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Abstract 

 

Physical activity has been linked to numerous health outcomes including a decreased risk 

of chronic disease and an increased quality of life; it is therefore an important component of 

rehabilitative and preventative programs and for tracking disease progression. Activity is often 

described using the Frequency-Intensity-Type-Time-Volume principle. Intensity and volume are 

of particular importance as they are used to relate activity to health outcomes. However, 

measuring intensity and volume outside laboratories poses many challenges. A new category of 

technology called wearables has improved the ability to objectively and continuously measure 

intensity and volume in free-living using accelerometers and portable electrocardiogram (ECG) 

sensors. Accelerometers can be worn on different body locations and have been used to estimate 

activity intensity and volume. However, several different analytical approaches, or models, have 

been used to date. Quantifying the differences in activity-related outcome measures from these 

different wearables models has important implications in guiding the clinical decision making 

involved in rehabilitation and tracking disease progression. This thesis aimed to describe the 

differences in total activity volume (time spent in sedentary, light, and moderate-to-vigorous 

activity) and moment-to-moment agreement in activity intensity measured by four wearables 

models, and to determine if model performance was consistent for those who were relatively 

active compared to inactive. These models included an existing wrist accelerometer model 

(Wrist), a novel ankle accelerometer model (Ankle) that used activity counts to predict gait 

speed, a heart rate model (HR), and a model that combined heart rate with the new ankle model 

(HRAcc). Data from the ONDRI@Home project’s control cohort were used. Participants wore a 

chest-mounted ECG and accelerometers on the wrist and ankle for a period of 5-7 days. To 

develop the new Ankle model, a subset of participants also performed a treadmill protocol. Data 

were collapsed into 15-second epochs. Only epochs when participants were awake and all 

devices provided usable data were included in analyses. Participants that provided less than 30 

hours of usable data were excluded from analyses. Due to the volume of lost data, a subset of 

analyses was conducted using data from epochs where pairs of models provided valid data. 

Activity volumes were reported as a percentage of usable data. Moment-to-moment agreement in 

activity intensity was assessed using Cohen’s kappa.  
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Significant differences in activity volume between models were found at each activity 

intensity. Moment-to-moment agreement in intensity was in the fair-to-almost perfect range; 

agreement was highest between the HR and HRAcc models, and lowest between both the HR 

and Ankle and HR and Wrist models. Model performance was consistent across activity levels. 

However, model agreement was greater for those who were more active. The Ankle model 

demonstrated excellent performance; activity counts explained more than 98% of the variance in 

gait speed and prediction error was less than .04 m s-1. 

Given the clinically significant magnitude of differences in activity volume and the large 

range of moment-to-moment agreement in intensity, physical activity outcome measures from 

different models should not be considered equivalent. This thesis highlights the limitations of 

using wearables models related to different types of activities, how devices measure intensity, 

and physiological differences which may have affected model performance. Many of these 

limitations can be overcome by multi-device models that use individualized data and relative 

intensity measures. Multi-device models likely have the ability to better represent activity 

duration, timing, and intensity and should therefore be the focus of future research.  
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Chapter 1: Background and Literature Review 

 

1.1 Physical Activity 

 

1.1.1    The Importance of Activity and Exercise 

 

There is an abundance of literature describing the relationship between physical activity 

and positive health outcomes. These benefits include reduced risk of chronic disease such as 

cardiovascular disease, osteoporosis, type 2 diabetes, cancers, and psychiatric conditions (World 

Health Organization [WHO], n.d.; Canadian Society for Exercise Physiology [CSEP], 2011). 

Additionally, increased activity has been associated with improved quality of life (Bize, Johnson, 

& Plotnikoff, 2007; Berger & Tobar, 2011) and to improvements in both true and one’s 

perceived physical function (Berger & Tobar, 2011). These improvements can be attributed to 

movement – both exercise and overall physical activity – so it is crucial to differentiate the two. 

Caspersen and colleagues (1985) define physical activity as “any bodily movement produced by 

skeletal muscles that results in energy expenditure” (p. 126). Exercise, a subset of physical 

activity, is defined as “planned, structured, repetitive, and purposive in the sense that the 

improvement or maintenance of one or more components of physical health is an objective” 

(Caspersen et al., 1985, p. 128). 

More broadly, movements that are classified as non-exercise physical activity are often 

unstructured and are typically only described by when they occur during the day (i.e. during 

sleep, leisure time, or work) (Caspersen, Powell, & Christenson, 1985).  

Exercise and physical activity can both be described using the frequency-intensity-type-

time-volume (FITT-V) principle. In this principle, frequency refers to how often activity is 

performed, intensity to how physically or metabolically demanding the activity is, type to the 

mode of activity, time to the duration of activity, and volume to describe the total quantity of 

activity as the product of time and intensity (American College of Sports Medicine [ACSM], 

2014). Guidelines have been developed that state the recommended volume of activity that is 

associated with “substantial health benefits” (ACSM, 2014, p. 8). Both the ACSM and CSEP 

recommend a minimum of 150 minutes of moderate-to-vigorous intensity exercise every week; 
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these guidelines are widely used. However, they describe the minimum recommended activity 

volume and a dose-response relationship has been established between activity and multiple 

aspects of health in that more activity leads to greater health improvements (ACSM, 2014; 

Janssen & LeBlanc, 2010). Therefore, describing one’s activity with the FITT-V principle has 

important implications for both proactive and reactive health interventions. 

 

1.1.2    Measuring Physical Activity 

 

While frequency, time, and type of activity are fairly easy to quantify, activity intensity 

(and therefore volume) are not as easy to measure. Subjectively, intensity can be described using 

different rating scales such as Borg’s Scale of Perceived Exertion (Borg, 1982). Objectively, 

physical activity intensity can be quantified using several measures. Energy expenditure can be 

used as a measure of intensity when expressed as a rate (e.g. kcal kg-1 min-1) since the generation 

of movement requires more energy to sustain. This value is often measured as the increase in 

energy expenditure above resting levels. When energy demand increases, O2 consumption (VO2) 

increases to meet this need. Increased VO2 demand is met by increasing cardiac output which is 

partially accomplished by increasing heart rate (Plowman & Smith, 2007). The relationship 

between heart rate and VO2 is linear and quite strong during activity, especially when expressed 

in terms relative to the individual’s activity capacity (Strath et al., 2000), so both heart rate and 

VO2 can be used as measures of energy expenditure and therefore physical activity intensity. 

These three measures all quantify intensity on a continuous scale, but intensity can also be 

categorized as sedentary, light, moderate, or vigorous. This is commonly done using metabolic 

equivalent of task (METs) thresholds of 1.5, 3.0, and 6.0 METs, respectively (Powell, Carson, 

Dowd, & Donnelly, 2017; Assah et al., 2011). Reporting activity intensity as METs or 

categorically provides a measure of intensity that is easier to interpret than energy expenditure 

when providing feedback to patients, study participants, or healthcare practitioners. Since being 

able to provide these individuals with meaningful data is one of the major goals for the project 

within which this thesis falls (see section 2.1.0 for more details about the ONDRI@Home 

project), this thesis reports activity intensity as categories as opposed to energy expenditure 

measured on a continuous scale. 



 3 

Ideally, to measure physical activity intensity, a direct measure of energy expenditure 

would be taken. This is possible in the laboratory using direct calorimetry. By measuring 

changes in temperature of an isolated chamber caused by the subject’s thermogenesis, energy 

expenditure can be calculated (Hills et al., 2014). However, these chambers are small and do not 

allow the subject to behave as they would on a day-to-day-basis (free-living). Due to these 

restrictions, indirect calorimetry is more commonly used to assess physical activity intensity. 

Outside calorimeters, measuring VO2 is considered the gold standard but it requires expensive 

equipment. This has led to the development of alternative methods that estimate VO2. Due to the 

relationships that VO2 has with energy expenditure, heart rate, and activity intensity, VO2 can be 

estimated using activity protocols while measuring outcomes such as heart rate or cycling power 

(ACSM, 2014). Heart rate is commonly measured but variability caused by non-activity factors 

such as caffeine intake, stress, environmental temperature, and hydration (Freedson & Miller, 

2000; Villars et al., 2012; Brage et al., 2004) reduces the accuracy of activity intensity estimates 

if heart rate is used on its own (Villars et al., 2012). These factors have a more noticeable effect 

during low intensity activity (Warren et al., 2010; Hills et al., 2014).  

While these relationships hold true outside the laboratory as well, VO2 is much easier to 

measure or estimate in the laboratory due to the nature of the activity being performed. For 

example, if VO2 is being estimated with validated equations in the laboratory, the physical 

activity being assessed typically has well-defined start and end times, consists of a single type of 

activity, and performance measures (e.g. pedalling cadence, treadmill speed) can be easily 

recorded. Taken together, these characteristics make measuring activity over short time periods 

in the laboratory relative straightforward.  

 

1.1.3    Measuring Physical Activity in Free-Living 

 

Although exercise is very commonly associated with health benefits, unstructured 

physical activity from daily life can also be of sufficient intensity to induce these benefits (Strath, 

Bassett, Swartz, & Thompson, 2001; Brooks et al., 2004) so it is important to be able to measure 

physical activity in free-living in addition to structured, single-type activity in the laboratory. 

Indirect calorimetry could be considered the gold standard in free-living as well since portable 

gas exchange systems are available and used in research, but it is not practical to wear an airtight 
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facemask that measures gas exchange for any considerable length of time. In free-living, the gold 

standard for measuring energy expenditure is doubly labelled water because this technique is 

non-invasive and allows the subject to behave as they normally would (Hills et al., 2014; 

Freedson & Miller, 2000). Performing doubly labelled water is very expensive (Hills et al., 2014; 

Skender et al., 2016) and only provides information about total energy expenditure; it does not 

provide any information about energy expenditure with temporal resolution greater than the 

length of the study period (Hills et al., 2014) which is often seven or more days. While this is 

useful for measuring energy expenditure over an extended time period, doubly labelled water is 

not useful for measuring moment-to-moment changes in energy expenditure. 

As of 2009, the most common way to measure activity in free-living (Westerterp, 2009) 

and in large-scale studies (Shepard & Aoyagi, 2012) was the use of self-report methods such as 

questionnaires, activity logs, and interviews. Although these methods are widely used, their 

reliability and validity have been questioned and they are not able to detect differences in activity 

on a day-to-day timescale or in total activity volume over a given time period (Hills et al., 2014). 

Subjective measures are prone to bias and frequently underestimate sedentary time while 

overestimating activity (Skender et al., 2016; Ryan et al., 2018), but also underestimate the lower 

intensity activities performed in daily living compared to lower intensity exercise (Ainsworth, 

2009).  

Despite several techniques that can be used to measure physical activity, the limitations 

of self-report methods, doubly labelled water, and VO2 measurement mean that there is no true 

and practical gold standard for continuous monitoring of physical activity intensity in free-living 

that provides good temporal resolution (Hills et al., 2014). Recent advances in wearable sensors 

(wearables), such as accelerometers and portable electrocardiogram (ECG), systems have 

changed how physical activity is measured in free-living and provide opportunities for data 

acquisition that self-report methods do not. This technology allows data to be collected 

objectively and continuously over the course of several days to weeks, long enough to reveal a 

person’s “normal” activity pattern (Sasaki, Hickey, Staudenmayer, Kent, & Freedson, 2017; 

Dillon et al., 2016). While some consider accelerometry the gold standard for continuous 

physical activity monitoring (van Blarigan et al., 2017; Rejeski et al., 2016; Sanders et al., 2019), 

there are significant limitations. Accelerometry is limited by a lack of standardization in device 

wear location, collection duration, and data post-processing (Bassett, Troiano, McClain, & 
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Wolff, 2015). For example, the location of the accelerometer on the body affects which outcome 

measures can be obtained and their accuracies. Although wrist- and hip-worn accelerometers are 

more common, ankle-worn accelerometers have been shown to be more accurate for measuring 

step counts at slower gait speeds (Simpson et al., 2015; Klassen et al., 2016; Storti et al., 2008) 

and can be used for gait (Lee, Cho, Lee, Lee, & Yang, 2007) and balance (Turcot, Allet, Golay, 

Hoffmeyer, & Armand, 2009) analyses. This makes ankle-worn accelerometry a powerful tool 

for assessing ambulatory physical activity, especially in those who move slower.  

Previous work has shown that combining accelerometry and a measure of heart rate 

increases the accuracy of estimating energy expenditure (Haskell, Lee, Evans, & Irby, 1993; 

Strath et al., 2001; Strath, Bassett, Thompson, & Swartz, 2002; Brage et al., 2004; Romero-

Ugalde et al., 2017). However, this work has primarily used accelerometers located on the wrist, 

hip, chest, or thigh. While ankle-worn accelerometers have not been used to the same extent as 

wrist- and hip-worn sensors, one study (Pärkkä et al., 2007) found that ankle accelerometer data 

was more highly correlated with MET levels over a variety of prescribed tasks than were wrist- 

or hip-worn accelerometer data in a sample of adults aged 25-60 years. Therefore, it would be 

beneficial to develop a combined heart rate-accelerometer model that uses ankle-worn 

accelerometers due to the potential to improve intensity estimates compared to common current 

methods, as well as the additional gait and balance analyses that can be conducted with these 

data. As a result, the overarching objective of this thesis is to investigate the differences in 

measured activity intensity and volume by four wearables models. 

 

1.2    Introduction to Accelerometry 

 

Although it may seem more intuitive to measure speed of movement to describe physical 

activity, using acceleration (the rate of change of speed with respect to time) more closely 

reflects the energy requirements of movement since it is related to skeletal muscle force 

production (Hills et al., 2014). Various accelerometer outcome measures have been shown to be 

highly correlated with ambulatory energy expenditure (Hills et al., 2014) and many different 

physical activities (Esliger et al., 2011) making accelerometers a useful tool for measuring 

physical activity in free-living. However, accelerometers do not always accurately measure 

activity as detected acceleration does not always relate directly to intensity of movement, and 

accelerometers worn on different body segments may not accurately represent all types of 
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activity based on which body segment(s) is/are active (Chen & Bassett, 2005). Accelerometers 

have been used to quantify physical activity since the early 1980s but did not become popular 

until the late 1990s/early 2000s as prices decreased and functionality increased (Troiano, 

McClain, Brychta, & Chen, 2014). Early accelerometers relied on piezoelectric materials to 

measure acceleration. When an internal weight accelerated, the piezoelectric material became 

strained and generated an electric current proportional to the acceleration. This type of 

accelerometer required a beam to attach the piezoelectric material to the weight which created a 

uniaxial accelerometer as the sensor was most sensitive to accelerations along the long axis of 

the beam (however, accelerations along any axis would have a small effect) (Chen & Bassett, 

2005). More recently, integrated chip technology was developed which can measure acceleration 

in all three axes. These triaxial accelerometers have demonstrated higher correlations with 

energy expenditure than their uniaxial counterparts (Chen & Bassett, 2005; Hendelman, Miller, 

Baggett, Debold, & Freedson, 2002).   

 

1.2.1    How Accelerometers Are Currently Used 

 

Accelerometers can be used to describe physical activity using the FITT-V principle but 

despite the potential of accelerometers to capture high resolution, richly detailed characteristics 

of physical activity, summary measures are most often used due to the overwhelming amount of 

raw data obtained during multi-day collections. For wrist- and hip-worn accelerometers, the most 

common summary measure is the activity count which can be calculated two ways. The first is 

determined by counting the number of times the acceleration signal exceeds an arbitrary internal 

threshold. The second is determined by taking the area under the curve of the magnitude of the 

acceleration signal. Both these methods then involve summing those values over a specific time 

window (an epoch), most commonly 60 seconds (Chen & Bassett, 2005). These calculations 

yield dimensionless “count” units and the sum of gravitational units per epoch, respectively.  

Without additional context, activity counts cannot be interpreted as they have no 

physiological meaning (Hills et al., 2014). To determine activity intensity from activity counts, 

thresholds (cut-points) are developed using regression or receiver operating characteristics 

techniques to determine count values that best represent the MET levels that correspond to light 

(1.5 METs), moderate (3.0 METs), and vigorous (6.0 METs) activity (Powell et al., 2017; Assah 
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et al., 2011). Once epoched count values are compared to the cut-points, activity duration in each 

intensity category can be calculated using the number of epochs and the epoch duration (activity 

volume can be subsequently calculated). Data derived from epoched accelerometer data have 

temporal resolution equal to the epoch length. Although resolution is lost compared to the raw 

data, epoching data still leads to resolution far greater than the resolution of self-report measures 

and doubly-labelled water. It should be noted that if activities of varying intensities are 

performed during a single epoch that the calculated intensity would represent the average 

intensity during the epoch (Chen & Bassett, 2005). However, metabolic measures are commonly 

averaged over 30- or 60-second periods so this loss of resolution is somewhat unavoidable. 

Cut-points are developed primarily in laboratory environments using two types of 

protocols. One type is treadmill based where participants walk and/or run at several speeds while 

their VO2 is measured. For example, one of the most popular sets of cut-points which were 

developed for a hip-worn accelerometer was developed by Freedson, Melanson, and Sirard 

(1998) using this type of protocol. Participants walked at 4.8, 6.4, and 9.7 km h-1 on a treadmill. 

Using this development protocol may lead to low ecological validity. The other protocol type 

attempts to simulate free-living by having participants perform semi-structured tasks in the 

laboratory. These tasks often include housework (doing dishes or laundry, cleaning, etc.) or 

leisure activities (working on a computer, reading, etc.). This type of protocol may include 

treadmill or over-ground walking. (See Esliger et al., 2011 and Powell et al., 2017 for examples 

of this protocol type).  

 

1.2.2    Gap in the Literature: The Use of Ankle Accelerometers 

 

To date, cut-points have been developed for many age groups using accelerometers from 

many different manufacturers for the wrist and hip, however, none have been developed for use 

with ankle-worn accelerometers. Despite this gap in the literature, similar reasoning that has 

been applied to wrist and hip accelerometers could be applied to ankle accelerometers. Like the 

hip, ankle accelerometers capture lower and whole-body movement. Focusing specifically on 

gait since it is the most common physical activity (Hulteen et al., 2017), heart rate increases 

linearly with gait speed during both walking and running (Rotstein, Inbar, Berginsky, & Meckel, 

2005). Additionally, VO2 increases linearly with gait speed. Waters and colleagues (1988), the 
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ACSM (ACSM, 2014), and others describe this relationship using separate linear equations for 

walking and running. 

Gait speed is increased by two main methods: by increasing cadence and/or increasing 

step length (Tudor-Locke et al., 2019). Until gait transitions from walking to running, cadence 

and stride length contribute equally to increasing speed. Once running, stride length is the greater 

contributor to further increases in speed (Terrier & Schutz, 2003). Prior to this point, there is a 

linear relationship between cadence and gait speed (Tudor-Locke et al., 2019). Although not a 

focus of their article, the relationship between cadence and gait speed during walking can clearly 

be seen using data reported in (Tudor-Locke, et al., 2019) (see Figure 1). Further, VO2 is 

strongly correlated with cadence at walking speeds  

 

(Tudor-Locke et al., 2019) and regression equations have been developed to predict VO2 using 

gait speed (Tudor-Locke et al., 2019; ACSM, 2014; Waters et al., 1988). Despite the potential 

influence of an individual’s height which could affect their stride length for a given speed,  

Tudor-Locke and colleagues (2019) found that including leg length, as well as BMI, do not  

lead to improved performance of the gait speed-VO2 regression. There is a clear opportunity to 

use ankle accelerometers to estimate activity intensity in ways similar to what has been done 

using wrist and hip accelerometers.  

Figure 1: The relationship between gait speed and stepping cadence in adults aged 

21 to 40 years (data from Tudor-Locke et al., 2019). Values are means ± 1 SD. 
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1.2.3   The Use of Stand-Alone Accelerometry 

 

Despite its wide adoption as the gold standard for measuring free-living activity, there are 

several major shortcomings of using accelerometry on its own. Although using cut-points is 

convenient because it greatly reduces the data volume, the post-processing burden, and 

interpretation difficulty, it introduces several sources of error. Firstly, cut-points are specific to 

the device (Trost, McIver, & Pate, 2005; Bassett et al., 2015), wear location, population and 

types of tasks used in the protocol in which they were developed (Migueles et al., 2017) making 

it difficult to make valid comparisons between studies. Further, cut-points rely on the length of 

the epoch in which they were developed. Mathematically, cut-points can be linearly scaled to 

different epoch lengths, but concerns have been raised about the validity of this approach 

(Aguilar-Farias, Brown, & Peeters, 2014; Nilsson, Ekelund, Yngve, & Sjostrom, 2002). Epochs 

of different lengths are considered more or less appropriate for different age groups based on 

how long typical activity bouts last for that population (Migueles et al., 2017) so to accurately 

measure activity intensity, cut-points need to be developed for multiple epoch lengths and for 

different populations. 

Secondly, the protocols used to develop cut-points often rely on the assumption that 

resting VO2 (1 MET) is 3.5 mL kg-1 min-1. Byrne and colleagues (2005) found that this definition 

overestimated resting VO2 in a sample of 769 adults between the ages of 18 and 74 years by 35% 

and similarly, Hall and colleagues (2013) measured the average resting VO2 of 20 older adults 

(aged 60-90 years) to be 2.66 mL kg-1 minute-1. However, in the development of their cut-points 

for the GENEActiv accelerometer (ActivInsights, Kimbolton, UK), Powell and colleagues 

(2017) measured the average resting VO2 of 56 adults with a mean age of 39.9 years to be 3.27 ± 

0.62 mL kg-1 minute-1, showing that the assumed 3.5 mL kg-1 min-1 does not always overestimate 

resting VO2 by such a large margin. Further, individual fitness levels are not accounted for when 

using standard MET values and ranges. Depending on maximum aerobic capacity, the MET 

ranges and their intensity classification do not always correspond to the common definition of 

moderate activity as 40-60% heart rate reserve (HRR) and a given MET level for unfit 

individuals is relatively more intense due to their lower cardiorespiratory capacity (Ozemek, 

Cochran, Strath, Byun, & Kaminksy, 2013). Since standard MET ranges and resting VO2 values 

may not be valid on a population level (Hills et al., 2014; McCracken et al., 2018), calibration 
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based on an individual’s resting and maximal VO2 values is suggested to obtain more valid 

results at the individual level (McCracken et al., 2018) but this is an expensive and time-

consuming task (Villars et al., 2012). 

Thirdly, although strong correlations have been found between activity counts from the 

hip and gait speed (Trost et al., 1998; Rowlands, 2007), estimates of energy expenditure during 

running are likely underestimated (Hills et al., 2014) and standard error in predicting energy 

expenditure is greater during running than walking (Trost et al., 1998). Energy expenditure and 

activity counts during different activities also vary depending on which body segments undergo 

the most movement during the activity and where the accelerometer is worn. For example, wrist- 

or hip-worn accelerometers do not capture cycling activity accurately (Welk, 2002) and hip-worn 

accelerometers become less accurate during slow gait (Storti et al., 2008). Ankle-worn 

accelerometers remain accurate during both these activities (Storti et al., 2008; Foster et al., 

2005). Multiple accelerometers can be used to gain a more comprehensive understanding of 

context but activities that include load carrying or changes in elevation are not reflected by 

activity counts (Hills et al., 2014) regardless of the number or location of accelerometers. The 

issues of decreased accuracy at high intensity activity or during increased workload without a 

change in total acceleration quantity warrant approaches that combine accelerometry with 

physiological measures to better capture activity intensity during these unique situations. 

 

1.3    Heart Rate 

 

A relatively simple and inexpensive physiological measure related to activity intensity is 

heart rate. While heart rate is not a direct measure of intensity or energy expenditure, similar to 

accelerometry, heart rate is related to VO2 (Swain & Leutholtz, 1996; Hills et al., 2014). With 

increased energy requirements during activity, oxygen demand is met by increasing cardiac 

output through increasing heart rate (Plowman & Smith, 2007). Across most submaximal 

activity, VO2 and heart rate both increase linearly until they plateau at maximum intensity 

(Laughlin, 1999; Opondo, Sarma, & Levine, 2015). Although the slope of this relationship varies 

between people, within an individual it has been shown to be consistent independent of the 

activity type (Hills et al., 2014). Using regression, heart rate can predict VO2 accurately with a 

standard error of estimate of less than 6% of maximum VO2 (Londeree & Ames, 1976).  
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The most basic way to report heart rate is beats per minute (bpm). When used to describe 

activity intensity, this absolute heart rate measure does not allow comparisons between 

individuals since changes in beats per minute for a given change in absolute intensity will vary 

between individuals due to factors including age and cardiovascular fitness (Hills et al., 2014). 

Heart rate can be expressed in relative terms which allow between-person comparisons to be 

made. Since the development of the Karvonen method in 1957 (Karvonen, Kentala, & Mustala, 

1957), heart rate has commonly been reported as a percent of heart rate reserve (HRR). This 

variable measures heart rate as a percentage of the difference between resting heart rate and 

maximum heart rate (Swain, Leutholtz, King, & Branch, 1998): two variables which partially 

account for the individual’s fitness level and age, respectively.  

 

Eq. (1): % HRR = 
HR− resting HR

maximum HR−resting HR
 ×  100 

 

While it has widely been assumed that percent heart rate reserve and percent VO2max are 

equivalent (Swain et al., 1998), in two studies by Swain and colleagues (1996 and 1998), the 

authors found that the regression of percent heart rate reserve on percent VO2 reserve (VO2 as a 

percent of the difference between resting VO2 and VO2max) had a slope closer to 1 and an 

intercept closer to 0 than the regression of percent heart rate reserve on percent VO2max during 

both cycling and treadmill activity. In both studies, percent heart rate reserve explained more 

than 98% of the variance in percent VO2 reserve (r ≥ 0.99), suggesting that prediction using the 

percent heart rate reserve to percent VO2 reserve relationship is valid and accurate across 

multiple activity types. Similar to how accelerometer cut-points classify activity intensity based 

on MET ranges, heart rate can be used to quantify activity intensity as a percentage of VO2max 

or heart rate reserve by categorizing it into light (<45% VO2max, < 40% HRR), moderate (45-

75% VO2max, 40-60% HRR) and vigorous (>75% VO2max, >60% HRR) activity (ACSM, 

2014; Hawley, Hargreaves, Joyner, & Zierath, 2014). 

 

1.3.1    Equation-Based Estimations of Maximum Heart Rate 

 

While maximum heart rate can be measured directly using maximal effort exercise 

protocols (Londeree & Moeschberger, 1984), it is possible to predict maximum heart rate using 



 12 

different equations that do not require exercise testing. This is particularly useful in studies 

where participants have physical limitations and would not want to or should not perform an 

exercise test due to physical of medical conditions. It is also useful in largescale studies where 

individually testing each participant would be too time consuming. Despite variability in 

maximum heart rate between individuals (Londeree & Ames, 1976; Nes, Janszky, Wisløff, 

Støylen, & Karlsen, 2013), the most common way to predict maximum heart rate includes only 

age as a factor: HRmax = 220 – age (Fox, Naughton, & Haskell, 1971). Although very 

simplistic, Londeree and Moeschberger (1984) found that age alone accounted for 71.4% of the 

variability in maximum heart rate. More recently, Tanaka and colleagues’ meta-analysis (2001) 

(n=18 712) found that age accounted for 80% of the variability in maximum heart rate using the 

equation HRmax = 208 – 0.7 x age and that maximum heart rate is not significantly affected by 

sex or cardiovascular fitness level. Further, both Tanaka and Franckowiak and colleagues (2011) 

found that predicting maximum heart rate using the Fox equation tended to be less accurate for 

individuals above the age of 40 years. Building upon the work of Tanaka and colleagues, Nes 

and colleagues (2013) found in a sample of 3320 apparently healthy participants that maximum 

heart rate could be predicted by the similar equation HRmax = 211 – 0.64 x age with an r2 value 

of 0.36 and standard error of estimate of 10.8 bpm. They also found that maximum heart rate was 

not significantly affected by gender, smoking status, or body mass index. Conversely, Whyte and 

colleagues (2008) developed four equations to predict maximum heart rate depending on sex and 

training status since they found that maximum heart rate declines at a different rate for males and 

females. Maximum heart rate can be predicted by HRmax = 202 – 0.55 x age and HRmax = 207 

– 0.55 x age for trained and sedentary males, respectively, and by HRmax = 216 – 1.09 x age 

and HRmax = 221 – 1.09 x age for trained and sedentary females, respectively. Overall, their 

equations had an r2 value of 0.330.  
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The prediction of maximum heart rate has also been studied in individuals who are 

overweight (body mass index [BMI] between 25 and 30 kg m-2) and obese (BMI ≥ 30 kg m-2). 

Miller and colleagues (1993) derived equations for healthy and obese populations using a 

modified Balke protocol and found that the Fox equation was “very similar” (p. 1080) to their 

equation HRmax = 217 – 0.85 x age. They suggest that the Fox equation should be used 

clinically due to its accuracy and simplicity. Further, they found that maximum heart rate in 

obese individuals was better calculated using the equation HRmax = 200 – 0.48 x age. The latter 

equation, as well as the Fox and Tanaka equations, were tested by Franckowiak and colleagues 

(2011) in a sample of individuals with a BMI greater than 25 kg m-2. They found that the Fox 

equation was accurate across weight categories and in the 41-to-60-year-old subgroup but that it 

significantly overestimated maximum heart rate for those aged 20-40 years by approximately 6 

bpm. The Tanaka equation was found to be accurate across all weight and age groups. The Miller 

equation significantly overestimated maximum heart rate for all weight groups by a mean of 

approximately 3 bpm and for all age groups. The authors concluded that using Tanaka’s HRmax = 

208 – 0.7 x age was the best predictor regardless of age, sex, or BMI. Figure 2 shows the 

differences in predicted maximum heart rate using these six equations across a range of ages. 

These equations tend to be more consistent for younger adults and predicted max heart rate 

values diverge with aging. 

 

Figure 2: Maximum heart rate over the lifespan as predicted by six equations. 
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1.3.2    The Use of Stand-Alone Heart Rate 

 

Although the heart rate to VO2 relationship is quite strong, using heart rate on its own to 

estimate intensity and energy expenditure can lead to errors. Firstly, the slope of this relationship 

differs for upper- and lower-limb activities within an individual (Strath et al., 2001). Secondly, 

heart rate is less closely coupled to energy expenditure during rest and activity intensities that 

elicit lower heart rates (Hills et al., 2014) because it is affected by many non-activity factors. 

These factors include transient changes in environmental temperature, hydration, psychological 

stress as well as less transient changes such as cardiovascular fitness level (Brage et al., 2004). 

Because of this transient variability, it is difficult to determine whether changes in heart rate 

occur as a response to physical activity, from a change in output of the autonomic nervous 

system, or from some other variable that changes moment-to-moment. 

One potential way to reduce error during rest or low intensity activity is the use of flex 

heart rate (Hills et al., 2014). Flex heart rate attempts to separate the non-linear low intensity 

portion from the linear higher intensity portion of the heart rate-VO2 curve (Hills et al., 2014). 

Flex heart rate is commonly calculated as the average of the highest heart rate during rest and the 

lowest heart rate during a low intensity activity (Leonard, 2003; Ceesay et al., 1989) although 

there is no standardized definition or calibration protocol (Villars et al., 2012). The performance 

of heart rate on energy expenditure regression can be improved using flex heart rate. When heart 

rate is above flex heart rate, the typical heart rate on energy expenditure regression equation is 

used (Leonard, 2003). When heart rate is below flex heart rate, energy expenditure can either be 

substituted with the resting energy expenditure value (Freedson & Miller, 2000) or the average 

heart rate from lying supine, sitting, and standing postures can be used in the regression equation 

(Spurr, 1990). Figure 3 shows the heart rate-energy expenditure relationship with the flex heart 

rate marked. 

After its development in the 1980s, several initial studies were conducted to assess the 

validity of using flex heart rate to estimate energy expenditure. Leonard’s 2003 review provides 

details on three studies of male and female adults conducted between 1988 and 1993. Two of 

those studies compared flex heart rate to direct calorimetry and found that total energy 

expenditure calculated by the flex heart rate method was overestimated by 2.7% (Spurr et al., 

1988) and underestimated by 1.2% (Ceesay et al., 1989), respectively. Similarly, the third study, 
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which compared flex heart rate to doubly labelled water, found an overestimation of 2.0%. 

Leonard also cites several more recent studies on older adults with error ranging from a 9.7% 

underestimation to 5.9% overestimation. Validation studies have found that the flex heart rate 

method is accurate to ± 2 to 3% at a group level, that it is strongly correlated with energy 

expenditure measured by either calorimetry or doubly labelled water (r = 0.88), and that the 

regression of energy expenditure on heart rate has an intercept of approximately 120 kcal day-1 

(Leonard, 2003). Other work has suggested that an individual’s error can be up to ± 20% 

(Johansson, Rossander-Hulthén, Slinde, & Ekblom, 2006; Freedson & Miller, 2000) despite the 

accuracy of using flex heart rate at a group level. This disparity is potentially due to individuals 

whose heart rate is more often close to their flex heart rate where this method is least accurate 

(Freedson & Miller, 2000). 

 

  Although the use of flex heart rate reduces some of the error associated with measuring 

energy expenditure compared to using percent heart rate reserve or percent maximum heart rate, 

there still remain several challenges when using any heart rate-based measure. ECG signal 

quality is expected to remain consistent over short collection periods. However, for multi-day 

collections, signal quality can become an issue as the electrode-skin contact quality lessens to a 

point where the data may become unusable. For example, one study (Strath et al., 2002) 

Figure 3: The relationship between absolute heart rate, energy expenditure, and flex heart rate 

(image from Leonard, 2003). 
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measured heart rate using a chest strap for 6 hours and found that on average, participants had 

329 minutes of usable data; this represents 8.6% of the collection being lost to poor signal 

quality. Another major limitation that remains is the lack of context as to why changes in heart 

rate are occurring. Flex heart rate reduces some of the physiological “noise” due to autonomic 

changes from stress or arousal that increase heart rate in the absence of movement, but the 

transition between rest and activity cannot be differentiated by a single heart rate (Freedson & 

Miller, 2000). Additionally, the heart rate response at the onset of physical activity is not 

instantaneous; heart rate takes approximately two minutes to reach steady state during 

submaximal, constant intensity activity (Plowman & Smith, 2007; Strath et al., 2000). Very rapid 

parasympathetic withdrawal occurs with the onset of movement and can increase heart rate by 

approximately 30 bpm in 4 seconds (Nobrega & Araújo, 1993). If energy demand is not met by 

decreasing parasympathetic output, heart rate will continue increasing through sympathetic 

activity although there is a delay of approximately 20 seconds (Hughson, Tschakovsky, & 

Houston, 2001). Once activity ends, heart rate does not instantly return to its resting level (Strath 

et al., 2000) and may decrease at a different rate than that at which it increased at the onset of 

physical activity. Taken without movement context, using heart rate alone may misrepresent the 

timing, duration, and intensity of a given bout of physical activity.  

 

1.4    Combining Accelerometry and Heart Rate 

 

By combining accelerometry with heart rate, there is the potential to further reduce errors 

generated by using either on its own since their sources of error are not positively correlated 

(Brage et al., 2004). Briefly, the rationale is that accelerometry can both provide movement 

context and predict energy expenditure with greater accuracy than heart rate at lower intensities 

(Meijer, Westerterp, Koper, & ten Hoor, 1989) while heart rate can provide greater accuracy at 

high intensities (Romero-Ugalde et al., 2017). Figure 4 shows the relationships of accelerometer 

counts and heart rate to oxygen consumption and demonstrates how these two techniques 

complement each other. (In the figure, “COHR” and “COACC” refer to the cut-offs of heart rate 

and accelerometer counts, respectively; the labels were cropped).  
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1.4.1    Combined Heart Rate-Accelerometer Models 

 

The simplest heart rate-accelerometer models use the accelerometer to ensure that 

changes in heart rate are caused by physical activity. If multiple accelerometers are worn, their 

counts can be compared to determine which body segment(s) was/were most active. Strath and 

colleagues (2001) created a model using this logic in which each participant performed leg and 

arm ergometer calibration protocols to create a regression equation of heart rate on VO2 for each 

activity. Their model uses the ratio between the counts from the wrist- and thigh-worn 

accelerometers to determine whether activity was primarily upper- or lower-body. The 

appropriate regression equation is then used to estimate VO2 from heart rate. Using this method 

improved the accuracy compared to heart rate alone (0.4 MET overestimation, r2 = 0.53) or a 

hip-worn accelerometer alone (1.1 MET overestimation, r2 = 0.45) and achieved an r2 of 0.81 

with a non-significant bias of 0.1 METs. In their follow-up study (Strath et al., 2002), an 

accelerometer threshold of 500 counts per minute was added as the cut-off between activity and 

rest and there was a more complicated selection process for which equation to use (see Figure 5). 

If one of the wrist- or thigh-worn accelerometers were above 500 counts per  

Figure 4: The relationship between oxygen consumption, hip accelerometer counts, and heart rate, showing the 

complementary accuracy ranges in the measurement of energy expenditure (image from Johansson et al., 2006). 
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minute, the regression equation for that body segment was used. If both wrist and thigh counts 

were above 500 counts per minute, their ratio was used to determine which heart rate-VO2 

regression equation to use. In the case of whole-body physical activity, the lower-body 

regression was used because the heart rate-VO2 relationship for lower-body physical is very 

close to that of whole body (Haskell, Lee, Evans, & Irby, 1993). In the validation of their model,  

 

participants had indirect calorimetry measured for 6 hours in free-living. On average, total 

activity volume calculated by the heart rate-accelerometer model measured 1 MET minute less 

than the criterion measure (748 ± 178 compared to 749 ± 138 MET minutes, respectively), and 

the combined model was more accurate than using flex heart rate on its own.  

Similar to the two Strath studies, Brage and colleagues (2004) developed a model that 

uses a hip accelerometer threshold to verify that physical activity is occurring. Brage 

incorporated regression equations from individual calibration protocols into a branched model. In 

the algorithm that determines which equation to use, both accelerometer counts and heart rate are 

compared to respective thresholds and one of four equations is used depending on the which 

values are above/below threshold. This model also proved to be highly accurate. With individual 

calibration, error in energy expenditure prediction was an underestimation of 2.36% and with 

group-level calibration, error was an overestimation of 0.54% with r2 values of 0.61 and 0.78, 

respectively. Interesting, the authors attribute the improved performance of the group-calibrated 

model to errors in individual calibration being larger than the between-person variance. 

Figure 5: Combined heart rate-accelerometer model from Strath and colleagues (adapted from Strath et al., 2002). 



 19 

Johansson and colleagues (2006) took a similar approach in the development of their 

model (see Figure 6). Using an accelerometer placed on the low back, they found that two linear 

accelerometer-energy expenditure regression equations provided better estimates of energy 

expenditure than did using a single equation. One of these equations corresponded to activity less 

intense than walking at 2 km h-1 while the other corresponded to the intensity range between 

walking at 2 km h-1 up to approximately 75% of VO2max. They also measured flex heart rate and 

added an additional 10 bpm to the calculated value to ensure the heart rate-VO2 relationship was 

linear above that threshold. For heart rates below flex heart rate, resting metabolic rate was used 

when accelerometer counts were zero (it was assumed that the participant was asleep), otherwise 

the appropriate accelerometer equation was used depending on the accelerometer count. For 

heart rates above flex heart rate, the heart rate-VO2 regression equation was used. This model 

achieved a root-mean-square error (RMSE) of 2.99 MJ per day (714 kcal day-1) which was the 

same as accelerometry alone (RMSE = 2.99MJ day-1) and better than flex heart rate alone 

(RMSE = 3.99 MJ day-1 or 953 kcal day-1). 

Lastly, Romero-Ugalde and colleagues (2017) developed a three-equation branched 

model for a hip-worn accelerometer using twenty-five activities in the individual calibration 

procedures. Although this model was created using individual calibration, the regression 

coefficients that were used were from the group-level calibration. Cut-off values were 

normalized at the level of the individual by including their maximum counts per minute and 

Figure 6: Combined heart rate-accelerometer model from Johansson and colleagues (adapted from 

Johansson et al., 2006). 
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maximum attained heart rate values as scaling factors. Heart rate was quantified in this model as 

the number of beats above resting heart rate (“net heart rate”) and +40 bpm was used as their flex 

heart rate. This was done to represent physical activity intensity in the moderate and above 

range. Validation of this model found that the median R2 value of 0.87 was higher than the 

concurrently tested nonlinear accelerometer-only model (r2 = 0.66), linear accelerometer-only 

model (r2 = 0.56), and heart rate-only model (r2 = 0.81). Further, the branched model accurately 

classified physical activity into light or moderate-to-vigorous intensity 81.6% of the time; this 

was the best performance of the tested models (range = 72.6% to 80.5%). While the branched 

model and heart rate-only model both performed well, the authors stated that the main 

differences between the models was the improvement in accuracy of the branched model at low 

intensity physical activity (Romero-Ugalde et al., 2017).  

These four combined heart rate-accelerometer models use the data differently but do so 

using the same underlying reasoning. They also have several similarities. First, they all 

implement regression equations for the heart rate-VO2 and accelerometer counts-VO2 

relationships that were calibrated either at an individual or group level. Second, either a heart 

rate or accelerometer threshold was used to mark the transition point from rest to activity or 

similarly, between the nonlinear and linear portions of the heart rate-VO2 relationship. Third, 

below this threshold, accelerometer data is used to predict energy expenditure while heart rate is 

used if it’s above this threshold. Finally, the use of a combined heart rate-accelerometer model 

improves prediction accuracy compared to heart rate-only and accelerometer-only models. 

 

1.5    Thesis Objectives and Hypotheses 

 

 This thesis aims to answer three questions which will be described as three separate 

objectives. To answer these questions, activity profiles will be generated using an existing wrist-

worn accelerometer model, by developing an ankle accelerometer-based model, by a heart rate 

model, and by developing a combined heart rate and ankle accelerometer model. Activity 

profiles are defined as here as an epoch-by-epoch classification of activity intensity for each 

model. These data can then be summed to calculate activity volumes. 



 21 

Objective 1: to determine if four wearables models measure the same amount of activity 

at each intensity. It was hypothesized that the models would measure a significantly different 

amount of total activity at each of the activity intensities. 

Objective 2: to determine to what extent wearables models agree on their classification of 

activity intensity on an epoch-by-epoch basis. It was hypothesized that models would have a 

moderate agreement (.40 ≤ Cohen’s kappa ≤ .60) (Cohen, 1960) in intensity classification. 

Objective 3: to determine whether an individual’s overall activity level influences the 

between-model differences in activity volume (Objective 3A) and epoch-by-epoch agreement in 

intensity classification (Objective 3B). It was hypothesized that overall activity level would have 

a significant effect on the between-model differences. 
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Chapter 2: Methods 

 

2.1    Project Overview and Protocol 

 

2.1.0    Project Overview: ONDRI@Home 

 

 The data used in this thesis is part of the Ontario Neurodegenerative Disease Research 

Initiative (ONDRI) “@Home” project. The primary objectives of this project are to develop tools 

and data management systems to improve early diagnosis and to track disease progression for 

those at risk of or living with neurodegenerative disease. These data then need to be reported to 

patients and healthcare practitioners in meaningful ways. The data used in the present thesis were 

collected as part of the ONDRI@Home control cohort.  

 The pilot stage of the ONDRI@Home project began in the Fall of 2017. While not the 

focus of the work in this thesis, my role in the project included being the primary team member 

in charge of determining what wearable devices to use, working on protocol development 

including researching study collection lengths, and data processing methods. I also led the initial 

pilot project which collected data from retirement homes and laid the groundwork for the 

collection protocol used in data used in this thesis. 

  

2.1.1    Participant Recruitment 

 

 Participants were recruited by word of mouth and through posters around the research 

facility. These participants included family, friends, University staff, participants in exercise 

programs held at the Centre for Community, Clinical and Applied Research Excellence, and 

undergraduate students. Data collections took place between December 2018 and March 2020. 

To be eligible to participate, prospective participants needed to provide informed written consent 

and have no diagnosis of neurodegenerative disease. Participants provided medical history which 

included diagnoses and medications. Effects of medications were checked to ensure they would 

not have an effect on heart rate. No participants were excluded due to medication use. 
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Any participants taking medications that would affect their heart rate response to physical 

activity (e.g. beta-blockers) were excluded from analyses. This study was approved by the 

University of Waterloo’s Office of Research Ethics (ORE #31943). 

 

2.1.2    Protocol and Equipment 

  

 On the first day of the study, participants filled out demographic, medical history, and 

medication forms. Weight was taken using a physician’s scale and height was taken using a 

sliding scale fixed to the wall. Measures were rounded to the nearest tenth of a kilogram and 

nearest centimeter, respectively. A research assistant familiarized participants with the wearables 

including instructions on how and when to remove and re-attach the devices. Participants wore 

multiple devices for a period of 4-7 days (due to protocol changes as the project evolved), 

including overnight, and were instructed only to remove the wearables for bathing or water-

based activities and to maintain their normal daily activities. The collection duration varied due 

to some protocol changes that occurred during the study period. 

 GENEActiv accelerometers (ActivInsights, Kimbolton, UK) were worn on both wrists 

and ankles. GENEActivs are small (43 x 40 x 13mm), lightweight (16 g), triaxial accelerometers 

that measure raw acceleration in the range of ± 8 G (where 1 G = 9.81 m s-2). Accelerometer data 

can be sampled at frequencies from 10 to 100 Hz. Data was collected at a frequency of 75 Hz to 

maximize temporal resolution while maintaining adequate battery life for the collection period. 

All GENEActivs were initialized to begin recording at the same time and for a set duration 

according to when the participant was scheduled for their end-of-study meeting with the research 

assistant. 

Figure 7: Ankle and wrist GENEActiv accelerometer attachment methods showing the use of 

custom-made sleeves (left) and original watchband (right). 
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The wrist worn GENEActivs were worn on the original rubber strap on the posterior 

aspect of the distal forearm as a wristwatch would be worn. Ankle-worn GENEActivs had the 

strap removed and were fitted into custom-made medical grade tensor wraps which were held on 

using hook-and-loop fasteners (see Figure 7). Participants were given the option of wearing the 

ankle GENEActivs medially or laterally depending on perceived comfort. These accelerometers 

were worn proximal to the malleoli. For this thesis, no raw data was used so device orientation 

was not important.  

Participants also wore a Bittium Faros 180º (Bittium Corporation, Oulu, Finland) on their 

torso. The Bittium Faros contains an electrocardiogram (ECG) and measures raw triaxial 

acceleration (data not used in the present thesis). It is 48 x 29 x 12 mm and 16 g in size. ECG can 

be sampled at 125, 250, 500, or 1000 Hz. 250 Hz was selected to allow a battery life of 

approximately 4-5 days while maintaining adequate signal resolution. Once initialized, the 

Bittium Faros collected data until its battery died. Each participant was given two single-lead 

FastFix (Bittium Corporation) electrodes that attach to the Bittium Faros via micro USB. 

Participants were given the choice to wear the electrode vertically (on the left lateral border of 

the sternum), diagonally (at approximately the level of the left 5th and 6th ribs with the medial 

end of the electrode superior to the lateral end) or horizontally (at approximately the level of the 

2nd and 3rd ribs) depending on their anatomy and perceived comfort. Figure 8 shows the 

attachment options for the Bittium Faros. The second electrode was given in case the participant 

Figure 8: Bittium Faros attachment locations using the FastFix electrode (image adapted from 

the Bittium Faros user manual, Bittium Corporation). 
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experienced poor adhesion or needed to remove the first electrode. These electrodes can get wet; 

however, participants were instructed to remove the Bittium Faros from the FastFix electrode 

and to re-attach it once water activities were complete.  

Partway through data collections, a treadmill protocol was implemented for the purpose 

of developing an ankle accelerometer-based activity model. At a time that was convenient during 

their collection period, participants performed a series of walks on a treadmill with zero incline 

and without using the handrails. Participants began by self-selecting their preferred/comfortable 

gait speed. They then walked for 2 minutes at both 60% and 80% of this speed, followed by 4 

minutes at 100%, 120%, and 140% of preferred pace. Approximately 90 to 120 seconds of rest 

were given between each speed. A cool-down period at a self-selected speed was performed 

following the final walk. These speeds were selected to approximate a range of speeds likely to 

occur in free-living but without the need for participants to jog or run. This was done to alleviate 

potential safety concerns if this protocol were to be implemented in cohorts with 

Figure 9: Annotated ankle accelerometer data during the treadmill protocol. Each bar represents one 15-second 
epoch. Protocol stages and corresponding walking bouts: determining preferred pace (A), walking at speeds ranging 

from 60% to 140% of preferred pace (B), and cool-down (C). 
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neurodegenerative disease and/or musculoskeletal limitations. Figure 9 shows annotated epoched 

ankle data for the treadmill protocol from one participant. 

Participants were also given device removal and sleep logs to fill out during the course of 

data collections. Sleep and device removal logs were used in the present work to help determine 

when participants went to bed, took naps, and removed any or all devices.  

 

2.1.3    A Priori Power Calculation 

 

An a priori sample size/power analysis was conducted using G*Power (Faul, Erdfelder, 

Buchner, & Lang, 2009) to determine how many participants would be required to detect 

differences in activity profiles generated from the four models with a power of β = .80 and α = 

.05. This analysis was conducted using the between-model effect sizes from Brage and 

colleagues (2004) and Johansson and colleagues (2006), which both compared energy 

expenditure measured by accelerometer-only, HR-only, and HRAcc models. These effect sizes 

ranged from d = .65 to 2.78; the effect size averaged across all model comparisons was d = 1.79.  

Using these data, sample size calculations ranged from 4 to 21 participants, with 5 of the 6 

between-model differences requiring a sample size of 10 participants or fewer. Since differences 

between groups with different activity levels will be analyzed for Objective 3, power analysis 

was also conducted based on the expected differences in activity levels between these two 

groups. This analysis was conducted using data from previous work (Westerterp, 2001) which 

assessed the physical activity level ratio (ratio of total energy expenditure to resting energy 

expenditure) of 173 participants between the ages of 20 and 50 years. Using the difference in 

physical activity level ratio between the first and fourth quartiles of 1.34 standard deviations, it 

was determined that 7 participants per group would be needed to attain β = .80 with α = .05. A 

sample size of 28 participants was estimated to be necessary to have sufficient power to address 

both research questions.  
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2.2    Data Pre-Processing 

 

2.2.1    Accelerometry Pre-Processing 

 

After the collection was finished, raw GENEActiv data were extracted using the 

GENEActiv software version 3.3 (ActivInsights) and saved to the NiMBal Lab’s secure network 

drive. Upon extracting the raw data, the GENEActiv software calculates the amount of clock 

drift experienced by the on-board clock of each device relative to the computer’s clock. 

Interpolated datapoints were added or subtracted periodically to ensure proper sample timing. 

This ensured that timestamps from different GENEActivs matched throughout the entire 

collection period. The clock drift quoted by the manufacturer is ± 1.7 seconds per day (11.9 

seconds per week); a different part of the ONDRI@Home project found similar results. 

Using custom-made Python software (see Acknowledgments), data files were converted 

to European Data Format (EDF) to create a standardized data format for the ONDRI project. 

Accelerometer data were not filtered to maintain consistency with the methods used in the 

existing Wrist model (see section 2.5.1).  

 

2.2.2    ECG Pre-Processing 

 

 Bittium Faros data were downloaded and stored in the same location as the GENEActiv 

data. No file conversion was required as the data are already stored in EDF format. 

 Work was conducted to determine an appropriate QRS peak detection algorithm to 

calculate heart rate from raw ECG data. Several algorithms showed high accuracy with a clean 

ECG. However, ECG signal quality showed a high degree of variability, often to the point where 

the signal was unusable despite filtering. It is suspected that the decrease in signal quality was 

from degrading skin-electrode contact or from residual moisture following the FastFix electrode 

getting wet. Different techniques were implemented to improve the performance of peak 

detection algorithms including running the algorithms on windowed data (15-second sections) 

and adjusting the temporal and magnitude parameters of the peak detection algorithms; these 

attempts were not successful due to extremely noisy ECG sections (see Figure 10 for an example 

of various ECG signals from a single participant). Ultimately, an algorithm developed by 
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Orphanidou and colleagues (2015) to detect periods of usable ECG signals was implemented. 

This algorithm was developed using single-lead ECG data from several datasets using multiple 

ECG devices. Data used in the algorithm development included 24-hour wear as well as isolated 

10-second segments of ECG data. In total, the authors validated their algorithm using 1500 ten-

second segments of data. Algorithm performance was quantified by comparing the output from 

the algorithm with visual inspection from two researchers. For these inspections, the researchers 

designated ECG segments as usable if they could “confidently derive a reliable [heart rate] from 

it, by counting the number of salient features (such as R-peaks) … over fixed time intervals” (p. 

834). Overall, it was found that 64% of the data were usable and the algorithm achieved a 

sensitivity of 94% and specificity of 97% in its ability to detect usable segments of data.  

ECG data in the present thesis were filtered using a 1-30Hz, 2nd order Butterworth 

bandpass filter to reduce baseline wander and high-frequency noise generated from muscle 

activity or electrical interference (Pouryayevali, Wahabi, Hari, & Hatzinakos, 2014). The 

Orphanidou algorithm does not specify signal filtering. The filtered data were input into the 

Orphanidou algorithm in 15-second segments. The algorithm operates in two stages: peak 

detection and a series of condition checks. Peaks were detected using the Python package 

Figure 10: Four 10-second segments showing the variability in filtered ECG signal quality from one 

participant. Shown are a clean segment (top left), segment with a combination of noise and clean signal (top 

right), a period when the device was not worn (bottom left), and a highly noisy region (bottom right; note the 

voltage amplitude relative to other segments). 
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ecgdetectors that implements a wavelet transformation and the Pan-Tompkins peak detection 

algorithm (Pan & Tompkins, 1985).  

The second stage of the algorithm involves passing a series of conditions. All conditions 

must be passed for the data window to be deemed usable. First, based on the number of detected 

peaks and their timing, the average heart rate must be between 40 and 180 bpm. Second, no R-R 

interval can be greater than 3 seconds. Third, the ratio of the longest-to-shortest R-R intervals 

must be less than 2.2. Fourth, a correlational analysis is performed. A “template” heartbeat is 

created by taking a window of data centered around each detected peak with a width of the 

duration of the median R-R interval. If a window extended passed the start or end of the 15-

second data segment, its peak was not used in the template. These windows are then laid on top 

of each other, so to speak, and the template is created by taking the average voltage at each time 

point. The top subplot in Figure 11 shows a sample 10-second filtered ECG segment with 

approximate peak locations marked and peak windows shaded in grey (there are 8 windows; the 

final beat was excluded because it extended beyond the data segment). The bottom subplot 

shows each peak window overlaid in black and the template in red. Then, a Pearson correlation is 

calculated between each peak window and the template. These values are then averaged. If the 

Figure 11: A 5-second segment of filtered ECG data showing detected beats (top) and the 

resulting QRS template used in the Orphanidou et al. quality check algorithm (bottom). 

Individual beats are drawn in black with the template in red. 
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average Pearson correlation is greater than .66, this condition is met. Figure 12 shows the 

algorithm processing steps.  

Further testing showed that this algorithm often failed to reject periods when the Bittium 

Faros was not worn. These regions are partially differentiated from periods when the device was 

worn by a relatively low signal amplitude. An additional condition (not included in Figure 12) 

was added to improve the identification of these periods; a voltage range of ≥ 250 μV was 

required for each data segment. If all five of these conditions were met, the 15-second segment 

was classified as usable.  

The modified algorithm was validated using 1 000 randomly generated 15-second 

segments of ECG data where the author determined whether the signal was contaminated by 

noise to a degree which would affect the reliability of beat detection or if the signal was 

relatively noise-free. These judgements were then compared to the output from the algorithm to 

quantify algorithm performance. 

 

Figure 12: Flowchart showing the processing steps in the original signal quality algorithm 

(image from Orphanidou et al., 2015). The added voltage range rule is not shown. 
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2.2.3    Device Synchronization 

 

 Synchronization of the timestamps on the GENEActivs was described in section 2.2.1. 

Because the Bittium Faros was started manually (unlike the GENEActiv, it cannot be set to start 

recording at a specific time), files from each device needed to be cropped so that the epochs from 

all devices contained the same time periods. The last device to start collecting data was not 

cropped; the other files were cropped to excluded data before this point in time. Similarly, all 

devices were cropped to exclude timepoints once any device stopped collecting data. Data 

cropping at the start of collection was typically less than a few minutes’ worth of data. Due to the 

difference in battery life between the GENEActivs and Bittium Faros, a few days’ worth of data 

were cropped from the GENEActiv files from the end of their collection once the Bittium Faros 

stopped collecting.  

While the GENEActivs timestamps were correct for clock drift, the Bittium Faros’ on-

board clock was taken as correct because the amount of clock drift is not calculated by the 

Bittium Faros.  

 

2.2.4    Data Epoching 

 

 Methods used by Powell and colleagues (2017) served as the starting point for the 

development of data analytics in this thesis due to it being an established method. Consistencies 

in data processing and analytics were maintained where possible and where appropriate to 

improve the validity of making between-model comparisons. This model will be further 

explained in section 2.5.1. 

 Data from the synchronized accelerometer and ECG data were windowed into 15-second 

epochs. Accelerometer epoching was calculated using the equation found in the GENEActiv 

software manual. This is the standard way to epoch GENEActiv data and was the method used 

by Powell and colleagues. The sum of vector magnitudes (SVM; synonymous to activity counts) 

value for each epoch was calculated with Equation 2 where i is the epoch index number, n is the 

index of the first raw data point in the epoch, l is the length of the epoch in seconds, f is the 

sampling frequency in Hz, and g is gravitational acceleration.  
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Eq. (2): SVM (g s epoch
-1) = ∑  | √xn

2+y
n
2+ zn

2  - 1g |

(i+1) × l × f - 1

n = i × l × f

 

  

ECG data were also epoched using the same 15-second interval. Peaks were given in datapoint 

indexes which were converted to time in seconds by dividing by the sampling rate. The average 

heart rate for each epoch was calculated using Equation 3 where b is the number of detected 

beats, f is the sampling rate in Hz, and nend and nstart are the index numbers of the first and last 

data points, respectively. 

 

Eq. (3): Heart rate (beats min
-1) = 

b - 1

nend - nstart

 × 
f samples

1 second
 × 

60 seconds

1 minute
 

 

2.2.5    Invalid Epoch Detection 

 

 Consistent with the literature, periods of device non-wear and sleep were removed from 

the analyses. Ideally, both sleep and non-wear periods would be detected automatically, 

however, study timelines did not permit the completion of the final testing of the validated 

analytical tools. Non-wear periods were determined by visual inspection with the help of the 

device removal logs with the key criteria being absence of change accelerometer output for ≥ 5 

minutes. Wrist and ankle accelerometer data were visualized simultaneously which facilitated 

non-wear period detection as the majority of periods involved the removal of both devices. The 

ECG data did not undergo visual non-wear detection as these periods were already accounted for 

using the signal quality algorithm. In conjunction with the sleep logs, visual inspection was used 

to determine when the participant went to bed each night. Sleep onset was defined as the marked 

decrease in movement for an extended duration around the time the participant said they went to 

bed. Because heart rate data were not always available and no other physiological measures were 

taken, the periods marked as sleep represent sedentary time in bed in addition to actual sleep.  

 Periods with invalid ECG data were also omitted from analyses. Therefore, only periods 

with valid ECG data, while all devices were worn, and when the participants were awake were 

included in the analyses. These periods will be referred to as “valid epochs”.  
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2.2.6    Cardiorespiratory Measures  

 

2.2.6.1    Resting Heart Rate 

 

 An in-person resting heart rate was not taken. These measures have been shown to be 

influenced by the “white coat” effect and because continuous heart rate data was measured which 

can lead to a more accurate calculation of resting heart rate (Palatini, 2009). No standardized 

methods to determine resting heart rate from free-living data were found so published 

recommendations for calculating resting heart rate clinically (Palatini, 2009) were followed. 

These recommendations were integrated with an approach similar to that found in (Logan, 

Reilly, Grant, & Patton, 2000). To determine resting heart rate, average heart rate was calculated 

over a 60-second window (four consecutive 15-second epochs) using a rolling average 

calculation. If the one-minute window contained an invalid epoch (either from signal loss or 

from sleep), it was omitted. The 60-second windows were sorted in ascending order and the 

average of the first 30 windows was taken as the participant’s resting heart rate. 

 

2.2.6.2    Maximum Heart Rate 

 

  Further reducing participant burden, maximum heart rate was estimated using an 

equation instead of being calculated directly using a graded exercise test. Maximum heart rate 

was calculated using the predictive equation from Tanaka and colleagues (2001). 

 

Eq. (4): HRmax = 208 – 0.7 × age [years] 

 

2.2.6.3    Estimation of Resting VO2 

 

 Resting VO2 was estimated using data from Kwan and Kwok (2004) that factors in both 

sex and age (see Table 1). These values helped maintain consistency with the methods of Powell 

and colleagues by not assuming resting VO2 is 3.5 mL kg-1 min-1. Powell and colleagues 

measured the average resting VO2 of their sample to be 3.27 mL kg-1 min-1. Their value is closer 

to the values reported by Kwan & Kwok than the standard 3.5 mL kg-1 min-1. 
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Table 1: Mean resting VO2 by age and sex. Values in mL kg-1 min-1. Data from Kwan & Kwok, 2004. 

Age Group Men Women 

16-64 years 3.03 3.32 

65-89 years 2.84 2.82 

 

2.3    Model-Generated Outcome Measures 

 

 For each model, two main outcome measures were generated. First was the epoch-by-

epoch classification into sedentary, light, moderate, or vigorous activity. Secondly, total time 

spent in each intensity category was calculated by counting the number of epochs spent in that 

intensity and dividing by 4 to convert from the number of epochs to number of minutes (15 

seconds per epoch = 4 epochs per minute). Activity totals were also reported as a percentage of 

the valid data (awake with all devices worn and valid ECG data) to allow between-subject 

comparisons to be made while accounting for the differences in quantity of valid data and data 

collection duration. Lastly, a fifth intensity category, moderate-to-vigorous activity, was created 

by summing moderate and vigorous activity. This was done to represent the intensity commonly 

used in activity guidelines.  

 

2.4    Participant Inclusion Based on Usable Data Volume 

 

 Analyses were run to determine how much usable data was obtained from each 

participant. This was done using the data classified as valid as described in section 2.2.5.  

To be included in analyses, a threshold of 30 hours of usable data was set. The purpose of 

selecting a threshold was to include a quantity of usable data similar to what is required from 

common protocols in the literature. This threshold was determined from a review of 57 studies 

(Skender et al., 2016) that used accelerometers and questionnaires to quantify physical activity. 

Of these 57 articles, a collection duration of seven days was the most common (65% of studies). 

82% of studies defined a valid day as at least 10 hours of accelerometer wear time. Lastly, nearly 
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half (47%) of the studies required at least 4 valid days. Requiring ≥ 10 hours per day for 4 days 

in a 7-day collection is a minimum of approximately 25% of the entire collection period. The 

current data collection length was limited by the Bittium Faros’ battery life of approximately 5 

days. The threshold for number of usable hours was set at 25% of 5 days which is 30 hours. 

Therefore, only participants who provided ≥ 30 hours of valid data were included in the analyses.  

 

2.5    Model Descriptions 

 

 The following section describes each wearables model. Specific nomenclature is used 

from here on. To avoid confusion with body segments, all model names are capitalized (i.e. 

“wrist” is the body part and “Wrist” is the wearables model). Model comparisons are denoted 

using a “vs.” between model names (e.g. “Wrist vs. Ankle” refers to a comparison between the 

Wrist and Ankle models). The samples used in the secondary analysis (see section 2.7) were 

named based on which models provided enough usable data; these samples are named the 

AnkleWrist and WristHR samples.   

 

2.5.1    Wrist Accelerometer Model 

 

 The wrist accelerometer (Wrist) model implemented the cut-points of Powell and 

colleagues (2017). These cut-points consist of two sets: one for the dominant wrist and one for 

the non-dominant. Only data from the non-dominant wrist were included in this thesis. Powell’s 

cut-points were created using GENEActiv accelerometers sampling at a frequency of 30 Hz. 

Since the present study’s data was collected at 75 Hz and activity count calculations are affected 

by the total number of data points, the cut-points were multiplied by a factor of 2.5 (75  30 = 

2.5) to scale them for use with 75 Hz data. Unpublished pilot work by the author has shown that 

this method does not affect total measured activity minutes. Accelerometer data were not filtered 

since the data used in the cut-point development were not filtered.  
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 To generate the activity profiles, each epoch’s activity count value was compared to the 

Powell cut-points that mark the boundaries for light (1.5 METs), moderate (3.0 METs), and 

vigorous (6.0 METs) activity, and the epoch’s intensity was classified based on the MET range 

within which it fell. These MET-range definitions were kept as consistent as possible in the 

subsequent models to allow for more valid between-model comparisons. Figure 13 shows the 

Wrist model processing flowchart.  

 

2.5.2    Ankle Accelerometer Model 

 

 For the ankle accelerometer (Ankle) model, each participant’s treadmill protocol data and 

the ankle accelerometer data from the same side of the body as the non-dominant wrist were 

used. In this model, the average ankle activity count from each of the five treadmill walks were 

used in a linear regression equation to predict gait speed. Multivariate regression using 

demographic variables such as height were investigated but were not used due to the extremely 

high coefficients of determination attained with individually calibrated univariate regression 

equations.  

Physiologically, ankle counts should be approximately zero when no movement is 

occurring. However, the regression was not forced through the origin which led to an 

improvement in the regression’s performance. Instead, a threshold was set to differentiate a 

potentially meaningful bout of movement or gait from transient movement such as shifting 

position in a chair or small amplitude leg tapping. There is no standard definition of what 

constitutes a bout of gait and therefore the time duration of a bout is not defined either. Using a 

combination of definitions and data about gait bout durations (Orendurff, Schoen, Bernatz, 

Segal, & Klute, 2008; Awais, Chiari, Ihlen, Helbostad, & Palmerini, 2018), average preferred 

speed, cadence, and different gait bout definitions (Waters et al., 1988; Prajapati, Mansfield, 

Gage, Brooks, & McIlroy, 2011; Roos, Rudolph, & Reisman, 2012; Danks, Roos, McCoy, & 

Reisman, 2014), a temporal threshold of 5 seconds was selected to differentiate between 

Figure 13: Data processing flowchart for the Wrist model by Powell et al (2017). 



 37 

transient and meaningful movement. The threshold was converted to an equivalent activity count 

value by dividing the average activity counts from the participant’s walk at their preferred gait 

speed from the treadmill protocol by 3 (since 5 seconds is one-third of the 15-second epoch).   

For each epoch, a gait speed was estimated using the activity count value with the 

participant’s individual regression equation. For epochs that were below the threshold described 

above, a gait speed of zero was given. VO2 was then calculated using the ACSM’s walking and 

running equations (see Equations 5a and 5b). These equations are most accurate in the ranges of 

50-100 m min-1 and greater than 135 m min-1, respectively. The running equation was used for 

speeds above 100 m min-1. 

 

 

Eq. (5a): VO2 (mL kg-1 min-1) = 3.5 mL kg-1 min-1 + 0.1 × speed [m min-1] + 1.8  

                                 × speed [m min-1] × grade [decimal] 

 

 

Eq. (5b): VO2 (mL kg-1 min-1) = 3.5 mL kg-1 min-1 + 0.2 × speed [m min-1]  

                                                    + 0.9 × speed [m min-1] × grade [decimal] 

 

In these equations, an assumed resting VO2 value of 3.5 mL kg-1 min-1 is used and they 

include a vertical component used when moving on an incline. The present thesis replaced the 

resting VO2 value with that determined from Kwan and Kwok’s data and the vertical component 

was removed by assuming level-ground walking (orientation calculations are not possible using 

epoched data). The modified equations used to predict gait speed is shown in Equations 5c and 

5d. 

 

Eq. (5c): VO2 (mL kg-1 min-1) = estimated resting VO2 + 0.1 × speed [m min-1] 

Eq. (5d): VO2 (mL kg-1 min-1) = estimated resting VO2 + 0.2 × speed [m min-1] 
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Once VO2 was estimated for each epoch, this value was divided by the participant’s 

resting VO2 value to obtain a MET level. Lastly, an intensity classification was assigned using 

the definitions of sedentary (< 1.50 METs), light (1.50 – 2.99 METs), moderate (3.00 – 5.99 

METs), and vigorous (≥ 6.00 METs) based on the predicted MET value. Figure 14 shows the 

Ankle model processing flowchart.  

 

 

2.5.3    Heart Rate Model 

 

 The heart rate (HR) model used percent heart rate reserve to quantify activity intensity. 

For each epoch, the average heart rate was calculated as a percent of heart rate reserve based on 

the individual’s derived resting heart rate and predicted maximum heart rate using Equation 3. 

Since resting heart rate was calculated with a rolling average method, it was possible that an 

individual epoch’s average heart rate was below resting heart rate, which would result in a 

negative percent heart rate reserve. In such instances, a value of zero percent heart rate reserved 

was assigned.  

Figure 14: Data processing flowchart for the novel Ankle model. 

Figure 15: Data processing flowchart for the HR model. 
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 Activity intensity was classified as sedentary (< 30% HRR), light (30-39.99% HRR), 

moderate (40-59.99% HRR), and vigorous (≥ 60% HRR). These intensity ranges correspond to 

<2.00, 2.00-2.99, 3.00-5.99, and ≥ 6.00 METs, respectively (ACSM, 2014). Figure 15 shows the 

HR model processing flowchart.  

 

2.5.4    Combined Heart Rate-Ankle Accelerometer Model 

 

 The combined heart rate and ankle accelerometer (HRAcc) model used logic derived 

from the literature where the accelerometer data are used at low intensity and heart rate data are 

used at higher intensities (Brage et al., 2004; Johansson et al., 2006; Romero-Ugalde et al., 2017; 

Strath et al., 2002). The present model’s threshold was implemented using a relative heart rate 

measure as opposed to an absolute threshold (i.e. flex heart rate in beats per minute). The 

objective when selecting a threshold was to determine a value where heart rate was highly 

correlated with lower/whole-body movement, thereby eliminating the use of heart rate data when 

heart rate may have been primarily under the influence of non-activity factors.  

Figure 16: Correlation data between relative heart rate and ankle activity counts used in the 

generation of the HRAcc model threshold. Individual participant data are shown as dotted 

lines. Mean correlation values for each HRR increment are plotted in red. 
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To determine this threshold, each participant’s data (n=10) were analyzed with a series of 

Pearson correlation coefficients. In increments of 5% heart rate reserve, data subsets were 

created that only included epochs where heart rate was above the threshold and when the 

participant was awake. This was done for both heart rate and ankle activity count data. The 

correlation coefficient between percent heart rate reserve and ankle activity counts was 

calculated using these data subsets. For example, with a threshold of 15% heart rate reserve, the 

correlation coefficient between percent heart rate reserve and ankle counts was calculated for all 

epochs where heart rate reserve was above 15%. This was done for each participant using 

thresholds between 5 and 100% heart rate reserve. For each threshold, the average correlation 

was calculated across subjects. The threshold of 30% heart rate reserve was selected using the 

graph shown in Figure 16. This threshold corresponded to an average value of r = 0.40. A 

threshold of 40% heart rate reserve was also considered due to its proximity to where the curve 

plateaus (an approximate correlation coefficient of r = 0.55). However, selecting a threshold of 

40% heart rate reserve led to a considerable decrease in the amount of time for which the HR 

model would be used, which would reduce the usefulness of such a combined model. For the 

participants included in this analysis, individuals spent 11.1 ± 5.3% of valid epochs above 30% 

heart rate reserve while this number fell to 4.3 ± 2.7% for a threshold of 40% heart rate reserve. 

The threshold of 30% heart rate reserve led to results consistent with the combined HRAcc 

model proposed by Johansson and colleagues (2006) who reported that 11.9 ± 2.2 of waking 

hours were spent at an intensity that elicited the use of heart rate as opposed to accelerometry in 

Figure 17: Data processing flowchart for the combined heart rate-accelerometer model. 
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his model. Although this is not the typical approach to determine a heart rate threshold, a flex 

heart rate based on intensity has been used previously (Romero-Ugalde et al., 2017). 

For the HRAcc model, if an epoch’s percent heart rate reserve was below 30%, the Ankle 

model was used. For those epochs above 30% heart rate reserve, the HR model was used. The 

activity profile was generated using the appropriate model. Figure 17 shows the HRAcc model 

processing flowchart. 

    

2.6    Group Stratification for Objective 3 

 

 To address Objective 3, two groups needed to be created to separate participants into 

low- and high-activity groups. Based on the a priori power analysis, the plan was to stratify 

participants into two groups of seven by using the most and least active seven participants. 

However, only 10 participants had enough valid data; these 10 participants were split into two 

activity groups with 5 participants in each group.   

 Two stratification methods were investigated with the goal of creating groups based on 

whole-body activity in a way that did not bias results towards any of the four models. The two 

methods were grouping by average ankle counts and by average wrist counts. The averages were 

calculated without removing invalid ECG epochs. Sleep epochs were not included in the 

calculation. Independent sample t-tests were conducted to determine if these two stratification 

methods led to a statistically significant difference in average activity counts between groups and 

to determine if the groups differed in age, height, or weight. Importantly, both stratification 

methods created groups that had 4 of the 5 participants in common. Due to the similarities, the 

analysis was conducted using the groups created by average ankle counts as this measure likely 

better reflects whole-body activity level.  

 

2.7    Additional Sample Generation and Secondary Analysis 

 

 A secondary analysis was conducted due to the Primary sample being smaller than the 

target calculated in the a priori power analysis as an attempt to replicate the findings using a 

larger sample size. This analysis was not conducted to address an a priori objective but was 

found to be necessary and is referred to as Objective 4.  
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Two additional samples (Secondary samples) were created by including all participants 

that provided valid data for both the Ankle and Wrist, and HR and Wrist data, respectively, 

without the requirement of having provided valid data for all four models. These samples are 

referred to as the AnkleWrist and WristHR samples, respectively, and each only contain data 

from the two models in their names. Participants added to the WristAnkle sample included 

participants who had too much invalid ECG data to be included in the Primary sample but had 

enough valid data from the Ankle and Wrist models. Participants added to the WristHR sample 

were collected in the first half of the study prior to the treadmill protocol implementation and 

therefore did not have data to generate the activity count-gait speed regression needed for the 

Ankle model. In this secondary analysis, 20 participants were included for the AnkleWrist 

sample and 18 for the WristHR sample. To include a larger volume of data than the Primary 

sample, data for the AnkleWrist sample were processed without removing epochs where the 

ECG data were not valid. The WristHR sample’s data were not reprocessed. Both samples were 

stratified into activity groups using the same method as in Objective 3 resulting in two groups of 

10 for the AnkleWrist sample and of 9 for the WristHR sample. 

 

2.8    Statistical Analyses 

 

2.8.1    Objectives 1 to 4 

 

Statistical analyses were conducted in Python and R using the packages pingouin and 

ezANOVA, respectively. Statistical significance was set at p < .05. Violations for the assumption 

of sphericity were tested using the Mauchly test. The Greenhouse-Geisser epsilon correction was 

applied for violations of sphericity where applicable.  

Data are reported as mean ± standard deviation [95% confidence interval] and error bars 

on graphs are the 95% confidence interval unless otherwise noted. Effect size statistics for F-

tests were selected using the criteria suggested in the supplemental information from Läkens 

(2013). These will be explained in the relevant sections. For pairwise comparisons, Hedges’ g 

was selected over Cohen’s d to account for potential bias due to the small sample sizes (Läkens, 

2013).  Colour-coding of effect sizes in data tables represent the following effect size 

magnitudes: negligible (red), small (orange), medium (yellow), large (green) (Cohen, 1988).  
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No corrections were made for multiple comparisons for the post-hoc tests. This was done 

for several reasons. First, when comparing results from the Primary and Secondary samples 

(Objective 4), there are a different number of comparisons being made in each analysis so a one-

to-one comparison could not be made with any corrected values. Second, due to the exploratory 

nature of this thesis and the ramifications of Type I and II errors, type I errors were viewed as 

being less detrimental than type II errors. And thirdly, the results of individual tests are more 

important than maintaining the family-wise significance level. 

For Objectives 1 and 3A, the original plan was to analyze four activity intensities: 

sedentary, light, moderate, and vigorous. However, once the data were processed, moderate and 

vigorous activity were collapses into moderate-to-vigorous physical activity (MVPA) due to the 

very limited amount of vigorous activity. For Objectives 2 and 3B, model agreement was 

calculated using four intensities: sedentary, light, moderate, and vigorous. Objective 4 used the 

equivalent data from the Secondary samples.  

For Objectives 2, 3B, and 4B (the Objectives that assess model agreement), Cohen’s 

kappa was selected over a simple percent agreement since it accounts for agreement by chance 

(McHugh, 2012) which may have a large effect on data that is classified into only four 

categories. However, percent agreements are also reported as they are easier to interpret 

(McHugh, 2012). 

 

2.8.1.1    Objective 1: Between-Model Comparison in Total Activity 

 

 To determine if the four models measured the same amount of total activity, a one-way 

repeated measures ANOVA was conducted for each of the three intensity categories. Separate 

ANOVAs were conducted because the measurements of intensity are not independent from one 

another as their sum is fixed by the collection duration; measurement of one intensity affects the 

others.  

The factor Model had four levels: Wrist, Ankle, HR, and HRAcc. Effect sizes are 

reported using partial eta squared (ηp
2) because Model was manipulated (as opposed to observed) 

between all participants (Läkens, 2013). Post-hoc analysis was conducted to determine which 

model(s) measured different volumes of activity using pairwise dependent sample t-tests. Effect 

sizes are reported using Hedges’ g. 
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2.8.1.2    Objective 2: Epoch-by-Epoch Agreement 

 

 To determine the level of agreement in epoch-by-epoch intensity classification between 

the four models, inter-model reliability was calculated for each of the six model pairs using 

Cohen’s kappa. A one-way repeated measures ANOVA was conducted with the factor Model 

Comparison which had 6 levels: Wrist vs. Ankle, Wrist vs. HR, Wrist vs. HRAcc, Ankle vs. HR, 

Ankle vs. HRAcc, and HR vs. HRAcc. Effect size is reported using partial eta squared for the 

same reasons as Objective 1. Post-hoc analysis was conducted using pairwise dependent sample 

t-tests to determine if pairs of models had different levels of agreement. 

 

2.8.1.3    Objective 3: The Effect of Activity Level on Model Performance 

 

 The same dataset from Objectives 1 and 2 was used for Objective 3 but participants were 

stratified into activity level groups as described in section 2.6.  

 

2.8.1.4    Objective 3A: Time Spent in Each Activity Intensity  

 

To determine if overall activity level had an effect on how the four different models 

measured total activity, a 4 x 2 mixed ANOVA was conducted for each of the three activity 

intensities. The between-subjects factor of Group had two levels: low and high activity. The 

within-subjects factor of Model had four levels: Wrist, Ankle, HR, and HRAcc. Separate 

ANOVAs were conducted for the same reason as in Objective 1. For this analysis, the focus was 

the Group x Model interaction so main effects are not reported. Effect sizes are reported using 

generalized eta squared (ηG
2) since not all factors are manipulated (Group was observed while 

Model was manipulated) (Läkens, 2013). Post-hoc analysis on the Group x Model interaction 

was performed using pairwise independent sample t-tests.  

 

2.8.1.5    Objective 3B: Model Agreement in Activity Intensity Classification 

 

 To determine if overall activity level had an effect on the epoch-by-epoch agreement in 

activity intensity between models, a 6 x 2 mixed ANOVA was conducted. The between-subjects 
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factor of Group had two levels: low and high activity. The within-subjects factor of Comparison 

had six levels (one for each between-model comparison): Wrist vs. Ankle, Wrist vs. HR, Wrist 

vs. HRAcc, Ankle vs. HR, Ankle vs. HRAcc, and HR vs. HRAcc. Effect sizes are reported using 

generalized eta squared since not all factors are manipulated (Group was observed, Model 

Comparison was manipulated) (Läkens, 2013). The main effect of Model Comparison was not of 

interest as it was addressed in Objective 2. Post-hoc analysis on the Group x Model interaction 

was performed using pairwise independent sample t-tests.  

 

2.8.1.6    Objective 4: Secondary Analyses of Ankle vs. Wrist and Wrist vs. HR Models 

 

 A portion of the analyses from Objective 3 were repeated separately on the two 

Secondary samples generated by including more participants in an attempt to verify the results 

from the primary analysis in a larger sample. These Secondary samples included all participants 

in the primary analysis. Due to the change in inclusion criteria related to the amount of usable 

data, the secondary analysis was limited to the Ankle vs. Wrist and Wrist vs. HR comparisons.  

 

2.8.1.7    Objective 4A: Time Spent in Each Activity Intensity 

 

 The same analysis from Objective 3A was used for the Secondary samples except the 

factor Model was reduced to two levels (either Ankle and Wrist or Wrist and HR), leading to a 2 

x 2 mixed ANOVA instead of a 4 x 2 mixed ANOVA. Separate analyses were conducted on the 

WristAnkle and WristHR samples. 

 

2.8.1.8    Objective 4B: Model Agreement in Activity Intensity Classification 

 

 Due to the reduction to two levels of Comparison (either Ankle vs. Wrist or Wrist vs. 

HR), an independent samples t-test was conducted for each sample to determine if there was a 

difference between the high- and low- activity groups in Cohen’s kappa values. 
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2.8.2    Performance of the ECG Signal Quality Algorithm 

 

 Since an additional condition was added to the ECG signal quality algorithm in the 

present thesis to improve detection of non-wear periods, a sensitivity/specificity analysis was 

conducted. One thousand 15-second segments of ECG data were generated at random from 

random participants; this is the same volume of data that was used in the original algorithm 

validation as the authors used one thousand five hundred 10-second data segments. Data were 

plotted and I decided whether the segment of ECG data contained a reasonably clean signal 

where QRS peaks could be confidently located visually. The sensitivity/specificity analysis was 

conducted by comparing these judgements to the output of the modified Orphanidou algorithm 

using an Excel (version 16.39, Microsoft Corp., Seattle, Washington) spreadsheet. Algorithm 

performance was quantified using sensitivity, specificity, percent accuracy, and Cohen’s kappa. 
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CHAPTER 3: RESULTS 

 

3.1    ECG Signal Quality Algorithm Results 

 

 Compared to the performance described in the original paper (Orphanidou et al., 2015), 

the incorporation of the additional condition to detect periods of non-wear marginally improved 

performance. The test of one thousand 15-second sections of ECG data resulted in a sensitivity 

of 94.9% and specificity of 97.5%. Overall accuracy was 96.1% with almost perfect agreement 

(Cohen’s kappa = .921) (Cohen, 1988). It should be noted that the data used in the present work 

were likely much more variable in signal noise than that used in the original study; ECG was 

collected over a much longer interval (5 days compared to ≤ 24 hours) and the original dataset 

likely did not have to deal with non-wear periods or residual moisture post-bathing. Individual 

participant data in the present work were found to be 53.1 ± 25.1 [45.4 to 60.7] % usable 

compared to 64% from the original paper. This decrease in usable data was expected due to the 

aforementioned signal quality issues.  

Despite only the marginal statistical improvement in performance with the addition of the 

fifth condition compared to the original study, its addition was critical to the algorithm’s 

performance in this more challenging dataset. Without it, non-wear periods were being 

frequently identified as being usable data. Table 2 shows the confusion matrix of results from the 

validation of the modified Orphanidou algorithm. The unaltered algorithm’s performance was 

not formally assessed in this work. 

 

Table 2: Confusion matrix showing the performance of the modified Orphanidou et al. (2015) ECG 

signal quality algorithm validation procedure. 

 Researcher decision 

Usable Unusable 

Algorithm output 
Usable 52.4% 1.1% 

Unusable 2.8% 43.7% 
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3.2    Usable Data 

 

 For Objectives 1, 2, and 3, participants required at least 30 hours of valid data from all 

four models to be included. Of the 44 total participants, 5 were excluded due to missing device 

data (2 from a protocol change shortly after data collection started, 2 from device malfunction, 

and 1 participant selected not to wear an ankle GENEActiv). Further participants were excluded 

for having less than 30 valid hours of ECG data (n=11), not performing the treadmill protocol 

(n=11), having less than 30 hours of usable data once sleep and device non-wear were accounted 

for (n=6), and for a repeat collection (n=1). The remaining sample consisted of 10 participants. 

Table 3 contains the demographic characteristics for this sample. Considering each exclusion 

criterion independently, participants were excluded for missing data (n=5), having less than 30 

hours of valid ECG data (n=11), not performing the treadmill protocol (n=23), and having less 

than 30 hours of valid data after accounting for sleep and device non-wear (n=21). As a 

percentage of the accelerometer collection duration, these 10 participants slept for 34.7 ± 5.0 % 

and removed one or both accelerometers for 3.8 ± 4.3% of the time. 60.8 ± 18.0 % of the total 

ECG data volume was usable. Once unusable ECG, sleep, and device non-wear data were 

combined, 38.7 ± 9.4 % (38.9 ± 8.6 hours) of the ECG collection period remained as usable. 

 
 

Table 3: Demographic characteristics of the Primary sample. 

 Value 

Age (mean ± SD, years) 22.1 ± 4.4 

Females (n, %) 6, 60% 

Weight (mean ± SD, kg) 73.9 ± 14.5 

Height (mean ± SD, cm) 172.9 ± 8.1 

Right-handed (n, %) 8, 80% 

Volume of usable data (mean ± SD, hours) 38.7 ± 8.6 
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3.3    Ankle Model Regression Equations 

 

There was a strong linear relationship (r > .7) between activity counts and gait speed 

when all participants’ data were pooled which can be seen in Figure 18.  

 

Individual simple linear regression equations were created to further improve this 

relationship. The individual regression equations (n=21) generated models with such good fit 

that no additional predictors were needed. Individual coefficients of determination ranged  

from .879 to > .999 (.989 ± .026 [0.983 to .994]) and standard error of estimate values ranged 

from .007 to .134 (.036 ± .030 [.023 to .050]) m s-1. Figure 19 shows individual regression lines 

over the range of counts observed counts during all treadmill protocols; this figure highlights the 

consistency in slopes between participants 

Figure 18: Pooled treadmill protocol ankle accelerometer data from all participants (n=21). Each 

participant is represented using a unique marker colour and shape combination. 
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Prediction accuracy remained consistent across gait speeds; there was a very weak 

relationship between measured and residual gait speeds (r = .077, p = .435). This consistency is 

seen in Figure 20 which shows a modified Bland-Altman graph (Bland & Altman, 1986). 

Figure 19: Individual regression lines from each participant's Ankle model regression equation. 

Figure 20: Modified Bland-Altman plot showing the differences between measured and predicted 

gait speed using each participant’s individual regression equation. Limits of agreement are ± 1.96 

standard deviations of the pooled residuals. Symbols are consistent with Figure 19. 
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3.4    Objective 1 Results: Average Activity Volume Across Models 

 

Figure 21 shows the mean activity time measured by each model. Results from all 

activity intensities are summarized in Tables 4 and 5. 

 

3.4.1    Sedentary Behaviour 

 

 There was a significant main effect of Model for sedentary time measured as a percent of 

valid epochs (F(3, 27) = 13.58, p[GGε] = .002, GGε = .428, ηp
2 = .601). There were significant 

increases in measured sedentary time using the Ankle model (90.7 ± 4.3 [87.7 to 93.8] %) 

compared to Wrist model (87.5 ± 5.5 [83.6 to 91.5] %) (t(9) = 4.13, p = .003, g = .621), compared 

to the HR model (84.4 ± 7.5 [79.1 to 89.8] %) (t(9) = 3.85, p = .004, g = .989), and compared to 

the HRAcc model (81.1 ± 8.3 [75.2 to 87.1] %) (t(9) = 5.90, p < .001, g = 1.386). There was a 

significant increase in measured sedentary time using the Wrist model compared to the HRAcc 

model (t(9) = 3.23, p = .010, g = 0.867), and using the HR model compared to the HRAcc model 

(t(9) = 4.47, p = .002, g = .399). There was no significant difference in measured sedentary time 

between the Wrist and HR models (t(9) = 1.44, p = .183, g = .451). 

Figure 21: Results from Objective 1 showing Primary sample model means with 95% 

confidence intervals for each activity intensity (* p < .05, ** p < .01, *** p < .001). 
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3.4.2    Light Activity 

 

 There was a significant main effect of Model for light intensity activity measured as a 

percent of valid epochs (F(3, 27) = 19.49, p[GGε] < .001, GGε = .396, ηp
2 = .684). There were 

significant increases in measured light activity using the HR model (9.8 ± 5.4 [6.0 to 13.7] %) 

compared to the Ankle model (4.6 ± 2.6 [2.8 to 6.5] %) (t(9) = 4.09, p = .003, g = 1.171), using 

the HRAcc model (12.0 ± 6.0 [7.7 to 16.3] %) compared to the Ankle model (t(9) = 5.40, p < 

.001, g = 1.510), using the HR model compared to the Wrist model (4.6 ± 1.7 [3.4 to 5.8] %) (t(9) 

= 3.57, p = .006, g = 1.257), using the HRAcc model compared to the Wrist model (t(9) = 4.63, p 

< .001, g = 1.598), and using the HRAcc model compared to the HR model (t(9) = 5.63, p < .001, 

g = .359). There was no significant difference in light activity between the Ankle and Wrist 

models (t(9) = .11, p = .913, g = 0.026). 

 

3.4.3    Moderate-to-Vigorous Activity  

 

 There was a significant main effect of Model for moderate-to-vigorous intensity activity 

measured as a percent of valid epochs (F(3, 27) = 5.05, p[GGε] = .029, GGε = .512, ηp
2 = .359). 

There were significant increases in MVPA using the Wrist model (7.9 ± 4.2 [4.9 to 10.9] %) 

compared to the Ankle model (4.6 ± 3.2 [2.3 to 6.9] %) (t(9) = 5.16, p < .001, g = .840), using the 

HRAcc model (6.9 ± 3.8 [4.2 to 9.6] %) compared to the Ankle model (t(9) = 2.79, p = .021, g = 

.620), and using the HRAcc model compared to the HR model (5.7 ± 3.2 [3.4 to 8.0] %) (t(9) = 

2.45, p = .037, g = .315). There were no significant differences in MVPA between the Ankle and 

HR models (t(9) = 1.12, p = .294, g = .330), between the Wrist and HR models (t(9) = 1.75, p = 

.113, g = .553), or between the Wrist and HRAcc models (t(9) = 1.02, p = .334, g = .243). 

 

Table 4: Summary of Objective 1’s one-way repeated measures ANOVA. 

 P < .05 ηp2 

Sedentary * .601 

Light * .684 

MVPA * .359 
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Table 5: Summary of results from Objective 1 post-hoc analysis (pairwise dependent samples t-tests). 

 

3.5    Objective 2 Results: Epoch-by-Epoch Agreement Between Models 

 

 There was a significant main effect of Model Comparison on level of agreement (F(5, 45) = 

83.65, p[GGε] < .001, GGε = .482,  ηp
2 = .903). Group mean Cohen’s kappa values are shown in 

Figure 22 and results are summarized in Table 6.  

The Ankle vs. Wrist comparison (κ = .502 ± .116 [.415 to .589]; percent agreement = 

90.5 ± 3.6 [87.9 to 93.1] %) had greater agreement than the Wrist vs. HR comparison (κ = .305 

± .082 [.246 to .364]; percent agreement = 82.6 ± 6.8 [77.8 to 87.5] %) (t(9) = 6.42, p < .001, g = 

1.873), greater agreement than the Wrist vs. HRAcc comparison (κ = .380 ± .083 [.318 to .442]; 

percent agreement = 83.0 ± 6.6 [78.2 to 87.7] %) (t(9) = 4.93, p < .001, g = 1.161), greater 

agreement than the Ankle vs. HR comparison (κ = .296 ± .090 [.228 to .364]; percent agreement 

= 84.2 ± 6.5 [79.3 to 89.0] %) (t(9) = 6.19, p < .001, g = 1.899), and lesser agreement than the HR 

vs. HRAcc comparison (κ = .884 ± .072 [.830 to .939]; percent agreement = 96.7 ± 2.3 [95.1 to 

98.4] %) (t(9) = 9.32, p < .001, g = 3.789). There was no difference between the Ankle vs. Wrist 

agreement and the Ankle vs. HRAcc agreement (κ = .505 ± .105 [.425 to .584]; percent 

agreement = 87.4 ± 5.8 [83.2 to 91.6] %) (t(9) = .05, p = .958, g = .022).  

 Sedentary Light MVPA 

Model 

Pair 
p < .05 Hedges’ g p < .05 Hedges’ g p < .05 Hedges’ g 

Ankle vs. 

Wrist 
* .621  .026 * - .840 

Ankle vs. 

HR 
* .989 * -1.171  - .330 

Ankle vs. 

HRAcc 
* 1.386 * -1.510 * - .620 

Wrist vs. 

HR 
 .451 * -1.257  .553 

Wrist vs. 

HRAcc 
* .867 * -1.598  .243 

HR vs. 

HRAcc 
* .399 * - .359 * .315 
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The Wrist vs. HR agreement was lesser than the Wrist vs. HRAcc agreement (t(9) = 3.40, 

p = .008, g = .867), lesser than the Ankle vs. HRAcc agreement (t(9) = 4.85, p < .001, g = 2.019), 

and lesser than the HR vs. HRAcc agreement (t(9) = 24.44, p < .001, g = 7.153). There was no 

difference between the Wrist vs. HR agreement and the Ankle vs. HR agreement (t(9) = .80, p = 

.446, g = .105). 

 The Wrist vs. HRAcc agreement was greater than the Ankle vs. HR agreement (t(9) = 

3.49, p = .007, g = .931), lesser than the Ankle vs. HRAcc agreement (t(9) = 4.67, p = .001, g = 

1.261), and lesser than the HR vs. HRAcc agreement (t(9) = 13.09, p < .001, g = 6.223). 

 The Ankle vs. HR agreement was lesser than the Ankle vs. HRAcc agreement (t(9) = 5.54, 

p < .001, g = 2.038), and lesser than the HR vs. HRAcc agreement (t(9) = 20.73, p < .001, g = 

6.884).  

The Ankle vs. HRAcc agreement was lesser than the HR vs. HRAcc agreement (t(9) = 

7.20, p < .001, g = 4.029).  

 

 

 

Figure 22: Primary sample mean Cohen's kappa values by Model Comparison with 95% confidence 

intervals. All comparisons were significantly different from each other (p < .05) unless marked with N.S. 

(not significant; p ≥ .05). 
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Table 6: Summary of results from Objective 2 post-hoc analysis (pairwise dependent t-tests) to determine 

which model pairs demonstrated the same level of agreement. 

Pair A Pair B p < .05 Hedges’ g 

Ankle vs. Wrist Wrist vs. HR * 1.873 

Ankle vs. Wrist Wrist vs. HRAcc * 1.161 

Ankle vs. Wrist Ankle vs. HR * 1.899 

Ankle vs. Wrist Ankle vs. HRAcc  - .022 

Ankle vs. Wrist HR vs. HRAcc * -3.789 

Wrist vs. HR Wrist vs. HRAcc * - .867 

Wrist vs. HR Ankle vs. HR  .105 

Wrist vs. HR Ankle vs. HRAcc * -2.019 

Wrist vs. HR HR vs. HRAcc * -7.153 

Wrist vs. HRAcc Ankle vs. HR * .931 

Wrist vs. HRAcc Ankle vs. HRAcc * -1.261 

Wrist vs. HRAcc HR vs. HRAcc * -6.223 

Ankle vs. HR Ankle vs. HRAcc * -2.038 

Ankle vs. HR HR vs. HRAcc * -6.884 

Ankle vs. HRAcc HR vs. HRAcc * -4.029 

 

3.6    Objective 3 Results: The Effect of Activity Level 

 

3.6.1    Activity Groups Comparison 

 

 There were significantly more ankle activity counts in the high- (85.6 ± 16.3 [65.4 to 

105.8]) compared to low-activity (52.8 ± 12.9 [36.8 to 68.8]) groups (t(8) = 3.54, p = .008, g = 

2.019). There were no significant differences between high- and low-activity groups in age (23.8 

± 5.7 [16.7 to 30.9] and 20.4 ± 0.5 [19.8 to 21.0] years, respectively) (t(8) = 1.26, p = .244), 

weight (79.9 ± 19.4 [55.8 to 104.0] and 67.9 ± 2.2 [65.2 to 70.6] kg, respectively) (t(8) = 1.37, p = 

. 207), and height (174.4 ± 5.0 [168.2 to 180.6] and 171.3 ± 10.7 [158.0 to 184.6] cm, 

respectively) (t(8) = .57, p = .584). Notably, stratifying participants by ankle counts also led to a 
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significant difference in wrist counts between the high- (71.2 ± 6.1 [63.8 to 78.7]) and low-

activity (49.4 ± 9.53 [37.6 to 61.2]) groups (t(8) = 4.32, p = .003)  

 

3.6.2    Objective 3A Results: Activity Level and Measured Activity Volume 

 

 Since the main effect of Model in this analysis is the same as the analysis conducted for 

Objective 1, it will not be reported again in this section. Results are summarized in Table 7.  

The Model by Activity Group interaction was not significant for sedentary time (F(3, 24) = 

1.63, p[GGε] = .201, GGε = .443, ηG
2 = .038), light activity (F(3, 24) = .67, p[GGε] = .459, GGε = 

.397, ηG
2 = .023), or MVPA (F(3, 24) = 1.32, p = .290, ηG

2 = .046). Figure 23 shows the means for 

each Model by Activity Group group.  

The main effect of Activity Group was not significant for sedentary (F(1, 8) = .40, p = 

.545, ηG
2 = .039), light activity (F(1, 8) = .30, p =.600 , ηG

2 =.027), or MVPA (F(1, 8) = 4.98, p = 

.056, ηG
2 = .306). 

 

 

Figure 23: Primary sample activity volume means by Model and Activity Group. There were no 

significant Model by Activity Group interactions (all p > .05). 
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Table 7: Summary of Objective 3A's two-way mixed ANOVA. 

 

3.6.3    Objective 3B Results: Activity Level and Epoch-by-Epoch Agreement 

 

 The main effect of Model Comparison was not reported in this section since it is the same 

analysis that was conducted in Objective 2.  

The Model Comparison by Activity Group interaction was not significant (F(5, 40) = 2.60, 

p[GGε] = .105, GGε = .401, ηG
2 = .175) (see Figure 24).  

However, there was a significant main effect of Activity Group on epoch-by-epoch 

agreement (F(1, 8) = 8.18, p = .021, ηG
2 = .261) (Figure 25 shows the Activity Group means). The 

high-activity group (κ = 0.520 ± .197 [.449 to .592]; percent agreement = 87.3 ± 5.7 [85.2 to 

89.4] %) had significantly higher Cohen’s kappa values than the low-activity (κ = 0.437 ± .237 

Effect 
Sedentary Light MVPA 

P < .05 ηp2 P < .05 ηp2 P < .05 ηp2 

Activity Group  .039  .027  .306 

Model * .259 * .394 * .160 

Interaction  .038  .023  .046 

Figure 24: Primary sample mean Cohen's kappa values by Model Comparison and Activity Group with 

95% confidence intervals (n = 5 per group). 
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[.351 to .523]; percent agreement = 87.5 ± 8.8 [84.3 to 90.7] %) group (t(8) = 2.86, p = .021, g = 

1.634).  

  

3.7   Objective 4 Results 

 

 Table 8 shows the demographic information of the AnkleWrist and WristHR samples 

used to confirm the primary findings. 

 

Table 8: Demographic characteristics for the AnkleWrist and WristHR samples. 

 

 AnkleWrist sample WristHR sample 

n 20 18 

Age (mean ± SD, years) 21.8 ± 3.3 37.8 ± 21.1 

Females (n, %) 13, 65% 12, 67% 

Weight (mean ± SD, kg) 69.3 ± 13.6 73.0 ± 13.2 

Height (mean ± SD, cm) 170.8 ± 7.9 171.3 ± 7.5 

Right-handed (n, %) 16, 80% 16, 89% 

Figure 25: Primary sample mean Cohen's kappa values by Activity Group with 95% 

confidence intervals (n = 5 per group). 
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Similar to Objective 3, the Model by Activity Group interaction was the focus so main 

effects are not reported. Activity volume data are shown in Figures 26 and 28 for the AnkleWrist 

and WristHR samples, respectively. Epoch-by-epoch agreement for both samples (Objective 4B) 

is shown in Figure 27. Test results are summarized in Table 9. 

 

3.7.1    Objective 4 Results: AnkleWrist Sample 

 

3.7.1.1    Activity Groups Comparison 

 

 As noted, 10 participants from the AnkleWrist sample were assigned to each of the high- 

and low- activity groups. The high-activity group had significantly more ankle counts (93.7 ± 

16.6 [81.8 to 105.6]) than the low-activity (58.4 ± 11.1 [50.5 to 66.3]) group (t(18) = 5.60, p = 

.001, g = 2.399) as would be expected due to the stratification method. With respect to 

demographic characteristics, there were no significant differences between high- and low-

activity groups in age (22.9 ± 4.2 [19.9 to 25.9] and 20.6 ± 1.5 [19.5 to 21.7] years, respectively) 

(t(18) = 1.62, p = .123), weight (73.4 ± 15.0 [62.7 to 84.1] and 65.3 ± 11.1 [57.2 to 73.4] kg, 

respectively) (t(18) = 1.36, p = .191), and height (169.9 ± 5.2 [166.2 to 173.6] and 171.7 ± 10.2 

[164.4 to 179.0] cm, respectively) (t(18) = .52, p = .613). The high-activity group had 9 (90%) 

females and the low-activity group had 5 (50%).  

 

3.7.1.2    Objective 4A: AnkleWrist Sample and Activity Volume 

 

 The Activity Group by Model interaction was not significant for sedentary time (F(1, 18) = 

.31, p = .583, ηG
2 = .006), light activity (F(1, 18) = .33, p = .573, ηG

2 = .005), or MVPA (F(1, 18) = 

1.00, p = .329, ηG
2 = .027). Figure 26 shows the group means for each activity intensity. 

 



 60 

 

3.7.1.3    Objective 4B: AnkleWrist Sample and Epoch-by-Epoch Agreement 

 

 There was not a significant difference in the Ankle vs. Wrist agreement between high- (κ 

=.487 ± .059 [.445 to .529]; percent agreement = 88.4 ± 2.4 [86.7 to 90.1] %) and low- (κ = .433 

± .101 [.361 to .505]; percent agreement = 89.5 ± 3.8 [86.8 to 92.3] %) activity groups (t(18) = 

Figure 26: AnkleWrist sample activity volume by Model and Activity Group with 95% 

confidence intervals (n = 10 per group). 

Figure 27: Secondary samples’ mean Cohen's kappa values by Activity Group with 95% 

confidence intervals (* p < .05). 
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1.46, p = .161, g = .626). Figure 27 shows group means for both the AnkleWrist and WristHR 

samples. 

 

3.7.2    Objective 4 Results: WristHR Sample 

 

3.7.2.1    Activity Groups Comparison 

 

Nine participants from the WristHR sample were assigned to each of the high- and low-

activity groups. As expected, there was a significant increase in ankle activity counts for the 

high-activity group (81.8 ± 12.8 [71.1 to 92.5]) compared to the low-activity group (50.1 ± 11.5 

[40.5 to 59.7]) (t(16) = 5.51, p < .001, g = 2.475). With respect to demographic characteristics, 

there were no significant differences between high- and low-activity groups in age (35.7 ± 18.3 

[20.4 to 51.0] and 40.0 ± 24.5 [19.5 to 60.5] years, respectively) (t(16) = .43, p = .676), weight 

(72.1 ± 17.0 [57.9 to 86.3] and 73.9 ± 9.0 [66.4 to 81.4] kg, respectively) (t(16) = .28, p = .787), 

and height (170.4 ± 6.8 [164.7 to 176.1] and 172.2 ± 8.5 [165.1 to 179.3] cm, respectively) (t(16) 

= .49, p = .632). The high-activity group had 7 (77.8%) females and the low-activity group had 5 

(55.6%). 

 

3.7.2.2    Objective 4A: WristHR Sample 

 

Similar to Objective 3, the Activity Group by Model interaction was the focus so main 

effects of Activity Group and Model are not reported.  

The Activity Group by Model interaction was not significant for sedentary time (F(1, 16) = 

1.94, p = .183, ηG
2 = .042), light activity (F(1, 16) = 1.18, p = .294, ηG

2 = .024), or MVPA (F(1, 16) = 

.56, p = .464, ηG
2 = .015). Figure 28 the group means for each activity intensity.  
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3.7.2.3    Objective 4B: WristHR Sample 

 

There was a significant difference in the Wrist vs. HR agreement between high- (κ = .310 

± .076 [.252 to .369]; percent agreement = 81.3 ± 5.0 [77.5 to 85.0] %) and low- (κ = .197 ± .120 

[.105 to .289]; percent agreement = 84.2 ± 5.5 [78.7 to 89.7] %) activity groups (t(16) = 2.40, p = 

.029, g = 1.078). Refer back to Figure 27 for the group means for both the AnkleWrist and 

WristHR samples. 

 

 

 

 

 

 

 

Figure 28: WristHR sample activity volume means by Model and Activity Group 

with 95% confidence intervals (n = 9 per group). 
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Table 9: Summary of activity volume results for the AnkleWrist and WristHR samples for Objective 4's 

mixed ANOVA. 

  Sedentary Light MVPA 

Sample Effect P < .05 ηG
2 P < .05 ηG

2 P < .05 ηG
2 

AnkleWrist 

Activity 

Group 
* .232  .052 * .267 

Model * .305  .001 * .502 

Interaction  .006  .005  .027 

WristHR 

Activity 

Group 
 .112  .004 * .180 

Model * .239 * .456  .007 

Interaction  .042  .024  .015 

 

3.7.3    Comparison Between the Primary and Secondary Samples 

 

3.7.3.1    Activity Levels 

 

 The AnkleWrist sample resulted in the same conclusions as the Primary sample with 

repsect to activity volume for all three activity intensities. The WristHR sample agreed with the 

Primary sample in measured activity for light and MVPA but found a significant difference in 

sedentary time. Table 10 summarizes these results.  

For the Activity Group by Model interactions for the Ankle vs. Wrist and Wrist vs. HR 

comparisons, none of the samples found a significant effect for any of the three activity 

intensities. Table 11 summarizes these results. 
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Table 10: Comparison of activity volume results between Primary, AnkleWrist, and WristHR samples. 

 Primary AnkleWrist WristHR 
Same 

Result 
Intensity Contrast p < .05 Hedges’ g p < .05 Hedges’ g p < .05 Hedges’ g 

Sedentary 

Ankle vs. 

Wrist 
* .621 * 1.107   Yes 

Wrist vs. 

HR 
 .451   * .984 No 

Light 

Ankle vs. 

Wrist 
 .026  .047   Yes 

Wrist vs. 

HR 
* -1.257   * -1.716 Yes 

MVPA 

Ankle vs. 

Wrist 
* - .840 * -1.626   Yes 

Wrist vs. 

HR 
 .553    .148 Yes 

  

Table 11: Comparison of the Activity Group by Model interaction on activity volume between the 

Primary, AnkleWrist, and WristHR samples. 

 Primary AnkleWrist WristHR 
Same Result 

Intensity Effect p < .05 ηG
2 p < .05 ηG

2 p < .05 ηG
2 

Sedentary Group 

x 

Model 

 .038  .006  .042 Yes 

Light  .023  .005  .024 Yes 

MVPA  .046  .027  .015 Yes 

 

3.7.3.2    Epoch-by-Epoch Model Agreement 

 

 Cohen’s kappa values were similar between the Primary and Secondary samples for both 

the Ankle vs. Wrist (κ = .502 and .460, respectively) and Wrist vs. HR (κ = .305 and .253, 

respectively) comparisons.  

 The Primary and AnkleWrist samples did not find the same result for the effect of 

Activity Group on Ankle vs. Wrist agreement; a significant difference was found in the Primary 

sample but not in the AnkleWrist sample. There was also disagreement between the Primary and 

WristHR samples on whether Activity Group affected the Wrist vs. HR agreement; no significant 

difference was found in the Primary sample, but the WristHR sample found that the high-activity 
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group had a significantly greater Wrist vs. HR agreement than the low-activity group. Table 12 

summarizes these results.  

 

Table 12: Comparison of epoch-by-epoch agreement between the high- and low- activity groups in the 

Primary, AnkleWrist, and WristHR samples. 

 Primary AnkleWrist WristHR 
Same 

Result Effect Contrast P < .05 Hedges’ g P < .05 Hedges’ g P < .05 Hedges’ g 

Group 

High-Low: 

Ankle vs. 

Wrist 

* 1.841  .626   No 

High-Low: 

Wrist vs. 

HR 

 .842   * 1.078 No 
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CHAPTER 4: DISCUSSION 

 

4.1    Objective 1: Activity Volume 

 

 The purpose of Objective 1 was to determine if the four wearables models measured the 

same volume of sedentary, light activity, and MVPA. The volumes of activity measured in the 

present study were comparable to those found in the literature using a variety of methods 

including hip-worn accelerometers (Ayabe, Kumahara, Morimura, & Tanaka, 2014) and two 

different wrist-worn accelerometers (Rowlands, Yates, Davies, Khunti, & Edwardson, 2016) in 

adults below the age of 72 years. While this thesis is not a validation study, these similarities are 

important as they suggest that the models used in the present work performed comparably to 

other existing models and that the participants’ activity levels are representative of a broader 

population. 

The data supported the hypothesis that the models would measure different amounts of 

activity at each intensity. The Ankle model measured the greatest proportion of sedentary time, 

followed in descending order by the Wrist, HR, and HRAcc models. The HRAcc model 

measured the greatest proportion of light activity, followed in descending order by the HR, 

Ankle, and Wrist models. The Wrist model measured the greatest proportion of MVPA, followed 

in descending order by the HRAcc, HR, and Ankle models. Notably, only the Wrist and HR 

models measured the same volume of activity in at least two of the three intensities (sedentary 

and MVPA) but these models demonstrated the lowest epoch-by-epoch agreement. Conversely, 

both the HR vs. HRAcc and Ankle vs. HRAcc model pairs measured a significantly different 

volume of activity at all three intensities but demonstrated the highest and second highest degree 

of epoch-by-epoch agreement, respectively. 

Between-model differences in activity volumes were large. Based on the interpretation of 

effect sizes by Cohen (1988), at least one large effect size was found in each activity intensity. 

Effect sizes (Hedges’ g) ranged from .399 (HR vs. HRAcc) to 1.386 (Ankle vs. HRAcc) for 

sedentary time, .026 (Ankle vs. Wrist) to 1.598 (Wrist vs. HRAcc) for light activity, and .243 

(Wrist vs. HRAcc) to .840 (Ankle vs. Wrist) for MVPA.  
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In addition to determining statistical significance, it is imperative to determine if the 

differences in measured activity are clinically significant. To do so, the normalized volume data 

can be extrapolated to number of hours per week. By assuming 15 hours of valid data per day (8 

hours for sleep and one hour of device non-wear), the differences between the model that 

measured the most and the least time spent in each intensity category are 10.1 hours per week 

sedentary, 7.8 hours per week light activity, and 3.4 hours per week MVPA. Figure 29 shows the 

extrapolated activity volumes for all models.  

 

Figure 29: Activity volume extrapolated to the equivalent of 15 hours per day over a 7-day 

period. 

 

Although guidelines do not report recommended amounts of light activity, one study 

found a 16% decrease in all-cause mortality for each hour of light activity per day (Loprinzi, 

2017). Activity guidelines recommend 150 minutes per week (2.5 hours) of MVPA to prevent 

weight gain and 225 minutes per week (3.75 hours) to improve the chances of losing a clinically 

significant amount of weight (≥ 5% body weight) (Swift, Johannsen, Lavie, Earnest, & Church, 

2014). The difference of 3.4 hours per week represents the equivalent of over 9 days’ worth of 

recommended MVPA for weight maintenance and nearly the recommended weekly MVPA for 

clinically significant weight loss. Due to the health outcomes associated with these volumes of 

activity, these results are believed to be clinically significant.  
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The following sections discuss factors that may have affected the performance of each 

model.  

 

4.1.1    Wrist Model 

 

 The Wrist model, developed by Powell and colleagues (2017), measured the second most 

sedentary time, the least light activity, and the most MVPA. The combination of least light 

activity and most MVPA suggests that the threshold for MVPA is the lowest of the four models. 

The cut-points for this model were originally developed in a sample aged 39.9 ± 11.5 years. The 

Primary sample had an age of 22.1 ± 4.4 years: much younger than the cut-point development 

sample. Because accelerometer counts are an absolute measure and aerobic capacity declines 

with age, it is likely that the relative intensity for a given activity count in a younger individual 

would be lower (Miller, Strath, Swartz, & Cashin, 2010) due to the failure of absolute measures 

to account for changes in aerobic capacity. Similarly, if the true resting VO2 values in the 

Primary sample were lower than the measured resting VO2 in the cut-point development sample, 

this could have led to a further overestimation in MET levels using the Wrist model. Using the 

resting VO2 values found by Kwan & Kwok (2004), on average, this would be true for males but 

not for females in the Primary sample (females would have a slight underestimation in intensity). 

For males with a resting VO2 equal to that reported by Kwan & Kwok, this difference would lead 

to a .22 MET overestimation when the Wrist model measured 3 METs and a .44 MET 

overestimation at 6 METs. For females, these differences would be negligible (underestimations 

of .06 and .13 METs, respectively). 

 Inspection of the Bland-Altman plots in the Powell et al. paper clearly shows that the 

variability of the difference scores between measured and predicted METs increases as their 

mean increases. For the MET ranges associated with sedentary and light activity, difference 

scores are quite low. However, for moderate and vigorous activity, these difference scores are 

more variable. Powell and colleagues discuss these data by highlighting the specificity values for 

the 3-MET cut-point. Average specificity was .902 for 1.5 METs and .965 for 6.0 METs, while 

the specificity for 3.0 METs was much lower with a value of .781. This lower specificity for 3.0 

METs suggests that relatively more epochs that were truly light activity were classified as 

moderate activity than epochs that were truly sedentary being classified as light activity or truly 
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moderate intensity epochs being classified as vigorous. Similar results, including increased 

variability in difference scores and lower specificity values for moderate activity, have been 

found in cut-points developed for adults using walking, running, and a variety of household 

activities (Esliger et al., 2011). The incorrect categorization of light activity as moderate activity 

is a potential explanation for why the Wrist model measured the most MVPA and least light 

activity. 

The differences in activity volume between the Wrist model and the other models may be 

associated with performing different types of common activities. Depending on activity type, the 

same activity counts could be measured but the energy expenditure of those activities could be 

very different. For example, Powell and colleagues report an activity count of 57 during dish 

handling (i.e. an isolated upper limb activity) with a measured intensity of 1.52 METs. During 

walking between 2.5 and 4.5 km h-1 (i.e. a whole-body activity), the count value was 72.5 and 

the measured intensity was 3.14 METs. Although activity counts only differed by 27 percent 

between these two activities, energy expenditure doubled. Even with the inclusion of walking 

and tasks that mimic activities of daily living in the cut-point development protocol, without the 

implementation of pattern recognition to determine activity type, the energy expenditure 

measured by the model will be based on averaged values across different activities. This is an 

inherent limitation of using cut-points and single-device models. 

 

4.1.2    Heart Rate Model 

 

The HR model measured the third most sedentary time, second most light activity, and 

third most MVPA. The relatively low amount of sedentary time and relatively high amount of 

light activity can be partially explained by the limitations of using heart rate as a measure of 

intensity on its own. Heart rate can be increased by autonomic nervous system activity that is not 

caused by physical activity (Freedson & Miller, 2000; Villars et al., 2012; Brage et al., 2004). 

During periods of inactivity, these changes may increase heart rate above the 30% heart rate 

reserve threshold for light activity. Moss and Wynar (1970) found that psychological stress prior 

to delivering a presentation can even increase heart rate into the moderate intensity range. In the 

Primary sample, the average heart rate at 30% heart rate reserve was 95 bpm. Although this 

model did not use a flex heart rate per se, 95 bpm falls within the ranges of flex heart rates of 83 
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to 101 bpm and 68 to 118 bpm determined in two studies (Strath et al., 2002; Johansson et al., 

2006), and close to the median flex heart rate of the latter of 90 bpm. Flex heart rate acts to 

safeguard against measuring activity from increased heart rate caused by non-activity factors. 

Since there is some overlap between the threshold for light activity and the flex heart rates that 

have been used in the literature, it is reasonable to suspect that some epochs under the influence 

of non-activity factors could have been measured as light activity using the HR model. It is less 

likely that measured MVPA was affected by non-activity factors. The average heart rate 

corresponding to 40% heart rate reserve in the Primary sample was 109 bpm. This value exceeds 

the range of flex heart rates found in (Strath et al., 2002) and approaches the upper limit found by 

(Johansson et al., 2006).  

The HR model measured more light activity and more total activity (non-sedentary time) 

than the Wrist and Ankle models. This can be explained by what type of activities are measured 

by each model. The Wrist model measures both isolated upper limb and whole-body movements, 

and the Ankle model measures both isolated lower limb and whole-body movements. The HR 

model is able to detect isolated upper limb, isolated lower limb, and whole-body activities. It is 

also able to measure increased intensity in the absence of proportional increases in movement, 

such as during weight-bearing activities or while walking uphill. Due to its ability to measure all 

activity types, it is not surprising that the HR model measured the greatest proportion of light 

activity (as well as total activity) of the three single-device models. 

 Since the HR model quantified heart rate as a percent of heart rate reserve, its 

performance relied partly on the measurement of resting heart rate. The average resting heart rate 

measured from the free-living data was 53.0 bpm. This value is lower than what has been 

reported in largescale studies for males (71 bpm) and females (76 bpm) in the 20-to-39-year-old 

age group (Ostchega, Porter, Hughes, Dillon, & Nwankwo, 2011). Lower resting heart rate 

values increase the percent heart rate reserve value for a given absolute heart rate. Due to the 

relatively low measured resting heart rate, the current methods could have led to an increased 

intensity for the same absolute heart rate compared to more common clinical methods for 

measuring resting heart rate. However, due to the demographic characteristics of the sample, 

lower resting heart rate values can be expected. This sample was comprised mainly of 

undergraduate students studying Kinesiology (n=8; 80%). These students are likely to be more 

active and to have greater cardiovascular fitness than the sample in the Ostchega et al. study 
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which was representative of the general population. This potential increased activity level is 

supported by the finding that this sample performed 361 and 497 minutes per week 

(extrapolated) according to the HR and Wrist models, respectively. Since fitter individuals have 

lower resting heart rates (Jensen, Suadicani, Hein, & Gyntelberg, 2013), this could explain the 

lower resting heart rate values found in the Primary sample. This apparent difference decreases 

when using resting heart rate data from more comparable samples. Melanson (2000) measured 

resting heart rate in a convenience sample of males recruited around a university campus. He 

found that individuals who were moderately active (an average activity energy expenditure of 

1400 kcal per week) and aged 29.4 ± 3.1 years, had a resting heart rate of 53.7 ± 9.5 bpm. The 

study’s low-activity group had a resting heart rate of 63.4 ± 8.3 bpm – both lower than the 

resting heart rates found by Ostchega and colleagues. 

In addition to fitness, part of the differences in measured resting heart rates can be 

explained by posture during measurement. The Melanson study measured resting heart rate while 

supine and the Ostchega et al. study measured while seated. In the literature, these methods are 

used with the same frequency, but the expected difference between the two is a lower heart rate 

while supine of 1-2 bpm (Palatini, 2009). A postural requirement was not included in the 

derivation of resting heart rate in the current study, but it is suspected that the epochs used to 

derive resting heart rate were while participants were in supine or prone postures. Considering 

posture and the potential effect of fitness, the derived resting heart rate values are reasonable. 

For different types of activities that elicit the same VO2, heart rate tends to be higher 

during arm activity than during leg or whole-body activity (Strath et al., 2002). Therefore, it 

would be expected that for a given VO2, the HR model would measure a higher intensity for 

upper limb compared to lower limb or whole-body activity. It is difficult to conclude whether 

this notion was supported by the results given the data were collected continuously without 

knowledge of what activity type was being performed and because of the nominal intensity scale. 

As mentioned, the HR model may have measured more activity due to its ability to measure all 

types of activity which the Wrist and Ankle models could not do. However, the expected trend 

given the heart rate-VO2 relationships for upper and lower limb activity were supported by the 

data for MVPA; the HR model measured less MVPA than the Wrist model but more MVPA than 

the Ankle model. 
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4.1.2.1    ECG Signal Quality and Movement 

 

Due to 53.1 ± 25.1% of individual participant’s ECG data being unusable, an unplanned 

investigation was conducted to determine factors that may have affected signal quality. For the 

36 participants included in this analysis, the average wrist and ankle activity counts during 

waking hours were calculated for epochs with valid and invalid ECG. 25 participants (65.8%) 

had higher average wrist counts and 21 participants (57.9%) had higher average ankle counts 

during invalid ECG epochs compared to valid ECG epochs. This is a conservative assessment as 

it did not account for device removal periods which would decrease the activity counts measured 

during invalid ECG epochs and lessened the difference. This finding suggests that movement 

may have affected the ECG signal quality due to motion artefact or by decreasing the quality of 

the electrode-skin connection. Unfortunately, the frequency content of typical human movement 

and ECG content overlap so some of this noise cannot be removed without affecting the ECG 

signal as well (Winter, 2009; Luo & Johnston, 2010). 

 If higher activity led to an increased chance of the ECG data becoming unusable, bias 

would be introduced into the calculation of intensity for all models as epochs with high intensity 

would be excluded from analyses. Overall, this would decrease the amount of measured activity 

for all models. Upper limb movement may have had a larger impact than lower limb movement 

on the ECG signal quality. The percent increase in activity counts during invalid epochs 

compared to valid epochs was 2.3 times greater for the wrist than the ankle. If movement truly 

did affect ECG signal quality, activity type would have played a major role in the bias that was 

introduced into these models. For example, running, where the ankles move much more than the 

upper limbs, may have had a lower chance of rendering the ECG signal unusable and therefore, 

running may have been measured more reliably by all models than a more upper limb-dominant 

activity such as activities of daily living.  

  

4.1.3    Ankle Model 

 

 The Ankle model measured the most sedentary time, third most light activity, and the 

least MVPA. Of the Ankle, Wrist, and HR models, the Ankle model is the only model that 

requires whole body movement or cycling measure activity; upper limb activity can be 
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performed without whole-body activity and heart rate can be influenced by non-activity factors 

or upper limb activity. Small lower limb movements would measure some activity, but the 

threshold that corresponded to walking at one’s preferred speed for 5 seconds would have helped 

reduce these probably unmeaningful movements. The limited type of activities detected by the 

Ankle compared to Wrist and HR models may explain the low amount of measured activity. The 

Ankle model measured the least light activity, though this value was not significantly different 

than the Wrist model. Since the Ankle model predominantly measures walking, it is probable 

that the majority of its measured MVPA was from ambulation. In a sample of 20 to 59-year-olds, 

average cadence at preferred walking speed was found to be 112.5 ± 13.6 steps per minute and 

that walking at one’s preferred pace required 12.1 mL O2 kg-1 min-1 (Waters et al., 1988). 

Depending on what resting VO2 value is used, this would equate to a value of approximately 3.5 

to 4.0 METs. More recently, Tudor-Locke and colleagues (2019) measured cadence and intensity 

in adults aged 21 to 40 years and determined that a cadence of 102 steps per minute was equal to 

3 METs. Both these studies suggest that walking at one’s preferred pace would be considered 

moderate physical activity. Walking bouts that did not span a full 15-second epoch and were 

preceded or followed by sedentary time would have contributed to light activity since the 

intensity measured using activity counts reflects the average intensity of that epoch (Chen & 

Bassett, 2005). Since walking typically takes up such a small percentage of waking hours, it was 

not surprising that the Ankle model measured the least MVPA. Similarly, the Ankle model’s 

inability to account for increased intensity at a given speed when moving up hill or during 

weight-bearing activities may have erroneously measured some slower walking with increased 

energy demand as light activity.  

 The relationship between heart rate and VO2 differs between upper-body, lower-body, 

and whole-body activity (Strath et al., 2002). However, lower-body activity is more similar to 

whole-body activity than is upper-body activity (Haskell et al., 1993). Lower-body and whole-

body energy demands are similar enough that lower-body activity is used to predict whole-body 

activity even when both upper-body and lower-body data are available (Strath et al., 2002). This 

is supported with the present results for MVPA; the difference between measured MVPA by the 

HR and Ankle models (5.7% and 4.6%, respectively, Hedges’ g = .330) is half as large as the 

difference between MVPA measured by the HR and Wrist models (5.7% and 7.9%, respectively, 

Hedges’ g = .553).  
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4.1.4    Combined Heart Rate-Accelerometer Model 

 

 The HRAcc model measured the least sedentary time, the most light activity, and the 

second most MVPA. Theoretically, the benefit of using a combined heart rate-accelerometer 

model is to ensure that any measured activity during periods of low heart rate occur in the 

context of movement. However, due to the elevated heart rate that remains once movement stops 

and the ever-present potential influence of non-activity factors on heart rate, this was not the case 

with the present HRAcc model.  

 The extent of this benefit depends on the selected flex heart rate threshold. By increasing 

the threshold, the likelihood of heart rates under the influence of non-activity factors getting 

classified as activity decreases, and the threshold would be crossed more quickly once movement 

stops which would mark the end of measured activity. However, increasing the flex heart rate 

threshold also leads to the HR portion of the model being used less frequently; this reduces the 

usefulness of including heart rate in the model. By selecting a flex heart rate of 30% heart rate 

reserve, which corresponded to an absolute heart rate near the middle of flex heart rates found in 

the literature, the effect of non-activity factors on heart rate would have been greater than if a 

higher flex heart rate had been selected. This threshold led to the HR model being used for an 

average of 11.0% of the valid epochs. This usage decreases to 4.3% with a 40% heart rate 

reserve threshold. Additionally, a 30% heart rate reserve threshold would lead to a larger volume 

of activity measured by the HR portion of the HRAcc model once movement had stopped, as it 

would take longer for heart rate to decrease below this threshold. Ultimately, selecting a flex 

heart rate is a trade-off between managing the influence of non-activity factors and how often the 

HR model is used. In contrast to the theoretical benefit of HRAcc models, due to the 

aforementioned limitations, the primary benefit of the HRAcc model in this thesis was its ability 

to detect activity using the Ankle model that were not associated with significant increases in 

heart rate.  

The HRAcc model was unique in the requirements that needed to be met to be classified 

into the different activity intensity categories. To be considered sedentary, heart rate needed to be 

below 30% heart rate reserve and the Ankle model needed to measure sedentary time. This may 

be the most accurate measure of sedentary time due to its dual condition requirement. Light 

activity could be measured under two circumstances. First, if heart rate was between 30% and 
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40% heart rate reserve, regardless of the intensity measured by the Ankle model. Second, if heart 

rate was below 30% heart rate reserve but the Ankle model measured light activity; this likely 

occurred at the start of an activity bout before the autonomic nervous system evoked the required 

increase in heart rate. MVPA was also measured under two circumstances: with a heart rate 

above 40% heart rate reserve, or with a heart rate below 30% heart rate reserve with the Ankle 

model measuring MVPA. The use of the Ankle model is especially important at the onset of 

physical activity or when workload increases. With an increase in activity intensity, heart rate 

increases fairly quickly to meet the increased oxygen demand. The initial parasympathetic 

withdrawal and sympathetic activation has been shown to increase heart rate by 33 bpm within 4 

seconds during maximal effort, unloaded cycling (Nobrega & Araújo, 1993). However, the 

sympathetic response needed to increase heart rate beyond its intrinsic rate lags behind the onset 

of activity by 20 seconds (Hughson et al., 2001). During this time, movement that should be 

measured as activity is occurring without an equivalent increase in heart rate which may lead to 

less activity being measured when using heart rate on its own. Depending on the timing and 

intensity of the start of movement relative to the start of an epoch, the use of the Ankle portion of 

the HRAcc model could measure MVPA while the HR model measures sedentary or light 

activity. Over an extended data collection period, these small differences can accumulate due to 

the many short walking bouts (Orendurff et al., 2008) that occur in free-living. The use of the 

Ankle portion of the combined model also allows detection of short walking bouts that may not 

have elicited a sufficient increase in heart rate to qualify as activity according to the HR model. 

However, the combined heart rate-accelerometer method may overestimate activity 

duration. Once activity ends, heart rate does not instantly return to its resting rate. Depending on 

the intensity of the activity and its impact on body temperature and blood lactate levels, the 

return to resting heart rate takes approximately 100 seconds and remains elevated during this 

time (Zakynthinaki, 2015). Assuming no further activity is initiated during this recovery period, 

the HR portion of the combined model can overestimate activity duration and intensity until 

heart rate decreases below each intensity threshold. This is the likely explanation for why the 

HRAcc model measured less sedentary time and more light and MVPA than the independent 

Ankle and HR models.  
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4.2    Objective 2: Model Agreement 

 

 In contrast to the differences in total activity volume analyzed in Objective 1, Objective 2 

aimed to determine the extent to which models agree on their epoch-by-epoch measurement of 

activity intensity. It was hypothesized that models would demonstrate moderate agreement 

(Cohen’s κ between .40 and .60). The hypothesis was supported by the Ankle vs. Wrist and 

Ankle vs. HRAcc comparisons. Three of the six model comparisons demonstrated lower-than-

hypothesized agreement (the Wrist vs. HR, Ankle vs. HR, and Wrist vs. HRAcc comparisons). 

The HR vs. HRAcc comparison demonstrated higher-than-hypothesized agreement.  

 

4.2.1    HR vs. HRAcc and Ankle vs. HRAcc Agreement 

 

 The highest epoch-by-epoch agreement was found between the HR and HRAcc models 

with a Cohen’s kappa of .884, and the second highest agreement was found between the Ankle 

and HRAcc models with a Cohen’s kappa value of .505. These two comparisons were unique 

because the single-device model in each pair (the HR or Ankle model, respectively) was used in 

the HRAcc model.  

The HR vs. HRAcc agreement was much greater than the Ankle vs. HRAcc agreement.  

The greater agreement between the HR and HRAcc models was surprising since, on average, the 

HRAcc model used the HR model approximately 11% of the time and the Ankle model 89% of 

the time. This discrepancy in agreement may be attributed to different situations which led to 

disagreement between the single-model and HRAcc models. In the HR vs. HRAcc comparison, 

the models would agree on intensity if the HR model measured light, moderate, or vigorous 

activity. The only source of disagreement would be epochs when heart rate was below 30% heart 

rate reserve and the Ankle model measured non-sedentary activity; this situation is likely to 

occur at the start of a whole-body or isolated lower limb activity bout. The impact of these 

frequent, short activity bouts accumulates over the course of the day to have a marked effect on 

the relationship between heart rate and ankle movement. This relationship can clearly be seen in 

Figure 16; the correlation is much weaker when heart rate is in the sedentary range (< 30% heart 

rate reserve). Although the HR and HRAcc models would agree on intensity for all epochs with 

heart rate above 30% heart rate reserve (i.e. the threshold for light intensity activity), active time 
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represented a much smaller fraction of the total collection period than sedentary time (sedentary 

time ranged from 81.1% to 90.5% of the collection period, depending on model). However, for 

the Ankle vs. HRAcc comparison, there are many more opportunities for disagreement including 

any time the Ankle accelerometer measures a change in intensity. This led to the Ankle vs. 

HRAcc agreement being lower than the HR vs. HRAcc agreement.  

 

4.2.2    Ankle vs. Wrist Agreement 

 

 Of the models that did not have common data, the Ankle vs. Wrist comparison was the 

only one to demonstrate moderate agreement (κ = .502). The largest advantage this model 

comparison had over the other comparisons was the use of accelerometers which change their 

output as soon as movement occurs, in contrast to physiological measures like heart rate whose 

responses to changes in workload are delayed in time. During whole-body activity bouts, upper- 

and lower-limb movements start at the same time and likely with the same intensities. For 

example, at the start of a walking bout, both the ankle and wrist accelerometers would 

immediately measure the intensity related to walking at that speed. Conversely, when comparing 

accelerometers to the HR model at the start of a bout, the measured changes in intensity would 

likely not be immediately equivalent, leading to disagreement in intensity classification. Both 

these examples hold true at the end of an activity bout as well.  

 Due to the types of activities that the Ankle and Wrist models can measure, the observed 

agreement relative to the other model comparisons was a bit surprising. Both models use 

accelerometers to measure movement as an estimate of intensity, but because the Wrist model 

can measure isolated upper limb activity, it was expected that many epochs would be categorized 

as light or MVPA by the Wrist model and as sedentary by the Ankle model. This was not 

supported by the data; both models measured the same volume of light activity and the moderate 

level of agreement suggests many of these epochs were categorized as the same intensity. These 

results suggest that whole-body movement, which would be captured by both accelerometers, 

occurred often enough to lead to the similar performance between these two models. 
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4.2.3    Wrist vs. HR Agreement 

 

 The Wrist vs. HR comparison had the fifth strongest agreement (κ = .305), which was not 

significantly different than the Ankle vs. HR comparison which showed the lowest agreement. 

Given the accuracy of the Wrist model as described by Powell and colleagues, this agreement 

was lower than expected. As discussed before, there is the potential to have “out of sync” 

accelerometer and heart rate data, especially at the onset and end of an activity bout. Although 

the Wrist and HR models did not measure significantly different amounts of sedentary time and 

MVPA, if the timing of numerous activity bouts were offset between models, this could explain 

the low level of agreement despite having measured similar activity volumes.  

 The Wrist model can measure isolated upper limb activities. For activity that requires a 

given VO2, upper body activity results in a higher heart rate than lower limb or whole-body 

activity (Strath et al., 2002). This may have led to the HR model measuring a higher intensity 

than the Wrist model. The HR model can measure any type of activity. During epochs where the 

upper limb movement does not reflect overall intensity (stationary cycling or during weight-

bearing activities, for example), this would have led to a disagreement in measured intensity 

between the two models. Conversely, non-activity factors can increase heart rate into the light or 

moderate intensity ranges (Moss & Wynar, 1970) in the absence of movement. This could have 

also led to the HR model measuring a higher intensity than the Wrist model. However, it is 

unlikely that non-activity factors would have had a significant effect on agreement as those 

periods of increased heart rate would likely represent a very small fraction of the total 

measurement period. The greater concern would be the frequent periods of isolated upper limb 

activity that exceed the acceleration threshold for activity but that do not elicit a large increase in 

energy expenditure, leading to misclassification as activity by the Wrist model. 

 

4.2.4    Wrist vs. HRAcc Agreement 

 

 The Wrist vs. HRAcc comparison had the fourth strongest agreement (κ = .380). 

Logically, this level of agreement fell between the observed agreements between the Wrist vs. 

HR and Ankle vs. Wrist comparisons. The increase in agreement for the Wrist vs. HRAcc model 

over the Wrist vs. HR agreement could be caused by the use of the Ankle model. As discussed 
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before, with the exclusion of isolated limb movements, wrist and ankle movement is typically 

synchronized in the onset of activity which increases the chance of agreement when comparing 

either accelerometer model to the HR model. The temporal synchronization of the Ankle and 

Wrist model was likely the factor that drove the increased agreement of the Wrist vs. HRAcc 

comparison relative to the Wrist vs. HR comparison. 

 

4.2.5    Ankle vs. HR Agreement 

 

 Surprisingly, the Ankle vs. HR comparison had the lowest agreement (although it was not 

significantly lower than the Wrist vs. HR agreement) with a Cohen’s kappa of .296. This 

agreement was expected to be better due to the ability of both models to measure walking − the 

most common activity (Hulteen et al., 2017). Once again, the offset in measured intensity at the 

start and end of activity or during isolated upper-limb activity that led to increases in heart rate 

may have led to a decrease in Ankle vs. HR agreement. This relatively low level of agreement 

highlights the importance of a combined HRAcc model that has the ability to better capture all 

types of activity while maintaining the ability to measure activity as its onset using 

accelerometry. 

 

4.3    Objectives 3 and 4: The Effect of Activity Level on Model Performance  

 

 The purpose of Objective 3 was to determine if activity level has an effect on measured 

activity volume and epoch-by-epoch intensity agreement from four wearables models. In contrast 

to the hypothesis, there was no statistical evidence that activity level influenced the performance 

of any model in either the primary or second analyses (the latter with larger samples of 

participants having provided data for only two of the four models); the Activity Group by Model 

interaction was not statistically significant for any of the three activity intensities, nor for the 

epoch-by-epoch intensity agreement. However, it should be noted again that due to the Primary 

sample being comprised mainly of Kinesiology undergraduate students, this sample was likely 

more fit and had less variability in fitness than if the sample had been randomly sampled from 

the general population.  
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4.3.1    Objective 3: Activity Volume 

 

 It was hypothesized that there would be a significant interaction effect on activity volume 

for the same reasons that advocate for the use of combined HRAcc models; at low intensities, 

heart rate is susceptible to the influence of non-activity factors, and at high intensities, 

accelerometer counts may plateau. By stratifying the samples into high- and low-activity groups, 

the aim was to compare groups that spend different amounts of time in those low and high 

intensity ranges that could affect the performance of different models.  

 While there was a significant difference between activity groups in average ankle activity 

counts, this difference did not translate to the expected main effect of Activity Group on activity 

volumes. While this main effect was not required to observe a significant interaction effect, it 

does raise the concern of whether there was a true difference in activity levels between these 

groups despite the significant difference in average activity counts.  

 These results may have been confounded by cardiorespiratory capacity as it is likely 

related to activity level and model performance but was not assessed in the present study. After 

the age of approximately 30 years, cardiorespiratory capacity declines by 10% per decade 

(Plowman & Smith, 2007). By comparing data from the Primary and WristHR samples, the latter 

of which was older (37.9 ± 21.1 compared to 22.1 ± 4.5 years) and had a greater age range (18 to 

76 compared to 18 to 34 years), the differences in model performance are consistent with the 

differences that would occur with decreases in cardiorespiratory capacity (refer back to Tables 3 

and 8 for sample demographic information). The difference in activity volume measured by the 

HR model in both samples was smaller in magnitude than the difference measured by the Wrist 

models; this was true for all three intensities. Since the HR model uses a relative measure of 

intensity and the Wrist model uses an absolute measure, differences in cardiorespiratory capacity 

between samples would be partially accounted for with the HR model but not with the Wrist 

model, leading to the observed larger differences with the absolute measure. Further work is 

needed to determine if either or both of these variables affect model performance. 
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4.3.2    Objective 3: Model Agreement 

 

 Although there was no Activity Group by Model Comparison interaction on epoch-by-

epoch agreement, there was a main effect of Activity Group. The high-activity group had a 

significantly greater overall level of agreement than the low-intensity group by a margin of κ = 

.083. Along with the non-significant interaction effect of Activity Group and Model on activity 

volume, this difference in agreement suggests that the selection of one model over another may 

have less of an effect on activity outcome measures for those with higher activity levels than 

those who are less active.  

The largest observed difference between activity groups was the Ankle vs. Wrist 

agreement with a difference of κ = .165. Since groups were stratified using ankle accelerometer 

counts, it is possible that group stratification could have generated groups with different levels of 

ankle counts but the same amount of wrist counts which would have biased results. However, 

ankle and wrist counts were both significantly higher for the high-activity group so the observed 

difference in Ankle vs. Wrist agreement could be due to activity type differences. For example, 

those who are more active overall would be more likely to spend more time walking or 

performing whole-body exercise. This would lead to increased Ankle vs. Wrist agreement during 

periods of synchronized movement. Conversely, the greater agreement in the high-activity group 

may be a result of bias due to the removal of epochs with large amounts of movement which led 

to unusable ECG data. These periods were not removed in the secondary analysis of the Ankle 

vs. Wrist models, and the high- and low-activity groups’ levels of agreement were much closer 

than in the Primary sample which did remove periods of unusable ECG signal. Notably, between 

samples, the low-activity groups had very similar values (Δκ = .014), but the high-activity 

groups’ kappa values differed by κ = .097. The secondary analysis’ data may have provided a 

more robust test of agreement due to the inclusion of periods with more movement. The 

improved agreement due to more whole-body movement cannot be confirmed at this time, but a 

similar between-group trend for the Wrist vs. HRAcc comparison (Δκ = .133), which also 

includes the Wrist and Ankle models, supports the notion that potentially increased levels of 

whole-body movement for more active individuals led to better model agreement between the 

Wrist and Ankle in the high-activity group. 
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 The between-group differences for Wrist vs. HR and Ankle vs. HR agreement were much 

smaller in magnitude than the Ankle vs. Wrist difference; kappa values were higher in the high-

activity group by .072 and .066, respectively. In addition to the potential differences in measured 

intensity between accelerometer models and the HR model at the onset and end of activity and 

the differences in the type of data captured by each model (i.e. acceleration or heart rate), fitness 

can also play a role in these differences. Compared to less fit individuals, higher cardiovascular 

fitness leads to a faster increase in heart rate at the start of activity, reaching steady state sooner, 

and to a faster decrease in heart rate once activity stops (Zakynthinaki, 2015). For high-fitness 

individuals, the apparent lag in heart rate at the onset and end of activity compared to the 

immediate change in accelerometer counts may not be as pronounced and could lead to better 

model agreement between the Ankle or Wrist and HR models. Fitness was not assessed in the 

present study, but assuming fitter individuals move more and generate more ankle activity 

counts, increased fitness could have contributed to the small improvement in the Ankle vs. HR 

and Wrist vs. HR agreements observed in the high-activity group compared to the low-activity 

group. The relative increase in the agreement between the Wrist and HR models in high-activity 

group in the secondary sample, which had a much larger age range and therefore likely a larger 

range of cardiovascular fitness than the primary sample, provides further evidence of the effect 

of fitness on improving agreement between HR and accelerometer models.  

 

4.3.3    Objectives 3 and 4: General Discussion 

 

 The classification of intensity into three (for activity volume) and four (for model 

agreement) intensity categories may have prevented the finding of a significant interaction, at 

least for higher-intensity activity. Brage and colleagues (2004) are commonly cited for their 

finding that activity counts for a hip-worn accelerometer increase linearly during walking but 

eventually plateau when running at speeds above 9 km h-1. With the collapse of moderate and 

vigorous activity into MVPA, this plateau would occur well beyond the threshold for moderate 

activity and would not be detectable in the three-category intensity data used to measure activity 

volume. The four intensity categories used in determining model agreement had an improved 

chance of being affected by the potential accelerometer plateau. However, using the ACSM’s 
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equation for running VO2, a speed of 9 km h-1 would correspond to approximately 10 METs – 

well above the 6-MET threshold for vigorous activity.  

Further, it is currently not known whether wrist or ankle accelerometer counts plateau or 

if this phenomenon only occurs in hip accelerometers. More recently, several studies have found 

that the plateau described by Brage and colleagues was due to two factors which would not occur 

using the methods in this thesis. First, the data were filtered in a way that reduced the signal 

amplitude at very high stepping cadences (Rowlands, Stone, & Eston, 2007). Second, the 

accelerometer that was used was uniaxial and only measured acceleration in the vertical axis; 

acceleration in the horizontal planes were not captured (Rowlands et al., 2007). Both (Rowlands 

et al., 2007) and (Fudge et al., 2007) found that activity counts derived from vector magnitude 

data from triaxial hip accelerometers did not experience this plateau. Cadence continues to 

increase as running speed increases (Rowlands et al., 2007), so ankle accelerometer counts 

would likely not plateau until running at near-maximum speed. The relationship between wrist 

accelerometer counts and running speed has not been well established, but Esliger and colleagues 

found a decrease in counts when increasing speed from 10 km h-1 to 12 km h-1 on the left wrist. 

However, an increase was observed on the right wrist, so it is not clear whether wrist-worn 

accelerometer counts plateau during running.  

All considered, the impact of any potential plateau on activity intensity and volume 

measurements would likely be quite small for most individuals as the activities associated with 

that level of accelerometer counts represent a small portion of one’s time and may even be 

unlikely to be attained by many. Due to the lack of evidence that activity level and the 

unlikeliness that near-maximal intensity activity on its own would lead to statistically significant 

differences in model performance, it is more plausible that model performance would be affected 

by fitness level. Further work is needed to determine the effect of fitness level on model 

performance. 

 

4.4    Performance of the Ankle Model 
 

The purpose of developing an ankle accelerometer model to quantify activity intensity 

was to increase the utility of ankle accelerometers in the hopes of reducing the number of sensors 

participants need to wear in order to provide a large volume of high-quality data. This model 
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uses a novel technique by using ankle activity counts to predict gait speed and then predicting 

VO2 using the ACSM’s equations. A strong relationship between counts and speed was expected 

due to the linear relationship between cadence and gait speed during walking (speeds below 2.1 

m s-1) (Hansen, Kristensen, Nielsen, Voigt, & Madeleine, 2017; Latt, Menz, Fung, & Lord, 

2008). By having each participant undergo the treadmill protocol and creating individual 

regression equations, individual variability in cadence for a given gait speed was accounted for 

which likely improved the performance of the equations over a single group-level equation.  

Individual linear regression equations showed extremely high coefficients of 

determination without any additional predictor variables; r2 values were greater than .975 for all 

but one participant (r2 = .878). Prediction accuracy was also very high as the average standard 

error of estimate was less than 0.04 m s-1. This is an acceptable amount of error as it is less than 

the clinically meaningful difference in gait speed associated with reduced self-reported mobility 

(.05 to .10 m s-1) (Perera, Mody, Woodman, & Studenski, 2006) and reduced disability following 

a stroke (.16 m s-1) (Tilson et al., 2010). 

However, there are several potential sources of error. First, in the development of the 

Ankle model, a treadmill protocol was used to develop a regression equation that would 

ultimately predict gait speed and VO2 during over-ground walking in free-living. Walking on a 

treadmill leads to a slower preferred speed compared to during over-ground walking (Sloot, van 

der Krogt, Harlaar, 2014). If preferred gait speed on a treadmill were slower than over-ground 

walking, the threshold for meaningful activity in the Ankle model could be too low; this would 

increase the chance of classifying unmeaningful movement as meaningful activity.  

Second, previous work has examined spatiotemporal differences between treadmill and 

over-ground walking with conflicting results. For a given gait speed, Song and Hidler (2008) 

found no differences between stride length and cadence while Stolze and colleagues (1997) 

found a significant decrease in stride length of 4% and a significant increase in cadence of 6% 

when walking on a treadmill compared to over-ground walking. Song and Hidler (2008) also 

found that the impact at heel strike was smaller when on a treadmill. With larger impact forces 

during over-ground walking, activity counts could increase for a given speed compared to 

treadmill walking. If cadence at a given speed increases during treadmill walking and/or heel 

strike impact is lessened on a treadmill, over-ground walking speed could be overestimated when 

relying on activity counts. 
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A third potential source of error is the acceleration that occurs during stance phase. 

During over-ground walking, little acceleration is experienced by an ankle-worn accelerometer 

during stance phase; the foot is on the ground and the ankle dorsiflexes as the contralateral limb 

takes its step. However, during treadmill walking, the motion of the treadmill belt causes the 

entire lower limb to translate posteriorly during stance phase in addition to generating 

dorsiflexion. It is unclear if the additional acceleration from the treadmill would be apparent in 

epoched data. Further analysis of the acceleration profiles for treadmill and over-ground walking 

is required to determine if there are practically significant differences and if potential differences 

remain when data are expressed as activity counts.  

The validity of using the ACSM equations to predict energy expenditure should also be 

considered. Hall and colleagues (2004) investigated the differences in measured and equation-

predicted energy expenditure during treadmill and over-ground walking. They found no 

significant differences in total energy expenditure between over-ground and treadmill walking 

and running. Over a 1600 m bout at 1.41 m s-1, they found that the ACSM walking equation 

underestimated total energy expenditure by 3.8%. For an individual of 70.5 kg (their average 

participant’s mass) and assuming 1L O2 per 5 kcal (Hills et al., 2014), this underestimation 

equates to less than 0.3 METs. The magnitude of error was similar for running at 2.82 m s-1 but 

in the opposite direction: an overestimation of 4.3% which equates to 0.5 METs. These results 

support the validity of using the ACSM equations to predict activity intensity in free-living. 

However, the ACSM describes the walking and running equations as being most accurate for 

gait speeds between 0.83 and 1.66 m s-1 and greater than 2.25 m s-1, respectively. Because of the 

gap between these ranges, speeds between 1.66 and 2.25 m s-1 may not predict VO2 as accurately 

as speeds that fall within these two ranges. The present thesis used the running equation for all 

speeds above 1.66 m s-1. Because the slope of the running equation is double that of the walking 

equation, speeds between 1.66 and 2.25 m s-1 while walking likely led to overestimations in VO2, 

especially given that the typical walk-to-run transition occurs between 1.88 (Talor, Heglund, & 

Maloiy, 1982) and 2.24 m s-1 (Hansen et al., 2017). Using the walking equation, the range of 

1.66 to 2.25 m s-1 predicts approximately 4.0 to 5.1 METs, depending on the value used for 

resting VO2. Due to the collapse into MVPA in the present work and 1.66 m s-1 falling into the 

MVPA range (≥ 3 METs), the discrepancy between the walking and running equations in VO2 
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calculation would not be apparent in the activity volume data but it may have had an effect on 

model agreement since moderate and vigorous activity were not combined in that analysis. 

Two sources of error related to changes made to the ACSM equations may have 

influenced the activity intensity measured by the Ankle model. First, resting VO2 was estimated 

using data from (Kwan & Kwok, 2004). Compared to the typical resting VO2 value of 3.5 mL 

kg-1 min-1, the lower values reported by Kwan & Kwok would increase MET level estimates for 

a given VO2. Given the underestimation in predicted energy expenditure during walking when 

using the ACSM equation (Hall et al., 2004), the decrease in the value of resting VO2 may have 

compensated for this underestimation and led to more accurate MET values. However, it is 

possible that the increase in MET levels may have overcompensated and led to an overestimation 

in MET levels. Secondly, the components of the ACSM equations that account for vertical 

movement were not included because accelerometer orientation data, which would be used to 

calculate incline angle, cannot be calculated from epoched accelerometer data. Even at a shallow 

incline of 5%, predicted VO2 is approximately 50% higher when the vertical component is 

included for both walking and running. Although it would be possible to calculate incline angles 

using raw accelerometer data, this would greatly increase the data processing burden and would 

require advanced analytics to accurately calculate the incline’s angle.  

 

4.5    Measuring Resting Heart Rate  
 

Activity measures that are relative to cardiorespiratory capacity provide a more accurate 

representation of intensity, especially for older individuals or those with lower cardiorespiratory 

capacities (ACSM, 2014). To allow the use of a relative measure in the HR model while limiting 

the burden placed on participants, maximum heart rate was predicted and resting heart rate was 

derived from free-living data instead of measuring it in the laboratory. No standardized methods 

were found for deriving resting heart rate using free-living, continuous data. Guidelines for 

taking heart rate clinically (Palatini, 2009) were adapted for use in continuous data using 

methods similar to those found in (Logan et al., 2000). For the present work, resting heart rate 

was derived from 30 minutes’ worth of data when the participants were awake; this is much 

longer than the clinically recommended 30 seconds measured on two occasions (Palatini, 2009). 
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Since heart rates were averaged over one-minute intervals, this method also reduces the 

magnitude of potential errors in calculated heart rate due to inaccurate ECG peak detection. 

 Because there are no standardized guidelines for deriving resting heart rate from 

continuous data, it should be noted that changes in the interval over which heart rates are 

averaged or how many of these intervals are included in the calculation can affect the derived 

resting heart rate. Logan and colleagues (2000) found a difference of 8 bpm in resting heart rate 

depending on calculation method in a sample of pre-school children. All derived heart rates were 

lower than the heart rate measured during 5 minutes of rest shortly after waking up. Although 

these differences are large on an absolute scale (beats per minute), they are scaled down when 

calculating percent heart rate reserve by a factor of 100 - % HRR. For example, if resting heart 

rate is calculated using two methods and a difference of 10 bpm is found, for an individual in 

their early 20s (i.e. maximum heart rate around 190 bpm), the heart rate needed to reach 30% 

heart rate reserve differs by approximately 7 bpm between these two methods (that is, (100% – 

30%) x 10 bpm). Practically, underestimating resting heart rate leads to a lower absolute heart 

rate needed to attain a given percent heart rate reserve which can lead to overestimations of 

activity intensity. This highlights the importance of how resting heart rate is calculated and the 

need to standardize its derivation using continuous data.  

 

4.6    Strengths 

 

 This thesis developed the novel method of using activity counts from the ankle to predict 

gait speed. Given the very promising results, it is worth expanding on this proof of concept with 

a validation study. If ankle accelerometers can be used for both activity intensity and additional 

analyses such as gait or balance assessments, the need for accelerometers worn on other body 

segments may not be necessary which could reduce participant burden. Stemming from the 

development of the Ankle model, this study created the first HRAcc model that uses an ankle 

accelerometer, allowing comparisons between models that have not been described previously. 

 This thesis addresses the issue of determining the usability of ECG data during multi-day, 

continuous wear. The algorithm that was adapted in the present work provided the foundation for 

the ECG signal quality check, but it did not perform well in identifying unusable data when the 
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Bittium Faros was removed. The addition of the fifth condition to the algorithm improved its 

performance in a free-living ECG dataset.  

 This study also provides a novel comparison between wearables models with its 

description of differences in total activity volume in addition to epoch-by-epoch activity intensity 

in free-living. Agreement measures are fairly common in the literature but only for total activity 

volume or energy expenditure, or during short, laboratory tests. While these comparisons are 

important, understanding the epoch-by-epoch changes in intensity between models increases in 

value as data analytics advance and incorporate additional measures such as social interactions or 

speech which can also occur sporadically and for short durations. 

 

4.7    Limitations  

 

 Notable limitations include the relative homogeneity in the Primary sample which limits 

the external validity of the results of Objectives 1 through 3 to young, healthy, adults. However, 

with the inclusion of the secondary samples, this limitation was partially overcome as the 

WristHR sample had a much larger age range. For Activity Group comparisons, age, sex, and 

fitness were not accounted for and could have confounded results.  

 The reliable detection of QRS complexes in very noisy ECG data was not possible using 

the current peak detection methods and led to the exclusion of 48.3% of the total collected ECG 

data. Alternative techniques to measure heart rate, such as photoplethysmography (PPG), can be 

used, however, these are also susceptible to noise. Orphanidou and colleagues also tested PPG 

data and found that less PPG data were usable than ECG data (55.2% and 66.0%, respectively). 

Their PPG algorithm was not as accurate in classifying data segments as usable or unusable as 

the ECG algorithm. This does not make PPG a viable alternative. The influence of noise in the 

ECG signal due to movement artefact or from electrode adherence issues that occur during 

continuous wear will need to be further addressed by improved analytic techniques to better 

extract the ECG signal or reduced proactively by improving electrode adhesion materials. 

Due to project timeline restrictions, exclusion of periods of sleep and non-wear were 

determined through visual inspection by the author with the help of participant logs instead of 

through the use of existing validated algorithms. Visual inspection was performed while looking 

for similar characteristics to those that algorithms use such as extended periods of no, if any, 
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change in accelerometer counts. A common non-wear detection algorithm (Choi, Liu, Matthews, 

& Buchowski, 2011) relies on activity count data, as did the present study. Due to the relative 

simplicity of finding non-wear periods visually, visual detection should yield similar results to 

the algorithm. Compared to visual sleep detection, visual non-wear detection likely led to less 

error or bias due to the difficulty in determining when a participant fell asleep using activity 

count data in the absence of other measures such as body temperature, ambient lighting, or heart 

rate. This resulted in classifying the sedentary period in bed before falling asleep as “asleep”. 

This method would therefore reduce the participant’s sedentary time by the amount of time spent 

in bed while awake. The period of sleep was also continuous until the participant appeared to 

awake the next morning; any activity bouts that occurred in the night were not considered.  

Lastly, the study was underpowered for several of the analyses. The original target 

sample size was calculated with the goal of stratifying participants into activity groups using the 

most and least active 25% of the sample to ensure that these groups were truly different in their 

activity levels. This method led to a target sample size of n=28 with activity groups of n=7. Due 

to this sample size not being attained in the Primary sample (n=10), groups were created using 

the most and least active 50% of participants, leading to two activity groups of n=5. Post-hoc 

power analysis revealed that the power associated with the Activity Group x Model effect for 

sedentary and light activity did not reach the desired level of 80% (63.0% and 28.6%, 

respectively). However, 80% power was attained for the Activity Group x Model interaction for 

vigorous activity and epoch-by-epoch agreement.  

 

4.8    Future Directions  

 

 This thesis proposed a novel model for measuring free-living activity using ankle 

accelerometer counts to predict gait speed. Further work is needed to validate this model during 

over-ground walking, during running, and in populations with mobility impairments such as 

asymmetric gait and for those who use a gait aid. Further, the use of individually calibrated 

regression equations should be compared to a group-level regression equation. If this model 

proves accurate on a group level, participant burden could be further reduced by eliminating the 

need for each participant to perform the treadmill protocol. Similarly, the investigation into 

multivariate regression may make this endeavour more successful.  
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Future research should work towards the standardization of methods to improve the 

ability to accurately quantify activity and volume, and to compare between studies. For example, 

working towards the standardization of epoch length, which has been shown to affect measured 

activity volume (Ayabe et al., 2014) and may affect epoch-by-epoch agreement, or the 

measurement of resting heart rate from continuous, free-living data. 

This thesis provides a valuable description and discussion about the epoch-by-epoch 

agreement in intensity which could be used in the development of new multi-device models. 

Such models could measure activity intensity using a more complex algorithm to choose which 

model to use for a given epoch; this strategy could overcome the limitations of the HRAcc model 

in the present work. One such limitation is that when an activity bout ends, the Ankle model 

measures sedentary time, but the current HRAcc model would not measure sedentary time until 

the heart rate drops below 30% heart rate reserve. A more advanced model could use the 

accelerometer to ensure that a certain level of movement is maintained during a specifically 

defined activity bout (while measuring intensity using the HR model if above its threshold), but 

would revert back to using the accelerometer model at the end of activity while heart rate 

remained above its model use threshold before returning to its resting rate. This latter type of 

model could also incorporate a second accelerometer to differentiate upper-body from lower- or 

whole-body activity, similar to what was done in the model from Strath and colleagues (2002). 

Alternatively, data epoching could be performed relative to activity bouts instead of using fixed 

duration intervals. These options may better reflect the intensity at the onset and offset of a bout 

and the bout’s duration.  

As wearables become more advanced and feature multiple devices and sensors, new 

opportunities in measuring activity arise. However, these opportunities are not without their 

challenges. Measuring activity data in ways that are both meaningful to clinicians and to 

participants/patients is crucial in creating a framework that helps inform clinical decisions in 

addition to actionable goals for participants and patients. Future work should expand its focus to 

the reporting of FITT-V principles in addition to variables measured on a continuous scale, such 

as daily energy expenditure. These outcome measures can be more easily interpreted by patients 

or participants and can be used to guide clinical decision making related to physical activity 

interventions or lifestyle changes. As the ONDRI projects continue, maximizing the 
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effectiveness of data acquisition and delivering meaningful data to both clinicians and 

participants/patients will be a continued focus. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 



 92 

Chapter 5: Summary and Conclusion 
 

 The present study confirms the hypothesis and supports the literature in that different 

amounts of physical activity are measured by different wearables models. In the Primary sample, 

which was comprised mainly of young, apparently healthy, undergraduate students, 5 of the 6 

model comparisons measured statistically different amounts of sedentary and light activity while 

3 of the 6 comparisons measured different amounts of MPVA. Only the Wrist and HR models 

measured the same total amount of more than one activity intensity. These differences are large 

enough to be clinically significant. Cohen’s kappa values used to quantify epoch-by-epoch 

model agreement in intensity classification ranged from fair to almost perfect agreement. The 

HR vs. HRAcc models demonstrated the highest agreement while the Ankle vs. HR and Wrist 

vs. HR models demonstrated the lowest agreement. Activity level, as measured by average ankle 

counts, did not appear to have an effect on the differences in measured activity volume or epoch-

by-epoch agreement between models, however, those who were more active had higher overall 

epoch-by-epoch agreement. These results were confirmed in the secondary analyses. 

 The present work cannot recommend using any of the four activity models inter-

changeably as no two models measured the same amount of sedentary, light, and moderate-to-

vigorous physical activity. Epoch-by-epoch agreement in activity intensity classification was 

also lower than hypothesized for several pairs of models, so not all model pairs tell the same 

“story” on an epoch-by-epoch basis. With its use of individually calibrated regression equations 

using a standardized treadmill protocol, this study provides evidence that ankle activity counts 

can be used to measure activity intensity using methods similar to those commonly used with 

wrist- and hip-worn accelerometers. Considering the limitations of using single-device models 

and the current HRAcc model, the results from this study advocate for the advancement of more 

complex combined heart rate-accelerometer models which have the potential to more accurately 

measure activity duration and intensity across all types of activities.  
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