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Abstract

Although a variety of rate adaptation algorithms have been proposed for 802.11 devices,
sampling-based algorithms are preferred and used in practice because they only require
frame loss information which is available on all devices. Unfortunately, sampling can
impose significant overheads because it can lead to excessive frame loss or the choice of
suboptimal rates. In this thesis, we design a novel neural network based rate adaptation
algorithm, called NeuRA. NeuRA significantly improves the efficiency of sampling in rate
adaptation algorithms by using a neural network model to predict the expected throughput
of many rates, rather than sampling their throughput. Furthermore, we propose a feature
selection technique to select the best set of rates to sample.

Despite decades of research on rate adaptation in 802.11 networks, there are no defini-
tive results which determine which algorithm is the best or if any algorithm is close to
optimal. We design an offline algorithm that uses information about the fate of future
frames to make statistically optimal frame aggregation and rate adaptation decisions. This
algorithm provides an upper bound on the throughput that can be obtained by practical
online algorithms and enables us to evaluate rate adaptation algorithms with respect to
this upper bound.

Our trace-based evaluations using a wide variety of real-world scenarios show that
NeuRA outperforms the widely-used Minstrel HT algorithm by up to 24% (16% on aver-
age) and the Intel iwl-mvm-rs algorithm by up to 32% (13% on average). Moreover, the
upper bound given by the offline optimal algorithm shows a throughput up to 58% (30%
on average) higher than Minstrel HT and up to 31% (12% on average) higher than NeuRA.
Hence, NeuRA reduces the gap in throughput between Minstrel HT and the offline opti-
mal algorithm by half. Additionally, our results show that several-fold improvements over
Minstrel HT shown in previous work are unlikely to be obtained in real-world scenarios.
Finally, we implement NeuRA using the Linux ath9k driver to show that the neural net-
work processing requirements are sufficiently low to be practical and that NeuRA can be
used to obtain statistically significant improvements in throughput when compared with
Minstrel HT.
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Chapter 1

Introduction

Thesis Statement: If relationships between WiFi physical rates can be leveraged, they
could be used to reduce the overhead of WiFi rate adaptation algorithms and improve
throughput.

1.1 Motivation

Modern wireless networking standards such as 802.11n and 802.11ac can achieve theoreti-
cal throughputs of up to 600 Mbps and 3.5 Gbps respectively. These standards use dense
modulations, channel bonding, multiple-input multiple-output (MIMO), and frame aggre-
gation to achieve such high throughput. As a result, modern WiFi devices have to choose
from a large number of different configurations (i.e., up to 768 physical rates).

The best physical rate to use for transmission at any point in time depends on the
channel state and a wide variety of environmental factors that can change in a fraction
of a second. In order to achieve the highest possible throughput, WiFi devices use a
rate adaptation algorithm to constantly choose the best physical rate for each packet
transmitted. Furthermore, a frame aggregation algorithm is used to aggregate up to 64
subframes (MPDUs) into an aggregated frame (A-MPDU) to increase the MAC layer
efficiency. Without frame aggregation, a 450 Mbps physical rate cannot achieve more than
50 Mbps. Rate adaptation and frame aggregation algorithms are not included in WiFi
standards and device manufacturers have to choose and implement their own mechanisms.

Sampling-based rate adaptation algorithms (e.g., Minstrel HT [12]) are highly popular
in commercial devices because they make decisions based on real-time measurements and
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they have been shown to work in a variety of conditions. These algorithms periodically
probe recently unused physical rates by transmitting data using those rates. This allows the
algorithm to determine the effective throughput of physical rates empirically. Sampling,
however, leads to a loss in throughput as data will be transmitted using non-optimal rates.
Moreover, because the fate of each packet is unknown when sampling, data is typically
sent without the use of frame aggregation, which also leads to a significant loss in channel
efficiency. As a result, there is an inherent trade-off between the sampling overhead and
effectiveness of the rate adaptation algorithm. In this work, we focus on improving upon
practical, widely-used, sampling-based algorithms and understanding how they perform
when compared to the offline statistically optimal algorithm.

With the growing number of modulation and coding schemes in newer WiFi standards,
näıve sampling methods do not scale well. Recent work has found that the frame error rate
(FER) of one physical rate may correlate with the frame error rate of several other physical
rates [1]. To the best of our knowledge, no algorithms exist that utilize the relationships
between rates to infer information about one or more rates based on the feedback obtained
from sampling other rates.

Furthermore, in 802.11n and later WiFi standards, the optimal physical rate for trans-
mission depends on the optimal number of frames to aggregate for each rate. Despite
years of research on improving rate adaptation and frame aggregation algorithms, an up-
per bound on how much better than widely-used algorithms new algorithms can perform
is unknown. An upper bound is important in order to understand how close to or how far
from optimal algorithms are and whether or not more research is needed.

1.2 Overview

In this thesis, we propose a neural network model for predicting the effective throughput
of all physical rates based on the effective throughput of a subset of rates that we call
the sampling set. We use a feature selection method to search for and find sampling sets
of different sizes (i.e., different numbers of rates) that maximize the prediction power for
estimating other rates. We implement a rate adaptation algorithm called NeuRA (Neural
network-based Rate Adaptation) that utilizes estimations from a neural network model to
reduce the amount of sampling required for rate adaptation.

Later, we derive and compare against a statistically optimal offline algorithm that uses
an oracle to make the optimal choice of the physical rate and the number of frames to
aggregate. This algorithm provides an upper bound on the throughput that could be
obtained using practical online algorithms (including NeuRA).
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We compare the performance of NeuRA with several other state-of-the-art rate adap-
tation algorithms including Minstrel HT (used by hundreds of millions of devices [31] and
the default rate adaptation algorithm in the Linux kernel’s mac80211 driver development
framework) and the Intel iwl-mvm-rs algorithm (used by modern Intel WiFi devices in-
cluded in modern laptops and computers).

When performing a trace-based evaluation across a variety of traces collected using
scenarios that reflect the environments in which WiFi devices are actually used, we find
that NeuRA provides significant improvements when compared with existing algorithms,
even on scenarios with previously unseen client devices and movement behaviours. This
demonstrates that the neural network model learns relationships between rates that are
generalizable across different devices and environments. Also, in many experiments NeuRA
obtains throughput surprisingly close to that of the offline optimal algorithm.

To evaluate the practicality of using NeuRA, we implement and evaluate a real-world
prototype using the ath9k WiFi driver. We find that NeuRA effectively improves the
throughput over Minstrel HT with relatively small additional requirements in processing
power.

1.3 Contributions

The contributions of this thesis are as follows:

• We propose a novel rate adaptation algorithm (NeuRA) that uses a neural network
model to estimate the effective throughput of the rates that are not sampled from
a smaller set of sampled rates. NeuRA reduces sampling overheads and increases
throughput.

• We use a recursive feature elimination (RFE) technique to recursively reduce the
number of sampling rates while ensuring that remaining rates incur low overheads
yet have good predictive power.

• We develop and describe an offline algorithm to calculate the statistically optimal
physical rate and number of frames to aggregate. This provides an upper bound on
the throughput that can be obtained using online algorithms.

• We find that NeuRA performs up to to 24% (16% on average) better than Minstrel HT
and up to 32% (13% on average) better than Intel iwl-mvm-rs. NeuRA provides
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throughputs that are relatively close to that of the offline statistically optimal. This
is despite the advantages gained by the offline algorithm from using information
about the future that is not available to online algorithms like NeuRA.

• Our results show that the offline statistically optimal algorithm performs up to 58%
(30% on average) better than Minstrel HT and up to 31% (12% on average) better
than NeuRA. This finding suggests that even though there is some room for improving
rate adaptation algorithms, it is not large. Additionally, it indicates that several-fold
improvements over Minstrel HT claimed in some previous work are likely the result
of algorithm misconfigurations and may not be true indicators of a fair comparison
using real-world use cases.

• We implement a real-world prototype of NeuRA using the ath9k WiFi driver to
evaluate the practicality NeuRA and find that it uses relatively little CPU power
(less than 20% of a 800 MHz CPU core) to perform estimations. It also increases
throughput by 15% on average when compared to Minstrel HT.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides background information
and describes related research. In Chapter 3, we describe the new algorithms that we
have developed. We begin by describing the neural rate adaptation (NeuRA) algorithm
which uses estimations from a neural network model to reduce the sampling overhead. We
then present the offline statistically optimal algorithm which provides an upper bound on
the throughput achievable by the best rate adaptation and frame aggregation algorithms.
Chapter 4 describes the required components to perform trace-based evaluations. We
first describe the process of collecting traces for training and evaluation and describe the
different scenarios we use to collect traces. We then describe the technique we use to verify
the correctness of the algorithms implemented in T-SIMn and describe the bugs we found
and how they were fixed. Chapter 5 contains a comprehensive evaluation of the neural
network model and a trace-based evaluation comparing NeuRA, the offline statistically
optimal algorithm, and several widely-used algorithms. In Chapter 6, we describe a real-
world prototype of NeuRA using the ath9k driver and evaluate its performance and the
required processing power. Finally, we conclude the thesis and present ideas for future
work in Chapter 7.
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Chapter 2

Background and Related Work

2.1 Background

In this section, we provide an overview of concepts related to and required to better under-
stand rate adaptation and frame aggregation. We then provide background information
on trace collection and trace-based evaluation. Finally, we provide a bit of background
information on neural network models.

2.1.1 Rate Adaptation

Modern WiFi standards contain several physical layer features that can be configured for
transmitting packets [14]. These features are:

• Modulation and Coding Scheme (MCS Index): The MCS index specifies the
modulation type and the coding rate to use for transmitting data frames. The mod-
ulation type specifies how digital data bits are encoded in an analog signal and vice
versa. The coding rate specifies the ratio of useful data bits to the total number of
bits transmitted (non-useful bits provide redundancy for error correction purposes).
For example, MCS index 0 usually refers to the BPSK modulation type and a 1/2
coding rate.

• Number of Spatial Streams (Antennas): Beginning with 802.11n, WiFi net-
works support Multiple-Input/Multiple-Output (MIMO) communication. MIMO
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transmits several streams of data simultaneously using multiple antennas [15]. MIMO
can increase the physical layer throughput of 802.11n devices by up to four times when
using four antennas. The optimal number of spatial streams to use is variable and
depends on channel conditions.

• Guard Interval Length (GI): The guard interval length specifies the amount of
time that the transmitter is idle between sending different symbols. This is done to
ensure that consecutive symbols do not interfere with each other. In 802.11n, 800 ns
is referred to as a long guard interval (LGI) and 400 ns is referred to as a short guard
interval (SGI).

• Channel Width: A single WiFi channel has a 20 MHz width. Starting with the
802.11n standard, WiFi devices are capable of aggregating channels (this is called
channel bonding) to use 40 MHz or wider channel widths for transmission.

The combination of these physical layer features provides WiFi devices with a large
number of choices when transmitting data frames. The physical rate refers to a specific
combination of physical layer features. For example, MCS Index 5, 2 Spatial Streams,
LGI, and 40 MHz refers to a single physical rate. In most indexing schemes, a different set
of MCS indices are assigned for each set of spatial streams. So, in 802.11n networks, the
previously mentioned physical rate is often referred to as MCS Index 13, LGI, 40 MHz.

The error rate of each physical rate is different for each environment. Error rates
depend on the distance between the sender and the receiver, a wide variety of environmental
parameters such as the location, shape and material of the objects in the environment, and
WiFi and non-WiFi interference from other devices. As a result, the physical rate that
will result in the highest achievable throughput is different in each environment.

WiFi devices must continually adapt to the constantly changing environment in order
to transmit data using the best physical rate. An algorithm that performs this adaptation
is called a rate adaptation algorithm. Rate adaptation algorithms are not specified in WiFi
standards and are the responsibility of device manufacturers to implement. Performing rate
adaptation has considerable overheads and costs associated with it. As a result, improving
rate adaptation algorithms and reducing their overheads is an active area of research.

2.1.2 Frame Aggregation

Before the 802.11n standard, the WiFi MAC layer was highly inefficient because of the
overheads imposed by acknowledgement frames and inter-frame gaps (data transmission
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throughput was a small fraction of the physical layer bitrate) [15]. The 802.11n standard
added a feature called frame aggregation to increase the efficiency of WiFi MAC layer.
Frame aggregation enables WiFi devices to aggregate up to 64 data frames called subframes
or MAC Protocol Data Units (MPDUs) into a larger aggregated frame called an Aggregated
MAC Data Protocol Unit (A-MPDU). The aggregated frame is then transmitted as a single
unit. Furthermore, the receiver sends back a single block acknowledgement frame (Block
ACK) to acknowledge the individual frames within an aggregated frame. Without frame
aggregation a 450 Mbps physical rate (MCS Index 23, SGI, 40 MHz) cannot achieve more
than 50 Mbps.

WiFi devices use frame aggregation algorithms to determine the best number of frames
to aggregate. These algorithms usually aggregate as many frames as possible up to a
maximum length (e.g., 64 frames) or up to the maximum transmission time permitted
(e.g., 4 ms). Recent research has shown that aggregating as many frames as possible is not
always the best choice and in some situations, reducing the aggregation length increases
WiFi throughput [2, 7]. This is because for some receivers, frames towards the end of
an aggregated frame experience much higher error rates than frames at the beginning.
As a result, more complex frame aggregation algorithms have emerged in an attempt to
continually try to determine the best aggregation length for each physical rate. Improving
frame aggregation algorithms has become an active area of research.

2.1.3 Trace-Based Evaluation

T-SIMn [4] is an 802.11n trace-based simulator. It allows one to record traces from real-
world WiFi experiments in a variety of settings using different client devices and then to
simulate the running of different combinations of rate adaptation and frame aggregation
algorithms using the recorded trace.

Conducting credible empirical evaluations is extremely difficult in WiFi networks be-
cause of highly variable channel conditions. Abedi et al. [3] show that even under controlled
conditions with no WiFi or non-WiFi interference, it is extremely difficult to perform
repeatable WiFi experiments or distinguish differences between competing alternatives.
Trace-based evaluation, on the other hand, enables the fair comparison of different rate
adaptation and frame aggregation algorithms because all algorithms are exposed to ex-
actly the same channel conditions. At any point in time, the simulator can determine the
expected throughput for the number of aggregated frames and the physical rate chosen by
the algorithms of interest. Because real-world traces are used, each algorithm is subjected
to identical channel conditions that replicate real-world conditions. We now explain how
T-SIMn enables such comparisons.
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During trace collection, the sending device transmits packets using all available physical
rates in a round-robin fashion. Each packet is sent using the maximum possible number
of aggregated frames for that rate and a variety of information about transmitted packets
and the received block ACK frames is recorded in the trace. This information includes
the physical rate used for transmitting each packet, the block ACK frame received for
that packet (or a notion that no block ACK is received within the timeout period), the
RSSI (received signal strength indication) of the block ACK frame, the total transmission
time, and channel access information (the amount of time it took the device to acquire the
channel). This information can be used to understand the environment and to replicate
the same environmental conditions when performing trace-based evaluations.

During the trace collection process, a large number of frames are sent in a short period
of time (as fast as possible) to gather statistics about the behaviour of all physical rates as
quickly as possible. When running trace-based evaluations, T-SIMn uses the information
from the trace in a window of time around the current time to determine the expected fate
of each subframe for all rates.

The sender device used in trace collection needs to run a modified driver with custom
rate adaptation and frame aggregation algorithms. As previously explained, the driver
should use a round-robin scheme for selecting the physical rate and aggregate as many
frames as possible when collecting the trace. It should also record the required information
for every transmitted packet and dump it in a file to create the trace. T-SIMn provides a
modified ath9k driver for devices supporting this driver. The receiver device, on the other
hand, has no specific requirements and any WiFi device can be used.

In Chapter 5, we use T-SIMn to perform trace-based evaluations in order to fairly
compare our proposed rate adaptation algorithm (NeuRA) and the offline statistically
optimal algorithm (proposed in Section 3.2) to several other widely-used algorithms. The
trace collection process is described in detail in Section 4.1.

2.1.4 Neural Networks

Neural networks are a powerful tool that are widely used as function estimators [13].
With enough layers and neurons and given enough data and processing power for training,
they can approximate a wide variety of functions for regression and classification [28, 29].
Regression models approximate a function mapping the input variables to continuous real-
valued output variables while classification models approximate a function mapping the
input variables to discrete output variables.
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In this thesis, we use a neural network model in the core of our rate adaptation algorithm
that learns the relationships between physical rates during the training phase. The neural
network then approximates a function mapping the throughput of a subset of rates that
are sampled to the throughput of other non-sampled rates. As we explain in Chapter 3,
this can be used to reduce the overhead of rate adaptation algorithms and improve their
throughput.

Without proper supervision, neural network models may overfit to the training data
and not learn generalizable relationships between the input and the output. Dropout [30] is
a technique to overcome the problem of overfitting in neural networks. During the training
phase, the Dropout technique randomly sets the value of a ratio of the neurons in each
layer to zero and amplifies the value of the others. It forces the neural network to avoid
converging to solutions that depend on specific connections between the neurons and/or
specific input values. We use this technique in our neural network model to avoid overfitting
the model on the training data and also force the neural network to learn multiple ways
of predicting an output value. The latter is useful when we eliminate the least important
features in the feature selection phase.

2.2 Related Work

In this section, we review previous research related to our work. In Section 2.2.1, we
describe different approaches to rate adaptation and explain why sampling-based rate
adaptation algorithms are the most popular choice for commercial devices. In Section 2.2.2,
we describe several approaches to improving frame aggregation algorithms. Finally, in
Section 2.2.3, we describe previous research on the existence of relationships between WiFi
physical rates which is the basis of some of our work.

2.2.1 Rate Adaptation Algorithms

The problem of rate adaptation in WiFi networks (sometimes called “rate control” or “link
adaptation”) is a long standing and widely researched problem. We review a subset of these
methods (mostly for 802.11n and 802.11ac networks) that are related to our work. For a
more comprehensive and detailed survey please see Yin et al. [31].
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Sampling-Based Rate Adaptation

Many WiFi rate adaptation algorithms use sampling which was first introduced in the
SampleRate algorithm [5]. Sampling-based algorithms periodically sample all or some of
the physical rates and use those measurements to choose the rate with the highest expected
throughput.

SampleRate [5] uses 10% of the frames for sampling. These frames are sent using ran-
dom rates selected from all available rates to measure their throughput. Every 10 seconds,
it calculates the throughput for all physical rates and chooses the one with the highest
expected throughput. The rate with the highest throughput is used to transmit the other
90% of the frames that are not used for sampling. SampleRate [5] changes the rate only
every 10 seconds which is considered very slow especially if the clients are mobile and
the best physical rate changes quickly. Also, it was designed for 802.11g networks (with
8 physical rates) and its approach is not scalable to modern WiFi standards with many
more physical rates.

Minstrel [11] is a sampling-based rate adaptation algorithm for 802.11g networks that
works in a similar fashion to SampleRate. Minstrel adapts the rate more frequently than
SampleRate and improves sampling by avoiding sampling the rates with very low or very
high error rates. It also selects four different rates to be tried in order (called a retry chain)
when one rate fails. During transmission, the WiFi device performs several physical layer
retransmissions when an aggregated frame is not transmitted successfully. It starts by using
the first rate in the retry chain and moves on to the next rate when a pre-specified number
of failures are observed with the current rate. These features and optimizations make
Minstrel a good choice for commercial devices. Minstrel HT [12] is a more recent variation
of Minstrel that is designed to work with with 802.11n and 802.11ac networks. Minstrel
and Minstrel HT are used in hundreds of millions of devices and are considered the most
widely used rate adaptation algorithms for 802.11g and 802.11n networks respectively [31].
Minstrel HT is the default rate adaptation algorithm in the mac80211 driver development
framework of Linux kernel as well as the widely-used ath9k WiFi driver.

Minstrel HT uses a ratio of transmitted frames for sampling (called probe frames) and
updates the four rates used in the retry chain several times per second. These four rates
are: the rate with the highest measured throughput, the rate with the second highest
throughput, the rate with the lowest error rate, and the lowest available rate. Minstrel HT
also limits the amount of sampling by checking a variety of conditions such as: avoiding
sampling the rates in the retry chain, avoiding sampling the rates that currently have an
error rate of less than 5%, and heavily reducing the sampling frequency for rates that
are slower than the first three rates in the retry chain. These optimizations considerably
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reduce the sampling overhead of Minstrel HT when compared to näıve sampling algorithms
such as SampleRate. As a result of its practicality, it has become a widely-used algorithm.
However, previous work suggests that Minstrel HT performs excessive sampling introducing
a considerable overhead [1, 26, 10].

There are many other sampling-based rate adaptation algorithms that take a differ-
ent approach to sampling than Minstrel HT. We next describe some examples of such
algorithms. MiRA [27] is one of the earliest algorithms that considers MIMO (multiple
spatial streams) physical rates. It classifies the physical rates into two MIMO modes (“sin-
gle stream” and “double stream”) and favours staying in the same MIMO mode unless
it senses a significant change in the throughput. It performs little regular sampling and
instead, upon sensing significant changes in the throughput of the currently used rate, it
starts to sample more aggressively and samples the next lower and the next higher rate in
the current MIMO mode as well as several rates in the other MIMO mode. MiRA may
not react quickly if the current rate has a very low error rate and a faster rates becomes
available while there is no significant change to current rate’s throughput.

While MiRA only considers devices with two antennas, RAMAS [26] presents another
rate adaptation algorithm that can be used with any number of antennas. RAMAS splits
the physical rates into enhancement groups each representing a combination of the number
of spatial streams, guard interval length, and channel width. These enhancement groups
are ordered as shown in Table 2.1 by group index. RAMAS adapts the enhancement
group and MCS index concurrently. To adapt each one, it uses a credit-based scheme
that counts every successful frame as a positive credit and every failed frame as a negative
credit. Whenever the credit exceeds a certain threshold, it increases the MCS index or
enhancement group index by one and whenever the credit gets lower than a threshold, it
decreases the MCS index or enhancement group index by one. Different credit thresholds
are used for MCS index adaptation and enhancement group adaptation.

Unfortunately, many other modern devices implement rate adaptation in their propri-
etary firmware, making it almost impossible to evaluate those algorithms. However, Intel
WiFi devices use a custom rate adaptation algorithm that is implemented in the open
source IwlWiFi driver studied by Grünblatt et al. [16]. Intel iwl-mvm-rs is the most recent
rate adaptation algorithm designed for Intel WiFi devices. It is the successor to Intel iwl-
agn-rs and is now used with the most recent Intel chipsets. Since Intel WiFi devices are
used in many modern laptops and personal computers, this algorithm is another exam-
ple of a practical and widely-used algorithm. Intel iwl-mvm-rs splits rates into several
groups (called columns) similar to RAMAS’s enhancement groups. Rate groups (columns)
for a two-antenna device using 802.11n rates are shown in Table 2.2 (A and B refer to
the two antennas of the device). Every column has a list of successor columns that are
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Table 2.1: Enhancement groups for RAMAS [26].

Group Index Num. Spatial Streams Guard Interval Channel Width

0 1 800 ns 20 MHz
1 1 400 ns 20 MHz
2 1 800 ns 40 MHz
3 1 400 ns 40 MHz
4 2 800 ns 20 MHz
5 2 400 ns 20 MHz
6 2 800 ns 40 MHz
7 2 400 ns 40 MHz
8 3 800 ns 20 MHz
9 3 400 ns 20 MHz
10 3 800 ns 40 MHz
11 3 400 ns 40 MHz
12 4 800 ns 20 MHz
13 4 400 ns 20 MHz
14 4 800 ns 40 MHz
15 4 400 ns 40 MHz

sampled when the current best rate resides in that column. Intel iwl-mvm-rs performs
sequential phases of MCS index adaptation and column adaptation in a loop as shown
in Figure 2.1 [16]. MCS index adaptation samples one lower and one higher rate in the
current column and switches to the best one. In the column scaling phase, every successor
column of the current column is sampled to check if the expected throughput of any rate
in those columns will be higher than the current rate’s throughput.

As described, different approaches are proposed for sampling-based rate adaptation in
previous work. To the best of our knowledge, none of these algorithms utilize relationships
between physical rates to infer information about the reliability of non-sampled rates. In
this thesis, we propose NeuRA (Neural Rate Adaptation) to improve the throughput of
sampling-based rate adaptation algorithms by reducing their sampling overhead. NeuRA
uses a neural network model to predict the throughput of non-sampled rates using the
measured throughput of other rates. We compare our proposed algorithm to Minstrel HT
and Intel iwl-mvm-rs because they are two practical and widely-used algorithms.
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Table 2.2: Rate columns used in Intel iwl-mvm-rs [16].

Column Antennas Guard Interval Next Columns

0 {A} LGI {1, 2, 4}
1 {B} LGI {0, 3, 4}
2 {A} SGI {0, 3, 5}
3 {B} SGI {1, 2, 5}
4 {A, B} LGI {0, 1, 5}
5 {A, B} SGI {1, 3, 4}

start MCS
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MCS
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column
scaling

untested	column	found
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Figure 2.1: Different states of the Intel iwl-mvm-rs algorithm [16].

RSSI/SNR-based Rate Adaptation

Several algorithms propose methods for determining and using some information about
the signal strength at the sender or the receiver to make informed decisions about the best
transmission rate to use for the current channel conditions.

SampleLite [24] uses the sender-side RSSI of incoming frames (from acknowledgements)
to select a baseline rate. To do so, it uses lookup tables to map different RSSI ranges to
different values of each physical layer feature (e.g., if the RSSI is less than -67, use a
20 MHz channel width, otherwise, use a 40 MHz channel width). It then performs very
limited sampling by trying one MCS index lower and one MCS index higher than the chosen
rate and selecting the best one. The sender-side RSSI is known to be an unreliable metric
for choosing the best transmission rate [17] and RSSI ranges proposed in SampleLite need

13



to be recalibrated for different devices and channel conditions.

The best source of information about the signal strength would be obtained from the
receiver side. There are several algorithms that use the signal strength at the receiver side
to improve rate adaptation. Unfortunately, transmitting this information to the sender
requires modifying control frames [31] (which requires changing protocol standards) or
relies on optional features of 802.11 protocols that to our knowledge are not typically
implemented by chipset manufacturers. Furthermore, such transmission incurs significant
overhead by consuming bandwidth between the sender and the receiver. Finally, by the
time the information is transmitted from the receiver to the sender, it may have become
invalid due to changes in the channel [26].

The ESNR [17] algorithm uses the channel state information (CSI) matrix reported by
the receiver device to predict which physical rates can transmit data reliably (have an error
rate of less than or equal to 10%). Based on our observations, the best rate for transmission
often has an error rate of greater than 10%. So this fixed threshold scheme may not be
able to choose the best rate. Also, many WiFi devices do not report CSI [24, 6].

ARAMIS [10] provides an alternative solution to ESNR for devices that do not report
CSI information. It uses the average SNR and separate SNR values from different antennas
on the receiver side to lookup the best transmission rate from a lookup table. This table
requires recalibration for different devices and environments.

Both ESNR and ARAMIS need a way to transmit the metrics from the receiver side
to the sender and as previously explained, there are several issues with this approach. As
a result, these algorithms are not used in practice.

Other Rate Adaptation Methods

HiWiLA [21] continually adapts the transmission rate using a series of state transitions in a
predesigned state transition graph. SmartLA [22] builds a reinforcement learning model on
top of HiWiLA to perform state transitions based on a reward (the current bit error rate).
SmartLA is related to our work since it employs machine learning in rate adaptation. We
had hoped to include SmartLA in our evaluation but we were not able to obtain code from
the authors and were not able to replicate their implementation because of missing details
regarding critical parameters used in their system and because it would require access to
their training data.

HiWiLA and SmartLA report improvements of factors of 6 and 20 respectively when
compared with Minstrel HT. We believe these results are misleading because SmartLA
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uses all available 802.11ac rates and frame aggregation while the algorithms they compare
with are restricted to using only 802.11g or 802.11n rates and do not appear to use frame
aggregation. As a result, in many evaluations Minstrel HT throughput does not exceed
25 Mbps while SmartLA achieves 500 Mbps (a factor of 20x difference). We believe their
large improvements are mainly due to differences in configurations (which rates can be
used and frame aggregation) rather than differences in algorithms. Across the variety
of devices and scenarios we studied, the gap between Minstrel HT and the statistically
optimal solution is much lower (about 30% on average and never more than 60%).

2.2.2 Frame Aggregation Algorithms

Researchers have observed that in some cases, subframes towards the end of an aggregated
frame incur higher error rates than subframes in the beginning [7]. As a result, MoFA [7]
and STRALE [8] attempt to calculate a good length to use for an aggregated frame (A-
MPDU). STRALE also additionally adjusts the physical rate to one rate lower or one rate
higher in an attempt to improve the throughput in certain situations.

PNOFA [2] is another algorithm that attempts to approximate the optimal frame ag-
gregation length. It uses Equation 2.1 to calculate the expected throughput for all possible
aggregation lengths and then chooses the best length for the current rate.

TR(N) =

∑N
i=1(1− SFERR(i))

τR(N)
(2.1)

In Equation 2.1, TR(N) represents the expected throughput from aggregating N packets
when using rate R. SFERR(i) is the average subframe error rate of the i-th subframe in
an aggregated frame sent using rate R which is calculated using statistics from previously
received block ACK frames. τR(N) is the time required to transmit an aggregated frame
of length N using rate R.

PNOFA then adds a few frames to the optimal length to sample the error rate of
later subframes in order to determine when to increase the aggregation limit when the
best length increases. PNOFA is shown to provide better performance than MoFA and
STRALE [2].

PNOFA also introduces an offline statistically optimal frame aggregation algorithm
(which we call OSOFA). It uses Equation 2.1 to choose the best aggregation length, but
an oracle is used to determine SFERR(i) values for future aggregated frames instead of
calculating it based on previously received block ACK frames. In a trace-based evaluation
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environment, this can be calculated from the trace by averaging subframe error rates in a
window of time centered around the current time (the same way the trace-based evaluator
decides the fate of subframes in the next A-MPDU). OSOFA then uses the exact calculated
length without adding any extra subframes. This algorithm provides an upper bound on
how much frame aggregation algorithms can improve throughput.

In our offline statistically optimal rate and frame adaptation algorithm, we calculate
the statistically optimal aggregation length for each rate in a similar fashion to OSOFA.
We also include STRALE and PNOFA in our trace-based evaluations to compare them
with other algorithms.

2.2.3 Relationships Between Physical Rates

Abedi et al. [1] show that there are relationships between the frame error rates of different
physical rates used by WiFi devices. That study has focused on providing evidence that
such relationships exist and their prevalence across different scenarios. They also implement
a proof of concept prototype that assumes the frame error rates of long guard interval
(LGI) rates are identical to their short guard interval (SGI) counterparts and reduces
the sampling frequency to show that relationships between rates can potentially be used
to reduce the sampling overhead in rate adaptation algorithms. We call this algorithm
“Minstrel HT without LGI Sampling” and include it in our trace-based evaluations because
it is designed to reduce the sampling overhead. Comparing this algorithm to our algorithm
(NeuRA) shows the benefits of using a neural network model for relationship estimations.

While Abedi et al. [1] focus on discovering and showing that relationships exist, they
have not determined precisely what those relationship are, how to find them, or which rates
are the best predictors of other rates. We build on this previous work by creating NeuRA,
a rate adaptation algorithm which uses a neural network model to estimate the throughput
of a set of non-sampled rates given the measured throughput of a set of sampled rates.
Furthermore, we propose a technique for determining the best set of rates to sample and
perform a comprehensive evaluation of NeuRA using a fairly large set of traces representing
different real-world conditions. We also demonstrate that it is plausible to implement
NeuRA in real-world WiFi devices by creating a prototype and showing it can increase
throughput when compared to Minstrel HT.
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2.3 Chapter Summary

In this chapter, we provide background information on rate adaptation and frame aggre-
gation algorithms and why they are an active area of research. Then we describe the
trace-based evaluation methodology enabled by T-SIMn. We then describe the use of neu-
ral networks in function estimation which is the reason we use them in our proposed rate
adaptation algorithm (NeuRA).

We review some relevant studies that solve the problem of rate adaptation, examine
the different approaches used, and explain why sampling-based rate adaptation is the
most practical approach and why it is widely used in commercial devices. We also review
several frame aggregation algorithms and describe the work demonstrating the existence
of relationships between WiFi physical rates.
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Chapter 3

Proposed Algorithms

In this chapter, we first introduce the neural rate adaptation (NeuRA) algorithm in Sec-
tion 3.1. NeuRA uses a neural network model to predict the expected throughput of some
of the physical rates based on the measured throughput of others in an attempt to reduce
the sampling overhead and increase the throughput of sampling-based rate adaptation al-
gorithms. We also propose a method for selecting the best subset of rates for sampling.
Next, in Section 3.2, we present the offline statistically optimal joint rate adaptation and
frame aggregation algorithm. This algorithm uses an oracle to examine the fate of future
frames to make statistically optimal choices of the physical rate and the number of frames
to aggregate at each point in time. This provides an upper bound on the throughput
achievable by online rate adaptation and frame aggregation algorithms.

3.1 Neural Rate Adaptation (NeuRA)

As described in Section 2.2.3, relationships exist between WiFi physical rates. It is expected
that these relationships can be used to estimate the reliability of one or more rates based on
the reliability of others. If such estimations are possible, they can be used to improve the
efficiency of sampling-based rate adaptation algorithms by reducing the number of rates
being sampled.

In this section, we use a neural network model to learn the relationships between the
rates and use them to estimate the reliability of the rates not being sampled. We also
propose a technique for finding the best set of rates to sample which we combine with
models obtained from training our neural networks to implement our algorithm called
NeuRA. We evaluate the performance of NeuRA in Chapters 5 and 6.
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We first present the architecture of our neural network model in Section 3.1.1. Then,
we describe the procedure used to process raw WiFi traces to generate data sets suitable
for training and evaluating the model in Section 3.1.2. Finally, we explain the approach
used for feature selection in order to find the best subset of rates to sample in Section 5.1.

3.1.1 Proposed Model

We propose the use of a feed forward neural network model that takes the effective through-
put of a subset of physical rates (called the sampling set) as input and estimates the ex-
pected throughput of the rates not in the sampling set. The architecture of this model is
shown in Figure 3.1. Based on our experiments with different architectures (not included
here), this architecture provided the best accuracy over the training set for the two config-
urations used for training and evaluation (one with 32 physical rates and the other with
64).

The inputs to the model are the effective throughputs (i.e., measured throughputs) of
the rates in the sampling set which can be of any size from 1 up to the total number of
supported physical rates. The 3 hidden layers and the output layer of the model use the
Rectified Linear Unit (ReLU) activation function. Each hidden layer contains 64 neurons
and the output layer contains a neuron for each supported rate. Note that the neural
network estimates the throughput of all available rates, however, we are only interested in
the expected throughput of the rates that are not sampled. Also, we use a 10% dropout [30]
after each hidden layer to avoid converging to solutions that depend on specific connections
between the neurons and to avoid over fitting the model to the training data.

We implement and train the model using the Keras library [9] and use it for feature
selection and prediction. For training parameters, we use a batch size of 50, the mean
squared error (MSE) loss function, and the Adam optimizer [23]. We train the model for
1,000 epochs after which the loss function stabilizes.
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Figure 3.1: Structure of the proposed neural network model.
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3.1.2 Data Set Preparation

We use recorded WiFi traces to train and evaluate the neural network model. During
trace collection, an access point constantly transmits data packets to a client device using
all available physical rates in a round-robin fashion. For each rate, the maximum frame
aggregation length permitted for that rate is used. The block acknowledgment frames
received from the client are recorded in the trace. As a result, traces include the required
information to calculate the error rates for each subframe position within an aggregated
frame within a time window. Section 4.1 describes the different scenarios used for trace
collection. We use two disjoint sets for training and evaluation (a training set and a testing
set) in order to perform a valid evaluation. We now explain the method used to process
raw WiFi traces to generate data sets suitable for training and testing.

During our experiments (results are not shown here), we found that models that use
effective throughput values obtain better results than those that use reliability (i.e., frame
error rates). We believe that throughput values yield better results than frame error
rates because neural networks try to minimize the average prediction error across all pre-
dicted values. However, an equal amount of error in frame error rates affects the expected
throughput of different rates differently (e.g., a 3% difference in error rates results in larger
differences in expected throughput for higher rates).

To create a data set, raw traces are processed so that the effective throughput of each
rate is calculated using 1-second time windows. A 1-second window is used to include
enough samples to obtain useful indications of error rates and the effective throughput for
all physical rates while also capturing the channel state variability.

We obtain the effective throughput of a physical rate R in a time window w(t) using the
following equation inspired by PNOFA [2] with the maximum aggregation length (N). We
add channel access time to the formula from PNOFA to obtain more accurate throughputs
for scenarios with variable channel access times.

TR(N,w(t)) =
ρ×

∑N
i=1(1− SFERR(i, w(t)))

C̄(w(t)) + τR(N)
(3.1)

for w(t) we use a 1-second time window containing time t. TR(N,w(t)) represents the
expected throughput (in Mbps) from aggregating N packets when using rate R in time
window w(t). The numerator is the expected number of successful bits and the denominator
is the expected time to transmit the aggregated frame. ρ is the number of data bits in each
subframe (MPDU) for which we use a typical value of 12,320 (1,540 bytes). SFERR(i, w(t))
is the average subframe error rate of the i-th subframe in an aggregated frame sent using
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rate R in time window w(t). This is calculated from the Block ACK frames in the trace.
C̄(w(t)) is the average channel access time in time window w(t) and is calculated from
the channel access information in the trace. τR(N) is the time required to transmit an
aggregated frame of length N using rate R which is calculated based on protocol standards
using the T-SIMn library.

Finally, we divide all throughput values by the maximum physical rate in our traces
(300 Mbps) to scale all values to the normalized [0, 1] range to make them suitable for
training the neural network model. An example of the resulting data set which contains
the effective throughputs calculated for all rates in 1-second time windows is shown in
Table 3.1. We construct the training data set by concatenating the data sets extracted
from multiple training traces and construct the testing data set by concatenating the data
sets extracted from the testing traces.

Table 3.1: Format of the data set extracted from the traces.

Time (s) TPut1 TPut2 ... TPut64

0 0.015 0.039 ... 0.0
1 0.016 0.035 ... 0.0
... ... ... ... ...

2399 0.009 0.027 ... 0.0

3.1.3 Feature Selection Technique

An important component of NeuRA is the technique used for feature selection (or feature
elimination). Feature selection is necessary since we have to choose a subset of physical
rates to be sampled which can be given to our model as input. Only the training data is
used for feature selection. To explain our approach to feature selection, suppose we have N
input features (rates) and we want to eliminate K features. The goal is that the remaining
N − K features should provide the most accurate throughputs estimations for all other
rates. Additionally, the K eliminated rates should ideally reduce the sampling overhead
as much as possible.

To accomplish this, first, we train the neural network using N input rates. Then we
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calculate the importance δ(R) of each input rate R as follows:

δ(R) =

∑
d∈T |

∂L
∂R

(d)|
τR

where T is the training data set, d is a row (1-second time window) in the training data,
L is the loss function of the neural network, and τR is the time required to sample rate R
using a single frame.

This equation sums the absolute value of the derivative of the neural network’s loss
function with respect to the effective throughput of input rate R (i.e., the impact of rate R
on the neural network’s loss function) over the entire training set and divides it by the time
required to probe rate R. The intuition behind the equation is that we are interested in
rates with the highest Estimation Power

Probing Time
value. This equation was empirically found to choose

rates that result in better training set accuracy when compared to other scoring schemes
we studied (not included here).

After assigning the importance values, we eliminate the K input rates with the lowest
importance scores. Since we use the dropout technique, we expect the neural network to
learn different dependencies that exist between the rates and not rely on a single depen-
dency for each rate.

Using the described elimination scheme, we start with the initial sampling set containing
all supported rates. Then we perform Recursive Feature Elimination (RFE) to reduce the
size of the sampling set. After each step, we drop K input features (rates), retrain the
network using the remaining input rates, and recalculate the feature importance scores.
This is done repeatedly until all desired set sizes have been determined. Since using K = 1
for the whole process makes feature selection very slow, we set K = 4 for set sizes greater
than 32, decrease it to K = 2 when we reach 32 input rates, and to K = 1 when we reach
12 input rates.

3.2 Offline Statistically Optimal Algorithm

For decades, new rate adaptation and frame aggregation algorithms have been invented
and compared with each other. These evaluations depend on the techniques being used for
comparison (which are prone to problems and errors [3]) and the environments in which
they are evaluated. An important and unresolved question is how well these algorithms
compare with one that makes optimal decisions. This is an important question because
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if they do well relative to an offline optimal algorithm under a wide variety of conditions,
future research may not be required.

To that end, we now describe an algorithm for making statistically optimal decisions
for both rate adaptation and frame aggregation aspects. This requires knowledge about
the fate of all subframes for current and future aggregated frames and for all rates that
could have been chosen.

Since this method uses information from the future and does not incur sampling over-
heads, it is superior to all online (practical) algorithms. The value in this algorithm is that
its resulting throughput can be used as an upper bound for what could be achieved by a
perfect combination of rate adaptation and frame aggregation algorithms. That is, it pro-
vides a basis for determining how close to or far from our algorithm and other widely-used
algorithms perform when comparing the throughput.

Our algorithm first determines the best aggregation length for each physical rate and the
effective throughput associated with that aggregation length. To do so, we use Equation 3.1
which is inspired by PNOFA [2] to calculate the expected throughput values TR(N,w(t))
for a time window centered at time t and for all possible values of N (up to the maximum
aggregation length for rate R). Defining w(t) as a symmetric time window centered around
time t allows us to estimate the expected throughput of each rate R with any aggregation
length N at time t.

After calculating TR(N,w(t)) for all values of N , we determine the value N that max-
imizes the expected throughput and store it along with its expected throughput as the
best possible choice for rate R. The algorithm then chooses the rate with the maximum
expected throughput along with the computed optimal aggregation length for time t.

While this algorithm may appear only to be of theoretical interest, we are able to
implement this algorithm in the T-SIMn simulator. Because T-SIMn uses a trace-driven
approach to evaluating frame aggregation and rate adaptation algorithms, this algorithm
can be implemented by allowing the simulator to look ahead into the future to compute
the statistically optimal decisions for these choices. This is possible because by design,
the traces contain information about the fate of each subframe for all available rates and
the statistically optimal solution can be computed for a given window size. The results
of running this offline optimal solution on the traces and its comparison with practical
algorithms are presented in Section 5.3.
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3.3 Chapter Summary

In this chapter, we first present the required components to build a rate adaptation algo-
rithm that uses predictions from a neural network model in order to reduce the sampling
overhead. We present the architecture of the proposed neural network model, training pa-
rameters, the process used to extract training and testing datasets from raw WiFi traces,
and a feature selection technique to select the best subset of WiFi physical rates to sample
and use as the neural network model’s input.

Next, we present the offline statistically optimal algorithm which makes optimal choices
for the number of frames to aggregate and the physical rate to use at each point in time. We
explain that the design of T-SIMn and its use of real-world traces makes it possible for us
to implement this algorithm in T-SIMn and determine an upper bound for the throughput
of a trace. Using T-SIMn, both of these algorithms are evaluated on a variety of real-world
WiFi traces and compared to widely-used algorithms in Chapter 5.
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Chapter 4

Evaluation Methodology

In this chapter, we describe two components that are necessary for performing a compre-
hensive and credible trace-based evaluation. In Section 4.1, we describe the process of
collecting two diverse sets of real-world WiFi traces. One set is used for training the model
and another set is used for evaluation purposes. In Section 4.2, we explain the technique
of using synthetic traces to verify the expected behaviour of the rate adaptation and frame
aggregation algorithms implemented in T-SIMn. We also describe three bugs that we have
found and fixed using this verification technique.

4.1 Trace Collection

In this thesis, we use two disjoint sets of traces for training and evaluation (the training
and testing sets) in order to perform a valid and credible evaluation of our model. The
data set extracted from the training traces is used to train the models, select the best set
of rates to sample and to determine the best set of parameters to use for NeuRA. The data
set extracted from the raw testing traces is used to evaluate the accuracy of the models
and the raw testing traces are later used to evaluate different algorithms using T-SIMn.

It is important to collect a diverse set of traces for both training and evaluation. Traces
should cover stationary and mobile clients, congested and unoccupied WiFi channels, dif-
ferent environments (e.g., locations within office spaces), and different devices in case
relationships are different for different scenarios. A diverse set of training traces helps the
model to learn more generalizable relationships between rates while a diverse set of testing
traces helps us to evaluate the models under a wide variety of conditions. Additionally,
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the testing set should also include traces that are different from all training scenarios (e.g.,
different client devices or different conditions) as well as some traces similar to the training
scenarios. This way, we can evaluate the accuracy of the model on both previously seen
and unseen scenarios.

A TP-Link TL-WDN4800 802.11n PCI-E wireless card which runs a modified version
of the ath9k driver (included in T-SIMn) is used as the sending device. The receiving
device does not require a modified driver so a variety of receiving devices are used for trace
collection.

Most commonly used WiFi devices (including most recent phones and laptops) have
two antennas. Also, even though the highest channel width in the 802.11n standard is
40 MHz, most devices will not use a 40 MHz channel width when using the 2.4 GHz
carrier frequency due to channel congestion [19]. As a result, we use the two configurations
shown in Table 4.1 for trace collection. For Configuration A a WiFi channel is shared with
other active devices (which is typical in 2.4 GHz networks) and for Configuration B an
unoccupied 5 GHz channel is used. Because the two configurations have different available
rates and because different frequency spectrums may have different relationships between
physical rates, we train two separate models (Model A and Model B).

Table 4.1: Two configurations used for trace collection.

Config Spectrum # Antennas Channel Width # Rates Channel Condition

A 2.4 GHz 2 20 MHz 32 Congested
B 5 GHz 2 40 MHz 64 Unoccupied

We collect traces using several devices and several environments in which devices are
expected to be used. Training scenarios are shown in Table 4.2. Six traces are collected
for Model A (using Scenarios T1 to T6) and nine traces are collected for Model B (using
Scenario T1 to T9). The length of each training trace is 40 minutes. Testing scenarios are
shown in Table 4.3. These traces are 3 - 20 minutes long. Testing scenarios are chosen to
cover most devices, client states, and environments.

Scenarios A1 to A7 are used to evaluate Model A and scenarios B1 to B7 are used for
Model B. Scenarios A1 to A4 and B1 to B3 are similar to a training scenario while scenarios
A5 to A7 and B4 to B7 are different from all training scenarios. We collect traces using
four different receiving devices: a Samsung Galaxy Note 5 phone (SM-N920C), a TP-Link
TL-WDN4200 USB adapter, a Huawei P20 phone (EML-L09C), and an Intel 8265 laptop
WiFi card.
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Two experiments labelled “extra movement” refer to moving and shaking the device
while walking with the device in hand. These are included to evaluate rate adaptation
algorithms in cases of high mobility and on previously unseen scenarios. In “toy train”
scenarios, the device is mounted on a toy train which simulates movement with a constant
speed. “Close AP” refers to a scenario with about 1 meter between the client (receiver)
and the access point (sender) and “Distant AP” refers to a distance of about 10 meters.

Table 4.2: Scenarios for training traces.

Scenario Device State Description

T1 SM-N920C Stationary Close AP
T2 SM-N920C Stationary Distant AP
T3 SM-N920C Walking Environment 1
T4 SM-N920C Walking Environment 2
T5 SM-N920C Toy train Slow Speed
T6 SM-N920C Toy train Fast Speed
T7 TL-WDN4200 Stationary Close AP
T8 TL-WDN4200 Stationary Distant AP
T9 TL-WDN4200 Walking Environment 1

4.2 Using Synthetic Traces to Verify Algorithms

In this thesis, we use trace-based evaluation to compare NeuRA and the offline statistically
optimal algorithm to several widely-used algorithms. In this section, we perform tests to
ensure that algorithms implemented in T-SIMn behave as expected. Anomalies in the
expected behaviour of the algorithms can be used to find potential bugs.

To do so, we create synthetic traces for which we can roughly predetermine the expected
behaviour of different algorithms. In such traces, the fate of all subframes for all rates is
known for a specified time interval and does not change during that interval. Additionally,
the trace should work with all existing algorithms and be consistent with the assumptions
made by different algorithms (e.g., a lower MCS index should have an error rate less than
or equal to a higher MCS index, and subframes at the beginning of an aggregated frame
should have lower error rates than subframes towards the end).
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Table 4.3: Scenarios for testing traces.

Scenario Device State Description Length

A1 SM-N920C Stationary Distant AP 20 Min
A2 SM-N920C Walking Environment 1 20 Min
A3 SM-N920C Walking Environment 2 20 Min
A4 SM-N920C Toy train Fast Speed 20 Min
A5 TL-WDN4200 Walking Extra Movement 5 Min
A6 EML-L09C Stationary Distant AP 3 Min
A7 Intel 8265 Walking Environment 1 + 2 5 Min

B1 SM-N920C Stationary Close AP 20 Min
B2 SM-N920C Walking Environment 2 20 Min
B3 SM-N920C Toy train Slow Speed 20 Min
B4 SM-N920C Walking Extra Movement 10 Min
B5 TL-WDN4200 Walking Extra Movement 5 Min
B6 EML-L09C Walking Environment 1 + 2 3 Min
B7 Intel 8265 Walking Environment 1 + 2 5 Min

We have run all rate adaptation and frame aggregation algorithms in T-SIMn using this
trace to validate if they perform as expected in different time intervals. As a result, we
have found and patched bugs in three of these algorithms. After patching these bugs, all
algorithms seem to behave as expected on our synthetic traces. Note that this method helps
us to find bugs by spotting unexpected behaviours but it does not prove the correctness of
algorithms. Section 4.2.1 describes the process of creating synthetic traces and Section 4.2.2
describes the bugs we have found and patched in the algorithms.

4.2.1 Trace Creation

We generate the synthetic trace so that during a time interval all rates below a threshold
always succeed and all higher rates always fail. Similarly, we choose a maximum aggrega-
tion length so that all subframe with an index less than or equal to that length succeed
and all subframes past that length fail during the time interval. By doing so, we can un-
derstand and predict the rate and the aggregation length to which a good algorithm will
eventually converge.
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We use a Python script to generate the trace information based on the desired best
rate and frame length. Similar to the traces collected from real-world experiments, this
trace contains information about all physical rates at all times. To simplify the trace and
because it is not relevant to examining the correctness of the algorithm implementations,
we assume that the channel access time is zero (i.e., there is no interference from other
WiFi and non-WiFi devices).

In order to create traces that match the expectations of different algorithms, we use
the following relationships between rates:

• Increasing the MCS index, increases the error rate because a denser modulation or a
less-redundant coding scheme is used [15].

• Increasing the number of spatial streams, increases the error rate [24].

• Increasing the channel width, increases the error rate [24].

• Short guard interval (SGI) rates have a higher error rate than their long guard interval
(LGI) counterparts as they use a less conservative inter-frame gap [15].

The trace is created using different patterns for multiple 1-minute intervals. During
that interval, the behaviour of each rate is unchanged. For each 1-minute interval, a
random physical rate is chosen as the maximum rate that successfully transmits the data
(Rmax) during that interval. Based on the relationships described above, all rates that are
supposed to have a higher error rate than Rmax fail during that interval and all rates that
are supposed to have a lower error rate than Rmax successfully transmit the data during
that interval. To be more specific, each physical rate (R) that satisfies all of the following
conditions is successful during the interval while all other rates fail.

• Num Spatial Stream(R) <= Num Spatial Stream(Rmax)

• MCS Index(R) <= MCS Index(Rmax)

• Channel Width(R) <= Channel Width(Rmax)

• Guard Interval(R) >= Guard Interval(Rmax)

Additionally, a aggregation length limit (LENlimit) is chosen randomly from a set of
possible values ({1, 4, 16, 32}) for each time interval. For all rates, all subframes in an
aggregated frame that have an index greater than LENlimit fail all the time. Every rate
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also has a maximum aggregation length that is determined by the number of frames that
can be sent in a specified time limit (4 ms in T-SIMn) which we refer to as LENmax. As a
result, during each 1-minute interval, the optimal physical rates is Rmax and the optimal
frame aggregation length for that rate is LENbest(Rmax) = min(LENmax(Rmax), LENlimit).

Note that these synthetic traces represent extreme conditions that are never seen in
the real world. For example, using a wider channel width or more spatial streams usually
increases the throughput because their higher bitrate usually outweighs their higher error
rates. As a result, many algorithms perform poorly on some of the time intervals. However,
even though these traces do not represent real-world conditions, they help us to test several
properties of rate adaptation and frame aggregation algorithms, because we know the
behaviour of the trace at different time intervals.

We have generated several different synthetic traces and used them to validate the
behaviour of different algorithms in T-SIMn. Here, we present one of these traces that
triggers all three bugs it helped us to find and fix. Table 4.4 shows the maximum physi-
cal rate that succeeds (Rmax), the maximum possible aggregation length for Rmax which
we call LENmax(Rmax), the aggregation length limit (LENlimit) for each 1-minute in-
terval in this trace, and the best aggregation length for Rmax which is LENbest(Rmax) =
min(LENmax(Rmax), LENlimit). The optimal throughput for each time interval is achieved
by aggregating LENbest(Rmax) frames using rate Rmax. The throughput of this optimal
configuration for each interval is also shown in the table.

Time intervals that have a lower aggregation length limit (LENlimit) than LENmax(Rmax)
are expected to maximize the throughput improvements caused by non-trivial frame aggre-
gation algorithms such as STRALE and PNOFA and algorithms that aggregate as many
frames as possible are expected to perform poorly during those intervals. We now describe
how we use this trace to find and fix bugs in some of the T-SIMn algorithms.

4.2.2 Finding and Fixing Bugs

Using the synthetic traces, we found a bug in the STRALE implementation, a bug in
Minstrel HT w/o LGI Sampling presented by Abedi et al. [1], and a bug in our porting of
the Intel iwl-mvm-rs algorithm from the work of Grünblatt et al. [16] to T-SIMn. We now
describe how we found and fixed these bugs.
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Table 4.4: Maximum rate and aggregation length for each time interval in the synthetic
trace.

Interval
(s)

Max Physical Rate
(Rmax)

Max Len
For Rmax

Aggr Limit
(LENlimit)

Best Len
For Rmax

Max
Tput

(Mbps)

[0, 60) 2 SS, MCS 5, 20 MHz, LGI 32 4 4 64.1
[60, 120) 2 SS, MCS 1, 20 MHz, LGI 8 1 1 17.0
[120, 180) 2 SS, MCS 6, 40 MHz, LGI 32 32 32 201.1
[180, 240) 1 SS, MCS 4, 40 MHz, SGI 29 4 4 58.3
[240, 300) 2 SS, MCS 2, 20 MHz, SGI 14 1 1 23.4
[300, 360) 2 SS, MCS 6, 20 MHz, LGI 32 4 4 69.4
[360, 420) 2 SS, MCS 6, 20 MHz, SGI 32 32 32 114.4
[420, 480) 2 SS, MCS 0, 20 MHz, SGI 4 16 4 12.4
[480, 540) 1 SS, MCS 6, 20 MHz, LGI 19 32 19 52.3
[540, 600) 2 SS, MCS 7, 40 MHz, LGI 32 1 1 44.9
[600, 660) 2 SS, MCS 7, 20 MHz, SGI 32 16 16 116.3
[660, 720) 1 SS, MCS 5, 40 MHz, SGI 32 4 4 71.0
[720, 780) 1 SS, MCS 6, 20 MHz, SGI 21 1 1 29.4
[780, 840) 1 SS, MCS 5, 20 MHz, SGI 19 32 19 51.7
[840, 900) 2 SS, MCS 4, 40 MHz, SGI 32 4 4 89.4

STRALE

The bug in STRALE was found by comparing the throughput of STRALE with the
throughput of Minstrel HT. Minstrel HT aggregates as many frames as possible while
STRALE reduces the aggregation length when shorter aggregated frames result in higher
throughput. In this synthetic trace, the best aggregation length is considerably lower
than the aggregation length chosen by Minstrel HT during many time intervals. As a
result, STRALE is expected to perform better than Minstrel HT during those time inter-
vals. Note that in real-world experiments, STRALE does not always perform better than
Minstrel HT in scenarios with a relatively high channel access time (high interference).
However, as previously explained, there are no channel access delays in the synthetic trace
for validation.

Counter to our expectation, we observed (as shown in Figure 4.1) that STRALE was
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providing throughput lower than Minstrel HT during the time intervals [360, 420) and
[780, 840). In these two specific intervals, STRALE was supposed to aggregate as many
frames as possible but it was choosing an aggregation length much lower than expected.
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Figure 4.1: STRALE versus Minstrel HT before STRALE bug fix.

After investigating the problem, we found that the block ACK feedback generated by
T-SIMn is written to indices 0 to len− 1 of an array in one function, while the STRALE
code was reading from indices 1 to len of the same array in another function. This was
causing STRALE to obtain incorrect information about which subframes are acknowledged
and resulted in incorrect decisions regarding the number of frames to aggregate.

Listing 4.1 shows the code snippets containing this bug and Listing 4.2 shows the same
code snippets after fixing the bug. Figure 4.2 shows STRALE throughput after fixing this
bug. The lower throughput of STRALE compared to Minstrel HT is not visible any more
after the fix.

Minstrel HT without LGI Sampling

The Minstrel HT without LGI Sampling algorithm is used by Abedi et al. [1] as a proof
of concept to show the benefits of reducing the sampling overhead of Minstrel HT. As
described in Section 2.2.3, this algorithm reduces the sampling frequency by only sampling
SGI (Short Guard Interval) rates and approximating the error rate of LGI (Long Guard
Interval) rates to be equal to their SGI counterparts. It is one of the rate adaptation
algorithms that we compare against in Chapter 5.
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Listing 4.1: STRALE code snippets containing the bug.

1// STRALE reading the subframe error rate array (line with bug)
2for (i = 1; i < aggr num + 1; i++) {
3thpt += (1 − an−>sfer[tidno][i]) ∗ thpt div;
4}
5...
6// Another function filling the subframe error rate array
7for (int i = 0; i < feedback.fa.num mpdus(); i++) {
8an .sfer[0][i] = 1 − feedback.acks[i];
9}

Listing 4.2: STRALE code snippets after fixing the bug.

1// STRALE reading the subframe error rate array (bug fixed)
2for (i = 0; i < aggr num; i++) {
3thpt += (1 − an−>sfer[tidno][i]) ∗ thpt div;
4}
5...
6// Another function filling the subframe error rate array
7for (int i = 0; i < feedback.fa.num mpdus(); i++) {
8an .sfer[0][i] = 1 − feedback.acks[i];
9}
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Figure 4.2: STRALE versus Minstrel HT after STRALE bug fix.
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Although an SGI rate and its LGI counterpart may have similar error rates in some
real-world scenarios, this is not the case in our synthetic trace. In this trace, by design, all
SGI rates fail during the time intervals during which the maximum physical rate (Rmax)
is an LGI rate. Because this algorithm only samples SGI rates, it is expected to provide
near-zero throughput during these intervals. On the other hand, during the time intervals
during which Rmax is an SGI rate, the LGI rates have an error rate similar to their SGI
counterparts. As a result, this algorithm is expected to provide throughput similar to or
higher than Minstrel HT during these intervals.

When running this algorithm on the synthetic trace, we observed that it provides
unusually low throughput during the time intervals [360, 420) and [600, 660) during which
the maximum rate is an SGI rate. This is shown in Figure 4.3. After investigation,
we found that sometimes sampling comes to a complete halt for more than a minute
when using this algorithm. We found that the problem was with a part of Minstrel HT
code that was modified to reduce the amount of sampling. Minstrel HT uses a variable
called sample wait to pause sampling until a specified number of frames are sent. In
this algorithm, sample wait was unconditionally being multiplied by a factor of two when
receiving any feedback from the simulator. In reality, sample wait should be multiplied by
that factor only when sample wait is reset by Minstrel HT.

We modified the code to fix this bug. Listing 4.3 shows a code snippet from Min-
strel HT w/o LGI Sampling that contains this bug and Listing 4.4 shows the same code
snippet after fixing the bug.

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0
200.0

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

Unexpected Throughput

T
hr

ou
gh

pu
t

(M
bp

s)

Time (s)

Minstrel HT w/o LGI sampling
Minstrel HT (ath9k)

Figure 4.3: Minstrel HT w/o LGI sampling versus Minstrel HT before the bug fix.
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Listing 4.3: The code snippet containing the bug found in Minstrel HT w/o LGI Sampling.

1// Minstrel HT resetting sample wait
2if (!mi−>sample wait && !mi−>sample tries && mi−>sample count > 0) {
3mi−>sample wait = 16 + 2 ∗ MINSTREL TRUNC(mi−>avg ampdu len);
4mi−>sample tries = 1;
5mi−>sample count−−;
6}
7// Minstrel HT w/o LGI Sampling multiplying sample wait
8// Bug: The following block should be inside the previous if block
9if (uw minstrel stats mode != MINSTREL DEFAULT) {
10mi−>sample wait ∗= sampleReduceFactor;
11}

Listing 4.4: The code snippet in Minstrel HT w/o LGI Sampling after fixing the bug.

1// Minstrel HT resetting sample wait
2if (!mi−>sample wait && !mi−>sample tries && mi−>sample count > 0) {
3mi−>sample wait = 16 + 2 ∗ MINSTREL TRUNC(mi−>avg ampdu len);
4mi−>sample tries = 1;
5mi−>sample count−−;
6// Minstrel HT w/o LGI Sampling multiplying sample wait
7// Bug fixed by moving the following block
8if (uw minstrel stats mode != MINSTREL DEFAULT){
9mi−>sample wait ∗= sampleReduceFactor;
10}
11}

Figure 4.4 shows the throughput of this algorithm after fixing the bug. As can be seen,
the throughput of this algorithm increases significantly in the previously mentioned time
intervals after the fix.

Intel iwl-mvm-rs

Intel iwl-mvm-rs always uses the highest available channel width which is 40 MHz in our
synthetic trace. Even though using the highest available channel width usually provides
the highest throughput in the real-world, this is not the case in our synthetic trace. During
the time intervals during which the maximum physical rate (Rmax) is a 20 MHz rate, all
40 MHz rates fail by design. So we expect Intel iwl-mvm-rs to get zero throughput during
these intervals. On the other hand, during the time intervals during which Rmax is a
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Figure 4.4: Minstrel HT w/o LGI sampling versus Minstrel HT after the bug fix.

40 MHz rate, Intel iwl-mvm-rs is expected to successfully converge to this rate.

When we ran this algorithm on the synthetic trace, we saw that it provides non-zero
throughput during the first two time intervals [0, 60) and [60, 120), even though only
20 MHz rates work during those intervals. After investigating, we found that even though
the channel width is set to the maximum available width after every column scaling op-
eration, when the algorithm first starts, it uses a 20 MHz channel width before the first
column scaling operation. This was clearly not the intended behaviour of the algorithm
and the issue was introduced when we ported the algorithm to T-SIMn. We fixed the
issue by setting the channel width to the maximum available channel width when the algo-
rithm starts. Figure 4.5 shows the difference in throughput in the first two 1-minute time
intervals before and after fixing the bug.

4.2.3 The Value of Synthetic Traces

By creating synthetic traces for which the expected behaviour of many algorithms can
be predicted, we managed to find and fix three bugs in algorithms implemented in the
T-SIMn trace-based evaluator. Finding and fixing these bugs allow us to perform credible
evaluations to compare the performance of different rate adaptation and frame aggregation
algorithms which we present in Chapter 5. We believe that performing these tests is
necessary to find potential implementation bugs before performing evaluations.
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Figure 4.5: Behaviour of Intel iwl-mvm-rs port before and after the bug fix.

4.3 Chapter Summary

In this chapter, we describe the two widely-used WiFi configurations that we use for trace
collection, the use of two separate sets of traces for each configuration (one for training
and one for evaluation), and different real-world scenarios and different devices from which
we have collected the traces.

Next, we describe the technique of creating synthetic traces and using them to verify
the implementation of the algorithms we use in our trace-based evaluation. We explain
the process of finding and fixing three bugs that were identified during this process and
conclude that this kind of validation is necessary to perform credible evaluations.
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Chapter 5

Evaluation

In this section, we evaluate the accuracy of the trained models and the approach we use for
selecting the best sampling rates. Then we compare the performance of NeuRA and the
statistically optimal algorithm to a variety of state-of-the-art sampling algorithms using
trace-based evaluation.

5.1 Model Evaluation

After the feature selection phase, we train a neural network model for varying sizes of
sampling sets between 2 rates and the total number of supported rates. To evaluate
the effectiveness of the neural network’s ability to provide accurate estimations, we first
examine the Mean Absolute Error (MAE) for the neural network’s predictions compared
with the measured values from the traces.

Mean Absolute Error (MAE): MAE is computed as follows. For each row of data
in the data set (1-second time window), the throughput of sampling rates is fed to the
neural network model to predict the throughput of all rates. Then the absolute difference
between the predicted throughputs and actual throughputs is calculated. MAE represents
the average of these absolute differences over all rates and all time windows. It is also
multiplied by 300 Mbps to scale the value from the [0, 1] range to a Mbps throughput
value.

Figure 5.1 shows the MAE over the training and the testing set for models with different
numbers of rates. Note that Model A predicts the throughput of 32 rates while Model B
predicts the throughput of 64 rates. Therefore, the performance of the two models on a
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specific size of sampling set cannot be compared directly. The small difference of MAE
between the training and the testing sets shows that the model is not overfit to the training
data and is general enough to predict cases it has not seen in the training set. We note
that the MAE fluctuates between 2 Mbps and 4 Mbps for reasonable sizes of the sampling
set (i.e., when more than a quarter of rates are used). This shows that if the size of the
sampling set is reasonable, the neural network model can effectively predict the throughput
of most of the non-sampling rates most of the time.
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Figure 5.1: Mean Absolute Error (MAE) for models with different numbers of rates.

One of the parameters the feature selection method takes into account is the time
required to sample the rates. Therefore, an interesting metric to observe is the sampling
time.

Sampling Time: The total time required to probe every rate in the sampling set once.
To obtain this value for a sampling set, the time required to sample an A-MPDU of size
1 is calculated for each rate. To do so, we use the T-SIMn library which includes highly
accurate timing for packet transmission and receiving acknowledgements based on protocol
standards. Then, we sum up the sampling time of all rates to calculate this metric.

Figure 5.2 shows the sampling time for sampling sets of different sizes. When the
sampling set size is large and is decreased, sampling time decreases more rapidly than for
smaller sets as there are more slower rates to eliminate in the sampling set. The rate at
which the sampling time decreases slows down as the size of sampling set gets smaller.
For example, the sampling time decreases more when reducing the size of the sampling set
from 64 to 60 than when reducing it from 60 to 56. Additionally, there are small jumps at
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some points in the graph (e.g., when reducing the sampling set size from 9 to 8 in Model A)
which suggests some slower rates are eliminated later than some faster rates as they were
more important for the predictions.
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Figure 5.2: Comparison of the sampling time for different sampling set sizes.

A low MAE value for a rate estimation model does not necessarily translate to a small
loss in the throughput when performing rate adaptation using that model. The average
relative error when comparing two rates can be as high as 2 ×MAE. Also, if a single
important rate is predicted with a high error at some points, it may result in a poor
choice of rates and the throughput may drop significantly. To evaluate the effectiveness
of the neural network model for use in a rate adaptation algorithm, we define some rate
adaptation metrics below.

RA (Rate Adaptation) Error: For each row of data in the data set (1-second
time window), we choose a rate using the model. This is done by choosing the highest
throughput from the measured sampling rates and the other rates estimated by the model.
Then the resulting throughput of the chosen rate is calculated by looking at its actual
throughput in the data set at that point of time (Tmodel) which is compared to the maximum
throughput among all rates at that point of time (Tmax) (which is available in the trace).
The absolute RA error is then calculated by averaging the Tmax− Tmodel difference over
all time windows and the relative RA error is calculated by averaging the Tmax−Tmodel

Tmax

relative differences over all rows (time windows).
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Optimal Selection: After determining the rates selected by the model at each point
in time, we then calculate the percentage of rows (time windows) that the model’s choice
results in a throughput within 5% of the optimal throughput. (i.e., Tmodel >= 0.95×Tmax).
We call this metric optimal selection.

Figure 5.3 shows absolute RA error, Figure 5.4 shows relative RA error, and Figure 5.5
shows optimal selection for models with different numbers of sampling rates. These metrics
are calculated on the testing set to evaluate the model’s performance on cases it has not
seen before. Two different x-axes are shown for Model A and Model B as they have different
numbers of supported rates. As can be seen, the model does a good job of choosing rates
when the size of the sampling set is large enough (e.g., contains at least half of the supported
rates). However, as we lower the number of sampling rates, the error increases and the
optimal selection decreases considerably.
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Figure 5.3: Comparison of absolute RA error for different sampling set sizes.

5.2 Feature Selection Evaluation

In this section, we evaluate our recursive feature elimination (RFE) approach to choosing
the best rates for sampling. To do so, we consider the sampling sets of equal size chosen by
our approach and other approaches to selecting rates and train separate models for each
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Figure 5.4: Comparison of relative RA error for different sampling set sizes.
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Figure 5.5: Comparison of optimal selection for different sampling set sizes.

of these sampling sets. Then we compare the performance of the trained models on the
testing set to see which sampling set provides the most accurate estimations.
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We compare the RFE approach to two other approaches. (1) uses only SGI (short
guard interval) rates, chosen because this was the sampling set used by Abedi et al. [1].
(2) uses a random set of sampling rates picked from the supported rates. To compare with
the SGI method, the size of the sampling set for our RFE and models is set to half of the
supported rates (i.e, 16 rates for Model A and 32 rates for Model B).

Table 5.1 shows the previously defined metrics for the different models trained with
these three approaches to rate selection on the testing set. Sampling time is the total time
required to probe every rate in the sampling set once. As can be seen, rates selected by
RFE are both faster to sample and result in significantly lower errors compared to other
methods for both Model A and Model B.

Table 5.1: Comparison of models using different feature selection techniques.

Method
Sampling

Time
MAE

Relative
RA Error

Optimal
Selection

SGI (A) 8.9 ms 4.1 Mbps 7.7% 70.7%
Random (A) 9.5 ms 4.0 Mbps 7.4% 66.6%
RFE (A) 8.2 ms 3.0 Mbps 3.3% 90.7%

SGI (B) 15.0 ms 3.9 Mbps 3.1% 84.7%
Random (B) 16.0 ms 3.9 Mbps 5.1% 76.8%
RFE (B) 12.9 ms 2.5 Mbps 2.5% 91.4%

5.3 Trace-Based Evaluation

As discussed previously, a trace-based evaluation is the most sound way to compare differ-
ent rate adaptation and frame aggregation algorithms because different algorithms are all
exposed to the same channel conditions. We use T-SIMn because it has previously been
shown to be extremely realistic and highly accurate [4]. We have implemented NeuRA and
other algorithms using the rate adaptation algorithm class in T-SIMn. T-SIMn is written
in C++ and we have added a set of python bindings using pybind11 [20] to enable us-
ing the Keras models with T-SIMn. The NeuRA implementation uses 3 main parameters
described below.
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• Number of sampling rates (N): The size of the sampling set used in the the
neural network model.

• Single Rate Sampling Probability (F ): This is the probability of sampling an
individual rate. Therefore, the probability of sampling is N × F .

• Frame aggregation algorithm (FAA): options are: “Default”, “MoFA”, and
“PNOFA”. “Default” is the frame aggregation algorithm from the ath9k driver which
aggregates as many frames as possible.

When NeuRA needs to select a rate, with a probability of N × F it chooses the next
sampling rate and sends a probe A-MPDU of size 1. Otherwise (with a probability of
1 − N × F ), it chooses the rate predicted to result in the highest throughput. Every
1 ms (of simulated time), the best rate for transmission is updated based on the sampling
results and estimations from the neural network model. This is done by calculating the
effective throughput of the sampling rates based on their measured frame error rates.
The throughput of the sampling rates is then fed to the neural network to estimate the
throughput of the other rates.

The possible values of N are between 2 and the total number of supported rates. We
tested F values between 0.001 and 0.01 using 0.001 increments. We have run simulations
with all possible combinations of these three parameters for all training traces and have
chosen the parameters that achieve the highest throughput on average. The chosen pa-
rameters are listed in Table 5.2 for the two models and Table 5.3 shows the set of sampling
rates used with these parameters. These parameters are used for all NeuRA results. We
see that the best sampling set size (best value of N) obtains a relative rate adaptation
error less than 2% (in Figure 5.4) and and an optimal selection value greater than 95% (in
Figure 5.5).

Table 5.2: Best parameters for NeuRA (found empirically).

Model Best N Best F Best FA

A 20 0.004 Default
B 36 0.004 PNOFA

We now compare the performance of the following rate adaptation/frame aggregation
algorithm combinations on the testing traces. These were chosen from the best algorithms
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Table 5.3: Sampling rates used in best NeuRA configurations.

Model Group MCS Indices

A
(2.4 GHz)

20 MHz - LGI 4, 5, 6, 7, 10, 11, 12, 13, 14, 15
20 MHz - SGI 4, 5, 6, 7, 10, 11, 12, 13, 14, 15

B
(5 GHz)

20 MHz - LGI 7, 12, 13, 14, 15
20 MHz - SGI 6, 7, 11, 12, 13, 14, 15
40 MHz - LGI 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15
40 MHz - SGI 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15

that are either available in T-SIMn or that we could find an implementation for. While
conducting our experiments, we observed that STRALE always performs better than MoFA
and MoFA is therefore not shown in our result to reduce clutter.

1. Minstrel HT (ath9k): This is the default rate adaptation algorithm in the ath9k
driver. It uses the default frame aggregation algorithm to aggregate as many frames
as possible.

2. Minstrel HT w/o LGI sampling: The same as (1), except the sampling frequency
is decreased by half by only sampling SGI rates. The error rate of LGI rates is
assumed to be equal to their SGI counterparts. This algorithm was included in
Abedi et al. [1].

3. Minstrel HT + PNOFA: The same as (1), but it uses the PNOFA frame aggre-
gation algorithm.

4. STRALE: This is using the STRALE holistic approach to frame aggregation and
rate adaptation.

5. Minstrel HT + OSOFA: The same as (1), but the Offline Statistically Optimal
Frame Aggregation (OSOFA) length for the current rate is chosen by examining the
past and future information in the trace (as is done in (8)). It provides an upper
bound on the how much the throughput of Minstrel HT can be improved with better
frame aggregation.

6. Intel iwl-mvm-rs: The rate adaptation algorithm used in recent Intel WiFi devices.
Intel WiFi cards are a popular choice for laptops and desktop computers. We have
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used the code from Grünblatt et al. [16] and ported it to T-SIMn. The default frame
aggregation algorithm is used since the frame aggregation mechanism of Intel devices
is not known.

7. NeuRA: NeuRA with parameters from Table 5.2. The rate is changed every 1 ms
based on the predictions of the neural network model. This short period ensures that
predictions are frequent enough to evaluate the potential of our model.

8. Offline Statistically Optimal: As described in Section 3.2, the past and future
information in the trace is used to make statistically optimal choices for both the
rate and the aggregation length for each transmission.

The algorithms (5) and (8) are not practical combinations as they require information
about the future. However, they are included because they provide useful upper bounds on
throughput that could be obtained by improving rate adaptation and frame aggregation
algorithms.

The results of our trace-based evaluations are shown in Figure 5.6. All throughputs
are shown relative to that of Minstrel HT (1). Table 5.4 presents the average throughput
obtained by Minstrel HT (1) on each of the testing traces. These traces cover a wide
spectrum of link capacities between the sender and receiver. As can be seen in these
graphs, NeuRA consistently improves the throughput on scenarios that are similar (but not
identical) to those in the training set and those that are different from those in the training
set (unseen scenarios). Interestingly, some of the biggest improvements are obtained in the
previously unseen scenarios (probably due to their higher mobility). Note that in these
comparisons, for each scenario, all algorithms are subject to identical conditions from a
single WiFi trace. As a result, the differences are statistically significant.

To provide better insights into differences between the behaviours of Minstrel HT,
NeuRA, and the offline statistically optimal algorithm, we show the throughput of these
algorithms over time for two different scenarios. Figure 5.7 shows the throughputs for
Scenario A7 (a mobile scenario) and Figure 5.8 shows the throughputs for Scenario B1 (a
stationary scenario). For clarity, in these graphs, the throughput is plotted using averages
over 5-second time windows. As can be seen in Figure 5.7, throughput varies significantly
over the course of the experiment. Throughput is higher when the device is closer to the
access point and lower when it is farther away. In this experiment, you can see the ranking
of each algorithm (in terms of throughput) is fairly consistent throughout the experiment.
In Figure 5.8, the throughout of all algorithms is much higher overall than in Figure 5.7. It
is also less variable because the client device is stationary. In this experiment, the difference
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(a) Trace-based evaluation results for Configuration A traces.
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(b) Trace-based evaluation results for Configuration B traces.

Figure 5.6: Trace-based evaluation results relative to Minstrel HT.
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Figure 5.7: Comparison of the throughput over time for Scenario A7 (mobile).
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Figure 5.8: Comparison of the throughput over time for Scenario B1 (stationary).
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between Minstrel HT and other algorithms is more pronounced at the beginning and end
of the experiment. It also shows that NeuRA appears to be mostly effective at tracking
the offline statistically optimal algorithm during those same periods of time.

Table 5.4: Average throughput of Minstrel HT (ath9k) on traces.

Scenario A1 A2 A3 A4 A5 A6 A7
Tput (Mbps) 18.7 15.9 5.7 27.1 6.0 16.6 7.1

Scenario B1 B2 B3 B4 B5 B6 B7
Tput (Mbps) 110.7 28.5 118.4 55.7 43.3 84.3 39.8

5.4 Observations

Here, we list several observations made from examining the results of our trace-based
evaluation (Figure 5.6). Recall that these traces are mainly collected from commonly used
environments representative of those in which devices would actually be used.

Key Observations 1: NeuRA achieves up to 24% (16% on average) higher throughput
than Minstrel HT and up to 32% (13% on average) higher throughput than Intel iwl-mvm-
rs. Furthermore, if we compare NeuRA with the maximum throughput across all practical
combinations, NeuRA still provides throughput up to 20% (9% on average) higher. Also,
NeuRA’s throughput is almost never lower than any other practical algorithm (except
Scenario B1 where Intel outperforms NeuRA by 0.8%).

Key Observations 2: The offline statistically optimal solution achieves throughput up
to 58% (30% on average) higher than Minstrel HT, up to 74% (28% on average) higher than
Intel iwl-mvm-rs, and up to 58% (22% on average) higher than the maximum throughput
among practical combinations (except NeuRA). It shows that the widely-used algorithms
can be improved but not the amounts reported in some previous research. When compared
with NeuRA, the offline statistically optimal algorithm achieves only up to 31% (12% on
average) higher throughput. Another way of looking at these results is that NeuRA reduces
the gap between the practical algorithms and the offline optimal algorithm by roughly half.

Other Observations 1: Minstrel HT w/o LGI sampling (2) performs up to 5% (1% on
average) better than vanilla Minstrel HT. It shows that if the relationships between rates
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are not used with a proper prediction model, the improvement is not significant and the
throughput may even decrease in some cases. Furthermore, we note that Intel iwl-mvm-rs
performs up to 15% (3% on average) better than Minstrel HT. However, in several scenarios
it performs up to 8% worse.

Other Observations 2: We note that Minstrel HT + OSOFA (5) improves Minstrel HT
by less than 2.5% on average. Even though there is significant improvement of up to 14%
for Scenarios B5 and B7, by comparing OSOFA (5) and Offline Statistically Optimal (8) we
see that frame aggregation has a less significant role than rate adaptation for the devices
and scenarios used in this study. Limiting the aggregation length is only useful when
there is high variability in the subframe error rates of the rates being used. Figure 5.9
shows the maximum SFER variability for A3 (no impact from subframe position) and for
B7 (significant impact from subframe position). We observe that our cellphone devices
(SM-N920C and EML-L09C) show much less SFER variability (mostly flat curves) when
compared to other devices. Also, both STRALE and PNOFA perform worse than vanilla
Minstrel HT in 2.4 GHz scenarios (A1-A7). In 5 GHz scenarios (B1-B7), STRALE obtains
some minor improvements (up to 5%) while in some case PNOFA obtains slightly larger
improvements (up to 10%).
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Figure 5.9: Comparison of the variability in subframe error rates (SFER) for A3 and B7.
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5.5 Chapter Summary

In this chapter, we first evaluate the neural network model used in NeuRA. We study
metrics of accuracy such as mean absolute error (MAE) and also define and measure
several metrics related to the performance of the model in rate adaptation. We observe
that our model does not overfit the training data. Using a reasonable number of sampling
rates, the model provides accurate estimations for non-sampled rates to be used during rate
adaptation. We then evaluate our approach to feature selection by comparing it with two
other approaches (random rate selection and using only SGI rates for sampling). We show
that our approach selects rates that are both faster to sample and that provide significantly
more accurate estimations.

Next, we perform trace-based evaluation using T-SIMn to compare NeuRA and the
offline statistically optimal algorithm to widely-used and state-of-the-art algorithms. We
observe that NeuRA improves throughput for all scenarios (even scenarios with previ-
ously unseen client devices and movement behaviours). NeuRA performs up to 24% (16%
on average) better than Minstrel HT and up to 32% (13% on average) better than In-
tel iwl-mvm-rs. Additionally, the upper bound provided by the offline statistically optimal
algorithm is up to 58% (30% on average) higher than Minstrel HT and up to 31% (12% on
average) higher than NeuRA. We conclude that NeuRA can effectively increase throughput
and decrease the gap between practical sampling-based algorithms and the upper bound
given by the offline statistically optimal algorithm by a half.
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Chapter 6

Real-World Prototype

We have seen that NeuRA consistently improves the throughput of rate adaptation algo-
rithms in trace-based evaluations. However, that evaluation does not consider the required
processing power and other obstacles that may prevent NeuRA from working in real-time.
In this section, we develop and describe a real-world NeuRA prototype developed for the
ath9k WiFi device driver and compare its performance with the default rate adaptation
algorithm (Minstrel HT). Empirical evaluations can be quite difficult to perform correctly
when comparing the performance of different rate adaptation algorithms because of the
high variability in WiFi channel state. To ensure that the evaluation is sound, we utilize
the randomized multiple interleaved trials method [3] to neutralize the effect of changes in
the environment on the comparison.

6.1 Prototype Design

The architecture of this prototype is shown in Figure 6.1. It consists of a modified ath9k
Linux kernel module and a user space process for performing predictions. When NeuRA
is started, a specified set of rates is sampled with a prescribed frequency.

The modified driver writes all received Block ACKs into kernel message ring buffer
which is read by the NeuRA process. NeuRA keeps an exponentially weighted moving
average (EWMA) of the frame error rate for each sampling rate and updates it whenever
it reads a block ACK of that rate. Every 1 ms NeuRA calculates the effective throughput of
the sampling rates and feeds them to the neural network model to predict the throughput
of each rate. The three best rates are then sent to the ath9k driver via debugfs to be
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Figure 6.1: Architecture of NeuRA prototype implemented using ath9k driver.

used as the transmission and retry rates. The user space process is written in C++ for
performance reasons. We use the same Keras models derived from our training set and
use the frugally-deep library [18] to perform the predictions in C++. We used the same
parameters and sampling rates as used in the trace-based evaluations.

The rate adaptation algorithm is not identical to the one used in trace-based simula-
tions. Because setting the transmission rates is done asynchronously there may be a small
delay (a few packets) between when new rates are set and when they are used for trans-
mitted packets. On the other hand, setting the rates asynchronously prevents the driver
from waiting for NeuRA to perform its calculations. Also, the default frame aggregation
algorithm is used with NeuRA in the prototype. Furthermore, instead of choosing one best
rate which is used by T-SIMn, three rates are selected to fill the retry chain in the ath9k
driver similar to Minstrel HT (the fourth rate in the retry chain is usually not set when
frame aggregation is enabled).

6.2 Evaluation

We perform several experiments to evaluate our prototype. In each experiment, we compare
the maximum achievable throughput using Minstrel HT and NeuRA. We saturate the link
between the sender and receiver using iperf3 [25] to send UDP packets. We exclude the first
and last 2 seconds of each experiment (the warm up and cool down periods). We use 20
randomized multiple interleaved trials [3] (10 randomly interleaved trials for Minstrel HT
and 10 for NeuRA). The length of each trial is 14 seconds (10 seconds when excluding
warm up and cool down).

53



Table 6.1 describes the scenario for each experiment. E1 is performed with Configura-
tion A (2.4 GHz, 20 MHz, 2 antennas) and E2 is performed with Configuration B (5 GHz,
40 MHz, 2 antennas). The TP-Link TL-WDN4800 802.11n PCI-E card and ath9k driver
are used as the wireless access point (sender). This runs on an AMD Phenom

TM
II X4 955

Processor at 800 MHz. We observe that the average CPU utilization of NeuRA does not
exceed 20% of a single core when with predictions done every 1 ms. Even though predicting
every 1 ms may seem aggressive, we use it to be consistent with our implementation of
NeuRA in T-SIMn. Moreover, it lets us measure the CPU utilization while heavily utilizing
the neural network model. We observe that it takes 2-6 packets (depending on the rates
used) from the time a new set of transmission rates are set (by the user-space process)
until those rates are used in transmission.

Table 6.1: NeuRA prototype experimental scenarios (throughput for Minstrel HT).

Exp Model Used Client Description Avg. Tput

E1 Model A TL-WDN4200 Stationary, Close AP 58.3 Mbps
E2 Model B TL-WDN4200 Stationary, Close AP 159.7 Mbps

Figure 6.2 compares the relative throughput of Minstrel HT and NeuRA with 95%
confidence intervals for each experiment. In these stationary experiments, confidence in-
tervals do not overlap and show that NeuRA produces higher average throughput than
Minstrel HT. Comparing the average throughputs shows 14% and 16% improvements with
NeuRA when compared to Minstrel HT. We also performed experiments with mobile clients
but in those scenarios, confidence intervals are wide and overlap due to high variability
caused by constant changes in the environment. Therefore, we do not include those re-
sults because they only demonstrate the difficulty of conducting repeatable experiments in
environments with highly variable channel conditions.

Note that this prototype is designed to study the practicality of NeuRA and measure
its required computation power, not to maximize throughput. The low measured CPU
utilization demonstrates that NeuRA processing power requirements are relatively small
and should easily be supported by access point CPUs or an application-specific integrated
circuit (ASIC). We also found reducing the prediction interval to 5 ms does not seem to
affect throughput but lowers CPU utilization to 12%.
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Figure 6.2: Comparison of throughput for Minstrel HT and the NeuRA prototype.

6.3 Chapter Summary

In this chapter, we describe the real-world prototype of NeuRA which we develop for
the Linux ath9k WiFi device driver. We implement NeuRA as a user-space process that
communicates with the ath9k driver through the debugfs interface. The prototype uses
the same neural network models and sampling parameters as the T-SIMn implementa-
tion of NeuRA. However, several changes are made to integrate the algorithm with the
ath9k driver. We use the randomized multiple interleaved trials (RMIT) technique to per-
form fair comparisons between our prototype and the default rate adaptation algorithm in
ath9k (Minstrel HT). We observe that NeuRA increases the throughput by 16% on average
when compared to Minstrel HT. Furthermore, it requires relatively little processing power
to obtain those improvements.
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Chapter 7

Conclusions and Future Work

7.1 Thesis Summary

WiFi devices use rate adaptation and frame aggregation algorithms to continually adapt to
highly variable channel conditions and choose the best physical rate and number of frames
to aggregate when transmitting. Although a variety of techniques have been proposed
for rate adaptation, sampling-based rate adaptation algorithms have gained popularity in
commercial devices because they make decisions based on real-time measurements and
work in a variety of conditions.

Sampling-based algorithms measure the throughput of different physical rates by pe-
riodically using them for transmission (e.g., 10% of the frames) which is called sampling
and then choosing the rate with the highest throughput for other transmissions. During
sampling, data has to be sent using non-optimal rates. Also, frame aggregation is usu-
ally disabled when sampling because the reliability of the rates used for transmission is
unknown. As a result, even though modern algorithms such as Minstrel HT implement
several optimizations to avoid sampling every rate, sampling still imposes considerable
overhead and reduces throughput.

Previous work has shown that relationships exist between the reliability of different
physical rates that can potentially be used to reduce the sampling overhead [1]. In this
thesis, we present NeuRA, a neural network based rate adaptation algorithm. NeuRA
learns about the relationships between the throughput of different physical rates and uses
those relationships to estimate the expected throughput of some rates based on the mea-
sured throughput of other rates. We use a novel application of recursive feature elimination
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(RFE) to choose the best set of rates to sample. These rates and the derived models are
then used to make good choices in rates to sample and to reduce the number of rates that
are sampled, thus decreasing sampling overhead and increasing WiFi throughput.

Additionally, we derive a previously unknown offline algorithm to calculate the statis-
tically optimal combination of the number of frames to aggregate and the physical rate to
use at each point in time. We implement this algorithm in T-SIMn to calculate an upper
bound on the throughput for a recorded WiFi trace. This provides an upper bound on the
throughput that can be obtained by practical online rate adaptation and frame aggregation
algorithms.

Trace-based evaluations are used to compare the performance of NeuRA and the offline
statistically optimal algorithm with widely-used rate adaptation and frame aggregation
algorithms. We find that the offline optimal solution provides an upper bound on through-
put which is up to 74% (30% on average) higher than Minstrel HT and up to 74% (28% on
average) higher than Intel iwl-mvm-rs. We conclude that several-fold improvements over
Minstrel HT shown in some previous work [21, 22] are unlikely to be obtained in typical
real-world scenarios.

Furthermore, we observe that the neural network model learns (from training data)
fairly generalizable relationships between rates that work well on previously unseen de-
vices, types of client motion and environments. NeuRA effectively reduces the gap between
practical sampling-based algorithms and the upper bound given by the offline statistically
optimal algorithm by a half and performs up to 24% (16% on average) better than Min-
strel HT and up to 32% (13% on average) better than Intel iwl-mvm-rs. Interestingly,
NeuRA provides throughputs that are surprisingly close to that of the offline statistically
optimal algorithm (especially given that the offline algorithm uses information about the
future that is not available to NeuRA).

Finally, we implement a prototype of NeuRA using the ath9k driver to evaluate its
practicality. We find that it requires a relatively small amount of processing power (less
than 20% of a single 800 MHz core) to increase the average throughput by 15% when
compared to the default Minstrel HT scheme.

7.2 Future Work

In this section, we present some ideas for future work to extend the offline statistically
optimal algorithm and NeuRA.
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7.2.1 Near-Optimal Rate Adaptation Algorithm

The offline statistically optimal algorithm we propose in this thesis uses an oracle to obtain
information about the fate of future subframes. As a result, the algorithm can choose the
best aggregation length and best physical rate at each point in time. Another interest-
ing algorithm to explore is an algorithm that works like our offline statistically optimal
algorithm but only uses information from the past (i.e., it is not permitted to use infor-
mation about the fate of future subframes). This algorithm would approximate the error
rate of each subframe for each physical rate based only on their past behaviour. Because
online practical algorithms do not have access to information about the future, this al-
gorithm provides a bit of a more realistic upper bound for the throughput of practical
rate adaptation and frame aggregation algorithms. In future work, we plan to implement
this algorithm in T-SIMn and compare it to NeuRA and widely-used algorithms using
trace-based evaluations.

7.2.2 More Rates, Newer Standards

Our evaluations of NeuRA have focused on using 802.11n devices with two antennas. This
is because of the limitations of existing trace collection and trace-based evaluation tools and
because 802.11ac devices implement frame aggregation and rate adaptation in proprietary
closed-source firmware. We believe that NeuRA may obtain even better results when using
devices with more physical rates and newer standards (e.g., 802.11ac and 802.11ax devices).

When dealing with a large number of physical rates, multiple neural network models
can be used to reduce the size of each model (e.g., one for predicting the best physical rate
group and another for predicting the best MCS index). Furthermore, a new trace collection
methodology needs to be developed because the trace collection tool used with T-SIMn has
a lower precision when used with a large number of physical rates. Additionally, because
newer WiFi devices usually implement rate adaptation and frame aggregation algorithms
in their proprietary firmware, integrating the model in device firmware requires cooperation
from industrial WiFi chip makers. As a result, using NeuRA with newer WiFi standards
is left as future work.

7.2.3 Adaptive Configuration for NeuRA

Our NeuRA implementation uses parameters such as the sampling frequency and the size
of the sampling set. In this thesis, we choose a constant set of parameters that work best
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on average and achieve the highest throughput across the scenarios we study. However, the
best sampling frequency and the best sampling set size varies slightly across different sce-
narios. To further reduce the sampling overhead, a predictive system (e.g., another neural
network model) could be used to periodically predict the best set of sampling parame-
ters. Information such as the average frame error rate, RSSI variability and the average
throughput can be used to predict the best set of parameters.

7.3 Concluding Remarks

We believe that relationships between WiFi physical rates can be leveraged to reduce the
sampling overhead of rate adaptation algorithms. Our implementation of NeuRA in T-
SIMn and our prototype implementation show promising improvements over widely-used
rate adaptation algorithms such as Minstrel HT and Intel iwl-mvm-rs. Furthermore, the
results from the offline statistically optimal algorithm suggest that there is not much room
for improvement over NeuRA. We look forward to implementing NeuRA on devices using
newer WiFi standards and a larger number of physical rates by cooperating with device
manufacturers to address the outstanding issues. NeuRA is expected to have an even more
significant impact on the throughput of those devices.
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