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ABSTRACT 

As environmental consciousness increases and fossil fuel feedstocks are depleted, ecofriendly 

product development is of utmost importance. This thesis describes an in-depth analysis of 

cellulose nanocrystals (CNC) used as a promising nanofiller derived from cellulosic biomass. 

Pristine CNC, as well as CNC modified with tannic acid (TA) and silver (Ag) were investigated 

for reinforcing thin rubber sheets and films. Since polymers are major contributors to waste 

problems, the work conducted in these projects used natural rubber (NR) as a renewable polymeric 

material and compared it to synthetic rubbers, styrene butadiene rubber (SBR) and acrylonitrile 

butadiene rubber (NBR). 

In the first part of the project, casted thin sheets of NR and SBR were tested and compared. 

Percolation of CNC was studied within the rubber matrices, where the tear strength, water 

permeability, and water absorption increased due to the formation of a continuous network of CNC 

within the polymer sheets. The rubber nanocomposites were resistant to tear propagation due to 

increased tortuosity along the tear path brought about by CNC dispersion and the continuous filler 

network. The CNC reinforcement yielded thin sheets that were stronger and more durable than 

their non-reinforced counterparts. Additionally, the increased water uptake of the sheets could aid 

in the biodegradation of the polymer. Thus, CNC was found to be an excellent functional filler in 

rubber sheets, where its formation of a percolating network significantly improved their properties. 

Since CNC was found to be a useful thin film filler material, it was modified into 

CNC-TA-Ag to carry silver nanoparticles for antimicrobial functionality. Green chemical 

processes were used to deposit TA and Ag onto CNC, and optimized to achieve the highest silver 

nanoparticle content on the CNC. Successful material synthesis was confirmed by Transmission 
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Electron Microscopy (TEM), thermogravimetric analysis (TGA), and Ultraviolet-Visible 

Spectroscopy (UV-vis) analyses. The CNC-TA-Ag was proven to be effective against both Gram-

negative and Gram-positive strains of bacteria, E. coli and S. aureus, respectively. A particular 

affinity was noted against E. coli, where only 3.2 µg silver/mL was required to completely inhibit 

microbial growth. Compared to reported literature studies, it was extremely effective against the 

bacteria, which is likely due to the capability of CNC to stabilize silver nanoparticles in aqueous 

dispersions. The CNC-TA-Ag was then incorporated into NR and NBR dipped films to emulate 

the mass production of thin film products. Mechanical tests revealed that CNC-TA-Ag increased 

the modulus of the rubber nanocomposite films, and effectively increased the tear strength. 

Preliminary antimicrobial tests showed a promising effect of the CNC-TA-Ag against bacteria 

when incorporated into neat NR. Based on these results, CNC-TA-Ag may be a useful filler for 

rubber thin film products, such as sterile antimicrobial gloves. The CNC-TA-Ag filler may also be 

extended for use in various other polymers or fibres to prepare self-sterilizing coatings and 

surfaces, paints, packaging materials, bandages, or adhesive nanocomposites.  
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1.1 The Importance of Renewable Materials 

Polymers obtained from renewable resources have been accessible for many years, finding many 

valuable applications as naturally occurring high molecular weight macromolecules.  In the early 

days of polymer science, the majority of materials were exclusively based on chemically modified 

biopolymers such as silk, natural rubber, casein, and ivory1,2. In fact, polymer development at the 

beginning of the 20th century was aimed at imitating these natural polymeric materials for their 

attractive properties3. After the discovery of macromolecular chemistry and polymerization by 

Hermann Staudinger3, many advancements have been made in the field of polymer chemistry and 

engineering, leading to the production of fully synthetic polymers often obtained from the 

processing of petrochemical resources. These polymers can be produced to meet specific design 

criteria, such as enhanced thermal resistance, water resistance, mechanical strength, and 

processability. Synthetic polymers are now widely available for applications in packaging, 

electronics, automotive, and medical industries.  

Synthetic polymers have been extremely useful; however, the problems with synthetic 

polymers have been amplified in recent years as environmental consciousness increases. One 

concern is the potential depletion of petrochemical feedstocks, as limited fossil fuel supplies may 

be exhausted within the next hundred years4. Another major issue is environmental pollution and 

its effect on natural ecosystems. It is estimated that approximately 6.3 billion tons of plastic waste 

was generated by 20155. Of this amount, 79% was accumulated in landfills or in natural landscapes 

worldwide5,6, and plastic waste continues to contaminate various areas of the planet. Microplastics 

have even been found in areas extremely isolated from human influence, such as the Mariana’s 

Trench and other deep sea ecosystems7.  
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There are many sources of polymer waste, some of which are unavoidable in the current 

state of technology. For example, 27 million scrap tires are annually disposed in landfills8 despite 

tire recycling and reuse projects. Tires are primarily composed of styrene butadiene rubber (SBR) 

and, due to their dark colour from carbon black filler, exhibit excellent heat retention. This results 

in hazards from potential tire fires that generate toxic oils and smoke. Another leading example of 

polymer waste contributors are excessive medical wastes from hospitals. Several kilograms of 

disposable sterile items, such as gloves, syringes, and catheters are thrown into landfill daily. 

Gloves in particular make up the majority of laboratory waste, often made from nitrile rubber 

(NBR). Both SBR and NBR are non-biodegradable polymers and can take several thousand years 

to naturally break down on their own. 

Although these synthetic elastomers require extreme heat and stress to degrade, they have 

an environmentally-friendly counterpart: natural rubber (NR). Natural rubber is an organically 

obtained latex, commercially harvested from the sap of Hevea brasiliensis trees9. NR has very 

versatile mechanical properties, and can be broken down by many microorganisms such as 

Gordonia polyisoprenivorans, Streptomyces, and Thermomonospora strains of bacteria10. 

Vulcanized natural rubber can also be biodegraded (but at a slower rate), or composted. Since 

recent research has moved back to the investigation of renewable polymers derived from feedstock 

such as biomass, it is of interest to explore natural rubber for more commercial applications. The 

goal is to address the concerns of pollution and sustainability, and create innovative functional 

materials that are not dangerous to the environment. 
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1.2 Research Objectives 

The research conducted in this thesis studied the reinforcement of natural rubber with natural 

nanofillers compared to synthetic elastomers. The overall goal of the project was to produce 

elastomeric nanocomposites from renewable resources, and investigate a green polymer filler for 

advanced applications.  

The first section of this thesis explored the enhancement of the mechanical properties of 

NR and SBR using cellulose nanocrystals (CNC). CNC is an ecofriendly filler and can potentially 

replace other harmful reinforcing additives in rubber products. Nanocomposite thin sheets were 

prepared with low and high loading levels of CNC, and they were studied for their morphology 

and physical properties. The effect of filler percolation on the mechanical strength, tear resistance, 

and water absorption properties was examined. The objective was to evaluate the viability of CNC 

as a sustainable reinforcing filler for use in common elastomeric materials. 

The second section of this thesis focused on a multifunctional nanocomposite made of NR 

and chemically modified CNC. This nanocomposite used CNC as a carrier for antimicrobial silver 

nanoparticles, imparting both strength and antimicrobial properties to the rubber films. The 

successful optimization of silver nanoparticle growth on CNC was a key factor, using green 

synthesis methods. NR nanocomposite films were then prepared in a dipping process simulating 

industrial rubber glove production techniques. NBR nanocomposite films were also produced, as 

NBR is a commonly used glove material. The end goal of this project was to produce working film 

formulations for antimicrobial rubber, comparing both natural and synthetic latex. This material 

could have potential applications for surgical gloves, antibacterial condoms, or food packaging 
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handlers to reduce the risk of bacterial cross-contamination. The produced nanocomposite aims to 

outperform traditionally-used glove materials in three distinct ways: the NR product will be fully 

ecofriendly, exhibit antimicrobial activity, and have improved mechanical properties using less 

material. Overall, the applications of this research are widespread: a sustainable, antibacterial latex 

with excellent properties will benefit both humans and the environment alike. 

1.3 Thesis Outline 

This thesis is composed of five chapters. The first chapter presents the general motivation and 

objectives behind this research work. The second chapter reviews some literature to describe the 

current state of the field, including discussion on renewable polymer and filler materials with the 

focus on natural rubber and cellulose nanocrystals. Chapter two will also cover metal nanoparticles 

as antimicrobial materials, and antimicrobial composites. Chapter three describes the study of 

CNC used as a sustainable filler in NR and SBR thin sheets. The modification of CNC with silver 

nanoparticles is then covered in chapter four, corresponding to the preparation and analysis of 

antimicrobial film nanocomposites. Finally, the last chapter summarizes some conclusions from 

this work, and presents the future outlook for ecofriendly nanocomposite materials. 
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CHAPTER 2 

 

 

 

 

Literature review 
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2.1 Renewable Polymers 

There are many useful bioderived polymers, but in the current environment very few are 

commercially successful. In 2014, for example, more than 300 megatonnes of polymers were 

produced globally and merely 1.7 megatonnes of this value consisted of bioderived polymers11. 

The lack of renewable polymers in use can be attributed to the abundance of synthetic materials 

that boast a wide range of application-specific properties. Material selection in industrial 

production also leans towards synthetic materials due to their lower cost. Moving forward, a 

combination of environmental awareness and government policy can incite the adoption of more 

sustainable polymers to address global pollution problems. 

Some common renewable polymers that have wide industrial potential include cellulose, 

starch, natural rubber (NR), polylactic acid (PLA), and polyhydroxybutyrate (PHB). General 

properties of these polymers can be found in Table 1 below. 

Table 1: General mechanical properties of various renewable polymers. Data compiled from the 
Polymer Data Handbook12. 

Polymer 
Tensile 

Strength 
(MPa) 

Young’s 
Modulus 

(MPa) 

Glass 
Transition 
Temp (K) 

Melting  
Temp 
 (K) 

Starch 35-46 -- 496 460 

Cellulose 100-1000 
4000 -
108000 

523 (thermal 
decomposition) 

493-513 (start of 
thermal degradation) 

Natural rubber 17-25 1.0 -2.0 201-212 313 

Polylactic acid 28-50 1200-16000 323-337 418-459 

Polyhydroxybutyrate 20-60 700-4000 268-278 320-453 
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As seen in the table, the base properties of these natural polymers are not as wide-ranging 

compared to the characteristics that can be obtained from synthetic polymers. The next step is 

therefore for researchers to find ways to improve these base properties. 

2.1.1 Natural Rubber 

As aforementioned, natural rubber is an environmentally-friendly counterpart to SBR and NBR 

and will be of primary focus in this thesis. Natural rubber is a good choice for replacing synthetic 

elastomeric materials since it is acquired from rubber trees. The structure of NR is composed of a 

repeat unit of isoprene (C5H8), as per Figure 1. NR obtained from plants contains C5H8 units with 

one double bond in the cis configuration; thus, NR is also referred to as poly(cis-1,4-isoprene). 

Latex from H. brasiliensis also has two trans-isoprene units in the terminal regions10.  

 

Figure 1: Chemical structure of natural rubber, styrene butadiene rubber, and nitrile rubber. 
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Although almost 2000 types of plants synthesize poly(cis-1,4-isoprene), only NR latex 

harvested from H. brasiliensis trees is produced commercially10. Latex is tapped from a mature 

tree, yielding 100-200 mL of latex resin within 3 hours. This can result in up to 2500 kg of natural 

rubber per year per hectare. NR can also be made synthetically through an emulsion 

polymerization reaction, which is referred to as “synthetic natural rubber”.  

NR resin in its neat form is obtained as a latex dispersion, and naturally contains about 

30% poly(cis-1,4-isoprene). “Latex” refers to a stable colloidal emulsion of polymeric particles in 

aqueous medium13. The rubber particles are present in the form of 3-5 µm particles, and the rest 

of the dispersion is 50 to 70% (wt/wt) water10. There is also a small percentage (≤ 6%) of other 

particles such as proteins, lipids, and sugars14 naturally present in the mixture. The proteins and 

lipids in NR latex act as natural surfactants, allowing for stabilization of the rubber particles15 as 

depicted in Figure 2. 

 

Figure 2: Rubber latex particles stabilized in an aqueous dispersion. 
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2.2 Rubber Processing 

In order to obtain useful goods from rubber, it is distributed to manufacturing industries in a 

concentrated liquid latex form or as dried solid sheets. The four steps to process rubber include 

compounding, mixing, shaping, and vulcanization to create a final product.  

Compounding involves the addition of compounds to the rubber that will allow for ease of 

processing and ensure the rubber has suitable properties. Reinforcing fillers, cross-linkers, 

plasticizers, and pigments are added to rubber during compounding, which is then followed by 

mixing to thoroughly disperse these additives. Some traditional additives will be discussed in detail 

in the following section. Shaping of the rubber is then performed. Techniques such as extrusion, 

coating, casting, or molding are implemented to shape the rubber into the desired form. Finally, 

the vulcanization step concludes the process by inducing chemical cross-linking to set the shape 

of the rubber.  

2.2.1 Compounding and Mixing Additives 

Traditional Structural Additives 

Structural additives are necessary for the improvement of neat rubber properties. The most 

important structural additives for rubber are those that are involved in the vulcanization and curing 

processes, as curing creates more durable rubber. Most often, sulfur (S) or a sulfur donor is the 

favoured crosslinking agent for rubbers as it forms sulfur bridges between the polymer chains to 

create a three dimensional network from the linear polymer16. The mechanism of crosslinking 

involves the attack of the double bonds of neighbouring polyisoprene molecules, producing 

covalently bonded networks out of the polymer chains16 as shown in Figure 3a. The activation 
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energy for the vulcanization of rubber by sulfur (33-36 kcal∙mol-1) is very similar to the bond 

dissociation energies for S-S bonds in molecular sulfur (33 kcal∙mol-1) and polysulfides (37 

kcal∙mol-1)16. 

 

Figure 3: (a) Crosslinking of natural rubber, where sulfur attacks the double bond of polymer 
chains to attach chains to one another. (b) A two-phase rubber network is obtained 
after sulfur crosslinking17. 
 

Crosslinking via sulfur alone is a fairly slow process, and takes several hours at elevated 

temperature16. Activators and accelerators can therefore be used to achieve crosslinking in periods 

within the range of a few minutes. Common accelerator types include guanidines, 

dithiocarbamates, thiophosphates, thiazoles, and sulfonamides which are effective catalysts for the 

crosslinking reaction16. Typically, zinc oxide (ZnO) is used as an activator18, along with stearic 

acid as a surfactant to solubilize the ZnO. The activator facilitates the opening of elemental sulfur 

rings to form polysulfide ions, then zinc sulfide is produced as a reaction intermediate16. Due to 

the complicated chemical reactions between rubber, sulfur, and many other crosslinking reagents 
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involved, an exact mechanism of accelerated vulcanization has still not been conclusively 

defined16,17,19.  

A recent study by Yasuda et al. has further characterized the physical structures obtained 

from ZnO-activated sulfur vulcanization. It has been found that there is inhomogeneity in the 

structural networks formed during isoprene crosslinking. A two-phase network containing a mesh 

network and network domains with highly branched areas was characterized using X-ray 

absorption fine structure (XAFS) spectroscopy during vulcanization at 140 °C (Figure 3b)17. The 

formation of the mesh network was observed to progress earlier than that of the network domains17.  

This may suggest a phenomena between ZnO and the stearic acid surfactant that requires further 

investigation. 

Traditional Functional Additives 

Functional additives are those that impart an additional feature to the polymer, rather than merely 

being necessities for processing and structural integrity. The most common functional additive 

used in the rubber industry is carbon black. Carbon black is produced through the incomplete 

combustion of heavy petroleum products, and is a major additive used in NR and SBR tires for 

reinforcement and pigment. It is also a long-term and low-cost UV absorber, primarily effective 

by absorbing UV rays and transforming them into heat which is dissipated throughout the polymer. 

Carbon black also provides UV protection through an antioxidant effect via free radical 

scavenging, and catalytic decomposition of peroxides20. It contains many stable radicals that are 

able to scavenge for reactive species and prevent polymer chain scission21. 
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Carbon black particles can range from a few nm to 500 nm in size, depending on the 

mechanism of generation22. Smaller particles have been shown to be more effective as UV 

absorbers, due to the increased surface area available for UV absorption and blocking as well as 

better dispersion20,22. Small sizes are also ideal as they show a delay in the loss of ultimate 

elongation of polymers compared to larger particle fillers20.  However, use of carbon black is being 

limited in recent products as it is potentially carcinogenic, and it is obtained from depleting fossil 

fuel sources that create harmful greenhouse gas emissions during production. 

Other nanomaterials have also emerged as useful functional additives and will be discussed 

in further sections. Due to their small surface area to volume ratio, nanoparticles are ideal 

functional additives because they can achieve a similar effect to their micron-sized counterparts at 

much lower loading levels23. That is, their size allows for better dispersion and distribution 

throughout a polymer matrix and thus leads to higher reinforcement. Regular structural additives 

can also be chemically modified to create functional additives and serve multipurpose goals. 

2.2.2 Latex Shaping and Vulcanization 

Once additives have been mixed into latex, the transformation of a stable colloidal dispersion of 

polymer particles into a continuous film is called “latex film formation”13. This is part of the 

shaping process of rubber. Films and thin sheets of rubber can be formed in two ways: through 

casting or dipping. These processes will be discussed in detail below. 

Casting 

Casting is the process of pouring liquid latex into a mold, often made from plaster, and allowing 

the latex to dry until a solid film is produced. As water evaporates, a concentrated dispersion of 
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rubber transforms into a packed array of particles, which then forms a solid polymer film upon 

removal of all moisture. The process can be split into three steps: drying, particle deformation, and 

diffusion13. Often, these steps may overlap in time, and they are illustrated in Figure 4. 

As NR latex dries, isoprene molecules get closer together and one molecule attacks the 

carbon-carbon double bond of another molecule. This initiates the polymerization process and 

breaks the double bond in the molecule. More active sites are then created, eventually forming 

long chains of isoprene molecules: polyisoprene. The polyisoprene strands then form electrostatic 

bonds with one another, holding the rubber fibres together to create the final latex film. This 

process of drying NR is then completed by curing, heating the NR to elevated temperature to 

encourage cross-linking of the polymer chains. 

 

Figure 4: Casting and drying process to form a continuous polymer film. Adapted from 13. 
 

Dipping 

Dipping involves shaping the latex onto the surface of a former. Often the former is made from 

glass or ceramic and is shaped in the form of the desired product; for example balloons, gloves, or 

condoms. To start the process, the former is dipped into a coagulant mixture. Coagulant primarily 

consists of calcium nitrate and calcium carbonate in aqueous solution. These ingredients are dried 

to form a layer on the former, then the former is dipped into a pre-cured latex mixture. Nitrate ions 
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from the coagulant act to destabilize the polymer particles to adhere to the former surface. The 

latex-dipped product is then placed in an oven for drying and curing of the film. This allows the 

rubber to set and maintain its shape. Due to the directional movement of dipping, the process may 

create an alignment of filler additives in the matrix. An anisotropic material can then be produced, 

enhancing properties in a particular direction. 

2.3 Emerging Nano-Additives 

In recent years, many advances in the polymer field have taken advantage of the use of nano-sized 

additives. Nanomaterials are generally defined as having at least one dimension that is < 100 nm 

in size. Due to the extremely small size of nanoparticles and their ability to interact with polymer 

chains on a molecular scale, nanocomposites may have properties (or a combination of properties) 

that cannot be obtained in the bulk polymer or in conventional macro- or micro-composites24. In 

the current state of research, ingredients such as nanosilica, nanoclay, graphene oxide, carbon 

nanotubes, magnetite, chitin, and cellulose nanomaterials are being thoroughly investigated in 

various rubber substrates.   

Nanosilica particles (SiO2) have become particularly important in tire applications since 

the introduction of the Green Tire by Michelin25. Compared to carbon black, silica has greater 

reinforcement power for improving tear strength, abrasion resistance, age resistance, and adhesion 

properties25. However, silica-filled rubbers and carbon black-filled rubbers both exhibit a Payne 

effect which can cause rolling resistance in tire applications. The Payne effect refers to the 

pronounced decrease in the storage modulus of highly filled rubbers with increasing strain 

amplitude under cyclic loading26. This effect is related to either the rubber-filler or filler-filler 
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interactions, where the existing microstructure is altered with recurring application of force. A 

study by Meera et al. investigated silica nanoparticles in NR substrates27. It was found that a larger 

Payne effect exists due to stronger filler-filler networks that can be formed because of the small 

particle size and high specific surface area of nanosilica27. The current trend is therefore to mix 

various fillers in order to interrupt the particle-particle interactions and minimize Payne effect. 

Nanoclay is another reinforcing filler that has been researched in rubber nanocomposites. 

Nanoclays are layered mineral silicates, including classes such as montmorillonite, bentonite, 

kaolinite, and halloysite. They are non-toxic with a layered structure that can achieve different 

morphology within polymer matrices: intercalated or exfoliated configurations. Intercalated 

structure involves the insertion of polymer chains within the layered clay structure, whereas 

exfoliated morphology destroys the layered configuration of the nanoclay and clay platelets are 

distributed throughout the composite. Studies by Praveen et al. and Qu et al. combine traditional 

carbon black filler with varying concentrations of nanoclay in SBR and NR, respectively28,29. 

Intercalated clay structures with some exfoliation were visible through TEM micrographs. Both 

groups found a synergistic effect between the carbon black and nanoclay, resulting in higher tensile 

strength for rubber containing both fillers. This could allow for at least partial replacement of 

carbon black with nanoclay in industrial production, while simultaneously improving the 

composite properties.  

Graphene oxide (GO) can be used in rubber for supercapacitor applications, and carbon 

nanotubes (CNTs) can be used for piezoresistive sensor nanocomposites30–33. GO and CNTs are 

widely used in electronics, both containing sp2 hybridized carbon. In CNTs, this creates a high 

degree of electrical conductivity as each carbon contains one free electron, which is easily 
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delocalized within the CNT structure to conduct electricity. Meanwhile, GO with low degree of 

oxidation can act as a semiconductor, or as an insulator with full degree of oxidation34. Suriani 

et al. showed composites of NR-GO exemplified good capacitive behaviour under an applied 

voltage, thus demonstrating potential use in energy storage devices30. Similarly, multiwalled CNTs 

were investigated by Selvan et al. in NR nanocomposites for piezoresistive sensor applications. 

Piezoresistive material resistance changes upon deformation, thus they can be used as electrical 

sensors to monitor stresses and mechanical damages33. Because of the high aspect ratio of CNT, 

they were shown to percolate in the host NR. Strongly non-linear resistance behaviour was then 

observed as a function of strain. This material could be used as a strain sensor due to its flexibility, 

ease of manufacturing, and sensitivity33. 

From these examples, it is clear that there are many types of nano-additives that have shown 

promise in various rubbers for the production of useful materials. Nano-additives will likely play 

a large role in product development in the future as research advances. These nano-sized materials 

and nanocomposites are excellent additives, whether they are simply for reinforcement and 

improved mechanical properties, or for specialty applications to create conductive rubber, sensors, 

or other multifunctional products. 

2.4 Cellulose Nanomaterials 

In this thesis, cellulose nanomaterials have been chosen as the nanomaterial additive of focus due 

to the many advantages they offer. Though it has been demonstrated that there are many useful 

nano-sized compounds, cellulose nanomaterials are of significant interest since cellulose is 

produced in mass quantities through nature, is non-toxic, and biodegradable35. These properties 
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have become a major attraction as industries and academia both shift focus into sustainability, 

recycling, and environmentally-friendly product development.  

First and foremost, cellulose nanomaterials can be synthesized from many types of agro-

wastes35–37. From wood pulp, sugarcane bagasse, cotton, bamboo, and other plant-based material 

waste, the production of cellulose nanomaterials provides a useful way to recycle these scrap 

components. The manufacturing process begins with cellulosic biomass, consisting of high 

molecular weight chains of β-1,4-linked D-glucose units. Cellulose is the most abundant polymer 

found in nature, as it is a major component of plant cell walls used for maintaining structure. The 

linear cellulose chains hydrogen bond with one another to form microfibrils, which contain both 

crystalline and amorphous regions. Thousands of hydrogen bonds between cellulose molecules 

create a very stable and strong complex with high strength. 

 

Figure 5: Cellulose nanocrystals obtained from the hierarchical structure from plant cell 
walls38. 
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To produce nanocrystals from the cellulose, acid hydrolysis is performed, and most often 

sulfuric acid or hydrochloric acid is used. During this reaction, the acid cleaves bonds in the 

amorphous region of the cellulose microfibrils due to the disordered structure and the greater 

spacing between chains. Closely-packed crystalline regions are less susceptible to attack. Through 

control of the reaction time, highly crystalline cellulose nanocrystals (CNC) can be obtained 

(Figure 5). Longer cellulose nanofibers (CNF) can also be manufactured from cellulose, requiring 

mechanical processes such as homogenization or grinding to break down cellulose chains into 

fibrous nanosized threads. Of these two cellulose-based nanomaterials, CNC will be the main 

compound of study in this work.   

The high crystallinity of CNC leads to excellent physical properties. Dimensions of 

individual CNC can range from 2-50 nm in width and 100-2000 nm in length39, thus they have a 

high aspect ratio. Due to their small size and low density, the surface area per volume of CNC is 

150-250 m2∙g-1. In terms of mechanical properties, they exhibit an elastic modulus from 

110-220 GPa and tensile strength of 7.5-7.7 GPa39,40. This indicates that CNC can be an effective 

reinforcing agent in composite materials.  

The structure of CNC contains many hydroxyl (-OH) groups, many of which are available 

for modification on the CNC surface. Sulfuric acid hydrolysis introduces additional sulfate esters 

to the CNC surface to enhance colloidal stability. Meanwhile, hydrochloric acid cleaving imparts 

minimal surface charge to the CNC while preserving the large quantity of reactive hydroxyl groups 

in the structure. Overall, the hydroxyl-rich surface lends CNC a high potential for modifications: 

oxidation, esterification, etherfication, silyation, or polymer grafting can be performed to achieve 

additional properties.  
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The large-scale production of CNC has been achieved by several companies, including 

CelluForce Inc. and FPInnovations in Canada. The CNC can be distributed in either gel suspension 

or powdered forms. CelluForce produces CNC with a capacity of 1 tonne/day41, a significant 

production volume considering the nano-size of CNC. This bulk production makes CNC easily 

accessible for study in many applications, and feasible for use in commercial products. It is 

therefore useful to encourage CNC use in existing and new formulations.  

2.4.1 Cellulose Nanocrystals for Reinforcement 

Due to its robust mechanical properties, CNC can be used directly as a polymer additive for 

reinforcement. For example, Chen et al. explored the reinforcement of foamed NBR with CNC42. 

Rubber foams are used as lightweight damping materials that absorb vibration and allow for 

thermal or acoustic insulation. Since pure rubbers are unable to provide sufficient mechanical 

properties, they are often reinforced with inorganic fillers42. CNC can provide an attractive 

environmentally friendly alternative for strengthening the foam properties. In their study, CNC 

had a diameter of approximately 100 nm and a length around 500 nm. It was found that the CNC 

greatly enhanced the foam tensile strength and elastic modulus, and also increased the rate of NBR 

curing. Overall, there was a strong interaction between the CNC and NBR matrix which allowed 

for smaller foam sizes and therefore better mechanical properties. 

CNC in both NR and epoxidized NR (ENR) was studied by Tian et al. for tunable water-

responsive behaviour43. In this study, nanocomposite films were prepared by casting NR and ENR 

with CNC loading levels of 1, 3, 6, and 10%. Water responsiveness was tested using dynamic 

mechanical analysis (DMA), and it was found that the ENR composites showed better water 

sensitivity than the NR composites. ENR contains epoxy groups in its structure, which impart 
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additional sites for hydrogen bonding with the CNC filler. This allowed for enhanced filler 

dispersion and a dual network between filler-filler and filler-polymer that resulted in stronger 

adaptive mechanical properties upon exposure to water. Films with the highest CNC loading were 

seen to demonstrate the greatest change in storage modulus after immersion in water. After 

redrying, both NR and ENR composite films were able to recover their maximum storage modulus 

values. Interestingly, the ENR composites with CNC had a higher storage modulus after redrying 

than the initial readings, likely due to a more favourable reorganization of the CNC network in 

ENR after redrying43. This recoverable water-responsive property could be useful in biomedical 

applications. 

Barrier applications are also important properties in thin films, and Dhar et al. studied the 

effect of CNC on the gas barrier characteristics of poly-3-hydroxybutyrate (PHB)44. As PHB is a 

biodegradable polymer, the nanocomposites could be promising replacements as food packaging 

materials. In this study, CNC (with a diameter of 15-20 nm, and length of 400-600 nm) were 

synthesized from bamboo pulp and incorporated into PHB at loading levels of 1, 2, 3, and 5 wt%. 

Even at low loading, the PHB-CNC films showed a significant decrease in the oxygen transmission 

rate through the composite material. At 1 and 2 wt% CNC loading, the oxygen transmission rates 

decreased by 45.7 and 64.5%, respectively. This improvement can be attributed to the hydrogen 

bonding between CNC and the hydroxyl groups on PHB, as well as the increased tortuosity in the 

films which resisted the diffusion of oxygen molecules. The enhanced gas barrier could be 

particularly useful for foods that require preservation in an inert gas environment. 

From these CNC-reinforced nanocomposites, it has been proven that CNC can be a useful 

filler with many advantages for creating stronger and versatile polymer products. Potentially, these 
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advantageous properties of CNC can benefit thin film products by facilitating the production of 

thinner films with high toughness and barrier properties, allowing manufacturers to save on costs 

during production. Since CNC is also sustainable and biodegradable, it could prove to be a very 

valuable commodity as industries address the demand for green goods. 

2.4.1 Cellulose Nanocrystals for Medical Use 

On their own, the properties of CNC are already very promising as a rigid strengthening filler. 

Upon chemical modification, however, an even more versatile CNC nanomaterial can be created. 

Modified CNC often have dual utility as a reinforcing agent and also imparting specialized 

functionalities to a nanocomposite. The hydroxyl-rich surface of CNC make it easy to introduce 

other chemical species for an additional range of capabilities. Some examples of CNC 

modification for composites include applications such as: hydrophobic surfaces, UV protection, 

magnetic properties, water treatment, and electronics45–49.18 

With the wide variety of fields that can benefit from the use of modified CNC, 

modifications for medical use are particularly appealing. CNC that are able to effectively kill 

bacteria are useful for creating sterile surfaces, preventing infections, and protecting workers in 

the healthcare industry. CNC can also be modified to carry drugs and other materials on its surface.  

Antibacterial CNC 

The preparation of antibacterial CNC is useful for self-sterilizing surfaces in the medical field. 

Research on the modification of CNC for the purpose of inhibiting bacteria is therefore gaining 

traction. An example of antibacterial CNC is the grafting of rosin to the surface of CNC, as studied 

by de Castro et al50. Rosin is a product of pine trees, and is a known antibacterial51. In their project, 
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CNC was chemically modified to carry rosin using green synthesis methods through esterification 

at 130 °C for 10 hours. The final rosin-CNC was effective as an antibacterial against Gram-positive 

bacteria, specifically B. subtilis. A weaker but still observable activity was noted against Gram-

negative bacteria (E. coli), hence this research opens opportunities for rosin-CNC use in functional 

surfaces. 

Yu et al. synthesized antibacterial CNC through the introduction of zinc oxide (ZnO) to 

the CNC surface52. ZnO nanoparticles (NPs) have been studied to partially dissolute and release 

Zn2+ ions that exhibit antimicrobial activity against strains of both bacteria and fungi53. To 

synthesize the ZnO-CNC, Fischer esterification was performed on CNC to impart carboxyl groups 

to its structure. Zinc nitrate hexahydrate was then added to the CNC to form Zn(OH)2-CNC via 

electrostatic interactions. Upon heating at 120 °C, the Zn(OH)2 was transformed to ZnO to form 

the final ZnO-CNC material. Antibacterial tests indicated that the ZnO was able to inhibit the 

growth of both S. aureus and E. coli, whereas the CNC did not show any antibacterial activity on 

its own. The size of ZnO was observed to play a significant role in bacterial inhibition, where 

smaller ZnO NPs (42.6 nm average diameter) on the CNC were more effective than larger ZnO 

NPs (126.6 nm and 143.1 nm average diameter). 

A more common metal for antimicrobial purposes is silver (Ag). In a study by Shi et al., 

silver NPs were anchored to the surface of CNC using dopamine54. Dopamine was first reacted 

with CNC to result in polydopamine (PD)-CNC, then they were added to a silver nitrate solution. 

Dopamine hydrochloride was used as a reducing agent for silver ions to form nanoparticles and 

create the resultant Ag-PD-CNC. Compared to a dispersion of free Ag NPs, the Ag-PD-CNC 

dispersions were proven to be much more stable over a period of 3 months. As metal nanoparticles 
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have a high surface energy, they tend to aggregate in solution; however, the CNC effectively 

stabilized the NPs and prevented this. Antibacterial tests using the modified CNC showed excellent 

antibacterial properties, inhibiting 99% of bacterial growth at concentrations of 4 and 8 µg/mL 

against E. coli and B. subtilis, respectively. This activity was four times more effective than free 

Ag NPs, thus the CNC was proven to be a very effective carrier material.  

These results show that modified CNC are very versatile carriers for antibacterial agents, 

and are beneficial as stabilizing substrates to prevent aggregation of high surface energy particles. 

Metal nanoparticles such as zinc and silver can greatly benefit from attachment to CNC. This 

research will further the use of CNC for stability of metal nanoparticles using green synthesis 

methods.  

2.5 Metal Nanoparticles 

Metal NPs have emerged as popular bactericidal materials within the past decade. Overuse and 

misuse have caused antibiotics to become less effective, as bacteria adapt to antibiotics with 

mutations55. Metals are therefore gaining traction as antibacterial alternatives. Different metals 

have long been known to possess antibacterial properties: for example, silver vessels were used in 

ancient Greece to prevent spoilage of liquids; gold foil has been used in dental inlays to inhibit 

bacterial infections; and copper door handles and surfaces are known to self-disinfect due to the 

oligodynamic effect56–58. Nanoparticles of these different metals have therefore been created and 

tested to assess their potential as treatments for bacterial infections. In particular, silver is the most 

popular metal NP for antibacterial treatments as it is highly effective at low concentrations, and 

has low toxicity at these exposure levels.  
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2.5.1 Silver Nanoparticle Synthesis  

In order to form silver NPs, a top-down or bottom-up approach can be implemented as depicted in 

Figure 659. Top-down approaches begin with bulk material, which is then mechanically or 

chemically broken down into nano-sized particles. This includes techniques such as mechanical 

milling, laser ablation, etching, or sputtering techniques60. In contrast, bottom-up approaches begin 

with simpler atoms or molecules that are assembled to construct NPs. Often, a bottom-up approach 

in solution is performed. This method is less costly and requires less energy input than a top-down 

approach, and provides the ability to better control particle size61,62. Using bottom-up techniques, 

metal molecules in solution must cluster to create small units that make up the nanoparticle. Upon 

synthesis, metal nanoparticles often have very spherical shapes with narrow size distribution 63. 

Other forms such as triangular, hexagonal plates, or rod-like configurations are also possible with 

adjustments in pH, molar ratios, and temperature to induce slower reactions and therefore 

encourage anisotropic growth into desired shapes64.  

 

Figure 6: Top-down approach (left to center) compared to bottom-up approach (right to center) 
methods of producing metal nanoparticles59. 

 

There are three basic requirements for the bottom-up synthesis of silver NPs: a metal 

precursor, a reducing agent, and a capping agent. The synthesis process typically begins with a 

metal precursor such as silver nitrate (AgNO3) that solubilizes well in aqueous solution to yield an 
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abundance of Ag+ ions. A reducing agent that can easily donate electrons, such as sodium 

borohydride, is then added to the solution to create Ag0 ions62,65,66. The Ag0 and Ag+ ions combine 

together into small clusters as they begin to nucleate. Coalescence of several nuclei form the final 

Ag NP spheres. A capping agent is then added to stabilize the particles in solution and stop growth. 

By controlling the reaction time, amount of reducing agent, and type of capping agent, the size of 

the Ag NPs can effectively be controlled66.  

2.5.2 Mechanism of Antimicrobial Activity 

The mechanism through which silver nanoparticles act as effective bactericides has not been fully 

studied nor understood, but there are several proposed hypotheses. In order to fatally damage 

bacteria, Ag NPs may act against microbes both externally and internally, by inducing 

physiochemical changes to the cell wall or through the disruption of several internal biological 

functions.  

The first proposed mechanism of antibacterial action suggests that electrostatic interactions 

exist between positively charged silver ions and the negatively charged cell membranes of 

microorganisms67,68. These interactions allow Ag NPs to attach themselves to the bacteria cell 

wall, where the silver ions act to modify the cell membrane proteins and affect the phospholipid 

bilayer69,70. This results in irreversible damage to the cell, such as increased membrane 

permeability and subsequent leakage of intracellular fluids. Li et al. previously observed this 

through fragmented areas and pits in bacterial cell walls upon SEM and TEM imaging of silver-

nanoparticle-treated strains71. Direct damage to the cell wall can also aid in penetration of metal 

ions to the inside of the bacterium.  
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The second proposed mechanism speculates that metal ion dissolution from the 

nanoparticles interact with proteins and other integral components within the cell. Once ions have 

entered a bacterium, these ions can react with sulphur-containing compounds, inducing the 

inactivation of vital proteins72. Ions may also interact with phosphorous-containing compounds 

such as DNA, preventing successful replication and subsequently cell replication through binary 

fission72.  Metal ions therefore play a significant role in interrupting key intracellular functions. 

Finally, the third mechanism indicates that reactive oxygen species (ROS) generation is 

brought about by metal nanoparticles. The nanoparticles can supply a sustained release of metal 

ions within the cell due to the lower pH73. These ions react to create free radicals, such as 

superoxide ions, hydrogen peroxide, and hydroxyl radicals. Due to the excess of ROS, the cell is 

unable to attain homeostasis or mount an effective antioxidant response; thus inducing oxidative 

stress and resulting in cell death.  

Likely, the actual mechanism of action of silver nanoparticles is a combination of these 

proposed mechanisms, but further study is required. Silver nanoparticles have consistently proven 

their effectiveness against various bacterial strains. Due to their extremely large surface area to 

volume ratio, NPs allow for much better contact with bacteria compared to their larger-sized metal 

counterparts74. Additionally, Ag NPs may employ several approaches against bacteria that are the 

key difference that drive them above traditional antibiotics. 

2.6 Antibacterial Nanocomposites  

The addition of silver nanoparticles or antimicrobial-modified-CNC to a polymeric matrix can 

create functional antibacterial nanocomposites. These can be extremely useful in healthcare, for 
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use during medical procedures, or in post-treatment. Sterile environments are also a necessity in 

food production and packaging industries, thus antibacterial polymer materials are a highly 

valuable advancement for many fields. 

2.6.1 Wound Dressing Nanocomposites 

One application of silver NPs in medicine is in bandages and wound dressings. An example of a 

commercially available product containing Ag NPs is PolyMem Silver®, a polyurethane (PU) 

foam nanocomposite containing starch used for burn dressings75. Many dressings rely on silver 

NPs to easily produce silver ions due to their high surface area to volume ratio76. The high surface 

energy of silver NPs can cause them to aggregate, thus forming on a polymer or fiber is ideal to 

keep them stable.  Silver NPs can be added to textiles or polymers to form nanocomposites in two 

ways: either through forming Ag NPs directly on the fiber surface, or by adding pre-synthesized 

Ag NPs to the fiber material (as seen in Figure 7)76.  

 

Figure 7: Two commercialized wound dressing bandages containing silver NPs. SEM images (a, 
b) show dressing 1, where pre-made silver NPs are directly added into the fiber 
material, whereas (c, d) show dressing 2 where silver NPs are grown on the fiber 
surface76. 

 

Wound dressing nanocomposites can be made of many materials, such as polyvinyl alcohol 

(PVA), cellulose, and polyethylene oxide (PEO)77–79. Depending on the nanocomposite 

morphology, there can be a rapid or slow release of silver NPs upon contact with moisture and 
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fiber wetting76. This release allows for continuous sterility of the bandaged area even with long 

application durations. In real world usage, moisture from skin would allow silver NPs to diffuse 

out of the wound dressing material and into or around the exposed lesion area. This keeps open 

wounds sterile and provides a reliable barrier to infection that can effectively kill bacteria 

regardless of the presence of antibiotic-resistant strains. 

In a paper by Li et al., Ag NPs were produced using chitosan oligosaccharide (COS) as a 

reducing agent, then electrospun into PVA fibers78. These fibers were then formed into wound 

dressing bandages. A zone of inhibition test was executed to ensure that the composite had 

antimicrobial properties against both S. aureus and E. coli, and would ensure sterility on the 

applied wound area. Pre-clinical tests were also performed in-vivo on rabbits for skin irritation and 

inflammation, as well as mice to study wound healing time. The results of the wound healing study 

proved that the scars covered by the Ag NP-COS-PVA nanocomposite was able to heal much 

quicker compared to wounds covered in regular gauze, and there was minimal irritation to the 

skin78. These results encourage continuous development of silver NP wound dressing materials. 

2.6.2 Food Packaging Nanocomposites 

Food facilities must be bacteria-free to ensure the health of consumers, thus food packaging 

materials can benefit from antibacterial nanocomposites as well. Xu et al. prepared starch films 

reinforced with CNC and grape pomace extract (GPE) for food packaging applications80. Grape 

pomace refers to the solid remains following pressing for juice or winemaking, consisting of skin, 

pulp, stems, and seeds; they contain a high level of polyphenols which exhibit strong antimicrobial 

activities80. In their paper, CNC was used as a reinforcing filler while GPE was used as a functional 

bactericidal agent. The nanocomposite films had increased mechanical properties, and the CNC 
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facilitated more phenolic compound release from the GPE. Overall, the GPE-CNC-starch films 

presented effective inhibition of S. aureus and L. monocytogenes. The natural materials used for 

this nanocomposite make them ideal for food packaging due to their inherent non-toxicity, 

biodegradability, and renewability, while also ensuring safe bacteria-free foods for the consumer. 

Antibacterial CNC have not frequently been used in nanocomposite materials, although the 

modification of CNC with bactericidal agents has been very well-studied. Most antimicrobial 

nanocomposites incorporate both CNC and an additional antibacterial additive in order to exhibit 

activity against the growth of microorganisms. There are very few that study the modification of 

CNC prior to incorporation within a polymer matrix. From literature, the antibacterial modification 

of CNC in rubber compounds specifically has not yet been studied. Elastomers such as NR and 

NBR could benefit from a functional reinforcing filler that imparts bactericidal activity.  

2.7 Summary 

This literature review has given an overview on rubber processing techniques, common additives, 

and emerging nanomaterials used in elastomeric composites. The novelty of nanomaterials in 

recent years has encouraged the investigation of nanosilica, nanoclay, graphene oxide, and carbon 

nanotubes in rubbers. However due to the increasing desire for ecofriendly product development, 

cellulose nanocrystals will be explored in detail in this research as both a reinforcing filler and a 

functional filler. By implementing CNC modification techniques studied in recent literature, 

cellulose nanocrystals will be functionalized as antimicrobial carriers for silver nanoparticles. This 

thesis will further progress the field to showcase CNC as an ideal sustainable strengthening filler 

through its ability to percolate, and then modify the CNC to contribute to the development of a 
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bactericidal elastomeric nanocomposite. It has been shown that antibacterial nanocomposites have 

a wide range of capabilities, whether for wound dressing or food packaging applications in 

polymeric matrices such as PU, PVA, or starch. The nanocomposites synthesized in this thesis will 

therefore enrich the field with the creation and analysis of advanced rubber thin films for use in 

industrial products such as gloves. 
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CHAPTER 3 

 

 

 

 

Reinforcement of rubber thin sheets by percolation of pristine 
cellulose nanocrystals 
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3.1 Introduction 

Research on the use of bio-based material rather than fossil fuel-based synthetic polymers is of 

considerable value due to the increasing interest in biodegradable and ecofriendly products. This 

chapter describes an in-depth analysis of the effect of cellulose nanocrystals (CNC), a promising 

nanomaterial filler derived from cellulosic biomass, on the mechanical properties of rubber latex 

thin sheets. Sheets of styrene butadiene rubber (SBR) and its bio-based alternative, natural rubber 

(NR) were tested and compared.  

Styrene butadiene rubber is one of the most common synthetic rubbers, where the vast 

majority of SBR applications are for tires81. It is also used for footwear, hoses, seals, conveyor 

belts, and adhesives81,82 due to its high toughness and abrasion resistance. SBR is a relatively 

inexpensive elastomer with many applications, but when SBR products are discarded, large 

amounts are destined for landfill and cannot be broken down through natural degradation. In the 

interests of environmental protection, a green polymer alternative should be considered, such as 

natural rubber. As aforementioned, NR occurs organically in nature and is obtained from the sap 

of Hevea brasiliensis trees9. NR is very versatile and an ideal alternative to SBR due to their similar 

properties. In fact, NR can be used for the most of the same products as SBR14 as well as for single-

use plastic products, such as balloons, rubber bands, tubes, and gloves. NR possesses excellent 

strength, elasticity, fatigue resistance, and good abrasion resistance83,84. The advantage of NR over 

SBR is that it is derived from a sustainable resource, but also its relatively enhanced 

biodegradability.  
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In this study, CNC was used to enhance SBR and NR properties. CNC has great potential 

to become an ecofriendly filler for the strengthening of plastics due to its excellent mechanical 

properties and high aspect ratio. This study examined the distribution of CNC in the rubber 

matrices, tensile properties, water permeability, and water absorption properties of the 

nanocomposite thin sheets below and above the percolation threshold. Percolation is an ideal 

phenomenon in rubber thin sheets, as the interconnected filler can significantly alter the 

nanocomposite properties beyond the critical point of network formation.  A continuous filler 

network can also result in better durability: rigid fillers can create an intricate phase in the sheets, 

such that chemicals and cracks can be arrested. This is critical in most dipped rubber products, thin 

sheets, and films, as the resistance of the materials to tear propagation is an important property to 

ensure resilience throughout the product lifetime. Tear strength was also studied in this research, 

as it is a vital attribute of thin sheet rubber products. To the best of our knowledge, the tear strength 

of NR-CNC and SBR-CNC nanocomposites has not been reported in the literature. The effect of 

percolation of CNC on the tear strength of rubber sheets largely determines the viability of CNC 

as a strengthening filler. 

3.2 Experimental 

3.2.1 Materials 

CNC derived by sulfuric acid hydrolysis was supplied by CelluForce Inc. It was provided in the 

form of an aqueous gel dispersion containing 8 wt.% CNC, and also as a freeze-dried powder. The 

CNC had an average length (L) of 200 nm, and an average diameter (d) of 5 nm. Styrene butadiene 

rubber and low ammonia natural rubber were purchased from Chemionics Corporation in latex 
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form. The solid content of the SBR and NR dispersions were 51.9 wt.% and 62.9 wt.%, 

respectively.  

3.2.2 Nanocomposite Thin Sheet Fabrication 

Thin sheets of SBR and NR were fabricated, reinforced with varying concentrations of CNC from 

0.5 phr to 8 phr (parts per hundred rubber by dry weight). Neat NR and SBR sheets were also 

prepared. To create the sheets, solution mixing was carried out. A 2 wt.% CNC stock dispersion 

was first prepared by diluting the 8 wt.% gel CNC dispersion with DI water. This dispersion was 

homogenized (PowerGen 700, Fisher Scientific) for 2 minutes, followed by sonication 

(Fisherbrand Model 120 Sonic Dismembrator, Fisher Scientific) for 3 minutes at 60 kW and 100% 

amplitude to ensure that the CNCs were well-dispersed. A vacuum oven was used on the CNC 

stock dispersion to ensure any bubbles were removed from the liquid prior to latex incorporation. 

For each batch of sheets, the required amount of 2 wt.% CNC was measured into a beaker. 

The dispersion was stirred continuously as the rubber latex was poured slowly into the mixture. 

High speed magnetic stirring was then employed for a total of 6 minutes to thoroughly mix the 

latex and CNC components. 

The prepared latex-CNC mixtures were cast into Petri dishes to form thin sheets. The cast 

amount was kept constant at a dry weight of 4 g, in order to mitigate thickness variation in the final 

products. Drying was performed on a level surface at room temperature, where the solvent was 

evaporated until a constant weight was reached. The sheets were then peeled and subsequently 

tested for their mechanical properties. It was ensured that no bubbles were observed in the films, 

both visually and using optical microscopy, prior to testing the samples. CNC was the only filler 
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added to the latex to determine its effect on the rubber properties without masking by other 

additives.  

3.2.3 Evaluation of Filler Dispersion 

The dispersion of CNC in the rubber thin sheets was evaluated using Scanning Electron 

Microscopy (SEM). NR and SBR sheets containing 0 phr, 1 phr, and 6 phr of CNC were cut into 

approximately 1 cm x 1 cm squares. The samples’ cross-sectional areas were analyzed under SEM 

to examine the morphology of the nanocomposite materials. Due to the high aspect ratio of CNC, 

it is expected to form an interconnected network at fairly low concentrations. This is known as 

filler percolation. The minimum volume fraction of CNC required to achieve percolation, known 

as the percolation threshold, can be calculated from the statistical percolation theory for 

cylindrically shaped filler 48,85,86: 

𝑃𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
଴.଻

௔௦௣௘௖௧ ௥௔௧௜௢
    ( 1 ) 

CNC used in this project had an average aspect ratio (L/d) of approximately 40, thus the 

percolation threshold was expected at a concentration of 1.75% v/v of CNC. Using a density of 

1.5 g∙cm-3 for CNC87, and a density of 0.92 g∙cm-3 for both NR and SBR14,82, this translates to 2.85 

wt.% as the expected percolation threshold of CNC (or 2.93 phr). Above this value, a continuous 

network of CNC will be formed in the matrix. This theoretically calculated value assumes no 

aggregate formation in the thin sheets, and good dispersion of the CNC in the rubber matrix. 

 Transmission Electron Microscopy (TEM) (Philips, CM 10) was also performed on 

cryotome sections of NR and SBR containing 1 and 6 phr of CNC, to visually confirm nanoparticle 

percolation. Due to the softness of the rubber samples, small sections of the thin sheets were first 
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embedded in epoxy resin prior to cryomicrotoming at -60 °C. Small cryosections were then placed 

on a copper grid and subsequently imaged on the TEM. 

3.2.4 Tensile Testing 

A Bruker Universal Testing Machine was used for tensile testing, with a load cell of 10 kg. Sample 

conditioning was conducted at room temperature in accordance with ASTM D882-18 (Standard 

Test Method for Tensile Properties of Thin Plastic Sheeting). Minor modifications to the standard 

testing parameters were performed, where a strain rate of 30 mm/min and sample dimensions of 

1 cm x 3 cm were used. The Yield strength and Young’s modulus values were recorded, and the 

average values from three specimens of each formulation were reported.  

3.2.5 Tear Strength Testing 

The tear strength properties of each formulation were tested in accordance with ASTM D624 - 12, 

with some modifications to the specimen dimensions. Type T trouser tear test pieces were prepared 

with a size of 5 cm x 2 cm, and a tear initiation of 2 cm. Five samples from each batch were tested 

in a Bruker Universal Testing Machine with a load cell of 10 kg, and a strain rate of 50 mm/min.  

3.2.6 Permeability Testing 

Moisture barrier properties of the thin sheets were tested to determine the effect of CNC on the 

permeability of latex. The test conditions complied with ASTM E96 for the water vapor 

transmission of materials. Glass cups with a mouth area of 10.1 cm2 were used, and sheets with a 

thickness of 0.75 ± 0.05 mm were secured tightly to the cups, then weighed every 24 hours. Water 

vapour transmission (WVT) was calculated as follows88: 
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𝑊𝑉𝑇 =
ீ

௧∙஺
      ( 2 ) 

where G is the weight change in grams, t is time in hours, and A is the test area of the cup mouth 

in m2.  

3.2.7 Water Absorption Testing 

A modified protocol for ASTM D570 - 98 was used for water absorption testing. Samples were 

cut into 25.4 mm x 25.4 mm (1 in x 1 in) squares, with a thickness of approximately 0.75 mm. The 

specimens were conditioned by oven drying at 50 °C for 24 hours, followed by cooling in a 

desiccator for 12 hours. Upon their removal from the desiccator, samples were weighed to the 

nearest 0.0001 g and immersed in DI water at 23 °C. Three replicate tests were performed for each 

sample, and the average water absorption values were calculated from the measurements.  

Diffusion coefficients D for the sheets of thickness l were calculated using models 

proposed by Crank89: 

ெ೟

ெಮ
=

ସ

௟
ቀ𝐷 ∙

௧

గ
ቁ

ଵ/ଶ
     ( 3 ) 

where Mt is the fluid quantity that has diffused in a time t, and M∞ is the equilibrium moisture 

content89–91. 
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3.3 Results and Discussion 

3.3.1 Filler Dispersion 

NR and SBR latex were combined with pristine CNC, and no chemical modification to the CNC 

was performed. The thin sheet preparation method exploited the mutual dispersibility of CNC and 

latex in water. Since both materials could be readily dispersed in aqueous media, this allowed for 

facile mixing and even distribution of the filler into the rubber. 

 

Figure 8: SEM cross-sectional images of nanocomposite sheets. CNC is well-dispersed in NR 
(b), and percolation is shown in the 6 phr CNC sheet (c). Agglomerates occurred in the 
SBR samples, depicted in (e) and (f). 

 

SEM analysis of the sheets confirmed that CNC was well-dispersed throughout the NR. As 

shown in Figure 8b, arrows reveal small dots of CNC spread throughout the rubber sheet. Some 

percolation of the CNC was visible in the cross-section of the NR sample with 6 phr of CNC, as 

shown by the CNC networks (marked by the yellow arrows).  
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In SBR, the distribution of CNC was not as uniform as it was in NR. Aggregates occurred 

at both 1 phr and 6 phr of CNC with no observable percolation on SEM. Large clusters of CNC 

were evident instead, as shown in Figure 8e and 8f. This phenomenon is consistent with 

nanocomposite theory, where aggregation is a common problem with nano-sized materials92–95 due 

to their high surface energy. Such poor dispersion is more pronounced when the polarity difference 

between the polymer matrices and the filler is high, as in the case of hydrophobic rubber (NR and 

SBR) and hydrophilic CNCs. A plausible explanation for the contrasting CNC dispersion within 

the NR and SBR nanocomposites was due to the difference in the chain structure between NR and 

SBR. NR consists of a chain of cis-1,4-polyisoprene, giving a linear polymer structure. Contrarily, 

SBR contains a styrene moiety on its polymer backbone, resulting in more steric hindrance that 

limits an intimate interfacial interaction with the polar CNCs. This steric hindrance could promote 

the migration of the hydrophilic CNC toward areas of water in the SBR thin sheets as the sheets 

dried during the casting process.  

TEM images were better able to demonstrate CNC percolation within the samples. As seen 

in Figure 9, NR and SBR samples with low loading (1 phr CNC) could form very short networks 

with one another. Similar to the SEM, the TEM images indicated that the dispersion of CNC was 

less uniform in SBR, as the CNC agglomerated in small areas rather than dispersed evenly 

throughout the thin sheet. For high loading (6 phr of CNC) in NR, the presence of fully percolated 

networks was evident as per Figure 9b. Percolated networks were observed in SBR at high CNC 

loading, but the structure showed very fine webs. It is likely that this is due to aggregation of CNC 

in other areas of the thin sheet, thus there were much less CNC available for continuous filler 

network formation. 
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Figure 9: TEM images showing CNC percolation in the thin sheets of rubber. Scale bars 
represent 1 µm. 

 

3.3.2 Mechanical Properties 

Generally, nanofillers can achieve high levels of rigidity at much lower loading levels than 

conventional fillers94 because of their high specific surface area. The mechanical properties of the 

CNC-filled NR and SBR nanocomposites were evaluated to determine the effect of CNC on the 

mechanical properties. Representative tensile curves for each formulation, as well as the yield 

strength and modulus for the NR-CNC and SBR-CNC nanocomposites are shown in Figure 10. 
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Figure 10: Representative tensile curves for (a) nanocomposite NR sheets and (b) 
nanocomposite SBR sheets, with varying CNC concentration in phr. “B” denotes the 
full break of a sample due to high filler loading and limited chain mobility, whereas 
“NB” denotes non-break for samples that stretched to the limits of the tensile machine. 
Point markers indicate the yield point of each sample. Trends in (c) Young's modulus 
and (d) yield stress of NR and SBR nanocomposite sheets with CNC filler are also 
shown.  

 

For NR, there is an evident positive correlation between both Young’s modulus and the 

yield strength with increasing CNC loading in the thin sheets. Stress is transferred from the 

elastomeric matrix to the rigid CNC nanofiller material when force is applied96, resulting in a 

higher modulus. Thus, CNC acted as a reinforcing filler within the thin sheets. CNC is also shown 

to increase the yield strength of the NR nanocomposite, whereas micro-sized fillers typically 



43 

 

reduced the yield strength at higher loading97. In the concentration range being examined, both the 

yield strength and modulus of the NR increased with increasing volume fraction of CNC fillers 

due to the small particle size97.  

In the SBR sheets, the reinforcing effect of CNC was not as prominent as that of the NR 

nanocomposite sheets. The Young’s modulus of samples increased until 4 phr, and above this filler 

concentration, there was a drop in the modulus value that could be attributed to the aggregation of 

CNC. Due to the reduced interaction between the filler and the rubber matrix, the CNC was not 

able to transfer as much stress between the polymer chains. Instead, the agglomerates acted as 

weak points in the matrix that facilitated crack propagation. The yield strength of the SBR 

nanocomposite displayed a dramatic increase at 1 and 2 phr CNC loading. The increase was 81% 

and 115% for the 1 and 2 phr CNC reinforced nanocomposites, respectively, indicating an effective 

load transfer from the SBR to the CNC at these loading levels. Beyond the 2 phr loading levels, 

the CNC did not provide a statistically significant strength improvement.  Again, this could be 

attributed to the aggregation of CNC at high loading, resulting in negligible change in the yield 

strength values between 2, 4, 6, and 8 phr of CNC. Larger aggregates at higher loading tend to 

mimic the effect of micro-sized particles on the properties93, as the nanoparticle clusters have an 

effective diameter in the micron range.  

The effect of CNC fillers on the cut growth of the rubber nanocomposites under tension 

was evaluated using the trouser cut (Die T) method in accordance with ASTM D624 -12. At higher 

CNC loading ranges, the tear strength properties of the NR and SBR nanocomposite samples 

displayed a positive correlation with the CNC content.  At low concentrations, however, CNC did 

not have a significant strengthening effect during tearing. Figure 11 shows the tear strength of  
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Figure 11: Tear test results of nanocomposite NR and SBR sheets containing increasing CNC 
content. Tear strength (a) and maximum work required to tear (b) are shown. 

 

samples against the CNC concentration in the sheets, as well as the maximum work required to 

completely tear the rubber samples. 

Based on the graphs, there was a clear jump in both the tear strength and maximum work 

required to fully tear a NR sample from 2 phr to 4 phr of CNC. An increase in tear strength and 

maximum work also occurred in the SBR sheets above 4 phr of CNC. This result further confirmed 

the presence of percolation of CNC in the sheets. As discussed earlier, the percolation threshold 

of CNC is expected at a concentration of 2.93 phr, which supported the experimental results of the 

NR-CNC nanocomposite, where CNC concentrations at 4 phr and above demonstrate high 

resistance to tearing.  

Meanwhile, the percolation threshold of CNC in SBR was experimentally higher than the 

anticipated value. Reinforcement due to percolation occurred between 4 phr and 6 phr, likely due 

to the relatively poor interfacial interaction between the SBR and CNC that led to aggregation of 
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CNC in the sheets. Since the filler was not well-dispersed, a concentration higher than 2.93 phr of 

CNC was required to form a percolated network. Despite the aggregation of the filler, some CNC 

were still able to form a network as shown by the increase in tear strength at high loadings (6 and 

8 phr).  

Figure 12 depicts the proposed mechanism of filler reinforcement on the tear strength of 

thin sheets. When the filler concentration is low, the rubber is easily torn along the path of least 

resistance: that is, through areas where there is no CNC in the rubber. Closer to the percolation 

threshold, CNC began to form larger interconnected structures, but there were still regions that 

were not reinforced. At these concentrations, the tear can propagate along the interface between 

CNC and the polymer chains if there is weak interfacial adhesion between the two, as is the case 

with SBR. Because there are only weak van der Waals interactions between the CNC and rubber 

matrix, the tearing occurred most readily at the CNC-rubber interfacial boundary and required less 

force to break because of weak filler-matrix interactions. The polymer was locally stretched at 

these zones around the rigid CNC, creating voids until complete rupture98. Above the percolation 

threshold, the network of linked CNC must be broken in order to tear the samples. This requires 

 

Figure 12: Effect of percolation on the tear strength of sheets with (a) low filler content, tear 
goes along path of least resistance (b) close to percolation threshold, crack 
propagation due to weak filler-matrix interactions, and (c) percolated network, strong 
filler-filler interparticle forces must be broken to tear the sample. 
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higher energy; hence the jump in tear strength once percolation occurred. Due to the agglomeration 

of CNC in the SBR sheets, the trend in Figure 11 initially showed a decreasing maximum work 

(from 0 until 4 phr of CNC filler), which could be attributed to the larger effective surface area 

between the CNC and SBR allowing for easy tearing at the large weak interface. This decrease 

was not evident in the NR sheets, since the CNC filler was well-dispersed. Overall, the results 

indicate that the high aspect ratio CNCs were beneficial to reinforce the thin sheets against tearing 

via percolation.  

To confirm the proposed mechanism in Figure 12, SEM imaging was performed on the 

fracture surfaces of tear test specimens. In Figure 13a and 13d, both neat NR and SBR samples 

display brittle fracture surfaces with no apparent deformation prior to failure. In comparison, some 

 

Figure 13: SEM images of the fracture surfaces of tear strength samples. Fibrillation is visible in 
(b) NR + 1 phr CNC; (c) NR + 6 phr CNC; and (f) SBR + 6 phr CNC. Scale bars 
represent 1 µm. 
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fibrillation is visible in the NR sample containing 1 phr of CNC as the networks of CNC start to 

strengthen the sheet and create tortuosity along the path of failure. The samples containing high 

loading of filler (NR and SBR with 6 phr of CNC) display very evident fibrillation and therefore 

indicate ductile fracture modes in these thin sheets99. These high loading nanocomposites show 

that the percolated network of CNC caused a slower failure mode and therefore more extensive 

deformation of the rubbers. Due to the high energy required to break apart the CNC bonds, they 

caused long fibrils to form during fracture since they are embedded in complex networks 

throughout the polymer material. Meanwhile, very little to no fibrillation is visible in Figure 13e 

which shows the SBR nanocomposite containing 1 phr of CNC. As previously discussed, this 

sample contains aggregates and therefore it is likely to follow the mechanism suggested in Figure 

12b, easily allowing tear propagation along the interface of the filler and polymer chains. 

3.3.3 Water Permeability & Absorption Properties 

Due to the hydrophilic nature of CNC, its presence in the rubber thin sheets increased the 

water permeability properties. This is shown in Figure 14, which depicts the water vapour 

transmission (WVT) rate through the nanocomposites. Typically, NR and SBR are excellent water 

barriers. The results indicated that upon the incorporation of CNC to NR and SBR, a more 

permeable nanocomposite rubber was produced. This nanocomposite would be useful for 

applications that require some moisture passage allowing water vapour to pass more easily through 

the sheets. For instance, separation membranes or gloves that require moisture removal during use 

could benefit from the higher water vapor transmission rate of the CNC filled rubber 

nanocomposites.  
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Figure 14: Water vapour transmission through nanocomposite sheets of (a) NR-CNC and  
(b) SBR-CNC, where (c) shows the trends in water vapour transmission rate as the 
filler concentration increases. 

 

The water absorption properties of the sheets were also examined. Rubbery polymers 

generally exhibit Fickian diffusion89, and models were fitted to the absorption values using 

correlations described in Eq. (3). Based on the initial linear weight change of nanocomposite sheets 

over the immersed time (𝑀௧/𝑡
భ

మ ), as well as the maximum absorption of the sheets (𝑀ஶ), diffusion 

coefficients through the reinforced polymers were calculated from the data in Figure 15b and 15c, 

and results are presented in Figure 15a. Although CNC is extremely hydrophilic, we observed that 

the overall diffusion coefficient values were still quite low in both systems. The highest diffusion 

coefficients were in the range of tenths of a square millimeter per hour. Hence, we concluded that 

CNC did not significantly impair the water resistance of the polymer sheets despite increasing the 

rate of diffusion for both NR and SBR.  
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Figure 15: Diffusion coefficients of water through NR-CNC and SBR-CNC sheets(a), calculated 
from the water absorbance graphs of NR (b) and SBR (c). 

 

The coefficient values reinforced the percolation phenomenon observed in the SEM and 

tear results. In NR, diffusion was extremely slow for neat NR as well as sheets with 0.5 and 1 phr 

CNC content, since the filler particles across the matrix were far apart. The CNC could facilitate 

the absorption of some water molecules through hydrogen bonding, but water uptake into the 

sheets was extremely slow due to the non-polar NR polymer chains. At 2 phr, the CNC were very 

close to their percolation threshold resulting in the formation of long fibrous networks. Although 

these CNC networks may not have spanned across the entire sheet, they resulted in a higher water 

uptake compared to the low concentration nanocomposites. Finally, once the percolated CNC 

network was formed (4, 6, and 8 phr CNC in NR) the diffusion coefficient increased by nearly a 

factor of 1000 %. The percolated CNC allowed for a continuous path along which water molecules 
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could easily travel through the rubber sheets. The highly hydrophilic CNCs were able to form 

hydrogen bonds with numerous neighbouring water molecules, readily transferring them along the 

CNC surface and into the NR matrix. The jump in diffusion coefficient is visually depicted in 

Figure 15a. 

SBR nanocomposite sheets showed similar trends, where the large jump in diffusion 

coefficient was again observed in Figure 15. Two large increases occurred between 2 and 4 phr, 

as well as between 4 and 6 phr CNC due to the filler agglomeration in the sheets.  The large clumps 

of CNC resulted in much higher concentrations required to form percolated networks in the SBR 

matrix, but they were able to uptake much more water compared to the CNC that was well-

dispersed in NR. Since the CNC in SBR were in close contact and formed many aggregates, the 

aggregates were able to absorb large amounts of water into the SBR rubber sheet. 

Diffusion coefficients were not calculated for the neat SBR and 0.5 phr CNC in SBR sheets, 

as the sheets were not able to reach a steady state absorption value within the allocated test time. 

It is hypothesized that the large side chains present on the SBR structure hinders water absorption, 

as SBR has a branched structure containing phenyl groups. As such, diffusion was extremely slow 

when investigated here, and it will be a subject of future study.  

3.4. Conclusions 

The results of this study show that the incorporation of CNC in both natural and synthetic rubber 

latexes led to enhanced mechanical properties. The bio-based filler had a positive effect as a 

reinforcing filler on the modulus and yield strength of NR and SBR sheets. Of particular 

importance was the significant improvement in the tear strength of the nanocomposite thin sheets, 
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which was observed to increase largely due to the percolation of the filler within the polymer 

matrices. The CNC improvement on tear strength could allow for the production of extremely thin 

rubber sheets with high durability and toughness. Overall, since CNC was able to enhance the 

material properties yielding stronger rubber sheets, it can be considered an excellent candidate as 

a sustainable and ecofriendly option compared to some other reinforcing fillers. Its high aspect 

ratio is unique for achieving percolation, and thus superior resistance to crack propagation in the 

matrix. Due to its nanosize and renewability, CNC is a very promising filler to strengthen rubber 

films or thin sheets and potentially other highly cured products.   
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CHAPTER 4 

 

 

 

 

Antimicrobial rubber nanocomposites using modified cellulose 
nanocrystals and silver nanoparticles 
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4.1 Introduction 

The overuse of antibiotics and the rise of antibiotic resistance pose serious problems as bacteria 

evolve to withstand treatment by traditional methods. In fact, antibiotic resistance has been 

identified by the World Health Organization as one of the biggest threats to global health, food 

security, and development today100. Due to the newfound resilience of bacterial strains, common 

infections are at risk of becoming much more dangerous threats to human health, requiring time-

consuming or costly treatment55,101. 

In the medical field, surgical site infections are a common issue that patients must combat 

as they heal from open wounds. Up to 77% of surgical patient deaths are reported to be infection-

related102 rather than caused by complications in the surgery itself. The need for better prevention 

of cross-contamination and higher sterility must therefore be addressed in order to reduce the 

chances of infection. 

In this chapter, the development of a novel antimicrobial rubber material is explored. This 

thin film material could be useful in the production of medical gloves, which would mitigate the 

risk of infections by killing bacteria and preventing the spread of harmful microorganisms. Due to 

the large amounts of waste generated by hospitals103,104, this project also focuses on the use of 

sustainable chemistry and engineering in the material synthesis and product formulation.  

Silver nanoparticles (Ag NPs) were used as the active antimicrobial agent. Silver is well-

known to possess antibacterial properties56, and it is considered more versatile than antibiotics at 

killing bacteria due to the various ways in which they can attack the cell, causing bacterial lysis 

and preventing replication68,72,73. However, as Ag NPs have a high surface energy, they are prone 
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to aggregation in solution. The NPs will therefore be stabilized on cellulose nanocrystals (CNC), 

which are hydrophilic and have the added advantage of acting as a reinforcing filler within the 

rubber matrix, due to the large aspect ratio of CNC rods.  

To the best of our knowledge, antimicrobial-modified CNC has not previously been studied 

in rubber latex formulations. This work explores the potential of modified CNC as a dual-purpose 

filler, imparting both strength and bactericidal capabilities to the rubber. The production of rubber 

composites using such materials may have applications in medical or food handling sectors, and 

the modified CNC filler can be further extended for use in other materials to prepare antibacterial 

coatings or textiles for advanced applications where sterility is essential. 

4.2 Experimental 

4.2.1 Materials 

Silver nitrate (AgNO3), calcium nitrate (Ca(NO3)2), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES buffer), sodium hydroxide (NaOH), tannic acid (TA), 

polyethylene glycol tert-octylphenyl ether (Triton surfactant), and zinc oxide (ZnO) were 

purchased from Sigma-Aldrich. Sulfur (S) was purchased from Acros Organics. Calcium 

carbonate (CaCO3) and zinc dibutyldithiocarbamate (ZDBC) were purchased from Fisher 

Scientific. CNCs were supplied by CelluForce Inc. in powdered form. The average length and 

diameter of the CNC was 200 nm and 5 nm, respectively.  

To prepare rubber films, low ammonia natural rubber (NR) and nitrile butadiene rubber 

(NBR) latex were purchased from Chemionics Corporation. The solid content of the NR dispersion 

was 62.9 wt%, and the NBR dispersion contained 47.1 wt% solids.  
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Antimicrobial tests were performed with plate count agar, nutrient broth, and phosphate 

buffered saline (PBS) powder from Fisher Scientific and bacteria from Cedarlane Laboratories. 

4.2.2 Preparation of CNC-TA-Ag 

CNC-TA-Ag antimicrobial nanoparticles were prepared by modifying CNCs in aqueous solution. 

The optimization of the synthesis method was performed by testing various pHs and molar ratios 

of TA:Ag to achieve the best Ag deposition on CNC (see Supplementary Information - Section 

4.5). The final procedure is outlined below, where the process is split into two parts: first, 

depositing TA onto the CNC surface and second, depositing Ag onto the CNC-TA. 

In the first part of the process, TA was deposited onto the CNC surface using a green 

process adapted from Hu et al.105. First, a 1 wt% CNC dispersion was prepared by homogenizing 

4.0 g CNC powder in 400 mL DI water for 10 minutes. A bath sonicator was then used on the 

solution for 20 minutes to ensure that the CNCs were well-dispersed. HEPES buffer (0.96 g) was 

added directly to the CNC dispersion, and the pH was adjusted to 8.0 using NaOH. In a separate 

beaker, 400 mg of TA was added to 16 mL of deionized water and mixed for 1 minute. This TA 

dispersion was combined with the CNC dispersion, and the mixture was stirred at 200 rpm for 18 

hours at room temperature to form CNC-TA.  

In the second part of the process, 2.5 mg/mL solution of AgNO3 was prepared for the one-

pot synthesis on CNC-TA. A molar ratio of 1:20 (TA:Ag) was chosen based off initial tests (see 

Figure S2), due to the ability of one TA molecule to donate 20 electrons for the reduction of silver 

ions64. The appropriate amount of AgNO3 solution was thus calculated and added dropwise to the 

CNC-TA dispersion at pH 8.0. A colour change to dark brown visually indicated the successful 
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synthesis of silver nanoparticles. The entire mixture was then dialyzed against DI water for four 

days and against miliQ water for one day, and the final CNC-TA-Ag dispersion was concentrated 

to 2.4 wt% solid content via rotary evaporation.  

4.2.3 Transmission Electron Microscopy (TEM) 

A Philips CM10 TEM was used for microscopic imaging of the CNC-TA-Ag. The aqueous 

suspension was diluted to 0.1 µg/mL, then drop-casted onto a carbon-coated copper grid for 

analysis. The grid was allowed to dry for at least 12 hours prior to TEM imaging. 

4.2.4 UV-Vis Spectroscopy (UV-Vis) 

A Cary 100 Bio UV-Vis spectrophotometer (Agilent Technologies) was used to characterize the 

CNC-TA-Ag product. The aqueous suspension of CNC-TA-Ag was diluted to a concentration of 

0.1 mg/mL, and samples were run against a background of deionized water.  

4.2.5 Zeta Potential Measurement 

Zeta potential was determined using a folded capillary cell in a Malvern ZS90 Zetasizer.  The 

modified CNC was diluted a concentration of 0.1 mg/mL in order to accurately assess the stability 

of suspension. 

4.2.6 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis was performed on CNC-TA-Ag with a TA Instruments Q500 TGA in 

order to quantify the amount of silver on the CNC. Approximately 5 mg of sample was placed on 

aluminum sample pans and run up to 750 °C under nitrogen atmosphere. At 110 °C, a 2 minute 

isothermal step was performed in order to remove any moisture trapped in the sample for a better 

defined degradation step.  
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4.2.7 Nanocomposite Film Preparation 

NR and NBR films containing 0, 0.5, 1, and 3 phr of CNC-TA-Ag filler were prepared using the 

coagulant dipping method. The coagulant formulation and rubber formulations are shown below 

in Table 2, Table 3, and  

Table 4, optimized to produce smooth thin films and given in terms of parts per hundred (PHR) 

based on latex solid content. 

 

Table 2: Coagulant formulation for dipping method 

Component Purpose PHR 
Water Solvent 100 

Calcium nitrate Coagulant 0, 0.5, 1.5, 3 
Calcium carbonate Helps former release 0.05 

Triton Surfactant 1.1 

 

Table 3:  Natural rubber latex formulation for dipping method 

Component Purpose PHR 
NR Rubber matrix 100 

CNC-TA-Ag Filler 0, 0.5, 1.5, 3 
3% KOH solution pH modifier 0.05 

S Crosslinker 1.1 
ZDBC Accelerator 0.7 
ZnO Activator 1.3 
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Table 4: Nitrile butadiene rubber latex formulation for dipping method 

Component Purpose PHR 
NBR Rubber matrix 100 

CNC-TA-Ag Filler 0, 0.5, 1.5, 3 
3% KOH solution pH modifier 1.5 

S Crosslinker 1.5 
ZDBC Accelerator 0.35 
ZnO Activator 0.65 

 

The latex mixtures were prepared by combining all the ingredients together in a beaker 

under medium stirring. The viscosities of the mixtures were measured with a Brookfield DV-E 

viscometer. Due to the thickening effect of CNC on the rubber latex, the formulations were diluted 

with DI water to achieve the same consistency to ensure identical stirring among batches. All NR 

formulations were diluted to a viscosity of 34.4 cP, while all NBR formulations were adjusted to 

a viscosity of 49.8 cP. Pre-curing was then performed on the mixtures for 3 days under gentle 

stirring at room temperature. 

Rectangular glass formers were used to prepare films to mimic industrial dipping 

processes. Warm formers were first immersed into coagulant for 10 seconds, then heated for 10 

minutes in an oven at 90 °C to dry the coagulant layer onto the surface. The coated formers were 

then cooled to 50 °C and dipped into the rubber latex mixtures with a 40 second dwell time. Finally, 

the formers were dried for 45 minutes in an oven at 90 °C to set the film shape, and the solid films 

were gently peeled from the former surface. An additional 2 hours of post-curing was performed 

at 90 °C to ensure complete cross-linking in the rubber films.  
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4.2.8 Antimicrobial Testing  

The bactericidal efficacies of the CNC-TA-Ag and rubber nanocomposite films were evaluated 

using minimum inhibitory concentration (MIC) tests against both Gram-negative (Escherichia 

coli) and Gram-positive (Staphylococcus aureus) bacteria. Two independent tests were performed, 

with two replicates in each. The detailed procedure adapted from Shi et al.54 is described below. 

Agar and broth preparation. Agar powder (23.5 g) was dissolved in 1000 mL of DI water in a 

large container until a homogeneous solution was obtained.  Nutrient broth (1.15 g powder) was 

prepared using DI water (50 mL) in a small flask. Both solutions were then loosely covered and 

sterilized in an autoclave for 45 minutes. Agar plates were prepared by pouring hot agar into sterile 

Petri dishes in a sterile environment. The solidified plates were stored at 4 °C prior to use. 

Bacterial inoculation. Nutrient broth was cooled to ~35 °C after autoclaving. One pristine bacteria 

colony was then transferred into the solution using a sterile wire loop, and cultured at 37 °C for 14 

hours. The bacterial solution was then diluted with sterile broth until the optical density was 

approximately 0.07 at 600 nm. 

Incubation with antibacterial materials. The CNC-TA-Ag dispersion was diluted to 

concentrations of 0, 2, 4, 8, 16, 32, 64, and 100 µg/mL. The rubber films were cut into 

7 mm x 7 mm squares, then sterilized with 70% ethanol. In a sterile 2 mL centrifuge tube, the 

antibacterial material (500 µL of diluted CNC-TA-Ag solution or square rubber films) was 

combined with 500 µL of bacterial solution. Control samples were prepared using the same 

protocol, using sterile DI water in lieu of any antimicrobial material. The sample tubes were then 

incubated in a rotary shaker at 37 °C and 90 rpm for 20 hours.  
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Antibacterial evaluation. After the samples were fully incubated, 100 µL of the final solutions 

were plated onto agar dishes in replicates of two. Ten-fold serial dilutions were performed up to 

100,000X to ensure a countable number of bacteria were present on the plates. The agar plates 

were placed upside down in an incubator for 18 hours to promote the colony growth. The number 

of colonies were then counted and compared to the control in order to determine the CNC-TA-Ag 

concentration that inhibited visible growth of any microbes (known as MIC).  

 
4.2.9 Mechanical Testing 

Tensile tests. The tensile properties of the NR and NBR films were evaluated using a Shimadzu 

AGS-X Testing Machine with 10 kN load cell. Tests were performed in accordance with ASTM 

D882, with a grip separation speed of 500 mm/min. Five specimens with dimensions of 

7 cm x 1 cm were tested for each formulation, cut parallel and normal to the dip direction of the 

films to evaluate isotropy. 

Tear tests. The Shimadzu AGS-X Testing Machine was used to conduct tear tests to determine the 

resilience of the films against tearing. Tests were conducted in accordance with ASTM D624 with 

some modifications to the sample dimensions. Type T trouser test samples were prepared with a 

size of 5 cm x 2 cm, and a tear initiation of 2 cm. Three specimens from each batch were tested 

with a strain rate of 50 mm/min. 
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4.3 Results and Discussion 

4.3.1 Preparation of CNC-TA-Ag 

The growing interest in green chemistry has seen an increase in the use of plant extracts for 

chemical reduction of metal nanoparticles106–108. Tannic acid, a plant polyphenol, was used in this 

study due to its environmentally friendly origins and non-toxicity. TA is an ideal “glue” for 

attaching Ag NPs onto CNC, as it is known to hydrolyze into glucose and gallic acid units under 

mild acidic or basic conditions109. Gallic acid induces the reduction of silver nitrate into Ag NPs 

in basic conditions, while glucose acts as a stabilizer at alkaline pH109,110. This makes TA effective 

as both a reducing and capping agent for Ag NP synthesis at pH 8. The abundance of phenolic 

groups in its structure allow for the formation of quinones, which subsequently donate electrons 

for metal salt reduction109,111 as shown in Figure 16. 

The structure of TA also allows for facile interaction between the abundant hydroxyl 

groups in CNC and TA (Figure 16). At alkaline pH, it is hypothesized that TA experiences a 

solubility reduction and intermolecular attraction forces encourage surface deposition onto CNC 

via hydrogen bonding105,112, although the exact mechanism of coating is not fully understood. 

4.3.2 Characterization of CNC-TA-Ag 

In situ growth of silver NPs was successfully achieved on the surface of CNC-TA, as evident from 

the TEM analysis (Figure 17d-f). The morphology of the silver NPs is spherical, with an average 

diameter of 15 ± 5 nm.  The TEM also revealed the final CNC-TA-Ag product possessed varying 

degrees of silver NP coverage, where some CNC rods were observed to have 
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Figure 16: Synthesis route of CNC-TA-Ag nanofiller. CNC and TA in solution hydrogen bond 
together to form the coated CNC-TA. AgNO3 is subsequently used to provide Ag+ ions, 
to which TA donates electrons to induce the formation of Ag NPs. 

 

more NPs attached than others. The zeta potential values (Table 5) of the CNC, CNC-TA, and 

CNC-TA-Ag all confirm that the modified CNC is stable after each synthesis step, as the potential 

is <|30| mV for the intermediate and final products. 
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Figure 17: Visual depiction and TEM images of CNC (a, d), CNC-TA (b, e), and CNC-TA-Ag 
(c,f). The Ag NPs are clearly visible on the CNC substrate.  

 

The CNC-TA-Ag product was further characterized using UV-vis spectroscopy, zeta 

potential, and TGA measurements. UV vis spectra (Figure 17g) for CNC-TA presented a peak at 

210 and 276 nm, characteristic of the typical absorption peaks of TA113. The spectra for 

CNC-TA-Ag revealed a narrow Ag NP absorption peak around 410 nm, which indicates a blue 
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shift from the typical range of 420 – 450 nm for spherical silver NPs114 due to the small particle 

size obtained.  

The average quantity of silver synthesized on the CNC was determined using TGA. The 

degradation curve of neat CNC was compared to the modified CNC containing silver, where a 

20 wt% difference was observable between the two after full decomposition of CNC at 750 °C 

(Figure 17h). As silver is not expected to melt until 962 °C, these remaining constituents were 

attributed to the Ag NPs synthesized on the CNC surface. The final CNC-TA-Ag product therefore 

contained 0.2 g silver/g CNC. The TGA curves also showed a slight increase in degradation 

temperature between the CNC and CNC-TA-Ag, rising from 286 °C to 300 °C for the respective 

samples. This is likely due to the TA-Ag coating slightly slowing decomposition of the CNC as it 

is exposed to heat. 

Table 5: Zeta potential values of CNC, CNC-TA, and CNC-TA-Ag at pH 8. 

Material Zeta Potential (mV) 

CNC -37.8 ± 4.4 

CNC-TA -55.5 ± 3.2 

CNC-TA-Ag -47.1 ± 1.9 

 

4.3.3 Antimicrobial properties of CNC-TA-Ag 

MIC plate tests using CNC-TA-Ag revealed that the filler was effective against both Gram-

negative (E. coli) and Gram-positive (S. aureus) strains of bacteria, with some plates shown in 

Figure 18a-j. Visually, the reduction in bacterial growth is evident for both species of bacteria after 

exposure to CNC-TA-Ag and the graphs of CFU reduction confirm this (Figure 18k). The full 
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MIC data, summarized in Table 6, indicated an affinity against E. coli. As observed from the chart, 

the MIC for CNC-TA-Ag against E. coli is 16 µg/mL. Accounting for the mass of antibacterial 

agent only, Ag NPs, this corresponds to only 3.2 µg/mL of silver required to inhibit bacterial 

growth.  

Against S. aureus, the MIC of CNC-TA-Ag is 100 µg/mL corresponding to 20 µg/mL of 

silver. Evidently, the modified CNC was still effective against the Gram-positive bacteria, but 

posed a much larger threat against the Gram-negative strain. Potentially due to the differences in 

cell membrane composition115,116, the Ag NPs required higher concentrations to inhibit bacterial 

growth for S. aureus. This Gram-positive strain contains a thick outer layer of peptidoglycan, while 

Gram-negative strains have an outer lipid membrane with only a thin peptidoglycan layer116.  

Other researchers also frequently reported higher sensitivity of Gram-negative bacteria to 

metal nanoparticles compared to Gram-positive66,117,118, however it is possible that Gram stain may 

not be the sole cause for the difference in bacterial sensitivity. As the exact mechanism of 

antibacterial activity of metal nanoparticles is not fully understood, it is possible that other 

characteristics, such as the nanoparticle shape, crystal structure, or surface charge govern the 

dominant mechanism of activity against different types of bacteria119–121, and this could play a role 

in the varied results obtained in this work for E. coli versus S. aureus. 
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Figure 18: Antimicrobial activity of CNC-TA-Ag evaluated against E. coli (first row, a-e), and 
against S. aureus (second row, f-j). The plates are at 10 000X dilution, and visually 
show the reduction in bacterial growth with increasing concentrations of CNC-TA-Ag, 
where the concentrations are shown on the bottom of each plate. The calculated 
reduction in CFU count at each CNC-TA-Ag concentration is shown in (k). 

 

Table 6: Percent reduction of bacterial populations treated with varying concentrations of CNC-
TA-Ag to determine minimum inhibitory concentration (MIC). 

Ag-TA-CNC 
Concentration (µg/mL) 1 2 4 8 16 32 64 100 

% Reduction E. coli 16.72 17.57 81.48 99.64 99.99 100.00 100.00 100.00 

% Reduction S. aureus 20.44 31.39 51.09 48.54 55.84 67.15 97.63 100.00 
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Comparing the obtained MICs to literature values for free Ag NPs of similar size, the CNC-

stabilized Ag NPs in this study display lower MIC for bacterial growth. Agnihotri et al. reported 

MIC values of 30 and 100 µg Ag/mL for E. coli and S. aureus respectively, for Ag NPs with a size 

of approximately 15 nm66. This work indicated that for E. coli, the CNC-TA-Ag possessed an MIC 

of only 3.2 µg Ag/mL. The MIC for the CNC-TA-Ag against S. aureus was also found to be lower 

than the literature at 20 µg Ag/mL. This significant improvement in bacterial inhibition can be 

attributed to the stabilization of Ag NPs on CNC, whereas free floating Ag NPs often agglomerate 

in the absence of surfactants122. The CNC was therefore a very effective carrier for the metal 

nanoparticles in solution. Overall, the CNC-TA-Ag in this project was proven to be a useful 

antimicrobial material, where plate tests were able to show negligible microbial growth on the 

substrate and improved MIC compared to free Ag NPs. 

4.3.4 Preliminary antimicrobial rubber tests 

Preliminary antimicrobial tests were performed on neat rubber containing only CNC-TA-Ag, as a 

proof of concept to test the material for bactericidal activity. The hypothesis is whether the dipped 

nanocomposite films would be effective with the CNC-TA-Ag filler encapsulated in the rubber 

substrate, prior to optimization of the dipping formulation. For this test, 1 phr of CNC-TA-Ag was 

mixed into the neat NR without additives and casted to form a continuous film.  

Using the same procedure for MIC tests, two replicates of plate tests were performed 

against Gram-negative E. coli. It was clear from the plates shown in Figure 19 that there was some 

reduction in bacterial growth using the rubber sample compared to the control, which was a good 

indicator of bactericidal activity of the films. Additional replicates are required to confirm this, as 

well as a comparison to Gram-positive bacteria such as S. aureus to test the versatility of the 
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material against various microbes. More rigorous testing of the rubber nanocomposite material 

will be a subject of further study using dipped NR and NBR films, including an additional control 

sample against NR and NBR with no CNC-TA-Ag filler loading. 

 

Figure 19: Preliminary results of bactericidal efficacy of neat NR films containing only 1 phr of 
CNC-TA-Ag and no additional additives. Plates are at 10 000X dilution. 

 
4.3.5 Dipped nanocomposite rubber mechanical tests 

Rubber films consisting of either NR or NBR and containing filler loading levels of 0.5, 1, or 3 phr 

of CNC-TA-Ag were prepared via coagulant dipping with the formulations in Table 2, Table 3, 

and  

Table 4. The dipped films are denoted NR, NR0.5, NR1, NR3, NBR, NBR0.5, NBR1, and NBR3 

(Figure 20) and were tested for their mechanical properties. These films were formulated to more 

accurately mimic industrial glove manufacturing methods, to determine if the formulation was 

suitable when prepared with the necessary additives for rubber film processing and subject to 



69 

 

similar assembly parameters. Due to the directional movement of dipping, samples were cut 

parallel and normal to the dip direction to test and determine any anisotropy of the material. 

 

Figure 20: Coagulant dipped NR and NBR films containing varying loading levels of 
CNC-TA-Ag.  

 

Figure 21 shows the tensile results for NR films and Figure 22 summarizes the results from 

NBR films, including typical stress-strain curves for the materials. As expected with rigid filler 

additives123, the elastic moduli of the NR and NBR composites increased proportionally to the 

increase in filler loading level. Higher CNC-TA-Ag loading increased the polymer stiffness, where 

the material was able to resist greater applied force prior to permanent plastic deformation. The 

ultimate tensile strength (UTS) of the materials were also expected to increase, though it was 

observed from the typical stress-strain curves that the UTS was highly dependent on the elongation 

of the material. For both NR and NBR, the trends observed in strength are mirrored in the trends 

for elongation, which suggests a strong correlation between the two due to the property of rubbers 

to exhibit strain hardening but no necking prior to fracture124. 

In NR, the strength and elongation of the films are observed to increase from neat NR to 

NR0.5, then subsequently decreased for NR1 and NR3. This increase in UTS and elongation is 

also observed for NBR films for the loading levels of NBR0.5 and NBR1, followed by a decrease 

in both for NBR3. The initial increases in strength can be attributed to the modified CNC filler 
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inducing strain hardening at lower strain levels within the NR samples. Due to the presence of 

rigid filler within the entangled polymer matrix, greater force is required to stretch the rubber 

  

 

Figure 21: Tensile test results for NR nanocomposites with increasing CNC-TA-Ag loading. 
Typical stress-strain curves for parallel cut samples are shown in (a), and the average 
elastic modulus (b), ultimate tensile strength (UTS) (c), and elongation (d) for parallel 
and normal cut NR samples are compared. 

 

chains and therefore yields greater tensile strength. However, high amounts of nanofillers can 

significantly restrict polymer chain mobility and are therefore expected to decrease elongation125. 

These two opposing factors lead to initial increases in elongation and strength, followed by 

decreases in both as the polymer chain mobility becomes significantly restricted. 
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Figure 22: Tensile test results for NBR nanocomposites with increasing CNC-TA-Ag loading. 
Typical stress-strain curves for parallel cut samples are shown in (a), and the average 
elastic modulus (b), ultimate tensile strength (UTS) (c), and elongation (d) for parallel 
and normal cut NBR samples are compared. 

 

Comparing the parallel and normal cut samples for both NR and NBR, the differences 

observed from the data were not substantial. It was expected that any isotropy would lead to 

polymer chain and CNC alignment with the dip direction, thus the parallel samples were 

hypothesized to yield larger improvements in modulus, elongation, and strength. Accounting for 

the standard deviation on the graphs, however, it is evident that there is minimal to no alignment 

present in the films. The parallel cut NR samples had statistically no difference in modulus, 

strength, and elongation compared to the normal cut samples. For NBR samples, the moduli of 

parallel cut specimens were slightly higher than the normal cut, indicating some grain structure, 

but the strength and elongation were observed to be approximately the same. This lack of 
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anisotropy can be attributed to the low viscosity of the latex dip mixture, thus forcing no chain or 

CNC alignment during the dipped film preparation. 

Since the tensile test results revealed that the samples were isotropic, Type T tear samples 

were prepared only parallel to the grain as per ASTM specifications for tear strength. The tear 

strength results (Figure 23) indicate that the CNC-TA-Ag aided in enhancing the material 

resistance to tear propagation. Due to increasing tortuosity in the films, cracks required more 

applied force to persist through the material. In alignment with previous results from our group126, 

there was a jump in the tear force at 3 phr. Based on the aspect ratio of CNC used in this project, 

the percolation threshold of the filler was determined to be approximately 2.9 phr126, and this 

network of interconnected filler in NR3 and NBR3 samples resulted in the highest tear resistance 

due to the complex path of crack propagation. These results confirm that the CNC-TA-Ag filler 

are useful for improving the strength and durability of NR and NBR thin films. 

 

Figure 23: Tear test results for NR and NBR nanocomposite films. Increasing tear strength is 
observed with increasing concentrations of CNC-TA-Ag incorporated into the rubber 
matrices. 
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4.4 Future Work & Conclusions 

A multifunctional filler material was prepared by modifying the CNC with Ag NPs via green 

synthesis methods. This modified CNC was used to strengthen and reinforce rubber thin films, 

where the dipped rubber films investigated in this study were shown to display increased modulus 

and tear strength with the addition of CNC-TA-Ag filler. In addition, the CNC-TA-Ag was shown 

to be bactericidal both on its own and within a neat NR matrix. The next steps are to test dipped 

NR and NBR films for their antimicrobial efficacy with more rigorous trials. The NR and NBR 

nanocomposites could have applications in the medical field for surgical gloves, or in food 

handling environments to prevent transfer of bacteria between uncooked foods. 

This project presents several advantages in the design and execution of the nanocomposite 

material produced. First, Ag NPs are more versatile for combatting different types of infections 

due to the various ways in which they can inactivate bacterial cells. Second, the attachment of Ag 

NPs onto CNC prevents aggregation, which is a common problem encountered with metal NPs. 

Since CNC is used as a Ag NP carrier, the CNC-TA-Ag is capable of providing both strength and 

antibacterial functionality. CNC-TA-Ag can therefore also be used as an active antimicrobial 

ingredient for other applications and materials, such as bandages or surface coatings that require 

high sterility. The work performed here provides a detailed starting point for antimicrobial 

nanocomposites that can be used in various industrial applications.  
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4.5 Supplementary Information 

The optimization of the CNC-TA-Ag synthesis was performed by investigating different pHs and 

molar ratios of TA:Ag. Characterization of the CNC-TA-Ag product was then conducted using 

UV-vis and zeta potential. The most effective synthesis parameters were selected for the final 

CNC-TA-Ag filler preparation method, as outlined above. 

The effectiveness of TA for Ag NP synthesis was first investigated at varying pHs. For this 

pH study, 500 mL of 1 wt% CNC dispersion was prepared, and 1.2 g HEPES buffer was added. 

The dispersion was then separated into five 100 mL batches, which were adjusted to pH 4, 6, 7, 8, 

and 10. TA (0.1 g in 4 mL DI water) was added to each batch and allowed to react for 18 hours at 

room temperature. After reaction, the pH of each batch was checked and re-adjusted to the desired 

value. Enough AgNO3 solution (2.5 mg/mL) was added to each batch to give a 1:2 molar ratio of 

TA:Ag. Dialysis was then performed on the final solution for four days against DI water, and one 

day against miliQ water. The samples were diluted to 0.1 mg/mL solid content and analyzed under 

UV-vis and zeta potential as per Figure S1.  

 

Figure S1: UV-vis spectra of CNC-TA-Ag using varying pH 
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It is evident from the UV-vis data that the highest silver NP peaks were obtained at pH 8 and pH 

10. Comparing these two peaks in the enlarged graph (Figure S1b), the peak magnitudes are very 

close to one another, showing the highest pH (10) was only marginally more effective at 

synthesizing more silver NP compared to the second highest pH (8). In contrast, a significant 

increase in absorbance is seen from pH 6 to pH 7, and finally pH 8. This result supports the 

literature, indicating only mildly basic or acidic conditions significantly affect the ability of TA to 

act as a reducing and capping agent. Since the pKa of TA is approximately 6, pH values above this 

lend to more effective reduction of silver ions due to the increased presence of protons in solution. 

As pH 8 was very effective for silver NP synthesis, it was used for further experiments to 

determine the best molar ratio (MR) of TA:Ag. Using the same method as the pH study, MR of 

1:0.65, 1:1, 1:2, and 1:20 were tested. Literature from Sivaraman et al. indicates that lower ratios 

of Ag can lead to slower reduction onto the TA and thus create larger silver NPs127, while smaller 

silver NPs are deemed more effective for antimicrobial activity64. The purpose of the CNC-TA-

Ag in this project is to act as a reinforcing filler when incorporated into a rubber matrix, thus a 

large quantity of silver NPs with small diameter was desired on the CNC. The influence of MR on 

the final CNC-TA-Ag product was studied with UV-vis, with samples diluted to 0.1 mg/mL 

(Figure S2). 
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Figure S2: UV-vis spectra of CNC-TA-Ag using varying molar ratio (MR) of TA:Ag 

 

The MR UV-vis curves reveal that a ratio of 1:20 of TA:Ag yielded the highest silver NP 

peak, indicating significantly more silver NP production on the CNC compared to other ratios. 

This was attributed to the ability of one TA molecule to donate 20 electrons in solution, thus 

exploiting its full ability as a reducing agent. The final parameters used in the final CNC-TA-Ag 

synthesis were therefore pH 8 and MR 1:20. 

The stability of all iterations of CNC-TA-Ag synthesis were analyzed with zeta potential, 

as per Table S1. It was observed that the final product obtained from all methods were very stable, 

with an absolute zeta potential value of > 30 mV. The CNC was hence very effective as a carrier 

for Ag NPs to prevent aggregation in solution. 
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Table S1: Zeta potential of CNC-TA-Ag synthesized with varying pH and molar ratios. 

Material Trial Zeta Potential (mV) 

CNC-TA-Ag 

pH 4 -39.1 ± 1.7 

pH 6 -38.4 ± 2.1 

pH 7 -37.5 ± 3.7 

pH 8 -46.5 ± 2.2 

pH 10 -46.0 ± 1.5 

MR 1:0.65 -44.6 ± 1.0 

MR 1:1 -44.6 ± 0.9 

MR 1:2 -45.7 ± 1.2 

MR 1:20 -45.9 ± 1.2 
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CHAPTER 5 

 

 

 

 

Concluding remarks 
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The necessity of producing fully renewable, sustainable, and biodegradable materials is a 

monumental challenge that humans face. As worldwide waste increases, polymer products of all 

types are found undegraded in the environment, polluting various regions of the earth. Hence, 

this thesis has focused on the use of green chemistry and renewable feedstocks for the synthesis 

of enhanced rubber nanocomposites. 

CNC, obtained from cellulose biomass, possesses excellent filler properties such as high 

aspect ratio and high tensile strength due to its high rigidity. Its abundant surface hydroxyl 

groups yield a high potential for modifications and allow for ease of dispersion in aqueous 

media. This work first used colloidal CNC to evaluate its baseline reinforcing properties on 

rubber thin sheets, then subsequently modified the CNC to carry antimicrobial Ag NPs.  

Pristine CNC in this research was incorporated up to loading levels of 8 phr within thin 

sheets of NR and SBR. Above the percolation threshold of 2.9 phr, CNC was seen to yield 

significantly enhanced tear properties and tensile properties. The trend in water permeability and 

absorption by the films also increased after a continuous CNC filler network was formed. The 

considerable improvement of CNC on tear strength could facilitate the production of extremely 

thin rubber sheets for high touch sensitivity and high durability. 

Antimicrobial modifications to CNC were achieved by the addition of TA to the surface, 

interacting with CNC via electrostatic interactions. Using alkaline pH to reduce TA into gallic 

acid and glucose units, Ag NPs were grown in situ on the surface of the CNC-TA complex to a 

size of approximately 15 nm. Characterization of the CNC-TA-Ag product confirmed successful 

synthesis with TEM imaging and UV-vis spectroscopy, and TGA analysis indicated a silver 

loading level of approximately 20 wt% CNC. Bacterial tests on the CNC-TA-Ag proved the 
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material was effective against both E. coli and S. aureus. MIC values of 3.2 µg Ag/mL and 20 µg 

Ag/mL were achieved for the Gram-negative and Gram-positive strain, respectively. 

 CNC-TA-Ag was incorporated into dipped NR and NBR films to create antimicrobial 

rubber nanocomposites. Again, tensile and tear properties of the films were improved with the 

modified CNC addition. Preliminary antibacterial tests on neat NR with 1 phr of CNC-TA-Ag 

showed a significant reduction in bacterial growth after contact with the rubber. The film 

formulations show great potential for industrial thin film products, such as gloves, and the CNC-

TA-Ag on its own may be used for other types of nanocomposites for enhanced mechanical 

properties and antibacterial attributes. Further testing on CNC-TA-Ag composites may be done 

for more rigorous antibacterial studies, biodegradability, and functionality in different materials 

to increase its breadth of opportunity as an advanced green functional filler. The CNC-stabilized 

Ag NPs may open many new avenues for antimicrobial product development.  
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