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Abstract

Software vulnerabilities have been a significant attack surface used in cyberattacks, which
have been escalating recently. Software vulnerabilities have caused substantial damage,
and thus there are many techniques to guard against them. Nevertheless, detecting and
eliminating software vulnerabilities from the source code is the best and most effective so-
lution in terms of protection and cost. Static Analysis Security Testing (SAST) tools spot
vulnerabilities and help programmers to remove the vulnerabilities. The fundamental prob-
lem is that modern software continues to evolve and shift, making detecting vulnerabilities
more difficult. Hence, this thesis takes a step toward highlighting the features required to
be present in the SAST tools to address software vulnerabilities in modern software. The
thesis’s end goal is to introduce SAST methods and tools to detect the dominant type of
software vulnerabilities in modern software. The investigation first focuses on state-of-the-
art SAST tools when working with large-scale modern software. The research examines
how different state-of-the-art SAST tools react to different types of warnings over time,
and measures SAST tools precision of different types of warnings. The study presumption
is that the SAST tools’ precision can be obtained from studying real-world projects’ his-
tory and SAST tools that generated warnings over time. The empirical analysis in this
study then takes a further step to look at the problem from a different angle, starting at
the real-world vulnerabilities detected by individuals and published in well-known vulner-
abilities databases. Android application vulnerabilities are used as an example of modern
software vulnerabilities. This study aims to measure the recall of SAST tools when they
work with modern software vulnerabilities and understand how software vulnerabilities
manifest in the real world. We find that buffer errors that belong to the input validation
and representation class of vulnerability dominate modern software. Also, we find that
studied state-of-the-art SAST tools failed to identify real-world vulnerabilities. To address
the issue of detecting vulnerabilities in modern software, we introduce two methodologies.
The first methodology is a coarse-grain method that targets helping taint static analysis
methods to tackle two aspects of the complexity of modern software. One aspect is that
one vulnerability can be scattered across different languages in a single application mak-
ing the analysis harder to achieve. The second aspect is that the number of sources and
sinks is high and increasing over time, which can be hard for taint analysis to cover such
a high number of sources and sinks. We implement the proposed methodology in a tool
called Source Sink (SoS) that filters out the source and sink pairs that do not have feasi-
ble paths. Then, another fine-grain methodology focuses on discovering buffer errors that
occur in modern software. The method performs taint analysis to examine the reachability
between sources and sinks and looks for "validators" that validates the untrusted input.
We implemented methodology in a tool called Buffer Error Finder (BEFinder).
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Chapter 1

Introduction

We are witnessing an era where rapid technological innovations are reshaping our world.
Many aspects of our daily life are shifting to be virtual. This paradigm leads to more
connectivity among devices than ever before, meaning more sensitive data is shared. Con-
sequently, this shift necessitates addressing cyberspace’s security as an urgent challenge,
since the security risks become higher, influencing everyone in cyberspace. Cybersecurity
is the process of protecting and recovering networks, devices, software, and data from cy-
berattacks. The majority of cyberattacks, around 90%, are estimated to be a result of
exploiting software vulnerabilities [21]. Nevertheless, the number of software vulnerabili-
ties is rapidly rising [164][209][149]. According to Risk Based Security [164], in 2015, the
number of vulnerabilities increased by 77% compared to the vulnerabilities reported in
2011. In 2017, the number of vulnerabilities that were assigned Common Vulnerabilities
and Exposures Identifier (CVE-ID) was more than double that of 2016 [124][149].

A software vulnerability is a software flaw that may allow unauthorized operations,
such as malicious code execution, privileges elevation, information leakage, or denial of
service. A single software vulnerability can lead to devastating ramifications. In 2014,
the Heartbleed vulnerability in the OpenSSL cryptography library occurred because of the
missing bounds check of a buffer [29]. This vulnerability allows attackers to remotely steal
the secret keys protected by the encryption protocol and potentially impersonate services
and users. The cost of this incident is estimated to be US$500 million [114]. In 2015, the
Stagefright set of buffer error vulnerabilities were exploited in the Stagefright library in
Android OS 2.2+ [100]. This Stagefright vulnerability primarily occurred because of an
integer overflow that led to a buffer overflow, allowing an attacker to remotely compromise
Android phones with OS version 2.2+. The vulnerability is exploited by sending malformed
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MMS messages or videos, leading to malicious code execution. This vulnerability impacted
nearly one billion Android devices.

Many security solutions have been proposed to defend against cyberattacks due to
software vulnerabilities; however, it is well-known that building secure software is the first
line of defense. Using Static Application Security Testing (SAST) tools is one way that
helps software developers to find software vulnerabilities early during the coding phase
and fix them. This leads to cost-saving, which is a crucial benefit of SAST tools [174].
SAST tools statically examine the program code and provide the developer with warnings
associated with the flawed lines of code that could potentially lead to vulnerabilities. The
SAST tools classify each warning into one of many types and assign severity to them. For
each warning, a human code reviewer decides if the warning poses a real defect that can be
exploited by attackers (true positive) and, hence, the defect needs to be fixed, or the given
warning cannot be exploited by attackers (false positive), and hence no further action is
required. Sometimes, some software vulnerabilities exist in the code; however, due to the
tool’s limitations, no warning regarding those software vulnerabilities is generated (false
negative). Another potential outcome of the tool is that no security warnings are reported
because the source code is secure (true negative).

In an ideal setting, the SAST tool should be both sound, meaning it does not report
any unreal problems (no false positives) and complete, meaning it does not miss any real
problems (no false negatives). This cannot be achieved in practice for the fundamental rea-
son expressed by Rice’s theorem [162][163], which implies that the static analysis method
must settle for approximation techniques. Usually, the approximation techniques are con-
servative. However, in practice, the SAST tools should balance between correctness and
scalability. For this reason, SAST tools generate false positives and false negatives.

A very fundamental question to ask is that are SAST tools meeting the needs to find
vulnerabilities in modern software? Modern software systems are becoming more compli-
cated because of the demands for interconnectivity, integration, and platform compatibility.
Since the new software development culture emphasizes component reuse, modern software
is likely to depend on third-party components and libraries. Synopsys indicates that 99%
of codebases audited in 2019 included open-source components [38]. Hence, a single vul-
nerability in one library can influence many other software projects that depend on it. This
also indicates that software is heterogeneous (i.e., polyglot program), where one software is
composed using different languages due to the availability of already written components
in a different language. Another issue is that modern software may have a different archi-
tecture than traditional software. For instance, Android apps do not have a main method,
but they comprise multiple entry points. Moreover, modern software is growing in size over
time. The law of software envelopment by Zawinski [160] suggests that “Every program
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attempts to expand until it can read mail. Those programs which cannot so expand are
replaced by ones which can”. Likewise, frameworks supporting the programming languages
are expanding too and providing increasing APIs over time. Hence, finding vulnerabilities
is more difficult in modern software systems [108].

Therefore, this thesis’s primary goal is to shed light on vulnerabilities in modern soft-
ware to build better SAST tools. To accomplish this goal, we acquire knowledge about the
most significant type of vulnerability in modern software from the perspective of SAST
tools, and the perspective of the individuals who find the vulnerabilities and report them
to well-known vulnerability databases. Then, we gained insights about the precision and
the recall of the SAST tools. Thus, we performed two empirical studies using real-world
cases to obtain an in-depth understanding of state-of-the-art SAST tools’ capabilities and
spot their weaknesses. The observations that we acquired from the empirical studies point
out the significance of one type of vulnerability that belongs to the Input Validation and
Representation (IVR) class: buffer errors. Hence, we conducted further studies to solve
this particular problem. Using the knowledge gained from such observation, we introduced
two static analysis methods. One method is general for the IVR, and the other is pro-
posed to detect buffer errors in modern software. Most of the studies in this thesis adopt
Android apps as a subject to investigate modern software vulnerabilities and how SAST
tools operate with modern software. In the next sections, an overview of the studies that
have been conducted in this thesis is given.

1.1 Precision of SAST Tools

The goals of the first empirical study are to get a basic understanding of state-of-the-
art SAST tools precision when applied to real-life projects, the types of warnings they
tend to generate, and the types of underlying inference algorithms that can be effective to
produce true warnings. In academia, the precision of SAST tools has been investigated
mainly by using benchmarks. In this thesis, we adopted a different methodology. Instead
of examining test suites, we adopted running the SAST tools with real projects. We
then derived the developers’ decisions about the warnings produced by SAST tools from
observing the five-year history wherein the developers modified the lines of code associated
with the warnings.

We carry out a large-scale empirical study where we examined 116 large and popular
C++ projects using six different state-of-the-art open-source and commercial SAST tools
that detect security vulnerabilities. To track a piece of code that has been tagged with a
warning, we use a new state-of-the-art framework called cregit+ [95] that traces source code
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lines across different commits. The results demonstrate the potential of using SAST tools
as an assessment tool to measure the quality of a product and the possible risks without
any manual review of the warnings. Besides, the study shows that SAST tools that use the
pattern-matching technique along with more advanced analysis methods detect the Input
Validation and Representation (IVR) flaws precisely. This indicates that pattern-matching
is a compelling method and is likely to help SAST tools spot real issues when combined
with other advanced analysis methods.

1.2 Recall of SAST Tools

The second empirical study is a vulnerability-driven research approach, where we study
real-world vulnerabilities in modern software. As an example of modern software vulnera-
bilities, we focus on real-world Android app vulnerabilities. We choose to focus on Android
since it dominates the mobile market and has gained tremendous popularity [110]. The
study starts with real-world software vulnerabilities in modern software that are detected
by individuals. The study then investigates whether state-of-the-art SAST tools can recall
these real-world software vulnerabilities, meaning detect them. This is important since
modern software is more complex and more vulnerable than traditional software [187].

The analysis reveals that buffer errors, which belong to the IVR class of vulnerabilities,
are the most frequent types of vulnerabilities that threaten Android apps. This is an
unexpected finding since Android apps mainly use the Java programming language, and
buffer errors are related to the native code (Assembly, C, and C++); however, Android
apps can use native code. Afonso et al., [40] observe that 37% of tested apps use native
code. Also, Sun and Tan [182] stated that 86% of the most popular Android apps include
native code, which signifies the importance of addressing buffer errors in these apps. Our
study’s findings indicate that none of the state-of-the-art SAST tools were able to detect
any of the studied software vulnerabilities. Therefore, we perform a qualitative analysis to
understand the nature of the buffer error vulnerabilities by manually analyzing the source
code.

We observe some common attributes of buffer errors in Android apps. We find that
usually, the input is read from untrusted sources. Also, untrusted input is inadequately
validated, or there is a lack of boundary checking. Another attribute we find is that buffer
errors in our case study are inter-file/inter-procedural, as the buffer is allocated in one
function in one file, and the untrusted input in another function in a different file. The
inter-file/inter-procedural communication occurs in a cross-language manner, meaning that
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buffer errors occur in the native context, while the input comes from another context, such
as Java language.

1.3 Filtering Sources and Sinks

The observations gained by the empirical studies indicate that the IVR class of vulnerabil-
ities is a significant type of vulnerabilities that need to be addressed. An IVR vulnerability
is a software security problem resulting from trusting input from outside the program.
IVR issues include buffer errors, cross-site scripting, command injection, SQL injection,
and others. Taint analysis is used to detect such issues to trace input from untrusted
sources. Taint analysis usually involves finding a source, which is a method that accepts
data from outsiders for IVR type of problem, and a sink, which is a program statement
that has an operation that leads to the problem.

However, there are two major challenges that static analysis tools are facing. One
challenge highlighted by the empirical studies shows that modern software is likely to have
vulnerabilities scattered across languages in one software. Hence, static analysis method-
ologies need to focus on detecting vulnerabilities, including vulnerabilities involved in
cross-languages communications. The second challenge is that as modern software evolves,
thousands of source and sink APIs are introduced. Nevertheless, the current taint analysis
methods cannot handle many sources and sinks. Thus, we propose a static analysis method
to reduce the search space and help SAST tools to perform the taint analysis effectively
without missing issues. The proposed analysis method uses a pattern-matching method
found to be a powerful static analysis method in the empirical study that we conduct in
this thesis.

Moreover, the analysis is based on connecting the call graphs of multiple languages used
in a single software. Then, it determines the reachability of the source and sink pairs using
the call graph. The goal is to provide a practical solution that provides all possible source
and sink pairs reachable in the call graph, providing this to other static analysis tools to
perform in-depth analysis. We implement the proposed methodology in a tool called SoS,
and the results show a considerable reduction in the feasible source and sink pairs.

1.4 Finding Buffer Errors

Buffer errors that belong to the IVR class are the most common types of vulnerabilities
in modern software [44]. In this study, a methodology to detect buffer errors in modern
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software is proposed. In order to detect buffer errors that are influenced by untrusted input,
we need to find a source of the input that can influence a sink that performs read/write on
a buffer, and then ensure that the untrusted input was validated/sanitized. The key to the
IVR issues is that the validation is missing or not performed correctly. Given the discussion
in the conducted empirical study about buffer error patterns in Android apps, validation
was always the primary key to the problem. For instance, the boundary checking should
ensure that the buffer operation is within the boundary of a buffer, either missing or done
wrongly, such as the miscalculated buffer size.

Hence, the proposed model employs taint data-flow analysis based on the Sparse Value
Flow Graph (SVFG) [181] that captures data dependencies in the source code. However,
since there would be many sources and sinks, we use the output generated by SoS to only
focus the analysis on the pairs that may have a feasible path. Once a source and a sink
pair are found to be reachable in the SVFG, the analysis would ensure a validation has
been performed. The analysis uses a simple constraint solver to evaluate the values against
a set of constraints.

1.5 Thesis Statement and Contributions

Thesis Statement. Understanding SAST tool capabilities is a prerequisite to be improving
and eventually helping developers find and eliminate software vulnerabilities. This under-
standing would be more beneficial if it is acquired from empirical research findings. The
understanding of the SAST tools problem involves two aspects: one is to recognize the
precision of the state-of-the-art SAST tools generated warnings using real-world projects,
and the other is to understand how real-world vulnerabilities occur in real-world applica-
tions and how SAST tools recall them. This can help to build better tools that address
the missing qualities of such SAST tools.

This thesis makes the following contributions:

• We study the state-of-the-art SAST tools generated warnings over time to understand
their precision.

• We study real-world vulnerabilities found by individuals that occur in Android apps,
and we test the state-of-the-art SAST tools against those vulnerabilities to perceive
the recall of the tools.

• We discuss the pattern in which real-world vulnerabilities occur, and we describe the
underlying algorithms for a SAST tool to detect real-world vulnerabilities.
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• We introduce a general coarse-grain methodology to detect the source and sink pairs,
which involve cross-languages communication. Also, we implement a tool called SoS
to evaluate the proposed approach.

• We propose a fine-grain methodology to detect buffer errors based on the SVFG and
constraint solver. Also, we implement a tool called BEFinder to assess the proposed
methodology.

1.6 Organization

This thesis is further organized as follows: Chapter 2 discusses the background information
and related work. Chapter 3 introduces an empirical study to understand the precision
of state-of-the-art SAST tools. An empirical study to understand the recall of state-of-
the-art SAST tools when applied to Android apps is given in Chapter 4. Based on the
empirical studies findings in Chapter 3 and Chapter 4, we propose two methodologies in
Chapter 5 and Chapter 6. Chapter 5 provides a general methodology to find the source
and sink pairs in cross-language to provide only pairs with a feasible path. Chapter 6
discusses a methodology to detect buffer errors based on the SVFG. Chapter 7 summarizes
our conclusions for the work presented in this thesis.
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Chapter 2

Background and Related Work

This chapter provides background information and a literature review of work related to the
topics discussed in the thesis. Since buffer errors are the dominant type of vulnerabilities
in modern software, as observed in the empirical studies that we conduct in this thesis,
extensive background information about this specific type of vulnerability is given. This
type of vulnerability is discussed in the context of Android apps. This way, we show how
this type of vulnerability is handled in modern software. We start by explaining how this
particular type of vulnerability happens in the source code. Then, how this particular type
of vulnerability can be exploited. Different defense mechanisms against buffer errors are
given to shed some light on why these mechanisms are not enough to protect against this
particular vulnerability; to illustrate how can attackers bypass them, hence eliminate the
buffer errors from the source code is the optimal solution. Then, a discussion about the
related work and different static analysis methods to detect buffer errors is provided.

2.1 Background Information

2.1.1 Buffer Errors in a Nutshell

Buffer errors continue to be problematic. This type of vulnerability was acknowledged
and discussed in part by Anderson in 1972 [50]. In 1988, a stack-based buffer overflow
vulnerability in the Unix finger daemon was exploited to propagate the first Internet
worm, the so-called Morris worm, infecting about 10% of the devices connected to the
Internet [60]. This is a classic buffer overflow (CWE-120: buffer copy without checking
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size of input). This occurs when software copies data into a smaller size buffer, resulting
in overwriting memory locations.

A buffer consists of chunks of memory that store any type of information in a program.
Buffer errors (referred to as CWE-119 in the Common Weaknesses Enumeration category)
occur when software reads from or writes to a memory location outside the boundary of the
intended buffer. Buffer errors usually happen because programmers assume that data fits
into the buffer or improperly perform operations within the bounds of a memory buffer.
There are various ways such a problem could happen; for instance, two programming
modules read/write from/to a buffer, and due to wrong assumptions, buffer overrun may
be triggered. This may result in crashing the program. This may hint an availability issue;
however, this is not the type of problem to be solved in this thesis.

In this thesis, only buffer errors that can be exploited and controlled by outsiders are
considered. We mean by "controlled" that malicious outsiders can inject tainted inputs,
which lead to availability, confidentiality, or integrity problems. The issue occurs because
the programmer does not validate the input from untrusted sources. Native programming
languages, such as Assembly, C, and C++ (or sometimes, programming languages that
are implemented based on a native language, such as Perl [14]), which allow direct mem-
ory manipulation, are prone to buffer errors since there is no original protection against
accessing or overwriting data in the memory. The way in which buffer error vulnerabilities
can be exploited differs based on the memory region location of the allocated buffer (this
is discussed in detail in section 2.1.2). Also, exploiting buffer error techniques may vary
depending on the mitigation mechanisms of the processor architecture and the operating
system (this is discussed in section 2.1.3).

2.1.2 Buffer Error Exploiting Mechanisms

To understand how buffer errors are exploited, it is important to understand how the data
memory is organized inside a process. A process is a program instance that is loaded into
memory to be executed and managed by the OS. The exact layout of process memory
depends on the OS and the implementation of the programming language (e.g., compiler,
linker, and loader). Figure 2.1 shows process memory layout in a native program, which is
generally divided into four segments: code, data, heap, and stack segments, each with its
purpose. Typically, buffer errors in one segment could over-write data in the next segment
in the memory. Here, we address each segment and its purpose and how buffer errors could
be exploited:

1. The code or text segment stores the compiled binary code. This section is executable
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and read-only in many architectures. A segment violation occurs when an attempt is
made to write to this segment. In some architectures that allow self-modifying code,
this segment is not read-only. This memory segment in the Unix-based systems is
held at the lowest address, compared to other segments to restrict these segments
from overrunning the code segment [168].

2. The data segment includes static/global variables that are initialized/uninitialized
by the programmer (in the Unix systems, initialized variables are stored in the data
section, while uninitialized variables are stored in the BSS segment). Data in this
segment grows towards higher address spaces.

3. The heap segment is used to create dynamic data objects and store objects that must
live longer than one function’s lifetime. The heap is allocated by new, malloc, calloc,
and realloc, among others, and removed by delete and free. This segment grows
towards higher address spaces, and it is usually used when the size of the buffer
required by the program is unknown or larger than the stack. Heap-based buffer
errors in the heap could occur by manipulating heap management metadata stored
before or after the actual data in a heap. The implementation of the heap differs
depending on the OS and architecture. Some operating systems provide an allocator
for malloc, while others provide functions to control specific regions of data [168].
Based on this, the heap exploiting varies based on the heap data structure. Hence,
when heap data is overrun, the values in the management control block may be
compromised. As a result, the memory management function (e.g., malloc and free
in dlmalloc data structure) could be accessed to write arbitrary data at arbitrary
memory locations or to execute malicious code (e.g., using unlinking or frontlinking
attacks in dlmalloc or jemalloc heap corruption attacks [51]). This depends on the
used memory management functions and their specific implementation.

4. The stack segment supports active subroutine execution of a computer program, and
it is a last-in, first-out (LIFO) data structure. The stack is used to store local variables
declared inside local subroutines and to store data related to subroutine calls, such
as the return address and parameters. Stack variables usually grow towards lower
address spaces in Unix-based systems. Buffer errors may lead to arbitrary code
execution by altering a pointer to an address, such as modifying the return address
(i.e., stack smashing), a frame- or stack-based exception handler pointer, function
pointer, or other addresses to which control may be transferred [168]. Attackers
typically perform stack-based buffer overflow by using an injected malicious code
(e.g., stack smashing) or jumping to a new location in the code instruction (e.g., arc
injection attacks).
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Figure 2.1: Memory layout of a process [168]

Generally, in the data/heap/stack segments, a buffer error may lead to a denial of service
that crashes an entire application [168]. Additionally, in the data/heap/stack segments, a
buffer over-read may reveal a variable value. On the other hand, a buffer over-write may
occur and change a variable’s value. Another way to transfer control to an arbitrary code
given buffer errors is by using pointer subterfuge. As an illustration, overrunning pointers
to data or functions in the data/heap/stack segments could transfer control to attacker-
supplied shellcode [168]. In addition, pointer subterfuge may happen due to language
features, such as longjmp(), atexit()/on_exit() functions defined in C standards [168].
Another example is that C++ allows the virtual functions to be overridden by a function
of the same name in a derived class. This could be compromised by attackers to execute
arbitrary code (i.e., VPTR smashing [20]). Moreover, pointer subterfuge could modify
a pointer to exception handlers (e.g., Microsoft Windows Structured Exception Handling
(SEH)). Beyond a single process, the shared section is a memory location that could be
mapped into and out of multiple program address spaces to provide communication among
them. Buffer errors have not been discussed in depth in this segment; however, they may
occur, and buffer errors in this section may influence other applications that share the
same objects [64].

In Android apps, the layout of process memory is organized differently. Android apps
are written in Java or Kotlin code and sometimes may include the native code, and all
of these components reside within the same virtual address space. Indeed, the nature
of Android architecture requires the apps to share resources with the Android OS. The
code segment holds app code and resources, such as .dex bytecode and .jar/.so libraries.
Android apps have two different heaps: the Java heap and the native heap. The Java heap
holds objects that are dynamically allocated from Java or Kotlin code. This segment is
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less likely to produce buffer errors.

The native heap, on the other hand, holds C/C++ objects that are dynamically al-
located. This segment is always present even if the app does not use the native code
because the Android framework uses native memory. This segment is where buffer errors
could happen, similar to what we have seen before. Gong describes one way to exploit An-
droid heap-based buffer errors [98]. In Android, the heap in the native code, is managed
by particular APIs in the Bionic library 1 using the dynamic memory allocator, which is
dlmalloc up to Kitkat and jemalloc since Lollipop; dlmalloc and jemalloc have different
data structures and, thus, different exploit mechanisms [88] [51]. Moreover, the Android
Run-Time (ART) model has a unified stack for native and Java code [27] (which is differ-
ent from the old Dalvik model that had separate stacks for native and Java code). The
stack in Android is also prone to typical stack-based buffer errors [54] [104]. Additionally,
there is a shared memory segment (e.g., ashmem or mmap) that includes shared objects,
among other processes prone to buffer errors. The next section provides some defensive
mechanisms to protect against buffer errors.

2.1.3 Buffer Error Defense Mechanisms

Since buffer errors can lead to very dangerous vulnerabilities, multiple defense mechanisms
have been proposed in the literature to protect against these types of vulnerabilities. We
classify these techniques into two types: prevention techniques and elimination techniques.

2.1.3.1 Buffer Error Prevention Techniques

Prevention techniques block exploiting the vulnerability. These techniques usually termi-
nate the program when buffer errors are detected during run-time. These techniques are
provided as compiler extensions (e.g., StackGuard[72], ProPolice[85], and Return Address
Defender (RAD)[67]) , OS modifications (e.g., Pax [28], LibSafe [203]), hardware modifi-
cations (e.g., processor-based [141]), or tools that capture buffer error attack symptoms
(e.g., COVERS [134], TaintCheck [147]). As an illustration, Android has adopted some of
the run-time protection mechanism features to mitigate buffer error attacks as follows:

• In Android 1.5 CupCake, ProPolice (also known as Stack Smashing Protector (SSP))
has been introduced, which is improved over StackGuard [72], to protect against

1https://android.googlesource.com/platform/bionic/
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stack-based buffer errors [18]. ProPolice is a compiler feature that addresses stack
smashing attacks by adding canary values just before the target address on the stack
(arguments, return address, and previous frame pointer) [80]. Attempts to manip-
ulate those addresses would lead to the canary values being changed, and then the
program could be corrupted before the execution of malicious code could occur. Also,
ProPolice reorders variables such that overrunning a buffer is less likely to damage
other local variables. ProPolice can protect overwriting the arguments, the return
address, the previous frame pointer, or local variables, but it cannot protect overwrit-
ing all types of local variables. For instance, the compiler cannot rearrange struct
members [168]. This mechanism can also accidentally modify or crash the execu-
tion of non-malicious programs due to unknown bugs in the programs. Hence, this
technique may not be applied to all applications on the platform [168]. Moreover,
this mechanism does not protect against buffer errors occurring in the heap or data
segments.

• In Android 2.3 Gingerbread, the hardware-level No eXecute (NX) technique has been
added to prevent code execution on the stack and heap. However, this approach could
be bypassed, such as by using a return-to-libc attack.

• In Android 4.0 Ice Cream Sandwich [18], Address Space Layout Randomization
(ASLR) has been initially introduced, then ASLR was enhanced with newer versions
of Android. ASLR randomizes memory addresses of the stack, heap, and libraries
each time the memory is allocated for a process, such that finding executable code
becomes unreliable. However, overcoming the mentioned techniques above is pos-
sible and sometimes simple [80] [137]. ASLR can be bypassed on a long-running
process, such that attackers can discover the shellcode address without terminating
the process using information leakage vulnerability. Another possible method is that
an attacker can leverage the fact that Zygote’s randomization makes identical ad-
dress space layouts of all launched apps in one phone. Hence, an attacker could use
a malicious app to leak the address space layout that would be identical to other
launched apps. Real exploitation and code execution have already been proven in
the wild [98].

• In Android 4.2 Jelly Beans and recent versions, a new feature has been added that
protects against buffer errors, as all applications and system libraries during compile
time are checked with the FORTIFY_SOURCE feature [18], which detects and stops
certain types of buffer errors. This feature detects buffer errors in various functions
that may perform unsafe operations on memory and strings; hence, it does not protect
against all the types of buffer errors.
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It is recognized that these prevention techniques should not be used solely and consid-
ered a second line of defense. These techniques may be bypassed as attackers get more
intelligent, causing a denial of service (since the process is terminated when detected), or
may involve performance penalties. Therefore, it is essential to detect buffer errors before
software deployment. The next section discusses which methods detect buffer errors during
the coding phase.

2.1.3.2 Buffer Error Elimination Techniques

Elimination techniques are mostly used for testing purposes of detecting and deleting the
actual buffer error vulnerability from the source code, such as fuzzing, dynamic analysis,
model checking, and static analysis. Fuzzing is an automated approach that injects unex-
pected random data as inputs to a running program until it crashes or fails, which may
indicate the presence of vulnerabilities. Fuzzers can be black (e.g., Peach [13], Spike [22]),
white (e.g., Dowser [103]), or grey-box (e.g., Munch [150]), depending on whether they are
aware of program structure. Indeed, fuzzers tend to find simple bugs. Another run-time
technique is dynamic analysis that monitors a running program, and once a buffer error
is detected is logged to help developers to eliminate it (e.g, AddressSanitizer [169], Val-
grind/Memcheck [26], Dr.Memory [6], Insure++ [12]). Model checkers are based on models
that exhaustively check a program to prove properties in a mathematically precise man-
ner [58]. In the case of buffer errors, model checkers prove properties such that every access
to a specified buffer is safe (e.g., CBMC [122], BLAST [105]). Although model checkers
can check for a rich set of properties, they often require much manual effort to build test
harnesses. In general, the run-time approaches mentioned above are powerful; however,
they involve some limitations due to running-time detection mode, such as performance
overhead, inability to cover all the execution paths, and, sometimes, scalability drawbacks.

Contrarily, the static analysis method’s goal is to find vulnerabilities. Static analysis
tools do not have these drawbacks; thus, they have been prevalent for finding buffer errors.
Studies show that the static analysis method is better than model checking in finding
bugs [84]. That is because the static analysis method has less running-time and finds
more errors. Engler and Musuvathi [84] mentioned that most of the static analysis tools
require compiling the code, while model checkers require running on a carefully crafted
environment model. Further, static analysis tools can cover all execution paths in the
code, while other run-time methods only examine paths that are triggered during run-
time. Generally, the static analysis method may outperform other methods in terms of
scalability, code coverage, and less time and memory overhead. In the next section, an
in-depth discussion about the static analysis method for buffer errors is provided.
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2.1.4 Static Analysis Methods

Static analysis methods examine the program statically without executing it to detect
software vulnerabilities. Many static analysis problems are undecidable as a result of
Rice’s theorem that indicates that SAST tools must use approximation techniques. Static
analysis methods can analyze either the source or the binary code of the program. In our
study, we only focus on tools and methods that support the source code analysis. Before
we review state-of-the-art SAST tools, we provide an explanation of how different SAST
tools that detect buffer errors are classified.

2.1.4.1 Classification of Static Analysis for Buffer Errors

Shahriar and Zulkernine [170] classify static analysis methods that target buffer errors
based on inference algorithms, analysis sensitivity, analysis granularity, and target lan-
guages [170].

• Inference method is the main component of a static tool that indicates how the
method systematically infers potential vulnerabilities. The inference methods are
categorized into four types: string pattern matching, tainted data-flow, constraint-
based, and annotation [170]. The string pattern matching method is one of the sim-
plest methods used by SAST tools (e.g., RATS [17] and Flawfinder [39]). This tech-
nique tokenizes the program source code to identify a well-known set of tokens, such
as library function calls that could cause buffer errors. The other three types (tainted
data-flow, constraint-based, and annotation) involve more advanced analysis to un-
derstand the semantic of the source code [170]. In the tainted data-flow technique,
untrusted inputs are marked as tainted, then tainted data propagation is calculated
using a fixed point algorithm, such as constant propagation (e.g., Vulncheck [175]).
On the other hand, the constraint-based technique produces constraints from the
program code whose violations indicate vulnerabilities. Constraints are sometimes
calculated and updated while traversing a program graph. The constraint-based tech-
nique may include integer range, symbolic value, or demand-driven analysis. The
integer range analysis is based on analyzing the program statements that involve
buffer declarations and operations. Further, each constraint is formulated in terms
of a pair of integer ranges for the original buffer allocation size and the current size
of a buffer for each buffer declared or accessed (e.g., Wagner et al., [197] and Gana-
pathy et al., [94]). In the symbolic value analysis approach, the constraints might
include program variables and, whenever possible, their actual or symbolic values
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are assigned (e.g., ARCHER [204]). In the demand-driven method, programmers
could formulate constraints to query vulnerable program locations. Additionally, the
annotation-based inference method requires programmers to manually annotate a
program code with pre- and post-conditions (e.g., Hackett et al., [102]). Annotations
can be applied to both function declarations and program statements. An algorithm
then evaluates if buffers can be used safely in functions/statements based on the
annotated conditions.

• Analysis sensitivity refers to which pre-computed information based on the program
code is used to perform the analysis, and it could be flow, path, context, point-to, or
value range [170]. The flow-sensitive method means that the analysis runs based on
the statement execution sequence with respect to a control flow graph (CFG) (e.g.,
Weber et al., [199]). Similarly, the path-sensitive analysis indicates that the analysis
derives the execution paths from the CFG (e.g., Xie et al., [204]). The context-
sensitive approach is able to distinguish multiple call sites of a function in regard
to given arguments (e.g., Marple [126]). The point-to analysis method means that
the method identifies memory variables that could be accessed by a given pointer
variable (e.g., Dor et al., [78]). The value range analysis considers the lower and
upper bounds of a variable (e.g., Vulncheck [175]).

• Analysis granularity indicates the granularity level of the program code at which an
inference is performed [170]. The analysis granularity could be token, statement,
intra-procedural, interprocedural, or system dependence graph. In the token level of
granularity, the analysis method tokenizes the source code to determine keywords,
variables, and functions (e.g., RATS [17] and Flawfinder [39]). In the statement level
of granularity, the method analyzes all the program statements sequentially (e.g.,
Wagner et al., [197]). In the intra-procedural approach, the source code is analyzed
based on the CFG or data-flow graph (DFG); however, the analysis is performed at
the functional level (e.g., Dor et al., [78]). The inter-procedural approach, on the
other hand, examines the whole program as one function (e.g., Xie et al., [204]).
In the system dependence graph (SDG) level of granularity, the analysis method
builds a node for each program point (e.g., statement), and an edge between two
points representing dependency, which can be the control flow dependency or data-
flow dependency (e.g., Ganapathy et al., [94] by using Codesurfer [184] and Weber
et al., [199]).
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2.1.4.2 Buffer Error Attributes in the Source Code

In this section, we discuss some elements of the source code that are associated with
buffer errors. We present a taxonomy introduced by Kratkiewicz and Lippmann [120] and
extended from Zitser et al., [210]. Zitser et al., [210] propose a taxonomy that contains
thirteen attributes to describe C program buffer errors. The taxonomy was introduced to
aid in developing test cases of a wide range of buffer errors and assessing static and dynamic
analysis tools. Kratkiewicz and Lippmann have extended the taxonomy [120] and provided
a comprehensive buffer error taxonomy that consists of twenty-two attributes [120], as
shown in Table 2.1. This taxonomy is for C programs, but it could be extended to include
C++ elements.

Table 2.1: Buffer error taxonomy attributes adopted from [120]

Attribute
Number

Attribute Name Attribute
Number

Attribute Name

1 Write/Read 12 Alias of Buffer Index
2 Upper/Lower Bound 13 Local Control Flow
3 Data Type 14 Secondary Control Flow
4 Memory Location 15 Loop Structure
5 Scope 16 Loop Complexity
6 Container 17 Asynchrony
7 Pointer 18 Taint
8 Index Complexity 19 Run-time Environment Dependence
9 Address Complexity 20 Magnitude
10 Length/Limit Complexity 21 Continuous/Discrete
11 Alias of Buffer Address 22 Signed/Unsigned Mismatch

We note that some attributes are related to the actual buffer, and some attributes
describe the operations on the buffer. Further, some attributes are associated with the
buffer size, offset, or bounds, while others are related to the path to/from the buffer. We
provide a detailed description of each attribute with some examples in Appendix A that
are adapted from Kratkiewicz and Lippmann [120]. The write/read attribute describes the
type of illegal memory access. An illegal write allows attackers to write more information
into a smaller buffer leading to malicious code execution. In contrast, an illegal read
may allow unauthorized access to information (e.g., Heartbleed) or be part of a multi-step
exploit. Table A.1 in Appendix A shows the difference between illegal write/read memory
access.
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The container and pointer attributes describe the actual buffer holding data. The
container attribute refers to the data structure that holds a buffer. Examples of such
containers are struct and union, (which may be extended to other containers in C++,
for example, a class). Buffer errors could occur within containers, such as when one
array element in a struct overflows into the next variable, or beyond container boundaries.
Moreover, the pointer attribute indicates whether a pointer dereference is used to access
the buffer. The dereference could be used with or without an array index. Accordingly, we
note that an array or a pointer would access a fine-grain buffer. Table A.2 in Appendix A
shows some possible examples.

Some attributes related to numeral data are associated with the buffer; specifically, the
buffer size, offset, or bounds. For instance, the data type attribute, which refers to the
type of data stored in the buffer, could be related to the buffer size. This attribute may be
a factor of a size miscalculation is some situations, such as casting. These primitive data
types are shown in Table A.3 in Appendix A. Another related attribute to the buffer size
is the magnitude attribute that describes the size in bytes of the buffer. The magnitude
could be 1 byte, 8 bytes, or 4096 bytes; see Table A.4 in Appendix A, for example. Further,
the length/limit complexity attribute is about the complexity of the length, or the limit of
the buffer passed to a library function. The length/limit complexity may hold a constant,
variable, linear expression, non-linear expression, function return value, or array contents,
as shown in Table A.5 in Appendix A. Another vital attribute related to the buffer bounds
is the upper/lower bound attribute that determines whether the upper or the lower buffer
bound is overrun. While the most popular types of buffer errors exceed the upper bound,
violating the lower bound is also possible. Table A.6 in Appendix A shows the difference
between different types of illegal access of memory bounds.

We note that there is a subset of attributes related to the buffer offset that refers to
accessing an individual buffer element. One instance is the index complexity attribute that
denotes the complexity of the array index, and may possess a constant, variable, linear ex-
pression, non-linear expression, function return value, or array contents, as shown in Table
A.7 in Appendix A. Further, the address complexity attribute indicates the complexity of
the buffer address or the pointer computation. This might be a constant, variable, linear
expression, non-linear expression, function return value, or array contents (Table A.8 in
Appendix A depicts some examples). Moreover, the alias of buffer address attribute men-
tions if there is direct access to the buffer or through one or multiple levels of aliasing. One
level of aliasing occurs when the original buffer address is assigned to a second variable;
then, the second variable is used to access the buffer; Table A.9 in Appendix A includes
some examples. This also occurs when passing the original buffer address to a second
function. Further, the alias of buffer index attribute denotes whether the index is aliased
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or not. The index is aliased if it is a variable to which the second variable’s value is as-
signed. Adding a variable assignment increases the level of aliasing; refer to Table A.10 in
Appendix A for more clarification. Furthermore, the continuous/discrete attribute shows
whether a buffer error accesses an arbitrary discrete buffer outside the allocated buffer or
accesses continuous elements beyond the allocated buffer; see Table A.11 in Appendix A
for more detail. The signed/unsigned mismatch attribute describes the situation where
the buffer errors happen due to using a signed or unsigned value, where the opposite is
expected. Usually, this happens when a signed value is used where an unsigned value is
anticipated, and this is interpreted as a substantial unsigned or a positive value (see Table
A.12 in Appendix A)

Some attributes focus on data flows to/from buffers; in particular, the scope attribute
refers to different locations between the buffer allocation and the overrun. This can be a
local, inter-procedural, global, inter-file/inter-procedural, or inter-file/global scope. In the
local scope, the buffer is allocated and overrun within the same function. On the other
hand, the inter-procedural and global scope occur within the same file. However, in the
inter-procedural scope, the buffer is allocated in one function and overrun in another func-
tion, while in the global scope, the buffer is allocated as a global variable and is overrun
in a function. The inter-file/inter-procedural and inter-file/global scopes are similar to
the previous explanation, yet they happen across files instead of happening in the same
file. As an illustration, when a C/C++ library function overruns the buffer, the overrun
is inter-file/inter-procedural in scope and involves at least one alias of the buffer address.
Furthermore, the local control flow attribute describes the control flow that immediately
surrounds or affects the buffer, which could be either branching or jumping to another
statement within the program, in particular if, switch, cond, goto/label, setjmp/longjmp,
function pointer, or recursion. In the case of if, switch, cond, function pointers, and recur-
sion, buffer errors happen within the conditional construct. Contrarily, in the goto/label
and setjmp/longjmp, the buffer error is located at or after the target label or a longjmp
address. Likewise, the secondary control flow attribute is similar to the local control flow
attribute, and it describes if the control flaw precedes the buffer errors or includes a nested
local control flow. Additionally, the loop structure attribute refers to the type of the loop
construct that involves buffer errors, which might be standard for, standard do- while, stan-
dard while, non-standard for, non-standard do-while, or non-standard while. A standard
loop is a loop construct that has typical components, such as initialization, a loop test,
and an increment/decrement of a loop variable. A non-standard loop deviates from the
standard loop in one or more of these areas. Besides, the loop complexity attribute indi-
cates how many loop components, such as initialization, exit test, increment/decrements,
are more complex than the standard baseline, particularly whether the initialization to a
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constant, testing against a constant, and incrementing/decrementing by one. TableA.13
in Appendix A shows some examples.

In addition to the above attributes related to the data flows to/from the buffer, the
asynchrony attribute concerns whether buffer errors are involved in an asynchronous pro-
gram construct, such as a thread, a forked process, or a signal handler. These constructs are
implied by some OS-specific functions, for instance, thread functions, fork, wait, exit, and
signal on Linux. Furthermore, the taint attribute shows whether buffer errors are affected
externally, such as through argc/argv, environment variables, file read or stdin, socket, or
process environment, as shown in Table A.14 in Appendix A. Finally, the run-time en-
vironment dependence attribute determines whether the buffer error relies on something
determined at run-time, such as tainted data that depends on the run-time environment.
Some attributes are related to how buffers are exploited, precisely the memory location
attribute that involves where the buffer is allocated that could be stack, heap, data region,
BSS, or shared memory (see Table A.15 in Appendix A)

2.1.5 Android Application Architecture and Buffer Errors

Android apps were used throughout the studies as an example of modern software. Android
apps are unlike standard applications in two crucial ways. First, Android apps run in a
security sandbox to manage application resources. Hence, each app represents a different
process with a unique UID, and it is executed in isolation from other apps with restricted
permissions. Second, Android apps are framework-based and event-driven. Thus, Android
apps and Android OS communicate through callbacks. Android apps have no single entry
point, the so-called main method, though there are multiple entry points. These entry
points represent components that can be used by other apps if needed or called by the
Android OS. There are four components in Android apps: activities are a single focused
user interface, services run background tasks, content providers act as database storage,
and broadcast receivers listen for framework events. The components of an application
could be executed in any order, and each component has a complete lifecycle [32].

Android apps are typically written in Java or Kotlin programming language. However,
the Android Native Development Kit (NDK) provided by Google allows developers to
implement Android apps using native programming languages, such as C and C++. Native
code allows developers to use existing third-party libraries and allows hardware-specific
optimization of performance-critical code. NDK enables Android developers to combine
native code with an Android app using Java Native Interface (JNI). JNI is a Foreign
Function Interface (FFI) by which a program written in Java can call routines or make
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use of services written in native code, such as C/C++ and assembly; yet, JNI can also be
utilized to invoke Java objects from native code.

Both the Java code and native code of an Android app run within the same process.
Thus, the native code still adheres to the entire application permissions set in the manifest
file. Java code is managed and executed by the Dalvik Virtual Machine (DVM)/Android
run-time (ART)2, while native code is not restricted to DVM/ART and manages itself
throughout the lifetime of the application. This requires further responsibilities on devel-
opers, such as memory management tasks, hence buffer errors occur in native code due to
improper memory management. The native components are also expected to interact with
Java components carefully. If this interaction is not appropriately managed, the native
components can cause errors that could crash the entire application [71].

2.2 Related Work

2.2.1 SAST Tool Warnings Assessment Using Test Cases

Evaluating SAST tools performance in terms of accuracy is a significant direction of re-
search to understand the strengths and weaknesses of SAST tools and a foundation stone
to build better tools. Multiple empirical studies have been performed to understand SAST
performance [76] [120] [190] [210]; however, many of the studies used benchmarks or test
cases (some with small-sized systems). Test cases are software projects with known vul-
nerabilities that have been curated and made available to everyone. Hence, the SAST
tools could be tuned to detect the vulnerabilities in these test cases. For instance, Zitser
et al., [210] have conducted a study on three open-source programs; BIND, WU-FTPD,
and Sendmail contain 14 exploitable buffer overflow vulnerabilities to test five open-source
SAST tools. While Torri et al., [190] provided a similar study, it was generalized for mul-
tiple vulnerability types present in five embedded systems. Kratkiew et al., [120] have
evaluated five SAST tools using a corpus of 291 small C program test cases. Díaz and
Bermejo [76] run nine SAST tools against two SAMATE reference dataset test suites for
C language. All of the research mentioned above was conducted using test cases with
real-world vulnerabilities known in advance to assess the false positives. The main idea of
our work presented in Chapter 3, however, is to study the historical evolution captured in
the repositories that are not part of any standard dataset to evaluate the false positives
among the SAST-produced warnings on software projects in the wild.

2In recent Android versions, Java code is managed and executed by Android run-time (ART).
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2.2.2 SAST Tools Warnings Against CVE Vulnerabilities

Another research direction is based on evaluating SAST tools warnings compared to real-
world vulnerabilities. Edwards and Chen [81] examined historical releases of four large-
scale projects; Sendmail, Postfix, the Apache httpd, and OpenSSL. The study’s primary
goal is to investigate warnings generated by three SAST tools: the HP Fortify Source
Code Analyzer (SCA), IBM Rational AppScan, and Klocwork with some vulnerabilities
published in the common vulnerabilities and exposures (CVE) dictionary. The authors
examined the discovery rate of the vulnerabilities appearing in the CVE database for the
four projects, and they correlated that to the output of SAST tools. The authors observed
that the number of vulnerabilities does not always decrease with each new release. They
also observed that the discovery rate of vulnerabilities begins to drop three to five years
after the initial release. The study showed that the change in number and density of
warnings generated by SAST tools is indicative of the change in the rate of discovery of
vulnerabilities for new releases. The authors also demonstrated that SAST tools could
be used to make some assessments of risk, even without a human review of the warnings.
However, they considered all the warnings in aggregate and not tracing each warning to see
if the warning ends up being a bug or even if it is removed, while our research in Chapter 3
traces SAST-produced warnings across historical versions of projects. Additionally, their
project aims to see if the number of warnings correlates with actual vulnerabilities and not
about studying each warning type’s characteristics.

2.2.3 SAST Tools Warnings over Time

Another research direction has focused on tracing SAST-produced warnings over time
since this approach can give more realistic results [75] [116] [176]. Spacco et al., [176]
proposed a technique for tracking bugs across versions by using repository history and
Findbugs. Kim and Ernst [116] introduced a bug warning prioritization method based on
the software change history. They used bug warnings generated by three SAST tools for
Java: FindBugs, Jlint, and PMD for three programs: Columba, Lucene, and Scarab. In
that study, only bug warnings that are removed by fix-changes are considered indicating
real bugs. They found that bugs that were fixed in fix-changes represent a tiny percentage
of bug removals, and about 90% of the bug warnings either remain in the program or
are fixed in non-fix changes considered being false positive warnings [116]. In Chapter 3,
we follow a similar approach to understand the evolution of the SAST-produced warnings
using historical information. However, Kim and Ernst neglected bug warnings that appear
in non-fix changes; we consider all bug warnings in fix or non-fix changes. This is because

22



researchers have emphasized that linking bugs to the comments in the commit logs may
produce biased results [57][113]. For instance, Bachmann et al., [57] found that the bugs
issued in a bug tracking system could be biased since not all bugs are reported to these
systems. Another aspect is that sometimes it is difficult to isolate code changes due to
bugs from other code changes due to different reasons. For instance, Murphy et al., [142]
reported that 75% of surveyed developers had to remove features from software to fix
bugs, and are therefore not tagged as bugs. Hence, we consider all commits and see if the
warnings remain or disappear in subsequent versions.

Di Penta et al., [75] performed an empirical study to examine the evolution and decay
of bugs in three networking systems detected by three freely available SAST tools. The
primary focus of that study is to investigate warning categories and decay time. However,
our approach in Chapter 3 is different from Di Penta et al., [75] approach in multiple
aspects. One aspect is that we conduct our study on 116 open source projects that belong
to various categories instead of only three networking systems. Also, we use six free open
source and commercial tools to conduct our analysis. Finally, we adopt a well-known
security bug classification to aggregate the results across tools and provide universal and
comprehensive results.

2.2.4 Validating SAST Tools Warnings

Validating SAST tool warnings is an important step to conclude whether a given warning
is false positive or true positive. This is usually performed by a human manual review.
This method has been adopted in research, as few papers involve manual examination to
evaluate SAST-produced warnings [55]. Ayewah et al., [55] run FindBugs against multiple
large projects, such as the JDK, Glassfish J2EE server from Sun, and some portions of
Google’s Java codebase. The authors found that Findbugs reports real but trivial bugs.
However, this approach can be impractical when it comes to evaluating a large number
of warnings. Thus, Di Penta et al., [75] used the ldiff framework, tracing the source
code changes across subsequent commits to extract needed information, and they made
assumptions to decide whether a given warning is a false or true positive. In Chapter 3, we
use a similar method by employing a novel tool to trace the line codes over time. We use
a different tracing tool, namely cregit+, that traces tokens across commits and allows it
to detect line split and merge in subsequent versions and keeps track of the refactored files
that cannot be done by the ldiff framework. This approach makes the analysis scalable to
trace warnings in hundreds of software projects.
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2.2.5 Evaluation SAST Tools for Buffer Errors in Android Apps

Although multiple studies have evaluated the use of static analysis tools for buffer error
detection [210] [106] [190] [156], to the best of our knowledge, Chapter 4 introduces the
first empirical study that evaluated these tools against known buffer errors in the Android
apps domain. Our results expose the need for more advanced static analysis tools to detect
buffer errors in Android apps considering Android app nature.

2.2.6 SAST Tools for Android

Although extensive work has been conducted to introduce static analysis tools for Android
vulnerabilities and malicious behavior, most of the studies focus on permissions and infor-
mation leakage issues and do not address buffer error [167]. For instance, the SCanDroid
tool [92] performs a data-flow analysis of installed Android apps to track inter-component
communication through intents to detect the potential violation of permission through a
coalition of applications. Similarly, Quire [77] tracks permissions through the IPC call to
prevent privilege attacks among applications. Besides, several tools have been developed
to detect private data leakage. TaintDroid [83] performs dynamic taint analysis, while
FlowDroid [52], LeakMiner [206], and AndroidLeaks [96] are static analysis approaches to
detect data leakage. VulHunter [157] is a static analysis framework to support vulnera-
bility detection for Android apps by extracting information from applications. It aims to
detect five types of vulnerabilities that are related to information leakage and permissions
violations.

In Chapter 4, our research looks at buffer error vulnerabilities in Android apps. How-
ever, the above tools do not address buffer error vulnerabilities, and we showed that no
open-source static analysis tools could statically determine buffer error vulnerabilities in
Android apps. Indeed, in 2017, Li et al., [131] studied 124 published research papers to
investigate state-of-the-art static analysis approaches in Android apps. Likewise, in 2017
Sadeghi et al., [167] conducted a systematic literature review by analyzing 336 published
research papers to reveal state-of-the-art research in the Android security field. Both pa-
pers [131] [167] do not mention any tool or approach to detect buffer errors in Android
apps.

Since Android apps might involve many programming languages, the security of An-
droid apps that include native code has gained more attention [205] [131]. In [125] and [40],
the lack of static analysis methods that understand both the Android code and the native
code has been recently highlighted. DroidNative [41] uses a static analysis technique to de-
tect Android malware to reduce the effect of obfuscations and provide automation. It was
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recognized that the native code in Android apps could reach all Android APIs and affect
the whole application. The JN-SAF framework [200] performs an inter-language data-flow
analysis that is a flow and context-sensitive approach that operates on the binary code.

However, statically detecting buffer errors in Android apps source code that may involve
cross-languages has not been fully addressed. For that reason, Chapter 6 proposes a
methodology to statically detect buffer errors that can work universally with any framework
and analyze Android apps. The analysis is performed at the LLVM IR level and works
on C/C++ code for now, and it considers all the cross languages link in such analysis.
This can be extended into Java in the IR form as well. This can be achieved when using
platforms (e.g., JLang [35]) that translate Java into LLVM IR. Currently, these platforms
support Java but not Android code.

2.2.7 Android Vulnerabilities Pattern Analysis

Several studies have been conducted to understand the vulnerability patterns in Android
apps. Huang et al., [109] studied the Android mobile vulnerability market to reveal the
unique vulnerability patterns of mobile software generally. The study shows that the
Android market vulnerabilities are more exploitable than in the entire market, and the
exploitation impact is higher based on CVSS metrics. Our research in Chapter 4 took
further steps to reveal the pattern of these vulnerabilities in Android apps.

Watanabe et al., analyzed 2M free Android apps and 30K paid Android apps to study
Android app vulnerabilities associated with software libraries. They found that approx-
imately 70%-50% of vulnerabilities of Android free/paid apps come from third-party li-
braries [198]. However, the analysis is based on DROID-V, which depends on five other
static analyzers that are looking for limited types of vulnerabilities. Also, the used tool
may include false positives. We studied real-world vulnerabilities published in public to
reveal the trend in Android apps.

Jimenez et al., conducted a manual analysis of 42 Android vulnerabilities with associ-
ated patches published in the NVD for the period 2008 to 2014 [111]. They found that 70%
of the vulnerabilities originate from the coding part. They also determined that incorrect
implementation of a feature is the leading Android vulnerability, input validation is the
second, and buffer errors are among the third most frequent vulnerabilities. However, their
study includes Android apps and the Android system (except the kernel vulnerabilities). In
contrast, our dataset includes 476 Android vulnerabilities that are only related to Android
apps.
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2.2.8 SAST Tools for Cross-language

Since multiple programming languages have been widely used to implement single soft-
ware, there are multiple methods that support multi-language program understanding,
factoring, and management [189] [154] [207] [155] [194] [73]. However, little attention has
been given to address challenges in the field of static analysis approaches for multi-lingual
projects [143]. Research indicates that multi-lingual projects are more defect prone [118].
Kochhar et al., [118] found specific languages, such as C++, Objective-C, and Java, are
statistically significantly more defect prone across all bug categories when used in multi-
language projects. Further, they mention that the effect is the strongest for memory and
concurrency bugs. This is why research has focused on detecting software bugs in multi-
lingual projects.

One research direction focuses on analyzing Foreign Function Interfaces (FFI). Kondoh
and Onodera [119] introduced a bug-finding tool called BEAM that operates on the JNI
code that detects bugs, such as mistakes of error checking, memory leaks, invalid uses of a
local reference, and JNI function calls in critical regions. This work only focuses on bugs
within the JNI code and does not consider cross communications information. Similarly, Li
and Tan [133] proposed a static analysis framework to examine exception handling in JNI
programs. Their framework can be applied to other foreign function interfaces, including
the Python/C and the OCaml/C interfaces. Also, Lee et al., [127] discussed detecting FFI
violations regarding JNI and Python/C. They provided bug detection tools for JNI and
Python/C using the discussed approach.

Another research direction depends on isolating the FFI. Siefers et al., [172] presented
Robusta, which is a framework that includes static analysis techniques to detect bugs in
programs using JNI. Their analysis detects bugs, such as exception handling, memory
leaks, and invalid local references. However, it aims at isolating native code into a sandbox
to prevent unsafe system modifications and confidentiality violations. Similarly, Chisnall
et al., [66] provided CHERI JNI, which is based on a sandbox approach that focuses on
memory safety issues.

Detecting bugs in the FFI is an essential aspect of such an analysis. A fundamental
problem happens when a static analysis tool misses information related to bugs scattered
across languages. Tan and Croft [185] conducted an empirical security study on the native
code portion of the Sun’s JDK 1.6. They used ITS4, Flawfinder, and Splint to carry
out the analyses. They mentioned that security-critical vulnerabilities like buffer errors
are manifest in the native part of the program and go undiscovered. As a result, they
mentioned that the reason is that SAST tools only analyze C code, without considering
how Java code interacts with C; hence, they emphasize building an inter-language analysis
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tool to detect vulnerabilities in cross-languages settings. Furr and Foster [93] introduced an
algorithm for checking type safety across a foreign function interface, in particular between
OCaml and C. The system prevents foreign function calls in C from introducing type-
related bugs into a safe language like OCaml. Thus, the inference system accepts a source
code written in both OCaml and C and as an input, and then analyzes the types in the
source code. The authors then [93] proposed a multi-lingual type inference system to detect
type safety violations through JNI. Lee [128] proposed a JNI program analysis technique
to analyze Java and the C code in JNI using analyzers for each language. The author
proposed using a semantic summary for each C function callable from Java and based on
that constructing a call graph. The author also showed using this technique to detect four
bug types: missing exception handling, descriptor mismatching, a nondeterministic native
function call, and use of garbagable Java objects. Wei et al., [200] introduced JN-SAF tool
that analyzes Android binaries to capture the inter-language data-flow in Android apps.
This tool operates on the binary code, and it is based on symbolic execution—nevertheless,
the evaluation of the tool was conducted with small size code.

To support this aspect of research, in Chapter 5, we introduced a static analysis method-
ology that supports cross-language analysis. The methodology is based on lexical analysis
to locate all sources and sinks across-language. It also uses the lexical analysis to extract
the cross-language semantic to construct the FFI call graph. Then it uses the call graph
as a coarser-grain abstraction to filter out the unlikely reachable source and sink. This
technique supports solving security vulnerabilities that involve source and sink analysis.
In Chapter 6, a methodology was proposed to find buffer errors that can cross from Java,
which takes into consideration the FFI code.

2.2.9 Static Analysis Tools for Buffer Errors

As buffer errors are well-known problems, multiple tools and methods have already been
proposed in academia and industry. We observe that the introduced SAST tools and
approaches for buffer errors usually target homogeneous single source code applications.
Table 4.3 shows some open-source SAST tools that detect buffer errors and the underlying
analysis techniques. Among the popular tools that have been introduced in academia is
the Secure Programming Lint (Splint) [87], which is an annotations-based tool built upon
LCLint [86]. Splint detects buffer errors and other security vulnerabilities in C programs.
Another tool is UNO [107], which is a constraint-based tool that detects uninitialized
variables, dereferencing Null-pointers, and out-of-bound array indexing. Similarly, Buffer
Overflow Detection (BOON) is a constraint-based tool that detects buffer error vulnera-
bilities by considering buffer manipulation as an integer range constraint problem [197].
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Likewise, ARCHER [204] is a constraint-based tool to find buffer errors in arrays and
pointer dereference using path-sensitive and inter-procedural symbolic value analysis.

Table 2.2: State-of-the-art SAST tools to detect buffer errors

Method Name Type Language Inference Algorithm Sensitivity Granularity
Polyspace Bug Finder
[210] [30] [82]

Commercial C/C++ Constraint: abstract
interpretation, sym-
bolic value

Flow, point-to Inter-
procedural

Parasoft C/C++test Commercial C/C++ String pattern match-
ing, Constraint: sym-
bolic value

Flow Inter-
procedural

Klocwork [82] Commercial C/C++ Unpublished Flow, path Inter-
procedural

Coverity [82] Commercial C/C++ Statistical analysis Flow, path,
context

Inter-
procedural

Parfait [70] by Sun Mi-
crosystems

Property C/C++ Constarin: symbolic
value, demand-driven,
taint

Flow , points-
to

inter-
procedural

PREfast/PREfix [146] by
Microsoft

Property C/C++ Annotation Flow intra-
procedural,
inter-
procedural

PVS-Studio [30] Commercial C/C++ Constraint: symbolic
value, annotations

Flow, path,
value range

Inter-
procedural

CodeSonar [30] Commercial C/C++ Constraint: symbolic
value, taint data-flow

Flow, path Inter-
procedural

Flawfinder [190][106] Open
source

C/C++ String pattern match-
ing

N/A Token

RATS [190][106] Open
source

C/C++ String pattern match-
ing

N/A Token

Cppcheck [190][106] Open
source

C/C++ Constraint: integer
range

Flow, context Inter-
procedural

Clang Static Analyzer [2] Open
source

C/C++ Constraint: symbolic
value, annotation

Flow, path Inter-
procedural

Farma-C [30] Open
source

C/C++ Constraint: abstract
interpretation, annota-
tions

Flow, value
range, point-to

Inter-
procedural,
System depen-
dence graph

IKOS [62] Open
source

C/C++ Constraint: abstract
interpretation

Flow, path,
point-to

Inter-
procedural

ASTREE [106][30] Commercial C Constraint: abstract
interpretation

Context Inter-
procedural

ARCHER [210] Open
source

C Constraint: symbolic
value

Flow, path,
context, point-
to

Inter-
procedural

BOON [210][106] Open
source

C Constraint: symbolic
value

N/A Inter-
procedural

Splint [87] [210][190][106] Open
source

C Annotation Flow Intra-
procedural,
inter-
procedural

UNO [210][30][190] Open
source

C Constraint: value
ranges

Flow, path Intra-
procedural
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However, all of these tools focus only on the C programming language. When looking
at the proposed methods, a similar issue is noticed, as the methods target only C. For
instance, Weber et al., (Mjolnir) [199], Ognawala et al., (MACKE) [151], Gjomemo et al.,
(MESCs) [97], Chess [65], Wagner et al., [197], Kim et al., [117], Hackett et al., [102], Dor
et al., (CSSV) [170], Sotirov (Vulncheck) [175], Ganapathy et al., [94], Avots et al., [53],
Larochelle and Evans [23], and Livshits and Lam [135] all introduced academic prototype
approaches that only focus on C. Methods designed for C are not entirely applicable to
C++.

There are some academic prototypes and tools that target both C/C++. RATS [17] and
Flawfinder [39] are token-based tools that detect well-known vulnerable library function
calls. These tools are simple and can scale to examine large programs; however, they suffer
from a high false positive rate. Cppcheck [138] is a simple context-sensitive that uses the
Abstract Syntax Tree (AST). Cppcheck primarily detects different vulnerabilities, such as
out-of-bounds checking, memory leaks, and Null pointer dereference. Although this tool
does not produce a high false alarm, it detects simple issues.

On the other hand, there are open source tools and methods that target C++ and
perform in-depth analysis to reveal more complex issues and avoid the high rate of false
positive. For instance, IKOS [62] is an open-source analyzer based on the abstract inter-
pretation method, and it performs an inter-procedural buffer error analysis. IKOS uses the
GCC/LLVM compiler framework that supports both C/C++ to understand the semantics
of the software being analyzed. Similarly, Frama-Clang [24] is a plug-in based on Frama-C
for parsing C++ source files, and it uses Clang/LLVM. The Clang Static Analyzer [2]
employs a constraint-based symbolic value analysis that is performed at the compilation
unit level. The issue with these tools that preform in-depth analysis, such as IKOS and
Frama-Clang, and Clang Static Analyzer, is that sometimes they do not scale well.

Some academic prototypes were introduced to be applied to larger programs to provide
scalability. Marple [126] is a static analysis method for buffer overflow that uses a demand-
driven approach to be scalable. This method examines all possible paths backward from
each buffer access and uses an external constraint solver to solve buffer error constraints.
Li et al., [132] enhanced the scalability of Marple [126] by only solving linearly-related data
dependencies and control dependencies when computing the symbolic values of a program
variable. This methodology scales well to millions LOC, yet it only focuses on array access.
The approach that we implemented in BEFinder was inspired by [126] and [132], as it does
demand-driven analysis and constraint-based analysis. Unlike Marple [126], BEFinder in
Chapter 6 uses sparse analysis to solve buffer errors problem. Moreover, BEFinder not only
analyzes arrays but also covers errors involved in standard function calls. Furthermore,
BEFinder considers cross-language communications from Java code.
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2.2.10 Taint Analysis

Taint checking is a security approach that was originally introduced with the Perl language
[15]. The purpose of the taint mode in Perl is to block malicious attacks from manipulating
the program at run-time. Then, taint analysis has emerged as a beneficial program analysis
approach to statically or dynamically detect security vulnerabilities [171] [90] [147]. This
study concentrates on static taint analysis. Most of the static taint analysis approaches
focus on one language at a time and provide an in-depth taint analysis approach based on
a fine-grain level of program representation, such as the program dependence graph (PDG)
and the exploded super-graph.

For instance, the Taint Analysis for Java (TAJ) is a static analysis technique for
Java that performs a demand-driven traversal over a Hybrid System Dependence Graph
(HSDG)[191]. Moreover, Livshits and Lam [135] introduced a static taint analysis tech-
nique for C using an augmented SSA form called IPSSA. Snelting et al., [173] proposed a
static tainting analysis approach for C based on the Program Dependence Graph (PDG).
FlowDroid [52] is a state-of-the-art highly-precise static taint analysis for Android based on
the IFDS framework. The IFDS solves inter-procedural, finite, distributive subset problems
using the exploded super-graph [161]. The super-graph considers every program statement
as a node. Then, data is propagated along the super-graph to determine the reachability.
However, this would be impractical with many source and sink pairs. SoS that we pro-
posed does not perform the analysis based on a fine-grain representation of a program, but
rather, it performs lightweight analysis and looks at the larger image and filter out all the
unreachable pairs the call graph level. This way, sources and sinks that cross languages
are supported. Generally, the purpose of SoS is to eliminate all the pairs that cannot be
reached in the call graph and provide the pairs that "can" be reached. Hence, the advanced
static analysis tools can operate on this subset to give the ultimate answer.

Recently, taint analysis for cross-language has gained increasing attention from re-
searchers. Kreindl et al., [121] investigated the limitation of multi-language dynamic taint
analysis to provide a language-agnostic framework. They also provide a platform based on
the GraalVM, a multi-language virtual machine based on the Truffle framework. Truffle
framework parses programs into a common abstract syntax tree representation, and hence
this common AST was used for such analysis. Similarly, Azadmanesh et al., [56] intro-
duced a language-independent information-flow analysis tool based on Truffle to support
dynamic analysis. However, SoS in Chapter 5 supports static analysis rather than dynamic
analysis.

The JN-SAF framework [200] performs a static cross-language data-flow analysis that
operates on the Android binaries. SoS in Chapter 5 provides a general methodology to re-
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duce the potential source and sink pairs and can support many languages. BEFinder that
we introduced in Chapter 6 supports taint analysis and considering data that cross lan-
guages. One concern of most of the taint analysis approach is that there is little discussion
about how many sources and the sinks can be discovered by such a tool and methodology.
For that reason, most of the static taint analysis tools support a limited number of sources
and sinks. Covering a vast number of sources and sinks can be very costly, and hence SoS
in Chapter 5 can help in such an aspect.
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Chapter 3

An Empirical Study of Security
Warnings from Static Application
Security Testing Tools

The Open Web Application Security Project (OWASP) defines Static Application Security
Testing (SAST) tools as those that can help find security vulnerabilities in the source
code or compiled code of the software. Such tools detect and classify the vulnerability
warnings into one of many types (e.g., input validation and representation). It is well
known that these tools produce high numbers of false positive warnings. However, what is
not known is if specific types of warnings have a higher predisposition to be false positives
or not. Therefore, this chapter’s primary goal is to investigate the different types of SAST-
produced warnings and their evolution over time to determine if one type of warning is
more likely to have false positives than others.

Related Publications

The work described in this chapter has been previously published:

- Aloraini, B., Nagappan, M., German, D. M., Hayashi, S., & Higo, Y. (2019). An
empirical study of security warnings from static application security testing tools. Journal
of Systems and Software, 158, 110427.
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3.1 Introduction

The SAST tools have not been well adopted, as they may produce a high rate of false
positive alarms since most warnings do not indicate real vulnerabilities [68][112]. Hence,
an understanding of the warnings generated by SAST tools, their characteristics, including
their distribution across various types, and decay time, could help improve the quality of
the SAST tools. For instance, if we find that many warnings of a specific type are indeed
false positives, then the developers of SAST tools could build a better detection algorithm
for that type of warning or reduce its severity score. Alternatively, based on our approach
and potentially our results, developers could ignore the warnings that are more likely to be
false positives more readily. Testing SAST tools and examining the characteristics of the
warnings produced on software projects in the wild where one does not know where vulner-
abilities exist, can be more useful. A study by the National Security Agency (NSA) [89] has
emphasized the importance of evaluating SAST tools against real software projects to pre-
cisely predict the frequencies of warnings and detected vulnerabilities outside of controlled
studies.

Thus, we extend the study by Di Penta et al., [75] and investigate the nature of soft-
ware warnings as generated by SAST tools for C++ projects. Instead of studying only
three networking systems, we apply the study on 116 real projects that belong to different
categories, as well as four free and open-source SAST tools and two commercial closed
source SAST tools. We use cregit+, which is a more recent version of the state-of-the-art
tool called cregit [95]. cregit+takes full advantage of version control, which helps to track
file renames. It also tracks the source code at a finer granularity (at the token level rather
than line level), helping to detect line split and merge. Our working assumption (like that
of Di Penta et al., [75]) is that if a warning was not removed and remains in the same
piece of code across many versions for a long time (in our case, over five years), then the
warning of that type may not be that important since the warning was not considered
worth removing under any circumstance. Thus, that warning is more likely to be a false
positive.

More specifically, the contributions of our study are as follows:

• We first examine the distribution of the various types of SAST-produced warnings
through time.

• We investigate how many of the warnings of each type remain over time.

• We also examine the decay rate for warnings belonging to different categories and
produced by various SAST tools. This is the time interval between the discovery and

33



removal of warnings, to see how long various types of warnings tend to stay in the
project.

• Finally, we investigate the distribution of real-world vulnerability categories fixed by
the project team in the studied projects to see if the results are consistent with the
rest of the study.

3.2 Definitions

Below, we define some terms that we will use in the rest of the chapter, which is key to
understanding our analysis. Note that our analysis examines the first available versions of
the software projects in 2012 and 2017. We then see if the warnings that existed in 2012
remain in 2017 or not. Note that we do not know if the software developers used any of the
SAST tools in this study. We are not claiming that. We want to see if warnings present
in the 2012 version of the software were removed for any reason by the developers of the
software in a five-year time period. This is similar to the context under which Di Penta et
al., carried out their study [75].

Below, we present the various scenarios of what could happen to warnings from the
2012 version.

• Remained Warnings - When a line of code in the 2012 version also exists in the 2017
version (even if it has moved location within the file, or the line of code was modified
(e.g., a variable name was changed)), and in both versions, the same warning exists.
These warnings are likely to be false positives (FP); even though the tool identified
a potential problem within the line, the warning has not been removed from the line,
indicating that no problem has been found so far in it. Note that the typical time to
fix a bug is around three years [63][75].

• Modified Warnings - When a line of code in the 2012 version also exists in the 2017
version, and the warning in the 2017 version is different from the warning in the
2012 version. These warnings are likely to be true positives (TP), as the project
developers have made an effort to change the code that led to the disappearance
of the original bug warning, yet they have introduced a new bug, which indicates
incorrect fixes or buggy patches [208]. For instance, a bug warning might be raised
because of the usage of strcpy function call. The strcpy function call copies a source
buffer to a destination buffer, and it has two arguments: destination and source. So,
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if the source buffer is larger than the destination buffer, that might cause a buffer
overflow. A developer might change the code by replacing the strcpy function call by
strncpy function call with three arguments (destination, source, and the number of
copied bytes from source to destination). However, strncpy function call has other
problems. For instance, it does not supply null termination at the destination buffer.
(This category shows two aspects: on the one hand: the tool was able to spot a real
bug, on the other hand: the developer incorrectly fixed that warning)

• Disappeared Warnings - When a line of code in the 2012 version also exists in the
2017 version, but the warning present in the 2012 version disappears, and there is no
new warning in the 2017 version. We consider that a Disappeared Warning indicates
that the line was improved to remove the warning (and potentially do other work)
and, thus, a true positive (TP).

• Removed Warnings - When a line of code in the 2012 version *does not* exist in
the 2017 version, and hence the warning from 2012 also does not exist in the 2017
version. We cautiously decided to make no assertion about Removed Warnings (the
line no longer exists). The reason is that we do not know if the line was removed due
to a bug fix or because the feature is no longer necessary.

In Di Penta et al., work [75], they referred to warnings as ‘Vulnerability.’ We are not
sure if they include Modified Warnings in Disappeared Vulnerabilities. In this chapter,
we chose not to present or discuss the results of removed warnings because we do not
know why the line was removed. However, the complete dataset from our study that we
share [43] has the removed warnings classified, if the reader wants to examine them.

3.3 Research Questions

• RQ1: How are the warnings from each SAST tool distributed across dif-
ferent warning types in 2012 and 2017? This research question discusses the
distribution of warnings detected by various SAST tools across the various warning
types at different time periods: 2012 and 2017. This helps us understand the emer-
gence of warnings to see whether the density of a particular warning type shows any
positive or negative trend between 2012 and 2017.

• RQ2: How are true positive and false positive warnings distributed across
different warning types and across different SAST tools? Our goal is to
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understand the distribution of true positive (TP) and false positive (FP) warnings
that belong to different types as reported by SAST tools and have been removed later
from the source code. In particular, we are interested in warnings that have been
reported by SAST tools in 2012 and their status in 2017. As per our definitions in
Section 3.2, we present the results of Remained Warnings (which are likely to be FP),
Modified Warnings , and Disappeared Warnings (which are likely to be TP). Hence,
we trace the lines of code across each project’s history using cregit+.

• RQ3: How do different types of warnings evolve over time? We are interested
in warning decay, indicating the time interval between detection until removal. To
clarify this, we provide this simple scenario: assume that a new project manager
decides to run SAST tools in a particular period of time (in our case in 2012). We
measure how long it took for the warning to disappear. By knowing this, we would
be able to see if warnings of a particular type are removed sooner than others. In
RQ2, we examine if the warning disappears by 2017, and now when between 2012
and 2017, it disappears. Hence, we focus on TP warnings (Modified Warnings and
Disappeared Warnings) that were detected by SAST tools and likely fixed in the
code. We only consider lines of code that include warnings and have been altered,
as this gives us the ability to trace the changes in the lines of code. Whenever we
find a warning that belongs to an altered line of code and disappeared in the recent
version, we trace the line of code that contains the bug warning backward during the
history to find the fixing time and flag that to be a bug fix version.

3.4 Experimental Design

Figure 3.1: Case study project selection
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3.4.1 Selecting Case Study Projects

When we gathered projects to conduct the study, we considered the following four criteria:

• Real-world projects: We aim at understanding SAST-produced warnings against
large real-world projects. This allows for assessing software project warnings at scale
and evaluate SAST tools performance.

• Programming language: We choose to analyze C++ projects, since it is ranked
as the fourth most popular programming language based on the TIOBE Index as of
August 2020 [25]. Additionally, C++ is generally more bug-prone as well [159].

• Active: We mine projects with adequately long and rich historical data, as those
projects are more likely to be more mature and active. Thus, we focus on projects
with high popularity and projects that have long and continuous development histo-
ries for at least five consecutive years, from 2012 to 2017.

• Automation: As we need to run SAST tools on the projects, and some of the SAST
tools need to run on top of a build system, we limit retrieved projects to those that
use automated build systems. We choose to use projects that adopt the cmake build
systems.

As shown in Figure 3.1, we use projects hosted on GitHub because we want to analyze
real-world projects. To compose the list of repositories, we make use of the metadata pro-
vided by the RepoReaper dataset [145], since it eliminates the noise (e.g., repositories that
are not engineered software projects). Since we want to focus on the C++ programming
language, we filter the RepoReapers dataset to obtain only projects that were written in
C++. We sort the RepoReapers project names by the highest number of stars; then, we
select the top 15,000 projects on the list. After that, we randomly choose and clone 400
projects from the 15,000 list. To ensure the activeness of the projects, we exclude those
with fewer than 120 commits.

Moreover, we exclude projects that do not have an active development history for at
least five consecutive years, from 2012 to 2017. To fulfill the automation criterion, we
eliminate all projects that do not adopt the cmake build system and could not be built
smoothly to run all SAST tools (e.g., due to dependency issues). Finally, we have 116
projects that fulfill all the above criteria.
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3.4.2 Selecting SAST Tools

When selecting the SAST tools that we want to study in this chapter (as shown in Figure
3.2), we consider their diversity in terms of availability and underlying inference algorithms
to provide various types of security warnings. Consequently, we gather the following eight
SAST tools that analyze C++ source code: Parasoft C/C++test [11], PVS-Studio [16],
Clang Static Analyzer [2], Cppcheck [138], Flawfinder [39], RATS [17], Polyspace Bug
Finder [139], and Coverity Static Analysis [184] (academic version). However, we find
that some of the SAST tools have restrictions on the number of analyzed lines of code
(LOC), such as the Coverity Static Analysis tool (academic version). Also, some of the
SAST tools do not generate warnings in an efficient format to analyze. For instance, the
Polyspace Bug Finder only shows the warnings using a graphical user interface, which is
highly ineffective in analyzing thousands of warnings. Hence, we exclude them and study
only six SAST tools. Table 3.1 summarizes all SAST tools used and related information.
Table 3.1 illustrates different SAST tools with their underlying inference algorithms to
infer the presence of security bugs.

Figure 3.2: Selecting static application security testing tools

3.4.3 Extracting Security Warnings

After choosing the SAST tools and projects, we need to extract the warnings that each
SAST tool finds in each of the projects. The approach we use for this step is shown in
Figure 3.3. One of our goals is to see how the warnings evolve over time. Therefore, for
each project, we check out two releases of their source code: the first release from 2012
and the first release from 2017. We choose 2012 and 2017, so we can be reasonably sure
that warnings from 2012 that are not removed in 2017 do not affect the reliability of the
product. We then run each of the SAST tools in 2012 and 2017 releases of every one of
the 116 projects and collect the warnings.

We use all available checkers and analysis modules in SAST tools (e.g., when using the
Clang Static Analyzer, we enable all available checkers in the tool). Next, we revise all
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Table 3.1: Studied static application security testing tools for C++

Tool Name Version Availability Inference Algorithm
RATS 2.4 Open source Pattern-matching
Flawfinder 1.31 Open source Pattern-matching
Cppcheck 1.76.1 Open source Integer range analysis & data-

flow analysis
PVS-Studio 6.13 Commercial* Pattern-matching & symbolic

execution & data-flow analysis
annotation-based (automatic)

Parasoft C/C++test 9.6.1 Commercial Pattern-matching & abstract
interpretation & data-flow
analysis

Clang Static Analyzer 3.8 open source Symbolic execution &
annotation-based & data-
flow analysis

* PVS-Studio provides a free academic license.

Figure 3.3: Extracting security warnings

the generated reports to ensure that they are relevant to the actual source code, as we are
only interested in source code files that represent the program code, and not source code
files for test purposes. Therefore, we exclude all warnings in test files. We infer that from
the file path, which usually includes the keyword "test."

Furthermore, we only consider warnings that happened in C and C++ source and
header files for our analysis. As a result, we find 291,794 warnings in 2012 and 348,441
warnings in 2017 when considering all the core projects and the linked sub-modules in our
dataset, for all the six SAST tools. Finally, since each SAST tool has its warning format,
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we produce a consistent and unified format among SAST tools. Therefore, we save every
warning from all SAST tools in one format in one file to process later.

3.4.4 Classifying Security Warnings

One of the challenges that we face is that the security warning classifications used by the
SAST tools are different among the various SAST tools, making it difficult to analyze them
in aggregate. Hence, we need to have one consistent classification across the SAST tools
to simplify the analysis. We map the generated warnings by different SAST tools to the
Seven Pernicious Kingdoms (SPK) classification [192]. The SPK classification provides a
taxonomy of common types of security coding errors that might lead to vulnerabilities.
This taxonomy is mainly based on the cause of a security vulnerability, but not necessarily
the effect, and it focuses on implementation issues.

Each SAST tool has a list of warning types that they can detect in the documentation,
along with a description for each of them. We analyze these lists and descriptions of warning
types and manually classify each warning type into one of the seven types described by
the SPK classification (see Table B in Appendix B for more detail). For each of the six
SAST tools, we determine which tool can identify which type of vulnerability from the
SPK classification. The results of that are presented in Table 3.2.

Table 3.2: Seven pernicious kingdom categories detected by each SAST tool

Tool IVR API SF TS ERR CQ ENC ENV
RATS X X X X X
Flawfinder X X X X X
Cppcheck X X X X X
PVS-Studio X X X X X X X
Parasoft C/C++test X X X X X X X X
Clang Static Analyzer X X X X X

3.4.5 Tracing Evolution of Warnings

Now that we have the warnings from each of the SAST tools for the 2012 and 2017 releases
of the 116 case study projects, we can trace their evolution. We track each filename/line of
code from the 2012 release into the 2017 release. We use the version history and cregit+, to
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Figure 3.4: Tracing evolution of warnings using cregit+

track the lines of code across the subsequent commits to 2017. When the 2012 line existed
in 2017, we can identify if the warning is still present, has changed, or is a different one.

Therefore, by using cregit+we can determine the exact line of code in the 2017 version of
the project’s source code that corresponds to the line of code under consideration from 2012
(as shown in Figure 3.4). We then check the warnings from 2017 to see if the determined
line of code has the same warning, a different warning, or no warning. Note that cregit+can
come up with the result that the specific line of code from 2012 does not exist anymore (i.e.,
the line has been deleted). In this case, too, there will be no warning since the line of code
does not exist. We classify each of these into the 4 cases, as discussed in Section 3.2.

Note that since we are tracing the source code across the various commits in GitHub,
we only include warnings from the core project and not any third-party. Hence, we trace
213,627 warnings from 2012. All of our empirical data are available for download [43].

3.4.6 Extracting Warning Decay

In this step, we want to calculate the time it takes for a warning to disappear. We first
include only warnings that disappear, but the lines of code have not been altered drastically,
which may provide more concrete results. Hence, we compare the actual line of code in
2012 and the line of code in 2017 using Levenshtein distance and threshold of 0.8. Then,
for each warning line, we extract the list of commits that touched that particular line. We
do this using git-blame; for each line, we find the last commit that touched it and repeated
this process recursively.
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3.5 Empirical Study Results

3.5.1 RQ1: How are the warnings from each SAST tool distributed
across different warning types in 2012 and 2017?

Approach: In this RQ, we analyzed 291,794 warnings from 2012 and 348,441 warnings
from 2017 in 116 projects. For comparison, we represent warning distribution using a box-
and-whisker plot, with each data point representing a project. We present the plots from
2012 and 2017 side-by-side to see if the trends are changing. We present two sets of plots
in this RQ. In one set, we compare the warning types and their trends between 2012 and
2017 for each SAST tool. This helps us understand if the distribution of warning types
in the same tool changes between 2012 and 2017. Then, we compare the warnings across
SAST tools for each warning type between 2012 and 2017. In this analysis, we can see
which tool finds how many warnings of a particular type and if that changes between 2012
and 2017. Thus, we are able to compare different SAST tools for the same warning type.

We also combine the box-and-whisker plot with the Scott-Knott Effect Size Difference
(ESD) test to cluster different categories of warnings into statistically distinct ranks in
terms of mean importance [186]. The Scott-Knott ESD test performs well, even when the
dataset involves the overlapping problem (i.e., the probability of one or more warnings to
be categorized in more than one group). This test performs multiple mean comparisons,
as it separates means into statistically distinct groups with non-negligible differences.

Results: The following are the results of the analysis.

1. Warnings within SAST tools: Figure 3.5a and 3.5b show the warnings distribution
when using the RATS tool in 2012 and 2017, respectively. We include the results for
the other SAST tools in Figure C.1 and Figure C.2 in Appendix C for readability
purposes. The plots include the box-and-whisker plot and the Scott-Knott ESD test
among warning types ordered from left to right by their decreasing mean values. In
these plots, different colors represent distinct groups that differ significantly from the
other, as determined by the Scott-Knott ESD test.
From the plots, we can see that the distribution of warning among different categories
is almost the same in 2012 and 2017 for the RATS tool. We observe the same
phenomenon in all other tools as well (check Figure C.1 and Figure C.2 in Appendix
C). Thus, the warning distributions are stable even after five years. We can infer
from these plots that the quality of the projects from the perspective of the SAST
tools is consistent. However, the different SAST tools have different vulnerability
types that they detect.
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(a) Bug warning categories in RATS at 2012

(b) Bug warning categories in RATS at 2017

Figure 3.5: Box-and-whisker plot and Scott-Knott ESD test of the number of warnings
detected by RATS. In this figure, the y-axis represents the normalized number of

bugs(bugs/LOC), and the x-axis represents different classes of SPK bugs. Each data
point represents a project.

RATS (Figure 3.5a and 3.5b) and Flawfinder (Figure C.1c and C.1d) detect more
Input Validation and Representation (IVR) warnings than any other type of warning
in both 2012 and 2017. In Cppcheck (Figure C.1e and C.1f), the Clang Static Ana-
lyzer (Figure C.2a and C.2b), PVS-Studio (Figure C.2c and C.2d), and the Parasoft
C/C++test (Figure C.2e and C.2f), we observe that Indicator of Poor Code Quality
(CQ) warnings is the most significant type of warning that is being reported in both
2012 and 2017. Although, in all the latter tools IVR and API Abuse (API) warnings
are the second and third most significant types of warnings being reported in both
2012 and 2017 (similar to RATS and Flawfinder).
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We can infer from the above result that the trend of reported bug warnings for each
tool does not change over time. This might indicate that the quality of projects does
not change over time, which is consistent with other research findings [81]. Another
observation is that most of the studied SAST tools produce a high number of IVR,
CQ, and API warnings in both 2012 and 2017.

Takeaway 1: The trend of reported bug warnings for each tool does
not change over time. This might indicate that the quality of projects
does not change over time.

2. Security warnings grouped by Seven Pernicious Kingdoms (SPK) classification: In
3.6a and 3.6b we show the percentage of IVR warnings detected by the six different
SAST tools in 2012 and 2017, respectively. We include the results for the other SPKs
in Figure D.1 and Figure D.2 located in Appendix D. We notice that Flawfinder
produces the highest number of IVR (Figure 3.6a and 3.6b), API (Figure D.1c and
D.1d), and Security Features (SF) (Figure D.1e and D.1f) warnings and they have
the highest median among projects in both 2012 and 2017.

We also observe that Time and State (TS) results (Figure D.1g and D.1h) is less
stable between 2012 and 2017. RATS produces TS more than other tools in 2102,
while Flawfinder became the most significant tool that generates TS in 2017. We
also note that PVS-Studio has generated the most warnings of CQ (Figure D.2a and
D.2b), Error Handling (ERR) (Figure D.2c and D.2d), and Environment (ENV)
(Figure D.2g and D.2h) for both 2012 and 2017. The Parasoft C/C++test is the
only tool that produced Insufficient Encapsulation (ENC) type of warnings (Figure
D.2e and D.2f), and it is negligible number warnings in both 2012 and 2017. The
results denote that IVR, API, TS, and SF are more generated by tools that only
use pattern-matching method, such as Flawfinder and RATS, while CQ is produced
more by tools that use more advanced semantic analysis.

Takeaway 2: IVR, API, SF, and TS are more spotted by Flawfinder
and RATS tools that use pattern-matching techniques, while CQ,
ERR, ENC, and ENV are more reported by more advanced SAST
tools.
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(a) IVR warnings among SAST tools in 2012

(b) IVR warnings among SAST tools in 2017

Figure 3.6: Box-and-whisker plot and Scott-Knott ESD test of the number of warnings
classified as Input Validation and Representation (IVR). In this figure, the y-axis

represents the normalized number of bugs(bugs/LOC), and the x-axis represents different
SAST tools. Each data point represents a project.

3.5.2 RQ2: How are true positive and false positive warnings dis-
tributed across different warning types and across different
SAST tools?

Approach: We conduct our study on 213,627 warnings from the 116 projects and their
versions in 2012 (which is less than the 291,794 warnings discussed in RQ1 because we only
consider the core projects here and not include the dependencies like in RQ1). To answer
this RQ, we conducted the following analysis:
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• We show the Remained Warnings , Modified Warnings , and Disappeared Warnings
distributions across warning types for each SAST tool and across SAST tools for
each warning type, using both box-and-whisker plot and the Scott-Knott ESD test.

• We measure the likelihood of a warning that belongs to a specific warning type to
be a real warning for different SAST tools using the Odds Ratio (OR) similar to Di
Penta et al., [75]. The OR is the ratio of the odds of an event occurring in one set (in
this research, the eliminated warning subset (TP including Modified Warnings and
Disappeared Warnings) to the odds of it occurring in another set (in this research, the
alive warning subset FP including Remained Warnings). An odds ratio of 1 means
that the detected warnings could belong to FP or TP equally likely. An odds ratio
higher than one means that the detected warnings are more likely to be TP, and an
odds ratio less than one means that detected warnings are more likely to be FP.

• We apply a proportion test similar to Di Penta et al., [75] that shows whether the
proportion of eliminated warnings differ across warning types (H0: there is no dif-
ference among proportions of eliminated warnings). This could provide a better
understanding of whether some types are receiving more attention than others.

Note that, in our analysis, we only consider Modified Warnings , Disappeared Warnings ,
and Remained Warnings . We ignore Removed Warnings (one where the entire line of code
from 2012 no longer exists in 2017), as this type of warning should be considered with
caution since it is hard to assume that the removal of lines of code that include warnings
indicates a bug fix. The line removal could be due to other reasons, such as code refactoring
or deleting features.

Results: The following are the results of the analysis.

1. Analysis of Warnings among SAST tools: This analysis is to compare the FP and
TP rates per warning types among SAST tools. Figure 3.7a, 3.7b, and 3.7c depict
RATS to show Remained Warnings , Modified Warnings , and Disappeared Warnings
comparisons (other plots for other tools are located in Figure E.1 and Figure E.2 in
Appendix E). We observe that the Remained Warnings plots have a similar pattern
to the Disappeared Warnings plot for each tool. RATS (Figure 3.7a, 3.7b, and 3.7c)
and Flawfinder (Figure E.1d, E.1e, and E.1f) show that the most significant groups
of Remained Warnings and Disappeared Warnings are IVR, API, and SF, respec-
tively. In Cppcheck (Figure E.1g, E.1h, and E.1i), PVS-Studio (Figure E.2d, E.2e,
and E.2f), the Clang Static Analyzer (Figure E.2a, E.2b, and E.2c), and the Para-
soft C/C++test(Figure E.2g, E.2h, and E.2i), we note that CQ is the most types of
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warnings that appear as Remained Warnings and Disappeared Warnings . It is re-
markable to see that in RATS, Flawfinder, and the Parasoft C/C++test have some
warnings in Modified Warnings plots, which refers to the warnings that likely have
been resolved but there were other warnings have been introduced. An example of
that is when developers try to replace possibly insecure function strcpy by another
more secure but still vulnerable function strncpy. Hence, we infer from the above
results that there is a strong correlation between the number of FP and TP for each
type of warning in each tool. For instance, the most frequent type of false positive
bug warnings produced by RATS tool is IVR, and also IVR is the most frequent
type of bug warnings that disappeared. This means that the number of false positive
could be used as an indication of the potential real bugs could be detected by each
tool.

(a) Remained Warnings in RATS (b) Modified Warnings in RATS

(c) Disappeared Warnings in RATS

Figure 3.7: Box-and-whisker plot and Scott-Knott ESD test of the Remained Warnings
(FP), Modified Warnings and Disappeared Warnings (TP) among different warning types
by RATS. In this figure, the y-axis represents normalized number of bugs(bugs/LOC),
and the x-axis represents different classes of SPK bugs. Each data point represents a

project.
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Takeaway 3: For all the SAST tools used in this study, for each
type of warning there is a strong correlation between the number of

true positive and the number of false positive warnings found.

2. Analysis of Warnings among SPKs: Another analysis we performed is to com-
pare each type of warnings among different SAST tools. Figure 3.8a 3.8b, and 3.8c
display IVR warnings to show Remained Warnings , Modified Warnings , and Disap-
peared Warnings rate comparisons (while other plots for other tools are located in
Figure F.1 and Figure F.2 in Appendix F). In IVR (Figure 3.8a 3.8b, and 3.8c), API
(Figure F.1d, F.1e, and F.1f), and SF (Figure F.1g, F.1h, and F.1i) plots, we see that
Flawfinder produces a significant amount of Remained Warnings ; in addition, it has
the most significant number of warnings detected correctly in Disappeared Warnings .
RATS is the most tool that produces TS as both Remained Warnings and Disap-
peared Warnings (Figure F.1j, F.1k, and F.1l), while PVS-Studio is the most tools
that produces CQ (Figure F.2a, F.2b, and F.2c) and ERR (Figure F.2d, F.2e, and
F.2f) as Remained Warnings and Disappeared Warnings . We note that ENC (Figure
F.2g, F.2h, and F.2i) are produced only by the Parasoft C/C++test, but it is likely
to be Remained Warnings that are FP warnings. Similarly, the results indicate that
a tool that generates the highest number of false positive of a specific warning type
compared to other tools, it would be the tool that the most disappeared warnings of
the same type belong to. For instance, Flawfinder generates the most false positive
IVR bug warnings compared to other tools, also the disappeared warnings of the IVR
mostly belong to Flawfinder. This also could be used as an assessment to measure
the potential real bugs of a certain type could be detected by such SAST tool.

Takeaway 4: Pattern-matching based tools, such as RATS and
Flawfinder, produce a larger number of warnings (both FP and TP) of
IVR, API, SF, and TS, while more advance tools, such as PVS-Studio
and Parasoft C/C++test, generate a larger number of CQ warnings
(both FP and TP).

3. Odds ratio analysis: Table 3.3 reports all SAST-produced warnings in terms of:

• the total number of warnings reported by each tool split by warning type in
2012.

• the number of warnings that exist in the same line of code in both the 2012 and
2017 versions (Remained Warnings).
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• the number of warnings from 2012, which disappear in 2017, but have a different
warning in the same line of code as compared to 2012 (Modified Warnings).

• the number of warnings from 2012 that no longer exist in the same line of code,
but the line of code still exists, albeit modified (Disappeared Warnings).

• the odds ratio of a tool finding a warning in 2012.

RATS, Flawfinder, Cppcheck, and Clang Static Analyzer have Odds Ratio (OR) less
than one for all warning types, indicating that these types of warnings are likely to
be FP.

Conversely, PVS-Studio results denote that most reported warnings in 2012 disap-
peared in 2017; hence, they are more likely to be real warnings. Only ENV type of
warnings is the most likely to be FP. Parasoft C/C++test is likely to be accurate
with SF warnings. We note that it has (OR=16), which is a very high odds ratio
to be a real warning compared to other types of warnings. Similarly, the ENV type
of warnings show (OR=3.062) indicates a higher probability of having real warnings

(a) Remained Warnings among IVR (b) Modified Warnings among IVR

(c) Disappeared Warnings among IVR

Figure 3.8: Box-and-whisker plot and Scott-Knott ESD test of the Remained Warnings
(FP), Modified Warnings and Disappeared Warnings (TP) among different warning types
among Input Validation and Representation (IVR). In this figure, the y-axis represents
the normalized number of bug(bugs/LOC), and the x-axis represents different SAST

tools. Each data point represents a project.
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reported. That is because Parasoft C/C++test enforces secure coding standards,
such as MISRA, CERT, and ISO. Also, Parasoft C/C++test detects Environment
errors with a high precision rate because it targets cross-compiler platforms.

From the result above, we note that tools that use pattern-matching along with
other advanced analysis methods, such as Parasoft C/C++test and PVS-Studio,
outperform other tools in terms of the likelihood of producing real security bugs.

Takeaway 5: SAST tools in this study that use the pattern-matching
method along with semantic analysis are more likely to produce warn-
ings that may be real warnings.

4. Proportion test analysis: For warnings detected with RATS and Flawfinder, the
proportion test of likely resolved warnings significantly varies across types (p-value
< 0.0001), meaning that some types are receiving more attention and likely being
resolved than others. A small p-value (typically ≤ 0.05) indicates strong evidence
against the null hypothesis, so we could reject the null hypothesis, which states that
there is no difference among proportions. For warning detected with Cppcheck, the
proportion of likely fixed warnings slightly varies across types (p-value = 0.0025),
which denotes that there is a difference in the attention paid to different warning
types detected by this tool. When looking at PVS-Studio results, we observe that
the proportion test of likely fixed warnings significantly varies across types (p-value
= 4.008e-10). Finally, when glancing at the Parasoft C/C++test, we find that the
proportion test of likely fixed warnings (TP) varies slightly across types (p-value =
0.0002). This denotes that there is a difference in the attention paid to different
warning types detected by this tool. Thus, we conclude that for each studied SAST
tool, there are some types of warnings that receive more attention from the project
teams to be eliminated, while other types of warnings are likely ignored, suggesting
that they are not critical bugs.

Takeaway 6: For every SAST tool, some types of warnings were
more likely to be eliminated than other types. Hence, it is very likely
that some types of software security flaws receive more attention from
developers.
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Table 3.3: Numbers of all detected FP (which includes Remained Warnings), TP (which
includes Modified Warnings and Disappeared Warnings), and Odds Ratio of with respect

to FP.

Tool Type Total Remained Modified Disappeared TP TP+FP Removed OR
Warning Warning Warning Warning

IVR 37,776 26,438(69.99%) 84(0.22%) 3,681(9.74%) 3,765 30,203 7,573 0.020
API 10,979 6,770(61.66%) 80(0.73%) 1,772(16.14%) 1,852 8,622 2,357 0.074
SF 592 409(69.09%) 0 46(7.77%) 46 455 137 0.012

RATS CQ 157 104(66.24%) 0 25(15.92%) 25 129 28 0.057
TS 1,246 827 (66.37%) 3(0.24%) 140(11.24%) 143 970 276 0.029

IVR 92,998 68,126(73.26%) 320(0.34%) 5,992(6.44%) 6,312 74,438 18,560 0.008
API 35,314 24,491(69.35%) 234(0.66%) 2,731(7.73%) 2,965 27,456 7,858 0.014
SF 1,157 882(76.23%) 4(0.35%) 48(4.15%) 52 934 223 0.003

Flawfinder CQ 3,250 2,801(86.18%) 8(0.25%) 115(3.54%) 123 2,924 326 0.001
TS 2,168 1,315(60.65%) 5(0.23%) 144(6.64%) 149 1,464 704 0.012

IVR 274 144(52.55%) 0 41(14.96%) 41 185 89 0.081
API 207 115(55.56%) 0 30(14.49%) 30 145 62 0.068

Cppcheck CQ 1,563 850(54.38%) 1 385(24.63%) 386 1,236 327 0.206

Clang Static IVR 1 0 0 0 0 0 1 -
Analyzer CQ 31 14(45.16%) 0 5(16.13%) 5 19 12 0.127

IVR 7,154 2,408(33.66%) 1(0.01%) 3,461(48.38%) 3,462 5,870 1,284 2.067
API 1,656 635(38.35%) 0 679(41.00%) 679 1,314 342 1.143

PVS-Studio CQ 16,808 6,295(37.45%) 9(0.05%) 7,464(44.41%) 7,473 13,768 3,040 1.409
ERR 208 50(24.04%) 0 83(39.90%) 83 133 75 2.755
ENV 29 16(55.17%) 0 11(37.93%) 11 27 2 0.472

IVR 1,835 961(52.4%) 152(8.3%) 658(35.9%) 810 1,771 64 0.710
API 1,792 1,010(56.4%) 158(8.8%) 554(30.9%) 712 1,722 70 0.496

Parasoft SF 5 1(20.0%) 0 4(80.0%) 4 5 0 16
C/C++test CQ 78,322 42,541(54.3%) 1,790(2.3%) 32,764(41.8%) 34,554 77,095 1,227 0.659

TS 156 101(64.7%) 18(12.8%) 32(19.2%) 50 151 5 0.245
ENC 2 2(100%) 0 0 0 2 0 -
ENV 39 12(30.8%) 0 21(53.8%) 21 33 6 3.062

3.5.3 RQ3: How do different types of warnings evolve over time?

Approach: In this RQ, we focus on TP warnings (Modified Warnings and Disappeared
Warnings) that were detected by SAST tools and eliminated in the code. We only consider
lines of code that include warnings and have been altered, as this gives us the ability to
trace the changes in the lines of code. Whenever we find a warning that was eliminated
and belong to a line of code that was altered in the recent version, we trace the line of code
that contains the bug warning backward during the history to find the fix time and flag
that to be a bug fix version. To answer this question, we use git blame. This study involves
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10,478 warnings that have been eliminated by altering the lines of code. We present the
results using box-and-whisker plots. In these plots, each data point is how long it took for
a specific warning in a specific line of code from one of the 116 projects to disappear.

Results: The following are the results of the analysis.

(a) Decay in RATS (b) Decay in Flawfinder

(c) Decay in Cppcheck (d) Decay in PVS-Studio

(e) Decay in the Parasoft C/C++test

Figure 3.9: Box-and-whisker plot of decays for various warning types in different SAST
tools. In this figure, the y-axis represents decays in days, and the x-axis represents different
classes of SPK warnings. Each data point represents a resolved bug warning time.

1. Warnings decay among SAST tools: We analyze the set of Disappeared Warnings
and Modified Warnings that present in 2012, and the lines of code that were after
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(a) Decay of IVR (b) Decay of API

(c) Decay of SF (d) Decay of TS

(e) Decay of CQ (f) Decay of ERR

(g) Decay of ENV

Figure 3.10: Box-and-whisker plot of decays for various warning types in different
warning types. In this figure, the y-axis represents decays in days, and the x-axis

represents different SAST tools. Each data point represents a resolved bug warning time.
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being altered, the warning disappeared. This helps us to measure the decay. Fig-
ure 3.9 shows the decays (expressed in days) for each warning type detected in the
projects with different SAST tools. When looking at the plots, we observe that most
of the warnings that belong to different types are eliminated approximately within
2-3 years. We also observe that in the Flawfinder plot, the median of API decay is
significantly lower than the other warning types (approximately less than one year),
suggesting that there is a tendency to eliminate this type of warnings faster than
others. Generally, we observe that API warnings disappeared relatively faster than
other types among tools. Additionally, the Parasoft C/C++test plot shows that TS
warnings are eliminated relatively fast, indicating that this type of warnings has less
removal time, which may indicate that this type of warnings is more critical than
other types.

Takeaway 7: Most of the bug warnings that belong to different
types disappeared approximately within 2-3 years. Generally, API
warnings disappeared relatively faster than other types among tools.

2. Warnings decay time among SPKs:

Here, we are interested in knowing if a particular type of bug warning could be elim-
inated faster if detected by a particular SAST tool. This allows us to know if the
underlying analysis method influences the removal time of a bug warning of a spec-
ified category. Note that tools that only use the pattern-matching method refer to
an issue that is seen clearly within the same line of code, while advanced tools could
comprehend errors that are scattered on multiple lines and thus may be harder to
understand. Figure 3.10 shows the results of such an analysis. The results imply that
for IVR and CQ, the removal time is almost the same among all tools. It is interesting
to note that IVR removal time for tools that only use the pattern-matching analysis
is slightly less than other tools that use more advanced techniques. This could be
because these tools generated trivial bug warnings that are easier to understand and
resolve. We also perceive that generated API warnings by Flawfinder decay less than
other API warnings generated by other tools (in less than one year). Furthermore,
we see that TS generated by the Parasoft C/C++test decay in approximately one
year. Another remarkable observation is that SF type of warning usually takes over
three years to be eliminated, which is longer than any other warning type detected
by most analysis tools. We note that there is no connection between decay time and
different SAST tools that have different analysis methods. Hence, the nature of the
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bug warning may not be a factor that influences removal time.

Takeaway 8: There is no correlation between decay time and differ-
ent SAST tools that have different analysis methods.

3.6 Discussion

3.6.1 SAST Warning Patterns and Real-world Vulnerabilities

When observing the results from our analysis, we notice that SAST-produced warnings
have stable patterns through time (check RQ1 in Section 3.5). This may indicate that
the quality of the project’s development does not change over time. Further, we find that
most of the SAST tools focus on IVR, API, and CQ types of warnings. This may denote
that these types of warnings are critical and could be the types of security vulnerabilities
in the real-world. Real-world vulnerabilities are exploitable software bugs discovered and
published in recognized vulnerability databases with unique identification numbers. To
verify this, we study the distribution of real-world vulnerabilities and associated vulnera-
bility classifications in the studied projects that the project developers fixed to see if this
aligned with our findings. So, we conduct the following analysis:

3.6.1.1 Identifying Incidence of Real-World Vulnerabilities

We choose to study vulnerabilities with a Common Vulnerability and Exposures Identi-
fication Number (CVE-ID) in the 116 projects in our dataset. The CVE-ID are unique
numbers assigned to publicly known security vulnerabilities. In this step, we extract all
commit messages along with the description of each commit, looking for the keyword
"CVE-xxxx-xxxx" between 2012 and 2017. We find that of the 1174 times a CVE-ID was
mentioned in 18 distinct projects, 395 have a unique ID. This helps us to identify how
real-world vulnerabilities are distributed across various types of vulnerabilities.

3.6.1.2 Results of Real-World Vulnerabilities Distribution

Figure 3.11 displays the results of real-world vulnerabilities that have been fixed in the
projects under the study. We can see that the IVR vulnerabilities are the predominant
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Figure 3.11: CVE vulnerabilities distribution based on the SPK taxonomy. In this figure,
the y-axis represents the number of unique vulnerabilities and the x-axis represents

different classes of SPK classification of bugs.

type of vulnerability that has been detected and fixed in real-world scenarios. The number
of IVR vulnerabilities is 293. The other types of vulnerabilities that are given importance
after IVR are CQ, API, and SF, respectively.

The results show that IVR is the most significant type of warnings being addressed
in real-world vulnerabilities. Most of the studied tools produce a high number of IVR
warnings. This may refer to the importance of this type of warning and the importance of
enhancing the static analysis methods to detect IVR accurately. Also, CQ and API issues
were being flagged in the real-world, similarly to the output of SAST tools. Generally,
we conclude that SAST tool warnings follow a similar distribution of the discovered real-
world vulnerabilities in the studied projects, which is a finding that is consistent with other
research [81].

3.6.2 Robustness of Static Analysis Method

The results of RQ2 in Section 3.5 highlight the odds of each type of warning of being
true or false alarms for each tool. The results indicate that PVS-Studio and the Para-
soft C/C++test produce warnings that are likely to be real warnings. PVS-Studio has a
higher chance of producing real IVR, API, CQ, and ERR, while the Parasoft C/C++test
has higher chances to produce real SF and ENV. These two tools are the only tools that
combine pattern-matching with more advanced semantic analysis (see Table 3.1 for more
details). Pattern-matching by it is own is a powerful method that can detect many real
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bugs. That is notable since Flawfinder and RATS outperform PVS-Studio in finding more
IVR warnings, and Flawfinder outperforms PVS-studio in finding more API warnings in
terms of the frequency/quantity. This denotes the value of using the pattern-matching
method since pattern-matching tools (Flawfinder and RATS) could detect more real bugs
(quantitatively not qualitatively). For example, Flawfinder detected 5992 of Input valida-
tion and representation bugs while PVS-Studio 3461 bugs of the same type. Nevertheless,
Flawfinder has around 6.5% accuracy while the PVS-Studio rate is 48%, which is better
qualitatively. However, when combining pattern-matching with other analysis techniques,
such as symbolic execution or abstract interpretation, the warning’s accuracy increases.
Hence, we think that pattern-matching is a robust technique, but it needs to be combined
with a more advanced analysis method to filter out possible false positives. Also, ENV
warnings are likely to be accurately flagged by the Parasoft C/C++test than PVS-Studio.
This is because that the Parasoft C/C++test is highly focused on highlighting software
environmental compliance.

3.6.3 SPK Warnings Decay Time

In RQ3 Section 3.5, we observe that of those warnings that are removed, the decay time
is around 2-3 years. This result corresponds to other research findings, such as [152].
Ozment and Schechter [152] study the vulnerabilities of the OpenBSD operating system
to investigate whether the software vulnerabilities are increasing over time. The authors
measured the rate of reported vulnerabilities over a period of seven and a half years that
span 15 releases. The study showed that vulnerabilities seem to be persistent even for
a period of 2.6 years. Also, among studied tools, we find that generally, API has decay
somehow faster compared to other types of warnings. This may imply the significance of
such a warning that may have serious consequences. This could help give recommendations
to developers about which bugs should be fixed first. Another possible reason is that this
is because these types of bugs are easier to understand and fix since the API issue is likely
to manifest in the same line of code compared to other types of bugs that could be caused
by a different line of code. For instance, a buffer overflow warning that belongs to the IVR
class of bug could happen when a condition does not validate the size of the buffer located
in a different line of code. However, this is less likely since we have a limitation in RQ3
that we only examine warnings that disappear because the line of code has been modified.
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3.7 Lessons Learned

In this section, we provide insights about how the findings can improve state-of-the-art
and the state of the practice for developers, security testers, SAST tool designers, and
researchers.

• Software developers: Building secure software in the first place is key to prevent
security bugs from ever occurring. This requires solid knowledge about secure coding
practice and building practical skills that can be learned and built from real-world
problems. Although developers are expected to write secure code, around 70% of
developers said they get little guidance or assistance according to a survey [188].
This study helps developers to be aware of common security bugs that are regularly
addressed. The study shows that IVR issues are the most types of vulnerabilities
that have been fixed in real-world projects. This work also demonstrates that most
of the SAST tools focus on IVR, CQ, and API types of issues. This may indicate
that these types of warnings are critical. Hence, it would be advisable for developers
to build related secure coding practices and be aware of that during coding and take
the time to ensure the code is free from these types of bugs.

Additionally, SAST tools could generate many warnings that could overwhelm the
most experienced software developers. This study shows that some types of warnings
are not likely to be removed; hence, they tend to be false positives. A code that
seems to be reliable and working well contains warnings, hence aiming to remove all
warnings might not be cost effective.

Furthermore, one of the implications of this study is that developers need to pay
closer attention to the SAST tool’s appropriate underlying design to detect a specific
type of bug. For instance, for developers who develop web applications and interested
in detecting IVR type of bug, it would be better to use a tool that uses both pattern-
matching and symbolic execution, which was shown in this work to have a higher
chance that generated warnings that are likely to be a real vulnerability.

• Software security testers: Software testers are responsible for investigating and
evaluating the security and quality of software components. Running SAST tools
may produce many warnings for a software component, and developers do not care to
remove them all. Therefore, it is essential for software testers to be able to prioritize
bug warning categories into importance, so when software testers scan the code,
they should look for those that are more likely to create bugs. Further, software
testers usually need to provide early estimates and an objective view of the software

58



reliability or fault-proneness to help code inspections and testing and understanding
the risks of software implementation. The empirical evidence in this research (RQ2)
shows that using SAST tools might be a suitable method to measure the project’s
quality despite the false positive rates. Therefore, SAST tool warnings can predict the
security risk of the products even without a manual review of the warnings. Hence,
false warnings are not completely unbeneficial since we observe that the more false
positive warnings of a particular type by a SAST tool, the more real bugs being fixed
(see RQ2 in Section 3.5). This study also demonstrates that security bugs seem to be
persistent even for a period of 2.6 years, which is consistent with previous research
studies [152]. This means that when assessing a bug report, it should be taken into
consideration that some critical bug’s lifetime can be long and not to neglect it for
that reason.

• SAST tool designers: The take-home message for SAST tool designers is that
not all types of warnings appear to be critical to developers. This thesis shows that
some types of warnings are never removed, then the challenge is to identify or rank
warnings according to the likelihood that they will be a bug. While this is ideal,
the work herein provides an easier-to-implement alternative: rank the importance
of warnings based on whether they will be removed in the future. While this is
imperfect, this might be better than no ranking at all. Moreover, this study finds in
RQ2 that pattern-matching is a robust technique, but it needs to be combined with
a more advanced analysis method to filter out any possible false positives. We also
noticed that abstract interpretation could be an optimal approach to design tools
that focus on Security Features (FS) security bugs, such as privacy violations.

Another point to be highlighted is that by observing that API type of bugs decays
faster than other types and underlying analysis techniques does not influence that.
We think that these types of bugs were fixed faster because once identified, it was
easier to understand and hence fixed. Previous studies have shown that the difficulty
of understanding a bug warning may lead to neglecting it [112]. Unlike API bugs that
could manifest on one line of code, other types of bug warnings can include issues
scattered across multiple lines of code. Hence, bug warnings need to be represented
well to developers, for instance, instead of showing a line of code that includes a bug
and explaining that abstractly. Tool designers need to illustrate the set of lines of
code that involve the problem.

• Researchers: This study illustrates that some types of warnings are more likely to
disappear. Hence, research is needed into trying to understand if this is true because
either: developers concentrate on these types of errors (they are low hanging fruit
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during code reviews and other when they edit the code around) or because they
indeed create bugs and the warning indeed show the cause of the problem. Another
research direction worthy of investigation is comprehending the reasons for the short-
lifetime bug warnings and incorrect fixes, and buggy patches. Also, researchers could
benefit from this research as they can continue this work and try to improve it by
tracking more data/better data, surveys, more systems.

3.8 Threats to Validity

Threats to construct validity: In this study, we are not assuming that developers have run
the SAST tools in this study. We only measure the issue with the source code that could be
flagged by SAST tools and measure the FP and TP rate by observing the change in the line
of code. We make the following assumptions: (a) If a warning exists in the released version
of the project in 2012 and 2017, then that warning is a false positive warning. This is a
fairly reasonable assumption since any warnings present in the released code for five years
are likely not to affect the quality of the product. Hence, they are FP. (b) If a warning
no longer exists in the 2017 version, we assume that it is a TP. We do not know why the
developer resolved the warning, but just that the warning no longer exists. Irrespective of
the reason, since the developers chose to take some action that resulted in the warning to
go away, we assume that this is important. However, the developers may not remove the
warnings consciously. Therefore, this could be a problem. One action we took to address
this is that we do not discuss Removed Warnings (when a line is deleted) in this study. We
believe that removing lines could be because of removing a feature. While editing a line
is most likely to fix a bug or for maintenance purposes. Hence, we only discuss Modified
Warnings and Disappeared Warnings .

Additionally, we manually reviewed some bug warnings to mitigate the threats to va-
lidity of our results regarding 1) the false positives and true positives rates of the same
warning types that vary across tools, 2) decay time of bug removal of the same warn-
ing types that differ across tools. Different tools produce different outputs in terms of
false positive and true positive rates for the same warning type. This is because different
tools have different underlying analysis techniques (as discussed in Section 2.2.9). Hence,
IVR warnings generated by RATS, which is based on pattern-matching, differ from IVR
warnings generated by PVS-Studio, which is based on pattern-matching and symbolic ex-
ecution. However, our results show that the underlying analysis method does not appear
to influence how fast the bug is being fixed. Hence, to ensure that our results are concrete,
we manually looked at a few cases of Modified Warnings and Disappeared Warnings to see
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if the developers indeed removed the warnings. We manually analyzed 40 warnings by re-
viewing the commit notes and source code, and we found that 28 cases of the fixed commits
indicate bug fixing tasks. 11 commits out of 28 indicate that the bugs were detected by
SAST tools, such as PVS-Studio and Cppchek, among other tools. For instance, a warning
that belongs to InsightSoftwareConsortium/ITK project has disappeared; the fixing com-
mit a3793658d2 (i.e., the commit that removed the warnings as identified in RQ3) shows
this commit message "COMP: Fix all the valid Cppcheck warnings in ITK (last patch)."
At the same time, other commits do not have enough information about bugs being fixed.
In this case, we notice that the source code includes many more critical changes in those
versions, such as adding features that are project dependent. This issue was observed in
Kim and Ernst work [116] (check Section 2.2.3) when the researchers found that bugs that
were fixed in fix-changes represent a tiny percentage of bug removals, and about 90% of
the bug warnings either remain in the program or are fixed in non-fix changes.

Threats to internal validity concern factors that could have affected our findings. We
ensure that the selected projects do not introduce any biased results to our study. We
study 116 popular C++ projects, yet they vary in terms of complexity, size, and activeness.
When we mined the chosen repositories from GitHub, we enforce some criteria to ensure
our dataset’s robustness. For instance, we built a script to ensure that retrieved projects
are C++ projects and not falsely tagged in GitHub as C++. Another threat is that we
chose an analysis time frame of five years (2012-2017). From past research, we know that
the typical time to fix a bug is around three years [63][75]. Hence, we considered a five-
year time frame so that we can be sure that if a warning existed in both versions, then
it has a life span that is at least five years. Finally, we provide all our tools and data for
replication [43], and the methodology of this study is described in detail in Section 3.4.

Threats to external validity This study was conducted on 116 different open source
projects and six different SAST tools. Nevertheless, analyzing further projects, differ-
ent programming languages, and other SAST that have different analysis techniques are
desirable.

3.9 Conclusion

This work provides an empirical study to the warnings generated by SAST tools and
investigates the history of these buggy lines of code, using 116 large C++ repositories. We
find that the patterns of the warnings are stable through time for all studied SAST tools.
Also, our results show that most of the tools produce on IVR, API, and CQ warnings.
These types of warnings are detected in the real world with comparable patterns, but IVR
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is detected significantly in the real world compared to others. Also, we observe that there
is a correlation between the number of bugs that belong to different bug types generated
by such a tool and the likely real bugs that were resolved. This indicates that SAST
tools could be used as an assessment tool to measure the quality of a product and the
potential risks without manually review the warnings. Also, this study shows the power of
using the pattern-matching algorithm along with other advanced analysis methods. The
outcome of this research may have multiple possible future directions, such as bug warnings
prioritizing. Knowing the relation between static analysis methods and false alarm could
help design better SAST tools to minimize false alarm rates. Moreover, it provides an
insight into which static analysis algorithm is appropriate for different classes of warnings.
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Chapter 4

Evaluating State-of-the-Art Free and
Open Source Static Application
Security Testing Tools against Buffer
Errors in Android Apps

Modern mobile apps incorporate rich and complex features, opening the doors for different
security concerns. Android is the dominant platform in mobile app markets, and enhanc-
ing the security of its apps is an essential area of research. Android malware (introduced
intentionally by developers) has been well studied, and many tools are available to detect
them. However, little attention has been directed to address vulnerabilities caused un-
intentionally by developers in Android apps. Static analysis has been one way to detect
such vulnerabilities in traditional desktop and server-side desktop. Therefore, this chap-
ter aims at assessing SAST tools that could be used by Android developers. The main
goal of this chapter is to identify whether state-of-the-art SAST tools can find real-world
vulnerabilities.

Related Publications

The work described in this chapter has been previously published:

- Aloraini, Bushra, and Meiyappan Nagappan. "Evaluating state-of-the-art free and
open-source SAST tools against buffer errors in android apps." 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 2017.
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4.1 Introduction

Android dominates the mobile market as it has gained tremendous popularity recently
[110]. The primary Android market, Google Play Store, included three million apps and at
least 65 billion downloads as of June 2017 [177]. Users assume that app markets guarantee
the security of offered apps [144]. Nevertheless, app markets typically do not adequately
ensure the security of the apps they offer [153]. Apps hosted on these markets may possess
malware or vulnerabilities (that were introduced unintentionally by developers). A study
by Symantec shows that 17% of all Android apps were malware in disguise [183]. How-
ever, every app could contain an unintentional vulnerability. Such vulnerabilities could
be exploited by attackers to leak private data, modify the software or data, or deny the
availability of systems and data, causing substantial economic loss. Another report [33]
showed that nearly 75% of tested mobile apps showed at least one critical or high-severity
security vulnerability.

Studying Android vulnerabilities is, therefore, a critical area of research. SAST tools are
a common proactive method to find security vulnerabilities in source code early during the
coding phase [146]. This leads to cost savings, which is a key benefit of SAST tools, as the
earlier a vulnerability is detected, the cheaper it is to fix [174]. Applying a static analysis
approach to Android apps to identify vulnerabilities could potentially ensure the quality
and reliability of the apps and hence the app market. Thus, SAST tools are standard in
both the maintenance and evolution of software.

However, we do not know how effective SAST tools are in detecting vulnerabilities in
Android apps. This chapter, thus, aims to study state-of-the-art SAST tools that can be
used to detect Android vulnerabilities during the coding process.

The contributions of this chapter are as follows:

• We first measure the frequency of the software vulnerabilities in Android apps, and
we determine the most dominant type of vulnerabilities in such apps as buffer errors.

• We evaluate state-of-the-art SAST tools to detect buffer errors regarding the real-
world vulnerabilities happening in Android.

• We describe the characteristic of buffer error vulnerabilities observed in Android
apps.

• We describe the required features of such SAST to detect such a pattern of vulnera-
bility.
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4.2 Research Questions

In this chapter, we ask the following RQs.

Motivational RQ: What are the most common vulnerabilities in Android
apps? From data in the National Vulnerability Database (NVD) [10], we find that buffer
errors are the most frequent type of vulnerability in Android apps. They also have the
highest risk that compromises the integrity, confidentiality, and availability.

Case study RQ: Are state-of-the-art SAST tools for buffer errors able to
detect vulnerabilities reported in the wild for Android apps? In this study, we
investigate 17 SAST tools that could discover buffer errors. Out of the 17, we test six free
and open-source SAST tools on nine real-world buffer errors, and we find that none of the
studied tools could efficiently detect the reported buffer errors.

All our empirical data (including the vulnerabilities from NVD and the Android apps
with the vulnerabilities) are available for download [44].

4.3 Motivational RQ: What are the most common vul-
nerabilities in Android apps?

4.3.1 Motivation

Since examining SAST tools’ efficiency on all types of vulnerabilities is beyond the scope
of a single study, we want to find the most frequent type of vulnerability in Android
apps. Therefore, in this RQ, we identify Android vulnerability trends by examining the
published vulnerabilities in the wild. Software security vulnerability records are maintained
by multiple security vulnerability databases, such as NVD, CERT [1], and Bugtraq (BID)
[19]. These databases utilize the Common Vulnerabilities and Exposures Identifier (CVE-
ID) [3], which is a unique number for a publicly recognized security vulnerability, as an
identifier of a vulnerability record. The NVD database is synchronized with CVE-ID, and
its records are mainly based on CVE information. Thus, the NVD database is preferred
by researchers as it is the most comprehensive database. Therefore, we select the NVD
database to construct the dataset for this RQ.
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4.3.2 Methodology

4.3.2.1 Data Gathering

In this phase, we extract Android’s relevant vulnerability records from 2008 (when Android
was first released) to 2015 from NVD using an automated web-scraping tool. We use the
“Android” keyword to filter the NVD database and extract relevant Android vulnerability
reports. For each vulnerability record, the CVE-ID, original release date, last revised date,
description, CVSS v2 base score, impact score, exploitability score, access vector, access
complexity, authentication, impact type, and vulnerability type were retrieved. We extract
2,089 records in the initial data gathering.

4.3.2.2 Removing Irrelevant Data

We clean the dataset in order to get more accurate results. We manually examine all the
2,089 entries to check whether they are accurately related to Android; if not, the record
is excluded from the dataset. We find four records unrelated to Android: CVE-2015-3906,
CVE-2015-3815, CVE-2012-1344, and CVE-2011-1001.

4.3.2.3 Data Processing

In this phase, we trace each vulnerability record manually to collect more information,
such as whether the vulnerability was confirmed or patched, and how it was discovered.
We obtain this kind of information from the software vendor websites and other resources,
such as BID, CERT, and Japan Vulnerability Note (JVN) [8]. Based on the obtained infor-
mation, we further sanitize the dataset. We classify the vulnerability records into multiple
categories. Vulnerability record categories with hyperlinks of the acquired information
could be found in our dataset in columns “Record Category” and “Record Category URL”.
The categories are as follows:

• Confirmed and patched: An advisory has been published by the vendor that
explains the vulnerability and provides patching information. We find that 556 vul-
nerability records fall into this category.

• Reported and patched: The vulnerability has been reported to the vendor, and
patches were released. We find 67 vulnerability records fall into this category.
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• Proof of concept and patched: A proof of concept has been demonstrated by
the reporter, and it is indicated that the vendor has released patches. We find five
vulnerability records belong to this category.

• Confirmed but not patched: The vulnerability has been confirmed by the vendor;
however, no patches were provided. We find five vulnerability records belong to this
category.

• Proof of concept but not patched: A proof of concept has been demonstrated
by the discoverer, and it is indicated that the vendor has not released patches. We
find 30 vulnerability records fit into this category.

While categories that are excluded from the study are:

• Not enough information: In case that the vulnerability report does not include
enough information, such as a proof of concept, patching information, or confirming
from the vendor, then the record is excluded from the dataset. We exclude 33 records
as they do not include enough information.

• Large-scale experiment: a large-scale automated experiment has been conducted
by Dormann [79] to test whether Android apps properly validate SSL certificates
provided by HTTPS connections. The study was conducted on 23668 Android apps
and 13 Android libraries; as a result, 5.9% (1379 apps and ten libraries) have been
reported to be vulnerable. 23.2% of the tested apps were found vulnerable because of
a vulnerability in the libraries. These reports have been found in NVD from 9/8/2014
to 10/29/2014 as Cryptographic Issue vulnerability type. We exclude those records
in order to produce more balanced and meaningful results. 1389 vulnerability records
belong to this category.

4.3.2.4 Data Classification

After cleaning the dataset, 663 records remained. Next, we manually examined the vul-
nerability records to categorize them into two groups: Android platform vulnerabilities
and Android app vulnerabilities. Android app vulnerabilities are any vulnerability that
resides within Android apps. All other vulnerabilities are considered as Android platform
vulnerabilities, for example, vulnerabilities that reside in the Linux kernel of the Android
system.
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4.3.3 Results

Android platform related vulnerabilities are 187, and Android app vulnerabilities are 476,
representing 72% of all vulnerabilities in our cleaned dataset (663).

4.3.3.1 Vulnerability Type Trend

We aim to tackle vulnerabilities at the app level, but not at the OS level. We want to focus
our study at the app level because we want to understand how SAST tools perform with
modern apps considering their architecture. Thus, an essential question of this empirical
study is “what is the most frequent type of vulnerability that occurs historically in Android
apps”. To reveal the trend of Android vulnerabilities, we utilize the NVD classification of
vulnerability type based on the Common Weakness Enumeration (CWE) [5], since it is the
primary classification in the NVD.

CWE is a list of software flaw types maintained by the MITRE Corporation and used
by security organizations and researchers. There are 24 different types of flaws in the
Android platform in the studied dataset, and 20 types of them occurred in Android apps.
The percentage of each vulnerability type has been calculated to uncover the trending
vulnerability in Android apps. As shown in Table 4.1, Buffer Errors is the dominant
vulnerability in Android apps – 28.6% of all discovered Android app vulnerabilities.

Permissions, Privileges, and Access Control (18.1%) and Information Leak/Disclo-
sure (11.3%) vulnerabilities are the second and third most frequent vulnerabilities in An-
droid ecosystem, respectively. Insufficient Information (12.4%) type indicates that there
is insufficient information about the vulnerability to categorize it. Such a case usually
happens when vendors confirm a vulnerability but decline to release certain details about
the vulnerability.

Although, Permissions, Privileges, and Access Control and Information Leak/Disclo-
sure are dominating the Android security research community [167], rarely are buffer
error vulnerabilities related to Android apps being discussed (See Section 2.2.6 for more
details). Since buffer error is the most common vulnerability that occurred historically
in Android apps, further analysis is needed to recognize how severe and dangerous buffer
error vulnerabilities are.

4.3.3.2 Buffer Error Severity Trend

To analyze how severe discovered buffer error vulnerabilities are, we use the Common
Vulnerability Scoring System (CVSS) [4]. CVSS is an open standard used to assess the
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Table 4.1: Vulnerability types distribution in Android apps

Vulnerability Type CWE-ID Total %
Buffer Errors CWE-119 136 28.6%
Permissions, Privileges, and Access Control CWE-264 86 18.1%
Insufficient Information NVD-CWE-noinfo 59 12.4%
Information Leak / Disclosure CWE-200 54 11.3%
Cryptographic Issues CWE-310 28 5.9%
Input Validation CWE-20 23 4.8%
Cross-Site Scripting (XSS) CWE-79 16 3.4%
Numeric Errors CWE-189 15 3.2%
Path Traversal CWE-22 15 3.2%
Other NVD-CWE-Other 11 2.3%
Resource Management Errors CWE-399 8 1.7%
Code Injection CWE-94 7 1.5%
Authentication Issues CWE-287 4 0.8%
Cross-Site Request Forgery (CSRF) CWE-352 3 0.6%
Improper Access Control CWE-284 3 0.6%
Security Features CWE-254 3 0.6%
Credentials Management CWE-255 3 0.6%
Code CWE-17 2 0.4%
Data Handling CWE-19 1 0.2%
OS Command Injections CWE-78 1 0.2%

severity of security vulnerabilities, and it is platform and technology independent. We use
the CVSS Base score version 2 standards.

We find during our analysis that 97% of the buffer error vulnerabilities have high risk.
These results show that buffer errors have severe implications for Android apps’ security
and end users. Also, 99.26% of buffer errors in Android apps are remotely exploitable,
and no authentication is required. Thus, it could be concluded that the buffer errors in
Android apps are easy to exploit. Finally, we find that 95.6% of buffer error vulnerabilities
ultimately impacted the target app in terms of confidentiality, integrity, and availability.

Takeaway 1: Buffer errors are the most common vulnerability in
Android apps. They also have the highest risk that compromises the
integrity, confidentiality, and availability. As a result, we concluded
that we need to focus our main study on buffer errors.

69



Determining the most impactful vulnerability affecting Android apps (which involved
hundreds of hours of manual work) is not the study’s focus. However, we believe that the
empirical evidence shown above not only motivates the rest of our study but is a useful
contribution to the research community that looks to solve the issue of buffer errors in
Android apps.

4.4 Case Study

4.4.1 Selection Criteria for Buffer Error Vulnerabilities

In our case chapter, we want to test state-of-the-art SAST tools against buffer error vul-
nerabilities in Android apps. While we could write our toy Android apps and inject buffer
error vulnerabilities, we feel that it would be a biased experiment. Hence, we mine the
vulnerability records from NVD to identify example vulnerabilities in open-source An-
droid apps that we can use as case study subjects. Having open-source Android apps was
necessary so that we could run SAST tools to analyze the source code.

We find nine buffer error vulnerability records in three open-source Android apps or
have open-source components (Google Chrome, Android Browser, and Mozilla Firefox).
Thus, examining the SAST tools against existing popular Android apps with real-world
vulnerabilities makes our experiments, results, and conclusions stronger. In this section,
we describe each of the vulnerabilities categorized within corresponding reason in Table
4.2 and follow up with a discussion on some of the common attributes among all of them.

4.4.1.1 Buffer Size Miscalculation

• CVE-2008-0985

A remote attacker could cause a heap-based buffer overflow by persuading a victim
to visit a malicious website that contains GIF components. The vulnerability occurs
at the GIF library in the WebKit framework in the Android web browser. It fails to
properly sanitize input, which is a .gif file before copying it to an inadequately sized
memory buffer. The problem occurs due to allocating buffer size based on the logical
screen width and height field of the GIF header using malloc. However, the buffer is
filled in with bytes based on the GIF image’s real width and height. The buffer copy
operation is performed within a loop.
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Table 4.2: Studied buffer error vulnerabilities in Android apps

CVE ID Reason C/C++ Affected
App

Source (in-
put)

Sink (Container) Data Flow

CVE-2008-
0985

Buffer size miscal-
culation

C++ Android
Browser

User (Gif
image)

Class Inter-
procedural

CVE-2017-
5014

Buffer size miscal-
culation

C++ Google
Chrome

User (Im-
age)

uint32_t pointer Inter-
procedural

CVE-2016-
5182

Lack of boundary
checking

C++ Google
Chrome

User
(Bitmap
image)

Smart pointer Inter-
procedural

CVE-2014-
1705

Lack of boundary
checking

C++ Google
Chrome

User (JS
code manip-
ulation)

Function tem-
plate

Inter-
procedural

CVE-2014-
3201

Lack of boundary
checking

C++ Google
Chrome

User (Scroll
size)

Smart pointer
class template

Inter-
procedural

CVE-2014-
1710

Lack of boundary
checking

C++ Google
Chrome

User (GPU
Command
Buffer)

Class Inter-
procedural

CVE-2012-
4190

Null pointer deref-
erence

C Mozilla Fire-
fox

Within the
app

int pointer Inter-
procedural

CVE-2016-
5200

Incorrectly applied
type rules

C++ Google
Chrome

User (JS
code manip-
ulation)

Class Inter-
procedural

CVE-2016-
5199

Off by one error C Google
Chrome

User (video
file)

Struct Inter-
procedural

A remote attacker could cause a heap-based buffer overflow in Google Chrome by
persuading a victim to visit a malicious website containing crafted image components.
The overflow happens during image processing in Skia 1 that miscalculates the buffer
size of the image.

4.4.1.2 Lack of Boundary Checking

• CVE-2016-5182

A remote attacker could cause a heap-based buffer overflow by persuading a victim
to visit a malicious website that includes a crafted bitmap. The Google Chrome
rendering engine Blink fails to render that particular size causing a buffer error.
From the source code point of view, the bitmap size that is tainted is used to allocate
a new buffer in the heap without validating the size, leading to integer overflow, and
then it is used as an index to access an array buffer that leads to a buffer overflow.

• CVE-2014-3201
1https://skia.googlesource.com/skia/
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A remote attacker could cause a buffer overflow by persuading a victim to visit a
malicious website that embeds another document using iframe. The embedded page
specifies large dimensions for ::webkit-scrollbar and embeds an image with ::-webkit-
scrollbar-corner. The Google Chrome rendering engine Blink fails to render that
particular size causing buffer error. In the source code, the issue happens because
the allocation of the buffer does not consider the variable size of the webkit-scrollbar.

• CVE-2014-1705

A heap-based buffer overflow vulnerability was found in the Google V8 JavaScript en-
gine, an open-source JavaScript engine written in C++. It exists within the handling
of TypedArray objects. The vulnerability occurs due to missing bounds checking for
the length of ArrayBuffer when manipulated using js defineGetter method, which is
then fed to the TypedArray object during initializing. This may allow an attacker to
read and write data to any memory address, which could be leveraged to arbitrary
code execution in the Google Chrome sandbox process. A boundary check has been
added to fix the issue..

• CVE-2014-1710

In this vulnerability, Google Chrome does not validate whether a specified loca-
tion is within a shared memory segment’s bounds. This allows remote attackers
to cause GPU command-buffer memory corruption and a denial of service. The
GPU command-buffer is how Chrome communicates to the GPU, either OpenGL or
OpenGL ES, which are APIs for rendering 2D and 3D vector graphics. User interac-
tion is required to exploit this vulnerability and cause the GPU process to crash. In
this case, the user should open a carefully malicious a crafted page that has scripts
to dynamically modify the web page’s structure after load time. To fix the vulner-
ability, a boundary check was added such that the operation on the buffer does not
go beyond the boundary of the buffer.

4.4.1.3 NULL Pointer Dereferences

• CVE-2012-4190

This vulnerability was reported by a user who complained about Mozilla Firefox app
crashing in Android in CyanogenMod kernel. The developers took a month to figure
out the exact problem. The issue was triggered because of the Cairo library, written
in C, calling the FreeType library from the system path instead of calling it from
in-tree, causing memory corruption. So when FreeType library is initially created, it
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has non-NULL module pointers. However, at some later point, one of the pointers
has become NULL. The vulnerability was patched by forcing the Cairo library to use
Mozilla in-tree setlcdfilter of FreeType. Thus, calling a system function instead of
using a local function led to a NULL pointer dereference.

4.4.1.4 Incorrectly Applied Rules

• CVE-2016-5200
A heap-based buffer overflow vulnerability was found in the Google V8 JavaScript
engine. A remote attacker could exploit it by persuading a victim to visit a crafted
HTML page. The Typer in V8 incorrectly applied type rules when using asm opti-
mizer that could cause an out-of-bounds read/write. The patch includes fixing the
typing rule for Math.sign [7].

4.4.1.5 Off by One Error

• CVE-2016-5199
A remote attacker could cause a heap corruption via a crafted video file. The vulner-
ability occurs in Google Chrome due to an off-by-one error that leads to an allocation
of zero size in FFmpeg MP4 decoder, which results in corrupting a number of pointers.

4.4.2 Common Attributes of Buffer Errors in Android Apps

All the studied buffer error vulnerabilities are in client-side apps, such as web browsers.
Also, seven out of nine of the studied buffer error vulnerabilities are C++ based, and they
have some common characteristics. For instance, the input is read from untrusted sources,
untrusted input is inadequately validated, or lacks boundary checking. Also, most of the
studied vulnerabilities involve pointer indirection. Another observation is that buffer errors
in our case study are inter-file/inter-procedural, as the buffer is allocated in one function in
one file and overflows in another function in a different file. Sometimes, the inter-file/inter-
procedural communication occurs in a cross-language manner, meaning that buffer errors
occur in the native context, while the untrusted input comes from other contexts, such as
Java.
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4.4.2.1 Tested Static Analysis Tools for Buffer Errors

In this chapter, we only focus on SAST tools that support source code analysis. We study
17 popular SAST tools to detect buffer errors. Table 4.3 shows the studied SAST tools
classified based on [170]. We gather some tools by reviewing research work that evaluated
methods that detect buffer errors [210] [106] [190] [170] [196]. We also study some other
SAST tools popular in the wild, such as Clang Static Analyzer [69] and Frama-C [30].
These tools are general tools for multiple platforms. Table 4.3 shows the studied buffer
error SAST tools classified based on [170]. Also, we categorize the static analysis methods
into two categories: Open source and Commercial.

We determine which of state-of-the-art SAST tools could detect the nine Android buffer
error vulnerabilities described in Table 4.2. As our study reveals, most Android buffer
errors occurred in C++ language; thus, all SAST tools that target only C language could
not detect these vulnerabilities. So we exclude five out of 17 SAST tools that target the C
language, such as Splint, BOON, ARCHER, and UNO. We find that 12 tools could analyze
C++ and could potentially detect studied vulnerabilities. Six out of the twelve SAST tools
are commercial tools that we did not test. However, we gather some commercial tools using
an academic license, but we could not test them as they have a limit on the tested line of
code (LOC), such as CodeSonar by Coverity, which only allows testing one million LOC,
but the total lines of code in all the apps in our dataset exceeds one million LOC. Hence,
we only test free and open-source SAST tools.

We investigate six SAST tools designed to detect buffer errors to study nine vulner-
abilities in open source components of the tested apps. The study shows that the free
and open-source state-of-the-art SAST tools do not efficiently discover studied buffer error
vulnerabilities in Android apps. We analyze the tools carefully to see why they could not
discover buffer errors. The next section discusses that in detail.

4.5 RQ: Are state-of-the-art SAST tools for buffer er-
rors able to detect vulnerabilities reported in the
wild for Android apps?

SAST tools are a typically adopted solution by developers to keep project costs down. In
this section, we evaluate the efficiency of the six free and open-source SAST tools. An
efficient tool in this case study is the one that can detect the studied vulnerabilities as a
true positive.
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Table 4.3: State-of-the-art SAST tools to detect buffer errors

Method Name Type Language Inference Algorithm Sensitivity Granularity
Polyspace Bug Finder
[210] [30] [82]

Commercial C/C++ Constraint: abstract
interpretation

Flow Inter-procedural

Parasoft C/C++test Commercial C/C++ String pattern match-
ing, Constraint: sym-
bolic execution

Flow Inter-procedural

Klocwork [82] Commercial C/C++ Unpublished Flow, path Inter-procedural
Coverity [82] Commercial C/C++ Unpublished Flow, path,

context
Inter-procedural

PVS-Studio [30] Commercial C/C++ Constraint: symbolic
execution, annotations

Flow, path,
value range

Inter-procedural

CodeSonar [30] Commercial C/C++ Constraint: symbolic
execution, taint data
flow

Flow, path Inter-procedural

ASTREE [106][30] Commercial C Constraint: abstract
interpretation

Context Inter-procedural

ARCHER [210] Open
source

C Constraint: symbolic
execution

Flow, path,
context,
alias

Inter-procedural

BOON [210][106] Open
source

C Constraint: integer
range

N/A Inter-procedural

Splint [210][190][106] Open
source

C Annotation Flow Intra-
procedural,
inter-procedural

UNO [210][30][190] Open
source

C Annotations Flow, path Inter-procedural

Flawfinder [190][106] Open
source

C/C++ String pattern match-
ing

N/A Token

RATS [190][106] Open
source

C/C++ String pattern match-
ing

N/A Token

Cppcheck [190][106] Open
source

C/C++ Constraint: integer
range

Flow, con-
text

Inter-procedural

Clang Static Analyzer
[69]

Open
source

C/C++ Constraint: symbolic
execution, annotation

Flow, path Inter-procedural

Farma-C [30] Open
source

C/C++ Constraint: abstract
interpretation, annota-
tions

Flow, value
range, point-
to

Inter-procedural,
System depen-
dence graph

IKOS [62] Open
source

C/C++ Constraint: abstract
interpretation

Flow, path,
point-to

Inter-procedural

4.5.1 Methodology

1) Collecting open-source SAST tools that detect buffer error:

We gather the six open source SAST tools that discover buffer error. Our study tests
the following tools that support C++: IKOS [62], Frama-C [91], Clang Static Analyzer
[69], Cppcheck [190], Flawfinder [190], and RATS [190]. Table 4.4 summarizes all tested
tools and their versions.

2) Collecting the source code of the vulnerable apps: We then gather the source
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Table 4.4: The studied free and open source SAST tools that detect buffer errors in C++

Tool Name Version Number
RATS 2.4
Flawfinder 1.31
Cppcheck 1.72
Clang Static Analyzer 279.1
IKOS 1.2
Frama-Clang plugin Aluminium-20160502

code of open-source Android apps that have buffer error vulnerabilities in our study.

The following source code versions of Android apps were collected and checked:

• CVE-2008-0985 : Android web browser’s webkit rendering engine
webkit-522-android-m3-rc20

• CVE-2012-4190 : Mozilla Firefox web browser 16.0

• CVE-2014-1705 : Google Chrome web browser 33.0.1750.165 V8 JavaScript engine

• CVE-2014-1710 : Google Chrome web browser 33.0.1750.15

• CVE-2014-3201 : Google Chrome web browser 37.0.2062.94 Blink rendering engine.

• CVE-2016-5182 : Google Chrome web browser 54.0.2840.85 Blink rendering engine.

• CVE-2016-5199 : Google Chrome web browser 55.0.2883.83

• CVE-2016-5200 : Google Chrome web browser 55.0.2883.83 V8 JavaScript engine

• CVE-2017-5014 : Google Chrome web browser 56.0.2924.86

3) Running SAST tools against the source code of the vulnerable apps: We
test the source code of each app through the static analyzers. We run each tool several
times using different options and flags. Then, we build automated scripts to run the tests
automatically and save the results to files.

4) Analyzing the results: in this step, we analyze the results that were stored in
files. Since most of the tools could report errors with the source code file path, error type,
and error line number, we open the source code files and trace and analyze all reported
errors. All collected source code and scripts could be found here [44]
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4.5.2 Results

We find that Flawfinder, RATS, and Cppcheck SAST tools are easy to use. They could
be executed through a command-line interface, and they accept a list of files or project
directories to test with a set of options as parameters. Also, these tools show their results
by default in the system’s command line. The results contain the files path, the lines of
code suspected of having vulnerabilities, and descriptions of the potential issues.

Clang Static Analyzer needs to be integrated into the build process. Frama-C and IKOS
were built on top of LLVM/Clang, they accept source files, and they are not meant to be
integrated into a build process. The source files in our case study need to be preprocessed
first to analyze source files with Frama-C; then, preprocessed C++ files could be fed to
Frama-C using Frama-Clang plugin. IKOS was developed by NASA to analyze flight
systems, and it could convert C++ source files into LLVM bitcode first, which could be
analyzed by the tool then. Like Frama-C, the files need many preprocessing settings when
analyzing source files in complex apps. However, manually setting preprocessing for source
files is hard to achieve with large and complex apps such as Mozilla Firefox and the open-
source components of Google Chrome.

Our analysis reveals that none of the tools were able to detect any of the studied
vulnerabilities. Table 4.5 shows the results of our analysis. In Table 4.5, we include a
number to refer to why a tool cannot determine the specific vulnerability.

4.5.3 Discussion

In this subsection, we want to discuss possible reasons why the studied free and open-
source SAST tools could not detect the nine vulnerabilities. To do that, we look at the
characteristics of the techniques underlying the tools (in the context of buffer error vul-
nerabilities). In total, we present six such characteristics (the numbers in the enumeration
below corresponds to the numbers in Table 4.5):

1. Unable to examine tainted data from code written in another language: In our case
study, almost always the tainted data (data from an untrusted source) comes from
another language (except CVE-2012-4190), while the SAST tools only examine the
C/C++ native code. This creates a dangerous blind spot in these tools as they lack
comprehending modern frameworks since they only understand and work on a single
language at time [136]. None of the six tools examined can determine tainted data
that comes from code written other languages, such as in Java. This applies to other
tools studied in Table 4.3.
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Table 4.5: Tested SAST tools results: The numbers indicate the reason in the
enumerated list below, which explains why the tool could not find the vulnerability.

CVE ID RATS Flawfinder Cppcheck Clang Static
Analyzer

IKOS Frama-
Clang

CVE-2008-0985 1,2,3 1,2,3 1,2,4 1,2,5 1,6 1,6
CVE-2012-4190 2,3 2,3 2,4 2,5 6 6
CVE-2014-1705 1,2,3 1,2,3 1,2,4 1,2,5 1,6 1,6
CVE-2014-1710 1,2,3 1,2,3 1,2,4 1,2,5 1,6 1,6
CVE-2014-3201 1,2,3 1,2,3 1,2,4 1,2,5 1,6 1,6
CVE-2016-5182 1,2,3 1,2,3 1,2,4 1,2,5 1,6 1,6
CVE-2016-5199 1,2,3 1,2,3 1,2,4 1,2,5 1,6 1,6
CVE-2016-5200 1,2,3 1,2,3 1,2,4 1,2,5 1,6 1,6
CVE-2017-5014 1,2,3 1,2,3 1,2,4 1,2,5 1,6 1,6

2. Unable to keep track of pointer operations: The tool is unable to keep track of data
when a buffer is manipulated using nontrivial pointer operations (CVE-2017-5014), or
when a null-pointer is dereferenced (CVE-2012-4190). Almost all of the studied nine
vulnerabilities involve some sort of pointer operation. We know from past research
that pointer indirection could be hard to discover by most commercial tools [123].
For instance, the Heartbleed is a pointer indirection vulnerability in OpenSSL [29]
that was not discovered by commercial tools, such as CodeAdvisor, CodeSonar by
Coverity, Klocwork, and Veracode [123].

3. Simple lexical analysis only instead of semantic analysis: RATS and Flawfinder only
perform simple pattern matching, basically tokenizing the source code and looking
for tokens that are well-known to cause buffer errors. They mostly focus on tokens
that could potentially be a source or sink to buffer errors, such as dangerous functions
like the strcpy function. However, the sinks in our dataset have more compound
settings than the well-known set of tokens. For example, in CVE-2008-0985, the
buffer is copied to the sink inside a loop that involves pointer indirection. This type
of issue may not be detected by a simple lexical analysis tool. In general, Flawfinder
and RATS have a high false positive rate, since they always report vulnerabilities
based on simple lexical analysis without semantically analyzing the code.

4. Inadequate semantic analysis: Cppcheck is an example of a static analysis tool that
uses inadequate semantic analysis. Unlike RATS or Flawfinder, it uses semantic
analysis based on the Abstract Syntax Trees (AST), and it also utilizes control-flow
analysis. However, it does not always perform control flow analysis on all situations,
and sometimes it assumes that all statements are reachable. Having inadequate se-
mantic analysis may lead to miss problems related to buffer allocation and validation
or pointer dereferencing. For the CVE-2012-4190 vulnerability, Cppcheck discovered
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two NULL pointers dereference issues. They are passed as parameters and used with-
out checking if they are NULL (we checked and found that they are true positives,
but not reported to NVD). However, it did not discover the NULL pointer dereference
discovered in CVE-2012-4190 and reported to the NVD.

5. Limited scope of analysis: Clang Static Analyzer performs a high-level AST analysis.
However, since it uses the AST generated by Clang, it is performed at the compilation
unit level. That is, it uses inter-procedural analysis; however, it does not support
inter-procedural analysis for cross-translation-unit. Almost all of the vulnerabilities
in our case study are inter-file/inter-procedural.

6. Tied to a specific compiler: IKOS and Frama-C directly invoke the Clang/LLVM
compiler framework that supports both C and C++. Therefore, they cannot analyze
Android apps that use specific toolchains. Besides, these tools are difficult to be
integrated into build systems. However, these tools perform sophisticated semantic,
data flow, control flow, pointer operation, and inter-procedural analysis in a robust
fashion.

From the reasoning above, we can see that an ideal static analysis tool to detect Android
apps’ buffer errors will:

• performs cross-language analysis to be able to understand both Java and the native
code contexts.

• utilizes tainted data flow as an inference algorithm.

• employs in-depth semantic, data flow, control flow, and pointer operation analysis

• employs Inter-procedural/Inter-file analysis

4.6 Threats to Validity

One possible threat to external validity is that we did not test many commercial tools
that use their parser, which might be more accurate. Though, we tried to analyze studied
vulnerabilities using CodeSonar. We got an academic license of CodeSonar, which only
allows us to analyze one million lines of code. However, the analyzed apps in our study
include several million lines of codes.
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Also, knowing that most of the studied vulnerabilities involve pointer indirection, we
know from past research that it could be hard to discover them by most commercial
tools [123]. For instance, the Heartbleed vulnerability involves pointer indirection in the
OpenSSL [29] that was not discovered by commercial tools, such as Coverity Code Advisor,
CodeSonar, Klocwork, and Veracode [123]. Heartbleed vulnerability was hard to be found
due to using multiple levels of pointer indirection and the complexity of the execution path
from the buffer allocation to buffer misuse, which is similar to this case study. Additionally,
we qualify that our experiments are done only on free and open-source tools, by clearly
stating “free and open source” in the study to avoid any misunderstanding.

Another threat to validity is that some apps, such as Google Chrome, contain some
closed source parts that might include the vulnerability. However, in our study, we ensured
that all vulnerabilities reside in the open-source component (e.g., V8 and webkit). We
browsed the source code as we know where the vulnerabilities exist from the NVD website.
There is a threat that the vulnerability records we analyzed may not be related to Android.
Hence. We manually inspected and studied all collected records from the NVD to ensure
that they related to the Android ecosystem and removed all biased records. Also, we
manually reviewed the SAST tool results to guarantee the correctness. To address any
threat to internal validity (i.e., mistakes we could have made) and for the ability of anyone
to replicate our experiments, we provide all the data in our experiments [44].

Another limitation of our study is that the sample size is small, yet we have tested all
available vulnerabilities that occurred in open source apps. Another threat is that there
is a possibility that the tested vulnerabilities may not be representative of other buffer
error in Android apps in general. However, when observing the descriptions of other buffer
error vulnerabilities in our dataset that occurred in closed source apps, we found some
similarities with our sample, such as apps are written in C++ and buffer errors happened
due to input that was read from untrusted sources.

4.7 Conclusions

In this chapter, it was found that buffer errors were the most frequent type of vulnerability
in Android apps and easy to exploit. Therefore, we studied the effectiveness of state-of-the-
art free and open-source SAST tools for detecting buffer error vulnerabilities in Android
apps. Also, our goal was to understand how buffer errors happen in the Android context.
Our findings indicate a lack of SAST tools that target Android to detect buffer errors.
Thus, general SAST tools for native code may be usually used by Android developers.
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However, currently free and open-source SAST tools for C++ could not detect real-world
buffer error vulnerabilities in Android apps.

Also, our study found some patterns of characteristics for buffer errors that occurred
in Android apps, such as occur within C++, due to pointers indirection, untrusted input
travels from other contexts to C++ where the buffer is misused. Thus, by utilizing these
patterns, SAST tools could be built to work more efficiently. The experimental results
show that such an evaluation brings a vital contribution characterizing an effective static
analysis tool to detect buffer errors in Android apps. Therefore, we conclude that an
efficient static analysis technique for detecting buffer errors in Android (1) should perform
a taint analysis that traces inputs to a program from outside, (2) should involve inter-
language analysis (this could affect other modern apps in other platforms that include
native C/C++ as a library), (3) has a better understanding of the code semantics and
involve pointer operation analysis (this is a general problem that effect apps in all kinds
of platforms.), and (4) should perform inter-procedural/inter-file analysis to analyze data
travel cross procedures.
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Chapter 5

SoS: Source Sink Filter for Modern
Software

Static taint analysis is a useful analysis technique to detect a range of security vulnerability
types. Usually, this type of analysis involves analyzing data from sources to sinks. However,
modern software is more complex, making it challenging to applying such an analysis
method to detect security vulnerabilities. This chapter proposes a methodology to filter
out the source and sink pairs that do not have feasible paths. The goal is to introduce a
practical and generally low-cost extensible and configurable static analysis methodology to
remove many likely not reachable pairs.

5.1 Introduction

A static taint analysis approach has been primarily adopted to detect different types of
critical security vulnerabilities. Static taint analysis is an information-flow analysis that
concerns about values from untrusted input (i.e., sources) that may spread into security-
sensitive operations (i.e., sinks) without being validated by a sanitizer [171]. This type
of analysis applies to Input Validation and Representation (IVR) class of vulnerabilities,
such as command injection, SQL injection, and buffer overflow. Static taint analysis also
concerns about information that is confidential (i.e., sources) may flow to places where
it becomes publicly available information (i.e., sinks). This type of analysis applies to
Information Leakage class of vulnerabilities [195]. However, detecting these critical classes
of security vulnerabilities in modern programs is more challenging than ever before. This
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is because modern programs provide a different level of complexity. Thus, directly using
taint analysis with modern programs may not be effective.

The first challenge is that modern programs may integrate multiple sub-components of
different languages (i.e., polyglot software), such as using libraries that belong to different
programming languages, to keep up with the current technologies. Generally, software
that is using just one language is becoming much less common [140]. In practice, software
developers use different languages in one program to achieve specific ends. The reason is
that some languages are appropriate for one task but not another; hence using multiple
programming languages allows developers to use the right tool for the task. For instance,
an Android app is usually written in Java/Kotlin. However, if a component needs to be
performance efficient, C/C++ could be used. Also, developers may choose to use existent
libraries or open-source components written in different languages. This complexity may
lead to more vulnerable software, as data travels across languages, and possibly a problem
that may be scattered across these different languages gets unnoticed [44]. Usually, static
analysis methods look into one language at a time, creating the so-called blind spot.

Besides, in modern apps, such as Android apps, there are many API calls that read-
/write from/to shared resources, and the number of API calls increases over time. For
instance, in Android 4.2 Jelly Bean (API level 17), the number of sources is 18,044, and
the number of sinks is 8,278 as produced by SuSi [158]. While, in Android 10 (API level
29), the number of sources is 38,504, and the number of sinks is 8,704 as produced by
SuSi [158]. SuSi is a machine-learning tool to define an exhaustive predefined source/sink
pattern in Android directly from Android’s source code. It was stated that "no matter
how good the tool, it can only provide security guarantees if its list of sources and sinks is
complete" [158]. However, a complete list can be a burden on such in-depth taint analysis
tools. This means that a single program can have a large number of detected sources and
sinks. Then, every source and sink pair needs to be analyzed using the taint analysis,
making traditional taint analysis techniques deemed to be ineffective. A large number of
API calls could be even more problematic with large-scale software. For that reason, mul-
tiple taint analysis tools, such as LeakMiner [206], Amandroid[201], and DroidSafe [99],
limit the number of the predefined source/sink list to be examined. Other tools, such as
FlowDroid [52], IccTA [130], and DIALDroid [61], use some of the predefined source/sink
list identified by SuSi [158]

Considering the above challenges, we examine a static analysis methodology that aims
to run on large programs that may span multi-languages and can cover all the source/sink
APIs/patterns preidentified. The main goal is not to perform the taint analysis itself, but
rather to filter out all the source and sink pairs that are possibly not reachable, which
may help taint analysis tools run on all the possible risky pairs. This chapter investigates
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the usability of using the call graph to determine the reachability between sources and
sinks. Call graphs are universal among programming languages and can be inexpensively
acquired. The main idea of this methodology is first to reveal possible vulnerabilities that
span into multi-languages. It also reduces the search space and can help the code reviewers
focus on likely problematic issues, or it could also be used with static analysis tools as a
preprocessing phase to minimize the search space and help SAST tools to apply in-depth
analysis on the possibly reachable pairs.

The main contributions of this study are as follows:

• We highlight the necessity for a general methodology to quickly examine the reacha-
bility between all possible source and sink pairs, including pairs that cross-languages,

• We use the call graph construct to filter out the likely unreachable source and sink
pairs,

• We illustrate two approaches based on a call graph to measure the reachability,

• We implement SoS and evaluate the two described approaches.

5.2 Static Analysis Approach

The proposed static analysis approach is based on lexical analysis and the call graph
construct. The approach first uses lexical analysis to extract all the sources and the sinks
existing in the source code in different languages. If the number of sources or the number
of sinks is zero, the approach can safely conclude that there is no taint issue there; thus,
no further analysis is required. Otherwise, the approach then needs to filter the source and
sink pairs. To this end, the proposed static approach uses a call graph that spans multi-
languages to determine which pairs of sources and sinks can be reachable and eliminate all
the pairs that are likely not reachable by a feasible path.

The methodology first proposes a method to construct the Complete Call Graph (CCG)
for a program, which includes all call graphs of sub-component written in a different lan-
guage and the call graph of the cross-language communication. To determine the reach-
ability between sources and sinks in the CCG, we introduce two approaches. The first
approach investigates whether a source and sink pair belongs to one connected component
sub-graph in the undirected version of the call graph (the Undirected Complete Call Graph
(UCCG)), and if so, it measures the distance (i.e., call edges) between the source and the
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sink pair. The assumption here is that if the distance between the source and sink is small,
they are likely reachable; otherwise, the pair can be discarded from further analysis. The
second approach assumes that a source and sink pair are reachable if they have a common
ancestor, and this approach uses the CCG. To explain the methodology, we use the buffer
error problem that can be detected by taint analysis that occurs in the Android app as an
example of polyglot software. The next section explains the methodology in detail.

5.2.1 Definition of Sources and Sinks

Generally speaking, in the tainted data-flow analysis field, the source indicates where data
comes from, while the sink refers to where data ends. As mentioned in section 5.1, sources
and sinks differ based on the vulnerability type. For the IVR class of vulnerabilities, data
is tainted if it comes from an untrusted source, such as a file, socket, network, environment
variables, or end-user. Also, data that is altered by any tainted data is considered tainted.
In the tainted data-flow analysis, when tainted data travels to a vulnerable point in the
program, the so-called sink implies a potential problem. Nevertheless, the sink differs
based on the analysis problem. In the information leakage problem, a sink is sensitive data
that leaves the program. One example of the information leakage problem is log forging
vulnerability, where sensitive data is printed into a log file. In the SQL injection problem,
a sink is a sensitive function that executes SQL statements against a database, while in
the command injection problem, a sink is a statement that executes arbitrary commands.
In the buffer error problem, sinks are the program statements that might perform unsafe
buffer operations. Hence, it is essential to identify the specific vulnerability problem in
the context. In this chapter, the buffer error problem, a subclass of the IVR vulnerability
class, was chosen to describe the methodology. Hence, the definition of the sources and
the sinks are based on this specific problem. Besides, we select Android apps to represent
modern software that is composed of multi-languages. We only consider the communication
between C/C++ and Java in this approach.

Definition 1. (Sources): A set of program statements that accept untrusted data, such as
methods that read files or inputs from the user, are untrusted sources.

In the buffer error problem in Android apps, untrusted sources can belong to any
language. Hence, in Android apps, sources might belong to Java or C/C++. Hence,
there is a necessity for every programming language to identify all possible sources that
accept untrusted input. Many API calls receive untrusted input on the Android side,
such as sockets, files, and user input. As a result, manual identification of sources can be
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infeasible. Hence, we use SuSi [158] to extract all the possible sources in Java, which is
a practical best-effort solution that identifies sources to a large extent. All the methods
that are generated by SuSi and have return types as objects have been used. The number
of sources used from SuSi is 20,820 sources that belong to 5,903 classes. We manually
construct a list to define the sources that accept tainted data in C/C++ inspired by
the technical specification ISO/IEC TS 17961 [34] in traditional C/C++. The number
of sources that we compile is 149. For instance, the traditional C/C++ function read
attempts to read a number of bytes from the associated file descriptor.

Similarly, in the C/C++ Android context, we manually gather Android NDK API.
We retrieve the full list of the Android NDK API from the Android website [37]. The
constructing of the list is based on the methodology described in SuSi [158], such as APIs
that include the keyword get, read, and receive, which indicate a source. Also, we conduct
a manual investigation of the APIs, and we only include the API calls that refer to reading
from untrusted sources. The number of sources that we compile is 277. For instance, the
NDK C/C++ function AAudioStream_read attempt to read data from the audio stream.
Further identifying API calls that belong to third-party libraries or the new language
standard is desirable, but it is out of the scope of this study.

Definition 2. (Sinks): are a set of program statements where the actual problem takes
place.

In the buffer error context, sinks are the set of statements that perform read/write
operations on a buffer. In the buffer error problem, sinks only occur in the C/C++
language. From the literature, a read/write operation usually achieved through known
unsafe function, such as strcpy and memcpy. A buffer error can happen in an array or
pointer arithmetic while writing and reading within loops. When looking at C/C++ unsafe
standard libraries internally, one can see that they involve a loop and buffer read/write
operation with the lack of performing boundary checks. C/C++ are strictly performance-
oriented languages; hence boundary checking would be against the philosophy. Therefore,
it is up to the end developer to decide when a boundary check is necessary. In this chapter,
these program statements are called sinks. To define sinks in C/C++ language, we follow a
similar approach to defining C/C++ sources. We use a set of functions that perform unsafe
buffer operations that are well defined and discussed in the literature, such as memcpy,
strcpy, and strncpy. Another type of sink that we consider is when the read/write operation
of a buffer occurs within the loop, such as accessing an array or pointer arithmetic. For
example, the following code is a pattern that we are including in our analysis, which
includes accessing a buffer through pointer arithmetic:
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while(*src_ptr != ’\0’)
*dest_ptr++ = *src_ptr++;

*dest_ptr = ’\0’;

The number of sink APIs gathered is 88. However, in the future, a better approach is
desirable. Finally, all the lists of the sources and the sinks for each language are constructed
as XML files. This way, it can be more fixable to add more sources and sinks as discovered.
The full list of sources and sinks in Java and C/C++ can be found here [49].

5.2.2 Finding Sources and Sinks in Android Apps

Once all possible sources and sinks are defined, the lexical analysis could be performed to
find the sources and sinks in the source code. Lexical analysis is a lightweight analysis
method that can be very fast to extract tokens of interest in the source code. The intuition
here is that only software that has sources and sinks may be vulnerable. Then, if the
source code file has sinks or sources, the file parse tree is built to recognize which methods
encapsulate the sources and the sinks. In this study, the methods that are defined by the
software team that has a call to functions/APIs that read data from untrusted sources are
called enclosing source. The methods that are defined by the software team and comprise
potentially unsafe operations on a buffer, using functions/APIs calls or a pattern, are called
enclosing sink. The parsing phase gathers the related information of the sources and the
sinks, such as the line number, the parameters, and the enclosing method parameters.
If sources and sinks are being located, then more analysis is necessary. Otherwise, the
analysis can terminate with the conclusion that the software is safe.

5.2.3 Reachability Through Call Graph

The call graph is a valuable representation of the control flow information. A call graph is
a directed graph that depicts calling relationships between methods in a program source
code [166]. Each node depicts a method that may be internal methods implemented by
the software team or external methods that could be system and third-party library calls.
Each directed edge from method A to method B denotes one or more invocations from
method A to method B.

Definition 3. (Call Graph): A call graph is a directed graph G(V, E) with node set
V=V(G), representing the methods in the program, and edge set E=E(G), where E(G) ⊆
V (G)× V (G), representing the method calls.
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This chapter suggests using the call graph construct to infer the reachability between
sources and sinks. However, a fundamental question to ask is: can an analysis using the
call graph give useful results? Furthermore, how can we use such representation? Thus, we
introduce two approaches. Before describing the proposed approaches and the reasoning
behind them, lets first introduce some call graph constructs used in this chapter.

Definition 4. (Complete Call Graph): the Complete Call Graph (CCG) is a call graph
G(V, E) that connects two or more call graphs that might span multiple languages.

This graph connects multiple call graphs by understanding how different components
belong to various languages communicates. Section 5.2.4 explains how to construct such a
graph.

Definition 5. (Undirected Complete Call Graph): the Undirected Complete Call Graph
(UCCG) is derived from CCG, but it operates on the undirected edges.

One approach uses the UCCG construct to be applied to any program either with
one programming language or multi-languages to get useful results. The other approach
uses the CCG construct, and it is only applied to programs that include multi-languages.
Nevertheless, in this chapter, we describe the problem in the multi-language program
setting. Now let us explain the approaches and how do they use the above call graph
constructs.

5.2.3.1 Reachability Through UCCG

This approach can be applied to any program either with one programming language or
multi-languages. It uses the UCCG construct. The intuition behind using the call graph
with undirected edges is that a source and a sink are reachable if there is a path between
the source and the sink. To be more precise, a sink can be reachable by a source if there
are control and data-flow from the source to the sink. However, how can such information
be extracted from the regular call graph? The control flow information might be explicit
in such a graph. When method A calls method B in the call graph, a directed edge from A
to B represents the control flow information. Yet, how about the data-flow information?

The directed edges from the source to the sink can only provide control information
but not data-flow information. Figure 5.1 demonstrates the problem. Figure 5.1a shows
a simple call graph that includes five methods. In that graph, method A calls method B,
which reads input from an untrusted source. Method B then calls method C that calls
two methods: D and E. Method E includes a sink, which is a sensitive buffer operation.
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(a) Direct flow from source to sink (b) Indirect flow from source to sink

Figure 5.1: Source and sink in a call graph.

Hence, the directed edges can infer both the control and data-flow as it suggests that the
sink in E is possibly reachable from B that read an untrusted source. Thus, one can say
the control flow from method A to method B implies data-flow from method A to method
B.

When looking at Figure 5.1b, if such analysis based on the call graph construct starts
at the source, the directed edges tell us that there is no direct control flow from the source
to the sink; hence there is no perceived data-flow. However, this might not be accurate.
Assume that method A calls method B that reads an untrusted input. Then, method
B returns the data acquired from an untrusted source to A. Then, method A sends the
untrusted data to method C, which in turn, sends the untrusted input to method E with
a sensitive sink. Consequently, an edge between methods that include source and sink
despite its direction might refer to a possible issue. Therefore, we assume that the same
edge with both directions can represent possible data-flow since the called function can
return a value or manipulate a reference or field object rendering back data changes to the
caller.

Thus, this would assume that in the UCCG graph, a source and a sink are reachable
if they reside in the same connected component. However, this assumption has its issues.
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Lets first review the connected component definition:

Definition 6. (Connected Component): A connected component of an undirected graph G
is a sub-graph in which there exists a path between every pair of nodes.

For example, the graph shown in the Figure 5.2 has three connected component sub-
graphs. A node that has no incoming or outgoing edge is itself a component. The software
may include multiple connected components, and hence a pair of reachable source and
sink would be possible only if both the source and the sink belong to the same connected
components. Ideally, this may be adequate if the analyzed source code represents a library.
However, for software with a single entry point, there are usually large connected com-
ponent sub-graphs and source and sink pairs are likely to belong to the same connected
component sub-graph. Thus, the distance between the source and the sink can give a hint.
One can configure the static analysis tool to filter out the source and sink pairs that are
reachable by visiting a specific number of nodes (i.e., threshold), representing functions in
a call graph, as measured by the Breadth-First Search (BFS) or the Depth-First Search
(DFS) algorithms.

Figure 5.2: Connected component sub-graphs

5.2.3.2 Reachability Through CCG

This approach can be applied to the multi-languages programs or libraries, and it uses the
CCG construct. This approach suggests that a source and a sink are reachable if they have
a common ancestor in the CCG graph. This cannot be useful to single language programs
with a single entry point. Since all the functions, and hence all the sources and sinks will
have a common ancestor, the main method.
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Definition 7. (Lowest Common Ancestor): the lowest common ancestor of two nodes v and
w in directed acyclic graph (DAG) G is the lowest node with both v and w as descendants,
where each node is a descendant of itself.

The assumption here is that when both the source and the sink have a common ancestor,
this implies the sink can be reachable from the source. To clarify the approach, look at
Figure 5.1; in both direct flow between a source and a sink 5.1b and indirect flow between
the source and sink 5.1b, there is always a single common ancestor which is A. We adopt
the naïve lowest common ancestor [59] to determine if a source and a sink have a common
ancestor.

5.2.4 Constructing the CCG Graph

The CCG merges various call graphs that belong to different programming languages. In
this setting, a call graph for each sub-component in each language is formed. Then, the
cross call graph (x-call graph) is created, which a call graph that includes calls between
functions/methods belonging to different languages. The call graphs for different languages
can be constructed depending on existing tools. However, for the x-call graph, we provide
the approach that we follow to build it.

5.2.4.1 Constructing the X-Call Graph

Different programming languages communicate using a Foreign Function Interface (FFI).
Many programming languages have their own FFI. In Android apps, as an example that
we use in this study, data might travel from the Java side into the C/C++ side and vice
versa. This communication is accomplished using the Java Native Interface (JNI), the FFI
for Java programming language.

Inferring calls from Java to C/C++ In the Java language, any method that
has native modifier could eventually call C/C++ methods. In the C/C++ language and
more particularly in the JNI layer, there are two ways to tell if an invocation from Java
to C/C++ can happen. One way is by utilizing the naming convention used in the JNI
specification. For instance, a method called foo that belongs to MainActivity class which
belongs to example package on the Java side would be mapped into a C/C++ function
named Java_example_MainActivity_foo.

The second way is to dynamically register and map the Java method signatures to
the native functions. In this approach, a data structure called JNINativeMethod defines
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(a) JNINativeMethod struct in jni.h

(b) An example of dynamic registration

Figure 5.3: Dynamic function register resolution.

how Java methods are mapped into C/C++ methods. Figure 5.3a exhibits the JNINa-
tiveMethod structure that belongs to the JNI layer, where it includes the Java method
name, the method signature, and the corresponding native function pointer. Figure 5.3b
shows a code snippet that includes a definition of JNINativeMethod array jMethods to ini-
tiate a mapping for Java methods foo and bar. Also, the jMethods array defines the method
signatures in the format of (argument types)return type. Table 5.1 shows the Java type
resolution on the C/C++ side. When RegisterNatives() is invoked, it passes the jMethods
structure to be dynamically registered. Then, the dynamic registration function mapping
is accomplished by implementing the JNI_OnLoad() method. Function calls from C/C++
to Java can occur as well.

Inferring calls from C/C++ to Java C/C++ methods can invoke any Java
method, which does not have to include the native modifier on the Java side. As shown
in Figure 5.4, C/C++ calls Java method by preforming three steps: First the native code
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Table 5.1: Java types in the JNI layer

Java Type JNI Encoding
boolean Z
byte B
char C
short S
int I
long J
float F
double D
Java class LJava class;
type[] [type

tries to find the class, using class retrieving methods, such as FindClass, GetSuperclass or
GetObjectClass, that the method resides in the JNIEnv variable to search for class. Then,
it looks for the method in the given class using the method call. GetStaticMethodID or
GetMethodID. Finally, the actual call is conducted using one calling method, such as Call-
ByteMethod(). We use 90 methods in the JNI standard functions that call Java methods
from C/C++ to extract such cross-language information (see Appendix G). The functions’
parameters determine the Java called class, the method name, and the return type of
method parameters type. It is worth noting that sometimes a Java/Android method can
be deemed unreachable within Java/Android call graph; however, it can be called from the
C/C++ side.

The cross-link (xlink) information between the two languages is extracted using lexical
analysis and parsing. Once the xlink is recognized, all produced call graphs are merged
into one graph representing the CCG.

Figure 5.4: JNI call from C/C++ to Java
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5.3 Design

This section gives the design followed to build the Source Sink (SoS) tool. The tool’s
principal purpose is to extract sources and sinks, including cross-language communications,
to supply all possible reachable pairs of sources and sinks. The tool currently only handles
buffer errors, but users could extend the tool to cover other classes of problems solved by
taint analysis. Figure 5.5 illustrates the steps followed.

Figure 5.5: SoS design

1. The xlinks, sources, sinks finder, as exhibited in Figure 5.5, is a component that
performs two primary tasks. The first task is to perform a combination of parsing and
lexical analysis. Lexical analysis is a simple method to scan source files to produce a
series of tokens that compose the source files. It matches the given tokens against the
lists of tokens of interest (i.e., xlink, source, and sink related tokens). Accordingly,
this component reads all the source files that compose the program as an input.

The tool accepts lists of all the potential sources and sinks that belong to every lan-
guage in the analysis. These lists can be in the XML/JSON file format. In this study,
a separate list of sources and sinks for C/C++ and another list for Java/Android are
injected as inputs. Moreover, a separate list of xlinks for C/C++ and another list
for Java/Android are supplied as inputs. Note that methods that connect C/C++
and Java/Android could differ from the JNI API. Still, this was not considered in
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this study, yet the design of SoS is flexible. To incorporate other xlinks, sources, or
sinks methods/tokens, one can add all the API to XML/JSON files, which the tool
would recognize in such an analysis.

Once a token related to a source, sink, or xlink is found in a particular file, it parses
the source file. So, the function name that includes the token of interest is gathered
along with additional information. The information gathered by the parser com-
prises the source file path, the language, the line number, char position, the context
of the line of code, enclosing method signature, source, and sink method name. Note
that sometimes identifying a token needs a chain of statements to be resolved. This
is particularly true for xlink, such as resolving calls from C/C++ to Java. For in-
stance, when the analyzer finds the token CallVoidMethod in the following statement:
(env)->CallVoidMethod(env, cls, method, 1), it needs to resolve the class name and
the method name (See Figure 5.4 for more details). Hence, the analyzer keeps track
of all possible values of interest in a symbol table to fully resolve the call.

The other task is to obtain all the sinks in C/C++ that are not unsafe library calls but
rather follow a pattern, such as having read/write operations inside a loop. Finally,
this would produce a list of all found sources and sinks. If some sources and sinks
were discovered, the tool moves to the following steps; otherwise, it terminates.

2. The xlink matcher reads the list of found xlinks among languages and matches
functions that call each other. Then, when two methods that belong to two different
languages are found by SoS match, two nodes and an edge are written into the x-call
graph.

3. The call graph constructor generates a call graph for each programming language
for each module. For instance, a program can incorporate more than one C/C++
subprogram, and so for every C/C++ subprogram, a call graph is generated. Besides,
an Android call graph is generated. Every call graph would be produced as a separate
dot file.

4. The call graph integrator reads all the call graphs that were constructed for every
subprogram for each programming language and the x-call graph. It then merges
all the call graphs, including the x-call graph, to obtain the CCG that shows how
different languages are communicating.

5. The reachability filter traverses the UCCG and the CCG to determine the reach-
ability. It has two modes. One mode traverses the UCCG to examine whether the
source and sink pairs belong in the same connected component and separated by a

95



short distance based on both BFS and DFS. The UCCG graph is acquired by re-
moving the edge direction from the CCG. The second mode traverses a CCG to find
the least common ancestor of the source and the sink. Finally, it generates a file
containing a list of all possible reachable pairs of sources and sinks.

5.4 Implementation

We implement SoS in Java, and the files that describe all possible sources, sinks, xlinks
are processed as an XML format, and the output is generated as a JSON format. We
implement the lexical and parser elements using ANTLR version 4. ANTLR (ANother
Tool for Language Recognition) is a powerful parser generator that uses LL(*) for parsing.
The primary motivation for choosing the ANTLR parser generator is that it can parse
diverse languages. ANTLR reads grammar that specifies a language and creates source
code for a recognizer of that specific language that can build and walk parse trees.

The call graph generator has two options to build a call graph. The first method is
using the ANTLR parser, which is straightforward that could be extended to any other
language. The tool also accepts other means to generate a call graph using different tools
to produce a more precise call graph. For instance, we use the Soot framework [193] to
compose the Java call graph and FlowDroid [52] [129] to produce an accurate Android call
graph. In addition, we adopt the SeaDsa framework [101] to generate C/C++ call graph
that involves function pointers.

We process the call graphs using the JGraphT library, a graph library that includes
multigraph algorithms to process graphs, such as transforming a directed graph into an
undirected graph, finding the lowest common ancestor, and merging multiple graphs. For
instance, the UCCG graph is created by JGraphT by providing a call graph, and then it
would generate the undirected graph of it. JSON.simple and StaX were used to handle
the input and output files. JSON.simple is a simple Java library to process JSON data.
This library reads and writes JSON data following SON specification RFC4627. StaX
(Streaming API for XML) is an API interface for reading and writing XML data. SoS
data is available online [48].

5.5 Experiment Setup

We test SoS with five Android apps to examine the usability of the methodology. We
select the Android apps based on the following three criteria: 1- Open-source apps since
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Table 5.2: Tested Android apps versions

App Name Version
AdAway v4.3.2-15-g72e024b1
Orbot 16.1.2
Sipdroid 9067a3c
Signal v4.50.3
ProxyDroid fc94aec

Table 5.3: The line of code measure of different languages in the tested Android apps

LOC AdAway Orbot Sipdroid Signal ProxyDroid
C 116,236 116,648 24,738 0 29,057
C++ 0 0 3,367 32 1,540
C/C++ header 15,089 28,967 9,517 14 4,870
Java 24,684 46,533 25,125 157,778 17,663
Others 128,769 116,010 14,919 254,525 55,758
Total 284,778 308,158 77,666 412,349 108,888

the source code must be available to run the tool. 2- The size of the apps measured
in thousands of lines of code (KLOC) to verify whether the tool can analyze large-scale
software. 3- The apps incorporate both Java and C/C++ to check if the tool can determine
the cross-language communications. We could not study the apps listed in Chapter 4 since
most of the apps in that dataset are not fully open source. We choose the apps from a
list of free and open-source Android apps [9]. When we review the list [9] to gather the
apps that fulfill the above conditions, we find it challenging to obtain apps that meet all
of the three conditions. Every single app on that list was examined to see if it satisfies
the requirements, and thus only five apps were used. The apps are listed in Table 5.2.
Table 5.3 shows the lines of code (LOC) for each programming language of interest. We
use the cloc utility to measure the line of code metric.
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Table 5.4: Number of sources and sinks detected in Android apps

AdAway Orbot ProxyDroid Signal Sipdroid
source 862 1,495 326 8,926 1,142
sink 8,026 3,649 1,553 0 4,479
source/sink pairs 6,918,412 5,455,255 506,278 - 5,115,018
e-source 248 385 83 2,344 350
e-sink 494 241 196 - 239
e-source/e-sink pairs 122,512 92,785 16,268 - 83,650

5.6 Results and Discussion

5.6.1 RQ1: How many sources and sinks exist in the case study
apps?

Table 5.4 depicts the information assembled regarding the source and sink pairs that occur
in the apps. The source shows the number of methods/API calls that receive input from
untrusted sources in C/C++ and Java in this study. The sink displays the number of
sinks found in the app, and since this study focuses on buffer errors, the sinks would be in
the C/C++ language. The source/sink pairs presents the number of all potential source
and sink pairs; this was calculated by multiplying the number of sources by the number of
sinks, considering every source can be reaching every sink.

The e-source (enclosing source) shows the number of methods that enclose or invoke
methods that read sources from untrusted inputs. Similarly, the e-sink (enclosing sink)
displays the number of methods that enclose or invoke those methods or patterns that
can be sinks. The e-source/e-sink pairs exhibits the number of all possible paths from the
enclosing sources to reach the enclosing sinks.

The results designate that usually, there are a vast number of source and sink pairs on
average. For instance, the AdAway app comprises 862 occurrences of reading untrusted
sources included across 248 enclosing methods; and 8,026 possible unsafe buffer operations
across 494 enclosing methods. Thus, a taint analysis tool would have to perform 6,918,412
tainted tracing analysis to investigate whether data travels from every source to every sink.
This number hints that checking every pair can be time and space consuming. The Signal
app will be excluded from further analysis since it does not have sinks.
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Table 5.5: The number of connected components and associated nodes in the UCCG in
the tested Android apps.

App Name Number of CC Median Min Max Total Nodes
AdAway 77 1 1 5,555 6,336
Orbot 67 1 1 5,175 5,247
ProxyDroid 91 1 1 7,751 7,860
Sipdroid 158 1 1 2,039 2,409

Table 5.6: The shortest path and the degree of all the nodes in the UCCG in the tested
Android apps.

App Name Average Average Min Degree Max Degree
Shortest Path Node Degree

AdAway 4 5 0 869
Orbot 3 6 0 1,009
ProxyDroid 5 6 0 721
Sipdroid 4 5 0 869

5.6.2 RQ2: Is the UCCG representation useful to determine the
reachability between two nodes?

This RQ aims to study the UCCG graph characteristics and determine if it is useful to use
such representation. To get such an understanding, we ask two questions. The first question
is that to what extent call graphs consist of multiple connected components? If the graph
has multiple significant connected components, this means a source and sink might belong
to different connected components, and then it can be easily inferred that they are not
reachable. We mean by a significant connected component that the connected component
sub-graph has more than one node, since that a function/method that is not called and
does not call any other function/method is considered a connected component. The source
and sink pair that belongs to the same connected component is worth investigating. The
second question we ask is that for one connected component, what is the average shortest
path between two nodes (which may indicate the average shortest path between sources
and sink).

Table 5.5 shows the number of connected components in each tested app. The Num-
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ber of CC column shows the total number of connected component sub-graphs in the
UCCG. The Min column indicates the number of nodes (functions/methods) in the small-
est connected component sub-graph, while the Max column indicates the number of nodes
(functions/methods) in the largest connected component sub-graph. SoS calculates the
number of connected components in the UCCG using the BFS algorithm. The analysis
indicates that the majority of the connected components are composed of only one func-
tion/method. The results also suggest that even call graphs produced by compilers might
have many functions/methods that are not reachable or eliminated as dead codes. It may
represent noise if the tested source code is an executable app; however, it can be reasonable
if the examined source code represents a library. This means that inferring the reachability
using only the connected components may not be practical.

Column Average Shortest Path in Table 5.6 shows the average shortest path between
all the nodes in the CCG. It is clear that with the UCCG representation, when a source
and a sink belonging to the same connected component, it would likely be separated by
3-5 nodes. Hence, using the shortest path measure between a source and a sink can be
unuseful. The column Average Node Degree shows, on average, how many edges connected
to one node (i.e., function call in CCG), which shows that there are 5-6 edges on average
connected to one node. This means that a function/method has an average of 5-6 calls,
either incoming or outgoing. Therefore, we suggest considering the degree of the nodes to
filter out likely unreachable pairs. For that reason, we investigated using both the BFS
and DFS and having a threshold to filter out the results.

5.6.3 RQ3: Is the reachable number of source and sink pairs iden-
tified in the connected components using the UCCG signif-
icantly reduced?

In this study, only the sources and sinks separated by at most 30 (as threshold) nodes
(i.e., functions/methods) are considered. The distance between the sources and the sinks
is measured using BFS and DFS. The threshold is configurable. We randomly select 30
nodes as a threshold. This was inspired by the value of the average node degree (See Ta-
ble 5.6). However, further studies are desired to reveal the optimal threshold. Table 5.7,
displays the number of reachable sources and sinks that belong to the same connected com-
ponent when identified using the UCCG. The reachable source/sink pair displays how many
pairs of sources and sinks are reachable using the UCCG, while the reachable source/sink%
exhibits the percentage of reachable source and sink pairs compared to Table 5.4. The
reachable e-source/e-sink illustrates the number of the enclosing source and the enclos-
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ing sinks that are reachable, and finally, the reachable e-source/e-sink% illustrates the
reachability percentage between the enclosing source and the enclosing sink methods.

The outcomes in Table 5.7 demonstrate that reachable source and sink pairs designate
a small percentage of all possible source-sink pairs. For instance, the AdAway app encom-
passes 6,918,412 possible source and sink pairs scattered across 122,512 enclosing source
and sink methods. Nonetheless, the analysis insinuates that only 6,267 source and sink
pairs are possibly reachable, around 0.09% of all the possible pairs. Also, a similar pattern
applies to the other tested apps. The results signify that using a call graph-based method
can quickly filter out many pairs that are likely not reachable by a feasible path.

Table 5.7: Source and sink reachability in the UCCG graph

AdAway Orbot ProxyDroid Sipdroid
reachable source/sink pair 6,267 17,755 3,276 1,520
reachable source/sink % 0.09% 0.3% 0.6% 0.02%
reachable e-source/e-sink pair 127 111 96 21
reachable e-source/e-sink % 0.10% 0.11% 0.59% 0.02%

5.6.4 RQ4: Is the number of reachable source and sink pairs iden-
tified using the lowest common ancestor and the CCG sig-
nificantly reduced?

This RQ’s assumption is that source and sink pair are reachable if they have at least one
common ancestor. This RQ explores the usability of adopting the lowest common ancestor
in the CCG to decide the reachability. Table 5.8 exhibits the number of enclosing sources
and the enclosing sinks that have common ancestors. When looking at Table 5.7, AdAway
has 6,267 possibly reachable pairs, while in this approach, AdAway has 7,867 possibly
reachable pairs. However, both approaches show a promising reduction in the number of
pairs that may have feasible paths. In both approaches, we might have false negatives,
meaning pairs that are reachable but are not deemed as reachable by this approach. It is
hard to do such analysis since we do not have a ground truth about all the reachable pairs.

Also, the frequency where there is a direct call from the source to the sink has been
calculated. To do so, we used the Dijkstra Shortest Path algorithm to measure the distance
between the source to the sink. If there is a distance found, this refers to a direct call.
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Table 5.8: Source and sink reachability via the lowest common ancestor

AdAway Orbot ProxyDroid Sipdroid
reachable source/sink pair 7,867 238,455 4,551 106,796
reachable source/sink % 0.11% 4.3% 0.8% 2.08 %
reachable e-source/e-sink pair 197 202 111 38
reachable e-source/e-sink % 0.16% 0.21% 0.68% 0.04%

Table 5.9 reveals that among all the possibly reachable pairs, how many of them include a
direct call from the source to the sink and how many of them include indirect call. Direct
call shows the number of pairs that have a direct flow, as shown in Figure 5.1a. Indirect
call shows the number of pairs that have an indirect flow, as shown in Figure 5.1b. The
results refer to the fact that indirect calls can be more common.

Table 5.9: Direct call and indirect call between sources and sinks

App Name Total Direct Call Indirect Call
AdAway 7,867 2,378 5,489
Orbot 238,455 80,098 158,357
ProxyDroid 4,551 2,974 1,577
Sipdroid 106,796 7,692 99,104

5.6.5 RQ5: How efficient is SoS is in terms of the running time?

In this RQ, we evaluate the performance of SoS in terms of the running time. SoS first
performs a pattern matching for every single source code file. When a token or a pattern
is found, the tool builds a parsing tree for the source code file to extract information, such
as line number, line context, char position, enclosing method name, enclosing parameter,
API call, the associated parameters. All the detected sources and sinks, xlinks along with
the details are written into JSON files. Then, SoS builds a call graph for every language
and attaches all the call graphs based on the detected cross-language links. All the call
graphs are written separately into .dot files. It also traverses the UCCG/CCG graph to
determine the reachability between sources and sinks, and finally, it writes the reachable
pairs into a JSON file. We run SoS ten times for each app, and the average time was

102



calculated to measure the performance. The time was calculated using the time command.
Table 5.10 shows the running times for every tested project, as it is apparent that running
time correlates with the KLOC. Note that our measured running time is coarse since the
running time includes other tasks, such as parsing XML/JSON files and logging the results
to files that were not excluded from the time measurement. We notice that creating a call
graph for C/C++ takes a long time.

Table 5.10: SoS running time in seconds

App Name Running Time Standard Deviation
AdAway 312 sec 14.17
Orbot 474 sec 18.84
ProxyDroid 294 sec 11.56
Sipdroid 353 sec 14.05

5.7 Threats to Validity

Despite the best efforts carried in this study to decrease the impact of threats to validity,
there are still inherent threats that need to be discussed. One potential threat to exter-
nal validity is that the sample size of the Android apps is small. We only evaluate five
Android apps, and one of them does not have sinks; consequently, it was excluded from
further analysis. Additionally, the Sipdroid app is essentially a prototype and implements
primary functionalities so that other complete apps can be built on top of it. Sipdroid
is a free and open-source Session Initiation Protocol (SIP) app for Android, which has
been considered the default Android SIP client by some vendors [31]. Sipdroid allows
users to initiate free phone calls and provides multiple features, such as exchanging SMS
messages and videos. Therefore, this small number of Android apps does not represent a
statistically significant sample, which hints that the results may not be generalized to all
Android apps. Nevertheless, due to the availability constraints of Android apps that are
available and open-source and have both C/C++ and Java code, it has only been possible
to consider this small number of Android apps. However, the selected apps have a range
of different domains and real-world Android apps with reasonable and different sizes; and
they are not tailored for the experiments. The results may also not be generalized to other
applications other than Android apps, and applications written in languages other than
Java and C/C++.
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A threat to internal validity is related to the fact that the built call graphs maybe
not accurately reflect the relationship between methods, hence the results may include
false positives and false negatives. To mitigate this threat, state-of-the-art static analysis
tools and methods that construct call graphs were used. For instance, on the Android
Java side, FlowDroid has been used along with Spark to build a call graph for Android
Java code. FlowDroid precisely models the Android components’ lifecycle and callbacks.
FlowDroid provides the Soot Pointer Analysis Research Kit (SPARK) to generate a call
graph. However, there is a limitation of using FlowDroid, which is that FlowDroid does
not fully support implicit or indirect control flow, such as intents or reflection. On the
C/C++ side, the SeaDsa framework [101] that is based on the Data Structure Analysis
(DSA) algorithm, has been adopted to construct a call graph that handles indirect calls
via a function pointer. Moreover, some scenarios are not fully supported, such as multi-
threading. Thus, further work and analysis are desirable.

5.8 Conclusion

This chapter introduced a general methodology to provide the source and sink pairs that are
possibly reachable in polyglot programs using call graphs. We suggest two approaches to
determine the reachability between sources and sinks. One approach applies the concept of
the connected component using the UCCG graph, and the other approach utilizes the least
common ancestor concept in the CCG graph. The methodology infers that using call graphs
to determine the possibly reachable source and sink pairs can be beneficial, as it could
decrease the number of all possible pairs dramatically, which helps to promptly render the
results. SoS can be adopted by code reviewers to manually investigate possible reachable
pairs. It also could be used by other static analysis tools, as described in Chapter 6 to
apply more in-depth analysis techniques. We test the proposed methodology with Android
apps, yet it could be used with different software and can catch vulnerabilities dispersed
across multiple programming languages.
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Chapter 6

BEFinder: Buffer Errors Finder for
Modern Software

Buffer errors are still among the most frequent and dangerous types of exploitable vulner-
abilities nowadays, despite all the efforts made during the past 30 years of studying and
introducing solutions to solve such a problem. The technological advancement and software
shifting make finding this type of vulnerability trickier in modern apps, such as Android
apps, as discussed in Chapter 5. In this chapter, a methodology is introduced to meet the
needs of modern software analysis. The introduced methodology is based on the reduced
set of sources and sinks provided by SoS. This chapter aims to propose a methodology
that performs taint analysis to examine the reachability between sources and sinks and
looks for “sanitizer” or “validator” that validates the untrusted input. We implement the
described methodology in a tool called Buffer Error Finder (BEFinder) and test it with
Android apps.

6.1 Introduction

Buffer errors are among the dominant types of software security errors throughout history[36].
They continue to be the most frequent type of vulnerabilities in modern software, such as
Android apps [45] [46]. Using static analysis security testing (SAST) tools helps proactively
detect and eliminate buffer errors during the coding phase. However, the studied state-of-
the-art SAST tools for buffer errors cannot effectively detect real-world vulnerabilities in
modern apps, such as Android apps [45]. As discussed in Chapter 4, one of the reasons is
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that buffer errors detected in real-world Android apps are complex, but naïve SAST tools
that perform lightweight analysis could not detect such type of issue [45]. Furthermore,
more advanced state-of-the-art SAST tools that perform in-depth static analysis cannot
analyze C/C++ code in Android apps because either the tools work with specific compilers
or the tools do not scale well [45]. Besides, Android apps that include C/C++ code are
likely to have Java/Kotlin code. However, SAST analysis tools that analyze buffer errors in
C/C++ do not consider data that can cross from a different language in such analysis [45].
When looking at buffer errors in the wild, we find that the majority of the buffer errors
accept input from untrusted sources [44]. Static taint analysis may be effective in detect-
ing such a pattern of vulnerability. Thus, the buffer error detection problem is modeled
as a reachability problem between the source (i.e., tainted input, including cross-language
communications) and sink (i.e., buffer read/write operations). The analysis then examines
the code to see whether the untrusted source has been validated before reaching the sink.
Every sink type is associated with a set of constraints that need to be validated by the
programmer. The methodology operates on the reduced source and sink pairs given by
SoS. In this way, only sinks that can be possibly reachable by tainted input are considered
for such analysis. This way, the methodology can work with software with multi-entry
points; it can also consider data cross the Foreign Function Interface (FFI).

The proposed methodology is context, path, point-to, -sensitive and performs an inter-
procedural analysis. The approach is based on the concept of the Value Flow Graph
(VFG) [178] that captures data dependencies in the source code, which we build on top
of the Sparse Value Flow Graph (SVFG) [181]. This method is used to examine the
reachability between sources and sink using a fine-grain representation of the source code.
In a nutshell, the analysis starts at a source and sink pair that are reachable at the call
graph level. The analysis then starts at the sink and propagate the analysis in a bottom-up
fashion to look for “sanitizer” or “validator” points. Recall that in real-world buffer errors in
Android apps, there is a lack of validation, meaning that the developer uses the untrusted
data without validating the data, such as data size fits the allocated buffer. The validator
is examined using a simple constraint-based analysis, which is performed to ensure the
buffer operation safety. The analysis can be terminated at any time once the analysis
found that the buffer is well managed, such that the developers ensure the safety of the
buffer operation using a validator. A tool called BEFinder is implemented and tested to
evaluate the methodology.

The contributions of this chapter are as follows:

• We model buffer errors as reachability problem between source and sink,
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• We describe a taint analysis methodology that scales well and captures data and
control dependencies using the SVFG,

• We propose solving buffer errors problem using a simple constraint-based approach,

• We implement BEFinder that works with any C/C++ source code, including Android
apps.

The next section discusses the methodology we follow to detect buffer errors and build
BEFinder in detail.

6.2 A Motivating Example

Figure 6.1 represents a toy example that shows a possible buffer over-write vulnerability
that could be triggered by attackers. On the Java side, the function decodeData reads
tainted data and the associated size from a file, and passes them as arguments to C++
code. The function Java_com_example_Decoder_decodeData is a function in C++ code
that is called from Java code. This function gets input and size parameters that are
tainted from the file. The function then passes those tainted parameters to processData
function along with the calculated length of input (line 10). The processData function
examines and compares size with length (line 14), if the tainted size value is greater than
the input length, size value will be adjusted to be equal to input length (line 15). This
way, the programmer ensures that size argument represents the length of input, since the
size is tainted and may not represent the real size. The intent of the programmer is that
s/he want to ensure that no more than the actual length of the input buffer will be read,
hence preventing buffer over-read. Then, input and size are sent to the function copyData.
Function copyData then allocates buffer (line 20) and copies the tainted data into buffer
using memcpy function (line 21).

The memcpy ( void * destination, const void * source, size_t num ) is a standard
library function that copies a number of num bytes from the location pointed to by source
to the buffer pointed to by destination.

In this example, two possible dangerous cases were neglected. (1) size can exceed the
BUFFER_LEN. Hence, buffer over-write can occur as the destination size may be less
than the copied data. (2) size can be less than zero. This is particularly important since
the data and the size arguments are tainted. In line 14, the check statement ensures that
the size does not exceed the length of the input. If the size exceeds the length, the size will
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be adjusted to be equal to the length. This way, memory over-read would be prevented.
However, this can happen when the size, which is tainted value, is a negative number, and
hence this would pass the check in (line 14).

Figure 6.1: An example of possible buffer over-write

6.3 Problem Statement

Definition 8. Consider a program P that includes the following statement types: a source
statement that accepts input from an untrusted source, and a sink statement that performs
buffer read/write operation. A source-sink reachability problem for buffer error is the prob-
lem of checking that a value accepted at the source will flow into at least a sink without
being validated properly.

In this analysis framework, source statements can be any statement that reads tainted
data, such as reading files, sockets, or other languages. While the sink statements read-
/write data, such as standard library calls (e.g., memcpy and strcpy) or through accessing
containers (e.g., array and struct). The analysis examines if the buffer operation at the
sink statement does not trigger buffer error that leads to vulnerability. To decide if the
sink triggers a buffer error, one needs to answer the following question: does the program
include a path on which data flows from the source to the sink without going through a
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proper validation statement? A validation statement is a statement that validates if the
input buffer is valid to perform safe buffer operation (e.g., valid as the size is appropriate).

The validation statement’s goal is to ensure the safety of buffer operations since C/C++
lets the programmer manages the buffer operations. Nevertheless, every sink type might
need a different type of validation. For instance, to access an array safely, the index should
be less than the buffer size and more than or equal zero. While for standard library function
call like strcpy, the programmer needs to validate that the destination size is large enough
to contain the source data, including the terminating NULL character. The analysis model
ensures that all the paths between a source and a sink are safe. If there is one path that
is not safe, the analysis might conclude the presence of a vulnerability.

6.4 Analysis Framework Overview

Since the buffer error problem is reduced to the source-sink reachability problem, we adopt
a demand-driven approach. A demand-driven analysis is used to minimize the number
of analysis operations as much as possible to fit a larger program. In the demand-driven
analysis for buffer errors, only a set of constraints of interest are investigated as to whether
buffer access is safe. The analysis is conducted in a bottom-up fashion, where it starts at
the sink statement and performs backward slicing for all the variables of interest in that
statement. Once a validation statement is found that influences the sink statement, the
analysis checks whether the validation statement ensures the safety of the buffer operation.
The examination of validation statements is based on a set of constraints (Section 6.4.2
includes more details about the constraints). This way, the analysis can be halted if the
developers control the buffer read/write operation (i.e., sink statement). Once that the
paths from source to the sink are safe, the analysis concludes the safety of the operation;
otherwise, it reports a problem or identifies the possible outcome of the buffer operations
as unknown (when the required analysis is beyond the framework capabilities).

This chapter’s static analysis approach uses the Intermediate Representation (IR) of
the LLVM framework to perform the analysis. The IR is a low-level representation of a
source code produced by compilers or virtual machines for optimization and translation
purposes. The IR was chosen because it is independent of any programming language and
can perform a static analysis that can be extended across different languages. Also, the
IR of LLVM was used since it has many analysis capabilities. For instance, it encapsulates
control and data dependence, which supports efficient and precise data-flow analysis. This
section provides in-depth details about the analysis approach and the reasoning behind the
chosen method.
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6.4.1 Data and Control Dependencies

Data-flow analysis is required to trace a set of variables included in a sink statement.
Data-flow analysis is an approach to collect information about the possible set of values
of variables calculated at several points in a program [115] [148]. The classical data-flow
approach captures information flows between different variables via propagating data-flow
facts, which are the general properties of data at a program point, using the control-flow
graph (CFG) [42]. This is conducted via a dense analysis where information is gathered
at every program point, even if program points are irrelevant. However, because in buffer
errors, there is only a subset of program statements is of interest, this methodology is
inefficient, specifically when it comes to larger programs. One property of the IR of a
program is the single static assignment (SSA) [165] [74], which encapsulates data-flow
dependencies in such a way that facilitates fast and precise data-flow analysis. This makes
detecting buffer errors to be more efficient compared to the classical data-flow analysis
approach.

In the SSA form, the data-flow information is gathered using a sparse representation of
the program (i.e., def-use and us-def chains [179]). In this sparse representation, data-flow
information is captured directly from definition statements to uses. That is because data-
flow information is associated with variable names, instead of storing a vector of data-flow
facts for all variables for every program point. In the SSA form, every variable has a unique
assignment (i.e., definition). In this way, variables are split into versions and every new
assignment of variable results in a new version. The variable versions are referred to by the
original name with a subscript that is a sequential number (see Figure 6.2). Therefore, the
SSA form satisfies the dominance property where the variable definition dominates each
use of a variable. In this way, each use of a variable version could be linked back to a
unique definition.

In the SSA form, multiple control-flow paths can merge into a join node in the CFG.
In consequence, different definitions of the same variable may reach the join node. The
phi function (φ) merges different values of the same variable from different incoming paths
of control flow. To illustrate this, consider the code example and its corresponding CFG
in Figure 6.2a and Figure 6.2b. There is only one definition of x, while there are three
definitions of y. Two definitions of y in each branch at BB2 and BB3, and one definition
of y at the control flow merging point at BB4. The merging point (i.e., phi function) is a
point of a program where there are two possible values of y depending on the result of the
if conditional statement.

A use-def chain is a link from a variable use site to a variable definition site [179].
In contrast, a def-use chain is a link from a variable definition site to a use site for that
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(a) Source code (b) SSA in CFG (c) Use-def chain

Figure 6.2: A toy example of a source code and the associated SSA form in CFG and the
use-def links

variable. A definition site for a variable is a statement that assigns to the variable other
variables. A use site is an operand of a statement. A use-def chain can be constructed
between the use of a variable and a definition of the variable. For a use site, there is only
one definition site that can be linked to. For instance, in Figure 6.2c both use sites of x1
in [if x1 > 10 ] and [y2= x1 +3 ] are linked to one definition site which is [ x1= source()].
Hence, data dependencies are the incoming operands of the instruction.

Control dependencies are the control predicates that need to be satisfied for a statement
to be executed. We are only interested in control dependencies related to the value of
interest, which can then be captured from the use-def chain. To clarify this, lets first
review how the program is represented in the IR form. A program consists of a set of
function definitions, and each function includes a set of basic blocks. A basic block is a
sequence of instructions that ends with a terminator instruction that explicitly indicates the
successor basic blocks (i.e., basic block to be executed after the current block is finished),
such as a branch or function return instructions. The terminator instructions sometimes
are associated with control predicates that indicate conditional expressions that alter the
control flow. For instance, in Figure 6.2c, the control predicate [if x1 > 10 ] controls the
value of [y3 ].
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6.4.2 Safety Constraints

For every type of sink that may lead to buffer errors, there is a set of constraints to be
examined that ensure the safety of a buffer operation. The analysis includes a simple
constraint framework that contains the following elements:

6.4.2.1 Sink Set

Sink set is a finite set of sink types that may include potentially buffer read/write oper-
ations. For instance, copying data using standard library calls or directly assigning data
via pointers arithmetic or array subscript within loops. Table 6.1 includes some examples
of this component in column Sink Type. The full list of the safety constraints is given in
Appendix H.

Generally, the sinks in this analysis are classified into three main categories as fallow:

• String operation function call

1. String copy function call (e.g., strcpy, strlcpy)

2. String concatenation function call (e.g., strcat, wcsncat)

3. Formatted string output function call (e.g., sprintf, snprintf)

4. Formatted string input function call (e.g., scanf, swscanf)

• Memory operation function call (e.g., memcpy, memmove)

• Container operation: write or read to/from a container, such as an array or struct.

Every sink type includes a number of Variables, which is a finite set of variables related
to every sink where queries are initiated. This includes all the variables that need to be
traced in such a sink statement. For instance, in void * memcpy ( void * destination, const
void * source, size_t num ), the variables that need to be traced are: destination, source,
and num. Notice that the analysis distinguishes between two types of variables: a buffer
and a number. In this example destination and source represent a buffer, while num is a
number. The buffer type includes the number type, representing the buffer size and the
buffer length that were traced and captured as well.
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6.4.2.2 Constraints Set

This is a finite set of constraints for every sink. This includes the constraints that need
to be checked to ensure the buffer operations safety. In Table 6.1, the Constrain column
includes some examples. For instance, the analysis needs to know if the accessed index
is between [0, size-1] for array access. Here is the set of the constraints implemented in
BEFinder.

• NULL checking: because the analysis focuses on tainted data, tainted data can
be anything, including NULL. So, when a program tries to copy tainted data that is
NULL, a segmentation fault error can happen that might lead to a program crash.
Hence, a constraint that checks against NULL looks for control predicates that check
against NULL with the related data dependencies.

• String source length compared to sink allocation size: some function calls
that perform string operations, such as strcpy, copy the source string into the sink
buffer without doing any validation within the function or specifying the number of
bytes to be copied from the source. Hence, the programmer needs to validate that
the sink buffer ( i.e., Size(sink)) can accommodate the source string by checking the
length of the source string ( i.e., Len(source)).

• Length compared to sink allocation size: this constraint applies to both string
operations and memory operations function calls. Length here refers to the parameter
given in a function call that specifies the number of bytes copied from the source
buffer to the sink buffer. For example, memcpy has a parameter that represents
the Length. If the length exceeds the sink allocation size, a buffer over-write occurs.
To ensure that this constraint applies, the constraints solver checks to see if this
argument is a constant; note that this constraint can be solved quickly because of
the constant propagation optimization used in this analysis. If the Length is constant,
the comparison can be done quickly by comparing it to the Size(sink). If the length is
a variable, then a validation point needs to be present. A validation point is a control
predicate that influences both the execution and the values of the sink statement.

• Length compared to source allocation size: this constraint similar to the con-
straint Length compared to sink allocation size. However, when this violation hap-
pens, a buffer over-read occurs. Instead of comparing Length to the sink size, this
constraint compare Length to the source size (i.e., Size(source)).
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• Length compared to source length: Sometime a source can actually have a length
(i.e., Len(source)). In this case, reading more than the supplied buffer’s length can
lead to a buffer over-read. Hence, this constraint checks to see if there is a validation
point where the length is compared to the source length is adequate.

• Source length and sink length compared to sink allocation size: this con-
straint applies to string concatenation function calls, such as strcat, that concatenate
the source string with the sink string. In the string concatenation function calls, the
sink buffer allocation size Size(sink) should be larger than the source string length
and destination string length combined.

• Length and sink length compared to sink allocation size: this constraint
applies to string concatenation functions, such as strncat that provides the number
of bytes to be copied. Similar to the above constraint, but this constraint checks the
provided length rather than source length.

• Length is positive: if the Length argument is a variable based on tainted data.
A possible error is that this variable might be less than zero, and hence a buffer
error can happen. This is particularly true if the length has int type, and sometimes
integer overflow in this argument can lead to buffer error.

• Index within bound: this constraint is associated with container operation, such
as reading/writing from/to arrays. The index should be within the lower bound (zero
in arrays) and the upper bound (the size of the buffer minus one in arrays) to have
safe access to the buffer container.

• Format argument is not tainted: this constraint applies to format string function
calls. Format string function calls provide a format string argument that instructs
to read/write from/to memory. However, if this argument is tainted, it is possible
that an arbitrary memory read or write can occur.

• Format specifier number matches the number of provided arguments: this
constraint applies to format string function calls. The number of specifiers provided
in the format argument should match the provided arguments. For instance, printf
("The value of n: %d, and its address: %p", n);, this function has two specifiers %d
and %p , but only one argument is provided which is n. Hence, buffer over-read may
happen as printf() will read data from the stack that do not belong to the function
call.
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• Format buffer size is controlled: this constraint applies to format string function
calls. Some format string functions provide a parameter to control the number of
bytes to be read or written, and other format string functions do not, but control
the number of byte through the width field specifies. In either case, this constraint
checks whether the function provides a size that does not exceed the buffer size.

• String is NULL terminated: this constraint ensures that tainted strings are NULL
terminated.

6.4.2.3 Constraints Solver

The constraint solver is a custom solver to evaluate the buffer operations against the
constraints. The constraints solver first provides a mapping between the set of sinks to the
set of constraints. For every type of sink, there is a set of constraints. Different types of
sinks might share some constraints. The solver depends on the sliced information to check
if the constraint is met. The constraint solver looks for missing checks, yet, it does not
solve the issue if there is a check but was wrongly performed, such that the buffer size was
mistakenly miscalculated, which requires a more advanced solver. In this implementation,
when the solver checks the constraint n < Len(s), it examines the control predicts to see if
one operand congruent to n and the other operand congruent to Len(s). This relationship
can be linear or nonlinear. The analysis concludes that the buffer operation is safe if it
meets the given constraints. Once constraint violations are detected, the solver would
report a potential memory error. If the analysis could not gather enough information to
conclude whether Safe or Unsafe, the analysis would be resolved into Unknown.

6.4.3 The Demand-Driven Analysis Algorithm

The approach starts the analysis by performing slicing at the sink statement based on
the SVFG. Program slicing is a technique for tracing only relevant statements of a pro-
gram [202]. This method traces a set of statements that may directly or indirectly influence
a value at a point of interest, referred to as a slicing criterion. A slicing criterion is a pair
<s, V>, where s is a program statement, and V is a subset of program variables. In
the motivating example shown in Figure 6.1, memcpy (buffer, data, size ); is the program
statement, while buffer, data, and size are a set of variables that need to be traced to solve
the buffer error problem. The goal of performing such slicing is to inquire about the safety
constraints at the sink that are propagated bottom-up along with the control flow.
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Table 6.1: Buffer errors safety constraints examples

Sink Type Variables Constraints
memcpy(d, s, n) d, s, n n < (Size(s) & (Size(d))

n < (Len(s))
n >= 0
d != NULL
s != NULL

strcpy(d, s) d, s Size(d) > Len(s)
d != NULL
s != NULL

array[i] i 0 <= i < Size(array)

The analysis starts by analyzing the source and sink pair given in the JSON file. The
main goal is to extract all the sources that can be reaching a specific sink. This way, the
analysis would analyze a sink once, and it examines multiple sources at once. For example,
a sink can be reachable by 16 sources, but the sink needs to be sliced only once. Once a
slice is created, the analysis determines if any given sources appear in such a slice. If a
source happens to be not in the slice, the source is discarded. If there are absolutely no
sources that can reach the sink, the sink is discarded, and the next sink is examined. Only
sinks that are reachable by at least one source are analyzed. The JSON file provides the
flowing: the source enclosing function name, which is the function that the source resides
in, the source function name, which is the function call that accepts input from untrusted
sources, the line number and the character position that the source call belongs to. Similar
information is provided for the sinks.

The analysis first extracts the IR instructions and the basic block associated with the
source and the other with the sink. Then, the analysis extracts a slice that starts at the
sink and goes all the way up to the source; the analysis reason if the source belongs to
such a slice. Once a reachable pair is identified, the analysis solves the constraints. To
do so, the initial basic block that is passed to be analyzed first is the one that has a sink
and moves bottom-up to evaluate the control predicates using given constraints at each
basic block. However, if the constraints could not confirm the buffer operation’s safety, the
analysis continues to perform inter-procedural analysis, analyzing data across functions.

The inter-procedural analysis is performed as follows: once a call site is detected in a
basic block by the analyzer, the query is propagated to the called function; this happens
only if the called function is related to the query, which is known from the slice. A work-
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list is used for both processed functions and basic blocks. This helps to handle recursion
for processed functions and loop for processed basic blocks. While propagating the query
against constraints, the relevant information is collected, such as the allocated buffer’s size
or if there is any buffer length calculation to resolve the query. Meanwhile, the query is
propagated to all predecessors of the analyzed basic block once the validation is not found.
Finally, the analysis terminates when all constraints have been met, or the analysis reaches
the source of untrusted input that could be exploited.

When such information is retrieved and a violation is found, the analysis can be halted
with unsafe buffer operation outcomes. This design was used since, upon observation,
developers usually validate the read/write buffer operations before the read/write buffer
operations occur. Hence, the bottom-up analysis and examining validation statements
along the path can find any violation and terminate the constraint solving quickly as the
desired information is likely to be gathered soon. The slicing can ensure that this unsafe
operation is affected by untrusted input (i.e., taint analysis). The analysis can run in
parallel to solve every query independently.

6.5 Implementation

We implement BEFinder to conduct static analysis using a combination of techniques.
It was implemented in C++ using the LLVM framework version 8. BEFinder reads a
JSON file that includes a set of sources and sinks to be tested. The sources and sinks
include information such as the enclosing method names and the line number. Then the
analysis starts at the sinks applying the algorithms and techniques discussed in this chapter.
BEFinder builds the SVFG based on the SVFG by the SVF framework and the def-use
chins by the LLVM. This provides a scalable and precise value-flow construction, including
point-to analysis in inter-procedural fashion for C/C++ programs. Finally, the warnings
are written into a JSON file, including the results that could be safe, unsafe, or unknown.
A safe outcome indicates that no violation is detected, and the buffer operation is likely to
be safe. Unsafe means there is at least one volition that was found. An unknown outcome
refers to the fact that more complex analysis needs to be conducted to make a concrete
conclusion. BEFinder data is available online [47].
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6.6 Experiment Setup

To evaluate BEFinder, we run it on the set of Android apps that were discussed in the
previous chapter (See Section 5.5 for more details). We test four Android apps: AdAway,
Orbot, ProxyDroid, and Sipdroid. The goal here is to check if the tool can find buffer
error vulnerabilities. The projects’ sizes are ranging from 35 KLOC to 145 KLOC. The
analysis was conducted on a MacBook Pro with a 2.2 GHz Intel Core i7 processor and 16
GB of memory. Every project includes a potential unsafe source-sink pair JSON file and
the compiled C++/C code into LLVM IR, BEFinder examines every pair and produces
the results into a JSON file. Once the pair were found to include a potential vulnerability,
a warning is generated. Table 6.2 presents the tested apps in this experiment.

Table 6.2: Tested Android apps

App Name Version KLOC
AdAway v4.3.2-15-g72e024b1 131K
Orbot 16.1.2 145K
Sipdroid 9067a3c 37K
ProxyDroid fc94aec 35K

6.7 Result and Discussion

The evaluation of the methodology and BEFinder consists of reachability analysis accuracy
between sources and sinks and buffer error detection rate. The first assessment aims
to validate whether using the SVFG can help spot the reachable source and sink. We
conduct the experiment by running BEFinder without solving any constraint, but only to
determine the reachability. Then, we randomly select instances and manually inspect them
to determine the correctness of the report.

6.7.1 Reachability Analysis

To evaluate the reachability between sources and sinks, we randomly select and manually
inspect 20 source and sink pairs of each Android app that are flagged as reachable. The
inspection involves studying each pair to ensure that a data accepted at the source travels
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to the sink. For every source, the tainted argument or the tainted return value were traced
through the source code. If there is an executable path from the source statement to the
sink statement and the tainted data that was accepted at the source statement propagated
to the sink statement, then this means that the untrusted source is truly reachable to the
sink. Finding the executable path between the source and the sink is simple when the
source and the sink belong to the same function.

Similarly, checking the tainted data propagation from the source to the sink is straight-
forward when the source and the sink belong to the same function. The manual inspection
takes more time and effort when the source and the sink belong to different functions or
source code files. In this case, we investigate the full call graph that was generated by SoS
to draw a partial call graph using grep, cat, awk and other Unix text pattern scanning
tools to comprehend the inter-procedural relations between the functions in question. We
then inspect the source code files to find an executable path from the source to the sink
and track the tainted data propagation status to all the locations where the data is used.
Tainted data may propagate directly or indirectly to the sink. Direct propagation occurs
when the tainted data copied as is to the sink, while indirect propagation happens when
the tainted data becomes a part of another variable or object that travels to the sink.

The analysis results presented in Table 6.3 demonstrates the reachability analysis preci-
sion when tracing value flow using the SVFG. Pair column shows the number of pairs that
needed to be sliced. Note that each pair includes more than one slice criteria; for instance,
the standard function callmemcpy includes three slices, as discussed earlier. Tested column
shows the number of pairs that have been found and located in the code. This happens
because the initial pairs were acquired using an external parser with SoS using the source
code, but in BEFinder, the analyzed code is the intermediate representation. Sometimes,
the LLVM omits some function calls for optimization purposes. Reachable column presents
the number of pairs that analysis renders as reachable in the SVFG. TP column shows the
number of instances that are true positive, meaning that they are reachable. On the other
hand, FP column shows the number of false positive instances, meaning that they were
wrongly tagged as reachable since, after examining the instance, they were found that they
are not reachable. Finally, the Precision column demonstrates the percentage of relevant
reachability results. The precision is measured as the number of true positive results in
the total number of warnings.

Reachability analysis results show that the precision is at least 65%. It was noticed
through the manual inspection is that the precision increases when the function body is
smaller and less complex. The main reason we have such precision is the used point-to
analysis algorithm, Andersen’s points-to analysis that only provides may-point-to informa-
tion.
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Table 6.3: Reachability analysis using the SVFG

App Name Pairs Tested Reachable Examined TP FP Precision
AdAway 7,867 7,414 3,114 20 13 7 65%
Orbot 238,455 28,258 13,419 20 16 4 80%
ProxyDroid 4,551 4,397 2,042 20 20 0 100%
Sipdroid 2189 1,965 1,223 20 15 5 75%

For instance, in most of the cases of the false positive, the source and the sink are
accessing the same memory location; however, it does refer to the fact that data flow from
the source to the sink. To overcome such a problem, one should adopt a more precise point-
to analysis. However, a more precise point-to analysis may not scale well. Nevertheless,
the results are promising in applying such an approach with other similar problems, such
as information leak or SQL injections [180]. It is worth noting that the results may have
false negative as renderings such pairs are not reachable, but in fact, they are reachable.
However, this needs a complete ground truth that we do not have.

6.7.2 Buffer Errors Detection

The second part of the analysis evaluates BEFinder detection rate of buffer errors. We
conduct the experiment by running BEFinder and then evaluating all the Unsafe warnings
by manually inspecting each warning. The manual inspection involves reachability analysis
described in Section 6.7.1, and examines the generated constraint violations reported in the
warning. For a particular violation, we perform a manual review to check if the violation
leads to vulnerability, and the results are sound. This process involves comprehending the
surrounding source code. To inspect the violation, we start the analysis at the sink, and
all the program statements are examined until reaching the source to look for validation
points. This is done in intra-procedural and inter-procedural fashion, depending on the
source and sink pair if they are located in the same function or not.

Table 6.4 illustrates the results. Reachable column refers to the total number of reach-
able pairs determined by the first experiment. Unknown column shows the number of
pairs that the analysis cannot determine whether it is safe or unsafe; hence more analysis
capabilities are needed to resolve those pairs. While Safe column refers to the number
of source and sink pairs that are safe, meaning that the data that travel from the source
to the sink has been validated well. On the other hand, Unsafe column shows a lack of
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validation between the source and sink. Then, TP column, Likely TP column, FP column,
and Precision column are all related to the Unsafe column.

Table 6.4: Buffer error detection rate by BEFinder

App Name Reachable Unknown Safe Unsafe TP Likely TP FP Precision
AdAway 3,114 768 2,316 30 17 8 5 83%
Orbot 13,419 4,012 9,286 93 - 93 0 100%
ProxyDroid 2,042 190 1,840 12 10 - 2 83%
Sipdroid 1,223 530 693 0 - - - -

The TP column shows the vulnerabilities that have CVE-ID, patched by the devel-
opers, or we could implement exploits to trigger the flaw. The Likely TP column shows
the warnings that we inspect manually, and from the manual review, we find a possible
execution path that can trigger the issue. Also, the issue was reported to the developers
but not confirmed yet. The precision is measured as the number of true positive warnings
that genuinely show the problem’s presence to the total number of warnings. The analy-
sis results indicate that precision is 84% or higher. This percentage was observed in the
ProxyDroid project. Also, it was observed that the false positives are because the app uses
wrapper functions to perform the validation without using the standard libraries, and here
where the analysis fails. Missing functions that allocate buffer or measure the buffer length
can lead to imprecise results. Thus, to further enhance the results, a helper tool might be
needed, such as a tool that understands these function signatures.

Two generated warnings were detected in the past by independent individuals, and they
have CVE-ID. For instance, the CVE-2016-10195 and CVE-2016-10196 are all previously
discovered vulnerabilities in the libevent library that is integrated with ProxyDroid app
are flagged by BEFinder. Figure 6.3 shows the CVE-2016-10195 vulnerability that occurs
when copying data using memcpy function, which indicates that the developer did not
validate whether the length of label_len given does not exceed the source buffer packet+j,
which may lead to a buffer over-read. BEFinder associates six constraints with memcpy
(See Table 6.1). Yet, BEFinder reported one violation, which is n >(Len(s). The recall
indicates the percentage of total relevant results correctly flagged by the analysis algorithm.
Since we do not have a ground truth about all the possible vulnerabilities in such apps,
we cannot measure the recall. In this experiment BEFinder was not compared with other
tools that detect buffer errors for the main reason, which is that BEFinder looks at the
cross-language communications where there is no open-source tool that does that (See
Chapter 4).
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Figure 6.3: Code snippet shows CVE-2016-10195

6.8 Conclusion

In this chapter, we introduce a demand-driven analysis method for buffer error detection
in modern software. This technique’s main goal is to analyze C/C++ code and understand
communication with Java to reveal buffer errors in Android apps. We evaluate BEFinder,
and the results demonstrate that the method is useful for buffer error detection in Android
apps with a false positive rate of around 16%. In addition to the buffer errors, the analysis
can be applied to detect other critical vulnerabilities related to the reachability problem,
such as the IVR class of vulnerability. Nevertheless, some enhancements can be done to
improve the tool performance to reduce the false positive rate of the reachability analysis
by adopting a better point-to analysis and reducing the false positive rate of the generated
warnings by adopting a more advanced constraints solver.
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Chapter 7

Conclusion

SAST tools are one of the most effective ways to deal with software vulnerabilities. SAST
tools help programmers discover software vulnerabilities during the coding phase, and
hence, such an issue can be eliminated from the code, preventing any further damages. For
that reason, studying static analysis tools and methods has been an important direction
of research in cybersecurity. Nevertheless, the technologies’ progression yields a shift in
software, which contributed to rising software vulnerabilities. However, it is not known
whether SAST tools are adapting to such changes. Hence, this thesis takes a step in the
direction of identifying the features needed in the SAST to be able to address software
vulnerabilities in modern software. The thesis depends on the empirical evidence acquired
through research to perceive how state-of-the-art SAST tools operate on real-world projects
and how software vulnerabilities manifest in the real world. We find that buffer errors that
belong to the IVR class of vulnerability dominate modern software. We then introduce
two methodologies and proof-of-concept tools that give some directions on how to detect
the most significant issues in software vulnerabilities: buffer errors. The next section
summarizes the insights of his thesis.

7.1 Summary and Contributions

In Chapter 3, we conduct an empirical study to investigate the precision of the state-of-
the-art SAST tools. The research assumption is that the lines of code that indeed include
software defects, as of the outcome of SAST tools, have been noticed and fixed by the
project team. The empirical study aims to determine the SAST tools’ precision using the
warnings’ observations over time.
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More specifically, the contributions of our study are as follows:

• We first examine the distribution of the different types of SAST-produced warnings
through time.

• We investigate the number of the warnings remain over time based on the warning
type.

• We study the decay rate for warnings belonging to different categories and produced
by various SAST tools.

• We adopt the cregit+, a novel tool for version control tracking to measure warning
evolving.

• Finally, we investigate the distribution of real-world vulnerability categories removed
by the project team in the studied projects to measure our results consistency.

In Chapter 4, we carry out another empirical study to look at SAST tools from another
perspective. In this study, we start the investigation from real-world vulnerabilities that
occur in Android apps, as one example of modern software that has been discovered by
individuals and reported to vulnerabilities databases. The main goal is to measure the
recall of SAST tools when they work with modern software.

The contributions of this study are as follows:

• We first measure the frequency of the software vulnerabilities in Android apps, and
we determine the most dominant type of vulnerabilities in such apps as buffer errors.

• We evaluate the state-of-the-art SAST tools to detect buffer errors regarding the
real-world vulnerabilities happening in Android apps.

• We describe the characteristic of buffer error vulnerabilities observed in Android
apps.

• We describe the required features of such SAST to detect such a pattern of vulnera-
bility.

In Chapter 5, we propose a general methodology that can help static taint analysis tools.
This methodology tackles two aspects of the complexity of modern software. One aspect
is that one vulnerability can be scattered across different languages in a single program,
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making the analysis harder to achieve as it involves multi-languages understanding and
a larger code. The second aspect is that the number of sources and sinks is significant
and increasing over time, which can be challenging for taint analysis to cover such a large
number of sources and sinks. Hence, we introduce SoS that filters out the source and sink
pairs that likely do not have feasible paths.

The main contributions of this study are as follows:

• We highlight the necessity for a general methodology to quickly examine the reacha-
bility between all possible source and sink pairs, including pairs that cross-languages,

• we use the call graph construct to filter out the likely unreachable source and sink
pairs,

• We illustrate two approaches based on a call graph to measure the reachability,

• We implement SoS and evaluate the two described approaches.

Chapter 6 focuses on discovering buffer errors that occur in modern software. The
method performs taint analysis to examine the reachability between sources and sinks and
look for “sanitizer” or “validator” that validates the untrusted input. We implement a static
analysis security testing tool called BEFinder to carry out such analysis.

The contributions of this study are as follows:

• We model buffer errors as reachability problem between source and sink,

• We propose a slicing methodology that scales well and captures data and control
dependencies precisely using SVFG,

• We solve the buffer errors problem using a simple constraint-based approach,

• We implement BEFinder that works with any C/C++ programs, including Android
apps.

7.2 Future Work

The research findings discussed in this thesis offers a basis for future work. This section
describes several potential research directions that involve studying both empirical and
theoretical approaches.
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7.2.1 Recall and Precision of SAST Tools

This thesis emphasizes the significance of studying real-world software and vulnerabilities
outside any controlled environment to investigate SAST tools’ performance in terms of
recall and precision. The empirical evidence designates that we can use SAST tools as a
quality measure. Since this is a significant indication, more empirical studies are needed;
this may also refer to the fact that perceived false positive warnings might not necessarily
be false positives. Hence, more empirical studies need to be conducted in this aspect to
gain such understanding. Furthermore, understanding the false negatives by SAST tools is
an important research direction that needs to be frequently investigated on a larger scale
to define more limitations and continue improving existing tools.

7.2.2 SAST Approaches

This thesis finds that the IVR types of security vulnerabilities are common in modern
software. Existing taint analysis tools improve the inference algorithms that infer taint in-
formation. However, a significant challenge we find is an inherited problem of the growing
software that needs to be addressed before applying the taint analysis method: the expo-
nentially growing number of sources and sinks in software. We describe some approaches
that can be expanded to multiple-language software to cover the cross-language communi-
cations and many source and sink pairs. This is the first research study that describes the
problem and provides heuristic approaches to the best of our knowledge. Further studies of
the call graph properties may help build a more robust approach, avoid false positives and
negatives. This can be acquired by studying call graph properties to extract facts about
how data-flow information usually travels among functions/methods.

In terms of the buffer error detection, our study shows promising results for the de-
scribed approaches. However, our practical experience with the SAST tools highlights
another aspect of the problem and open more research questions. For instance, what are
the practical approaches to validate the generated warnings? Should this be up to the
developers to decide? The developers may have a various understanding of how vulnera-
bilities occur, and one security vulnerability may not be obvious for some developers. Since
buffer errors happen under the umbrella of IVR, we need to think of other techniques that
may be used to validate the SAST warnings—for example, integrating dynamic and fuzzing
methods to validate the produced warnings. Fuzzing methods can be used to inject differ-
ent inputs, and once the program execution reaches the vulnerable point, dynamic analysis
can test the concrete values against the safety constraints.
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Appendix A

Buffer error attribute examples in the
source code

Table A.1: Write/read attribute adopted from [120]

Illegal Operation Example
write buffer[7] = ’X’
read a = buffer[7]
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Table A.2: Container and pointer attributes adopted from [120]

Container Example
array char buffer[5][7];
pointer char *p or (*p)[10];
struct typedef struct {

char *p;
} buf_struct;

union union typedef union {
char buffer[7];
int val;
} buf_union;

class class buf_class {
int *p;
.....
}

array of blocks (class, union, or
struct)

buf_union array_buffer[7];

pointer of blocks (class, union, or
struct)

buf_struct *p_buffer;

struct and class include pointers, while union include array

Table A.3: Data type attribute adopted from [120]

Data Type Example
void void * p;
boolean bool buffer[7];
character char buffer[7];
wide character wchar_t buffer[7];
integer int buffer[7];
floating point float buffer[7];
double double buffer[7];
pointer char * buffer[7];

the bit width of each data type is matter in some situations, also it could be platform-dependent.
Also, some data types could has data modifier, such as signed, unsigned, short, and long.
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Table A.4: Magnitude attribute adopted from [120]

Magnitude Example
1 byte buffer[10] = ‘A‘;
8 bytes buffer[17] = ‘A‘;
4096 bytes buffer[4105] = ‘A‘;

Table A.5: Length/limit complexity attribute adopted from [120]

Container Example
constant strncpy(buffer, src, 10)
variable strncpy(buffer, src, i)
linear expression strncpy(buffer, src, 5*i + 2)
non-linear expression strncpy(buffer, src, i%3)
function return value strncpy(buffer, src, getSize())
array contents strncpy(buffer, src, array[i])

Table A.6: Upper/lower bound attribute adopted from [120]

Bound Example
upper buffer[7]
lower buffer[-1]

Buffer offset should be always: lower <= offset <= upper

Table A.7: Index complexity attribute adopted from [120]

Index Complexity Example
constant buffer[7]
variable buffer[i]
linear expression buffer[2*i + 3]
non-linear expression buffer[i%5] or buffer[i*i]
function return value buffer[strlen(str)]
array contents buffer[array[i]]
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Table A.8: Address complexity attribute adopted from [120]

Address Complexity Example
constant - buffer[x]

- (buffer+2)[x]
- (0x80097E34)[x]
- *(p+2)
- strcpy(buffer+2, src)

variable - (buffer+i)[x]
- (bufAddrVar)[x]
- *(p+i)
- strcpy(buffer+i, src)

linear expression - (buffer+(5*i + 2))[x]
- *(p+(5*i + 2))
- strcpy(buffer+(5*i + 2), src)

non-linear expression - (buffer+(i%3))[x]
- *(p+(i*i))
- strcpy(buffer+(i%3), src)

function return value - (buffer+f())[x]
- (getBufAddr())[x]
- *(p+f())
- *(getBufPtr())
- strcpy(buffer+f(), src)
- strcpy(getBufAddr(), src)

array contents - (buffer+array[i])[x]
- (array[i])[x]
- *(p+ array[i])
- strcpy(buffer+ array[i], src)
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Table A.9: Alias of buffer address attribute adopted from [120]

Container Example
one alias char buffer[7];

char * alias_one;
alias_one = buffer;
alias_one[7] = ‘A‘;

two aliases char buffer[7];
char * alias_one;
char * alias_two;
alias_one = buffer;
alias_two = alias_one;
alias_two[7] = ‘A‘;

Table A.10: Alias of buffer index attribute adopted from [120]

Container Example
one alias int i, j;

i = 7; j = i;
buffer[j] = ‘A‘;

two aliases int i, j, k;
i = 7; j = i; k = j;
buffer[k] = ‘A‘;

Table A.11: Continuous/discrete attribute adopted from [120]

Continuous/Discrete Example
discrete buffer[7] = ‘A‘;
continuous for (i=0; i<8; i++) {

buffer[i] = ‘A‘; }

Table A.12: Signed/unsigned mismatch attribute adopted from [120]

Mismatch Example
no memcpy(buffer, src, 8);
yes signed int size = 6-sizeof(buffer);

memcpy(buffer, src, size);
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Table A.13: Loop complexity attribute adopted from [120]

Loop Complexity Example
none for (i=0; i<8; i++) {

buffer[i] = ‘A‘; }
one init = 0;

for (i=init; i<8; i++) {
buffer[i] = ‘A‘; }

two init = 0;
test = 8;
for (i=init; i<test; i++) {
buffer[i] = ‘A’; }

three init = 0;
test = 8;
inc = k – 7;
for (i=init; i <test; i += inc) {
buffer[i] = ‘A‘; }

Table A.14: Taint attribute adopted from [120]

Taint type Example
argc/argv using values from argv
environment variables getenv
file read (or stdin) fgets, fread, read
socket/service recv
process environment getcwd

Table A.15: Memory location attribute adopted from [120]

Data Location Example
Stack void fun (){ int buffer[7] ;}
Heap p=(int*)calloc(n, sizeof(int));
Data static char buffer[7] = "0123456";
BSS static char buffer[7];
Shared memory any buffer located inside shared

memory
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Appendix B

Seven pernicious kingdom taxonomy of
security warnings

B.1 Input Validation and Representation (IVR)

• Buffer Overflow

• Command Injection

• Cross-Site Scripting

• Format String

• HTTP Response Splitting

• Illegal Pointer Value

• Integer Overflow

• Log Forging

• Path Manipulation

• Process Control

• Resource Injection

• Setting Manipulation

• SQL Injection

• String Termination Error Handling
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• Unsafe JNI

• XML Validation

B.2 Improper Fulfillment of API Contract, or API Abuse
(API)

• Dangerous Function

• Directory Restriction

• Heap Inspection

• Often Misused: Authentication

• Often Misused: Exception Handling

• Often Misused: File System

• Often Misused: Privilege Management

• Often Misused: Strings

• Unchecked Return Value

B.3 Security Features (SF)

• Insecure Randomness

• Least Privilege Violation

• Missing Access Control

• Password Management

• Password Management: Empty Password in Config File

• Password Management: Hard-Coded Password

• Password Management: Password in Config File

• Password Management: Weak Cryptography

• Privacy Violation
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B.4 Time and State (TS)

• Deadlock

• Failure to Begin a New Session upon Authentication

• File Access Race Condition: TOCTOU

• Insecure Temporary File

• Signal Handling Race Conditions

B.5 Error Handling (ERR)

• Empty Catch Block, Language-Independent

• Overly-Broad Catch Block

• Overly-Broad Throws Declaration

B.6 Indicator of Poor Code Quality (CQ)

• Double Free

• Inconsistent Implementations

• Memory Leak

• Null Dereference

• Obsolete

• Undefined Behavior

• Uninitialized Variable

• Unreleased Resource

• Use After Free
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B.7 Insufficient Encapsulation (ENC)

• Data Leaking Between Users

• Leftover Debug Code

• Mobile Code: Non-Final Public Field

• Private Array-Typed Field Returned From a Public Method

• Public Data Assigned to Private Array-Typed Field

• System Information Leak

• Trust Boundary Violation

B.8 Environment (ENV)

• Insecure Compiler Optimization

• Insecure Configuration Management
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Appendix C

Bug warning distribution in 2012 and
2017 among SAST tools
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(a) Bug warning categories
in RATS at 2012

(b) Bug warning categories in
RATS at 2017

(c) Bug warning categories in
Flawfinder at 2012

(d) Bug warning categories in
Flawfinder at 2017

(e) Bug warning categories in
Cppcheck at 2012

(f) Bug warning categories in
Cppcheck at 2017

Figure C.1: Box-and-whisker plot and Scott-Knott ESD of the number of bugs detected
by RATS, Flawfinder, and Cppcheck. In this figure, the y-axis represents normalized

number of bug(bugs/LOC), and the x-axis represents different classes of SPK bugs. Each
data point represents a project.
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(a) Bug warning categories in
Clang Static Analyzer at 2012

(b) Bug warning categories in
Clang Static Analyzer at 2017

(c) Bug warning categories in
PVS-Studio at 2012

(d) Bug warning categories in
PVS-Studio at 2017

(e) Bug warning categories in
Parasoft C/C++test at 2012

(f) Bug warning categories in
Parasoft C/C++test at 2017

Figure C.2: Box-and-whisker plot and Scott-Knott ESD of the number of bugs detected
by Clang Static Analyzer, PVS-Studio, and Parasoft C/C++test. In this figure, the
y-axis represents normalized number of bug(bugs/LOC), and the x-axis represents

different classes of SPK bugs. Each data point represents a project.
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Appendix D

Bug warning distribution in 2012 and
2017 among SPK categories
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(a) IVR warnings among SAST
tools in 2012

(b) IVR warnings among SAST
tools in 2017

(c) API warnings among SAST
tools in 2012

(d) API warnings among SAST
tools in 2017

(e) SF warnings among SAST
tools in 2012

(f) SF warnings among SAST
tools in 2017

(g) TS warnings among SAST
tools in 2012

(h) TS warnings among SAST
tools in 2017

Figure D.1: Box-and-whisker plot and Scott-Knott ESD of the number of bugs classified
as Input Validation and Representation (IVR), API Abuse (API), Security Feature (SF),

and Time and State (TS). In this figure, the y-axis represents normalized number of
bug(bugs/LOC), and the x-axis represents different SAST tools. Each data point

represents a project.
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(a) CQ warnings among SAST tools
in 2012

(b) CQ warnings among SAST tools
in 2017

(c) ERR warnings among SAST tools
in 2012

(d) ERR warnings among SAST tools
in 2017

(e) ENC warnings among SAST tools
in 2012

(f) ENC warnings among SAST tools
in 2017

(g) ENV warnings among SAST tools
in 2012

(h) ENV warnings among SAST tools
in 2017

Figure D.2: Box-and-whisker plot and Scott-Knott ESD of the number of bugs classified
as Code Quality (CQ), Errors (ERR), Encapsulation (ENC), and Environment (ENV). In
this figure, the y-axis represents normalized number of bug(bugs/LOC), and the x-axis

represents different SAST tools. Each data point represents a project.
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Appendix E

Bug warning rates among SAST tools
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(a) Remained Warnings in
RATS

(b) Modified Warnings in
RATS

(c) Disappeared Warnings in
RATS

(d) Remained Warningsin
Flawfinder

(e) Modified Warnings in
Flawfinder

(f) Disappeared Warnings in
Flawfinder

(g) Remained Warnings in
Cppcheck

(h) Modified Warnings in
Cppcheck

(i) Disappeared Warnings in
Cppcheck

Figure E.1: Box-and-whisker plot and Scott-Knott ESD of the Remained Warnings (FP),
Modified Warnings and Disappeared Warnings (TP) among different bug categories by
RATS, Flawfinder, Cppcheck. In this figure, the y-axis represents normalized number of
bug(bugs/LOC), and the x-axis represents different classes of SPK bugs. Each data point

represents a project.
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(a) Remained Warnings in
Clang Static Analyzer

(b) Modified Warnings in
Clang Static Analyzer

(c) Disappeared Warnings in
Clang Static Analyzer

(d) Remained Warnings in
PVS-Studio

(e) Modified Warnings in
PVS-Studio

(f) Disappeared Warnings in
PVS-Studio

(g) Remained Warnings in
Parasoft C/C++test

(h) Modified Warnings in
Parasoft C/C++test

(i) Disappeared Warnings in
Parasoft C/C++test

Figure E.2: Box-and-whisker plot and Scott-Knott ESD of the Remained Warnings (FP),
Modified Warnings and Disappeared Warnings (TP) among different bug categories by
Clang Static Analyzer, PVS-Studio, and Parasoft C/C++test. In this figure, the y-axis
represents normalized number of bug(bugs/LOC), and the x-axis represents different

classes of SPK bugs. Each data point represents a project.
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Appendix F

Bug warning rates among SPK
categories
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(a) Remained Warnings
among IVR

(b) Modified Warnings
among IVR

(c) Disappeared Warnings
among IVR

(d) Remained Warnings
among API

(e) Modified Warnings
among API

(f) Disappeared Warnings
among API

(g) Remained Warnings
among SF

(h) Modified Warnings
among SF

(i) Disappeared Warnings among
SF

(j) Remained Warnings
among TS

(k) Modified Warnings
among TS

(l) Disappeared Warnings
among TS

Figure F.1: Box-and-whisker plot and Scott-Knott ESD of the Remained Warnings (FP),
Modified Warnings and Disappeared Warnings (TP) among different bug categories

among Input Validation and Representation (IVR), API Abuse (API), Security Features
(SF), and Time and State (TS). In this figure, the y-axis represents normalized number
of bug(bugs/LOC), and the x-axis represents different SAST tools. Each data point

represents a project.
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(a) Remained Warnings
among CQ

(b) Modified Warnings
among CQ

(c) Disappeared Warnings
among CQ

(d) Remained Warnings
among ERR

(e) Modified Warnings
among ERR

(f) Disappeared Warnings
among ERR

(g) Remained Warnings
among ENC

(h) Modified Warnings
among ENC

(i) Disappeared Warnings
among ENC

(j) Remained Warnings
among ENV

(k) Modified Warnings
among ENV

(l) Disappeared Warnings
among ENV

Figure F.2: Box-and-whisker plot and Scott-Knott ESD of tthe Remained Warnings
(FP), Modified Warnings and Disappeared Warnings (TP) among different bug categories

among Code Quality (CQ), Errors (ERR), Encapsulation (ENC), and Environment
(ENV). In this figure, the y-axis represents normalized number of bug(bugs/LOC), and

the x-axis represents different SAST tools. Each data point represents a project.
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Appendix G

Cross-link (xlink) functions in JNI

CallStaticObjectMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticObjectMethodV (JNIEnv*, jclass, jmethodID, va_list)
CallStaticObjectMethodA (JNIEnv*, jclass, jmethodID, jvalue*)
CallStaticBooleanMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticBooleanMethodV (JNIEnv*, jclass, jmethodID, va_list)
CallStaticBooleanMethodA (JNIEnv*, jclass, jmethodID, jvalue*)
CallStaticByteMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticByteMethodV (JNIEnv*, jclass, jmethodID, va_list)
CallStaticByteMethodA (JNIEnv*, jclass, jmethodID, jvalue*)
CallStaticCharMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticCharMethodV (JNIEnv*, jclass, jmethodID, va_list)
CallStaticCharMethodA (JNIEnv*, jclass, jmethodID, jvalue*)
CallStaticShortMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticShortMethodV (JNIEnv*, jclass, jmethodID, va_list)
CallStaticShortMethodA (JNIEnv*, jclass, jmethodID, jvalue*)
CallStaticIntMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticIntMethodV (JNIEnv*, jclass, jmethodID, va_list)
CallStaticIntMethodA (JNIEnv*, jclass, jmethodID, jvalue*)
CallStaticLongMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticLongMethodV (JNIEnv*, jclass, jmethodID, va_list)
CallStaticLongMethodA (JNIEnv*, jclass, jmethodID, jvalue*)
CallStaticFloatMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticFloatMethodV (JNIEnv*, jclass, jmethodID, va_list)
CallStaticFloatMethodA (JNIEnv*, jclass, jmethodID, jvalue*)
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CallStaticDoubleMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticDoubleMethodV(JNIEnv*, jclass, jmethodID, va_list)
CallStaticDoubleMethodA(JNIEnv*, jclass, jmethodID, jvalue*)
CallStaticVoidMethod (JNIEnv*, jclass, jmethodID, ...)
CallStaticVoidMethodV (JNIEnv*, jclass, jmethodID, va_list)
CallStaticVoidMethodA (JNIEnv*, jclass, jmethodID, jvalue*)
CallObjectMethod (JNIEnv*, jobject, jmethodID, ...)
CallObjectMethodV(JNIEnv*, jobject, jmethodID, va_list)
CallObjectMethodA(JNIEnv*, jobject, jmethodID, jvalue*)
CallBooleanMethod(JNIEnv*, jobject, jmethodID, ...)
CallBooleanMethodV (JNIEnv*, jobject, jmethodID, va_list)
CallBooleanMethodA (JNIEnv*, jobject, jmethodID, jvalue*)
CallByteMethod (JNIEnv*, jobject, jmethodID, ...)
CallByteMethodV (JNIEnv*, jobject, jmethodID, va_list)
CallByteMethodA (JNIEnv*, jobject, jmethodID, jvalue*)
CallCharMethod (JNIEnv*, jobject, jmethodID, ...)
CallCharMethodV (JNIEnv*, jobject, jmethodID, va_list)
CallCharMethodA (JNIEnv*, jobject, jmethodID, jvalue*)
CallShortMethod (JNIEnv*, jobject, jmethodID, ...)
CallShortMethodV (JNIEnv*, jobject, jmethodID, va_list)
CallShortMethodA (JNIEnv*, jobject, jmethodID, jvalue*)
CallIntMethod (JNIEnv*, jobject, jmethodID, ...)
CallIntMethodV (JNIEnv*, jobject, jmethodID, va_list)
CallIntMethodA (JNIEnv*, jobject, jmethodID, jvalue*)
CallLongMethod (JNIEnv*, jobject, jmethodID, ...)
CallLongMethodV (JNIEnv*, jobject, jmethodID, va_list)
CallLongMethodA (JNIEnv*, jobject, jmethodID, jvalue*)
CallFloatMethod (JNIEnv*, jobject, jmethodID, ...)
CallFloatMethodV (JNIEnv*, jobject, jmethodID, va_list)
CallFloatMethodA (JNIEnv*, jobject, jmethodID, jvalue*)
CallDoubleMethod (JNIEnv*, jobject, jmethodID, ...)
CallDoubleMethodV(JNIEnv*, jobject, jmethodID, va_list)
CallDoubleMethodA(JNIEnv*, jobject, jmethodID, jvalue*)
CallVoidMethod (JNIEnv*, jobject, jmethodID, ...)
CallVoidMethodV (JNIEnv*, jobject, jmethodID, va_list)
CallVoidMethodA (JNIEnv*, jobject, jmethodID, jvalue*)
CallNonvirtualObjectMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
CallNonvirtualObjectMethodV (JNIEnv*, jobject, jclass, jmethodID, va_list)
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CallNonvirtualObjectMethodA (JNIEnv*, jobject, jclass, jmethodID, jvalue*)
CallNonvirtualBooleanMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
CallNonvirtualBooleanMethodV (JNIEnv*, jobject, jclass, jmethodID, va_list)
CallNonvirtualBooleanMethodA (JNIEnv*, jobject, jclass, jmethodID, jvalue*)
CallNonvirtualByteMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
CallNonvirtualByteMethodV (JNIEnv*, jobject, jclass, jmethodID, va_list)
CallNonvirtualByteMethodA (JNIEnv*, jobject, jclass, jmethodID, jvalue*)
CallNonvirtualCharMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
CallNonvirtualCharMethodV (JNIEnv*, jobject, jclass, jmethodID, va_list)
CallNonvirtualCharMethodA (JNIEnv*, jobject, jclass, jmethodID, jvalue*)
CallNonvirtualShortMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
CallNonvirtualShortMethodV (JNIEnv*, jobject, jclass, jmethodID, va_list)
CallNonvirtualShortMethodA (JNIEnv*, jobject, jclass, jmethodID, jvalue*)
CallNonvirtualIntMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
CallNonvirtualIntMethodV (JNIEnv*, jobject, jclass, jmethodID, va_list)
CallNonvirtualIntMethodA (JNIEnv*, jobject, jclass, jmethodID, jvalue*)
CallNonvirtualLongMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
CallNonvirtualLongMethodV (JNIEnv*, jobject, jclass, jmethodID, va_list)
CallNonvirtualLongMethodA (JNIEnv*, jobject, jclass, jmethodID, jvalue*)
CallNonvirtualFloatMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
CallNonvirtualFloatMethodV (JNIEnv*, jobject, jclass, jmethodID, va_list)
CallNonvirtualFloatMethodA (JNIEnv*, jobject, jclass, jmethodID, jvalue*)
CallNonvirtualDoubleMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
CallNonvirtualDoubleMethodV (JNIEnv*, jobject, jclass, jmethodID, va_list)
CallNonvirtualDoubleMethodA (JNIEnv*, jobject, jclass, jmethodID, jvalue*)
CallNonvirtualVoidMethod (JNIEnv*, jobject, jclass, jmethodID, ...)
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Appendix H

Safety constraints

H.1 Constraint

Table H.1: Safety constraints implemented in BEFinder

Constraint # Constraint description
1 SourceLen_Lt_SinkAllocSize
2 Len_Le_SinkAllocSize
3 Len_Le_SourceAllocSize
4 Len_Ge_Zero
5 SourceString_Is_NullTerminated
6 Source_Is_NullChecked
7 Sink_Is_NullChecked
8 FormatArg_Is_Constant
9 FormatSpecifiersNumber_Match_VarArg
10 FormatBufferSize_Is_Controlled
11 Index_Is_WithinBound
12 SourceLen_plus_SinkLen_Gt_SinkSize
13 Len_plus_SinkLen_Gt_SinkSize
14 Len_Le_BufferLen
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H.2 String functions

Table H.2: String functions: String concatenation

Function Constraints #
char *strcat(char *dest, const char *src) 6,7,12
wchar_t *wcscat( wchar_t *dest, const wchar_t *src ) 6,7,12
char strlcat(char *dst, const char *src, size_t size) 6,7,13
errno_t strcat_s(char *restrict dest, rsize_t destsz, const
char *restrict src)

6,7,13

errno_t strncat_s(char *restrict dest, rsize_t destsz, const
char *restrict src, rsize_t count)

6,7,13

char *strncat(char *dest, const char *src, size_t n) 6,7,13
wchar_t *wcsncat(wchar_t *dest, const wchar_t *src, size_t
n)

6,7,13

errno_t wcsncat_s( wchar_t *restrict dest, rsize_t destsz,
const wchar_t *restrict src, rsize_t count )

6,7,13

errno_t wcscat_s(wchar_t *restrict dest, rsize_t destsz,
const wchar_t *restrict src)

6,7,13
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Table H.3: String functions: String copy and transformation

Function Constraints #
char * strcpy ( char * destination, const char * source ) 1,5,6,7
wchar_t *wcpcpy(wchar_t *dest, const wchar_t *src) 1,5,6,7
char *stpcpy(char *dest, const char *src) 1,5,6,7
wchar_t *wcscpy(wchar_t *dest, const wchar_t *src) 1,5,6,7
char *strncpy(char *dest, const char *src, size_t n) 2,4,6,7
errno_t strncpy_s(char *restrict dest, rsize_t destsz, const
char *restrict src, rsize_t count)

2,4,6,7

size_t strlcpy(char *dst, const char *src, size_t size) 2,4,6,7
char *stpncpy(char *dest, const char *src, size_t n) 2,4,6,7
errno_t strcpy_s(char *restrict dest, rsize_t destsz, const
char *restrict src)

2,4,6,7

wchar_t *wcsncpy(wchar_t *dest, const wchar_t *src, size_t
n)

2,4,6,7

errno_t strncpy_s(char *restrict dest, rsize_t destsz, const
char *restrict src, rsize_t count)

2,4,6,7

errno_t wcsncpy_s( wchar_t *restrict dest, rsize_t destsz,
const wchar_t *restrict src, rsize_t n)

2,4,6,7

wchar_t *wcpncpy(wchar_t *dest, const wchar_t *src,
size_t n)

2,4,6,7

errno_t wcscpy_s( wchar_t *restrict dest, rsize_t destsz,
const wchar_t *restrict src )

2,4,6,7

size_t strxfrm(char *dest, const char *src, size_t n) 2,6,7
size_t wcsxfrm(wchar_t *restrict ws1, const wchar_t *re-
strict ws2, size_t n)

2,6,7

size_type copy (charT* s, size_type len, size_type pos = 0)
const

2,6,7

174



H.3 Format string functions

Table H.4: Formatted string input functions

Function Constraints #
int fwscanf(FILE * stream, const wchar_t *restrict format,
... )

8,9,10

int wscanf(const wchar_t *restrict format, ... ) 8,9,10
int vscanf ( const char * format, va_list arg ) 8,9,10
int vsscanf ( const char * s, const char * format, va_list arg ) 8,9,10
int fscanf ( FILE * stream, const char * format, ... ) 8,9,10
int vfscanf(FILE *stream, const char *format, va_list ap) 8,9,10
int sscanf(const char *str, const char *format, ...) 8,9,10
int swscanf(const wchar_t *restrict ws, const wchar_t *re-
strict format, ... )

8,9,10

int vwscanf ( const wchar_t * format, va_list arg ) 8,9,10
int vswscanf (const wchar_t* ws, const wchar_t* format,
va_list arg)

8,9,10

int vfwscanf (FILE* stream, const wchar_t* format, va_list
arg)

8,9,10
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Table H.5: Formatted string output functions

Function Constraints #
int printf(const char *format, ...) 8,9
int sprintf(char *str, const char *format, ...) 8,9,10
int wprintf(const wchar_t *format, ...) 8,9
int vwprintf(const wchar_t *format, va_list args) 8,9
int vfprintf(FILE *stream, const char *format, va_list ap) 8,9
int fwprintf(FILE *stream, const wchar_t *format, ...) 8,9
int vfwprintf(FILE *stream, const wchar_t *format, va_list
args)

8,9

int fprintf ( FILE * stream, const char * format, ... ) 8,9
int vprintf ( const char * format, va_list arg ) 8,9
int vsprintf(char *str, const char *format, va_list ap) 8,9,10
int asprintf(char **strp, const char *fmt, ...) 8,9
int vasprintf(char **strp, const char *fmt, va_list ap) 8,9
void syslog(int priority, const char *format, ...) 8,9
void vsyslog(int priority, const char *format, va_list ap) 8,9
int snprintf(char *str, size_t size, const char *format, ...) 8,9,10
int vsnprintf(char *str, size_t size, const char *format,
va_list ap)

8,9,10

int swprintf(wchar_t *wcs, size_t maxlen, const wchar_t
*format, ...)

8,9,10

int vswprintf(wchar_t *wcs, size_t maxlen, const wchar_t
*format, va_list args)

8,9,10

vasnprintf (char *resultbuf, size_t * lengthp, const char *for-
mat, va_list args)

8,9,10
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H.4 Memory functions

Table H.6: Memory operation functions

Function Constraints #
void *memcpy(void *dest, const void *src, size_t n) 2,3,4,6,7,14
void *mempcpy(void *dest, const void *src, size_t n) 2,3,4,6,7,14
errno_t memcpy_s( void *restrict dest, rsize_t destsz, const
void *restrict , rsize_t)

2,3,4,6,7,14

wchar_t *wmempcpy(wchar_t *dest, const wchar_t *src,
size_t n)

2,3,4,6,7,14

wchar_t * wmemcpy (wchar_t *restrict wto, const wchar_t
*restrict wfrom, size_t size)

2,3,4,6,7,14

errno_t wmemcpy_s(wchar_t *restrict dest, rsize_t destsz,
const wchar_t *restrict , rsize_t)

2,3,4,6,7,14

void * mempcpy (void *restrict to, const void *restrict from,
size_t size)

2,3,4,6,7,14

void *memccpy(void *dest, const void *src, int c, size_t n) 2,3,4,6,7,14
wchar_t* wmemmove (wchar_t* destination, const
wchar_t* source, size_t num)

2,3,4,6,7,14

errno_t wmemmove_s(wchar_t *dest, rsize_t destsz, const
wchar_t *src, rsize_t count)

2,3,4,6,7,14

void *memmove(void *dest, const void *src, size_t n) 2,3,4,6,7,14
errno_t memmove_s(void *dest, rsize_t destsz, const void
*src, rsize_t count)

2,3,4,6,7,14

void bcopy(const void *src, void *dest, size_t n) 2,3,4,6,7,14
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Table H.7: Memory write functions

Function Constraints #
ssize_t write(int fildes, const void *buf, size_t nbyte) 3
ssize_t writev(int fd, const struct iovec *iov, int iovcnt) 3
size_t fwrite ( const void * ptr, size_t size, size_t count,
FILE * stream )

3

ssize_t pwritev(int fd, const struct iovec *iov, int iovcnt, 3
ssize_t pwrite(int fd, const void *buf, size_t count, off_t
offset)

3

ssize_t pwrite64(int fildes, const void *buf, size_t nbyte,
off64_t offset)

3
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