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Abstract 

Exposure to suspended fine particulate matter (PM2.5) has been proven to adversely impact public health 

through increased risk of cardiovascular and respiratory mortality. Assessing health impacts of PM2.5 

and its long-term variations requires accurate estimates of large-scale exposure data. Such data include 

mass concentration and particle size, the latter of which may be an effect modifier on PM2.5 attributable 

health risks. The availability of these exposure data, however, is limited by sparse ground-level 

monitoring networks. 

In this dissertation, an optical-mass relationship was first developed based on aerosol microphysical 

characteristics for ground-level PM2.5 retrieval. This method quantifies PM2.5 mass concentrations with 

a theoretical basis, which can simultaneously estimate large-scale particle size. The results demonstrate 

the effectiveness and applicability of the proposed method and reveal the spatiotemporal distribution 

of PM2.5 over China. To explore the spatial variability and population exposure, particle radii of PM2.5 

are then derived using the developed theoretical relationship along with a statistical model for a better 

performance. The findings reveal the prevalence of exposure to small particles (i.e. PM1), identify the 

need for in-situ measurements of particle size, and motivate further research to investigate the effects 

of particle size on health outcomes. Finally, the long-term impacts of PM2.5 on health and environmental 

inequality are assessed by using the satellite-retrieved PM2.5 estimates over China during 2005-2017. 

Premature mortality attributable to PM2.5 exposure increased by 31% from 2005 to 2017. For some 

causes of death, the burden fell disproportionately on provinces with low-to-middle GDP per capita. 

As a whole, this work contributes to bridging satellite remote sensing and long-term exposure studies 

and sheds light on an ongoing need to understand the effects of PM2.5, including both concentrations 

and other particle characteristics, on human health. 
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Chapter 1 

Introduction 

1.1 Motivation 

As a significant component of air pollution, PM2.5 (referring to suspended particulate matter with 

aerodynamic diameters less than 2.5 μm) can penetrate human defense mechanisms, leading to 

inflammation and allergic reaction, immune system dysfunction and other adverse impacts 

(Theophanides et al. 2011; Ren et al. 2016). Smaller PM2.5 particles may have higher toxicity since 

their large number and high surface area may increase the risk of absorbing toxic substances (Hoek et 

al. 2009; Ostro et al. 2015; Samoli et al. 2016). Exposure to PM2.5 can increase mortality risks from 

cardiovascular and respiratory illnesses, among others (Pope C. Arden et al. 2018; Sacks et al. 2011). 

The Global Burden of Diseases (GBD) study reported that exposure to ambient PM2.5 was associated 

with 4.2 (95% CI: 3.7, 4.8) million premature deaths in 2015 (Cohen et al. 2017). In particular, low- 

and middle- income countries account for 91% of global attributable premature deaths. 

Economic and industrial development has brought great wealth to China during the past decades. 

Along with this comes unprecedented air pollution levels and resulting unequal health impacts. The 

population-weighted average (PWA) PM2.5 levels in China increased at a rate of 2.10 (95% CI: 1.74, 

2.46) μg/m3 per year during 2000-2007, before reaching a plateau during 2008-2012 (Xue et al. 2019a). 

Accordingly, the PM2.5-related mortality in China has dramatically risen during this period (Liu et al. 

2017b). China alone contributed more than 30% of global PM2.5-attributable premature deaths in 2012 

(WHO 2016). The exposure and health burden attributed to PM2.5 can disproportionately impact 

vulnerable populations in China (Yang and Liu 2018; Zhao et al. 2019). For example, groups with 

lower income may experience greater health effects attributable to air pollution (Yang and Liu 2018). 

Therefore, it is crucial to estimate long-term PM2.5 exposure at population scales and investigate its 

impacts on health and related disparities in China. 

While more than 1400 ground-level air quality monitoring sites were established in China since 2013, 

a fixed-site network cannot represent average exposure across the whole city population due to its 

limited spatial continuity and coverage (Bell et al. 2007; Madureira et al. 2016). Satellite remote sensing 

offers an alternative to continuously monitor air pollutants around the world with relatively high spatial 

resolution and coverage. These techniques are becoming indispensable in ambient PM2.5 estimation, 

which especially benefits regions where verification sites are limited. 
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Existing satellite-based PM2.5 retrieval is based on two main types of methods: statistical models and 

numerical simulation models. Statistical models, including statistical models and machine/deep 

learning models, rely on the quantitative relationship between satellite-observed aerosol optical depth 

(AOD) and ground-level PM2.5 measurements. These models have performed well in predicting PM2.5 

concentrations in a specific spatiotemporal domain (with a large number of training samples), while 

their interpretability and portability are limited. Numerical simulation models, such as chemical 

transport models, afford both predictive and explanatory power through simulating aerosol components 

and behaviors. While multiple studies show the benefit of using numerical models to reduce error in 

satellite-retrieved PM2.5 (Martin 2008; van Donkelaar et al. 2010), these techniques are resource 

intensive in terms of data, computational resources, expertise and time. Additionally, the simulation 

performance is susceptible to the uncertainties from simulated chemical and transport mechanisms, 

emission inventory, atmospheric conditions (including meteorology and chemical composition) and 

other initial parameters (Chu et al. 2016; Xiao et al. 2017). These two main types present a tradeoff 

between mechanistic representativeness and efficiency. Several studies have thus focused on 

establishing theoretical relationships between remotely sensed observations and PM2.5 concentrations. 

Compared with the statistical and simulation methods, theoretical models consider the optic-mass 

relationship with less computational burden (Lin et al. 2015; Zhang and Li 2015), while inherent 

properties of aerosol particles, such as radius and refractive index, have not yet been involved in 

estimations. 

However, estimating these microphysical properties of aerosol particles is important to motivate our 

understanding of their effects on human health. Previous toxicological and epidemiological studies 

found that smaller particles may have greater toxicity (Chen et al. 2017; Samoli et al. 2016). Compared 

to large particles, per unit of mass concentration, the large numbers and corresponding surface area of 

small particles may absorb more toxic substances (Ostro et al. 2015). While epidemiologic relationships 

have been established for PM2.5 mass concentrations and a variety of health endpoints, particle size may 

be relevant in informing such relationships, for example, via effect modification, or in identifying new 

ones. Size-resolved particulate matter observations are thus pertinent for exposure assessment.  

Nevertheless, few studies so far provide large-scale measurements or estimates of particle size for 

health purposes. Accordingly, no size-related information on surface exposure estimates was included 

in existing epidemiological studies, including the GBD studies in which satellite AOD observations, 

GEOS-Chem estimates, and ground-level measurements were adopted.  
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Though the epidemiologic relationships between particle size and health endpoints have not yet been 

quantified due to lack of size-resolved exposure data, PM2.5 mass concentrations are known to have 

close associations with various health outcomes (Maji et al. 2018b; Matus et al. 2012). The health and 

economic burden associated with PM2.5 can disproportionately affect vulnerable populations (Bell and 

Ebisu 2012; Huang et al. 2019; Muller et al. 2018; Zhao et al. 2019). For example, populations with 

lower income may experience greater health risks attributable to air pollution, especially in regions 

with higher concentration levels. The damage attributed to air pollution increases health inequality to 

various degrees among population groups with different income levels (Yang and Liu 2018). Along 

with significant economic development over the past decades, China has experienced dramatic rises in 

PM2.5 levels and attributable mortality, which further increased income and health inequalities (Azimi 

et al. 2019; Fang et al. 2010). To alleviate air pollution, the Chinese government has updated air quality 

standards and issued pollution control policies since 2013. However, to our best knowledge, although 

studies have explored the effects of these actions on PM2.5 concentrations, fewer have evaluated the 

consequent health impacts and environmental inequality over recent decades in China (Hajat et al., 

2015). Understanding how PM2.5-related health impact differs among subpopulations is significant to 

not only achieve and maintain environmental equality, but also provide scientific support for the 

formulation of targeted environmental policies.  

1.2 Objectives of the Study 

Following above mentioned motivations, the overall objective of this research is thus to address the gap 

in population-scale estimates using satellite remote sensing and inform the understanding of the impact 

of ambient PM2.5 on human health, which can be broken down into three sub-objectives: 

1. Develop a ground-level PM2.5 retrieval method via aerosol microphysical characteristics using 

satellite remote sensing. 

Although satellite-based approaches have been developed and adopted for estimating the 

concentration of PM2.5 with promising accuracy, few studies have considered mass concentration and 

particle radius simultaneously, even though particle size is significant for human health impacts. We 

developed a satellite-based PM2.5 retrieval method using optical-mass relationships via aerosol 

microphysical characteristics. Satellite data from the MODIS instrument, combined with parameters 

from meteorological reanalysis, were processed to calculate particle radii and retrieve PM2.5 mass 
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concentrations over China in 2017. Particle radius and PM2.5 concentrations were estimated and 

validated with station measurements.  

2. Reveal the extent of national PM2.5 exposure by particle size in the sub-micrometer range. 

Air pollution in China has reached unprecedented levels due to rapid economic and industrial 

development. More than 90% of the Chinese population experiences higher health risks attributable to 

ambient fine particulate matter exposure. Although evidence suggests that particle size may be an effect 

modifier on PM2.5-related health risks, few studies have explored this due to lack of size-resolved 

exposure data. Therefore, taking advantage of the established optic-mass relationship in the first 

objective, we derived size-resolved particle effective radius of PM2.5 using satellite optical 

measurements to explore the spatial variability and population exposure to ambient particle size.  

3. Quantify long-term cause-specific premature mortalities and health disparities attributable to 

PM2.5 exposure over China 

Economic trends in China have affected public health and wellbeing, including inequality. In the past 

decade, PM2.5 reached unprecedented levels in China and posed a significant threat to public health. 

Few studies have explored the long-term trajectory of the PM2.5 attributable health burdens and 

corresponding environmental inequalities in China. We presented the spatiotemporal variations of 

PM2.5 attributable mortality and investigated the corresponding economic and environmental inequality 

at provincial and national levels over China from 2005 to 2017. Long-term PM2.5 exposures over China 

derived from satellite-based observations and chemical transport models were employed to quantify 

the attributable excess premature mortality related to five causes of death using the Global Exposure 

Mortality Model (GEMM). National and interprovincial health inequalities were characterized through 

environmental Lorenz curves and Gini coefficients over the study period. 

1.3 Thesis Contribution 

This dissertation comprises three works that develop a satellite-based PM2.5-relevant framework to 

evaluate PM2.5 pollution exposure and its long-term health impacts. The contributions can therefore be 

summarized in three parts as follows. 

First, this thesis makes a methodological contribution to satellite-based PM2.5 concentration 

estimation. The relationship between AOD and PM2.5 concentrations is built upon theoretical 

characteristics of aerosols, through which one of the important physical properties (particle radius) and 

mass concentrations could be derived simultaneously. The developed estimation method quantifies 
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PM2.5 concentrations without introducing regionally-specific fitting parameters, which can be 

efficiently applied across various spatial and temporal domains. Compared to statistical and numerical 

models, it requires fewer resources regarding data, computation and expertise. 

Second, this thesis fills a significant gap in population-scale (e.g., national) size-resolved 

observations of sub-micron atmospheric aerosols, which toxicological studies suggest may be more 

harmful to human health (Lin et al. 2016; Wichmann et al. 2000). Using the theoretical relationships 

between aerosol microphysical characteristics and satellite optical measurements, the spatiotemporal 

variability and population exposure to ambient particle size and mass concentrations were explored 

over China. In identifying the prevalence of submicron exposures, and the confluence of high mass 

concentrations with small particles, we raise the importance of understanding the effect of particle size 

on health, while also presenting new tools with which to explore it using national estimates of aerosol 

composition and size. 

Third, this thesis contributes to understanding the health burden and related disparity attributed to 

ambient PM2.5 exposure over China. During recent decades, China has experienced significant 

economic growth, along with the consequent increased inequality and air pollution levels. Despite the 

well-studied significance of this health burden, its national trajectory and distribution across vulnerable 

populations is not well understood. I fill this gap using recent advances in satellite remote sensing 

techniques, exposure-response relationships, and metrics of environmental inequality. This work 

uniquely positions trends in air pollution exposure and health risks within the context of economic 

equality in China. It yields insights for policymakers regarding the effectiveness of efforts to reduce 

exposures and can help to formulate and monitor targeted policies to address the resulting public health 

burden and alleviate inequality.   

1.4 Thesis Structure 

Given the motivations and objectives mentioned above, six chapters are structured in this manuscript-

based thesis (Figure 1.1). The current Chapter 1 highlights the significance and main contribution of 

this work, outlining the need for large-scale and long-term PM2.5 retrieval and its related health impact 

assessment. 

Chapter 2 introduces three types of satellite-based PM2.5 retrieval methods, providing a 

methodological foundation for assessing exposure and mortalities attributable to PM2.5 pollution. The 
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advantages and limitations of each method are discussed to clarify why the methods are employed in 

this dissertation. 

Chapter 3 investigates the theoretical optical-mass relationships via aerosol microphysical 

characteristics to quantify PM2.5 mass concentrations without introducing regionally-specific fitting 

parameters. Mainland China is applied as the case study to quantitatively assess the performance of the 

proposed method. The estimates were validated against in-situ measurements obtained from China 

National Environmental Monitoring Center (CNEMC). 

Chapter 4 examines and presents the spatiotemporal pattern and population exposure of the size-

resolved PM2.5 mass concentrations, which is achieved by using the established application of satellite-

based observations and aerosol optical-mass relationships. This chapter aims to explore the potential of 

remote sensing for large-scale PM2.5 estimation, including both mass concentrations and particle radius. 

Chapter 5 quantifies long-term and national-scale PM2.5-attributable premature mortalities related to 

five causes of deaths during 2005-2017 using the Global Exposure Mortality Model (GEMM). The 

corresponding national and interprovincial health inequalities were characterized through 

environmental Lorenz curves and Gini coefficients.  

Chapter 6 concludes the main findings of this dissertation. The limitations and recommendations for 

future research are also included in this chapter. 
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Figure 1.1 Thesis structure 
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Chapter 2 

Satellite-based PM2.5 Retrieval  

2.1 Basic Principle 

2.1.1 Background 

Atmospheric particulate matter (PM) refers to a mixture of solid particles or liquid droplets suspended 

in the atmosphere, which is also known as atmospheric aerosol particles. Since smaller particles are 

associated with greater health impacts, PM is typically defined by particle size for regulatory and health 

applications. Particles with aerodynamic diameter less than 2.5μm (PM2.5), which can penetrate into 

the alveoli and even blood stream, are known to have significant adverse health impacts on human 

health than coarser particles. The chemical composition of PM2.5 includes carbonaceous compounds 

(organic and elemental carbon), water-soluble inorganic ions (e.g. sulfate, nitrate, ammonium etc.), 

crustal elements (e.g. silicon, aluminum, iron, calcium, sodium, magnesium etc.), heavy metals (e.g. 

cadmium, arsenic, lead, nickel, copper etc.) and secondary aerosols formed from gaseous precursors 

(e.g. sulfur dioxide, nitrogen oxide, ammonia and volatile organic compounds) (Huang et al. 2014; Liu 

et al. 2014; Song et al. 2017; Yin et al. 2012). 

The most common approach to measuring ambient PM2.5 is through the use of ground-based 

monitoring stations. Though station-based air quality monitors can provide PM2.5 mass with high 

accuracy and temporal resolution, these in-situ measurements can only represent the concentration in a 

relatively small area, which cannot reflect the large-scale population exposure and size-resolved 

observations. Meanwhile, before the Chinese government expanded their air quality monitoring 

network in 2013, the ground-level measurements from stations were sparse and unbalanced, which 

makes continuous spatial monitoring difficult, especially for rural and sparsely populated areas.  

Satellite remote sensing addresses these drawbacks and provides a possibility to monitor 

continuously PM2.5 with high spatial coverage using Aerosol optical depth (AOD). AOD, which refers 

to the aerosol extinction (absorption and scattering) in the total vertical column of atmosphere at a given 

wavelength, has proven to be highly associated with PM2.5 concentrations (Chen and Tian 2010; Feng 

et al. 2018; You et al. 2015). The fact that ground-level PM2.5 contributes to satellite-derived AOD 

provides a significant premise and theoretical foundation to estimate PM2.5 concentrations using 

satellite-derived AOD. Nonetheless, there are many factors that affect the AOD-PM2.5 relationship, 
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such as humidity, the height of the planetary boundary layer, and size fraction (Yang et al. 2019). 

Specifically, surface PM2.5 refers to the mass concentration near the ground, while AOD measures the 

extinction in the total column of atmosphere; PM2.5 refers to the concentration of fine particles under 

dry condition, while AOD measures the aerosol extinction influenced by water vapor and coarse 

particles. The aerosol size distribution and chemical composition may also affect the AOD-PM2.5 

relationship to varying degrees in different spatial and temporal domains. Therefore, it is pertinent to 

understand the aerosol physical properties related to satellite remote sensing. This information is 

introduced in the following sections.. 

2.1.2 Aerosol Optical Properties  

Aerosol optical properties are important because they provide insights for aerosol-related 

measurements. Solar radiation is affected by atmospheric aerosol particles in different ways depending 

on the relationship of its wavelength to the particle size. Incident radiation on atmospheric aerosols can 

be absorbed, scattered and reflected, depending on the aerosols’ chemical composition and geometric 

properties (Hatzianastassiou et al. 2007). The combination of aerosol absorption and scattering is 

known as aerosol extinction. 

 

Figure 2.1 Aerosol Scattering Regimes (Pincus 2004) 



 

10 

For one spherical aerosol particle, aerosol extinction characteristics are related to three key 

parameters: wavelength, complex refractive index and particle size. Complex refraction index (m=n+ik) 

is determined by the aerosol chemical composition. The real part n and the imagery part k are 

responsible for scattering and absorption, respectively. The “particle size parameter” (x=2πr/λ) is used 

to describe the size of particles. If x<<1, the scattering from molecules (~10-4 μm) dominates which 

follows the Rayleigh scattering regime; if x~1, Mie scattering dominates. Typically, the size of aerosols 

ranges from 10-3 μm to 10 μm, thus the aerosol scattering in the visible and infrared wavelengths 

primarily follows Mie theory (Figure 2.1). Both m and x depend on wavelength.  

According to these three key parameters governing single particle extinction, the aerosol extinction 

coefficient 𝜅𝑒𝑥𝑡 can be calculated using Mie theory. The aerosol extinction coefficient is defined as the 

path length (i.e. the distance passed through the absorbing medium) over which the light intensity is 

decreased to 1/e. Both aerosol absorption and scattering are wavelength dependent (Eq. 2-1) and obey 

the Lambert-Beer Law (Eq. 2-2), 

 κ𝑒𝑥𝑡(𝜆) = κ𝑠𝑐𝑎(𝜆)+κ𝑎𝑏𝑠(𝜆)                                                      (2-1) 

𝐼(ℎ) = 𝐼0𝑒
−(к𝑎𝑏𝑠+к𝑠𝑐𝑎)ℎ = 𝐼0𝑒

−к𝑒𝑥𝑡ℎ                                              (2-2) 

where κ with subscripts of “ext”, “sca” and “abs” are the coefficients of extinction, scattering and 

absorption; I and I0 are the light intensity after and before extinction; h is the path length. For the aerosol 

layer, AOD ( τ𝑎) is defined as the integrated extinction coefficient in the total vertical column, which 

measures the extinction of solar radiation by aerosol extinction in the total column of atmosphere. 

𝜏𝜆 = ∫ 𝜅𝑒𝑥𝑡(ℎ, 𝜆)𝑑ℎ
𝐻

0
                                                        (2-3) 

where H is the height between surface and top of atmosphere (TOA); Typically, AOD at 0.55 μm ranges 

from 0 to 2 or higher during episodes of severe air pollution.  

In addition to AOD, aerosol optical properties, such as scattering phase function 𝑃(𝛩), asymmetry 

factor (g), and single-scattering albedo (SSA) are also important for aerosol radiative effects assessment 

(Figure 2.2). 𝑃(𝛩) describes the angular distribution of light scattered by aerosol particles, which 

shows the probability of scattering into angle 𝜑 (relative to the incident light) at a certain wavelength.  

The first moment of 𝑃(𝛩) is the asymmetry factor, which is defined as the intensity-weighted average 

of the cosine of the scattering angle (𝑔 =< 𝑐𝑜𝑠𝛩 > ). The symbol g describes the shape of 𝑃(𝛩), 

ranging from -1 to 1. Typically, the atmosphere is treated as uniform in the horizontal direction while 
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upward and downward radiation are different. In this case, g is used to approximate the backward and 

forward scattering direction of radiation. When g<1, this indicates backscattering dominates while g>1 

indicates forward scattering dominates. For the most part, satellite sensors capture the backscattering 

of aerosols and molecules. SSA (𝜔0) is a unitless value that describes the ratio of scattering to total 

extinction, which can be calculated using Mie theory, and is a function of wavelength. 𝜔0  is an 

important optical property as it is strongly related to the aerosol direct radiative effect. For example, 

particles which are lighter in color (like sulfate aerosols) reflect visible light and thus cool the 

atmosphere, while dark particles (such as black carbon) tend to absorb it, warming the atmosphere. The 

detailed assumptions and calculations of atmospheric scattering are introduced in (Hansen J E 1974).  

 

Figure 2.2 Aerosol optical properties in different atmospheric environments (Vicent et al. 2017). 

(Upper left) normalized 𝜿𝒆𝒙𝒕 and (Upper right)  𝝎𝟎  by wavelength 𝝀 of visible light; (Bottom left) 

phase function at 700nm and (Bottom right) asymmetry parameter with different 𝝀.  

2.1.3 Aerosol Measurement from Passive Satellite Sensors  

The extinction by atmospheric aerosols illuminated by the solar beam varies with particle size and 

composition, which directly impacts the atmospheric radiation budget. In contrast to sun photometers 
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which measure the downward direct-beam radiation at distinct wavelengths, satellite sensors retrieve 

aerosol information by observing upward reflected radiation (Kaufman et al. 1997). Satellite remote 

sensing techniques retrieve aerosol loading and properties at large scale by calculating the variations in 

radiance caused by atmospheric aerosols, providing reliable observational constraints on global aerosol 

simulation models. Here, we only discuss radiative transfer in passive remote sensing techniques. 

The spectral information captured by a satellite is determined by both atmospheric extinction and 

surface reflection. In other words, the satellite-derived aerosol information relies on the relationship 

between observed radiance at the TOA (apparent reflectance, ρ𝜆
∗ ) and the surface bidirectional 

reflectance properties ρ𝜆
𝑠 . If we assume the Earth surface is a uniform Lambertian surface, the apparent 

reflectance can be expressed as: 

𝜌𝜆
∗(𝜃0, 𝜃, 𝜑) = 𝜌𝜆

𝑎(𝜃0, 𝜃, 𝜑) + 𝐹𝜆(𝜃0)𝑇𝜆(𝜃)𝜌𝜆
𝑠(𝜃0, 𝜃, 𝜑)/(1 − 𝑠𝜆𝜌𝜆

𝑠(𝜃0, 𝜃, 𝜑))              (2-4) 

where 𝜃0, 𝜃, 𝜑 are solar zenith angle, view zenith angle and the scattered radiation azimuth from solar 

beam, respectively (Fig. 3); ρ𝜆
𝑎 is the path radiance; 𝐹𝜆 and 𝑇𝜆 are the normalized downward radiation 

flux for surface reflectance (downward transmission) and the upward transmission, respectively; 𝑠𝜆 is 

the ratio of atmospheric backscattering to total light scattering; ρ𝜆
𝑠  is the surface reflectance.  

 

Figure 2.3 Geometry of aerosol radiative transfer 
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The scattering angle 𝛩 = 𝑎𝑟𝑐𝑐𝑜𝑠⁡(−𝑐𝑜𝑠𝜃0𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃0𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑) . In the context of single-

scattering, the path radiance ρ𝜆
𝑎 can be calculated based on aerosol optical depth τ𝑎, phase function 

𝑃𝑎(𝜃0, 𝜃, 𝜑) and single scattering albedo 𝜔0. 

𝜌𝜆
𝑎(𝜃0, 𝜃, 𝜑) = 𝜌𝜆

𝑚(𝜃0, 𝜃, 𝜑) + 𝜔0𝜏𝑎𝑃𝑎(𝜃0, 𝜃, 𝜑)/4𝜇𝜇0                           (2-5) 

where 𝜌𝜆
𝑚 is the path radiance for molecular scattering (Rayleigh scattering); 𝜇 and 𝜇0 are the cosines 

of the view and solar incident angles, respectively. Substituting this expression into Eq. (2-1), 

𝜌𝜆
∗(𝜃0, 𝜃, 𝜑) = 𝜌𝜆

𝑚(𝜃0, 𝜃, 𝜑) +
𝜔0𝜏𝑎𝑃𝑎(𝜃0,𝜃,𝜑)

4𝜇𝜇0
+

𝐹𝜆(𝜃0)𝑇𝜆(𝜃)ρ𝜆
𝑠 (𝜃0,𝜃,𝜑)

1−𝑠𝜆ρ𝜆
𝑠 (𝜃0,𝜃,𝜑)

                  (2-6) 

The molecular Rayleigh scattering and absorption is readily calculated based on radiative transfer 

calculations for each band. The apparent reflectance 𝜌𝜆
∗ observed by satellite sensors is a function of 

aerosol reflectance and surface reflectance. Therefore, the aerosol information is retrieved by 

distinguishing the aerosol contribution to apparent reflectance. This radiation transfer equation is the 

theoretical foundation of most aerosol retrieval algorithms.  

2.2 PM2.5 Estimation Models 

With growing attention to air quality and sufficient ground-level observations, various models are 

subsequently applied in China. I compared the performance of major satellite-based PM2.5 retrieval 

methods applied in China, see Table 2.1. These models can be categorized into three main types: 

statistical models, simulation models, and theory-based models. Each type has its advantages and 

limitations. Following the objective of each manuscript in this dissertation, all these three types of 

models were adopted for PM2.5 estimation. Specifically, a theory-based model was developed to retrieve 

PM2.5 concentrations via particle radius in Chapter 3. While promising, the accuracy of concentration 

estimates is limited due to the paucity of particle size samples. Therefore, to achieve a better 

performance, the statistical model, i.e. a geographically weighted regression (GWR) model  was used 

in Chapters 4 and 5, respectively, for PM2.5 concentration estimation. However, the statistical models 

exhibited a sub-optimal performance before 2013 because of the limited number of historical PM2.5 

measurements. The simulation results were thus used to investigate long-term health mortalities 

attributable to PM2.5 pollution before 2013 in Chapter 5, which can predict PM2.5 without ground-level 

observations. 
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Table 2.1 Comparison of major satellite-based PM2.5 estimation models in China (n=20) 

Types Method Study area 
Satellite 

AOD 

Resolution 

(km) 
R2 (N) Reference 

Statistical 

LR 
Regional (Beijing) MODIS 30 

0.55d (337) - urban; 

0.47d (304) - suburb 
(Kong et al., 2016) 

Regional (North China) MODIS 10 0.57d (244); 0.75m (24) (Xin et al. 2014) 

NLR Regional (Xi’an) 
MODIS 

MISR 
10; 17.6 

0.67d (1073) – MODIS; 0.72d (385) - 

MISR 
(You et al. 2015) 

GAM 
Regional (Xi’an) MODIS 10 0.69d (4236) (Song et al. 2015) 

Regional (Beijing) MODIS 10 0.61d (126) (Liu et al. 2012) 

GWR 

Regional (PRD) MODIS 10 0.74d (315) (Song et al. 2014) 

Regional (YRD) MODIS 10 0.77d- 0.84 d (422-1237) in four seasons (Jiang et al. 2017) 

National MODIS 3 0.79d (27813) (You et al. 2016) 

National MODIS 10 0.64d (58164) (Ma et al. 2014) 

 National MODIS 10 0.69d – 0.87d (---) (Yang et al. 2019) 

MEM 

Regional (Beijing) MODIS 3 0.83d (1435) (Xie et al. 2015) 

Regional 

(BTH, YRD, PRD) 
MODIS 10 

0.77d in BTH, 0.80d in YRD, 0.80d in 

PRD (~300) 

0.71a in BTH, 0.76a in YRD, 0.71a in 

PRD (~50) 

(Zheng et al. 2016) 

TSM National MODIS 10 
0.41d (79989); 0.73m (5584); 0.79s 

(2238) 
(Ma et al. 2016b) 

ANN Regional (East China) MODIS 10 0.30d (---) (Wu et al. 2012) 
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Types Method Study area 
Satellite 

AOD 

Resolution 

(km) 
R2 (N) Reference 

Simulation 

GEOS-

chem 
National 

MODIS 

MISR 
~10 

0.55m (~70); 

0.72m (~70) in Jan-May 2013 
(Geng et al. 2015) 

GEOS-

chem 
Global 

MODIS 

MISR 

SeaWiFS 

~10 
0.66a (210) – excluded Canada, U.S. and 

Europe 
(van Donkelaar et al., 2015) 

GEOS-

chem & 

GWR 

Global 
Same with 

above 
~10 0.81a (1855) (van Donkelaar et al. 2016) 

Theory-based 

Regional (Beijing) MODIS 10 0.25d (421) (Zhang and Li 2015) 

Regional (North China) MODIS 1 0.58m (5557); 0.81a (565) (Lin et al. 2015) 

Regional (Beijing) MODIS 10 0.62d (39) (Tao et al. 2012) 

Note: 1) n is the number of selected literature; R2 is determination coefficient of the methods; N is the number of validation samples; h d m a denote R2 on an hourly, 

daily, monthly, annual basis. 2) LR: Linear Regression; NLR: Non-linear Regression; LUR: Land Use Regression; GAM: Generalized Additive Model; GWR: 

Geographically Weighted Regression; MEM: Mixed-Effect Model; TSM: Two-Stage Model; ANN: Artificial Neural Networks; CTM: Chemical Transport Model; 

GEOS: Goddard Earth Observing System; WRF: Weather Research and Forecasting Model; CMAQ: Community Multi-scale Air Quality Model; NAQPMS: Nested 

Air Quality Prediction Modeling System. 3) BTH: Beijing-Tianjin-Hebei Metropolitan region; YRD: Yangtze River Delta region; PRD: Pearl River Delta region. 
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2.2.1 Statistical Models 

Statistical models rely on the quantitative relationship between satellite-observed aerosol optical depth 

(AOD) and ground-level PM2.5 measurements through diverse statistical models, such as linear 

regressions (LR) (Kumar et al. 2007; Liu et al. 2005), land use regressions (LUR) (Di et al. 2016; Yang 

et al. 2017), geographically weighted regression (GWR) models  (Jiang et al. 2017; Luo et al. 2017; 

You et al. 2016), mixed effects models (MEM) (Hu et al. 2014a; Ma et al. 2016b; Yao et al. 2019), 

generalized additive models (GAM) (Liu et al. 2009, 2012) and artificial neural networks (ANN) (Li 

2020; Xue et al. 2019a; Zang et al. 2019; Zhao et al. 2016).  

LR was the most popular method in early studies (Liu et al. 2007; Tsai et al. 2011). However, these 

early retrievals might be biased because of the few covariates and low spatial resolution of input 

parameters used. Compared with LR, LUR is informative for fine-scale studies with land-use 

information integration, but it cannot reflect the temporal variance of pollutants since land-use tends to 

be stable at short time scales while pollutants in the atmosphere are changeable. Therefore, MEM 

became a dominant method after 2010 because of its flexibility and good performance. Lee et al. (2011) 

employed MEM, which allows daily variability in AOD-PM2.5 relationships to estimate PM2.5, with R2 

of 0.92 (N=576). Ma et al. (2016) developed a nested linear MEM on a monthly, weekly and daily basis, 

with R2 of 0.72 (0.67) using 10km (3km) MODIS AOD. Considering the spatial variation of 

atmospheric aerosols, GWR and its extended models are increasingly applied for PM2.5 retrieval. You 

et al. (2016) estimate PM2.5 concentrations in China through GWR using MODIS 3km AOD (R2=0.79). 

Guo et al. (2017) developed a Geographical and Temporal Weighted Regression (GTWR) model in 

consideration of temporal variation based on the classic GWR and found that this improved model 

performed better when the number of daily samples was lower than five.  

In addition to the models mentioned above, machine learning (ML) and deep learning (DL) 

techniques have shown considerable potential in PM retrieval in recent years (Gupta and Christopher 

2009; Hu et al. 2017b; Li et al. 2017a; Yu et al. 2017; Yuan et al. 2020). Compared to the traditional 

statistical models, ML/DL models exhibit remarkable capability for establishing nonlinear relationships 

and require fewer assumptions on data distribution. Xue et al. (2019a) proposed a ML model using 

multiple variables (including satellite-derived AOD, meteorological parameters, and numerical model 

results) to estimate and hindcast historical PM2.5 concentrations during 2000-2016. Sun et al. (2019) 

developed a deep neural network (denoted as PM25-DNN) to retrieve hourly PM2.5 concentrations in 

Beijing-Tianjin-Hebei region. In addition to satellite-derived AOD, satellite top-of-atmosphere (TOA) 

reflectance was also employed as the DL model input to reduce the uncertainty from AOD retrieval. 
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Shen et al. (2018) established a deep belief network (denoted as Ref-PM) to estimate regional PM2.5, 

demonstrating that TOA-reflectance-derived PM2.5 has an edge over AOD-derived PM2.5 in terms of  

spatial resolution and coverage.  

Not only can model structure affect performance, but so can aerosol-sensitive factors. Koelemeijer 

et al (2006) identified that AOD combined with the planetary boundary layer height (PBLH) and 

relative humidity (RH) shows a strong correlation with PM2.5. Meteorological parameters (such as wind 

direction and cloud cover) (Guo et al. 2017a; Li et al. 2015; Zhang et al. 2015a), land use data (Chen 

et al. 2016; Yang et al. 2017) and socioeconomic data (Hao and Liu, 2016; Li et al., 2017) are found to 

be associated with PM2.5 as well, and thus employed as the input parameters of retrieval models (Han 

et al. 2016b; Luo et al. 2017). 

These models performed well in estimating PM2.5 concentrations, while the model performances are 

susceptible to the quantity and quality of training data. The empirical parameters in these models vary 

across spatial and temporal domains, which is difficult to extend to other regions. Additionally, the 

characteristics of aerosols are not considered in statistical models due to its weak mechanism. 

2.2.2 Simulation Models 

Compared with statistical models, simulation models have stronger geophysical mechanisms, which 

offer an alternative to predict PM2.5 without ground-based measurements through chemical transport 

models (CTMs). CTMs can simulate aerosol components and behavior with relatively high spatial 

(horizontal and vertical) and temporal resolution (Di et al. 2016; van Donkelaar et al. 2015). The basic 

principle of this approach is to constrain CTMs with “real” (i.e. satellite) AOD observations (PM2.5 =

𝑠𝑢𝑟𝑓𝑎𝑐𝑒⁡𝑠𝑖𝑚𝑙𝑎𝑡𝑒𝑑⁡𝑃𝑀2.5

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑⁡𝐴𝑂𝐷𝑐𝑜𝑙𝑢𝑚𝑛⁡
∗ 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒⁡𝐴𝑂𝐷 ). Tang et al. (2015) assimilated surface measurements and 

MODIS AOD into the Community Multiscale Air Quality  (CMAQ) model for ozone and PM2.5 

simulation. van Donkelaar et al. 2010) determined global PM2.5 concentrations using GEOS-chem 

(CTM driven by meteorology from the Goddard Earth Observing System), with R=0.77 (decadal 

average) in North America. Nevertheless, the performances vary by region and are relatively low. A 

recent study from Dalhousie University demonstrated that the combination of CTMs and statistical 

model could improve accuracy. van Donkelaar et al. (2016) employed AERONET (AErosol RObotic 

NETwork)-calibrated AOD products retrieved from three sensors and CALIOP (Cloud-Aerosol Lidar 

with Orthogonal Polarization)-corrected AOD simulated from GEOS-Chem to improve AOD accuracy; 

PM2.5 concentrations were then calculated based on the simulated geophysical AOD-PM2.5 relationships 
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from GEOS-Chem. The final PM2.5 results were corrected with GWR model and ground PM2.5 

measurements, with R2 (0.81) higher than their previous studies (van Donkelaar et al. 2006, 2015).  

While multiple studies show the benefit of using CTMs to reduce error in satellite-retrieved PM2.5 

(Martin 2008; van Donkelaar et al. 2010), these techniques are resource intensive in terms of data, 

computational resources, expertise and time. Additionally, the performance of simulation results is 

susceptible to the uncertainties from simulated chemical and transport mechanisms, emission inventory, 

atmospheric conditions (including meteorology and chemical composition) and other initial parameters 

(Chu et al. 2016; Xiao et al. 2017). 

2.2.3 Theory-based Models 

Among the aforementioned two main types of models, there is a tradeoff between mechanism and 

efficiency. Several studies focused instead on establishing the theoretical relationship between remotely 

sensed observations and PM2.5 concentrations. Compared with the statistical and simulation methods, 

the theoretical method considers the optic-mass nexus with less computational burden. Typically, 

theory-based models assumed that atmospheric aerosols are spherical homogeneous particles. An 

ensemble of aerosols can thus be represented by the distribution of particle size, which can be used to 

abstract and infer aerosol microphysical properties. The theoretical foundation of these models is 

selecting an appropriate size distribution that can approximate the actual situation. Among various 

potential distributions (such as normal and gamma distribution), the logarithmic normal distribution is 

commonly used for aerosol size characterization.  Lin et al. (2015) proposed an indicator describing the 

synthetic influence of the hygroscopic growth instead of using fixed humidity effect to estimate PM2.5 

concentration. (Zhang and Li 2015) defined a “particle columnar volume-to-extinction ratio (VEf)” to 

establish a PM2.5 retrieval algorithm with satellite-derived parameters. Li et al. (2018c) involved 

multiple datasets to explore the AOD-PM2.5 theoretical relationship, considering both size fraction and 

vertical correction. Their studies contributed to understanding optical-mass physical relationships but 

still rely on statistical correlations or assumptions, such as the empirical correlation between fine mode 

fraction (FMF) and VEf. Therefore, the current theoretical methods can be considered as semi-empirical 

models which integrate physical mechanisms into regression models. However, regional fitting is still 

involved, which limits their application across various domains. The aerosol inherent particle properties, 

such as particle radius and components, have also not been estimated in current theoretical methods.  
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Chapter 3 

Quantifying PM2.5 Mass Concentration and Particle Radius Using Satellite 

Data and an Optical-Mass Conversion Algorithm 

In Chapter 3, we present a novel derivation of a theoretical method using satellite-derived parameters 

for PM2.5 retrieval that relies on aerosol microphysical characteristics. This approach, by avoiding a 

reliance on ground-level PM2.5 observations, affords the possibility of greater generalizability to data-

poor regions. We fill missing pixels in MODIS products and perform calibration to achieve greater 

coverage and accuracy. The spatial distribution of mean particle aerodynamic diameters over China is 

illustrated for the first time according to the proposed method, depicting a clear bifurcation across the 

country in certain seasons. Based on the derived particle size, daily PM2.5 mass concentrations over 

China in 2017 are then retrieved at a spatial resolution of 3km. Good agreement is found between 

satellite-retrieved and ground-observed concentrations. This study provides a resource efficient 

approach to obtain PM2.5 concentrations. Additionally, it yields information about particle size, which 

could potentially fill an important gap in estimating exposure to ultrafine particles, which are thought 

to be more toxic, but for which large-scale, high-resolution measurements are lacking. 

This chapter is structured as follows. Section 3.1 introduces the motivation of this chapter and 

reviews the previous PM2.5 retrieval studies. Sections 3.2 and 3.3 provide the adopted datasets and the 

main retrieval method, respectively. Section 3.4 demonstrates the model performance and 

spatiotemporal pattern of PM2.5 estimates in China. Section 3.5 discusses the attribution of PM2.5 

concentration and model uncertainty. Section 3.6 concludes the chapter. 

3.1 Introduction 

Suspended particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) poses a serious threat 

to public health through increased risks to mortality, cardiovascular, and respiratory illnesses, among 

others (de Hartog et al. 2009; Pope C. Arden et al. 2018; Sacks et al. 2011). It is the single greatest 

global environmental health risk factor identified in the Global Burden of Disease (Cohen et al. 2017). 

China has experienced severe PM2.5 pollution with its recent economic and industrial development. 

Since 2013, the Chinese government has released air pollutant concentrations to the public. More than 

1400 stations provide hourly PM2.5 concentrations, which makes PM2.5 retrieval and validation feasible 

(Lin et al. 2015). However, a fixed-site monitoring network restricts the spatial resolution and coverage 
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of pollutant measurements for the benefit of high accuracy and temporal resolution. In order to obtain 

the spatial coverage required for full country-level exposure estimates, satellite data are increasingly 

indispensable in studies of PM2.5.  

Aerosol optical depth (AOD) observed by satellites is closely associated with PM2.5 and often 

employed to retrieve mass concentrations (You et al. 2015). There are two main methods employed for 

satellite-based PM2.5 retrieval: statistical methods and simulation methods, each with advantages and 

limitations. Statistical models developed including statistical or artificial intelligence methods have 

been applied to derive quantitative AOD-PM2.5 relationships. Examples  include general linear 

regression models (Kumar et al. 2007; Liu et al. 2005), mixed effects models (Hu et al. 2014b; Yao et 

al. 2019), generalized additive models (Liu et al. 2009, 2012), land use regression models (Di et al. 

2016; Yang et al. 2017), geographical weighted regression models (He and Huang 2018; Li et al. 2017b; 

Luo et al. 2017; You et al. 2016) and artificial neural networks (Ma et al. 2019; Zhao et al. 2016). In 

addition to AOD, meteorological parameters, such as planetary boundary layer height (PBLH), relative 

humidity (RH) and wind speed (Guo et al. 2017a; Zhang et al. 2015a), land use data (Chen et al. 2016; 

Yang et al. 2017) and socioeconomic data (Hao and Liu 2016) have been found to be associated with 

PM2.5, and were employed as input parameters of various statistical models. Such statistical models 

have performed very well in representing the variation of ground-level PM2.5 concentrations in a 

specific spatial and temporal domain. However, while their predictive power is high, they do not rely 

explicitly on scientific relationships, which limits their interpretability. Process-driven numerical 

simulation models, such as chemical-transport models (CTMs), offer an alternative to obtain mass 

concentrations that simulate physical and chemical relationships, which afford both predictive and 

explanatory power (Steyn and Galmarini 2008). CTMs have been shown to simulate aerosol behavior 

with relatively high spatial (horizontal and vertical) and temporal resolution (Di et al. 2016; Tang et al. 

2015). However, the accuracy of simulation results relies on emissions, atmospheric conditions 

(including meteorology and chemical composition), and simulated chemical and transport mechanisms.  

An alternative to statistical and numerical simulation models has been developed to achieve 

reasonable predictive power and add some explanatory power without the computational expense of a 

full numerical simulation. With this aim, several methods have been developed focusing on converting 

optical properties to mass (herein called “optical-mass conversion”). (Lin et al. 2015) proposed an 

indicator describing the synthetic influence of hygroscopic growth instead of using a fixed humidity 

effect to estimate PM2.5 concentration. Ying Zhang and Li (2015)defined a “particle columnar volume-

to-extinction ratio (VEf)” to establish a PM2.5 retrieval algorithm with satellite-derived parameters. 
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Their studies contributed to the understanding of optical-mass physical relationships, but still relied on 

model fitting or statistical assumptions in the retrieval, such as the empirical relationship between fine 

mode fraction (FMF) and VEf, and fitted parameters for aerosol integrated effect quantification. 

Additionally, inherent particle properties, such as particle radius, have not been estimated previously. 

Recent studies suggest that most of the health impacts of PM2.5 are caused by particles with a radius 

less than 2.5μm, such as PM1 (Chen et al. 2017; Ostro et al. 2015; Samoli et al. 2016). Therefore, 

understanding size distribution of particles at finer scales is essential for mass concentration retrieval, 

which then can be applied to better understand the health impacts of PM2.5.  

This study presents a PM2.5 retrieval method with a theoretical basis using satellite observations, 

meteorological information and ground-level PM2.5 measurements, which can simultaneously estimate 

particle radius. Mainland China is applied as the case study to quantitatively assess the performance of 

the proposed algorithm. The particle radius and PM2.5 concentrations are estimated and validated with 

station measurements. The advantages and uncertainty of our retrieval method are also discussed. 

3.2 Data Collection 

3.2.1 Ground Measurements 

Hourly average PM2.5 observations in 2017 were obtained from the “China National Environmental 

Monitoring Center (CNEMC) (http://www.cnemc.cn/)”. Monitoring stations are mainly situated in 

southeastern China, reflecting the population distribution. All measurements were calibrated and 

processed with quality control according to “China’s National Ambient Air Quality Standards 

(GB3095-2012)” and “Environmental Protection Standards (HJ618-2011)” (China 2012). PM2.5 

concentration was measured by Thermo Fisher 1405 using the “Filter Dynamic Measurements System” 

and “Tapered Element Oscillating Microbalance”. Daily PM2.5 concentrations were calculated from 

hourly measurements during 10:00-14:00 local time. 

The Aerosol Robotic Network (AERONET) Version 3 Level 2.0 AOD from 2013 to 2016 were 

downloaded from http://aeronet.gsfc.nasa.gov/ to calibrate MODIS AOD products in 2017 in order to 

increase the available calibration samples. AERONET AOD at 0.55 μm were interpolated by AOD at 

0.44 μm, 0.67 μm and 0.87 μm, respectively. Many studies (He and Huang 2018; Yang and Hu 2018) 

used Angstrom’s empirical expression, which is related to the Junge distribution (Junge 1955), to 

interpolate AOD at 550 nm. However, King and Byrne (1976) indicated that particle size distributions 

http://www.cnemc.cn/
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do not follow the Junge distribution and the radii do not extend from zero to infinity. Therefore, we 

employed the 2nd-order polynomial equation (Eck et al. 1999): 

ln τa = a0 + a1 ln λ + a2(ln λ)
2 (3-1) 

where τa is AOD at the wavelength of λ. a0, a1 and a2 are the coefficients, which can be fitted by the 

measurements.  

The AERONET data within ±30⁡min of satellite overpass time (Terra UTC 2:00-3:00; Aqua UTC 

5:00-6:00) were selected and averaged to match the pixel values of MODIS products. There are eight 

AERONET sites available in 2017 over China, including AOE_Baotou, Beijing, Beijing_PKU, 

Beijing_RADI, Bejing_CAMS, QOMS_CAS, XiangHe, and XuZhou_CUMT. 

3.2.2 Satellite Data 

3.2.2.1 MODIS 

MODIS is the key instrument aboard the Terra and Aqua satellites, which provides information on 

aerosol abundance and characteristics at relatively high resolution. The entire Earth surface can be 

detected by these two satellites every one to two days. There are five bands designed for aerosol 

retrieval, as shown in Table 3.1. Currently, MODIS provides three retrieval algorithms for aerosol 

properties over land globally: the “Dark Target (DT)” algorithm, the “Deep Blue (DB)” algorithm and 

the “Multi-Angle Implementation of Atmospheric Correction (MAIAC)” algorithm (Hsu et al. 2013; 

Li et al. 2014; Lyapustin et al. 2018). Taking advantage of the high spatiotemporal resolution and 

relatively long-term observations, MODIS became the most widely used instrument in air quality 

monitoring. However, because of the limitation of these retrieval algorithms, the accuracy of MODIS 

AOD is restricted over desert and coastal regions due to the high reflectance and the water-mixed pixels 

(Chen et al. 2009). Cloud and ice/snow contamination also affect AOD coverage and accuracy (Abdou 

et al. 2005; Gupta et al. 2006). 

With a resolution of 1 km, the MAIAC AOD is informative for local-scale studies. However, 

considering the geophysical coverage in this study, 3 km DT and 10 km DB AOD Collection 6.1 

products from both Terra and Aqua were adopted for PM2.5 retrieval. Because of the large uncertainty 

of MODIS FMF products (Levy et al. 2007), fine mode fraction (FMF) retrieved by the LUT-SDA 

algorithm was adopted for fine mode AOD. The LUT-SDA algorithm is described and evaluated in 

previous studies (Yan et al. 2019). The intermediate parameter, Angstrom exponent (AE), was 

calculated with MODIS AOD at 470 nm and 660 nm. 
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Table 3.1 MODIS bands used for aerosol properties 

Band Wavelength (nm) Resolution (m) 

3 459–479 500 

4 545–565 500 

5 1230–1250 500 

6 1628–1652 500 

7 2105–2155 500 

 

3.2.2.2 Data Preprocessing 

Before modelling, AOD products in 2017 were calibrated and gap-filled. Five preprocessing steps were 

performed for AOD calibration and daily coverage improvement, following (He and Huang 2018; Ma 

et al. 2016). First, the relationships between MODIS AOD retrievals and AERONET AOD 

measurements from 2013 to 2016 were established. This timeframe was employed to establish the 

accuracy of MODIS AOD data due to the limited number of collocated MODIS-AERONET 

observations in 2017. The relationships are shown in Figure A1, with the correlation coefficients higher 

than 0.91. Since this relationship shows strong seasonality (Remer et al. 2013), four linear regressions 

were built for each season and adopted for MODIS AOD calibration in 2017. MODIS AOD includes 3 

km DT and 10 km DB products from the Terra and Aqua (Table A1). Next, the MODIS 10 km DB 

AOD was resampled into 3 km using the cubic convolution resampling algorithm. Then, a linear 

regression analysis between Terra and Aqua DT (DB) was performed and the regression coefficients 

obtained were employed to calculate the missing pixels in Terra DT (DB) if there are values in Aqua 

DT (DB), and vice versa. Furthermore, the variances per satellite per algorithm per season were 

calculated and used for combining AOD data with an inverse variance weighting (IVW) approach: 

AOD =⁡
𝐴𝑂𝐷𝐴𝑞𝑢𝑎 𝑉𝑎𝑟𝐴𝑞𝑢𝑎𝑠⁄ + 𝐴𝑂𝐷𝑇𝑒𝑟𝑟𝑎 𝑉𝑎𝑟𝑇𝑒𝑟𝑟𝑎𝑠⁄

1 𝑉𝑎𝑟𝐴𝑞𝑢𝑎𝑠⁄ + 1 𝑉𝑎𝑟𝑇𝑒𝑟𝑟𝑎𝑠⁄
 (3-2) 

where AOD is the satellite-combined DT/DB AOD with IVW; 𝐴𝑂𝐷𝐴𝑞𝑢𝑎 and 𝐴𝑂𝐷𝑇𝑒𝑟𝑟𝑎 are the DT/DB 

AOD values in Aqua and Terra after calibration and gap filling, respectively; 𝑉𝑎𝑟𝐴𝑞𝑢𝑎𝑠 and 𝑉𝑎𝑟𝑇𝑒𝑟𝑟𝑎𝑠 

are the variances of Aqua and Terra AOD in season s, respectively. Finally, satellite-combined DB 

AOD images were used to fill the missing pixels of satellite-combined DT images. The validation and 

coverage improvement results are shown in Figure A2 and Figure A3. 
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3.2.3 Meteorological Data 

Surface meteorological data, including RH, PBLH and visibility (VIS) data, were obtained from the 

NCEP/NCAR dataset. The “NCEP GDAS/FNL 0.25˚ Global Tropospheric Analyses and Forecast 

Grids (https://rda.ucar.edu/datasets/ds083.3/)” were downloaded for RH and PBLH, and the “NCEP 

ADP Global Surface Observational Weather Data (http://rda.ucar.edu/datasets/ds461.0/)” were utilized 

for VIS, which include more than 1500 stations over China received via the Global Telecommunication 

System. The NCEP dataset includes 6-hourly analysis products and the products at 12:00 were selected 

and used in this study. 

3.2.4 Data Integration 

Both the satellite and the meteorological data were unified with respect to the coordinate system 

(WGS84), data format, and image size. Daily VIS were interpolated using the inverse distance weighted 

(IDW) interpolation approach. Following the geophysical coverage of study area and spatial resolution 

of MODIS AOD, all meteorological data were masked by the extent of China before resampling to 3 

km using the cubic convolution interpolation algorithm. 

3.3 Methodology 

3.3.1 Ground-Level PM2.5 Retrieval 

The purpose of our work is to retrieve ground-level dry PM2.5 mass concentration with an optical-mass 

conversion algorithm. Several corrections and calculations were thus performed to convert satellite 

columnar observations into ground-level mass concentrations. The framework of this study is shown in 

Figure 3.1. 

https://rda.ucar.edu/datasets/ds083.3/
http://rda.ucar.edu/datasets/ds461.0/
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Figure 3.1 Framework of PM2.5 retrieval with optical-mass conversion algorithm 

 

AOD, which refers to the aerosol extinction (absorption and scattering) in the total vertical column 

of atmosphere, must be corrected into the extinction near the ground under dry conditions. According 

to previous studies (Hansen 1974; Schuster et al. 2006), atmospheric aerosols present a bimodal 

distribution and the accumulation mode aerosol is superior for use in PM2.5 retrieval. Therefore, the 

FMF was adopted for fine mode AOD calculation: 

AODf = AOD ∗ FMF (3-3) 

where AODf is the fine mode AOD. 

According to (Koelemeijer et al. 2006), both AOD and PM show negative correlations with 

precipitation (i.e. humidity), but the effect is stronger on AOD. Hence, it is necessary to remove the 

effect of humidity and boundary layer height on the PM retrieval. Fine ‘meteo-scaled’ optical depth, 

bext,dry is defined as: 

bext,dry =⁡
AODf

PBLH ∗ f(RH)
 (3-4) 

where f(RH) is the hygroscopic growth function, a function of relative humidity. The formulas of this 

function are based on three previous studies to diminish the effects of spatial heterogeneity (Appendix 

A-2) (Chen et al. 2014a; Liu et al. 2008; Zhang et al. 2015b). 
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According to the physical definition: 

bext,dry = ∫ Qextπr
2
ⅆ𝑁

ⅆ ln 𝑟
ⅆ ln 𝑟

∞

0

 (3-5) 

where 
d𝑁

d ln 𝑟
 is the lognormal particle size distribution, which is described by Eq. (3-6); Qext  is the 

extinction efficiency through the area distribution, which is defined by Eq. (3-8).  

The lognormal particle size distribution was used for accumulation mode aerosols (Hansen 1974): 

ⅆ𝑁

ⅆ ln 𝑟
= ⁡

1

√2𝜋
⋅

1

𝑟 ln 𝜎𝑔
exp(−

(ln 𝑟 − ln 𝑟𝑔)
2

2 ln2 𝜎𝑔
) (3-6) 

where 𝑟𝑔 is the lognormal geometric particle radius and⁡𝜎𝑔 is the geometric standard deviation. 𝜎𝑔 was 

set at 2⁡μm, which refers to the general range (1.75 - 2.25) measured for different types of fine particles 

(Hobbs et al. 1991; Hofmann and Rosen 1983; Reid et al. 2003; Steele et al. 2006). Since the aerosol 

extinction properties are proportional to 𝑟2, 𝑟𝑔 is not the optimal parameter to represent the distribution. 

Therefore, the effective radius 𝑟𝑒  (a weighted average of particle size distribution) is defined and 

deduced according to the rule of lognormal distribution (Hansen 1974). 

𝑟𝑒 =⁡
∫ 𝑟3

ⅆ𝑁
ⅆ 𝑙𝑛 𝑟

𝑑 ln 𝑟
∞

0

∫ 𝑟2
ⅆ𝑁
ⅆ 𝑙𝑛 𝑟

𝑑 ln 𝑟
∞

0

=⁡𝑟𝑔exp(
5 ln2 𝜎𝑔

2
) (3-7) 

Similarly, extinction efficiency is defined as 

Qext =⁡
𝜅𝑒𝑥𝑡

∫ 𝜋𝑟2
ⅆ𝑁
ⅆ ln 𝑟

ⅆ ln 𝑟
∞

0

=
𝜅𝑒𝑥𝑡

𝜋(𝑟𝑔)
2exp(2 ln2 𝜎𝑔)

 
(3-8) 

where 𝜅𝑒𝑥𝑡 is the extinction coefficient, which is inversely proportional to VIS. 𝜅𝑒𝑥𝑡 can be calculated 

based on the empirical relationship κext = 3.912/VIS (Koschmieder 1924). 

Based on these definitions, fine particulate mass concentration under dry conditions at ground level 

can be derived as: 

PMf =⁡
4

3
πρ∫𝑟3

ⅆ𝑁

ⅆ ln 𝑟
ⅆ ln 𝑟 (3-9) 

where PMf refers to the fine particulate matter, ρ is the particle mass density, which is assumed to be 

1.5 g/cm3 (Clarisse et al. 2010; Li et al. 2016). 

Substituting these expressions into the above equations yields, 
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AODf
∗ = PMf ∗ ⁡

3Qext
4ρ𝑟𝑒

= PM𝑓 ∗⁡
3𝜅𝑒𝑥𝑡

4𝜋ρ(𝑟𝑔)
3
exp(9/2 ln2 𝜎𝑔)

 (3-10) 

Therefore, 

PMf =
AOD ∗ FMF

PBLH ∗ f(RH)
∗ ⁡
4πρ(rg)

3
exp(9/2 ln2 σg)

3(3.912/VIS)
 (3-11) 

In Eq. (3-11), AOD, FMF, PBLH, f(RH) and VIS are obtained from satellite and NCEP/NCAR 

datasets; ρ and σg  are the constants, and rg  is calculated using ground-based PM2.5 measurements. 

Additionally, we assumed that PMf  derived by AODf is equal to PM2.5. However, the truncation 

diameter of AODf is smaller than that of PM2.5, which could introduce errors into the retrieval (O’Neill 

et al. 2003). Hence, a correction factor 0.86 was applied to minimize this bias (Li et al. 2016). 

3.3.2 Particle Aerodynamic Diameter Calculation 

We relate Eq. (3-5) and (3-9) to ground-level rg in Eq. (3-10), deriving both PM2.5 mass concentration 

and ground-level re  simultaneously, primarily from satellite-retrieved AOD and meteorological 

parameters. Ground-level particle radius is purposefully preserved rather than eliminated so that it may 

also be retrieved, yielding additional insight relevant to understanding exposure to fine and ultrafine 

particulate matter. Ground-based measurements used in the estimation of rg were not used to validate 

retrieved PM2.5 mass concentrations, with details as follows. 

The particle size of PM2.5 was expressed in terms of aerodynamic diameter, ⅆ𝑎𝑒, as per the definition 

of PM2.5. To do this, first, all matched samples for each day were randomly divided into five equal size 

subgroups. A single subgroup was adopted as the validation sample set and the remaining four were 

employed to calculate particle radius (rg) using Eq. (3-11). This process was iterated five times, with 

each of the five subgroups used exactly once for validation. The station-based daily mean particle radius 

was interpolated using the IDW method with 3 km spatial resolution. We masked the pixels where the 

corresponding AOD values were not available to reduce bias. The daily particle radius was then 

averaged to obtain the seasonal spatial distribution. Finally, the seasonal average geometric particle 

radius was used to find the equivalent aerodynamic diameter. To relate the aerodynamic diameters (ⅆ𝑎𝑒) 

to the geometric diameter (ⅆ𝑔 ), the volume equivalent diameters ⅆ𝑒  is introduced. Assuming that 

aerosols in the atmosphere are spherical particles, ⅆ𝑒 = ⅆ𝑔  and ⅆ𝑔 = 2rg . Therefore, according 

previous studies (Hand and Kreidenweis 2002; Raabe 1976): 
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ⅆ𝑎𝑒 =⁡ⅆ𝑒(ρ ρ∗⁄ )1/3 = ⅆ𝑔(ρ ρ∗⁄ )1/3 = 2rg(ρ ρ∗⁄ )1/3 (3-12) 

where ρ* is the standardizing density equal to 1 g/cm3. 

3.3.3 Method Correction and Validation 

There are more than 1500 VIS stations over China, which is comparable with the number of PM2.5 sites. 

The PM2.5 concentrations estimated by interpolated VIS are difficult to validate if the VIS stations are 

close to the PM mass monitoring sites. Therefore, the daily VIS data from the stations near the PM2.5 

monitoring stations were removed to show the extendibility of the proposed method. A leave-one-out 

cross validation was conducted to assess accuracy.  

Satellite-observed AOD values can be biased or missing due to high surface reflectance or cloud and 

high aerosol loading, resulting in PM2.5 underestimation (Guo et al. 2017b). A correction factor C𝑖 

calculated using Eq. (3-13) were adopted to correct these errors: 

C𝑖 =
𝑃𝑀2.5,𝑜𝑏𝑠_𝑖

𝑃𝑀2.5,𝑒𝑠𝑡_𝑖
                                                             (3-13) 

where 𝑃𝑀2.5,𝑜𝑏𝑠_𝑖 and 𝑃𝑀2.5,𝑒𝑠𝑡_𝑖 are the average observed and estimated PM2.5 mass concentration at 

pixel i. The factors were extrapolated to all pixels over the study are using IDW algorithm. The final 

PM2.5 estimation at annual and seasonal scale is calculated by correction factors and uncorrected 

estimated values. 

Five metrics, including Pearson coefficient (R), root-mean-square error (RMSE), mean absolute error 

(MAE), mean bias error (MBE) and relative percentage error (RPE), were used to assess the retrieval 

bias.  

RMSE = √
1

𝑁
∑ (𝑒𝑠𝑡𝑖 − 𝑜𝑏𝑠𝑖)

2
𝑁

𝑖=1
 (3-14) 

MAE =
1

𝑁
∑ |𝑒𝑠𝑡𝑖 − 𝑜𝑏𝑠𝑖|

𝑁

𝑖=1
 

MBE =
1

𝑁
∑ (𝑒𝑠𝑡𝑖 − 𝑜𝑏𝑠𝑖)

𝑁

𝑖=1
 

(3-15) 

(3-16) 

RPE =
1

𝑁
∑ |

𝑒𝑠𝑡𝑖 − 𝑜𝑏𝑠𝑖
𝑜𝑏𝑠𝑖

|
𝑁

𝑖=1
 (3-17) 

where 𝑜𝑏𝑠𝑖 and 𝑒𝑠𝑡𝑖 are the observed and estimated value of sample i, respectively. 𝑜𝑏𝑠̅̅ ̅̅ ̅ and 𝑒𝑠𝑡̅̅ ̅̅  are 

the average observed and estimated value. N is the number of validation samples. 
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3.4 Results 

3.4.1 Estimation of Particle Size 

Figure 3.2 depicts the mean aerodynamic particle diameter of PM2.5, calculated using Eq. (3-12). The 

mean particle size is larger in the northwest than in the southeast, especially in summer (Figure 3.2b). 

The division coincides with the Heihe–Tengchong line, which is an imaginary line dividing the territory 

of China into western and eastern parts (Hu 1935). The results indicate that people living in eastern 

China (with 43% of the area and 94% of the population in 2015) are exposed to PM with smaller 

diameters. Although the proportion of smaller particles in summer is higher than that in the other three 

seasons, the area with the largest particle size (the Taklamakan Desert) also occurred in summer. The 

AE in the Taklamakan Desert presents larger values in spring and summer compared with that in the 

other two seasons (Wang et al. 2013). Our results show a similar pattern since AE is inversely associated 

with particle size. The seasonal variations are also noted by previous studies (Chubarova et al. 2016; 

Tian et al. 2015). The statistical characteristics of the retrieved particle size are shown in Table 3.2.  

 

 

Figure 3.2 Spatiotemporal distribution of aerodynamic diameters over China 

The retrieved 𝑟𝑔  was also compared with measured values. Effective radius at four AERONET 

stations (Version 3 Level 2.0) in China were downloaded and calculated for validation. Although there 

are only 87 retrieved-measured 𝑟𝑔 samples in total due to the availability of collocated Level 2.0 data, 
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this is a good start for large-scale particle size estimation over land, with RMSE of 0.11 μm, which 

enables diverse particle sizes to be distinguished (Figure 3.3). The relationship is statistically significant 

at the 0.05 significance level. However, it should be noted that the 𝑟𝑒 obtained from AERONET is in 

the total atmospheric column, while the radius retrieved in our study is at ground level (Prats et al. 

2011). The small, positive value of MBE in Figure 3.3 shows that the ground-level radius is larger than 

the columnar value, which is consistent with the evidence that the aerosol radius decreases slightly with 

altitude (Baars et al. 2012).  

Table 3.2 Statistical characteristic of aerosol aerodynamic diameters (µm) 

Season Minimum Maximum Mean Standard deviation 

Spring 0.23 3.23 0.69 0.15 

Summer 0.19 6.87 0.69 0.23 

Autumn 0.18 4.37 0.64 0.10 

Winter 0.20 3.60 0.65 0.11 

Annual 0.21 2.86 0.67 0.11 

Spring: DOY 60~149; Summer: DOY 150~241; Autumn: DOY242~332; Winter: DOY1~59;333~365; 

DOY: Day of Year. 

 

 

Figure 3.3 Validation of satellite-retrieved and AERONET measurement-retrieved radius in 2017 
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3.4.2 Temporal Variation of Retrieved PM2.5 

 

Figure 3.4 Temporal variation of (a) measured and estimated PM2.5 concentrations, and (b) RMSE and RPE 

across China 

The monthly variation of measured and estimated PM2.5 concentrations across China is shown in Figure 

3.4a. As shown, heavily polluted periods are more likely to occur between Jan-Feb and Nov-Dec when 

heating systems are operating in Northern China. The PM2.5 concentration differences among stations 

in Mar-Sep (spring and summer) are lower than those in other months. These results are consistent with 

the seasonal distribution of PM2.5 (Figure 3.6). Summertime has the lowest PM2.5, with seasonal means 

of 27 μg/m3, while winter is the most polluted season with mean concentrations equal to 59 μg/m3 in 

2017. The highest RMSE also occurred in winter, followed by autumn, spring and summer (Figure 

3.4b). The monthly variation of RPE is stable, with an average of 31 %. Additionally, the performance 

of the proposed method is also evaluated at the seasonal scale (Table 3.3). The highest correlation 

coefficient is 0.91 in winter, with RMSE of 20μg/m3 and RPE of 27%.  

Table 3.3 Correlation between seasonal-mean retrieved and in-situ PM2.5 concentration. 

Season R RMSE (μg/m3) RPE N 

Spring 0.77 13 23% 1255 

Summer 0.72 9.4 23% 1245 

Autumn 0.83 15 27% 1242 

Winter 0.91 20 27% 1193 
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Based on the spatial pattern of annual PM2.5 concentrations, five regions, including Beijing-Tianjin-

Hebei Metropolitan region (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD), Sichuan 

Basin (SB) and Taklamakan Desert (TD), were selected to present regional monthly variation (Figure 

3.5). The overall variations among these five areas are similar with that across China and the highest 

PM2.5 values were observed in the BTH region. 

 

Figure 3.5 Monthly variation of retrieved and measured PM2.5 concentrations in the BTH, YRD, PRD, 

SB and TD region 
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Figure 3.6 Seasonal mean satellite-retrieved PM2.5 concentrations 
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3.4.3 Spatial Distribution of Retrieved PM2.5 

 

Figure 3.7 Spatial distribution of annual mean satellite-retrieved and ground-based PM2.5 concentrations 

with four hotspots 

 

The annual mean of satellite-retrieved PM2.5 concentrations over China was estimated to be 47 μg/m3. 

The spatial pattern of the retrieved PM2.5 appears to be consistent with that of ground measurements 

and other studies (van Donkelaar et al. 2010). The BTH region experienced high PM2.5 exposures in 

2017, with concentrations higher than 55 μg/m3. Among the four hotspots highlighted in Figure 3.7, 

the BTH region had the highest annual mean concentrations, followed by the SB, the YRD and the 

PRD region. Except for the above four regions, high PM2.5 levels were also observed in the Taklamakan 

Desert.  

The evaluation of uncorrected estimates is shown in Figure 3.8, which illustrates the underestimation 

of PM2.5 mass concentration. The possible reason is that high aerosol loading might be misclassified 

into cloud, leading to missing values in satellite images under severe air pollution. Therefore, PM2.5 

estimates were improved with correction factors and evaluated using ground measurements. The 
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promising accuracy for annual (R = 0.82, RMSE = 9.2 μg/m3, MAE=7.0 μg/m3, MBE=-2.0μg/m3, RPE 

= 18%, N = 1270) and seasonal (R = 0.81, RMSE = 12 μg/m3, MAE=9μg/m3, MBE=-0.4μg/m3, RPE = 

24%, N = 4932) means are reported in Figure 3.9. The bias of the corrected results might be due to the 

limited spatio-temporal coverage and uncertainties of input data. Since DT has limited capability of 

bright surface AOD retrieval, the AOD from 10 km DB could cause uncertainty due to spatial 

heterogeneity. Meanwhile, sparsely distributed monitoring sites and reduced satellite coverage affected 

the PM2.5 retrieval by reducing the accuracy of the retrieved particle radius.  

 

Figure 3.8 Validation of PM2.5 retrievals without correction over China 

 

Figure 3.9 Validation of PM2.5 retrievals over China at annual and seasonal scales 
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3.5 Discussion 

An optical-mass conversion algorithm was established to quantify PM2.5 concentrations using satellite-

observed data. The particle diameters and PM2.5 concentrations were estimated and validated over 

China. Our aerosol diameter results show that the mean particle size in eastern China was smaller than 

in other regions, which might be attributed to differences in topography, meteorology, land use, and 

population density, affecting the properties of emitted aerosols as well as their fate and transport. 

According to previous studies (Qian and Liu 2018; Wang et al. 2004), due to land use and topography 

in China, aerosol loading to the east of the Heihe-Tengchong line is high, which is likely attributed to 

human activity. Values in the west are relatively low, which might be influenced by natural sources 

(such as sand and dust). These findings are consistent with our size results. This observed pattern does 

show some seasonality, though 90% of pixels have diameters less than 1 μm throughout all seasons. 

Across the domain, particle sizes were generally larger in the spring and summer, and smaller in the 

autumn and winter. This seasonality may be attributed to variations in the sources, fate, and transport 

of fine particulate matter (Zhang et al. 2013).    

A similar spatial pattern was also observed in mass concentration. The heavy pollution in the BTH 

region is likely attributable to unfavorable topography, regional transport and anthropogenic activities 

associated with urbanization and industrialization (such as fossil fuel consumption) (He and Huang 

2018; Zheng et al. 2015a). The pollution in the SB region was likely due to relatively low elevations 

and stagnant air circulation (You et al. 2016) and the polluted air in the TD region was mainly attributed 

to dust and sand (Ma et al. 2014). In the PRD, PM2.5 concentrations were predominantly rated “lightly 

polluted” or “good”, though some coastal regions showed “excellent” levels, which could indicate an 

underestimation in coastal areas, where surface reflectance can be more challenging to characterize 

(Anderson et al. 2013). Temporally, the highest PM2.5 concentrations occurred in winter while summer 

had the lowest concentrations. Heating-related emissions and adverse weather are two possible reasons 

for higher pollution in winter (He and Huang 2018; Ma et al. 2014). The PM2.5 retrievals were validated 

at 1270 stations in China in more than 350 available days, with acceptable correlation between annual-

mean retrieved and measured PM2.5 concentrations. These results provide evidence to support the 

reliability of this conversion algorithm for retrieving ground PM2.5 concentrations with an explicit 

mechanism. 

Compared with other retrieval methods (Lin et al. 2015; Zhang and Li 2015), the AOD-PM2.5 

relationship in our study builds upon aerosol microphysical characteristics without introducing regional 
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fitting parameters, making it easier to apply across spatial and temporal domains. However, the 

performance of this method is affected by two main sources: input data and retrieval assumptions. 

Spatial heterogeneity affects the processes of data retrieval, gap-filling and interpolation, which could 

lead to random and systematic errors. Although MODIS AOD is one of the most widely used and well-

validated products for PM2.5 retrieval, biases remain because of the retrieval algorithm and cloud 

contamination. High aerosol loading might be misclassified into cloud, leading to missing values during 

periods of severe haze. Meanwhile, the input data might be also biased due to algorithm errors, 

interpolation errors and systematic errors. For example, the separation of MODIS retrieval algorithms 

over land and ocean may lead to inaccuracy over pixels containing land and ocean (Anderson et al. 

2013). Consistent with the satellite transit time, the retrieved PM2.5 in this study corresponds to values 

between 10:00am and 14:00pm instead of a daily average. This potential bias should be addressed prior 

to use as a daily average, for example, in health studies. 

In addition to the uncertainty caused by input data, the retrieval method in our studies could also 

introduce errors. Although particle radius could be determined with the model, high precision was 

difficult to achieve with the limited ground-based measurements. Compared to the observed data 

acquired from AERONET, the relative error of particle radius in this study is approximately 7%; 

however, this needs to be further tested, especially in the regions where verification sites are limited. It 

is more problematic to adopt an empirical constant as the radius due to the spatiotemporal variance of 

aerosols. Therefore, future work should seek to address this using the micro-properties of aerosols from 

a mechanistic prospective at large scale. Furthermore, assumptions used in our study could also 

introduce bias. Previous studies have indicated that particle density and distribution vary in the 

columnar atmosphere (Liu et al. 2015a; Yan et al. 2017). The assumptions of constant values for ρ and 

σg and uniform vertical distribution can lead to an error of 18% and 16.6%, respectively (Li et al. 2016; 

Zhang and Li 2015). The total uncertainty of related to assumptions in our optical-mass conversion 

algorithm is approximately 29%. Additionally, there are several other factors regarded to be causally 

associated with PM2.5 concentration and the mechanism of how these parameters impact observations 

was not fully understood, which offers a fertile field for study. 

3.6 Conclusion 

A satellite-based optical-mass conversion algorithm was established in this chapter to quantify PM2.5 

mass concentrations based on aerosol microphysical characteristics, which can simultaneously estimate 

particle size. The estimated particle radius was quantified against the available ground-based columnar 
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measurements, with RMSE = 0.11μm. The validation result shows that the ground-level radius is 

slightly larger than the corresponding columnar value on average, which is consistent with the findings 

that aerosol radius decreases slightly with altitude. The spatial distribution shows that particle diameters 

in eastern China are smaller than those in other regions, which might be due to differences in features 

such as topography, meteorology, land use and population density in China. Additionally, the estimated 

PM2.5 concentrations were corrected and validated using ground measurements at annual and seasonal 

scales, with RMSE = 9.3 μg/m3, MAE=7.0 μg/m3, MBE=-2.0μg/m3, RPE = 18% (N = 1270). The 

spatiotemporal distribution of satellite-retrieved PM2.5 agrees with the in-situ data and findings from 

previous studies. Highly polluted periods are more likely to occur between Jan-Feb and Nov-Dec, while 

summertime has the lowest PM2.5 concentrations. Spatially, the BTH regions experienced a higher 

PM2.5 pollution compared with other major metropolitan areas. This approach builds on previous 

optical-mass studies by avoiding regional fitting and retrieving particle size. It can thus potentially fill 

an important gap in estimating exposure to ultrafine particles (which are thought to be more toxic, but 

lack large-scale, high-resolution measurements). Further work is needed to increase the accuracy of 

this method, which would benefit from the improvement of sensors and algorithms. 
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Chapter 4 

Size-Differentiated Patterns of Exposure to Submicron Particulate Matter 

Across Regions and Seasons in China 

To motivate the understanding of the impact of particle size on human health, in this chapter, we 

present the spatiotemporal distributions and population exposure to ambient particle size and mass 

concentration of PM2.5 at the national level in China using a satellite-based theoretical optical-mass 

relationship. We find that most of the Chinese population was exposed to PM2.5 in the sub-micrometer 

range. Less than 1% lived in regions where concentrations met the annual WHO guideline (10 μg/m3) 

and annual-mean particle effective radii above 0.7μm (i.e. PM1) in 2017. High mass concentrations 

and small particle sizes were observed in the east of China where has high GDP and population 

density. The study reveals the pattern of size-resolved PM2.5 exposure and indicates the potential of 

remote sensing techniques for population-scale PM2.5 estimation, including concentrations and sizes. 

The limitations of this work, resulting from the dearth of large-size measurements and the uncertainty 

of input data, are discussed to facilitate further improvements on the effect of particles on PM2.5 

attributable health risk. 

This chapter is structured as follows. Section 4.1 states the background and motivation of the study. 

Sections 4.2 introduces the adopted datasets and the estimation method. Section 4.3 demonstrates the 

population exposures to PM2.5 mass and particle radius in China. Section 4.4 analyzes the possible 

attribution of PM2.5 mass and size. Section 4.5 discusses the uncertainty sources in this chapter. Section 

4.6 concludes the main findings. 

4.1 Introduction 

Exposure to ambient atmospheric pollutants, especially fine particulate matter (PM2.5), has been shown 

to significantly increase the risk of mortality from cardiovascular and respiratory illnesses (Pope et al. 

2018; Sacks et al. 2011). China has suffered from severe PM2.5 pollution with its rapid economic 

development and industrialization. In 2017, approximately 0.85 million premature deaths and 19.8 

million disability-adjusted life-years (DALYs) lost were reported to be attributable to ambient PM2.5 

exposure in China, accounting for 29% of the PM2.5-related premature deaths and 24% of the DALYs 

worldwide (Cohen et al. 2017). While epidemiologic relationships have been established for PM2.5 mass 

concentrations and a variety of health endpoints, other particulate characteristics, like composition and 
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size, may be relevant in informing such relationships, e.g., via effect modification, or in identifying 

new ones. Size-resolved particular matter observations are thus pertinent for exposure assessment. Here, 

we aim to provide national population-scale size-resolved exposures to PM2.5.  

Using various exposure methods, previous toxicological and epidemiological studies found that 

particles with different size ranges have independent effects on human health (Esposito et al. 2012; 

Gerlofs-Nijland et al. 2009). Small particles can penetrate into the airways and alveoli, and finally into 

the bloodstream and cardiovascular system, leading to inflammation and oxidative stress (Delfino et al. 

2005; Mills et al. 2009). Smaller particles may have higher toxicity since the relatively large number 

and surface area of small particles may increase their risk of absorbing toxic substances (Hoek et al. 

2009; Ostro et al. 2015; Samoli et al. 2016).  

Despite such work indicating the significance of size, the scale of current size-resolved exposure and 

epidemiological studies is limited in terms of the exposed population, as well as spatial and temporal 

domains. This is due primarily to typical exposure measurement techniques, including fixed ground-

based stations (Chen et al. 2017; Hu et al. 2018) and personal portable monitors (Gulliver and Briggs 

2007; Pacitto et al. 2018; Yu et al. 2012). Personal exposure monitors provide crucial individual-level 

detail and insights. Nonetheless, supplementary population-level exposures can inform individual-level 

studies, and may offer their own unique insights given the nature of environmental exposures 

(Pekkanen and Pearce 2001). Population-scale studies that involve some size-resolution in the fine 

fraction are primarily limited to station-based measurements, the spatial continuity and coverage of 

which are limited due to their high costs of station construction, operation and maintenance (Kumar et 

al. 2015). Wichmann et al. (2000) used measurements from a single monitoring station to assess particle 

exposure in Erfurt, Germany, with a population of approximately 200,000 people, indicating that 

exposure to ambient concentrations of fine and ultrafine particles had comparable effects. (Lin et al. 

2016) found the excess risk of cardiovascular mortality with PM1 was 6.48% (95% CI: 2.10%, 11.06%), 

higher than those associated with PM10 and PM2.5 reported in their study, demonstrating that PM1 might 

be an important characteristic of particulate matter pollution attributable to cardiovascular mortality in 

Guangzhou, China. Two monitoring stations were used in this study.  

The distribution of ambient particles shows variability, reflecting regional variations in aerosol 

emissions, transport and physicochemical processes (Pinto et al. 2004; Wang et al. 2013; Yang et al. 

2018). Chen et al. (2018) showed the station-based spatial distributions of PM1 and PM2.5 

concentrations and the seasonal variations of the PM1/PM2.5 ratio the provincial level, demonstrating 



 

41 

the spatial and temporal variability of size-fractioned particulate matter particles. Thus, exposure 

estimates based on in-situ measurements in a sparse monitoring network cannot fully represent the 

average exposure of the whole city population, especially, perhaps, for ultrafine particles (Pekkanen 

and Kulmala 2004), potentially limiting their use for population-based studies. Kodros et al. (2018, 

2016) indicated that particle size measurements in polluted areas, such as India and China, are 

especially limited, leading to uncertainties. 

Many techniques are used to address the limited spatial coverage of fixed site measurements of 

particulate matter exposure based on multiple data sources. Ground-based measurements may be used 

to validate alternative estimates from numerical simulation and empirical models (Knibbs et al. 2018; 

Ma et al. 2014; Xiao et al. 2018). These approaches differ in their current level of application to size-

resolved exposure estimates. Numerical chemical transport models offer an approach to obtain aerosol 

components and behavior with a relatively high spatiotemporal resolution and coverage (Brauer et al. 

2012; Saari et al. 2019). Further, they are capable of providing size-resolved exposures, as in Kodros 

et al., (2018); however, the application thereof remains limited as the use of size-resolved aerosol 

schemes greatly increases computational cost of simulations (Kodros and Pierce 2017). Statistical 

models are beginning to offer size-related information through the advent of novel and relatively low-

cost particle-counting sensors. While such sensors do not provide size-resolved mass concentrations, 

particle number concentration can be related to the mass distributions. Recent work, reviewed and 

advanced in Saha et al., (2019), employed short-term fixed-site measurements to develop land use 

regression models of particle number concentration – a proxy for ultrafine exposure. Satellite remote 

sensing techniques have been applied to obtain concentrations of air pollutants with relatively with high 

spatial coverage (van Donkelaar et al. 2016; Yan et al. 2017). Zhang and Li (2015) established a 

theoretical relationship between fine particulate mass and satellite measurement based on aerosol 

microphysical behaviors. However, these methods have less commonly been applied to derive particle 

size (Hilboll et al. 2013; Larkin et al. 2017). Aside from the Angstrom Exponent (AE), which is 

inversely related to aerosol size (Qi et al. 2013; Wang et al. 2013), there is little information available 

on particle size, especially for submicron exposures at a population scale. 

In this study, we sought to provide national population-scale size-resolved estimates of PM2.5 mass 

concentration. To achieve this, we combined aerosol microphysical characteristics with satellite optical 

measurements to estimate the ground-level particle effective radius of PM2.5. We applied this to 

examine the geographic variability and population exposure of the PM2.5 size-resolved mass 
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concentrations over China in 2017. This study reveals the extent of PM2.5 exposure by particle size in 

the sub-micrometer range, identifies the importance of additional size-resolved measurements, and 

motivates further research to examine the effects of particle size on health outcomes. 

4.2 Materials and Methods 

4.2.1 Satellite-retrieved PM2.5 Estimation 

Ground-level PM2.5 concentrations were estimated based on satellite and meteorological data using a 

Geographically Weighted Regression (GWR) model which were widely adopted for PM2.5 

concentrations retrievals. Prior to GWR modelling, we corrected satellite-observed columnar aerosol 

optical depth (AOD) at the wavelength of 550nm into ground-level extinction (bext ) based on an 

assumption that the majority of atmospheric aerosols evenly suspend in the planetary boundary layer 

(PBL) due to the active mixing (Kaufman et al. 2003). Fine mode AOD was adopted based on an look-

up table–spectral deconvolution algorithm, which was found to be closely related to PM2.5 (Yan et al. 

2017; Zhang and Li 2015). Hygroscopic growth functions were employed since aerosol hygroscopic 

characteristics affect extinction by changing the particle size. The correction formula is given below: 

 bext,dry =
𝜂bext

f(RH)
=

𝜂𝜏

Hf(RH)
⁡                                                         (4-1) 

where bext,dry refers to extinction coefficient of fine particles under dry conditions; 𝜂 refers to fine 

mode fraction; 𝜏 refers to satellite-derived AOD at 550nm; H refers to the height of PBL; f(RH) 

refers to a hygroscopic growth function with independent variables of relative humidity (RH), which 

are calculated based on the previous studies (Chen et al. 2014a, 2015; Liu et al. 2019a; Yan et al. 

2017).  

In addition to aerosol extinction, we include meteorological parameters expected to be associated the 

generation, accumulation, and removal of aerosols, including air temperature (T) (Day and Pandis, 2011; 

Liu et al ., 2007), surface wind speed (WS) (Zhou et al., 2015), horizontal visibility (V) (Xiao et al., 

2018; You et al., 2016b) and elevation (DEM) (Wang et al., 2018). These variables have been employed 

previously in studies with acceptable performance (He and Huang, 2018b; Kloog et al., 2012; Liu et 

al., 2009; Ma et al., 2016, 2014). We considered and excluded additional variables, such as pressure, 

that did not independently improve performance (details in Appendix A-3). We employ these variables 

to estimate PM2.5 across China using the GWR model, according to the following model structure: 

𝑃𝑀2.5(𝑖,𝑗) = 𝛽0(𝑖,𝑗) + 𝛽bext,dry⁡(𝑖,𝑗)bext,dry⁡(𝑖,𝑗) + 𝛽𝑇(𝑖,𝑗)𝑇(𝑖,𝑗) + 𝛽𝑊𝑆(𝑖,𝑗)𝑊𝑆(𝑖,𝑗) + 𝛽𝑉(𝑖,𝑗)𝑉(𝑖,𝑗) +
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𝛽𝐷𝐸𝑀(𝑖,𝑗)𝐷𝐸𝑀(𝑖,𝑗) + 𝜀(𝑖,𝑗)                                                 (4-2) 

where 𝑃𝑀2.5(𝑖,𝑗) is the ground-level PM2.5 concentration at location (i, j); 𝛽0 is the intercept;⁡β with 

different subscripts denote the slope of corresponding variables. 𝜀(𝑖,𝑗) is the error term at location (i,j). 

Gaussian distance decay functions were adopted to determine the weights. Considering spatial 

autocorrelation, 10-fold block cross validation (CV) was adopted to evaluate the model performance 

(Roberts et al. 2017). Four metrics, including the determination coefficient (R2), root mean square error 

(RMSE), mean absolute error (MAE) and mean bias error (MBE), were used to compare the retrieved 

and measured values. The variance inflation factor (VIF) was employed to measure the collinearity of 

the adopted variables (Table A3). It was less than 3 for all variables, indicating low collinearity. 

The detailed description of adopted parameters in above formulas is shown in Table 4.1. All 

independent data were masked before resampling to 3 km using the cubic convolution algorithm and 

were unified with respect to the coordinate system (WGS84) and data format, following the geophysical 

coverage of China and spatial resolution of MODIS AOD. 

Table 4.1 Detailed data description 

Data (Unit) Spatial resolution 
Descriptive statistics of collocated data 

Min Max Mean 

PM2.5 (μg/m3) --- 1.00 736.25 45.55 

AOD (Unitless) 3km; 10km 0.03 3.86 0.47 

T (K) 0.25˚ 260.81 309.67 289.04 

WS (m/s) 0.25˚ 0.16 15.82 3.49 

RH (%) 0.25˚ 9.04 96.83 56.93 

PBLH (m) 0.25˚ 25.90 6328.97 1837.02 

V (km) --- 0.26 49.99 9.45 

DEM (m) 1km -13.46 4553.22 370.51 

Note: Ground-level PM2.5 concentrations were obtained from China National Environment 

Monitoring Center; AOD images obtained from NASA Atmosphere Archive and Distribution 

System; T, WS, RH, and PBLH were obtained from NCEP GDAS/FNL 0.25 Degree Global 

Tropospheric Analyses and Forecast Grids; V was obtained from NCEP ADP Global Surface 

Observational Weather Data; DEM was obtained from Resources and Environmental Science 

Data Center.  

 

4.2.2 Particle Size Calculation 

The aerosol radius was calculated with ground-level mass concentrations based on optical-mass 

theoretical relationships (Liu et al. 2019b). We assumed aerosol particles were homogeneous spheres 

to statistically describe an ensemble of particles due to the aerosol complexity in terms of composition 
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and geometry (Holben et al. 1998; Nakajima et al. 1996). The lognormal distribution was adopted to 

express the particle size distribution, which can be described by two parameters: geometric mean radius 

(𝑟𝑔) and geometric standard deviation (𝜎𝑔). Since aerosol extinction is proportional to 𝑟2, we used the 

effective particle radius (𝑟𝑒 ), a weighted mean of size distribution, to represent the particle size 

according to the rule of lognormal distribution.  

𝑟𝑒 =⁡
∫ 𝑟3𝑛(𝑟)dr
∞

0

∫ 𝑟2𝑛(𝑟)dr
∞

0

=⁡𝑟𝑔exp(
5 ln2 𝜎𝑔

2
)                                      (4-3) 

where 𝑛(𝑟) is the lognormal size distribution of accumulation mode aerosol; 𝜎𝑔 was set at 2, which 

refers to the general range of different fine particles (Reid et al. 2003; Steele et al. 2006). 

Consequently, the columnar particle mass concentration (M) and bext,dry can physically be defined 

and deduced:  

M =
4

3
πρH∫ r3n(r)ⅆr =

4

3
πρH𝑟𝑔

3 exp (
9 ln2 𝜎𝑔

2
)                     (4-4) 

bext,dry =
𝜂

𝑓(𝑅𝐻)
∫ Qextπr

2n(r) ⅆr
∞

0
                                   (4-5) 

where ρ is the mean bulk density of atmospheric particles, with a constant value of 1.5 g/cm3 (Clarisse 

et al. 2010; Li et al. 2016),⁡Qext is the extinction efficiency, which is related to visibility (Koschmieder, 

1924), 

Qext =
3.912/V

𝜋(𝑟𝑒)
2exp(−3 ln2 𝜎𝑔)

                                                      (4-6) 

Equating with Eqs. (1), (3) – (6) yields, 

r𝑒 =⁡(
3M(3.912/V)

4πρ𝜏exp(−3 ln2 σg)
)1/3                                                   (4-7) 

In Eq. (4-7), M was calculated based on the GWR model in Section 2.1; 𝜏 and V are spatial variables 

acquired from satellite and re-analysis datasets. The ρ and 𝜎𝑔 were treated as constants, the effect of 

which is examined in Section 4.5. Since large-scale ground-level radius measurements are limited, we 

validated the radius estimates against the available columnar effective radius retrievals and the 

Angstrom Exponent (AE) data (using wavelengths 0.44 and 0.87 μm) provided by eight Aerosol 

Robotic Network (AERONET) stations. The spatial pattern of estimated particle radius was visually 

compared to MODIS AE products for each season. 

4.2.3 Population Data 

Gridded population data with a spatial resolution of 1km were obtained for 2015 from “Resource and 
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Environmental Science Data Center of the Chinese Academy of Sciences 

(RESDC) (http://www.resdc.cn/)”. This dataset provided 1km gridded population using multi-factor 

weighting based on county-level demographic data, considering land use type, nighttime light intensity 

and residential density (Xu 2017). The annual population in 2017 in each province was also acquired 

from the “Chinese National Bureau of Statistics (http://www.stats.gov.cn/tjsj/ndsj/)” to project the 

gridded 2015 population to 2017. To project the gridded data, the ratio of the gridded population to the 

whole population in each province in 2015 was first calculated. The gridded population in 2017 was 

then obtained by multiplying this ratio in each province by the whole population in the corresponding 

province in 2017. The final gridded population was resampled to 3km to match the spatial resolution 

of estimated PM2.5 concentrations and sizes. 

4.3 Results 

4.3.1 Ground-Level PM2.5 Concentration Estimation 

As mentioned in Section 4.2.1, the GWR model was established using ground-based PM2.5 

measurements with a total of 176,385 available samples. Table 4.2 shows the results of model fitting 

and cross validation based on the GWR model. The model fitting R2 between the estimated and 

measured PM2.5 mass concentration is 0.82, with RMSE of 15.7μg/m3 and MAE of 10.1 μg/m3. A 

negative MBE suggests PM2.5 concentrations were underestimated by -6.6μg/m3. Compared to the 

model fitting results, the CV R2 (0.80) decreases by only 0.04 and the CV RMSE increases by 2.3μg/m3, 

indicating that there is no substantial overfitting in the model. Both overall R2 and CV R2 are higher 

than 0.80, showing that the accuracy of PM2.5 estimation results are acceptable. In addition, as shown 

in Figure 4.1(a), the spatial pattern of annual mean PM2.5 estimation appears to be visually consistent 

with that of ground observations in 2017. The concentrations in eastern China are generally higher than 

those in the west, except for the Taklamakan Desert. As designated by Chinese National Bureau of 

Statistics (http://www.stats.gov.cn/tjsj/ndsj/2017/indexeh.htm), we divided the entire study area into 

four regions (East, West, Northeast and Centre) based on their economic development (Figure 4.1(b)). 

The East is the most developed region in China, contributing 52.6% of overall GDP, while the Northeast 

has the smallest GDP, accounting for 6% of the total. The highest annual-mean growth rates of GDP 

and industrial added value occurred in the Centre region, with respective values of 10.8 % and 12.5%, 

respectively (2006-2017).  

http://www.resdc.cn/
http://www.stats.gov.cn/tjsj/ndsj/
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Table 4.2 Validation of daily PM2.5 estimates 

 R2 RMSE 

(μg/m3) 

MAE 

(μg/m3) 

MBE 

(μg/m3) 

N Equations 

Model-fitting 0.82 16 10 -6.6 176,385 y=0.81x+14.32 

CV 0.80 18 12 -6.0 176,385 y=0.80x+15.89 

Note: N: sample numbers; R2: determination coefficient; RMSE: root-mean-square error; MAE: mean 

absolute error; MBE: mean bias error. 

 

Results in Figure 4.1 show that the highest annual-mean PM2.5 levels were observed in the Centre, 

with a mean concentration of 54 μg/m3, followed by the West, the East, and the Northeast region. 

Although the East had the second lowest PM2.5 levels, hotspots in the Beijing-Tianjin-Hebei (BTH) 

metropolitan region experienced high PM2.5 exposures, with concentrations exceeding 55μg/m3. 

Elevated PM2.5 concentrations in the West were located in the Tarim Basin (Taklamakan Desert), the 

Guanzhong Plain, and the Sichuan Basin. The seasonal variations of PM2.5 concentrations are shown in 

Figure 4.2, indicating that winter was the most polluted season in 2017, with a mean value of 61μg/m3. 

Following van Donkelaar et al. (2016), exposed population counts and cumulative distributions of PM2.5 

concentrations by population for different regions are shown in Figure 4.3. The national population-

weighted average (PWA) of ambient PM2.5 is estimated to have been 52μg/m3 in 2017. The highest 

PWA concentration was observed in the Centre (61μg/m3), while the Northeast had the lowest value 

(38μg/m3). The standard deviation (STD) of PWA in these two regions was below 20μg/m3, indicating 

a mean separation of at least one STD between them. The PWA concentrations in the West (47μg/m3) 

were lower than those in the East (54μg/m3), although this order is reversed for mass concentrations. 

The West and East had significantly higher STDs than the other regions, with the respective values of 

96μg/m3 and 40μg/m3, indicating highly variable exposures. 
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Figure 4.1 Spatial patterns of (a) ground-based PM2.5 concentrations (b) satellite-estimated PM2.5 

concentrations (c) population (d) economic regions in 2017 (Note that the following analysis did not 

take into account Taiwan because of the lack of population data) 
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Figure 4.2 Spatial patterns of seasonal mean MODIS AOD (left), estimated PM2.5 concentration (middle) 

and observed PM2.5 concentration (right) 

 

The cumulative distribution of population exposure to mass concentrations was also explored to 

describe the percentage of population experiencing high PM2.5 levels (Figure 4.3b). The results show 

12% of the Chinese population living where concentrations meet the China national ambient air quality 

standards (GB 3095-2012) (35 μg/m3) and less than 20,000 people living in regions with concentrations 

lower than 10 μg/m3 (WHO guideline) in 2017. Regionally, 1% of the Northeast population was 

exposed to PM2.5 concentrations exceeding 50μg/m3, compared to 90% of the Centre population. 

Typical ambient concentrations in the East and West regions range from 20-80μg/m3, while a larger 

percentage of the population in the East (56%) experienced PM2.5 concentrations higher than 50μg/m3 
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than that in the West (36%), although the mean concentrations in the East are slightly lower than those 

in the West. 

 

Figure 4.3 Distribution of 2017 PM2.5 concentrations by population for four economic regions and 

China 

4.3.2 Ground-Level Particle Radius Estimation 

The atmospheric aerosols over China were dominated by PM2.5 particles with radius less than 1.0μm in 

2017. The estimated particle radius was calculated as described in Section 4.2.2, and validated against 

the available AERONET columnar radius measurements, with R=0.66 (Figure 4.4a). Both RMSE and 

MAE were less than 0.2μm, enabling diverse particle sizes to be distinguished. A positive MBE 

indicates that the ground-level estimated radius was slightly larger than the columnar AERONET 

retrievals, which could be due to a slight decrease in radius with altitude (Baars et al. 2012). Given that 

radius measurements are limited, we also plotted our radius estimates against the AERONET AE values 

in Figure 4.4b. The result shows that the estimated radius decreased with increasing AE and the rate of 

decline is larger at lower AE values (inset in Figure 4.4b). These findings are consistent with previous 

studies showing that AE is generally inversely associated with particle size (Giannakaki et al. 2016; 

Müller et al. 2011; Schuster et al. 2006).  
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Figure 4.4 Validation of estimated effective radius against AERONET (a) radius retrievals and (b) AE 

values 

The spatial patterns of estimated particle radius are shown for annual and seasonal scales in Figure 

4.5. The mean particle size is larger in the West than in the Centre or East. The division coincides with 

the imaginary line (Heihe-Tengchong) dividing the territory of China into western and eastern parts 

according to population density (Hu 1935). This result indicates that the population in eastern China is 

exposed to PM2.5 pollution with a smaller mean particle size. The Tarim Basin (where the Taklamakan 

Desert is located) has the largest particle size in China, especially in the spring and summer. PM2.5 with 

smaller particle size are more likely to occur in the spring and summer in eastern China, while there is 

less spatial variation in autumn and winter. The seasonal variations and spatial patterns of the estimated 

particle radius are visually consistent with those of MODIS AE data. 
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Figure 4.5 Spatial patterns of estimated particle effective radius (left) and MODIS Angstrom 

Exponent (right) 

Figure 4.6 presents the distribution of annual-mean particle effective radius by population and region. 

Nationally, more than 99% of the Chinese population lived in areas with effective particle radius less 

than 0.7μm (i.e. aerodynamic diameters lower than 1.0μm under the assumptions in this study) in 2017. 

The PWA effective radius of PM2.5 in China was estimated to be 0.5μm, with STD of 0.5μm. This 

national mean of Re=0.5μm was used to compare exposures across the different regions. Figure 4.6 

shows that 98% of the Centre’s population was exposed to particles with annual-mean radius below 
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0.5μm, compared to 85% of the Northeast. The Centre was consistently exposed to small particles, with 

PWA radius of 0.4μm. Although Figure 4.5 shows the West had the largest particles, Figure 4.6 shows 

that most of its population was exposed to relatively smaller ones, with PWA radius of 0.5μm (rounded 

to the nearest tenth of a micron).  

 

Figure 4.6 Distribution of annual-mean PM2.5 effective radius estimation for four economic regions and 

China 

The seasonality of particle size can be observed in Figure 4.7. The biggest difference in the median 

radius between the four regions occurred in springtime. Half of the Centre population in spring was 

exposed to PM2.5 with radius less than 0.4μm, while half of the Northeast population was exposed to 

larger particles, with median radius of 0.5μm. Only 1% of the Centre population was exposed to 

particles larger than 0.5μm in the spring, compared to 84% of the Northeast. Summer is the season with 

the highest national exposures (86%) to a mean radius less than 0.5μm. The West shows the least 

seasonal variation in exposures to a mean less than 0.5μm (76%-81%). A relatively large proportion of 

the East population (42% in autumn and 40% in winter) are exposed to PM2.5 (Re>0.5μm), likely due 

to high population density in the coastal region. The results suggest that population in the Centre region 

was exposed to not only the highest PM2.5 concentration but also the smallest particle size. 
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Figure 4.7 Distribution of seasonal-mean PM2.5 effective radius estimation for four economic regions 

and China in (a) Spring (b) Summer (c) Autumn and (d) Winter 

4.4 Discussion 

Previous studies have shown the potential for particle size to affect outcomes of PM exposure, 

indicating that smaller sizes may have greater effects on human health (De Haar et al. 2006; Franck et 

al. 2011). Size-resolved exposures needed to support epidemiologic studies into this effect, however, 
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are limited by a lack of observations, especially at population scales. Here, we quantified PM2.5 

concentrations using a GWR model and estimated effective particle radius based on optical-mass 

theoretical relationships for China in 2017 across regions and seasons. 

The national, annual-mean PM2.5 mass concentration was estimated to be 46 μg/m3. The highest mass 

concentrations of PM2.5 were observed in central and eastern China (east of Heihe-Tengchong 

population line). These high concentrations were most prevalent in industrialized urban agglomerations, 

such as the North China Plain (the BTH region), Hubei and Hunan provinces. Higher concentrations 

were also found to cross into Shanxi and Shaanxi province, areas with abundant coal-fired facilities and 

coal production. This is consistent with previous attribution studies suggesting that the high PM2.5 

concentration in these regions is attributable to anthropogenic activities associated with rapid economic 

development and industrialization, such as fossil fuel consumption (Zhang et al. 2015a, 2013; Zheng et 

al. 2015a). The hotspot in the Sichuan Basin is related to the unfavorable topography encouraging 

stagnation in this low-lying area surrounded by mountains (You et al. 2016).  

In the fine fraction (PM2.5), we observed a range of annual mean effective particle radii from 0.3μm 

to 1.8μm across China in 2017. On a national, annual scale, we found a mean particle effective radius 

of 0.5 µm with a STD of 0.5 µm. This is consistent with Wichmann et al. (2000), finding that 78% 

(14%) of PM2.5 mass was found in the diameter range of 0.1 to 0.5μm (0.5 to 1.0μm) in an urban area 

in Germany. The largest mean effective radii of PM2.5 were found in the West. Mean particle radius 

across the Tarim Basin was much larger than in other areas, ranging from 0.6μm to 1.4μm. This finding 

is expected given the dust and sand in the Taklamakan Desert, and is in line with studies of PM2.5 mass 

and size in this region (Ma et al. 2014; Shao and Mao 2016). Combining the seasonal spatial patterns 

of AOD and particle size, we found that high values of both AOD particle radius over the Taklamakan 

Desert are more prevalent in spring, which is attributed to the frequent dust events during spring (Yu 

et al. 2015; Zhao 2003). It is interesting to note that large size values were also observed in summer 

here. This appears to be supported by (Meng et al. 2019), reporting that summer has the lowest ratios 

of PM2.5/PM10, PM1/PM10, and PM1/PM2.5. Due to a dearth of studies of seasonal patterns of PM2.5 

composition in this region, however, we can only infer that this observed seasonality could be related 

to the sources, fate and transport of PM2.5, and potential seasonal bias in the input data. Additionally, 

the Northeast region also experienced relatively high PM2.5 concentrations with large particle radii in 

spring, which has been related to sand and dust storms caused by Siberian and Mongolian cyclones 

from northern Asia, indicating that the spatial pattern of PM2.5 concentrations was also affected by 

aerosol regional transport (Qian et al. 2004; Wang et al. 2011). 
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4.5 Sources of Uncertainty  

This study attempts to utilize large-scale measurements to explore the spatial variation and population 

exposure to ambient size-resolved PM2.5 exposure. Given the aims of this work, several assumptions 

have been proposed to simplify the estimation method, leading to uncertainty. The assumption that 

spherical aerosols were uniformly distributed in the PBL can introduce an error of 16% in aerosol 

extinction, especially when additional pollution layers above the PBL are present due to emissions and 

long-distance transport of air pollutants (Li et al. 2016). While we assumed that the physiochemical and 

optical properties of aerosols are independent of size distribution, which enabled the aerosol 

hygroscopic properties to be simplified by growth functions, previous studies reported minor errors 

from this assumption (Li et al. 2016; Zieger et al. 2014). In addition to the above theoretical assumptions, 

empirical assumptions (such as σg and ρ) can also bring errors. Two aerosol properties used in the size 

estimation were assumed constant, including ⁡𝜌  and σg  used to define the lognormal distribution. 

According to previous studies (Gao et al. 2007; Hand and Kreidenweis 2002; Hänel and Thudium 1977; 

McMurry et al. 2002), the general range of mass density is 1.5-2.1 g/cm3 in different regions, therefore, 

the assumption (ρ = 1.5 g/cm3) can cause an error of about 16.7% (versus the average density of 1.80 

g/cm3 at multiple sites). The average value of σg  in the OPAC database for most fine aerosol 

components is 2.14μm (Hess et al. 1998), and the constant value of σg (2μm) produces a systematic 

error of 6% against the average value. The maximum bias (0.01) caused by the constant (3.912) in 

Koschmieder’s equation in extinction occurs when V=0.2km (refer to details in Appendix A-4). 

In addition to assumptions, errors in input data affect the accuracy of the concentration and size 

estimates. Although MODIS AOD has been widely adopted and validated for daily PM2.5 concentration 

retrieval, biases remain because of the algorithm assumptions and cloud contamination. Missing AOD 

values may arise due to cloud contamination, leading to underestimation, particularly during severe 

haze. AOD values may also be biased in coastal regions where surface reflectance is more likely to be 

affected by mixed-pixels and challenging to characterize (Anderson et al. 2013). The validation of 

MODIS AOD in this study is shown in Figure A2, with R=0.92 and RMSE=0.18. Combining multiple 

sensors can be an effective way to improve the completeness and accuracy of AOD estimates in the 

future (Guo et al. 2014; Qi et al. 2013). Other input parameters, for example, meteorological data, can 

also introduce uncertainty due to model assumptions, coarse resolution and interpolation algorithm. 

Though the quantitative uncertainty of these parameters was not evaluated in this study due to the dearth 

of measurements, the good performance of the adopted dataset has been demonstrated in numerous 
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studies (Deroubaix et al. 2019; Ding et al. 2004; Kalnay et al. 1996). Further, errors in PM2.5 

concentrations (RMSE= 15.7 μg/m3, MAE=10.1μg/m3) can propagate to particle size estimates; 

therefore, as PM2.5 estimates improve, so too will the reliability of size estimation results.  

Differences in spatial and temporal representativeness between satellite observations and ground-

level measurements can also impact the estimation results. The satellite data employed in this study 

represent an average value for a 3km by 3km pixel, while monitoring stations represent some area 

around their sites, which are usually located in highly populated regions. Some temporal inconsistency 

also persists, given differing measurement frequencies and averaging periods between the ground-

based and satellite-based observations.  

Compared to a laboratory setting, estimating particle radius accurately using satellite data is difficult 

due to the characteristics of remote sensing (such as coarse resolution and long-distance measurements). 

Validation is also a challenge because of the limited ground-based measured data. This is why we 

examined the relationship between estimated particle radius, AERONET columnar retrieved radius, 

and AE data from AERONET and MODIS. As expected, a decreasing pattern between effective radius 

and AE was observed. While promising, this interpretation is qualitative, as the relationship between 

AE and particle effective radius is known to vary with wavelength, size distribution, and composition 

(Gobbi et al. 2007; Schuster et al. 2006). The observed range of mean effective particle radii, 0.3μm to 

1.8μm, is based on an annual average of a single year, and thus cannot fully represent the actual PM2.5 

size range that may be experienced over time across China. More highly-resolved data with shorter 

averaging periods over long timescales may reveal a wider range of exposures. 

4.6 Conclusion 

This chapter presents the first, to our knowledge, national estimates of size-resolved exposures to fine 

particulate matter. It seeks to address a gap in population-scale estimates that could be used to motivate 

or inform our understanding of the effect of particle size on human health, which current evidence 

suggests is important but remains limited by data. In an effort to address this gap, we derive particle 

effective radius and mass concentration of PM2.5 using satellite-derived data and aerosol microphysical 

properties to explore the spatial pattern and population exposure of PM2.5 concentrations and sizes.  

We find that most of the Chinese population was exposed to high PM2.5 concentrations with small 

particle sizes. Fewer than 20,000 people in 2017 lived in locations where concentrations met the annual 

WHO guideline (10 μg/m3). Less than 1% lived in regions with a PM2.5 mean particle effective radius 
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above 0.7μm (i.e. aerodynamic diameters lower than 1.0μm) in 2017. The national population-weighted 

annual average concentration of PM2.5 and particle effective radius were estimated to be 52μg/m3 and 

0.5μm in 2017, respectively. Spatially, PM2.5 concentrations to the east of the Heihe-Tengchong 

population line were generally higher than those in the west, while the particle radius was larger in the 

west, especially in the desert. Specifically, among four economic regions, the Centre region had the 

highest ambient PM2.5 concentrations with the smallest particle radius, where 90% of the population 

was exposed to PM2.5 concentrations higher than 50 μg/m3 and only 2% was exposed to a mean effective 

particle radius larger than 0.5μm in 2017. High PM2.5 concentrations and small particle sizes were more 

likely to occur in regions with high GDP and population densities, which is in line with other work 

suggesting an important contribution from industrial and economic activity. Temporally, summer is the 

season in which the highest percentage of the national population (86%) lived in areas with a mean 

effective radius of PM2.5 less than 0.5μm. In the Taklamakan Desert, where aerosols are dominated by 

natural sources (such as dust and sand), large particle radii were more prevalent in spring due to the 

higher frequency of dust events, despite relatively low PM2.5 concentrations during this period. 

The validation of particle radius in this work is restricted by the available particle size measurements. 

Large-scale and long-term particle size measurements in polluted regions, such as India and China, are 

especially limited. The AERONET columnar radius retrievals and MODIS AE data provide large-

coverage observations of a variable linked to aerosol size were used to validate our radius estimates, 

yielding a MAE of 0.12μm. Sensitivity analysis of retrieval parameters found a potential MAE 

contribution of 0.1μm. Some of this difference may be attributable to differences in retrieval approaches. 

Accuracy may be improved with the advent of further ground-based measurements, higher resolution 

data input, or more detailed information on aerosol properties. This chapter demonstrates the potential 

of remote sensing techniques for estimating population-scale size-resolved PM2.5 exposures, reveals 

prevalent exposure to sub-micron particles, and motivates further research on the effect of particle size 

on health outcomes related to particulate matter. 
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Chapter 5 

Recent Trends in Premature Mortality and Health Disparities Attributable 

to Ambient PM2.5 Exposure in China: 2005–2017 

In this Chapter, we quantify ambient PM2.5 exposure and the resulting public health burden in China 

across recent decades that saw tremendous change in economic output and air pollution. Despite the 

well-studied significance of this burden, its national trajectory and distribution across vulnerable 

populations is not well understood. We fill this gap using recent advances in satellite remote sensing 

techniques, exposure-response relationships, and metrics of environmental inequality. We provide 

estimates of population exposure, PM2.5 attributable premature deaths (caused by stroke, ischemic 

heart disease, chronic obstructive pulmonary disease, lower respiratory infection, and lung cancer), 

and indices of distributional equity across income groups and between provinces. We find that the 

total public health burden continues to rise despite lower PM2.5 exposures, primarily due to rising 

population and baseline risks. Stroke and ischemic heart disease (IHD) are the two leading causes of 

premature death attributable to PM2.5 exposure, though COPD (chronic obstructive pulmonary 

disease) and LRI (lower respiratory infection) disproportionately affect poorer provinces. Total 

premature mortality attributable to PM2.5 exposure in China has become more equitably distributed 

across provinces. 

This chapter is structured as follows. Section 5.1 states the background and motivation of the study. 

Sections 5.2 introduces the adopted datasets and the methods for exposure estimation, excess mortality 

assessment, and inequality analysis. Section 5.3 provides the long-term trends of PM2.5 exposure, 

attributable mortality, and environmental health inequality during 2005-2017. Section 5.4 discusses the 

main findings and limitations in this chapter. Section 5.5 concludes the chapter. 

5.1 Introduction 

The adverse impacts of fine particulate matter (PM2.5) on human health are well established, including 

an estimated 4.2 million (95% CI: 3.7, 4.8) global premature deaths in 2015 (Cohen et al. 2017). Over 

30% of these deaths occurred in China in 2012 (WHO 2016), where ambient PM2.5 ranked fourth 

nationally among 67 risk factors for disability-adjusted life-years (DALYs) (Yang et al. 2013) . The 

most common non-communicable diseases in China, including chronic obstructive pulmonary disease 
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(COPD), ischemic heart disease (IHD), lung cancer (LC), and stroke, are all associated with PM2.5 

exposure (Zhou et al. 2016b). 

The dramatic rise in PM2.5-related mortality in China has coincided with significant economic growth 

(Liu et al. 2017b). In response, the Chinese government has adopted and updated air quality standards, 

issued pollution control policies, established expanded monitoring networks, and launched targeted 

initiatives to mitigate air pollution, particularly in 2013. Although many studies have examined the 

effect of such actions on PM2.5 concentrations (Lin et al. 2018; Xue et al. 2019a), fewer have quantified 

the resulting changes in the public health impacts over these important recent decades (Zhao et al. 2018). 

Many others present national mortality estimates for one or more years, but do not provide a long time-

series (see Table B2). Some sub-national studies have presented decadal time series of PM2.5-related 

mortality (Lu et al. 2019; Zheng et al. 2015b; Zhu et al. 2019). Few studies present the national mortality 

burden in China over time (Liu et al. 2017b; Xie et al. 2016a). A decadal time series can inform air 

quality policies by quantifying changes in the resulting public health burden (Fann et al. 2018). Further, 

it can be used to evaluate the resulting trends in national and interprovincial equity (Muller et al. 2018). 

Changes in the Chinese economy and resulting air pollution can impose unequal impacts across the 

population. Between 2006 and 2017, measures of economic inequality in China peaked shortly after 

the Great Recession, followed by a shift towards greater equality (Li and Sicular 2014). Air pollution 

is known to have significant economic impacts in China, e.g. 5.9% loss in GDP from 1997-2005 (Matus 

et al. 2012). The health and economic burden associated with PM2.5 can disproportionately affect 

vulnerable populations (Bell and Ebisu 2012; Huang et al. 2019; Zhao et al. 2019). WHO (2018) 

reported that 91% of global premature deaths attributable to air pollution occurred in low- and middle-

income countries. Patterns of environmental inequality, typically quantified by Atkinson Index and 

Gini Index, vary substantially across spatial domains (Clark et al. 2014; Fann et al. 2018; Muller et al. 

2018; Rosofsky et al. 2018). Policies to reduce air pollution can offer substantial economic benefits, 

though some provinces gain while others lose, potentially exacerbating interprovincial inequality (Xie 

et al. 2016b). Despite substantial literature on PM2.5 exposure and its health impacts in China, to our 

knowledge, little research has evaluated the consequent environmental inequality (Hajat et al. 2015). 

Tracking the distribution of PM2.5-related health impacts among subpopulations can help to formulate 

and monitor targeted policies to alleviate inequality.  

China’s network of air quality monitors has been growing since 2013; however, methods with more 

complete spatial coverage are still needed for national time series, especially for historical air quality 
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records and regions with fewer monitors (such as western China). To capture periods before 2013, 

studies of PM2.5 concentrations and related mortality in China have used techniques including artificial 

intelligence (Li et al. 2019; Xue et al. 2019a), satellite data (Lu et al., 2019; Zheng et al., 2015), 

chemical transport models (CTMs) (2016b, 2019), or a combination thereof (Geng et al. 2015; van 

Donkelaar et al. 2016; Xie et al. 2016a) to take remote rural areas with limited air quality measurements 

into account.  

Estimating long-term trends in PM2.5-related mortality in China relies on representing exposures and 

exposure-response (or concentration-response) functions (CRFs). CRFs should be representative of the 

observed exposure range in the underlying population, ideally applying local, high-quality observations 

within the relevant range of concentrations (West et al. 2016). In China, PM2.5-related risks may be 

underestimated due to a paucity of cohort studies conducted in high-concentration regions (Maji et al. 

2018b; Pope C. Arden et al. 2018). Specifically, the CRFs currently applied in China are mostly derived 

from epidemiological studies conducted in western Europe and North America, such as the Integrated 

Exposure-Response (IER) function employed in the Global Burden Diseases study (Maji et al. 2018a; 

Zhao et al. 2018). Yin et al. (2017) reported higher hazard ratio estimates from a national Chinese 

cohort study than IER estimates. A recent CRF, the Global Exposure Mortality Model (GEMM) 

introduced by Burnett et al. (2018), is based on cohort studies (including one conducted in China) of 

outdoor PM2.5 exposure. It covers 97% of the global population to assess the PM2.5-related health 

outcomes, including COPD, IHD, LC, lower respiratory infections (LRI), and stroke.   

Here, we quantify long-term PM2.5 exposure, cause-specific mortality and environmental inequality 

over China. We leverage satellite-based and CTM estimates of exposure, and the GEMM CRF to 

estimate PM2.5-related premature mortality. We quantify the corresponding health inequalities at the 

provincial and national levels using a modified Gini coefficient based on mortality. This paper seeks to 

answer the following questions: (1) How do PM2.5 levels and related health burdens vary spatially and 

temporally over China during 2005-2017? (2) How equitably is the PM2.5-related health burden 

distributed across populations in different regions and with different socioeconomic characteristics (i.e. 

GDP per capita)? (3) How does this pattern of environmental inequality change over the study period? 
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5.2 Data and Methods 

5.2.1 Ground-level PM2.5 Estimation 

Two retrieval strategies were adopted to estimate ground-level PM2.5 concentrations over China from 

2005 to 2017 using satellite and meteorological data: a previously developed fused surface (van 

Donkelaar et al. 2015, 2019), and a new semi-geographical weighted regression (semi-GWR) model 

developed herein. The fused surface is used for its superior performance in the years 2005-2012 owing 

to the limited number of PM2.5 measurements in this period. These surfaces, combining multi-sensor 

satellite AOD, the GEOS-Chem CTM, and surface observations, is provided by “Atmospheric 

Composition Analysis Group” at Dalhousie University (van Donkelaar et al. 2016). They have been 

used in previous environment and health impact studies (Peng et al. 2016; Sherbinin et al. 2014; Xue 

et al. 2019b). 

Taking advantage of the published air pollutant measurements from the Chinese government, we 

established and trained a semi-GWR model based on the hygroscopic growth- and vertical-corrected 

aerosol optical depth (𝜏) data and auxiliary data, including temperature(T), wind speed (WS), visibility 

(V) and elevation (DEM). These variables were selected given their expected influence on surface PM2.5 

(Day and Pandis 2011; Wang et al. 2018b; Xiao et al. 2018; Zhou et al. 2015). Variance inflation factor 

was calculated to ensure low collinearity of the variables. Compared to the fused surface from 2013 to 

2017, the PM2.5 concentrations estimated by the GWR model in the corresponding year were more 

accurate, especially in 2017 (see Figure B1 and Figure B2). Therefore, PM2.5 was estimated for 2013-

2017 according to the following model structure: 

𝑃𝑀2.5_GWR(𝑖,𝑗,𝑦) = 𝛽0(𝑖,𝑗,𝑦) + 𝛽bext,dry⁡(𝑖,𝑗,𝑦)bext,dry⁡(𝑖,𝑗,𝑦) + 𝛽𝑇(𝑖,𝑗,𝑦)𝑇(𝑖,𝑗,𝑦) + 𝛽𝑊𝑆(𝑖,𝑗,𝑦)𝑊𝑆(𝑖,𝑗,𝑦) +

𝛽𝑉(𝑖,𝑗,𝑦)𝑉(𝑖,𝑗,𝑦) + 𝛽𝐷𝐸𝑀(𝑖,𝑗,𝑦)𝐷𝐸𝑀(𝑖,𝑗,𝑦) + 𝜀(𝑖,𝑗,𝑦)                                                     (5-1) 

where 𝑃𝑀2.5_GWR(𝑖,𝑗,𝑦) is the annual ground-level PM2.5 concentration at location (i, j) in year y; 𝛽0 is 

the intercept for each year;⁡β denotes the slope of the variable with the corresponding subscript. 𝜀(𝑖,𝑗,𝑦) 

is the error term at location (i, j) in year y. Geographic weights were estimated with Gaussian distance 

decay functions. Since the optical-mass relationship has proven to be related to aerosol hygroscopic 

growth and the height of planetary boundary layer (HPBL) (Kaufman et al. 2003; Koelemeijer et al. 

2006), the satellite-observed 𝜏 was corrected to “meteo-scaled” optical depth bext,dry⁡(𝑖,𝑗) using Eq.(5-

2) : 
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𝛽bext,dry⁡(𝑖,𝑗)bext,dry⁡(𝑖,𝑗) =⁡
𝜏

HPBL∗f(RH)
                                                                (5-2) 

where f(RH) is hygroscopic growth coefficient, which was calculated based on previous studies as in 

(Liu et al. 2019b) by geographically weighting three different estimates developed in China (Chen et 

al. 2014a; Liu et al. 2008; Zhang et al. 2015b). To unify the spatial distributions of two concentration 

sources, the CTM-based fused concentrations from 2013 to 2017 were then corrected by the GWR-

based results using linear regressions. The regression coefficients were fitted at the provincial level in 

each year. 

5.2.2 Ground-level PM2.5 Concentrations 

Air pollutant measurements in China were released to the public in 2013, providing data support to 

PM2.5 modelling and validation. Here, we use the ground-level PM2.5 concentrations (2013-2017) from 

the “China National Environmental Monitoring Center (CNEMC) (http://www.cnemc.cn/)”. The 

collected hourly measurements were averaged to obtain annual PM2.5 concentrations. Ground-level 

measurements before 2013 were collected from previous publications, provided in Table B1. As data 

before 2013 were limited, these concentrations were only used for validation.  

5.2.3 Mortality Assessment 

Cause-specific premature mortality (ΔM) attributable to PM2.5 exposure over China was estimated 

using Eq. (5-3). 

∆M = y0 (
𝑅𝑅−1

𝑅𝑅
)pop                                         (5-3) 

where 𝑦0  represents the baseline incidence rate for each specific disease; pop represents the age-

specific population exposed to ambient PM2.5. RR represents the corresponding Relative Risk at a given 

concentration, which is calculated by CRFs. The GEMM, a recent CRF established by Burnett et al. 

(2018), was adopted in this study to quantify the PM2.5 attributable health impacts.  This function was 

chosen because it allows toxicity to vary across the total inhaled dose, and was modeled based on 

outdoor air pollution cohort studies from 16 countries (including the study in China) that cover much 

of the global exposure range of ambient PM2.5 concentrations. It takes the functional form:  

RR = exp⁡ (
θln⁡(1+

∆C

α
)

1+exp⁡(−⁡
∆C−µ

𝑣
)
)                                                 (5-4) 

where ∆𝐶  represents the difference between ambient PM2.5 concentrations and baseline 

concentration;⁡𝛼, 𝜃, 𝜇, 𝑣  define the shape of the CRF (𝜃  and its SE were estimated using the Cox 
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proportional hazards model) (Burnett et al. 2018). GEMM includes forms for pooled cohorts and 

specific cohorts. The disease-specific RR calculations in this study were based on the model parameters 

for the Chinese cohort study (details in Table B3). The baseline concentration 2.4μg/m3 is used, as in 

(Burnett et al. 2018), based on the lowest observed exposure in any cohort. We conducted 1000 Monte 

Carlo simulations to estimate the 95th confidence interval in the excess mortalities. 

5.2.4 Health Data 

The baseline incidence rates of five leading causes of death (COD) comprising the Global Burden of 

Disease (GBD) PM2.5-associated mortality estimates , including COPD, IHD, LC, LRI, and stroke, were 

derived from Zhou et al. (2016) at the provincial scale. The annual variation of mortality rates during 

the study period in China was generated from the GBD dataset found at http://ghdx.healthdata.org/. 

The province-level baselines for each year were calculated based on the assumption that the annual 

variation for each province follows the national trend. 

5.2.5 Inequality Analysis 

We estimate measures of both economic and environmental inequality. We use the traditional Lorenz 

curve to characterize the distribution of income (Gastwirth and Glauberman 1976). We build on this 

concept to also characterize the share of PM2.5 attributable mortality. To do this, population and excess 

premature mortality in each pixel were first ranked by GDP per capita. The cumulative share of 

mortality was then plotted against the cumulative share of population, ranked by income (see Figure 

5.1). We also built the Lorenz curves at the provincial scale to evaluate the distribution of mortality 

across the provinces as a measure of interprovincial equity. Based on the Lorenz curve, the Gini 

coefficient can be calculated by dividing the area of A by 0.5 (which equals to A+B in Figure 5.1a). 

The smaller the Gini coefficient, the closer the distance between Lorenz curve and ideal equality line. 

Thus, a smaller Gini reflects greater equality.  

𝐺𝑖𝑛𝑖 = 1 −∑ (𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑖 − 𝑦𝑖−1)
𝑛

𝑖=1
                                    (5-5) 

where n represents the number of pixels/provinces; 𝑥𝑖  represents the cumulative percentage of the 

population to pixel/province i; 𝑦𝑖  represents the cumulative percentage of the PM2.5-attributable 

mortalities (Stroke, COPD, IHD, LC, LRIs). Similar metrics were evaluated for each of the five causes 

of death (5-COD). 

http://ghdx.healthdata.org/
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Figure 5.1 Definition of Lorenz curve and Gini coefficient 

 

5.2.6 Socioeconomic Data 

Gridded population and GDP data in the base years (2005, 2010 and 2015) were obtained from 

“Resource and Environmental Science Data Center of the Chinese Academy of Sciences 

(RESDC) (http://www.resdc.cn/)”, with a spatial resolution of 1km (Xu 2017). The gridded 

population/GDP data for the remaining years were calculated based the assumption that the percentage 

of each gridded value to the corresponding province-level value remains stable in five years. The 

province-level annual population, GDP and demographic data from 2005 to 2017 were from “Chinese 

National Bureau of Statistics (http://www.stats.gov.cn/tjsj/ndsj/)”. Both gridded population and GDP 

data were resampled to 3km to match the spatial resolution of ground PM2.5 concentrations. 

http://www.resdc.cn/)
http://www.stats.gov.cn/tjsj/ndsj/)
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5.3 Results 

5.3.1 PM2.5 Exposure Assessment 

 

Figure 5.2 Spatial distributions of (a) 13-year mean PM2.5 concentrations (b) population in 2017. 

 

Figure 5.2 shows the spatial distribution of 13-year mean PM2.5 concentrations across China. The 

polluted region with the highest PM2.5 concentrations is the Taklamakan Desert, where natural particle 

sources, such as dust and sand, dominate (Huang et al. 2008). The Beijing-Tianjin-Hebei (BTH) region, 

the Sichuan Basin, and central China (including Shanxi, Henan and part of Shandong, Jiangsu, Anhui, 

and Shaanxi provinces) are urban agglomerations with both high PM2.5 concentrations and population 

density, in which anthropogenic emissions dominate (Zhang et al. 2015a, 2013; Zheng et al. 2015a). 

Henan and Hebei are the provinces with the highest exposures, with population-weighted mean PM2.5 

concentrations exceeding 72 μg/m3 during 2005-2017. The patterns of geographical annual mean and 

population-weighted mean PM2.5 concentrations for each year are provided in Figure B3 and Figure B4. 

National PM2.5 exposure trends downward from 2005 to 2017, with an average of 49 μg/m3. Since 
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China issued the “Air Pollution Prevention and Control Action Plan (APPCAP)” in 2013, population-

weighted PM2.5 concentrations have fallen by 21% (green line in Figure 5.3b). The improved agreement 

between our population-weighted (green line) and station-based (cyan line) concentration estimates 

indicated that the monitoring network has gradually expanded and already covered most of the densely-

populated area in 2017.  We evaluate this agreement in Figure 5.3a. The overall R2 is 0.81 and the root 

mean square error (RMSE) is 8.3μg/m3. Figure 5.2a shows the spatial pattern of estimates is also 

consistent with that of ground measurements, indicating that the PM2.5 concentrations used are 

sufficiently reliable for our analysis.  

 

Figure 5.3 (a) Validation results and (b) temporal trends of satellite-based PM2.5 estimates in China 

5.3.2 Mortality Attributable to PM2.5 

Premature mortality attributable to chronic PM2.5 exposure was estimated using Eq. (5-3) from 2005 to 

2017 in China. Total excess deaths were calculated as the sum across five causes of deaths (5-COD), 

(i.e. COPD, IHD, LC, LRI, and stroke). As shown in Figure 5.4, COPD mortality related to PM2.5 

exposure decreased from 280 (95%CI: 240, 320) thousand in 2005 to 250 (95% CI: 220, 290) thousand 

in 2017; IHD mortality increased from 390 (95%CI: 370, 400) thousand in 2005 to 680 (95%CI: 660, 

690) thousand in 2017, with a peak of 700 (95%CI: 680, 710) thousand in 2015; LC mortality increased 

from 94 (95%CI: 85, 100) thousand in 2005 to 160 (95%CI: 140, 180) thousand in 2017; LRI mortality 

decreased from 120 (95%CI: 100, 130) thousand in 2005 to 98 (95%CI: 85, 110) thousand in 2017; and 

the 5-COD mortality increased from 1.4 (95%CI: 1.2, 1.5) million in 2005 to 1.9 (95%CI: 1.7, 2.1) 
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million in 2015, before dropping to 1.8 (95%CI: 1.6, 2.0) million in 2017. Stroke and IHD were the 

two leading causes of premature deaths attributable to PM2.5 exposure over China, with respective 13-

year means of 580 (95%CI: 510, 660) and 560 (95%CI: 550, 570) thousand, which contribute 

approximately 35.5% and 33.8% of cause-specific mortality during 2005-2017 (Figure 5.5). The 

average mortalities caused by COPD, LC and LRI are 263.6 (95%CI: 225.9,300.1), 132.3 (95%CI: 

118.6,145.5) and 106.3 (95%CI: 93.4, 118.4) thousand, respectively, which are 16.2%, 8.0% and 6.5% 

of the total cause-specific mortality during the study period. 

 

Figure 5.4 Temporal trends of PM2.5 attributable mortality from 2005 to 2017 
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Figure 5.5 PM2.5 attributable disease-specific mortality in China by year 

Table 5.1 shows the average annual PM2.5 attributable premature mortality by cause of death from 

2005 to 2017. For the complete time-series of deaths by province and cause of death, see Figure B7. 

Henan, Shandong, Hebei, and Sichuan have the highest mean values (160, 140, 120, and 110 thousand, 

respectively) comprising 33% of the national total. Mortality by IHD and stroke are highest in Henan 

province, with values of 60 (95%CI: 59, 61) and 67 (95%CI: 59, 74) thousand, respectively. PM2.5-

related mortality caused by COPD and LRIs reach 32 (95%CI: 28, 37) and 8.8 (95%CI: 7.8, 9.8) 

thousand in Sichuan province. Shandong is the province with the highest 13-year mean LC mortality. 

The spatial distribution of mortality by cause of death is shown in Figure 5.6.  
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Table 5.1 Annual PM2.5 attributable premature mortality by COD and province (average of 2005-

2017) 

Province COPD (103) IHD (103) LC (103) LRIs (103) Stroke (103) 5-COD (103) 

Anhui 14 (12, 16) 27 (26, 28) 7.5 (6.8, 8.3) 4.7 (4.1, 5.2) 35 (31, 40) 89 (80, 96) 

Beijing 2 (1.8, 2.3) 12 (12, 12) 2.6 (2.3, 2.8) 1.8 (1.6, 1.9) 9 (7.9, 10) 27 (25, 29) 

Chongqing 11 (9.6, 13) 9.6 (9.3, 9.8) 4 (3.6, 4.4) 2.3 (2, 2.5) 12 (11, 14) 39 (35, 43) 

Fujian 4.2 (3.5, 4.8) 6.3 (6.1, 6.5) 1.9 (1.6, 2.1) 2.5 (2.1, 2.8) 6.9 (5.8, 7.9) 22 (19, 24) 

Gansu 11 (9.2, 12) 9.8 (9.5, 10) 1.2 (1, 1.3) 2.8 (2.5, 3.2) 9.9 (8.5, 11) 34 (31, 38) 

Guangdong 13 (11, 15) 30 (29, 31) 6.6 (5.8, 7.3) 7.6 (6.7, 8.6) 25 (21, 28) 82 (74, 90) 

Guangxi 12 (9.9, 13) 19 (18, 19) 4.2 (3.8, 4.7) 7.3 (6.4, 8.1) 18 (15, 20) 60 (54, 66) 

Guizhou 12 (10, 14) 9.5 (9.2, 9.7) 2.6 (2.3, 2.8) 6.8 (5.9, 7.6) 17 (15, 19) 48 (42, 53) 

Hainan 0.69 (0.58, 0.8) 1.2 (1.2, 1.3) 0.25 (0.22, 0.27) 0.26 (0.22, 0.29) 1.1 (0.9, 1.2) 3.5 (3.1, 3.9) 

Hebei 8.6 (7.4, 9.8) 46 (45, 47) 8.9 (8.1, 9.8) 4.9 (4.3, 5.4) 52 (45, 57) 120 (110, 130) 

Heilongjiang 3 (2.6, 3.5) 20 (19, 21) 3.6 (3.2, 4) 1.8 (1.6, 2) 13 (11, 15) 41 (38, 45) 

Henan 21 (18, 24) 60 (59, 61) 11 (9.8, 12) 6.1 (5.4, 6.7) 67 (59, 74) 160 (150, 180) 

Hongkong 0.02 (0.01, 0.02) 0.05 (0.05, 0.05) 0.01 (0.01, 0.01) 0.02 (0.01, 0.02) 0.03 (0.03, 0.04) 0.13 (0.12, 0.14) 

Hubei 14 (12, 16) 26 (25, 26) 6.9 (6.2, 7.6) 3.5 (3.1, 3.9) 33 (29, 37) 84 (76, 91) 

Hunan 14 (12, 16) 29 (28, 30) 6.1 (5.5, 6.7) 6.2 (5.5, 6.9) 27 (23, 30) 82 (74, 89) 

Inner Mongolia 3.2 (2.8, 3.7) 12 (12, 13) 1.8 (1.6, 2) 1.3 (1.1, 1.4) 9.7 (8.3, 11) 28 (26, 31) 

Jiangsu 14 (12, 16) 23 (23, 24) 8.1 (7.3, 8.9) 4 (3.6, 4.5) 33 (29, 37) 83 (75, 90) 

Jiangxi 9.2 (7.9, 11) 17 (17, 18) 4.5 (4, 5) 3.1 (2.7, 3.5) 16 (14, 18) 50 (45, 55) 

Jilin 1.9 (1.6, 2.2) 15 (15, 16) 2.4 (2.1, 2.6) 1.9 (1.7, 2.1) 11 (9.3, 12) 33 (30, 35) 

Liaoning 3.6 (3, 4.1) 22 (21, 22) 5.3 (4.7, 5.8) 3.1 (2.7, 3.5) 19 (16, 21) 53 (48, 57) 

Ningxia 1.1 (0.96, 1.3) 3.3 (3.2, 3.3) 0.43 (0.38, 0.48) 0.64 (0.56, 0.71) 2.2 (1.9, 2.5) 7.7 (7, 8.4) 

Qinghai 1.8 (1.5, 2) 2.6 (2.5, 2.7) 0.29 (0.26, 0.32) 0.57 (0.5, 0.64) 2.3 (1.9, 2.6) 7.5 (6.7, 8.2) 

Shaanxi 5.4 (4.6, 6.1) 19 (18, 19) 2.7 (2.4, 3) 2.5 (2.2, 2.8) 18 (16, 20) 47 (43, 51) 

Shandong 18 (16, 20) 55 (53, 56) 14 (12, 15) 5.2 (4.6, 5.8) 52 (45, 57) 140 (130, 150) 

Shanghai 2.5 (2.2, 2.9) 3.8 (3.8, 3.9) 1.8 (1.6, 2) 0.46 (0.41, 0.52) 5.1 (4.4, 5.7) 14 (12, 15) 

Shanxi 4.9 (4.2, 5.6) 16 (16, 16) 3.4 (3.1, 3.8) 3.1 (2.7, 3.4) 17 (15, 19) 44 (40, 48) 

Sichuan 32 (28, 37) 23 (23, 24) 10 (9.2, 11) 8.8 (7.8, 9.8) 35 (30, 39) 110 (98, 120) 

Tianjin 1.6 (1.4, 1.8) 10 (10, 11) 2.3 (2.1, 2.5) 1.9 (1.7, 2.1) 7.2 (6.3, 8) 23 (22, 25) 
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Tibet 0.1 (0.1, 0.1) 0.24 (0.23, 0.25) 0.01 (0.01, 0.01) 0.13 (0.11, 0.15) 0.23 (0.19, 0.27) 0.69 (0.61, 0.77) 

Xinjiang 7.3 (6.3, 8.3) 17 (17, 18) 2 (1.8, 2.2) 2.7 (2.4, 3) 12 (11, 14) 41 (38, 45) 

Yunnan 7.9 (6.6, 9.1) 9.3 (9, 9.5) 1.8 (1.5, 2) 4.1 (3.5, 4.7) 7.1 (6, 8.3) 30 (27, 34) 

Zhejiang 8.1 (6.9, 9.3) 7.5 (7.3, 7.6) 4.5 (4, 4.9) 4.2 (3.7, 4.7) 12 (11, 14) 37 (32, 40) 

 

 

Figure 5.6 Spatial patterns of 13-year annual mean PM2.5 attributable mortality by cause of death 

5.3.3 Inequality Analysis 

We present multiple metrics of inequality including and expanding on the traditional Gini coefficient. 

First, we distinguish between traditional economic and health indices. We denote the traditional 

economic Gini by “GDP per capita”, which we use as a proxy for income due to data availability. We 

also calculate a Gini coefficient based on the distribution of deaths, which we denote by its respective 
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cause of death. Second, we evaluate equity at the national scale, as well as between provinces. We term 

these metrics as follows: “national Gini” is based on the distribution of GDP per capita across all pixels 

in the nation; “interprovincial Gini” orders the population in provinces by provincial mean GDP per 

capita. These national metrics allow for the comparison of changes in economic and health-related 

equity over the study period. The interprovincial metrics test whether poorer provinces suffer a 

disproportionate share of the public health burden from PM2.5 pollution. 

The national Gini traditional coefficient in Figure 5.7(a) trends towards greater equality beginning 

in 2015, dropping from appropriately 0.42 to 0.31 over the study period. Compared to the economic 

picture, Gini coefficients calculated based on mortality were low, with all values less than 0.1, 

indicating the PM2.5 attributable mortality was distributed more evenly than GDP per capita. Figure 5.7 

(b) shows that the interprovincial GDP per capita Gini declined from 0.31 to 0.19 from 2005 to 2017, 

denoting an increasing fairness in the distribution of income among provinces in China. A similar 

pattern was also observed in mortality due to three PM2.5 related health outcomes (COPD, LRI, and 

stroke). The interprovincial Gini coefficients based on IHD and LC had miniscule mean values of 0.01 

and 0.02, respectively.  

 

Figure 5.7 Temporal trends of (a) national Gini and (b) interprovincial Gini coefficients for GDP per 

capita and premature mortality caused by different PM2.5 related health outcomes. 
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Figure 5.8 Interprovincial Lorenz curves for PM2.5 attributable premature mortality and economic 

inequality during 2005-2017 

Figure 5.8 shows the Lorenz curves depicting interprovincial inequality for the years 2005 and 2017 

(remaining years in Supplemental Material). As with the mortality-based Gini index, the Lorenz curve 

shows that COPD and LRI disproportionately affect provinces with low GDP per capita, while LC is 

distributed evenly. Conversely, the curve for 2005 shows that low income provinces had fewer IHD 

and stroke than middle to high income regions. This situation generally persists in 2017, though there 

is less disparity across most outcomes. In 2017, the Chinese population with 40% of the income (as 

GDP) experienced 43% of PM2.5-attributable premature deaths, which is 110 (95%CI: 99,120) thousand 

higher than corresponding population (richest 40%). National Lorenz curves for 5-COD are provided 

in Figure B5. The disparate effects of different causes on different income groups balance one another, 

yielding a more equal picture across all causes of death. 
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5.4 Discussion 

While numerous studies have documented trends in China’s air pollution, fewer have examined national 

long-term premature mortality, and none, to our knowledge, have quantified the resulting health 

disparities. Here, we find, as in the GBD study (Figure 5.4), that premature mortality associated with 

PM2.5 has continued to rise even after the enactment of significant pollution control policies (APPCAP) 

in 2013. This rise in premature deaths occurs despite concentrations that have fallen nationally, though 

concentrations in some provinces rebounded in 2017 (Figure B6). On average, the 13-year mean 

concentrations are highest in the Taklamakan Desert in the west, and in urban agglomerations such as 

those found in the North China Plain and the Sichuan Basin. This pattern is consistent with long-term 

means found in previous studies over an earlier period (Ma et al. 2016a; van Donkelaar et al. 2015). 

These concentrations result in total cause-specific mortality that peaked in 2015, with 1.9 (95%CI: 

1.7, 2.1) million annual premature deaths, an increase of 500,000 since 2005. Similar trends were also 

reported by GBD studies, showing that 5-COD mortality rose by 30% from 2005 to 2015 before 

decreasing to 0.83 million in 2017 (Naghavi et al. 2017). While estimates vary widely, total deaths in 

this study are generally above the means of previous estimates (Table B2). The discrepancy of results 

can be explained by various PM2.5 exposure sources (such as estimation methods, spatial resolution and 

coverage), CRFs, and other input data sources (such as baseline incidence rates and demographics). In 

particular, the use of GEMM in this study could explain much of its higher estimates, especially 

compared to previous studies using the IER (Table B2), since GEMM RR were larger than IER 

estimates, especially for LRIs, IHD, and stroke (Burnett et al. 2018). Pope C. Arden et al., (2018) 

pointed out that the IER approach adopted for GBD studies might underestimate health impacts 

attributable to PM2.5 in regions with high ambient concentrations. The GEMM CRF used here is based 

on the Chinese cohort study (Yin et al. 2017), and results in higher estimates than the IER (Burnett et 

al. 2018). Aside from differences in magnitude, the trends by COD generally match those of the GBD 

within errors, with deaths generally flat (stroke, COPD), increasing until 2015 then falling (LC, IHD), 

or decreasing (LRI). As for the other national, multi-year trends, R. Xie et al. (2016) also shows a 

similar pattern between its common years (2005 and 2010), though Li et al. (2018) has a decreasing 

pattern over the common years of 2013-2015, though this is less steep with the use of IER as compared 

to SCHIF. This difference between Li et al. (2018) and the other studies, including ours, for these years, 

appears to be primarily attributed to different PM2.5 exposure estimates. They reported a higher PM2.5 

exposure than estimates from other studies in 2013, which accordingly revealed a greater reduction in 
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subsequent years. Despite the variations and uncertainty in death estimates across studies, there seems 

to be clear agreement that deaths have either increased, or, at a minimum, not decreased nearly as 

steeply as concentrations. 

Such PM2.5-related premature deaths can disproportionately harm populations of lower 

socioeconomic status (Hajat et al. 2015). Here, we examined the disparity of incidences across GDP per 

capita based on differences in ambient concentrations. We place this in the context of economic 

inequality. At the national scale, China appears to be trending toward greater economic equality, 

starting primarily with a steep drop in 2010. This pattern appears to agree with previous studies (Han 

et al. 2016a) as well as national statistics (China’s National Bureau of Statistics, 

http://www.stats.gov.cn/ ), though the latter appears to show a small recent uptick. Compared to 

economic inequality, total premature mortality associated with PM2.5 is distributed relatively equally 

across GDP per capita, though the trend towards equality is not consistent for all causes of death. 

We found that GDP per capita was more related to COPD and LRI than other causes of death. This 

is in line with previous studies showing that COPD-related death has the strongest relationship with 

socioeconomic status (Pleasants et al. 2016). We show no clear association between GDP per capita and 

LC and IHD premature mortality attributable to ambient PM2.5 exposure over China, which we attribute 

to widespread active smoking (Hiscock et al. 2012; Polak et al. 2019; Yusuf et al. 2004). Temporally, the 

interprovincial Ginis for different PM2.5-related deaths show downward trends, demonstrating that the 

PM2.5-related mortality risks are distributed more equally between provinces from 2005 to 2017. Muller 

et al. (2018) showed a similar pattern among US regions using an adjusted Gini index that accounted 

for PM2.5-related premature mortality.   

These findings have several implications for policymakers interested in air pollution and health 

equity. While policies have helped alleviate ambient pollutant concentrations, the health burden 

continues to rise. This burden could be alleviated through policies to prevent pollution, exposure, and 

disease. In particular, baseline risks of stroke and IHD lead to an increased burden from these causes 

(Figure B9). Conversely, COPD and LRI may disproportionately affect poorer provinces, which could 

warrant a more targeted intervention to address these health disparities. However, any targeted policies 

to address inequality warrant further specific study to account for the effect of a specific intervention 

using the appropriate metric (Harper et al. 2013). 

This study is subject to several limitations. First, the baseline mortality rates were obtained and 

projected at the provincial level due to data availability, which could mask some of the inequality 

http://www.stats.gov.cn/english/Statisticaldata/AnnualData/
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revealed by the fine resolution of other data sources (including PM2.5 exposure, population and GDP 

data). A long-term record of city-level mortality baselines would offer greater accuracy for both the 

inequality and magnitude of mortality (Maji et al. 2018b). Second, we account for only part of the total 

PM2.5 related exposure and burden, neglecting indoor air pollution exposure, childhood exposure, 

differences in individual health effects, other potential causes of death, and morbidity (Lee et al. 2019; 

Lelieveld et al. 2018; Qi et al. 2017; Steinle et al. 2015). Additionally, we apply the GEMM Chinese CRF 

outside of the observed range of concentrations of the Chinese Male Cohort study on which it is based 

(15.4 to 83.7 μg/m3), which may introduce extrapolation errors. We observed 13-year mean 

concentrations that exceed the maximum observed concentration of 83.7 μg/m3, beyond which GEMM 

may not apply. Similarly, our counterfactual concentration of 2.4 μg/m3 is significantly lower than the 

minimum observed for the Chinese Male Cohort study (15.4 μg/m3); however, evidence from other 

cohorts, including those in GEMM, suggest that exposure risks remain at low concentrations. Third, 

we do not account for PM2.5 characteristics (such as chemical composition, size distribution, and 

sources) and the confounding effects of gaseous pollutants co-varied with PM2.5 on human health (such 

as ozone and nitrogen dioxide), which may also bias the mortality estimates in this study (Konishi et al. 

2014; Ostro et al. 2015; Pope C. Arden et al. 2018). Fourth and finally, previous studies suggest that 

differences in exposure alone may represent a small fraction of the disparity in the economic impacts 

across income groups due to air pollution (Muller et al. 2018; Saari et al. 2017). The characteristics of 

the exposure, e.g., particulate composition, may be relevant (Bell and Ebisu 2012). Income, location, 

and insurance status may affect baseline health status, health care access, outcomes, and economic 

impacts (Jones et al. 2011; Schoen et al. 2013; Van Ourti et al. 2009; Viscusi and Aldy 2003; Wilper et al. 

2009). 

5.5 Conclusion 

In recent decades, China has seen significant economic development and increasing health risks from 

air pollution.  Here, we examine how equally these impacts are distributed across the nations and 

between provinces. We present PM2.5 exposure, attributable health burdens, and corresponding 

environmental inequalities over China from 2005 to 2017. We find that, though PM2.5 concentrations 

declined overall, the number of premature deaths attributable to PM2.5 exposure grew. The 5-COD 

mortality rose from 1.39 (95%CI: 1.24, 1.52) million in 2005 to 1.82 (95%CI: 1.65, 1.98) million in 

2017. Stroke and IHD were the two leading causes of deaths, contributing to approximately 36% and 

34% of total cause-specific mortality during 2005-2017, respectively. These causes dominate due to 
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their prevalence in the population, which could be alleviated not only through environmental policy to 

further reduce air pollution, but also broader programs for prevention and treatment of such public 

health risks. More targeted programs may be warranted for poorer provinces (based on low GDP per 

capita), as they endure a disproportionate share of PM2.5-related premature deaths due to COPD and 

LRI. Overall, total premature mortality associated with PM2.5 is distributed relatively equally across the 

population regardless of GDP per capita, and has been steady or becoming more equitable over time. 

However, this result captures only differences in ambient concentrations, which does not reflect all 

differences in exposure, baseline incidence rates, vulnerability or access to care, all of which could 

contribute to inequality. 

These findings highlight the need for formulating targeted air quality policies in China to consolidate 

air quality improvement and safeguard the population in the deprived areas sharing an equitable 

environment. Though advances in this research field are limited by inadequate data and estimation 

methods, our study takes a step toward achieving that goal by providing information on spatiotemporal 

characteristics of health burden and environmental inequality attributable to PM2.5 exposure that can be 

applied to inform future research assessing impacts of PM2.5 exposure from a comprehensive 

perspective. 
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Chapter 6 

Conclusions and Recommendations 

This dissertation establishes a theoretical optic-mass relationship without introducing regionally-

specific fitting parameters, enabling both PM2.5 mass concentrations and particle sizes to be estimated 

across various spatial and temporal domains, which makes a methodological contribution to satellite-

based PM2.5 concentration estimation. Following the established relationship, this dissertation presents 

the first national estimates of size-resolved PM2.5 exposure using established theoretical and statistical 

models, revealing the prevalent exposure to submicron particles over China, which fills a significant 

gap in population-scale size-resolved observations of sub-micron atmospheric aerosols, which 

toxicological studies suggest may be more harmful to human health. Finally, this dissertation explores 

the spatiotemporal variation of PM2.5 attributable mortality and corresponding health disparity from 

2005 to 2017, suggesting that more targeted policies may be warranted for poorer provinces (i.e. with 

low GDP per capita), which contributes to understanding the public health burden and related disparity 

attributed to ambient PM2.5 exposure over China. 

The main findings and limitations are summarized in Chapters 6.1 and 6.2, respectively. Section 

6.3 recommends the future directions for further research. 

6.1 Summary  

This dissertation has developed a theoretical optic-mass relationship through aerosol microphysical 

parameters in Chapter 3. This makes a methodological contribution to reveal the spatial and temporal 

patterns of PM2.5 over China, including both concentrations and particle sizes. The estimates were 

validated against observations from AERONET. The results show that mean particle size over eastern 

China is smaller than that in the west, depicting a clear bifurcation across the country, especially in 

summertime. This finding is attributed to variations in topography, meteorology, land use and 

population density, which affects the properties of emitted aerosols as well as their fate and transport. 

A statistically significant correlation (R=0.82) was observed between estimated and measured annual 

PM2.5, with the RMSE=9.25 μg/m3, MAE=6.98 μg/m3, MBE=−1.98 μg/m3 and RPE=17.69% (N=1270). 

The spatiotemporal distributions of resulting PM2.5 are consistent with previous findings, indicating the 

effectiveness and applicability of the proposed method. This method quantifies PM2.5 mass 

concentrations without introducing regionally-specific fitting parameters, which can be efficiently 

applied across various spatial and temporal domains. 



 

78 

To address the need for size-resolved PM2.5 exposure data, PM2.5 concentrations derived from the 

GWR model were employed to estimate particle size using the established theoretical relationship in 

Chapter 4. Annual mean effective radii between 0.3 to 1.3 µm with a mean average error of 0.1μm was 

observed. The findings show that 1% or less of the Chinese population was exposed to annual PM2.5 

concentrations less than 10 μg/m3 and a mean particle effective radius greater than 0.7µm (i.e. 

aerodynamic diameter of PM1). Spatially, the Centre economic region had the highest annual-mean 

PM2.5 exposures, where 90% of the population was exposed to concentrations higher than 50 μg/m3 and 

98% was exposed to particles with mean radius below 0.5 μm. Temporally, although the highest PM2.5 

concentrations were more likely to occur in winter, summertime was the season during which the 

highest percentage of the national population (86%) lived in the regions in which the fine fraction had 

the smallest mean particle radii (<0.5 μm). This study demonstrates the potential of remote sensing 

techniques to enable large-scale PM2.5 estimation, including concentrations and sizes. The revealed 

prevalence of exposure to PM1, and lack of particle size validation data, motivate further research to 

better understand size-resolved exposures and impacts of PM2.5 at population scales. 

To better understand the PM2.5 pollution in China, not only large-scale PM2.5 estimation, but also 

impacts on public health and environmental inequality are crucial. Chapter 5 presents the 

spatiotemporal variation of PM2.5 attributable mortality and investigated the corresponding economic 

and environmental inequality at provincial and national levels over China from 2005 to 2017. Long-

term PM2.5 exposures over China derived from satellite-based observations and chemical transport 

models were employed to quantify the attributable excess premature mortality related to five causes of 

death using the GEMM. National and interprovincial health inequalities were characterized through 

environmental Lorenz curves and Gini coefficients over the study period. The results show that 

mortality attributable to PM2.5 exposure increased by 31% over China from 2005 to 2017, contributing 

to 1.82 (95%CI: 1.65, 1.98) million premature deaths in 2017. Approximately 70% of PM2.5 attributable 

deaths are caused by stroke and ischemic heart disease, though COPD and LRI have more influence in 

poorer provinces. While economic gains and PM2.5-related deaths are concentrated in a few provinces, 

we find that both gains and health outcomes are shared more equally over time. As a nation, however, 

trends toward equality are more recent and less clear across causes of death. The premature mortalities 

attributed to PM2.5 exposure has increased during 2005-2017 and are unevenly contributed by 

populations with low/middle GDP per capita over China. It is argued that strict air pollution control 

policies is still needed in China to alleviate the health burden and environmental inequality, especially 

targeting subpopulations in the developing provinces. 
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6.2 Limitations 

A comprehensive dataset of PM2.5 observations (including mass concentration and particle radius) is 

needed to establish a more robust model and to quantify the uncertainties of exposure estimates. 

Regarding particle radius, columnar effective radius retrieved by the AERONET operational algorithm 

was adopted for quantitative validation; however, in addition to limited samples, the AERONET radius 

retrievals cannot be considered as the ground truth data because of uncertainties caused by the algorithm 

assumptions (Dubovik et al. 2006; Holben et al. 2006). Accordingly, some of the difference between 

estimates and size retrievals from AERONET may be attributed to differences in retrieved quantities 

(surface vs. column) and retrieval approaches. The MODIS AE product was also used in validation and 

a declining pattern between radius and AE was revealed, as expected. While promising, this 

interpretation is qualitative, as the relationship between AE and particle effective radius is known to 

vary with wavelength, size distribution, and composition (Gobbi et al. 2007; Schuster et al. 2006). 

Therefore, to achieve a better performance, large-scale measurements on aerosol properties (such as 

particle radius) are still needed to improve exposure estimation and uncertainty evaluation.  

Additionally, this work was conducted based on the assumption that the ground-level PM2.5 

observations, employed for model establishment and validation, are the ground truth; however, 

measurement errors exist. All PM concentration data in China has been measured at standard 

temperature and pressure (0℃, 101.325 kPa) according to China national ambient air quality standards 

(GB 3095-2012). The observations measured with these fixed state parameters cannot reflect the actual 

air quality over China. For instance, PM2.5 pollution in the west Tibet Plateau region was overestimated 

using the national standard measurement approach because of low air pressure caused by high altitude. 

Additionally, meteorological conditions affect the deposition rate of PM. Particle size screening and 

mass concentration calculations are thus influenced by spatial differences in temperature and humidity 

between northern and southern China. To address this, beginning in 2019, the Ministry of Ecology and 

Environment (MEE) has revised the GB 3095-2012 standard, requiring that particulate matter and its 

components shall be measured at actual (local) temperature and pressure. 

6.3 Recommendations for Future Research 

This dissertation has demonstrated the potential of satellite data in large-scale PM2.5 estimation and 

highlighted the long-term attributable health impacts and disparities. The retrieval scheme could be 

further improved using deep learning models to complete the methodological framework and accelerate 

performance. 
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Diverse machine learning and deep learning models have been applied in environmental remote 

sensing studies (Yuan et al. 2020; Kim et al. 2019; Ma et al. 2019; Snauffer et al. 2018), which extract 

abstract features from training samples to develop empirical relationships between environmental 

measurements and satellite observations. These techniques outperform traditional statistical models 

with remarkable accuracy and have increasingly become popular in aerosol retrievals (Fortin et al. 2011; 

Li 2020; Reichstein et al. 2019). The primary objective of aerosol retrieval is to obtain AOD from the 

top of atmosphere (TOA) reflectance by eliminating the surface contribution. Three main issues in the 

context of AOD retrievals are expected to be addressed by deep learning techniques. 

First, AOD retrieval and bias correction. The operational algorithms of MODIS, Dark Target and 

Deep Blue, are the two mainstream AOD retrieval algorithms. These two algorithms are based on the 

fact that the surface dominates the satellite observed signal in some spectral channels and the 

atmosphere dominates in others. The basic principle of these algorithms for AOD retrieval is to combine 

the appropriate spectral bands (e.g. red and blue). However, the retrieval is still restricted by the 

algorithm assumptions and limited input information. As noted, deep learning techniques infer 

empirical relationships with promising performance, which can involve not only satellite radiance from 

multiple bands but also auxiliary parameters, such as angle information, cloud fraction, meteorological 

and topographical features. Aerosol physical properties can also be included in these models and benefit 

the model performance. Taylor et al. (2014) developed a neural network to retrieve not only AOD but 

also aerosol characteristics, such as complex refractive indices and size distribution. Therefore, it is 

worth considering multiple modifiers in AOD retrieval and correction using deep learning techniques 

to achieve better performance. 

Second, AOD gap-filling. Though satellite data offer the potential to monitor large-scale air quality, 

their aerosol products are challenged by non-random missing values resulting from cloud and snow 

contamination, high surface reflectance, and misclassification (i.e. high aerosol loading can be 

considered as cloud under the assumption of retrieval algorithm). These missing AOD values may be 

responsible for bias in exposure assessment by their effect on the AOD-PM relationship. Though this 

dissertation adopted AOD products from two satellites (Terra and Aqua) and two algorithms (DT and 

DB), missing values remain in this work. Hence, filling the missing values of AOD products is 

necessary. In addition to developing new retrieval algorithms as mentioned above, the combination of 

simulation models (e.g. CTMs) and statistical models (e.g. deep neural networks) may provide a 

promising alternative for AOD gap-filling. This may not only relieve the computational burden caused 
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by numerical models, but also offer explanatory power of deep learning models. The combination may 

be achieved by constraining the cost function of deep neural networks with physical mechanisms or 

training deep neural networks with the CTM outputs. 

Third, AOD downscaling. Currently, MODIS provides AOD products based on three different 

retrieval algorithms, with respective spatial resolutions of 10 km, 3 km, 1 km, which enable the spatial 

patterns of aerosol load and PM pollution to be exhibited at national or even global scales. However, 

the local-scale studies, which are significant for monitoring pollutions attributed to traffic and industrial 

emissions, are limited by the relatively low spatial resolution of MODIS products. Downscaling is a 

significant procedure for weather and climate applications, which aims to convert the large-scale low-

resolution (including both spatial and temporal scales) data into small-scale and high-resolution 

products (Chen et al., 2019). Deep learning models have been explored to downscale geospatial data, 

showing better performance than traditional statistical models (Alexakis and Tsanis 2016; Baño-

Medina et al. 2019; Ducournau and Fablet 2016; Vandal et al. 2017). However, these techniques have 

rarely been applied to obtain high-resolution AOD data. Therefore, the application of deep learning to 

this issue can be a topic worth investigating. 

Deep learning techniques can also be applied in PM2.5 exposure estimation, from either satellite AOD 

observation or TOA reflectance. T. Li et al. (2017) incorporated geographical autocorrelation into an 

intelligent deep learning framework (i.e. deep belief network) to estimate PM2.5 concentrations using 

satellite AOD observations and auxiliary data. The result shows that the developed models 

outperformed the traditional neural network. Shen et al. (2018) retrieved ground-level PM2.5 

concentrations directly from satellite TOA reflectance, which may avoid the bias caused by the AOD 

retrieval process. The attempt to retrieve PM2.5 directly from TOA reflectance also enables more 

satellite observations (with various resolutions) to be applied in PM2.5 retrieval studies. Hence, the 

application of deep learning for large-scale PM2.5 retrieval deserves further attention, which allows 

multiple datasets (such as socioeconomic, meteorological and remote sensing data) and numerical 

model outputs to be integrated within one framework.  

In addition to methodological recommendations, further work is needed to understand the full 

intersections between size-resolved PM2.5 exposure and attributable health outcomes from 

epidemiological perspectives. Though national particle radius of PM2.5 has been quantified in this 

dissertation, the health impacts of size-resolved PM2.5 exposure are difficult to assess due to the dearth 

of size-related exposure-response relationships.  
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Appendix A 

Supplementary Information for Exposure Estimation 

A1. Calibration and Validation of MODIS AOD 

 

Figure A1 Linear relationship between annual MODIS AOD and AERONET AOD among four datasets 

from 2013 to 2016 (a) MODIS DT AOD products aboard Terra (b) MODIS DB AOD products aboard 

Terra (c)MODIS DT AOD products aboard Aqua (d) MODIS DB AOD products aboard Aqua 

 

Figure A2 Validation of AOD after calibration and gap-filling 
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Figure A3 Spatial distribution of annual AOD coverage and improvement 
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Table A1 Calibration for MODIS AOD products 

Season Spring (DOY 60~149) Summer (DOY150~241) Autumn (DOY242~332) 
Winter 

(DOY1~59,333~365) 

MODIS 

3KM DT 

Aqua 

Regression equation y = 0.71x y = 0.90x - 0.095 y = 0.92x - 0.06 y = 0.96x + 0.01 

R 0.90 0.92 0.93 0.90 

RMSE 0.17 0.26 0.18 0.11 

N 421 448 453 181 

Terra 

Regression equation y = 0.72x + 0.07 y = 0.92x - 0.18 y = 0.95x - 0.12 y = 0.94x - 0.04 

R 0.88 0.92 0.93 0.90 

RMSE 0.19 0.27 0.17 0.10 

N 462 431 445 203 

MODIS 

resampled 

DB 

Aqua 

Regression equation y = 1.00x - 0.01 y = 0.79x + 0.12 y = 0.75x + 0.08 y = 0.74x + 0.05 

R 0.96 0.95 0.96 0.92 

RMSE 0.14 0.24 0.16 0.14 

N 556 297 445 557 

Terra 

Regression equation y = 0.95x - 0.02 y = 0.79x + 0.11 y = 0.84x + 0.03 y = 0.65x + 0.03 

R 0.93 0.94 0.96 0.94 

RMSE 0.17 0.21 0.16 0.14 

N 583 318 433 574 

Note: R and RMSE are Pearson correlation coefficient and root mean square error, respectively. 
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A2. Calculation of hygroscopic growth 

No previous studies have measured aerosol hygroscopic properties in China at national scale. 

Therefore, we adopt three empirical regional models to reflect aerosol hygroscopic growth. Eq. (A1), 

(A2) and (A3) are fitted by the measured samples located at Beijing (39.93°N, 116.28°E), Lin’an 

(30.30°N, 119.73°E) and Guangzhou (23.13°N, 113.25°E), representing the aerosol hygroscopic 

properties in the North China Plain (Chen et al. 2014), Yangtze River Delta (Zhang et al. 2015) and 

Pearl River Delta(Liu et al. 2008), respectively.  

𝑓(𝑅𝐻) = {
1.02 ∗ (1 − 𝑅𝐻 100⁄ )−0.21∗𝑅𝐻 100⁄ ⁡(𝑅𝐻 100⁄ < 0.6)

1.08 ∗ (1 − 𝑅𝐻 100⁄ )−0.26∗𝑅𝐻 100⁄ ⁡(𝑅𝐻 100⁄ ≥ 0.6)
 (A1) 

𝑓(𝑅𝐻) = 1 + 1.20 ∗ (
𝑅𝐻

100
)
3.90

 (A2) 

𝑓(𝑅𝐻) = 1 + 3.26 ∗ (
𝑅𝐻

100
)
3.85

 (A3) 

For each pixel, we calculate three 𝑓(𝑅𝐻)𝑖 values based on above equations and then conduct the 

inverse distance weighting algorithm to obtain the final 𝑓(𝑅𝐻). Beijing, Lin’an and Guangzhou are 

set as the reference sites. For one unknown pixel, we  

(1) calculate the distances between unknown pixel (𝑥, 𝑦) and three reference sites (𝑥𝑖 , 𝑦𝑖), i=1,2,3;  

𝑑𝑖 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 (A4) 

(2) calculate the weight 𝑤𝑖, which is the inverse of the distance;  

𝑤𝑖 =
1

𝑑𝑖
𝑝 (A5) 

(3) calculate the weighted average 𝑓(𝑅𝐻). 

𝑓(𝑅𝐻) = {
∑ 𝑤𝑖 ∗

3

𝑖=1
𝑓(𝑅𝐻)𝑖, 𝑖𝑓⁡𝑑𝑖 ≠ 0⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙⁡𝑖

𝑓(𝑅𝐻)𝑖 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡ⅆi ≠ 0⁡for⁡some⁡i

 (A6) 

We also calculated the maximum difference in these three f(RH) for each RH value and counted 

the frequency at annual scale to quantify the uncertainty on the hygroscopic growth functions. The 

maximum 𝛿𝑓(𝑅𝐻) was estimated to be 0.39 in our conversion algorithm and the error of f(RH) item 

are about ±23%. 
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A3. Correlation and Collinearity Analysis in PM2.5 Estimation Using the GWR Model 

The parameters adopted in the PM2.5 estimation model meet the following criteria:  

(1) The explanatory parameter is correlated to dependent parameters (Table A2).  

(2) No multi-collinearity exists. The variance inflation factor (VIF) was adopted to measure the 

collinearity of multiple variables in the model (Table A3). A VIF value lower than 10 indicates 

there is no collinearity among variables and a value higher than 10 indicate high collinearity 

(Belsley et al. 2005).  

(3) The p-value of the variable is less than 0.05. 

 

Table A2 Correlation matrix 

Variables PM2.5 AOD WS T VIS DEM 

PM2.5 1.000      

AOD 0.518 1.000     

WS -0.190 -0.054 1.000    

T -0.249 0.179 -0.011 1.000   

VIS -0.493 -0.313 0.267 0.126 1.000  

DEM -0.288 -0.332 0.043 -0.136 0.069 1.000 

 

Table A3 Collinearity analysis of explanatory variables 

Variables AOD/(PBLH*f(RH)) WS T VIS DEM 

VIF 1.22 1.37 2.59 1.59 1.30 
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A4. Influence of Constant Parameters on Radius Estimation 

Some estimation error comes from the use of constant parameters since the particle density and size 

distribution vary across spatial and temporal domains. Hence, we conducted a one-at-a-time parameter 

sensitivity analysis to explore the influence of constant parameters (geometric standard deviation σg 

and particle density ρ) on radius (Figure A4). The geometric standard deviation was set at 2 in the study, 

which within the 1.9-2.05 range typically measured for fine-mode aerosols (Clarisse et al. 2010; Steele 

et al. 2006). The average value of σg in the OPAC database for most fine aerosol components is 2.14μm 

(Hess et al. 1998). The particle mass density was set at 1.5 g/cm3. The general range of mass density is 

1.5-2.1 g/cm3 in different regions (Gao et al. 2007; Hand and Kreidenweis 2002; Hänel and Thudium 

1977; McMurry et al. 2002). The ranges of these two parameters were set with reference to the general 

values for different types of fine particles, ranging from 1.2 to 2.5 with step size of 0.05. The result 

indicates that the radius estimates are more sensitive to σg since the rate of change of σg is higher than 

that of ρ over the same interval. The assumption of setting σg (ρ) at 2 (1.5 g/cm3) will introduce up to 

0.11μm (0.04μm) bias when σg=1.2 (ρ=2.5) in the radius retrieval. 

According to the Koschmieder equation, the surface aerosol extinction at 550 nm is inversely 

proportional to surface visibility. If the contrast threshold of human eye was set to 0.02, the constant 

term in the equation is 3.912. However, various constant values ranging from 1.8 to 3.912 has been 

reported in different sites (Kessner et al. 2013; Ozkaynak et al. 1985; Yuan et al. 2006). Therefore, we 

conducted a sensitivity analysis to explore the influence of this constant on extinction. The result shows 

that the constant 3.912 can result in a maximum error of 0.01 when V=0.2km. 

 

Figure A4 Sensitivity analysis of 𝛔𝐠, 𝛒 and constant in Koschmieder’s equation 
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Appendix B 

Supplementary Information for Health and Environmental Impacts 

Table B1 Annual PM2.5 concentrations from 2005 to 2013 reported by previous publications 

Year City Longitude (°E) Latitude (°N)  PM2.5 (μg/m3)  Reference 

2005 Beijing 116.37 39.97 70.7 (Liu et al. 2015b) 

2005 Beijing 116.3 39.9 85.2 (Zhao et al. 2009) 

2005 Shanghai 121.43 31.19 56.4 (Kan et al. 2007) 

2006 Beijing 116.37 39.97 83.1 (Liu et al. 2015b) 

2006 Beijing 116.3 39.9 93.5 (Zhao et al. 2009) 

2006 Guangzhou 113.3 23.1 60 (Xie et al. 2010) 

2007 Beijing 116.37 39.97 75.7 (Liu et al. 2015b) 

2007 Beijing 116.3 39.9 84.5 (Zhao et al. 2009) 

2007 Beijing 116.35 39.99 64.2  (Yu et al. 2011) 

2007 Fuzhou 119.3 26.08 44.3  (Xu et al. 2012) 

2007 Guangzhou 113.26 23.16 70.1 (Yang et al. 2012) 

2007 Guangzhou 113.2 23.1 42.4  (Huang et al. 2010) 

2007 Hangzhou 120.17 30.25 69.0  (Hong et al. 2013) 

2007 Qingdao 120.4 36.1 86.6  (Li et al. 2012) 

2007 Taishan 117.1 36.25 70.1  (Deng et al. 2011) 

2007 Weifang 119.1 36.7 90.4  (Li et al. 2013) 

2007 Shanghai 121.48 31.23 54.8 (Waheed et al. 2013) 

2008 Beijing 116.41 40.04 88.7 (Chen et al. 2014b) 

2008 Beijing 116.37 39.97 67.3 (Liu et al. 2015b) 

2008 Guangzhou 113.3 23.1 62.1 (Li et al. 2013) 

2008 Shanghai 121.43 31.2 53.9 (Geng et al. 2013) 

2008 Shanghai 121.48 31.34 52 (He et al. 2010) 

2009 Beijing 116.41 40.04 80.5 (Chen et al. 2014b) 

2009 Beijing 116.37 39.97 64.6 (Liu et al. 2015b) 

2009 Beijing 116.47 39.95 97.5 U.S. Consulate 

2009 Guangzhou 113.3 23.13 56 (Kuang et al. 2015) 

2009 Guangzhou 113.3 23.1 50.2 (Li et al. 2013) 

2009 Shanghai 121.43 31.18 44.4 (Yin et al. 2011) 

2010 Beijing 116.41 40.04 80.9 (Chen et al. 2014b) 

2010 Beijing 116.37 39.97 73.7 (Liu et al. 2015b) 

2010 Beijing 116.47 39.95 98.2 U.S. Consulate 

2010 Guangzhou 113.3 23.1 57.2 (Li et al. 2013) 

2010 Shanghai 121.41 31.15 47.4 Li and Pan, 2013 

2011 Beijing 116.37 39.97 68.4 (Liu et al. 2015b) 

2011 Beijing 116.47 39.95 93.9 U.S. Consulate 

2011 Guangzhou 113.3 23.1 47.7 (Li et al. 2013) 
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Year City Longitude (°E) Latitude (°N)  PM2.5 (μg/m3)  Reference 

2011 Shanghai 121.42 31.17 49 (Zhou et al. 2016a) 

2011 Shanghai 121.43 31.17 48 (Wang et al. 2016) 

2012 Beijing 116.37 39.97 71.5 (Liu et al. 2015b) 

2012 Beijing 116.47 39.95 88.3 U.S. Consulate 

2012 Chengdu 104.1 30.6 86.7  (Chen et al. 2019) 

2012 Chongqing 106.5 29.62 71.7  (Chen et al. 2019) 

2012 Guangzhou 113.3 23.1 48.4 (Li et al. 2013) 

2012 Jinsha 114.2 29.63 48.7  (Zhang et al. 2014) 

2012 Nanjing 118.8 32.06 40.9  (Shen et al. 2014) 

2012 Neijiang 105.07 29.7 78.6  (Chen et al. 2019) 

2012 Shanghai 121.43 31.17 42.6 (Wang et al. 2016) 

2012 Shanghai 121.44 31.21 50.8 U.S. Consulate 

2012 Shanghai 121.42 31.14 68.4  (Zhao et al. 2015) 

2012 Xiamen 118.06 24.61 32.7  (Niu et al. 2013) 

2013 Beijing 116.47 39.95 94.7 U.S. Consulate 

2013 Guangzhou 113.32 23.12 55.5 U.S. Consulate 

2013 Shanghai 121.43 31.17 49.4 (Wang et al. 2016) 

2013 Shanghai 121.44 31.21 59.2 U.S. Consulate 

 

Table B2 Selected previous studies on PM2.5 attributable mortality assessment in China 

Study 

Year 
PM2.5 exposure 

Baseline 

mortality 
CRF 

Mortality 

(million) 
References 

2006 WRF-Chem NBSC LL 1.7 (Miao et al. 2017) 

2010 Satellite/ TM5 WHO IER 1.08 (Lim et al. 2012) 

2010 Satellite/GEOS-Chem WHO IER 1.27 (Apte et al. 2015) 

2010 EMAC WHO IER 1.36 (Lelieveld et al. 2015) 

2010 
Satellite/GAINS-

China 
GBD IER 1.33 (Xie et al. 2016b) 

2010 EMAC WHO IER 1.33 (Giannadaki et al. 2016) 

2010 Satellite/GEOS−Chem GBD IER 1.02 (Zhao et al. 2017) 

2010 Satellite/four methods GBD IER 1.27 (Wang et al. 2018a) 

2012 Satellite/TSM NHFPCC IER 1.25 (Liu et al. 2017b, 2017a) 

2013 Ground measurements NBSC IER 1.37 (Liu et al. 2016) 

2013 Ground measurements NBSC LL 3.03 (Fang et al. 2016) 

2013 Satellite WHO IER 0.91 (IHME 2016) 

2013 CMAQ WHO IER 1.3 (Hu et al. 2017a) 

2013 

2014 

2015 

Satellite/LUR NBSC SCHIF 

2.19 

1.94 

1.65 

(Li et al. 2018b) 

2014 Ground measurements WHO IER 1.6 (Rohde and Muller 2015) 
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Study 

Year 
PM2.5 exposure 

Baseline 

mortality 
CRF 

Mortality 

(million) 
References 

2015 Ground measurements 
NBSC and 

GBD 
IER 1.52 (Song et al. 2017) 

2015 Ground measurements 
(Matus et al. 

2012) 
IER 1.85 (Zhang et al. 2017) 

2015 

/2016 
Ground measurements NHFPCC IER 

1.13 

/1.09 
(Feng et al. 2017) 

2015 WRF-CMAQ 

Ministry of 

Health of 

China 

IER 1.1 (Zheng et al. 2017) 

2015 Satellite/GEOS-Chem WHO IER 1.11 GBD 2015 (2017) 

2016 Satellite/GEOS-Chem WHO IER 1.08 GBD 2016 (2017) 

2016 Ground monitoring GBD IER 0.96 (Maji et al. 2018b) 

Note: TM5: Tracer Model 5; WRF-Chem: the Weather Research and Forecasting (WRF) model 

coupled with Chemistry; EMAC: the ECHAM/MESSy Atmospheric Chemistry model; CMAQ: 

Community Multi-scale Air Quality Model; GEOS-Chem: the Goddard Earth Observing System 

Chemical Model with Chemistry; LUR: Land Use Regression; TSM: Two-Stage Model; 

NBSC: National Bureau of Statistics of China; WHO: World Health Organization; GBD: Global 

Burden of Disease; NHFPCC: National Health and Family Planning Commission of China  

ERF: Exposure-response function; LL: Log-linear function; IER: Integrated Exposure Risk function; 

SCHIF: Shape Constrained Health Impact Function. 
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Figure B1 Validation of annual PM2.5 concentrations using semi-GWR model from 2013 to 2017 

 

Figure B2 Validation of annual PM2.5 concentrations based on GEOS-Chem model from 2005 to 2017 
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Table B3 Parameters for disease-specific RR calculations (Burnett et al., 2018) 

ill Age range 𝜃 standard error 𝜃 𝛼 𝜇 𝑣 

IHD 

>25 0.2969 0.01787 1.9 12 40.2 

27.5 0.507 0.02458 1.9 12 40.2 

32.5 0.4762 0.02309 1.9 12 40.2 

37.5 0.4455 0.0216 1.9 12 40.2 

42.5 0.4148 0.02011 1.9 12 40.2 

47.5 0.3841 0.01862 1.9 12 40.2 

52.5 0.3533 0.01713 1.9 12 40.2 

57.5 0.3226 0.01564 1.9 12 40.2 

62.5 0.2919 0.01415 1.9 12 40.2 

67.5 0.2612 0.01266 1.9 12 40.2 

72.5 0.2304 0.01117 1.9 12 40.2 

77.5 0.1997 0.00968 1.9 12 40.2 

85 0.1536 0.00745 1.9 12 40.2 

Stroke 

>25 0.272 0.07697 6.2 16.7 23.7 

27.5 0.4513 0.11919 6.2 16.7 23.7 

32.5 0.424 0.11197 6.2 16.7 23.7 

37.5 0.3966 0.10475 6.2 16.7 23.7 

42.5 0.3693 0.09752 6.2 16.7 23.7 

47.5 0.3419 0.0903 6.2 16.7 23.7 

52.5 0.3146 0.08307 6.2 16.7 23.7 

57.5 0.2872 0.07585 6.2 16.7 23.7 

62.5 0.2598 0.06863 6.2 16.7 23.7 

67.5 0.2325 0.0619 6.2 16.7 23.7 

72.5 0.2051 0.05418 6.2 16.7 23.7 

77.5 0.1778 0.04695 6.2 16.7 23.7 

85 0.1368 0.03611 6.2 16.7 23.7 

COPD >25 0.251 0.06762 6.5 2.5 32 

LC >25 0.2942 0.06147 6.2 9.3 29.8 

LRI >25 0.4468 0.11735 6.4 5.7 8.4 
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Figure B3 Spatial distributions of annual mean PM2.5 concentrations from 2005 to 2017 
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Figure B4 Spatial distributions of population-weighted annual mean PM2.5 concentrations from 2005 

to 2017 
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Figure B5 National Lorenz curves for PM2.5 attributable mortalities and economic development 

during 2005-2017 
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Figure B6 Provincial trends of population-weighted mean PM2.5 concentrations from 2005 to 2017 
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Figure B7 Provincial mortality per 100.000-person attributable to PM2.5 during 2005-2017 

 

Figure B8 The relations between provincial economic development and PM2.5 exposure in four 

regions during 2005-2017 
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Figure B9 Time-series of population and baseline incidence rates during 2005-2017 

 

 


