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Abstract

Autonomous vehicles seem to be closer than expected on their timeline. However, there
is still a decade of driving manual as well as semi-autonomous vehicles before we can ex-
perience completely automated vehicles on the road. Hence, the number of deaths due to
driving accidents will take a while to drop, and we require alternative ways to prevent them.

Driver distraction is one of the primary causes of accidents. Driver distraction has posed
a significant problem since the first car appeared on our roadways. According to WHO
findings, 1.25 million people lose their lives every year due to road traffic crashes. One
of the major causes of traffic crashes is distracted driving. As a result, there is a pro-
found need and necessity to continuously observe driver state and provide appropriately
informed alerts to distracted drivers. As defined by the National Highway Traffic Safety
Administration (NHTSA), there are several types of distractions including cognitive, vi-
sual and manual distractions, which may be distinguished from each other based upon the
resources required to perform the task. Cognitive distraction refers to the “look but not
see” situations when the drivers’ eyes are focused on the forward roadway, but his/her
mind is not. Typically, cognitive distractions can result from fatigue, conversation with a
co-passenger, listening to the radio, or other similarly loading secondary tasks that do not
necessarily take a driver’s eyes off the roadway. This makes it one of the hardest distrac-
tions to detect as there are no visible clues whether the driver is distracted. In this thesis,
we have identified features from different sources such as pupil size, heart rate, accelera-
tion that are relevant to classify distracted and non-distracted drivers through collection
and analysis of driving data collected from participants over multiple driving scenarios.
The Machine Learning methods used dealt with classification including, but not limited
to Random Forest, Decision Trees, and SVM. A reduced feature set including pupil area,
pupil vertical and horizontal motion was found while maintaining an average accuracy of
90% across different road types. Also, the impact of road types on driver behaviour is
identified. Information about dominant features which affect the classification would aid
early detection of distracted driving, and mitigation through the development of effective
warning systems. The algorithm could be personalized to the specific driver depending on
their reaction to driving situations. It would enable a safer and more comfortable driving
experience.
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• NB Näıve Bayes

• NHTSA National Highway Traffic Safety Administration

• PERCLOS Percentage of eyelid closure

xii



Chapter 1

Introduction

1.1 Motivation

The increase in popularity of in-vehicle technology has emphasized the importance of ve-
hicle safety and driver experience. The risk of crash and near crash among novice and
experienced drivers increases significantly while using a cellphone [1]. Figure 1.1 shows the
statistics on phone use from a survey conducted in 2015 by the National Highway Traffic
Safety Administration (NHTSA). Distraction is not just limited to cellphone use and ex-
pands to conversations with a fellow passenger, adjusting the radio, being lost in thought
[2]. Due to distracted driving, fatalities from crashes have increased 28% after the year
2005 and have become a public safety hazard [3].

Vehicle safety aspect has been enabled through vehicle sensors that observe the surrounding
environment as well as the driver behavior, which is further used to give alerts to drivers
for latent collisions. While the driver assistance aspect is equipped through In Vehicle
Information System (IVIS) and systems such as Cruise Control which enable drivers to
relax. Vehicle technology has been enriched with an advanced observation of the human
driver in the vehicle to bring about a more personalized and safe experience.

Furthermore, driver state observation is necessary for the transition of control from one
level to another in autonomous driving. The levels depict the difference in the extent of
response and control the driver has over the autonomous vehicle- level 0 (No automation)
to level 5 (complete automation), according to SAE J3016 (2018). For instance, driver
state observation will aid in deciding when and how to inform the drivers to take control
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Figure 1.1: Answer or make phone calls while driving by age and gender(% atleast some-
times). Source: [4]

optimally [5] . An ameliorated alert timing will mitigate latent hazards and lead to a safer
driving experience.

1.2 Research Objective and Questions

The growth of manually driven and partially automated vehicles has created a need for
intelligent transportation systems. Driver assistive systems to inform drivers about their
distraction status and to implement a safe transfer of control between the human and
autonomous agent. The driver needs to be alert and situationally aware of his/her sur-
roundings while in control of a vehicle, especially in the case of “cognitive distraction”
which is difficult to detect through physical changes. The research questions below involve
understanding and mitigating cognitive distraction while driving and are the focus of this
thesis.

1. Training and development of an ML model to classify distracted from non-distracted
driving.

2



2. Identification of features among the three modalities: vehicle kinematics, physiolog-
ical measurements, and eye-tracking that enable detecting distracted driving.

3. Examining the effect of road type on distracted and non-distracted driving.

1.3 Thesis Organization

The remainder of the thesis is structured as follows:

1. Chapter 2 provides an overview of the literature, focusing on two aspects - driver
distraction and its types, and proposed solutions for detecting them.

2. In Chapter 3, the objectives of this study are defined, and the study experiment
protocol is outlined. The method and the equipment used for data collection are
presented and discussed.

3. In Chapter 4, preprocessing, feature engineering and algorithms used are elaborated
upon.

4. In Chapter 5, feature importance and the relevance of features from different sources
is discussed.

5. Chapter 6 summarizes the discussion and conclusions.

3



Chapter 2

Background

2.1 Review of the Literature

2.1.1 Driver distraction and its types.

In Cognitive Ergonomics, “attention” is treated as a single resource or multiple resources
that are utilized during human information processing. The complete model of human
cognition consists of sensory inputs from the environment, which is defined as “sensa-
tion”. Sensation is the converted physical stimuli from the environment into neural signals
automatically, requiring no attention. This is followed by the perception of these sensa-
tions, specifically interpreting, forming meaningful mental representations. Based on the
above observations and knowledge in Long Term Memory as well as Working Memory, an
appropriate response is selected and executed, as shown in Figure 2.1.

As seen, the attention resource is an integral part of human information processing, and
its divided use or lack of use can lead to inattention. Driver inattention can be classified
into two main types [7]-

1. Distraction

2. Mental fatigue

Attention can be disrupted in various ways such as stress, which leads to the tunneling
of attention, multitasking causes divided attention resource and others. Further, driver
inattention is another factor leading to reduced Situation Awareness. Situation Awareness
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Figure 2.1: Descriptive model of human information processing. Source: [6]

is the state of the level of fitness between memory and task requirements. It consists of
three steps that are (a) perception of elements in the current situation (b) comprehension
of current situation (c) projection of future status. Situation Awareness is important as it
is a measure of driver awareness regarding the task and the environment, leading to a faster
assessment of situation and response times. Situation Awareness is affected by fatigue and
driver distraction leading to unsafe driving.

A framework for discussing the sources of driver distraction is mentioned in [8] and is shown
in Figure 2.2. The sources are “visual” such as when the driver takes his/her eyes off the
road for some other task; “cognitive” in which the driver is not processing the information
required for safe driving such as having a conversation on a cell phone and “manual” in
which the driver is doing something else in the car cabin with his/her hands not being on
the steering wheel, for example, drinking water. The three distractors can occur indepen-
dently or can co-occur while performing an activity. The inner-circle in Figure 2.2 shows
activities which pose low level of demands from the visual, cognitive and manual resources
while the middle circle represents situations requiring moderate demand on resources. The
outer circle depicts concurrent task which poses high demands to the visual, manual and
cognitive resources such as interacting with a touchscreen device to retrieve information
from the internet. Hence, the crash risk is higher for multitasking activities in the outer
circle than in the inner circle. Additionally, the category of “looking but not seeing” is a
type of cognitive distraction, called change blindness. That is, drivers take in the sensory
inputs but do not process the information.

Earlier driver distraction was defined to be associated with any secondary task (task not

5



Figure 2.2: Framework for conceptualizing the sources of driver distraction. Source: [8]

related to driving), but this definition has changed over time with the development of
complex In-Vehicle Information System (IVIS) and handheld devices. According to the
“100-Car Naturalistic Driving Study” conducted by National Highway Traffic Safety Ad-
ministration (NHTSA) the secondary tasks that contributed to the highest number of
crashes or near-crashes were cell phones, internal distraction, and passenger related sec-
ondary tasks (primarily conversations).

According to NHTSA’s estimate for the year 2015, 72,000 police-reported crashes involved
drowsy drivers. Fatigue or tiredness is the inability to continue an activity for longer due to
its monotonous nature or physical limitations caused by sleep deprivation, drugs, age, and
others [9]. Fatigue can also be defined as the state of mind when an individual continues
working beyond a point of decline in task efficiency [10]. Driver fatigue is caused by long
haul driving or uneventful and monotonous driving. Driver fatigue can also be caused
by sleep deprivation and other personal factors. The definition of driver fatigue does not
change among individuals, but the rate at which fatigue is reached varies. Therefore, it is
necessary for drivers to know their personal fatigue limit to avoid fatigue-related accidents
[11]. Fatigue is considered as a separate category of distraction from cognitive driver
distraction. Ways to detect

6



2.1.2 Ways to detect driver distraction

Driver distraction can be measured through many modalities due to the changes it causes
in driver behaviour. These changes such as heart rate, pupil movement, vehicle acceleration
can be recorded through sensors and other sources to deduce distraction. It is generally
preferred to have a non-intrusive method of observation such as a camera on the dashboard
instead of a wearable for the driver to detect a combination of indicators. This aids
in retrieving accurate observation without adding to driver distraction due to wearables
restricting driver motion or itself becoming a source of distraction. The various categories
of measurements for driver distraction detection and their descriptions are given below.

Objective Measures

1. Driver Biological Measures: Measuring and inferencing from physical and physiologi-
cal signals from the driver’s body constitute Driver Biological Measures. This method
is also called bio-signal processing. In Figure 2.3 an overview of physiological changes
to the human body is shown along with sensors to observe them concerning the lungs
and heart [12].

Bio-signals help with detecting emotions which hinder rational thinking and be-

Figure 2.3: Overview of physiological sources, effect and respective sensors.
Here, BCG:Ballistocardiograph, SCG:Superior Cervical Ganglion, HF:High Frequency,
PPGI:Photoplethysmography Imaging, ECG:Electrocardiography. Source: [12]
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haviour [13] with 81% recognition accuracy on eight classes of emotions. Also, using
a set of integrated and ambient sensors can be used for in vehicle health monitoring
[14]. The relationship between heart rate variability and stressful driving has been
studied through simulating a stressful driving environment and observing Electro-
cardiography (ECG) and Photoplethysmograph (PPG) [15]. ECG signals are the
electrical activity of the heart and are generally obtained through placing electrodes
on the skin of the individual. PPG uses illumination of skin to measure changes in
light absorption to determine heart rate. Most of the methodologies include placing
electrodes on the steering wheel, external wearable devices or integration with the
car seat for ECG and PPG recording [16], [17], [18], [19].

To have the least obtrusive (no contact) experience for drivers, optical methods are
used to gain information from the absorption, reflection, and transmission of radia-
tion and can also be used for respiratory monitoring. It avoids the loss of information
due to no contact of drivers to the sensors but has a limitation of environment lighting
and varies with the camera quality used [20].

2. Vehicle kinematics: Significant effects of driver distraction are observed on driver’s
vehicle control, such as drivers adapting to drive at a slower speed to increase available
response time when distracted [21], the correlation between steering wheel angle
and lane position affected by driver drowsiness [19] and others. Vehicle Kinematics
are observed by making drivers perform additional secondary tasks such as a cell
phone conversation, navigation control, and playing a radio with varying workload
to cause driver distraction on a simulator[22], [23], [24]. Vehicle kinematic data
is retrieved through Controller Area Network (CAN)-Bus in cars while simulators
have inbuilt system for the same. The retrieved data can be further processed to
get high-level signals thus containing more information [24]. The numerous features
available through this data can aid in driver distraction detection to varying degree.
In [25], the SVM-RFE technique is applied to generate the ranking of features most
representative of the driver state, as shown in Table 2.1 with an 80% reduction in
false warning without missing out on any critical warnings. Whereas [26] states
that braking and turning events are better at characterizing a driver compared to
acceleration events. Hence, maybe a combination of these features is a more accurate
criterion for detecting driver distraction.

3. Driver Physical Measures: In driver physical behaviour, eye data, head rotation, head
nodding, facial features are some of the few that are used quite extensively. Eye data,
for example, has a number of features like fixation duration, blink percentage, gaze

8



Rank Feature

1 Gas pedal position
2 Brake flag
3 Yaw rate
4 Turn signal
5 Longitudinal acceleration
6 Range rate
7 Speed
8 Heading
9 Range

Table 2.1: Ranking of vehicle kinematics. Source: [25]

deviation, Percentage of Eyelid Closure (PERCLOS), and others. Hence, observing
one or all of these features will depend on the purpose and requirement of the system.
For instance, [27] states that in eye-tracking behaviour PERCLOS is a very effective
drowsiness indicator.

In [28], driver distraction detection and classification is implemented using colour
and depth map data from the Kinect sensor. Eye behaviour that is gaze detection
and blinking, arm position, head orientation, and facial expressions are merged to-
gether and fed into a classifier for accurate sorting. Similarly, in [18] eye movement
monitoring is implemented and through a webcam collects frames at a specific rate
and sends it to a smartphone to fuse it with other data. Whereas [29] uses a bit more
intrusive approach for detecting driver cognitive distraction by using an eye-tracking
system to capture the gaze vector, which requires the participants to not wear spec-
tacles or eye make-up achieveing an accuracy of 81.1%.

On the whole, having multiple measures has shown to be more accurate in detecting driver
behaviour instead of using just a single type, as asserted in [27], [28] achieving 90% accuracy
for distraction detection. These measures are further processed, weighted depending on
their effect on driver behaviour before being fed into algorithms such as Support Vector
Machines, Dynamic Bayesian Networks, Neural Networks, AdaBoost classifier, Hidden
Markov Model among others for distraction detection and recognition [19], [28], [18], [23],
[30].

9



2.1.3 Machine Learning methodologies

Machine learning is the development of algorithms and statistical models seeking to learn
patterns from data which otherwise are intractable to develop using classical rule-based
programming. Machine learning eliminates the aspect of developing rules and learns from
data, as the data changes its ability to adapt to new patterns. There are three classes of
ML models:

1. Supervised Learning: Here, data is available along with the labels which aid in the
learning process.

2. Unsupervised Learning: The data has no labels, and hence the model has no direction
in its learning and tries on its own to learn structures in the data, for example,
clustering.

3. Reinforcement Learning: It is about the model learning by trial and error in an
environment while getting feedback in the form of a reward or punishment signal.

Most of the ML work involves labeled data and thus uses supervised learning [31]. It is
fundamentally learning the mapping between inputs and output labels. Therefore, when a
new data point is presented to the model, its able to predict an output label.

As mentioned in Section 2.1.2, the sources of data vary within the qualitative and quantita-
tive space for driver distraction detection and its shown that multiple data sources furthers
the accuracy of the system. Research has included Kinect, cameras to collect arm position,
head orientation, and facial expression to develop module for detecting driver distraction.
Since the source of data is image-based, it generally requires the use of Convolution Neu-
ral Networks (CNN), a class of neural networks shown to work well with images as they
take the spatial positioning into account[32],[33]. Alternatively, most of the experiments
include data collection from multiple sensors like breathing, driving simulator, heart rate
monitor, eye tracker, and their synchronisation through resampling, followed by some level
of pre-processing, secondary feature generation and finally classification. The classification
step is dominantly carried out using SVM in literature [34], [35], [36], [37]. Additionally,
logistic regression, decision trees, random forest, kNN, Adaboost, and Neural Networks are
also used [38], [39]. Each of these classifiers provide varying levels of explainability and
complexity, hence are chosen based on the research objective of the experiment.
Given below are some of the essential classifiers from literature in detail.
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SVM

SVM stands for Support Vector Machine and is a popular binary classifier which provides
the most optimum boundary between two classes. In Figure 2.4, given labeled training
examples, triangles and circles, the algorithm generates an optimal hyperplane that can
categorize unseen examples. In two-dimensional space, a hyperplane is just a line while in
three-dimensional space, its a plane, subsequently the hyperplane dimension keeps incre-
menting. The dotted lines are called support vectors and are generated by the closest class
points. They are used to keep the maximum margin from the boundary to create optimal
separation.

Kernel: As shown in Figure 2.5, there are data points of two classes (circles and squares)
in a 2-D plane and they can only be separated through a non-linear boundary such as
the black circle illustrated. The data points can be projected to a higher dimension via
a function Φ, as shown in the figure on the right (added z-dimension) to make the data
linearly separable. The function is written in the form of a kernel function (dot product)
K(xi, xj) = Φ(xi)TΦ(xj) used in the SVM calculation. There are numerous kernels such as
linear, polynomial, gaussian, radial basis function.

Regularization: The regularization parameter is also known as the “C parameter” and
is used to decide the number of miscalssifications allowed while forming the solution. For
large values of C the optimizer searches for a small margin hyperplane and vice versa. This
parameter is used to find a balance between underfitting and overfitting.

The widespread use of SVM can be attributed to its guaranteed optimality due to the
nature of convex optimization, the solution is a global minimum and not a local minimum.

k Nearest Neighbours

k Nearest Neighbours is a lazy learning algorithm; there is no training step. All training
examples are stored and at the testing step new examples are classified based on similarity
with training examples nearby. The parameter k decides the number of training examples
to take into consideration while labeling the new example. The class is assigned based on
the majority voting of the k nearest neighbours.

11



Figure 2.4: The hyperplane on the right gives the most optimal separation while the one
on the left does distinguish but not in an optimal way. Source: [40]

Figure 2.5: Use of kernel to project data in higher dimensions to obtain a linear boundary.

Näıve Bayes

The Naive Bayes classifier is a probabilistic machine learning model based on Bayes theorem
given in equation 2.1.

P (A/B) =
P (B/A)P (A)

P (B)
(2.1)

The probability of A happening given B has already occurred. P(A) is called the prior
probability, P(B/A) is the likelihood and P(A/B) is the posterior probability. It is called

12



näıve as it assumes the conditional independence of every pair of features given the class,
which almost is never satisfied in real-world datasets.

Decision Trees

Decision trees are one of the most transparent and explainable classifiers. The decision tree
is based on greedy search and hence does not guarantee a globally optimal tree. A decision
tree construction involves choosing features for splitting data into subsets having a more
homogeneous nature (same labels) [41]. The selection of these features is accomplished
through a variety of heuristics, namely, information gain, entropy, and gini-impurity. All
of them try to reduce the entropy (a measure of uncertainty in a specific distribution) in
the data by splitting it based on the chosen features and values.

There are various algorithms for DT construction based on the heuristic utilized for fea-
ture selection as well as measures taken to reduce overfitting, for instance, early-stopping,
post-pruning. Decision trees provide an interpretable and simple model with almost no
requirement for data preparation.

Random Forest: A collection of trees is called a forest. It is based on the ideology that
a collective decision outperforms any individual constituent models. There are two key
concepts necessary in building a RF:

1. Random sampling of training data points while building trees

2. Random subsets of features considered when splitting nodes

Each tree learns from a random sample of data points which are drawn with replacement
(bootstrapping). Accordingly, each tree is trained on different samples and produces an
uncorrelated forest of trees whose collective decision is superior compared to an individual
decision. Predictions are made by averaging the output of the whole forest.

Extra Tree classifier: Extra-Tree method stands for extremely randomized trees with the
objective to further randomize tree building with the context of input features. It avoids
the idea of bootstrapping and chooses random cut points for features at each node. It uses
averaging to improve the predictive accuracy and control overfitting.
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Artificial Neural Network

It is a collection of non-linear units, also called neurons arranged in a multi-layer network
used to model the relationship between data and its labels. A single neuron is equivalent
to logistic regression when used along with a sigmoid activation function, a three-layer
neural network is shown in Figure 2.6. In simple terms, the learning is carried out by
searching for an optimal solution in the search space to minimize a loss function. The loss
function is computed on the observed output from the model and the expected output. As
the learning happens, the loss computation evolves. There are a variety of loss functions
utilized based on the algorithm and the application, for example: Mean absolute error,
Mean squared error, and KL divergence. The activation functions in neurons are chosen
such that gradient vanishing can be avoided and in the last layer it is based on the expected
output type. The algorithm, loss function, and evaluation metric are chosen based on data
type, labels, and improved with multiple iterations.

Figure 2.6: A neural network with three layers, information is assumed to be travelling
forward.

2.2 Gap in the literature

In literature, the secondary tasks used to bring about distraction have been either a math-
ematical task, n-back task, a clock task, or a combination of the three [42], [43], [44], [45],
which provide a different scale of cognitive workload in comparison to actual driving dis-
tractions. Additionally, there are some studies which involve a spoken task between the
experimenter and the participant, but due to the subjective nature of questions it results
in an inconsistent administration of workload [46].

14



A typical cognitive distraction observed by a driver is quite different from the above.
In this study, we use a distraction task to fill in this gap and make it more similar to a
conversation with a fellow passenger.

The only study with a focus group mean age (19.5) representative of novice drivers [47],
demonstrates that distracted driving can be distinguished from focused driving using eye-
tracking data, but this study is limited because it only included 30 participants. There
has been a lack of research with an emphasis on the detection of cognitive driver distrac-
tion for novice drivers and even then, it is restricted to a small group of participants. We
mainly aimed at the age group of 18-23 years as they are more susceptible to cognitive
distraction [1] with an increased sample size and trained our models to classify their driving.

Road types used for driving research has shown an impact on the data as it affects the
driving environment and speed limit. A lot of cognitive driver distraction research have
restricted use to a few road types or the same road type multiple times [37], [48] in their
experiments. There has not been a comprehensive look into different road types and their
effect on driver distraction and mitigation. This thesis explores the aspect of road types
and whether it might have an effect on driver distraction as an additional feature.

As mentioned in Section 2.1.2, there are multiple ways to detect driver distraction ranging
from driver physical measures to subjective measures, which are again varied based on ways
of administration. It also mentions that hybrid measures are more accurate in detecting
driver behaviour, however, there has not been any research on cognitive driver distraction
in which all three (eye metrics, vehicle kinematics, and physiological data) sources were
utilised in combination to differentiate between distracted and non-distracted driving. This
thesis is an attempt to identify features among the three sources, which leads to a finer
classifier and aids in filtering features that contribute more to identifying driver distraction.

The next chapter details the methodology and design for the experiment. Additionally, it
explains the technicalities of the equipment used.

15



Chapter 3

Human Experiments

3.1 Method and Materials

3.1.1 Participants

This study consisted of 40 participants recruited through flyers and emails sent to various
departments at the University of Waterloo. Participants were included from the age group
of 18-23 years with a valid Canadian full G driver’s license and having driving experience
under 15,000 km. It was asked of the participants to have good or corrected vision with
contacts/glasses, and individuals with known vertigo or motion sickness were not eligible
to participate as they are prone to develop simulator sickness.

There were 40 participants (14 females and 26 males) with a mean age of 20.5 (female=20.78
and male=20.34). The average DBQ (Driver Behaviour Questionnaire), included in Ap-
pendix A, score was 0.71 where scale ranges from 0 (good driver) to 5 (bad driver), with
the female participants having a mean score of 0.68 and the male participants had a mean
score of 0.72. The mean age of participants when they received their full G Canadian driv-
ing license was 18.87, with 27 participants having less than 50km of driving accomplished
in the week before engaging in the study. Twenty-four participants had less than 5,000
km of driving experience in the past 12 months, thus suggesting that the participants were
novice drivers.

The eye-tracking component of the study was crucial, and 20 participants noted that
they were not wearing any corrective eye wear while 11 participants wore contacts and
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nine wore glasses during the study.

The study took around 50 mins on average and was remunerated with $20. This study
was granted ethics clearance (ORE # 40678 ) through the University of Waterloo Office
of Research Ethics and was conducted as stated in the approved protocols.

3.1.2 Procedure

If a participant chooses to participate, they must sign the consent form. After which
they will be asked to fill in a Motion Sickness Susceptibility Questionnaire (MSSQ), in-
cluded in Appendix A, based on which they might be requested to discontinue from the
study to avoid simulator-based sickness and will be remunerated for the time spent based
on the scoring obtained in the MSSQ questionnaire. Once the participant has qualified
(score below 23) the simulator sickness scoring, they will be asked to fill in demographic
details and DBQ which assesses their driving on a scale of 0 (good driver) to 5 (bad driver).

Before starting the experiment, participants have to drive a car simulator through a train-
ing scenario consisting of a suburban road with no traffic and multiple turns, to establish
competence in handling the equipment. All this while they will be wearing the physiologi-
cal sensor to collect baseline data. After the training, the participant wears the eye-tracker,
which has to be calibrated along with the physiological sensor. The experimental flow is
shown in Figure 3.1.

Participants have to drive through six road scenarios consisting of different environments
and speed limits, elaborated upon in the following sections. Each of these scenarios are
approximately of equal length; speed and other vehicle variables are observed throughout
these scenarios. The eye tracker and the wrist band are wiped clean using antiseptic wipes
between each participant’s use.

3.1.3 Apparatus

In this study, data to evaluate driver behaviour was observed from multiple modalities such
as physiological, eye-tracking, and vehicle kinematics. The drive consisted of following di-
rections from a navigation window and heeding the traffic regulations. The vehicle was
reset to the previous path if they missed a turn in the navigation and could resume driving
from the new position. All the equipment was within a closed room with no windows.
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Figure 3.1: Experimental flow for each participant.

The lights were kept on throughout the experiments, and there was a presence of only the
experimenter other than the participant inside the room while the experiment was going
on. The participants were made aware that they could ask to stop the experiment at any
point in time, depending on their comfort level with the equipment.

The following equipment was used for this study.

1. Carnetsoft Driving Simulator: It has 210 degrees surround graphics with a resolution
of 5760X1080, consisting of 3 screens - left, center, and right, as shown in Figure 3.2.
It has realistic shadows, lighting, and animations. Animations of people and ani-
mals and unexpected situations can be controlled to assess hazard anticipation. The
density of traffic participants in scenarios can be controlled. Simulator data such
as acceleration, and lateral position was collected at 10 Hz and is elaborated upon
further in Chapter 4.

2. Dikablis Glasses 3: The eye-tracker needs 4-point calibration and has an accuracy of
0.1-0.3 degrees. The eye-tracking frequency is 60Hz (per eye), and the scene camera
recording frequency is 30 Hz with a resolution of 768x576 px.

3. E4 Empatica wrist band: It is an unobtrusive physiological monitoring band which
collects data on PPG (photoplethysmography), EDA (Electrodermal activity) at 4Hz,
3-axis accelerometer at 32Hz, and skin temperature at 4Hz. The band can connect
to any computing device with a Bluetooth connection and transfer data in real-time.

4. Speakers: Provides sound from the road, wind, tires, engine noise, and the distraction
task, which consisted of audio played periodically and controlled based on the driver’s
location in the scenario.
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[a] [b]

[c]

Figure 3.2: a) Driving simulator with the red bounding boxes indicating the parts b) E4
Empatica wrist band, Source: [49] c) Dikablis Eye tracker

3.1.4 Experimental Design

Scenario design was developed based on the literature of drivers’ scanning and mitigating
patterns for latent hazards. Latent hazards are potentially dangerous threat that may
cause an accident but will not lead to one in these simulator based scenarios. Scenarios
covered various road types from sub-urban to highway to explore different driving patterns.
They were implemented with daylight to avoid the effects of ambient lighting conditions.
Each of these scenarios had a speed limit, which was conveyed through the signage in
the simulation as well as mentioned before each drive. Each scenario has a latent haz-
ard present, and this zone is further referred to as the critical zone in the thesis centred
from the latent hazard location. Latent hazards varied based on the road type and the
surrounding environment. Each participant drove all six scenarios, presented to them in
a pseudo-random order, the three scenarios containing distractions were chosen pseudo-
randomly while maintaining the total of 20 drivers performing a scenario with distraction
and 20 drivers performing a scenario without distraction. No driver experienced a scenario
twice.
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The following are description of the scenarios.

1. Work zone scenario (110 km/h): There is a work zone in the emergency lane of a
two-lane highway, two lanes in each direction. There is light traffic in the opposite
lane, which was separated by a divider. The latent hazard is a worker hidden in the
work zone behind a bulldozer [50],[51].

2. Curve scenario (80 km/h): Two trucks are parked on either side of a curved segment
in a sub-urban road type, which makes it harder to perceive oncoming traffic and
hazards hidden behind the trucks. There is no other traffic in this scenario, and the
latent hazard is a pedestrian hidden behind the truck on the right [52].

3. Stop-controlled intersection scenario (50 km/h): Stop-controlled four-way intersec-
tion is to be navigated by the driver in an urban environment where the line of sight
of either periphery at the intersection is severely limited by the placement of trucks
with the stop signage obscured by vegetation. There are no other traffic participants
in the scenario[50],[51].

4. Pedestrian crossing (50 km/h): A crosswalk at an intersection of a two-lane city road
with one lane in each direction. A truck is parked on the left lane and the latent
hazard is a driver hidden behind the truck. There are no other traffic participants in
the scenario [53].

5. School zone (50 km/h): A sub-urban two-lane road with one in each direction having
a crossing in a school zone with early signage cautioning about school children. There
is vegetation blocking a pedestrian trying to cross at the crosswalk with the presence
of multiple people playing in the park on the other side of the road [53].

6. Parked vehicles (50 km/h): A two-lane road with one in each direction, and the
driver has to move straight through along a line of parked cars to the right. There
are no other traffic participants and the latent hazard is a car with its turn signal on
trying to pull out into the path of the driver [53].
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Figure 3.3: Experimental design.

Cognitive Distraction task

The cognitive distraction task was a spoken task, but instead of interacting with the exper-
imenter, a series of statements sounded through the speakers after a constant period of five
seconds, to which the driver responded. It initiated in the path preceding the critical zone
and terminated in the following path after the critical zone. This secondary task acted as
an alternative to conversations carried out while driving vehicles.

Before the start of the secondary task, there was a beep to alert the driver and a beep
after all the sentences were completed and answered to. The sentences were similar to
the grammatical reasoning tasks used by [54] and are considered to provide a comparative
workload as a hands-free cellphone call.

The sentences were about four to five words long, and after hearing the sentence the
participant was supposed to answer in the five-second period before the start of the next
sentence. For example, a sentence and the answers are given below-
Statement: The rat drove the car
Expected response: Rat, Car, No

After each sentence, the participant was required to list out aloud the “subject”, “ob-
ject”, “yes/no” - depending on whether the sentence was plausible. A positive example
would be-
Statement: Ron fixed the door
Expected response: Ron, Door, Yes

The next chapter looks into the data preprocessing steps. It explores features through
visualisation and statistical methods as well as elaborates upon the data gathering steps.
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Figure 3.4: (Top left to right): 1. Work zone scenario, 2. Curved scenario with trucks
parked, 3. Stop controlled intersection with limited visibility, 4. Pedestrian crossing with
a parked truck, 5. School zone scenario, 6. Parking zone scenario.
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Chapter 4

Data Collection and Description

4.1 Data Description

4.1.1 Vehicle Kinematics Data

Each scenario was approximately 2 mins long, and a script file was written to generate a
CSV file to store kinematics data for each participant’s scenarios. The vehicle kinematics
were sampled at 10 Hz to maintain a manageable size of the generated data file; a value
is recorded for each variable every 100 ms. The data variables sampled in this study are
given in Table 4.1 along with engineered features.

The following steps were utilized for data cleaning:

1. Dropping columns which were not needed for the analysis.

2. Generating timestamps using the initial timestamp based on the sampling frequency
of 10 Hz.

3. Storing the timestamp intervals when the participant enters the critical zone and
drives out of the critical zone and filtering the data from other sources based on it.

4. Removing the data points which mirror resetting, when the drivers did not follow
the navigation.
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ID Feature Description

1 Velocity Velocity in m/s
2 Acceleration Acceleration in m/s2

3 Lateral velocity Lateral velocity in m/s,Left(+ve values) and Right(-ve values)
4 Lateral Position Left (+ve), Right (-ve) wrt center line of right lane
5 rpm Engine rotations per minute
6 Steer Steering wheel angle (in degrees)
7 Wheel angle Front wheel angle (in degrees)
8 Heading Heading wrt road(in degrees)
9 TLC Time to line crossing, Left (+ve) Right (-ve)
10 Gas Accelerator pedal position (0 to 100)
11 Brake Brake pedal position (0 to 100)
12 Steering speed Steering wheel rotation velocity in degrees/s
13 Steering error Deviation b/w actual angle and required angle in degrees
14 Longitudnal velocity Secondary feature (in m/s)
15 Steering standard deviation Secondary feature (in degrees)
16 SDLP Secondary feature
17 Steering error mean Secondary feature (in degrees)

Table 4.1: Vehicle kinematics measures from the driving simulator and their descriptions.

A windowing step was performed to reduce the frequency of data points and map infor-
mation from within a window to a single data point, hence condensing the information. A
non-overlapping window of 1-second duration was used and a number of secondary features
were generated based on literature [55] to get a finer classification. The features generated
are given below:

1. Longitudinal velocity: It was derived from the total velocity vector and lateral ve-
locity vector. It represents the vehicle velocity in the direction of advancement.

2. Steering standard deviation: It is the standard deviation of the steering wheel angle
(Steer in Table 4.1).

3. SDLP: It is the standard deviation of lateral position, considered to be a relevant
feature as cognitive load has shown to lower SDLP [56].

4. Steering error mean: It is the mean of the steering error at index 13 shown in Ta-
ble 4.1, which is the deviation between the expected steer movement and the one
performed by the driver.
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Standard scaling was used to normalize the data to attain columns with zero mean and
unit variance based on different dataset splits. It removes the effect of units used in
the measurements as well as the range of each column leading to a faster convergence to
solutions by a few algorithms. This step was performed selectively based on the algorithm’s
need such as SVM, kNN, NB, and SVM-RBF.

4.1.2 Physiological sensor data

The participant wore the wrist band while they were training on the simulator to cor-
respond to the baseline measurements as well as while they were driving through the
experimental scenarios. The measurement duration could be controlled through a button
on the wrist band, the measurement was stopped once after the training and initiated
again for the experimental scenarios hence recording all the six experimental scenarios in
one attempt. The physiological sensor transfers the data to a system in real-time which
can be further converted into folders corresponding to each participant containing CSV
files of Heart Rate, Electrodermal Activity, Temperature, Accelerometer data.

The following steps were performed for data cleaning -

1. Generating timestamps based on the initial timestamp and the corresponding fre-
quency of sampling for the datatype.

2. Filtering data points based on the interval of the critical zone obtained from driving
simulator data.

3. Generated features to be used for further analysis, showing the absolute change of
physiological variables compared to their baseline average HR change, EDA change,
temperature change.

A windowing step similar to the previous one was performed to bring down the frequency
to 1Hz, this step was necessary for the synchronization of physiological data with driv-
ing simulator data. The standard scaling was performed based on the algorithm’s input
requirement on all the features such as SVM, kNN, NB, and SVM-RBF.

4.1.3 Eye-tracker data

The Dikablis eye-tracker used in this study was wired and connected to an adapter, which
was then connected to a laptop. There was a wide range of data variants available for
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analysis through the D-lab software. Data could also be processed and visualized within
the software, and it also provided video of the participant’s view with gaze cross-head
overlap. The raw gaze data file was exported as CSV file from the software and analyzed.

The eye tracker consists of multiple cameras, as shown in Figure 4.1. The two eye cameras
can be adjusted to track the pupil generating a gray-scale video available in D-lab soft-
ware. The scene camera is also adjustable with an opening angle of up to 90 degrees which
generates a RGB video file.

The fluctuation of a participant’s head in its position moves the scene coordinate sys-
tem along with it, as the eye tracker moves along with the head. This leads to the gaze
position getting affected by head movement. D-lab has a special feature to eliminate the
effect of head movement by using markers, QR-codes that can be recognized by D-lab.
The markers create a new coordinate system, and the gaze is calculated with respect to
the markers, eliminating the effect of head movement.

(a) (b)

Figure 4.1: a) Cameras present on the eye tracker: Red circles represent eye-cameras
which track the pupils, green circle represents scene camera which records the view of the
participant. Source: [57] b) The four markers around the middle screen used in this study.

Eye-trackers are capable of generating variant features based on the data captured using
the cameras. Different algorithms utilizing various thresholds on velocity and displacement
are employed for feature generation. Given below is a brief description of the features used
in this study:
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1. Gaze point: One gaze point equals one raw sample captured by the eye tracker; it
corresponds to the coordinates where the eyes are looking for a particular point in
time.

2. Fixation: Alignment of the eyes such that the image of the fixated area of interest
falls on the fovea for a given time period (duration from 100ms-300ms), it corresponds
to the gaze point maintained at a consistent position for a certain amount of time.
It is an indicator of user attention.

3. Saccades: Brief fast movements of the eyes that change the point of fixation, it refers
to eyes moving in jumps.

In this study, the raw data file was retrieved from D-lab and analyzed. The eye-tracking
data was sampled at 60 Hz, and the timestamps were represented in Coordinated Universal
Time (UTC). It consisted of two data streams, eye data and field data, described below:

Eye-data

Eye-data is based on the image of the eye cameras and measurements on its coordinate
system. The features for the left and right eye are shown in Table 4.2. The features from
the left eye were dropped from further analysis due to their high correlation (measure of
how strongly pairs of variables are related) to right eye features.

The saccade and fixation detection is performed by D-lab using a velocity-based algo-
rithm with a threshold of 100 degrees/second; movement speed higher than the value is
interpreted as saccade, and movement speed lower than this value is interpreted as fixation.

Secondary features were generated according to literature to enhance the classification
task along with windowing as given below:

1. Blink: It is predicted by using the pupil values; if 0 then there is no pupil detected
(blink), this allows generating a binary feature indicating whether a frame contained
a blink or not.

2. Blink ratio: It is the ratio of number of blinks in a window to the length of the
window (in datapoints) [58].

3. Fixation ratio: The ratio of number of fixations detected in a window with the length
of the window (in datapoints).
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4. Saccade ratio: The ratio of the number of saccades detected in the window with the
length of the window (in datapoints).

Field-data

Field-data is based on the image of the scene-camera, and the measurements are carried out
in its coordinate system. It consists of the X and Y gaze coordinates in the scene camera
coordinate system as ’Scene Cam Original Gaze X’ and ’Scene Cam Original Gaze Y’.
Secondary features were generated to account for the gaze distribution in the horizontal
and vertical direction using standard deviation - ’SceneXstd’, ’SceneYstd’; described in
Table 4.3.

ID Feature Description

1 Scene Cam Original Gaze X X Position of the Gaze given in [px]
2 Scene Cam Original Gaze Y Y Position of the Gaze given in [px]
3 SceneXstd Secondary Feature
4 SceneYstd Secondary Feature

Table 4.3: Features obtained from scene camera and its description.

4.2 Exploration

An exploratory analysis was done on the features from all the three sources to gather in-
sights and look for unique patterns. It is a way to summarize all their main characteristics
numerically and visually. In particular, looking into correlations between features, supple-
ments our insight between their relationships and is also necessary for removing correlated
features to improve model performance.

4.2.1 Eye-tracking data

Data files from a few participants were empty due to equipment failure and hence discarded.
The available data used for analysis is described in Table 4.4. Each scenario’s data was
treated as a separate data frame for analysis and the correlation between features for
each scenario was generated. A threshold of absolute value of 0.8 was used to observe
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highly correlated features. Some common characteristics which were expected from the
pre-processing step were noticed, for instance, pupil height and width being correlated to
pupil area; blink correlated to blink ratio; fixation ratio correlated with fixations; Pupil X
correlated with Scene Cam Gaze X. Also, there were some unusual correlations, such as
SceneYstd positively correlated with SceneXstd and blink ratio negatively correlated with
fixation. The correlation matrix is illustrated using a heat map in Figure 4.2 for “curved”
scenario, lighter shades correspond to positive correlation while the darker shades represent
negative correlation.
A t-test was performed on the data to assess the significance in difference between the
two means, and the p-values for the features for the corresponding road types are given in
Table 4.5.

Scenario Participant:dis Participant:non-dis Datapoints

Highway 20 20 2446
Curved 20 20 3113

Parking zone 20 19 2452
Stop controlled 20 19 2495

School zone 19 18 1386
Pedestrian crossing 20 19 2459

Table 4.4: Data available from participants and their length after windowing step for
eye-tracker, here ”dis” stands for distraction.

4.2.2 Vehicle kinematics data

Data files from the driving simulator had lesser data loss compared to the eye-tracker
with only one empty file for a participant, the number of data points for each scenario
after the windowing step is shown in Table 4.6. The driving variables showed typical
correlations that were expected, such as steer being highly correlated to wheelangle. The
visualisations for different features were also generated and are shown for a few features
in Figure 4.3. There were not any apparent differences between the visualisations of the
treatment which could be perceived. A t-test was performed on the data to assess the
significance in difference between the two means, the p-values for the features for each
road type is described in Table 4.7.
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Figure 4.2: Heat map of correlation between eye-tracking features for “curved” scenario.

4.2.3 Physiological data

Physiological sensor had no data loss but due to the missing data file from the driving
simulator, the time interval for the critical zone was not available for that participant and
hence, that particular file was excluded from further analysis. There were no high cor-
relations among the features. Moreover, the preliminary stats showed the presence of an
outlier, that is the maximum value of the feature being quite different from the median
value, which is also observed in Figure 4.4 corresponding to a particular participant.
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Figure 4.3: Acceleration for highway scenario illustrating a comparison between treatment
of secondary task. Wheelangle for school zone scenario illustrating a comparison between
treatment of secondary task.

33



Scenario Participant:dis Participant:non-dis Datapoints

Highway 20 20 2445
Curved 20 20 3118

Parking zone 20 20 2499
Stop controlled 20 20 2625

School zone 20 19 1453
Pedestrian crossing 20 20 2501

Table 4.6: Data available from participants and their length after windowing step for
driving simulator, here “dis” stands for distraction.

Additionally, observing the visualisations of features comparing the groups treated to the
secondary task and otherwise demonstrated that the EDA-change varied significantly to-
wards the end of the drive for participants subjected to distraction while the other group’s
EDA-change remained consistent as shown in Figure 4.4. However, when a t-test was
performed on the data to assess the significance in difference between the two means,
the p-value was not significant. The t-test was performed after inspecting for equality of
variance to choose between Welch’s or Student’s t-test.

4.2.4 All modalities

All the modalities of data were combined to form a single dataset with 40 features, including
driving simulator (17), eye-tracker (20) and physiological sensor (3). Resampling of sources
to 1 Hz frequency enabled the synchronisation of data points. Since the missing data files
from the sources did not overlap, the length of the combined dataset was shorter than
expected for each road type shown in Table 4.8.

The next chapter looks into the implementation of ML algorithms to form boundaries to
discriminate between distracted and non-distracted data points. Additionally, it explores
the features which contribute towards classification.
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Figure 4.4: EDA for highway scenario illustrating a comparison between the treatment of a
secondary task. EDA for curved scenario illustrating a comparison between the treatment
of a secondary task.
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Scenario Participant:dis Participant:non-dis Datapoints

Highway 20 20 2406
Curved 20 20 3041

Parking zone 20 19 2410
Stop controlled 20 19 2453

School zone 19 18 1348
Pedestrian crossing 20 19 2418

Table 4.8: Data available from participants and their length after windowing step for all
sources synchronised together, here “dis” stands for distraction.
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Chapter 5

Data Analysis and Results

Multiple classification algorithms were utilized on different subsets of the data with a focus
on obtaining a fine discriminator between distracted and non-distracted driving. Equally
important was finding the features which indicate the most difference between distracted
and non-distracted driving data. This chapter is organized into sections based on the source
of the dataset used for analysis. The “Analysis” section contains sub-sections about split-
ting the dataset based on modalities (vehicle kinematics, physiological, and eye-tracking).
Analyzing various ways of splitting the data modalities (group of features) can assist in
finding the most effective features supporting the need for reduced data collection to reach
high accuracy. The dataset was also resolved on road types, that is, all the scenarios treated
as a single dataset and the scenarios being treated as separate datasets. Analysing differ-
ent road types versus all road types combined could aid in observing the effect of road types.

5.1 Algorithms

The algorithms mentioned in Section 2.1.3 were trained in Python [59] utilizing the scikit-
learn package [60] and trained on the datasets. The algorithms were trained on the complete
dataset using cross-validation to avoid overfitting and to increase generalizability. The algo-
rithms were then evaluated using the accuracy metric (number of correct predictions/total
number of predictions) to compare their performance. The accuracy metric was chosen be-
cause of the balanced nature of the classes coupled with the high numbers for true positives
and true negatives in confusion matrices. Furthermore, tree-based algorithms were used to
identify features which influence the discrimination the most, particularly the ones which
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contain the most information about the difference between data in the two categories.
Section 5.2.4 provides details about the essential features assisting the classification task.

5.2 Analysis

5.2.1 Three data modalities (Vehicle kinematics, Physiological
and Eye-tracking)

In the first stage, all the scenarios and sources of data were treated together and clas-
sification was carried out using the algorithms introduced in Section 2.1.3. The dataset
had 14076 data points and 40 features including driving simulator (17), eye-tracker (20)
and physiological sensor (3). The dataset was shuffled and split into 80% training data
and 20% test data. A 10 fold cross-validation was implemented on the training dataset
to choose the best parameters for the respective algorithms. The parameters chosen are
given in Table 5.1. The SVM algorithms have the parameters “c” whose lower values
correspond to simpler models and higher values correspond to complex models, “gamma”
corresponds to the inverse of the radius of influence of samples selected by the model as
support vectors; “k” parameter in kNN represents the number of neighbours accounted
for while assigning a class; in tree models “depth” corresponds to the maximum depth of
the tree (to limit the tree from overfitting), “minimum samples leaf”, “minimum sample
split” are also parameters for controlling the complexity of the model and correspond to
the minimum number of samples required at a node and the minimum number of samples
required to split respectively; “estimators” are the number of trees that the RF builds in
a model.

Algorithm Parameter
SVM Linear c=1, gamma=0.1
SVM RBF c=10, gamma=0.1

kNN k=1
Decision Tree depth=20, minimum samples leaf=0.001

Random Forest depth=20, estimators=200, minimum sample split=0.001

Table 5.1: Hyperparameter tuning through 10-fold cross-validation.

The dataset was separated based on road types - “highway, curved, school zone, park-
ing zone, pedestrian, stop-controlled intersection” to observe the effect of road types on
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driver distraction classification. The same split described previously for training and test
was implemented followed by classification using the algorithms, incorporating the chosen
parameters from Table 5.1. The length of each scenario is given in Table 4.8, and the
features were the same as the previous section. In Figure 5.1, the accuracy of different
road types and the combined dataset with respect to each algorithm is illustrated. It can
be observed that the accuracies improve drastically when the data is split based on road
types. It was also found that Random Forest performed the best, so the comparison for
different combinations of data modalities was carried out using Random Forest and is given
in Table 5.2.

Figure 5.1: The accuracies for the scenarios and the combined set using the chosen pa-
rameters for the three modalities. The black line represents the accuracy of a random
classifier.

5.2.2 Two data modalities

Different combinations of two data modalities were utilized to trim the models to sim-
pler versions requiring less expense for data processing. The two modality combinations
analyzed are - “Eye+Vehicle”, “Vehicle+Physiological”, and “Eye+Physiological”. A sim-
ilar procedure as given in the previous sections was carried out for road types combined
together and also separated while applying parameters given in Table 5.1. Physiological
data when combined with vehicle kinematics and eye-tracking results in notable increase
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XXXXXXXXXXXXRoad type
Data

All Eye+Veh Veh+Physio Eye+Physio Eye Veh Physio

Combined 91.08% 79.6% 91.2% 90.3% 71.9% 61.7% 96.7%
Highway 99.37% 95.9% 97.3% 98.5% 97.1% 68.09% 99.5%
Curved 98.35% 93.4% 96.7% 98.5% 93% 64.9% 99.8%
Parking 97.71% 90.8% 95.5% 99.3% 92.6% 60.4% 100%
Stop 98.98% 90.9% 96.3% 99.3% 92.1% 67.8% 99%
School 100% 91.3% 96.4% 98.8% 92% 68.7% 99.6%
Pedestrian 99.38% 92.6% 96.7% 99.3% 92.6% 62.6% 99.7%

Table 5.2: Accuracies of scenarios for different combination of modalities using RF model,
here “veh” stands for vehicle kinematics features.

in accuracy.

As seen in Table 5.2, there is a slight drop in accuracy when vehicle data was added
with eye-tracking data for a few road types compared to using eye-tracking data alone.
The results are shown in Figure 5.2. The accuracies for the combined scenarios remained
lower compared to when separated into road types, following the trend shown in Figure 5.1.

5.2.3 One data modality (Vehicle kinematics, Physiological or
Eye-tracking)

One of the primary objectives of this study was to filter out dominant features, which would
lead to a simpler model while maintaining high accuracy. Hence, single data modalities
were tested on the algorithms to have a fair comparison of their effectiveness.

Vehicle kinematics

The algorithms were trained using data combined together and also split into different road
types. Each scenario was of length given in Table 4.6 with 17 features given in Table 4.1.
The data was shuffled and divided into training and test sets with the test set being 20%
of the whole data. The algorithms utilized parameters given in Table 5.1 to maintain
consistency for comparison. The classification accuracies for vehicle kinematics data was
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Figure 5.2: The accuracies for the scenarios and the combined set using the chosen pa-
rameters for eye tracking and vehicle kinematics incorporated together. The black line
represents the accuracy of a random classifier.

in the sixties for the best performing model-RF as shown in Table 5.2 and was even lower
for other models, hence omitted here.

Eye tracking data

Each scenario’s data was of length given in Table 4.4 and contained 20 features from Ta-
ble 4.2 and Table 4.3. It was shuffled and split into training and test sets, with test being
20% of the whole data. The algorithms were trained using the parameters given in Ta-
ble 5.1. The data from different road types was combined and analyzed in a similar way to
observe the effect of road types on the results. The results for the best performing model
are shown in Table 5.2. The classification accuracy shows a remarkable increase compared
to vehicle kinematics data.

Physiological data

A similar pipeline, as described in the above sections was followed, the scenarios were
of the lengths given in Table 4.6. There were three features: EDA-change, HR-change,
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and temperature-change. The data was split into 80% training and 20% test, and the
algorithms were trained and tested using the parameters given in Table 5.1. The data
from different road types were joined together to form the combined set, trained, and
tested on the algorithms as given above. The accuracies are shown in Figure 5.3; kNN, DT
and RF are resulting in the best performance with accuracies reaching up to 100%. This
result has been further explored at the end of the chapter.

Figure 5.3: The accuracies for the scenarios and the combined set using the chosen param-
eters for physiological data. The black line represents the accuracy of a random classifier.

The analysis shows that the physiological modality performed the best followed by eye-
tracking and then vehicle kinematics. Vehicle kinematics data seems to be noisy while
physiological data is explored more later in the chapter.

5.2.4 Feature selection

One of the key factors for feature selection is to eliminate features that are not informative,
which involves selecting features that have less correlation to each other and high correla-
tion with class labels. It helps to remove redundant features which do not contribute to
the model performance. Since physiological data had only three features and vehicle kine-
matics data did not show much promise, the focus for feature selection was on eye-tracking
data. In this study, the labels were binary hence the Point-biserial correlation coefficient
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was used to find the correlation between features and labels. One of the patterns that can
be observed from the graphs is that features related to saccade and fixation had nearly
zero correlation with the label. The correlating coefficient varies between the scenarios and
only a few have been included in Figure 5.4. None of the features had a significantly high
negative or positive correlation with the label.

One of the methods for feature selection comes under the category of wrapper methods,
where subsets of features are generated and evaluated against a classifier. The classification
accuracy is used to evaluate the features, and they are optimized for the classifier utilized.
In this study, there was a keen focus on tree-based algorithms because of their transparency.
ExtraTrees classifier from Scikit learn was used to find the feature importance and is vi-
sualised in Figure 5.5. It can be seen that features related to spatial and size features for
the eye show significant contribution while fixations and saccade have minimal relevance.

Furthermore, a Random Forest based wrapper method was utilized to identify essential
features while maintaining high accuracy. Random forest classifier, along with permuta-
tion feature importance was used to select the reduced feature set. Permutation feature
importance is a model inspection technique in which one feature is garbled at a time, and
the decrease in classifier accuracy is observed for that action. This technique indicates the
dependency of the model on a particular feature. This technique has an issue when features
are strongly correlated with each other; as a result, when one feature is garbled, the other
correlated feature is able to provide the necessary information to the model. This results
in lower importance being given to the correlated features. This problem has been avoided
by clustering correlated features and choosing one feature from each cluster for the corre-
lation task as it is able to provide similar information to the other features in its cluster.
Hierarchical clustering was performed on the features using Spearman rank-order correla-
tion and a threshold was chosen to pick a single feature from each cluster. In Figure 5.6,
the clustering illustrates some expected characteristics, that is, the features correspond-
ing to the x-axis are clustered together, similarly for the y-axis; features corresponding to
saccades were clustered together, but fixation duration also showed high correlation with
them; height, width and area of the pupil were clustered together; blink and blink ratio
formed clusters with sceneX std and sceneY std. This pattern was observed through all
the scenarios. It was desired to have a simple model learning from a small number of
informative features while maintaining the most accuracy.

The above method selected the following features having an accuracy shown in Table 5.3
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(a)

(b)

Figure 5.4: a) Correlation coefficient for features in parking zone scenario. b) Correlation
coefficient for features in school zone scenario.
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(a)

(b)

Figure 5.5: a) Feature importance using ExtraTree classifier for parking zone scenario. b)
Feature importance using ExtraTree classifier for school zone scenario.
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(a)

(b)

Figure 5.6: a) Hierarchical clustering of features and the corresponding correlation heatmap
for parking zone scenario. b) Hierarchical clustering of features and the corresponding
correlation heatmap for school zone scenario.
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for respective scenarios.

• Original Pupil X

• Original Pupil Y

• Original Right Eye Pupil Area

• Scene Cam Original Gaze Y

Performing a t-test on the selected features to compare the two classes did not show any
significance alluding to the univariate nature of this test. The violin plots illustrating the
features comparing the two groups is shown in Figure 5.7.

Furthermore, when the “Original Pupil X” feature was dropped, and the decrease in ac-
curacy observed was not significant, which illustrated the importance of vertical motion of
pupil and gaze to detect driver distraction. The updated accuracies are given in Table 5.4,
and these are a common set of features that can be used in all road types to detect driver
distraction.

Scenarios Accuracy
Highway 93%
Curved 95%
Parking 93%

Stop 91%
School 91%

Pedestrian 86%

Table 5.3: Accuracies of scenarios for reduced set of features using RF - horizontal eye
motion, vertical eye motion and pupil size.

Likewise, a similar analysis for feature selection was carried out for vehicle kinematics data
and the features selected were - ’velocity’, ’acceleration’, ’lateral velocity’, ’lateral position’,
and ’steer’. An analysis of physiological data was not considered necessary as the features
were limited to just three in number and all of them were uncorrelated to each other and
hence considered to be important features.
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Scenarios Accuracy
Highway 91%
Curved 89%
Parking 89%

Stop 90%
School 94%

Pedestrian 87%

Table 5.4: Accuracies of scenarios for reduced set of features using RF consisting of vertical
eye motion and pupil size.

Figure 5.7: Violin plots of selected eye-tracking features comparing two classes. It repre-
sents the distribution shape of data with the white dot corresponding to the median and
the thick black line representing the Interquartile range (IQR), thin black line extending
to 1.5x the IQR range.
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5.3 Additional physiological data analysis

The physiological data gave unprecedented accuracies which suggest an unexplained issue
with the dataset, hence requiring further analysis. The physiological data was tuned to find
the best parameters using 10-fold cross-validation and showed that SVM-RBF, kNN, DT
and RF are giving accuracies reaching up to 100%, which indicates a non-linear boundary.
NB and SVM-linear performed close to random as given in Table 5.5. However, when a
t-test was performed to discriminate between the distracted and non-distracted group of
drivers, none of the features showed any significance. The analysis of the data may imply
that the training and the testing tasks were very similar leading to the repetition of the
same task and resulting in unreasonably high accuracy.

It could also be attributed to the fact that time series physiological data is being treated as
independent individual data points here, which may not be the right approach to analyse
physiological data. Furthermore, the short duration of data for each participant’s driving
scenario might have limited the capture of change in physiological data.

``````````````̀Road type
Classsifier

NB SVM-lin SVM-RBF kNN DT RF

Combined 50.1% 51.04% 82.58% 88.27% 89.41% 94.24%
Highway 64.8% 58.59% 96.89% 98.13% 98.34% 99.79%
Hike 59.77% 56.97% 98.19% 98.85% 98.85% 99.67%
Parking 52.53% 60.24% 98.58% 96.34% 99.39% 99.39%
Stop 59.92% 68.2% 97.49% 97.88% 98.07% 99.42%
School 50.69% 57.69% 94.05% 95.8% 97.55% 99.65%
Pedestrian 55.66% 62.34% 95.74% 94.33% 97.77% 99.19%

Table 5.5: The accuracies for the scenarios and the combined set using re-tuned parameters
for physiological data.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

This study brought into focus the effect of road types on distraction classification. All the
scenarios combined into a single dataset gave a much lower accuracy than treating them
separately, as seen in Table 5.2, which is especially evident in the case of eye-tracking data.
This finding is supported by [37] which shows that the addition of driving context from
outside generates an improved driver distraction monitoring system. The complexity of
the driving environment has varied effects on driving; factors like urban driving, highway
driving, traffic density, and speed limits have an impact on driver behavior and should
be accounted for [61]. A system for driver distraction detection can include GPS data
providing the location of the car and the road type in addition to the driver’s behavioral
data to generate more accurate predictions.

An analysis comparing different combinations of modalities was performed to identify the
feature set contributing the most information towards the classification task. To have a fair
comparison, the same algorithms were trained for all datasets. The results showed that
the addition of physiological and eye-tracking data to the dataset resulted in a notable
increase in accuracy.

Accordingly, the study emphasised the importance of eye-data to enhance driver distrac-
tion identification due to cognitive workload. The dominant features identified illustrated
the importance of pupil movement data and gaze dispersion in both horizontal and ver-
tical directions. It also highlighted the need to include pupil size measures. The effect
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of cognitive tasks on gaze dispersion was shown to be statistically significant in [43],[62].
Also, [62] shows that changes in visual attention can act as an early indicator of driver
distraction even before vehicle control is affected, which was observed in this study as
well. [62] also does a statistical analysis showing a significant change in the mean central
location of vertical gaze between driving with 0-back task and pre-task baseline driving,
corroborating the significance of vertical pupil measure seen here. It was also seen here
that features related to saccadic movements had no effect in classification, which may be
because saccadic measures are not an indicator of a driver’s ability to acquire visual in-
formation or interference of it due to cognitive distraction. Furthermore, this study used
a method for feature selection which was not affected by multicollinearity; it identified
the primary features necessary to achieve good accuracy. Although the eye-trackers used
in this study were wearables, the advent of wireless eye-trackers that can be installed on
the dashboard will make the transition to an eye-tracking based driver-assistive system
smoother.

The inclusion of physiological data showed significant improvement in accuracy for all
combinations of sources in Table 5.2, notably, the combination of eye-tracking data with
physiological data. This confirmed the relevance of physiological data such as EDA, HR
and temperature as good indicators to differentiate distracted and non-distracted driving
behaviour. It could also be attributed to the similarity between training and test datasets
due to the short duration of data length for each participant, hence not having much vari-
ation between the training and test datasets. Further studies are required to confirm the
applicability of the physiological data. It could be seen that SVM-RBF, kNN, decision tree,
and random forest performed the best while NB, SVM-linear performed almost at random
as shown in Table 5.5. It may be because the physiological data had only three features
(small feature set) and was treated as independent data points even though it belonged to
a time series. The addition of physiological data into other modalities increased accuracies
substantially as the ML models concentrated on the physiological features while classifying
as was seen from their attributed feature importance. On the other hand, it is shown in
[63] that physiological features such as respiration, electrocardiogram, skin conductance,
and body temperature have given 100% accuracy for identifying drowsiness and stress,
which lead to cognitive distraction. In [63], for most drivers studied, skin conductivity and
HR are most closely related to driver stress levels; also, significant individual differences
in the mean of the skin conductance was found. These findings suggest that a driver dis-
traction detection could be made more robust by personalizing it to the respective driver’s
physiological metrics. With the continual increase in sensor capability and the decrease in
costs, the inclusion of physiological sensors in vehicles may become widespread and allow
systems to draw on these sensors to improve driver-assistive technology. A major draw-
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back of these systems, however, could be the intrusiveness of the devices used to carry out
the measurements compromising driver privacy and introducing the inconvenience of an
additional physical device.

The vehicle kinematics data did not show much promise because of the limited fidelity
of the driving simulator and the distraction task not being distracting enough. It may
also be explained by the Cognitive Control Hypothesis, which states that cognitive load
leaves automatic performance unaffected. If the driving task is too simple, it might be
automatized, leading to no observed effects due to secondary tasks [64]. Notwithstanding,
the following vehicle kinematics features were deemed the most important: ’velocity’, ’ac-
celeration’, ’lateral position’, and ’steer’. Results from [65] confirm that distraction has
a significant influence on lateral vehicle control, driving speed, and steering wheel angle.
Drivers try to compensate for limited cognitive resources by altering the respective driving
features.

Overall comparison between the performance of the six algorithms: NB, SVM linear, SVM-
RBF, kNN, DT, RF showed that RF achieved the best accuracies for all datasets attributing
to its ensemble of classifiers. NB performed the worst because of its assumption of samples
being independent, which was not the case for the dataset. In this study, there was a
significant emphasis on tree classifiers because of their interpretable nature and simplicity
to understand, which is in direct contrast to Neural Networks’ black box nature, and which
were not utilized in this study.

6.1.1 Contribution

• In the future, vehicles will be required to be intelligent and more responsive to the
user. Early indicators of driver distraction can help in changing information output
by IVIS to enable safer driving. In this study, these indicators were obtained from
three sources of driver data: Physiological, Eye-tracking, Vehicle kinematics. None
of the earlier studies included a comparative analysis of all three sources.

• It was shown that road types such as urban, highway, and sub-urban have an effect
on driver behaviour and can influence the impact of workload on driving, as shown
from the comparison of datasets split based on road types and combined. None of
the earlier studies focused on showing the effect of road types on driver behavioral
data.
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• The reduced feature set was found while maintaining high accuracy, showing the
feasibility of a simpler model for driver distraction detection. Earlier studies did
try finding important features but did not show the quantitative effect after feature
reduction.

• Among the ML models used, RF was found to be the most accurate. The reduced
feature set and information about the current road type utilized on RF can lead to a
simpler and more accurate system for driver distraction prediction. [55] also showed
that RF performed best across the driving and physiological datasets as compared
to other algorithms.

6.1.2 Limitations

Being a lab-based study of short length, it does not provide a comparative environment
to expand the results to real-world, uncontrolled situations. The context of monitored
experimentation likely affects drivers’ performance along with the use of a driving simulator
and wearable sensors, as opposed to more naturalistic driving conditions. The window size
was limited to 1 second because of the short duration of observations and it may be possible
that it is too short a duration to observe significant changes. To develop a personalized
driver-based classifier as well as obtain robust physiological data, it would be necessary to
have a longer duration of driving on different road types. In further studies, more extended
duration scenarios for different road types should be utilized and windows of varied length
used for the analysis to account for long-term effects. The models in this study assumed
that drivers had a similar structural response to distraction and were treated together;
in the future, a longer duration study could help train personalized driver models. A
more realistic driving simulator would also contribute positively to data quality. The other
limitation was the sample not being completely randomized as the study was advertised
and conducted in a University setting. It restricted the participant pool to University
students and could only approximate a completely randomized control trial.

6.2 Conclusion

This study was conducted with young drivers, and the results demonstrate their reaction
to distracted driving in comparison with normal driving without any secondary task. The
study accounted for various road types and consisted of a controlled communication task
similar to real-life situations as a secondary task. Various machine learning techniques were
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utilized for cognitive distraction classification and the results suggest that physiological and
eye-tracking data are good indicators of driver behaviour. Conversely, vehicle kinematics
data did not contribute to the classification between distracted and non distracted driving,
which may be attributed to the limited fidelity of the driving simulator or the limitation of
vehicle kinematics data for predicting distraction. The study showed that a communication
task replicating the workload of a conversation with a co-passenger can cause changes in
driver state in most aspects. These changes may be detected using the relevant features
found in the study for early mitigation and development of effective warning systems.
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[32] Céline Craye and Fakhri Karray. Driver distraction detection and recognition using
rgb-d sensor. arXiv preprint arXiv:1502.00250, 2015.

[33] Hesham M Eraqi, Yehya Abouelnaga, Mohamed H Saad, and Mohamed N Moustafa.
Driver distraction identification with an ensemble of convolutional neural networks.
Journal of Advanced Transportation, 2019, 2019.

[34] Yulan Liang, Michelle L Reyes, and John D Lee. Real-time detection of driver cog-
nitive distraction using support vector machines. IEEE transactions on intelligent
transportation systems, 8(2):340–350, 2007.
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[58] Miguel Ángel Recarte, Elisa Pérez, Ángela Conchillo, and Luis Miguel Nunes. Mental
workload and visual impairment: Differences between pupil, blink, and subjective
rating. The Spanish journal of psychology, 11(2):374–385, 2008.

[59] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[61] Yung-Ching Liu and Tsun-Ju Wu. Fatigued driver’s driving behavior and cognitive
task performance: Effects of road environments and road environment changes. Safety
Science, 47(8):1083–1089, 2009.

[62] Bryan Reimer. Impact of Cognitive Task Complexity on Drivers’ Visual Tunnel-
ing. Transportation Research Record: Journal of the Transportation Research Board,
2138:13–19, 2009.

[63] Jennifer A Healey and Rosalind W Picard. Detecting stress during real-world driving
tasks using physiological sensors. IEEE Transactions on intelligent transportation
systems, 6(2):156–166, 2005.

[64] Johan Engström, Gustav Markkula, Trent Victor, and Natasha Merat. Effects of
cognitive load on driving performance: The cognitive control hypothesis. Human
factors, 59(5):734–764, 2017.

[65] Jianwei Niu, Xiai Wang, Xingguo Liu, Dan Wang, Hua Qin, and Yunhong Zhang. Ef-
fects of mobile phone use on driving performance in a multiresource workload scenario.
Traffic injury prevention, 20(1):37–44, 2019.

[66] Salma Elmalaki, Huey-Ru Tsai, and Mani Srivastava. Sentio: Driver-in-the-loop for-
ward collision warning using multisample reinforcement learning. In Proceedings of
the 16th ACM Conference on Embedded Networked Sensor Systems, SenSys ’18, pages
28–40, New York, NY, USA, 2018. ACM.

62

http://www.jalimedical.com/dikablis-glasses-eye-tracker.html
http://www.jalimedical.com/dikablis-glasses-eye-tracker.html


[67] Aisha Siddiqa and Anis Jahan. the Relationship Between. Printing Area International
Research journal, 002(43053):198–200, 2018.

[68] Y. C. Liu. Comparative study of the effects of auditory, visual and multimodality dis-
plays on drivers’ performance in advanced traveler information systems. Ergonomics,
44(4):425–442, 2001.

[69] Xingwei Wu, Linda Ng Boyle, and Dawn Marshall. Drivers’ avoidance strategies when
using a Forward Collision Warning (FCW) system. Proceedings of the Human Factors
and Ergonomics Society, 2017-Octob(2016):1939–1943, 2017.

[70] Jianqiang Wang, Chenfei Yu, Shengbo Eben Li, and Likun Wang. A Forward Collision
Warning Algorithm with Adaptation to Driver Behaviors. IEEE Transactions on
Intelligent Transportation Systems, 17(4):1157–1167, 2016.

[71] Maria Victoria Martinez, Ines Del Campo, Javier Echanobe, and Koldo Basterretxea.
Driving Behavior Signals and Machine Learning: A Personalized Driver Assistance
System. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC,
2015-Octob(September):2933–2940, 2015.

[72] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning
affordance for direct perception in autonomous driving. In The IEEE International
Conference on Computer Vision (ICCV), December 2015.

[73] Luis M. Bergasa, Daniel Almeria, Javier Almazan, J. Javier Yebes, and Roberto Ar-
royo. DriveSafe: An app for alerting inattentive drivers and scoring driving behaviors.
IEEE Intelligent Vehicles Symposium, Proceedings, (April):240–245, 2014.

[74] Peter I.J. Wouters and John M.J. Bos. Traffic accident reduction by monitoring driver
behaviour with in-car data recorders. Accident Analysis and Prevention, 32(5):643–
650, 2000.

[75] Lex Fridman. Human-centered autonomous vehicle systems: Principles of effective
shared autonomy. CoRR, abs/1810.01835, 2018.

[76] Uber telematics. https://eng.uber.com/telematics/.

[77] Axa drive app. https://itunes.apple.com/sk/app/axa-drive-2/id1093063218?

mt=8.

[78] Carmela Troncoso. Pripayd: Privacy friendly pay-as-you-drive insurance. WPES’07,
2007.

63

https://eng.uber.com/telematics/
https://itunes.apple.com/sk/app/axa-drive-2/id1093063218?mt=8
https://itunes.apple.com/sk/app/axa-drive-2/id1093063218?mt=8


APPENDICES

64



Appendix A

Questionnaires

The questionnaires filled by the participants before starting the experiment are given
below-
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                                                                                                                               Date: 
                                                                                                                            Participant ID: 

USER PERFORMANCE LAB 
PRE-STUDY QUESTIONNAIRE 

 
This is strictly confidential questionnaire. Only a randomly generated participant ID 
number, assigned by the research administrator will be on this questionnaire. No 
information reported by you here will be traced back to you personally in any way. 
You can skip any questions you do not feel comfortable answering. 
 
Section1: Demographics 
 
Gender:            Male ____      Female____     Other____          Prefer not to say____ 
 
Date of birth:    ____(MM)/_____(YYYY)                                   Age:______ 
 
Section 2: Driving History 
 
Approximately how old were you when you got your driver’s license? 
____Years____Months 
 
About how many kms did you drive in the past week? 
____Less than 50    ____Less than 100    ____100-200  ____200-300   ____300-500 
____500 or more 
 
About how many kms did you drive in the past 12 months? 
___Less than 5000     ___5000 to 10,000    ____10,001-15,000    ___15,001-20,000 
___More than 20,000 
 
Do you usually wear glasses or contacts while driving? 
____No         ____Yes, glasses      ____Yes, contacts 
 
Is there anything related to your background or health, including any medications that 
might cause you to drive much better or worse than other drivers? 
____Yes         ____No 
 
If yes, please describe:___________________________________________________ 
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USER PERFORMANCE LAB 
Driver Behavior Questionnaire 

 
This is a strictly confidential questionnaire. Only a randomly generated participant ID number, assigned by 
the research administrator, will be on this questionnaire. No information reported by you here will be traced 
back to you personally in any way. You can skip any questions you do not feel comfortable answering. 

 

 

          Participant ID:              Date:   

 

 

 There are 24 driving behavior statements and you are expected to rate them on a scale ranging from 0 
(rarely engage in this behavior) to 5 (engage in this behavior nearly all the time) based on your own 
experience. 
 
Please see the following page for the full questionnaire. 
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Statements 

R
a
r
e
l
y 

    A
l
w
a
y
s 

0 1 2 3 4 5 
Try to pass another car that is signaling a left turn.        

 Select the wrong turn lane when approaching an intersection.        
Fail to “Stop” or “Yield” at a sign, almost hitting a car that has right of way.        

Misread signs and miss your exit.        
 Fail to notice pedestrians crossing when turning onto a side street.        

Drive very close to a car in front of you as a signal that they should go faster or 
get out of the way.   

     

 Forget where you parked your car in a parking lot.        
When preparing to turn from a side road onto a main road, you pay too much 

attention to the traffic on the main road so that you nearly hit the car in front of 
you.   

     

 When you backup, you hit something that you did not observe before but was 
there.   

     

Pass through an intersection even though you know that the traffic light has 
turned yellow and may go red.   

     

 When making a turn, you almost hit a cyclist or pedestrian who has come up 
on your right side.   

     

Ignore speed limits late at night or very early in the morning.        
 Forget that your lights are on high beam until another driver flashes his 

headlights at you.   
     

Fail to check your rear-view mirror before pulling out and changing lanes.        
 Have a strong dislike of a particular type of driver, and indicate your dislike 

by any means that you can.   

     

 Become impatient with a slow driver in the left lane and pass on the right.        
 Underestimate the speed of an oncoming vehicle when passing.        

 Switch on one thing, for example, the headlights, when you meant to switch 
on something else, for example, the windshield wipers.   

     

Brake too quickly on a slippery road, or turn your steering wheel in the wrong 
direction while skidding.   

     

You intend to drive to destination A, but you “wake up” to find yourself on the 
road to destination B, perhaps because B is your more usual destination.    

     

 Drive even though you realize that your blood alcohol may be over the legal 
limit.   

     

Get involved in spontaneous, spur-of-the-moment, races with other drivers.        
Realize that you cannot clearly remember the road you were just driving on.        

You get angry at the behavior of another driver and you chase that driver so 
that you can give him/her a piece of your mind.    
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        Motion Sickness Susceptibility Questionnaire Short-form (MSSQ-Short) 
 
 

1. Please State Your Age   ..........  Years. 2.  Please State Your Sex (tick box) Male      Female 
            [     ]      [     ]                      1             2 
 
This questionnaire is designed to find out how susceptible to motion sickness you are, and what sorts of motion 
are most effective in causing that sickness.  Sickness here means feeling queasy or nauseated or actually 
vomiting.  
 
 
Your CHILDHOOD Experience Only (before 12 years of age), for each of the following types of transport or 
entertainment please indicate: 
 
3.  As a CHILD (before age 12), how often you Felt Sick or Nauseated (tick boxes): 
 
 Not 

Applicable 
- Never 

Travelled 

Never 
Felt Sick 

Rarely 
Felt Sick 

Sometimes 
Felt Sick 

Frequently 
Felt Sick 

Cars       
Buses or Coaches      
Trains      
Aircraft      
Small Boats      
Ships, e.g. Channel Ferries      
Swings in playgrounds      
Roundabouts in playgrounds      
Big Dippers, Funfair Rides      

     t  0  1             2                     3 

 
 
Your Experience over the LAST 10 YEARS (approximately), for each of the following types of transport or 
entertainment please indicate: 
 
4.  Over the LAST 10 YEARS, how often you Felt Sick or Nauseated (tick boxes): 
 
 Not 

Applicable 
- Never 

Travelled 

Never 
Felt Sick 

Rarely 
Felt Sick 

Sometimes 
Felt Sick 

Frequently 
Felt Sick 

Cars       
Buses or Coaches      
Trains      
Aircraft      
Small Boats      
Ships, e.g. Channel Ferries      
Swings in playgrounds      
Roundabouts in playgrounds      
Big Dippers, Funfair Rides      

     t  0  1             2                     3 
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Scoring the MSSQ- Short  
 
Section A (Child) (Question 3) 
 
Score the number of types of transportation not 
experienced (i.e., total the number of ticks in the 
‘t’ column, maximum is 9). 
 
Total the sickness scores for each mode of 
transportation, i.e. the nine types from ‘cars’ to 
‘big dippers’ (use the 0-3 number score key at 
bottom, those scores  in the ‘t’ column count as 
zeroes). 
 
MSA =  (total sickness score child) x (9) / (9 - 
number of types not experienced as a child) 
 
Note 1.  Where a subject has not experienced any forms 
of transport a division by zero error occurs.  It is not 
possible to estimate this subject’s motion sickness 
susceptibility in the absence of any relevant motion 
exposure. 
Note 2.  The Section A (Child) score can be used as a 
pre-morbid indicator of motion sickness susceptibility 
in patients with vestibular disease.  
 
Section B (Adult) (Question 4) 
 
Repeat as for section A but using the data from 
section B.  
 
 MSB =  (total sickness score adult) x (9) / 
(9 - number of types not experienced as an adult) 
 
Raw Score MSSQ-Short  
 
Total the section A (Child) MSA score and the 
section B (Adult) MSB score to give the MSSQ-
Short raw score (possible range from minimum 0 
to maximum 54, the maximum being unlikely) 
 
MSSQ raw score = MSA + MSB 
 
Percentile Score MSSQ-Short  
 
The raw to percentile conversions are given below 
in the Table of Statistics & Figure, use 
interpolation where necessary. 
 
Alternatively a close approximation is given by the 
fitted polynomial where y is percentile; x is raw score 
 y = a.x + b.x 2 + c.x 3 +d.x 4 
a = 5.1160923  b = -0.055169904 
c = -0.00067784495 d = 1.0714752e-005 

Table of Means and Percentile Conversion 
Statistics for the MSSQ-Short (n=257) 
 

Raw Scores MSSQ-Short  
 

Percentiles 
Conversion 

Child 
Section A  

Adult 
Section B

Total
A+B

            0 0 0 0
          10 .0 .0 .8
          20 2.0 1.0 3.0
          30 4.0 1.3 7.0
          40 5.6 2.6 9.0
          50 7.0 3.7 11.3
          60 9.0 6.0 14.1
          70 11.0 7.0 17.9
          80 13.0 9.0 21.6
          90 16.0 12.0 25.9
          95 20.0 15.0 30.4
        100 23.6 21.0 44.6

 
Mean 7.75 5.11 12.90

Std. Deviation 5.94 4.84 9.90
 

Table note: numbers are rounded 

Figure: Cumulative distribution Percentiles of the Raw 
Scores of the MSSQ-Short (n=257 subjects).  
 
Reference Note 
 
For more background information and references to the 
original Reason & Brand MSSQ and to its revised version 
the ‘MSSQ-Long’, see: 
Golding JF. Motion sickness susceptibility questionnaire 
revised and its relationship to other forms of sickness. Brain 
Research Bulletin, 1998; 47: 507-516. 
Golding JF. (2006)  Predicting Individual Differences in 
Motion Sickness Susceptibility by Questionnaire. 
Personality and Individual differences, 41: 237-248.  
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