cross-relaxation rate constant R12. The R1 and
R12 are combinations of relaxation rates Γi for the transition between the four states (|00〉,
|01〉, |10〉 and |11〉), as depicted in Fig. 4.1, as follows:

R1 = Γ′2 + 2Γ1 + Γ2 and R12 = Γ2 − Γ′2.

In the limit of low polarization, the expectation of the Z Pauli operator for the first
spin 〈Z1〉 = Tr(σzρ1), obeys the following Solomon’s equation (see [104]):

d〈Z1〉
dt

= −R1(〈Z1〉 − 〈Z1〉0)−R12(〈Z2〉 − 〈Z2〉0), (4.2.1)

where 〈Zi〉 is the polarization of the ith qubit (〈Zi〉 = Tr(σzρi)), in particular 〈Zi〉0 is
the polarization in their equilibrium values, R1 is the self-relaxation rate constant – the
relaxation parameter – for the first spin, and R12 is the cross-relaxation rate constant for
exchange of magnetization between the two spins (qubits).

The cross relaxation, R12, is the important term which is responsible for transferring
magnetization from one spin to the other and gives rise to the nuclear Overhauser effect.

It is possible to drive (rotate) the second spin so that on the relevant timescale (related
to R2 and R12) the expectation of 〈Z2〉 ≈ 0. Then, the steady state of the Solomon equation
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|01〉 |10〉
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′

Figure 4.1: Relaxation diagram for a two qubit system. Γ1, Γ′1, Γ2, and Γ′2 represent the
transition probabilities per unit time between the four states, as indicated by the arrows.
The process illustrated as Γ2 (|00〉 ↔ |11〉) cannot be described as a qubit-reset with the
bath as in the PPA, and results in the boost of polarization of one qubit when the other
is saturated.

Eq.(4.2.1), for that situation, implies that

〈Z1〉 = 〈Z1〉0 + R12

R1
〈Z2〉0.

Namely, the polarization of the first qubit would go to εtarget =
(

1 + R12

R1

)
εb, where 〈Z1〉0 =

〈Z2〉0 = εb, since both qubits are immersed in the bath. This gives an enhancement beyond
PPA for the two-qubit case, as long as R12/R1 is positive. In particular, when Γ′2 =
Γ1 = 0 we obtain an enhancement of 2, for two spins with identical thermal-equilibrium
polarizations.

This effect relies on cross-relaxation, and cannot be understood as a simple “swap” of
the polarization of the reset qubits with the polarization of the bath. In particular, it can
occur in NMR when two nuclei (in the same molecule) interact with a same nuclei of the
environment [104]. In other technologies such as superconducting qubits or ions traps, they
could be engineered by placing the qubits in a leaky cavity which resonantes at the twice
the frequency of the qubits leading to a relaxation process which involves two qubits.

Note that the refresh step required in the PPA, which individually thermalizes the
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reset qubits to the temperature of the bath, only involves the Γ1 to reset the second qubit
(similarly, the Γ′1 is transition required to fully thermalize the first qubit).

One way to understand the process from an algorithmic point of view is to realize that
the cross relaxation effectively provides a state relaxation/equilibration (“state reset”)
between |11〉 and |00〉, without touching the other states, analogous to the qubit reset.
This form of reset accompanied by a rotation of the second qubit can however boost the
polarization of the first qubit beyond what would be obtained by a qubit reset from the
bath as in the PPA. In the next section, I will show how to express this process in the
language of quantum information processing, and then create a new tool that can be
exploited for the algorithmic protocols. Concretely, the individual qubit relaxation and
the crossed relaxation are presented and described in terms of Krauss operators, and then
rewrite the NOE effect as an algorithm. Moreover, we present an improved NOE algorithm
that goes beyond the polarization enhancement obtainable by the conventional NOE (and
by the PPA class).

4.3 Qubit relaxation processes

What operations describe the effect of dissipation to an environment at finite temperature?
In this section, I explain the quantum operations of both the individual relaxation process
and crossed relaxation processes. These processes have their own unique features, but the
general behavior of them is well characterized by a quantum operation known as amplitude
damping [74].

4.3.1 Individual relaxation for qubits

The individual relaxation, which describes the type of refresh step used in the PPA protocol
can be described with the longitudinal relaxation, T1, also known as spin-lattice relaxation.
This longitudinal relaxation is the process through which the state of the nuclei returns
to the thermal state due to coupling of spins to their surrounding lattice –a large system
which is in thermal equilibrium at a given temperature.

The individual relaxation for a qubit is due to the transitions of the type Γ1. See for
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example, the two-qubit case depicted in Fig. 4.1, where the PPA reset on the second qubit
can be understood as a rethermalization due to Γ1 only (similarly, to Γ′1 for refreshing the
first qubit).

The effect of the Γ1 transitions can be described with a generalized amplitude damping.
For single qubits, the Kraus operators that describe the evolution under the individual
relaxation Γ1 [74] are

A1 = √p
(

1 0
0

√
1− η

)
, A2 = √p

(
0 √

η

0 0

)
,

A3 =
√

1− p
(√

1− η 0
0 1

)
, A4 =

√
1− p

(
0 0
√
η 0

)
,

(4.3.1)

For η ≈ 1, the evolution gives a fast thermalization, that we will call process EΓ1 , which
is the one that reproduces the individual qubit-reset needed in the PPA-HBAC.

Qubit-reset operation EΓ1, for individual thermalization

The state of the qubit under the qubit-reset operation, due to the individual relax-
ation Γ1, can be described as

EΓ1 (ρ) =
4∑
i=1

AΓ1
i ρ

(
AΓ1
i

)†
,

with the set of Kraus operators of the generalized amplitude damping, Eq. (4.3.1).
When η = 1, this operation reproduces the full thermalization of the qubit, with the
following operators:

AΓ1
1 = √p1|0〉〈0|

AΓ1
2 = √p1|0〉〈1|,

AΓ1
3 =

√
1− p1|1〉〈1|,

AΓ1
4 =

√
1− p1|1〉〈0|.
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Here the probability p1 is chosen to leave the thermal equilibrium distribution over
the states |0〉 and |1〉, and depends on the energy gap of the reset qubit ∆Eq and the
energy gap of the qubits from the bath ∆Eb, as follows:

p1 = eβ∆Eq/2

2 cosh (β∆Eq/2) ,

where βb is the bath’s inverse temperature –which is related with the bath polarization
as εb = tanh (β∆Eb/2).

Thus, for a qubit with same energy gap of the qubits of the bath (∆Eq = ∆Eb),
p1 is given by

p1 = 1 + εb
2

which provides an effect equivalent to make a simple swap between the qubit we want
to reset and a qubit from the bath.

4.3.2 Cross relaxation as a new tool to reset states

The cross-relaxation rate constant, R12 = Γ2 − Γ′2, allows the exchange of magnetization
between the two spins (qubits), which can be exploited for practical applications. For
example, the cross-relaxation process gives rise to the nuclear Overhauser effect (NOE),
and also makes possible the determination of three-dimensional molecular structures by
NMR spectroscopy.

In this section, I show how to integrate the cross relaxation, as a new operation, to the
set of tools for algorithmic cooling protocols, and in general to the operations of quantum
information for processing the probabilities of states in a correlated way.

Let us consider a two-qubit system (n = 2), with occupation numbers N00, N01, N10 and
N11 – i.e., the probabilities corresponding to the states |00〉, |01〉, |10〉 and |11〉, respectively.
The effect of the cross relaxation, due to the double quantum transition Γ2 (as depicted in
Fig. 4.1), drives a direct transfer of populations between the states |00〉 and |11〉 while the
system thermalizes to an equilibrium. In the extreme case, when Γ2 is much larger than the
other transition probabilities, there will be a fast equilibration between the occupational
numbers N00 and N11, while the change in the other variables N01 and N10 can be negligible
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during the relaxation process.

This situation can give a different type of reset step that partially thermalizes both
qubits, by only relaxing a selected pair of states. Based on this process, we define a reset
operation, which we called “state-reset” to distinguish it from the conventional qubit-reset
used in previous algorithmic cooling protocols (i.e. the individual full thermalization of
qubits given by Γ1). The concrete definition of the state-reset is presented in the following
box. For the state-reset, the Kraus operators that describe the evolution under Γ2 are
analogous to the generalized amplitude damping presented in the previous section.

State-reset operation on the states |00〉 and |11〉: EΓ2

We define the state-reset operation EΓ2 , as the process that refreshes the pair of
states |00〉 and |11〉 with the cross-relaxation Γ2.

The effect of the state-reset on a two-qubit system ρ, can be described with the
following set of operators:

EΓ2 (ρ) =
6∑
i=1

AΓ2
i ρ

(
AΓ2
i

)†
,

AΓ2
1 = √p2|00〉〈00| AΓ2

5 = |01〉〈01|
AΓ2

2 = √p2|00〉〈11| AΓ2
6 = |10〉〈10|

AΓ2
3 =

√
1− p2|11〉〈11|

AΓ2
4 =

√
1− p2|11〉〈00|

where the probability p2 is chosen to leave the thermal equilibrium distribution over
the states |00〉 and |11〉, and it is given by

p2 = e2ξb

2 cosh 2ξb
,

where εb = tanh ξb, when the qubits of the system have the same energy gap of the
qubits from the bath. In the limit of low polarization, this probability takes the simple
form of p2 = (1 + 2εb) /2.
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The state-reset operation EΓ2 transforms the diagonal elements of the density matrix ρ
as follows:

diag (ρ) = [N0, N1, N2, N3]
EΓ2−−−−−→ [(N0 +N3) p2, N1, N2, (N0 +N3) (1− p2)] ,

resulting in the rethermalization between |00〉 and |11〉. This type of relaxation can be
generalized for higher dimensions, and also for different pair of states, as I discuss in next
sections.

Note that for qubits with different energy gap than the qubits from the bath, the
probability p2 is given by

p2 = eβ∆Eq

2 cosh [β∆Eq]
,

where ∆Eb is the energy gap of the qubits from the bath, and ∆Eq is the energy gap of
the reset qubit. The bath polarization is related with ∆Eb and β as εb = tanh [β∆Eb/2].

The state-reset operation EΓ2 , accompanied by saturation of the second qubit, can
boost the polarization of the first qubit, giving rise to the NOE effect. In the next section,
I describe this effect as an algorithmic protocol in quat.

4.4 Nuclear Overhauser Effect as an algorithm in QIP

The NOE emerges in a pair of qubits in the presence of cross-relaxation (Γ2), when one
of the qubits is rapidly rotated so that over relevant timescale its polarization averages
to zero, resulting in the boost of polarization of the other qubit [76]. In the quantum
information processing terminology, as an algorithm, this process consists of the iteration
of two operations: one to saturate (totally mix) one of the qubits and a relaxation operation
for the cross-relaxation of the system with the bath (EΓ2). In this sense, we assume we
have control over non-unitary processes, in the spirit of reservoir engineering (as in [87])
to create the effect of turning on Γ1 and Γ2 independently.

We define the “Completely-mixed-state (CMS)” operation, as the operation that satu-
rates the state of a qubit ρ, i.e. CMS (ρ) = I/2.
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Nuclear Effect Overhauser Algorithm (NOE Algorithm)

The NOE Algorithm for a two-qubit system consists of the alternating iteration of
two steps: 1) A completely-mixed-state operation CMS on the reset qubit. 2) Cross-
relaxation EΓ2 to reset the states |00〉 and |11〉 of the system. The corresponding circuit
to reproduce the NOE algorithm is depicted as follows:

⇢✏b

⇢✏b

�2
CMS

�2
CMS ...

...
�2

CMS

Round(NOE)

Figure 4.2: NOE Algorithm for the two qubit case. It consists of the iteration of
rounds made of a CMS followed by the state-reset of the states |00〉 and |11〉. The
gray dotted box represents a round. Note that, since the EΓ2 and CMS are not unitary
operations, they are not represented with the conventional boxes used for unitaries,
but instead they are represented with diamonds for non-unitary processes.

The net effect of applying a round of the NOE Algorithm on a two-qubit system
with state ρ can be expressed as follows:

ΦNOE−Round (ρ) = EΓ2 [(1⊗ CMS) ρ]

The polarization enhancement of the target qubit, under the NOE algorithm, goes
asymptotically to a unique and attractive fixed point, which corresponds to the polarization
predicted by the Solomon equations for the NOE effect: 2εb. The proof is detailed in the
next subsection for low bath polarization and in Appendix B1 for any bath polarization.
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4.4.1 Polarization evolution for the NOE Algorithm

Consider a system of two homo-nuclear spins. Let the system start in thermal equilibrium
with polarization εb, i.e. with initial state ρ0 = ρ⊗2

b . Let us see how the polarization of the
qubits evolves under a round of the NOE algorithm.

For simplicity in this section, Let us consider the low polarization regime (see Ap-
pendix B1 for any polarization). The diagonal of the initial state, which can be approxi-
mated to

diag (ρ0) = diag
1

4

[
1 + εb 0

0 1− εb

]⊗2 ≈ 1
4 (1 + 2εb, 1, 1, 1− 2εb) ,

evolves under the two steps of the round as follows 2:

diag (ρ0) 1⊗CMS−−−−−−−−→1
2 (1 + εb, 1− εb)⊗

1
2 (1, 1)

=1
4 (1 + εb, 1 + εb, 1− εb, 1− εb)

Γ2−−−−−→1
4 (1 + 2εb, 1 + εb, 1− εb, 1− 2εb)

≈1
2

(
1 + 3

2εb, 1−
3
2εb

)
⊗ 1

2

(
1 + 1

2εb, 1−
1
2εb

)
,

enhancing the polarization of the target qubit from εb to 3
2εb at the expense to decrease

the polarization of the second qubit to εb/2.

Let εN be the polarization of the target qubit after N rounds of the NOE algorithm,
then

diag (ρN) 1⊗CMS−−−−−−−−→1
2 (1 + εN , 1− εN)⊗ 1

2 (1, 1)

=1
4 (1 + εN , 1 + εN , 1− εN , 1− εN)

Γ2−−−−−→1
4 (1 + 2εb, 1 + εN , 1− εN , 1− 2εb) ,

2Note that the state of the system will remain in diagonal during the whole protocol.
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which gives to the target qubit a polarization of εN+1 = 1
2εN + εb. Thus, by induction,

εN = ε0
2N +

N−1∑
i=0

εb

= ε0
2N + 2εb

(
1− 1

2N
)

Thus, the polarization enhancement goes asymptotically to the polarization

ε∞
NOE

= lim
N→∞

εN = 2εb,

giving a unique attractive fix point, which is independent of the initial state of the qubits.
This expression corresponds to small εb, for the low bath-polarization regime. This asymp-
totic polarization ε∞

NOE
= 2εb gives the same enhancement obtained from the Solomon

equations that corresponds to the NOE effect, as described in the previous sections.

The asymptotic polarization of the NOE algorithm for any bath-polarization is given
by

ε∞NOE = tanh (2ξb) ,

where ξb is related to the polarization of the bath by εb = tanh (ξb) (see Appendix B1 for
details). Then, in Appendix B2 you can find a generalization of the NOE algorithm for
larger systems of qubits, n > 2.

The steady state of the NOE algorithm ρNOE
∞ corresponds to a diagonal state with the

following diagonal

diag
(
ρ∞

NOE

)
= 1

2
(
1 + ε∞

NOE
, 1− ε∞

NOE

)
⊗ 1

2 (1, 1) .

In particular, when the initial polarization of the qubits is the same of the bath po-
larization, i.e. ε0 = εb, the target qubit polarization will have an enhancement given by
εk = 2εb

(
1− 1

2k+1

)
after k rounds of the protocol.
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4.5 State-Reset HBAC for the two-qubit case

We present a novel cooling algorithm, which we called the “SRΓn HBAC” protocol for the
n-qubit case, which allows the use of the state-reset as a tool to improve cooling. Concretely,
for this novel type of protocols the allowed operations are as follows: 1) general unitary
operations on the n-qubit system, 2) CMS operations to send qubits to the complete-
mixed state, 3) Reset-state operations which thermalize the pairs of energy levels of the
form |00...0〉 and |11...1〉 (note that this reset-state includes the individual relaxation when
the pair of state are the |0〉 and |1〉). Also, it is assumed that the n qubits have the same
energy gap, which is fixed.

Under the aforementioned assumptions, we present the optimal protocol for cooling a
target qubit. However, note that when you allow the reset-state operation on arbitrary
pairs of energy levels (different to the ones of the form |00...0〉 and |11...1〉), it could be
possible to lead to an even better cooling.

In this section, I introduce the 2-qubit case of our new algorithm..

SRΓ2-HBAC method

The SRΓ2 HBAC for a two-qubit system consists of the iteration of the three steps:

1) A flip operation on the second qubit.

2) The cross-relaxation EΓ2 operation to reset the states |00〉 and |11〉 of the system.

3) The individual relaxation EΓ1 operation on the second qubit.
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X
�2

�1 X
�2

�1 X
�2 ...

...⇢✏b

⇢✏b

Round(n=2)

Figure 4.3: Circuit for the SRΓ2-HBAC method. Γ1 and Γ2 are the state-reset
operations on one and on two qubits, EΓ1 and EΓ2 , respectively. The part inside the
dotted box represents a round of the protocol. The entire circuit is just the repetition
of that round.

The asymptotic polarization of the SRΓ2-HBAC algorithm for any bath-polarization is
given by

ε∞SRΓ2 = tanh (3ξb) , (4.5.1)

where ξb is related to the polarization of the bath by εb = tanh (ξb) (see Appendix B3.1
for the precise calculation). Thus, the SRΓ2-HBAC leads to an improvement on both the
NOE (ε∞NOE = tanh (2ξb)) and the PPA-HBAC (ε∞PPA2 = εb).

Here, as a simple example, I present the approximation for the low polarization regime.
Let us start with two qubits at thermal equilibrium, with polarizations εb, i.e. with state

ρn=2
0 = ρ⊗2

εb
=
[

1
2

(
1 + εb 0

0 1− εb

)]⊗2

=
[

1
2 cosh ξb

(
eξb 0
0 e−ξb

)]⊗2

. (4.5.2)

The vector of its diagonal elements in the low polarization regime can be approximated as
diag (ρn=2

0 ) = 1
4 cosh2 ξb

(
e2ξb , 1, 1, e−2ξb

)
≈ 1

4 (1 + 2εb, 1, 1, 1− 2εb).

Under the first two steps of the protocol (see Fig. 4.3), the initial state will evolve to
diag (ρ1) = 1

4 (1 + 2εb, 1 + 2εb, 1− 2εb, 1− 2εb). At this stage, the polarization of the first
qubit is doubled and the second qubit has zero polarization, analogous to the NOE [76].
Then, the third gate prepares the second qubit for a new round. The polarization of the
first qubit increases in each round. Concretely, after applying k rounds, the first qubit
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polarization will be
ε

(n=2)
k =

(
3− 1

2k−1

)
εb,

for the low polarization case. This leads to an asymptotic polarization of 3εb, an improve-
ment on both the NOE and the PPA-HBAC for the two-qubit case.

For the general bath polarization, the maximum polarization achievable for the SRΓ2-
HBAC, as has been mentioned in eq. (4.6.3), will be ε∞SRΓ2 = tanh (3ξb), leading to an
improvement on both the NOE and the PPA-HBAC.

See Fig. 4.4 for a comparison of the maximum achievable polarization as a function of
the bath polarization for the PPA-HBAC, the NOE algorithm and the SRΓ2 HBAC, for
the two-qubit case.
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Figure 4.4: Comparison of the maximum achievable polarization for the PPA-HBAC (in
green), the NOE algorithm (in blue) and the SRΓ2 HBAC (in red), for the 2-qubit case,
assuming thermal equilibrium polarization εb.

The enhancement of our methods is only due to the state-reset operations which require
cross-relaxation processes, and not to the individual non-unitary processes on the qubits.
The control over non-unitary processes to turn on/off Γ1 and Γ2 independently is needed
to have them individually during the protocol, since the presence of Γ1 at the same time
as Γ2 would decrease the polarization enhancement.
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4.6 Generalized State-Reset

We generalize the state-reset idea to increase the polarization of a target qubit in a larger
n−qubit system by considering the transition probability Γn between the eigenstates |0〉⊗n
and |1〉⊗n. Similarly, in the limit case, when Γn 6= 0, and the other transition probabilities
equal to zero, the cross relaxation Γn effectively provides a state-reset between |0〉⊗n and
|1〉⊗n, without changing the other states. Then, the corresponding Kraus operators for the
Γn operation are given by:

A
(n)
1 = √pn

n⊗
i=1
|0〉i〈0|i,

A
(n)
2 = √pn

n⊗
i=1
|0〉i〈1|i,

A
(n)
3 =

√
1− pn

n⊗
i=1
|1〉i〈1|i,

A
(n)
4 =

√
1− pn

n⊗
i=1
|1〉i〈1|i,

A
(n)
4+j = (|j

bin
〉〈j

bin
|) ,

(4.6.1)

for all j integers between 0 and 2n− 1, where the subscript i correspond to the i-th qubit,
and j

bin
is the binary representation of j written as a string of n digits. (For instance, for

n = 3, A(n=3)
5 = (|001〉〈001|), A(n=3)

6 = (|010〉〈010|), ..., and A
(n=3)
10 = (|110〉〈110|)). From

here, it is not difficult to generalize for the case of n-qubits, as it is explain as follows.

State-Reset EΓn on the states |s1〉 and |s2〉

In general, the operation to reset any pair of states, |s1〉 and |s2〉, can be given by a
Kraus decomposition with the following operators:
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A
(n)
1(|s1〉←→|s2〉)

= √pn|s1〉〈s1|,

A
(n)
2(|s1〉←→|s2〉)

= √pn|s1〉〈s2|,

A
(n)
3(|s1〉←→|s2〉)

=
√

1− pn|s2〉〈s2|,

A
(n)
4(|s1〉←→|s2〉)

=
√

1− pn|s2〉〈s1|,

A
(n)
4+r(|s1〉←→|s2〉)

= (|rbin〉〈rbin|) ,

(4.6.2)

for all the rbin integer binary numbers of a string of n digits such that
r
bin
∈ {0, 1}⊗n\{s1, s2}, and r ∈ N is used for indexing the Kraus operators. When

the state-reset is chosen to be between |0〉⊗n and |1〉⊗n, the probability pn is related
to the heat bath polarization εb as pn = enξb

2 coshnξb
, where εb = tanh ξb. Thus, for low

polarization, pn = (1 + nεb) /2. This operation transforms the state ρ to

EΓn(|s1〉←→|s2〉) (ρ) =
∑
i

A
(n)
i (|s1〉←→|s2〉)ρ

(
A

(n)
i (|s1〉←→|s2〉)

)†
.

For Γn, unless the exact pair of states to be reset is specified, it will be assumed that
the equilibration is between the states |0〉⊗n and |1〉⊗n.

Similarly, this kind of reset, combined with rotations to totally mix all the qubits with
the exception of the qubit that is going to be cooled, can boost the polarization of some
qubits. We found a generalization of the NOE on n qubits (see Appendix B2), that gives
a final polarization of nεb, in the approximation of low polarization. Used by itself, the
generalized NOE does not always give a better polarization than the PPA-HBAC for large
n, but we use this state-reset operation as a tool to create new enhanced HBAC algorithms:
the SR-Γn HBAC protocols. The 2-qubit case has been already introduced in the previous
section, and now that the general EΓn state-reset operation is defined, the n-qubit case will
be presented, for n > 2.

4.6.1 State-Reset HBAC for the three-qubit case

To extend to three qubits we include Γ3, in addition to Γ2 which can be applied on any
combination of qubit-pairs of the system, and Γ1 on any of the qubits.
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SRΓ3-HBAC method

The algorithm consists of the iteration of three-step rounds:

1) The polarization of the second qubit (counted from top to bottom in the circuit
of Fig. 4.5) is increased by applying the SRΓ2-HBAC on the second and third qubits,
to achieve a polarization close enough to its maximum value (see eq. (4.6.3)), tanh 3ξ
(3εb for low polarization).

2) The second and third qubits are flipped.

3) A state-reset Γ3 on all three qubits is applied to pump additional entropy out
of the system.

X
Alg

n=2

�3 X �3
...

...

...X X

Alg
n=2

Alg
n=2

Round(n=3)

⇢✏b

⇢✏b

⇢✏b

Figure 4.5: Circuit for the SRΓ3-HBAC method. Γ3 is the reset-state operation on
three qubits that resets the states |000〉 and |111〉 to their corresponding equilibrium
values. Alg(n=2) is the preparation of the second qubit, using the SRΓ2-HBAC on the
second and third qubits. The dotted box encloses a segment of the circuit which is
repeated, which constitutes a Round(n=3).

The asymptotic polarization of the SRΓ3-HBAC algorithm for any bath-polarization is
given by

ε∞SRΓ2 = tanh (7ξb) , (4.6.3)

where ξb is related to the polarization of the bath by εb = tanh (ξb) (see Appendix B3.2 for
the precise calculation), leading to an improvement beyond the PPA-HBAC for the 3-qubit
case.
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Let us derive the achievable polarization for the three-qubit case in the low heat-bath
polarization regimen,

ρn=3
0 = ρ⊗3

εb
=
[

1
2

(
1 + εb 0

0 1− εb

)]⊗3

=
[

1
2 cosh ξb

(
eξb 0
0 e−ξb

)]⊗3

. (4.6.4)

Then, the vector of the diagonal elements is diag (ρn=3
0 ) =

[
1
2 (1 + εb, 1− εb)

]⊗3
. For low po-

larization, Γ3 will transform a diagonal state diag (ρn=3) = (N0, N1, N2, N3, N4, N5, N6, N7)
into

(
1+3εb

2 (N0 +N7) , N1, N2, N3, N4, N5, N6,
1−3εb

2 (N0 +N7)
)
. Alg(n=2) will prepare the

second qubit by applying the SRΓ2-HBAC to enhance its polarization close to 3εb. Then,
under this algorithm, the polarization of the first qubit, after applying k′ Round(n=3) (see
Fig. 4.5), will be

εn=3
k′ =

[
7− 6

(3
4

)k′]
εb, (4.6.5)

leading to an asymptotic polarization ε(n=3)
max = 7εb, for low bath polarization regime.

4.6.2 State-Reset HBAC for the n-qubit case

For our new algorithm for the n-qubit case, SRΓn-HBAC, we assume that we have the
ability to apply the set of state-reset operations Γm in a controlled way on any subsystem
of m qubits, for all m < n, in the spirit of reservoir engineering (as in Ref. [87]). Similarly
to the algorithm for the 3-qubit case SRΓ3-HBAC – which makes use of the preparation
SRΓ2-HBAC as one of its steps – the algorithm SRΓn-HBAC, uses the preparation of the
SRΓn−1-HBAC. The protocol is presented as follows:

SRΓn-HBAC method

The SRΓn-HBAC algorithm, for the n-qubit case, consists of the iteration of 3-steps:

1) First, the polarization of the second qubit (counted from top to bottom in the
circuit of Fig. 4.6), is increased by using the preparation of the SRΓn−1-HBAC protocol
(denoted by Alg(n−1)).
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2) All the qubits with the exception of the first qubit are flipped.

3) A state-reset operation EΓn is applied to pump entropy out of the first qubit.

X X ...

...

...X X

X X

...

Alg(n�1) Alg(n�1) Alg(n�1)

�n�n

...

... ... ... ...

⇢✏b

⇢✏b

⇢✏b

⇢✏0

Round(n)

Figure 4.6: Circuit for the SRΓn-HBAC algorithm. Γn represents the reset-state
operation EΓn that resets the states |0〉⊗n and |1〉⊗n on n qubits. Algn−1 is the po-
larization preparation of the second qubit by using SRΓn−1-HBAC. The part of the
circuit inside the dotted box represents a round of the protocol, Round(n). The entire
circuit is the repetition of this round.

The maximum polarization achievable for the target qubit is

ε∞SRΓn = tanh [(2n − 1)ξb], (4.6.6)

where ξb = arctanh (εb).

The final asymptotic temperature of the target qubit for this SRΓn-HBAC protocol
is given by

T∞SRΓn = Tb
2n − 1 ,

where Tb is the temperature of the heat-bath, and n is the number of qubit in the
system.

The final temperature obtained by the SRΓn-HBAC is improved by a factor of 4 over
the final temperature achieved by the PPA-HBAC on a string of identical qubits, in general

62



for all n:
T∞SRΓn = Tb

2n − 1 < T∞PPAn = 4Tb
2n ∀n (4.6.7)

Similarly, the maximum polarization achievable for the SRΓn-HBAC is higher than the
achievable polarization obtained by the PPA-HBAC method [93]. Fig. 4.7 shows particular
examples of the maximum polarizations achieve by our new method and the PPA-HBAC,
as a function of εb.

The analytical result of the maximum achievable polarization, eq. (4.6.6), can be
demonstrated by induction, as described below. The basis case of induction, for n = 2
and 3, the maximum polarization for the first qubit is ε(n=2)

∞ = tanh 3ξb and ε(n=3)
∞ =

tanh 7ξb, respectively. In the induction step, we assume that for a number ñ, ε(k)
∞ =

tanh
(
2k − 1

)
ξb, ∀k ≤ ñ, and prove this equation for k = ñ + 1. Let us consider a sys-

tem of ñ + 1 qubits, we are going to calculate the maximum polarization ε(ñ+1)
∞ . After

applying SRΓn-HBAC all the qubits will be in a product state, with the last ñ qubits
having the corresponding maximum polarization (i.e., the last qubit with polarization
ε(n=1)
∞ , the second last one with polarization ε(n=2)

∞ , and so on). Let us name ε
(n+1)
fix to

the polarization of the first qubit in the cooling limit. After the second step of the
round, flipping the last ñ qubits, the first element of the diagonal density matrix will be
β1 := 1

2n+1 (1 + ε
(n+1)
fix )

n∏
i=1

[
1− tanh

[
(2i − 1)ξb

]]
. Similarly, the last element of the density

matrix will be β2n+1 := 1
2n+1 (1− ε(n+1)

fix )
n∏
i=1

[
1 + tanh

[
(2i − 1)ξb

]]
.

Let us define the sum of these two elements, β1 and β2n+1 , as B. Then, the state-reset
Γn+1 will change these two elements to Bpn+1 and to B(1− pn+1), respectively. This state
will achieve the fixed point when the first and the last elements are already equal to Bpn+1

and to B(1 − p3), respectively. Namely, β1 = Bpn+1 = (β1 + β2n+1) (1 + tanhnξb) /2.
Substituting β1 and β2n+1 in this expression, and solving for ε

(n+1)
fix , we get ε

(n+1)
fix =

tanh [(2n+1 − 1)ξb], which proves the claim: The polarization limit, achievable with our
algorithm, for the n-qubit case is ε(n)

∞ = tanh [(2n − 1)ξb], leading to an improvement on
both the NOE and the PPA-HBAC. For low polarization, this polarization limit reduces
to (2n − 1)εb.
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Figure 4.7: Maximum achievable polarization of the SRΓn-HBAC and the PPA-HBAC, in
solid lines and dotted lines, respectively, as a function of εb, for different n.

4.7 Conclusion

We have presented a new HBAC technique that achieves a better polarization enhance-
ment than the one obtained by the PPA-HBAC protocol, for any number of qubits. As
mentioned in the previous Chapter and in our paper [93], the polarization achieved using
the PPA-HBAC should instead be interpreted as a lower bound on the maximum amount
of polarization that can be achieved. Its importance is due to the simplicity of the PPA-
HBAC when the initial state is totally mixed or in an equilibrium thermal state. In this
case, it is possible to get analytical results that describe both the steady state and its
polarization, from which we can determine a variety of properties. For example, we can
determine how far it is from purity one and explicitly show how many resources are needed.
It will be interesting to see if we can generalise the Overhauser effect and determine what
advantages it can give as we increase the number of qubits.

Our technique utilizes the coupling to the environment in a way that is not limited to
qubit resets, but could also include correlations between the qubits which are reset. The
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assumption that entropy can be extracted from the system only via qubit reset (instead
of state-reset) was a symmetry which has been implicitly imposed for qubits, but is not
generally true. There are other examples of similar imposed symmetries, such as the dis-
tinction on subspace and subsystems [58] where the symmetry limits quantum information
processing. We have shown a series of algorithms and calculated their resulting polariza-
tion for this new method as a function of the number of qubits, n, and as a function of
the polarization of the bath, εb. We have also presented the polarization evolution as a
function of the number of iterations of our algorithms and compared between these results
and the corresponding ones of the PPA-HBAC. There exist many possibilities for future
application of this method. Although originally designed for NMR where measurements
are ensemble averages, our technique can be applied in other modalities, e.g. supercon-
ducting and ion traps, where we have imperfect projective measurements and initial states.
In these modalities it could be implemented by incorporating the qubits in ‘leaky’ cavities
that resonate at twice the fundamental frequency of the qubit, and thus induce the |11〉
to |00〉 transition. Our algorithm might be a tool to help NMR or MRI applications to
increase the signal to noise ratio or bring these error rates below the threshold for fault
tolerance in quantum information applications.

Our results show implicitly that a universal set of unitary gates along with Γ1 are
not universal for open quantum systems with two qubits or more. We conjecture that
universality is achieved by including Γ2 for the two-qubit case and by including all Γi for
the n-qubit case. This conjecture was proved in a recent paper by C.Perry et al. [85].
Future research should also include a proof of optimality of our algorithms either using
only the transitions |0〉⊗n ←→ |1〉⊗n (“state reset”), a different m-qubit transition (where
m ≤ n), or a combination of such transitions.
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Chapter 5

Initial-correlation Enhanced
Algorithmic Cooling

The results presented in this Chapter have been published in Refs. [90, 2].

In this Chapter, I remove another assumption underlying all previous HBAC methods:
the assumption that the qubits are not interacting nor initially correlated [29, 73, 98, 26, 99,
28, 55]. I provide explicit methods that extend algorithmic cooling to interacting systems.
The physical motivation is that, in practice, the qubits generally possess correlations of
both classical and quantum origin, generated thermally and through interaction-induced
entanglement respectively. Not taking the correlations into account, when implementing
the cooling protocols, could lead to unwanted results which can even reduce the initial
purity of the target qubit – an example of this situation is presented in Appendix C2 for
the PPA method.

In fact, the correlations among elements of a multipartite quantum system can play
a critical role in cooling protocols, leading to fundamental limitations when trying to
locally cool down a part of the system. To illustrate this fact, let us consider the case
of interacting subsystems whose Hamiltoinian is non-local and that possess non separable
low energy global eigenstates states (hence, with entangled ground states). Then, imagine,
that we want to cool down a single subsystem of this interacting system. On the one hand,
by naively immersing this interacting system in a very cold thermal bath, this would not
be sufficient to cool down locally the subsets of the system, since the correlations of non
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separable low energy states give locally mixed subsystems. Even when having access to
an extremely cold thermal reservoir, the entanglement of the ground state implies that
by cooling down the whole system, the target subsystem will remain in a mixed state.
Furthermore, by breaking the aforementioned correlations within the system, it will end
up with mixed subsystems.

Even more, the correlations between subsystems of a multipartite quantum system can
obstruct outgoing energy flows [2] (as detailed in Appendix C1). Indeed, while in ordinary
macroscopic systems classical thermodynamics dictates that energy flows from hot to cold;
in the microscopic regime, where quantum effects become relevant, this direction of energy
flow surprisingly may be blocked or even inverted [2]. Some natural questions arise: How
can we characterize a hot system from which it would be impossible to cool down, even
by making contact with a colder one? What are the relevant quantum effects that prevent
cooling that system? And how can we circumvent these possible cooling limitations in
algorithmic cooling protocols?

In this chapter, I present the answers to these questions, in particular for the full charac-
terization of the impossibility of extracting energy locally from a bipartite quantum system
in the presence of strong coupling and entanglement. Then, I show how to circumvent these
limitations by allowing classical communication, by proposing explicit protocols.

Concretely, first, I present the intuition of how quantum effects, such as entanglement,
can obstruct outgoing energy flows, via fast local interaction, preventing a hot body to
dissipate its energy to a colder one. Later on, in the Appendix C2, I present a full set of
necessary and sufficient conditions that fully characterize this thermodynamic feature of
impossibility of energy extraction. Then, I show how to circumvent these limitations by
allowing classical communication between parts of the interacting system in order to take
advantage of pre-existing quantum and classical correlations within the system. This type
of setting goes under the name of quantum energy teleportation (QET) [51, 35, 53, 34, 50,
48, 109, 49, 52, 111], which I will describe in more detail in the section 5.2.

Our new proposed HBAC technique shows how correlations present due to the internal
interaction provide a resource that can be used to improve cooling. In particular when
this interaction is sufficiently strong, the system’s quantum correlations can be exploited
to achieve cooling beyond the established limits of the previous conventional algorithmic
cooling proposals that assume no interaction.
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5.1 Preliminaries: Fundamental limitations to local
energy extraction in quantum systems

In this section, we focus on the problem of cooling interacting multipartite systems to which
only local access to a single subsystem (the target subsystem) is granted. We assume that
the most general type of local access is allowed. Namely, any local CPTP map on the
target subsystem is allowed, making our results relevant for any physical platform in which
the subsystems are spatially separated.

In particular, we examine when it is possible to locally extract energy from a bipartite
quantum system in the presence of strong coupling and entanglement, a task which is ex-
pected to be restricted by entanglement in the low-energy eigenstates. Concretely, our goal
is to fully characterize the necessary and sufficient conditions for such energy extraction
to be impossible.

System setup and allowed operations – Let us consider the bipartite quantum system
made by the subsystems A and B, with associated Hilbert space HA ⊗ HB, and global
Hamiltonian HAB. Let the subsystem A be our target subsystem, in which it is allowed to
act locally with general local CPTP map EA (·).

Given a state ρAB, the maximum extractable energy under a local map on A is

∆Emax := min
EA

Tr[HAB(EA ⊗ IB)ρAB]− Tr[HABρAB],

where IB is the identity channel on B, and the optimization is over the whole set of CPTP
maps on A. The above optimization can be easily written as a semidefinite program (see
refs. [10, 115] for introductory references to the subject, and ref. [2] for more details of this
example). Then, by using tools from semidefinite programming, it is possible to calculate
∆Emax and to solve for the CPTP map which minimizes this energy extraction to zero,
since we want to characterize the states from which it is impossible to extract energy for
the system even under general local operations. The states we seek motivate the following
definition:

Definition 1 (CP-local passivity). The pair {ρAB, HAB} is defined to be CP-local passive
with respect to subsystem A if and only if no general quantum operation applied locally on
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the subsystem A can extract positive energy from the system.

∆Emax = 0. (5.1.1)

That is, a system is CP-local passive if the best local strategy for extracting energy (as
measured by the global Hamiltonian HAB) is to act trivially on it. The word passive is
used here in analogy to the commonly known passive states [62], from which energy cannot
be extracted under unitary maps.

The intuition behind how these CP-local passive states exist is as follows: During the
task of extracting energy locally from the bipartite system, one could expect that if the low-
energy eigenstates of the system display entanglement, there are limitations when trying
to get closer to them only by means of local maps – since one cannot approach entangled
states with local operations. While it could be possible to decrease the energy of the system
up to some mixture of those low-energy eigenstates, trying to drive the system to a lower
energy state can correspond to increasing the correlations in the system beyond what is
possible via local operations alone.

This problem of cooling interacting multipartite systems to which only local access to a
single subsystem is granted was first studied in Frey et al. [34], who gave a set of sufficient
conditions for the impossibility of energy-yielding via arbitrary local operations. Fret et al.
showed that having a non-degenerate ground state with full Schmidt rank is a sufficient
condition for the system to exhibit this impossibility of local energy extraction, given a
large enough population in the ground state. We built on their results in two ways: i) we
found necessary and sufficient conditions for this energy extraction to be impossible [2] (see
Appendix C1) and ii) we strengthened the set of physically-motivated sufficient conditions
given in Ref. [34], by finding explicit bounds for the ground state population and critical
temperature for which the system displays CP-local passivity.

In this chapter, I show how the cooling limitations given by the CP-local passivity
can be circumvented by allowing classical communication between parts of the interacting
system to take advantage of the pre-existing correlations within the system. This type of
setting goes under the name of quantum energy teleportation. In the next subsection, a
summary of the minimal QET technique is provided. Then, I show how this protocol can
be adapted and applied on an ensemble of identical systems of two interacting qubits in a
fully unitary fashion. This fully unitary version of the minimal QET protocol not only can
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break the CP-local passivity of the system but also increase the purity of a target qubit.

5.2 Summary of the Minimal QET

The minimal QET protocol [52] extracts energy locally from a two-qubit system by using
information of a distant measurement. Note that, even though this method uses measure-
ments, we will adapt it in the next sections to present a new fully-unitary version of it: a
QET-HBAC based protocol. This adaptation is important, since a one of the requirement
for HBAC is that it should not rely on measurements. Then, I will show concrete examples
of how our method improve the purity beyond previous methods in the strong coupling
regime.

5.2.1 System Setup for the Minimal QET

Consider the system of two interacting qubits, A and B, with Hamiltonian

H = HA +HB + V, (5.2.1)

where Hν = hσνz + f(h, k)1, with ν = {A,B} and

V = 2
[
kσa

xσ
b
x + k2

h2f(h, k)1
]
. (5.2.2)

Here, h and k are positive constants and the function f(h, k) = h2/
√
h2 + k2 is chosen

such that the ground state of the full Hamiltonian has vanishing energy. The choice of the
constant term f(h, k) in the Hamiltonian is just for convenience but it is not necessary
for the protocol to work. Since the interaction Hamiltonian does not commute with the
qubit’s free Hamiltonian, the ground state of the system is not separable. Concretely, the
system’s ground state |g〉 in terms of eigenstates of σa

z , σ
b
z reads

|g〉 = 1√
2

(F−|1〉a|1〉b − F+|0〉a|0〉b) , (5.2.3)
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where F± =
√

1± f(h, k)/h, σνz |0〉ν = −|0〉ν , σνz |1〉ν = |1〉ν , with ν = {A,B}. Note
that, given that |g〉 is an entangled state, even if the system is at zero temperature, the
subsystems A and B are not locally pure.

Arguably, the most interesting case of the QET protocol is when it is applied to break
the strong local passivity of the ground state |g〉, since it implies the extraction of the zero-
point energy by using local operations and information of the fluctuations of the vacuum.

5.2.2 Steps of the Minimal QET protocol

In the Minimal QET protocol two types of local operations are allowed: a generalized
measurement on a qubit A (not necessarily projective), and local unitary operations on
the qubit B – which can dependent on the outcomes of the measurement in A. The steps
of the Minimal QET are as follows:

Steps of the Minimal QET protocol [52]

The initial state of the system is in the ground state |g〉.

1) In the first step of the basic QET protocol, Alice carries out a POVM measure-
ment on A with operators that commute with the term of interaction V and the local
Hamiltonian of B HB. The conditions imposed on the POVM are in order to avoid
sending energy to B during the measurement.

2) The result of the measurement on A (µ = ±1) is announced to Bob through
a classical channel. It can be assumed that the information is sent faster than the
coupling timescale 1/k, which means that the non-local dynamics can be considered
frozen during that time.

3) Depending on the message, µ, that Bob received, Bob carries out a local unitary
operation, UB (µ), optimized to extract energy from B without any energy propagating
from A to B.

As proved in [52], Bob extracts, on average, energy from the system by acting
locally on B without any energy propagating from A to B.
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The POVM is demanded to commute with the local Hamiltonian of B, HB, and the
interacting term V . In this case, even though the first step of the protocol –a measurement
on A– will have an energy cost EPA > 0, i.e. it pumps energy into the system by acting
locally on A, none of this energy goes to the side B at the moment of implementing the
step. So, it would be possible to extract energy locally from B, that does not come from
the side of A. Note however that the protocol is not concerned about the amount of total
energy pay in the measurement.

5.3 QET on the ground state to break its strong local
passivity

Implementing the basic QET protocol on the ground state, will have the effect of extracting
energy locally from B that does not come from A. Namely, the QET protocol breaks the
strong local passivity of the ground state to extract the zero-point energy of B.

Here, we illustrate this case and also show the purify enhancement of the subsystem
B, by following the steps of the minimal QET protocol. In particular, we use the unitary
UB (µ) that optimizes Bob’s energy extraction by taking advantage of correlations instead,
when we are limited to local operations. By applying the three steps of the protocol (POVM
on A, classical communication from A to B, and local unitary in B –see Appendix C3 for
the details–), the ground state, eq.(5.2.3), of system AB will evolve on average to

ρf =
∑
µ=±1

Ub(µ)Ma(µ)|ψ0〉〈ψ0|M †
a(µ)U †b(µ), (5.3.1)

whereMa (µ) = eiδµ (mµ + eiαµlµσ
x
a) is the measurement operator that describes the POVM

on σxa, which commutes with the local Hamiltonian of B HB and the interaction term of
the Hamiltonian V , and µ is the outcome (that can take either value +1 or −1). Here,
the coefficients mµ, lµ, αµ and δµ are real constants satisfying ∑

µ (m2
µ + l2µ) = 1, and∑

µmµlµ cosαµ = 0. UB (µ) is the unitary that maximizes Bob’s energy extraction:

UB(µ) = cos Ωµ 1+ i sin Ωµ σ
B
y , (5.3.2)

72



where, Ωµ’s are real constants that satisfy

cos(2Ωµ) = (h2 + 2k2) pa (µ)√
(h2 + 2k2)2pa (µ)2 + h2k2qa (µ)2

, (5.3.3)

sin(2Ωµ) = − hkqa (µ)√
(h2 + 2k2)2pa (µ)2 + h2k2qa (µ)2

, (5.3.4)

with pa(µ) = m2
µ + l2µ and qa(µ) = 2lµmµ cosαµ.

Let us show that the purity on B is boosted while consuming the correlations. From
(5.2.3), we can calculate the initial purity of B (defined as Pb

i = Tr (ρ2
b) and the initial

polarization εb
i = Tr (σzρb) (for ease of comparison with prior literature):

Pb
i = 2h2 + k2

2 (h2 + k2) , and εb
i = h√

h2 + k2
. (5.3.5)

In the basis that diagonalizes the state of B, the polarization is related to the purity by
εb
i =
√

2Pb
i − 1.

After applying the QET-2 1 protocol, the purity of B is

Pb
f = 2

(h2 + k2)

(
h2

2 + k2

4 −hkl1m1 sin [2(Ω0 − Ω1)]

+
[
4k2l21m

2
1 + h2

(
l21 +m2

1 − 1
)(
l21 +m2

1

)]
sin2 (Ω0 − Ω1)

)

and the final polarization is

εb
f = 1√

h2 + k2
(−h cos 2Ω0 + 2kl1m1(sin 2Ω0 − sin 2Ω1)

+ h
(
l21 +m2

1

)
(cos 2Ω0 − cos 2Ω1)). (5.3.6)

For simplicity, we assumed αµ = 0. From this we can see enhancement of the purifica-
tion in the cases where the energy yield of QET is positive. See Appendices C for details

1Let us call this protocol QET-2, since it is using two-qubits, to differentiate it from the other protocols
that will be presented later.
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about the energy costs of implementing the POVM and the energy extracted locally from
B.

In this way, the minimal QET uses the communication of non-local correlations to
circumvent the constraints of strong local passivity [34], in this case of the ground state,
so that energy can be extracted locally.

In the next section is discussed how the protocol is not just simply applying a POVM
on a system and therefore automatically purifying the system, and in fact by having only
the POVM without using the optimized unitary on B, it would be impossible to extract
energy locally from it in average. This means that after applying the POVM on the system,
it is still in a strong local passive state, and only by using the classical communication is
possible to extract energy in average.

5.3.1 Impossibility of energy extraction without Alice’s announce-
ment of the measurement outcome

Imagine that Bob tries to do a local unitary operation on B after the measurement that
Alice performed onA but without knowing anything about the outcome of the measurement
µ. It is legitimate to ask whether Bob can extract some energy on average form the process
(negative energy cost of its unitary operation).

If Bob does not know about the outcome µ, the action of an arbitrary (µ-independent)
local unitary WB on the post-measurement state would be

WB|ψPM〉 = 1√
pA(α)

WBMA(µ)|g〉

Then, we would get the average state

ρ2 = WBρ1W
†
B = WB

 ∑
µ=±1

M †
A(µ)|g〉〈g|MA(µ)

W †
B.

Repeating the calculation of the energy balance computed before (see Appendix C3),
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the cost of such a unitary will be given by

EWB
= Tr(ρ2H)− Tr(ρ1H) = Tr(ρ2H)− EPA =

∑
µ

〈g|M †
A(µ)W †

B[HB + V ]WBMA(µ)|g〉

now since ∑
µ

M †
A(µ)MA(µ) = 1A

we can write

EWB
= Tr(ρ2H)− Tr(ρ1H) = Tr(ρ2H)− EPA = 〈g|W †

B[HB + V ]WB|g〉

Now, given that HAWB = 0 we know that 〈g|W †
BHAWB|g〉 = 〈g|HA|g〉 = 0 and we can

write the following equality

EWB
= 〈g|W †

B[HA +HB + V ]WB|g〉 = 〈g|W †
BHWB|g〉

But we know that H is a non-negative operator, therefore this expectation will be always
greater or equal than zero.

EWB
≥ 0

and the Unitary will cost energy on average if Bob has no information about the outcome
of the measurement on A.

5.4 QET-2 cooling in Gibbs states

We now show that one can obtain purification enhancement not only for systems in the
ground state. In particular, let us focus now on Gibbs states. Consider the two-qubit
system whose interaction is described by the Hamiltonian, Eq. (5.2.1), in a Gibbs state of
inverse temperature β. The density matrix that describes this state is ρβ = e−βH/tr

(
e−βH

)
.

In Fig. 5.1a we present the initial purity, and final purity after applying the QET-2 protocol
as a function of β for different ratios k/h. In the lower part of the figure we also plot the
initial purity. The stronger the coupling, the lower the initial purity and the better the
amount of purification that the QET method yields.

The POVM that optimizes the purification of B shown in Fig. 5.1a corresponds to the
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case when the measurement of A is projective. Remarkably, however, a projection-valued
measurement of A is not necessary for high yield purification. We see in Fig.5.1b that for
the case of non-projective measurements, one still obtains an improvement in purity above
prior algorithmic cooling methods applied to the same system. For the non-projective case
plotted in Fig.5.1b, the optimization was limited to POVMs whose measurement operators
were at least at a distance of 1/2 in the Frobenius norm from those of the case of projective
measurements.

We have compared our results with two other HBAC methods: the PPA-HBAC [78]
for two qubits and three qubits (let us call it PPA-2 and PPA-3 respectively) and our
new cooling algorithm [89], SRΓn-HBAC, based on the Nuclear Overhauser Effect (NOE)
(which improves over PPA-HBAC) (presented in previous Chapter).

Note that for the PPA-n (the PPA on n qubits), it is assumed that the reset of qubits
is obtained through a full re-thermalization with the bath, breaking quantum and classical
correlations in the system, which could lead to more mixed subsystems when the system
has strong internal interactions. In particular, as I already mentioned several times, for
the two-qubit case, PPA-2 cannot perform better than plain rethermalization with the
environment after breakdown of any system correlations. The PPA algorithm is, however,
non-trivial in the case of PPA-n with n > 2. In further sections, I present a comparison of
the PPA-3 with the QET-2.

Concerning resources, the differences between QET-2 and PPA-n can be summarized
as follows: PPA-n utilizes non-local n-qubit unitaries to make entropy compression, and
the ability to map some of the qubits to an uncorrelated thermal state (modeling re-
thermalization with the bath) breaking all correlations in the system. It also assumes
that we can repeat the application of the non-local unitary and the reset indefinitely until
a fixed point is reached. On the other hand, QET-2 utilizes LOCC: local generalized
measurements (POVMs) and local (single-qubit) unitaries without refreshing with a bath.
However, we will lift the need for POVMs and classical communication in the next section
when we construct the fully unitary version of the protocol that we will call QET-2A.

The second method that we compare to QET-2 in Fig. 5.1b is our new method SRΓ2-
HBAC [89]. In this method, the coupling to the environment is not limited to just re-
thermalization, but could also include correlations between the qubits of the system and
the bath. This kind of correlations allows to make more efficient “state resets”. Con-
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cretely, inspired by the Nuclear Overhauser Effect [76], one can use that the state tends
to thermalize faster in particular directions in the state space (see previous Chapter for
more details). We show in Fig. 5.1b that QET-2 also improves over SRΓ2-HBACin the
strong coupling regime. Let us recall that SRΓ2-HBAC takes advantage of correlations be-
tween the bath and the qubits, whereas QET-2 does not use a thermal bath as a resource
and instead utilizes the correlations which are present in the system due to its interaction
Hamiltonian.
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Figure 5.1: (Left) Final purity as a function of β = kb/T , obtained by simulation for
k/h ∈ {10, 2, 1}. Note that the method yields a larger enhancement when increasing the
coupling strength. (Centre) Comparison of the final purity as a function of β, for the
methods of QET with projective and non projective measurements, the SRΓ2-HBAC, the
PPA-2, and the initial purity. Here k/h = 5, for the two-qubit system with Hamiltonian
of Eq. (5.2.1). (Right) circuit summarizing the QET-2 protocol.

5.5 Fully unitary QET cooling

We will now use the fact that QET does not need to involve measurements and can be made
fully unitary instead. The role of the measurement device is then played by an ancillary
quantum system C. In the fist step, Alice applies a joint unitary Ua = exp(iHa

probe) on qubit
A and the ancilla, which is generated by a Hamiltonian Ha

probe = ∑
i,j σ

a
i J ijσan

j (where
J ij is Hermitian) that couples observables of the ancilla to observables of the detector.
Through this interaction, the ancilla gains information about Alice’s qubit. Instead of
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classical communications, the ancilla itself is then sent to Bob. Finally, Bob implements
a joint unitary Ub = exp(iHb

probe) on B and the ancilla, corresponding to the interaction
Hb

probe = ∑
i,j σ

b
iKijσan

j (where Kij is another Hermitian coupling matrix) to extract work
from the system leading to increased purification of Bob. We call this method QET-2A.
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Figure 5.2: Final purity as a function of the inverse of the temperature, β, obtained for
the fully unitary picture on the system AB for the example using unitaries UA = eiσ

A
y σ

an
y

and UB = eiσ
B
xσ

an
z , for k/h = 1, 3, and k/h = 5, from left to the right, respectively. The

blue lines represent the initial purity of qubit B, and the yellow lines the final purity of B.

In terms of resources, this method, QET-2A, utilizes local couplings of the ancilla
with A and B: first a bipartite unitary generated from the coupling of observables of the
ancilla and observables of A, and second a bipartite unitary generated from the coupling
of observables of the ancilla with observables of B. We do not require the use of arbitrary
bipartite unitaries. It suffices to restrict ourselves to measurement-like operations, i.e., the
coupling of an observable of the ancilla (which plays the role of the detector indicator) and
an observable of the qubits A and B (which plays the role of the measured quantity). (By
restricting the ancilla to be a mere quantum detector, we are not yet making full use of
the power of three qubits, hence the name QET-2A instead of QET-3.)

As a first illustrative example, we now implement this new method on the two qubit
system described by Eqs. (5.2.1)-(5.2.2), and an ancilla with Hamiltonian Han = hanσ

an
z .

As a first simple example, consider that the ancilla is coupled to the observable σx of the
system A, and later is coupled to the observable σy of B: UA = eiσ

A
y σ

an
y and UB = eiσ

B
xσ

an
z .
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We obtain for the final purity of the qubit B,

P b
f = 1

2 + h−S
2
+[(ha + hb)2 + k2 sin4(2) tanh2(βhan)]

2(C− + C+)2h−h+

+ S2
−[h+[(ha − hb)2 + k2 sin4(2) tanh2(βhan)] + 2h2

bhr]
2(C− + C+)2h−h+

− 2hrS+S−[h2
a + k2 sin4(2) tanh2(βhan)]

2(C− + C+)2h−h+
(5.5.1)

where

h± := (ha ± hb)2 + k2, hr :=
√

1
2 (h2

− + h2
+)− 8h2

ah
2
b

S± := sinh
√
h±β, C± := cosh

√
h±β. (5.5.2)

Fig. 5.2 shows three plots with results for different values of the coupling strength between
A and B.

After this example, we now optimize the purification of qubit B with respect to the
way in which the ancilla couples to the systems A and B. Assuming that this optimization
is restricted to coupling of observables of the ancilla with observables of A and B we
find optimal values for Ua and Ub numerically. Our results are presented in Fig. 5.3, in
comparison with PPA-3 for k/h = 1. Notice that PPA-3 involves the full power of three
qubit operations. Also notice that since PPA-3 destroys the system correlations, it fails
to cool down the target qubit beyond its initial purity in some regimes. This is because
breaking the correlations can be detrimental to the system purity. Remarkably, QET-2A
(fully-unitary) can yield the same purification boosting than the POVM based protocol and
outperform PPA-3, a protocol which does fully take advantage of three qubit operations
but does not use the system’s correlations for cooling. Note that for weak interactions,
methods like PPA-3 are optimal to cool. However, the stronger the interactions between
the components of the subsystems (and therefore the correlations in the system) the more
efficient QET-cooling methods become.
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Figure 5.3: (Left) Final purity of QET in the unitary picture (QET-2A) as a function of the
inverse of the temperature, β, obtained by simulation for k/h = 5, and ha = hb = han = h.
We compare with PPA-3, and the initial purity of the ancilla and the target qubit B.
(Right) Circuit summarizing the QET-2A protocol.

Numerical tests show that the protocol is stable under uncertainty in the interaction
Hamiltonian. To study this sensitivity quantitatively, we added perturbations in the in-
teraction part of the Hamiltonian, while performing the QET purification protocol that is
optimized for the non-perturbed case. In particular, we considered perturbed Hamiltoni-
ans of the form V ∝ kσa

xσ
b
x + k2

h2f(h, k)1 + 2εσa
i σ

b
j . We find that, crucially, if the value of

the parameter ε (quantifying the relative difference between the Hamiltonian assumed to
optimize the protocol and the actual Hamiltonian of the system) is small, then the relative
impact of the error in the implementation of the protocol is very small (in our case, a
relative difference of 10−4 in the achievable purity for values of ε ≈ 0.1)

5.6 Entropy compression on interacting systems

We proved that QET-2A not only can purify beyond the cooling limit of PPA-3, but that
it can outperform PPA-3 (i.e., many iterations of entropy compression and qubit reset
with a thermal bath) by using much less resources and while only requiring a much more
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limited range of operations compared to PPA-3. Furthermore, the fact that QET-2A is
not using the full power of applying general joint unitaries on the three qubits (like PPA-3
does) suggests that it is possible to further improve the cooling with the resources that are
assumed also for PPA-3.

Let us now compare the power of our unrestricted non-local n-partite unitaries for en-
tropy compression in interacting systems with the analogous entropy compression through
PPA-n protocols which break the correlations.

For instance, let us consider the two-qubit system of Eqs. (5.2.1) and (5.2.2), start-
ing in the Gibbs state of inverse temperature β. We optimized the entropy compression
numerically for different ratios k/h, and we found, see Fig.5.4, that we can extract more
entropy from B to compress in A when the coupling is stronger. This is intuitive, given
that a more strongly coupled system will exhibit more correlations in its ground state (due
to entanglement) and also in Gibbs states (due to classical thermal correlations).
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Figure 5.4: Comparison between entropy compression using correlations (blue solid line)
and without using correlations (green dashed line), for the 3-qubit case. For reference,
initial purity for a Gibbs state of inverse temperature β is shown in red dotted line. The
Hamiltonian is H = hσA

z +hσB
z +hσan

z +kσa
xσ

b
x +kσb

xσ
an
x , we are using A as the target, and

compressing the entropy on B and AN . The stronger the interaction, the more purification
can be achieved.

In fact, the unitary that optimizes the entropy compression corresponds to the unitary
that diagonalizes the total state and makes a SORT in decreasing order of the elements
of the diagonal. Therefore, the unitary drives the system towards a passive state. This
indicates deep links between work extraction and purification in non-degenerate interacting
systems, and the role of quantum and classical correlations in algorithmic cooling.
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5.7 Conclusions

In this chapter, I presented a technique that can be integrated with the HBAC protocols
to not only allow the presence of correlations, but also to be able to break the strong
local passivity of the system. I showed that by exploiting preexisting interaction-induced
correlations, quantum energy teleportation can be used to significantly improve algorithmic
cooling in systems with strong interactions. The stronger the interactions, the higher the
purification gain. Further increases in the achievable purity should be possible, e.g., by
optimizing the ancilla interactions or considering larger interacting systems where there are
more correlations in the ground state. QET-cooling may be a good candidate for efficient
cooling of strongly interacting systems in, e.g., ultra-strongly coupled superconducting
qubits [75, 84, 32]. Another possible setup where this procedure can be thought of is an
ensemble of di-atomic molecules where the two atoms in the molecule are modelled by
qubits and the two atoms have a non-negligible interaction.

Our new algorithmic cooling protocols show that correlations are important in work
extraction and entropy flows in cooling protocols. This is also in agreement with recent
works that take advantage of correlations to enhance tasks related to extraction of energy
and efficiencies [34, 16, 81, 94, 66, 36].
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Chapter 6

n-to-1 distillation of athermality for
two-level systems

In this Chapter, we obtain the limit of distillation of athermality – a property whereby a
state has a distribution over energy levels that is not thermal [13] – of n identical qubits to
one qubit, and relate our result to the maximum purity achievable for one qubit in a string
of n identical qubits under thermal operations with no other experimental constraints. In
particular, we focus on quasi-classical states, and we ask for their limit on athermality dis-
tillation. The systems considered consist of a string of n identical qubits, in a quasi-classical
state, starting in a product state. Without loss of generality, we refer to the first qubit of
the string as the target qubit, i.e. the qubit we are interested in purifying. Furthermore,
we connect the optimal entropy compression unitary operations with concepts of resource
theory, and provide a different and more simple geometric proof of its optimization using
Lorenz curves and majorization, in the context of resource theories. These results connect
ideas from resource theory, to be implemented in a useful and simple way to Heat-Bath
Algorithmic Cooling (HBAC).

Our study can be understood as an example of heat-bath algorithmic cooling from a
perspective of resource theory. In standard HBAC, the target qubit is purified by making
suitable redistributions of the entropy among the string of qubits through alternating steps
of entropy compression operations and contact with a thermal bath, as it was described
in more detail in Chapters 1 and 2. Our first connection, when allowing general reversible
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entropy compression operations, is to explain the optimal operations in the framework of
resource theories and present a new proof using a geometric representation of the Lorenz
curves and majorization. Then, we change the assumptions regarding the allowed type of
operations in the cooling protocols: while in HBAC the entropy compression operations
used are general global unitaries on the string of qubits, here we explore the case where the
allowed operations are the thermal operations – i.e. operations that conserve the energy
of the system – in order to connect with the resource theory of athermality.

Concretely, we present the analytic expression of the athermal Lorenz curve for n

identical qubits. Then, we approximate it for the case of large n. We relate our result
with the entropy compression needed for algorithmic cooling, and from them we obtain
the maximum achievable purity for a target qubit in a single shot corresponding to two
different scenarios. In one scenario we allow thermal operations, while in the other we allow
global unitary operations. We present a proof of the best entropy compression under the
aforementioned allowed operations by using the Thermo-majorization curves and Lorenz
curves, respectively. Our results show that in the framework of resource theories, one can
easily get the optimal results for the entropy compression operations and understand them
from a more thermodynamic perspective.

In the next subsection, I briefly describe the resource theory of athermality and define
the set of allowed operations. This resource theory allows us to study the advantages
of possessing a resource state, in this case athermality, in a given quantum information
processing protocol, which can be connected to the study of the limits of algorithmic cooling
protocols. I then present our results for the maximum achievable entropy compression to
purify a qubit in a single shot of reversible entropy compression and similarly for entropy
compression with the thermal operations.

6.1 Preliminaries

A resource theory is a mathematical framework developed to study the influence of con-
straints on the possible evolution of physical systems under a restricted set of physical
operations. To define a concrete resource theory, it is required to identify two types of
operations: a set of operations that are considered free – i.e. operations that can be used
without limit –, and the complementary set of operations which are expensive, which are
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treated as resources [41, 18] and may be consumed to perform a given task. Along these
lines, there will be also free states, and resources. Furthermore, a resource theory also
allow us to understand when two resources are equivalent under a give set of free opera-
tions (i.e. when resources can be converted into others with free operations), and give us
the conditions in which a given conversion can be accomplished. In a quantum resource
theory the allowed operations are limited by the laws of quantum mechanics, with extra
constraints that arise from the specification of the particular physical settings, from which
it is possible to identify the set of free operations.

The perspective or resource theories rely on understanding and determining the relative
usefulness of different sorts of resources in terms of their ability of do certain tasks, for ex-
ample extracting work. Then, quantum thermodynamics could be seen as a field of studying
the accessibility (or inaccessibility) of a physical state to be transformed into another one
under certain allowed operations in accordance with the laws of thermodynamics [39, 59].
The set of thermodynamic operations encodes the structure of the thermodynamic arrow
of time by telling which states can be reached from a given state [60].

In particular, let’s consider the case of having a thermal bath at inverse temperature
β, in this scenario a state that is in thermal equilibrium with the bath is considered to be
a free state. In fact, such a thermal state at inverse temperature β cannot be a resource,
as according to the second law of thermodynamics it cannot be transformed into any other
athermal (out-of-equilibrium) state for free. On the other hand, athermal states can be
consider as resources since they can be exploited to perform work. Along these lines, a
set of free operations with respect to energy, would correspond to the operations that does
not change the energy of the system. As free operations, by definition, cannot increase the
amount of resources present in a state. This can be formally characterized in the so-called
resource theory of athermality.

Resource theory of athermality

In the resource theory of athermality, the resources are the quantum states that deviate
from the Gibbs form at a given temperature. [13]. This is because such athermal states can
be exploited to perform work during the process of equilibration [25, 12], which can also
be used to transform another system out of equilibrium. Then, the level of athermality of
a quantum system can be understood as the distance of the distribution over its energy
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levels from the thermal distribution [13].

Then, the corresponding free processes/operations, also known as T-thermal operations,
are as follows:

1) Preparing systems in the Gibbs states at the bath temperature (states of the form
e−βH/Tr

(
e−βH

)
).

2) Global unitaries which are energy-preserving, i.e. that commute with the total
Hamiltonian of the system and the bath. These type of operations are known as Thermal
Operations (TO) and are defined with the use of the following general thermodynamic
setting: A quantum system of Hamiltonian H, which is brought into thermal contact with
a bath described by a Hamiltonian HB. The joint system-bath evolves unitarly (preserving
the energy according the first law of thermodynamics) and after some time the system is
decoupled from the bath. With respect to the system alone, the operation is in general a
CPTP, mathematically formalized in the following way:

Definition 2. (Thermal operations) – The set of thermal operations {ET} consists of
CPTP maps that act on a system ρ in the following way:

ET (ρ) = TrB
[
U (ρ⊗ γB)U †

]
,

where U is a joint unitary commuting with the total Hamiltonian of the system and bath,
[U,H +HB] = 0, and γB is a thermal Gibbs state of the bath at some fixed inverse tem-
perature β, i.e. γB = e−βHB/Tr

(
e-βHB

)
.

3) Taking the partial trace over a subsystem.

A general process is T-thermal if and only if it has a Stinespring dilation whose ancilla
state is the Gibbs state at inverse temperature β = 1/T and whose unitary is energy-
preserving. On the other hand, the resource processes in resource theory of athermality
are the athermal operations, eg. non energy preserving global unitaries.

In particular, quantum resource theory reduces to classical resource theory for quasi-
classical states. A classical state is a state which is diagonal in the energy eigenbasis
{|Em〉〈En|} defined by the eigenstates of its corresponding system Hamiltonian H =∑
n

εn|En〉〈En|.
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The resource theory of athermality provides a framework for describing many results
in quantum thermodynamics, including the limits to work extraction [54, 13, 47, 103],
Landauer’s solution to the Maxwell demon problem [41], and the status of the second law
of thermodynamics [41, 12].

Along those lines, in this chapter, our goal is to use ideas and concepts from resource
theory of athermality to describe in a useful and simple way the optimal entropy compres-
sion operations of the HBAC protocols. In particular, we describe two different scenarios,
first the conventional reversible entropy compression and then the entropy compression
under thermal operations. The main difference between the previous studies of heat algo-
rithmic cooling and a resource-theoretical approach lie in the tools used and the questions
asked. While in HBAC the explicit steps are specify and are of fundamental importance,
in resource theories the question of which particular operations are used to achieve a given
resource conversion is typically considered to be of secondary interest.

How can we tell how far a given state is from being a thermal state? Namely, how can
we order different quantum states accordingly to their level of athermality? These are basic
questions that we will use to characterize later what is the best entropy compression we can
achieve by using thermal operations. But before answer these questions, we will start with
the simpler question of ordering probability distributions according to their uncertainty, to
then connect it with the optimal reversible entropy compression operation, as is presented
in the next section.

6.2 Majorization (Lorenz) curves and the optimal re-
versible entropy compression

A way to order probability distributions according to their uncertainty is given by ma-
jorization [9]. Namely, in order to know which of two given probability distributions, p
and q, is less uncertain, we can use a tool based on partial order, known as majorization,
which is defined as follows:

Definition 3. (Majorization) – Given two d-dimensional probability distributions p and
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q, we say that p majorizes q, which is denoted by p � q, if and only if

n∑
i=1

p↓i ≤
n∑
i=1

q↓i ∀ n = 1, ..., d− 1. (6.2.1)

where p↓i corresponds to the ith element of p↓ which is p sorted in a non-increasing order.

Then, within majorization theory a probability distribution p is said to be less uncertain
than q, if p � q [9].

An alternative, more geometrical, definition is easily seen to be equivalent to the pre-
vious one is the Majorization (Lorenz) curve:

Definition 4. (Majorization (Lorenz) curve) – The Majorization (Lorenz) curve L(p) is
characterized as the linear interpolation of the following points: j

d
,

j∑
i=1

p↓i

 , ∀j = 1, ..., d, (6.2.2)

and the point (0, 0). We say that the curve L(p) majorizes the curve L(q), denoted by
L(p) � L(q), if and only if all the points of the curve L(p) lie not below L(q) and the two
curves end at the same height.

The Lorenz curve gives us a simple geometrical way to identify if two probabilities
vectors p and q, satisfy a majorization relationship: namely, L(p) � L(q) if and only if
p � q.

In particular, the distribution given by the eigenvalues pλ of the system’s state majorizes
the probability distribution given by the diagonal elements p of system’s state. This
statement is given and proved by the Schur-Horn theorem, which formally is stated as
follows:

Schur-Horn Theorem. – Let d = {di}Ni=1 and λ = {λi}Ni=1 be vectors in RN such
that their entries are non-increasing order. There is Hermitian matrix with diagonal values
{di}Ni=1 and eigenvalues {λi}Ni=1 if and only if

n∑
i=1

di ≤
n∑
i=1

λi for n = 1, 2, ..., N, and
N∑
i=1

di =
N∑
i=1

λi. (6.2.3)
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Then, since unitaries operations on the system preserve the eigenvalues of the state, the
distribution given by these eigenvalues will majorize any distribution given by the diagonal
of the system’s state under unitary evolution. Namely, for a state ρ with eigenvalues pλ,
the following majorization order is satisfied for all unitaries on the system:

pλ < p = diag
(
UρU †

)
∀U. (6.2.4)

This Majorization ordering, in combination with the fact that the Majorization (Lorenz)
curves represent equivalence classes of resources under unitary operations, will be relevant
to find the optimal reversible entropy compression to purify a target qubit from a system
of n qubits. So, let’s start by finding the Majorization (Lorenz) curve for our system of
interest.

6.2.1 System setup

The system consists of astring of n identical qubits, starting in a product state, each of

them in the state ρ =
(
p 0
0 1− p

)
, with p ≥ 1/2. Without loss of generality, we can take

the first qubit of the string as the target qubit (the qubit that we want to purify). We will
refer to the rest of the qubits as the scratch qubits.

Then, the total state of the system, ρT = ρ⊗n, is a diagonal matrix with 2n elements of
the form pn−i(1 − p)i in the diagonal, for i = 0, 1, ..., n. More concretely, in the diagonal
there are

(
n
i

)
= n!

i!(n−i)! elements with value pn−i(1− p)i, for i = 0, 1, ..., n.

6.2.2 Majorization (Lorenz) curve of system setup

The corresponding Majorization Lorenz curve for the system, as presented in Definition 3,
is characterized by the curve obtained from the linear interpolation of the following points:(

j

2n , Sj

)
, ∀j = 0, 1, ..., 2n, (6.2.5)

where Sj is the sum of the j largest components of the diagonal elements of the total state
ρT = ρ⊗n, for j = 1, 2, .., 2n, and taking S0 := 0 for j = 0.
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To write explicitly the form of the Majorization Lorenz curve, let’s consider the sorting
of the different values of the diagonal elements of ρT in non-increasing order. For, with
p ≥ 1/2, we have the following order:

pn ≥ pn−1(1− p) ≥ pn−2(1− p)2 ≥ ... ≥ (1− p)n (6.2.6)

i.e. pn−i (1− p)i ≥ pn−j (1− p)j for all i ≤ j.

Then, by partially summing these ordered elements and taking into account the repe-
tition of them in the diagonal, the explicit form of the Lorenz curve will be given by the
linear interpolation of the following 2n points:

Qk,j :=
(

1
2n

[
k∑
i=0

(
n

i

)
+ j

]
,

k∑
i=0

(
n

i

)
pn−i (1− p)i + jpn−k (1− p)k

)
,

for j = 0, ...,
(

n

k + 1

)
− 1, ∀k = 0, ..., n,

(6.2.7)

and the point (0, 0).

Note that, for a fix k, all the points Qk,j, for j = 0, ...,
(

n
k+1

)
, will be in the straight line

that connects the points Qk,0 and Qk+1,0. This is obtained from the linear form on j of the
eq.(6.2.7) when k is fix:

Qk,j = Qk,0 + j
(
2−n, pn−k (1− p)k

)
. (6.2.8)

From here, we can describe the Lorenz curve by taking only the extreme points of these
lines, Qk,0, to linear interpolate, while assuring that all the points of eq.(6.2.7) will be
within this curve.

Therefore, the Majorization Lorenz curve for our system of n identical qubits is given
by the linear interpolation of the points

Q̃k := Qk,0 =
(

1
2n

k∑
i=0

(
n

i

)
,

k∑
i=0

(
n

i

)
pn−i (1− p)i

)
, ∀k = 0, ..., n. (6.2.9)

The second component of the points Q̃k, corresponds to the cumulative distribution
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function of a binomial distribution:

F (k, n, 1− p) :=
k∑
i=0

(
n

i

)
pn−i (1− p)i , (6.2.10)

which can also be represented by the regularized incomplete beta function [113], as follows:

F (k, n, 1− p) = (n− k)
(
n

k

)∫ p

0
tn−k−1 (1− t)k dt (6.2.11)

Then, eq.(6.2.9) is equivalent to:

Q̃k =
(

1
2n

k∑
i=0

(
n

i

)
, (n− k)

(
n

k

)∫ p

0
tn−k−1 (1− t)k dt

)
, ∀k = 0, ..., n. (6.2.12)

In the Fig.6.1, it is shown the Lorenz curves, which corresponds to the linear interpo-
lation of the points given by Qk,0, for different values of n.

6.2.3 Cooling the target qubit

The maximum achievable probability qmax that the target qubit (the first qubit in the
string of n qubits) can have, after applying a global unitary operation in the system, will
correspond to the value given by the Majorization Lorenz curve of the whole diagonalized
system evaluated in 1/2 (i.e. it will be the sum of the 2n−1 biggest values of the ρT ’s
diagonal).

This can be demonstrated by using the Schur-Horn theorem, which tells us that the
Majorization Lorenz curve of the eigenvalues pλ of the system majorizes all the other
Lorenz curves of the system transformed under unitary operations U :

pλ < p = diag
(
UρU †

)
∀U. (6.2.13)

In this case the system has already a diagonal density matrix, but we can conclude that
for a general state, the Schur-Horn theorem tell us that the best unitary for entropy
compression to purify a target qubit should leave the total system diagonalized (to have
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Figure 6.1: a) Majorization Lorenz curves for different n (n = 1, 2, 3, 4, 5, from lower to
higher). The Majorization Lorenz curves allow us to obtain, in a very simple geometrically
way, the maximum probability of the target-qubit’s ground state after the optimal unitary
entropy compression. This aforementioned probability corresponds to the value of the
probability given by the middle point of the plot (the point (1

2 , S2n/2), namely S2n/2. Note
that, this probability S2n/2 is higher when the number n of qubits grows. b) Majorization
Lorenz curves for different n (n = 15, 20, 25, 30, 35, in the thermodynamic limit, the higher
Majorizatin Lorenz curves converge to an asymptotic Lorenz curve.

the Majorization lorenz curve that majorizes all the possible ones under unitary operations).
Then, the diagonal elements can be permuted, since they are equivalent in the Majorization
curve, to favor the first qubit: to increse the propability of the ground state of the target
qubit the diagonal elements should be sort in a non-increasing order.

Thus, the middle point of the Majorization lorenz curve gives the maximum probability
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of being in the ground state for the first qubit of the system, which is as follows:

qmax := S2n−1

qmax (p, n) =



(n−1)/2∑
i=0

(
n

i

)
pn−i (1− p)i , if n is odd

n/2∑
i=0

(
n

i

)
pn−i (1− p)i − 1

2

(
n

n/2

)
pn/2 (1− p)n/2 , if n is even.

(6.2.14)

In the Fig.6.2, qmax is illustrated as a function of p for different values of n.
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Figure 6.2: Maximum achievable probability for the target qubit, qmax as a function of the
initial probability p, for different values of n (n = 2, 4, 6, 8, 10, from the right to the left.
Note: for a n odd, it will give the same qmax corresponding to n+ 1).

Then, from here we can obtain the maximum achievable purity P = Tr(ρ2
qmax) where

ρqmax is the diagonal matrix with diagonal elements (qmax, 1− qmax). Thus, P = 2qmax (qmax − 1)+
1.
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In the PPA-HBAC [93], this entropy operation U is obtained by making a reordering of
the diagonal elements in decreasing order, which will be an equivalent final purity as the
obtained here. After this entropy compression some qubits can be brought into thermal
contact with a bath to be refreshed. This step can be also studied by using the Lorenz
curve after the refresh process. We could make an optimization to get the process which
gives a final state with a spectrum that majorizes the one of any other refresh process.

We presented a proof, in a simple and clean way by using majorization concepts, that
the best entropy compression for a general state, including states with internal correla-
tions, corresponds to diagonalize the state, and make a non-increasing sort on the diagonal
elements of the global system.

6.2.4 Lorenz curve for the limit of n→∞

For a large number of qubits, we can approximate the Majorization Lorenz curve by using
the Stirling approximation, and the cumulative distribution function of a normal distribu-
tion as an approximation of the binomial one.

The partial sum of the first k binomial coefficients

k∑
i=0

(
n

i

)
=

k∑
i=0

n!
i! (n− i)! ≤ 2n ∀k = 0, 1, ..., n, (6.2.15)

does not have a close formula for partial sums k > n; while for k = n, this sum gives 2n.
By applying the the Stirling approximation, which holds for n sufficiently large, we obtain
the following approximation:

k∑
i=0

(
n

i

)
∼ 1 +

k∑
i=1

√
n

2πi(n− i)
nn

ii(n− i)n−i . (6.2.16)

For the Lorenz curve, this expression normalized, then for n → ∞ it will make a
division of the interval [0, 1] to infinitesimal parts, when considering all the points given
by eq.(6.2.7).

On the other hand, for the second component of the points for the Lorenz curve,
eq.(6.2.9), which corresponds to a binomial cumulative distribution function F (k, n, 1−p),
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it can be approximated as the normal cumulative distribution function, if n is large enough
with p remaining fixed, as a consequence of the Central Limit Theorem. More concretely,
the distribution tends towards the normal distribution with mean n(1 − p) and variance
np (1− p) as n→∞ with p fixed:

F (k, n, 1− p)→ Φ
k − n(1− p)√

np (1− p)

 (6.2.17)

where Φ (x) = 1
2

[
1 + erf

(
x√
2

)]
, with erf(x) = 2√

π

∫ x

0
e−t

2
dt.

Then, the points for the Lorenz curve, for a large n, will be approximated to

Q̃k ≈

 1
2n + nn+1/2

√
2π

k∑
i=1

i−i−1/2

(n− i)n−i+1/2 ,
1
2

1 + erf
 k − n(1− p)√

2np (1− p)

 , ∀k = 0, ..., n,

which corresponds to the asymptotic Lorenz curve in the thermodynamic limit. The middle
point of this curve, gives the maximum achievable probability of the ground sate of the
target qubit after a unitary entropy compression operation.

6.3 Thermo-majorization

In thermodynamic considerations instead of comparing which of the two probabilities is
more uncertain, we will study which one is closer to the thermal equilibrium distribution.
Thus, we will use the ordering with respect to a thermal Gibbs distribution, which is
formally defined as follows:

Definition 5. (Thermal Gibbs distribution γ) – The thermal Gibbs distribution of a system

with Hamiltonian H =
d∑
i=1

Ei|i〉〈i|, with non-decreasing set of energies {E1 ≤ E2 ≤ ... ≤

Ed}, at inverse temperature β, is given by

γ = 1
Z

(
e−βE1 , e−βE2 , ..., e−βEd

)
, where Z =

d∑
i=1

e−βEi . (6.3.1)
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Note that in the infinite temperature limit, i.e. β → 0, the Gibbs state becomes a
maximally mixed state: γ → (1/d, ..., 1/d).

In thermodynamics, a way to classify out-of-equilibrium distributions, with respect to
a thermal Gibbs distribution γ, is given by the so-called β-ordering [59], which is defined
as follows:

Definition 6. (β−ordering and Gibbs re-scaling) – Given a thermal Gibbs distribution γ,
Gibbs re-scaling a probability distribution p is defined by

p Gibbs−rescaling−−−−−−−−−→ pγ =
(
p1

γ1
,
p2

γ2
, ...,

pd
γd

)
= Z

(
p1e

βE1 , p2e
βE2 , ..., pde

βEd
)
. (6.3.2)

Then, the β−ordering of a probability distribution p is defined by a permutation πp that
arranges pγ in a non-increasing order, i.e. pγ πp−→ pγπp = (pγ)↓, where

pπp(1)e
βEπp(1) ≤ pπp(2)e

βEπp(2) ≤ ... ≤ pπp(d)e
βEπp(d) . (6.3.3)

Now, the β−ordered version of a probability vector p is given by p π−1
p−−→ pβ:

pβ := pπ−1
p

=
(
pπ−1

p (1), pπ−1
p (2), ..., pπ−1

p (d)

)
. (6.3.4)

Then, the thermodynamic ordering is defined with the use of thermo-majorization
curves [13], analogous to the Majorization (Lorenz) curves:

Definition 7. (Thermo-majorization curves) – Given a thermal Gibbs distribution γ and
a probability vector p, its thermo-majorization curve fp is composed of linear segments
connecting the point (0, 0) and the points

(
k∑
i=1

γβi ,
k∑
i=1

pβi

)
=
(

k∑
i=1

γπ−1
p (i),

k∑
i=1

pπ−1
p (i)

)
(6.3.5)

for k ∈ {1, 2, ..., d}, where πp is a permutation that β-orders p.

Analogous to majorization, a probability distribution p is said to be further from the
thermal equilibrium distribution than q is if p thermo-majorizes q, which is formally
defined as follows:
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Definition 8. (Thermo-majorization) – We say that probability vector p thermo-majorizes
a probability vector q with respect to a thermal Gibbs distribution γ, denoting it by p �β q, if
the thermo-majorization curve fp is above the curve fq for all the points, i.e. fp(x) ≤ fq(x)
for all x.

Thermo-majorisation is the notion that characterises how different out of equilibrium
distributions can be transformed into each other under thermal-operations.

6.4 Themo-majorization curves for n identical qubits

The density probability q for our system of n identical qubits, as described before, has
2n elements, where

(
n
i

)
= n!

i!(n−i)! of them are of the form pn−i(1 − p)i, for i = 0, 1, ..., n.
Assuming that the qubits have only local Hamiltonians HL = ωσz, with ω > 0.

It implies that the elements of the corresponding thermal distribution γ, has
(
n
i

)
=

n!
i!(n−i)! elements of the form

pn−i(1− p)iZ
e−βω(n−2i) . (6.4.1)

The the non-decreasing order of the elements of γ, when p ≥ 1/2 and ω > 0 is as
follows:

pnZ

e−βω(n) ≥
pn−1(1− p)Z
e−βω(n−2) ≥ pn−2(1− p)2Z

e−βω(n−4) ≥ ... ≥ (1− p)nZ
eβω(n) . (6.4.2)

Then, by partially summing in the corresponding order the elements of γ, and q, we can
obtain the explicit form of the thermo-majorization Lorenz curve that thermo-majorizes
all possible combinations states of the system, which will be linear interpolation of the
following 2n points:

(
1
Z

k∑
i=0

(
n

i

)
e−βω(n−2i),

k∑
i=0

(
n

i

)
pn−i (1− p)i

)
, ∀k = 0, ..., n. (6.4.3)

where Z =
n∑
i=0

(
n

i

)
e−βω(n−2i). In the Fig. 6.3, it is shown the thermo-majorization Lorenz

curve for different values of n, with β = 0.001 and ω = 1.
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Figure 6.3: a) Thermo-majorization Lorenz curves for different n (n = 1, 2, 3, 4, 5, from
lower to higher). Analogous to the Majorization-Lorenz curves of Fig. 6.1, the Thermo-
majorization Lorenz curves allow us to obtain, in a very simple geometrically way, the
maximum probability of the target-qubit’s ground state but in this case after thermal
operations (instead of an optimal unitary for the entropy compression as in Fig. 6.1).
The corresponding maximum probability is given by the value of the probability of the
middle point from the plot. Note that, the probability of this middle point is higher
when the number n of qubits grows. b) Thermo-majorization Lorenz curves for different n
(n = 15, 20, 25, 30, 35, in the thermodynamic limit, the higher Thermo-majorizatin Lorenz
curves converge to an asymptotic curve.; both with β = 0.001 and ω = 1

We are interested in a particularly important β-permutation. β−permutations have
a simple geometrical description in terms of thermomajorization curves. In this context,
we want to maximize the population of of the ground state of the target qubit subject
to the thermo-majorization constraints. Namely, we are looking for the maximization
of the partial sum of the first half elements of the diagonal elements, among all thermal
operations. Then, similar to the Majorization (lorenz) curves, the best entropy compression
to the purity a target qubit, under thermal operations, corresponds to the one that distills
the most athermally from the rest of the qubits.
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6.5 Conclusions

We showed how by using ideas and concepts from resource theory it is possible to find the
optimal entropy compression (single shot) required for HBAC. In particular, two different
scenarios were studied, with the first one corresponding to the case where the allowed
operations are reversible entropy compressions, which are given by global unitaries. The
second scenario, when the set of operations are restricted to thermal operations. We
presented the analytic expression of the majorization (Lorenz) curve and the Thermo-
Majorization curve for n identical qubits. Then, we approximated it for the case of large
n. We related our result with the entropy compression needed for algorithmic cooling.
Concretely, we obtained the maximum achievable purity for a target qubit in a single shot
corresponding to the two aforementioned scenarios. We present a proof of the best entropy
compression by using the Thermo-majorization curves and Lorenz curves together with
the Schur-Horn theorem. Our results show that in the framework of resource theories, one
can easily get the optimal results for the entropy compression operations and understand
the results from a more geometric and thermodynamic perspective. Other questions that
we would like to explore for future work are: How can one generalize our results beyond
two-level systems? Can we use Majorization Lorenz curves for n qubits to get insight into
other resource theory problems involving asymptotics?
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Chapter 7

Conclusions

Quantum information processing brings ways for cooling physical systems by manipulating
entropy in an algorithmic way. Understanding these processes and their cooling limits can
elucidate fundamental theoretical properties of quantum thermodynamics and lead to new
experimental possibilities. In particular, heat-bath algorithmic cooling (HBAC) methods
have important applications in quantum computing as they provide a potential solution to
prepare quantum systems with sufficient purity.

In this thesis, more refined algorithmic cooling protocols were created that can lead to
a lower achievable temperature than standard HBAC. In our first model, we presented a
more general control on the interaction with the thermal bath, in particular by considering
relaxation processes where the bath only couples to certain energy transitions of the ancilla,
a crucial step that has not been taken into account in previous protocols. In our second
model, we circumvented the previous limits by taking advantage of correlations present
in the initial state induced by the internal interactions of the system. This second model
contrasts with all previous algorithmic cooling methods, since it has been assumed that the
system’s initial state is in a product state and that the interaction with the bath breaks
correlations. These two models of algorithms show how correlations can be used to improve
cooling. Furthermore, we study how to optimize the entropy compression using tools from
resource theories, closing the bridge between these two frameworks. In particular, we found
how to obtain the optimal reversible entropy compression in the context of distillation
of athermality, finding that the results are deeply related to the N-to-1 distillation of
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athermality from two level systems.

Concretely, the main results of this thesis are presented as follows:

HBAC with cross relaxation processes.

We showed that the HBAC protocols can be further optimised by designing a novel reset
step that generalizes the control on the interaction with the thermal bath. This enhance-
ment is physically motivated by cross relaxation processes. In particular, we considered
relaxation processes where the bath only couples to certain energy transitions of the an-
cilla. The engineered relaxations required for our new reset step utilize the coupling to
the environment in a way that is not limited to individual qubit-resets, but could also
include correlations between the qubits as they are in contact with the environment. The
assumption that entropy can be extracted from the system only via qubit reset (instead
of state-reset) is a symmetry that was implicitly imposed for qubits but is not generally
true. There are other examples of similar imposed symmetries, such as the distinction on
subspace and subsystems [58] where the symmetry limits quantum information processing.

We presented explicit algorithmic cooling protocols that provide new fundamental limits
on HBAC by engineering the aforementioned thermalisation processes. Concretely, we have
shown a series of algorithms and calculated their resulting polarization for this new method
as a function of the number of qubits, n, and as a function of the polarization of the bath, εb.
We have also presented the polarization evolution as a function of the number of iterations
of our algorithms and compared between these results and the corresponding ones of the
PPA.

There exist many possibilities for future application of this method. Although origi-
nally designed for NMR where measurements are ensemble averages, we believe that our
technique can be applied in other modalities, e.g. superconducting and ion traps, where
we have imperfect projective measurements and initial states. In these modalities it could
be implemented by incorporating the qubits in ‘leaky’ cavities that resonate at twice the
fundamental frequency of the qubit, and thus induce the |11〉 to |00〉 transition. Our algo-
rithm might be a tool to help in NMR or MRI applications to increase signal to noise ratio
or bring these error rates below the threshold for fault tolerance in quantum information
applications.
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We expect that our state-reset operation could be implemented on devices with suffi-
cient control of the thermal bath such as in Ref. [87], for example. Also, we have been
exploring the scenario of implementing our algorithm in superconducting qubits where
Γ2, the fully correlated relaxation process of two qubits, would be implemented through
a cavity at twice the resonance of the fundamental mode with interaction of the form
Hint = σ+

1 σ
+
2 a
† + cc. where σ+

i create a qubit i excitation and a† absorb the double exci-
tation. We are still in the early stages of this work and have been designing the required
Hamiltonian that can be created experimentally. On the other hand, we have preliminary
experimental results in NMR showing that the effect of the Γ2 process can be observed.

Our results show implicitly that a universal set of unitary gates along with Γ1 are
not universal for open quantum systems with two qubits or more. We conjectured that
universality is achieved by including Γ2 for the two-qubit case and by including all Γi for
the n-qubit case. This was proved in a recent paper of C.Perry et al. [85].

Furthermore, our work shows that exploiting non-Markovian effects can lead to en-
hanced cooling protocols. Our protocol has also inspired other recent cooling methods.
One example of this is the work of Alhambra, Lostaglio, and Perry, who pushed our idea
to its limits by finding optimal strategies for HBAC under general engineered thermalisa-
tion processes, leading to ground state cooling with an exponential convergence with the
number of steps [1]. Another example is the work of XinHua Peng et al. [114], who created
a new two-qubit reset sequence together with a decoherence-free subspace and present a
new algorithmic cooling technique based on our cross relaxation reset-step.

Correlation-Enhanced Algorithmic cooling due internal correlations

In our second model, we combined techniques from quantum field theory, such as quantum
energy teleportation (QET) protocols, to exploit internal correlations of the system in
order to enhance cooling. We showed that by exploiting these correlations it is possible to
extract more entropy from qubits than with methods that do not take these interactions
into account. In particular, our new model removes two implicit assumptions underlying
all previous cooling protocols: the assumption that the initial state of the system should
be in a product state, and the assumption that the optimal contact with the thermal bath
is the one that fully thermalizes the reset qubits while destroying the internal correlations
between these reset qubits and the other qubits of the system. Instead, our model uses the
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internal correlations to fuel the extraction of energy from the target qubit.

Concretely, we used QET protocols to show how, by exploiting preexisting interaction-
induced correlations, it is possible to significantly improve algorithmic cooling in systems
with interactions, especially in the strong coupling regime. Further increases in the achiev-
able purity should be possible, e.g., by optimizing the ancilla interactions or considering
larger interacting systems where there are more correlations in the ground state.

Our new approach opens the door to further efficiency gains in algorithmic cooling, e.g.,
by optimizing the quantum interactions with ancillas that replace the classical measure-
ments in the QET part of the protocol. QET-cooling may be a good candidate for efficient
cooling of strongly interacting systems in, e.g., ultra-strongly coupled superconducting
qubits [75, 84, 32].

N-to-1 distillation of athermality and entropy compression

Finally, we showed how by using ideas and concepts from resource theory it is possible to
find the optimal entropy compression required for HBAC by studying the N-to-1 distillation
of athermality of two level systems. We present the analytic expression of the athermal
Lorenz curve for N identical qubits. Then, we approximate it for the case of large N .
We relate our result with the entropy compression needed for algorithmic cooling, and
from them we obtained the maximum achievable purity for a target qubit in a single
shot corresponding to two different scenarios that allow the following operations: in one
scenario the thermal operations, and in the other global unitary operations. We present
a proof of the best entropy compression under the aforementioned allowed operations by
using the Thermo-majorization curves and Lorenz curves, respectively. Our results show
that in the framework of resource theories, one can easily get the optimal results for the
entropy compression operations and understand the results from a more thermodynamic
perspective.
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Appendix A: Achievable Cooling for
the PPA

In this appendix, it is explained in detail how to obtain the principal results of the Chapter
3. First, we give the conditions of the cooling limit and the requirements to have a steady
state. Then, we show that these conditions can be reached asymptotically when we start
from the maximally mixed state. We derive the maximum polarization achievable when
the initial state is totally mixed, and the corresponding temperature. Furthermore, we
explain how to get the number of steps needed to have a certain polarization ε∞

1
− δ (we

give the exact solution for n = 3, and an upper bound for n > 3).

A1. Cooling limit

In the cooling limit it is not possible to continue extracting entropy from the computational
qubits. Thus, the corresponding state, ρcom, will not change by applying the compression
and refresh steps of HBAC.

The method to find this steady state is to consider the general form of ρcom, and apply
the two steps of the HBAC method to get ρ′′com. The conditions for the steady state are
given by the equality of these states.

Assume that we start with a system in the totally mixed state. By applying compression
and refresh operations, the state remains diagonal. Thus, the state of the whole qubit
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system, ρ, can be completely described by its diagonal elements,

diag(ρ) =



p1

p2

.

.

.

pD


, (7.0.1)

where diag(ρ) is the vector of the diagonal elements of ρ, and D is the dimension of the
Hilbert space of the whole string of qubits (D = 2d2m).

Applying HBAC, the state evolves through the following two steps:

Entropy Compression Step: ρ
Compress−−−−−→ ρ′ = UρU †. In the PPA, U sorts the

diagonal elements of ρ in decreasing order, giving a ρ′ with diagonal elements

p′1 ≥ p′2 ≥ ... ≥ p′D−1 ≥ p′D. (7.0.2)

The state of the computational qubits, ρ′com, is given by

diag(ρ′com) = diag(Trm(ρ′)) :=



A1

A2

.

.

.

A2d


, (7.0.3)

where Trm() is the partial trace operation over the m reset qubits, and Ak =
jk∑

j=jk0

p′j, with

jk0 = (k − 1)2m + 1 and jk = k2m. This, with eq. (7.0.2), implies that

A1 ≥ A2 ≥ ... ≥ A2d−1 ≥ A2d. (7.0.4)

Refresh Step: ρ′ Refresh−−−−−→ ρ′′ = Trm (ρ′) ⊗ ρ⊗mεb , where ρεb = 1
2

(
1 + εb 0

0 1− εb

)
is the
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state of a qubit with heat-bath polarization εb.

After these compression and refresh steps, the state of the total qubit system, ρ′′, will
be described by

diag (ρ′′) =



A1

A2

.

.

.

A2d−1

A2d


⊗ 1

2m

(
1 + εb
1− εb

)⊗m
. (7.0.5)

In the cooling limit there is no operation that can compress any further the entropy of
the computational qubits, or equivalently, the diagonal elements of ρ′′ are already sorted
in decreasing order.

Starting with the simplest case, m=1 (using only one reset qubit), the diag(ρ′′) is as
follows (from eq.(7.0.5)):

diag (ρ′′) = 1
2



A1 (1 + εb)
A1 (1− εb)
A2 (1 + εb)
A2 (1− εb)

.

.

.

A2d (1 + εb)
A2d (1− εb)



. (7.0.6)

If the elements of ρ′′ are already sorted, it implies that

Ai(1− εb) ≥ Ai+1(1 + εb), (7.0.7)

for all i = 1, 2, ..., 2d− 1, which is a condition required for a steady state under the PPA-
HBAC. Note that there are many solutions to this set of equations, and, not surprisingly,
many steady states of HBAC.

Now, we will show that we can reach a steady state if we start from the totally mixed
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state.

Let Ati be the evolution of Ai after t iterations of the PPA-HBAC, with A0
i = 1

2d when
the initial state is totally mixed. Interestingly, we have

A0
i (1− εb) ≤ A0

i+1(1 + εb), (7.0.8)

for all i = 1, 2, ..., 2d−1. Note that it is a less than equal sign in distinction from (7.0.7). We
will show that if (7.0.8) is true at t = 0, it will be true for all future steps t. Moreover, we
will also show that if (7.0.8) is obeyed, the rounds of HBAC keep cooling the computational
qubits. Thus, the state of the system reaches asymptotically the condition of (7.0.7) with
the equality.

We will prove that if we have Ati
Ati+1
≤ 1+εb

1−εb
for all i = 1, 2, ..., 2d− 1 at a given moment

t, then after an iteration of HBAC we will have At+1
i

At+1
i+1
≤ 1+εb

1−εb
.

Let ρtcom be the state of the computational qubits after t iterations. Then, the density
matrix of the total qubit system state will be given by ρt = ρtcom ⊗ ρεb , just after a refresh
step. Thus, the total state is as follows:

diag(ρt) =



pt1
pt2
pt3
pt4
pt5
pt6
.

.

.

pt2(2d)−1
pt2(2d)



= 1
2



At1 (1 + εb)
At1 (1− εb)
At2 (1 + εb)
At2 (1− εb)
At3 (1 + εb)
At3 (1− εb)

.

.

.

At2d (1 + εb)
At2d (1− εb)



. (7.0.9)
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The elements of ρt can be written as

pt2i−1 = Ati(1 + εb)/2, and (7.0.10)
pt2i = Ati(1− εb)/2, (7.0.11)

for i = 1, 2, ..., 2d.

For the next step, we have to compress ρt to get ρt+1, i.e. we have to sort the diagonal
elements of ρt in decreasing order.

Observe that the elements with factor (1+ εb) (the blue elements in (7.0.9)) are already
in descending order, since At1 ≥ At2 ≥ ... ≥ At2d. Therefore, during the compression step,
these elements can be moved to different entries of the diagonal matrix from the initial
ones, but they will have the same order among them (because they are already sorted). It
is similar for the elements with factor (1− εb) (the red elements).

Assuming Ati
Ati+1

≤ 1+εb
1−εb

, as we have in the initial state, implies that the blue elements
are going to go up at least one row, except for At1(1 + εb) which stays in the same position.
Similarly, the red elements are going to go down at least one row, except for At2d(1 − εb)
which stays in the same position.

Considering this element movement, we can conclude that the elements of ρt+1 will
satisfy the following inequalities:

Ati−1(1− εb)/2 ≤ p
(t+1)
2i−1 ≤ Ati(1 + εb)/2, and (7.0.12)

Ati(1− εb)/2 ≤ p
(t+1)
2i ≤ Ati+1(1 + εb)/2, (7.0.13)

for i = 2, 3, ..., 2d− 1.

The new computational state, ρt+1
com = Trm(ρt+1), will have diagonal elements At+1

i =
p

(t+1)
2i−1 + p

(t+1)
2i . From this and (7.0.12)-(7.0.13), we have

(Ati−1 + Ati)(1− εb)/2 ≤ A
(t+1)
i ≤ (Ati + Ati+1)(1 + εb)/2, (7.0.14)

for i = 2, 3, ..., 2d− 1. For the first and last diagonal elements of ρcom (i = 1 and i = 2d),
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we know exactly their corresponding values,

At+1
1 = (At1 + At2)(1 + εb)/2, and (7.0.15)

At+1
2d = (At2d−1 + At2d)(1− εb)/2. (7.0.16)

These last three equations imply that At+1
i

At+1
i+1

satisfy the following inequality:

At+1
i

At+1
i+1
≤
Ati(1 + εb) + Ati+1(1 + εb)
Ati(1− εb) + Ati+1(1− εb)

= 1 + εb
1− εb

, (7.0.17)

for all i = 1, 2, ..., 2d− 1, as we claimed.

A1.1. Increasing purity

We now show that starting in the totally mixed state and applying steps of HBAC, the
system will asymptotically go to a state that satisfies the equality in (7.0.7). To show this,
we will prove that the target qubit (the spin−1/2) is cooled after each iteration of HBAC,
and the reset qubit keeps extracting entropy from the system (cooling the system) after
each iteration. All this drives asymptotically the initial state to the steady state.

Consider the state of the system after t iterations, (state of the eq. (7.0.9)). Then, the
reduced density matrix for the target qubit is

diag(ρttarget) =
[
ρt00target
ρt11target

]
, (7.0.18)

where ρt00target =
2d∑
i=1

pti =
d∑
i=1

Ati, and ρt11target = 1− ρt00target .

Since the compression step reorders the diagonal elements of ρt in decreasing order, it

is clear that the first 2d elements of the new state, ρt+1, will satisfy
2d∑
i=1

pt+1
i ≥

2d∑
i=1

pti,

=⇒ ρt+1
00target ≥ ρt00target . (7.0.19)
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Therefore, the target qubit is always colder (or remains same) after each iteration of HBAC.

On the other hand, the reset qubit, which has reduced density matrix ρtr when the total
system has state ρt, will be

diag(ρt+1
r ) =

[
ρt+1

00r
ρt+1

11r

]
, (7.0.20)

where ρt+1
00r =

2d∑
i=1

pt+1
2i−1. This equation, with (7.0.12) and (7.0.10), gives

ρt+1
00r =

2d∑
i=1

pt+1
2i−1 ≤

2d∑
i=1

Ati(1 + εb)/2 = (1 + εb)/2. (7.0.21)

Therefore, the reset qubit will always be hotter than the bath after the compression step
of HBAC as long as we do not reach the equality. This implies that the reset qubit always
extracts entropy from the total system when it is brought into contact with the heat-bath.
The system is cooled in every iteration of the refresh step, with a smaller and smaller
amount of entropy extracted, going asymptotically the cooling limit.

The two elements above show that, starting from the totally mixed state, we will
converge to the equality of (7.0.7). At this limit, the steady state of the computational
qubits should have elements which satisfy

A∞i+1
A∞i

= 1− εb
1 + εb

≡ Q. (7.0.22)

Using (7.0.22) and Tr(ρcom) = 1, it is possible to find the exact solution of each A∞i :

A∞i = 1−Q
1−Q2dQ

i−1, (7.0.23)

and therefore the analytical solution of the steady state of the computational qubits will
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be

diag (ρ∞com) = A∞1



1
Q

Q2

.

.

.

Q2d−1


. (7.0.24)

A1.2 Asymptotic Polarization of the target qubit for one and mul-
tiple reset qubits

Using eq.(7.0.24), the reduced density matrix of the target qubit in the cooling limit is
given by

diag(ρ∞target) = A∞1

d−1∑
i=0

Qi

[
1
Qd

]
= 1

2

[
1 + ε∞

1

1− ε∞
1

]
, (7.0.25)

where ε∞
1

is the asymptotic polarization of the target qubit when we start with the maxi-
mally mixed state.

From this equation we can derive:

ε∞
1

= (1 + εb)d − (1− εb)d

(1 + εb)d + (1− εb)d
, (7.0.26)

where d is the dimension of the Hilbert space of the scratch qudit (d = 2l + 1 if we use a
spin−l, or d = 2n′ if we use a string of n′ qubits).

Now, if we generalize to the case m > 1, we have that the state of the m reset qubits
is given by

diag(ρ⊗mεb ) =
(

1 + ε

1− ε

)⊗m
=



(1 + ε)m
.

.

.

(1− ε)m

 , (7.0.27)
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where (1 + εb)m is the biggest element, and (1 − εb)m the smallest one, which correspond
to the first entry and the last entry, respectively. Observe that in general the diagonal
elements of ρ⊗mεb are not in decreasing order.

From eq. (7.0.5), ρ′′ is as follows:

(here I skipped a matrix, that maybe I will not keep as part of the new thesis)

First, notice that any swap between two elements within the same box (which has the
same factor Ai) will not improve the entropy compression on the computational qubits
state. The reason is once the reset qubits are traced out, the permutation inside the same
box contributes to the sum of the probabilities corresponding to same basis state of the
computational qubits that they contributed before the compression.

Then, we are just interested in permuting elements to a different box from where they
were previously, in particular the biggest element or smallest element of each box (to have
the maximum entropy compression). At the cooling limit, there is no operation that can
improve the compression, or equivalently, the elements (just taking the largest and smallest
of each box) are already sorted.

Following the same reasoning to the case when m = 1, the steady state should have
elements which hold:

A∞i (1− εb)m ≥ A∞i+1(1 + εb)m. (7.0.28)

Moreover, similarly to the case of m = 1, the inequality Ai
Ai+1

≤ (1+εb)m
(1−εb)m

cannot be
inverted by applying the steps of HBAC. Therefore, if we start with a totally mixed state
(which holds the last inequality mentioned), the steady state should have elements which
hold

A∞i (1− εb)m = A∞i+1(1 + εb)m. (7.0.29)
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Then, the analytical solution of the steady state of the computational qubits will be

diag (ρ∞com) = A∞1



1
Qm

Q2m

.

.

.

Q(2d−1)m


. (7.0.30)

Similarly, the maximum achievable polarization using m reset qubits will be

ε∞
1

= (1 + εb)md − (1− εb)md

(1 + εb)md + (1− εb)md
. (7.0.31)

Note that a similar polarization would be obtained if we start with a different initial
state but which obeys eq.(7.0.8). Numerical simulation indicate that this could also hap-
pens with some initial states not obeying eq.(7.0.8). Finally, we can give explicit examples
of initial states that lead to an asymptotic polarization higher than eq.(7.0.26).

A1.3. Temperature in the cooling limit

The state of the heat-bath in thermal equilibrium, temperature Tb, is given by

ρb = 1
e∆Eb/2kTb + e−∆Eb/2kTb

(
e∆Eb/2kTb 0

0 e−∆Eb/2kTb

)
, where ∆Eb is the energy gap be-

tween the two energy levels of a qubit from the bath.

Then, the heat-bath polarization corresponds to εb = tanh
(

∆Eb
2kTb

)
, or equivalently,

∆Eb
2kTb

= 1
2log

[1 + εb
1− εb

]
. (7.0.32)

Similarly for the target qubit in the steady state at temperature Tsteady, we will have
∆Et

2kTsteady
= 1

2log
[

1 + ε∞
1

1− ε∞1

]
, where ∆Et is the energy gap of the two energy levels of the
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target qubit. From this and eq.(7.0.26), we can obtain the temperature in the cooling limit,

Tsteady =
( 1
md

)
Tb

(
∆Et
∆Eb

)
, (7.0.33)

d = 2n′ when the scratch qudit is a string of n′ qubits (n′ + 1 computational qubits).

The PPA-HBAC method is in line with the third law of thermodynamics, which says
that “it is impossible by any procedure, no matter how idealized, to reduce any assembly to
absolute zero temperature in a finite number of operations” [64, 68]. Indeed, the evolution
of the state of the system goes asymptotically to a steady state, which has non zero
temperature for a finite number of qubits. The limit when the temperature is exactly zero
corresponds to the case of having an infinite number of qubits. Since the number of gates
needed grows with the number of qubits, the operations required to achieve temperature
zero will be infinite.

Although the algorithm keeps cooling the target qubit at each time, it does so with a
smaller and smaller amount of entropy extracted, asymptotically reaching the steady state
of non-zero temperature. This is in agreement with the third law of thermodynamics.

A1.4. Polarization of different computational qubits

Consider the case of having a string of n′ qubits as the scratch qudit. The polarization of
each qubit can be obtained from the steady state (7.0.24). We already showed how to get
the polarization of the target qubit. If we trace out the target qubit from the computational
qubits, we can repeat the same calculations to get the polarization of the neighbor qubit
in the string (which is labeled as qubit n′) since this qubit will be now the first from the
left.
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The state of the computational qubits without the target qubit is

diag(ρ∞t̄arget) = Trtarget(ρ∞com) =



A∞1 + A∞d+1
A∞2 + A∞d+2

.

.

.

A∞d + A∞2d


. (7.0.34)

Let Bi be the ith element of the diag(ρ∞t̄arget), i.e. Bi = A∞i + A∞d+i. From eq. (7.0.23),
Bi = A∞1 Q

i−1 +A∞1 Q
d+i−1 = A∞1 (1 +Qd)Qi−1. Thus, Bi = kQi−1, where k = A∞1 (1 +Qd).

Comparing Bi with eq(7.0.23), we see that this state has the same form of the state eq.
(7.0.24), but with Hilbert space dimension d/2. Thus, the asymptotic polarization of the
n′th qubit is

εn
′

max = (1 + εb)md/2 − (1− εb)md/2

(1 + εb)md/2 + (1− εb)md/2
(7.0.35)

where d = 2n′ .

Similarly, we can get the polarization of the (n′ − 1)th qubit, and so on. Then, the
polarization of the jth qubit will be

ε(j)max = (1 + εb)m2j−1
− (1− εb)m2j−1

(1 + εb)m2j−1 + (1− εb)m2j−1 . (7.0.36)

A2. Number of steps needed to get ε = ε∞
1
− δ

A2.1. Analytical result for a string of three qubits (m=1, d=2).

The quantum circuit required to perform the PPA-HBAC on three qubits initially in the
total mixed state is showed in Fig.2.8. This circuit shows the operations required for the
first five iterations (each iteration consists of a refresh step and an entropy compression
step). Subsequent iterations gates are the alternate repetition of the second and third
iterations gates in Fig.2.8. The application of those two iterations will be referred as a
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3qubit-round.

In order to know the effect of one 3qubit-round on the system, consider the state of the
computational qubits at a given moment,

diag(ρtcom) =


At1
At2
At3
At4

 , (7.0.37)

and the total system as ρt = ρtcom ⊗ ρεb . The polarization of the target qubit, εt, can be

obtained from its reduced density matrix, diag(ρttarget) =
[
At1 + At2
At3 + At4

]
= 1

2

[
1 + εt

1− εt

]

=⇒ εt = 2(At1 + At2)− 1. (7.0.38)

In the first iteration of the 3qubit-round, the compression gate swaps the scratch qubit
and the reset qubit. This swap can be performed by applying the unitary matrix shown in
Fig.2.7, thus

diag(ρt) = 1
2



At1 (1 + εb)
At1 (1− εb)
At2 (1 + εb)
At2 (1− εb)
At3 (1 + εb)
At3 (1− εb)
At4 (1 + εb)
At4 (1− εb)


=⇒ 1

2



At1 (1 + εb)
At2 (1 + εb)
At1 (1− εb)
At2 (1− εb)
At3 (1 + εb)
At4 (1 + εb)
At3 (1− εb)
At4 (1− εb)


. (7.0.39)

Then, the density matrix of the computational qubits after the first iteration of the
3qubit-round is

diag(ρt+1
com) = 1

2


(At1 + At2) (1 + εb)
(At1 + At2) (1− εb)
(At3 + At4) (1 + εb)
(At3 + At4) (1− εb)

 . (7.0.40)
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In the second iteration of the 3qubit-round, the compression step is performed by
applying the unitary matrix shown in Fig.2.4. In this step we obtain ρt+2,

diag(ρt+2) = 1
4



(At1 + At2) (1 + εb)2

(At1 + At2) (1 + εb) (1− εb)
(At1 + At2) (1− εb) (1 + εb)

(At3 + At4) (1 + εb)2

(At1 + At2) (1− εb)2

(At3 + At4) (1 + εb) (1− εb)
(At3 + At4) (1− εb) (1 + εb)

(At3 + At4) (1− εb)2


. (7.0.41)

From this state, with the normalization property of the density matrix and (7.0.38), we
can obtain the new polarization of the target qubit,

εt+2 = 2abεt + εb, (7.0.42)

where a = 1+εb
2 and b = 1−εb

2 .

Let t = 0 (just after the iteration 0 which swaps the target qubit and the reset qubit,
Fig.2.8), then the polarization of the target qubit at that moment will be ε0 = εb. From
eq.(7.0.42), we can get the exact polarization after each 3qubit-round, i.e. every two
iterations,

εt=2j = 2εb
1 + ε2b

− qj
(

2εb
1 + ε2b

− ε0
)
, (7.0.43)

where q = 1−ε2b
2 . From (7.0.26), the asymptotic polarization for this case is ε∞

1
= 2εb

1+ε2
b
, thus

eq.(7.0.43) can be written as

εt=2j = ε∞
1
− qj (ε∞

1
− εb) . (7.0.44)

Since q < 1, εt → ε∞
1

when we increase j.

We can use (7.0.44) to know the number of rounds t needed to achieve polarization
ε∞
1
− δ. From Eq. (7.0.44), we have δ = qj (ε∞

1
− εb), then the number of rounds required
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will be

N(δ, εb) := t = 2
log

(
δ

ε∞
1
−εb

)
logq , (7.0.45)

to get polarization
εδ(εb, δ) := ε∞

1
− δ = 2εb

1 + ε2b
− δ. (7.0.46)

A2.2. Numerical results

Let δrel = ε∞
1
−ε

ε∞
1

= δ/ε∞
1

. Fig.3.3 shows simulations of the number of refresh steps needed
to achieve a polarization ε = ε∞

1
(1− δrel) as function of δrel for different values of d. The

exact solution of number of steps needed for the 3 qubit case is consistent with the results
from the simulations.

A2.3 Upper bound of the number of steps to get a certain polar-
ization, for n qubits

Consider a string of n′ + 1 computational qubits, enumerated from left to right, and one
reset qubit, all starting in totally mixed state. Applying the compression for three qubits,
using the reset qubit and qubit 1 to cool qubit 2, we can increase the polarization of qubit
2 to ε1 = εδ(εb, δ) in N1 = N(δ, εb) steps, from (7.0.45) and (7.0.46).

After this preparation of qubit 2, we can swap it with qubit 3, and then prepare again
qubit 2. We can apply again the compression for three qubits, but now using qubits 2 and
3 to cool qubit 4. In this case, we will need N2 = N(δ, ε1) · N1 number of steps to get
polarization ε2 = εδ(ε1, δ) on qubit 4.

We can iterate this idea to use qubit 4 and qubit 5 to cool qubit 6, getting that we
need N3 = N(δ, ε2) ·N2 number of steps to achieve polarization ε3 = εδ(ε2, δ), and so on.

Since this is not the optimal compression (in terms of entropy extraction, under the
assumption that the refresh step re-thermalizes the reset qubits to the heat-bath temper-
ature), this number of iterations gives an upper bound of the optimal number given by

PPA. The upper bound is Nupper−bound =
k=[n′/2]∏
k=1

N(δ, εk), to achieve polarization ε < εmax
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on the target qubit, where εmax = ε∞
1

= (1+εb)d/2−(1−εb)d/2

(1+εb)d/2+(1−εb)d/2
, and ε = εδ(εh−1, δ) with ε0 = εb,

and h = [n′/2] (the integer part of n′/2).
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Appendix B: HBAC with correlated
qubit-environment interactions

B1: Precise calculation for NOE on two qubits

We generalize our calculation of the maximum polarization for the NOE algorithm to any
bath-polarization, |εb| ≤ 1, following the circuit of Fig. 4.2. The operation Γ2, applied to
an initial diagonal density-matrix of a 2-qubit-system, produces

diag (ρ) = (N0, N1, N2, N3)
Γ2−→ [(N0 +N3)p2, N1, N2, (N0 +N3)(1− p2)], (7.0.47)

where p2 = e2ξ

2 cosh 2ξ (with εb = tanh(ξ))is the population of the state |00〉 at thermal
equilibrium with the heat-bath, normalized by the sum of thermal populations of both
states |00〉 and |11〉 (i.e. p2 = e2ξ/N , where N = e2ξ + e2ξ = 2 cosh 2ξ); and so 1− p2 is the
complementary population of |11〉 at thermal equilibrium.

In the cooling limit, the polarization of the target qubit ε∞NOE is a fix point of the
algorithm, thus after applying an iteration it will remain the same, i.e.

1
2 (1 + ε∞NOE, 1− ε∞NOE)⊗ 1

2 (1, 1)

Γ2−→ 1
4 (2p2, 1 + ε∞NOE, 1− ε∞NOE, 2(1− p2))

CMS−−−→ 1
2

(1 + 2p2 + ε∞NOE
2 ,

3− 2p2 − ε∞NOE
2

)
⊗ 1

2 (1, 1) .

(7.0.48)
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The asymptotic polarization should hence obey

2p2 = 1+2p2+ε∞NOE
2

⇒ ε∞NOE = 2p2 − 1 = tanh 2ξ (7.0.49)

B2. NOE with multiple reset qubits

We generalize our description of NOE to a system of n qubits. The description consists of
the iteration of two steps. In the first step, we saturate (totally mix) all the qubits with
the exception of the first qubit. In the second step, we apply the state-reset Γn. Under
this process, the polarization evolution of the first qubit will increase asymptotically to
a maximum value. To find the cooling limit, which corresponds to the fixed point of the
algorithm, we assume that it has a final polarization εf , and we use the condition that
if we reapply the two steps of the algorithm that polarization will stay the same. Then,
by applying the two steps we have the following: after the saturation, the diagonal of the
state of the system is

CMS−−−→ 1
2 (1 + εf , 1− εf )⊗

[1
2 (1, 1)

]⊗(n−1)

= 1
2n (1 + εf , 1 + εf , ..., 1− εf , 1− εf ) ,

(7.0.50)

this is a vector with the first 2n−1 elements equal to 1
2n (1 + εf ) and the last 2n−1 elements

equal to 1
2n (1− εf ). Then, under the operation Γn, for low polarization, the system will

evolve to 1
2n (1 + nεb, 1 + εf , ..., 1− εf , 1− nεb) , (7.0.51)

changing the first and last element to 1
2n (1 + nεb) and 1

2n (1− nεf ), respectively. This
results in a polarization [nεb + (2n−1 − 1) εf ] /2n−1, which should be equal to the final
polarization εf , thus εf = nεb. This generalized NOE, taken on its own, does not always
give better results than the PPA (see section IV-C, where we present the SRΓn-HBAC
method: a different way to exploit Γn to increase the polarization beyond the PPA class
of algorithms, in a smaller number of iterations).
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B3. State-Reset HBAC protocols

B3.1. Maximum achievable polarization of the SRΓ2-HBAC
Let’s start with two qubits at thermal equilibrium, with polarizations εb, i.e. with state

ρn=2
0 = ρ⊗2

εb
=
[

1
2

(
1 + εb 0

0 1− εb

)]⊗2

=
[

1
2 cosh ξb

(
eξb 0
0 e−ξb

)]⊗2

, (7.0.52)

where ξb is related to the bath polarization by εb = tanh (ξb). This state can be expressed
as a vector of its diagonal elements as diag (ρn=2

0 ) = 1
4 cosh2 ξb

(
e2ξb , 1, 1, e−2ξb

)
.

For a general polarization, the state-evolution during the first round of the algorithm
will be as follows:

diag
(
ρn=2

0

)
= 1

4 cosh2 ξb

(
e2ξb , 1, 1, e−2ξb

)
X−→ 1

4 cosh2 ξb

(
1, e2ξb , e−2ξb , 1

)
Γ2−→ 1

4 cosh2 ξb

(
2p2, e

2ξb , e−2ξb , 2 (1− p2)
)

= 1
4 cosh2 ξb

(
e2ξb

cosh 2ξb
, e2ξb , e−2ξb ,

e−2ξb

cosh 2ξb

)
Γ1−→ 1

2 cosh 2ξb

(
e2ξb , e−2ξb

)
⊗ 1

2 (p1, 1− p1)

= 1
2 cosh 2ξb

(
e2ξb , e−2ξb

)
⊗ 1

2 cosh ξb

(
eξb , e−ξb

)
.

(7.0.53)

After the first round, the polarization of the first qubit will increase to tanh 2ξb (≈ 2εb for
low polarization). Assume that after k rounds of the algorithm, the polarization of the
first qubit is ε(n=2)

k = tanh ξk. Note that after the operation Γ1, the system will be in a
product state, with the second qubit with polarization εb = tanh ξb. Then, we apply one
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more round to obtain ε
(n=2)
k+1 , as follows:

1
2 cosh ξk

(
eξk , e−ξk

)
⊗ 1

2 cosh ξb

(
eξb , e−ξb

)
=

1
4 (1 + tanh ξk, 1− tanh ξk)⊗ (1 + tanh ξb, 1− tanh ξb)

X−→ 1
4 (1 + tanh ξk, 1− tanh ξk)⊗ (1− tanh ξb, 1 + tanh ξb)

Γ2−→ 1
4((2− 2 tanh ξk tanh ξb) p2, (1 + tanh ξk) (1 + tanh ξb) ,

(1− tanh ξk) (1− tanh ξb) , (2− 2 tanh ξk tanh ξb) (1− p2))

= 1
4((1− tanh ξk tanh ξb) [1 + tanh(2ξb)] , (1 + tanh ξk) (1 + tanh ξb) ,

(1− tanh ξk) (1− tanh ξb) , (1− tanh ξk tanh ξb) [1− tanh(2ξb)])
Γ1−→ 1

2(1 + 1
2sech(2ξb) [sinh(3ξb)sechξb + tanh ξk] ,

1− 1
2sech(2ξb) [sinh(3ξb)sechξb + tanh ξk])⊗

1
2 (1 + tanh ξb, 1− tanh ξb) .

(7.0.54)

From here, the polarization increases from εk to εk+1 = 1
2sech(2ξb) [sinh(3ξb)sechξb + tanh ξk].

With initial polarization ε0 = εb (= tanh ξb), we find that εk ≤ εk+1, for all k. In the cooling
limit, ε∞ = ε∞+1, i.e.

tanh ξ∞ = 1
2sech(2ξb) [sinh(3ξb)sechξb + tanh ξ∞]. (7.0.55)

From here, the maximum polarization achievable, in the two-qubit case, will be

ε(n=2)
∞ = tanh 3ξb

leading to a significant improvement abpve PPA.

B3.2. Maximum achievable cooling of the SRΓ3 HBAC
In general for any εb, to calculate the polarization’s evolution as a function of the

number of rounds, let ε(n=3)
k be the polarization of the first qubit after k rounds. Then,
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let’s apply one more round on the system to obtain ε(n=3)
k+1 . After applying Algn=2 in round

k+ 1, the state will be 1
2 (1 + εk, 1− εk)⊗ 1

2 (1 + tanh 3ξb, 1− tanh 3ξb)⊗ 1
2 (1 + εb, 1− εb).

Then, by flipping the second and third qubit, the state will evolve to 1
2 (1 + εk, 1− εk) ⊗

1
2 (1− tanh 3ξb, 1 + tanh 3ξb) ⊗ 1

2 (1− εb, 1 + εb). At this point, the first and last elements
of the diagonal density matrix are α1 := 1/8(1 + εk)(1 − tanh 3ξb)(1 − εb) and α2 :=
1/8(1 − εk)(1 + tanh 3ξb)(1 + εb), respectively. The sum of these two elements is A :=
α1 + α2 = 1/4(1− εk tanh 3ξb + tanh 3ξbεb− εkεb), thus the state-reset Γ3 will change these
elements to Ap3 and to A(1−p3), respectively. Thus, the new polarization of the first qubit
will be εk+1 = εk + 2(Ap3−α1). Substituting α1, A, p3 = (1 + tanh 3ξb)/2, and εb = tanh ξb
in εk+1, we obtain

ε
(n=3)
k+1 = ε

(n=3)
k (2 cosh ξb + cosh 5ξb) + sinh 7ξb

2 cosh ξb + cosh 5ξb + cosh 7ξb
. (7.0.56)

From here, starting with polarization ε0 = εb (= tanh ξb), each round gives an improvement,
εk ≤ εk+1, for all k.

In the cooling limit it is not possible to keep increasing this purity, i.e. ε(n=3)
∞ = εn=3

∞+1,
then, from eq.(7.0.56), the maximum polarization achievable with our algorithm for the
three qubit case is

ε(n=3)
∞ = tanh 7ξb

leading to an improvement on both the NOE and the PPA.

B4. NOE-based HBAC

In this appendix, we present a more practical algorithm based on regular NOE. In this case,
the algorithm is limited to use only Γ2 to implement regular NOE within a subroutine, in
addition to entropy compressions, and qubit-resets. Note that this method is less general
than our SRΓn-HBAC, presented in this paper, but still gets better polarization than the
PPA.
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i. The two-qubit case

When NOE is complemented with a final step of qubit-reset on the non-target qubit, the
entire system will be cooled (the target qubit will increase its polarization to tanh2ξ, and
the second qubit will be returned to the equilibrium after being saturated). We name
this simple algorithm “2-NOE-based HBAC”, and it will be used as a subroutine in this
appendix, when cooling a string of more qubits.

The obtained probabilities to be in state |0〉 for each qubit, after applying the “2-NOE-
based HBAC”, are (1+2εb)/2, and (1+εb)/2, respectively, in the low polarization case. We
can denote this probabilities in a more simply way, using the shifted-and-scaled diagonal
terms {2, 1} in units of εb.

ii. The 3 qubit case

Here, we show how to use the subroutine “2-NOE-based HBAC” in the three-qubit case,
to get probabilities {3, 2, 1} written in the shifted-and-scaled diagonal form in units of εb,
for low polarization.

Let’s start from thermal equilibrium, i.e. with {1, 1, 1} in the shifted-and-scaled diag-
onal form. First, we apply the subroutine “2-NOE-based HBAC” on the second and third
qubits, to obtain {1, 2, 1}. Then, we cool the target qubit to 2 using a SORT step (known
as 3-bit-compression in the three-qubit case), to get {2, 1, 1}. Applying again a subrou-
tine “2-NOE-based HBAC”, we obtain {2, 2, 1}). We can repeat these steps, to achieve
{2.5, 2, 1}). In the same way, another repetition yields {2.75, 2, 1}).

The polarization enhancement of the target qubit grows asymptotically to a fixed
point, corresponding to polarization ε∞. After one iteration, in the cooling limit, ε∞ →
(3εb + ε∞) /2 implies that ε∞ = 3εb, yielding the final string polarization {3, 2, 1}.

iii. The n-qubit case

Using the same process as above, in combination with 3-bit-compressions, it is easy to
obtain a Fibonacci-like series {..., 13, 8, 5, 3, 2, 1}, for low polarization; note the only ad-
vantage over the SMW-Fibonacci is that the above is better than {..., 8, 5, 3, 2, 1, 1} with
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the same number of qubits.

Moreover, by using entropy compressions, SORT, rather than 3-bit-compression, as in
the original PPA, we obtain polarizations {...24, 12, 6, 3, 2, 1}, improving over the original
PPA, namely {...16, 8, 4, 2, 1, 1}.
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Appendix C: Initial-Correlation
Enhanced Algorithmic Cooling

C1. CP-local passivity: Fundamental limitations to
Local Energy Extraction in Quantum Systems

Leave a hot mug of coffee on your desk and it will cool down; but in the quantum world,
could it heat up? In ordinary macroscopic systems, classical thermodynamics dictates
that energy flows from hot to cold; however in the microscopic regime, where quantum
effects become relevant, this direction of energy flow surprisingly may be blocked or even
inverted [2]. Some natural questions arise: When would it be impossible to extract energy
to cool down a hot body, even by making contact with a colder one? What are the
relevant quantum effects that prevent that? How can we circumvent these possible cooling
limitations?

In this Appendix, a partial answer to these questions is presented, in particular for the
impossibility of extracting energy locally from a bipartite quantum system in the presence
of strong coupling and entanglement. Here it is shown how quantum effects, such as
entanglement, can obstruct outgoing energy flows, via fast local interaction, preventing a
hot body to dissipate its energy to a colder one. I will present a full set of necessary and
sufficient conditions that fully characterize this type of passivity, which we called CP-Local
passivity.

System setup and allowed operations – We focus on the problem of cooling
interacting multipartite systems to which only local access to a single subsystem is granted.
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We explore the most general type of local access to quantum systems, which is given by the
CPTP maps, making our results relevant for any physical platform in which the subsystems
are spatially separated.

Let us consider the bipartite quantum system made by the subsystems A and B, with
associated Hilbert space HA ⊗HB, and global Hamiltonian HAB.

Given a state ρAB, the maximum extractable energy under a local map on A is

∆E(A)B = min
EA

∆EEA(A)B (7.0.57)

:= min
EA

Tr[HAB(EA ⊗ IB)ρAB]− Tr[HABρAB],

where IB is the identity channel on B, and the optimization is over the whole set of
CPTP maps on A. The above optimization can be easily written as a semidefinite program
(see [10, 115] for introductory references to the subject). Therefore, it is very practical
to calculate ∆E(A)B and to find the CPTP map which minimizes the energy. Moreover,
we see that energy cannot be extracted when this quantity is zero, which motivates the
following definition.

Definition 9. [CP-local passivity] The pair {ρAB, HAB} is CP-local passive with respect to
subsystem A if and only if

∆E(A)B = ∆EIA(A)B = 0. (7.0.58)

That is, a system is CP-local passive if the best local strategy for extracting energy
(as measured by the global Hamiltonian HAB) is to act trivially on it. The word passive
is used here in analogy to the commonly known passive states [62], from which energy
cannot be extracted under unitary maps. Throughout, we assume that the time evolution
given by the Hamiltonian HAB does not play a role. This means that this setting applies
to situations in which the local actions happen quickly, in the same spirit as that of fast
local quenches or pulses in other quantum thermodynamic settings [37, 82].

Let us now outline how this might be possible. First, let us rewrite the term corre-
sponding to the average energy of the system after applying a local map, as follows:

Tr[HAB(EA ⊗ IB)ρAB] = Tr[CAA′EAA′ ]. (7.0.59)

where EAA′ is the Choi-Jamio lkowski operator for an arbitrary channel EA : A→ A′, and
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CAA′ ∈ HA ⊗ HA′ the Hermitian operator CAA′ ≡ TrB[ρΓA
ABHA′B], with ρΓA

AB the partial
transpose on A 1.

Let us now assume that CP-local passivity holds, such that for all EAA′ the energy of
the system does not decrease after the local action:

Tr[CAA′EAA′ ] ≥ Tr[HABρAB], (7.0.60)

We can rewrite the right hand side, using the fact that EAA′ satisfies TrA′ [EAA′ ] = IA, and
defining dA|Φ〉〈Φ| as the Choi-Jamio lkowski operator for the identity channel, as

Tr[HABρAB] = Tr [dA|Φ〉〈Φ|CAA′ ] (7.0.61)
= TrA [TrA′ [dA|Φ〉〈Φ|CAA′ ]TrA′ [EAA′ ]]
= Tr[(TrA′ [dA|Φ〉〈Φ|CAA′ ]⊗ IA′)EAA′ ].

Since this holds for all EAA′ , this suggests that CP-local passivity will hold whenever
the following operator inequality is true

CAA′ ≥ TrA′ [dA|Φ〉〈Φ|CAA′ ]⊗ IA′ .

Complete conditions – The previous inequality in fact gives the necessary and suf-
ficient condition. This constitutes our first main result:

Theorem 1. – The pair {ρAB, HAB} is CP-local passive with respect to subsystem
A if and only if TrA′ [dA|Φ〉〈Φ|CAA′ ] is Hermitian and

CAA′ − TrA′ [dA|Φ〉〈Φ|CAA′ ]⊗ IA′ ≥ 0, (7.0.62)

where HA′ is a copy of the Hilbert space HA, CAA′ ∈ HA ⊗ HA′ is a Hermitian operator
defined as CAA′ ≡ TrB[ρΓA

ABHA′B], with ρΓA
AB the partial transpose on A, and dA|Φ〉〈Φ| the

(maximally entangled) Choi-Jamio lkowski operator of the identity channel.
1The Choi-Jamio lkowski operator of a quantum channel EA→A(·) is defined as E = dAEA→A⊗I|Φ〉〈Φ|,

the result of applying it to an un-normalized maximally entangled state dA|Φ〉〈Φ| =
∑
i,j |iA〉〈jA| ⊗

|iA′〉〈jA′ | on the Hilbert space of A and a copy A′. Note that the partial transpose is with respect to the
same basis as the one chosen for the Choi-Jamio lkowski operator.

129



Notice that Eq. (7.0.62) only depends on ρAB and HAB through the operator CAA′ .
In fact, Eq. (7.0.59) guarantees that this operator contains all the information about how
much energy can be extracted through local operations. Once it is constructed, the operator
inequality can be easily checked to find whether the pair {ρAB, HAB} is CP-local passive or
not. If it is not, the semidefinite program can be solved to find the amount of energy that
can be extracted, as well as the minimizing CPTP map. The proof can be found in the
Supplemental Material of our paper [2], together with details on semidefinite programming
duality theory, which we use in a similar manner as in the proof of the Holevo-Yuen-
Kennedy-Lax conditions for quantum state discrimination [45, 46, 118, 117].

On top of this characterization, we show that the condition of Theorem 1 is robust
to errors, by using a recent result concerning convex channel optimization problems [22].
Roughly, if the operator on the LHS of Eq. (7.0.62) has smallest eigenvalue −ε ≤ 0, then
the amount of energy that can be extracted is bounded as ∆E(A)B ≥ −ε dA. We give the
precise statement and the proof in the Supplemental Material of our paper [2].

Sufficient conditions – The condition of Theorem 1, even though it is simple to
verify, makes no direct reference to physical properties of the pair {ρAB, HAB}. It is
important, however, to find physically relevant situations in which CP-local passivity holds.
To that end, we derive sufficient conditions for steady states ρAB = ∑dA×dB−1

i=0 pi|Ei〉〈Ei|
of Hamiltonians HAB = ∑dA×dB−1

i=0 Ei|Ei〉〈Ei| of full Schmidt rank with a non-degenerate
ground state. Steady states are always trivially CP-local passive for p0 = 1, and Frey et
al. [34] found qualitative conditions under which there exists a threshold ground state
population p∗ such that the pair {ρAB, HAB} remains CP-local passive for all p0 ≥ p∗ .
Here, we provide explicit upper bounds on p∗ in terms of ground state entanglement and
the energy gap with the first excited state.

Theorem 2. – Threshold ground state population: Let the ground state |E0〉 of the
Hamiltonian HAB be non-degenerate and with full Schmidt rank. All pairs {ρAB, HAB}
with ρAB = ∑

i pi|Ei〉〈Ei| and p0 ≥ p∗ are CP-local passive with respect to A, with the
threshold ground state population bounded from above by

p∗ ≤

1 +
E1(qAB0,min)2

maxi≥1
[
Ei(qABi,max)2

]
−1

. (7.0.63)

{qABi,α }
dA−1
α=0 denotes the Schmidt coefficients of |Ei〉 and qABi,min ≡ minα

[
qABi,α

]
, qABi,max ≡
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maxα
[
qABi,α

]
. See the Supplemental Material of our paper [2] for the proof, and an ex-

ample illustrating the tightness of the bound. The idea behind it is that, if the ground
state population is high enough, the energetic changes caused by any CPTP map will be
dominated by the energy gained by exciting the ground state into higher energy levels,
making the total change non-negative.

For thermal states, this result implies that, if the ground state has full Schmidt rank,
there exists a threshold temperature T∗ > 0 below which CP-local passivity holds (note
that if T = 0, CP-local passivity holds trivially). Moreover, this threshold temperature is
such that

〈H〉β∗ ≥ E1p0(qAB0,min)2 , (7.0.64)

where 〈H〉β∗ is the average energy in the thermal state of inverse temperature β∗.

C2. The PPA protocol on interacting qubits

Here, we show how the fact of having an interacting quantum system will affect the final
purity when we want to cool down a single qubit. In particular, we implement the PPA-
HBAC method on a system of three qubits, and obtain the final purity for different coupling
intensities.

System setup – The system consists of three qubits A, B and C, with Hamiltonian

H = HA +HB +HC + V,

HA = hAσ
A
z , HB = hBσ

B
z , HC = hCσ

C
z , V = k

AB
σAx σ

B
x +k

AC
σAx σ

C
x +k

BC
σBx σ

C
x ,

where h and κ are positive constants.

Let the system start in the totally mixed state, and implement the PPA protocol for
different values of the coupling strength κ. The quantum circuit required to perform the
PPA on the three qubits, initially in the totally mixed state, is showed in Fig. 2.8. We are
taking A, B and C as the target, the scratch and the reset qubits which are denoted as T,
S, and R, respectively, in the circuit.
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We simulate the evolution of the state of the system under the PPA method, and we
consider that between each two steps of the PPA-HBAC algorithm, there will be a time
t for the evolution given for the Hamiltonian. The results are presented in Fig. 7.1, for
different coupling parameters. For convenience, we fix t = 1 to only control the parameters
with k/h.

Figure 7.1: Polarization evolution of the target qubit under the application of the PPA-
HBAC method on the three qubits, for a heat-bath polarization εb = 0.01, as a function of
the number of iterations of the algorithm (each iteration is shown in the circuit of Figure.5.
The results presented correspond to the k/h = 0, 0.1, 0.2, and k/h = 0.3, and were obtained
by simulation. Note that the asymptotic polarization is lower when the coupling of the
qubits is stronger.

The results show that even having conventional HBAC methods or very cold ther-
mal reservoirs, the entanglement of the state implies that when we are cooling down the
whole system, the subsystem consisting only of the target qubit will remain in a mixed
state.Therefore, studying new methods of cooling that take the interaction into account is
needed, as QET, which we already demonstrated that it is a potential solution.
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C3. Derivation of the QET-HBAC protocols

Here we present the derivation in detail of the QET-HBAC protocols presented in chapter 5.

Step 1: POVM measurement on A, and its energy cost

Alice carries out a POVM on σx of A, which commutes with the interaction Hamiltonian
V . She obtains the outcome µ (that can take either value +1 or −1). The action of the
most general measurement on the system is described by the measurement operator

MA (µ) = eiδµ
(
mµ + eiαµlµσ

x
A

)
in a single shot measurement. The coefficients mµ, lµ, αµ and δµ are real constants which
satisfies ∑

µ

m2
µ + l2µ = 1,

and ∑
µ

mµlµ cosαµ = 0.

The resulting post-measurement state |ψPM〉 is given by the usual update rule

|ψPM(µ)〉 = 1√
pA(µ)

MA(µ)|g〉

where pA(µ) is the probability of outcome µ.

We obtain the following post-measurement average state

ρ1 =
∑
µ=±1

pA(µ)|ψPM(µ)〉〈ψPM(µ)| =
∑
µ=±1

M †
A(µ)|g〉〈g|MA(µ).

Now remember that |g〉 had a zero energy expectation. Let us analyze the energy
expectation of ρ1. Let us call it EMA

since it will represent the average energy cost of
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carrying out the POVM on qubit A:

EMA
=Tr (ρ1H) =

∑
µ=±1
〈g|M †

A(µ)HMA(µ)|g〉 (7.0.65)

=
∑
µ=±1
〈g|M †

A(µ)HAMA(µ)|g〉+
∑
µ=±1
〈g|M †

A(µ)HBMA(µ)|g〉+
∑
µ=±1
〈g|M †

A(µ)VMA(µ)|g〉

notice that since MA(µ)HB = MA(µ)V = 0 it is rather easy to prove that
∑
µ=±1
〈g|M †

A(µ)HBMA(µ)|g〉 =
∑
µ=±1
〈g|HBM

†

A(µ)MA(µ)|g〉 =

1
2
∑
µ=±1

(m2
µ + l2µ) 〈g|HB|g〉︸ ︷︷ ︸

0

+2lµmµ cosαµ〈g|HBσ
A
x |g〉

 = 0

since
〈g|HBσ

A
x |g〉 ∝ 〈g|σBz σAx |g〉 = 0.

Similarly
∑
µ=±1
〈g|MA(µ)†VMA(µ)|g〉 =

∑
µ=±1
〈g|VM †

A(µ)MA(µ)|g〉 =

1
2
∑
µ=±1

(m2
µ + l2µ) 〈g|V |g〉︸ ︷︷ ︸

0

+2lµmµ cosαµ〈g|V σAx |g〉

 = 0

Since
〈g|V σAx |g〉 ∝ 〈g|σBx |g〉 = 0.

therefore the energy cost of the measurement (on average) is
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EMA
=

∑
µ=±1
〈g|M †

A(µ)HAMA(µ)|g〉 = 2h2
√
h2 + k2

∑
µ

l2µ > 0. (7.0.66)

Let us remark this: the average cost of the local measurement on A over an ensemble
of many measurements is positive and it is ’localized’ in HA (even though, of course, the
average energy cost is computed as the difference of the expectation of the full Hamiltonian
pre and post-measurement).

Steps 2,3: Classical communication and classically-controlled local unitary
on B to improve its polarization

Bob receives the information about Alice’s outcome of her measurement. With that
information Bob carries out a local unitary operation on B. We assume that the speed
of the classical channel is much faster than the inverse of the coupling frequency 1/k, so
the non-local dynamics is frozen during the time it takes from the measurement on A to
the unitary operation on B. We will discuss in detail why that scale in a later section.
Now Bob carries out the following local operation on B. The operation that maximizes
the purity of B is the one that maximizes Bob’s energy extraction. Hence, we optimize the
parameters to the optimal QET ones.

UB(µ) = cos Ωµ 1+ i sin Ωµ σ
B
y

where µ is the outcome of the POVM MA(µ) and Ωµ is a real constant which satisfies

cos(2Ωµ) = (h2 + 2k2) pA (µ)√
(h2 + 2k2)2pA (µ)2 + h2k2qA (µ)2

,

sin(2Ωµ) = − hkqA (µ)√
(h2 + 2k2)2pA (µ)2 + h2k2qA (µ)2

,

where pA(µ) = m2
µ + l2µ and qA(µ) = 2lµmµ cosαµ.
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In a single shot experiment, the system’s state after applying this unitary is

UB(µ)|ψPM〉 = 1√
pA(µ)

UB(µ)MA(µ)|g〉.

But, again, we cannot address individual qubits. For an ensemble of qubits, we would get
the following average state

ρ2 =
∑
µ=±1

UB(µ)MA(µ)|g〉〈g|M †
A(µ)U †B(µ).

Notice that on an ensemble of identical setups, on average, Alice’s side POVM is not
purifying the ensamble system on its own (we are averaging over all possible outcomes of
the measurement with their weights) Therefore the entropy decrease on B is completely
due to the (averaged effect) of UB.

C4. Energy yield of the controlled-unitary.

Let us call EUB the average energy cost of the unitary applied on B. EUB will be the
difference in the expectation of the full Hamiltonian after the unitary and the expectation
after the measurement and before the unitary, this is

EUB = Tr(ρ2H)− Tr(ρ1H) = Tr(ρ2H)− EMA

Now,

Tr(ρ2H) =
∑
µ=±1
〈g|MA(µ)U †B(µ)HUB(µ)MA(µ)|g〉 (7.0.67)

=
∑
µ=±1
〈g|MA(µ)U †B(µ)HAUB(µ)MA(µ)|g〉 (7.0.68)

+
∑
µ=±1
〈g|MA(µ)U †B(µ)HBUB(µ)MA(µ)|g〉

+
∑
µ=±1
〈g|MA(µ)U †B(µ)V UB(µ)MA(µ)|g〉 (7.0.69)
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Now since UB(µ)HA = 0, the first summand on the right hand side of the equation above
is just ∑

µ=±1
〈g|MA(µ)U †B(µ)HAUB(µ)MA(µ)|g〉 =

∑
µ=±1
〈g|M †

A(µ)HAMA(µ)|g〉 = EMA

therefore, substituting this we get that the average energy cost of the unitary UB(µ) is
simply

EUB = Tr(ρ2H)− Tr(ρ1H) = Tr [ρ2(HB + V )] =∑
µ

〈g|M †
A(µ)U †B(µ)[HB + V ]UB(µ)MA(µ)|g〉

where we have used that MA(µ)HB = MA(µ)V = 0. It is moderately lengthy but straight-
forward to obtain that

EUB = h2 + 2k2
√
h2 + k2

∑
µ

pA(µ)

√√√√1 + h2k2

(h2 + 2k2)2
qA(µ)2

pA(µ)2 − 1
 .

On average, performing the local unitary gives away energy. This energy is always
smaller or equal than the energy put there by the local measurement on A.

C5. Purity/Polarization Improvement on B
Here we show the calculations for the improvement on the polarization of applying the

minimal QET. The initial polarization of B is εB0 = h√
h2+k2 , which is calculated as Tr (ρbσz),

where ρb = TrA (|g〉〈g|). The corresponding initial purity, Tr (ρ2
b), is 2h2+k2

2(h2+k2) .

After doing the measurement on A and applying the unitary operation to extract energy
from B, the final polarization of B is going to be given by εB2 = Tr (ρ2BσZ), where ρ2B =
TrA(ρ2), as follows

εb
2 = 1√

h2 + k2
(−h cos 2Ω0 + 2kl1m1(sin 2Ω0 − sin 2Ω1)

+ h
(
l21 +m2

1

)
(cos 2Ω0 − cos 2Ω1)). (7.0.70)
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The final purity is given by

Tr
(
ρ2

2B

)
= 1

2 (h2 + k2)
(
(2h2 + k2 − 4hkl1m1 sin [2Ω0 − 2Ω1]

+ 4
[
4k2l21m

2
1 + h2

(
−1 + l21 +m2

1

) (
l21 +m2

1

)]
sin2 [Ω0 − Ω1]

)
.

Here, we have assumed αµ = 0 for simplicity, but it could be another parameter subject to
optimization.

138



References
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averini, WM Itano, B Jelenković, JD Jost, et al. Sympathetic cooling of 9 be+ and
24 mg+ for quantum logic. Physical Review A, 68(4):042302, 2003.

[7] Jonathan Baugh, Osama Moussa, Colm A Ryan, Ashwin Nayak, and Raymond
Laflamme. Experimental implementation of heat-bath algorithmic cooling using
solid-state nuclear magnetic resonance. Nature, 438(7067):470–473, 2005.

[8] Charles H Bennett, Herbert J Bernstein, Sandu Popescu, and Benjamin Schu-
macher. Concentrating partial entanglement by local operations. Physical Review A,
53(4):2046, 1996.

139



[9] Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media,
2013.

[10] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[11] P Oscar Boykin, Tal Mor, Vwani Roychowdhury, Farrokh Vatan, and Rutger Vri-
jen. Algorithmic cooling and scalable NMR quantum computers. Proceedings of the
National Academy of Sciences, 99(6):3388–3393, 2002.

[12] Fernando Brandao, Micha l Horodecki, Nelly Ng, Jonathan Oppenheim, and
Stephanie Wehner. The second laws of quantum thermodynamics. Proceedings of
the National Academy of Sciences, 112(11):3275–3279, 2015.

[13] Fernando GSL Brandao, Micha l Horodecki, Jonathan Oppenheim, Joseph M Renes,
and Robert W Spekkens. Resource theory of quantum states out of thermal equilib-
rium. Physical review letters, 111(25):250404, 2013.
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