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Abstract

Volatile memory has dominated the realm of main memory on servers and computers
for a long time. In 2019, Intel released to the public the Optane data center persistent
memory modules (DCPMM). These devices offer the capacity and persistence of block
devices while providing the byte addressability and low latency of DRAM devices. The
introduction of this technology now allows programmers to develop data structures that
can remain in main memory across crashes and power failures. Implementing recoverable
code is not an easy task, and adds a new degree of complexity to how we develop and prove
the correctness of code.

This thesis explores the different approaches that have been taken for the development
of persistent data structures, specifically for hash tables. The work presents an iterative
process for the development of a persistent hash table. The proposed designs are based on a
previously implemented DRAM design. We intend for the design of the hash table to remain
similar to its original DRAM design while achieving high performance and scalability in
persistent memory.

Through each step of the iterative process, the proposed design’s weak points are iden-
tified, and the implementations are compared to current state-of-the-art persistent hash
tables. The final proposed design consists of a hybrid hash table implementation that
achieves up to 47% higher performance in write-heavy workloads, and up to 19% higher
performance in read-only workloads in comparison to the dynamic and scalable hashing
(DASH) implementation, which currently is one of the fastest hash tables for persistent
memory. As well, to reduce the latency of a full table resize operation, the proposed design
incorporates a new full table resize mechanism that takes advantage of parallelization.
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Chapter 1

Introduction

During the last decade, there has been intense research towards the development of non-
volatile main memories [4, 32, 52]. Foreseeing the introduction of persistent memory de-
vices, there also have been several programming models and software techniques that
consider the existence of these devices [11, 14, 17]. The public release of the Intel Optane
Data Center Persistent Memory Module (DCPMM) in 2019, came to introduce disruptive
changes in the memory hierarchy. DCPMM devices, which we will refer to in this thesis as
“persistent memory”, combine the capacity and persistence of block storage devices while
providing the byte addressability and a slightly higher latency to that of DRAM.

Systems that incorporate DCPMM modules still need a hybrid architecture containing
DRAM. When DCPMM devices are configured in memory mode, they behave like volatile
main memory, and DRAM is used as a cache. When DCPMM devices are configured in app
direct mode, they are shown to the system as independent persistent memory resources, and
DRAM is still needed to boot the OS in this case. Still, these persistent memory modules
are an attractive option, since, for large capacity modules, the price per GB compared to
DRAM devices is much lower. Applications that rely on memory capacity over memory
bandwidth and latency will significantly benefit from DCPMM devices. Some examples of
these applications may include cloud and Infrastructure-as-a-Service (IaaS) applications,
by allowing more virtual machines and cloud containers per server. Another application
that can significantly benefit from these new devices is a database. The large capacities
and persistence of persistent memory modules will enable databases to maintain their data
in main memory rather than in slow secondary storage.
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1.1 Motivation

Persistent memory up to this date can be considered the “sweet spot” of modern storage.
Now in-memory data structures can provide features such as recovery after a crash or power
failure. However, at the same time, this adds a new layer of complexity when designing
recoverable applications. While persistent memory can maintain data across power cycles,
the cache, which is used at runtime by the processor, remains volatile.

Previously, DRAM-based in-memory applications did not care if the data they were
storing reached DRAM or remained in the cache since, in the event of a power failure, all
data would be lost. In the case of recoverable in-memory applications, developers need to
ensure that the data they store reaches the persistent memory device at some specific point
during runtime. This is to ensure that the data is safely stored in persistent memory. When
we talk about concurrent recoverable code implementations, another layer of complexity
is added to the designs. Developers still need to ensure that data reaches the persistent
memory device, but now the order of these stores is more relevant to ensure the correctness
of these implementations. There has been intense interest [2, 8, 39, 45, 54, 60, 69] in
developing techniques that allow developers to use persistent memory devices to create
high performing code and take advantage of the persistence of data these devices offer.
While prior work on emulated devices is surely relevant towards the design of efficient code
for persistent memory, previously made assumptions regarding the latency of persistent
memory devices and their access granularity size can now be reevaluated. As well, the
impact of these assumptions on the performance can now be measured.

Hash tables are fundamental data structures that provide expected constant-time lookups
and insertions on individual items. Many data-intensive systems such as key-value stores
[5, 7, 35, 49, 53], and databases [16, 18, 42, 43] use hash tables as a building block of their
designs. Prior research on the design of persistent hash tables includes both work based
on emulated persistent memory [39, 45, 60, 69], and based on DCPMM devices [2, 8, 54].

A full table resize operation is used to dynamically grow the hash table implementation
to store more key-value pairs. Often, a full table resize function is implemented by using
a global lock to restrict changes to the state of the hash table and the copying of the
key-value pairs to a new larger table. Most of the hash table designs for persistent memory
tend to evade the full table resize of the hash table since these operations incur a large
number of stores to persistent memory. Often, these new designs are complex compared
to DRAM implementations since they need to ensure their data structure is recoverable
and, at the same time, provide new mechanisms that avoid the full table resize operation.
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In this thesis, we explore the different techniques that had been proposed by these
designs alongside their benefits and drawbacks. This research intends to design a simple
implementation that resembles a DRAM hash table while achieving high scalability and
performance. In contrast to prior works such as [2, 54], which convert DRAM hash table
implementations, we only abstract the base of the design of a DRAM implementation,
while taking into consideration specific properties of DCPMM devices in our design. In
contrast to prior persistent memory implementations such as [39, 45, 8, 69], that look to
reduce the number of stores to persistent memory in their operations, we focus on reducing
the cost of allocation. While prior work avoids the full table resize operation, we intend to
reduce the latency of this operation by parallelization.

1.2 Contributions

In this thesis, the iterative process for the development of a persistent hash table is pre-
sented, and we make the following contributions:

1. We explore and evaluate the advantages and drawbacks of different design decisions
when designing data structures for persistent memory.

2. We present the design of three persistent hash table implementations. The provided
implementations surpass the open-source state-of-the-art implementations. The im-
plemented hash tables are tested using a linearizability checker tool and provide
linearizable executions in the scenarios tested.

3. When comparing our write-optimized implementation to current state-of-the-art im-
plementations, the hash table is up to 47% faster in a write-heavy workload, and
19% faster in a read-only workload.

4. When comparing our read-optimized implementation to current state-of-the-art im-
plementations, the hash table is up to 22% faster in a write-heavy workload, and
33% faster in a read-only workload.

5. We design a new full table resize mechanism for a persistent hash table. This new
mechanism allows multiple helpers to aid in the initialization of the volatile portion
of the hash table, and the rehashing of the key-value stores in persistent memory.
At the same time, this mechanism allows the volatile and persistent regions to be
initialized/rehashed in parallel.

3



1.3 Thesis organization

The thesis is organized as follows: Chapter 2 goes through the overview of persistent
memory devices, followed by proposed correctness properties in this line of research. An
overview of current techniques used towards the design of persistent memory data struc-
tures is described. Finally, the hash table implementation on which the new work is based
is explained. Chapter 3 presents the first iteration of a persistent memory hash table. The
allocation mechanism, the different operations, and the recovery mechanism are explained
in depth. The implementation is compared to other persistent hash tables, and the weak
points of the design are identified. Chapter 4 presents the second iteration of the persis-
tent memory hash table. The changes in the design are shown. The hash table is then
compared with its predecessor and other persistent hash tables, showing improvements in
performance. Chapter 5 presents the last iteration of the persistent memory hash table,
which presents a novel resize mechanism for the hash table. The resize mechanism is ex-
plained in depth, and the hash table is then compared with its predecessors and the other
persistent hash tables. The results show that the final design can outperform all previously
shown hash tables in all scenarios considered. Chapter 6 presents the results of linearizabil-
ity testing for the hash table implementations presented in the previous chapters. Finally,
Chapter 7 concludes the thesis and discusses future work.
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Chapter 2

Background and Related Work

Main memory is used to store programs or data that are currently in use by the processor.
These devices are a crucial piece of hardware in modern computer systems. Main memory,
often called Random Access Memory (RAM), offers byte addressability in contrast to
secondary storage memory, which takes a block-based approach to access data. While
initially main memory was non-volatile, throughout the last decade, main memory devices
have predominately remained volatile. There have been different approaches [4, 19, 32, 52]
to develop modern non-volatile memory, which try to find a balance between cost, density,
reliability, and endurance. In 2019, Intel released to the public the Optane Data Center
Persistent Memory (DCPMM) modules, attracting serious attention to the integration and
use of non-volatile main memory in modern computer systems.

2.1 Overview of DCPMM devices

DCPMM devices share properties with both DRAM, and secondary storage. Similarly
to DRAM, DCPMM devices sit on the memory bus, are byte-addressable, and are faster
than secondary storage. In contrast to DRAM, these devices have higher latency, lower
bandwidth, and asymmetric load and store performance [28]. Another difference between
DRAM and DCPMM modules is their access granularity, which is 256 bytes, meaning
that 64 byte loads/stores will translate into larger 256 byte accesses [28]. It is important
to note that loads and stores that are smaller than this granularity waste bandwidth as
they have the same latency as a 256 byte access [28]. Like secondary storage devices,
DCPMM can maintain data across power cycles and offers modules with large capacities.
DCPMM modules are offered in 128G, 256G, and 512G sizes, notably larger than DRAM
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devices. The high density of these devices makes them an attractive option for systems
that rely on storing large amounts of data in main memory during run-time. Not all
current processors support DCPMM devices since they communicate via a special protocol
with the processor’s integrated memory controller (iMC). This protocol allows for variable-
latency memory transactions. In this thesis, an Intel Xeon Gold 6230 CPU is used, which
is included in the list of CPUs that support DCPMM devices.

DCPMM modules can work in two modes: memory mode and app direct mode. Mem-
ory mode is used to expand main memory capacity, by using DRAM as a direct-mapped
cache for persistent memory. It is important to note that this mode does not offer per-
sistence. As previously stated, this configuration will not be relevant to the focus of this
thesis, and further clarification of this mode will not be discussed. A more detailed expla-
nation of this mode can be found in [28]. App direct mode, on the other hand, exposes
the DCPMM device as a distinct persistent memory device. This mode allows persistent
updates to bypass the kernel and file system, enabling developers to create applications
that explicitly control writes into DCPMM modules.

2.2 Consistency and persistency

The addition of persistent memory devices to the memory hierarchy does not mean that
data is instantly persisted when writing to these devices. The current memory access model
involves the cache, an intermediary in data transfer between the persistent memory devices
and the Central Processing Unit (CPU). The Intel memory access model is shown in Figure
2.1 below, specifying when data is safe in case of a power failure. The cache memory is
volatile and will probably remain this way in the near future since the cache’s size is too
large to atomically flush during a power failure. Intel processors support a feature called
asynchronous DRAM refresh (ADR). In the event of a power failure or a shutdown, the
ADR triggers an interrupt in the processor’s memory controller, which flushes the data
buffers in the iMC [58]. This is crucial to deal with program crashes and power failures
since it is ensured that data that reaches the ADR domain will be persisted. Flushing
instructions are used to ensure the data reaches the ADR domain.

6



Figure 2.1: Intel memory access model.

It is known that processors are free to reorder memory operations, which can be prob-
lematic when a specific ordering of stores or loads is required. To address this, fence
instructions can be used. These instructions impose ordering constraints on how opera-
tions are performed. The following described fence and flushing instructions are part of
the Intel x86 instruction set [9].

• SFENCE: guarantees that all previous stores before the fence are globally visible
before any store after the fence [9].

• LFENCE: guarantees that all previous loads before the fence are performed prior to
any load after the fence [9].

• MFENCE: guarantees that all previous stores and loads before the fence are globally
visible, meaning that the value to be loaded into its destination register is determined,
before any store or load after the fence [9].

• Cache line flush (CLFLUSH): flushes a single cache line to memory and invalidates
the cache line. This instruction is serialized, which means that any modifications to
flags, registers, and memory for previous instructions are completed before the next
instruction is fetched and executed [3].
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• Cache line flush optimized (CLFLUSHOPT): newly introduced instruction for DCPMM
support, same as CLFLUSH but without the serialization.[3].

• Cache line write back (CLWB): newly introduced instruction for DCPMM support,
flushes the cache line to memory, but the cache line can remain valid in the cache [3].

An atomic store guarantees that in the event of a failure, the store will either take effect
entirely or not at all. The previously shown flush instructions do not guarantee that stores
will be atomic in case of failures, which can lead to corrupted data. To guarantee an atomic
store, the data being written must be an 8-byte aligned store [56]. It is important to note
that atomic stores alone are not sufficient to ensure the correctness of a data structure.
As mentioned earlier, instructions can be reordered by the processor. Using a combination
fence instructions and flushes is a viable way to ensure the proper ordering of stores.

2.3 Correctness properties for recoverable systems

Introduced by Herlihy and Wing, linearizability [40] has been widely used as a correct-
ness condition for concurrent data structures. The linearizability model requires that a
process finishes its operation before invoking the next operation and that an operation
takes effect instantly at some point between its invocation and response step, called the
linearization point. This correctness property provides an “illusion” that operations on
shared objects appear to happen in a sequential manner. Under the linearizability model,
pending operations may take effect at any time in the future. This can be troublesome for
implementations where recovery from a crash is possible with the use of persistent memory.

Strict Linearizability [38], states that in the event of a crash or power failure, pending
operations can only take effect before the crash, meaning that either the operation took
place or it did not. For operations that were able to take effect but did not manage to
produce a response event, the linearization point of the operation happens just before the
crash. If the operation did not manage to take effect before the crash, this means it will
never take effect. Persistent atomicity [48], proposes that the operation either linearizes
or aborts before any later operation by the pending process on any object. Recoverable
linearizability [46] proposes that the operation either linearizes or aborts before any later
operation by the pending process on that same object. It is important to note that given
the previous condition in this model, processes may have multiple pending operations at a
time following a failure. Durable linearizability [27] considers all processes to fail together
as a “system crash”, assuming we are referring to an individual system in which a crash
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or power failure is known to terminate all processes associated with the program. Thus it
can be safely assumed that later accesses will be performed by different processes. It was
found that under this assumption, persistent atomicity and recoverable linearizability are
identical. Durable linearizability specifies that operations become persistent before they
return. In case of a crash, all previously complete operations remain complete and visible.
Pending operations may or may not have taken effect. Pending operations may have taken
effect and crashed before issuing a response, or a later process can finish their execution.

2.4 Persistent memory allocation

To handle persistent memory, currently, there are two options to choose from, using multi-
purpose persistent memory allocators such as the libpmemobj allocator [23], Ralloc [65],
NV-Heaps [26], and Makalu [31], or creating custom allocation techniques. Multi-purpose
persistent memory allocators can safely allocate any requested size in memory and have re-
covery mechanisms to handle crashes and prevent memory leaks. While this is a convenient
feature for programmers, these techniques often require the persistence of extra metadata
to allocate data securely. In contrast, custom allocation techniques leave the proper han-
dling of persistent memory and recovery mechanisms entirely to the developer, and while
this can be complicated, it allows creating tailormade and fast allocation mechanisms.

2.5 Data structures for persistent memory

Before the release of persistent memory to the public, in-memory data structures that
needed to maintain data in the event of a crash or power failure had to store the data in
secondary storage devices such as an HDD or SSD. These operations have a considerable
overhead given the difference in performance between main memory and secondary storage.
Often, checkpointing techniques [33, 41, 67] are used to reduce the cost of persisting data.
The arrival of persistent memory modules has changed the spectrum of what in-memory
data structures can do. Now logless fast recovery is an option where the data structure can
execute a recovery function to remove any inconsistencies left in the memory after a crash,
in contrast to log-based checkpointing techniques which need to redo or reload pending
operations.

Since persistent memory modules offer large capacities and persistence, there has been
growing interest in building data structures that offer efficient and reliable recovery, while
maintaining scalability and performance. Previous work on developing data structures for
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persistent memory has explored different data structures such as trees [25, 51, 50, 12, 66, 55,
20, 57, 30], queues [36] and hash tables [68, 8, 69, 39, 13, 15, 44, 45]. This thesis will focus
on hash tables, specifically dynamic hash tables, which are a fundamental building block
of many data-intensive systems such as key-value stores [5, 7, 35, 49, 53] and databases
[16, 18, 42, 43].

Research towards the development of hash tables for persistent memory can be grouped
into three different approaches. Some work focuses on converting existing DRAM data
structures, including hash tables, to work with persistent memory. These approaches
either develop software mechanisms to convert volatile data structures into persistent and
recoverable structures [60, 2, 13], or specify a principled approach that defines a set of
conditions that need to be met by the DRAM implementation in order to be converted
into a persistent memory recoverable data structure [54]. The other branch of research
focuses on redesigning and creating hash tables for persistent memory from “scratch.”
This approach implies the redesigning of the whole data structure based on the specific
hardware characteristics of persistent memory modules. Inside this branch of research, we
have seen two “sub-branches” on the design of these structures.

There is research on hybrid implementations [15, 68, 69], which keep some part of the
data structure in volatile DRAM, commonly the indexing part of the data structure, and
maintain the necessary data, commonly the stored values and metadata for recovery, on
persisting memory. The other sub-branch keeps all the data structure in persistent memory
[8, 39, 44, 45], giving special attention to the number of writes, reads and flushes needed
to ensure recoverability and performance.

Some of the key differences among these implementations are the recovery mechanisms.
For hybrid approaches, it is a fact that everything that is on DRAM will be lost in case of
a power failure. Some implementations, such as Flat Store [68], implement checkpointing
mechanisms to copy the volatile part of the data structure to the persistent domain. In
this case, during normal restart, these data structures can reload the volatile segment from
persistent memory, and in case of an unexpected crash or power failure, they perform
a recovery function to restore the volatile segment of the data structure. While these
approaches sacrifice some of the recovery time, they aim to improve failure-free performance
by only saving necessary data to persistent memory. In contrast, designs that keep all the
data structure on persistent memory employ different recovery approaches. Some will scan
the data structure after a crash, in search of inconsistencies that need to be fixed prior
to starting execution. For example, CCEH [39] follows this approach. Others implement
specialized recovery techniques that allow the data structure to recover during execution.
This is done by detecting inconsistencies on the fly and fixing them prior to continuing the
requested operation, which is the case in DASH [8]. In Table 2.1, the recovery performance
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for different implementations is shown; hybrid designs, in contrast with those that keep
all their data in persistent memory, are orders of magnitude slower. When fast recovery is
necessary, hybrid implementations are not ideal.

Implementation Type M key-value pairs/s

DASH All in PMEM Constant 57ms
CCEH All in PMEM 2169

Flat Store Hybrid 25
HiKV Hybrid 0.57

Table 2.1: Recovery time performance comparison.

2.5.1 Conversion approaches

RECIPE [54] is a principled approach for converting concurrent DRAM indexes into crash-
consistent indexes for persistent memory. This approach defines a set of conditions, each
for a different type of data structure, that must be met in order to perform a successful
conversion. The conditions are as follows:

• Condition#1: reads must be non-blocking, writes may be blocking or not, and
the index performs write operations visible to other threads using a single hardware-
atomic store.

• Condition#2: reads and writes must be non-blocking, write operations are per-
formed in an ordered sequence of hardware-atomic stores, reads can tolerate incon-
sistent states, and writes can fix inconsistent states via a helping mechanism.

• Condition#3: reads must be non-blocking, writes must be blocking, writes are
performed in an ordered sequence of hardware-atomic stores. Both reads and writes
can tolerate inconsistencies.

For all three conditions, the conversion involves adding a cache line flush and a memory
fence after each store. Only for condition three is additional code on the write function
needed to detect and fix permanent inconsistencies.

The work by David et al. [60] proposes a set of techniques crafted for lock-free data
structures, with the purpose of removing the need of logging for recovery entirely. These
techniques include:
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• Link and persist: allows the atomic change and persistence of a link in a data
structure.

• Link cache: allows persisting batches of modified links.

The link and persist technique uses pointer marking to signal the current link might
not be persisted. This ensures the current operation is the one persisting the link, or other
operations will be able help persist the link. This technique is similar to the “dirty” bit
technique used in [64]. The link cache technique uses a volatile hash table to store the
links that have not been durably persisted to memory. When the durable write of one of
the links is needed for correctness, the entire batch is then persisted.

In contrast with the previous two approaches, Pronto [2] is a library designed to abstract
the complexity of adding persistence to data structures. This library allows programmers to
convert existing volatile implementations to persistent ones with ease. To do this, Pronto
uses asynchronous semantic logging (ASL), where all operations invoked in an object,
along with their arguments, are recorded. Logging happens in parallel with the execution
of the operation. A disadvantage of this approach is the need for background threads that
perform the logging, which decreases the number of available cores in the system. While
the previous two approaches are designed for specific types of data structures, Pronto offers
a generic approach that applies to many data structures.

2.5.2 Hybrid data structure approaches

The approach taken by FlatStore [68] consists of decoupling the index from the actual
key-value store. They do this by saving the key-values in a persistent log structure while
maintaining a volatile index in DRAM for fast indexing. In this approach, operations that
modify the data structure, such as insert and delete, must write the metadata and key-
value item to persistent memory, then proceed to attach it to the end of the log and update
the volatile index. For get operations, the volatile index is used to find the exact log entry
and then read this log entry. This implementation, in comparison to approaches that store
the whole hash table in persistent memory, aims to avoid the cost of splitting/resizing and
enable log entries to be efficiently searched at run time without the need to traverse the
log.

Bucket Hash [69] takes a similar approach by also decoupling the index from the actual
key-value stores. In this approach, the key-value stores are saved in an ordered doubly-
linked list structure. To locate entries, they propose a new indexing structure called multi-
level lookup tables. This structure is comprised of several lookup tables that can point to
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another lookup table or a bucket. Given the properties of this design, rehash operations
occur only on buckets and do not need to perform costly full table rehashes. It is also
important to note that given that the key-value pairs are stored in an ordered manner
across buckets, the overhead of range queries is reduced compared with traditional hashing
schemes.

On the other hand, HiKV [15], combines two index structures, maintaining a parti-
tioned hash index in persistent memory and a global B+-Tree index in volatile memory.
For operations that modify the data structure, such as insert and delete, the operations
are performed on the persistent memory hash index, and the B+-Tree index is updated
asynchronously. This reduces the latency of these operations. This approach allows port-
ing the properties of B+-Trees and improves the performance of scan operations, while
retaining the efficiency of single key operations, such as put or get.

2.5.3 Persistent memory data structure approaches

In this branch of work, the implementations try to make the least amount of stores to
persistent memory. As a consequence, most of the hash table designs provide different
approaches to avoid a full table rehash operation.

One of the earliest works introduced Path Hashing [44]. This approach presents a
technique called position sharing for dealing with hash collisions. This technique involves
the structuring of the storage cells of the hash table to be organized as an inverted complete
binary tree. In this design, all the leaf nodes are the ones that can be addressed by the
hash functions, while all the other nodes are considered as shared standby positions to deal
with hash collisions.

Another technique introduced was Level Hashing [45]. The Level Hashing technique
introduces a two-level structure comprised of a top-level, where buckets can be addressed
by the hash functions, and the bottom level, which is used to provide standby positions
for any collisions. Their resizing technique takes an interesting approach, where they add
a new level. The new level is then placed on top of the previous top-level. Then the resize
operation only involves the rehashing of all the buckets on the lowest level, meaning the
resize will involve only 1/3 of the buckets in the hash table.

The next approach is CCEH [39], which adapted the original extendible hashing tech-
nique [47]. The main motivations in their work involved avoiding a full table rehash. They
state that this is an expensive operation to perform on persistent memory. Moreover, they
intend to minimize the cache line accesses and satisfy recoverability without the need for
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explicit logging. This technique presents a three-level structure comprised of a global di-
rectory which points to segments, and buckets. In this implementation, segments have a
defined number of buckets, which can be addressed by the lower bytes of the hash code,
while the upper bytes are used to determine the directory entry to the segment to be
addressed. This technique avoids full table rehashing by first trying to perform split op-
erations on the segments. In the case a split can not be performed, the resize function
is triggered. Given the design of CCEH, the table resize only involves the creation of a
new directory with updated pointers to the segments, eliminating the cost of rehashing all
stored values.

One of the newest hash table algorithms is DASH [8]. This work proposes a holistic
approach to building dynamic and scalable hash tables for persistent memory, proposing a
set of design principles and load balancing techniques to create hash tables for persistent
memory.

The design principles of DASH are as follows:

• Avoid unnecessary reads and writes to persistent memory: this is done with
the intention of conserving bandwidth and alleviating the impact of high end-to-end
read latency.

• Lightweight concurrency: simple concurrency control to reduce overhead, avoid-
ing things such as read locks for search operations.

• Full functionality: not sacrificing important features such as instant recovery or
variable-length keys.

Dash proposes a custom bucket layout, which includes a metadata section to optimize
the probing and the load factor of the table. This metadata includes a version lock (for con-
currency control), allocation bitmap, membership bitmap, counter, and a fingerprint. The
counter is used to store the number of key-value pairs stored in the bucket. The allocation
bitmap indicates which slot stores valid key-value pairs. The membership bitmap is used
to determine if the current key-value pair belongs to the bucket or if it was placed there
by one of their load balancing approaches. The fingerprint is used to reduce unnecessary
probing of key-value pairs in its different operations. In their results it was noted that the
fingerprinting technique dramatically benefits negative search operations by only requiring
the checking of fingerprints and avoiding probing.

To balance the load of the buckets, DASH proposes a set of techniques:
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• Balanced insert: Consists of probing the counter metadata in the bucket b and
b + 1, where b = hash(key) and inserting the record on the bucket which is less full.

• Displacement: If both b and b + 1 are full, the operation will try to move a record
from b + 1 to b + 2. If this is not possible, it will try to move a record from b to
b − 1. To identify which records were to be originally inserted to the bucket, the
membership bitmap metadata is checked, and this accelerates the displacement.

• Stashing: As a final resort, if after a balanced insert and displacement, the record
cannot be stored, it will be placed in a stash bucket.

For concurrency, Dash uses an optimistic bucket level locking scheme, where insert op-
erations need to acquire the lock to access the bucket. It is important to note that the lock
is only one bit, while the remaining bits store the version number. This technique allows
the insert operation to release the lock and update the version number atomically. The
version number is used by read operations to make sure they are reading the correct values
in the bucket. Search operations take a snapshot of the version number and will verify the
snapshot matches the value held in the version number to make sure no concurrent write
operation has modified the bucket.

2.6 Cache line hash table

The work presented further in this thesis extends the cache line hash table lock-based
version (CLHT-LB) [62]. Throughout this section, an overall description of CLHT-LB
will be given. CLHT-LB was designed based on the asynchronized concurrency (ASCY)
paradigm [61]. This paradigm presents four programming patterns in order to develop
portable and scalable implementations of concurrent search data structures (CSDSs). The
patterns presented by ASCY persuade developers into designing CSDSs that resemble
their sequential implementation counterparts. It was identified that some existing CSDS
algorithms already follow some of the proposed design patterns. While following some of
the design patterns of ASCY will benefit the performance of CSDSs algorithms, they have
also identified that to achieve even better performance, the collective use of these design
patterns is needed. The patterns proposed by ASCY are the following [61].

• Design pattern 1: The search operation should not involve any waiting, retries, or
stores.
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• Design pattern 2: The search phase of an update, locating an empty slot in case
of an insert or locating the key to be removed for a remove operation, should not
perform any stores other than for cleaning-up purposes and should not involve any
waiting, or retries.

• Design pattern 3: An update operation whose search phase is unsuccessful should
not perform any stores, besides those used for cleaning-up.

• Design pattern 4: The number of memory stores in a successful update should be
close to those of a sequential implementation.

The implementation of CLHT-LB was initially developed in C and is comprises three
structs which serve as the building blocks of the hash table. In this thesis, these building
blocks are identified as three types of items: the bucket item, the hash table item, and
the root item. Below in Figure 2.2 we can observe a simplified graphical representation of
CLHT-LB.

CLHT-LB implements a three-layered structure. The root item serves as the entry
point to the data structure; it holds a pointer to the current in-use hash table and contains
the global lock used for resizing. The hash table item contains information of itself, such as
a pointer to the current contiguous array of bucket item, the size of the table, a threshold,
which determines how many overflow buckets can be placed before triggering a full table
resize, an overflow bucket counter, and variables which are used to coordinate threads
during a full table resize. The bucket item is used to store the key-value pairs; these
contain a lock used for concurrency control, three key-value pairs, and a pointer to an
overflow bucket in case the current bucket is full. While the implementation does not
directly support variable-length keys, storing pointers to variable-length keys can add this
functionality. This approach has been used by several other implementations such as
[8, 20, 25, 39, 45]. To avoid multiple cache line transfers, the size of the bucket item is
fixed to that of a cache-line. It is also important to note that only the locks contained
in the bucket item in the contiguous array are used for concurrency control. If a bucket
contains a linked overflow bucket when the lock is acquired, the whole chain would be
locked.
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Figure 2.2: Simplified CLHT-LB structure.

The search operation will not wait for other operations; hence it will not acquire a
lock, and instead performs the search operation without the need for synchronization.
Instead of naively traversing the key-value pairs, throughout the traversal of the key-value
pairs, the search operation takes an atomic snapshot of the value of each key-value before
checking for a key match during traversal. After a matching key is found, the snapshot
then is compared to the current value held at the key-value pair. This ensures that if a
key is found, the value returned will correspond to that of the key and not of a concurrent
modification by other operations. It is important to note that this requires that the same
value cannot be reused by a concurrent operation throughout the lifespan of the search. If
the previous condition is not met, a search operation may read a value val, compare the
key and return val, where the value val was removed and re-inserted concurrently during
the search operation. This restriction in the search operation will lead to linearizability
violations in cases where concurrent operations are using the same value. This problem can
be fixed, for example, by using version locking, as used in DASH [8]. After the traversal of
the key-value pairs in the current bucket has completed, the search operation will proceed
to access the next linked bucket if it exists.

17



The insert operation accesses the current bucket where the key-value pair is to be
inserted and searches if the current key is already present in the bucket. If the key is
present, the operation returns false. In case the key was not present, then the lock of the
bucket is acquired, and the key-value pairs are traversed. During the traversal, if the key is
found, the operation will return false, or else it will keep track of an empty location to place
the key-value pair to be inserted. Inserts order their writes using SFENCE instructions
and will first write the value and then the key; this guarantees that any concurrent search
will only find the key-value pair when both the key and value are present in the bucket. In
case the bucket is full, a new bucket will be allocated. The key-value pair will be written to
the new bucket, to then be atomically linked using a compare-and-swap (CAS) operation
on the current full bucket next pointer. This guarantees that any concurrent search will
either see an empty pointer or one pointing to a bucket.

The remove operation, in the same way as the insert operation, searches if the current
key is present on the bucket. If the key is not found, the operation returns false. If the key
is present, the lock to the bucket is acquired, and the key-value pairs are traversed. When
found, the key is removed.

To avoid long chains of buckets that would hurt the performance, CLHT-LB keeps
track of the number of linked buckets. When the number of linked buckets surpasses a
defined threshold, a full table resize is triggered. A global lock is used to provide access
to the resizing code. The process that acquires this lock will traverse all the buckets while
acquiring their lock in resize mode and rehashing the key-value pairs to the new table.
Searches will be unaware of the full table resize and will be able to complete accordingly,
while insert and remove operations may still proceed if the current bucket has not yet been
locked in resize mode. CLHT-LB implements a helping mechanism where if an insert or
remove operation finds the current bucket is locked in resize mode, it will aid in the resizing
of the table if possible, or wait for the resize operation to finish.

2.7 Summary

The literature around the development of data structures for persistent memory can be
summarized into three different approaches. One of them is the conversion of previous
DRAM implementations. Often these approaches work on mature codebases, which can
guarantee the correctness of their implementations by providing just a conversion method-
ology to follow. Still, these conversion approaches sacrifice some of their performance, given
that these designs were optimized to work with DRAM instead of persistent memory.
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Then, we have the tailormade approaches which focus on minimizing the number of
stores to persistent memory. Designs that store all the data structure in persistent mem-
ory focus on providing specialized algorithms that further reduce the stores to persistent
memory. These implementations provide a faster recovery time to that of hybrid imple-
mentations as shown in Table 2.1. Hybrid designs aim to remove unnecessary data from the
persistent domain, which can be later rebuilt or reloaded from secondary storage. These
implementations often sacrifice recovery time to gain performance on failure-free scenarios.
However, at the same time, both of these approaches can be complex compared to that of
DRAM implementations.

We have identified that most of these approaches use multi-purpose memory allocators.
While this is convenient for developers, these allocators need to handle crash recovery as
well. Thus, they need to write metadata and implement recovery mechanisms that can
hurt the performance of the developed data structures by incurring additional stores to
persistent memory. These multi-purpose allocators can allocate data of any given size.
Thus, their implementation needs to handle all possible cases. An allocation mechanism
specifically designed for a data structure can reduce the allocation complexity by knowing
a predefined set of data types to be stored. Then, only handling the defined data type
allocations will be necessary.

Most of the existing implementations tend to avoid a full table rehash operation, while
none of the previously mentioned approaches has explored the benefits of parallelization of
a full table rehash operation. The presented work of this thesis intends to reduce the cost of
allocation by providing a custom allocation technique, explore the impact of parallelizing
the full table rehash operation, and maintain a simple design that is similar to DRAM
implementations.
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Implementation Pros Cons

RECIPE [54] Simple conversion approach
that specifies where in the
code the addition of fences
and flushes are needed.

Only implementations that
meet the specified charac-
teristics can be converted.

Pronto [2] Can convert any sequential
or concurrent data structure
to a persistent memory im-
plementation.

Needs to have background
threads to take care of the
logging, thus reducing the
available threads in the sys-
tem.

HiKV [15] Ports the properties of trees
and improves the perfor-
mance of scan operations,
while retaining the effi-
ciency of single key opera-
tions of hash tables.

After a crash, the volatile
tree structure needs to be
rebuilt, making the recovery
slower.

Bucket hash [69] Simple design that main-
tains a sorted linked list
in persistent memory and
provides a volatile indexing
structure for operations.

After a crash, the volatile
indexing structure needs to
be rebuilt, making the re-
covery slower.

Path Hashing [44] Simple design that proposes
a hash table built as an in-
verted tree.

Does not propose a resize
mechanism.

Level Hashing [45] Simple design that proposes
a two-layered hash table
structure.

1/3 of the buckets need to
be rehashed during a table
rehash.

CCEH [39] Avoids a full table resize
by instead splitting small
segments of the table when
necessary.

Memory leaks are possible
in the event of a power fail-
ure during a segment split.
Slow PMDK transactions
can solve the issue with the
addition of overhead.

DASH [8] Uses metadata to reduce the
probing and load factor of
the table.

The load balancing tech-
niques add complexity to
the design.

Table 2.2: Pros and cons for the different approaches.
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Chapter 3

Converting CLHT-LB Into a
Persistent Memory Hash Table

Throughout this chapter, an adapted design of the lock-based Cache Line Hash Table
(CLHT-LB) [62] is presented as the embedded allocation persistent hash table (EA-PHT).
This work is an extension of RECIPE [54], which has proven that CLHT-LB meets the
requirements of their condition one, mentioned in subsection 2.5.1. Thus this implementa-
tion is guaranteed to be crash-consistent if the conversion methodology of condition one is
applied. The limitation of the work presented by [54] is that the used library for allocation
is libvmmalloc [24]. This library creates a memory pool in persistent memory and uses it
as a heap replacement. In libvmmalloc, the allocated pool is reclaimed upon termination
of the program or a crash. As stated previously, this implementation would not be able to
recover the memory used. Allocators such as the one provided in the libpmemobj library
[23], Ralloc [65], NV-Heaps [26], and Makalu [31] allow developers to allocate objects dy-
namically and prevent memory leaks in case of power failure. Implementations such as
DASH and the versions of Level Hashing and CCEH presented in [8] use the libpmemobj
allocator for persistent memory. While these allocators for persistent memory are great
as general-purpose allocators, they incur additional writes with metadata to ensure their
recovery mechanisms are able to recover after a crash or power failure. When designing
data structures that aim for performance, the overhead of these allocators can become a
bottleneck [34].

A common goal throughout the field of developing data structures for persistent memory
is to reduce the number of stores. Approaches such as DASH [8], CCEH [39], and Level
Hashing [45] focus on reducing the stores the data structure needs to perform its functions,
but they disregard the stores and overhead of the allocators used. For this specialized
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conversion of CLHT-LB to EA-PHT, a custom allocation mechanism is embedded into the
data structure itself, to further reduce the number of stores to persistent memory. We prove
that this approach can outperform current state-of-the-art persistent memory hash tables,
which have implemented specialized designs for persistent memory, while still maintaining
a similar structure to its DRAM counterpart.

3.1 Memory-mapped files on PMEM

Libraries such as libpmemobj [23] and libpmem [21] allow developers to create memory-
mapped files in persistent memory, which are then used to store and retrieve data. The
libpmemobj library offers a set of functions that allow developers to allocate objects dy-
namically and perform transactions in a fail-safe manner, among other functionalities. The
libpmemobj library abstracts the complexity of ensuring consistency for data-structures
placed in persistent memory in the event of a crash or a power failure. Implementations
such as DASH and the adapted versions of level-hashing and CCEH presented in [8], use
libpmemobj as the base for handling persistent memory.

In contrast, libpmem offers low-level persistent memory support, which means ensuring
consistency of the data placed in persistent memory, and the allocation is left to the
developer. For this specific design of EA-PHT, it is assumed that the memory-mapped file
is exclusively used to place data that comprises EA-PHT and that no other data structure
has access to this file. While it is possible to have multiple instances of EA-PHT, each
one requires an independent memory-mapped file. To handle persistent memory in this
implementation, the libpmem library [21] is used. This means that mechanisms to ensure
data consistency need to be developed for this implementation. Further explanation and
details on how this is achieved are described in the following sections.

3.2 Offset placement in memory-mapped files

As mentioned in the previous section, libpmem [21] only offers low-level support for persis-
tent memory and provides no allocation functions. The function pmem map file(), allows
the developer to create a new memory-mapped file or reload a previously created one based
on the given parameters. Every time a memory-mapped file is created or loaded, a different
virtual address space mapping is provided. Storing pointers then becomes a problem; the
change of the virtual address space will make all previously saved pointers invalid, which
will likely cause a segmentation fault in the program.
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To avoid invalid pointers across executions, saving offsets is a viable solution, and
this technique has been used in allocators for persistent memory such as Ralloc [65] and
NV-Heaps [26]. Instead of using pointers, the offsets in relation to the beginning of the
memory-mapped file can be saved. To get a direct pointer, the offset needs to be added to
the virtual address that points to the beginning of the memory-mapped file. This way, we
can ensure that the items allocated on persistent memory can be located across executions.

3.3 Classification of CLHT-LB building blocks

Before deciding where and how the items of EA-PHT are going to be placed in persistent
memory. A further understanding of how CLHT-LB allocates its items is needed. In CLHT-
LB, the allocation of the root item is performed by a single thread upon the creation of the
data structure. The hash table item requires dynamic allocation during resizing, which is
performed by a single thread. The bucket items are allocated in two different scenarios: as
a contiguous array of buckets during table resize by a single thread, or as single buckets by
multiple concurrent threads during execution. Given the previously stated, we have three
scenarios where dynamic allocation is necessary and only one scenario where the allocation
must be thread-safe.

As mentioned in the previous section, EA-PHT will “live” inside a memory-mapped
file. Similarly to libpmemobj, the notion of a root object needs to be defined, which we
will call the entry point item. This entry point item should contain all the necessary data
needed for recovery and will be the first item the data structure will access after a crash
or power cycle. It is clear that the root item should be part of the entry point item.
Allocation of a hash table item is needed only during a full table resize. During a full table
resize, a minimum of two hash table item instances are needed, one pointing to the old
table and one pointing to the new table. Predefining a number of these items to reside as
part of the entry item will remove the complexity of dynamically allocating these items on
persistent memory. Arguably, the hash table items are mostly read and will be modified
only when a table resize needs to be performed. Memory degradation due to writes to the
same memory location will not be a problem due to the infrequency of these items needing
to be modified. By setting the root item and a predefined number of hash table items as
part of the entry item, only the dynamic allocation of buckets in its two different scenarios
needs to be handled, reducing the complexity of dynamic allocation.
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Figure 3.1: Entry item layout on the memory mapped file.

3.4 Offset-based allocation of EA-PHT

In this section, the allocation technique and internal composition of the items that comprise
EA-PHT are described. As shown in Figure 3.1, the entry point item will be comprised of
the root item and a predefined number of n hash table items, where n needs to be set to a
value equal or greater than two before compilation. These items are statically allocated at
the beginning of the memory-mapped file. The free space left in the memory-mapped file
is used to allocate the bucket items dynamically during run-time. As mentioned in DASH
[8], it is known that DCPMM modules have limited bandwidth in comparison to DRAM
modules, around 3-14 times lower. To reduce the overhead of performing expensive writes
to initialize allocated items during run-time, the initial creation of the memory-mapped file
will follow a pmem memset persist() function call, which will initialize the whole file to zero.
As an example, when initializing a memory-mapped file of 8.5GB to zero, it takes roughly
5 seconds. While this can take several seconds during initial creation, the initial zeroing
of the memory-mapped file will only be done once and simplifies the recovery process by
removing the need to handle uninitialized items. It is also reasonable to assume that
developers using persistent memory data structures intend to create these data structures
once and maintain them across executions. Based on the previous statements, it seems
reasonable to remove some of the recovery complexity at the cost of additional overhead
for initial creation.
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In EA-PHT, the root item is comprised of an id used to locate the hash table item,
a resize lock, an offset that indicates the first available space after the entry item and
a status variable used to determine if the data structure exited gracefully, or if it was
interrupted during execution. The hash table item contains an offset to a chunk, the size
of the hash table, the hash value, a version number, the number of allowed expands, the
expand counter, and four variables used for the table resize mechanism of the original
CLHT-LB implementation. A chunk contains a contiguous array of bucket items plus the
overflow buckets, further explained on Subsection 3.4.2. The size of the bucket items is
restricted to 256 bytes, which is the access granularity size of DCPMM modules. The
buckets are comprised of a lock for concurrency control, fifteen key-value pairs, and a next
bucket offset. The locks in bucket items use one bit as the update lock, one bit as the
resize lock, these locks are mutually exclusive, meaning only one can be acquired at a time.
The remaining six bits are used as a version number, as shown in Figure 3.3. Each time a
lock is released, its version number is simultaneously incremented by one or rolled back to
zero. For this design, only six bits are used as a version number for concurrency control. If
a larger version number is required, we have two options: use the MSB of the next bucket
offset to store the resize lock, or remove a key-value pair and add a separate resize lock
variable. An in-depth overview of the use of the variables inside these items will be given
throughout this chapter.

Figure 3.2: EA-PHT items.
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Figure 3.3: Bucket item internal lock structure.

3.4.1 Access of statically allocated items

Accessing the items contained in the entry point item is straightforward. The first item
stored in the persistent memory-mapped file is the root item; thus, every time we call the
function pmem map file() to create or re-open the memory-mapped file, a direct pointer
to the root item is provided. To get a direct pointer to a hash table item, the get ht ptr()
function is used. This function uses the root item id to calculate a direct pointer as shown
in Figure 3.4 below.

1 ptr_ht=root+sizeof(root_element)+(root ->id*sizeof(ht_element));

Figure 3.4: Get direct pointer to hash table item (ptr ht) from id.

Upon initial creation of EA-PHT, the root item id will be set to zero. As full table
resizes are performed during run-time, the id value in the root item will increment or roll
back to zero in a similar manner to that of a circular buffer to change between hash table
items.

3.4.2 Allocation and access of dynamically allocated items

To handle the dynamic allocation of bucket items, the notion of a chunk is introduced.
A chunk is comprised of a contiguous array of bucket items and individually allocated
overflow bucket items, as shown in Figure 3.5. A chunk’s size will change during run time
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as we start placing overflow buckets in the next free memory space after the contiguous
array.

Figure 3.5: Representation of EA-PHT.

To allocate overflow buckets, the allocate bucket() function is used. This function uses
the expand counter variable as an index that specifies the overflow bucket’s location after
the contiguous array. It is important to note that the allocation of overflow buckets needs
to be thread-safe since several threads may be trying to allocate an overflow bucket con-
currently. The expanded counter is atomically incremented with an sync add and fetch()
instruction in every allocation of a new overflow bucket. The returned value minus one
will be used to calculate the reserved offset for the newly allocated bucket. Then the offset
of the overflow bucket can be calculated as shown in Figure 3.6, where the index value is
the returned value by the sync add and fetch() and minus one, since the previous value
of the expand counter is the reserved index for the new bucket. To get a direct pointer
to the overflow bucket offset, the offset to ptr() function is used. This function adds the
provided offset to the root pointer. To access a bucket contained in the contiguous array
of buckets, the get bucket ptr() function is used. In this function, the direct pointer is cal-
culated as shown in Figure 3.7, where the index refers to the array location of the bucket
to be accessed.

1 bucket_off=ht->chunk_off +(ht->size*sizeof(bucket))+(index*sizeof(

bucket));

Figure 3.6: Offset to overflow bucket.
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1 ptr_bucket=root+ht->chunk_off +(index*sizeof(bucket));

Figure 3.7: Direct pointer to bucket in contiguous array.

When a full table resize is triggered, the thread resizing the table will mark the chunk
offset, similarly to that of pointer tagging [59], where the MSB bit of the chunk offset is set
to one. Marking this offset prevents other threads from allocating new overflow buckets,
thus allowing the thread performing the resize to calculate the placement of the new chunk.
The new chunk is placed just after the last overflow bucket of the previous chunk. A more
in-depth explanation of this mechanism is described in Section 3.5.4, where the resize is
explained.

3.5 EA-PHT operations

This section describes how the different operations of EA-PHT are performed, as well as
detailing the combination of fences and flushes used by these operations to impose an order
when performing stores to persistent memory. As mentioned in Section 2.2, 8-byte stores
in persistent memory followed by a flush are guaranteed to be power-fail atomic, meaning
that either the new value or the old value will remain in persistent memory after a crash
during the store operation. It is implied that all variables that are mentioned in this section
are 8-byte aligned, which means all stores are guaranteed to be power-fail atomic. When a
variable is written, it is implied that this is followed by a Flush() instruction, which consists
of an MFENCE, CLWB, and another MFENCE; this is based from the flush instruction
implemented by RECIPE [54]. In EA-PHT, the resize lock and bucket lock variables are
neither flushed nor persisted. Upon recovery or restart, all these locks are reinitialized. In
the case of the bucket locks, their embedded version number is also reinitialized.

3.5.1 The search operation

Similarly to CLHT-LB, EA-PHT implements a read operation without the need for syn-
chronization. In Algorithm 1 line 6, the search operation locates the bucket in the contigu-
ous array to be searched and in line 8, it takes a snapshot of the version number contained
in its lock. Then the search operation proceeds to traverse the key-value pairs while taking
snapshots, (see line 11), of the value for each key-value pair accessed. If the traversal of
the key-value pairs in the current bucket has completed and the key-value pair was not
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found, the search operation will proceed to access the next linked bucket if it exists, line
23. After a matching key is found, (line 13), the snapshot of the value is compared to
the current value held at the key-value pair, followed by the comparison of the version
number snapshot and the current version number held in the lock. If these conditions are
true, the operation returns the value. If the snapshot of the value does not match, then
the operation returns zero, since a concurrent operation removed the key-value pair. If
the snapshot of the version number does not match, it means a concurrent operation has
modified the bucket, and the search operation restarts.

Algorithm 1 Search function

1: procedure Search(key)
2: Retry :
3: hash table = get ht ptr(root−→id)
4: chunk = get chunk ptr(hashtable−→chunk off)
5: bin = hash(hashtable−→hash, KEY)
6: bucket = get bucket ptr(chunk, bin)
7: entry=bucket
8: version = (bucket−→lock)&VERSION MASK
9: do
10: for (j=0; j<ENTRIES PER BUCKET; j++) do
11: snapshot = bucket−→val[j]
12: LFENCE()
13: if bucket−→key[j] == KEY then
14: if bucket−→val[j] == snapshot then
15: if version == ((entry−→lock)&VERSION MASK) then
16: return snapshot
17: else
18: goto Retry

19: else
20: return 0
21: b=offset to ptr(bucket−→next)
22: bucket=b;
23: while bucket 6= null
24: return 0
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3.5.2 The insert operation

An insert operation can be performed in three different ways: a lock-free insert, where the
key is already contained in the bucket; a simple insert, where there is no need to allocate
an overflow bucket; and an overflow insert, where the allocation of an overflow bucket
is needed. A lock-free insert will search the bucket without acquiring a lock, using the
bucket exists() function, finding the key, and returning false, Algorithm 2 line 7, without
the need to perform any stores to persistent memory. A simple insert will not find the
searched key and will acquire the update lock. After acquiring the update lock, an empty
space is located in the current bucket, (lines 20 - 26); then, in the following order, the
value is written, then the key is written to ensure that a search operation can only find a
key when its value is present, (lines 42 - 45). After the key is written, the update lock is
released, and at the same time, the version number is updated, (line 46).

An overflow insert will not find the searched key. It will acquire the update lock and
determine that the current bucket has no free entry for the key-value pair, (line 29). Then,
the create bucket() function will be called. If the chunk offset is marked, (line 31), the
create bucket() function will return and signal the insert operation to restart the operation,
since allocation to the chunk is restricted by a resize operation. If the chunk offset is not
marked, the expand counter is atomically incremented/written by an sync add and fetch()
instruction. The returned value of the sync add and fetch() instruction minus one is then
used to calculate the allocated bucket offset, as shown in Figure 3.6. After receiving an
offset to the newly allocated bucket, from the create bucket() function, the direct pointer
to this bucket can be calculated with the offset. In the first key-value pair of the newly
allocated bucket, the value is written, followed by the writing of the key (lines 35 - 38).
Then the offset to the newly allocated bucket is written to the next bucket offset of the
previously full bucket, (line 39). Finally, the update lock is released, and at the same
time, the version number is incremented, (line 46). For both the simple insert and overflow
insert, after acquiring the lock, if during the traversal of the key-value pairs the key to be
inserted is found, the operation releases the lock and returns false.
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Algorithm 2 Insert function

1: procedure Insert(key, value)
2: Retry:
3: hash table = get ht ptr(root−→id)
4: chunk = get chunk ptr(hashtable−→chunk off)
5: bin = hash(hashtable−→hash, KEY)
6: bucket = get bucket ptr(chunk, bin)
7: if bucket exists(bucket,KEY) == true then return false

8: lock = &bucket−→lock
9: while LOCK ACQ(lock, hashtable)=0 do // wait until lock acquired
10: if if chunk lock(hashtable−→chunk off)=true then
11: goto Retry

12: hash table = get ht ptr(root−→id)
13: chunk = get chunk ptr(hashtable−→chunk off)
14: bin = hash(hashtable−→hash, KEY)
15: bucket = get bucket ptr(chunk, bin)
16: lock = &bucket−→lock
17: key location = null
18: val location = null
19: do
20: for (j=0; j<ENTRIES PER BUCKET; j++) do
21: if bucket−→key[j] == KEY then
22: lock REL(lock)
23: return false
24: else if key location == null and bucket−→key[j] == 0 then
25: key location= & bucket−→key[j]
26: val location=& bucket−→val[j]

27: resize flag = 0
28: if bucket−→next == null then // if bucket not linked
29: if key location == null then // if there is no space in bucket
30: bucket offset = allocate bucket(hashtable, &resize flag )
31: if bucket offset == LOCKED CHUNK then
32: lock REL(lock)
33: goto Retry

34: b=offset to ptr(bucket offset)
35: b−→val[0]=VAL
36: Flush(&bucket−→val[0])
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37: b→ key[0]=KEY
38: Flush(&bucket−→key[0])
39: bucket−→next=bucket offset
40: Flush(&bucket−→next[0])
41: else
42: ∗val location=VAL
43: Flush(val location)
44: ∗key location=KEY
45: Flush(key location)

46: lock REL(lock)
47: if resize flag = true then
48: full table resize()

49: return true
50: b=offset to ptr(bucket−→next)
51: bucket=b;
52: while true

3.5.3 The remove operation

A remove operation can be performed in two different ways. A lock-free remove, where
the key is not contained in the bucket, and a locking remove, where the key is contained
in the bucket and the operation proceeds to remove it. A lock-free remove will search the
bucket without acquiring a lock, using the bucket exists() function, not finding the key, and
returning false without the need of performing any stores to persistent memory, (Algorithm
3 line 6). A locking remove will find the searched key and will acquire the update lock.
After acquiring the update lock, it will traverse the key-value pairs. If the matching key
is found, (line 16), then, in the following order, the key is overwritten with zero, then the
value is overwritten with zero to ensure that a search operation can only find a key when
its value is present. Finally, the update lock is released, and at the same time, the version
number is updated, line 22. If the matching key is not found after acquiring the lock and
traversing the key-value pairs, the operation releases the lock and returns false.
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Algorithm 3 Remove function

1: procedure Remove(key)
2: hash table = get ht ptr(root−→id)
3: chunk = get chunk ptr(hash table−→chunk off)
4: bin = hash(hash table−→hash, KEY)
5: bucket = get bucket ptr(chunk, bin)
6: if bucket exists(bucket,KEY) = false then return false

7: lock = &bucket−→lock
8: while LOCK ACQ(lock, hash table)=0 do// wait until lock acquired
9: hash table = get ht ptr(root−→id)
10: chunk = get chunk ptr(hash table−→chunk off)
11: bin = hash(hash table−→hash, KEY)
12: bucket = get bucket ptr(chunk, bin)
13: lock = &bucket−→lock
14: do
15: for (j=0; j<ENTRIES PER BUCKET; j++) do
16: if bucket−→key[j] == KEY then
17: bucket−→key[j]=0
18: Flush(bucket−→key[j])
19: val=bucket−→val[j]
20: bucket−→val[j]=0
21: Flush(bucket−→val[j])
22: lock REL(lock)
23: return val
24: b=offset to ptr(bucket−→next)
25: bucket=b;
26: while bucket 6= NULL
27: lock REL(lock)
28: return 0

3.5.4 The resize operation

When a full table resize is required, a new hash table with a size of a constant multiplied by
the size of the old hash table will be created. The resize operation is performed as follows.
After a successful overflow insert, if the thread finds that the expand counter surpasses
the max allowed expands, it will try to acquire the resize lock. If the thread finds the lock
to be acquired, then the insert operation completes successfully and returns since another
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thread has already begun the resize operation. A thread that acquires the resize lock will
proceed to call the create hash table() function, which will select the new hash table item
to be used and initialize its variables.

The create hash table() function first marks the old hash table item chunk offset by
setting the MSB of the chunk offset, using a CAS operation, (see Algorithm 4 line 3).
After that, no other thread may allocate overflow buckets in the old chunk. Then, the root
id is used to determine which is the id of the new hash table item to be used, (lines 4 -
8), and the direct pointer to the new hash table item is obtained as shown in line 9. If
the size variable in the new hash table item contains a value greater than zero, this item
already points to a previous chunk; then the previous chunk is deallocated by issuing a
pmem memset persist() to set the entire chunk to zero, (see lines 10 - 13).

After clearing the previous chunk referenced by the new hash table item, if it existed,
the size variable is then written with the new size of the table, line 14. Then, the chunk
offset is calculated and written. To calculate the chunk offset for the new hash table, the
old hash table chunk offset, table size, and expand counter are used, as shown in line 17.
Then the expand counter is written to zero. Finally, the max expands, hash, is helper,
helper done, table new, and table temp variables are initialized, without requiring flushing
since these variables are always initialized upon recovery. (See Section 3.6 for more details).

After the initialization of the new hash table item and just before beginning the rehash
operation, the thread performing the resize needs to re-check the calculated offset, given
that there could be a thread t1 which sees the chunk unlocked, then the thread t2 perform-
ing the resize marks the chunk offset and reads the expand counter prior to the increment
by the thread t1 allocating the overflow bucket. This way, it can be ensured that there are
no overlapping chunks.
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Algorithm 4 Allocation of new hash table items

1: procedure Create hash table(num buckets)
2: ht root = get ht ptr(root−→id)
3: while LOCK ACQ(lock chunk())=0 do // wait until chunk lock acquired

4: id=ht root−→id
5: if id== (NUMBER OF PREALLOCS - 1) then
6: id=0
7: else if id < (NUMBER OF PREALLOCS - 1) then
8: id=id+1

9: ht new = get ht ptr(id)
10: if ht new−→size 6= 0 then
11: chunk = get chunk ptr(ht new−→chunk off)
12: size =(ht new−→size+ht new−→expands)*sizeof(bucket t)
13: pmem memset persist(ht new,0,size))

14: ht new−→size=num buckets
15: Flush(ht new−→size)
16: old chunk size+=(ht root−→size+ht root−→expands)*sizeof(bucket t)
17: new chunk off= ht root−→chunk off+ old chunk size
18: ht new−→chunk off=new chunk off
19: Flush(ht new−→chunk off)
20: ht new−→expands=0
21: Flush(ht new−→expands)
22: ht new−→max expands = (EXPAND FACTOR*num buckets)
23: ht new−→hash= num buckets-1
24: ht new−→is helper = 1
25: ht new−→helper done = 0
26: ht new−→table new = null
27: ht new−→table temp = null
28: return ht new
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After the create hash table() function has initialized the new hash table, the rehashing
will be performed. The rehashing algorithm is the same as the one provided by CLHT [61].
The rehashing consists of traversing the buckets along with any overflow buckets linked
and copying all their key-value pairs to the new hash table. To begin the rehash of the
accessed bucket, the resize lock must be acquired first. This lock is acquired and never
released since we do not want any other process to be able to modify a bucket that is or has
been rehashed to the new table. The resize lock and update lock are mutually exclusive, so
a resize lock will only be acquired if neither lock is set. The thread performing the resize
will begin the rehash operation by traversing all the buckets in the old table from the first
bucket to the last, while a helping thread will start from the last bucket to the first bucket.
Both will stop if they encounter a bucket locked in resize mode.

During a full table resize, search operations can be executed normally. Any concurrent
threads performing an insert or remove that do not find the current bucket resize lock
acquired will be able to proceed with its operation. If the bucket resize lock is set, the
thread will help to resize, if possible, or wait for the resize operation to finish.

When the rehashing is finished, the contiguous array of bucket items along any overflow
buckets allocated during resize in the new chunk are flushed. After the data is flushed, the
old hash table item version number plus one is written to the new hash table item. Then
the root id is atomically swapped/written for the id of the new hash table item. Finally,
the resize lock is released, and the operation completes. As mentioned previously, the hash
table item uses four variables during the table resize operations, and their use is explained
as follows.

• Tmp table pointer: Upon initialization, this variable is set to null. During table
resize, a direct pointer to the next hash table is set. A helping thread during resize
uses this pointer to access the new table. It is important to note that for a thread to
begin helping the resize of the table, it needs to encounter a bucket with the resize
lock set, which means that the thread performing the resize has previously set the
direct pointer to the new table in this variable.

• New table pointer: When a full table resize is triggered, this pointer is set to null.
When the new table has been rehashed and is ready, a pointer to the new table is
assigned to this variable, signaling all the waiting threads that the resize operation
has completed.
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• Is helper: Upon initialization, this variable is set to zero. A thread trying to enter
the resize help function will use a sync sub and fetch() instruction on this variable.
If the value returned is greater than or equal to zero, the thread will then proceed
to enter the resize help function. Only one thread will be able to help the resize
operation.

• Helper done: Upon initialization, this variable is set to zero. This variable is set
to one by the helping thread when it finishes helping, and signals the main thread
performing the resize that the helper has finished.

3.6 Recovering from a crash

To determine if the program exited gracefully, the status variable contained in the root item
is used. If the status variable value is two, it means that the program exited gracefully. If
the status variable value is one, then the program crashed during execution, and executing
the recovery function is needed. If the status variable value is zero or any other value, then
the program crashed before the initial creation of the hash table. The recovery function
consists of three steps that are performed in the following order: re-initialization and fixing
incomplete operations, linking of buckets, and detecting if the program crashed during a
full table resize.

3.6.1 Possible inconsistent states left by EA-PHT operations

Operations such as a simple insert, overflow insert, locking remove, or full table resize,
perform stores to persistent memory. If these operations were to be interrupted by a
crash or power failure, the memory could be left in an inconsistent state. This subsection
describes the different inconsistent states that can remain in the EA-PHT in its different
operations.

• Simple insert:

– Successful insert: both the value and key were persisted.

– Partial insert: only the value was persisted.

– Failed insert: neither the value nor the key were persisted.
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• Overflow insert:

– Successful insert: the expand counter, the key-value pair, and the offset were
persisted.

– Unliked successful insert: the expand counter, key, and value pair were persisted,
the offset was not persisted to the previous full bucket offset variable.

– Unlinked partial insert: only expand counter, and the value were persisted.

– Unlinked failed insert: the expand counter was persisted, the insert never took
place.

– Failed bucket allocation: the increment of the expand counter was not persisted.

• Locking remove:

– Successful remove: both the value and key were persisted.

– Partial remove: only the key was persisted.

– Failed remove: neither the value nor the key were persisted.

If the program crashes during a full table resize operation, it can be tricky to determine
the exact point where this happened. To avoid complex algorithms that may solve this
issue, a lazy approach is taken to separate the analysis of the resize operation into five
possible states. These states are determined by the root item id variable, and the hash table
items, size, chunk offset, and version number variables. All of these variables are persisted
in a specific order during a full table rehash operation; thus, the full table rehash operation
can be split into the described states below. This approach dramatically simplifies the
recovery process, while sacrificing recovery time.

• Full table resize:

– Did not crash during a resize operation: A previous resize operation took place
successfully.

– Resize never started: The hash table item referenced by the root id has an
expand counter value that surpasses the expand threshold, the chunk offset
might be marked, and none of the variables of the new hash table item to be
used were persisted.

– Resize deallocated old chunk: persisted the new size on the new hash table item.
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– Resize might have begun rehash: persisted the new size and new chunk offset
in the new hash table item.

– Resize finished, missed swap of root id: persisted the new size, new chunk offset,
and updated version number in the new hash table item, but did not persist the
new id to the root item variable.

Figure 3.8: Did not crash during a resize operation.

Figure 3.9: Resize never started.

Figure 3.10: Resize deallocated old chunk.
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Figure 3.11: Resize might have begun rehash.

Figure 3.12: Resize finished, missed swap of root id.
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3.6.2 Re-initialization and repairing incomplete operations

The re init and fix() function is used to fix incomplete operations and re-initialize vari-
ables of the data structure. The root item resize lock is set to zero, then the hash table
referenced by the root id is accessed, and finall the max expands, and hash variables are
recalculated. Given that these are not manually flushed and may contain invalid values,
they are calculated using the size variable of the hash table item, which is manually flushed
during a resize operation and is guaranteed to contain a valid size for the current hash ta-
ble. Also, the is helper, helper done, table new, and table temp variables are initialized
to its default. Then the buckets contained in the current chunk referenced by the hash
table item are traversed. The size variable and expand counter are used to determine the
number of buckets contained in the chunk, (see Algorithm 5 line 9). Each bucket is then
accessed, its lock is set to zero, and the key-value pairs are traversed. If a key-value pair
in the bucket contains a value different from zero, and a key equals to zero (partial insert,
unlinked partial insert or partial remove), then the value is set to zero, (line 14). In the
case of a partial insert and unlinked partial insert, these operations will be aborted. In the
case of a partial remove, this operation will be completed.

Algorithm 5 Re-initialization and repairing incomplete operations

1: procedure Re Init and fix()
2: ht root = get ht ptr(root−→id)
3: chunk = get chunk ptr(ht root−→chunk off)
4: root−→resize lock = LOCK FREE
5: ht root−→max expands = (EXPAND FACTOR*ht root−→size)
6: ht root−→hash= ht root−→size-1
7: ht root−→is helper = 1
8: ht root−→helper done = 0
9: for (i = 0; i<(ht root−→size + ht root−→expand cnt); i++) do
10: bucket = get bucket ptr(chunk, i)
11: bucket−→lock = LOCK FREE
12: for (j = 0; j < ENTRIES PER BUCKET; j++) do
13: if (bucket−→val[j] 6= 0) AND (bucket−→key[j]==0) then
14: bucket−→val[j]=0
15: Flush(bucket−→val[j])
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3.6.3 Linking of buckets

All the overflow buckets are traversed. If both the first key, and value are equal to zero
(unlinked failed insert), this bucket might be “lost” in the sense that the hash table might
not be able to access this bucket. Still, when the deallocation of the chunk is performed
later, this bucket will be reclaimed along with all the other buckets in the chunk. If both
the key and value are different from zero, the key-value pair will be searched in the same
manner as the search operation, (see Algorithm 6 line 9). If the key-value pair is found
(successful insert), the bucket is already linked correctly to the data structure. If the key-
value pair is not found (unliked successful insert), the next bucket offset variable of the
last bucket accessed during the search operation will be assigned the offset of the bucket
containing the not found key-value pair, thus completing an overflow insert operation, (line
13).

Algorithm 6 Link buckets

1: procedure Link buckets()
2: ht = get ht ptr(root−→id)
3: // begin holds pointer to first overflow bucket
4: begin= get chunk ptr(ht−→chunk off)+(ht−→size*BUCKET SIZE)
5: // end holds pointer to last overflow bucket
6: end= begin+(ht−→expand cnt*BUCKET SIZE)
7: for (i = begin; i<end; i=i+BUCKET SIZE) do
8: bucket = i
9: if (bucket−→key[0] 6= 0) AND (bucket−→val[0] 6= 0) then
10: result= search(bucket−→key[0])
11: if (result = 0) then
12: offset= ptr to offset(bucket)
13: link(ht, bucket−→key[0], offset)
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Algorithm 7 Link function

1: procedure link(ht,key,offset)
2: chunk = get chunk ptr(HT−→chunk off)
3: bin = hash(HT−→hash, KEY)
4: bucket = get bucket ptr(chunk, bin)
5: do
6: if bucket−→next = 0 then
7: bucket−→next=offset
8: Flush(bucket−→next)
9: return 1
10: b=offset to ptr(bucket−→next)
11: bucket=b
12: while bucket 6= null
13: return 0

3.6.4 Detecting if the program crashed during a resizing

To detect whether the program crashed during a full table resize, the preallocated hash
table items are scanned; based on their position, the id’s of the hash table item contain-
ing the maximum size and maximum version numbers are obtained. For example, if the
first preallocated hash table item contains the maximum size compared to all the other
preallocated hash table items, the id of the maximum size will be zero.

If both the maximum version id and maximum size id match the id contained in the
root item, the program did not crash during a resize. Still, the hash table item expand
counter is read to check if it surpasses the maximum expands. If this is the case (resize
never started), the MSB of the chunk offset is cleared, and the resize function is executed
with a single thread. If the maximum version id and the maximum size id are equal, but
the root id is different, the program crashed after a successful rehash. Then the root id
needs to be changed to the maximum version id (resize finished, missed swap of root id).
If the maximum version id and the root id are equal, but the maximum size id is different,
the program crashed during resizing. The hash table item referenced by the root id is used
to calculate the next chunk offset for the new hash table item. If the computed chunk
offset does not match the chunk offset contained in the hash table item referenced to by
the maximum size id (resize deallocated old chunk), the rehash did not take place. If the
chunk offset calculated from the hash table item referenced by the root id matches the
one of the hash table item referenced by the maximum size id (resize might have begun
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rehash), the crash might have happened while rehashing. If so, the chunk is reinitialized
to zero using a pmem memset persist(), to remove any incomplete operations that were
interrupted during the rehash, and then the resize function is called.

3.7 Experimental Setup

The testbed used for the results presented in Chapters 3, 4, and 5 was an Intel Xeon Gold
6230 server with 20 cores and Intel Optane Persistent Memory.

The Yahoo! Cloud Serving Benchmark (YCSB) [6] was used for evaluating the hash
tables. The benchmark consists of a load phase and a workload phase. The load phase
inserts 64M key-value pairs to grow the hash table. During the load phase, the hash table
is expected to change in size. This phase will capture the impact of the resizing mechanism
used for the implementations tested.

The workload phase focuses solely on measuring the performance of insert and search
workloads. Each workload consists of 64M operations. Four types of workloads were
tested: 50/50, 80/20, 95/5, 100/0 read/write. The experiments were run five times, and
hyperthreading was used in executions with more than 20 threads.

3.8 Performance evaluation

Implementations such as DASH [8], CCEH [39], and Level Hashing [45], focus on reducing
the overall number of stores to persistent memory performed by their operations, without
considering the overhead of using general-purpose memory allocators. These designs avoid
the full table rehash operation and propose different alternatives to handle collisions in the
data structure to reduce the number of allocations needed. On the other hand, EA-PHT
focuses on reducing the number of fences and flushes needed by the search, insert (including
the fences and flushes needed for allocation) and remove operations only, overlooking the
cost of a full table rehash. Shown below are the number of flushes and fences needed for
each operation of EA-PHT.
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• Search: uses 1 LFENCE per key-value pair traversed.

• Simple Insert: uses 4 MFENCE and 2 CLWB.

• Overflow Insert: uses 8 MFENCE and 4 CLWB.

• Locking Remove: uses 4 MFENCE and 2 CLWB.

In EA-PHT, overflow buckets (256 bytes) are the most frequently allocated items.
A comparison in the cost of allocation using libpmemobj, which is used by the other
implementations, in contrast to the embedded allocation technique, is shown in Figure
3.13. The throughput for both techniques was measured, and the results show that the
embedded allocation technique can be up to 2.9 times faster in comparison to libpmemobj.

Figure 3.13: Average time to allocate 256 bytes (single thread).

For the workload graphs, each point represents the average of five different executions
where the error bars are defined as the standard deviation of the set of measurements.
DASH [8] takes into account the access granularity of DCPMM devices and sets the size of
buckets to be 256 bytes, while CCEH and Level Hashing, use 64 bytes for their bucket size.
This specific design decision in DASH is intended to benefit from data locality. EA-PHT
borrows the idea of DASH by setting the size of its buckets to 256 bytes. Shown below in
the workload results, a significant gap between designs that use a bucket size of 256 bytes
and designs that use a bucket size of 64 bytes and can be seen.

45



The reduced cost of allocation and taking into consideration the access granularity of
DCPMM devices in the design of EA-PHT allows it to surpass the other implementations
in all four workloads. The difference in performance between EA-PHT and CCEH and
Level Hashing is related mainly to data locality, since EA-PHT uses 256 byte buckets.
On the other hand, for write-heavy workloads 50/50 (read/write), Figure 3.14 and 80/20
(read/write), Figure 3.15, EA-PHT can outperform DASH given its low cost of allocation,
being up to 22% faster than DASH in the 50/50 (read/write).

For read-heavy workloads where no allocation is needed, 100/0 (read/write) Figure 3.17
and 95/5 (read/write), Figure 3.16, EA-PHT still can outperform DASH. The gap between
DASH and EA-PHT in the read-heavy workloads is related to how the implementations
store and manage their key-value pairs. DASH uses several techniques to balance the
load in the hash table and a fingerprinting technique to avoid unnecessary probing. While
the fingerprinting technique reduces the need for probing all buckets, their load balancing
techniques add extra steps to their search operation. A search operation needs to check
the bucket where the key is to be stored and the next adjacent bucket. In the presence
of key-value pairs in the stash bucket, this too needs to be checked. In contrast, EA-PHT
needs to check only one bucket most of the time and only needs to check extra buckets if
there is a chained bucket. This allows EA-PHT to be up to 33% faster than DASH in the
read-only workload C 100/0 (read/write).
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Figure 3.15: 80/20 read/write workload.
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Figure 3.14: 50/50 read/write workload.
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Figure 3.16: 95/5 read/write workload.
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Figure 3.17: 100/0 read/write workload.

As shown in Figure 3.18, DASH performs better during the load phase, being 22% faster
than EA-PHT. This was expected since EA-PHT needs to perform a full table rehash during
resizing. The performance during the load phase between CCEH and EA-PHT is similar.
Even though CCEH implements an alternative to avoid a full table rehash, EA-PHT takes
advantage of the data locality by setting its bucket size to be 256 bytes. Level Hashing
shows the lowest performance during the load phase since this implementation performs
the rehashing of 1/3 of its buckets during a full table resize, and uses buckets with a size
of 64 bytes.
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Figure 3.18: Load phase throughput.

Implementation M key-value pairs/s

DASH Constant 57ms
CCEH 2169

EA-PHT 49
Flat Store 25
Level Hash 0.57

Table 3.1: Recovery time performance comparison.

As shown in Table 3.1, the recovery time of EA-PHT is higher in comparison to im-
plementations such as DASH [8], and CCEH [39], which have built specialized recovery
mechanisms. This was expected since EA-PHT takes a greedy single-threaded approach
when performing recovery, which requires the scanning of every key-value pair in every
bucket contained in the current chunk. Compared to hybrid implementations such as
HiKV [15], and FlatStore [68], which need to rebuild a portion of the data structure upon
recovery, EA-PHT is faster.

When designing data structures for persistent memory, taking into consideration the
access granularity of these devices is essential. Implementations such as DASH and EA-
PHT, which consider the access granularity of these devices in their designs, perform
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considerably better in all workloads. The overhead of a full table rehash in EA-PHT
was not as high as expected as seen in Figure 3.18. During the load phase, EA-PHT
manages to perform similarly to CCEH, which avoids a full table rehash by just rehashing
small portions of the hash table when needed. The parallelization of the full table rehash
operation of EA-PHT could further reduce its overhead.

As well, we have a hypothesis regarding the impact of the use of locks stored in persistent
memory. Using the Linux Perf profiler tool, it was observed that in a 40 thread execution of
workload A 50/50 read/write, 76% of all the cache references were cache misses. Flushing
instructions are used to guarantee persistence, but as mentioned in Section 2.2, these
instructions can invalidate the flushed cache line. A single-threaded benchmark comparing
the different flushing instructions CLWB, CLFLUSH, CLFLUSHOPT was executed. The
benchmark consisted of 1M iterations of a load and a store followed by one of the different
flush instructions wrapped by MFENCE instructions.

Figure 3.19: Comparison of flushing instructions.

The comparison of CLWB, CLFLUSH, CLFLUSHOPT shows that they perform sim-
ilarly. Based on the previous results, we infer that containing locks in persistent memory
can increase the number of cache misses if we consider the following scenario. If a process
is waiting for the lock to be released by continuously reading it, and the thread that has
acquired the lock flushes a key-value pair contained in the same cache line as the lock, it
will force the waiting thread to re-load the cache line.
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After the evaluation of EA-PHT, two areas of opportunity to improve its performance
are identified. The first one is the migration of the bucket item locks to volatile memory.
The second one is the design of a new resize mechanism, which allows multiple helpers to
work in parallel during rehashing.
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Chapter 4

Volatile Concurrency Control
Variables

This chapter presents the changes made in the design of E-PHT to migrate the bucket item
locks to volatile memory. This new design is called the embedded allocation persistent hash
table hybrid version, EA-PHT-H.

4.1 EA-PHT-H design

As previously mentioned in the original description of CLHT-LB, only the locks in the
contiguous array of buckets are used for concurrency control. Then the migration of the
locks in the bucket items to volatile memory is straightforward since the size of the hash
table item can be used to create a contiguous array of volatile locks.

The design of EA-PHT-H, includes a new item stored in volatile memory called the
access item. This item holds direct pointers to a hash table item, the chunk pointed by the
hash table item, and its corresponding contiguous array of volatile locks. The access item
then serves as the entry to the data structure for the search, insert and remove operations,
by providing all the necessary pointers needed. Also, the variables used for resizing were
removed from the hash table items and now are part of this class’s member variables, given
that these variables are not needed during recovery.
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Figure 4.1: EA-PHT-H items and member variables.

Figure 4.2: Representation of EA-PHT-H.

The design changes to incorporate volatile locks into EA-PHT-H involved minor changes
in the code, and these are described below. Upon initialization or recovery, a new contigu-
ous array of volatile locks needs to be allocated and initialized, as well a new access item
needs to be allocated, and its direct pointers need to be assigned. The search, insert and
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remove operations will no longer use the root item to access the data structure, and instead
will use the provided pointers contained in the access item to perform their operations.
For a full table resize, before beginning the rehashing of the table, a new contiguous array
of the size of the new table needs to be allocated and initialized. After the rehashing is
completed and the table is ready, but before finalizing the full table resize operation, a new
access item is created, and its pointers are assigned. The pointer to the old access item
will be atomically swapped for the new one, then the old volatile array of locks and access
item are deallocated.

4.2 Performance evaluation

The experimental setup for the following results is the same as the one described in Section
3.7. In addition to the YCSB workload results, the Linux perf profiler tool was used to
count the total cache references and the percentage of cache misses in the execution of
workload A with 40 threads. It was observed that EA-PHT-H had 10% fewer cache misses
in comparison to EA-PHT. These results support the hypothesis mentioned in Chapter 3,
which states that having locks stored in persistent memory that share a cache line with
key-value stores, increases the number of cache misses.
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Figure 4.3: Percentage of cache misses in a 40 thread execution of workload A.
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In Figure 4.4, we observe that EA-PHT-H benefits from having the bucket item locks
in volatile memory in write-heavy workloads. In the 50/50 read/write workload, EA-
PHT-H is up to 20% faster than EA-PHT and 46% faster than DASH. In the 80/20
read/write workload, EA-PHT-H is up to 7% faster than EA-PHT and 32% faster than
DASH. These results further confirm that the scenario described next is the reason EA-
PHT has lower throughput than EA-PHT-H. If a process is waiting for the lock to be
released by continuously reading it, and the thread that has acquired the lock flushes a
key-value pair contained in the same cache line as the lock, it will force the waiting thread
to re-load the cache line.

The decision to migrate the locks to volatile memory does not come free of cost. For read
dominated workloads, EA-PHT-H performance is lower than EA-PHT. Search operations
in EA-PHT-H need to load data from both persistent and volatile memory before starting
the operation. In this case, EA-PHT benefits from data locality in these workloads. In
the 100/50 read/write workload, EA-PHT is up to 11% faster than EA-PHT-H, and in the
95/5 read/write workload EA-PHT, is up to 5% faster than EA-PHT-H.

0 5 10 15 20 25 30 35 40
Number of Threads

0

5

10

15

20

25

30

Mo
ps

/s

Throughput Workload 50/50 read/write

CCEH DASH EA-PHT EA-PHT-H Level-Hashing

Figure 4.4: 50/50 read/write workload.
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Figure 4.5: 80/20 read/write workload.
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Figure 4.6: 95/5 read/write workload.
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Figure 4.7: 100/0 read/write workload.

Presented below in Figure 4.8, the average time for the rehash operation in relation to
the number of buckets contained in the hash table for EA-PHT and EA-PHT-H is shown.
As the table size gets grows, the performance of EA-PHT-H degrades in comparison to
EA-PHT, given that the thread performing the resize will need to initialize the whole
contiguous array of volatile locks before performing the rehash of the table. Interestingly,
the results shown in Figure 4.9, still show that EA-PHT-H performs better during the load
phase, which is correlated to the reduced number of cache misses. EA-PHT-H is 10% faster
than EA-PHT and 14% slower than DASH during the load phase.
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Figure 4.8: Average time in seconds spent in a full table rehash (lower is better).
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Figure 4.9: Load phase throughput (higher is better).
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4.3 Conclusion

When implementing lock-based data structures for persistent memory, special care needs
to be taken regarding the placement of locks. Storing locks in persistent memory alongside
data that will be concurrently flushed by other processes will increase the number of cache
misses by waiting threads, which are continuously checking if the lock is available. This
specific case becomes a bottleneck for throughput in write-heavy workloads. While in the
implementation of EA-PHT-H the solution was to migrate the locks to volatile memory,
padding the locks to be the size of a cache line can be a viable solution, but comes with
the drawback of wasted space. These results indicate that even though the CLWB flushing
instruction allows some cache lines to remain valid in the cache after flushing them, in a
concurrent shared memory scenario, this instruction can still have undesired effects.

The initialization of the contiguous array of volatile locks before the full table rehash
operation increases the overhead of the table resize operation. Still, the improvement in
performance for write-heavy workloads allows EA-PHT-H to perform better than EA-PHT
during the load phase. Still, EA-PHT-H is outperformed by DASH during the load phase.
The next chapter proposes a new resize mechanism to reduce the overhead of the rehash
operation, which allows the parallelization of the rehash operation.
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Chapter 5

The Parallel Resize Mechanism

This chapter presents the embedded allocation persistent hash table with hybrid parallel
resize (EA-PHT-HPR). The proposed resize mechanism allows multiple threads to aid in
the full table resize operation and performs the initialization of its volatile locks and the
rehashing of the table in parallel.

5.1 EA-PHT-HPR design

For this specific implementation, the size, the maximum number threads allowed to help
rehash the persistent section, and the maximum number threads allowed to help initialize
the volatile section need to be a power of two. This is because the new resize mechanism
needs to be able to provide equally sized sections, further explained in Section 5.2, and
having all of these three variables be a power of two simplifies the problem. This design
incorporates the addition of a second access item, which is used by the helper threads
during resize. As well, a new set of member variables is introduced for the new resize
mechanism. A brief description of the member variables is shown below, and an in depth
explanation of their use during the resize operations is included in Section 5.2.

• dram section id: Used by helper threads to acquire a section of the volatile lock
array.

• pmem section id: Used by helper threads to acquire a section of the table.

• active pmem resizers: Used to signal that threads are currently helping the re-
hashing of the table.
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• active dram resizers: Used to signal that threads are currently helping the initial-
ization of the volatile lock array.

• tmp lock arr ptr: Provides access to the volatile lock array for threads helping in
the initialization of the volatile lock array.

• tmp size: Used to calculate the size of the section by threads helping in the resize
of the volatile lock array.

• flag dram resize: Notifies threads that a new volatile array of locks needs to be
initialized.

• finish flag: Signals that the resize operation has finished.

Figure 5.1: EA-PHT-HPR items and member variables.
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Figure 5.2: Representation of EA-PHT-HPR.

5.2 Parallel resize

When a full table resize is required, a new hash table with a size of a constant multiplied by
the size of the old hash table will be created. The basic idea behind the resize mechanism
is to recruit a small number of user threads for the initialization of the volatile locks, and
a large number of user threads to rehash the hash table. In this implementation, there can
be up to eight threads helping in DRAM, and up to thirty two helping in PMEM. This is a
similar approach to the one presented in [63], in which servicing threads are allowed to aid
the full table rehash during run-time. To designate reserved portions of the volatile lock
array and the table, the notion of sections is introduced. These sections represent slots
where a single thread can perform either the initialization or rehash operation.

Figure 5.3: Section-based approach representation.
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The resize operation is performed as follows. After a successful overflow insert, if
the thread finds that the expand counter surpasses the max allowed expands, it will try
to acquire the resize lock. If the thread finds the lock to be acquired, then the insert
operation completes successfully and returns since another thread has already begun the
resize operation. A thread that acquires the resize lock will proceed to initialize its member
variables to zero, and deallocate any previous resize access item, if it exists. Then, it will
proceed to call the create hash table() function, which will select the new hash table item
to be used and initialize its variables. The create hash table() function first marks the old
hash table item chunk offset by setting/writing the MSB of the chunk offset to one. After
that, no other thread may allocate overflow buckets in the old chunk. Then the root id is
used to determine which is the id of the new hash table item to be used, and the direct
pointer to the new hash table item is calculated from the id. If the size variable in the new
hash table item contains a value greater than zero, this item already points to a previous
chunk; then the previous chunk is deallocated by issuing a pmem memset persist() to set
the entire chunk to zero.

After clearing the previous chunk pointed by the new hash table item, if it existed,
the size variable is then written with the new size of the table. Then, the chunk offset is
calculated and written. To calculate the chunk offset for the new hash table, the old hash
table chunk offset, table size, and expand counter are used. Then, the expand counter
is written to zero. Finally, the max expands, and hash variables are initialized, without
requiring flushing since these variables are always initialized upon recovery.

After the initialization of the new hash table item and just before beginning the rehash
operation, the thread performing the resize needs to re-check the calculated offset, because
there could be a thread which sees the chunk unlocked and proceeds to allocate. Then, the
thread performing the resize marks the chunk offset and reads the expand counter before
the increment by the thread allocating the overflow bucket. This way, it can be ensured
that there are no overlapping chunks. After the create hash table() function has initialized
the new hash table, the size of the new table is written to the tmp size variable, and a
contiguous array of volatile locks of said size is allocated. This new contiguous array of
volatile locks will be pointed to by the tmp lock arr ptr variable. Then, the flag dram resize
variable is set to one to signal threads to begin the initialization of the volatile lock array.

The thread performing the resize will continue without helping with the initialization
of the volatile lock array. Any thread that tries to acquire a lock will first check the
flag dram resize variable before continuing with its operation, (Algorithm 8 line 2). If
the variable is set to one, then the active dram resizers variable is atomically incremented
with a sync add and fetch() instruction, and the help init locks() function is called (Al-
gorithm 8 lines 3 - 4). Inside the help init locks() function, a helping thread will try to
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acquire a volatile section to initialize. To do this, the dram section id variable is used.
The dram section id variable is protected by a lock. When the lock is acquired, if the
dram section id variable value is lower than the maximum allowed helpers for DRAM,
the dram section id variable is incremented by one, and its previous value represents the
section to be initialized, (Algorithm 9 lines 5 - 7). A thread that finishes initializing its
section will try to acquire a new section if possible, (Algorithm 10 line 10). If the value of
dram section id is equal to the maximum allowed helpers for DRAM, then all sections are
currently being initialized by other threads, and the thread proceeds to write a zero to the
flag dram resize, signaling that all the sections are taken, and no further help is needed,
(Algorithm 10 line 12). After exiting the help init locks() function, the active dram resizers
variable is atomically decremented using a sync sub and fetch() instruction, (Algorithm 8
line 5).

Meanwhile, the volatile locks are being initialized, the thread performing the resize
will allocate a new resize access item and proceed to assign the direct pointers of the new
table. The thread performing the resize will use the pmem section id variable to acquire
a section to rehash. The pmem section id variable is protected by a lock. When the
lock is acquired, if the pmem section id variable value is lower than the maximum allowed
helpers for PMEM, the pmem section id variable is incremented by one, and its previous
value represents the section to be rehashed, (Algorithm 9 lines 5 - 7). If the value of
pmem section id is equal to the maximum allowed helpers for PMEM, then all sections
are currently being rehashed by other threads. The main thread performing the resize
operation will wait for the active dram resizers and active pmem resizers variables to be
zero, which will signal that both the initialization of locks and rehashing of the new table
has finished.

After finishing rehashing its current section, the thread performing the resize operation
will try to acquire a new section to rehash if possible. During the rehashing, search oper-
ations can be executed normally. Any concurrent threads performing an insert or remove
that do not find the current bucket resize lock acquired will be able to proceed with its op-
eration. If the bucket resize lock is set, (Algorithm 8 line 15), the thread will help to rehash,
if possible, or wait for the resize operation to finish. To begin helping in the rehashing,
the active pmem resizers variable is atomically incremented using an sync add and fetch()
instruction, and the help rehash table() function is called. In the help rehash table() func-
tion, helping threads will use the pmem section id variable to acquire a section to rehash
in the same way as previously described above. After exiting the helping function, the
active pmem resizers variable is atomically decremented using a sync sub and fetch() in-
struction, and the thread waits for the resize operation to complete (Algorithm 8 lines 18
- 22). After finishing rehashing its current section, the helping thread will try to acquire a
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new section to rehash if possible, (Algorithm 11 line 12). The rehash operation traverses
the buckets from the reserved section along with any overflow buckets linked and copying
all their key-value pairs to the new hash table. To rehash a bucket, the resize lock must be
acquired first. This lock is acquired and never released. The resize lock and update lock
are mutually exclusive, so a resize lock will only be acquired if neither lock is set. When the
rehashing is finished, the contiguous array of bucket items along with any overflow buckets
that were allocated during rehash in the new chunk are flushed. After the data is flushed,
the old hash table item version number plus one is written to the new hash table item.
Then, the root id is atomically swapped for the id of the new hash table item. Then, a
new access item is allocated and assigned the pointers of the hew hash table. The pointer
of the access item used by search, insert and remove operations is atomically swapped
for the updated access item pointer. Then, the old access item is deallocated along with
its old referenced volatile lock array. Finally, the finish flag is set to one, signaling the
waiting threads that the resize operation has finished, and the resize lock is released, thus
completing the resize operation.
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Algorithm 8 Acquire bucket lock function

1: procedure LOCK ACQ(lock,ht)
2: if flag dram resize then
3: sync add and fetch(active dram resizers)
4: help init locks(tmp lock arr ptr,tmp size)
5: sync sub and fetch(active dram resizers)

6: lock s = *lock
7: lock free= lock s& VERSION MASK
8: lock update = (lock s & VERSION MASK) | UPDATE LOCK
9: while !CAS(lock, lock free,lock update) do
10: if lock s & RESIZE LOCK then
11: break
12: lock s = *lock
13: lock free= lock s & VERSION MASK
14: lock update = (lock s & VERSION MASK) | UPDATE LOCK

15: if lock s & RESIZE LOCK then
16: sync add and fetch(active pmem resizers)
17: help rehash table(root access item−→ht)
18: sync sub and fetch(active pmem resizers)
19: while finish flag=0 do
20: pause() // Intel intrinsic instruction mm pause()
21: MFENCE()

22: return 0
23: return 1
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Algorithm 9 Acquire Section

1: procedure Get Section()
2: section = 0
3: while get section lock()==0 do
4: // repeat until section lock acquired

5: if section id < MAX HELPERS then
6: section = section id
7: section id++
8: else
9: section = MAX HELPERS
10: release section lock()
11: return section

Algorithm 10 Lock initialization helper function

1: procedure help init locks(lock arr ptr,size)
2: get section:
3: section id = get volatile section()
4: if section id < MAX HELPERS DRAM then
5: start = section id*(SIZE/MAX HELPERS DRAM)
6: end = (section id+1)*(SIZE/MAX HELPERS DRAM)
7: for (i=start; i<end; i++) do
8: LOCK ARR PTR[i].lock = 0

9: if section id < MAX HELPERS DRAM then
10: goto get section

11: else
12: flag dram resize = 0
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Algorithm 11 Rehashing helper function

1: procedure help rehash table(old ht)
2: get section:
3: section id = get persitent section()
4: if section id < MAX HELPERS PMEM then
5: start = section id*(OLD HT−→size/MAX HELPERS PMEM)
6: end = (section id+1)*(OLD HT−→size/MAX HELPERS PMEM)
7: chunk = get chunk ptr(OLD HT−→chunk off)
8: for (i=start; i<end; i++) do
9: bucket = get bucket ptr(chunk, i)
10: rehash bucket(bucket,resize acces item, i)

11: if section id < MAX HELPERS PMEM then
12: goto get section
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5.3 Performance evaluation

The experimental setup for the following results is the same as the one described in Section
3.7. In addition to the YCSB workload results, the Linux perf profiler tool was used to
count the total cache references, and the percentage of cache misses in the execution of
workload A with 40 threads. Since the changes to the search insert and remove operations
between EA-PHT-HPR and EA-PHT-H are virtually none, their performance is essentially
the same.
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Figure 5.4: Percentage of cache misses in a 40 thread execution of workload A.

69



0 5 10 15 20 25 30 35 40
Number of Threads

0

5

10

15

20

25

30

35

40
Mo

ps
/s

Throughput Workload 80/20 read/write

CCEH
DASH

EA-PHT EA-PHT-H EA-PHT-HPR Level-Hashing

Figure 5.5: 80/20 read/write workload.
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Figure 5.6: 50/50 read/write workload.
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Figure 5.7: 95/5 read/write workload.
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Figure 5.8: 100/0 read/write workload.
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Shown in Figure 5.9, the overhead of the rehash operation is drastically reduced by
the parallel resize mechanism, which allows multiple threads to aid in the full table resize
operation and performs the initialization of the volatile locks and the rehashing of the
persistent table in parallel. For the shown results, up to eight threads can help in the
initialization of volatile locks, and up to thirty-two threads can help in the rehashing of
the table. The parallelization of the resize mechanism allows EA-PHT-HPR to perform a
full table resize on a table containing a little over 4 million buckets in roughly 1 second,
while EA-PHT and EA-PHT-H take over 2.5 seconds. The reduced overhead of the full
table rehash operation allows EA-PHT-HPR to be up to 29% faster than DASH, 51%
faster than EA-PHT-H, and 66% faster than EA-PHT, during the load phase.

0 1000000 2000000 3000000 4000000
Number of Buckets

0.0

0.5

1.0

1.5

2.0

2.5

Tim
e i

n s
ec

on
ds

Rehash time 40 thread executions

EA-PHT EA-PHT-H EA-PHT-HPR

Figure 5.9: Average time in seconds spent in a full table rehash (lower is better).
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The performance of the recovery function for the different implementations is shown in
table 5.1. There is a slight increase in the performance of EAPHT-H and EAPHT-HPR in
contrast to EA-PHT. This is the result of migrating the locks to volatile memory, which
reduces the number of stores to persistent memory during recovery.

Implementation M key-value pairs/s

DASH Constant 57ms
CCEH 2169

EA-PHT-HPR 52
EA-PHT-H 52
EA-PHT 49
Flat Store 25
Level Hash 0.57

Table 5.1: Recovery time performance comparison.
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5.4 Conclusion

The design and implementation of EA-PHT-HPR, which is based on CLHT-LB [61, 62],
achieves high performance and scalability while maintaining a similar design to that of its
original DRAM implementation. EA-PHT-HPR, being the successor of EA-PHT-H, uses
embedded allocation and volatile concurrency control with the addition of a hybrid parallel
resize mechanism. The use of an embedded allocation technique reduces the number of
stores to persistent memory and reduces the overhead of allocation. The use of volatile
locks reduces the cache misses in write-heavy workloads, by isolating the locks from the
cache lines containing data that needs to be flushed. Finally, the parallel resize mechanism
is used to reduce the overhead of the full table resize. This mechanism demonstrates that
procedures that would be considered expensive in persistent memory, in our case, a full
table rehash, can benefit considerably from parallelization.
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Chapter 6

Linearizability testing

This chapter will cover the experimental setup and mathematical principles used for lin-
earizability testing, and the results obtained. The EA-PHT, EA-PHT-H, and EA-PHT-
HPR implementations follow the correctness property of strict linearizability [38], which
requires that pending operations complete or abort as of the crash. To follow strict lin-
earizability, the recovery mechanisms in these implementations ensure that any pending
operations left after the crash are completed or aborted, as described in Section 3.6. The
linearizability tests include both failure-free and power failure scenarios. The specifics
on how the power failure logs are generated and how tests are analyzed are explained in
Section 6.2.

6.1 Experiment setup

The experimental setup for linearizability testing is composed of four elements:

• Benchmark: Executes multithreaded workloads on the hash tables to be tested.

• Logger: Used to capture the invocations and responses of operations. The logger
used must be power-fail safe, meaning that in the event of a power failure the log
and all its entries can be recovered.

• Linearizability checker tool: Given an execution history of concurrent operations,
the tool must be able to determine if this execution is linearizable.

• Crash script: Used to trigger a power failure by power cycling the server.
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The benchmark used to generate the different workloads for the hash tables is based on
the benchmark provided by the libcuckoo library [37]. This benchmark allows us to define
the percentage of read, insert, and delete operations, the total number of operations to be
performed, and the initial capacity of the table.

The benchmark is instrumented to capture all the invocations and responses of opera-
tions performed on the hash table in a log file. For invocations, we capture: the timestamp,
process id, invocation indicator, and the key. For insert operations, the value is also cap-
tured. For responses, we capture the timestamp, the process id, the response indicator,
and a true/false statement stating if the operation succeeded. A read operation will look
for the requested key and return the current stored value, if and only if the key-value pair
has been previously inserted in the table. Thus a read can succeed and find a value that
was previously inserted, or fail, not finding the requested key and returning false. Only for
a successful read operation, the found value is captured in the response.

Efficient and fast logging is essential when testing for linearizability, as the overhead
induced by logging operations can affect the interleaving of steps and mask some concur-
rency bugs. To avoid contention among threads when appending entries to a single log, a
partitioned logger approach is used. Each thread creates a private log of its own invocations
and responses. Since some of the linearizability tests will require the system power cycle,
we require the logs to be persistent. To achieve this the libpmemlog library [22] is used.
This library equips us with fail-safe appends to the log. In addition, this library uses Direct
Access (DAX), which eliminates the use of the page cache and allows us to write persistent
memory directly without involving the kernel, further reducing the overhead induced by
logging. The per-thread logs are then merged and sorted by a secondary program after the
instrumented code finishes executing, using the event timestamp to determine the order of
events.

The creation of histories relies on timestamps to order the entries of the log parti-
tions. Using instructions that read the processor timestamp counter, such as RDTSC and
RDTSCP, does not suffice for our requirements, since these instructions may be reordered
by the processor. To ensure that the instructions reading the processor timestamp counter
will not be reordered, we need to use memory fence instructions. We used the timer library
from the HighwayHash project [29], which conveniently implements this functionality.

The linearizability checker tool used is Ahorn [1]. It is important to note that this tool
does not handle logs that contain a crash. The crash events need to be externally handled,
as explained in Section 6.2, in order to provide a log which can then be analyzed by the tool.
To trigger a power failure, a remote script is executed via SSH within the benchmark. This
script power cycles the server. The script communicates with the Integrated Dell Remote
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Access Controler (iDRAC). The iDRAC is an embedded computer independent of the
server, and module allows the server to be power cycled remotely.

6.2 Handling power failures in logs

When generating logs with a power failure, each thread creates two logs: the first log prior
to the crash and the second log after the crash. The first log will likely have some pending
operations, meaning a process only appended an invocation to the log and is missing a
response. Since the linearizability checker is not equipped to handle the following scenario,
some extra steps need to be taken to handle pending operations prior to merging both
logs. Following the correctness property of strict linearizability [38], described in Section
2.3, we need to determine if the pending operations took effect before the crash, in order
to complete or abort these operations.

Read and insert workloads were tested, where each value inserted to the table is unique.
We ensure that every process uses unique values for all insert operations across both exe-
cutions, before the crash and after recovery. With these unique values captured in the logs,
determining if an incomplete insert completed or aborted in the presence of a power failure
is reduced to locating the unique values for pending insert operations on the second log, as
described below. To generate unique values, we divide the 8 bytes of the value into three
different variables, as shown in Figure 6.1: the process id, the test type, and a per-thread
counter.

Figure 6.1: Unique value composition.

The logs capture the invocation and response events of all operations performed by the
threads. Thus, we capture a history of invocations and responses in a log. For all the given
threads in the history, their last invocation or response appended to the first log needs to
be obtained. To test the entire history for strict linearizability, for all threads whose last
append to the first log was an invocation, we need to determine if the operation completed
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or aborted, and either add the response event or remove the invocation. Any pending read
operations will be removed from the log. Since read operations do not modify the data
structure, it is safe to remove them, which is similar to the approach taken by [10]. For
a pending insert operation, the value proposed by the insert operation is searched in the
second log. If the value is found, then a matching response event is added just before the
crash. If not, then we abort the operation and remove it from the log.

As mentioned above, all pending read operations are aborted, eliminating the case of
pending reads that are affected by a pending insert. Then we only need to determine if
pending inserts are aborted or completed. Since inserts are only able to insert a key-value
pair if the key has not previously been inserted, it is not possible to have two pending
inserts on the same key succeed. Based on the previously stated, it is known that none
of the pending operations will depend on another pending operation. Since we will only
add response events to the log, then the order of insertion of matching response events
for the incomplete operations does not matter. The generated log can now be parsed into
sub-logs. Each sub-log contains all the operations for a subset of keys, which are selected
by range, for example, a sub-log containing all operations for keys in the rage of 1 to 100.
This is done since Ahorn [1] can only analyze a limited keyspace.

Since linearizability [40] is a local property, we can state that if all of the generated
sub-logs are linearizable, the generated log is also linearizable. The generated log hides
the presence of a crash by eliminating the crash event and determining which pending
operations are completed (added response) or aborted (removed from the log), giving the
illusion of a single continuous execution. The construction of the generated log ensures that
if the history represented by the generated log is linearizable, then the original execution
containing a crash is strictly linearizable. This statement can be formalized and proved
rigorously, but it is out of the scope of this thesis.

6.3 Results

The testbed used for the following results was an Intel Xeon Gold 6230 server with Intel
Optane Persistent Memory. The linearizability checking tool Ahorn [1] was used to analyze
both failure-free and power failure scenarios.

For all the performed tests, the hash table initial size is set to 128 buckets, and the
range of keys to be inserted, deleted, or removed is set to be 50K. This will force the
implementations to resize during runtime. To analyze each test, sub-logs are generated
from the log by selecting a range of keys. Then these sub-logs are analyzed with the
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linearizability checking tool Ahonr [1] separately. If all logs are linearizable, then we can
conclude the execution is strictly linearizable.

For the failure-free executions, a mixed workload of read, insert, and remove operations
was tested. The test was performed ten times and contained over 1M operations. The
linearizability checker results are shown in Table 6.1 below. We found that the Level
Hashing [45] version used in [8] provides non-linearizable executions.

In an attempt to determine if delete operations introduced the linearizability bug, the
Level Hashing [45] implementation was also tested for insert and read workloads. Still,
the results provided non-linearizable executions; finally, the implementation was tested on
a smaller keyspace, which does not trigger any resizes during execution. The final results
showed that insert, delete, and read workloads histories are still non-linearizable, while an
insert and read workload provided linearizable executions. This leads us to believe that the
implementation may have two concurrency bugs, one in the table resize code and another
in the delete operation.

To ensure the linearizability checker provides valid results, a bug was introduced to the
EA-PHT implementation to determine if the analyzer can accurately detect linearizability
violations. To add this bug that will cause non-linearizable executions, we removed the
locking functions from the insert and delete operations. Then we ran ten linearizability
tests, and the analyzer determined all of them non-linearizable, further reinforcing the
finding of a linearizability bug in the Level Hashing implementation.

Implementation 50%R,25%I,25%D # of tests Non-Linearizable

EA-PHT X 10 0
EA-PHT-H X 10 0

EA-PHT-HPR X 10 0
Level-Hashing X 10 10

CCEH X 10 0
DASH X 10 0

Table 6.1: Failure-free executions, a Xdenotes all tests produced linearizable executions
while a X denotes one or all tests produced non-linearizable executions.
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Implementation 75%R,25%I # of tests Non-Linearizable

EA-PHT X 30 0
EA-PHT-H X 30 0

EA-PHT-HPR X 30 0

Table 6.2: Simulated power failure executions, a Xdenotes all tests produced linearizable
executions while a X denotes one or all tests produced non-linearizable executions.

For the power failure executions, a mixed workload of read and insert operations was
tested. Each execution of the workload includes a power failure. The power failure entails
the benchmark itself calling the remote shutdown script, causing the benchmark to be
interrupted. The histories are created, as explained in Section 6.2. All tests on the three
different given implementations provided linearizable histories in the presence of power
failures. The results of this section indicate that EA-PHT, EA-PHT-H and EA-PHT-HPR
can produce linearizable executions in both failure-free and power failure scenarios.

The allocation mechanism design allows the implementation to be free of memory leaks,
as mentioned in Subsection 3.6.3, since any allocated buckets that remain detached for the
data structure will still reside in the chunk and be reclaimed eventually when the chunk is
deallocated. The recovery mechanism explained in Section 3.6 is executed when we detect
that the previous execution terminated unexpectedly, and ensures liveness by verifying the
table is in a consistent state and by fixing partial operations and reinitializing concurrency
control variables. The implemented embedded allocation technique reduces the complexity
of allocation since the type and size of the items that need allocation is known. In addition
to the defined set of items, the only dynamically allocated items are buckets; thus, the cases
where we can have a memory leak are specified and handled by the recovery mechanism.
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Chapter 7

Conclusions and future work

This is the last thesis chapter covering the conclusions of the research and several areas of
opportunity that can be explored to refine the provided implementations.

7.1 Conclusion

When designing data structures for persistent memory, taking into account the access
granularity of these devices, 256 bytes, is essential. As shown in the previous results in
Sections 3.8, 4.2, 5.3, implementations that take into consideration the access granularity
of these devices tend to have better performance than implementations that do not. When
designing data structures for persistent memory, the placement of data also needs to be
handled with care. Variables that are accessed by multiple processes that share a cache
line are prone to increase the number of cache misses if data is being flushed on the same
cache line. This was the case with our lock in the design of the hash table. The volatile
concurrency approach described in this thesis solves the previously stated problems but
adds a new level of indirection when performing operations. Finally, parallelization of
operations, in this case, a full table resize, was shown to be a viable way to alleviate the
latencies of write-heavy operations considerably, in our case the full table resize operation.
The embedded allocation technique has been proven to be a viable solution when trying to
reduce the overhead of allocation in persistent memory. Still, one of the drawbacks of this
technique is that it needs to be implemented differently depending on the data structure.
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7.2 Future work

Future work in this research towards the development of persistent data structure may
include the following directions:

1. Exploration of different data structure designs that could incorporate and benefit
from embedded allocation and parallel operations in persistent memory.

2. Exploration of NUMA-aware embedded allocation, as the current version is not de-
signed to account for NUMA-awareness.

3. Adding support for variable-length keys. This can be accomplished by storing point-
ers to variable-length keys—an approach that has been used by several other imple-
mentations such as [8, 20, 25, 39, 45].

4. The addition of the fingerprinting technique used in DASH [8], to improve the nega-
tive search operation latency.
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