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Statement of Contributions

This thesis presents two unrelated research projects. The first half of the thesis is
dedicated to the study of reentrance in the rare-earth pyrochlore magnet Er2Sn2O7; the
second half of the thesis is dedicated to exploring if machine learning can detect gauge
symmetries, specifically in Mattis spin glass models. Both projects are the results of
collaborations with the researchers mentioned below.

In the study of reentrance in the rare-earth pyrochlore magnet Er2Sn2O7, single crys-
tals were synthesized by Prof. Joseph W. Kolis of Clemson University and Dr. Liurukara
D. Sanjeewa of Oak Ridge National Laboratory. The experimental studies of the crys-
tals were conducted by Danielle Yahne under the supervision of Prof. Kate Ross, both of
Colorado State University. This includes heat capacity measurements of all crystals using
two different methods and under three different magnetic field directions, as well as elastic
neutron scattering experiments. On the theoretical side of the project, classical Monte
Carlo simulations were performed by Dr. Ludovic Jaubert of the University of Bordeaux.
Prof. Matthew Enjalran of Southern Connecticut State University wrote the original vari-
ational mean-field theory code for the Heisenberg model on the pyrochlore lattice, with
the option to include dipolar interactions computed via the Ewald summation. Under
the supervision of Prof. Michel Gingras, the author modified this code to include generic
(symmetry-allowed) nearest-neighbor interactions on the pyrochlore lattice and wrote an
Ewald summation program for anisotropic magnetic moments, as detailed in Chapters 2
and 3. The author derived and programmed the spin-wave calculations detailed in Chap-
ters 3 and 4. All calculations, simulations, and figures in Chapter 4 are the work of the
author, with the exception of the classical Monte Carlo simulations, Figure 4.10, and the
experimental data. The author also put forward the hypotheses in Chapter 4 explaining
reentrance. This work will be presented in a forthcoming publication, in which all of the
above researchers are listed as co-authors. Danielle Yahne, Prof. Kate Ross, Dr. Ludovic
Jaubert, Prof. Matthew Enjalran, and Prof. Michel Gingras all contributed to the writing
and editing of the manuscript.

In the study of machine learning of gauge symmetries, the author collaborated with
Daniel Lozano-Gómez of the University of Waterloo, both under the supervision of Prof.
Michel Gingras. The calculations and simulations were performed independently by both
the author and Daniel Lozano-Gómez, in order to verify the work of each. This work is
detailed in the manuscript “Unsupervised Machine Learning of Quenched Gauge Symme-
tries: A Proof-of-Concept Demonstration” (arXiv:2003.00039), in which all of the above
researchers are co-authors. All co-authors contributed to the writing and editing of the
manuscript. In this thesis, all figures (except Figure 7.1) and almost all datasets have
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been generated solely by the author and are not the same as the ones used in the above
manuscript.1 The only dataset that is shared with the manuscript is for the Mattis XY
gauge glass model. However, all figures in this thesis that are related to this dataset were
generated by the author.

1As discussed further in Part II of the thesis, the datasets are generated from classical Monte Carlo
simulations of the so-called Mattis Ising spin glass and Mattis XY gauge glass models. Our machine
learning method is then applied to these datasets. Hence, even if the datasets used in this thesis differ
from those of the manuscript, the conclusions remain unchanged because the datasets are generated and
provided to the machine learning method in the same manner.
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Abstract

In this thesis, we present two explorations: (1) understanding the mechanism causing
reentrant behavior in the rare-earth pyrochlore magnet Er2Sn2O7, and (2) determining if
unsupervised machine learning is capable of uncovering quenched gauge symmetries.

Recent heat capacity measurements have been performed on newly-available single crys-
tal samples of Er2Sn2O7 under an applied magnetic field H . For the [100], [110], and [111]
field directions, the resulting (H,T ) phase diagrams all exhibit reentrant lobes: as a func-
tion of H for certain fixed values of T , the system transitions from disordered to ordered
and back to disordered. We demonstrate that, broadly speaking, multiphase competition
is the origin of this reentrant behavior. In particular, two types of multiphase competition
operate in Er2Sn2O7: (1) competition that is induced by the applied field H between or-
dered states of different symmetry, and (2) competition present from the zero-field ground
state of Er2Sn2O7. Using a combination of classical Monte Carlo simulations, mean-field
theory, and classical spin-wave expansions, we show that both types of multiphase com-
petition produce soft spin-wave modes not present in the zero-field ground state. These
increase thermal fluctuations and entropically stabilize the ordered phase, thereby pro-
ducing reentrance. It is argued that dipolar interactions do not change this microscopic
mechanism. Implications for other materials are discussed.

A major application of machine learning techniques to condensed matter physics has
focused on learning thermodynamic quantities such as order parameters and phase transi-
tions. However, since the simulated models follow physical laws that are mathematical in
nature, one may ask if machine learning can provide information about the model itself. We
explore this question with the Mattis Ising spin glass (MISG) and Mattis XY gauge glass
(MXYGG) models, which can be mapped onto the ferromagnetic Ising and XY models
under a gauge transformation. Using the well-established unsupervised Principal Compo-
nent Analysis (PCA) method, we answer the above question affirmatively. PCA classifies
the phases of the MISG and MXYGG models in the same manner as the regular Ising and
XY models, indicating it has detected their gauge symmetries. Moreover, PCA provides
a quantitative estimate of the gauge transformation that establishes this mapping, despite
being provided no information about it. This demonstrates that unsupervised machine
learning can provide insights into simulated models themselves. The implications of this
idea are discussed.
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Chapter 1

Introduction

1.1 Magnetism and Magnetic Frustration

The study of magnetism constitutes a major sector of the field of condensed matter physics.
The phenomenon of magnetism is tangibly available now as it was centuries before, even
though some of the theories that undergird it (such as quantum mechanics and relativity)
have only been developed relatively recently [1]. As such, magnetism may be said to hold
a special place in the field of condensed matter physics: it is simultaneously amenable to
acute experimental tests and theoretical analysis. The study of magnetism is therefore an
excellent place to understand how well our theories of physics describe the real world, as
well as to uncover new and exotic behavior.

One way in which exotic behavior commonly arises in magnetism is through frustra-
tion. Frustration refers to a system’s inability to simultaneously satisfy all of its energetic
preferences. For example, consider a triangular plaquette of Ising spins and antiferromag-
netic nearest-neighbor interactions, as shown in Figure 1.1. If a spin on one site is aligned
along the ẑ direction, the antiferromagnetic interaction would prefer its nearest neighbor
to align along the −ẑ direction. However, the third site is a neighbor to both these sites.
Regardless of which way the spin on this third site is aligned, one of the bonds will not
minimize the energy of its antiferromagnetic coupling. The system is said to be frus-
trated; as a result of this competition between the interactions and preferred alignments,
the system may attempt to arrange itself in some compromised way, or lower energy scales
(e.g. from perturbatively-small interactions) may become important in determining the
ultimate ordering of the system. In this way, frustrated magnets are a common home for
unconventional phases or behavior.
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?
Figure 1.1: An example of geometric frustration for antiferromagnetic interactions on a trian-
gular plaquette. If two sites are oriented antiparallel to satisfy the antiferromagnetic interaction,
the orientation on the third site is not clear.

The above example demonstrates geometric frustration. In such cases, frustration is
inherent to the lattice itself. If one considers a bipartite lattice such as the honeycomb
lattice, nearest-neighbor antiferromagnetic interactions are not frustrated. It is a simple
matter of arranging the spins on alternating sublattices to align along the ẑ or−ẑ directions.
However, even in a bipartite lattice, frustration of another type is possible – namely,
exchange frustration [2]. This may occur when the interactions within the Hamiltonian
itself compete with one another and have incompatible energetic preferences. One example
is the Kitaev honeycomb model [2, 3], in which each of the three types of bonds on the
honeycomb lattice have an Ising-like interaction, but with respect to different axes. The
anisotropic interactions that give rise to exchange frustration usually have their microscopic
origins in spin-orbit coupling. This couples the orbital and spin angular momenta of the
electrons in an ion, thereby allowing real-space anisotropies (from the lattice, surrounding
ions, and so on) to influence the magnetic moments.

1.2 The Rare-Earth Pyrochlore Oxides

We see that frustration can arise from geometry or anisotropic exchange. A fitting family
of materials to study the exotic effects of frustration is therefore the rare-earth pyrochlore
oxides. The rare-earth pyrochlore oxides consist of a chemical formula A2B2O7, where
A3+ is a rare-earth ion and B4+ is a transition metal ion. The pyrochlore lattice structure
consists of interpenetrating networks of corner-sharing tetrahedra; both the A-site and B-
site ions form their own such network [2, 4]. For our purposes, we consider materials in
which only the A-site is magnetic. Then, apart from the topic of crystal electric fields that
surround the A-site ions (as discussed in Chapter 2), the A-site network of tetrahedra is
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the only one we need to consider. This A-site network is displayed in Figures 1.2 and 1.3.
Note that there are four sites per tetrahedron, and one upwards-facing (“up”) tetrahedron
for every lattice point of the face-centered cubic (FCC) lattice, as shown in Figure 1.2.
However, the space between tetrahedra can also be connected to form downwards-facing
(“down”) tetrahedra, as shown in Figure 1.3, though this does not contribute any new sites
to the conventional cubic cell. More details about the pyrochlore lattice are provided in
Appendix A.

Figure 1.2: The pyrochlore lattice, displaying only the tetrahedra associated with magnetic A
sites. Sites are indicated by black circles; the tetrahedra they form are shown in red. Note that
there is a tetrahedron associated with each lattice point of the FCC lattice that falls within this
conventional cubic cell. Only those sites, tetrahedra, and bonds that fall within this conventional
cubic cell are shown. This gives 16 sites per conventional cubic cell.

There are two reasons why the rare-earth pyrochlore oxides are advantageous for study-
ing frustrated magnetism. Firstly, each tetrahedron of A-sites is formed by four triangular
faces; the elemental triangular motif of geometric frustration is therefore present. Secondly,
as the rare-earth atoms have a large atomic number Z, they are usually subject to a strong

4



Figure 1.3: The pyrochlore lattice, displaying only the tetrahedra associated with magnetic A
sites. Sites are indicated by black circles; up (down) tetrahedra are shown in red (blue). Note
that the down tetrahedra are formed by connecting sites between different up tetrahedra, and
hence do not exist as distinct tetrahedra of their own. Shown here are only those sites, tetrahedra,
and bonds that fall within this conventional cubic cell or on its shared faces with adjacent cells.

spin-orbit coupling. This is likely to give rise to highly anisotropic interactions, paving the
way for exchange frustration. Hence, the rare-earth pyrochlore oxides are a playground
for both types of frustration and may therefore host novel effects and phases. Historically,
this has been demonstrated well by the rare-earth titanates (where B4+ = Ti4+).

1.3 Brief Overview of the Rare-Earth Titanates

Of all the magnetic pyrochlore oxide materials, the subset of rare-earth titanates is arguably
the most studied. In the past few decades, experimental and theoretical analysis has

5



been conducted on Ho2Ti2O7, Dy2Ti2O7, Gd2Ti2O7, Er2Ti2O7, and Yb2Ti2O7, among
others [2, 4, 5]. The variation of the A-site ion leads to a subsequent diversity in physical
phenomena.

The study of rare-earth titanates was initialized by Ho2Ti2O7 [6–9] and Dy2Ti2O7 [8–
10]. As suggested in the previous section, both Ho3+ and Dy3+ are subject to strong
spin-orbit coupling. Hence, the good quantum number with which to describe these two
ions in free space is the total angular momentum J = L+ S. Specifically, J = 8 (J = 15

2
)

for Ho3+ (Dy3+), leading to a degeneracy of 2J + 1 = 17 (2J + 1 = 16) levels. As discussed
further in Chapter 2, the crystal electric fields within the lattice lift this degeneracy. This
leads to a ground state doublet in both materials that is well-separated from the higher-
lying states by a large energy gap [9]. As such, both materials are well described by a
pseudospin S = 1

2
model.1 As well, these doublets are mostly comprised of the Jz = J

states and hence possess large magnetic moments, which behave classically to a good
approximation [11]. Moreover, the crystal electric fields create a local Ising anisotropy:
the moments prefer to lie along their “local” Ising axes (i.e. the axes pointing in/out of
a tetrahedron and towards its centre). Paradoxically, it is discovered that both of these
materials have net ferromagnetic interactions, yet both materials do not exhibit long-range
magnetic order at low temperatures [8]! Instead, both materials enter a classical spin ice
state, in which each tetrahedron has two moments that point in and two moments that
point out. Since there are a variety of choices that accomplish this, the classical spin ice
state has a residual entropy at zero temperature. In fact, this is equivalent to the residual
entropy of water ice, where a similar disordered arrangement (termed the “ice rules”) is
found in two protons lying near or far from an oxygen atom [8, 9, 12]. Theoretically, it is
the combination of local Ising anisotropy and the geometry of the pyrochlore lattice that
renders the ferromagnetic interactions effectively antiferromagnetic2, leading to this exotic
magnetic phase.3

Another important titanate pyrochlore is Gd2Ti2O7. Since Gd3+ has L = 0 =⇒
1Physically, the two states that make up the pseudospin S = 1

2 doublet are a linear combination of the
original |J, Jz〉 states of the rare-earth ion.

2To illustrate this with a simple picture, consider a ferromagnetic interaction between between two
moments, which takes the form −JexJi · Jj for Jex > 0. If these moments have an Ising anisotropy with
respect to their local ẑ axes, they can effectively be written as Ji = 〈J〉σzi ẑi using an Ising variable

σzi = ±1. The exchange interaction then becomes −Jex 〈J〉2 σzi σzj (ẑi · ẑj). In the case of the pyrochlore

lattice, ẑi · ẑj = − 1
3 , yielding Jex

3 〈J〉
2
σzi σ

z
j . The change in sign of the interaction represents the change

from ferromagnetic interactions to effectively antiferromagnetic interactions.
3Note that the strong spin-orbit coupling of 4f atoms implies that other interactions may be gener-

ated beyond the Ising interactions assumed here [11]. However, Rau and Gingras [11] argue that these
interactions are negligible for the cases of Ho2Ti2O7 and Dy2Ti2O7.
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J = S = 7
2
, Gd2Ti2O7 may naively4 be thought of as a Heisenberg spin model on the

pyrochlore lattice [4]. Experimentally, it was determined that Gd2Ti2O7 has antiferromag-
netic interactions [15, 16]. Theoretically, the antiferromagnetic Heisenberg model on the
pyrochlore lattice should form a classical spin liquid, with short-range spin correlations
but no long-range order [17]. This made the study of the magnetic properties of Gd2Ti2O7

especially exciting. It was later determined that Gd2Ti2O7 does magnetically order at low
temperatures [15]. Theoretically, the large moments of Gd3+ make the long-range dipolar
interaction non-negligible [15], and one may expect the q = 0 coplanar antiferromagnet
Palmer-Chalker (PC) phase to be stabilized [18]. However, Gd2Ti2O7 instead orders (via
two transitions) into a partially-disordered magnetic phase, where 3

4
of the Gd3+ moments

order and the remaining 1
4

do not [4, 19, 20]. Hence, although Gd2Ti2O7 enters an or-
dered phase, the long-range order is unconventional nonetheless. This ordering is even
more exotic in light of the behavior of the isostructural pyrochlore Gd2Sn2O7. Gd2Sn2O7

again realizes an antiferromagnetic Heisenberg model with long-range dipolar interactions
[4, 21], but Gd2Sn2O7 orders into the theoretically-expected PC phase via a single phase
transition [22, 23].

A third example of a well-studied rare-earth titanate is Er2Ti2O7. Unlike Ho2Ti2O7,
Dy2Ti2O7, and Gd2Ti2O7, Er2Ti2O7 possesses a local XY anisotropy, where the moments
mostly lie in the planes perpendicular to the local Ising axes [5].5 At the mean-field level,
Er2Ti2O7 orders into the so-called Γ5 phase [24]. This is a q = 0 antiferromagnetic phase
in which all four spins on a tetrahedron lie in their local xy-planes, making the same angle
from their local x-axes, as discussed further in Chapter 2 and Appendix A. This phase thus
possesses a U(1) degeneracy, but this is not protected by the symmetry of the Hamiltonian.
Hence, when quantum or thermal fluctuations are incorporated, this accidental degeneracy
may be broken [25–28] in what is termed order-by-disorder [29, 30]. This may result in two
subsets of the overall Γ5 phase, a non-coplanar ψ2 phase or a coplanar ψ3 phase, which are
also discussed in Chapter 2. Experimentally, Er2Ti2O7 is found to order in the ψ2 phase
[25, 31], making it perhaps one of the most compelling realizations of an order-by-disorder
mechanism6 at work in an actual material [5].

A final rare-earth titanate that we discuss is Yb2Ti2O7. Like Er2Ti2O7, Yb2Ti2O7 also
possesses an XY anisotropy [5, 33], but it orders in a splayed ferromagnet phase that shares

4Note that a single-ion anisotropy of the Gd3+ moments has been determined experimentally [13, 14].
This is expected from the mixing of L 6= 0 states due to strong spin-orbit coupling [13].

5A picture showing what these local Ising and XY anisotropies look like on a tetrahedron is given in
Figure 2.2.

6An alternative proposal for the selection of ψ2 has been put forward on the basis of virtual crystal
field fluctuations [32].
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similarities with the spin ice state of Ho2Ti2O7 and Dy2Ti2O7 [8, 33]. Yb2Ti2O7 exhibits a
number of strange features, such as multiple reentrant phenomena under applied magnetic
fields [34–36], a continuum of inelastic scattering within its ordered phase [37], a broad
heat capacity anomaly in the paramagnetic phase [5, 38], and an extreme sensitivity to
disorder [5, 39–41], to name a few. Some of these features may be the result of Yb2Ti2O7’s
close proximity to the antiferromagnetic ψ3 phase [24, 42], which might produce strong
multiphase competition. In addition, Yb2Ti2O7’s XY anisotropy and the small Jz values
that comprise its ground state doublet7 may also enhance the role of quantum fluctuations
in the material [5]. Strong quantum fluctuations could be another microscopic ingredient
for Yb2Ti2O7’s exotic phenomena, and it has already been put forward as the reason for
its reentrant phase diagram under a magnetic field [34, 35, 43].

All in all, the variation of the rare-earth ion in the pyrochlore titanates gives rise to
a panoply of effects – magnetic phases with residual entropy, no long-range order, or par-
tial disorder; order-by-disorder in a real material; multiphase competition; reentrance; and
more. It should be noted that a common thread has made the exploration of rare-earth
titanates so effective, namely, the availability of large single crystals. With large single
crystals, inelastic neutron scattering (on an ordered ground state or field-polarized mag-
netic state) can be fitted with theoretical spin-wave calculations to give accurate estimates
of the microscopic interactions between magnetic moments in the material. Such a deter-
mination is highly important for a precise theoretical modelling and for constructing an
accurate theory with predictive power. Moreover, when compared with polycrystalline or
powder samples, single crystals allow for experiments and analysis that would otherwise be
more complicated or less refined.8 For example, polarized neutron scattering performed on
single crystals of Er2Ti2O7 helped determine its ψ2 (instead of ψ3) ground state [31]; single
crystals of Yb2Ti2O7 were also needed to uncover its sensitivity to disorder [39]. As noted
earlier, the subfield of magnetism is special because it is amenable to both theoretical and
experimental studies. Not surprisingly, then, pyrochlore magnetism has advanced due to
the coupled efforts of crystal synthesis, high-quality experiments, and rigorous theoretical
analysis.

7We are here referring to the small Jz values in the |J, Jz〉 states that compose the pseudospin S = 1
2

doublet.
8The complication of using powder or polycrystalline samples comes from their mixture of differently-

oriented parts of the material. In a single crystal, the entire sample is oriented in the same way, allowing
one to define global directions. This permits the study of the sample under an applied magnetic field along
specific global directions, for example.
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1.4 An Introduction to the Stannate Pyrochlores and

Er2Sn2O7

Recently, a new so-called hydrothermal crystal growth method was developed to synthesize
rare-earth pyrochlore stannates (i.e. B4+ = Sn4+) [44]. The stannate series is the only one
which can stably form the pyrochlore structure described above (i.e. the cubic pyrochlore
structure [4]) for all choices of the rare-earth ion A3+, due to the ionic radii of the A3+ and
B4+ ions [44].9 Although pyrochlore stannate single crystals had been grown before [46],
it was only accomplished for a subset of the full lanthanide series. On the other hand, this
new hydrothermal growth method allows the synthesis of A2Sn2O7 for any choice of A3+ in
the lanthanide series! As well, previous attempts at single crystal synthesis required very
high temperatures, which led to defects in the oxygen sites as well as disorder between
the rare-earth and tin (Sn) ions; this new hydrothermal growth method circumvents these
issues by performing the synthesis in an aqueous solution rather than a furnace, reducing
the temperature required [44]. The range and diversity of unconventional phenomena that
occurred for the pyrochlore titanates has already been noted in the previous section, as well
as the important role that single crystals played in those studies. This new hydrothermal
growth method opens the door for many new and exciting discoveries to be uncovered
through an exploration of the pyrochlore stannates. It even goes beyond what is provided
by the titanates, in that it affords access to the full lanthanide family.

A suitable starting point for such an exploration might be Er2Sn2O7. There is reason
to believe that exotic physics may be at play in Er2Sn2O7. A first point is that Er2Sn2O7

possesses an XY anisotropy similar to Er2Ti2O7 and Yb2Ti2O7, as well as a pseudospin
S = 1

2
doublet10 that has a major contribution from its Jz = 1

2
state [5, 47]. This may imply

that strong quantum effects could influence the physics of Er2Sn2O7 [24]. A second point
is that estimated exchange parameters for Er2Sn2O7 [48, 49] place it in close proximity
to the Γ5 (ψ2) phase. This is reminiscient of Yb2Ti2O7’s proximity to the ψ3 phase. As
such, the role of multiphase competition may also be important for Er2Sn2O7 and it may
again give rise to interesting phenomena. A final point is that experiments on Er2Sn2O7

9In particular, a rough estimate of whether this pyrochlore structure can be stably formed is given
by the ionic radii rA and rB. If rA

rB
is between 1.46 and 1.80, the proposed compound may form a cubic

pyrochlore structure at atmospheric pressure [45].
10Recall from Section 1.3 that the crystal electric fields split the 2J+1 degenerate levels of the free

rare-earth ion into doublets (for J being a half-integer). In Er2Sn2O7, the resulting energy gap between
the ground state doublet and the first excited doublet is about 5 meV [47], which is much greater than
the energy scales considered in this thesis. Hence, we can effectively treat Er2Sn2O7 using a pseudospin
S = 1

2 to model its ground state doublet. Again, this effective S = 1
2 doublet is a linear combination of

|J, Jz〉 states of the Er3+ ion. These points are further discussed in Chapter 2.
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[49] established that it orders at Tc ≈ 108 mK into the PC ground state. The PC state
is mentioned in Section 1.3 in relation to studies of Gd2Ti2O7 and Gd2Sn2O7. Hence, a
rich phase diagram under an applied magnetic field might also be expected for Er2Sn2O7,
as is found for Gd2Ti2O7 [19, 50]. This phase diagram might prove especially rich due
to the influence of quantum effects and multiphase competition, as mentioned in the first
and second points above. For example, studies of the proximate Kitaev material α-RuCl3
under an applied magnetic field suggest that it may transition into a quantum spin liquid
phase [51], even though α-RuCl3 transitions into a long-range ordered magnetic phase in
zero field [52]. Er2Sn2O7’s close proximity to a phase boundary suggests it may be near
a region of quantum disorder [24], so studying it in the presence of an applied field may
prove quite worthwhile.

1.5 Motivation and Outline

Motivated by the above considerations, single crystals of Er2Sn2O7 were synthesized and
studied under an applied magnetic field. Three directions of the applied magnetic field H
were studied, namely, the [100], [111], and [110] conventional cubic directions, as shown in
Figure 1.4. In all three directions, the heat capacity was measured in two ways: (1) using
“short” heat pulses that slightly raise the temperature, and (2) using “long” heat pulses
that greatly raise the temperature [53]. In the latter approach, the heat capacity can be
determined from how the sample cools over time [53]. For example, Figure 1.5a shows the
heat capacity measurements for both methods in zero field. As well, Figure 1.5b shows
the heat capacity as a function of H11 along the [110] direction. From these heat capacity
measurements, phase transitions can be found and allow a (H,T ) phase diagram to be
mapped out. The resulting phase diagrams for each field direction is shown in Figure 1.6.

The feature that is noticeable immediately in all three field directions is the reentrant
lobe(s) that each phase boundary possesses. Reentrance is when a system enters a new
phase and then returns to its original phase as an external parameter is continuously tuned
[54–60]. In these phase diagrams, as temperature is fixed at certain values and the magnetic
field is increased, the system transitions from a disordered phase to an ordered phase and
then back to a disordered phase. This occurs in all three field directions, and even multiple
times for the [110] field direction. It should be noted that this reentrant behavior is found

11When we refer to the applied magnetic field in general, we call it H. However, when the direction
of the applied magnetic field is specified or implied, we simply use H to indicate the magnitude of the
applied field along that direction.
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[100]

[110]

[111]

Figure 1.4: The [100] (yellow), [110] (purple), and [111] (green) high-symmetry directions within
the pyrochlore lattice, as depicted within a conventional cubic cell.

for multiple crystals of different shapes, so it presumably does not originate from the
demagnetization effect12.

Given that reentrance is the most striking and common feature between all three phase
diagrams, the objective of Part I of this thesis was to understand the mechanism of reen-
trance from a theoretical perspective, aiming to give a robust physical explanation for its
microscopic origins. In doing so, important ingredients at work in the physics of Er2Sn2O7

might be uncovered and may guide further investigations into this material and others.
As discussed further in Chapter 4, classical Monte Carlo simulations of Er2Sn2O7 roughly

12The demagnetization effect refers to the field that the magnetization of a material produces within
itself, which acts against the magnetization at any given point in the sample [61]. The relation between
the demagnetization field and the sample’s magnetization depends on the sample’s shape [61]. Hence,
finding reentrant behavior in samples of different shapes indicates that the behavior does not come from
the demagnetization effect.
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Figure 1.5: Heat capacity results for a single crystal of Er2Sn2O7 in (a) zero field, and (b) an
applied field along the [110] direction. In (a), the inset shows a single crystal of Er2Sn2O7; in
(b), curves are offset for clarity, and a broad heat capacity is visible in the lowest fields. [Figures
provided by Danielle Yahne.]
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Figure 1.6: Phase boundaries for single crystals of Er2Sn2O7, studied under applied fields along
the (a) [100], (b) [111], and (c) [110] directions. Red rectangles indicate areas where broad heat
capacity signatures are found. Note that the H-axis is shared between all three plots. [Data
provided by Danielle Yahne and Kate Ross; figures generated by Ludovic Jaubert.]

reproduce which values of H reentrance occurs at, as well as the increase in Tc at each
of these reentrant lobes. This allows us to study reentrance using the simplified model
used in classical Monte Carlo simulations, as opposed to considering the full complexity of
the real material. This also allows us to tackle the question of reentrance using classical
methods and considerations of thermal fluctuations, since quantum fluctuations are not
present in classical Monte Carlo simulations. Although this prevents us from determining
how quantum effects might contribute to the occurrence of reentrance – an idea returned
to in Chapter 5 – it provides a reasonable and controlled starting point for understanding
reentrance.

The outline of Part I is as follows. In Chapter 2, we discuss the theoretical model that
is pertinent to Er2Sn2O7. This includes a consideration of its single-ion physics, nearest-
neighbor interactions between magnetic moments, and long-range dipolar interactions. In
Chapter 3, we discuss the multiple analytical and numerical methods used to study the
model. In particular, we consider mean-field theory and classical spin-wave expansions.
Mean-field theory ignores the effect of fluctuations and hence provides a picture of the un-
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derlying phases; classical spin-wave expansions allow us to incorporate thermal fluctuations
(to lowest order) beyond this mean-field treatment. These two methods together allow us
to decompose and reconstruct the main ingredients of classical Monte Carlo simulations.
Chapter 4 details the results of this analysis. In particular, it explains the microscopic
mechanism behind reentrance for each of the applied field directions. Lastly, Chapter 5
summarizes the work, explains its implications for reentrance in other materials (magnetic
or not), and discusses aspects of Er2Sn2O7 that still require study.
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Chapter 2

Models

2.1 Microscopic Details of the Effective S = 1
2

Model

The materials we are considering are of the chemical formula R2M2O7, where R3+ is a rare-
earth ion and M4+ is a transition metal ion. We focus on the case of relevance to us, where
R3+ is a Kramers ion1 and M4+ is non-magnetic. As an isolated ion, the R3+ rare-earth
ion has a large atomic number Z and is therefore expected to experience a strong atomic
spin-orbit coupling. As such, the free-space description of such atoms is not in terms of the
spin (angular momentum) S, but rather the total angular momentum J = L + S.2 The
proper filling of electron shells and resulting total angular momentum may be determined
using Hund’s rules [1].

It is with this good quantum number that we must understand what happens in a solid
(i.e. the pyrochlore lattice). Within a solid, there are crystal electric fields that act upon
the rare-earth ion. These crystal electric fields can influence the orbital angular momentum
L and hence the total angular momentum J . As a result, the original 2J + 1 degeneracy
present in free space is now lifted by the crystal electric fields. The splitting scheme can be
described by exploiting the symmetries of the lattice and the surrounding atoms via their
irreducible representations [1]; alternatively, a microscopic approximation to the splitting
can also be described using the Stevens operator formalism [2]. However, a qualitative
picture for Kramers ions is immediately available: due to time reversal symmetry, the

1Kramers ions are those with a half-integer angular momentum. According to Kramers’ theorem [62],
the energy levels of such ions are at least doubly degenerate due to time reversal symmetry.

2For reference, the electronic configuration of Er is [Xe] 4f12 6s2. As well, Er3+ has L = 6, S = 3
2 , and

J = 15
2 [63].
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original 2J + 1 degeneracy for half-integer J is split into a collection of doublets, which are
superpositions of the original |J, Jz〉 eigenstates in free space.

The splitting scheme (that is, the |J, Jz〉 composition of each doublet and the energy
separation between doublets) depends on the material in question and its microscopic
details. Inelastic neutron scattering is an experimental method that can determine the
splitting scheme in a real material [5, 47]; for many of the rare-earth pyrochlore oxides,
and in particular Er2Sn2O7, the lowest doublet is well-separated in energy from the higher-
lying doublets. For exchange parameters that are on the order of 1 K and when studying
these materials at similarly low temperatures, this large energy gap between the lowest
doublet and the first excited doublet allows one to effectively describe the spin system
by only considering its lowest doublet. Hence, the full complexity of the original physical
moments is reduced to a pseudospin S = 1

2
model. Generally, we may express the resulting

pseudospin S = 1
2

states as ∣∣∣∣Sz =
1

2

〉
=

J∑
Jz=−J

aJz |J, Jz〉 , (2.1)

where aJz are coefficients that give weight to the linear combination of |J, Jz〉 states.3 Note
that

∣∣Sz = −1
2

〉
may be obtained by time reversal symmetry.

There is another consideration which needs to be made when going from free ions to
ions in a solid influenced by crystal electric fields – namely, the anisotropy of the physical
magnetic moments. In free space, the physical moments are isotropic; there is no preferred
ẑ direction, as all directions are the same. This may no longer be the case in a solid. In the
pyrochlore lattice, each rare-earth ion is surrounded by a cage of oxygen (O2−) ions [2, 4].
Specifically, for a given rare-earth ionic site on a tetrahedron, there are two oxygen ions that
straddle it axially (i.e. along the local [111] direction), as shown in Figure 2.1 [2, 4]. Since
these apical oxygen ions are closer to the rare-earth ion than the other surrounding oxygen
ions, their crystal electric fields have a stronger influence on the anisotropy of the physical
magnetic moments J . Qualitatively4, on symmetry grounds, one may therefore expect
two special types of anisotropy to occur: (1) anisotropy along the local [111] direction
(i.e. local ẑi or Ising anisotropy), or (2) anisotropy in the plane perpendicular to the local
[111] direction (i.e. local XY anisotropy). These two types of anisotropies are depicted in

3These coefficients can be determined (indirectly) from inelastic neutron scattering. For example, one
may use inelastic neutron scattering to determine the Hamiltonian describing the crystal electric fields and
then diagonalize the Hamiltonian to find the resulting eigenstates, as done by Gaudet et al. [47].

4In reality, the origin of the single-ion anisotropy is more complicated than what is presented here.
However, we only aim to provide a qualitative and intuitive description of how this anisotropy arises.
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Figure 2.2. This is precisely what is seen in experimental studies of the real materials and
in microscopic mathematical analysis of them.

Figure 2.1: Local environment of oxygen (O2−) ions surrounding the A-sites of the pyrochlore
lattice (open white circles). Black filled circles represent O2− ions that form a puckered ring
around the A-site; grey filled circles denote O2− ions that axially straddle the A-site along its local
[111] direction (denoted as the C3 rotation axis in the figure). Reprinted figure with permission
from Rau and Gingras, Annu. Rev. Condens. Matter Phys. 10, 357 (2019). Permission conveyed
through Copyright Clearance Center, Inc.

When projecting from the physical magnetic moments J to the pseudospin S = 1
2

model as in Eq. (2.1), one must therefore also consider how this anisotropy manifests itself
in the effective pseudospin model. In particular, this is important when considering the
system’s response to an applied magnetic field H . In terms of the physical moments J ,
this is quantified by the Zeeman interaction,

Hz = −gJµBJ ·H . (2.2)

Here, µB is the Bohr magneton (i.e. the magnitude of the magnetic moment of an electron’s
spin angular momentum) and gJ is the Landé g-factor (i.e. a proportionality constant that
allows one to write the Zeeman interaction in terms of J rather than L + 2S) [63]. The
magnetic moment of the system can then be taken to be µ = µBgJJ . When projecting
into the effective pseudospin S = 1

2
model, one can use the eigenstates in Eq. (2.1). For
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3

Figure 2.2: Local Ising and XY anisotropies on a single tetrahedron of the pyrochlore lattice.
Black arrows represent local Ising anisotropy, with each arrow pointing to the center of the
tetrahedron (depicted by a red circle). Blue circles represent local XY anisotropy, perpendicular
to the local Ising axis on each sublattice.

example, consider projecting gJJ
z into the pseudospin S = 1

2
doublet using the projection

operator
∣∣Sz = 1

2

〉 〈
Sz = 1

2

∣∣ . This would yield∣∣∣∣Sz =
1

2

〉〈
Sz =

1

2

∣∣∣∣ gJJz ∣∣∣∣Sz =
1

2

〉〈
Sz =

1

2

∣∣∣∣
=

(
J∑

Jz=−J

gJa
2
JzJ

z

)∣∣∣∣Sz =
1

2

〉〈
Sz =

1

2

∣∣∣∣ . (2.3)

On the other hand, our above discussion of anisotropies indicated that a local ẑi anisotropy
may be generated by the crystal electric fields. Defining gz to quantify this anisotropy in
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the local frame, we analogously have (for the pseudospin S = 1
2

model)∣∣∣∣Sz =
1

2

〉〈
Sz =

1

2

∣∣∣∣ gzSz ∣∣∣∣Sz =
1

2

〉〈
Sz =

1

2

∣∣∣∣
=

1

2
gz

∣∣∣∣Sz =
1

2

〉〈
Sz =

1

2

∣∣∣∣ . (2.4)

Comparing Eqs. (2.3) and (2.4), we arrive at the definition

gz = 2gJ

〈
Sz =

1

2

∣∣∣∣ Jz ∣∣∣∣Sz =
1

2

〉
= 2gJ

J∑
Jz=−J

a2JzJ
z. (2.5)

One may similarly define gxy, which quantifies the local XY anisotropy within the pseu-
dospin S = 1

2
model. Altogether, in the local frame of reference of a given site, we can

define5 a g-tensor to codify the response of our effective S = 1
2

spin to the magnetic field
H . For gxy and gz defined as above, this tensor takes the diagonal form [2, 33, 48, 65]

↔
g=

gxy gxy
gz

 , (2.6)

and the resulting Zeeman interaction in the pseudospin S = 1
2

model takes the form

Hz = −µBg
µνSµHν , (2.7)

where summation over Cartesian components (µ and ν) is implied.

In this thesis, we will be working in a global frame of reference. It is therefore of interest
to express the local-frame g-tensor in the global frame. As an example, consider the 0th

sublattice (as defined in Table A.2), in which the local z–axis is 1√
3
(1, 1, 1) in the global

frame. We would like to determine the matrix that rotates 1√
3
(1, 1, 1) onto the global z–

axis, (0, 0, 1). To do this, one can employ the Rodrigues rotation formula [66]. Let k be
the unit vector denoting the axis of rotation and let the angle of rotation (according to the
right hand rule) be θ. The corresponding rotation matrix is [66]

↔
R= I + [sin(θ)]

↔
K + [1− cos(θ)]

↔
K

2

, (2.8)

5This discussion has demonstrated how to calculate the g-tensor using eigenstates that are determined
from inelastic neutron scattering. Note, however, that gz and gxy can also be measured directly using
electron paramagnetic resonance [64], for example.
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where

↔
K=

 0 −kz ky
kz 0 −kx
−ky kx 0

 . (2.9)

To rotate zloc = 1√
3
(1, 1, 1) into zglobal = (0, 0, 1), the corresponding axis of rotation is

k =
zglobal×zloc
|zglobal×zloc|

= 1√
2
(−1, 1, 0). This yields

↔
K = − 1√

2

0 0 −1
0 0 −1
1 1 0

 , (2.10)

↔
K

2

= −1

2

1 1 0
1 1 0
0 0 2

 . (2.11)

The angle of rotation can be found with cos(θ) = zloc · zglobal = 1√
3

=⇒ sin(θ) =
√

2
3
.

Calculating the rotation matrix via Eq. (2.8) and rotating Eq. (2.6) into the global frame
yields:

↔
g0=

g1 g2 g2
g2 g1 g2
g2 g2 g1

 (2.12)

for

g1 =
2

3
gxy +

1

3
gz, (2.13)

g2 = −1

3
gxy +

1

3
gz. (2.14)

A similar approach yields the g-tensors on the other sublattices, as reported in the literature
[24]:

↔
g1=

 g1 −g2 −g2
−g2 g1 g2
−g2 g2 g1

 ,
↔
g2=

 g1 −g2 g2
−g2 g1 −g2
g2 −g2 g1

 ,
↔
g3=

 g1 g2 −g2
g2 g1 −g2
−g2 −g2 g1

 . (2.15)

Lastly, note that when gxy � gz, as is the case for Er2Sn2O7, these global-frame g-tensors
can be approximately written as:

↔
g0 =

gxy
3

 2 −1 −1
−1 2 −1
−1 −1 2

 ,
↔
g1=

gxy
3

2 1 1
1 2 −1
1 −1 2

 , (2.16)
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↔
g2 =

gxy
3

 2 1 −1
1 2 1
−1 1 2

 ,
↔
g3=

gxy
3

 2 −1 1
−1 2 1
1 1 2

 . (2.17)

2.2 Nearest-Neighbor Exchange

We now move forward from single-ion physics to interactions between ions. For a system
of interacting magnetic moments, one type of interaction consists of bilinear couplings
between nearest-neighbor pseudospins, of the form

Hex =
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbS
µ
iaS

ν
jb, (2.18)

where i and j are sublattice indices, a and b are tetrahedron indices, and µ and ν are
spin component indices in the global frame. Note that the spins have length |Sia| = 1

2
.

The factor of 1
2

in Eq. (2.18) accounts for doubly counting nearest-neighbor pairs, and
we assume that we are only summing over nearest-neighbors. This type of interaction is
called exchange interactions; microscopically, they have their origin in the virtual hopping
of electrons between ions due to electronic orbital overlap [1].

For a given bond on a tetrahedron, Jµνia,jb is specified by nine parameters:

↔
J ia,jb=

J11 J12 J13
J21 J22 J23
J31 J32 J33

 . (2.19)

Translational symmetry of the lattice implies that the interaction matrix between sub-
lattices i and j should be the same for any choice of a and b.6. Hence, one can use the
symmetries of each bond to reduce the number of parameters involved, as has been done
in Ref. [67]. For the 01 bond, the resulting interaction matrix is

↔
J01=

 J2 J4 J4
−J4 J1 J3
−J4 J3 J1

 , (2.20)

where J1 is an XY -like interaction, J2 is an Ising-like interaction, J3 is a symmetric off-
diagonal exchange, and J4 is a Dzyaloshinsky-Moriya interaction [24]. Similar to the case

6This is to say that
↔
J ia,jb=

↔
J ia′,jb′ , not that

↔
J ia,jb=

↔
J jb,ia. The order of the sublattices still matters.

Explicitly, (STjb
↔
J ia,jb Sia)T = STia

↔
J
T

ia,jb Sjb ≡ STia
↔
J jb,ia Sjb, so

↔
J
T

ia,jb=
↔
J jb,ia.
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of rotating the local g-tensor to get its global reference frame form, one can then use the
rotational symmetries between bonds to relate the 01 bond’s interaction matrix to that
of other bonds. For example, the 01 bond is mapped onto the 02 bond by a 2π

3
rotation

around the global (i.e. conventional cubic) [111] axis, which maps x̂ → ŷ, ŷ → ẑ, and
ẑ → x̂. The corresponding rotation matrix is thus

↔
R=

0 1 0
0 0 1
1 0 0

 . (2.21)

Applying this rotational change of basis to Eq. (2.20) yields

↔
J02=

J1 −J4 J3
J4 J2 J4
J3 −J4 J1

 . (2.22)

One can similarly apply the other operations that relate the 01 bond to the remaining
bonds on a tetrahedron, in order to generate the other interaction matrices [24, 33]. The
remaining matrices are:

↔
J03 =

J1 J3 −J4
J3 J1 −J4
J4 J4 J2

 ,
↔
J12=

 J1 −J3 J4
−J3 J1 −J4
−J4 J4 J2

 , (2.23)

↔
J13 =

 J1 J4 −J3
−J4 J2 J4
−J3 −J4 J1

 ,
↔
J23=

 J2 −J4 J4
J4 J1 −J3
−J4 −J3 J1

 . (2.24)

In conclusion, we see that the symmetries of the lattice give us much insight into both
the g-tensor of the ions as well as their exchange interactions – even before or without
considering the actual microscopic physics.

The g-tensor and exchange parameters for Er2Sn2O7 have been measured experimen-
tally using powder and polycrystalline samples [48, 49]. Keeping within the error bars of
these measurements, the parameters used to model Er2Sn2O7 in this thesis are:

J1 = 0.079 meV, J2 = 0.066 meV, J3 = −0.111 meV, J4 = 0.032 meV,

gJ = 1.2, gxy = 7.52, gz = 0.054,

keeping in mind that |Sia| = 1
2
. As shown in Figure 4.1b of Chapter 4, the exchange

parameters are chosen to match the critical temperature at H = 0.4 T in a [111] field.
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2.3 Phases of the Nearest-Neighbor Exchange Model

For the nearest-neighbor exchange Hamiltonian described in the previous section, it has
been proven [24] that the classical ground state is a q = 0 order. This means that the
ground state configuration on a single tetrahedron is tiled across the entire lattice by trans-
lational symmetry, while preserving the same orientation of the average (static) moment
on a given sublattice as the full pyrochlore lattice is tiled. We therefore only need to focus
on the ground state ordering that occurs on a single tetrahedron. One may again exploit
the symmetries of the system to determine the order parameters for each possible ground
state phase, as well as the exchange parameters that will lead to these phases [24, 67]. The
full ground state phase diagram for J4 = 0 is shown in Figure 2.3.

Figure 2.3: Classical ground state phase diagram of the nearest-neighbor Hamiltonian Eq.
(2.18), with J3 < 0 and J4 = 0. The phases are described in the main text. Reprinted figure with
permission from Yan et al., Phys. Rev. B 95, 094422 (2017). Copyright 2020 by the American
Physical Society.

For the purpose of explaining reentrance in Er2Sn2O7, there are two types of ordering
that are most important. The first is the so-called PC phase [18]. The PC configurations
are coplanar antiferromagnetic configurations: for a given xy-, xz-, or yz-plane, the spins

23

http://dx.doi.org/10.1103/PhysRevB.95.094422


S0

S1

S2

S3

(a)

S0

S1

S2

S3

(b)
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S1

S2

S3

(c)

Figure 2.4: Example of the PC configurations (namely, (a) 〈xy〉, (b) 〈xz〉, and (c) 〈yz〉) on a
single tetrahedron. Note that the remaining three PC configurations (〈xy〉, 〈xz〉, and 〈yz〉) can
be obtained from reversing the spins of those shown here.

possess a chirality within the plane as viewed from the plane’s normal. Since there are
three planes and time reversal symmetry, there are six PC configurations. The six PC
phases can be denoted by the plane in which they lie (e.g. 〈xy〉 for the configuration which
lies in the xy-plane); an overbar denotes the time-reversal-symmetric configuration (e.g.
〈xy〉). The 〈xy〉, 〈xz〉, and 〈yz〉 configurations are shown in Figures 2.4a, 2.4b, and 2.4c,
respectively.

The other important type of order is the Γ5 phase. This is also an antiferromagnetic
phase in which all spins lie within their local xy-planes and make the same angle from
their local x-axes. As such, this phase can be parameterized by a single angle θE

7 and has
a U(1) ground state degeneracy. The generic spin configurations are of the form [24]:

S0 =

√
1

6

(
cos(θE), cos

(
θE +

2π

3

)
, cos

(
θE −

2π

3

))
, (2.25)

S1 =

√
1

6

(
cos(θE),− cos

(
θE +

2π

3

)
,− cos

(
θE −

2π

3

))
, (2.26)

S2 =

√
1

6

(
− cos(θE), cos

(
θE +

2π

3

)
,− cos

(
θE −

2π

3

))
, (2.27)

7The subscript E comes from the fact that the Γ5 phase is associated with the so-called E irreducible
representation when decomposing the tetrahedral point group Td of the pyrochlore lattice [24].
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S0

S1

S2

S3

Figure 2.5: Example of a Γ5 configuration on a single tetrahedron. Blue circles represent the
local xy plane at each sublattice. All spins make the same angle θE from their local x-axis. Here,
θE = 3π

4 .

S3 =

√
1

6

(
− cos(θE),− cos

(
θE +

2π

3

)
, cos

(
θE −

2π

3

))
. (2.28)

An example of a generic Γ5 configuration is displayed in Figure 2.5.

Now, the exchange Hamiltonian Eq. (2.18) does not in general possess a U(1) symmetry.
This is therefore an accidental classical degeneracy of the system which is not protected by
actual symmetries of the model. Hence, the inclusion of fluctuations (thermal or quantum)
may select a subset of this U(1) manifold of states in which to order; this process has
been termed order-by-disorder [25–30, 32]. With the inclusion of fluctuations, two possible
subphases may arise from this U(1) manifold. The first is the ψ2 phase; this is a non-
coplanar antiferromagnet for which θE = nπ

3
, n = 0, 1, . . . , 5. The second is the ψ3 phase;

this a coplanar antiferromagnet for which θE = (2n+1)π
6

, n = 0, 1, . . . , 5. It is important to
note that an estimate of Er2Sn2O7’s exchange parameters [48, 49] places it in proximity
to the ψ2 phase. Example configurations of the ψ3 and ψ2 phases are shown in Figure
2.6 (Figures 2.6a and 2.6b, respectively). Lastly, note that the order parameter for the Γ5
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S0

S1

S2

S3

(a)

S0

S1

S2

S3

(b)

Figure 2.6: Example of a (a) ψ3 and (b) ψ2 configuration on a single tetrahedron. Blue circles
represent the local xy-plane at each sublattice, each normal to the local [111] cubic axis. All spins

make the same angle θE from their local x-axis, which must be θE = (2n+1)π
6 (θE = nπ

3 ) for the
ψ3 (ψ2) state. Here, θE = π

6 in (a) and θE = 2π
3 in (b).

phase is a two-component vector [24]:

mE =

(
1

2
√
6
(−2Sx0 + Sy0 + Sz0 − 2Sx1 − S

y
1 − Sz1 + 2Sx2 + Sy2 − Sz2 + 2Sx3 − S

y
3 + Sz3)

1
2
√
2
(−Sy0 + Sz0 + Sy1 − Sz1 − S

y
2 − Sz2 + Sy3 + Sz3)

)
(2.29)

This two-component order parameter is parameterized by the same angle θE as in Eqs.
(2.25) to (2.28). In particular, mE = (mx

E,m
y
E) = (cos(θE), sin(θE)) [24]. Hence, for a

given configuration (S0,S1,S2,S3) on a single tetrahedron, the angle θE can be determined

by first calculating Eq. (2.29) and then calculating θE = arctan
(
myE
mxE

)
.

A final phase that one may consider is the splayed ferromagnet phase. When the
applied field in our system is strong enough, the spins are polarized and the system enters
a ferromagnetic phase, as is expected for sufficiently strong fields. However, we find in
Chapter 4 that this eventual field polarization does not contribute to explaining reentrance,
and we therefore do not discuss this phase further.
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2.4 Long-Range Dipolar Interactions

So far, we have only considered one type of interaction between moments – namely, nearest-
neighbor exchange interactions. Such an approach may be justified by an understanding of
f orbitals. The 4f orbitals for rare-earth ions are not extended very far [68, 69] and hence
orbital overlap is small. The upshot of this is that next-nearest exchange interactions are
expected to be small, so restricting the model to only nearest-neighbor interactions seems
reasonable.8

On the other hand, depending on the electron filling and crystal field effects, rare-earth
ions may possess very large magnetic moments. The long-range dipolar interaction, which
may be ignored in systems with smaller moments, may play an important role in the rare-
earth pyrochlores. These dipolar interactions occur between all moments in the lattice, and
even if their energy scale may be smaller than exchange, they may still play an important
role in a frustrated magnet. Moreover, the arguments used to prove a classical q = 0
ground state order in Yan et al. [24] no longer apply when long-range dipolar interactions
are included. Altogether, it is not clear how the inclusion of this interaction will modify the
physics of Er2Sn2O7, nor what role it may play in explaining reentrance. It will therefore
be important to include it.

The long-range dipolar interaction between the physical moments of the system takes
the form

Hdip =
µ0

4π

(gJµB)2

r3nn

1

2

∑
k,l

∑
i,j

Jia · Jjb
(ria,jb/rnn)3

− 3
(Jia · ria,jb)(Jjb · ria,jb)

(ria,jb/rnn)3
, (2.30)

where rnn is the nearest-neighbor distance on the pyrochlore lattice and ria,jb is the dis-
placement vector from site (i, a) to site (j, b). As before, one may use the g-tensor to project
these interactions from physical angular momenta Jia onto our pseudospin S = 1

2
repre-

sentation. This is done in Section 3.2, where the Ewald summation method for simulating
the long-range dipolar interaction is discussed.

8It should be noted that the localized nature of the 4f orbitals also leads to small energy scales for
the exchange interactions. For Er2Sn2O7, they are on the order of 1 K [48, 49], so low temperatures
are required to study the physics of the ordered phase. This should be contrasted with, for example, d
orbital systems. There, the orbitals are much further extended, giving greater overlap and larger exchange
interactions. For example, the exchange interactions for the Ni2+–based pyrochlore NaCaNi2F7 is on the
order of 30 K [70]!
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Chapter 3

Methods

3.1 Variational Mean-Field Theory (VMFT) for Clas-

sical Spins

As a first approximation to understanding the physical behavior of the pyrochlore spin sys-
tem, one may employ mean-field theory. This ignores the effect of (thermal and quantum)
fluctuations on the system, thereby providing a picture of the underlying phases upon which
fluctuations act. To accomplish this in a variational mean-field theory (VMFT) scheme,
the density matrix of the entire spin system is assumed to be the product of single-spin
density matrices, which are themselves treated as variational parameters to minimize the
free energy, as will is discussed in detail below. The following derivation of variational
mean-field theory follows Refs. [71–73].

Consider a classical spin system on the pyrochlore lattice, where the spin on each
site is represented by a normalized three-component vector.1 Generically, the exchange
Hamiltonian can be written as

H0 =
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbS
µ
iaS

ν
jb, (3.1)

1The spins in this classical method are represented by normalized vectors, but the model described in
Chapter 2 considers spins of length 1

2 , in keeping with the effective (pseudo)spin– 1
2 nature of the quantum

model. Hence, to go from parameters introduced for a spin– 1
2 model (as in Chapter 2) to those for classical

normalized spin vectors (as in this section), a factor of 1
2 is introduced for every dependence on Sia. The

exchange parameters are therefore divided by four, and the g-tensor components by two, when numerically
implementing classical VMFT.
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where a and b denote the chosen tetrahedra, i and j denote the sublattices chosen within
those tetrahedra, and µ and ν denote the components of the spin vectors. Note that,
in this form, Jµνia,jb quantifies completely general bilinear interactions. This allows the
VMFT scheme to incorporate the nearest-neighbor exchange couplings as well as long-
range dipolar interactions at the same time, without requiring any modification to the
following derivation. Note that, under an applied magnetic field, the full Hamiltonian is

H =
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbS
µ
iaS

ν
jb −

∑
i,a

hia · Sia, (3.2)

where
hµia = µBg

µν
ia H

ν (3.3)

is the scaled magnetic field for a given applied magnetic field H , with µ and ν again
denoting Cartesian components. gµνia is the g-tensor of the ion at the given sublattice in the
global frame, as discussed in Chapter 2. Note that, for the rare-earth pyrochlore systems
considered here, the g-tensor depends only on the sublattice index i, not the tetrahedron
index a [24].

In terms of density matrices, the free energy of the system [71–73] is given by

Fρ = Tr {ρH}+ TTr {ρ ln ρ} , (3.4)

where ρ is the many-body density matrix and the trace sums over all possible spin con-
figurations.2 The VMFT approximation assumes ρ({Sia}) =

∏
i,a ρia(Sia), where ρia is

the density matrix for a single spin on tetrahedron a and sublattice i. Within VMFT, the
single-site density matrices are treated as variational parameters, subject to the constraints
of normalization (Tr{ρia} = 1) and the local order parameter (or sublattice magnetization)
definition (Tr{ρiaSia} = mia). These constraints can be respectively enforced by using La-
grange multipliers; we use the Lagrange multipliers {ξia} to enforce Tr{ρia} = 1 and use
the Lagrange multipliers {Aia} to enforce Tr{ρiaSia} = mia. Subject to the constraints
and the VMFT approximation, the free energy becomes:

F ({ρia} , {ξia} , {Aia}) =Tr {ρH}+ TTr {ρ ln ρ} − TTr

{∑
i,a

ξia(ρia − 1)

}
(3.5)

− TTr

{∑
i,a

(ρiaSia −mia) ·Aia

}
. (3.6)

2Tr{ρH} represents a thermal averaging over the energy of the spin configurations. As well, in units
where kB = 1, −Tr {ρ ln ρ} is the von Neumann formulation of the entropy of a system. Hence, this
expression for the free energy is equivalent to F = U − TS.

29



F must now be minimized with respect to the single-site density matrices, that is,
∂F
∂ρia

= 0. To do this, the following properties of traces are used:

• Tr{A+B} = Tr{A} + Tr{B}. This simplifies the sums over i, j, a, b, µ, and ν by
separating the trace over sums into sums over traces.

• Tr{A⊗B} = Tr{A}Tr{B}, which simplfies traces over products of density matrices
from different sites. Products of density matrices on different sites take the form
ρia ⊗ ρjb since each site is treated independently.

• Tr{ρia} = 1, which simplifies sums over sites we do not need to consider.

• Suppose g(x) is a polynomial function or has a series expansion in terms of polyno-

mials. Then,
↔
g (

↔
X) can be also be expanded as a series (namely, in powers of the

matrix
↔
X) and is a matrix itself. In this case, the derivative of the trace of this result-

ing matrix, Tr
{↔
g (

↔
X)
}

, with respect to
↔
X, is given by

∂Tr

{
↔
g (
↔
X)

}
∂
↔
X

=
↔
g
′

(
↔
X). That

is, one composes the function g′(x) with the argument
↔
X. This simplifies derivatives

of functions of a matrix.

As an example, we have:

Tr {ρH} = Tr

{
ρ

(
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbS
µ
iaS

ν
jb −

∑
i,a

hia · Sia

)}
(3.7)

=
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbTr
{
ρSµiaS

ν
jb

}
−
∑
i,a

hia · Tr {ρSia} (3.8)

=
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbTr

ρiaSµiaρjbSνjb
∏
k 6=i,j
c6=a,b

ρkc

−
∑
i,a

hia · Tr

ρiaSia
∏
k 6=i
c 6=a

ρkc


(3.9)

=
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbTr {ρiaSµia}Tr
{
ρjbS

ν
jb

} ∏
k 6=i,j
c 6=a,b

Tr {ρkc}−

∑
i,a

hia · Tr {ρiaSia}
∏
k 6=i
c 6=a

Tr {ρkc} (3.10)
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=
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbm
µ
iam

ν
jb −

∑
i,a

hia ·mia. (3.11)

Note that this final result does not depend on ρia, so taking the derivative of this term in
the free energy with respect to ρia just gives 0.

Altogether, using the above properties to simplify the derivatives of our traces, we have:

∂

∂ρia
Tr {ρH} =

∂

∂ρia

[
1

2

∑
a,b

∑
i,j

∑
µν

Jµνia,jbm
µ
iam

ν
jb −

∑
i,a

hia ·mia

]
= 0

(3.12)

∂

∂ρia
Tr {ρ ln ρ} =

∂

∂ρia
Tr {ρia ln(ρia)} = ln(ρia) + 1 (3.13)

∂

∂ρia
Tr

{∑
j,b

ξjbρjb

}
= ξia (3.14)

∂

∂ρia
Tr

{∑
j,b

ρjbSjb ·Ajb

}
= Aia · Sia. (3.15)

Summing these terms (by taking the derivative of Eq. (3.6)) and equating to 0 to satisfy
∂F
∂ρia

= 03, we have

0 = T (ln(ρia) + 1)− Tξia − TAia · Sia (3.16)

=⇒ ln(ρia) = ξia − 1 +Aia · Sia (3.17)

=⇒ ρia = eξia−1eAia·Sia . (3.18)

The factor eξia−1 does not depend on the spin configuration Sia and is thus just a constant.
We can therefore write the single-site density matrices as

ρia =
1

Zia
eAia·Sia , (3.19)

where we identify the leading constant with the inverse of the partition function, intro-
duced to enforce the normalization of ρia. Since the spins Sia are treated as normalized
classical vectors, the partition function Zia is found by integrating over all possible spin

3Note that those terms in Eq. (3.6) which do not depend on ρia are eliminated when we take the
derivative with respect to ρia.
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configurations in spherical coordinates. Performing this integration (with |Sia| = 1 and
the z–axis aligned along Aia), we have

Zia = Tr{eAia·Sia} (3.20)

=

∫ 2π

0

∫ π

0

sin(θ)e|Aia||Sia| cos(θ)dθdφ (3.21)

= 2π

∫ π

0

sin(θ)e|Aia| cos(θ)dθ (3.22)

=
2π

|Aia|

∫ |Aia|

−|Aia|
eudu (3.23)

=
4π

Aia
sinh(Aia). (3.24)

Therefore, we find the partition function to be

Zia =
4π

Aia
sinh(Aia). (3.25)

Equipped with these relations, the traces in Eq. (3.6) can be evaluated. The free energy
simplifies to:

F =
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbm
µ
iam

ν
jb −

∑
i,a

hia ·mia +
∑
i,a

(Bia ·mia −
1

β
ln(Zia)). (3.26)

Here, Bia ≡ Aia

β
can be interpreted as a local “magnetic field”. Explicitly, by minimizing

the free energy with respect to the order parameter mia,
∂F
∂mµia

= 0, we have

Bµ
ia = −

∑
j,b,ν

Jµνia,jbm
ν
jb + hµia. (3.27)

Using this expression for Bµ
ia, the free energy averaged over all N sites of the lattice is

f =
F

N
=
X(m)

N
− 1

Nβ

∑
i,a

ln(Zia), (3.28)

where

X(m) = −1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbm
µ
iam

ν
jb. (3.29)
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Lastly, using the identity ∂f
∂Bia

= −mia for the sublattice magnetization (i.e. the thermo-
dynamic relation for relating a magnetization with an applied field), we have

mia =
Bia

|Bia|

[
coth (β|Bia|)−

1

β|Bia|

]
. (3.30)

Eqs. (3.27) and (3.30) are the major results of VMFT, as they allow one to determine the
sublattice magnetization configuration4 {mia} that minimizes the mean-field free energy.
They also allow this mean-field free energy of the system to be calculated using Eq. (3.28).
Up until now, this has been an exact analytical derivation of VMFT. We now turn to
explaining how VMFT is implemented numerically in practice.

Generally, the complication in solving for the sublattice magnetization configuration
{mia} at arbitrary T and H is that, according to Eq. (3.30), it requires the calculation
of the local fields – which depend on the sublattice magnetization configuration in Eq.
(3.27)! This coupled set of equations can be solved self-consistently: given an initial
sublattice magnetization configuration {mia}, one can calculate the local field at every site
(mediated by the exchange couplings and the Zeeman effect) using Eq. (3.27). The local
field can then be used to recalculate the sublattice magnetization configuration according
to Eq. (3.30). In this way, these two equations can be self-consistently and iteratively
solved in order to determine the sublattice magnetization configuration that minimizes the
free energy within a mean-field approximation. Numerically, for a pyrochlore lattice of size
L (i.e. L3 conventional cubic unit cells, for a total of N = 16L3 spins and with periodic
boundary conditions), the self-consistent procedure is as follows5:

(1) Begin with T = 0 and some fixed magnitude and direction of the applied field H .
On every site (i, a) of the lattice, initialize a sublattice magnetization vector mia of
unit length.6 To study Er2Sn2O7, the initial sublattice magnetization configuration
is chosen to be one of the six PC ground states discussed in Chapter 2.

(2) Calculate the local field Bia that results from this sublattice magnetization configu-
ration using Eq. (3.27). Note that, at T = 0, Eq. (3.30) dictates that mia should be

4In anticipation of the results of Chapter 4, and similar to the q = 0 ordering mentioned in Chapter 2,
we refer to this as a sublattice magnetization configuration because the tetrahedron “summing index” a
turns out to be spurious. A q = 0 order is always found within VMFT in this thesis.

5Note that we take L = 2, giving N = 128.
6According to Eq. (3.30), when T = 0, the sublattice magnetizations are all normalized.
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aligned with Bia. However, to smoothly evolve the system7, mia is moved by some
percentage η in the direction of Bia with every iteration. That is, after calculating
Bia, we take mia → (1 − η)mia + ηBia.

8 We have chosen η = 5% as a compro-
mise between computation time and an accurate, smooth evolution of the sublattice
magnetizations.

(3) Continue iteratively updating {mia} according to (2) until either (a) some maxi-
mum number of iterations is attained, or (b) {mia} has reached the desired level
of convergence. For (a), we take 106 iterations as the maximum, though this is
rarely attained. For (b), we decompose the sublattice magnetization vectors {mia}
in Cartesian components into their corresponding sets of angles {θia} and {φia} in
spherical coordinates. Convergence refers to when all of these angles {θia} and {φia}
have not changed by more than some value ε after an iteration. We have taken
ε = 10−8.

(4) Once convergence (or the maximum number of iterations) is attained, any relevant
quantity of the system can be calculated (e.g. the free energy). Note that, in this the-
sis, the resulting sublattice magnetization configurations for all the studied directions
and magnitudes of H are found to be q = 0 orders.

(5) Once the process detailed in (1) through (4) have been performed for T = 0 and
the desired range of values for the applied magnetic field, the finite-temperature
sublattice magnetization configuration can be calculated. For a given value of T and
a given direction and magnitude of H , tile the lattice with the spin configuration
corresponding to T = 0 (for the same magnitude and direction of H).

(6) Repeat the same procedure (namely, (2) through (4)) as in the T = 0 case, with
the modification that the full expression in Eq. (3.30) (namely, now for finite T )
is used. If the initial sublattice magnetization is called mia and the new sublattice
magnetization (i.e. the one calculated from Eq. (3.30)) is called m′ia, we again
smoothly evolve the sublattice magnetizations using some parameter η (i.e. mia →
(1 − η)mia + ηm′ia after an iteration9). We again choose η = 5%. The maximum
number of iterations is again chosen as 106. Convergence is attained when the angular

7This is because of the coupled nature of Eqs. (3.27) and (3.30). Since updating the sublattice mag-
netization configuration results in a change in the local fields, we do not want to change the sublattice
magnetizations too abruptly. Otherwise, the sublattice magnetizations will not reliably converge towards
their minimum free energy configurations.

8Note that these configurations are then normalized, since at T = 0, the sublattice magnetizations are
expected to be of unit length from Eq. (3.30).

9In the case of finite temperature, these sublattice magnetizations are not normalized.
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variables {φia} and {θia} for every sublattice magnetization vector do not change by
more than some value ε in a single iteration. Here, we take ε = 10−10.

(7) Once convergence (or the maximum number of iterations) is attained, any relevant
quantity of the system can be calculated again. We again find q = 0 order for all
values of T and H studied in this thesis.

Note that this entire numerical procedure must be repeated six times, once for every
starting PC ground state. In this way, the evolution of each PC ground state in the presence
of a global applied field H (and for any given temperature) can be tracked separately. As
discussed in Chapter 4, the mechanism behind reentrance can be partially explained using
this classical VMFT for (classical, normalized) spin vectors. However, for completeness,
we also provide a short derivation of a quantum VMFT in Appendix B, where the spins
are instead treated as S = 1

2
operators.

3.2 Ewald Summation

Consider the long-range dipolar interaction between physical moments of our system Jia:

Hdip =
µ0

4π

(gJµB)2

r3nn

1

2

∑
a,b

∑
i,j

Jia · Jjb
(ria,jb/rnn)3

− 3
(Jia · ria,jb)(Jjb · ria,jb)

(ria,jb/rnn)3
. (3.31)

The factor of 1
2

accounts for double counting. As described in Chapter 2, the physical
moments of the system can be projected onto a pseudospin–1

2
basis, where the anisotropy

of the physical moments are incorporated into a g–tensor. For the g–tensor
↔
g ia on a given

site, this gives [28, 48]:

Hdip =
µ0

4π

(gJµB)2

r3nn

1

2

∑
a,b

∑
i,j

JµiaJ
ν
jbδ

µν

(ria,jb/rnn)3
− 3

(Jµiar
µ
ia,jb)(J

ν
jbr

ν
ia,jb)

(ria,jb/rnn)3
(3.32)

=
µ0

4π

(µB)2

r3nn

1

2

∑
a,b

∑
i,j

gµαia S
α
iag

νβ
jb S

β
jbδ

µν

(ria,jb/rnn)3
− 3

(gµαia S
α
iar

µ
ia,jb)(g

νβ
jb S

β
jbr

ν
ia,jb)

(ria,jb/rnn)3
(3.33)

=
µ0

4π

(µB)2

r3nn

1

2

∑
a,b

∑
i,j

SαiaS
β
jb

[
gµαia g

νβ
jb δ

µν

(ria,jb/rnn)3
− 3

(gµαia r
µ
ia,jb)(g

νβ
jb r

ν
ia,jb)

(ria,jb/rnn)3

]
(3.34)

=
µ0

4π

(µB)2

r3nn

1

2

∑
a,b

∑
i,j

SµiaS
ν
jb

[
gµαia g

νβ
jb δ

αβ

(ria,jb/rnn)3
− 3

(gµαia r
α
ia,jb)(g

νβ
jb r

β
ia,jb)

(ria,jb/rnn)3

]
, (3.35)
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where repeated Greek indices are summed over and the final step is a relabelling of Greek

indices.10 If we define Ddd ≡ Dr3nn for D ≡ µ0
4π

(gJµB)
2

r3nn
, and if we sum over the Greek indices

of δαβ, we can reexpress the above as11

Hdip =
Ddd

2g2J

∑
a,b

∑
i,j

SµiaS
ν
jb

[
nµia · nνjb
r3ia,jb

− 3
(nµia · ria,jb)(nνjb · ria,jb)

r3ia,jb

]
. (3.36)

In the above, we have rewritten the g-tensor using the vectors {nµia}. That is, each column

of the g-tensor
↔
g ia is represented by a vector nµia, such that the α-th component of nµia is

given by gµαia . For example, the first column of
↔
g ia is nxia.

12 The reason for this comes from

the definition gJJia =
↔
g ia Sia. Expanding the right-hand side gives nxiaS

x
ia+nyiaS

y
ia+nziaS

z
ia.

Physically, then, the vectors {nµia} represent how the physical moment Jia lies within the
global frame of reference that has been defined for the pseudospins Sia. This allows us to
map the long-range dipolar interactions between the physical moments onto our effective
pseudospin description. For example, for isotropic spins with gµνia = 2δµν , nµia would reduce
to a Cartesian vector. For example, if gµνia = 2δµν , then nxia = (2, 0, 0). In such an isotropic
case, the physical moments and the pseudospins lie in the same way. Note that if the
g–tensor of a given sublattice is the same on any tetrahedron, the tetrahedron index a
is spurious. We can then write nµia = nµi . Moreover, if every sublattice has the same
g–tensor, this can be further simplified to nµi = nµ.

When written in this way, the long-range dipolar interaction has the spin configuration
(namely, Sµia and Sνjb) separated from the long-range summation over spatial information
(namely, the expression in square brackets in Eq. (3.36)). For a given spin configuration,
the difficulty with calculating the dipolar interaction is in computing the sum of

Dµν
ia,jb =

[
nµia · nνjb
r3ia,jb

− 3
(nµia · ria,jb)(nνjb · ria,jb)

r3ia,jb

]
. (3.37)

This is a conditionally convergent summation [72, 74]. However, it can be evaluated by
use of the Ewald summation method, which separates the summation into a real space
sum and a reciprocal space sum [72, 74]. A full mathematical derivation of the Ewald

10The symmetry of the g–tensor under a swapping of the Greek indices has also been used – that is,
gµνia = gνµia .

11In this thesis, we take D = 0.022 K for Er2Sn2O7, as estimated by experiments [49].
12Note that the vectors {nµia} are not normalized unit vectors, since they are just the columns of the

g–tensor. These columns depend on gxy and gz, which also encapuslate information about the physical
size of the moment Jia, and hence should not be normalized.
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summation for spins with an isotropic g–tensor on every sublattice (i.e. the nµia = nµ

case mentioned above) is detailed in Ref. [72]. However, our local moments have an
anisotropy to them, quantified by the anisotropic g–tensor or, equivalently, by the (site-
dependent) local quantization axes nµia. As noted in Ref. [72], the derivation contained
therein generalizes directly from isotropic quantization axes nµ to anisotropic quantization
axes nµia. We therefore quote the final result from Ref. [72], with the substitution nµ → nµia:

Dµν
ia,jb =− 4α3

3
√
π

(nµia · nνjb)

+
4π

V

∑
G

Kµν(G)e−|G|
2/4α2

e−iG·r(ij)

+
∑
i

[Aµν1 (ria,jb)− Aµν2 (ria,jb)], (3.38)

where

Kµν(G) =
(nµia ·G)(nνjb ·G)

|G|2
(3.39)

Aµν1 (ria,jb) = (nµia · nνjb)

[
2α√
π

e−α
2|ria,jb|2

|ria,jb|2
+

erfc(α|ria,jb|)
|ria,jb|3

]
(3.40)

Aµν2 (ria,jb) = (nµia · ria,jb)(nνjb · ria,jb)× (3.41)[(
4α3

√
π|ria,jb|2

+
6α√

π|ria,jb|4

)
e−α

2|ria,jb|2 + 3
erfc(α|ria,jb|)
|ria,jb|5

]
. (3.42)

In the above, α is a parameter that tunes how much weight to give to the real versus
reciprocal lattice sums of the Ewald summation;

∑
i represents a (real space) sum over all

position vectors ria,jb 6= 0; V is the volume of the system; G = 2π
L

(nx, ny, nz) is a reciprocal
lattice vector of the system13 for integers {nx, ny, nz};

∑
G represents a (reciprocal space)

sum over {G}; and r(ij) is the vector between sublattices i and j.14

Mathematically, the Ewald summation amounts to performing the real and reciprocal
space summations (that is,

∑
i and

∑
G, respectively) in Eq. (3.38). Numerically, the

procedure is as follows:

13Note that our numerical implementation of VMFT uses conventional cubic cells. Hence, we use the
reciprocal lattice vectors of the simple cubic lattice.

14Note that Kµν(G) is not well-defined at G = 0. This term is related to the macroscopic field of the
dipoles and hence depends on the overall shape of the system of dipoles [72]. However, as mentioned in
Section 1.5, reentrance occurs for crystals of various shapes and therefore does not originate from any
shape-dependent effects. So, we do not include this G = 0 term in the summation over reciprocal lattice
vectors.
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1. Take the original physical reference system of 16L3 spins and replicate it by tiling
it by the primitive lattice vectors. This effectively enlarges the system so that we
have more positions to sum over for the long-range dipolar interactions. We tile the
original system by n1a1+n2a2+n3a3, where ni ∈ [−5, 5] ∀i and {ai} are the primitive
lattice vectors of the simple cubic lattice (as we are using a conventional cubic unit
cell). For this enlarged system size, we also have the corresponding reciprocal lattice
vectors G as defined above.

2. Next, iterate over all possible pairs in the original lattice and calculate Dµν
ia,jb using

Eq. (3.38).15 For a given pair of sites (i, a) and (j, b) in our original lattice, we
therefore have an associated 3× 3 matrix Dµν , which can be saved in a data file.

3. For any given pair of sites (i, a) and (j, b), one may then associate an index that refers
to which saved matrix Dµν to use for the long-range dipolar interaction between Sµia
and Sνjb. The contribution that dipolar interactions make to the energy can then

be computed as Hdip = Ddd

2g2J

∑
a,b

∑
i,j D

µν
ia,jbS

µ
iaS

ν
jb. Effectively, the Ewald summation

has separated the sum over long distances that is required for the dipolar interactions
from the actual dipoles Sµia. That is, the former (i.e. the sum over long distances) is
completely contained in Dµν and does not require any information about the latter
(i.e. the dipoles Sµia) in order to be computed. Once computed, these matrices Dµν

can therefore be used to determine the dipolar interactions for any arrangement of
dipoles {Sia}.

It should be noted that the exchange parameters of the system are obtained by fitting
experimental data to a nearest-neighbor model. Hence, the nearest-neighbor contribution
of the dipolar interactions are implicitly included in the anisotropic exchange parameters
{J1, J2, J3, J4}, and we must make sure that our real space sum above does not count
them again. As well, it is also important to check that α is properly selected to give a
convergent sum. To verify this, one may calculate what the total energy (as a function
of α) of a system may be for interacting dipoles all polarized along some given direction.
When the total energy converges for some range of α, it is indicative that those values of

15Since we are iterating over all pairs (i, a) and (j, b) in the original lattice, the vectors ria,jb are
restricted to the original lattice. However, we want to use the larger replicated lattice to get a better
approximation of a large real space sum. We can do this by explicitly including the replicas of this pair.
As the real space contribution in Eq. (3.38) only depends on the displacement between the pairs (i, a)
and (j, b), the replicated positions can easily be included by adding the vector n1a1 + n2a2 + n3a3 to the
displacement vector ria,jb. This then simulates a larger replicated lattice, even if ria,jb is corresponds to
a vector in the original lattice.

∑
i can then be thought of as summing over all ria,jb and their replicas

ria,jb + n1a1 + n2a2 + n3a3.
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α obtain a properly converging sum for the dipolar interactions. We have therefore chosen
α =

√
π
L

, which (as shown in Figure 3.1) has a convergent total energy for polarized spins .
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Figure 3.1: Dipolar interaction energy calculated via the Ewald summation for a range of values
of α. The energy is calculated using Eqs. (3.36) and (3.38) for gJ = Ddd = 1 and for a system
of size L = 2 with all spins polarized along the global ẑ direction. The black vertical line marks

α =
√
π
L .

3.3 Classical Spin-Waves

Suppose that we have found the classical T = 0 ground state of our Hamiltonian, Eq. (3.2),
using the above VMFT approach.16 The low-temperature excitations out of this ground
state can then be calculated with a standard classical spin-wave expansion [24]. This will
expose the types of modes of the ground state spin configuration that may be excited via
thermal fluctuations, as well as provide a qualitative estimate of how easily such modes
can be excited.17

16For this section, we ignore the long-range dipolar interactions and restrict ourselves to just the nearest-
neighbor exchange couplings. The justification for doing so is provided in Chapter 4.

17Recall the discussion from Section 1.5, which is motivated by the results shown in Chapter 4: we
are trying to reproduce the essential ingredients from classical Monte Carlo simulations, which capture
reentrance. Hence, we use a classical spin-wave expansion, as opposed to a quantum spin-wave expansion,
to understand thermal fluctuations at lowest order.
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In the absence of dipolar interactions, the zero-field ground state spin configuration of
Eq. (3.2) is known to be q = 0 – that is, the spin configuration on a single tetrahedron is
the same for all tetrahedra. A classical spin-wave expansion for such a spin ordering (in the
absence of an applied field) is detailed in Ref. [24]. Within VMFT, q = 0 ordering is also
found for all values of the applied magnetic field H . We therefore extend the derivation
found in Yan et al. [24] to finite fields.

The Hamiltonian is taken to be

H =
1

2

∑
a

∑
〈ij〉

Jµνij S
µ
iaS

ν
ja − µB

∑
a

∑
i

gµνi S
µ
iaH

ν , (3.43)

where Jµνij is now restricted to only nearest-neighbors, and the tetrahedra indices are sup-
pressed on Jµνij because of the assumption of q = 0 ordering. Note that the g–tensor is
also the same on every tetrahedron, so the tetrahedron index has been dropped on gi as
well. However, since the tetrahedra are located at FCC points on the lattice, they have
been kept on the spin variables for clarity when performing Fourier transforms. As such, a
labels the tetrahedron and i labels the sublattices within this tetrahedron, and the q = 0
ordering assumption allows us to sum over each tetrahedron.

Starting with the classically-ordered ground state spin configuration on a single tetra-
hedron at T = 0, define the local coordinate system at each sublattice i using mutually
orthogonal vectors {ûi, v̂i, ŵi}. This coordinate system is defined such that the classical
spin vector on sublattice i is of length S and points along ŵi. The other two local unit vec-
tors are defined arbitrarily, so long as mutual orthogonality is satisfied. Within this local

coordinate system, the ground state spin configuration takes the form Sia = Sŵi =

0
0
S


for any sublattice i. This ordering represents the minimum energy configuration; any
excitation away from this minimum energy configuration will then arise from perturbing
the spin vector Sia along the directions ûi and v̂i while maintaining the normalization S.
Mathematically, this can be expressed as

Sia =


√
Sδuia√
Sδvia√

S2 − Sδu2ia − Sδv2ia

 ≈
 √

Sδuia√
Sδvia

S − 1
2
δu2ia − 1

2
δv2ia

 . (3.44)

By substituting this perturbed spin vector into the original Hamiltonian and expanding to
quadratic order18 in the fluctuations, the lowest-energy excitations away from the ground

18Keeping only quadratic order fluctuations allows the resulting partition function to be integrated
exactly.
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state can be determined. This process is equivalent to finding the Hessian of the original
Hamiltonian, or taking a harmonic/quadratic approximation to the energy minima in which
the system sits.

Expanding the Hamiltonian to quadratic order in the fluctuations yields

H =
1

2

∑
a

∑
ij

S2(ŵi·
↔
J ij ·ŵj)− µBS

∑
a

∑
i

(ŵi·
↔
g i ·H) +

S

2

∑
a

∑
ij

δuiaδuja(ûi·
↔
J ij ·ûj)

+ δuiaδvja(ûi·
↔
J ij ·v̂j) + δviaδuja(v̂i·

↔
J ij ·ûj) + δviaδvja(v̂i·

↔
J ij ·v̂j)

− 1

2
(δu2ia + δv2ia + δu2ja + δv2ja)(ŵi·

↔
J ij ·ŵj) +

1

2
µB

∑
a

∑
ij

(δu2ia + δv2ia)(ŵi·
↔
g i ·H).

(3.45)

The first two terms just represent the ground state energy, ε0. The rest of the expression
encapsulates how fluctuations away from the ground state affect the Hamiltonian when
they are mediated by exchange couplings and the Zeeman interaction.

We can now perform a Fourier transform over the wavevectors corresponding to the
FCC lattice points, since the pyrochlore lattice has spatial periodicity under the translation
vectors of the FCC lattice. For example, δuia = 1√

Nt

∑
q e
−iq·riaδui(q) for Nt = N

4
tetra-

hedra in a pyrochlore system with N spins. Note that, with this notation, ria = Ra + ri,
where Ra is the vector from the origin to the tetrahedron a and ri is the vector to the
sublattice i within the tetrahedron a. In this way, we can view

∑
a as

∑
Ra

and
∑

ij as∑
ri,rj

. Plugging in the Fourier transform of the fluctuations and evaluating the sum over
tetrahedra will produce δ functions over the wavevectors, effectively replacing our sum over
FCC points in real space with a sum over reciprocal lattice vectors of the real-space FCC
lattice. Altogether, the Fourier transform results in:

H = ε0 +
S

2

∑
ij

∑
q

{
eiq·rij [δui(q)δuj(−q)(ûi·

↔
J ij ·ûj)

+ δui(q)δvj(−q)(ûi·
↔
J ij ·v̂j) + δvi(q)δuj(−q)(v̂i·

↔
J ij ·ûj) + δvi(q)δvj(−q)(v̂i·

↔
J ij ·v̂j)]

− 1

2
(δui(q)δui(−q) + δvi(q)δvi(−q) + δuj(q)δuj(−q) + δvj(q)δvj(−q))(ŵi·

↔
J ij ·ŵj)

}
+

1

2
µB

∑
i

∑
q

[
δui(q)δui(−q) + δvi(q)δvi(−q))(ŵi·

↔
g i ·H)

]
.

(3.46)

By relabelling indices, this can be simplified into
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H = ε0 +
S

2

∑
ij

∑
q

{
eiq·rij [δui(q)δuj(−q)(ûi·

↔
J ij ·ûj)

+ δui(q)δvj(−q)(ûi·
↔
J ij ·v̂j) + δvi(q)δuj(−q)(v̂i·

↔
J ij ·ûj) + δvi(q)δvj(−q)(v̂i·

↔
J ij ·v̂j)]

− δij(δui(q)δuj(−q) + δvi(q)δvj(−q))(
∑
l

ŵl·
↔
J lj ·ŵj)

}
+

1

2
µB

∑
ij

∑
q

δij

[
δui(q)δui(−q) + δvi(q)δvi(−q))(ŵi·

↔
g i ·H)

]
.

(3.47)

Now, define u(q) ≡ (δu1(q), δu2(q), δu3(q), δu4(q), δv1(q), δv2(q), δv3(q), δv4(q)). This
vector encapsulates the eight19 possible fluctuations that may be excited at a given wavector
q. With this vector, the fluctuation contribution to the Hamiltonian (ignoring the ground
state energy ε0) is

HCSW =
1

2

∑
q

u(−q) · (
↔
M (q)+

↔
N (q)) · u(q). (3.48)

The matrices
↔
M (q) and

↔
N (q) can be written in block matrix form, composed of four

separate 4×4 blocks. They are:

↔
M (q) = 2S

 ↔
M

11

(q)
↔
M

12

(q)
↔
M

21

(q)
↔
M

22

(q)

 (3.49)

M11
ij (q) = cos (q · rij)(ûi·

↔
J ij ·ûj − δij

∑
l

ŵl·
↔
J lj ·ŵj) (3.50)

M12
ij (q) = cos (q · rij)(ûi·

↔
J ij ·v̂j) (3.51)

M21
ij (q) = cos (q · rij)(v̂i·

↔
J ij ·ûj) (3.52)

M22
ij (q) = cos (q · rij)(v̂i·

↔
J ij ·v̂j − δij

∑
l

ŵl·
↔
J lj ·ŵj) (3.53)

19There are eight possible fluctuations because each spin is allowed to fluctuate in two directions orthog-
onal to their ordering direction ŵi, and there are four sublattices (i = 0, 1, 2, 3).
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↔
N (q) = µB

 ↔
N

11

(q) 0

0
↔
N

22

(q)

 (3.54)

N11
ij (q) = N22

ij (q) = δijŵi·
↔
g i ·H . (3.55)

Diagonalizing the classical spin-wave Hamiltonian, Eq. (3.48), yields the classical spin-wave
dispersions κν(q) as a function of the wavevector q. These dispersions quantify how easy it
is to thermally excite a mode with wavevector q. Since the classical spin-wave Hamiltonian
is quadratic, the partition function and free energy corrections from the classical spin-waves
can be calculated exactly. Assuming the above diagonalization has been performed to find
the normal modes φi(q) and dispersions κν(q), the partition function and free energy are
given by

Z =

∫ [∏
q

8∏
i=1

dφν(q)

]
e−

1
T
(ε0+

1
2

∑
q

∑8
ν=1 κν(q)φν(q)φν(−q)) (3.56)

= e−
ε0
T

∏
q

8∏
ν=1

√
2πT

κν(q)
(3.57)

=⇒ F = ε0 −
T

2

∑
q

8∑
ν=1

ln

(
2πT

κν(q)

)
(3.58)

F = ε0 +
T

2

∑
q

8∑
ν=1

ln(κν(q))−NT ln(2πT ). (3.59)

If there are Nq = Nt = N
4

wavevectors in the sum, then the free energy per spin is:

f =
ε0
N

+
T

8Nq

∑
q

8∑
ν=1

ln(κν(q))− T ln(2πT ). (3.60)

The entropy contribution (per spin) that arises from the thermal fluctuations of these
classical spin-wave modes can be defined as:

s = − 1

8Nq

∑
q

8∑
ν=1

ln(κν(q)). (3.61)

With a focus on the PC spin configurations, note that the above calculation can be
performed for any value (and direction) of the applied magnetic field H and for any of the
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six PC ground states (or their corresponding ground states in a field), just as was the case
with VMFT. As will be discussed in Chapter 4, reentrance can be understood on the basis
of classical spin-waves. However, for completeness, we present a derivation for quantum
spin-waves in Appendix B.
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Chapter 4

Results

4.1 Classical Monte Carlo Results

As an attempt to understand the reentrant behavior of Er2Sn2O7’s phase diagram including
flucutations, classical Monte Carlo simulations were performed by Dr. Ludovic Jaubert.1

Classical Monte Carlo simulations capture the effect of thermal fluctuations in the spin
system, but not of quantum fluctuations. The resulting phase diagram for each of the three
field directions is shown in Figure 4.1, which also displays the experimentally-determined
phase boundary. Immediately, it can be noticed that the classical Monte Carlo simulations
are capable of qualitatively reproducing both which values of H reentrance occurs at, as
well as the resulting increase in Tc at these reentrant lobes. There are three important
conclusions to be drawn from this:

1. Since the reentrant lobes are present in the classical Monte Carlo simulations, we
can turn our focus towards understanding the simulations rather than directly un-
derstanding the experiments. This has the benefit of reducing the complexity to
be considered (i.e. in a real material, as compared to numerical simulations) with-
out, hopefully, compromising too much our general understanding of the underlying
phenomena.

2. Since classical Monte Carlo simulations incorporate the effect of thermal fluctuations
but not of quantum fluctuations, the mechanism behind reentrance can be majorly

1These simulations use a system size of L = 6 or 8 (with N = 16L3 spins). The spins are updated using
a combination of heatbath moves [75], parallel tempering [24], and overrelaxation [24]. 106 or 107 Monte
Carlo steps are used.
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Figure 4.1: Classical Monte Carlo phase boundaries (black) for Er2Sn2O7 under a (a) [100],
(b) [111], and (c) [110] field, as compared with experimental data (red). Black crosses (circles)
represent first-order (second-order) phase transitions. Red rectangles indicate areas where a broad
heat capacity is found. Zn represents the degeneracy of the phase, as explained in the main text.
Note that the H-axis is shared between all three plots. [Figures provided by Ludovic Jaubert.]

understood from classical or thermal arguments. As such, we relegate quantum
methods to Appendix B and focus our attention on classical methods in the main
text, leaving a discussion of possible quantum effects for Chapter 5.

3. The classical Monte Carlo simulations performed here do not include long-range
dipolar interactions, although these are important for stabilizing the Palmer-Chalker
phase in antiferromagnetic pyrochlore systems [18] and could be important in a real
material.2 Hence, it would be of interest to understand how dipolar interactions
could influence the occurrence of reentrance in Er2Sn2O7. Since it is not immediately
clear how dipolar interactions will change the simulation results, we can attempt to
understand the reentrance in the absence of dipolar interactions first and then return
to investigate the influence of them second. As such, we apply our classical methods

2As mentioned in Section 3.2, fitting experimental results to a nearest-neighbor exchange model auto-
matically incorporates the dipolar interaction, but only up to nearest neighbors and no further.
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without the inclusion of dipolar interactions and relegate a discussion of their effects
to the end of this chapter.

4.2 Preliminary Considerations

We analyze the reentrance for the [100], [111], and [110] field directions, in that order.
As seen in Section 4.3, the [100] case is the simplest to understand and introduces the
major mechanism behind reentrance – namely, the apparition of soft modes due to phase
transitions within the ordered PC state (referred to as branch collapse or branch merger
transitions). The [111] and [110] cases mostly build upon this mechanism, with slight
modifications for each.

Recall that the PC states are coplanar antiferromagnetically-ordered configurations, in
which the four spins on a tetrahedron lie within the same plane in a global reference frame.
This produces six PC states, since there are three planes and two possible directions for
the spins to order in under time reversal symmetry. We have denoted these as 〈xy〉, 〈xz〉,
and 〈yz〉, with their time-reversal-symmetric partners 〈xy〉, 〈xz〉, and 〈yz〉, respectively.
Under the application of a magnetic field H , the spins begin to cant out of their original
PC configurations. If one starts with a given PC configuration at zero field, one can study
the evolution of this PC state as the field is turned on. These field-evolved Palmer-Chalker
(FEPC) states will be denoted with a subscript h (e.g. 〈xy〉h). In this way, by treating
each FEPC state individually with our VMFT and classical spin-wave methods, we can
trace the evolution and behavior of each FEPC independently.

The FEPC states also have different symmetries with respect to the applied magnetic
field. If there is no applied field, we expect all six PC states to have the same free energy
but distinct spin configurations; we refer to this as a Z6 degeneracy. On the other hand, if
the applied field is sufficiently strong, all of the six FEPC states will become polarized into
the same configuration. Hence, all six FEPC states will have the same free energy and the
same spin configuration; we refer to this as a Z1 degeneracy. Now suppose (for example)
there is a small applied field along the [100] direction. According to symmetry, this field
direction will split the six FEPC states into two groups: {〈xy〉h, 〈xy〉h 〈xz〉h, 〈xz〉h}, and
{〈yz〉h, 〈yz〉h}. The first group contains all the PC configurations for which H lies in the
same plane as the spins; the second group contains all PC configurations for which H is
perpendicular to the plane of the spins. We know that we have a Z6 degeneracy at zero
field and a Z1 degeneracy at strong fields. But, since the FEPC states are separated by
symmetry into different groups, it is plausible to expect that the system will not directly
transition from a Z6 phase to a Z1 phase as the magnitude of the field increases. Rather,
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the applied field may cause additional transitions between these groups before polarizing all
groups into the same maximally-polarized configuration. We may therefore expect multiple
phase transitions as the magnitude of the applied field is increased. In fact, these branch
merger transitions are precisely what is seen in Figure 4.3, for example.

With this understanding, we proceed with VMFT as follows:

1. For a given field direction, the VMFT procedure outlined in Chapter 3 is performed
for each of the six FEPC states.

2. For given values of the applied field H and temperature T , the free energies of all
six FEPC states are compared.

3. Of those FEPC states which minimize the free energy, the spin configurations are
compared. If there are n resulting FEPC states which minimize the free energy but
have distinct spin configurations, that phase is labelled with a Zn degeneracy. Branch
collapse/merger transitions occur between phases of different discrete symmetry.

4.3 Results for the [100] Field Direction

Consider an applied field along the [100] direction. The resulting VMFT phase diagram
is shown in Figure 4.2a. Note that all six FEPC states are found to minimize the free
energy at any point on the (H,T ) phase diagram. At small values of the applied field H,
there is a Z6 ordered phase with six distinct spin configurations that each minimize the
free energy. As the magnitude of the field is increased, there is a transition to a Z2 ordered
phase. Lastly, strong fields produce a field-polarized paramagnet (FP-PM), denoted by
a Z1 degeneracy since all FEPC states are then in the same spin configuration here. A
diagram representing how these FEPC states change as a function of H at T = 0 is shown
in Figure 4.3.

It is striking to note that the location of the T = 0 phase transition within the ordered
phase, at H = 0.82 T, corresponds well with the location of the reentrant lobe found in
classical Monte Carlo simulations (as seen in Figure 4.2b). As such, we investigate classical
spin-waves at this point. In Figure 4.4, we show the classical spin-wave dispersions for each
of the six FEPC states at H = 0 T (Figure 4.4a) and H = 0.82 T (Figure 4.4b). The shaded
grey region denotes energy scales that lie below the zero-field transition temperature found
within classical Monte Carlo simulations, Tc(H = 0 T) ≡ Tc0 ≈ 160 mK. At H = 0 T, the
minimum of the classical spin-wave dispersions is much greater than the scale set by Tc0.
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Figure 4.2: (a) Variational mean-field theory phase diagram for an applied field H along the
[100] direction. Zn represents the discrete degeneracy of that phase, with black squares indicating
phase transitions. FP-PM stands for field-polarized paramagnet. (b) Classical Monte Carlo
phase diagram for an applied field H along the [100] direction, reproduced from Figure 4.1a for
comparison.

This changes as the field is increased3, until the phase transition at H = 0.82 T occurs.
By this point, the minimum of the classical spin-wave dispersion is much lower than the
scale set by Tc0. In fact, since the minimum of the dispersion is zero, we can consider these
to be soft mode fluctuations within the system.

The classical spin-wave dispersions roughly quantify the ease of exciting thermal fluctu-
ations within (and increasing the entropy of) the system. To see this, consider Eq. (3.58).
Comparing this to the usual expression for the free energy, F = U−TS (for internal energy
U and entropy S), we see that the classical spin-wave contribution to the entropy roughly

scales as S ∼ ln
(

T
κν(q)

)
, for a given ν and q. The natural temperature scale T to consider

is T = Tc0 ≈ 160 mK, since reentrance usually involves thermal fluctuations increasing

3More detail about how the dispersions change as H is increased is given in Appendix C.
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Figure 4.3: Zero-temperature diagram of the branch collapse of FEPC states in a [100] field.
Notation for the FEPC states is defined in the main text. Zn represents the degeneracy of
FEPC states at that field value. Vertical dashed lines represent transitions between phases of
different discrete degeneracy at the listed critical field values. FP-PM stands for field-polarized
paramagnet.

Tc(H) beyond Tc0. When κν(q) < Tc0 (e.g. at H = 0.82 T), S ∼ ln
(

T
κν(q)

)
implies that

there is an increased entropy contribution from the classical spin-waves relative to when
κν(q) > Tc0 (e.g. at H = 0 T). Hence, comparing the H = 0 T dispersions in Figure
4.4a with the H = 0.82 T dispersions in Figure 4.4b allows us to conclude that it is much
easier to excite thermal fluctuations within the system at H = 0.82 T than at H = 0 T.
This means that there are stronger thermal fluctuations at H = 0.82 T, which increase the
entropy of the system and thus decrease its free energy. Therefore, the apparition of these
soft mode fluctuations entropically stabilize the ordered phase and increase Tc(H = 0.82 T)
relative to Tc0. We thus argue that these soft modes are the main drivers of the reentrance
observed in the Monte Carlo simulations.4 The origin of these soft modes lies in the mul-
tiphase competition that results when the Z6 phase is brought into competition with the

4Not shown here are the classical spin-wave dispersions as the field approaches H = 0.82 T from below.
As this happens, the minimum of the dispersion gradually decreases and dips below Tc0, reaching its
minimum at H = 0.82 T when reentrance is at its apex. Thus, the overall lobe shape of the reentrance in
the phase diagram of Figure 4.2b originates from this gradual decrease in the dispersion minimum. This
is discussed in more detail in Appendix C.
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Figure 4.4: Classical spin-wave expansion at (a) H = 0 T (for comparison) and (b) H = 0.82 T,
in the [100] direction. Wavevectors are taken from the FCC reciprocal lattice. The grey shaded
region represents energy scales below Tc0 ≈ 160 mK. Note that dispersions may overlap due to
degeneracies at high-symmetry points or from mergers of FEPC states induced by the field (e.g.
〈xy〉h and 〈xy〉h for H ≥ 0.82 T).

Z2 phase as the field is increased.5 Generally, this tells us that as the dispersions κν(q)

5One may generally consider these stronger fluctuations to be coming from proximity to a phase tran-
sition. More specifically, the spins will fluctuate more strongly here since they are on the edge of two
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(and their minima) decrease with increasing H, we can expect stronger thermal fluctua-
tions in our system and an increased entropy of the ordered phase. This is an important
recurring theme for explaining reentrance in Sections 4.4 and 4.5 (as well as in Appendix
C), although the reason for κν(q) decreasing may differ.

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4.5: Entropy correction s (per spin, from Eq. (3.61)) to the mean-field free energy due
to thermal fluctuations from classical spin-waves, for H applied along the [100] direction. Note
that the curves for {〈xy〉h, 〈xz〉h, 〈xy〉h, 〈xz〉h} all overlap with each other, and the curves for
{〈yz〉h, 〈yz〉h} overlap as well. However, these two groups are plotted with different markers to
show that there is no overlap between the two groups for H < 0.82 T, as expected by symmetry
under a [100] field.

Furthermore, one can calculate the thermal fluctuation corrections to the mean-field
free energy, which does not incorporate themal fluctuations. This is especially of interest
for the low-field ordered phase. VMFT finds a Z6 degeneracy here, but a Z6 degeneracy is
not protected by symmetry. In fact, a [100] field splits the six FEPC states into two groups:
{〈xy〉h, 〈xz〉h, 〈xy〉h, 〈xz〉h} (in which the applied field lies in the same plane as the original
PC states) and {〈yz〉h, 〈yz〉h} (in which the applied field lies perpendicular to the plane

preferred spin orderings.
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of the original PC states). Since this degeneracy is not protected by symmetry, thermal
fluctuations are expected to produce an order-by-thermal-disorder effect and entropically
favor one of the two groups. To determine this selection, Eq. (3.61) can be used to calculate
the entropy of the six FEPC states. Calculating s from Eq. (3.61) for each of the six FEPC
states individually and for a range of H values in the [100] direction produces Figure 4.5.6

Note that the group of FEPC states {〈xy〉h, 〈xz〉h, 〈xy〉h, 〈xz〉h} are depicted with different
markers than {〈yz〉h, 〈yz〉h} to verify that the two groups have different entropic corrections
for H < 0.82 T, as expected from symmetry. Moreover, the group of FEPC states that has
the higher entropy is {〈xy〉h, 〈xz〉h, 〈xy〉h, 〈xz〉h}, so thermal fluctuations entropically select
this subset of the original six FEPC states. Hence, when thermal fluctuation corrections
are added to VMFT, the Z6 degeneracy of the VMFT phase diagram should give way to
a Z4 degeneracy.

Let us return to the classical Monte Carlo results in a [100] field, namely Figure 4.2b.
As found in VMFT, there are two ordered phases with different discrete degeneracies. As
well, at low fields, thermal fluctuations indeed select a Z4 subset of ordered FEPC states
out of the original Z6 mean-field FEPC states. The T = 0 transition at H = 0.82 T
corresponds well with the maximum of reentrance. Therefore, one can roughly conclude
that building upon the VMFT results with thermal fluctuations from classical spin-waves
produces reentrance, as exhibited by classical Monte Carlo simulations. This suggests
that the reentrant mechanism operates as follows: strong thermal fluctuations arise in the
form of soft modes in the classical spin-waves, originating from the transition between
two ordered PC phases of different discrete symmetry. These strong thermal fluctuations
entropically stabilize the ordered phase, giving an entropic advantage of the ordered phase
over the disordered phase. This leads to an increase in Tc as H increases through certain
ranges of values, producing reentrance.

4.4 Results for the [111] Field Direction

Now consider an applied field along the [111] direction. The resulting VMFT phase diagram
is shown in Figure 4.6a. As for the [100] field direction, all six FEPC states are found to
minimize the free energy at any given point in the (H,T ) phase diagram. Comparing
Figure 4.6a with the classical Monte Carlo results in Figure 4.6b, we see that classical

6Note that there are negative values of s in Figure 4.5 due to the definition of the entropy correction s
in Eq. (3.61). However, what matters is the relative entropy between the FEPC states shown in Figure
4.5. If one calculated the full entropy S from Eq. (3.58) rather than just taking the contribution from
classical spin-waves, the resulting S would be positive.
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Figure 4.6: (a) Variational mean-field theory phase diagram for an applied field H along the
[111] direction. Zn represents the discrete degeneracy of that phase, with black squares indicating
phase transitions. FP-PM stands for field-polarized paramagnet. (b) Classical Monte Carlo
phase diagram for an applied field H along the [111] direction, reproduced from Figure 4.1b for
comparison.

Monte Carlo simulations show a slight reentrant lobe near H = 1.31 T, which corresponds
with the T = 0 transition found within VMFT at H = 1.31 T.7 Figure 4.7 shows how
all FEPC states evolve and merge at T = 0 as a function of H, and Figure 4.8 shows
that soft modes emerge at this T = 0 transition. This is analogous to the situation for
H ‖ [100]. However, both the experimental and classical Monte Carlo phase diagrams
exhibit a lower reentrant lobe around H = 0.4 T, for which there is no corresponding
T = 0 phase transition in the VMFT phase diagram. Hence, the suggestion of a branch
merger transition giving soft modes (as put forward for the [100] field direction) does not
apply here. An alternative suggestion must be given to understand this occurrence of
reentrance.

7Unfortunately, it was not possible to probe the heat capacity at such high fields experimentally. In
principle, however, a second reentrant lobe at higher fields might be expected.
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Figure 4.7: Zero-temperature diagram of the branch collapse of FEPC states in a [111] field.
The notation for the FEPC states is defined in the main text. Zn represents the degeneracy of
FEPC states at that field value. The grey vertical dashed line represents a transition between
phases of different discrete degeneracy at the listed critical field value. The blue vertical dashed
line represents the field-induced selection of the (subdominant) ψ2 order parameter.

Let us return to the classical Monte Carlo results shown in Figure 4.6b, specifically
focusing on the Z3 ordered phase around H ≈ 0.5 T that is associated with the lower
reentrant lobe. This is still a PC phase, but there is a finite but subdominant Γ5 order
parameter that also exists. The reason for this is the canting of the spins out of their PC
configurations as the applied field H is varied. When H = 0, the spin configurations are
in pure PC configurations, and the order parameters for all other possible q = 0 orders
[24] are zero. As H increases, the spins canting away from the pure PC configurations
implies that other order parameters become finite. If these order parameters are smaller
than that of the PC phase, however, these orders can be considered “subdominant”. It
seems likely that the finite Γ5 order parameter found in classical Monte Carlo simulations
arises due to Er2Sn2O7’s proximity to this phase, as mentioned in Chapter 2. Specifically
for a field along the [111] direction, the lower reentrant lobe possesses a subdominant
ψ2 order. The classical spin-wave dispersions are calculated and shown in Figure 4.9 for
H = 0.54 T, which lies in this lower reentrant region and therefore acts as a proxy for how
the classical spin-waves behave here. Figure 4.9 demonstrates that κν(q) < Tc0 for a range
of q. Therefore, although there is no T = 0 branch collapse transition that gives rise to
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Figure 4.8: Classical spin-wave expansion for each of the FEPC states at H = 1.31 T in
the [111] direction. Wavevectors are taken from the FCC reciprocal lattice. The grey shaded
region represents energy scales below Tc0 ≈ 160 mK. Note that dispersions may overlap due to
degeneracies at high-symmetry points or from mergers of FEPC states induced by the field (e.g.
〈xy〉h and 〈xy〉h for H ≥ 1.31 T).

these lowered dispersions as in the [100] case, we can still attribute the stronger thermal
fluctuations and increased Tc to the fact that the dispersions κν(q) have decreased below
Tc0. This follows from the argument given in Section 4.3 (and slightly expanded on in
Appendix C) relating the behavior of the dispersion relations to the increase or decrease
of entropy and thermal fluctuations.

The origin of these decreased dispersions κν(q) remains to be determined, though they
are clearly connected with the ψ2 phase (as it is a subdominant ψ2 order parameter that
is found where reentrance occurs). As discussed in Chapters 1 and 2, the selection of
ψ2 or ψ3 ordering within the Γ5 phase is usually argued to occur based on thermal or
quantum order-by-disorder. However, it has been demonstrated on symmetry grounds
that an applied magnetic field H may also create an energetic preference for one or the
other [76]. For XY pyrochlore antiferromagnets at T = 0, it was shown that an applied
field H ‖ [001] contributes

E[001] ∝ H2 cos (2θE) (4.1)

to the energy minimization condition of θE. This differentiates between ψ2 selection (θE =
nπ
3
, n = 0, 1, . . . , 5, shown in Figure 2.6b) and ψ3 selection (θE = (2n+1)π

6
, n = 0, 1, . . . , 5,
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Figure 4.9: Classical spin-wave expansion for each of the FEPC states at H = 0.54 T in
the [111] direction. Wavevectors are taken from the FCC reciprocal lattice. The grey shaded
region represents energy scales below Tc0 ≈ 160 mK. Note that dispersions may overlap due to
degeneracies at high-symmetry points or from mergers of FEPC states induced by the field (e.g.
〈xy〉h and 〈xy〉h for H ≥ 1.31 T).

shown in Figure 2.6a), as discussed in Chapter 2.8 On the other hand, an applied field
H ‖ [110] contributes

E[110] ∝ H2 cos (2θE) (4.2)

as well. The proportionality constants depend on the exchange parameters of the system.
However, if E ∼ H2 cos(2θE), then turning on a field will give an energetic preference for
θE = π

2
, 3π

2
, which corresponds to ψ3 selection minimizing the energy. On the other hand, if

E ∼ −H2 cos(2θE), then turning on a field will give an energetic preference for θE = 0, π,
which corresponds to ψ2 selection minimizing the energy. In either case, the selection is
unilateral: either ψ2 or ψ3 is energetically preferred.

The [111] field direction constitutes a special case. On symmetry grounds, two contri-

butions to the energy (which we call E
[111]
1 and E

[111]
2 ) are found:

E
[111]
1 ∝ H2 cos(6θE), (4.3)

8Note that thermal or quantum order-by-disorder also operate to select between ψ2 and ψ3, contributing
terms that enter as cos(6θE). However, as we focus on classical spins, we do not consider the effect of
quantum fluctuations on this selection. And, as we focus on T = 0 or on VMFT results, we neglect the
effect of thermal fluctuations as well.
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E
[111]
2 ∝ H3 cos(3θE). (4.4)

For a field along the [111] direction, the selection may no longer be unilateral. For small
values of H, the first of the above two terms dominates, selecting ψ2 or ψ3 depending
on the proportionality constant (negative or positive constant, respectively). For large
values of H, the second term dominates and may again select ψ2 or ψ3 depending on the
proportionality constant (negative or positive constant, respectively). For intermediate
values of H, there may be a competition for selection. This explains the change in ψ2 or
ψ3 selection shown in Figure 4.10 and discussed in the next paragraph.

This selection effect does not rely on thermal fluctuations or even temperature, but
originates purely from the application of an applied field H . Hence, it should be visible
in both VMFT (which has an applied field H but no thermal fluctuations) and at T = 0.
Guided by this insight, θE is calculated for each of the FEPC states as a function of H ‖
[111] and at T = 0. This is done by using Eq. (2.29) to calculate mE = (cos(θE), sin(θE))
for a FEPC configuration (S0,S1,S2,S3) on a single tetrahedron, implying that θE =

arctan
(
myE
mxE

)
. Figure 4.10 displays the resulting angle θE for each of the six FEPC states as

a function of the applied field H. At low (high) values of H, the values of θE correspond to
ψ3 (ψ2) states. At around H = 0.54 T, there is a strong selection of an angle corresponding
to ψ2 for all FEPC states.9 This is precisely where the classical spin-wave dispersions
decrease below Tc0.

10

Altogether, then, we may conclude the following: an applied field along the [111] direc-
tion influences the selection of ψ2 or ψ3 ordering within the Γ5 phase, even if such ordering
is subdominant to PC ordering. At intermediate fields, a strong ψ2 selection occurs. Given
Er2Sn2O7’s proximity to the ψ2 phase boundary, this is associated with strong thermal
fluctuations arising from the PC/ψ2 multiphase competition. The classical spin-wave dis-
persions also witness to this fact by decreasing below Tc0 as the field-induced ψ2 selection
occurs. As argued in Section 4.3, having κν(q) < Tc0 results in thermal fluctuations in-
creasing the entropy within the ordered phase. Hence, just as in the [100] case, these
strong thermal fluctuations entropically stabilize the ordered phase and cause reentrance.
However, the difference from the [100] case comes from the origin of these strong ther-
mal fluctuations. It is not two PC phases of different degeneracy that are brought into
competition by the field; in a [111] field, it is PC/ψ2 competition that the applied field

9This is another reason why we plot the classical spin-wave dispersions for H = 0.54 T in Figure 4.9.
10Note that κν(q) < Tc0 for a range of values of H and not just at H = 0.54 T. As explained in Appendix

C, this is why reentrance occurs across a range of H values. However, the point we make here is the reason
for κν(q) < Tc0 at all – namely, proximity to the field-induced selection of ψ2 at H = 0.54 T, similar to
proximity to a branch collapse transition as in Section 4.3 and Appendix C.
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Figure 4.10: θE angle determining ψ2 (θE = nπ
3 , n = 0, 1, . . . , 5) or ψ3 (θE = (2n+1)π

6 , n =
0, 1, . . . , 5) selection, as a function of H along the [111] direction and for each of the six FEPC
states. Each red curve represents θE (as a function of H) for a different FEPC state. θE is
calculated as explained in the main text. Note the selection of θE at H = 0.54 T for all six FEPC
states corresponds to ψ2. [Figure provided by Ludovic Jaubert.]

introduces.

4.5 Results for the [110] Field Direction

Next, consider an applied field along the [110] direction. Unlike the [100] and [111] field
directions, the six FEPC states do not all minimize the free energy at any given point in
the (H,T ) phase diagram. This makes the [110] field direction the most complex case out
of the three field directions. Care must be taken to determine the discrete degeneracy of
each phase in this case; we must first determine which of the FEPC states minimize the
free energy, and then count which of these have distinct spin configurations. Doing this
produces the VMFT phase diagram in Figure 4.11a, and the T = 0 diagram of FEPC
mergers shown in Figure 4.12. Since we are building classical spin-waves on top of the
T = 0 ground state configurations, we focus on Figure 4.12. This shows us the branch
collapse transitions, which we have seen (in the [100] and [111] cases) can be linked with
the occurrence of reentrance. Figure 4.12 also shows us which FEPC states minimize the
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Figure 4.11: (a) Variational mean-field theory phase diagram for an applied field H along the
[110] direction. Zn represents the discrete degeneracy of that phase, with black squares indicating
phase transitions. Open red squares represent a change in which FEPC states minimize the free
energy. FP-PM stands for field-polarized paramagnet; PC stands for Palmer-Chalker. Note that
the finite-temperature phases differ from the zero-temperature phases shown in Figure 4.12 due
to entropic effects, as explained in Appendix D. (b) Classical Monte Carlo phase diagram for an
applied field H along the [110] direction, reproduced from Figure 4.1c for comparison.

energy, which will be important in interpreting the classical spin-wave results.11

Let us turn to the classical Monte Carlo results, namely Figure 4.11b. There are three
features that need to be understood, namely, the two reentrant lobes as well as the sudden
dip in Tc that occurs between them. An initial understanding of all three features is given
by again having recourse to classical spin-wave dispersions. These dispersions are shown
in Figures 4.13 and 4.14 for three different values of the applied field: H = 0.41 T (Figure

11Note also that, in Figure 4.11a, the phases that occur along T = 0 differ from those that occur at finite
temperature, even T = 0+. The reason for this is discussed in Appendix D. However, as mentioned in the
main text, we focus on the branch collapse transitions that occur at T = 0, since it is with the T = 0 spin
configurations that we calculate the classical spin-wave dispersions.
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Figure 4.12: Zero-temperature diagram of the branch collapse of FEPC states in a [110] field.
Notation for the FEPC states is defined in the main text. Zn represents the degeneracy of FEPC
states at that field value, which counts only the FEPC states that minimize the energy (solid
branches) and not those which do not (dotted branches). The grey vertical dashed line represents
a transition between phases of different discrete degeneracy at the listed critical field value. The
red vertical dashed lines represent a change in which FEPC states minimize the energy. Note
that these changes always occur where certain FEPC branches merge.

4.13a), H = 0.42 T (Figure 4.13b), and H = 0.75 T (Figure 4.14). We examine each of
these in turn.

At H = 0.41 T in Figure 4.13a, we again have dispersions satisfying κν(q) < Tc0.
Following the same arguments as in Section 4.3 and Appendix C, this implies the presence
of strong thermal fluctuations that are associated with the first (lower) reentrant lobe.
Looking at the T = 0 transitions in Figure 4.12, the reason why the classical spin-wave
dispersions have decreased below Tc0 is again the proximity to a FEPC branch collapse
transition (at H = 0.42 T).12 As in the [100] case discussed in Section 4.3 and Appendix C,
proximity to such a transition increases the fluctuations in the system, given that there are
multiple competing preferences for spin ordering near this transition. However, as the field

12As discussed further in Appendix C, the onset of reentrance begins even below the branch collapse
transition, since proximity to the transition already leads to an increase in thermal fluctuations. Hence,
even though H = 0.41 T is a field value below the critical field Hc = 0.42 T for a branch collapse transition,
reentrant behavior may still be found at H = 0.41 T.
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Figure 4.13: Classical spin-wave expansion at (a) H = 0.41 T and (b) H = 0.42 T, in the [110]
direction. Only those field-evolved Palmer-Chalker states which minimize the energy are consid-
ered. Wavevectors are taken from the FCC reciprocal lattice. The grey shaded region represents
energy scales below Tc0 ≈ 160 mK. Note that dispersions may overlap due to degeneracies at
high-symmetry points or from mergers of FEPC states induced by the field (e.g. 〈xy〉h, 〈xz〉h,
and 〈xy〉h for H ≥ 0.57 T).

is increased further to H = 0.42 T, the FEPC states that are contributing these strong
thermal fluctuations (namely, 〈xz〉h and 〈yz〉h) are no longer energetically preferred states,
as shown in Figure 4.12. That is, these FEPC states no longer minimize the energy, and
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the system will not find itself in these FEPC states anymore. Since the system will not be
found in such states, their contribution to the classical spin-wave dispersions and thermal
fluctuations should no longer be considered.13 The resulting classical spin-wave dispersions
are shown in Figure 4.13b, where the classical spin-wave dispersions of only the energy-
minimizing FEPC states are shown. The dispersions corresponding to the 〈xz〉h and 〈yz〉h
states are therefore no longer included. The entropy that their dispersions provided at
H < 0.41 T is no longer present, which causes the sudden dip in Tc that occurs right above
the first reentrant lobe.

Lastly, we again see classical spin-wave dispersions satisfying κν(q) < Tc0 appearing
around H = 0.75 T (Figure 4.14), corresponding to the second (upper) reentrant lobe.
Looking at the T = 0 transitions in Figure 4.12, we see that there are two FEPC branch
collapse transitions proximate to H = 0.75 T – one which occurs below 0.75 T (at H ≈ 0.52
T) and one which occurs above 0.75 T (atH ≈ 1.12 T). As argued in Appendix C, proximity
to these phase transitions again cause the classical spin-wave dispersions to drop below Tc0.
This increases thermal fluctuations and gives rise to reentrance. Hence, all three features
of the classical Monte Carlo phase diagram can be understood from analyzing the behavior
of the classical spin-wave dispersions. These again originate from FEPC branch collapse
transitions. However, the situation for the [110] field direction is more complicated than
that of the [100] field direction because of the changing energy degeneracy of the FEPC
states.

4.6 Influence of Long-Range Dipolar Interactions

Finally, we consider the influence of long-range dipolar interactions on the above phase
diagrams and arguments for reentrance. Since these interactions are long-ranged, it is
not immediately obvious what influence they may have on the phases or phase diagram.
Throughout this chapter and until this section, we applied the VMFT scheme of Section 3.1
to the nearest-neighbor exchange model defined in Section 2.2. However, the VMFT scheme
of Section 3.1 is derived for arbitrary interactions Jµνia,jb (specifically in Eq. (3.2)), not
necessarily restricted to nearest neighbors. Hence, including long-range dipolar interactions
into VMFT means including both the nearest-neighbor exchange interactions from Section
2.2 and the long-range dipolar interactions from Section 2.4 into Jµνia,jb. As explained in
Section 3.2, the long-range dipolar interactions can be calculated and included in Jµνia,jb by
using the Ewald summation method. Apart from modifying Jµνia,jb to include the long-range

13Put simply, these states cannot contribute thermal fluctuations to the system, if the system is not
found in these states.
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Figure 4.14: Classical spin-wave expansion at H = 0.75 T in the [110] direction. Only those
field-evolved Palmer-Chalker states which minimize the energy are shown. Wavevectors are taken
from the FCC reciprocal lattice. The grey shaded region represents energy scales below Tc0 ≈ 160
mK. Note that dispersions may overlap due to degeneracies at high-symmetry points or from
mergers of FEPC states induced by the field (e.g. 〈xy〉h, 〈xz〉h, and 〈xy〉h for H ≥ 0.57 T).

dipolar interactions, there are no modifications to how VMFT is performed and how the
resulting phase diagrams are produced. In particular, the self-consistent VMFT procedure
outlined in Section 3.1 is the same, as are the ways of determining and labelling the Zn–
degenerate phases outlined in Section 4.2. The resulting VMFT phase diagrams for the
[100], [111], and [110] field directions are shown in Figure 4.15.

The critical temperatures and fields of the phase transitions are slightly modified by
long-range dipolar interactions. However, the overall topology of the phase diagram (i.e.
which phases and phase transitions exist and where they occur on the phase diagram rela-
tive to each other) remains unchanged. This suggests that the same arguments that were
made for reentrance without dipolar interactions should be robust when dipolar interac-
tions are included. Given that the critical temperatures and fields are modified, a proper
accounting of the dipolar interactions would be important to achieve greater agreement
with experiment.14

14As discussed further in Chapter 5, a proper accounting of quantum effects would also be important
for achieving greater agreement between theory and experiment.
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Figure 4.15: Variational mean-field theory phase diagram for an applied field H along the (a)
[100], (b) [111], and (c) [110] directions, including long-range dipolar interactions. Zn represents
the discrete degeneracy of that phase, with black squares indicating phase transitions. Red
squares represent a change in which FEPC states minimize the free energy. FP-PM stands for
field-polarized paramagnet; PC stands for Palmer-Chalker.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we found that single crystals of Er2Sn2O7 display multiple reentrant phe-
nomena under an applied magnetic field H . Reentrance occurs for applied fields along the
[100], [110], and [111] directions. In all three cases, this reentrant behavior is captured by
classical Monte Carlo simulations. There is not precise agreement between experiments
and simulations for the critical fields, critical temperatures, and locations of reentrance;
however, the ability of classical Monte Carlo simulations to qualitatively capture the loca-
tions of the reentrant lobes motivated us to look into thermal fluctuations as the origin
of reentrance. Using a combination of mean-field theory and classical spin-wave expan-
sions, it was shown that the microscopic origin of reentrance is multiphase competition.
In particular, this could happen in two ways: (1) multiphase competition induced by the
applied field H , as it brought two PC phases into proximity with one another, or (2)
multiphase competition from Er2Sn2O7’s proximity to the ψ2 phase in its zero-field phase
diagram. Regardless of which mechanism gives rise to multiphase competition, the result
is the same: strong thermal fluctuations arise in the form of soft modes in the classical
spin-waves. These strong thermal fluctuations entropically stabilize the ordered phase,
giving a free-energy advantage of the ordered phase over the disordered phase. This leads
to an increase in Tc as H increases through certain ranges of values. On the grounds of
mean-field theory, it was argued that long-range dipolar interactions would not change this
explanation of reentrance.
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5.2 Future Work

There are a number of questions and new avenues of exploration that this work opens up,
both with Er2Sn2O7 and beyond.

Firstly, it is striking that simulations and experiments are able to reach such a level of
agreement. The exchange parameters used for Er2Sn2O7 are based on previous experiments
on powder samples [48, 49], which are not expected to be as accurate as exchange parame-
ters drawn from single crystal experiments. It is of immediate interest to use conventional
methods (e.g. spin-wave fits to inelastic neutron scattering data [5, 33]) to establish more
precise values of the exchange parameters. This, combined with an inclusion of long-
range dipolar interactions in classical Monte Carlo simulations, may lead to much stronger
and more quantitative agreement between simulations and experiment. It would also allow
more precise theoretical modelling of the behavior of Er2Sn2O7, such as the role of quantum
fluctuations in the zero- or low-field states (to be discussed further below). Nevertheless,
the microscopic mechanism proposed to explain reentrance in this thesis is expected to be
robust against changes in the exchange parameters.

Secondly, it is interesting to contrast reentrance in Er2Sn2O7 with reentrance in Yb2Ti2O7.
In the latter compound, reentrance was originally found experimentally under an applied
field along the [111] direction [34]. The failure of classical Monte Carlo simulations to cap-
ture this reentrant behavior led to the conclusion that either long-range dipolar interactions
(not included in the simulations) or quantum fluctuations are the origin of reentrance [34].
Exact diagonalization methods confirmed quantum fluctuations as the underlying mecha-
nism [43], which is expected to be the same mechanism for the reentrance that was later
found along the [110] direction [35]. At first glance, it may seem surprising that our expla-
nation for reentrance in Er2Sn2O7 comes from thermal fluctuations. Er2Sn2O7 is suspected
to experience strong quantum fluctuations, likely enhanced by its proximity to a zero-field
phase boundary (as is also suspected for Yb2Ti2O7) [5, 24]. This observation alone warrants
an investigation into the role that quantum fluctuations play in the (H,T ) phase diagram
of Er2Sn2O7; more accurate exchange parameters would greatly aid this exploration. This
would also help generate a greater quantitative agreement between theory and experiment
for Er2Sn2O7’s (H,T ) phase boundary. This may be especially true at zero- and low-field
values, where the discrepancy between Tc from experiments and classical Monte Carlo sim-
ulations is significant and likely due to quantum fluctuations. However, there are further
reasons to investigate the role of quantum fluctuations in the zero- or low-field behavior
of Er2Sn2O7. In the case of Yb2Ti2O7, Tc begins to increase as soon as the applied field
is turned on [34]. This is consistent with quantum fluctuations being the origin of reen-
trance, since they are suppressed as soon as the field is turned on, allowing Tc to increase
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immediately. In classical Monte Carlo simulations on Er2Sn2O7, as shown in Figure 4.1,
this is clearly not the case: Tc either decreases or remains approximately the same in most
regions below the reentrant lobes. However, the experimental data for Er2Sn2O7 is less
clear cut at the lowest field values. Given that the heat capacity signatures are broad, it
may be possible that Tc is increasing as soon as H turns on in these experiments. This
may be a signature of the suppression of strong quantum fluctuations by a field, as seen
in Yb2Ti2O7. Even though thermal fluctuations eventually overpower quantum fluctua-
tions (as evidenced by classical Monte Carlo simulations capturing reentrance), it would
be of interest to explore how quantum fluctuations are operating near criticality (i.e. the
disordered-to-ordered phase transition) for small values of H.

Moving beyond Er2Sn2O7, it is clear that our microscopic mechanism for reentrance
may apply to other magnetic materials. Some of the relevant ingredients would be multi-
ple phase transitions under an applied magnetic field and within the ordered phase, with
stronger thermal flucutations at these phase transitions than are available in zero field.
The simplest place to look for this is another pyrochlore magnet with a PC ground state,
since some of the reentrant lobes in Er2Sn2O7 merely result from Er2Sn2O7’s PC ground
state. In this regard, one may consider investigating Gd2Sn2O7 under an applied magnetic
field. The synthesis method discussed in Chapter 1 allows single crystals of Gd2Sn2O7 to
be grown, and it has already been mentioned that Gd2Sn2O7 orders into the PC state. As
such, one may expect to find a reentrant (H,T ) phase diagram experimentally. Another
case of interest is the cousin material to Gd2Sn2O7, namely, Gd2Ti2O7. As mentioned in
Chapter 1, despite also being a pyrochlore Heisenberg antiferromagnet with non-negligible
long-range dipolar interactions like Gd2Sn2O7, Gd2Ti2O7 instead orders into a partially-
disordered phase. Yet, heat capacity measurements on Gd2Ti2O7 [50] have already estab-
lished reentrant (H,T ) phase diagrams along the [111] and [110] field directions, as shown
in Figure 5.1. It is striking to note that reentrance occurs whenever there is a correspond-
ing zero-temperature transition for some critical field value Hc. Moreover, in a [112] field,
there is no zero-temperature transition and no reentrant behavior. It is therefore likely
that the mechanism proposed to explain reentrance in this thesis may also help explain
reentrance in Gd2Ti2O7, even if Gd2Ti2O7 does not have a PC ground state. As well,
previous studies on reentrant spin glasses [54] have indicated that partial disorder can be
an important ingredient for reentrance. As mentioned in Section 1.3, Gd2Ti2O7 orders into
a partially-disordered phase. Gd2Ti2O7 would therefore be interesting to study in order
to determine the interplay between partial disorder and zero-temperature transitions as
concerns reentrance. Lastly, one may look beyond pyrochlore magnets altogether. Frus-
trated magnets in general may have multiple phase transitions under an applied magnetic
field, given the competition between exchange and Zeeman energy scales. Another place
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to look may thus be triangular-lattice-based antiferromagnets. For example, recent ac
susceptibility and heat capacity measurements on Ba2La2MnW2O12 [77] find a crude reen-
trant phase boundary with a corresponding transition at zero temperature and finite field,
as shown in Figure 5.2. It is likely that strong thermal fluctuations originating from the
zero-temperature transition are the cause of the finite-temperature reentrance.

Figure 5.1: Phase diagram of Gd2Ti2O7 under applied magnetic fields in the [111], [112], and
[110] directions, as determined by specific heat measurements. Reprinted figure with permission
from Petrenko et al., Phys. Rev. B 70, 012402 (2004). Copyright 2020 by the American Physical
Society.

Lastly, it should be noted that reentrance is a ubiquitous phenomena that occurs beyond
magnetism. There are examples of reentrance occuring in liquid mixtures [55], liquid
crystals [58], superconductors [59], graphene [57], and protein systems [60]. The mechanism
of reentrance for Er2Sn2O7 may not apply to these systems. However, it is clear that our
efforts to understand the microscopic origins of reentrance for Er2Sn2O7 has given us a
better understanding of the physical ingredients at play within it, as well as a broader
understanding of important ingredients in the behavior of other magnetic materials. Our
work therefore serves as a motivation to uncover the microscopic mechanism for reentrance
in other systems, which may yield similar benefits.
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Figure 5.2: Phase diagram of Ba2La2MnW2O12, as determined by heat capacity measurements
(green triangle), temperature derivatives of the ac susceptibility (red squares), and field derivatives
of the ac susceptibility (blue squares). Reprinted figure with permission from Rawl et al., Phys.
Rev. B 95, 174438 (2017). Copyright 2020 by the American Physical Society.
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PART II –
Machine Learning of Quenched
Gauge Symmetries
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Chapter 6

Introduction

6.1 Machine Learning and Condensed Matter Physics

Machine learning refers to a set of techniques that are able to identify and characterize
patterns in datasets, with or without information from the user. These techniques are
incredibly useful in the field of physics, such as for the purpose of analyzing experimental
data [78–80] or more deeply exploring connections between various areas of statistical
mechanics [80–82]. In general, the intersection of machine learning and physics is promising
because of the mathematical models that underlie the behavior of physical systems. This
is especially true for the field of condensed matter physics, where systems with a large
number of constituent particles behave according to the laws of statistical mechanics [80–
82]. Although machine learning was applied to condensed matter and materials physics
before [83–85], the application of machine learning to condensed matter physics rose to
prominence with two seminal papers on the Ising model [86, 87]. These demonstrated the
capabilities of various types of machine learning methods for identifying thermodynamic
properties such as critical temperatures and order parameters. A number of machine
learning techniques have been applied to a variety of systems since then. The techniques
can roughly be categorized as (i) supervised (where input from the user is given to the
machine to assist it in learning underlying patterns) [88–101], (ii) unsupervised (where
the machine determines its own classification scheme for the data without any assistance)
[99–106], and (iii) reinforcement (where the machine attempts to learn a course of action
that will maximize some reward) [107, 108]. The applications of these techniques have been
similarly broad, such as using reinforcement learning to generate loop moves in Monte Carlo
simulations [107], detecting hidden order parameters in frustrated spin systems [90, 92],
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learning topological phases and defects [91], or identifying phase transitions in many-body
localized systems [89].

Despite the range of techniques available and the variety of systems studied, the ma-
jor thrust of machine learning applications to condensed matter physics has remained
unchanged: the identification of phases, phase transitions, and thermodynamic character-
istics such as order parameters. Given that machine learning is able to learn underlying
patterns from the simulated models, one may ask if it is possible to go beyond learning
thermodynamic quantities. In particular, one may ask: is it possible for machine learning
to provide insight into hidden or unknown properties of the model? Such an idea is cer-
tainly plausible; the simulated models are mathematical in nature, and machine learning
seems capable of understanding mathematical patterns.1 Such an idea may also be useful
for further machine learning applications. Many such applications have benefitted from
exploiting symmetries of the system, such as (for example) using translational symmetry
and locality to support convolutional neural networks [86] or employing symmetry breaking
to assist in order parameter identification [90, 92, 94]. If machine learning is capable of
providing insight into the simulated model, then in a similar vein, this information could
potentially supplement other machine learning techniques to make their learning more
powerful or efficient.

6.2 Motivation and Outline

In this thesis, we explore the question posed above – namely, whether machine learning
techniques can provide insight into properties of a model itself with little or no assistance.
In order to explore this question, we first require appropriate models to study. Models
possessing gauge symmetries are excellent candidates, as they may seem complex but are
simplified by a controlled mathematical transformation. We choose to study the Mattis
Ising spin glass (MISG) and Mattis XY gauge glass (MXYGG) models [111, 112]. These
models possess random bond interactions in their Hamiltonians that make an analytical
approach seem intractable or significantly complicated. However, under a suitable gauge
transformation2, these two models can be mapped onto the ferromagnetic Ising and XY
models. In this manner, the MISG and MXYGG models are prime candidates for our
proposed exploration. With these models in hand, our main question can be rephrased as:
is machine learning capable of determining that the MISG and MXYGG models are simply

1This is suggested insofar as machine learning shares deep and rich connections with the mathematics
of statistical physics [80, 81, 109, 110].

2This suitable gauge transformation is described in Chapter 7.
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“disguised” versions of the ferromagnetic Ising and XY models – without being given
any information about this hidden underlying equivalence? In other words, can machine
learning determine the (quenched) gauge transformation that maps the disordered models
onto their ferromagnetic counterparts?

With the appropriate models in one hand, we secondly require a suitable machine
learning technique in the other. Since we would like to determine if machine learning can
provide insights into our models without prior information, we require an unsupervised
machine learning technique. As well, to determine if this technique can learn the gauge
symmetries of our model, we require a technique whose classification scheme for the data
can be interpreted. Generally, machine learning techniques possess a trade-off between
interpretability (i.e. the ability to see what the technique is learning and how) and scal-
ability (i.e. how large of a dataset is required for the technique to properly learn the
salient features) [93, 101, 113]. For example, neural-network-based techniques can learn
complicated patterns from large datasets, but exactly what and how they learn is difficult
to expose [101, 113]. For this reason, we use the well-established Principal Component
Analysis (PCA) method [87, 102, 103, 114]. PCA is a simple method that can be related
to the spectral decomposition theorem of linear algebra. The matrix diagonalization of
the inputted dataset can therefore be slow for very large datasets. However, PCA pro-
vides a clear interpretation for what and how it is learning from the dataset. This makes
it a suitable choice for our original exploration of machine learning of quenched gauge
symmetries.

The outline is as follows. In Chapter 7, we discuss the MISG and MXYGG models. We
demonstrate the gauge transformation that maps them onto the ferromagnetic Ising and
XY models, respectively. In Chapter 8, we explain PCA – specifically, how the method
works, how the data is provided, and the quantities that PCA learns to characterize the
dataset. In Chapter 9, we first review what PCA finds in the ferromagnetic Ising and XY
models. We then compare this with what PCA learns from the MISG and MXYGG models,
demonstrating that the gauge transformations and symmetries can indeed be learned.
Lastly, Chapter 10 summarizes the work and discusses future avenues of exploration.
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Chapter 7

Models

7.1 The Mattis Ising Spin Glass (MISG) Model

The Mattis Ising spin glass (MISG) model describes a disordered spin system which, under
the right conditions, can actually be mapped onto the ferromagnetic Ising model via a
so-called “Mattis gauge transformation” [111, 112]. Consider the Hamiltonian

H = −
∑
〈ij〉

Jijσ
z
i σ

z
j , (7.1)

on a square lattice, where {Jij} are quenched1 exchange parameters that take the values
±J randomly, {σzi } are dynamical spin variables that can take the values ±1, and the
sum is performed over all pairs of nearest neighbors. This Hamiltonian describes a disor-
dered system given the random selection of exchange parameters; however, suppose these
exchange parameters are constrained to satisfy

P ≡
∏
〈ij〉∈�

Jij > 0, (7.2)

that is, the product of exchange parameters on any given square plaquette is positive. Un-
der this condition, Eq. (7.1) is the MISG model; it can be mapped onto the ferromagnetic
Ising model as follows. By defining on-site gauge variables {εi} that can take values ±1, the

1By “quenched”, we mean that the values of {Jij} do not change. Instead, a particular instantiation of
{Jij} is initially and arbitrarily chosen (so long as it satisfies Eq. (7.2)) and fixed (that is, frozen in time),
so that these random variables possess no dynamics.
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(a) (b) (c) (d)

Figure 7.1: Example of the Mattis gauge transformation. (a) Choices of gauge variables {εi} on
each site. (b) Resulting signs of εiεj on each bond. (c) Example of a ground state configuration
for σzi variables, for the bond interactions given in (b). Note that the Hamiltonian is written with
−Jij . (d) Resulting spin configuration in terms of τ zi variables (i.e. the multiplication of (a) with
(c)). [Figure provided by Daniel Lozano-Gómez.]

exchange parameters can be rewritten as Jij = εiεjJ . This trivially satisfies Eq. (7.2).2,3

Then, Eq. (7.1) becomes:

H = −
∑
〈ij〉

Jεiσ
z
i εjσ

z
j ≡ −

∑
〈ij〉

Jτ zi τ
z
j . (7.3)

Here, we have defined {τ zi ≡ εiσ
z
i } to be new Ising variables that can take values of ±1 on

each site. In terms of the {τ zi } variables, the Hamiltonian (7.3) is revealed to be equiva-
lent to a ferromagnetic Ising model, where the order parameter is the “τ–magnetization”
Mτ = 1

N

∑
i τ

z
i . This process of applying this gauge transformation – the “Mattis gauge

transformation” – to map the MISG model to the ferromagnetic Ising model is depicted in
Figure 7.1.

Although the configuration in Figure 7.1c appears disordered in the σzi variables, the
application of the Mattis gauge transformation reveals that it actually corresponds to the
ordered ferromagnetic phase (with τ–magnetization) of the Ising model. This yields a
simple interpretation of the MISG model and the Mattis gauge transformation: although
the underlying order is that of an Ising ferromagnet, the ẑi-axis on each site differs, as
quantified by the on-site gauge variable εi. The Mattis gauge transformation can thus be
seen as aligning all local ẑi-axes along a global ẑ direction.

2As well, Eq. (7.2) forces the exchange parameters on a plaquette to either be all 1, all −1, or to
have two of each. By defining the on-site gauge variables {εi}, any of these combinations of exchange
parameters can be obtained. One can, for example, take all gauge variables on the plaquette to be 1, or
take two to be −1, or take three (or one) to be −1.

3Since the definition of the on-site gauge variables trivially satisfies the plaquette constraint (7.2), one
starts (in simulations of the MISG model) by defining {εi} rather than working backwards from {Jij}.
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7.2 The Mattis XY Gauge Glass (MXYGG) Model

One can apply an analogous Mattis gauge transformation on the XY model to obtain the
Mattis XY gauge glass (MXYGG) model [111]. Consider the Hamiltonian

H = −J
∑
〈ij〉

cos (∆φij − Aij) (7.4)

on a square lattice. Here, J is the exchange constant, ∆φij ≡ φi − φj is the difference
between two angular variables (φi ∈ [0, 2π)), and {Aij} are random phase factors associated
with every bond. Suppose the random phase factors are constrained to satisfy

PXY ≡ (
∑
〈ij〉∈�

Aij) mod 2π = 0, (7.5)

that is, the sum of phase factors around any given square plaquette is a multiple of 2π.
Under this condition, Eq. (7.4) is the MXYGG model; it can be mapped onto the ferro-
magnetic XY model as follows. The plaquette constraint Eq. (7.5) is trivially satisfied by
defining the on-site gauge variables {bi} (bi ∈ [0, 2π)) such that Aij = bi − bj.4 With this
definition, Eq. (7.4) becomes:

H = −J
∑
〈ij〉

cos ((φi − bi)− (φj − bj)) ≡ −J
∑
〈ij〉

cos (∆θij). (7.6)

Here, we have defined {θi ≡ φi − bi} to be the new XY variables (θi ∈ [0, 2π)), revealing
that the Hamiltonian Eq. (7.6) is equivalent to a ferromagnetic XY model. Although the
XY model is known to possess only quasi-long-range order with no magnetization at finite
temperatures [91], one can still define a magnetization vector for finite-sized systems as
M = 〈

∑
i(cos (θi), sin (θi))〉. For the MXYGG model, this magnetization vector is:

Mx = 〈
∑
i

cos (φi) cos (bi) + sin (φi) sin (bi)〉,

My = 〈
∑
i

sin (φi) cos (bi)− cos (φi) sin (bi)〉.
(7.7)

Unlike the model in the thermodynamic limit, any finite-size simulation of the XY model
will possess a non-zero magnetization norm 〈|M |〉 [91].

4As with the MISG model, since the plaquette constraint (7.5) is trivially satisfied by this definition,
one starts (in simulations of the MXYGG model) by definining the on-site gauge variables {bi} first.
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As with the MISG model, a simple interpretation can be made about the Mattis gauge
transformation of the XY model. Each site possesses a different local x̂i-axis from which
the angle φi is measured; these axes are quantified by the on-site gauge variables bi, and
the Mattis gauge transformation converts the MXYGG model into a ferromagnetic XY
model by aligning all local x̂i-axes (and ŷi-axes) along a global x̂ (and ŷ) direction.
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Chapter 8

Methods

8.1 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) can be categorized as an unsupervised ma-
chine learning method. Qualitatively, when given a dataset, PCA determines the linear
combinations of the data that best characterize the correlations within the dataset as a
whole. In this way, since it reduces the complexity of the full dataset to just those most
important linear combinations, PCA is also known as a dimensional reduction technique
[104]. Quantitatively, the procedure is as follows. Suppose that the data is obtained from
an N -site system, with a variable xi associated with every site (i = 1, . . . , N). One such
configuration of the variables would be {xi(T1)}, although there can in general be n sets
of configurations {xi(Tj)} (j = 1, . . . , n).1 The full dataset can then be written as a n×N
matrix

X̃data ≡


{xi(T1)}
{xi(T2)}

...
{xi(Tn)}

 =


x1(T1) x2(T1) · · · xN(T1)
x1(T2) x2(T2) · · · xN(T2)

...
...

. . .
...

x1(Tn) x2(Tn) · · · xN(Tn)

 . (8.1)

1The notation of each configuration being labelled by a variable Tj is used in anticipation of our appli-
cation, in which Tj will be the temperature at which the system is sampled via Monte Carlo simulations.
However, in a general setting, the interpretation of the variable Tj need not be temperature. Note also
that the n variables {Tj} need not be distinct. For example, we can sample two distinct configurations
of our system at the same temperature T . These two configurations are then labelled by T1 and T2 to
distinguish them from each other, even though T1 = T2 = T .
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The average of each column of X̃data is calculated and subtracted away in order to “center”
the data. Explicitly, if x̄i ≡ 1

n

∑n
j=1 xi(Tj), this is

Xdata ≡


{xi(T1)− x̄i}
{xi(T2)− x̄i}

...
{xi(Tn)− x̄i}

 =


x1(T1)− x̄1 x2(T1)− x̄2 · · · xN(T1)− x̄N
x1(T2)− x̄1 x2(T2)− x̄2 · · · xN(T2)− x̄N

...
...

. . .
...

x1(Tn)− x̄1 x2(Tn)− x̄2 · · · xN(Tn)− x̄N

 . (8.2)

After this, the N × N covariance matrix C can be constructed by computing the matrix
product C = XT

dataXdata. Note that the matrix element Cij is given by

Cij =
n∑
k=1

(xi(Tk)− x̄i) (xj(Tk)− x̄j) , (8.3)

explicitly showing that the matrix C is measuring the covariance of the variables. In
the remainder of this thesis, we assume that Xdata has already been centered and do not
explicitly write the subtraction of the average x̄i. Note that, in our applications, the rows
of Xdata correspond to different temperatures whereas the columns correspond to different
sites.

The covariance matrix C is diagonalized in order to find the “explained variance ra-
tios” {λk} (i.e. the normalized eigenvalues) and the “principal components” {u(k)} (i.e.
the eigenvectors).2 Note that this is just an application of the spectral decomposition the-
orem. Since C is a real, symmetric matrix, we are essentially using a decomposition into
eigenvectors to write

C =
N∑
k=1

λk
∣∣u(k)

〉 〈
u(k)

∣∣ , (8.4)

where
∣∣u(k)

〉 〈
u(k)

∣∣ represents the projection onto the eigenspace spanned by the eigenvector

u(k). In this way, PCA attempts to approximately reconstruct the correlations in the
dataset (and, indeed, the covariance matrix itself) through a weighted sum of the outer
product of eigenvectors. The explained variance ratios are the weights in this sum. This
means that the principal components with the highest explained variance ratios are the
principal components that best explain the correlations in the dataset.

One can also define the projection `(k)(Tj) of the jth configuration {xi(Tj)} onto the
kth principal component u(k):

`(k)(Tj) =
∑
i

u
(k)
i xi(Tj). (8.5)

2Note that the eigenvectors can be rescaled by any factor (e.g. the system size L) for convenience.
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The projections `(k)(Tj) are the linear combinations of the data that PCA uses to char-
acterize the full dataset. u(k) quantifies which linear combinations to take, whereas the
explained variance ratios {λk} quantify the relative importance of the projection `(k)(Tj).
In our case where i is a site index, Eq. (8.5) implies that the components of u(k) contain
site-dependent information.

Lastly, note also that the principal component u(k) is an eigenvector of C, which is an
N×N matrix and hence does not have an explicit dependence on Tj (as seen in Eq. (8.3)).
In this sense, the principal components are determined by considering how the variables
{xi} behave across all Tj (again seen in Eq. (8.3)). However, we can reconstruct a good
approximation of the Tj dependence of the dataset by using Eq. (8.5) for the most impor-
tant principal components. Therefore, although the principal components themselves do
not depend on temperature, the projections (which PCA uses to characterize the dataset)
defined by Eq. (8.5) do. This dependence is “inherited” from the temperature dependence
of the dataset {xi(Tj)}. So, we can see the most important temperature-dependent features
by calculating `(k)(Tj) for the most important principal components and for all Tj.
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Chapter 9

Results

9.1 PCA on the Ferromagnetic Ising Model

To study the ferromagnetic Ising model with PCA, the dataset is generated via classical
Monte Carlo simulations with a single spin-flip update move. A lattice size of L = 30 is
taken, giving N = 900 spins. The system is sampled for 50 equally-spaced temperatures in
the range [J, 4J ]. 3×104 equilibration sweeps are performed at every temperature, followed
by 3× 104 measurement sweeps. Measurements are taken every 100 measurement sweeps,
giving 300 measurements at every temperature 1 for a total of n = 50 × 300 = 1.5 × 104

configurations.2 In reference to Eq. (8.2), the variable xi is the Ising spin variable τ zi .3

Altogether, the data matrix for this dataset is:

Xdata ≡


{xi(T1)}
{xi(T2)}

...
{xi(Tn)}

 =


{τ zi (T1)}
{τ zi (T2)}

...
{τ zi (Tn)}

 (9.1)

1Note that 300 configurations are sampled at each temperature. Hence, the temperatures T1, T2, . . . , Tn
in Eq. (8.2) are not unique.

2Note that every second configuration has all spins reversed. In this way, we guarantee that half the
dataset (of the ordered phase) corresponds to a positive magnetization and the other half corresponds to
a negative magnetization.

3We use τzi to refer to the “pure” Ising variable (as in the rightmost side of Eq. (7.3)), since this is the
variable that the MISG model should be mapped onto. We reserve σzi to refer to the MISG Ising variable
(as in Eq. (7.1)).
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=


τ z1 (T1) τ z2 (T1) · · · τ zN(T1)
τ z1 (T2) τ z2 (T2) · · · τ zN(T2)

...
...

. . .
...

τ z1 (Tn) τ z2 (Tn) · · · τ zN(Tn)

 . (9.2)

PCA is then performed on this matrix.
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Figure 9.1: Results of PCA applied to the ferromagnetic Ising model. (a) The projections `(1)

versus `(2), revealing how PCA clusters the data. Data points (which represent distinct spin
configurations) are colored according to the absolute value of the magnetization associated with
that spin configuration. (b) The explained variance ratios for all principal components.

Figures 9.1a visually demonstrates how PCA clusters the data, plotting the projections
`(1) and `(2) against each other for all Tj. In particular, every point in this plot represents
a single spin configuration at a temperature Tj. Each point therefore corresponds to one
of the n configurations and is colored according to absolute value of the magnetization
of that spin configuration.4 PCA categorizes the full dataset by separating it into three

4We color the data points according to the magnetization as a proxy of the temperature Tj . High (low)
temperatures correspond to low (high) magnetizations and blue (yellow) points. The reason for using the
magnetization rather than the temperature is that there is a much smaller range of allowed values of the
magnetization, hence showing the color differences more clearly. It also allows for a simple interpretation,
given later in this section.
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Figure 9.2: Components of u(1), scaled by the system size L, for PCA applied to the ferromag-

netic Ising model. No data for u(1) outside the range −1.05 < u
(1)
i < −0.95 is obtained.

major “clusters”, with one cluster (corresponding to high temperatures) in the middle and
two clusters (corresponding to low temperatures) placed symmetrically on either side. This
clustering occurs predominantly along the `(1) direction, in the sense that there is no signif-
icant variation in color (i.e. magnetization or temperature) along the `(2) direction. Hence,
Figures 9.1a indicates that PCA characterizes the dataset mostly through the projection
`(1).

This is further confirmed by Figure 9.1b. This displays the explained variance ratios
and hence indicates which principal components and projections are most important. The
first explained variance ratio is significantly larger than the rest; this implies that the first
principal component is sufficient to characterize the majority of the dataset, whereas the
further principal components contribute negligibly to this characterization. This explains
why Figure 9.1a shows the most significant temperature-dependent separation of data along
`(1), but not along `(2): the latter projection is not as capable at quantifying correlations
in the dataset as the former.

Figure 9.2 displays the vector components of this first principal component u(1). Af-
ter scaling this eigenvector by the system size L, it is clear that each component of the
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eigenvector is approximately5 equal to −1.6 In reference to Eq. (8.5), this implies that

`(1)(Tj) =
∑
i

u
(1)
i τ zi (Tj) =

∑
i

(−1)τ zi (Tj) ∝
∑
i

τ zi (Tj). (9.3)

However, this is just the expression for the magnetization Mτ of the system! Altogether,
PCA is able to sufficiently characterize the full dataset by categorizing each configuration
according to the τ -magnetization of that configuration. This is quantitatively verified in
Figure 9.3, where the Ising magnetization is calculated from the classical Monte Carlo
simulation and compared to `(1)(Tj).
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Figure 9.3: Results of PCA applied to the ferromagnetic Ising model. (a) Magnetization of
the Ising model computed from Monte Carlo simulations as a function of temperature T/J . (b)
Projection `(1) learned by PCA as a function of temperature T/J . (c) Magnetization from Monte
Carlo simulations versus the learned projection `(1).

We now return to Figure 9.1a. In light of the above analysis, an interpretation is
easily provided. The three clusters (central high-temperature cluster and peripheral low-
temperature clusters) correspond to the three possible τ -magnetizations that can be found:
approximately no τ -magnetization in the paramagnetic phase, or a τ -magnetization of ±1

5Figure 9.2 shows the spread of the data away from u
(1)
i ∼ −1, due to numerical errors of the PCA

method. However, the fluctuations are minimal, so each u
(1)
i is approximately −1.

6Note that the components being equal to −1, and not 1, is not a concern: there is a global Z2 symmetry
in the model, so PCA is expected to learn one or the other.

7Recall that every second configuration out of all n configurations has spins reversed, in order to obtain
ordered phases with both positive and negative magnetizations.
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in the two possible ferromagnetic phases. The two symmetrically-placed low-temperature
clusters can therefore be considered as a reflection of the Z2 symmetry relating the two
possible ferromagnetic ground states of the Ising model.

The characterization of the full dataset into three clusters can also be understood with
a simple toy model. Consider a two-spin system (τ z1 , τ

z
2 ), where the paramagnetic phase has

the configuration (1,−1) (or vice-versa) and the ferromagnetic phase has the configuration
(1, 1) (or (−1,−1)). The set of all possible configurations can be plotted in the τ z1 − τ z2
plane, as well as the first principal component u(1) = (1, 1); this is shown in Figure 9.4.
When all possible configurations are projected onto the first principal component, the
result is three clusters along the axis defined by the principal component, displayed in
Figure 9.5. All high-temperature paramagnetic configurations are projected onto the centre
of the axis, whereas the low-temperature ferromagnetic configurations are projected onto
the symmetric ends. For the full system of N spins, the interpretation is analogous: all
possible spin configurations in the N -dimensional phase space are projected onto the first
principal component, corresponding to the calculation of the system’s τ -magnetization.
This projects all high-temperature configurations onto a single paramagnetic cluster, while
projecting all low-temperature configurations onto two possible ferromagnetic clusters.
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Figure 9.4: Toy model characterization of PCA applied to the ferromagnetic Ising model. Yellow
(blue) circles represent ferromagnetic (antiferromagnetic) configurations of the Ising variables
(τ1, τ2). The green vector represents the principal component u(1). The red dotted line represents
the projection onto this principal component.
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Figure 9.5: Toy model characterization of how PCA classifies the phases of the ferromagnetic
Ising model. Yellow (blue) circles represent ferromagnetic (antiferromagnetic) configurations of
the Ising variables (τ1, τ2). The green vector represents the principal component u(1). Note
that PCA clusters the ferromagnetic configurations into two peripheral circles (related by a Z2

symmetry) and the antiferromagnetic configurations into a central circle.

87



9.2 PCA on the Ferromagnetic XY Model

To study the ferromagnetic XY model with PCA, the dataset is generated via classical
Monte Carlo simulations with a single spin-flip update move.8 A lattice size of L = 30
is taken, giving 900 spins. Since these are planar spins, they can each be quantified by a
singular angular variable θi

9 and decomposed into their x and y components, cos (θi) and
sin (θi) respectively. The system is sampled for 50 equally-spaced temperatures in the range
[0.2J, 1.8J ]. 5× 104 equilibration sweeps are performed at every temperature, followed by
5 × 104 measurement sweeps. Measurements are taken every 100 measurement sweeps,
giving 500 measurements at every temperature for a total of n = 50 × 500 = 2.5 × 104

configurations.10 The data matrix for this dataset can take three forms, depending on if
the x component, y component, or both components of the spins are provided. When only
one component is provided, N = 900 and the data matrices take the form:

Xhalf−x ≡


{cos (θi(T1))}
{cos (θi(T2))}

...
{cos (θi(Tn))}

 , Xhalf−y ≡


{sin (θi(T1))}
{sin (θi(T2))}

...
{sin (θi(Tn))}

 . (9.4)

When both components are provided, N = 1800 and the data matrix takes the form:

Xfull ≡


{cos (θi(T1))} {sin (θi(T1))}
{cos (θi(T2))} {sin (θi(T2))}

...
...

{cos (θi(Tn))} {sin (θi(Tn))}

 . (9.5)

Note that the first N
2

= 900 columns contain the x components, while the following N
2

= 900
columns contain the y components. To reflect this, the kth projection can be written as

`(k) ≡
∑
i

(
u
(kc)
i cos (θi) + u

(ks)
i sin (θi)

)
, (9.6)

8For the ferromagnetic Ising model, a single spin-flip update move literally proposes moves where a
spin is flipped. For the XY model, however, each planar spin is quantified by the angle it makes with the
global x-axis. The proposed move used here is to perturb this angle by a random value from the range
[− π

10 ,
π
10 ]. Although this scheme could be modified by, for example, changing this range to maintain a

stable acceptance rate of the proposed moves, this fixed range suffices to reproduce classical Monte Carlo
simulation data of the XY model from the literature [91].

9We use the angular variable θi to refer to the “pure” XY model, since this is the angular variable to
which the MXYGG model is mapped. We reserve the angular variable φi for the MXYGG model.

10Recall (as discussed in Chapter 8) that the temperatures Tj in Eq. (8.2) are not unique, since 500
distinct configurations are sampled at each of the 50 temperatures.
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where the kth principal component u(k) has been separated into two halves. The first
(last) N

2
= 900 components of u(k) are denoted as u

(kc)
i (u

(ks)
i ), with the additional c (s)

superscript indicating that these coefficients multiply the cosine (sine) columns of Eq.
(9.5).

First, consider PCA applied to the full dataset, Eq. (9.5). Figure 9.6b displays the
explained variance ratios. Unlike the ferromagnetic Ising model, there are two explained
variance ratios that are significant for the XY model. This indicates that the first two
principal components are both needed to sufficiently characterize the dataset.11 This also
suggests that PCA will not cluster the data substantially along one projection `(k) instead
of the other, as is the case for `(1) in the ferromagnetic Ising model.
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Figure 9.6: Results of PCA applied to the ferromagnetic XY model. (a) The projections `(1)

versus `(2), revealing how PCA clusters the data. Temperatures are indicated in the colorbar.
(b) The explained variance ratios for all principal components.

Figure 9.6a displays the clustering that PCA produces for the ferromagnetic XY model.
Two important features may immediately be recognized. Firstly, in contrast to the two
symmetric clusters of the ferromagnetic Ising model, the clusters that PCA forms for the

11Due to its U(1) symmetry, the XY model should in principle have the first two explained variance
ratios as being closer in value than what is shown in Figure 9.6b. It is likely that this discrepancy could
be resolved by taking longer equilibration times in the classical Monte Carlo simulations.
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XY model take the shape of concentric circles.12 This implies an underlying U(1) sym-
metry in the data13, just as the symmetric clusters in the ferromagnetic Ising model were
reflections of the Z2 symmetry of its ferromagnetic ground state. Secondly, the concentric
circular clusters are separated according to temperature, with high-temperature circles at
the centre and low-temperature circles at the perimeter. The central circles correspond to
values of `(1) and `(2) close to zero, whereas the outer circles correspond to non-zero values
of `(1) or `(2) (or both). Taken together, these two features suggest that PCA may be char-
acterizing the data using the x and y components of the finite-size-induced magnetization
of the XY model. To verify this quantitatively, Figure 9.7 plots

√
(`(1))2 + (`(2))2 for each

of the n configurations, which indeed resembles the magnetization [91].
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Figure 9.7: MPCA =
√

(`(1))2 + (`(2))2 as determined from PCA applied to the ferromagnetic
XY model. Note that each data point corresponds to MPCA calculated for one of the n config-
urations. Since 500 configurations are taken at every temperature, there are multiple (i.e 500)
data points for any fixed value of temperature.

The vector components of the principal components are plotted in Figure 9.8. In
light of Eq. (7.7) (with bi = 0 ∀i giving the ferromagnetic XY model) and Eq. (9.6),

12The aspect ratio of Figure 9.6a makes these concentric circles appear elliptical; the different scales
along the x– and y–axes should be noted.

13Rather, it implies an underlying U(1) symmetry in the projections `(1) and `(2) that PCA is using to
characterize the data.
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one might expect that the vector components should simply be {u(1c)i } = {u(2s)i } = 1

and {u(1s)i } = {u(2c)i } = 0; this would add up all cos (θi) (sin (θi)) terms to produce the
magnetization vector in the x (y) direction. This is clearly not the case! However, this
should not be surprising. The ferromagnetic XY model contains an underlying U(1)
symmetry, so there is no reason for PCA to compute the magnetization with respect to the
global x- and y-axes defined in the classical Monte Carlo simulations. These axes may be
rotated by any arbitrary angle α, and PCA may learn the magnetization with respect to
these axes. Under such a global rotation, the corresponding x and y magnetizations would
be modified as:

Mx =
∑
i

cos(θi + α) =
∑
i

cos (θi) cos (α)− sin (θi) sin (α),

My =
∑
i

sin(θi + α) =
∑
i

sin (θi) cos (α) + cos (θi) sin (α).
(9.7)

Comparing Eq. (9.7) with Eq. (9.6) implies that the components of u(1) and u(2) contain

the global rotation angle α. By pairing up the corresponding coefficients u
(1c)
i and u

(1s)
i for

the same site i and taking the arctangent, this global rotation angle α may be computed.
For example, looking at the expression for My in Eq. (9.7) and comparing with Eq. (9.6)
(for k = 1) shows that

αi = arctan

(
u
(1c)
i

u
(1s)
i

)
(9.8)

is the approximation of α associated with the site i. A histogram for the distribution
of α values extracted in this manner is shown in Figure 9.9. The peak in the histogram
suggests a global rotation with α ≈ 0.54 rad; subtracting this angle off of the data {θi}
and repeating PCA produces the principal components in Figure 9.10. Now, as expected,
the coefficients take values of {u(1c)i } = {u(2s)i } = 0 and {u(1s)i } = {u(2c)i } = 1. This verifies
that, not only does PCA learn the magnetization and use it to characterize the dataset, it
also implicitly contains the global U(1) symmetry in its principal components.14

Now, consider PCA applied to the half datasets in Eq. (9.4). The resulting explained
variance ratios and clusters are displayed in Figures 9.11 and 9.12. In this case, there is only
one significant explained variance ratio, leaving only one important principal component.

14One may expect the global rotation angle α to change every time PCA is applied to the dataset,
since the XY model is symmetric under arbitrary rotations. However, as the temperature is lowered in
classical Monte Carlo simulations, it is likely that the system begins to make only small moves about its
spin configuration. This may lead to a preferred magnetization direction, and that may be why α will not
change when PCA is reapplied. However, if given a new dataset, α can be expected to be different.
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Figure 9.8: ith components of (a) u(1) and (b) u(2) for the ferromagnetic XY model, before
applying a global rotation α. Note that the values are not simply 0s and 1s. Recall that the first
(last) 900 components of u(1) and u(2) correspond to the coefficients of the cosine (sine) terms in
Eq. (9.6).

This behavior, as well as the resulting clusters, are reminiscient of the ferromagnetic Ising
case. However, there is no clear separation of clusters as there is in the Ising case, since the
spin variables are now allowed to vary continuously rather than take values of ±1. Nev-
ertheless, this Ising-like behaviour may be interpreted as decomposing the magnetization
vector that PCA learns into its two separate components.
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Figure 9.9: Histogram of the extracted U(1) rotation angle α, as determined from PCA applied
to the ferromagnetic XY model.
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Figure 9.10: ith components of (a) u(1) and (b) u(2) for the ferromagnetic XY model, after
applying a global rotation α. Note that the values are approximately 0s and 1s, in contrast
with Figure 9.8. Recall that the first (last) 900 components of u(1) and u(2) correspond to the
coefficients of the cosine (sine) terms in Eq. (9.6).
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Figure 9.11: Results of PCA applied to the x-component data of the ferromagnetic XY model.
(a) The projections `(1) versus `(2), revealing how PCA clusters the data. (b) The explained
variance ratios for all principal components.
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Figure 9.12: Results of PCA applied to the y-component data of the ferromagnetic XY model.
(a) The projections `(1) versus `(2), revealing how PCA clusters the data. (b) The explained
variance ratios for all principal components.
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9.3 PCA on the MISG Model

Having studied the ferromagnetic Ising model with PCA, we now turn to the MISG model.
To study the MISG model with PCA, the dataset is generated via classical Monte Carlo
simulations with a single spin-flip update move. A lattice size of L = 30 is taken, giving
N = 900 spins. For a given site i, the gauge variable εi is chosen to be 1 or −1 with a
50% probability. The system is sampled for 50 equally-spaced temperatures in the range
[J, 4J ]. 3×104 equilibration sweeps are performed at every temperature, followed by 3×104

measurement sweeps. Measurements are taken every 100 measurement sweeps, giving 300
measurements at every temperature for a total of n = 50× 300 = 1.5× 104 configurations.
In reference to Eq. (8.2), the variable xi is the spin variable σzi ; note that PCA is not given
any information about εi nor τ zi = εiσ

z
i . Altogether, the data matrix for this dataset is:

Xdata ≡


{xi(T1)}
{xi(T2)}

...
{xi(Tn)}

 =


{σzi (T1)}
{σzi (T2)}

...
{σzi (Tn)}

 . (9.9)

PCA is performed on this matrix in order to assess whether PCA can “discover” the gauge
variables {εi} without any prior knowledge.

The explained variance ratios are shown in Figure 9.13b. As with the ferromagnetic
Ising model, there is only one significant principal component. This is suggestive that
PCA is able to detect the underlying Ising model. Further qualitative evidence for this
implication is provided in the clustering of the dataset, shown in Figure 9.13a. Clearly,
PCA clusters the data in exactly the same way as with the ferromagnetic Ising model.

To verify these findings quantitatively, the projection `(1) is plotted in Figure 9.14 and
compared with the corresponding τ -magnetization. When plotted against one another, it is
evident that PCA learns the τ -magnetization exactly. PCA also uses the τ -magnetization
to categorize the data of the MISG model into the paramagnetic and ferromagnetic phases
of the underlying Ising model! What is most remarkable about this categorization is
its implication that PCA has somehow identified the gauge variables {εi}. PCA was
only provided with {σzi (Tj)}; however, from this, it was able to categorize the data using
the quantity Mτ = 1

N

∑
i τ

z
i = 1

N

∑
i εiσ

z
i . In light of Eq. (8.5), this implies that the

components of u(1) directly contain the gauge variables {εi} – that is, u
(1)
i should correspond

to what PCA has learned to be εi.

As confirmation of this implication, histograms of the known and learned gauge vari-
ables {εi} and bond interactions {Jij} are shown in Figure 9.15. Recall that Jij = εiεjJ .
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Figure 9.13: Results of PCA applied to the MISG model. (a) The projections `(1) versus `(2),
revealing how PCA clusters the data. Data points (which represent distinct spin configurations)
are colored according to the absolute value of the τ–magnetization associated with that spin
configuration. (b) The explained variance ratios for all principal components.

So, taking J = 1, we can compute estimates of Jij from PCA by using PCA’s learned values
of {εi}. The histograms comparing what was entered into the Monte Carlo simulations and
what is learned by PCA (i.e. the components of u(1), with the ith component representing
the learned εi) are essentially identical. Of course, there is some spread in the histograms
associated with PCA’s learned values, as seen in Figure 9.15. Due to slight numerical
errors in the process of using PCA, the learned values of {Jij} and {εi} are expected to
slightly differ from pure ±1 values. However, the learned values are centered on ±1 and
with very minimal spread, which is why we consider this result to be essentially identical
(within numerical errors) to the original {Jij} and {εi} values. All three of these checks
demonstrate that PCA is able to determine the Mattis gauge transformation that maps
the MISG model onto the ferromagnetic Ising model, even without any prior knowledge of
such a gauge transformation.
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Figure 9.14: Results of PCA applied to the MISG model. (a) τ -magnetization of the Ising
model computed from Monte Carlo simulations as a function of temperature T/J . (b) Projection
`(1) learned by PCA as a function of temperature T/J . (c) τ -magnetization from Monte Carlo
simulations versus the learned projection `(1).
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Figure 9.15: Histograms of (a) the bond interactions {Jij} and (b) the gauge variables {εi} of
the MISG model. Exact values are those initialized in Monte Carlo simulations, shown in blue;
orange values are those determined by PCA.
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Figure 9.16: Results of PCA applied to the MXYGG model, to be compared with Figure 9.6.
(a) The projections `(1) versus `(2), revealing how PCA clusters the data. (b) The explained
variance ratios for all principal components.

9.4 PCA on the MXYGG Model

To study the MXYGG model with PCA, the dataset is generated via classical Monte Carlo
simulations with a single spin-flip update move, as was the case with the ferromagnetic
XY model in Section 9.2. A lattice size of L = 30 is taken, giving 900 spins described
by the planar angles {φi}. As in Section 9.2, these spins can be decomposed into their
x and y components, cos (φi) and sin (φi) respectively. The system is sampled for 50
equally-spaced temperatures in the range [0.2J, 1.8J ]. 3 × 104 equilibration sweeps are
performed at every temperature, followed by 5× 104 measurement sweeps. Measurements
are taken every 100 measurement sweeps, giving 500 measurements at every temperature
for a total of n = 50× 500 = 2.5× 104 configurations. Lastly, for a given site i, the gauge
variable bi is randomly chosen from a set of five values, {2πn

5
|n = 1, . . . , 5}, all with equal

probabilities. As with the MISG model, the objective is to determine if PCA can learn the
gauge transformation described by the gauge variables {bi}. Hence, a discrete set of gauge
variables is chosen; it is much easier to verify if PCA has learned the gauge variables if
they vary discretely rather than continuously. The reason for this is discussed at the end
of this section.
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The data matrix for this dataset can take three forms, depending on if the x component,
y component, or both components of the spins are provided, just as was the case with the
ferromagnetic XY model in Section 9.2. However, in contrast to Eqs. (9.4) and (9.5), the
angles {φi} are used instead of {θi}. In this way, PCA has no prior knowledge of the gauge
transformation: it is not provided with any information regarding {bi} nor {θi}. PCA is
then performed on the corresponding matrices from Eqs. (9.4) and (9.5), given either one
or both components of the planar spins.

Figure 9.16 displays the results when PCA is performed on the full dataset. In com-
parison with Figure 9.6 of the ferromagnetic XY model, the results are strikingly similar:
there are again two significant explained variance ratios, and PCA clusters the data into
concentric circles when the first two projections `(1) and `(2) are plotted against one an-
other (for all Tj). The interpretations that were made for the ferromagnetic XY model
in Section 9.2 can thus be made again here – namely, that there is an underlying U(1)
symmetry in the data, that the data is being categorized according to its magnetization
vector, and that the two principal components used to characterize the data correspond
to two axes along which the magnetization vector is decomposed. Qualitatively, Figure
9.16 suggests that PCA has uncovered the underlying XY model and is characterizing the
MXYGG model in exactly the same way.

However, Figures 9.17 and 9.18 shows the resulting clusters that PCA produces when
given only one component of the planar spins. There is a marked difference relative to
the ferromagnetic XY model result shown in Figure 9.6. In the ferromagnetic XY model,
decomposing the dataset into its x and y components resulted in only one significant
explained variance ratio, as well as clusters that could be described as Ising-like. In the
MXYGG model, on the other hand, there are still two significant explained variance ratios,
producing a U(1)-symmetric clustering even when only one component is provided.

There are two important implications to be drawn from this. Firstly, the difference
between Figures 9.11 (9.12) and 9.17 (9.18) indicates that PCA can discriminate between
data from the MXYGG model and data from the ferromagnetic XY model, even though the
similarities between Figures 9.6 and 9.16 suggests that both models can be characterized
in the same way. Secondly, the U(1) symmetry of these clusters suggests that whatever is
causing this difference between the two models possesses a U(1) symmetry itself. The first
of these implications qualitatively suggests that PCA has detected the presence of the gauge
transformation that relates the MXYGG and XY models; this would cause a difference in
the one-component analysis of the MXYGG model, but not in the two-component analysis.
The second implication hints at the U(1) nature of this transformation; this motivates a
similar analysis as in the ferromagnetic XY model, when the global rotation angle α was
determined in Section 9.2.
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Figure 9.17: Results of PCA applied to the x-component data of the MXYGG model, to be
compared with Figure 9.11. (a) The projections `(1) versus `(2), revealing how PCA clusters the
data. (b) The explained variance ratios for all principal components.

Returning to the results of the full dataset, the first and second projections take the
form:

`(1) ≡
∑

i

(
u
(1c)
i cos (φi) + u

(1s)
i sin (φi)

)
, (9.10)

`(2) ≡
∑

i

(
u
(2c)
i cos (φi) + u

(2s)
i sin (φi)

)
. (9.11)

In the ferromagnetic XY model in Section 9.2, this was compared to the two-component
magnetization vector under a global rotation by an angle α:

Mx =
∑
i

cos(θi + α) =
∑
i

cos (θi) cos (α)− sin (θi) sin (α),

My =
∑
i

sin(θi + α) =
∑
i

sin (θi) cos (α) + cos (θi) sin (α).
(9.12)

For the MXYGG model, a single global rotation angle α should not be expected, or else
PCA would have discovered no difference between the MXYGG and ferromagnetic XY
datasets. However, comparing Eqs. (9.10), (9.11), and (9.12), one can still take the
arctangent of the ratio of principal component coefficients as was done for the XY model
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Figure 9.18: Results of PCA applied to the y-component data of the MXYGG model, to be
compared with Figure 9.12. (a) The projections `(1) versus `(2), revealing how PCA clusters the
data. (b) The explained variance ratios for all principal components.

in Eq. (9.8). If there are multiple possible values of α (that is, if α in the above expressions
was replaced with some βk for some index k), then the corresponding expression for the
MXYGG model is:

Mx =
∑
i

cos(φi + βk) =
∑
i

[cos (φi) cos (βk)− sin (φi) sin (βk)] ,

My =
∑
i

sin(φi + βk) =
∑
i

[sin (φi) cos (βk) + cos (φi) sin (βk)] .
(9.13)

In the case of the ferromagnetic XY model, the U(1) symmetry only applied to the angular
variable θi; this was the only angular variable with this degree of freedom. However, there
are now two angular degrees of freedom to which a global rotation by a single angle α can
be applied. As in the ferromagnetic XY model, the global rotation α may be applied to
the angular variables {φi}:

Mx =
∑
i

cos(φi + βk + α) =
∑
i

cos (φi + α) cos (βk)− sin (φi + α) sin (βk),

My =
∑
i

sin(φi + βk + α) =
∑
i

sin (φi + α) cos (βk) + cos (φi + α) sin (βk).
(9.14)
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As in the ferromagnetic XY model, this choice corresponds to the U(1) symmetry of
the PCA clusters when given the full dataset. On the other hand, the global rotational
symmetry could be applied to the angular variables βk:

Mx =
∑
i

cos(φi + βk + α) =
∑
i

cos (φi) cos (βk + α)− sin (φi) sin (βk + α),

My =
∑
i

sin(φi + βk + α) =
∑
i

sin (φi) cos (βk + α) + cos (φi) sin (βk + α).
(9.15)

This choice was not possible in the ferromagnetic XY model. When PCA is provided with
only one component of the planar spins, as in Figures 9.17 and 9.18, this “internal” U(1)
rotational symmetry still results in circular clusters, unlike in the ferromagnetic XY model
(Figures 9.11 and 9.12).

Going further, one may extract the values of βk in the same manner as α was extracted
for the ferromagnetic XY model, namely, using Eq. (9.8) to determine βk on each site
i (instead of αi) from the principal components.15 Doing this produces the histogram
shown in Figure 9.19. The five equally-spaced peaks demonstrate that PCA is able to find
the five discrete choices of the gauge variable bi that were chosen in the classical Monte
Carlo simulation. Since the principal component coefficients are site-dependent, the gauge
variable at any given site can be determined. This is also the reason why five discrete
choices of gauge variables were chosen: if the gauge variables {bi} continuously varied, the
resulting histogram would show a continuous range of learned gauge variables {βk} rather
than discrete peaks. It is clearly much easier to interpret the discrete peaks as evidence of
PCA learning the gauge variables than a continuously-ranging, nondescript spread of βk
values. Again, as in the MISG model, we see that PCA can determine (1) the presence of
a gauge transformation, and (2) the actual gauge variables {bi} responsible for this gauge
transformation, despite being provided no information about it.

15Of course, these values of βk will also only be known up to some global rotation.
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Chapter 10

Conclusion

10.1 Summary

In Part II of this thesis, we used the Principal Component Analysis (PCA) method on
the Mattis Ising spin glass (MISG) and Mattis XY gauge glass (MXYGG) models to
determine if machine learning could learn quenched gauge symmetries. The answer to this
question is affirmative. In the MISG model, the clusters that PCA produces to categorize
the dataset are identical to those of the ferromagnetic Ising model. As well, the projection
that PCA learns to characterize the dataset is seen to be identical to the magnetization
of the underlying ferromagnetic Ising model. This implies that the principal components
themselves contain the gauge variables necessary to transform the MISG model into the
ferromagnetic Ising model, which is confirmed by a histogram comparison. The case of
the MXYGG model is similar. The clusters that PCA produces to categorize the full
dataset are reminiscient of those of the ferromagnetic XY model. However, a difference
is detected when only one component of the spins is provided to PCA, indicative of the
underlying gauge transformation. For both the MISG and MXYGG models, the gauge
variables quantifying this gauge transformation were also argued to be contained within
the principal components themselves, which is confirmed by extracting the learned gauge
variables and producing a histogram of the results.
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10.2 Future Work

In light of the work presented here, one immediate extension would be the study of other
gauge-symmetric spin glass models. The MISG and MXYGG models possess Z2 and U(1)
gauge symmetries, respectively. It should therefore be possible to use a similar approach
on, for example, a spin glass model with an O(3) gauge symmetry [115].

More abstractly, the idea of this work – namely, the machine-learning of gauge sym-
metries – may be useful in other contexts. We have shown that PCA, a simple machine
learning technique, is capable of learning a gauge transformation that simpifies our origi-
nal mathematical model. In this way, machine learning is able to provide insights into the
simulated model itself and not just thermodynamic quantities such as order parameters. It
would be of interest to test this idea with other unsupervised learning methods. For exam-
ple, the autoencoder is an unsupervised learning technique that uses a neural network and
shares similarities with PCA [104, 105]. This may make it capable of learning non-linear
or complex features of a model that a linear matrix-based method like PCA is not able to
learn.

However, the trade-off for this descriptive power is the interpretability of an autoen-
coder, which is complicated by the use of a neural network. If, for example, an autoencoder
is employed to learn gauge symmetries in a model, this relative lack of interpretability may
make it difficult to determine the exact mathematical form of the gauge transformation,
which is not the case for PCA. Even then, our work suggests an additionally useful idea:
unsupervised machine learning may be able to simplify a dataset by exploiting features
that it learns, such as gauge symmetries. In our case, PCA simplifies the disordered MISG
and MXYGG models by mapping them onto the ferromagnetic Ising and XY models. In
general, this suggests that one could use an unsupervised learning technique to efficiently
categorize and label input data, and then provide the data and labels to a supervised tech-
nique. This benefit would apply to unsupervised techniques that are difficult to interpret
as well, such as autoencoders. An application of this idea in a previous work [101] demon-
strates that PCA and a neural network could together learn an SU(2) gauge theory order
parameter. In this way, unsupervised and supervised methods can work in tandem to more
effectively classify a dataset.

Lastly, our work demonstrates that models possessing gauge symmetries may be of
particular interest for future machine learning applications. Such models are amenable to
analytical study by the physicist. Our work shows that the mathematical nature of these
gauge symmetries also make it possible for machine learning techniques to detect them. In
this way, gauge-symmetric models hold a special place at the intersection of physics and
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machine learning: by applying machine learning techniques to gauge-symmetric models, it
may be possible to explore what these techniques are actually learning and how.
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Appendix A

Pyrochlore Lattice Structure

As mentioned throughout this thesis, the pyrochlore lattice with chemical formula A2B2O7

consists of interpenetrating networks of corner-sharing tetrahedra. The A-site and B-site
ions both form these networks of tetrahedra, but since we consider B4+ ions that are
nonmagnetic, we only focus on the network created by the A3+ rare-earth ions, as shown
in Figures 1.2 and 1.3.

The lattice of magnetic ions can be formed by associating a tetrahedron with the sites
of a FCC lattice. For example, one can consider the conventional cubic cell representation
of the FCC lattice, which contains four FCC lattice points. One can then “attach” a
tetrahedron to each of these points, leading to 16 sites (4 FCC lattice points × four
tetrahedral sublattices) per conventional cubic cell. This results in Figure 1.2. By tiling
this cell using the cubic primitive lattice vectors in each direction, one can create a system
of L×L×L = L3 cubic cells, for a total of 16L3 magnetic sites. Note that this construction
creates what we call “up” tetrahedra. The space in between up tetrahedra also share four
sites and form a tetrahedron of opposite orientation, which we call “down” tetrahedra, as
shown in Figure 1.3. However, since the down tetrahedra are formed by connecting sites
between up tetrahedra, they do not contribute any new sites of their own and do not stand
apart as distinct tetrahedra. There are therefore still only 16L3 sites.

The usage of up and down tetrahedra is convenient for considering nearest-neighbor
interactions. Consider an arbitrary site of the pyrochlore lattice, which has six nearest
neighbors. If one thinks only in terms of up tetrahedra as in Figure 1.2, then three of these
neighbors exist on the same tetrahedron of the site in consideration, while three exist on
different tetrahedra. On the other hand, if one thinks in terms of up and down tetrahedra
as in Figure 1.3, then this site is a vertex connecting an up and down tetrahedra. Hence,
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three neighbors come from the connected up tetrahedron, while the remaining three come
from the connected down tetrahedron. This latter picture is more convenient, since nearest-
neighbor interactions on differently-oriented tetrahedra are related by a matrix transpose,
as discussed in Section 2.2.

r1
a
4
(0, 0, 0)

r2
a
4
(1, 1, 0)

r3
a
4
(1, 0, 1)

r4
a
4
(0, 1, 1)

Table A.1: One convention for the four sublattice positions of a given tetrahedron. Note that
a is the lattice constant.

One convention for the four sites of a tetrahedron is given in Table A.1 [73] and shown
in Figure A.1. The generic position vector to a site on the pyrochlore lattice is then given
by ria = Ra + ri, where a denotes an FCC point (or a tetrahedron) at position Ra and i
denotes a sublattice index at a position ri away from the FCC point. Note that, in this
convention, sublattice 1 coincides with the origin when Ra = 0.

r0
a
8
(1, 1, 1)

r1
a
8
(1,−1,−1)

r2
a
8
(−1, 1,−1)

r3
a
8
(−1,−1, 1)

Table A.2: A second convention for the four sublattice positions of a given tetrahedron, used
more commonly in the recent literature. Note that a is the lattice constant.

An alternative convention for labelling the sublattice positions (which is commonly used
in the recent literature [24, 33]) is given in Table A.2 and shown in Figure A.2. Note that,
in this convention, the origin is located at the center of the tetrahedron when Ra = 0, as
shown in Figure A.2. These two conventions can be mapped onto one another by shifting
sublattice 0 of this second convention to coincide with the origin. The resulting position
vectors between the two conventions can then be mapped onto one another to establish the
conversion from one convention to the other. In this thesis, we use the second convention,
in keeping with the recent literature. However, for ease of display, we show up tetrahedra
in our figures (e.g. Figure 2.2) as opposed to the defined down tetrahedron shown in Figure
A.2. Note that, in this convention, the local axes associated with each sublattice can be
taken as shown in Table A.3 [24, 33].
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1

2

3
4

Figure A.1: One convention for the four sublattice positions of a given tetrahedron, as defined
in Table A.1. The cube circumscribing the resulting tetrahedron is shown for reference. Note that
the origin (green circle) coincides with sublattice 1. The tetrahedron is colored red to indicate it
is an up tetrahedron.

Lastly, note that an alternative way to form the pyrochlore lattice is to use the primitive
unit cell of the FCC lattice instead of the conventional cubic unit cell. The unit cell would
then be tiled using the primitive lattice vectors of the FCC lattice instead of those of the
simple cubic lattice. Since there is one FCC point per primitive lattice cell, this would
generate 4L3 sites.
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0

1
2

3

Figure A.2: Another convention for the four sublattice positions of a given tetrahedron, as
defined in Table A.2. The same cube circumscribing the tetrahedron of Figure A.1 is shown for
reference. Note that the origin (green circle) coincides with the center of the tetrahedron. The
tetrahedron is colored blue to indicate it is a down tetrahedron.

x̂local ŷlocal ẑlocal

r0
1√
6
(−2, 1, 1) 1√

2
(0,−1, 1) 1√

3
(1, 1, 1)

r1
1√
6
(−2,−1,−1) 1√

2
(0, 1,−1) 1√

3
(1,−1,−1)

r2
1√
6
(2, 1,−1) 1√

2
(0,−1,−1) 1√

3
(−1, 1,−1)

r3
1√
6
(2,−1, 1) 1√

2
(0, 1, 1) 1√

3
(−1,−1, 1)

Table A.3: Convention for the local x-, y-, and z-axes at each of the four sublattice positions.

133



Appendix B

Methods for Quantum Spins

B.1 Variational Mean-Field Theory (VMFT) for Quan-

tum Spins

The derivation in Chapter 3 focused on classical pseudospins described by normalized three-
component vectors. However, one can easily generalize the process to quantum mechanical
pseudospins with S = 1

2
[33]. Start from Eq. (3.2) and assume that the spins Sµia are

now quantum mechanical operators. The mean-field ansatz in this case is to take Sµia =
〈Sµia〉 + δSµia, where δSµia = Sµia − 〈S

µ
ia〉, and to expand the Hamiltonian while ignoring

contributions that are quadratic in the fluctuations δSµia. Again assuming q = 0 order and
no dipolar interactions, doing so gives:

H =
1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbS
µ
iaS

ν
jb −

∑
i,a

hia · Sia (B.1)

≈ 1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jb
[
−〈Sµia〉〈Sνjb〉+ Sµia〈Sνjb〉+ 〈Sµia〉Sνjb

]
−
∑
i,a

hia · Sia. (B.2)

Define mµ
ia ≡ 〈S

µ
ia〉. Using the properties that Jνµjb,ia = Jµνia,jb and gµνi = gνµi , the mean-field

Hamiltonian can be simplified into

HMF = −1

2

∑
a,b

∑
i,j

∑
µ,ν

Jµνia,jbm
µ
iam

ν
jb −

∑
i,a

Bia · Sia, (B.3)

where Bµ
ia is again defined by Eq. (3.27). The mean-field partition function ZMF can be

evaluated by tracing over the Boltzmann factor, ZMF = Tr
{
e−βHMF

}
; however, as opposed
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to the classical VMFT derivation, this trace is now evaluated by expressing the Hamiltonian
in terms of Pauli matrices and summing over all possible spin-1

2
kets, rather than evaluating

integrals over solid angles. In particular, noting that tracing over Jµνia,jbm
µ
iam

ν
jb only produces

some constant factor C, this yields:

ZMF = Tr
{
e−βHMF

}
(B.4)

= CTr
{
eβ
∑
i,aBia·Sia

}
(B.5)

= C
∏
i,a

Tr
{
eβB

µ
iaS

µ
ia

}
. (B.6)

Expressing the spin operators in terms of Pauli matrices, Sµia = 1
2
σµia, the argument of the

exponential becomes

Bµ
iaS

µ
ia =

1

2

(
Bz
ia Bx

ia − iB
y
ia

Bx
ia + iBy

ia −Bz
ia

)
. (B.7)

The trace can now be evaluated by summing over the basis of eigenvectors of Eq. (B.7),
in which case the operators in the trace are simply replaced by their eigenvalues. Diago-
nalizing Eq. (B.7) yields eigenvalues λ± = ±1

2
|Bia|. Evaluating the trace thus yields

ZMF = C
∏
i,a

(e−βλ+ + e−βλ−) = C
∏
i,a

2 cosh

(
1

2
β|Bia|

)
. (B.8)

This can be contrasted with Eq. (3.25). The mean-field free energy can be obtained
from Eq. (B.8) via FMF = −T ln(ZMF). As well, the sublattice magnetizations (that is,
the sublattice spin expectation values) can be obtained in the same manner as before, by
calculating mia = 〈Sia〉 = −∂FMF

∂Bia
. The resulting self-consistency equation in this case is

mia =
Bia

2|Bia|
tanh

(
1

2
β|Bia|

)
, (B.9)

as opposed to Eq. (3.30).

The numerical implementation of VMFT (outlined in Section 3.1) for classical or quan-
tum spins is identical. The ultimate difference between the two methods is the expression
for the free energy and the self-consistency equation used to iteratively update the spin
configuration. As well, given that the norm of the spins is unit length in the classical case
but 1

2
in the quantum case, the exchange parameters and g-tensor must be accordingly

renormalized to make the two approaches consistent with one another.
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B.2 Quantum Spin-Waves

The derivation of classical spin-waves in Chapter 3 demonstrated how thermal fluctuations
may excite the system out of its ground state at finite temperatures. One may employ
a similar quantum spin-wave expansion to determine the effect of quantum fluctuations
on the system. The resulting dispersion quantifies the energy-wavevector relation of these
quantized spin-waves, or magnons. As in the above derivation, we ignore dipolar interac-
tions, assume a q = 0 ordering wavevector for the system, and extend the derivation found
in Yan et al. [24] to finite values of the applied magnetic field H .

Suppose that we have already found the classically-ordered ground state spin configura-
tion on a single tetrahedron at T = 0 for the Hamiltonian Eq. (3.48). We define again the
same ordering vectors {ûi, v̂i, ŵi} on a given sublattice i. Now, however, the fluctuations
are quantified by quantizing the spin operators in our Hamiltonian using Holstein-Primakoff
bosons. These will characterize the fluctuation away from (and reduction of) the ordered
spin along the ŵi direction due to the propagation of magnon excitations. We define:

Swi = S − a†iai, (B.10)

S+
i = (

√
2S − a†iai)ai ≈

√
2Sai, (B.11)

S−i = a†i (

√
2S − a†iai) ≈

√
2Sa†i . (B.12)

As bosonic excitations and operators, ai and a†j satisfy [ai, a
†
j] = δij; all other combinations

of these operators commute. Using the standard relations between S+, S−, Sx, and Sy

(where u = x and v = y in our local coordinate system), we have Sui = 1
2
(S+

i + S−i ) and
Svi = 1

2i
(S+

i − S−i ). Starting from our Hamiltonian Eq. (3.43), we have:

H =
1

2

∑
a

∑
ij

Jµνij S
µ
iaS

ν
ja − µB

∑
a

∑
i

gµνi S
µ
iaH

ν (B.13)

=
1

2

∑
a

∑
ij

Sia·
↔
J ij ·Sja − µB

∑
a

∑
i

Sia · hi, (B.14)

where hµi = gµνi H
ν . We can now substitute the previous relations between spin operators
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and magnon operators. This yields:

H =
1

2

∑
a

∑
ij

[
1

2
(S+

ia + S−ia)ûi +
1

2i
(S+

ia − S−ia)v̂i + Swiaŵi

]
·
↔
J ij ·[

1

2
(S+

ja + S−ja)ûj +
1

2i
(S+

ja − S−ja)v̂j + Swjaŵj

]
− µB

∑
a

∑
i

hi ·
[

1

2
(S+

ia + S−ia)ûi +
1

2i
(S+

ia − S−ia)v̂i + Swiaŵi

] (B.15)

=
1

2

∑
a

∑
ij

[
ai

√
S

2
(ûi − iv̂i) + a†i

√
S

2
(ûi + iv̂i) + (S − a†iai)ŵi

]
·
↔
J ij ·[

aj

√
S

2
(ûj − iv̂j) + a†j

√
S

2
(ûj + iv̂j) + (S − a†jaj)ŵj

]

− µB

∑
a

∑
i

hi ·

[
ai

√
S

2
(ûi − iv̂i) + a†i

√
S

2
(ûi + iv̂i) + (S − a†iai)ŵi

]
.

(B.16)

We can define the new unit vector ĉi = 1√
2
(ûi + iv̂i) to simplify this to

H =
1

2

∑
a

∑
ij

[
ai
√
Sĉ∗i + a†i

√
Sĉi + (S − a†iai)ŵi

]
·
↔
J ij ·

[
aj
√
Sĉ∗j + a†j

√
Sĉj + (S − a†jaj)ŵj

]
− µB

∑
a

∑
i

hi ·
[
ai
√
Sĉ∗i + a†i

√
Sĉi + (S − a†iai)ŵi

]
.

(B.17)

Expanding these expressions and only keeping up to quadratic order in the bosonic oper-
ators, in keeping with a linear spin-wave approximation, we have:

H =
1

2

∑
a

∑
ij

(Sŵi)·
↔
J ij ·(Sŵj)− µB

∑
a

∑
i

hi · (Sŵi)

+
1

2

∑
a

∑
ij

S

[
aiaj ĉ

∗
i ·
↔
J ij ·ĉ∗j + aia

†
j ĉ
∗
i ·
↔
J ij ·ĉj

+ a†iaj ĉi·
↔
J ij ·ĉ∗j + a†ia

†
j ĉi·

↔
J ij ·ĉj − (a†iai + a†jaj)ŵi·

↔
J ij ·ŵj

]
+ µB

∑
a

∑
i

a†iaihi · ŵi.

(B.18)
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The first line in the above expression is merely the ground state energy ε0; the rest of the
expression is the linear spin-wave Hamiltonian, HLSW, which must be diagonalized in order
to find the contribution of quantum fluctuations to the energy.

We use the same definition of the Fourier transform as in Chapter 3 in order to transform
the bosonic operators, using the translational symmetry of the FCC lattice. Introducing
these Fourier-transformed operators and summing over all tetrahedra positions to simplify
the wavevector relations with δ functions, we obtain as before:

H =
1

2

∑
ij

∑
q

S

[
eiq·rijai(q)aj(−q)ĉ∗i ·

↔
J ij ·ĉ∗j + eiq·rijai(q)a†j(q)ĉ∗i ·

↔
J ij ·ĉj

+ e−iq·rija†i (q)aj(q)ĉi·
↔
J ij ·ĉ∗j + e−iq·rija†i (q)a†j(−q)ĉi·

↔
J ij ·ĉj

− (a†i (q)ai(q) + a†j(q)aj(q))ŵi·
↔
J ij ·ŵj

]
+ µB

∑
a

∑
i

a†i (q)ai(q)hi · ŵi.

(B.19)

Now, note that:∑
ij

(
a†i (q)ai(q) + a†j(q)aj(q)

)(
ŵi·

↔
J ij ·ŵj

)
(B.20)

=
∑
i

a†i (q)ai(q)
∑
j

ŵi·
↔
J ij ·ŵj +

∑
j

a†j(q)aj(q)
∑
i

ŵi·
↔
J ij ·ŵj (B.21)

=
∑
i

a†i (q)ai(q)
∑
l

ŵi·
↔
J il ·ŵl +

∑
j

a†j(q)aj(q)
∑
l

ŵl·
↔
J lj ·ŵj (B.22)

=
∑
ij

δija
†
i (q)ai(q)

∑
l

ŵl·
↔
J li ·ŵi +

∑
ij

δija
†
i (q)ai(q)

∑
l

ŵl·
↔
J li ·ŵi. (B.23)

We can thus simplify our overall expression to:

H =
1

2

∑
ij

∑
q

2S cos (q · rij)
[
a†i (q)aj(q)ĉi·

↔
J ij ·ĉ∗j + a†i (q)a†j(−q)ĉi·

↔
J ij ·ĉj

+ ai(−q)aj(q)ĉ∗i ·
↔
J ij ·ĉ∗j + ai(−q)a†j(−q)ĉ∗i ·

↔
J ij ·ĉj

− δija†i (q)ai(q)
∑
l

ŵl·
↔
J li ·ŵi − δija†i (q)ai(q)

∑
l

ŵl·
↔
J li ·ŵi

]
+

1

2
µB

∑
a

∑
ij

δija
†
i (q)ai(q)hi · ŵi + δija

†
j(−q)aj(−q)hj · ŵj.

(B.24)
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We define the vector operator A†(q) =

(
a†0(q), a†1(q), a†2(q), a†3(q), a0(−q), a1(−q),

a2(−q), a3(−q)

)
, and A(q) is defined by the Hermitian conjugate of this. With this

definition, we can write the above expression as a matrix multiplication of the form:

H =
1

2

∑
q

A†(q)(
↔
X (q)+

↔
N (q))A(q), (B.25)

where:

↔
X (q) = 2S

↔X11

(q)
↔
X

12

(q)
↔
X

21

(q)
↔
X

22

(q)

 , (B.26)

X11
ij = cos (q · rij)

(
ĉi·
↔
J ij ·ĉ∗j − δij

∑
l

ŵl·
↔
J lj ·ŵj

)
(B.27)

X12
ij = cos (q · rij)

(
ĉi·
↔
J ij ·ĉj

)
(B.28)

X21
ij = cos (q · rij)

(
ĉ∗i ·

↔
J ij ·ĉ∗j

)
(B.29)

X22
ij = cos (q · rij)

(
ĉ∗i ·

↔
J ij ·ĉj − δij

∑
l

ŵl·
↔
J lj ·ŵj

)
. (B.30)

N(q) is defined in the same way as for the classical spin-wave expansion.

We must now diagonalize this Hamiltonian for every q. This amounts to taking a (q-
dependent) linear combination of the creation and annihilation operators for the magnons
in such a way that the Hamiltonian is diagonal. However, there is the constraint that
the operators must obey bosonic commutation relations. To proceed generally, we do
not assume that the transformation which diagonalizes the Hamiltonian is unitary; we
only assume that bosonic commutation relations are satisfied and derive the resulting
consequences for the transformation. Suppose that our diagonalized bosonic operators

are defined by B†(q) =
(
b†0(q), b†1(q), b†2(q), b†3(q), b0(−q), b1(−q), b2(−q), b3(−q)

)
; B(q) is

defined by the Hermitian conjugate. This will be a linear transformation applied to the
original A†(q) and A(q) vector operators, so we can define:

B†(q) = A†(q)
↔
U
†

(q), (B.31)

B(q) =
↔
U (q)A(q). (B.32)
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Here,
↔
U (q) is the matrix that codifies the linear combination of the original Holstein-

Primakoff boson operators. The diagonalized bosonic operators satisfy the proper commu-

tation relations if we impose
[
Bi(q), B†j (q

′)
]

= σijδqq′ for the matrix σ =

(
I 0
0 −I

)
. Here,

I is a 4x4 identity matrix, and the lower diagonal negative sign comes from the swapping
of the ordering of the creation and annihilation operators in B†(q) and B(q). Similarly,

we would also have
[
Ai(q), A†j(q

′)
]

= σijδqq′ , as these are also bosonic operators. Using

the transformation matrix
↔
U (q), we then have:

σijδqq′ =
[
Bi(q), B†j (q

′)
]

(B.33)

σijδqq′ = Bi(q)B†j (q
′)−B†j (q′)Bi(q) (B.34)

σijδqq′ = (Uik(q)Ak(q))(A†l (q
′)U †lj(q

′))− (A†l (q
′)U †lj(q

′))(Uik(q)Ak(q)) (B.35)

σijδqq′ = Uik(q)
[
Ak(q), A†l (q

′)
]
U †lj (B.36)

σijδqq′ = Uik(q)σklU
†
lj(q

′)δqq′ (B.37)

=⇒ ↔
σ =

↔
U (q)

↔
σ
↔
U
†

(q) (B.38)

=⇒
↔
U
−1

(q) =
↔
σ
↔
U
†

(q)
↔
σ . (B.39)

Clearly, the relation is not a unitary one. Applying the transformation
↔
U (q) to our

original bosonic operators and making use of this condition on the inverse of
↔
U (q), we

can diagonalize our spin-wave Hamiltonian:

H =
1

2

∑
q

A†(q)(
↔
X (q)+

↔
N (q))A(q) (B.40)

=
1

2

∑
q

[
B†(q)(

↔
U
†
)−1(q)

]
(
↔
X (q)+

↔
N (q))

[
↔
U
−1

(q)B(q)

]
(B.41)

=
1

2

∑
q

B†(q)

[
↔
σ
↔
U
†

(q)
↔
σ

]
(
↔
X (q)+

↔
N (q))

[
↔
U
−1

(q)

]
B(q) (B.42)

=
1

2

∑
q

B†(q)
↔
σ
↔
U
†

(q)
[↔
σ (

↔
X (q)+

↔
N (q))

] ↔
U
−1

(q)B(q) (B.43)

Our transformation matrix
↔
U (q) thus amounts to diagonalizing the matrix

↔
σ (

↔
X

(q)+
↔
N (q)). Doing this numerically yields the dispersion relation of the magnon modes,
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ων(q). We find:

H =
1

2

∑
q

B†(q)σ

(
ων(q) 0

0 −ων(q)

)
B(q) (B.44)

=
1

2

∑
q

B†(q)

(
ων(q) 0

0 ων(q)

)
B(q) (B.45)

=
1

2

∑
q

∑
ν

ων(q)b†ν(q)bν(q) + ων(q)bν(−q)b†ν(−q) (B.46)

=
1

2

∑
q

∑
ν

ων(q)

[
b†ν(q)bν(q) +

1

2

]
. (B.47)

This completes the diagonalization of the linear spin-wave Hamiltonian, giving us the
dispersion relation of the magnon excitations. From this linear spin-wave theory, the effect
of quantum fluctuations on various quantities can be calculated. For example,

EQSW =
1

2

∑
q

∑
ν

ων(q)

[
b†ν(q)bν(q) +

1

2

]
(B.48)

represents the zero-point energy contribution of the quantum spin-wave modes to the
classical ground state energy of the ordered configuration [24]. If Swi represents the ordered
moment on sublattice i (where spins have a length S), then the reduction of the ordered
moment by quantum fluctuations can be computed via [24]

〈Swi 〉 = S −
〈
a†iai

〉
. (B.49)

The thermal expectation value
〈
a†iai

〉
can be computed by first transforming from the

Holstein-Primakoff bosons to the diagonalizing bosons bν(q). The Bose-Einstein statistics
of these latter bosons can then be used to calculate the thermal average [24]. Lastly, one
can also calculate the inelastic scattering cross-section S(q, ω) that these quantum spin-
waves produce in inelastic neutron scattering experiments. For a system of N spins on the
pyrochlore lattice, with sublattices i and j and tetrahedra a and b, the expression for this
is [24]

S(q, ω) =
1

2π

4

N

∑
αβ

∑
γλ

∑
ij

(δαβ −
qαqβ
q2

)gαγi gβλj ×
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∫
dt dt′

∑
Ra,Rb

eiω(t−t
′)eiq·(Rb−Ra)

〈
Sγi (Ra, t)S

λ
j (Rb, t

′)
〉
. (B.50)

One can then expand the spin operators in this expression in terms of the bosons bν(q).
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Appendix C

Further Comments on the Classical
Spin-Wave Results

In this Appendix, we support some of the arguments made in Section 4.3 by providing
more figures of the relevant classical spin-wave dispersions for an applied field H along the
[100] direction. We then show how these arguments are general and important for the [111]
and [110] cases detailed in Sections 4.4 and 4.5.

For the [100] case, in addition to Figures 4.4a and 4.4b, it is useful to view the clas-
sical spin-wave dispersions for values of H that lie below and above the critical value
Hc(T = 0) = 0.82 T. This is shown in Figure C.1 for H = {0.1, 0.3, 0.5, 0.7, 0.9, 1.1} T.
As H increases from 0 and approaches the branch merger transition at H = 0.82 T, the
dispersions begin to decrease across a range of q values, as seen in Figures C.1a, C.1b,
C.1c, and C.1d. In particular, we see that κν(q) < Tc0 for some dispersions at H = 0.5
T (Figure C.1c) and H = 0.7 T (Figure C.1d). Comparing with Figure 4.2b, we also see
that this gradual decrease in the dispersions κν(q) as H increases is accompanied by an
increase in Tc(H). This is expected from the entropic arguments made in Section 4.3 on the
basis of classical spin-waves, where it is argued that decreasing κν(q) leads to an increased
entropy of the ordered phase. Hence, even though the branch collapse transition occurs
at Hc = 0.82 T, the classical spin-wave dispersions decrease on approaching this critical
value, and the onset of reentrance starts even for H < 0.82 T.

Alternatively, one can also view the dispersions κν(q) for H > 0.82 T. These can be
seen in Figures C.1e and C.1f. As H increases beyond the critical value of 0.82 T, the
dispersions begin to increase. Comparing with Figure 4.2b, this increase in κν(q) with
increasing H is accompanied by a decrease in Tc(H). This is also expected from the same
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entropic arguments presented in Section 4.3: if decreasing κν(q) leads to a greater entropy
contribution from the classical spin-waves, then increasing κν(q) should correspondingly
decrease the entropy in the ordered phase. This is because lower (higher) values of κν(q)
correspond to stronger (weaker) thermal fluctuations in the system and greater (lesser)
entropy of the ordered phase.

Altogether, we see that the behavior of the dispersions κν(q) as a function of H is
linked with the behavior of the reentrant lobe. As κν(q) tends to decrease (increase),
the entropy of these classical spin-waves increases (decreases), leading to a corresponding
increase (decrease) in Tc. This is why the reentrant lobe in Figure 4.2b has a lobe shape.
As well, it is at the branch merger transition (at Hc = 0.82 T in Figure 4.4b) that these
dispersions reach their minimum. So, the increase or decrease of κν(q) as a function of H
is really a measure of proximity to this branch merger transition. Approaching Hc = 0.82
T from below leads to a decrease in κν(q) due to proximity to the upcoming transition,
even if H is not yet equal to Hc. This is why the reentrant lobe is centered on Hc = 0.82
T in Figure 4.2b, but exists for a range of H values, including values of H < 0.82 T.

Finally, note that this discussion has focused on the [100] field direction, but these
arguments are analogous for the classical spin-wave dispersions in the [111] and [110] field
directions. For example, in the [111] direction, there is a range of H values near H = 0.54 T
for which κν(q) < Tc0. A few examples are shown for H = 0.40 T (Figure C.2a), H = 0.45
T (Figure C.2b), H = 0.50 T (Figure C.2c), and H = 0.60 T (Figure C.2d). This is why
reentrance occurs for a range of field values H, even though the ψ2 selection by the applied
field (as discussed in Section 4.4) occurs most strongly at H = 0.54 T. It is proximity to
this selection (i.e. the gradual selection of a θE value that corresponds to the ψ2 phase, as
H varies) that leads to a decreased κν(q) for a range of field values near 0.54 T, similar to
proximity to a branch merger transition in the [100] case.

A similar argument can be made for the [110] field direction. For example, Figure 4.14
shows that κν(q) < Tc0, and it is argued (in Section 4.5) that the reason is proximity to two
branch collapse transitions (at H = 0.52 T and H = 1.12 T). Further confirmation of this
is given by calculating the classical spin-wave dispersions for H = 0.65 T (Figure C.3a),
H = 0.70 T (Figure C.3b), H = 0.80 T (Figure C.3c), and H = 0.90 T (Figure C.3d).
In all four cases, we see there are dispersions satisfying κν(q) < Tc0, which give thermal
fluctuations that sustain the upper reentrant lobe in Figure 4.11b. Again, κν(q) < Tc0
occurs for a range of field values H due to proximity to branch collapse transitions, just as
in the [100] case.

144



XX W L XX K
q

0.0

0.2

0.4

0.6

0.8

1.0

(q
) (

K)

H = 0.10 T  [100]
xy h

xz h

yz h

xy h

xz h

yz h

(a)

XX W L XX K
q

0.0

0.2

0.4

0.6

0.8

1.0

(q
) (

K)

H = 0.30 T  [100]
xy h

xz h

yz h

xy h

xz h

yz h

(b)

XX W L XX K
q

0.0

0.2

0.4

0.6

0.8

1.0

(q
) (

K)

H = 0.50 T  [100]
xy h

xz h

yz h

xy h

xz h

yz h

(c)

XX W L XX K
q

0.0

0.2

0.4

0.6

0.8

1.0

(q
) (

K)

H = 0.70 T  [100]
xy h

xz h

yz h

xy h

xz h

yz h

(d)

XX W L XX K
q

0.0

0.2

0.4

0.6

0.8

1.0

(q
) (

K)

H = 0.90 T  [100]
xy h

xz h

yz h

xy h

xz h

yz h

(e)

XX W L XX K
q

0.0

0.2

0.4

0.6

0.8

1.0

(q
) (

K)

H = 1.10 T  [100]
xy h

xz h

yz h

xy h

xz h

yz h

(f)

Figure C.1: Classical spin-wave expansion at (a) H = 0.10 T, (b) H = 0.30 T, (c) H = 0.50
T, (d) H = 0.70, (e) H = 0.90 T, and (f) H = 1.10 T in the [100] direction. Wavevectors are
taken from the FCC reciprocal lattice. The grey shaded region represents energy scales below
Tc0 ≈ 160 mK. Note that dispersions may overlap due to degeneracies at high-symmetry points
or from mergers of FEPC states induced by the field (e.g. 〈xy〉h and 〈xy〉h for H ≥ 0.82 T).
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Figure C.2: Classical spin-wave expansion at (a) H = 0.40 T, (b) H = 0.45 T, (c) H = 0.50 T,
and (d) H = 0.60 T in the [111] direction. Wavevectors are taken from the FCC reciprocal lattice.
The grey shaded region represents energy scales below Tc0 ≈ 160 mK. Note that dispersions may
overlap due to degeneracies at high-symmetry points or from mergers of FEPC states induced by
the field (e.g. 〈xy〉h and 〈xy〉h for H ≥ 1.31 T).
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Figure C.3: Classical spin-wave expansion at (a) H = 0.65 T, (b) H = 0.70 T, (c) H = 0.80 T,
and (d) H = 0.90 T in the [110] direction. Only those field-evolved Palmer-Chalker states which
minimize the energy are considered. Wavevectors are taken from the FCC reciprocal lattice. The
grey shaded region represents energy scales below Tc0 ≈ 160 mK. Note that dispersions may
overlap due to degeneracies at high-symmetry points or from mergers of FEPC states induced by
the field (e.g. 〈xy〉h, 〈xz〉h, and 〈xy〉h for H ≥ 0.57 T).
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Appendix D

Further Analysis of the [110] Field
Direction

In this Appendix, we further anaylze the results in the [110] field direction. In particular,
we return to the difference between the T = 0 and T = 0+ phases shown in Figure 4.11a.
Note that this occurs purely within VMFT; we are not dealing with any classical spin-waves
or thermal fluctuations here. Hence, it should be emphasized that this is not a thermal
order-by-disorder effect. This difference between the T = 0 and T = 0+ phases must be
understood purely on the grounds of VMFT.

For field values of H < 0.42 T, we see that we go from a Z4 degeneracy at T = 0
to a Z2 degeneracy at T = 0+ in Figure 4.11a. An applied field in the [110] direction
separates the six FEPC states into two groups according to symmetry: G1 = {〈xy〉h, 〈xy〉h}
(for which the applied field lies in the same plane as the original PC states) and G2 =
{〈xz〉h, 〈yz〉h, 〈xz〉h, 〈yz〉h} (for which the applied field does not lie in the same plane as
the original PC states). At T = 0, the Z4 degeneracy corresponds to G2; these are the four
FEPC states that the system is found in. At T = 0+, the Z2 degeneracy corresponds to G1;
these are the two FEPC states that the system is found in. Therefore, when temperature
is increased from T = 0 to T = 0+, the Z4 → Z2 change corresponds to a change of
preference from G2 to G1. This already indicates that this difference between the T = 0
and T = 0+ phases is not from thermal order-by-disorder (which is not surprising, since
this is a mean-field treatment with no fluctuations). Thermal order-by-disorder would
mean that, at finite temperatures, thermal fluctuations select some subset of the original
four states in G2, but the Z2 degeneracy at finite temperatures is not from a subset of G2.
It is rather from a different set of FEPC states entirely.
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As there is a change in the preferred FEPC states as temperature becomes finite, the
origin must be related to the entropy calculated within VMFT. At T = 0, there is no
entropy contribution to the system, and the free energy simply reduces to the energy. At
T = 0+, entropy has an influence on the free energy of the system. We must therefore look
at the entropy calculated within VMFT to understand what changes between T = 0 and
T = 0+. Consider Eq. (3.28):

f =
F

N
=
X(m)

N
− 1

Nβ

∑
i,a

ln(Zia). (D.1)

At T = 0, the only contribution is the first term, which is the energy. Suppose T = ε for
ε→ 0+. There will now be a contribution from the entropy as well, which is related to the
second term. Namely, this contribution is:

1

Nβ

∑
i,a

ln(Zia) =
ε

N

∑
i,a

ln

(
4π
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)
(D.2)

=
ε
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(
4πε
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(
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(D.3)

=
ε
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(
4πε
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+ ln

(
sinh

(
|Bia|
ε

))
. (D.4)

For ε → 0+, ε ln(ε) → 0. However, sinh
(
|Bia|
ε

)
∼ e

|Bia|
ε , so ln

(
sinh

(
|Bia|
ε

))
∼ |Bia|

ε
.

Altogether, we have:

1

Nβ

∑
i,a

ln(Zia) ≈
ε

N

∑
i,a

|Bia|
ε

=
1

N

∑
i,a

|Bia|. (D.5)

Hence, the entropic contribution to the free energy at T = 0+ scales roughly as the average
magnitude of the local field. We must therefore take a closer look at how the local field is
different for the states in G1 versus G2.

As shown in Eq. (3.27), there are two contributions to the local field at every site: (1)
the exchange contribution due to interactions with the site’s nearest-neighbors, and (2)
the Zeeman contribution due to the applied field. When an applied field is turned on, the
Zeeman contribution comes from hµia = µBg

µν
ia H

ν , as shown in Eq. (3.27). Returning to
the g-tensors shown in Eqs. (2.12) and (2.15), there is a special coincidence that occurs for
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H ‖ [110] and for the xy–planar PC states. For two of the sublattices (namely, sublattices
1 and 2 in Eq. (2.15)), the Zeeman contribution hµia on these sublattices satisfy

h1 ∝

 g1 −g2 −g2
−g2 g1 g2
−g2 g2 g1

1
1
0

 ∝
1

1
0

 , (D.6)

h2 ∝

 g1 −g2 g2
−g2 g1 −g2
g2 −g2 g1

1
1
0

 ∝
1

1
0

 . (D.7)

These Zeeman contributions h1 and h2 are exactly parallel to the spins S1 and S2 (as
shown in Figure 2.4a) of the PC states 〈xy〉 and 〈xy〉!1

Physically, this means that for small values of H and for 〈xy〉 and 〈xy〉, instead of
canting out of the PC configuration in the presence of a field, the spins on sublattices 1
and 2 do not change, but remain in their same orientation. We see that this differentiates
the states in G1 from those in G2: the FEPC states in G1 do not completely benefit from
the Zeeman interaction because some of the spins do not cant in the presence of the field.
On the other hand, all FEPC states in G2 cant in the presence of an applied magnetic field.
Returning to Eq. (D.5), this causes a slight difference in the local field Bia for the FEPC
states in G1 relative to G2. This is therefore the origin of the entropic difference between
the two groups as temperature is changed from T = 0 to T = 0+, leading to the Z4 → Z2

change in Figure 4.11a as temperature becomes finite.

1Note that this coincidence does not occur when the field points along the [100] or [111] directions.
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