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Abstract

Throughout history, agricultural land use activities have shaped the environment and
its inhabitants. Humans have sought to maintain their well-being for centuries by finding
revolutionary ways to produce and gather food. But challenges that are new to us–both in
nature and intensity–face the human race and its planet as we move further into the 21st

century. Global food demand is currently at its peak and is projected to grow in the near
future due to growing global population and global affluence. Subsequently, pressure on
the agricultural system is expected to increase to meet the elevated demand. Agricultural
expansion, a possible pathway for meeting increasing demand, has been shown to bring
with it severe impacts on climate, environment and ecosystems. While several land use
mitigation strategies have been thoroughly explored in the literature, they have mostly
been centered around policy regarding land use management and investment in agricul-
tural technology. In most of the models, future dietary patterns of populations are assumed
to behave independently from land use change. The immense potential of sustainable con-
sumption in land use mitigation, stimulated by desires to avoid agricultural expansion into
sensitive ecosystems, has only been explored through scenario constructions. Little effort
has been spent on understanding how sustainable consumption might begin evolving in
a population as a behaviour in response to land use dynamics. This thesis introduces
a minimal mathematical model based on evolutionary game theory that couples human
behavioural dynamics with land-use system dynamics. This coupled human-environment
model helps in gaining a better understanding of the evolution of sustainable diets within
populations while making global land use projections till 2100 under multiple future socio-
economic scenarios. Results in this thesis highlight the direct impact of social processes on
global agricultural land use and underline the barriers and drivers of human consumption
behaviour. The model framework lays the foundation for further developments in com-
plex coupled human-land system models that focus on gaining deeper insights into system
dynamics and possible future outcomes of interventions.
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Chapter 1

Introduction

1.1 Global agricultural land use and its history

Global agricultural land is broadly defined as the land that is used for generating the food
demand of the world population. It includes land that is used as cropland and also land
that is used for livestock rearing (pastureland and land for feed generation). According to
the 2018 global land use data from the United Nations Food and Agriculture Organization
dataset UN FAOSTAT [33], 27 % of the total available land surface on Earth is used for
livestock rearing and 7% of it is used for the purpose of cropland.

Agricultural land currently occupies the largest share in global land distribution. Land
used to generate our current food demand (34 % of land surface on Earth) is more than land
used for any other purpose - anthropogenic or non-anthropogenic (including barren land
which constitutes 19 % of total available land surface). Forests, glaciers, shrub, freshwater
and urban area respectively cover 26%, 10%, 8%, 1% and 1% of available land surface on
Earth.

Since the Industrial Revolution in 1800, amount of land required for generating the
global food demand has grown 385 % from 1.12 billion hectares to 4.86 billion hectares.
Between 1961 and 2013, global agricultural land expanded from 4.45 billion hectares to
4.88 billion hectares (a 7 % increase). Cropland grew from 1.38 to 1.57 billion hectares
while pasture land grew from 3.07 to 3.33 billion hectares [33]. To put these numbers
into perspective, mainland China is approximately a billion hectares in its geographical
coverage (0.96 billion hectares) and Africa, is very close to 3 billion hectares.

The area values cited here also account for land that generates the food that ends
up being wasted by humankind. In a special report [29], the FAO cites that in 2007,
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approximately 1.3 billion hectares of global agricultural land was spent to generate wasted
food while 3.5 billion hectares was spent to generate the food that was actually consumed.

1.2 Perils of agricultural expansion and agricultural

intensification

Agricultural land use brings with it severe impacts on the environment, climate and the
ecosystem. The process of increasing agricultural area is called agricultural expansion
while the process of increasing agricultural productivity of a given area of land is termed
as agricultural intensification. Both of these processes, aimed at achieving higher food
production, come with a cost to the environment.

Currently, land use contributes to 30% of anthropogenic Green House Gas (GHG) emis-
sions. Emissions from land use can be categorized into two broad sectors - i) emissions
due to change in forest cover (triggered by agricultural expansion) and ii) emissions due
to agricultural practices (triggered by agricultural intensification). In the 1990s, the larger
portion of the emissions was contributed by deforestation. However, in 2010, agriculture
became the larger component while contributing to 11.2% of total GHG emissions [99]. Its
yearly emission of methane and nitrous oxide contributes to 15% of anthropogenic emis-
sions. Agriculture is also the largest contributor to global reactive Nitrogen (Nr) pollution
which poses a variety of threats to the environment and the ecosystem [11, 96, 36, 103]. A
significant portion of Nr losses incurred in the agricultural system, through waste, sewage
and poor manure management, is responsible for the production of the ozone depleting
agent N2O. One of the primary sources of reactive nitrogen in agriculture is the excessive
use of inorganic fertilizers. Free reactive nitrogen in combination with nutrient runoff from
industry and agriculture causes eutrophication which results in damage of terrestrial and
aquatic ecosystems [22, 89]. With no mitigation, Nr pollution from agriculture in 2050
is expected to rise to 102-156% of the 2010 value – which is way above the critical envi-
ronmental threshold [11]. The severe impact of agricultural expansion on biodiversity and
wildlife habitat loss has been well documented in the Millennium Ecosystem Assessment
of 2005 [5]. The largest emitting sector in agriculture is livestock rearing. Per year, the
livestock industry emits 7.1 giga tonnes of CO2 equivalent representing 14.5% of all an-
thropogenic emissions [38]. In livestock rearing, cattle rearing (for beef, milk, manure and
draft power) contributes the most to emissions (65 % of total). With rising demands for
animal food product, these emission numbers are expected to grow in the near future.
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1.3 Drivers of Global Agricultural Land Use

Obviously, it is of great interest to predict the future status of global agricultural land use.
In order to do that it is important to understand the various drivers of land-use. Complex
yet identifiable drivers of global agricultural land use can be compartmentalized into two
broad categories - (a) the demand side and (b) the supply side. An overview of them is
provided in the following subsections:

1.3.1 The Demand Side: a brief history and possible futures

Understandably, global agricultural land use has a monotonically increasing relationship
with global demand for food, provided other factors remain as they are. The global demand
for food has shown an increasing trend historically. From 1961 to 2013, the UN FAOSTAT
data shows that the global demand of food went up from 6.4 trillion kilocalories per day
to 19.4 trillion kilocalories per day. There are two reasons for the tripling. Firstly, over
this period, global population grew from 3 billion to 7.1 billion. Secondly, the average
per capita consumption has grown from 1800 kcals per day to 2600 kcals per day over the
same period (including per capita wastage). Simultaneous growth in global population and
average per capita consumption has caused this increase in global food demand over the
span of 53 years.

The future of the demand side depends on the future of population growth and the
future of global consumption pattern. Although there exists many widely accepted pro-
jections for future global population [67, 49, 77, 26], projections for future consumption
patterns are rare in the literature due to the complexity of the problem. Some recent
efforts [12, 61, 105, 74, 1] have identified the major drivers in food consumption. In these
studies, scenario wise predictions for dietary pattern are made till 2100. Models in these
studies are reductive since they assume dietary patterns to be just non-linear functions of
per capita income and time. Effect of behavioral choices are eliminated in them.

Between 1961 and 2013, our average per capita diet has increased simultaneously with
the fraction of animal product in our diet 1. In the span of these 53 years, weighted
average of the fraction of animal product in our diet (weighted with respect to population
of nations) has increased from 9 % to 15%. Figure 1.1 shows how diets and animal product
portion of diets have evolved with years in countries. Both of these quantities are scattered

1The Food Balance Sheet categorizes food into 21 categories out of which I classify 7 to be animal
products. These are Bovine Meat, Mutton and Goat Meat, Pig meat, Poultry Meat, Eggs, Butter/Ghee
and Milk.
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against the mean income of nations at respective years. Due to uneven distribution in the
density of the data points in Figure 1.1, it could be hard to decipher the qualitative trend
of the data. So, data in Figure 1.1 is recast in a log-log scale in Figure 1.2 for better clarity.
From 1.2 it is possible to see that a correlation exists between per capita income and per
capita consumption (in the logarithmic scales) at the national level.

Although projections of demand are complicated, several global projections have been
made by assuming scenarios of dietary patterns. For example, in some studies, storyline
scenarios of reduced meat consumption and plant based diets are constructed to make
projections for future values of demand [74, 12, 3, 102, 53]. These studies also project
results for the status quo scenario and enhanced meat intake scenario. More or less, all of
these projections converge towards the global average of 3000 kcals per capita per day in
2030 and 3100 kcals per capita per day in 2050. They project animal product consumption
to reach a global average of 700 kcals per capita day in 2050 [12].

In the next subsection we will observe why the distribution of total diet over food
groups matter in answering the bigger question of global land use.

1.3.2 The Supply Side: a brief history and possible futures

At a given location, under a fixed set of external conditions, the amount of land required to
produce equal quantities of two different food items varies depending upon their biological
properties and the properties of the soil. When I use the term ‘quantity’ of a food item , I
either refer to its weight (tonnes) or its energy equivalent (kcals per tonne). The property
of the land that determines its productivity of a food item, X, is called its yield of X.
For example, in 2013, the average yield of cereals in India was calculated to be around
2.96 tonnes per hectare [32]. Calculating yield from data is a theoretically easy task for
food items that undergo minimal processing between land and table (e.g items in groups
of fruits, vegetables, grains 2). Whereas, for items with a complicated supply chain (items
in groups of meats, dairy), this is not so easy. In fact, yield of meats is technically defined
in the literature as the conversion factor between carcass weight of an animal and quantity
of meat produced from it. It is not a simple task to calculate the area of land required
to produce one glass of milk since one has to account for pastureland and the land that
generated the feed for the source animal over its lifetime. Although challenging, there has
been significant progress in calculating this value from data. For example, the model in

2for the most part in this thesis, I define a diet to consist of seven food groups. These are fruits,
vegetables, grains, meats, dairy, sugar and oils. I define them in a later section.
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Figure 1.1: Average total daily diet and fraction of animal product in diets tend to increase
with increase in mean income of countries. Data is reported by the UN FAOSTAT in the
Food Balance Sheet dataset. Each dot in this figure represents a country in a particular
year.
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Figure 1.2: Plots in Figure 1.1 recast in log-log axis. Each dot in this figure represents a
country in a particular year.

Rizvi et al. [78] can calculate the yearly yield of items in meats and dairy groups for a
given country from the FAO datasets.

Calculations for yield become even more complicated when trade is factored in. ‘Ef-
fective weighted yield’ of an item X in a country i can be defined as the weighted average
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of yields of X in trading partners of i (including itself). The yields are weighted with the
quantity of item that is imported from each source nation. Let yXi be the yield of X in
i. If we assume that all of X in i comes from a set of sources S (that contains i), each j
in S contributing qXj , then, the effective yield of X in i, yXeff,i, can be calculated using the
following equation:

yXeff,i =

∑
j∈S q

X
j y

X
j∑

j∈S q
x
j

(1.1)

As calculated by the model in [78], effective yield of milk in Canada was approximately 32
tonnes per hectare in 2013. For USA, it was calculated to be 102 tonnes per hectare in the
same year.

As yields of food items grow, land is spared for a fixed amount of food demand. Progress
and distribution of agricultural technologies have historically shown to assist enhancement
of yield values [98]. From 1961 to 2013, production gains achieved, globally, were primarily
due to steady rate of growth of yields [15, 32]. In Figure 1.3, I show the time series
of globally averaged effective yield for 20 items listed in the Food Balance Sheet. The
items are grouped into eight categories such that all the items per category have similar
yield values. Yields of almost all the items listed in the food balance sheet have gone up
from their 1961 values. Bovine (cow) and Ovine meat (sheep and goat) have the lowest
global effective yield. In 2013, global average of bovine meat yield was approximately 0.05
tonnes per hectare. To produce a kilogram of beef (approximately 2500 kcals) in 2013,
one would have expected to require 0.02 hectares of land. Similarly, let’s take the example
of Potatoes that fall under the food balance sheet food item ‘Starchy Roots’. Globally
averaged effective yield of potatoes in 2013 was 13.13 tonnes per hectares. To produce
a kilogram of potatoes (approximately 770 kcals) over 2013, one would have expected to
require 7.6 × 10−4 hectares. Due, to a significant difference between the effective yield of
edible items, dietary distribution across food groups play a major role in determining how
much land is required to meet the global food demand. A more meat-centric diet would
naturally require more area of land to generate than a comparatively greener substitute.

Recently, several studies from the literature of agricultural science have claimed that
the future of agricultural intensification (the process of achieving higher productivity of
land with years) is uncertain. For example, in rich nations, several major crops have been
shown to reach their yield ceilings [31, 25, 18]. There have also been studies that suggest
that deceleration in yield rates, globally, have been caused due to reduction in investment
in agricultural research and lowering of food production prices. [69]. Furthermore, it is
expected that land productivity will be negatively affected by climate change induced ef-
fects like increased peak temperatures, increased severity and frequency of droughts, floods
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and extreme weather events [58]. Several research papers have charted future pathways for
global agricultural system such that projected demands of the future are met sustainably
[98, 39]. In those papers, the authors conclude that agricultural development directed
towards higher achievement in technology (raising the yield ceilings) and technological
transfer (closing yield gaps between nations) can meet 2050 crop demands with least land
clearing and GHG emissions.
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Figure 1.3: Globally averaged weighted yields of 20 food items listed in the food balance
sheets of UN FAOSTAT dataset. Weighted yield values are calculated using the model
described in Rizvi et al. [78]

.
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1.4 What is a dietary distribution?

One of the central relationships explored in this thesis is the one between dietary con-
sumption and global land use. In the earlier sections a brief overview was provided on
global land use and its drivers. In this section, I define the term dietary distribution. As
mentioned earlier, I define a diet to consist of seven primary food groups. These are -
fruits, vegetables, grains, meats (contains meats and pulses), dairy, sugar (also termed as
discretional) and oils. This specific food group breakdown was borrowed from Rizvi et al.
[78].

A dietary distribution is defined as a breakdown of the daily caloric intake into these
seven groups. In the past, many units have been used while defining a diet. Some of the
popular ones are ‘cups’(1 cup = 16 US tablespoons), kilocalories, grams, ounce-equivalent
and teaspoons. This thesis adheres to the kilocalorie standard while defining a diet. For
example, USDA’s 2010 dietary recommendation for the 2000 kcals/day limit was as follows:

• Fruit: 2 Cups

• Vegetables: 2.5 Cups

• Grains: 6 cups

• Whole-grain portion: 3 ounce equivalent

• Meat and Beans: 5.5 ounce-equivalent

• Milk: 3 cups

• Oils: 6 teaspoons

• Discretionary calorie allowance: 267 kilocalories

Recommended daily serving sizes can be converted to equivalent masses (and hence
calories) using the FAO food balance sheet handbook [50]. The above recommended diet,
when converted to kilocalories and separated into the pre-defined food groups, transforms
to:

• Fruits: 186 kcals

• Vegetables: 87 kcals

9



Food Group name Food Balance Sheet items under food groups

Fruits Fruits - Excluding Wine, Wine
Vegetables Vegetables, Starchy Roots

Grains Cereals - Excluding Beer, Beer, Beverages, Alcoholic
Meats (and Pulses) Pulses, Treenuts, Bovine Meat, Mutton & Goat Meat,

Pig meat, Poultry Meat, Oil crops, Eggs
Dairy Milk - Excluding Butter, Butter, Ghee
Oils Vegetable Oils

Sugar Sugar Crops, Sugar and Sweetners, Stimulants

Table 1.1: Table defining the food groups by aggregating food balance sheet items under
them. The left hand column contains the food group name while the right hand column
lists the food balance sheet items falling under the group name.

• Grains: 266 kcals

• Meats (and Pulses): 299 kcals

• Dairy: 727 kcals

• Oils: 239 kcals

• Sugar (discretionary): 267 kcals

On addition, the group calories in the above breakdown sum up to 2000 kcals. This
confirms the correctness of the conversion as the initial recommendation was meant for the
2000 kcals/day level.

1.4.1 Country level data for average dietary distribution

The food balance sheet of the UN FAOSTAT [32] lists data for 21 food items that more or
less cover the spectrum of human food intake. Items that do not require land to produce
are discarded from the list (like fish meat and seafood). In Table 1.1 I aggregate these 21
items into their respective food groups.

For each of these 21 items, food supply data are provided for countries between the
years 1961 and 2013. Food supply is a measure that evaluates the average per capita

10



Food Supply, 2013 (kcals/capita/day)
Food Group USA Canada Brazil India

Fruits 135 156 116 70
Vegetables 161 199 157 121

Grains 944 975 1064 1375
Meats (and Pulses) 617 639 708 215

Dairy 410 246 262 199
Oils 689 567 434 207

Sugar 621 451 440 237
Total 3577 3233 3181 2424

Table 1.2: Construction of average dietary distributions of USA, Canada, Brazil, India in
2013 using data from UN FAOSTAT food balance sheet [32].

calorie intake of a food item in a population. For example, food supply data for poultry
meat consumption in Canada in 2013 was 145 kcals/capita/day. This means that, on
average, in 2013, Canadians consumed 145 kcals of Poultry Meat per day. By using the
extensive dataset provided by the UN FAOSTAT, country level data for average dietary
distribution can be constructed by adding up food supply data for each item under a food
group. An example is shown in Table 1.2. In Table 1.2, average dietary distributions for
USA, Canada, Brazil and India are constructed and shown for the year 2013. From here
on, I also refer to the average diet of a population as the demand of the population.

1.5 Is it possible to calculate land equivalent of a diet?

In this section I address the following question: “Is it possible to calculate how much land
was required at a given year to generate the average diet of a population?” Although the
answer to the above question is in the affirmative, there are nuances to be considered before
introducing a method that performs this calculation.

Firstly, it is clear that demand (diet) to land conversion is not spatially independent
because of spatial dependence of yield of food items. Due to difference in agricultural tech-
nologies and other equally important factors like soil quality and water availability, yield of
food items vary largely across the globe (we have seen an example of this earlier). Spatial
heterogeneity in effective yield of items is also caused due to the fact that international
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food trade is inherently heterogenous (all countries do not import same quantities from a
fixed set of sources).

Secondly, all calculations for land are done on the yearly timescale. That is, the method
I introduce, assumes that an entire population consumes an average diet for a year and
then calculates the land equivalent of that consumption.

Thirdly, the model can only make calculations for years between 1961 and 2013 for
countries that have been listed in the FAO food balance sheet. The model does not
necessarily require one to input the actual average dietary distribution for a country to
evaluate its land equivalent. For counter-factual analysis, one can also input a hypothetical
diet for a country to evaluate its land equivalent at that year. For example, the model
can calculate the amount of land that would have been spared if Americans consumed like
Indians in the year 1972.

1.5.1 The Rizvi et al. [78] model: from diet to land

The original version of the model was built to study the global land use implication of the
2010 USDA dietary recommendation. With slight modification, the current form of the
model, as presented here, allows land calculation for any dietary distribution in any country
for any year between 1961 and 2013. This model can be found as a Python script in the
following online repository: Saptarshi07/Dietary-Trends-Tools. The repository contains
all demonstrations necessary to use the model.

Land calculation

I represent the Rizvi et al. model as a function, R(.), that maps a diet D, a country i,
and a year t into a land use value. That is, if the population of i in year t consumed the
average per capita diet D, R(D, i, t) hectares of land would have been spent, globally, to
generate the demand. For this function, t is an integer such that 1961 ≤ t ≤ 2013. A diet
is defined, mathematically, as a column vector of length 7. Numeric value of the vector
components represent daily caloric intake in the food groups of fruits, vegetables, grains,
meats, dairy, oils and sugar. For every item in the food balance sheet (that is assigned a
parent food group), data for food supply quantity (in kilograms per capita per day) and
food supply (kcals per capita per day) is provided simultaneously for a country at a year.
This helps in evaluating the energy to mass conversion factor for a food item j in a country
i at a year t. Let k be a food group and Ik be the set of items listed under the food group
k. We define the set of food groups as G (and k ∈ G). Dk is the per-capita daily calorie
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intake of food group k, as defined by the diet D. We represent the food supply data for an
item j in i at t as f i,tj . Then, the per-capita calorie intake of an item j ∈ Ik, in i at t, di,tj ,
can be evaluated as the following:

di,tj = Dk · (f i,tj /
∑
j∈Ik

f i,tj ) (1.2)

The units of di,tj are in kcals/capita/day. The units of f i,tj are in tonnes. If the food

supply quantity of an item j in i at t be represented as si,tj , then the kilocalorie to kilogram

conversion factor in i at t, ci,tj , can be evaluated as follows:

ci,tj =
si,tj

f i,tj

The unit of ci,tj is kcals per kilogram. Unit of si,tj is in kcals (per capita per day). The

yearly mass demand, Ri,t
j of item j in i at t, in tonnes, would then be:

Ri,t
j = di,tj · P i,t · 365 ·

ci,tj
1000

(1.3)

Where P i,t is the population of the country i in year t. Note that here I have made
the following assumption: for any arbitrary dietary intake of a food group k (say Dk), the
distribution of Dk across the group items maintains the same proportion to that of the
reported data. That is, if the average caloric intake of bovine meat in USA in 1980 was
1/4th of the total calorie intake of meats (let’s say 500 kcals/capita/day), then any other
dietary intake, Dk, for meats, would have 1/4th of it dedicated to bovine meat (in USA, in
1980).

Now, I define another conversion factor Cj called the source conversion factor for a food
item j. The source conversion factor is independent of the country or the year (hence it
does not have the superscripts i and t). A source conversion factor converts the mass of a
food item to an equivalent mass of its source item. For most items this conversion factor
is 1. However, for items like beer, wine, butter etc, the value is not unity. For example,
source of beer is barley and its mass conversion factor is 4.78. To generate 1 tonne of beer,
4.78 tonnes of barley is required, on average.

The food balance sheet reports data for the Domestic Supply Quantity (in tonnes)
and the Import Quantity (in tonnes) of every food item j into a country i at a year t.
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The Import Quantity data element, I i,tj , indicates the amount of the food item j that was

imported into i in year t. The Domestic Supply Quantity data element, Di,t
j , indicates the

amount of j that is available to the population of i at t for domestic utilization. The ratio
of Import Quantity to Domestic Supply Quantity is defined as the import dependency
ratio, IDR, of j in i at t - IDRi,t

j . That is,

IDRi,t
j = I i,tj /D

i,t
j

Since both I i,tj and Di,t
j are in tonnes, IDRi,t

j is unitless. The quantity j’s source that
comes in through import to meet the dietary demand of i at t is then,

I i,tj,F =
IDRi,t

j R
i,t
j

Cj

Similarly, the quantity j’s source that comes from within the borders of i to meet the
dietary demand of i at t is given by:

Di,t
j,F =

(1− IDRi,t
j ) ·Ri,t

j

Cj

The units of Di,t
j,F and I i,tj,F are in tonnes (per year). Y i,t

j and Ȳj
t

are defined as the
yield of source of j in i and the average yield of source of j in the world respectively in
t. Methods for calculating these are shown in the next subsection. The units of these
variables are in tonnes per hectare. Then, the expected land required globally to produce
the demand for item j in i at t (in hectares) is:

Li,tj =
Di,t
j,F

Y i,t
j

+
I i,tj,F

Ȳj
t (1.4)

Here, yield of i is factored in while calculating the global average yield Ȳ t
j . The total

global land required to produce the average dietary demand D for a country i in t is:

Li,t =
∑
k∈G

∑
j∈Ik

Li,tj (1.5)
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Yield calculation for non livestock item

Here I describe the method that calculates the variable Y i,t
j from data. Y i,t

j is the yield of

source of j in i at t. The variable Ȳj
t

is Y i,t
j averaged over all i (all countries covered in

the Food Balance Sheet).

I categorize seven items in the food balance sheet as livestock items. These are bovine
meat, mutton & goat meat, pig meat, poultry meat, eggs, butter and milk. I represent the
set of livestock items as LST . If j /∈ LST , yield calculation is fairly simple:

Y i,t
j =

P i,t
j

Aji,t
(1.6)

Where P i,t
j is the data for the quantity of j produced in i at t (in tonnes) and Aji,t is the

data for the area of land used to produce j in i at t (in hectares). These data elements are
available from the Crops data sheet in the UN FAOSTAT database. Calculation of yield
becomes complex when j ∈ LST . Yield units are in tonnes per hectare.

1.5.2 Yield calculation for livestock item

The idea behind livestock yield calculation is similar to the idea behind yield calculation for
non-livestock items. To calculate yield of a livestock product j for a geographical region i,
effective production of j and effective land used in i for j’s production need to be calculated
precisely. This is a complicated procedure. In the following two sub-subsections, I have
described the procedure to perform this calculation. Methods for livestock yield presented
here (i.e the next two sub-subsections) are partly paraphrased from the Supplementary
Information document of Rizvi et al. [78]. Availability of newer data elements in FAOSTAT
has facilitated changes in the model (relative to its first version in [78]). The changes
incorporated by me have been included in the description here (replacing their earlier
counterpart).

Livestock item production calculation: pasture and mixed/landless systems of
production

For every livestock item j ∈ LST , a net production value (in tonnes) can be calculated
using the data provided in the Livestock Primary datasheet of the UN FAOSTAT. For every
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livestock item, j in i at t, the Livestock Primary datasheet reports data for production (P ),
import (I) and export (E) of that item in (into/from) i at t. Net production is calculated
by adding export and subtracting import from the production data value. That is, net
production NP of a livestock item j in i at t is:

NPj = Pj + Ej − Ij

The data for production (P ) accounts for production for domestic consumption. For
the remainder of this section I omit the superscripts i and t from the variables for the
purpose of simplicity. It is always implied that calculations are being done for a country i
at a year t.

For calculating yield, it is not enough to calculate net production of a livestock item
j in i at t. Calculations need to be done to determine how much of the net production
was obtained from a pasture system (NP P

j ) and how much of it was obtained from a
mixed/landless system (NPML

j ). Pasture and mixed/landless are two primary systems of
livestock production. Pasture system produces livestock items from animals that feed off
pasture while mixed/landless system produces livestock items from animals that feed off
crop by-products, seed and feed. The calculation for breaking down net production into
pasture and mixed/landless systems is performed by taking region estimates of production
system division that were reported in [13]. For a geopolitical region R (e.g South Asia),
Bowman et al. [13] estimates the fraction of livestock production in the two systems for
the years 1970, 1995 and 2030. We use quadratic interpolation to obtain the value of these
fractions for all years between 1961 and 2013. Once the calculation for net production is
successfully done for an item j in country i at t, the production system division fraction
for j in the region of i at t is estimated using quadratic interpolation on the Bowman et
al. estimates. Using the interpolated value, net production is then broken down into - i)
Net production in pasture system (NP P

j ), and ii) Net production in mixed/landless system
(NML

j ). All units of production are in tonnes.

Land area used for livestock item production

Land used to produce livestock product is divided into two parts: pasture area and cropland
used to produce feed.

Ruminant livestock like cattle and sheep require pasture for their production. Data
for total pasture area Ap used for agricultural production is provided by the Land Use
data sheet of the UN FAOSTAT. If no such data is found for a particular country at a
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given year, we assume that pasture land is 69 % of country’s agricultural land (the global
average). Pasture land is further divided into two parts - pasture area in pastoral system,
A(P ), and pasture area in mixed/landless system, A(ML). This calculation is again done by
performing quadratic interpolation on the region-wise grassland area estimates provided
in Bowman et al. [13].

For every country reported in the FAOSTAT’s Livestock Primary datasheet, data is
available for its stock amounts (number of animals under each category that do not produce
dairy or eggs). All categories of animals listed here can be mapped to a Food Balance Sheet
animal product j. These stock data can be further segregated into ‘number of stocks grown
in pastoral system’ and ‘number of stocks grown in mixed/landless system’ using stock
division estimates provided in Bowman et al. [13]. If animal categories are indexed with
k, then, I denote stocks of k with Uk and its segregation into pastoral and mixed/landless

as U
(P )
k and U

(ML)
k respectively. The data for region estimates of stocks are also available

from FAOSTAT’s Live Animals datasheet. Stocks are unit less. They are reported in the
data sheet as number of heads.

Pasture area in the pastoral and mixed/landless system assigned to k’s rearing can
hence be calculated as:

A
(P )
k = A(P )U

(P )
k /

∑
k

U
(P )
k (1.7)

A
(ML)
k = A(ML)U

(ML)
k /

∑
k

U
(ML)
k (1.8)

respectively.

Cropland area used for feed

Ruminant (cows, sheep and goat) and non-ruminant livestock (pigs and chickens) consume
feed which composes of grasses, crop residues and food crops. We do not consider grasses
and crop residue while calculating land equivalent of feed because they have already been
accounted for earlier (grasses as pasture area and crop residue while calculating yield for
non livestock items). Hence, in the calculation of cropland used for feed we are only
concerned about the land used to produce the food crops that directly end up as the feed
for livestock animals.

In this context, feed conversion ratio is an important concept. Feed conversion ratio
is defined as the conversion factor between units of dry feed matter and units of animal
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product produced by it. For example, the answer to the question “How much beef does
1 tonne of corn produce?” is the feed conversion factor between corn and bovine meat.
Estimates for feed conversion factor are, again, available from the Bowman et al. estimates
[13]. Using quadratic interpolation, sub-continent level feed conversion rate rfk can be
attained for an animal product corresponding to k at a year t between 1961 and 2013.
Bowman et al. also provides estimates of the proportion of feed fk represented by food
crops for a given animal product. The proportion pj of total available feed quantity assigned
to production of animal product j, derived from animal k can be evaluated as follows:

pj =
NP

(ML)
j fkr

f
k∑

kNP
(ML)
j fkr

f
k

(1.9)

The FAOSTAT Crops data sheet reports for every crop the percentage assigned to feed.
For a crop labeled as l we denote this fraction as Ql. From the data for a country’s import
Il, export El and production Pl of crop l, it is possible to calculate the self-sufficiency ratio
of a country for the crop l, sl, as follows:

sl =
Pl

Pl + El − Il
(1.10)

Using the definitions of self sufficiency ratio (Equation 1.10), Ql and pj (Equation 1.9),
it is possible to calculate the quantity of feed of crop l assigned to produce animal product
j, qjl, as:

qjl = pjslQl

Note that the factor sj assures that land equivalent of imported feed is not factored in
the calculation of yield of an animal product j in a country i. Crop yield of l, Yl (estimated
using Equation 1.6), is then used to calculate the amount of land spent as cropland area
for generating feed for livestock animals. This is given by:

A
(C)
jl = qjl/Yl (1.11)

Yield calculation of livestock items

Calculating the yield, Yj, of a livestock item j is now possible with the equations 1.7, 1.8
and 1.11. It can be evaluated using the following expression:
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Yj =
NP

(P )
j +NP

(ML)
j∑

lA
(C)
jl + A

(P )
j + A

(ML)
j

(1.12)

During calculation of yield, it is possible that a data element for an item in a country
at a year is missing. In that case, the model fills up the hole in data with the data from
the previous or the next year. Preference is given to filling up the data hole with the data
from the previous year. If data is not available for either the previous or the next year,
the model sets the value of that data element with that of the regional average.

This method for calculating land use eliminates the land equivalent of food wastage from
its calculation. Only the land equivalent of consumed food is evaluated. The novelty of
this method lies in calculating an estimate for the land used due to actual consumption by
a country’s population. The country-level land use data reported by the UN FAOSTAT
in its Land Use data sheet accounts for the area of land inside a country’s border that is
used for the purpose of agriculture. Since countries are not completely self-dependent in
generating their national food demand (since food items are traded with trade partners),
the FAOSTAT data is not sufficient in estimating the land demand of the population of a
country. Agricultural land in country i could be partly serving the demands of country j
and vice versa. Additionally, since the Land Use data sheet reports raw land cover data,
it does not segregate the reported land use value into land equivalent of consumption and
land equivalent of food wastage.

1.5.3 Examples of calculating land use from dietary consumption

Here I demonstrate the model described in the previous subsection with some examples.

First Example

In the first example, we calculate land equivalent of two diets that were constructed in
Table 1.2. Land use results for dietary construction of Canada and India are shown in
Table 1.3. Land equivalent of each food group consumption is shown and broken down
into two categories - i) local and ii) remote. The ‘local’ land accounts for the area of
agricultural land spent inside the border of the country to generate the corresponding food
group demand. The ‘remote’ land value accounts for the area of agricultural land spent
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Food
group

Land use, 2013 (million hectares)
Canada India
local remote total local remote total

Fruits 0.023 0.404 0.427 5.837 0.052 5.890
Vegetables 0.199 0.189 0.388 9.617 0.008 9.626
Grains 0.993 0.137 1.131 63.720 0.035 63.755
Meats (and Pulses) 10.635 7.435 18.070 59.801 4.123 63.925
Dairy 0.250 0.026 0.276 2.619 0.001 2.620
Oils 3.427 2.630 6.057 71.746 47.514 119.261
Sugar 0.0003 0.759 0.759 4.796 0.341 5.137
Total 15.530 11.582 27.112 218.140 52.076 270.216

Table 1.3: Demonstration of land use evaluation model with an example - local, remote
and total land used for the average dietary consumption of Canada and India for the year
2013.

outside the country. Adding them up gives the ‘total’ land required globally to generate
the food group demand for the country.

Land use results in Table 1.3 indicate that the average land use of India is way higher
than that of Canada. Secondly, India is comparatively more self sufficient in generating its
own demand compared to Canada. For India, approximately 80% of its total land use is
local. Whereas, for Canada it is 45% of its total land use. The evaluated numbers for India
and Canada are vastly different because of their population difference in 2013. In 2013,
Canada had 35.08 million residents whereas India had 1.28 billion residents (36.5 times).

Second example

In the second example, I use the FAOSTAT’s Food Balance Sheet data to construct the
average diets of USA, Brazil, China and India for every year between 1961 and 2013. An
example of such a construction is shown in Table 1.2. Then, using the model described in
the previous subsection, I calculate the amount of land used by these countries, globally,
for their demand over the aforementioned time period. The results are shown in Figure
1.4.

China and India have comparable per capita land use whereas USA and Brazil have
comparable per capita land use. Although the average per capita land use of China and
India is almost a hectare lower than USA and Brazil, their total land use is comparable
due to vast differences in population. The observable decline in per capita land use, seen
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Figure 1.4: Demonstration of the land use evaluation model - agricultural land used,
population and per capita land use of USA, China, Brazil and India from 1961 to 2013.
Agricultural land use is calculated using the method described in Section 1.5.1

for all the countries between 1961 to 2013, is attributed to growth in global yields of crops
in the last 60 years. Although per capita land use has decreased, total land use of countries
have increased due to population increase outweighing the effect of decreasing per capita
land use.

Third example

In the third example, I calculate the land equivalent of a hypothetical diet in order to
assess its land footprint. In this example, I assume that the entire world consumes the
2010 USDA recommended diet from 1961 to 2013. I have previously introduced the 2010
USDA dietary recommendation in Section 1.4. Results are shown in Figure 1.5.

In Figure 1.5 I have plotted land spared versus years. Land spared due to a diet D at
a year t is defined as follows:

Land SparedtD = Land actually used at t− Land used if the globe consumed D at t
(1.13)

At 2013, the value of total land spared is -811 million hectares (see ‘all groups’ in Figure
1.5). That is, if the global population consumed the 2010 USDA dietary recommendation

21



−0.7

−0.6

−0.5

−0.4

fruits

0.2

0.3

0.4

0.5

vegetables

1.7

1.8

1.9

2.0

2.1

2.2
grains

−2

0

2

4

meats

1975 2000

−1.2

−1.0

−0.8

dairy

1975 2000

−10

−5

0
oils

1975 2000
−0.6

−0.5

−0.4

−0.3

−0.2

sugar

1975 2000

−8

−6

−4

−2

all groups

years

La
nd

 s
pa

re
d 
(1
00

 m
ill
io
n 
he

ct
ar
es
)

Figure 1.5: Land spared if the global population adopted the 2010 USDA dietary rec-
ommendation from 1961 to 2013. Plots show model output of amount of land spared if
the global population adopted the recommended diet for all years between 1961 and 2013.
Land spared is broken down food group-wise.

in 2013, an additional 811 million hectares of land would have been required to generate
the extra demand. The USDA dietary recommendation, although nutritionally sound, is
not ecologically sustainable for global adoption.

Fourth example

This example follows directly from the third example. Similar to the previous example, we
construct hypothetical diets and find their corresponding land equivalent values. We make
deviations from the USDA dietary recommendation in the groups of Meats, Grains and
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Figure 1.6: Land spared if the global population adopts a diet that is deviated from the
2010 USDA dietary recommendation. Deviations are made pairwise in the groups of meats,
grains and vegetables. a. In this figure, land spared is plotted with deviations in the groups
of meats and vegetables. Group calorie of grains remains at the recommended level b.
Deviations are made to the groups of grains and vegetables while meats calories is affixed
at the recommended level c. Deviations are made to groups of meats and grains while
keeping vegetable calories fixed at USDA recommended level. The black star represents
the USDA recommended diet (no deviation). Land spared at 2013 due to global USDA
diet adoption is -811 million hectares.

Vegetables to observe the corresponding effect on global land spared. We only show results
for the year 2013. For every deviated diet, global land spared at 2013 is evaluated and
plotted in Figure 1.6. We make pairwise deviations among the three groups while keeping
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the third group fixed at the USDA recommended level. To observe results, I have made
deviations of -100 kcals to 100 kcals from the recommended level in each group.

Among the three groups deviated, the group of ‘meats’ affects global land use the most.
A reduction of 100 kcals per capita per day in the food group of ‘meats’ (relative to the
USDA recommendation) saves approximately 600 million hectares globally. On the other
hand, deviations in the groups of ‘vegetables’ and ‘grains’ show a lesser impact on global
land use. Reducing 100 kcals/capita/day in both of them results in a reduction of about
40 million hectares globally.

This example shows the land-intensive characteristic of a meat intensive diet. If an
individual shuns a hundred kilocalories from their daily diet of meats and replaces it with
twice the amount of calories from grains and vegetables, they still contribute towards saving
land globally.

1.6 Future socio-economic scenarios in the literature

In this section, the Shared Socio-Economic Pathway (SSP) scenarios are introduced and
discussed. We use these scenarios extensively in the second chapter. A basic overview of
them is provided in this section.

1.6.1 The IPCC and its assessment reports

The IPCC (Intergovernmental Panel on Climate Change) is an intergovernmental body of
the United Nations that releases reports that cover “scientific technical and socio-economic
information relevant to understanding the scientific basis of risk of human-induced climate
change, its potential impacts and options for adaptation and mitigation”. This description
of the IPCC is provided by the UN body itself in the document titled Principles Governing
IPCC Work (approved at the 14th IPCC Session in Vienna).

Instead of conducting any independent or original research, the body compiles published
peer (and non peer) reviewed sources to create its assessment reports that contain guidelines
for nations in the form of a Summary for Policymakers document. In its latest assessment
report (the Fifth Assessment in 2018), it released the Special Report on Global Warming
of 1.5 ◦C
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Figure 1.7: The SSP scenarios mapped into the challenges to mitigation-adaptation space.
Image taken from the Wikipedia page to Shared Socioeconomic Pathways. By Sfdiversity
- Own work, CC BY-SA 4.0, link

1.6.2 The Shared Socioeconomic Pathway (SSP) scenarios

The Shared Socio Economic Pathway scenarios (SSP scenarios) are a list of five storyline
scenarios constructed formally for producing the Sixth IPCC Assessment Report. These
storyline narratives are constructed to describe future socio-economic developments of the
world. Each storyline is unique in its adaptation and mitigation challenges (towards cli-
mate change). Every scenario has a unique country-level population and GDP projection
till 2100. Figure 1.7 shows the map of these five scenarios in the adaptation-mitigation
plane. Regional level population and income projections under five SSP scenarios till 2100
(starting from 2015) are shown in Appendix - Supplementary Figure B.11. The division
methodology of regions are explained in Appendix Section A.5.2.

The SSP scenarios were first introduced in Riahi et al. [77]. Their storyline descriptions,
presented below, are quoted directly from the original paper:

SSP1: Sustainability (Taking the Green Road)

“The world shifts gradually, but pervasively, toward a more sustainable path, emphasizing
more inclusive development that respects perceived environmental boundaries. Manage-
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ment of the global commons slowly improves, educational and health investments accelerate
the demographic transition, and the emphasis on economic growth shifts toward a broader
emphasis on human well-being. Driven by an increasing commitment to achieving devel-
opment goals, inequality is reduced both across and within countries. Consumption is
oriented toward low material growth and lower resource and energy intensity.” [77]

SSP2: Middle of the Road

“The world follows a path in which social, economic, and technological trends do not shift
markedly from historical patterns. Development and income growth proceeds unevenly,
with some countries making relatively good progress while others fall short of expecta-
tions. Global and national institutions work toward but make slow progress in achieving
sustainable development goals. Environmental systems experience degradation, although
there are some improvements and overall the intensity of resource and energy use declines.
Global population growth is moderate and levels off in the second half of the century. In-
come inequality persists or improves only slowly and challenges to reducing vulnerability
to societal and environmental changes remain.” [77]

SSP3: Regional rivalry (A Rocky Road)

“A resurgent nationalism, concerns about competitiveness and security, and regional con-
flicts push countries to increasingly focus on domestic or, at most, regional issues. Policies
shift over time to become increasingly oriented toward national and regional security is-
sues. Countries focus on achieving energy and food security goals within their own regions
at the expense of broader-based development. Investments in education and technological
development decline. Economic development is slow, consumption is material-intensive,
and inequalities persist or worsen over time. Population growth is low in industrialized
and high in developing countries. A low international priority for addressing environmental
concerns leads to strong environmental degradation in some regions.” [77]

SSP4: Inequality (A Road Divided)

“Highly unequal investments in human capital, combined with increasing disparities in
economic opportunity and political power, lead to increasing inequalities and stratification
both across and within countries. Over time, a gap widens between an internationally-
connected society that contributes to knowledge- and capital-intensive sectors of the global
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economy, and a fragmented collection of lower-income, poorly educated societies that work
in a labor intensive, low-tech economy. Social cohesion degrades and conflict and unrest
become increasingly common. Technology development is high in the high-tech economy
and sectors. The globally connected energy sector diversifies, with investments in both
carbon-intensive fuels like coal and unconventional oil, but also low-carbon energy sources.
Environmental policies focus on local issues around middle and high income areas” [77]

SSP5: Fossil-Fueled Development (Taking the Highway)

“This world places increasing faith in competitive markets, innovation and participatory
societies to produce rapid technological progress and development of human capital as
the path to sustainable development. Global markets are increasingly integrated. There
are also strong investments in health, education, and institutions to enhance human and
social capital. At the same time, the push for economic and social development is coupled
with the exploitation of abundant fossil fuel resources and the adoption of resource and
energy intensive lifestyles around the world. All these factors lead to rapid growth of the
global economy, while global population peaks and declines in the 21st century. Local
environmental problems like air pollution are successfully managed. There is faith in the
ability to effectively manage social and ecological systems, including by geo-engineering if
necessary.” [77]

In the second chapter, I use the SSP scenarios primarily for the purpose of using their coun-
try level population and income projections till 2100. Those act as inputs to the coupled
human-land system model when I make projection for future land use. We also construct
future yield scenarios (denoted by f scenarios) which are independent of the SSP scenar-
ios. In an earlier paper [74], SSP storylines for future agricultural yield and consumption
patterns were constructed. However, in my model I do not use these constructions. I show
results for all possible yield scenarios under each SSP scenario.

1.7 Evolutionary game theory

Evolutionary game theory is often loosely defined as the application of the mathematical
theory of games in the broad field of evolutionary biology. Game theory is believed to have
begun in 1928 as a unique field after John von Neumann formalized some of the fundamen-
tal theorems of the literature in his paper On the Theory of Games of Strategy. In 1973,
British mathematician Dr. John Maynard Smith formalized the concept of evolutionary
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Payoff for Alice If Bob plays

If Alice
plays

C D
C R S
D T P

Table 1.4: Payoff matrix for a two player two strategy game between players Alice and
Bob with strategies C and D.

game theory by bridging the gap between mathematical game theory and biological evo-
lution. His paradigm shifting 1982 book titled Evolution and the Theory of Games drew
in a lot of outside attention into game theory–a field that had, till then, only interested
mathematicians and economists.

The fundamental concept behind evolutionary game theory is the idea that evolution
of any sort, biological (changes in heritable characterstics with generations) or cultural
(changes in beliefs and norms in society), is driven by the frequency distribution of com-
peting agents in the population (genotypes in biological evolution and social strategies
in cultural evolution). Frequency distribution of the agents endogenously determines the
reproductive fitness landscape, which, in turn, drives the course of evolution.

In this section I provide a brief overview of the fundamentals of evolutionary game
theory in order to set up the evolutionary game theory inspired imitation dynamics model
in the next chapter.

1.7.1 Fundamentals of game theory: two players, two strategies

In a game between Alice and Bob with two possible strategies, four deterministic outcomes
exist. Let us represent the two strategies that they can play as C and D. Since strategies
in game theory are mutually exclusive of each other by definition, strategies in the two
strategy game are also termed as co-operation (C) and defection (D).

Each of the four outcomes has an associated payoff for both the players. These outcomes
can be represented in the form a payoff matrix (see Table 1.4). Entries of the payoff matrix
(P , R, S, T ) essentially define the characteristic of the game and also its outcome if players
are assumed to be rational and in possession of complete knowledge about the game. A
pure strategy game is defined as a game where players can play either one of the two
strategies. Its counterpart, the mixed strategy game, is a game where players play their
strategies probabilistically.
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Prisoner’s Dilemma

Prisoner’s dilemma is the most popular game in the literature of game theory. A two player,
two strategy game is called a Prisoner’s Dilemma when T > R > P > S. Being the sole
defector has the highest payoff. Payoff for co-operating with co-player is second highest
followed by the payoff for defecting against the co-player. Being the sole co-operator has
the lowest payoff. An example of the Prisoner’s Dilemma game is the donation game where
a benefit b is provided to the co-player at a cost c (b > c). In that game, R = b−c, S = −c,
T = b and P = 0.

The Hawk and Dove game

The hawk and dove game is the most popular game in the literature of evolutionary game
theory. In this game, players have the choice to either be the hawk or the dove. The
dove strategy is analogous to co-operation whereas the hawk strategy is analogous to
defection. Doves are conflict-avoiding whereas hawks are conflict-seekers. When fighting
over a reward V , two doves agree to share the spoils equally without conflict. Two hawks
fight over the reward and while doing so they each expend an effort d/2 (d > V ). When
a hawk encounters a dove, it wins the total reward by force. Let us denote the hawk
strategy as D and the dove strategy as C. For the hawk and dove game, R = V/2, S = 0,
T = V , P = V/2− d/2. For the hawk and dove game, the ordering of the payoffs is hence:
T > R > S > P . If the reward V were higher than the cost d, the game would have been
a Prisoner’s Dilemma.

Every non co-operative game has a fixed solution called the Nash equilibrium. A Nash
equilibrium is a solution where no player can gain anything by changing only their own
strategy. For a given game, a Nash equilibrium can either be a set of pure strategies or a
set of mixed strategies. For example, in Prisoner’s Dilemma, both players defecting is the
Nash equilibrium (one cannot increase their payoff by changing only their strategy from
defect-defect). Whereas, for the hawk and dove game, the Nash Equilibrium is a mixed
strategy.

If mixed strategies are allowed, every game with finite number of players and finite
number of pure strategies has a Nash equilibrium (the Nash existence theorem).

1.7.2 Population dynamics and evolutionary games

Let us assume that there are two viable strategies, C and D, for a population. Every
agent in the population possesses one of the two strategies. I represent the fitness of the
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two strategies as fC and fD. Here the term fitness is used in the Darwinian sense. That
is, a higher fitness strategy will have a higher reproductive success compared to a lower
fitness strategy. Let us suppose that the frequency (relative abundance) of strategy C in
the population is represented as xC and the frequency of strategy D in the population
is represented as xD. Naturally, xC + xD = 1. Average fitness of the strategies in the
population is, hence:

f̄ = xCfC + xDfD (1.14)

If total population is sufficiently large and generations continuously blend into each
other, it can be assumed that x = (xC , xD) evolves in the simplex, S2, as a continuous
differentiable function of t. The rate of increase of a strategy i ∈ {C,D} is a measure of
its evolutionary success. By Darwinian principles, evolutionary success is measured by the
difference between fitness and average fitness of the population. Then, by that principle,
rate of increase of strategy i’s abundance in a population can be expressed as:

ẋi
xi

= fitness of i− average fitness for all j ∈ {C,D}

That is,

ẋi = xi(fi − f̄) (1.15)

Using Equations 1.14, 1.15 and the fact that xC + xD = 1, the rate of increase of
strategy C’s frequency in the population can be simplified into:

ẋC = xC(1− xC)(fC − fD) (1.16)

Since ẋD = −ẋC , rate of increase of strategy D’s frequency in the population can be
expressed as:

ẋD = xD(1− xD)(fD − fC) (1.17)

The same theory applies for n strategies in a population. In that case, the frequency
vector x is restricted to the simplex Sn instead of S2. In the literature of evolutionary
dynamics, Equations 1.16 and 1.17 are more popularly known as replicator equations.
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Absolute natural selection

The regime of absolute natural selection exists when one strategy always possess higher
fitness than the other (fC > fD or fD > fC). Irrespective of the initial condition, the
population always converges to a single strategy. The other competing strategy is wiped
out.

Frequency dependent selection, evolutionary game theory

The field of evolutionary game theory deals with replicator equations that have frequency
dependent fitness. This means that fC and fD are functions of x = (xC , xD).

Since strategies with higher payoff replicate faster, fitness of strategies are equated to
their average payoff. Let us assume that strategies C and D pertain to the game defined
in Table 1.4. If relative abundance of C and D strategy holders in the population are xC
and xD respectively, the effective payoff of C (and hence its fitness) is:

fC = xCR + xDS

Similarly, effective payoff of D (and hence D’s fitness) is:

fD = xCT + xDP

Using these fitness definitions and Equation 1.16, it is possible to write:

ẋC = xC(1− xC)(xC(R− T ) + xD(S − P )) (1.18)

An assumption of well mixed population is made here. That is, the probability of
encountering a strategy holder i is directly proportional to the relative abundance of i in
the population. The following can be inferred about the simple evolutionary dynamics that
I just defined (Equation 1.18) [64]:

1. When R > T and S > P , C always dominates over D. Given any initial distribution
of C and D in the population, the population always converges to all C (regime of
absolute natural selection).

2. Similarly if R < T and S < P , D absolutely dominates over C (regime of absolute
natural selection).
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3. if R > T and S < P , the system is bi-stable. Depending upon the initial condition,
only one strategy can survive (while the other one is wiped out).

4. if R < T and S > P , strategies can co-exist together in the population.

5. if R = T and S = P , the system is neutral. Any initial configuration is maintained
throughout.

For conditions 3 and 4 in the above list, the equilibrium value of xC is

x∗C =
P − S

R− S − T + P
.

For condition 3, if xC(0) > x∗C , then, xC(t) = 1, eventually, for t greater than some t0.
Oppositely, for the same condition, if xC(0) < x∗C , then, xC(t) = 0 for t greater than some
t0. The dynamics is termed bi-stable when it shows these properties. The final state of
the population is either all C or all D depending upon the initial condition.

For condition 4, irrespective of xC(0) (0 < xC(0) < 1), xC(t) = x∗C , eventually, for
t greater than some t0. If xC(0) is 0 or 1, it does not change for any t ∈ [0,∞). This
dynamical behaviour is termed as ‘co-existing’. C and D strategies can co-exist together
in the population at a game-determined equilibrium, x∗C .

For condition 5, xC(t) = xC(0) for t ∈ [0,∞). Strategies C and D are said to be in
neutral equilibrium. The initial configuration is never disturbed.

If the Prisoner’s Dilemma game is played in a population, condition 2 applies (since
for Prisoner’s Dilemma, R < T and S < P ). Irrespective of the initial condition, the final
state of the population is all D. However, if Hawk and Dove is played in the population,
P < S (as V/2 − C/2 < 0) and R < T . For this case, condition 4 applies. Hawks and
doves can co-exist in the population at a game-determined equilibrium.

Social learning rate

An extension of the replicator dynamics can be the case where individuals do not sample
the population with absolute certainty. While deriving the model, it was assumed that in-
dividuals always encounter either similar strategies or opposite strategies while randomly
sampling their population. It could also be possible that they do not choose to interact
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within their population (by refusing to sample). This behaviour can be captured by a pa-
rameter called the social learning rate which is nothing but the sampling rate of individuals
in their population. The social learning rate is a parameter that can vary between 0 to 1.
A lower value of this parameter indicates lesser velocity for the motion of x in the simplex.
If κ is used to represent the social learning rate, equations 1.16 and 1.17 can be modified
into:

ẋC = κxC(1− xC)(fC − fD)

and,

ẋD = κxD(1− xD)(fD − fC)

In evolutionary game theory, fitness is always modeled as a linear function of payoff.
Any differentiable function can be used for modeling the relationship between payoff and
fitness as long as it is monotonically increasing with payoff.

1.7.3 Using replicator dynamics to model imitation of behaviours

When there are two strategies viable to the population, their effective payoff difference
determines the course of evolution for their sub-populations. This evolutionary dynamics,
also termed as imitation dynamics (formally replicator equation), has been widely used in
modeling human behaviour in social settings [42, 7, 16, 46].

In [7], imitation dynamics is used to model the evolution of vaccinators and non-
vaccinators in a population. In that model, fitness of vaccinators increases with decrease
in perceived probability of significant morbidity from the vaccine. For non vaccinators,
fitness depends upon perceived probability of suffering significant morbidity upon infec-
tion and the probability of eventually getting infected. In [16], imitation dynamics is used
to model evolution of mitigators and non-mitigators of climate change in a population.
Fitness of the sub-populations depend upon utility functions governed by costs of climate
change mitigation, costs imposed on non-mitigative behaviour and costs associated with
average global temperature anomaly. The model also accounts for costs associated with
social norms that strengthen the majority behaviour. In [46], imitation dynamics is used
to study the evolution of grassland preferrer and forests preferrers in a population. Their
evolution governs the stability of forest-grassland mosaic ecosystems. In the second chap-
ter, I introduce an evolutionary game theory styled model to describe the evolution of
practitioners and non- practitioners of sustainable diets in a population.
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1.8 Objectives and Direction

Thus far in this thesis I have discussed: the history of global agricultural land use (Section
1.1), impact of agricultural expansion on environment and ecosystem (Section 1.2), drivers
of agricultural land use (Section 1.3), a model for mapping an average diet of a population
to an equivalent area of land (Section 1.5.1), socio-economic scenarios of the future (Section
1.6) and replicator dynamics in evolutionary game theory (Section 1.7).

All of these sections set up the second chapter of this thesis. In the second chapter,
the role of sustainable diets in influencing global agricultural land use is studied using
an evolutionary game theory inspired imitation dynamics model. Because sustainable
consumption is ultimately an individual level choice, driven by socio-economic factors, a
game theoretical approach to modelling the decision making assures that the problem is
addressed using first principles.

The next chapter is presented in the form of a manuscript in progress. The individual
level consumption model presented in the next chapter takes into account the economic and
social barriers of adopting a sustainable diet. Using the country-level model, projections
for global land use are made till 2100, under multiple socio-economic scenarios (described
in Section 1.6). Additionally, using the model, I demonstrate the mitigating power of social
parameters that possess the potential to accelerate or decelerate global migration towards
sustainable consumption.

Earlier studies have explored the strong mitigating effect of reduced consumption levels
on climate and global land use [74, 92, 75, 88]. However, in these studies, diet is considered
exogenous to the system. Dietary patterns are treated as scenarios. Projections of land use
(or emissions) are made under each scenario of future consumption pattern. For example,
in [74, 92], future dietary consumption scenarios of ‘No ruminant meat’, ‘No meat’, ‘No
animal product’ and ‘Healthy Diet’ are constructed to observe the corresponding model
projections of land use and global emissions. The scenario description of ‘No Ruminant
Meat’ in [92] goes as follows:

“As reference but with complete substitution of proteins from ruminant meat (cattle,
buffaloes, sheep and goats) by plant proteins starting in 2010 and completed by 2030.
By-products such wool and leather are also assumed to be substituted by other materials.”

Although the projections from these models are widely accepted in the literature, they
provide little or no insight into understanding how these variants of diets can actually evolve
within populations. Dietary change is not a sudden change that gets implemented over
a day. Unlike industrial emissions, it cannot be controlled with regulations and taxation.
Dietary change is a slow behavioural process that evolves gradually with time. Various
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social, cultural, economical and health related causes affect dietary behaviour. The model
in chapter two, albeit simplistic, provides a foundation for studying the socio-cultural
mechanisms that drive changes in dietary behaviour.
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Chapter 2

Global land use and the future of
sustainable consumption: projections
of a coupled social-land use model

1

1This chapter is based on the paper in progress: Saptarshi Pal, Chris T. Bauch, Madhur Anand. Future
of Global Land Use and Sustainable Consumption with a Social Learning Model. In Progress, 2020
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2.1 Abstract

Among the complex determinants of global agricultural land use, dietary patterns have
been identified as a key factor. Models that project future land use often assume fixed
scenarios for how sustainable dietary patterns will change over time, but land use is itself a
driver of dietary decision-making and thus it responds to changing land use. Our coupled
socio-land-use model captures both endogenous drivers (behaviours evolving through social
learning) and exogenous drivers (behaviours evolving due to perceived ecological cost of
land expansion) of dietary behaviour. We make global land use projections until 2100 and
explore social strategies of land sparing under multiple scenarios of population, income
and growth in agricultural yield. The model exhibits synergistic effects between coupled
socio-land use dynamics and socio-economic parameters like income elasticity. When future
agricultural yields are low and/or population size is high, we find that coupled socio-land
feedbacks can reduce the projected peak global land use on the order of 2 billion hectares,
but only if socio-economic barriers to adopting a sustainable diet are sufficiently low. In
contrast, when population growth is low or yield is high, global reductions in income
elasticity of food purchase can increase peak land use on the order of 100 million hectares.
We also comment on charting behavioural pathways to minimize peak land use in the 21st
century. By providing insights into the potential role of coupled socio-land dynamics, our
paper demonstrates the value of diversifying global land use modelling by accounting for
coupled socio-land feedbacks.

2.2 Introduction

From 1961 to 2013 global food demand went up threefold, from 6.4 trillion to 19.4 trillion
kilocalories (kcals) per day. This massive increase is attributed to an increase in the world
population from 3 to 7.1 billion and an increase in average per capita consumption of food
from 1800 kcals/day to 2600 kcals/day over this period [32]. Land is the primary global
food supply. In 2013, an estimated land equivalent of 3.5 billion hectares was consumed
(72% of agricultural land in that year) while approximately 1.4 billion hectares of land
was spent on wasted food [78]. In the future, expansion in global agricultural land and/or
increased intensity of existing farmland usage is therefore a highly probable pathway to
meet the enhanced demands of the 21st century. However, agricultural expansion and in-
tensification represent major ecological threats, ranging from clearing of forests and habitat
fragmentation [60, 14] to increased greenhouse has emissions [15, 101].

Agricultural intensification faces an uncertain future. From 1961 to 2013, production
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gains were mostly due to the steady rate of growth of productivity of land [15, 32]. Some
studies suggest that certain major crops are approaching their yield ceilings in rich countries
[31, 25, 18] indicating that further yield improvement will be unlikely in those countries.
There has been a deceleration in yield rates across the globe primarily due to decreasing
investment in agricultural research and reduced food production prices in both higher and
lower income countries [69]. Slowing intensification may trigger agricultural land expansion
to catch up with rapidly growing demand for food. We note that increasing yield is a
necessary but not sufficient condition for land sparing, since it needs to be coupled with
improved governance, planning and zoning to realize their sparing potential [55, 59].

Existing research on sustainable pathways of agricultural technologies [98, 39] tend to
focus on the supply side of the problem. On the demand side, they assume simple sce-
narios that describe how future demand will change according to some trajectory that is
independent of the complex drivers which actually determine agricultural land use. So-
phisticated land system ensemble models that are used to project land use in IPCC reports
do not explicitly study the dynamics of system-induced drivers of human consumption be-
haviours, since their models use scenarios for homogenized dietary consumption patterns
as inputs [74, 92, 1, 88]. Although it is fairly well understood that dietary patterns can
heavily influence trajectories of global land use [1, 93, 2, 83, 37], there has been limited
investigation into how these shifts in dietary pattern can actually evolve within populations
due to social and economic factors, and in particular how they respond to changing land
use. Studies have found that individuals do factor in environmental factors while making
dietary decisions [9, 48]. Sustainable dietary patterns, unlike industrial emissions, cannot
be be regulated or enforced directly by changes in governmental policies. Sustainable con-
sumption is an economically and socially induced process that evolves endogenously in a
population and hence requires a more systematic study.

From the individual perspective, one cost of adopting a land sparing sustainable diet
could be to give up the personal satisfaction of consuming meat [68, 30]. However, everyone
benefits from an individual’s choice to adopt a sustainable diet, since global land use is
reduced as a result of that choice. Hence dietary choices represent a public goods game,
where individuals may choose to contribute to a common benefit that all members of the
group receive, even if they did not make a contribution [41, 84]. Modeling social behavior
in public goods games often uses models of imitation dynamics from evolutionary game
theory, which captures how individuals learn behaviours from one another [7, 34, 10].

Mathematical models of sustainable food systems are becoming an increasing topic of
research [63, 4, 87, 57, 90, 43]. More recently, interest has grown in coupling imitation
dynamic models to models of natural processes [16, 8, 19]. Here, we introduce a modelling
framework for coupling the country-level social dynamics of sustainable dietary decision-
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making under imitation dynamics to country-level land use dynamics. Our objectives are
to: (1) show how models of social dynamics and land use dynamics can be coupled to
generate novel predictions that are not possible using standard approaches that ignore
these coupled interactions, and (2) gain insight into how potential coupled social-land use
processes alter both projected global land use and projected dietary trends. Our objective
was not to generate a set of projections for policy use (although we do not rule out that
future models could capture more complex social processes for policy applications). Hence,
we opted for a minimal model that was easier to fit to data and gain insight from.

2.3 Model Overview

Our mathematical model describes a social learning process by which individuals learn
dietary behaviour from others. Our model captures the two-way feedback between land
use and dietary practice: as dietary practices impact global land use, the resulting trends in
global land use can, in turn, stimulate behaviour toward more sustainable diets in a closed
feedback loop, albeit modified by socio-economic drivers. Details of the model appear in
Methods.

For every country, i, we define bounds for maximum and minimum per capita land use
in year t (cU,maxi (t) and cSi (t) respectively). We classify individuals as having either sus-
tainable or unsustainable diets. Individuals with a sustainable diet consume cSi (t) hectares
per capita in year t. Those with unsustainable diets increase their consumption based
on per capita income up to a maximum cU,maxi (t). We define hi as the elasticity of food
consumption with respect to income in country i (or just, income elasticity of food con-
sumption in i). The higher h is, the more rapidly consumption changes with income for
those practicing an unsustainable diet (see Methods). The calculation procedure for cU,max

and cS appears in Methods. Beyond 2013 (the last available year in the FAO food balance
sheets), these bounds are extrapolated under different scenarios defined by a parameter
f (a number between 0 and 1). Low values of f represent scenarios where future global
yields are higher. High values of f represent inferior (low) yield futures (see Methods for
a mathematical representation of the scenarios).

We assume every country i is characterized by a barrier to adopting a sustainable diet,
σi, such that when global land use L < σi, the perceived costs of a sustainable diet push the
population toward an unsustainable diet, while when L > σi, the population moves toward
the sustainable diet. σi represents a barrier to achieving population-wide adoption of a
sustainable diet due to the combined effects of various psychological, social and economic
factors. The rate of dietary change is dictated by κi, which describes how fast social
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learning occurs in country i. κi is a control knob that determines how often an individuals
samples other individuals in the population regarding their diet. If an individual on a non-
sustainable diet samples an individual on a sustainable diet and if L > σi, they switch to a
sustainable diet with a probability proportional to the difference L− σi. A similar process
occurs for the switch from sustainable to unsustainable diets (see Methods). When L > σi,
the proportion x of individuals on a sustainable diet increases as individuals switch from
an unsustainable diet to a sustainable diet. The opposite happens in the unsustainable
regime. A high value of κi can accelerate change in either direction depending on the
difference between L and σi.

We use a previously published model [78] to generate country-level land use data based
on dietary patterns from 1961 to 2013. We fit our model to these data to estimate κi, σi and
hi for 166 currently existing countries (see Appendix Section A.1 for methods of parameter
estimation and Appendix Section A.4). These estimated parameters were taken as our
baseline parameter values. Under the umbrella term ‘agricultural land use’ we included
land used for agriculture, pasture and feed generation. Our land calculations excluded
land equivalent of food wastage: we accounted only for the land that is used to generate
the food that ends up being consumed by the population (See Methods for details). The
model parameters, κ, h and f , are real numbers in the interval (0, 1).

2.4 Results

We make global land use projections for 20 scenario combinations for the 164 countries
we analyzed (see Appendix Section A.4 for details on countries used). For country-level
population and income projections, we use the five shared socio-economic pathway (SSP)
scenario markers, SSP1 to SSP5 [77, 26]. Each SSP scenario represents a unique storyline
for the future that dictates the trajectory of population and income in countries (among
other things). Although these scenarios have unique storylines for yield growth, we also
show results for different possible future yield trajectories under each SSP scenario. SSP1
is characterized by relatively high income and small population. In SSP2, current trends of
population and income continue, and moderate progress is made by achieving income con-
vergence between countries. SSP3–also called the road to regional rivalry–is characterized
by an overall high population growth and low income levels in developing countries. The
SSP4 future sees high disparity in economic growth rates between high income and low
income countries; global growth is less rapid compared to SSP1. In a SSP5 world, economic
development is of utmost priority, income growth is high, on average, and it is coupled with
strong improvement in education that leads to reduced fertility and hence a relatively small
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a.

b.

Higher future yields Lower future yields

Figure 2.1: Global land use projections till 2100 under multiple yield and SSP
scenarios a. Global agricultural land use projections till 2100 (excluding land equiva-
lent of food wastage) under 20 scenario combinations. The four columns cover the yield
scenarios of f = 0.2, 0.4, 0.6 and 0.8. Yellow dots show the time series data for land use
from 1961 to 2013. Data from 1961 to 2013 is generated using the model in Rizvi et al.
Projections in solid lines begin from 2011 and continue till 2100. b. Model projections of
fraction of global population consuming sustainably. See Methods for model definition of
sustainable consumption. Yellow dots show time series data for fraction of people consum-
ing sustainably between 1961 and 2013. It was calculated as per model definition using
data generated by the model in Rizvi et al.
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a. b.

Figure 2.2: Global land use projections till 2100, broken down continent-wise,
reveal heterogeneity under sustainable behaviour in baseline conditions. a. Pro-
jections of change in agricultural land use with respect to 2013 (excluding land equivalent of
food wastage) broken down continent-wise into five major regions - Africa, Asia, Americas,
Europe and Oceania (see Supplementary Section 5.2 for division methodology). Projec-
tions are shown for 20 scenario combinations (combinations of 5 SSP scenarios and 4 f
scenarios). b. Model projections for fraction of regional population consuming sustainably
for 20 scenario combinations. See Methods and Supplementary for formal definitions of
sustainable consumption. Only Europe and Oceania show a rise in sustainable consumer
fraction over the projecting period (2011 - 2100).

but well-educated population. See Supplementary Figure B.11 for population and income
projections under the five SSP scenarios until 2100. For each of the five SSP scenarios, we
also explored four scenarios for future agricultural yield: f = 0.2, 0.4, 0.6, 0.8, producing a
total of 20 scenarios.
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2.4.1 Dynamic social-land feedbacks can partially counteract pol-
icy

At the global level, the model shows how social dynamics partially counteract land use
impacts caused by other trends such as changing per capita income and population size.
The model predicts a net decrease in the proportion of individuals practicing a sustain-
able diet (x, or, ‘sustainable consumers’ hereafter) from 2013 to 2100 in all scenarios, on
account of a high average barrier to adopting a sustainable diet (σi) and increasing per
capita incomes (Figure 2.1b, and see Supplementary Figure B.6 for global distribution of
baseline σ values). A more rapid decline occurs under SSP5 and SSP1, on account of lower
population sizes and thus lower land use in those scenarios creating a reduced perception of
need to switch to a sustainable diet (Figure 2.1a). There are more sustainable consumers
higher under SSP3, on account of higher land use in that scenario. In SSP3, due to re-
duced global income, unsustainable practitioners cannot consume as much as they could
have with a higher income. However, this does not help reduce global land use because
population size grows fastest under this scenario. Unsustainable practitioners therefore
switch to sustainable diets faster because growing global land use exceeds the barrier to
adopting a sustainable diet. Their behavioural change is, however, of little avail. Since
their unsustainable consumption is not substantially higher than the sustainable level (due
to reduced income in SSP3), the effects of this behavioural change are outweighed by high
population growth. On the contrary, in SSP1 and SSP5, higher incomes allow higher con-
sumption for the unsustainable practitioners. But low population growth prevents higher
per capita consumption from causing a large rise in global land use. As a result, the
temporal evolution to sustainable diets is slower in these scenarios.

Under scenarios of higher future yield (f = 0.2 and f = 0.4), global land use declines
from its 2013 values across most SSPs. The only exception is SSP3 where land use starts to
increase again after a period of decline. This occurs because the global population continues
growing throughout the 21st century under SSP3. Eventually, the effect of population size
outweighs the effect of saturating gains in yield. Under scenarios of lower future yield
(f = 0.6, 0.8), future land use deviates significantly across the SSPs but generally tends
upward. We project land use to go as high as 6 billion hectares in the most extreme
scenario (f = 0.8, SSP3). SSP scenarios with large initial population growth rate (SSP3
and SSP4) do not reach peak land use by 2100. On account of rapidly expanding land use,
the sustainable consumers decline less rapidly than in the higher future yield scenarios,
but the overall trend is still downward.

Taken together, these results show how changes in parameters such as population size
and per capita in come can cause a social response that partially counteracts those changes.
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For instance, SSP5, despite being the most sustainable scenario in other respects, does not
exhibit the strongest transition to sustainable diets because the reduced population size
in that scenario causes a reduction in land use required, and thus reduces the perceived
need to transition to a sustainable diet. Similarly, higher agricultural yields reduce land
pressure, and thereby also reduce the perceived need to transition to a sustainable diet.
Scenario combinations involving higher future yield and/or SSPs with lower population size
cause sustainable consumers to decline, which means that land use ends up being higher
than it would be without this feedback between land use and dietary choices.

2.4.2 Continental and country-level land use projections

Projections broken down by geopolitical region reveal significant heterogeneity behind the
global trends (Figure 2.2). Europe and Oceania exhibit an increase in sustainable con-
sumers and a decrease in land use across all SSPs. This is because countries in Europe
and Oceania have lower inferred barriers to adopting a sustainable diet (σi) compared to
the rest of the world (Supplementary Figure B.6). With respect to evolution of global land
use, they always remain in the regime where sustainability is the dominant behaviour with
higher utility. The relative ordering of land use by SSP we saw in the global projections
remains consistent at the continent level. These projections also show that an increase in
sustainable consumers will not necessarily lead to a decrease in land use, even if that is
the general trend. For example, in certain scenarios, Africa, Asia and the Americas show
a decrease in land use (with respect to 2013) while the fraction of sustainable consumers
also declines, on account of growth in agricultural yield outweighing the effects of income
and population growth. For these regions, projections under the SSP3 scenario shows the
highest use of land. This is because, for them, population projection under SSP3 is the
highest among all SSP scenarios (unlike Europe and Oceania where it is the lowest). That,
coupled with a steady decline in sustainable consumers in their population, results in the
fastest change in land use. For these regions, the average socio-economic barrier to adopt-
ing a sustainable diet is always higher compared to the evolution of global land use in all
of the 20 scenario combinations. This indicates that future yield, income and population
do not drive the growth of sustainable consumers and the decline of land use identically.
The feedback loop between land use and dietary behaviours in our country-level model gets
scaled up to the regional level, too. In other words, each region shows a unique behavioural
response to change in global land use because of its unique social setting.
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Figure 2.3: Countries with high population and high land use show general
trend of reducing sustainable behaviour under baseline parameters. a. Ranking
of countries based on their total land use across 25 scenarios at 2050. Six countries land at
least once inside the top 5 positions in 25 scenario combinations (combinations of 5 SSP
scenarios and five yield scenarios: f = 0.2, 0.4, 0.6, 0.8 and 1). The heat map indicates the
number of appearance of a country at a particular ranking position. China and the USA
dominate the first two spots while India, Saudi Arabia and Nigeria dominate third, fourth
and fifth positions respectively. b. Table showing ranking of countries based on their
population (2020, data) and land use (2013, data generated from model in Rizvi et al.). c.
Model outputs of sustainable consumer fraction for the twelve countries that occupy spots
in either of the rankings in b. Ten out of twelve countries show a decrease in sustainable
practice. All countries except Australia, Russia and Indonesia (in some scenarios) show
decrease in the fraction of people consuming sustainably over all scenario combinations.
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Some countries with relatively small population sizes are projected to emerge as front
runners of global land use (Figure 2.3). The correlation between population and land use is
not absolute, however (Figure 2.3b). In 2013, the countries that had a comparatively lower
population but high land use were Kazakhstan (population, 18 million), Saudi Arabia (33
million), Australia (25 million) and Argentina (45 million). Ranking projection of land use
show that it is likely the fourth spot, currently occupied by Russia, will be taken over by
Saudi Arabia by 2050 (which, in 2013, occupied the fifth spot in land use) (Figure 2.3a).
In 2013, the two countries consumed comparable areas of global agricultural land for their
respective demands (123 million hectares for Russia and 105 million hectares for Saudi
Arabia). The primary reason for Saudi Arabia overtaking Russia can be identified from
Figure 2.3c. Over the projecting period, Russia sees an increase in sustainable consumption
while a decrease in sustainable consumption is seen for Saudi Arabia. In all the scenarios,
their baseline parameter value of σ (barrier to adopting a sustainable diet) places them
on opposite regimes of behavior with respect to evolution of global land use. For Russia,
sustainability is always the dominant behavior whereas for Saudi Arabia, unsustainable
consumption is the dominant behaviour. The switch between positions of Nigeria and
Russia can also be explained similarly.

2.4.3 Synergies between socio-land feedbacks and socio-economic
factors reduce peak global land use

We found that socio-economic factors as represented in our model–the social learning rate
(κ), the barriers to adopting a sustainable diet (σ), and income elasticity (h)–have very
large impacts on peak global land use, often ranging in the giga-hectares (Figure 2.4).
This is particularly true when higher incomes, higher population sizes and lower future
yields force individuals to make a choice between sustainable and unsustainable diets in
the face of rapidly expanding global land use. In contrast, when land use does not expand
as rapidly due to lower population sizes or higher yields, the perceived need to switch to a
sustainable diet is less.

When future yields are lower (f = 0.8), the peak global land use is much more sensitive
to social processes than when future yield is higher (f = 0.2) (Figure 2.4). Low yield
means rapidly expanding land use, which in turn stimulates a social response in favour of
wider adoption of a sustainable diet. Hence in this scenario, changes in social parameters
governing the pace and desirability of change have large impacts on land use. When
future yields are low, population growth also becomes a determining factor in assessing the
effectiveness of varying social parameters (Figure 2.4d). In contrast, when future yield is
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high, land use is lower even though more individuals are practicing an unsustainable diet,
and thus changes to parameters governing pace and desirability of a sustainable diet have
less impact.

In scenarios where future yields are lower, an increase in the social learning rate (κ)
leads to high peak global land use due to faster conversion to unsustainable consumption
as per capita income rises (Figure 2.4a). Globally, the barrier to adopting a sustainable
diet is too high for sustainability to spread in populations even when global land use in-
creases quickly. In the model, if a sustainable consumer samples their population very
often (high social learning rate, κ), they are easily tempted to shift to unsustainable con-
sumption because they see an increased expected utility in switching. The only way to
reduce this effect is to reduce the barrier to adopting a sustainable diet (lowering σ, Figure
2.4b). This could be possible by incentivizing consumption of plant protein or reducing the
market price of animal protein substitutes. Incentivizing sustainable consumption could
also be possible by indirect means, such as increasing public knowledge about health and
environmental implications of a high meat diet. Once the barrier to adopting a sustainable
diet is sufficiently low, social learning rates would assist in lowering the peak global land
use (Figure 2.4b). When σ is lowered, sustainable consumption becomes the dominant
behaviour due to its higher utility. In this case, a considerable amount of land is saved
even in scenarios where global population growth rate is high (SSP3) and future yields are
inferior (f = 0.8).

If global land use evolves very slowly due to slow population growth (SSP1, SSP5)
and high global yield (f = 0.2), the model predicts that sustainable consumption never
becomes the dominant behaviour at the global level. This is because L always remains
significantly lower to the baseline values of σ in these scenarios. Even with sizeable changes
in social parameters, κ and σ, only an insignificant increase in sustainable consumers is
achieved. As a result, there is no direct impact on peak global land use. As global land
use change is small in these scenarios (and sometimes negative, see Figure 2.1a), there is
not enough incentive for individuals to even pay a lowered cost to being sustainable. In
such a setting, the key to reducing global land use lies in the consumption patterns of
highly prevalent unsustainable consumers. Since global average income is high in these
scenarios, an increase in income elasticity can potentially cause negative impacts on global
agricultural land use (Figure 2.4a, 2.4c).

However, in the least optimistic scenarios (high population growth rate and low future
yields), certain variations of social parameters from their baseline values can alter peak
global land use by approximately two billion hectares (twice the size of China). Depending
upon socio-economic and yield growth scenarios, the optimal strategy for lowering peak
land use changes. Although it is always beneficial to reduce the barrier to adopting a
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sustainable diet, there can be scenarios where better gains are achieved by modulating
the consumption patterns of unsustainable consumers. Varying all three social parameters
guarantees a synergy in terms of lowering of peak land use in the 21st century, irrespective
of socio-economic scenario. Pragmatically, this is the best strategy since estimating course
of current socio-economic and yield scenario can be a difficult task. For example, if pop-
ulation growth rate and global yield are low (SSP1, f = 0.8), reducing income elasticity
has no significant effect on global land use (Figure 2.4c). In that scenario, lowering the
barrier to adopting a sustainable diet creates the largest impact (a reduction of about 1
billion hectare, Figure 2.4e). The most effective strategy to reduce peak global land use is,
hence, to reduce socio-economic barriers of sustainability adoption and income elasticity
of consumption simultaneously. Increasing social learning rate also assists in the lowering
of land use, provided barriers to adopting sustainable consumption are also reduced.

As seen earlier, the average barriers (σ) of Europe and Oceania are already sufficiently
low at the baseline level. They promote an increase in sustainability under the entire
spectrum of scenarios (Figure 2.2b). On the other hand, at the baseline level, Africa, Asia
and the Americas show an opposite trend. Selective reduction of barriers in these three
regions can also significantly impact in reducing peak global land use.
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Figure 2.4: (Continued on the following page.)
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Figure 2.4: Variations in social parameters from baseline level impact global
land use. Model output of peak global land use at four scenario combinations - f =
0.2, SSP1, f = 0.2, SSP3, f = 0.8, SSP1 and f = 0.8, SSP3. Model projections are
evaluated at parameters deviated from their baseline settings. The black star in each plot
indicates the position of the baseline parameter in the heat map. a. Heat map for peak
land use projection with deviations in κ (social learning rate) and h (income elasticity of
food consumption) while the value of σ (barrier to adopting a sustainable diet) remains
constant at the baseline level b. Heat map for peak land use projection with deviations in
κ and σ while h remains constant c. Heat map for peak land use projection with deviations
in σ and h while κ remains constant. All deviations are made within -100% to 200% of the
baseline settings. Unit for the color bar in the heat-map is billion hectares. d. Peak global
land use values from parameter planes in a., b. and c. are plotted versus the scenarios.
Average peak global land use increases with increase in f scenario. e. Model time series
of global land use in the 21st century in scenarios of low global yield. All changes in
parameters are made by 50% of baseline value. Reduction in σ saves land the fastest. At
low yield scenarios, lowering h has no effect. Increase in global κ with no accompanied
decrease in global σ results in substantially higher global land use (w.r.t baseline).

2.5 Discussion

Individual diets are influenced by complex social factors such as religion, concern for
health, urbanization, female participation in labour, food prices, and sustainability prac-
tices [61, 109, 72, 56]. Several of these factors imply a two-way feedback between land
use and dietary decisions. Here we focused on the effect of ballooning global land use
as a stimulus for individuals to adopt more sustainable diets, against a backdrop where
rising incomes also permits individuals to opt for unsustainable diets instead by eating
more land-intensive foods such as meat. We subsumed other factors in decision-making
into our phenomenological parameters at the social (κ, σ) and individual (h) level that we
inferred from data. We showed how coupled socio-land dynamics can have giga-hectare
impacts on land use, especially when future yield is low and/or population size is high,
and we explored changes to social parameters that minimize future land use under vari-
ous scenarios for socio-economic development pathways and future agricultural yield. We
found that reducing barriers to adopting sustainable diets is an important way to reduce
peak global land use. Increasing social learning rates holds the potential to accentuate the
mitigating effect of reducing socio-economic barriers (a simultaneous effect shows a reduc-
tion of 2 billion hectares in peak global land use). Increasing social learning can result
in negative effects if no improvements in lowering barriers are made, however. In some
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scenarios where sustainability is difficult to achieve due to slow growth of global land use
(high yield and low population growth scenarios), reducing income elasticity, globally, can
have a significant mitigating effect (on the order of 100 million hectares).

Our minimal model, while serving to illustrate the vital role played by social processes,
also made simplifying assumptions that could impact its land use projections. Since we
assume a binary one dimensional classification of consumption behaviour: sustainable or
unsustainable, it is possible that our model overestimates or underestimates projections
for the number of sustainable consumers in a population in order to achieve good fits to
the data. Furthermore, over or underestimation is also possible since our model does not
take into account the fact that dietary patterns vary based on gender and age. These,
however, do not affect the general population trends predicted by our model. Despite
being a country with a large proportion of vegetarians, India has shown an increase in
consumption of meat (mostly poultry) in its recent history [62, 32]. This trend is captured
by our model as well (See Figure 3 of Supplementary Information). A future extension
of our model could include a continuous behavioural spectrum along with age and gender
structure in the population for more accurate predictions. Future work could also explore
the effects of social norms in order to determine how social inertia can accelerate or decel-
erate behavioural changes, as well as social learning between countries. For the purpose
of simplicity in working with country level data, we also assumed homogeneous behaviour
within each country by assigning unique parameter values to every country, and this could
be relaxed in future research.

A meat intensive diet is not just land intensive (70 % of global agricultural land is
used for livestock production). Livestock rearing directly contributes to global warming
by being responsible for 14.5 % of anthropogenic greenhouse gas emission such as methane
and nitrous oxide [38]. Additionally, recent studies have found that the international
livestock supply chain emits 65 TgNyr−1, which is a third of current anthropogenic nitrogen
emission [100]. An advanced version of our social process model would take into account
the perceived risk of climate change in modeling the behavioural drivers of a population.
An additional driver, in that case, could be the peak global temperature anomaly [16].

Future research in coupled socio-land use models can incorporate increasing sophistica-
tion to deepen our understanding of social processes around dietary choices and land use
dynamics, as well as their interaction with other socio-economic factors and other environ-
mental dynamics such as climate change. These models could inform land use projections
and deepen our insights into relevant processes, by incorporating the driving mechanisms
behind our dietary choices and accounting for how they respond to changes in land use
and socio-economic variables.
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2.6 Methods

2.6.1 Coupled Socio-Land Use Model

For a country i and year t, we assume two possible diet types: sustainable and unsustainable
for the entire population. The sustainable diet type requires cSi (t) hectares per capita to
generate while the unsustainable diet requires cUi (t) hectares per capita. By definition,
cSi (t) < cUi (t) for all i and t. We make the assumption that the sustainable diet is within
reach of anyone in a country irrespective of income whereas unsustainable is aspiration-
only. When income is small, individuals aspiring to an unsustainable diet are only able to
include occasional land-intensive items in their diet, but as their income rises, they include
more. We represent this behaviour with the following equation:

cUi (t) = (cU,maxi (t)− cSi (t))(1− e−hi(mi(t)−m0
i (t))) + cSi (t) (2.1)

Where cU,maxi (t) is upper limit of consumption by the unsustainable practitioners, mi(t)
is the average income of the population and m0

i (t) is the minimum income that can afford
the sustainable diet at i in t. The parameter h denotes the elasticity in the behaviour
of unsustainable practitioners. If h is large, cU grows towards cU,max faster with income
as compared to when h is small. Note that when average income mi(t) equals m0

i (t), the
entire population consumes sustainably; that is, they consume cSi (t) hectares per capita.
The per capita consumption of practitioners of unsustainable diet, cUi , approaches cU,max

asymptotically as the difference between mi and m0
i gets higher. Our assumption that

meat and dairy consumption increases with income has been explored and identified in
earlier papers like [12, 61].

Let xi(t) and 1− xi(t) be respectively the proportions of the population that are prac-
titioners and non-practitioners of sustainable diets in i at t. The average per capita con-
sumption of the population can then be defined as follows:

ci(t) = xi(t)c
S
i (t) + (1− xi(t))cUi (t) (2.2)

If Pi(t) is the population of i in t then the land used due to dietary consumption of
population i at t is Pi(t)ci(t). Global land use, or, the land used due to consumption by
the entire population of the globe at t can then be defined as the sum of land consumed
by all the nations in the world at t:

LG(t) =
∑
i

Pi(t)ci(t) (2.3)
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We use imitation dynamics from evolutionary game theory to describe the time evolution
of xi. The utility gain for changing from an unsustainable diet to a sustainable diet for the
baseline model is given by

∆e = αiL
G(t)− σ0,i

Hence, as the impact function LG(t) rises over time due to growing incomes, there is
a growing incentive for individuals to switch to a sustainable diet, according to a pro-
portionality constant αi. The rate of switching becomes faster as the difference between
αiL

G−σ0,i grows and vice versa. However, this behaviour to switch to sustainable practice
is only effective when αiL

G is greater than σ0,i. When αiL
G is less than this threshold,

σ0,i, the proportion of unsustainable practitioners grows, the rate being determined by the
absolute difference between αiL

G − σ0,i. We call the parameter σ0,i, the socio-economic
barrier to adopting a sustainable diet in i. Assuming a social learning rate of κ0,i for i we
can write the evolution of sustainable practitioners as follows:

dxi
dt

= κ0,ixi(1− xi)∆e, xi(t0) = x0,i (2.4)

After some rescaling of parameters we obtain:

dxi
dt

= κixi(1− xi)(LG(t)− σi), xi(t0) = x0,i (2.5)

Where κi = κ0,iαi and σi = σ0,i/αi are the rescaled parameters. We refer to the rescaled
parameters κi and σi with their original names. That is, κi is social learning rate and σi
is the barrier to adopting a sustainable diet in i. When global land use LG(t) exceeds σi,
unsustainable practitioners switch to sustainable behavior at a rate which is determined by
κi, the existing proportion of sustainable practitioners and the absolute difference between
global land use and σi. When global land use is less than σi, sustainable practitioners
switch to unsustainable behaviour through the same mechanism.

2.6.2 Method for calculating cU,max
i (t) and cSi (t)

The upper bound of per capita consumption, cU,max, is calculated by assuming that the
maximum diet is the one that allows highest intake of items that belong in the meats and
dairy diet groups. Similarly, for cS, we assume that sustainable diet is the one that allows
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least consumption of items in those groups. Our assumption is backed by numerous studies
that have found meat intensive diets to be environmentally unfriendly and land-intensive
[74, 85]

cU,max and cS can be calculated between 1961 and 2013 for countries whose data is
reported in FAOSTAT’s food balance sheets [32]. We categorize each of the 21 food items
listed in the food balance sheets into one of the seven groups of diet - fruits, vegetables,
grains, meats, dairy, oils and sugar.

For every country i, we calculate its maximum possible diet by replacing its average
consumption of items in the ‘meats’ and ‘dairy’ groups (in kcals/capita/day) with the
consumption values of the countries that consumed the most of those items that year.
Similarly, for the minimum sustainable diet, we replace them with the consumption values
of countries that consumed the least of those items in that year. Values for the remainder
of the diet (i.e the other groups - fruits, vegetables, grains, sugar, oils), remain the same as
reported data. An example of such a construction is shown in Appendix Table A.1). The
method of evaluating these bounds are explained with more detail in Appendix Section
A.1.1.

Once these hypothetical maximum and sustainable diets are constructed for a country
i, we use the model developed in Rizvi et al. [78] to calculate the total land required to
generate that per capita dietary demand for the population of i in t (see Appendix Section
A.2 or Introduction Section 1.5.1 for an overview of this model). We divide the output of
the model with the population of i at that year to obtain per capita land use equivalent of
the hypothetical diet (cU,max if maximum diet, cS if sustainable diet).

In order to evaluate these values for years beyond 2013 (for purpose of projections), we
use an extrapolating parametric function (See Method section for f scenarios).

2.6.3 Definition of land use: Data and Methods

We use the model developed in [78] to generate the country-level time series data of average
per capita land use between 1961 and 2013. The model is described briefly in Appendix
Section A.2. The UN FAOSTAT data-set also provides country level data for land used
on agriculture and pasture land. However, this is not the same as our definition of ‘land
use by i’. This is because countries are not entirely self-dependent in providing for their
food demand. Consume in i can be partly produced in j and vice-versa. Since the model
in [78] accounts for differential yields of food sources, the data for per capita land use, as
generated by model in [78], accounts for land used from across the globe to provide for the
consumption in i. If two countries have similar dietary consumption, the country which
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has a lower effective yield has higher value of per capita consumption than the country
which has a higher value of effective yield.

In all our projections and analysis, we consider land that is required to generate the food
that ends up being consumed by humans. Land equivalent of food wastage is not considered
in our calculations. The data reported by UN FAOSTAT’s land statistics division [33]
accounts for land used for all agricultural purposes. This includes land equivalent of food
wastage. In Supplementary Figure B.1, we see the quantitative difference between their
time-series and our global model output. FAOSTAT estimated that 1.4 billion hectares
were lost due to food wastage in the year 2007 [29]. This number matches exactly with
the difference between the two series at 2007 in Supplementary Figure B.1.

2.6.4 Population, income and f (yield) scenarios:

We borrow the SSP scenarios (Shared Socioeconomic Pathways) introduced in [77] for
projecting population and income to 2100. A number of existing models are compiled in
the SSP Public Database hosted by the International Institute for Applied System Analysis
(IIASA). Among them, we choose the OECD Env-Growth Model [26] for obtaining future
projected values of country level population and income. In Appendix Section A.4 we
list down the countries that are included in our analysis. We also provide reasons for the
exclusion of certain countries. The choice for OECD Env-Growth was made because it
covers projections for maximum number of countries among the existing models.

The bounds for maximum and minimum per-capita consumption (cU,max and cS) are
projected into the future with a parametric function. The parameter f , a number between
0 and 1, represents scenarios of yield future. We now explain the meaning of a yield scenario
parameterized by f . If the trend of cU,max and cS between 1990 to 2013 is decreasing (which
is more often than increasing), the series can at least reach f times its 2013 value in the
future. Similarly, if the trend is increasing, it can reach at most 1 + f times its 2013 value
in the future. The rate at which a projected curve (either cU,max or cS) reaches towards its
bound is determined by its rate between 1990 and 2013.

Let c be the concerned time series that we wish to project till 2100 using our parametric
function. The series c can either be cU,max or cS for a country i. The series is always defined
between 1961 and 2013. First, we fit an exponential of form y = aebt to a truncated c series.
This truncated version of c is the time series of c from 1990 to 2013. If b < 0 we call the
series trend decreasing and if b > 0 we call the series trend increasing. Here, a and b are
constants. We extrapolate the time series c till 2100 (starting from 2013 onward) using the
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following equations:

c(t) =

{
c(2013)− (c(2013)− c(2013)f)(1− e−β(t−2013)), if initial trend is decreasing

c(2013) + c(2013)f(1− e−β(t−2013)), if initial trend is increasing

Here f is the tune-able parameter - a real number between 0 and 1 that defines the
future yield scenario. For the above equation, t is always greater than 2013. The exponent
β is adjusted such that continuity is maintained at 2013 between the initial trend, aebx,
and the projected trend c(t). That is,

β =


− 1
c(2013)

abe2013b

1−f , b < 0

abe2013b

c(2013)f
, b > 0

In Supplementary Figure B.9, we show two examples of cU,max and cS projection till
2100 using the above method. The two countries that are chosen as examples are USA and
Netherlands. USA shows a decreasing initial trend (b < 0) whereas Netherlands shows an
increasing initial trend (b > 0).

If we assume that maximum and sustainable dietary distributions (in kcals/capita/day)
for countries remain constant from 2013 onward, f scenarios represent scenarios of yield
future. Then, a low f value represents improvement towards high yield values. A high
f value represents deceleration of yield rates, causing them to converge to inferior future
values.

2.6.5 Parameter plane analysis

The three social parameters, κ, σ and h are varied from their baseline values in a pairwise
fashion while keeping the third parameter fixed at the baseline setting. Every parameter
is varied from -100% to 200% of its baseline value. That is, if α is a social parameter, we
vary it from 0 to 3α while conducting this analysis.

Since we begin projecting at 2011 and continue till 2100, we make the correspond-
ing changes in social parameters at 2011 and keep them that way for the entirety of the
projecting period. We make equal percentage changes to social parameters of all coun-
tries included in our model. In the parameter planes, we observe the effect of changes in
parameter values on peak global land use attained between 2011 and 2100.
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We show results for four scenario combinations - i) SSP1, f = 0.2, ii) SSP3, f = 0.2,
iii) SSP1, f = 0.8 and iv) SSP3, f = 0.8. In all the parameter planes, the colors represent
the value of peak global land use (based on an accompanying color-bar). All units of peak
global land use are in billion hectares. Baseline parameters are marked by a black star (no
change) in each parameter plane. Arrows indicate direction towards least peak global land
use.
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Chapter 3

Conclusions and Future Work
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In Section 2.5 I discussed some of the conclusions and limitations of the results and the
model presented in Chapter 2. In this chapter, I discuss a few more conclusions and
limitations while charting the pathway for future research in coupled human-land system
models.

3.1 Conclusions

The concept of incentivizing sustainable consumption for boosting dietary change is not
entirely new. Quite recently in [70], authors conclude that the fastest mitigating pathway
of reducing food’s environmental impact is through changes in dietary behaviour. Their
findings show that producers have limits on how far they can reduce impacts from their
end. In this thesis, we show the quantitative impact of such incentivization through a
mathematical framework. Additionally, we also explore other potential endogenous system
parameters that can heavily accelerate the mitigation of such incentivization. The social
learning rate is one such parameter. However, without incentivization it can have negative
impacts. Under the current social learning rate, there is little hope in containing massive
demands of land intensive items if incentivization of sustainable diets are not implemented
soon.

Sustainability is a complex issue, especially at the individual level. It might seem hope-
less to adopt a sustainable diet when the outcomes of such behaviours are almost never
physically observable. There is no direct way for consumers to know how much land they
are using up for their consumption due to complicated supply chains of food items and
limited public knowledge of agricultural systems. To address this problem, several policy-
advising researchers suggest a mitigation framework where producers monitor their own
impacts by choosing from a range of available practices and simultaneously communicate
their impacts to consumers through their products [70]. Observable efforts from the pro-
ducer side in mitigating land and environment impacts can directly incentivize consumers to
reduce their consumption of heavy impact items. The communication can be implemented
through a combination of environment labels or taxes that reflect the environmental cost
of a generating a product. The role of researchers in this grand mitigation scheme is to
continually provide multiple mitigation options to farms, industry and retailers through
studies and observations [70]. Humans can acquire protein substitute of animal products
by consuming food that is not grown on land. This allows inclusion of seafood and fishes
in diets (which is currently not considered in the model). However, access to seafood can
vary depending upon the geographical location of a country. For example, a land-locked
country has lesser access to fish protein when compared to a sea-bordering nation (with

59



exceptions). Over-reliability on aquaculture is also not advisable due to environmental
impacts of over-fishing on coastal ecosystems [47, 80].

Non animal product food groups are not always sustainable in terms of land consump-
tion. For example, the food group of ‘oils’ has a very low effective yield compared to
the other groups (very similar to bovine and ovine meat, see Figure 1.3). Production of
consumable oil has been historically associated with tropical and equatorial deforestation
(e.g. palm oil) [104, 17]. Food groups can be legitimately labeled as ‘vegetarian’ or even
‘vegan’ though they are involved in unsustainable practice of production. Due to complex
supply chains of the food industry, it is difficult from the consumers’ perspective to distin-
guish between a sustainably produced item and an item produced through unsustainable
practice.

In vitro agriculture [27] and vat-grown meat [76] are some of the upcoming sustainable
alternatives to traditional livestock rearing for meat. These procedures involve developing
meat and meat substitutes using cell culture and tissue engineering. Progress in industri-
alizing such alternatives at low cost holds the potential to revolutionize the food industry,
and hence global agriculture. Efforts such as the recently popular plant-based burger can
also be of heavy impact with the correct commercialization.

3.2 Limitations and Future Work

The behavioural side of the coupled human-land system model is simplistic and does not
capture some of the deeper complexities of the social processes behind dietary behaviour.
Global dietary behaviour is a complex system that is affected by a variety of factors that
currently lack a representation in the modeling (as was discussed in Section 2.5). Our
phenomenological parameters subsume some of the more complex decision making factors
into them. For example, a high behavioural threshold (a high σ) can capture the cultural
norm of consuming meat in a population. With a separate representation for other external
factors in the model, it could be easier to study their individual effects on global land use.

The model does not distinguish between ‘a sustainable consumption due to choice’ and
‘a sustainable consumption due to force’. Undernourished countries show, by definition,
trends of sustainable consumption because of reduced levels of intake in all food-groups.
The behavioural threshold barrier (σi), in the current version of the model, hence, also
accounts for the economical barrier to adopt a reduced diet. A future model must include
a compartmentalization of these two qualitatively different behaviours. A simpler extension
of this work can address this issue by considering a separate model for countries that have
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average consumption below a specific nutritional threshold. The modified model should
allow scaling of consumption with income for populations until they reach a standard
nutritional level.

Dietary behaviour is heterogenous. It can be argued that the modeling approach of
assigning homogenous consumption to all the unsustainable practitioners in a population
(based on the average income of the population) is reductive since it does not account for
heterogenity in consumption levels. However, due to limited availability of data regarding
income distribution in countries, this approach was the only way to capture the relationship
between income levels and consumption patterns. Furthermore, food prices have been
shown to affect dietary consumption patterns too [61]. In an advanced version of the
model, the parameter m0 (currently, the minimum income that can afford a sustainable
diet) should also account for animal product prices in the local market of the population.

One of the major drivers of dietary behaviour is concern for health and nutrition [35,
79, 24]. Meat consumption levels in high and medium income countries has reached levels
that negatively impact human health [61]. For example, animal protein rich diets have
been shown to be highly correlated with obesity [71], cardiovascular diseases [106], strokes
and types of cancer [65]. Although these factors are implicitly represented in the social
parameters, κ, σ and h, a better understanding of them is possible if they are treated
separately in the model. At higher income levels, reduction in consumption may not be
triggered only due to concern for climate and the environment. Utility functions for payoffs
should include perceived health cost of consuming animal products and perceived health
benefits of consuming plant proteins. These payoffs might increase or decrease with more
public consciousness about health benefits of food consumption. Currently, this effect is
captured by the income elasticity parameter, h. One can expect the this parameter to fall
as populations become more aware of the health impact of diets.

For certain countries, the social-land use model performs well in fitting the data but
fails in explaining the behavioural dynamics in the population with clarity (e.g. Australia).
For Australia, the fitted value of σ (the parameter representing barriers to adopting a
sustainable diet) is an unrealistically low value which is significantly lower than the global
average value of σ. For Australia this value is 1.03 whereas the global average is 1.17 ×
108. Such anomalous results are also seen for countries like Ukraine, France, Israel and
Argentina. Since σ is significantly low for these countries, estimates of sustainable consumer
proportion increases rapidly for them (as compared to other nations). This, however, does
not capture the actual behavioural dynamics within those countries (since it is unrealistic
to expect such rapid behavioural change in populations). This primarily happens due to
the fact that these countries have made significant progress in utilizing land as compared
to other nations in the world (i.e. they have seen a very large drop in their per-capita land
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use over 1961-2013). Their average per-capita land use over 1961 to 2013 falls too fast
to be realistically captured by our socio-land use model. To compensate for that (i.e. to
provide the optimal fitting results), the parameter estimating algorithm assigns low values
of σ to these countries. Rapid change in per capita land use, due to factors not concerning
dietary behaviour, is attributed to increase in sustainable consumption. In other words,
it cannot be ascertained whether endogenous behavioural mechanisms assist in lowering
consumption in these countries. Effects of other non-dietary factors corrupt the standard
interpretation of results for some select countries.

The coupled social-land use model in this thesis only addresses land equivalent of global
dietary consumption. Although dietary consumption contributes almost two-thirds of net
global agricultural land use (see Figure B.1), several other factors are significantly impor-
tant as well. Majority of the remaining one-third portion of total land use is contributed by
food wastage at the production level. Other purposes like crops for biofuel and non dietary
consumption (like oil-crops for making soaps, pet food, tobacco, cotton etc.) contribute to
the remaining portion.

There is no absolute definition for a sustainable diet. However, it is well understood
that it is a diet that has reduced levels of meat and dairy consumption. In this model, for
the purpose of simplicity, I have strictly defined sustainable diets for countries at a given
year (see Appendix section A.1.1). Normally, a diet D1 is considered more sustainable
than a diet D2 when the former requires less land to produce. This definition allows a
continuous spectrum for sustainable consumption. In an advanced extension, it could be
worthwhile to model sustainable diets in a more relaxed sense. This would assist in better
estimating the actual proportion of sustainable consumers in a population by reducing the
risk of overestimation (or underestimation).

In this thesis, the notion of sustainable consumption is equated with less usage of land
for agricultural purposes. However, for some specific local cases, the opposite might be
true. Agricultural land expansion can occur via multiple methods. Although primarily,
agricultural land expansion occurs by replacing forests and forest-grassland mosaics [55, 97],
there are some examples where barren (desert) land areas were greened for agriculture
[82]. Furthermore, farms covering small areas can also be ‘unsustainable’ due to practice of
unsustainable methods of agriculture in them. The model in this thesis does not encompass
these wider aspects of sustainability.

It is possible to build increasingly complex conceptual models of dietary behaviour by
making several assumptions on mechanistic relationships between supposed drivers and
observables. A very complicated model with excellent fits to data can be misleading due of
overestimation. This however, does not imply that the philosophy of parsimony (Occam’s
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razor) is automatically the best either. If model projection is the sole objective of model
construction, then, care must be taken to avoid both over and underestimation. This is
especially important for a very complex system like spatial dietary behaviour which has
innumerable unidentified and interconnected drivers. In this thesis, the presented model
serves mostly the purpose of understanding the evolutionary dynamics of sustainability in
human consumptional behaviour. Phenomenological parameters are sufficient for a broader
understanding of the impact of certain specific drivers. Future modeling approaches along
similar lines can help to understand complex systems in a more meaningful way, for the
purpose of sustainability.
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[23] Jesús Crespo Cuaresma. Income projections for climate change research: A frame-
work based on human capital dynamics. Global Environmental Change, 42:226–236,
jan 2017.

[24] Carrie R Daniel, Amanda J Cross, Corinna Koebnick, and Rashmi Sinha. Trends in
meat consumption in the usa. Public health nutrition, 14(4):575–583, 2011.
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A.1 Method of parameter estimation

For each country i ∈ I, our land-use model is represented by the following coupled equa-
tions:

ci(t) = Li(t)/Pi(t) = xi(t)c
S
i (t) + (1− xi(t))cU(t) (A.1)

cUi (t) = (cU,maxi (t)− cSi (t))(1− e−hi(mi(t)−m0
i (t))) + cSi (t) (A.2)

LG(t) =
∑
i

Pi(t)ci(t) (A.3)

dxi
dt

= κixi(1− xi)(LG(t)− σi), xi(t
i
0) = x0,i (A.4)

Note that equations A.3 and A.4 couple together the model equations for all i ∈ I. The
goal of the parameter estimation process is to evaluate the parameters κi, σi, hi and x0,i
for a country i given we have the time series data of i’s per-capita land use. We define the
time period over which we parameterize our model as [ti0, t

i
f ]. For most countries, ti0 = 1961

and tif = 2013. There are some exceptions like the Russian Federation for which ti0 = 1992.
The yearly data available to us from [32] is within the range of 1961 to 2013. For the
parameter estimation part, we do not use equation A.3 to feed the differential equation
in equation A.4. Instead, we read LG(t) from the data. We generate this data from the
model in [78]. The model is discussed in detail in section A.2 of this document (also in
Introduction Section 1.5.1). This time series is shown in Supplementary Figure B.1 as the
yellow time series.

The parameter estimation process for i also requires as input the time series cU,maxi (t),
cSi (t) and m0

i (t). These time series should cover all the years over which parameterization is
being performed. That is, they should be defined in [ti0, t

i
f ]. In the subsections A.1.1, A.1.2

we discuss methods to obtain these time series. In subsection A.1.3, we discuss a method
that reduces the number of free parameters from four to three by evaluating x0,i from hi
and the first data point. In subsection A.1.4, we discuss the optimization technique we
use to parameterize our model. In subsection A.1.5, we discuss methods to determine the
parameterization period, [ti0, t

i
f ] for i. In section A.4, we discuss how the set I is constructed

for this work. We explain reasons for inclusion and exclusion of countries from the set I.

A.1.1 Method for generating cU,max
i (t) and cSi (t) time series

We define cU,maxi (t) and cSi (t) to be the theoretical maximum of per capita land use of non
practitioners of sustainable diet and the per capita land use of sustainable practitioners in
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i at t respectively. Let us represent the Rizvi et al. model as a function, R(.), that maps a
diet D, a country i, and a year t into a land use value for the country i at t. It implies that
if the population of i at t consumed the per capita diet D on average, R(D, i, t) hectares
of land would have been spent, globally, to generate the demand. We can then define
cU,maxi (t) and cSi (t) accordingly:

cU,maxi (t) = R(Dmax,i(t), i, t)/Pi(t)

cSi (t) = R(DS,i(t), i, t)/Pi(t)

Where Dmax,i(t) is a hypothetically large diet that is considered as the theoretical max-
imum diet for non-practitioners and DS,i(t) is a sustainable diet consumed by sustainable
practitioners in country i at t. Pi(t) is the population of country i at t.

A diet D is a caloric break down of per capita consumption in 7 food groups - fruits,
vegetables, grains, meats, dairy, sugar, oils. Using data from the UN FAOSTAT Food
Balance Sheets, we can construct Di(t), the average diet for i at t, by adhering to the
food group divisions defined in Rizvi et al. We design Dmax,i(t) and DS,i(t) by keeping
caloric values under all groups in Di(t) same except the caloric values under meats and
dairy groups. For Dmax,i(t) we replace the meats and dairy caloric values in Di(t) with the
cumulative dietary consumption of countries in I that consumed the most in that year in
items that belong to the groups of meats and dairy. A similar approach was taken while
designing DS,i(t). Per capita meats and dairy caloric intake in Di(t) was replaced by the
cumulative dietary consumption of countries in I that consumed the least in that year in
items that belong to the groups of meats and dairy. We take an example to explain this
better. For this example we take i to be the United States of America and t to be 2010.
From UN FAOSTAT Food Balance Sheet data, the construction of DUSA(2010) looks as
follows (all units in kcals/capita/day):

DUSA(2010) = { fruits: 122, vegetables: 163, grains: 61, meats: 621, dairy: 441, oils:
671, sugar: 591}

The meats and dairy groups, as defined by Rizvi et al. [78], contain the food bal-
ance sheet items bovine meat, goat and sheep meat, pig meat, poultry meat, eggs, milk
and butter (ghee). The items bovine meat, goat and sheep meat, pig meat, poultry meat
and eggs belong in the meats group and the items milk and butter(ghee) belong in the
dairy group. Table A.1 notes from data the highest and lowest consumers of these seven
items in the year 2010 along with their respective average per capita calorie intake. We
do not consider countries for which the consumption is zero while evaluating the lowest
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Item Food Group Highest (kcals/capita/day) Lowest (kcals/capita/day)
Bovine Meat Meats Argentina (342) Liberia (2)

Sheep and Goat Meat Meats Mongolia (327) Congo (1)
Pig Meat Meats Hong Kong (385) Guinea (1)

Poultry Meat Meats St. Lucia (273) Chad (2)
Eggs Meats Japan (76) Cameroon (1)
Milk Dairy Iceland (562) Liberia (5)

Butter (Ghee) Dairy New Zealand (187) Angola (1)

Table A.1: Highest and lowest Meats and Dairy item consuming nations in 2010 and their
respective average per capita caloric consumption from UN FAOSTAT Food Balance Sheet
[32]

consuming countries for a concerned item. If the group values in Table A.1 are added up
then, the diets Dmax,USA(2010) and DS,USA(2010) would be as follows:

Dmax,USA(2010) = { fruits: 122, vegetables: 163, grains: 61, meats: 1403, dairy: 749,
oils: 671, sugar: 591}

DS,USA(2010) = { fruits: 122, vegetables: 163, grains: 61, meats: 7, dairy: 6, oils: 671,
sugar: 591}

Once constructed, these maximum and sustainable diets are fed into the Rizvi et al.
land use evaluation model. It tells us how much land would have been spent globally if
United States of America consumed these hypothetical per capita diets in 2010. We divide
the land values obtained from the model with the population of USA in 2010 to receive the
values of cU,maxUSA (2010) and cSUSA(2010). Supplementary Figure B.2 shows the constructed
time series cU,maxi (t), cSi (t) and ci(t) for USA, China, India, Russia, Brazil and Australia
for every year between 1961 and 2013. Time series for Russian Federation is shown only
from 1992 to 2013 since it did not exist per se prior to 1992.
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A.1.2 Data Source for mi(t) and Method for generating m0
i (t)

time series

In our model, mi(t) is defined as the average income of the population of country i at year
t. We collect the per capita income data from the World Bank database [6]. We use the
data listed under GDP per capita, PPP for our purpose.

In our model, m0
i (t) is defined as the minimum income required to afford the sustainable

diet DS,i(t) in i at t. We set it to the minimum wage (and for some cases the living wage) in
i at t. We obtain the minimum wage data for the OECD countries from the Real Minimum
Wage data-set compiled by the Organisation for Economic Co-operation and Development
(OECD) [91]. If no minimum wage data is obtained from the first source, we set m0

i (t) to
the living wage of i at t. Living wage data is obtained from the source: [45]. If a particular
country is not covered by either of the aforementioned sources, we rely on the sources
compiled in the online, community maintained, article [108]. For some countries, none of
the above sources provide any minimum or living wage data. These cases are specially
handled and are discussed in more detail in subsection A.1.4.

Since our sources of minimum wage (or living wages) data do not report these wages
for all the years we wish to parameterize our model over, we evaluate m0

i (t) for all years
between ti0 to tif using the following back-extrapolating method:

m0
i (t) = mi(t) · (m0

i (t
i
r)/mi(t

i
r)) t ∈ [ti0, t

i
f ]

Where tir is the year at which minimum wage statistic was reported. Here we assume that
minimum/living wage of countries maintain a constant ratio with the respective country’s
average income over all years in [ti0, t

i
f ]. Since we have average income data for all the years

in [ti0, t
i
f ], we can use the above method to back extrapolate the values of m0

i (t) for all years
that lie in the period, [ti0, t

i
f ].

A.1.3 To determine x0,i from hi and data

At the onset, there are four parameters unknown for the parameter estimation problem -
κi, σi, hi and x0,i. In order to reduce the dimensionality of the parameter search space, we
discuss a method to evaluate x0,i from the first data point and hi. This operation reduces
the number of free parameters from 4 to 3 and assures that the ci predicted from the model
at the first time point ti0 is equal to the first data point at ti0.

For a hi, we can write the following at ti0:

Li(t
i
0)/Pi(t

i
0) = xi(t

i
0)c

S
i (ti0) + (1− xi(ti0))cUi (ti0)
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In this equation xi(t
i
0) is the initialization, x0,i, of the differential equation for xi. Li(t

i
0)

and Pi(t
i
0) are taken from data. This implies that:

x0,i = xi(t
i
0) =

cUi (ti0)− (Li(t
i
0)/Pi(t

i
0))

cUi (ti0)− cSi (ti0)
(A.5)

Where,
cUi (ti0 = (cU,maxi (ti0)− cSi (ti0))(1− e−h(mi(t

i
0)−m0

i (t
i
0))) + cSi (ti0)

Hence, given a value of hi, it is possible to derive x0,i from equation A.5 provided there

is knowledge about the following data at time ti0: Li(t
i
0), Pi(t

i
0), c

U,max
i (ti0), c

S
i (ti0) and

m0
i (t

i
0). This operation reduces the search space for the parameters from 4 to 3 as x0,i can

be determined from hi and data implicitly.

For ease of expression in the next subsection, let us define a mapping ξ(.) that relates
this implicit relationship between hi and x0,i. The function ξ(.) maps the tuple (hi, i, t

i
0)

to a value of x0,i such that equation A.5 is respected. That is,

x0,i = ξ(hi, i, t)

It is worth noting that equation A.5 also puts bounds on the search space of hi since
x0,i, by definition, always lies between 0 and 1. Bounds on hi makes further reduction in
the parameter search space.

A.1.4 Algorithm for Parameter Estimation

Note from equation A.1 that ci(t) is also function of the parameters κi, σi, hi and x0,i. We
use the following alternate representions of ci(t):

ci(t) ≡ ci(t, κi, σi, hi, x0,i) ≡ ci(t, κi, σi, hi, ξ(hi, i, t)) ≡ ci(t, κi, σi, hi)

Given the time series of per-capita land use of a country i in [ti0, t
i
f ] as input data,

the task is to find the optimal parameters κi, σi and hi so that the loss function defined
between the data and the model is minimized.

The loss function that we choose to determine the deviation of the model output from
the data is a weighted root mean square metric where the weights are linearly increasing
from ti0 to tif . Imagine N i time series data points {d1, d2, ..., dN i} and a corresponding
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model output time series {m1(θ),m2(θ), ..,mN i(θ)}. We define our weighted loss function
L(θ) between data and model output as follows:

L(θ) =
1

N i
∑k=N i

k=1 wk

k=N i∑
k=1

wk(dk −mk(θ))
2, wk = k (A.6)

Let us represent the time series data that we have of per capita land use for i from ti0
to tif as: {cdi (ti0), .., cdi (tif )}. For each country, i ∈ I, we have N i equi-spaced data points
including ti0 and tif . That is N i = tif − ti0 + 1. Since we deal with yearly data, ti0 and tif
are the starting and ending years. Our parameter estimation algorithm tries to evaluate
the optimal values of κi, σi and hi so that the following is minimized:

1

N i
∑

tj∈[ti0,tif ]
wtj

∑
tj∈[ti0,tif ]

wtj(c
d
i (tj)− ci(tj, κi, σi, hi))2, wtj = tj − ti0 (A.7)

For parameter estimation, we do not use the closed loop feedback. That is, we do not
feed equation A.3 into equation A.4. Instead, we use the time series of total global land
use as LG(t), into equation A.4 (evaluated from data). This time series is the same as the
yellow time series seen in Figure B.1 of this text. This time series is evaluated using the
model described in [78]. The model is available as Python scripts in: Saptarshi07/Dietary-
Trends-Tools.

For countries where the minimum/living wage statistic is absent completely, we optimize
for parameters σi, hi and m0

i (2018) while assuming a value of κi. The assumed value of κ is
estimated by averaging the κ values of geographically nearby countries. For example, two
such countries are Norway and Sweden. We use the evaluated value of κ from Denmark
and Finland to fill in the value of κ for Norway and Sweden. Similarly, for Niger, we take
the evaluated κ values of Mali, Nigeria and Benin to fill in its κ value.

We use a combinatorial optimization approach in our numerical algorithm to determine
the near-optimal parameter values for our model. The three parameters that we estimate
can either be κ, σ and h or, they can be σ, h and m0(tir = 2018) depending on whether
minimum wage statistic is available for the country. Let us denote the three parameters
we want to estimate with our algorithm as θ1, θ2 and θ3.

At the beginning of our algorithm, we set theoretical bounds for our parameters. The
range for parameter θi is denoted as [θi,l, θi,u]. Here l and u stand for lower and upper
bounds. For example, the theoretical bounds for log(κ) was taken to be [−12, 0] and the
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theoretical bounds for log(σ) was taken to be [0, 12]. For log(h) it was [−8, 0] and for
m0(tir) it was [0,m(tir)]. All logarithms here are with base 10. The search for parameters
is conducted in the logarithmic space. The bounds for parameters remain constant for
every country throughout the parameter estimation process. Our numerical algorithm for
optimization requires two other input hyper-parameters. We call them the depth (D) and
runs (R) of the algorithm.

Algorithm:

1. Get R equidistant points inside each bound range, [θi,l, θi,u]. Let these points be -
{θi,0, .., θi,k, ...θi,R−1}. Here i = 1, 2, 3. θi,l = θi,0 and θi,u = θi,R−1

2. For all R3 combination of parameters, find the combination for which L(θ) is mini-
mum. Let them be θ1,a, θ2,b and θ3,c.

3. Reset the bound for parameter 1 as follows: θ1,l = θ1,a−1 and θ1,u = θ1,a+1. If a = 0
then θ1,l = θ1,a and if a = R− 1 then θu,l = θ1,a. Reset bounds for parameters θ2 and
θ3 similarly.

4. Do step 1-3 for remaining D − 1 (depth - 1) number of times.

5. The optimal evaluated parameters are θ1,a, θ2,b and θ3,c after D runs.

We use D = 5 and R = 10 for the parameter estimation process. These hyper param-
eters were observed to be large enough to saturate error values. We use the loss function
defined in Equation A.7 as L(θ). As mentioned earlier, the search is conducted in the
log-space. This means that we obtain the optimal parameters in their logarithmic form -
log(θ1,a), log(θ2,b) and log(θ3,c).

A.1.5 Choice of ti0, t
i
f and discussion

As mentioned in the previous subsection A.1.4, all the time series data that we work with
are yearly and between 1961 to 2013. So, ti0 and tif are also years between 1961 and 2013.
For every country i a decision needs to be made before parameterization about the choice
of ti0 and tif . The following points note down the steps for this choice:

1. ti0 and tif are always integer values in [1961, 2013]. ti0 < tif should always be main-
tained.

83



2. For no year in [1961, ti0)∩ (tif , 2013] per capita land use data for i should be available.

An example of i where ti0 is not 1961 is the Russian Federation. For Russia, ti0 is 1992
since the country did not exist by that name prior to 1992 and so no data for per capita
land use is available for it between 1961 and 1991. Similarly, an example where tif is not
2013 is the USSR.

A.2 Brief description of land use evaluation model in

[78]

We represent the Rizvi et al. model as a function, R(.), that maps a diet D, a country i,
and a year t into a land use value. That is, if the population of i in year t consumed the
average per capita diet D, R(D, i, t) hectares of land would have been spent, globally, to
generate the demand. For this function t is an integer such that 1961 ≤ t ≤ 2013. A diet
is defined, mathematically, as a column vector of length 7. Numeric value of the vector
components represent daily caloric intake in the food groups of fruits, vegetables, grains,
meats, dairy, oils and sugar. For every item in the food balance sheet (that is assigned a
parent food group), data for food supply quantity (in kilograms per capita per day) and
food supply (kcals per capita per day) is provided simultaneously for a country at a year.
This helps in evaluating the energy to mass conversion factor for a food item j in a country
i at a year t. Let k be a food group and Ik be the set of items listed under the food group
k. We define the set of food groups as G (and k ∈ G). Dk is the per-capita daily calorie
intake of food group k, as defined by the diet D. We represent the food supply data for an
item j in i at t as f i,tj . Then, the per-capita calorie intake of an item j ∈ Ik, in i at t, di,tj ,
can be evaluated as the following:

di,tj = Dk · (f i,tj /
∑
j∈Ik

f i,tj )

If the food supply quantity of an item j in i at t be represented as si,tj , then the

kilocalorie to kilogram conversion factor in i at t, ci,tj , can be evaluated as follows:

ci,tj =
si,tj

f i,tj
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The yearly mass demand, Ri,t
j of item j in i at t, in tonnes, would then be:

Ri,t
j = di,tj · P i,t · 365 ·

ci,tj
1000

Where P i,t is the population of the country i in year t. Note that here we have made
the following assumption: for any arbitrary dietary intake of a food group k (say Dk), the
distribution of Dk across the group items maintains the same proportion to that of the
reported data. That is, if the average caloric intake of bovine meat in USA in 1980 was
1/4th of the total calorie intake of meats (let’s say 500 kcals/capita/day), then any other
dietary intake, Dk, for meats, would have 1/4th of it dedicated to bovine meat (in USA, in
1980).

Now, we define another conversion factor Cj called the source conversion factor for a
food item j. The source conversion factor is independent of the country or the year (hence
it does not have the superscripts i and t). A source conversion factor converts the mass of
a food item to an equivalent mass of its source item. For most items this conversion factor
is 1. However, for items like beer, wine, butter etc, the value is not unity. For example,
source of beer is barley and its mass conversion factor is 4.78. To generate 1 tonne of beer,
4.78 tonnes of barley is required, on average.

The food balance sheet reports data for the Domestic Supply Quantity (in tonnes)
and the Import Quantity (in tonnes) of every food item j into a country i at a year t.
The Import Quantity data element, I i,tj , indicates the amount of the food item j that was

imported into i in year t. The Domestic Supply Quantity data element, Di,t
j , indicates the

amount of j that is available to the population of i at t for domestic utilization. The ratio
of Import Quantity to Domestic Supply Quantity is defined as the import dependency
ratio, IDR, of j in i at t - IDRi,t

j . That is,

IDRi,t
j = I i,tj /D

i,t
j

The quantity j’s source that comes in through import to meet the dietary demand of
i at t is then,

I i,tj,F =
IDRi,t

j R
i,t
j

Cj

Similarly, the quantity j’s source that comes from within the borders of i to meet the
dietary demand of i at t is given by:
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Di,t
j,F =

(1− IDRi,t
j ) ·Ri,t

j

Cj

The units of Di,t
j,F and I i,tj,F are in tonnes (per year). Y i,t

j and Ȳj
t

are defined as the
yield of source of j in i and the average yield of source of j in the world respectively
in t. Methods for calculating these are not included in this Supplementary Information
document. For more information on it we advise the reader to check the Supplementary
Information of [78]. In this thesis, the methods for calculating yields for food items are
covered in Section 1.5.1. The units of these variables are in tonnes per hectare. Then, the
expected land required globally to produce the demand for item j in i at t is:

Li,tj =
Di,t
j,F

Y i,t
j

+
I i,tj,F

Ȳj
t

Hence the total global land required to produce the average dietary demand D for a
country i in t is:

Li,t =
∑
k∈G

∑
j∈Ik

Li,tj

A.3 Results of parameter fitting

The results for the parameter fitting process for six select countries are summarized in
table A.2. Figures B.3 and B.4 respectively show the model fits in the per-capita scale and
the total land-use scale.

In Figures B.5, B.6, B.7 we see a global heat map for the rescaled parameters κi, σi and
the parameter hi for 166 of the currently existing countries in the world. The countries in
colour grey are the ones for which parameters are not estimated. Figure B.8 is the global
heat map for the ratio m0

i (t
i
r)/mi(t

i
r). t

i
r is the year when living wage or minimum wage

was reported. Note that these heat-maps show estimated parameters in their logarithmic
form, i.e in log base 10 scale. In section A.4 we list the countries that were chosen for
our analysis. The reason for inclusion and exclusion of countries in the analysis are also
explained in section A.4.
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Country Name (i) Start Year ti0 End Year tif m0
i (2018) (USD) log10(κi) log10(σi) log10(hi) x0,i

United States of America 1961 2013 18262 -11.98 10.09 -2.61 0.65
China 1961 2013 3600 -11.88 10.20 -2.30 0.74
India 1961 2013 1500 -12.00 9.82 -0.1 0.79

Russian Federation 1992 2013 4734 -11.34 8.00 -3.03 0.68
Brazil 1961 2013 5114 -11.77 10.20 -1.95 0.86

Australia 1961 2013 12600 -11.52 0.016 -1.61 0.58

Table A.2: Model estimated parameters for six select countries. Per capita land use model
is fitted to data.

At 2013, we achieve 1.24 % error, globally, from our model. That is, summed over the
166 countries we estimate parameters for, our model output is 1.24 % deviated from the
global land use data in 2013.

In Figure B.12, absolute model errors are shown year-wise in a box-whisker plot. Statis-
tics of absolute percentage error of the country-level model output relative to data is plot-
ted. At 1961, error is zero due to our parameterization procedure (see Section A.1.4).
Average absolute errors are always bounded between 0 % to 10 %. At 2013, average abso-
lute percentage error is around 5% but global error is 1.24% as errors of several countries
cancel each other.

A.4 Countries included in the analysis and discus-

sions

A total of 180 countries are listed by the FAO Food Balance Sheet, 2013 [32]. These consist
of both currently existing countries and countries that have ceased to exist (e.g USSR). Out
of these 180 countries, parameter fitting was done for 166 countries - all of which are cur-
rently existing. The countries that were excluded because they no longer exist are - USSR,
Yugoslavia SFR, Former Sudan, Ethiopia PDR, Serbia and Montenegro, Czechoslovakia,
Netherlands Antilles and Belgium-Luxembourg. Currently existing daughter nations of
these formerly existing countries are fitted for parameters instead. The DPRK is excluded
because our source does not provide any food consumption data for it. Since our sources
provide no per capita income data for Taiwan, it was eliminated for parameter estima-
tion process too. The countries Saint Kitts and Nevis, Bermuda, Dominica, Antigua and
Barbuda, Kiribati, Grenada and Saint Lucia are excluded because they have no model
projections for population and income till 2100. OECD Env-Growth [26] is one of the
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models that is complied in the IPCC SSP Projection database for population and income.
Since we use projections for per capita income and population from this model in our land
use projection model, the aforementioned seven countries are excluded.

The time series for total global land use due to consumption (evaluated as the yellow
time series in Fig B.1) was calculated yearly for all years between 1961 to 2013. It accounts
for land consumed by all 180 countries minus Taiwan and Yugloslavia SFR. This calculation
is done using the model in [78] and it accounts for the periods of existence of nations.

In Figures B.5, B.6, B.7 and B.8 we see global heat maps for the parameters of 166
nations. The countries for which parameters are not estimated are coloured in grey. Note
that countries such as Papua New Guniea, DRC, Somalia, Syria and Libya are marked grey
because consumption data for them are not reported by the UN FAOSTAT Food Balance
Sheet, 2013 [32]. That is, they do not belong to the initial set of 180 countries.

We project for 164 countries out of the 166 countries that have been parameterized.
The countries that are eliminated from the projection analysis are French Polynesia and
New Caledonia.

A.5 Methods for projection analysis

Land use projections are made till the year 2100. All projections begin from 2011. We
provide country level land use projections yearly between the start and end year of pro-
jections. We project for 164 countries. We call this set of 164 countries I. Details about
their choices are explained in Section A.4. We choose 2011 as the start year because all
the 164 countries from our set exist as nations thereafter. One of the primary requisites
for land use projection is the availability of country level scaled down projections of popu-
lation and income. We use five population and income scenarios in our projection analysis.
These scenarios have been pre-defined in [77] and are popularly known as the IPCC SSP
scenarios. All of the five scenarios under SSP (SSP1-5) have country level population and
income projection through an ensemble of models. For our purpose, we use the projections
under the model OECD Env-Growth [26]. The projections for population and income are
available from 2010 to 2100 at an interval of 5 years. We use spline interpolation of order
3 to interpolate projected values of income and population between the 5 year intervals.
Story line description of these SSP scenarios are available in [77].
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A.5.1 Future yield (f) scenarios

Let c be the concerned time series, defined between 1961 to 2013, that we wish to project
till 2100. The series c can either be cU,max or cS for a country i. First, we fit an exponential
of form y = aebt to a truncated c series. This truncated version of c is the time series of c
from 1990 to 2013. If b < 0 we call the series trend is decreasing and if b > 0 we call the
series trend increasing. Here, a and b are constants. We extrapolate the time series c till
2100 (starting from 2013 onward) using the following equations:

c(t) =

{
c(2013)− (c(2013)− c(2013)f)(1− e−β(t−2013)), if initial trend is decreasing

c(2013) + c(2013)f(1− e−β(t−2013)), if initial trend is increasing

Here f is the tune-able parameter - a real number between 0 and 1 that defines the
future yield scenario. Note that for the above equation t > 2013. The exponent β is
adjusted such that continuity is maintained at 2013 between the initial trend, aebx, and
the projected trend c(t). That is,

β =


− 1
c(2013)

abe2013b

1−f , b < 0

abe2013b

c(2013)f
, b > 0

In Figure B.9, we show two examples of cU,max and cS projection till 2100 using the
above method. The two countries that are chosen are USA and Netherlands. USA shows
a decreasing initial trend whereas Netherlands shows a initial increasing trend.
Intuitively, if the trend is decreasing, a f scenario implies that both cU,max and cS can, at
lowest, be f times their 2013 value. Similarly, for an increasing trend, a f scenario means
that cU,max and cS can be at most 1 + f times their 2013 value. The rates at which they
approach these bounds are determined by their historical trend from 1990 to 2013.

A.5.2 Projection Methods, Continents and Parameter Planes

Mathematically, the projection model is the coupling of the country level model of all the
countries i in I. That is, equation A.1, A.2, A.3 and A.4 taken together for all i in I
represent our projection model. Equations A.1, A.2 and A.4 of every i is coupled to all
other countries in I through equation A.3. We start projecting from 2011 and continue till
2100 while making yearly projections.
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We work with 5 continents in our work. They are Africa, Americas, Asia, Europe and
Oceania. North, Central and South America are clubbed together into one as the Americas.
There are 45, 30, 43, 38 and 6 countries in these 5 continent groupings respectively. Russia
is considered to be in Europe. Turkey is considered to be in Asia. Continent division
methodology was done based on FAOSTAT food balance sheet groupings.

In the parameter planes that we analyze in the main text, we vary κ, σ and h from
their baseline values. For all of the parameter planes, we make increments to parameters
by -100% to 200% of their baseline values. We assume that all the countries in the world
experience the same change in social parameters while performing the parameter plane
analysis.
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Appendix B

Supplementary Figures - Future of
Global Land Use and Sustainable
Consumption with a Social Learning
Model
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1.4 billion hectares at 2007

Figure B.1: Time Series data for Global Agricultural Land Use from 1961 to 2013. The
yellow series is the data generated by the model in [78]. It accounts for the land that
was spent for generating the food for human consumption. The black series is the data
collected from [32]. It accounts for the land that was spent to generate the consumed food
and the wasted food. We use the annual time series in yellow as LG(t) in the parameter
estimation process.
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Figure B.2: The constructed time-series of cU,max(t), cS(t) and c for United States, China,
India, Russian Federation, Brazil and Australia using the method described in Supplemen-
tary Section A.1.1. cU,max is the maximum upper limit of per capita land use in a country.
cS is the per capita land use of sustainable practitioners in a population. c is the average
per capita land use of a population. Time series are calculated using method in Rizvi et
al. [78]. See Section A.1.1 for details.

93



Figure B.3: Model fitted estimation and data for per capita land use in six countries along
with model fitted estimation of fraction of sustainable diet practitioners over the time span
between 1961 and 2013. The units of Li(t)/Pi(t) are in hectares per person.
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Years

Figure B.4: Model Prediction and Data for total land consumed Li(t) due to food demand
of countries for years from ti0 to 2013.
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Figure B.5: Global heat map of log10(κi) values for 166 countries in the world. The
countries in grey have not been estimated for parameters.
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<

Figure B.6: Global heat map of log10(σi) for 166 countries in the world. The countries in
grey have not been estimated for parameters.
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Figure B.7: Global heat map of log10(hi) for 166 countries in the world. The countries in
grey have not been estimated for parameters.
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Figure B.8: Global heat map of m0
i (t

i
r)/mi(t

i
r) for 166 countries in the world. tir is the

year when living-wage/minimum wage m0 was reported. mi(t
i
r) is the average income of

country i in tir.
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Figure B.9: Projections of cU,max and cS for USA and Netherlands till 2100 under f scenar-
ios. USA has an initial decreasing trend while Netherlands has an initial increasing trend.
In this plot, results for f scenarios 0.2, 0.4, 0.6 and 0.8 are shown.
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Figure B.10: Model projections for number of people consuming sustainably in the 5 regions
from 2011 to 2100 under 20 scenario combinations. At the continental level, increase (or
decrease) in sustainable consumer fraction does not imply increase (or decrease) in the
population of people consuming sustainably.
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Figure B.11: Population and income projections under SSP scenarios for five distinct
geographical regions. Income projections are calculated by taking population weighted
average of country level projections. SSP3 shows lowest income growth while SSP5 shows
the highest. For Europe and Oceania, SSP3 shows lowest population growth whereas
it shows highest population growth for Africa, Asia and the Americas. Segregation of
continents (regions) are done based on the FAOSTAT database.
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Figure B.12: Box and whisker plot showing absolute error of country-level model output
with respect to data over the years from 1961 to 2013. Average absolute errors always
remain below 10%.
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Figure B.13: Model projection of sustainable consumer fraction in six European countries
that show relative increase in sustainable proportion in their population between 2013
and 2100 under baseline parameters. Results are shown for 25 scenario combinations
(unlabeled).
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Glossary

Crops data sheet Production Crops data sheet of the UN FAOSTAT data set 15, 18

Food Balance Sheet the Food Balance Sheets of the UN FAOSTAT data set 3, 5, 7, 10,
15, 17, 20

IPCC Intergovernmental Panel on Climate Change, a body of the United Nations 24

kcals an abbreviation for kilo calories 3

Land Use data sheet Land Use data sheet of the UN FAOSTAT data set 16, 19

Live Animals datasheet Live animals stock data sheet of the UN FAOSTAT data set
17

Livestock Primary datasheet Livestock Primary data sheet of the UN FAOSTAT data
set 15–17

SSP Shared Socioeconomic Pathway scenarios. Released in the Fifth IPCC Assessment
Report. 25

UN FAOSTAT the United Nations Food and Agricultural Organization dataset ix, 1, 3,
5, 10, 11, 15, 19

USDA United States Department of Agriculture 9
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