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Abstract

In this thesis, we use detector models to study various properties of quantum fields.
One such property is the correlations present in fields. It is known that two uncorrelated
detectors, upon coupling to a quantum field, can become correlated, i.e. they harvest
correlations from the field. In this work, we study the effect of the presence of extra
detectors in correlation harvesting protocols. Our first main result is that a single interloper
detector can sabotage the harvesting of classical and quantum correlations.

The second main result in this thesis is that machines can learn to extract different
features of a quantum field by processing the outcomes of local probes. As proof-of-
principle, we show how a neural network can distinguish field’s boundary conditions, predict
the temperature of a field and of how it can distinguish between a Fock state and a phase-
averaged coherent state.
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Chapter 1

Preamble

1.1 Layman intro to RQI and detector models

1.1.1 Non-relativistic quantum mechanics

The development of non-relativistic quantum mechanics (commonly called just “quantum
mechanics”) in the XX century provided a common explanation to very different, previously
non-understood phenomena. The photoelectric effect [37], the ultraviolet catastrophe [103,

| or the Stern-Gerlach experiment [16] could be explained with the apparent “wave-
particle duality” of light!, a key feature in quantum physics.

Quantum systems, like atoms or subatomic particles, were now treated probabilistically.
That means that any property that could be measured, any observable (like position,
velocity), would have different outcomes with different probabilities. Unlike in classical
physics, you could not predict accurately where an electron would move next even if you
knew its equation of motion and its position at some time before. Many scientists guessed
that the cause of this bizarre feature of the theory was due to our ignorance about quantum
systems. They thought that this was a similar situation to throwing a coin: since it
is extremely challenging to take into account all the variables to predict its result, we
perceive that there is a 50 per cent chance of the coin landing in its tail or head. “If we
knew the direction and strength of the wind”, they thought, “and we controlled very well

nterestingly, the explanation of the photoelectric effect does not actually need quantization of light. It
is enough to consider classical light and to quantize the energy levels of the electrons. We have included it
in this list because Einstein originally used the “wave-particle duality” of light to explain the photoelectric
effect.



the force we apply to the coin we could have a hundred per cent chance of getting it right

every single time”?.

However, it turned out that this weird probabilistic behaviour of quantum systems was
not due to ignorance in our part. There were no hidden local variables to make this theory
deterministic, as the Bell-inequalities experiments proved for different quantum systems

[15, 16, 11].

The most “mainstream” interpretation (and still most taught [117]) of this quantum
weirdness was the Copenhagen interpretation: “Before measuring a certain property of
a quantum system, the system is in a superposition® of different states with different
values for that property. After the measurement (also called projective measurement), the
system property would suddenly have a definite value”. This “sudden transformation”
interpretation is a bit tricky, and many physicists just use these projective measurements
as a useful piece of math to predict how the system will behave. However, many believe
that not all these mathematical tools may necessarily have a counterpart in nature.

If all this was not weird enough yet, there is one more concept of this theory that even
Einstein found spooky [38]: quantum entanglement. Two quantum systems are entangled
when one system cannot be described independently of the other. It is a type of correlation
that cannot be explained classically. To understand how mind-blowing entanglement is,
imagine that we have two quantum systems that are maximally entangled. We keep one
with us and send the other 1203km away. Then we measure an observable of the system
we kept, which will have some outcome with some probability. With this result, we can
predict immediately and ezactly the observable of the other system. When we measure
that other system, 1203km away*, the result of the experiments will always be the one we
had predicted, with probability 1, even if the outcome of the measurement was supposed
to be probabilistic!

Because of all these quirks, quantum physics has been very successful. Apart from
providing an explanation to the phenomena mentioned above, it predicted the internal
structure of atoms, which were validated by many experiments [21]. New phases of matter
predicted using this theory were found, like Bose-Einstein condensates [10] or quantum

2This has been done, by the way [32]. And yes, we physicists can control a non-quantum coin well
enough to cheat every time!

3Mathematically, this superposition just expressed the different probability amplitudes for each of the
values of the properties (or, equivalently, for the states that had those values). These “probability ampli-
tudes” turned out to be a key concept in quantum mechanics. Instead of ranging from 0 to 1, like normal
probabilities, they could be any complex number with norm equal or smaller than 1.

4This random number, 1203km, has been the longest distance we have been able to maintain this
entanglement between two photons [146].



droplets [25]. Recently there has been a notable increase in interest (and funding) in

the field of Quantum Information and, in particular, Quantum Computing [69]. The
combination of the concept of probability amplitudes and entanglement poses a risk to our
current encryption protocols [116], but it also allows for safer communication [19] or for

faster computations [12].

1.1.2 Relativity problem in quantum mechanics

However, as useful as quantum mechanics is, it still has a major problem: it is not com-
patible with Einstein’s Special Relativity (that is why it is called non-relativistic quantum
mechanics!). Special Relativity says that light moves at a constant speed, independent of
the inertial observer, and nothing can go faster than the speed of light, not even informa-
tion.

To understand Special Relativity we have to think of a very fast train travelling at
100 km/s. You are standing outside the train and your really fast friend, Menganito, is
inside the train. If Menganito starts to run inside the train (in the same direction of the
movement of the train) at 10 km/s, you, from the outside, will see that Menganito is
moving at 100 + 10 = 110 km/s. Well, it turns out that if Menganito were massless and
moving inside the train at speed ¢ ~ 300000 km/s (that is the speed of light), from the
outside, you would not see that Menganito is travelling at speed ¢+ 10 km/s, you see that
Menganito is still moving exactly at ¢ ~ 300000 km/s.

This relativistic sum is at the heart of relativity, which is present in our everyday life,
even if sometimes we are not aware of it. The relativistic correction has to be taken into
account, for example, to study cosmology [71] and to have accurate GPS [13]. We do not
normally perceive this relativistic correction because the speeds we are used to are way
lower than the speed of light. In that regime that “relativistic sum” is almost identical to
the “normal sum” of velocities we usually experience. So one may wonder now why we
care about relativity in the quantum world. We are not dealing with rockets, satellites or
galaxies, why do we have to take into account relativity? Because photons (the “particles”®
of light that travel at speed ¢) are quantum objects. And photons are everywhere in the
quantum world: atoms and other subatomic particles do not stop interacting with light.
Atoms absorb or emit photons as their internal configuration changes [65]. So we need a
theory that is quantum and relativistic at the same time because the objects that we study
belong to both realms.

5In relativistic settings, even the notion of particles is challenged and many claim that the whole concept
breaks down [101].



So what are the non-relativistic® features of the theory so far? For starters, the pro-
jective measurement assumption creates a problem with causality. The most important
equations in quantum mechanics, the Schrodinger equation, is not Lorentz-invariant. That
means that it is not compatible with that “relativistic sum” of velocities. Using the
Schrodinger equation and that “relativistic sum” you predict a situation that is incom-
patible with the outcome of experiments. To solve this issue, Dirac proposed what is now
called Dirac equation, which was Lorentz-invariant, and one of the first equations of rela-
tivistic quantum mechanics. However, this effort did not solve all incompatibilities between
quantum mechanics and Relativity. For example, both Schrodinger and Dirac equations
had ill-defined behaviours when trying to predict what happened in smaller and smaller
spaces [H0].

Then, it was evident that a new theory had to appear to fix these compatibility is-
sues with relativity. Arguably, the most successful one to tackle these problems has been
Quantum Field Theory.

1.1.3 Quantum field theory

Quantum field theory (QFT) developed around 30 years later than non-relativistic quan-
tum mechanics. It started as a natural generalization of the electromagnetic field. In
mathematics, a field is just a map that assigns some quantity (scalar, vector or, in general,
a tensor) to each point of space. In particular, the classical electromagnetic field can be
easily understood from a physical point of view: imagine there is an electron in empty
space. Since it has a negative charge, it will repel any negatively charged particle (like
another electron) and will attract any positively charged particle (for example, a proton).
Also, the closer a charged particle is to this electron, the more significant the effect will
be. These effects can be encoded by writing the strength and direction of the “attraction”
or “repulsion” that a test particle (the one we use to record these numbers) suffers at each
point in space. These numbers assigned to each point of space would be the field created by
that electron. A general configuration of charged particles would also cause some electric
and magnetic properties at each point of space, and these properties could be encoded in
what is called the electromagnetic field.

Since the second half of the XIX century, physicists were aware that light was a peri-
odically changing electromagnetic field. Light could, then, be understood mathematically
as periodically changing magnetic and electric properties assigned to each point in space.

61 want to make a disclaimer here: the spooky property, entanglement, does not cause a problem with
relativity. Entanglement does not allow faster-than-light communication. Even in relativistic theories, you
will have entanglement!



And then, in the XX century, with quantum mechanics, physicists realized that light could
be excitations of the field or photons, which have been called “particles” of light. So the
first task for QFT was to modify the model for the electromagnetic field (second quantize
it 7) so that changes in the electromagnetic field would account for the photons. This
result was the first success of QFT, and this specific line of research was called Quantum
Electrodynamics.

The genius question in QFT was: “what if all the other particles (not just the photons)
were also changes of some other unknown fields?”. In this case, the fields could not be
caused by particles, like the electromagnetic field was caused by the charged particles.
In this theory, the fundamental objects of nature would be these quantum fields! This
mathematical description was very elegant, but some problems persisted.

Physicists had found many divergences in their theory: some quantities that were
known to be finite were now predicted to be infinite. Fortunately, in the 1950s, they were
able to tame the tough mathematics that quantum field theory involved: remormalization
[35, |. After applying this renormalization theory, QFT became a wildly successful
theory. It predicted the existence of many particles that were later found in many “particle”
accelerators [1]. And that is how now, the Standard Model (the theory that describes the
known fundamental forces) includes an electron field, a quark field, a muon field, and so
on, at least 17 of them!

Despite its great predictive power and its consistency with Special Relativity, Quantum
Field Theory is not perfect. It breaks down near black holes and at large energies. Despite
these drawbacks, it could still work, in theory, in most experimental setups. Unfortunately,
there is still a significant hurdle linked to experimentation: how do we model the measuring
process of the fields? We discussed before that the projective measurement prescription
violated Special Relativity. So how do we translate this critical feature of quantum physics,
those probabilistic outcomes, into quantum field theory?

1.1.4 Measurement problem in QFT

One way to find a measurement theory in QFT is to try and extend the framework in non-
relativistic quantum mechanics. However this is not simple: local projective measurements
on the field introduce ill-defined behaviour [99] and faster-than-light signalling [123, 341, 18].
In fact, it has been strongly argued that projective measurements should be rejected in
any relativistic field theory [123].

"First quantization consisted on using quantum mechanics to describe electrons and atoms but still
treat the electromagnetic field classically



But we still want to be able to measure quantum fields. Otherwise, how are we going
be able to check our predictions experimentally? So we have to find a way to measure
fields indirectly that obeys certain rules:

1. It is consistent with our theory and, in particular, relativity
2. Produces values that match experiments

3. Determines what happens after the measurement

One ingenious solution to tackle this problem is the use of detector models®, which provide
operational measurement protocols on the field and obeys the above-listed properties.

In this framework, a detector (also called a probe) is a system that can be described
with non-relativistic quantum mechanics, for example, an atom. This probe interacts
with the field for a while, and it collects some information about the field (just like a
thermometer in a warm room gathers information about the temperature of the room).
Then, to measure this non-relativistic probe, we can use projective measurements to obtain
values from the probe (obeying rule 2). The whole evolution of the probe-field system can
remain consistent with relativity [84, 85] (rule 1), even though the detector is a non-
relativistic object. This measurement on the probe effectively induces what is called a
positive operator value measure on the field (rule 3).

With detector models we have an operational prescription of how to measure interesting

properties of the QFT: correlations among different parts of the field [137, , 22], negative
energy densities [59] or entanglement [109, , , 81, 75, , , 86, 68, ]. In
particular in this thesis we consider the Unruh-DeWitt detector model, which allows for
entanglement harvesting in different settings [109, , , 75, , | or quantum energy
teleportation [66] or Unruh effect detection [130].

1.1.5 Relativistic Quantum Information

One may wonder why we should go through all this trouble to obtain a measurement theory
for quantum field theory or why detector models are useful at all. T'wo of the main reasons
to be interested in this area of relativistic quantum information (RQI):

8 Alternatively, the F'V framework has been proposed to tackle this local measurement problem using
quantum fields to probe other fields [40].



1. Fundamental research: understanding quantum field theory is an important step
to understand the fundamental properties of nature. With this theory, physicists
have been able to predict the existence of new particles [1]. One important example
was the prediction and detection of the Higgs Boson, which helped understand why
particles have mass.

2. Communication and computing: In the section of non-relativistic mechanics, we
talked about how we could use quantum properties, like entanglement or superpo-
sition, to find safe communication protocols and boost computations. In the same
way, we could use these special properties of the quantum field (correlations and
entanglement) for communication and computation.

Let us elaborate a little bit in the second argument. How can we use correlations or
entanglement of quantum fields, and what does that even mean? Do we not need two
different objects in order for us to talk about them being correlated, like the two photons
at 1023 km example? The answer is no: the values of the field at different spacetime points
can be correlated.

It seems weird, but think of it this way: if we throw a stone into a perfectly still pond,
we will see a small circular wave travelling on the surface of the water. We recall that
a field is just defined as some numbers associated with every position. In this case, the
numbers we encode in our field are the heights of water at every position. The height of
the water at time ¢ will be the same at all of the points that are one meter away from the
stone. Then, if we have the information of that height at one particular point at one meter
away, we know the height of the water at any other point of a circle with a one-meter
radius. In that sense, we can say that the field at one particular point is correlated to any
other point situated at the same distance away from the stone. In a similar way, if we know
the weight of the stone, we can predict how the height changes with time, we can say the
height of the wave at a particular point at time ¢; and at another time t, are correlated.

Similarly, there can be correlations in a particular state (or configuration) of a quantum
field. But then, how is that useful for computing or communication? It turns out that
two different detectors can pick up those correlations in the fields. Typically this is stated
in terms of Alice and Bob, which control two different uncorrelated detectors. Once Alice
and Bob let their detectors interact with the quantum field, these become correlated, even
before enough time passes for them to communicate with each other [104]. That means
that Alice and Bob have really harvested the correlation present in the field. And this
ability to correlate two distant detectors - i.e. two non-relativistic quantum systems - is
one of the holy grails of quantum computing and safe communication.



1.2 In this thesis:

Now that we understand better the context for detector models in quantum field theory, we
are prepared to explain the content of this thesis. This thesis consists of two main projects
in which we use detector models to study different properties of the field. In the first
project, we study the sabotage of correlation harvesting protocols. In the second project,
we use machine learning to learn from outcomes of probes coupled to a quantum field. We
now outline the motivation and content of each of the chapters.

In Chapter 2, we provide some mathematical tools to deal with quantum fields, which we
shall use in both projects. We describe the field that we study, how to discretize a quantum
field, how to impose a UV-cutoff in a field without inducing superluminal signalling and
how to use the Gaussian formalism to study the probe-field system.

The first project, done in collaboration with Abhisek Sahu® and Eduardo Martin-
Martinez!®, is detailed in Chapter 3. In this project, we analyze a typical harvesting
correlation protocol between Alice and Bob in the presence of extra detectors, also called
interlopers. We calculate the final state of an arbitrary number of detectors analytically
after they have interacted instantaneously with a quantum field. We explain what hap-
pens to the field and how various correlation measures are affected by different parameters
and their physical significance. Most importantly, we study how one single interloper,
placed in a conveniently evil way, can prevent Alice’s and Bob’s detectors from harvesting
correlations.

The second project, in collaboration with Daniel Grimmer!'! and Eduardo Martin-
Martinez, is detailed in Chapter 4. In this chapter, we show how we can use machine
learning to learn features from local probes coupled to a quantum field. Usually, one
needs to purposefully choose detectors characteristics, coupling parameters and measure-
ment protocols adapted to the target feature of the field that one wishes to study. For
example, in Chapter 3, we had to use quite problem-dependent choices for detectors and
operations in the field to be able to obtain analytical results. What would happen if a
probe-field system was not so tunable? Or if there existed restrictions on the design of the
measurement protocol? What if every single parameter was out of our hands and we only
had outcomes of local probes connected to the quantum field? Is there anything we could
do with that information? The answer is yes: we believe that, by using machine learning
techniques to process this information, we could make claims about different features of
the field. As proof-of-principle, we consider a harmonic oscillator probe coupled to a scalar

9Department of Physics, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
9Dept. Applied Math, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
"Dept. Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada



quantum field. We propose a simple measurement protocol for the probe and a common
type of neural network to analyze the outcomes of the probe. Both of these choices are
not adapted to study any particular feature of the field. To show the broad applicability
of these techniques, we show how we can distinguish 1) field’s boundary conditions before
“light” from the boundaries reaches the probe and 2) temperatures of the state before
thermalization time. In both these cases, we discretize the field and impose a UV-cutoff.
For completeness, we include an example without such approximations. We show how
using slightly different measurement protocol but the same type of neural network we can
distinguish a Fock state and a phase-averaged coherent state.



Chapter 2

Toolkit for Quantum Field Theory

In this Chapter, Section 2.7 is verbatim from an unpublished version of [51].

2.1 Klein-Gordon Equation Solution

In this thesis, we are only going to consider real scalar fields whose free dynamics is
determined by the Klein-Gordon equation. We will consider a n+1 dimensional massive
field, ¢, with mass m. The Klein-Gordon (KG) equation is defined as

1 07 mc?
Sop® - Vot 0=0 (2.1)

and is one of the first Lorentz-invariant (i.e. relativistic) equations in Quantum Mechanics.
This KG equation can be obtained from the following Lagrangian density:

_ 2.2
Ly = %(312¢2 Vé-Vé— mh; ¢2). (2.2)

From this Lagrangian we can obtain the conjugate momentum as m = % = (;5 We can

second-quantize the field by promoting both the field, ¢, and momentum, 7, to operators,
i.e. adding the hats ¢ — ¢ and m — 7 and imposing the commutation relations

[O(t, @), o(t,y)] = 0 = [7(t,2), 7 (t,y)], (2.3)
[o(t, ), 7(t, y)] = i6"(x — y). (2.4)

- O
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Using these operators we can then obtain Hamiltonian formulation of the Klein Gordon
equation:

1 2.2

H, = 5 / da A7 (t,x)? + Vo(t,x) - Vo(t,x) + mh; o(t, x)>. (2.5)

This field operator éz can be written in terms terms of plane wave solutions to the
Klein-Gordon equation, ¢y = et (@rsti=k®) 59

~

qb(a:,t) = d"k Tei(wkt—k.m) + dkefi(wktfk:-z)

1 .
V2@2m)ra g

1
/ mc
where the frequency is given by wy = 1\/c?k? + =R By imposing the commutation

relations in in Eq. (2.3) and (2.4) we obtain that the operators al. d, are in fact creation
and anhilation operators and they obey the canonical commutation relations

, (2.6)

[k, ] = [ag, ] =0, law, aj,] = 6"(k — K'). (2.7)

Each pair of operators d; ay, defines a mode of the field with frequency wy.

2.2 Coherent, squeezed, thermal and Fock states

The vacuum or ground state of a field, denoted as |0), is an eigenvector of the Hamilto-
nian operator (for example, 7:[¢ in (2.5)). Its defining property is that this state has the
lowest energy (its corresponding eigenvalue is the smallest). This state obeys the property
ag |0) = 0 for all k. One interesting thing about ground states is that they can undergo
quantum fluctuations of energy, which is a purely quantum phenomenon. In the ground
of classical fields, one would not expect energy fluctuations. This quantum phenomenon is
often interpreted as a manifestation of the Heisenberg uncertainty principle. Interestingly,
these quantum fluctuations only appear locally: there is no global energy fluctuation. In
other words, in seemingly “empty” states of a field you have particles shortly appearing
and disappearing in certain spacetime positions in some correlated fashion. These corre-
lations present in the fluctuations can be exploited by a correlation harvesting protocol,
where detectors detect these particles and thus become correlated [137, 109].

The vacuum state |0) is a particular example of what is called a coherent state. A
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general coherent state |a(k)) is defined as
|Oé(k§)> _ e(fd”k [a(k:)d;re—a(k)*dk}) ’0> (28)

The unitary operator that acts on the vacuum state to produce a coherent state is called
a displacement operator,

Day = exp| [ '(alt)al, — otk an)] 29)

where (k) is called the coherent amplitude distribution, which is the continuous equivalent
to the coherent amplitude. The geometric interpretation and the reason why the state is
often called a “displaced state” for a single mode will be given in Section 2.8.

The inverse of a displacement operator with amplitude (k) is its Hermitian conjugate,
which turns out to be another displacement operator with amplitude —«(k). Moreover, we
know that the creator and annihilator operators satisfy the commutation relation in Eq.
(2.7), [ag, &L,] = 6™ (k — k’). We can rewrite the displacement operator using the above
commutation relation, which will help us to calculate several properties needed in Chapter
3:

Doy = xp { / d”koz(k:)djc} exp {— / d"ka(k:)*ak] exp {—% / d"k:|oz(k:)|2} (2.10)

One interesting calculation is the projection of the coherent state |ag) on to the vacuum
state. As the annihilator operator a annihilates the vacuum state, ag |0) = 0, and similarly
for the creation operator we have (0| al = 0 , we obtain

(Olk) = (01Dor]0) = exp [—% / d”k|a<k>|2] (2.11)

Another interesting calculation is the projection of the coherent state |ay) on to another
coherent state |fg) . Using again the commutation relation in Eq. (2.7) and the Baker-
Campbell-Hausdorff lemma, we can show

Doy Dpky = Da(ie)+8(k) XD B /d”k:(a(k:)ﬁ*(k) - a*(k)ﬁ(k))} (2.12)

In the above expression, we take a product of two displacement operators, and get another
displacement operator multiplied by a phase factor. We can further generalise this and
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take a product of arbitrary number of displacement operators. We now use (2.12) to obtain
the inner product of any two arbitrary coherent states, |a(k)) and |3(k)).

(a(k)[B(K)) = (0| D—a) D [0) (2.13)
Using (2.12) and then (2.11), we get the inner product of two coherent states.

—1

(@500} = exp| 5 [ @k(al + 15007 — 20 ()00 21

The vacuum state |0) is also a particular example of what is called a squeezed state. A
general squeezed state |[((k)) is defined as

IC(k)) = 6%(fd"k[—c(k)d22+<(k)*&i}) 10) (2.15)

The unitary operator that acts on the vacuum state to produce a squeezed state, is called
a squeezing operator, with a squeezing amplitude (k).

Scog = x|y [ k(Y - Ry} (2.16)

The geometric interpretation and the reason why this state is called a “squeezed” state
will be discussed in Section 2.8 in the case of a single mode.

A Fock state is usually denoted as |ng,, ng,, - - ., Ng,, - - .), where ng, denotes the number
of particles in with wavenumber k;. The Fock state is defined as

.. |0) (2.17)

|nk1,nk2,...,nki,...> =

2.3 Unruh-DeWitt model

The Unruh-DeWitt particle detector was first introduced to study curved spacetimes and
black holes [1306, ]. One of the first successes of this formalism was the operational
formulation of the Unruh effect without relying on ill-defined notions of particles 1306, ].

Mathematically, the interaction Hamiltonian of a stationary Unruh-DeWitt detector

13



coupled to a field with field operator ngS(t, x) is

Fer = Ax(0) / de F() fip © 31, ), (2.18)

where A accounts for the strength of the coupling. Function x(t) controls the time depen-
dence of the interaction. It is normally called the switching function because the support
of the function accounts for the period of time on which detector is “on” or “off’. The
function F(x), the smearing function, accounts for the spatial extent of the interaction.
One can think of it as the extent of the detector, just like the extent of an atom interacting
with a photon field in light-matter interaction. It also quantifies the coupling of the detec-
tor to each of the modes of the field, as we will see in Section 2.6. We would like to note
that the switching and smearing function are not necessarily always uncoupled. A most
accurate description would be a function A(¢,x) that accounts for the spacetime extent
of the interaction [, 88]. However, we chose to introduce the switching and smearing as
separate concepts because that is how we treat them in Chapter 3 and Chapter 4.

This linear model is inspired by light-matter interaction and it captures all its fun-
damental features [105, 85, 83, 7]. The detector typically is a two-level quantum system
(qubit) with a monopole moment

fin = le) (gl €™ + [g) {e] e, (2.19)

where |g),|e) are the ground and excited states and () the energy gap between them. In
Chapter 3 we will choose this particular degree of freedom for the probe. In Chapter 4, we
will choose the detector to be a harmonic oscillator, coupled to the field with their position
operator:

[I’D = (jD (2'20>

Depending on the system under study the nature of the probe will be different. Our
choices for the two chapters were practical. For Chapter 3, having a qubit probe simplified
our analytical results. In Chapter 4, a harmonic oscillator allowed us to do numerical
calculations after introducing a UV-cutoff. In the next section, we will explain what is a
UV-cutoftf and how to rightfully impose it taking into account our model detector.

2.4 Field discretization

From the well-established area of numerical analysis, we know that we can obtain ap-
proximate solutions of a partial differential equation by solving a discretized version of
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the original equation. This discretization reduces the complexity of the problem: solving
the discrete equation becomes equivalent to solving a linear equation. However, different
choices in the discretization can affect the accuracy of the approximation. For example,
the Euler and Runge-Kutta methods different use approximations of the derivative, which
in turn leads to different local and global errors on the numerical solution. The choice of
lattice pattern can also affect the quality of the approximation. For example, choosing a
finer lattice for sections where the exact solution oscillates faster will generally result in a
better approximation.

In quantum field theory, we also want to obtain the solution to a differential equation
for which the solution is the quantum field, ngﬁ To do so we discretize space in the free
Klein-Gordon Hamiltonian and in the interaction Hamiltonian of a field and a probe, given
respectively in Eq. (2.5) and Eq. (4.3):

[ﬂ) = %/dm At x)? + V(ZS(t, x) - Vgﬁ(t, x) + m?ﬂg(ty x)?, (2.21)

Toer = Ax(®) / dz F(a) i ® O(t, ). (2.22)

Just like in any numerical problem, we have the liberty to choose a lattice pattern. In
this thesis we choose a square pattern in which close neighbours are at a distance a. This
results as

2.2

Hy = g Z C2ﬁ2(t, x,) + ngg(t, T,) - VQAS(t’ T,) + mh;

o*(t,x@y,), (2.23)

Hie  AX(1)Y - aF(x,,) i ® 6(t, 2,). (2.24)

n

Changing the spacing a one can observe different behaviour of the entanglement entropy
[106]. Our choice of a in the specific examples in this thesis is justified in Section (2.7).
We note that, in this case, the operators gz@(t,wn) and 7(t, x,,) satisfy the commutation
relations, [¢(t, &), 7(t, €m)] = i(6pm/a)l.

We can further impose an approximation of the derivative. This choice does not go
without consequence: it will affect the number of modes that each mode couples to. For

example, a common choice for the derivative [132] when dealing with a 141 dimensional

field is

~ ~

ax(g(t, xn) ~ Qb(t? xn-&-l) B ¢(t7 .Tn) : (2.25>

a
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which yields nearest-neighbours coupling. Some works in preparation' find the choice of
derivative approximation has an effect on the entanglement structure of the field. However,
the comparison of different versions of the derivative approximation is out of the scope of
this thesis. In Section 2.7 and Chapter 4 we will choose the approximation in (2.25), which,
in the case of 1+1 dimensional field, will yield the discrete Hamiltonian

~ ~ 2
Hy = gzc%%?(t, ) + (W’ x”“)a_ ¢(t’x”>> + m;f G (t,xn). (2.26)

n

We note that, in this case, the operators g%(t,xn) and 7(t, z,,) satisfy the commutation

relations, [¢(t, z,), 7 (t, )] = ih(Orm/a)1.

Finally, in Chapter 4 we consider a field inside a cavity of length L, i.e. the field is
restricted to a region = € [0, L]. Defining L = N a, we only need to consider a finite number
of modes to obtain an approximation of the field. We can rewrite the Hamiltonian (2.27)
in terms of the dimensionless operators, ¢, = r/am/h2 ¢(x,) and p, = r/a/m #(x,) which
satisfy the commutation relations, [g;, p;] = id;;1. This yields one of the bandlimited field
Hamiltonian claimed in the Chapter 4

- N e h?
Hy' = 0+ @) + 55 G — 6) (2.27)
n=1

In the next section, we explain how imposing a UV cutoff (bandlimiting the field) we
can induce a field discretization. If a function is bandlimited, it can be reconstructed using
only values of the function at discrete points [102]. Once a choice of lattice is made, the
derivative will be fixed [94], so any approximation such as the one in Eq. (2.25) will be an
extra assumption. We will comment on this extra assumption in Section 2.5 and Section

2.7.

2.5 Imposing UV cutoff to discretize the field

In Section 2.4 we showed a discretization of the field. In this section, we will show how
a UV-cutoff on the field can induce a discretization of the field. Applying a UV-cutoff
consists of removing the modes of the field of frequencies larger than some cutoff scale

~

K. If we expand the field operator, ¢(t, x) in terms of its Fourier transform, taking a UV

1Personal conversation with Eduardo Martin-Martinez and Daniel Grimmer
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cutoff is equivalent to obtaining
PNV (t, ) = / dk &(t, k)ek®. (2.28)
|k|<K

where ®(t, k) = Fi[o(t, )] is the Fourier transform of ¢(¢, ). Imposing a hard UV cutoff
on the interaction is equivalent to multiplying the Fourier transform of the field by Ik (k),
defined as the n-dimensional rectangle function over over k € [—K, K]". The truncated
field then becomes

O (t @) = F ' Ui (k) Frlo(t, )] (2.29)

One can then use the Petersen-Middleton theorem? [102] to reconstruct ¢"¥ with discrete
points in a lattice. However, for this thesis it is enough to consider the one dimensional
case. With this restriction, we use the variables x and k instead of & and k. Using the
Nyquist-Shannon sampling theorem to reconstruct our UV cutoff smearing function we
obtain

SN (tx) =) (L ;) S(a/a). (2.30)

J

where a = 7/K is the spacing of the discrete positions, z; = j a, and where

S;(r) = —Sln;?:C_])J ) (2.31)

is a displaced normalized sinc function.

Since it will be useful for Chapter 4, let us a apply a hard UV-cutoff to the free Klein-
Gordon Hamiltonian in (2.5) in the one dimensional case, which depends on ¢f(t, x), 7(t, )
and 9,¢(t, z). By removing the field modes with k > | K| we obtain the the UV-cutoff field
operators

A (x) = F [ (k) F[r (x)]] (2.32)
0:0™ () = F, ! M (k) Fe[0:0()]] (2.33)
where where x = (t,z). Note that since these operators are now bandlimited we can

2The n-dimensional generalization of Nyquist-Shanon theorem
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express them as sums of sinc functions as,

UV Z A7V (%) Sn(z/a) | (2.34)
9,0 () Za " (%) Sp(z/a) . (2.35)

Using these UV-cutoff operators we define the UV-cutoff field Hamiltonian as,

HY = % /_ T dr PRV 4 (0,07 () + %&UV(X)Q = (2.36)
a Zc F(x0)2 + (B2d(x0))? + m2262§5(xn)2, (2.37)

where we have again used the operator’s sinc representations and L? orthonormality of
{S;n(r)} to express the integral as a sum. The derivative in this case will be then

~ o0 ~ —1)k—n .
0d(e) =+ 3 ([ wausio/asitesa)) dm) = + - S Lo

a k—n

n o0 n#k

=9 - (_1)m71 qg(xk-l-m) - qg(xk_m)
2ma

m=1

, (2.38)

which involves highly non-local couplings that decrease polynomically. In this thesis, we
impose the extra approximation in Eq. 2.25:

&qu(t,a:n) ~ P(t, Tny1) — ¢(t71’n)’ (2.39)

a

which will simplify our calculations. A detailed explanation on the physical implications
of this choice are given in Section 2.7.

Using the UV-cutoff field ¢V in (2.30) into the interaction Hamiltonian in (4.3) we
would obtain the UV-cutoff version of the Hamiltonian

Hive = AX(8) Y a F(ay) i © $™ (t ). (2.40)

J

here we have also used the orthonormality of the collection {S,,(r)} in the L? norm. Thus,
by taking a hard UV cutoff on the probe’s smearing function we automatically find that
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the probe effectively couples to the field at discrete positions x;. For this last Hamiltonian,
we can use our knowledge about the probe extension (or smearing) to motivate a cutoff
scale, as we will discuss in the next section.

2.6 Local probes induce a soft UV cutoff

Applying a UV-cutoff is not harmless. This procedure can lead to superluminal signalling
[87], but done carefully, it is almost harmless. Since we are using detectors to probe the
field, if the detectors are not able to resolve the scales of the cutoff then the noxious effects
of the UV truncation are reduced. To see when a UV-cutoff is mostly harmless for detector
physics let us first expand the Unruh-DeWitt interaction Hamiltonian in (4.3) using the
Fourier transform of the field, ®(¢, k) = Fr|o(t, x)],

Toer = Ax(®) fin @ / dzF(z) ( / dk (2. k:)e”””) — () jip @ / dk F(—k) & (t, k)
(2.41)

where F(k) = Fi[F(x)] is the Fourier transform of F(ax). For even smearing functions,
F(k) = F(—k). Therefore F'(k) determines how strongly the probe couples to each of the
field modes, or in other words, “the frequency extent of the probe-field interaction”. If the
smearing function is strongly supported only on a finite region of size ~ o then F (k) would
be supported on an extent ~ 1/0. That is, the probe would not couple strongly to modes
with wavevector |k| > o~!. Thus by considering a probe with a finite spatial extent we
are effectively considering a soft-UV cutoff in the interaction of field and probe.

If F (k) decays sufficiently fast away from o~!, we may be justified in dropping the

coupling to the modes above some large UV threshold, say |k| > K > ¢~!. This provides
us with a scale to apply a hard UV-cutoff on the field, which in turn provides a scale for
the distance between elements of the lattice, as a = 7/K < 7o.

2.7 Error quantification of field discretization

In Section 2.4 we derived the discretized version of the Klein-Gordon Hamiltonian, Eq.
(2.27). However, as discussed, this approximation can introduce superluminal signalling
[87]. Therefore, we need a way to quantify how much we are deviating from a relativistic
response and how accurate is the discretization. In order to do so let us review our choices
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1. We took a UV-cutoff in the field Hamiltonian, i.e. we removed the high-frequency
modes of the field, and

2. We further imposed the nearest-neighbour approximation for the derivative.

As we explained in Section 2.6, the extent of the probe induces suppresses the coupling
of the probe to the high energy modes of the field. Therefore, removing these modes will
be irrelevant to the probe’s response with increasing cutoff K. The effect of the second
change is more subtle. The discrete approximation for the derivative changes the dispersion
relation of the field as

2heK\? ., (7k
hwp =/ (me2)2 + (hek)2  —  hw), = \/(m c?)? + ( - ) sin? (ﬁ) (2.42)
In Figure 2.1a) we plot both dispersion relations and note that fuv;, > fw,. The dispersion
relation is mostly modified at high frequencies, that is, at frequencies to which the probe
does not couple strongly. This modified dispersion relation allows for the possibility of
superluminal signals to existing in these high-frequency modes.

To quantify how much the dispersion relation has changed in the modes the probe
couples strongly to, we introduce the “average relative error” in hwy. This error is the
average relative difference between the modified and unmodified dispersion relations at
each frequency weighted by the strength of the probe’s coupling to that frequency. That
is,

0 hWk _ /

Avg. Rel. Error ::/ dk ——— F(k). (2.43)
oo Iy,

We have computed the average relative error for various cutoff, field masses, and probe
sizes in Fig 2.1b).

To investigate how the average relative error decreases as we increase K we use the
following series of inequalities,

Avg. Rel. Error < / “dk (h‘*”“)(zh;k;f“@? F(k) < /_ Tdk (h“”“();;k(;“’/f)z F(k). (2.44)

—00 o0

where the first inequality follows from Aw; > hw) > 0 and the second from hwy > hck.
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a) Probe Coupling Strength and Dispersion Relations
b) Average Relative Error in Dispersion Relation
100%.,
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Figure 2.1: Modified dispersion relation and average relative error in dispersion relation.
In subfigure a) we show the probe’s coupling strength to the field modes, F(k), (blue
Gaussian) as a function of the mode’s wavenumber, k. Note that the probes width is taken
to be 0 = 1. The field’s dispersion relation hwy is also plotted (yellow hyperbola). Note
that the field’s mass is taken to be m = 1. Taking a UV-cutoff at K = 16 (vertical red
dashed line) yields a modified dispersion relation, fwy,, (green dashed) at high frequencies.
In subfigure b) we plot the average relative error in fiwy, as a function the cutoff K and the
field mass m. This error decreases polynomially as Ko increases. The error also decreases
as the mass of the field increases. The black dashed line is a mass independent upper-bound
on this error. In both subfigures we have taken h =c¢ = 1.
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The final expression is mass-independent and can be computed in closed form yielding,

Ko s 2K*0° — —1
Ave. Rel. Error < 142 Frf 1- - '
vg. Rel. Error < 1+ Jon r (Kox/ﬁ)+ T2 < oxPp <2K202)> O((KU)2>
(2.45)

Therefore we expect the error made by the discrete approximation to be quadratically
suppressed as we increase Ko. For example, for a Gaussian smearing function of width
o and cutoff Ko = 16, the upper-bound on average relative error is 0.32%. With the
right field’s mass and Gaussian’s width relation, this relative error can reduce enough to
be almost harmless, as depicted in in Fig 2.1b). In Chapter 4, we precisely choose a
Gaussian smearing function and cutoff cutoff Ko = 16. In the remote boundary sensing
and thermometry examples we have (taking i = ¢ = 1), mo = 0.006 and mo = 0.00027
respectively. The average relative error can be computed numerically in each case yielding
0.16% in both cases.

2.8 Gaussian formalism

The Gaussian formalism of quantum mechanics is a potent tool to deal with continuous
variable systems. It is used to study systems composed by a finite number of bosonic
modes, which can be characterized by dimensionless position and momentum operators ¢
and p. An example of such a system is the discretized version of the quantum field given
in Section 2.4, which is composed of N bosonic modes. Gaussian formalism can be used for
the ground state or the coherent and thermal states of a free quadratic Hamiltonian (i.e.
the Hamiltonian is a quadratic form in variables ¢ and py,), which are examples of Gaussian
states. Furthermore, when evolving under a quadratic Hamiltonian, Gaussian states remain
Gaussian and their time evolution can be studied with the Gaussian formalism.

In subsection 2.8.1, we are going to explain what Gaussian states are and how to
represent the ground, coherent and thermal states. In subsection 2.8.2 we study the time
evolution of Gaussian states.

2.8.1 (Gaussian states
We consider a system composed by N bosonic modes, labeled by £ = 1,..., N, with

corresponding dimensionless position and momentum operators ¢, and p;. These operators
obey the commutation relation [gx, pr] = i1. We can define the vector of the canonical
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operators and write its commutative relations in a compact form,

A

R = (qlvﬁlvcbaﬁ?a R 7@1\77]51\7) = (Rla R 7R2N)7 (246)

where the commutation relations are [Rk, ]%l] = i{);. The matrix €2, so called symplectic

matriz is given by
N
0 1
0= (_1 0) : (2.47)
n=1

Alternatively, this vector of canonical operators can be written in another popular
ordering as

R/ = (leaq%'"74N7ﬁ17ﬁ27--'aﬁN) = (R/Da IZN) (248)

In this case commutation relations are | Aﬁc, R;] = iQ)},. The matrix Q' is given by

o = (_01 3) | (2.49)

From this moment on, we will loosely refer to both R and R’ as basis. We will say that
a matrix is written in basis R if it corresponds to a quadratic form in variables R. We
will use the same notation for the matrices 2 and €', which represent the commutation
relations in basis R and R’ respectively.

After the presentation of the system of interest, we can start to talk about the Gaussian
formalism. The core of this formalism is to map a density matrix, p, describing the N-mode
bosonic system, into a function depending on the phase space variables @ = (x1, zo, ..., zxN)
and p = (p1,p2,...,pn). One of the most common mappings is the so called Wigner
transformation. The counterpart of the density matrix, p, in the Wigner transformation is
called the Wigner function, and it is defined as

1
W(:c,p)zﬂ—N/RN d¥s (x +s|p|x — s)exp(—2ip- s). (2.50)

The Wigner function is what is called a “quasiprobability distribution”. The reason behind
that name is that it possesses a set of properties [72] that make it really similar to a
probability distributions:

1. W(x,p) is normalized: [dVzdVpW(xz,p) = 1.

23



2. The marginal distributions correspond to our notion of probability distribution in
the position and space basis, where

/ e W (z,p) = (pl plp) / N pWia,p) = (@ pl).  (251)

3. It gives the right expected values for operators. Given an operator A with the
corresponding Wigner function A(x, p), its expected value for density matrix p can
be written as

Tr(ﬁA) = /szchpW(a:,p)[l(zc,p). (2.52)

4. The Wigner function of a subsystem A composed by N, modes, W,(x,,p,), can be
obtained by integrating the rest of variables:

Wa(@s pa) / ¥, d¥p, T (@, p), (2.53)

where @y, py are the variables of the system B, which is formed by the Ny .= N — N,
remaining modes.

However, the Wigner function does not generally obey one essential property of probabiliy
distributions, which is the reason why it is called “quasiprobability” distribution: W (x, p)
is not necessarily positive [72].

A great thing about the Wigner transformation is that it is bijective: there is a one-to-
one correspondence between Wigner functions and density matrices. Thus, without losing
any information, one can study a system using only Wigner functions. Dealing with these
Wigner functions is especially easy for Gaussian states.

A Gaussian state, given by density matrix state p, is a state whose corresponding
Wigner function is Gaussian, i.e. W (&, p) can be written as

e*%(T*F)TU(Tff)
W(r) = , (2.54)

N /det(o)

where r = (x,p), 7 is a 2N-dimensional vector and o is a 2N-dimensional square matrix.

The fact that these states are Gaussian simplifies calculations. A Gaussian function
can be characterized by its first and second-order moments. Therefore, by knowing only
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2N + 4N? parameters [2], we are able to describe perfectly a particular Gaussian state —
whereas previously we had to deal with a continuous system that is infinite-dimensional.
Furthermore, the Wigner function of a Gaussian state is always positive. Then the Wigner
function can be interpreted as a probability function for the z; and p; observables. It is
interesting to note that, for pure states, the corresponding Wigner function is positive if
and only if the state is Gaussian [03].

Finally there is a direct connection between the first and second moments of the Wigner
function and the first and second moments of the operator vector R. Given a Gaussian
state p, the first moments and the covariance matrix of the Wigner function are given by

A

7= ((Ry),..., (Ron)), (2.55)
0i; = (RiR; + R;R;) — 2(R;)(R;), (2.56)

where (A) = Tr [pfl] Gaussian states are completely defined by the first moments of the
operators R; and the second moments of operators R; and Z:Ej.

In this formalism, obtaining the covariance matrix and the first moments of a subsystem
is very straightforward. To obtain the covariance matrix o, of a subsystem A one only
needs to “eliminate” from the original covariance matrix, o, the rows and columns that
do not correspond to subsystem A. Similarly, to obtain the first moments 7,, one needs to
“eliminate” from the original vector of first moments, 7, the rows that do not correspond
to subsystem A

This last “tracing out” property of Gaussian states stems from the fact that tensor
product structure in Hilbert space translates to direct sum in phase-space. The direct sum
of two square matrices A; and A,, of sizes n; and n, is defined as

Ay O,
A @Ay = (o 21 /;’2 ) (2.57)

where 0,,,, is a zero matrix of size n x m. The underlying product structure is then
conserved when state with density matrix p = p; ® po is represented by the covariance
matrix o = o1 @ 0y in phase-space.

After this brief introduction to the Gaussian formalism, we will show how to calculate
the covariance matrix and mean of some states considered in Chapter 4.
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Some useful states for this thesis

We will show the covariance matrices and first moments of ground states and thermal
states of Hamiltonians of the form:

H= EﬁTﬁ - quMq, (2.58)
where M is some symmetric, positive definite matrix, the frequency w obeys w > 0,
p = (p1,p2,...,pn) and @ = (¢1,G2,---,qGn). Since M is definite positive and symmet-
ric, there exists an orthogonal matrix C' (CT = C~!) such that D = CTMC and D is
diagonal. Doing the change of basis & = C&’ and p = Cp/, it is easy to check the commu-
tation relations [#;', ;'] = 0 = [p/, ;'] and [#/, p;'] = 1;;. Doing this change of variables
we can write the Hamiltonian as

N N
N 1
H = _A/T T A/T TM Y A/2 D.. A/Q - ~ 2.
5 C Cp' + = & C"MCz ;_1 2( + D;; % E: 2 az), (2.59)
with the annihilation and creation operators defined by the equations
v D’L’L A A 1 A A
N ) (2.60)

b= 1\/_ i\/§ v D;;

and commutation relation [a;, a, ] = 1. Using the creation and anhilation operator, one can
easily calculate the first moments and covariance matrices of several states.

For the ground state is easy to check that (z;) = 0 = (p;). In that case the vector of
first moments 7 is identically zero. Its covariance matrix in the basis R’ (as in Eq. (2.48))
is

OGROUND = v M . (2.61)

The Gibbs thermal state of a given Hamiltonian H with inverse temperature 3 is
defined as

_5}}

p=——+-
Tr <e—5H>

It can easily be checked that (#;) = 0 = (p;) and so the vector of first moments 7 is zero.

(2.62)
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Its covariance matrix can be easily in the basis R’ (basis given in Eq. (2.48)):

1 BwvVM
\/—Mcoth< 5 > 0

O THERMAL —

” \/M> . (2.63)
2

0 v/ M coth (

As (3 approaches infinity (the zero temperature limit) we recover the covariance matrix for
the ground state.

A one-mode squeezed state [72] is defined as

_cat? 4 v
€)= §¢l0) = exp (%) o) (264)

where S( is called the squeezing operator.

For this state we also have (z;) = 0 = (p;), and so the vector of first moments 7 is zero.
The covariance matrix, in either basis R’ or R (for one mode they are the same basis) is
given by

672|<‘ O
USQUEEZED:( 0 o2 ) (265)

Then the choice of name squeezed state makes sense when compared to the ground state.
The Wigner function corresponding to this squeezed state is the result of squeezing the
Wigner function of the ground state in the z-variable.

A one-mode coherent state [72] or displaced state is defined as
la) = Da|0) = exp (m{ . a*ch) 10). (2.66)

where D, is called the displacement operator.

For this state the covariance matrix, in either basis R/ or R (for one mode they are the
same basis) is given by o = 15. The vector of first moments 7 is given by

_ [(Re(a)
T = (Im(a)) : (2.67)
The name displaced state is appropriately chosen. The Wigner function of the displaced
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state is the result of displacing the center of the Wigner function of the ground state.

2.8.2 Time evolution

As we have discussed, Gaussian states can be represented by their first and second moments.
A very useful property of these states is that they remain Gaussian if they are evolving
under the influence of a quadratic Hamiltonian. A quadratic Hamiltonian, H , can be
written as the quadratic form

. 1. . A

H= 5RTFR +a’R, (2.68)
where F' is a symmetric matrix and a is a vector. The vector of operator R was defined
in Eq. (2.46) as R = (41,1, G2, P2, - - -, qn,Pn). Alternatively, this Hamiltonian can be
expressed in basis R’ given in (2.48).

The time evolution for the time-independent Hamiltonian (2.68) is given by U = et
An initial Gaussian state py will then evolve as p(t) = UpoUT, and p(t) will remain Gaussian
for all t. In this scenario, we can track the time evolution of the initial vector of first
moments, 7y and initial covariance matrix, oo. To do so, we need to define the two

symplectic counterparts to the unitary evolution operator U:

S(t) = exp(QFt), (2.69)
d(t) = eXp(Qgg_ Ly o a. (2.70)

In this equation one can especially appreciate the similarities between S(t) and U when
vector av is identically zero. In that case, in Eq. 2.68, the matrix F' would encode all the
information about the quadratic form defining the Hamiltonian H. Also, 2 can be thought
as a counterpart of imaginary number i, since they both obey Q? = —1, and i® = —1. The
correspondence between both S(t) and U then becomes clear element-by-element.

Using the Heisenberg equation,

dR - .
d—? =i[H,R] = Q(FR+ «), (2.71)

the evolution of the vector of first moments and covariance matrix can be derived. Ac-
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cording to [50], a Gaussian state evolves in phase space as

O'(t) = SO’QST,
7(t) = Sro +d.

As a summary, the correspondence between time evolution in the Hilbert space and the

time evolution in phase-space is given by
i—Q
po —* 00, To,
H—F «

A~

U = et — S(t) = exp(QF1),
exp(QQF't) — Loy
QF

p(t) = UpoUt —s o(t) = SoS7,

r(t) = STy + d.

d(t) =
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Chapter 3

Cancelling the harvesting of
correlations

In this Chapter, Section 3.4 and 3.5 are verbatim from the manuscript in preparation
“Cancelling the harvesting of correlations in QFT”, in collaboration with Abhisek Sahu
and Eduardo Martin-Martinez.

3.1 Introduction

Understanding the entanglement and correlation content of quantum fields has been a
research focus for the relativistic quantum information community in recent years [79].
Beyond its intrinsic fundamental value, this area of research connects with various fields
of physics, such as black-hole thermodynamics [54, 17] or many-body physics [139].

In particular, there has been a spike of interest in correlation and entanglement harvest-
ing protocols [137, , , , 22, 81, 23, 75, , , 80, 68, 111]. Originally proposed
by [137], their applications range from metrology [23] to energy teleportation [59, (6] and
communication [23]. In these protocols, two initially uncorrelated probes (non-relativistic
in nature, such as a qubit or a quantum harmonic oscillator) interact with a quantum field
for a certain amount of time. Typically the interaction is described via the Unruh-DeWitt
model [31], introduced in Section 2.3. The resultant reduced state of the two probes will
have harvested the correlations or entanglement present in the quantum field state. This
correlation harvesting is possible even when spacelike separated probes couple briefly to
the field [1041]. Correlation harvesting protocols have been studied in multiple settings. For
example, correlation harvesting has been studied for atomic systems [105], using quadratic
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couplings for the detector-field interaction [I11], in curved spacetimes [22, 68] or taking
into account the delocalization of the centre of mass of the detectors [120].

However, there has been little research on how correlation harvesting is affected when
more than two detectors couple to the quantum field [75, 68, |. The presence of extra
detectors in the field may enhance or detract our ability to harvest quantum correlations.
This knowledge is crucial to understand whether macroscopic devices, modelled as con-
glomerations of microscopic Unruh-DeWitt detectors [104], can ever have the ability to
harvest entanglement or correlations from fields.

In this chapter, we study non-perturbatively how the correlation harvested by two de-
tectors, A for Alice and B for Bob, is affected by the presence of N interloper detectors.
This non-perturbative calculation is possible by considering §-Dirac interactions - a use-
ful and common approximation to describe strong and short interactions. However, this

choice, considered in [I19] for the particular case of zero interloper detectors, prevents
entanglement harvesting [118]. Nevertheless, in this setting detectors can still harvest
correlations [119].

Our main result is that we can cancel the correlations harvested by Alice and Bob by
placing a single interloper detector in the right spacetime coordinates and with the right
coupling strength. We provide an interpretation of this result and discuss a particular
example of a correlation cancelling kind of scenario.

In this chapter, we also obtain, analytically, different correlation measures for Alice
and Bob’s detectors. We obtain the correlators of the two target detector’s observables,
their mutual information and their quantum discord. We analyze the different correlation
measures dependence on 1) the coupling strength of the two target detectors, 2) their
relative position, and 3) the presence of multiple interlopers.

3.2 Setup

3.2.1 The Model

Let us consider a real massless scalar field in a (n + 1) dimensional flat space-time. We
can write it in terms of plane wave solutions to the Klein-Gordon equation as

~

¢($’t) — [ d"k &Tkei(|k\t7k.:c) + &kefi(|k|t7k.w) ’ (31)

1
V22m)"k| [
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where the creation, d;;, and annihilation operators, a, obey the canonical commutation

relations

G, aw] = [ah,al] =0,  [ag,al,] = 0"(k — K'). (3.2)

We now consider N particle detectors coupled linearly to the field according to the
Unruh-DeWitt model [136, 131], explained in detail in Section 2.3. The interaction Hamil-
tonian (in the interaction picture) for the v-th detector is given by

~

F1,(8) = oo (81 (1) © / ek, (@ - 2,)d(t, @), (3.3)

so that all detectors v € {1,...,N} are comoving with the quantization frame (t,x)
and their centres of mass are localized at positions x,. The spatial profile of the detec-
tors are given by the real-valued distributions F,(x), called smearing functions. Here,
m,(t) == |g,) (e,| e + le,) (g,]| e ¥ is the detector’s monopole moment (|g,),|e,) de-
note respectively ground and excited states and €2, is the energy gap between them) and
A, is each detector’s coupling strength. The time dependence of the coupling is controlled
by the switching functions ., (t).

The interaction Hamiltonian of the N detectors with the field is therefore
N
() = 3 MO0 [ ek (@ - 2,)d(.1), (3.4)
v=1

where [1,(t) =1, ®...1, 1®m,(t)---®1y. For brevity, we will naturally extend operators
in the Hilbert space H, ® H4 to operators in ®,H, ® H, by dropping the tensor products
of identity operators.

The time evolution generated by (3.4) is implemented by its time-ordered exponential

U =T exp [—i /_ Cath (t)} : (3.5)

oo

so that if the initial state of the detectors-field system is given by the density operator py,
the final state is given by o

pr=UpoU", (3.6)
and the final state of the detectors after the interaction can be obtained by tracing over

the field degrees of freedom pp = trg [pf]. We can also obtain the density matrix of any
detector or group of detectors from the above expression by tracing over the appropriate
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detector degrees of freedom.

3.2.2 Non-perturbative time evolution of N detectors

The problem of calculating the unitary U in Eq. (3.5) is very commonly approached
perturbatively, where the expansion of the exponential is carried out up to a certain power
of A,. In some special cases, a non-perturbative calculation of Eq. (3.5) is possible. For
example, in [119]), a delta switching function x,(t) := 7,0(t —t,) has been used to find an
exact expression for U and to study the harvesting of correlations from coherent field states
using two detectors. This delta-switching function captures the limit of a very strong and
short interaction. The parameter 7, has the dimensions of length and denotes the strength
of the interaction.

However, in some cases, this “ideal” approximation of delta-coupling can be a double-
edged sword, even in its range of validity. Although it allows for non-perturbative formulas
[119], it may sometimes hinder the possibility for entanglement harvesting. A relatively
recent paper provided a no-go theorem for couplings that cannot harvest entanglement
[118]. Single delta couplings — spoiler alert, the ones we are going to use — are particular
cases of simply generated time evolution, which induce entanglement-breaking channels
and prevent entanglement extraction. Entanglement harvesting in our scenario is therefore
impossible. Nonetheless, as we will see as the chapter progresses, it is indeed possible to
harvest both classical and quantum correlations with a single delta switching function.

After this small detour, we go back to computing the exact expression for the density
matrix of N detectors, generalizing the result in [119]. Initially, the detectors are taken
to be in their respective ground states. We consider the field initialized in an arbitrary
coherent state, and the initial state of the field-detectors system to be py = |1)) (¢o| with

|1ho) = ® |92) @ [Bo(K)) - (3.7)

The coherent state |Sy(k)) is characterized by a coherent amplitude distribution Fy(k)
defined as

() = D 0) = exp [ klsntiial — sulkran) ) o), 3

where Dﬁo(k) is a multimode displacement operator [120]. Note that the vacuum state of
the field is the coherent state of distribution [y(k) = 0 Vk. The various properties of
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coherent states have been given in Section 2.2

The initial state (3.2.2) will evolve in the interaction picture as [¢b;) = U |1by). Sub-
sequently, we can obtain the state of the detectors by tracing over the field degrees of
freedom:

prvy = Trgll) (). (3.9)
Each detector couples with the field through a delta-switching function

Xo(t) = n,0(t = t,), (3.10)
where the constant 7, quantifies the strength of the kick [119]. We can assume, without

loss of generality, t; < t, < --- < ty, i.e. the detector with label v will be the vth to
interact with the field.

Also, unless explicitly stated otherwise, we will work in the convenient basis {|1,) ,|—1,)}
defined by

1) = %( l90) + € ley) ), [—1,) = %( l9) — €% lew) ), (3.11)

that we will denote throughout as {|s,)}, with s, = £1.

Considering the switching function (3.10) we calculate in Appendix A.2 a non-perturbative
expression for U as given in (3.5). It turns out that U factorizes as a product of controlled
unitaries:

U=0UxUyn_y...U, (3.12)
Uy = [1,){1] ® Dip, ) + |=1){(—1u] © D_p, (k). (3.13)

Before diving into how the complex function $3, (k) is defined, we can already interpret how
a general set of detectors coupled via a single delta acts on the field. If a detector v is in
state |1,), a multimode displacement operator with coherent amplitude f,(k), as defined
in (3.8), will act on the field. Similarly, if the detector is in state |—1,), the field will be
displaced with a coherent amplitude —p3, (k).

This process can be visualized in phase-space considering the action of detector v in one
particular mode, kg, as depicted in Figure 3.1. Even though singling out a mode among a
continuous range of frequencies is not completely physical, let us still do it, because 1) the
math is exactly the same as one of a harmonic oscillator, 2) it will help illustrate the effect
of the detector coupling on the field and 3) it will help us understand the final density
matrix in equation (3.18).
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Initially, the mode kg of the field is in a coherent state of coherent amplitude 5y(ko)
(a particular complex outcome of the distribution fy(k)). In phase-space, as explained
in Secion 2.8.1, this is mathematically a Gaussian centered at point z = Re(fy(ko)) and
y = Im(By(ko)) with covariance matrix equal to the identity (in Figure 3.1, blue circles in
both sides).

Then depending on whether the vth detector is in state |1,) or |—1,), the field mode
will suddenly, after ¢, be displaced in phase space. The length and angle of displacement
will follow the properties of a multiplication of displacement operators:

(11,) ®1Bo(ko)) ) = I1,) ® Dy, (ko) Dpo(ko) [0) = [1,) @ € |Bo(ko) + B1(ko)),  (3.14)

(1-1,) @ |Bo(ko)) ) = |1.) ® D_p, (ko) Dsa(io) 10) = 1) ® €7 | Bo(Kio) — Bi (ko)) .
(3.15)

U,
U,

where & = Im(5;(ko)*Bo(ko)). If the vth detector is in state |1,) the resultant state
of the mode in phase-space will be a Gaussian with its center displaced to the point with
coordinates x = Re(5o(ko) + 5. (ko)) and y = Im(By(ko) + 5, (ko)) (in Figure 3.1, red circle
on left side). Similarly if the vth detector is in state |—1,), the field state will suddenly,
after t,, be displaced in phase space to point with coordinates x = Re(fy(ko) — 5, (ko)) and
y = Im(By(ko) — Bu (ko)) (in Figure 3.1, red circle in right side). The effect of the coupling
of vth detectors on the state of the field is similar. Depending on the state of the probe,
the field will be “kicked” in phase space in the corresponding direction.

Now that we have a mental image of the situation let us open the black box of 3, (k).
How do the parameters of the detectors and its coupling to the field affect the field’s
trajectory in phase-space? Mathematically, their relation is given by

F,(—k) |
ﬁ,,(k:):—inl,)\l,—< >el<|’“‘trk-wv>, (3.16)

Ve

with F, (k) being the Fourier transform of the smearing function

~ 1

k)= e

We see then that the “length” of the displacements in phase-space depends on the
strength of the coupling, \,, and the strength of the kick in the delta-switching function,
7,. Since these two parameters always appear together in the rest of the chapter, we can
define an effective coupling strength, ), = M, Ay, that we will use for notational brevity from
now on. Another factor that contributes to 5, (k) is the Fourier transform of the smearing

d"kF(x)e*=. (3.17)
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t<t,

20

Figure 3.1: Visual representation of the controlled unitary in 3.13.

On the left of this figure we show the action of unitary U, on mode ko when the vth
detector is in state |1,). On the right we show the action of unitary U, on mode ko when
the vth detector is in state |—1,). Initially, at ¢t < ¢,, mode kg in phase-space is a
Gaussian centered at point © = Re(fy(ko)) and y = Im(Sy(ko)) with covariance matrix
equal to the identity. In both the right and left sides this Gaussian is represented by a
blue circle of unit one at the origin of coordinates, which is chosen to be precisely
x = Re(fy(ko)) and y = Im(By(ko)). On the left we use a red circle to represent the state
of mode kg at time ¢t > t,,, after the detector v (initially in state |1,)) has interacted with
the field. in this case, the final state of the mode is a Gaussian with its center displaced
to point © = Re(Bo(ko) + B, (ko)) and y = Im(By (ko) + B, (ko)) and covariance matrix
equal to the identity. On the left we use a red circle to represent the state of mode kg at
time ¢ > t,, after the detector v (initially in state |—1,)) has interacted with the field. in
this case, the final state of the mode is a Gaussian with its center displaced to point
x = Re(By(ko) — B, (ko)) and y = Im(By(ko) — B, (ko)) and covariance matrix equal to the

identity:.
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function, which determines how strongly the detector is coupled to each of the field modes.
As we discussed in Section 2.6, the Fourier transform of a localized smearing function has
a decreasing tail. This means that the most energetic modes will be less displaced by the
“kick” of detector v. Only the low energy modes will be displaced. Finally, the apparent
“divergence” of 5, (k) at k = 0 originates from singling out a particular mode, when S, (k)
only makes sense as a distribution. When integrated, other terms, like the Jacobian, will
smooth out this irregularity - the physics of a 3+1 scalar field does not break down at low
energy.

After this analysis, we can calculate the final state of the detectors-field system. Ap-
plying the unitary U from (3.12) on the initial state |t)y) we obtain the joint final state,
|t¢) for the detector-field system as

N N N
1 . =
05) =5y exp[iD Y sy Im(Ty)]15)0] Y sifilk)). (3.18)
7 i=0 j>i i=0
Here we have denoted the sum over §:= (s1,...,sy) for a sum over the binary N-tuples
(s1,...,8n5) € {—1,1}. The second and third sums are over the indices i which run from

0 to N, and sy = 1 throughout - to account for the initial state of the field being an
arbitrary coherent state of amplitude f5y(k).

The coherent state ‘Zﬁosiﬁi(k)> is characterized by the distribution result of the

sum inside the ket. As we discussed, this state is the result of the displacements due to
the “kick” of each detector v, depending on whether the detector v is in state s, = 1 or
s, = —1. Finally, just like we saw in equation (3.14), there is always a phase that appears
when multiplying displacement operators. This phase only depends on 7;;, which takes
the form

_ Giji | &

+i==, (3.19)

7= [ ks 005 00) = L+

where we have introduced §&;; and ¢;; since it will be convenient later. Therefore, the final
state in Eq. (3.18) will only depend on T};, which is given by the inner products of the
“displacement distributions”, 5;(k). These “displacement distributions” either correspond
to the initial state of the field, Sy(k) or to a detector f;(k), with ¢ > 0. The reader may
refer to Appendix A.2 for the detailed derivation.
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Tracing over the field in Eq. (3.18) we obtain the joint state of the N detectors:

N
Po =5x Zexp Z vi(sis; — 1) + Z (Tiys; — Tjash) (s — si) [|9)(5). (3.20)
e 2§ =0,i>]

From this general density matrix, one can obtain the reduced density matrix of any
pair of detectors (this general reduced state is derived in Appendix A.2) required to study
correlation harvesting. In the next section, we specify two target detectors corresponding
to Alice and Bob, and we show how interloper detectors could sabotage their harvesting
of correlations.

3.3 Cancelling of correlations

For the results of this thesis we consider the following situation. Alice and Bob control one
detector each, labeled A and B. Alice’s detector couples to the field before Bob’s detector,
ie. t, < ts. Also, we consider that there are N interloper detectors, which couple to the
field at times ¢, <t; <ty for every j =1,...,N.

In that case we obtain a simpler expression particularizing (3.20):

Pas = Z O (84, Sg, S, S) exp[ibo(sa, S, S, S4)] H o8 0;(Sa, Sp, Sy, S4)|Sas Su) (84, Sl
SA,SB,Sh,SE J#AB

(3.21)

In this equation we have

1
O (84, Sp, Sh, 85) = 1 exp|Tis(spsy, — 1) + Tha(s28y — 1) + (85 — 85)(Tassh, — Tuass)] (3.22)

and
! 1 /
0o = _(SA - SA)SOA + 5(513 - SB)SOB’ (3.23)

0; = 5(se — s5)&n- (3.24)

Examining this expression, we realize that we can easily set some of cos §;(s,, sg, 54, i)
to zero. This can only be done when s; # s, i.e. for non-diagonal terms in Bob’s detector.
Let us pick a preferred Interloper, labeled as I. For s; # s., we have that 6, is equal to
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+&. If we chose & to be an odd multiple of 7/2, the corresponding coefficient in p,p
vanishes. Thus, for this particular choice of &, the only terms in the density matrix that
survive are diagonal in Bob’s detector, that is, the terms for entries s; = s},. For those
elements (i.e. for elements such that s = s/;) we have

o 1 Caa /
0= 7 6XP |:T(SASA — 1)] : (3.25)
0o = %(sA — 53)0a, (3.26)
0; = 0. (3.27)

This means the matrix elements of p,; are independent of the value of s;. Moreover, the
density matrix is

1 AA / . A / / 1
po= (3 T e[St~ )+ - )|l @ pL 329

/
SA,Sa

Thus we see that, when &y is an odd multiple of 7/2, we have a product state, which
means that Alice’s and Bob’s detectors are not correlated. In fact, Bob’s detector is the
maximally mixed state. The action of the Interloper’s detector on the field provokes the
“flooding” of Bob’s detector with entropy. Since the state of the whole system (field and
detectors) is pure, and Bob’s reduced state is the maximally mixed state, Bob must be
maximally entangled to some system.

Since the reduced state of Alice and Bob is a product state, Bob cannot be entangled
with Alice. The only candidates then are the other interloper detectors, the field or both.
However, it is impossible for Bob to be entangled to any of the other detectors. According
to the results in the no-go theorem [115], two-qubit detectors interacting with the field
with a delta-Dirac coupling (a particular case of simple generated unitary) cannot harvest
entanglement. Necessarily, Bob’s detector is maximally entangled with some bipartite
sector of the field. Our interpretation then seems correct: by coupling instantaneously
to the field, the Interloper detector modifies the field state so that when Bob’s detector
interaction is switched on, Bob’s detector is “flooded” with entropy. Bob’s detector cannot
be correlated with anything but the field.

Then, if Alice and Bob tried to counteract the Interloper’s action using extra detectors
coupled through delta-couplings, it would be in vain, since Bob cannot be correlated with
anybody. It is possible that if those extra detectors were allowed to couple beyond the
delta limit, they might be able to somewhat undo the action of the interloper. However,
these considerations are out of the scope of this thesis. In any case, the presence of
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many detectors, at least with delta-couplings, will not tend to benefit Alice and Bob.
If there are enough detectors (i.e. if N is big enough) and the detectors have somewhat
random parameters, then we have [, , , [cos 0;(sa, ss, s}, s;)| — 0. The presence of enough
detectors leads to the product state in (3.28): they exponentially mess up any harvesting
protocol between Alice and Bob. It is known that quantum information is very fragile and
sensitive to noise, and so this result is not surprising. However, the analytic formula in
(3.28) provides us with some insight into the amount of noise introduced by extra detectors.

So far, we have talked about what happens to Bob’s detector when the Interloper’s
detector or many interloper detectors mess with it. In the many-detector case, it just seems
that noise prevents Alice and Bob from becoming correlated. But how is this cancellation
happening when there is a single Interloper? Is the Interloper detector communicating
with Bob? These questions will be answered at in subection 3.3.2. However, first, we will
show that a cancelling scenario is feasible: the parameter &; can always be fount to be
equal to a multiple of 7/2.

3.3.1 Conditions for correlation harvesting cancelling

As derived in Appendix A.5, we can rewrite &;; as a convolution smearing functions. Defin-
ing the spatial separation between the Interloper’s and Bob’s detector, X = x; — @, and
the time delay from the the Interloper’s action to Bob’s detector activation, T' = t; — t,,
we find, as in Eq. (A.74):
o o0 k 31
Ep =2 I)\B/dzzc’dz’FI(z’)FB(:l:' + z')/ dk (W) Jn_y(klx" — X|) sin(kT).
0 € —

(3.29)

In this expression Jz_;(k|z’ — X|) is a Bessel function.

The only requirement for the set of parameters to exist is that the expression inside
integral is different from 0. In that case we can obtain {;; = (n+1)7 for some integer n if we
the adjust the effective coupling strength \,. To analyze the necessary order of magnitude
A\ we first change to a dimensionless version of the problem. We choose the length scale
o in which the interaction (which is somewhat local) of each of the detectors and the field
is strongly supported. That means, more formally, that for |x| > ¢ = F(x) — 0 for the
smearing function F'(x). Through a change to dimensionless integration variables in the k
integral in Eq. (3.29) we obtain that in (n + 1) dimensions
Y

En = 7 (3.30)

on—1 )
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where,

I:Q/dw'dz'E(z’)FB(a:’+z’)/d(lm) Jg_l(k|m’_X|)sin(k‘T)<_|m, _k(;(|/o->2 .
(3.31)

Importantly, Z is a dimensionless geometric factor that depends on the smearing functions
of the detectors and the separations | X| and 7. This factor cannot be very large since
the smearing functions are L! functions normalized to one, so one would expect that this
geometric factor is indeed roughly of order 1 for three or less spatial dimensions.

In summary, in order for the interloper to completely sabotage the correlations between
Alice and Bob, the interloper’s coupling strength has to scale as

O_n—l

As

A~ (3.32)
Cranking up or down the effective coupling strength of the Interloper’s detector, we could
find that &5 is a multiple of 7/2, which is a sufficient condition to cancel correlation
harvesting. Notice that all these formulas are independent of detector A: Alice can do very
little to avoid the sabotage of the correlation harvesting protocol. If Bob wants to make it
difficult for the Interloper to sabotage the protocol, then Bob has to try to couple as nimbly
as possible to the field. Of course, this also goes in detriment of the amount of correlation
that Alice and Bob can extract from the field since the amount of correlation (in leading
order) is proportional to MAs. The safest protocol for correlation extraction, in this case,
is to consider that Alice couples very strongly to the field. Using a small coupling for Bob,
one would obtain the same leading order of amount correlation extracted from the field.

In the next section, we are going to choose a hard-sphere smearing for the Interloper’s
and Bob’s detector in three spatial dimensions. We show that we can achieve &; = /2
by controlling their coupling with the field exclusively. By analyzing this case in depth,
namely the spacetime positions where the Interloper can sabotage Alice and Bob correlation
harvesting protocol, we will learn whether this phenomenon is due to signalling, partially
signalling, or something entirely different.
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3.3.2 Example

First we consider the smearing function of Bob’s and the Interloper’s detectors to be a
normalised hard sphere in 3 spatial dimensions:

% x| <o
F(z) = . (3.33)
0 x| > o

Let us recall that the spatial separation between the Interloper’s and Bob’s detector | X | =
|y — x;| and the time delay from the Interloper’s action to Bob’s detector activation
T =ty —t;. In Appendix A.5 we show that

’ X |-|7|
0 20 2 1
T 5 3V2m 4 3
1_ /2 _ 1g5/2 | X|+T]
&= /\I)\BO'|X| (5= 0. 407 = 507) % =1 (3.34)
§3 SV2T | X[+
\)\I)\B oIX| (6, — 5i/2 + %5i/2 — 5 4832 - 553/2) XLHT] <

with 5, = (XH) and 5 = (1Xpi0)"

To cancel correlations we need to prove that we can modify the Interloper’s detector
parameters so that &; = (2n + 1)7/2 for some integer n. The parameters that we can
modify are the space and time coordinates of the Interloper’s detector, x; and ¢; (which
appear in | X | and T respectively) and its effective coupling strength M. The unchangeable
parameters are Bob’s effective coupling strength A, and the spatial extent of both detectors,

o, which provides the spatial scale in this scenario.

From Eq. (3.34) we observe that for very small values of 5\1, parameter &, is very small
in absolute value and it would not be possible for it to be a multiple of 7 /2. It is possible,
though, to find the coupling strength values for which it is guaranteed that §y = 7 for
some x; and t;. The strategy to prove that these x; and ¢, exist and how that restricts
the rest of parameters is to prove that for each o, ), and \s, the maximum for function
&, denoted as f,, can be greater than 7. With simple analysis, it can be shown that the
maxima of & occurs when |X| =T ~ 0.576730. For these values, the condition &, > 7/2

can be written as,
2

A > 0.78%. (3.35)

B
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As long as this condition is met, we can find some spacetime position for detector I for
which &5 = 7/2, due to the continuity of the function &;. In Figure 3.2 we plot a plane at
7/2 (in blue) and function & (in orange) for parameters which obey the condition (3.35):
o=1, As = 2 and A, = 2. In this plot we observe that 7/2 is achieved within the region
|| X| —T| < 20, i.e. in the region where B and I are lightlike separated.

Figure 3.2: Plot a plane at 7/2 (in blue) and function &, (in orange) for o = 1, A, = 2
and 5\1 = 2.

As these parameters obey the condition (3.35), as expected there is intersection between
the plane and function &y at points with || X| — T| < 20, which determines points in which
detectors B and I are lightlike separated.

In fact, looking once more at formula (3.34), it is evident that if Bob and the Interloper
were spacelike or purely timelike separated, sabotage would be impossible since &y is
identically zero. The Interloper’s detector must then be placed in the past cone of Bob’s
detector and lightlike connected to it. In Figure 3.3, we depict a possible scenario between
Alice, Bob and the Interloper’s detectors plotting the xz-coordinate of the detectors versus
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time. Two curves represent some positions for the Interloper’s detector center for which
& = m/2, with &g defined in 3.34. For those positions, the Interloper would cancel
correlation harvesting between Alice and Bob.

[ N

Possible centers for the
Interloper's detector

5 10 15

Alice's detector

Figure 3.3: Plot of a possible scenario between Alice, Bob and the Interloper’s detectors
plotting the x-coordinate of the detectors versus time.

Alice’s detector switches on at t, = 0 and is centered at x, = (0,0,0). Bob’s detector
switches on at t; = 5 and is centered at x, = (10,0,0). Two curves represent some
positions for the Interloper’s detector center for which &y = 7/2, with &y definded in 3.34.
For those positions, the Interloper would cancel correlation harvesting between Alice and

Bob.

Now that we have some insight both visually and mathematically, we can understand
better how the correlation cancellation works if the Interloper’s detector is inside Bob’s
past cone. It seems that it is partially due to the Interloper’s detector signalling Bob’s
detector, since the Interloper and Bob are necessarily in light-contact. This “evil” placing
of Interloper detector sends a signal and modifies the field in such a way that detector B
becomes maximally entangled with the field when it interacts with it.

At the beginning of this chapter, we stated that in the absence of the Interloper detector,
Alice and Bob could harvest correlations. In the next section, we are going to analyze
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different classical and quantum correlations harvested between Alice and Bob.

3.4 Harvesting correlations

In this section, we will study the classical and quantum correlations harvested between
two identical target detectors, that is Alice’s (A), Bob’s (B) and with the presence of N
interloper detectors (not just the Interloper). Recall that these interloper detectors interact
with the field at some time before Bob and after Alice, i.e. t, <t; <tz fori=1,..., N.
The density matrix for the target detectors is obtained from Eq. (3.20) after tracing out
the interloper detectors. In particular, we study three kinds of correlation quantifiers for
the final state of the detectors in Eq. (3.21). Namely, we will analyze:

1. the correlators of any two arbitrary observables of the detectors,
2. the mutual information of the target detectors, and

3. the quantum discord of the target detectors.

In the following subsections, we introduce the different correlation measures and provide
analytical formulas for our scenario using the density matrix in Eq. (3.21). However, we
will not analyze each of the formulas in depth. In Section 3.5, we will see that they have
similar behaviour for various ranges of parameters; we will discuss and compare these
correlations measures then.

3.4.1 Correlators of the detectors observables

Let O, and Oy be any two observables defined on the Hilbert spaces of detectors A and B
respectively. The correlation function between O, and O, in the joint state p,p is defined
as

L. (01, Op) = (0405) — (0.)(Os), (3.36)

where (O) = Tr(j,,O) denotes the expectation value of O on the detectors’ state j,; given
in Eq. (3.21). We define a convenient basis of detector operators for the v—th detector as

St = =LY (~L| + L) (L] = 1, 57 = |=1,) (L] + 1) (=1, (3.37)
Sy =il=1) (L] = i[L) (=1L[, S35 = —|=1) (L] + 1) (L] (3.38)
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where |1,) and |—1,) are the elements of the basis of each detector’s Hilbert space defined in
Eq. (3.11). We can then denote any Hermitian operator in the Hilbert spaces of detectors
a and b as

@A = aogg + Cllg? -+ CLQSEA + aggg, (339)
Op = boS% + b1 S® + 0,53 + b3 S2, (3.40)

where a;,b; € R. We recall that the correlation between S’g = 1, and any operator is zero;

thus, we obtain
3

Tiu(00,0) = Y ambil5,, (S5, S0). (3.41)

m,n=1

It is then straightforward to calculate each Fﬁab(gﬁl, S2) using (3.21) and (3.36)—which we
do explicitly in Appendix A.3—resulting in

0.0,

[,,(0,,0;) = 1 < H Cos éjB) e[ sinh Cys (a1 sin &op+as cos Eop ) (by sin oa +ba cos Eo)
J

+ (cosh (uyp — cos &xp)(aq cos o — az sin o) (by cos Epp — by sin &y, )
— /2 sin &, (a1 sin Eop + a2 coséos) bs) - (3.42)

In this expression, the detectors are considered to be identical and coupling with equal
strength, so we defined

C="Cn=CGp = 4/d”k\,8A(k:)|2 = 4/d“k!ﬁB(k)\2. (3.43)

As shown in Appendix A.5, ¢ depends on Alice’s and Bob’s detectors coupling strengths,
but it does not depend on the spacetime position of Alice’s, Bob’s and the interloper’s
detectors.

From Eq. (3.42) we can extract how correlators depend on the parameters of the setup.
The product [] ; cos & depends solely on the characteristics of the interloper detectors and
their relative position to Bob’s detector. The rest of the expression depends on the target
detectors and the initial field state.
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3.4.2 Mutual information

Mutual information is a measure of total correlations (classical and quantum) that can be
thought of as the amount of information that the two parties in a bipartite system share
between each other [97]. It is defined as

Z(pas) = S(pa) + S(Ps) — S(Pan), (3.44)
where p, and py are the reduced states for the first and last detector, respectively and S(p)
is the von-Neumann entropy of state p.

Although the mutual information can be computed in closed form for any choice of
initial coherent state of the field, for convenience of the analysis, we will focus on the case
when the field is initially in the vacuum state. In this scenario the density matrix p,g
becomes a X-state, as derived in Appendix A.4.

As shown in the Appendix A.4, we obtain
S(:aB) =9 <67</2 cos &g H COSs ’5]'3) ) (3.45)
J

S(pa) = g<€7g/2)7

. =2 ’
S(pAB) = —aylogy a; — by logy by + alg( 2) + blg(ﬁ)’
aq bl
where,
()_ 1_x1 <1_3;> 1—i-az:1 (1—1—3:)
g(z) = A AT A
1 | |
a; = 5(1 + e—C COShCAB A COSé'jB>7
J
1 | |
bl = 5(1 — €7C COShCAB ' COS&jB)’
J

1 2
ag = Ze_c [1 + 2cosé,p H cos g + (H cos SjB) (1 + e ¢ sinh? CAB)} ,
j J

J

b2 = }16—4 [1 — 208 € H cos & + (H cos ng)Z (1 + ¢S sinh? CAB)} ) (3.46)
J J

From (3.45) we can evaluate the mutual information Z(p,s) using (3.44).
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3.4.3 Quantum Discord

Mutual information does not distinguish classical correlations from quantum ones. Even in
the absence of entanglement it has been argued that there can be other kind of correlations
that may have some notion of ‘non-classicality” such as quantum discord [3]. Before defining
quantum discord, it is worth introducing a new measure of correlations C (called in [50]
classical correlations) was defined as follows:

C(ﬁAB) = S(ﬁB) - {ij\%f.} S(ﬁABHMk})a (3-47)

where the expression S(jas|{Mj}) denotes the average amount of uncertainty that we have
about subsystem B after performing local positive-operator valued measures (POVM),
M;M;], on subsystem A:

S(psl{Mi}) = piS(}), (3.48)
pi =T { (U, ® 1)po (V] © 1) }, (3.49)
T 16 (A1

Even if the optimization is over the set of POVMs on the subsystem A, some formulas have
been found when optimizing solely over the set of PVMs [53, 47, 90]. For some cases of
two-qubit states, optimizing over the set of PVMs yields the correct C correlation function
[27]. As we will detail a bit further down the road, for our particular only need to optimize
over the set PVMs. Thus, for our two qubit system, C(p,s) can be thought of as the
maximum information that can be gained about a subsystem B, by coherence-destroying
projective measurements of the state of A. It can be seen that for a separable state for
which the partial state of A is a classical probability distribution over the eigenstates of
some observable (i.e., pas = >, pi |1)(i] ® pf) then C(pas) = Z(pas) [3]. Thus, in the case
where the system only has classical correlations, C(p,s) is exactly the mutual information.

However, the name ‘classical correlation” does not mean correlations in absence of en-
tanglement. The presence of entanglement in a pure two-qubit system (which is a genuinely
quantum form of correlations) will yield non-zero C. Rather C accounts for the information
that can be learned about B by the application of measurement protocols on A—usually
associated with classical (macroscopic) apparatuses acting locally on A. Along this line, it
can be checked that C satisfies the following reasonable properties described in [56]:
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C = 0 for product states p 5 = pr ® pPg.

C is invariant under local unitary transformations.

e C is non-increasing under local operations.

C = S(pa) = S(ps) for pure states.

The only two differences between these reasonable properties for C and an entanglement
measure is that a) we allow C to increase under local operations when there is classical
communication and b) we allow C to be non-zero for non-product separable states. In
this light one may wonder if ‘classical correlation” might be a misnomer since, for pure
bipartite states, C is precisely the entanglement entropy and entanglement is rarely referred
to as a ‘classical correlation’. Instead, the usefulness of C on its own is that it quantifies
the information about B that is revealed when measuring A through POVMs, regardless
whether it is a consequence of pre-existing classical correlations or entanglement [133].
Note as well that, outside pure states, C is not symmetric w.r.t subsystems A and B.

The Henderson-Vedral C function is often difficult to find analytically because of the
optimization over the set of possible POVMs on A. However, for a pair of qubits, it has
been proved that the optimality in the C function is always achieved optimizing over the
set of PVMs [53]. Even though no general analytical expression for C exists for a pair of
qubits in an arbitrary state, tight bounds have been found analytically for some class of
states [9, 1]

One of such families of two-qubit states is the family of X-states (states for which
density matrix elements in some relevant basis is of the form p;;, obeying p12 = p13 =
P21 = P2s = P31 = p3s = paz = pa3 = 0). In Appendix A.4 we show that the density matrix
of A and B (3.21) is indeed a X-state in the {|g), |e) ¢!} basis, when the field is initially
in the vacuum state.

For X-states, the authors in [9] proposed an algorithm to evaluate analytically the C
function, by optimizing over the set of orthogonal measurements (also called von Neumann
measurements) instead of over the set of PVMs. This optimization is not enough, in general,
to obtain the optimal value of the C-function for X-states of rank higher than two [53, 70].
Therefore, this algorithm only provides a tight bound for the C-function in general.

However, for our density matrices (Eq. (3.21)) we can still use the formulae obtained
in [9] to calculate exactly the C function, even though they are rank four. It was shown in
[27] that the algorithm proposed in [9] gives the correct results for a certain subfamily of
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X-states, which satisfy any one of the following conditions:

4(|,023|2) < (p11 — p22)(paa — p33), (3.51)
|V/Pr1paa — /P22ps3| < 2|pas|. (3.52)

In Appendix A.4.3 we show how first condition is always false and the second condition is
always met for the parameters we consider in this manuscript. Hence using the formulas
provided by Ali et al. in [9] is justified in our case.

To calculate the classical correlation for a X-state as described in [9], one has to do
an optimization over eight different possibilities. In our case, they are reduced to the the
following formula as derived in Appendix A.4.2:

C(pas) = S(ps) — min{pog(fo) + prg(61), 9(¢")}, (3.53)
Po = 1+T6_C/2 p1= 1_T€_C/2, (3.54)
By = —¢/2005 8 + 62;/ ? cosh (yp Hcos Ejss (3.55)
6, — o-c/2005 6 = 62;1/ " cosh (s 1:[003 Ein, (3.56)
0 = e*</2\/ 1+ e~Csinh® (yp [ ] cos (3.57)
J

Finally, quantum discord, Q, is a measure of quantum correlations for bipartite sys-
tems, useful in characterizing quantum correlations beyond entanglement. It is defined
as the difference between quantum mutual information, Z(p), and the Henderson-Vedral
correlation function C(p),

Q) = Z(p) — C(p). (3.58)

The motivation for defining discord as such comes from the fact that in classical information
theory, the mutual information between two random variables can be obtained 1) with an
expression like (3.44) where the entropies are the respective Shannon entropies, and 2)
as an optimization problem over all possible measurements of one of the variables. The
quantum analogue to the two classically identical expressions can differ for some states.
Discord is defined as this difference [95].
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3.5 Trends in correlation

In this section, we analyze and compare these correlation measures. The four correlation
measures considered (observable correlators, mutual information, C correlation function
and quantum discord) follow similar trends in their dependence on the parameters of the
setup.

In this subsection, we explore the dependence of the different correlation measures on

1. The relative positioning of Alice and Bob
2. The coupling strength of both target detectors

3. The impact of the presence of an additional (interloper) detector in the harvesting
of bipartite correlations

In all cases we consider that both Alice and Bob are identical detectors and that their
smearing function is the hard-sphere defined in Eq. (3.34), with radious ¢. In the last two
scenarios, we will consider the following spacetimes positions for Alice and Bob shown in
Fig. 3.5, which showcases space-like separation, light-like separation and time-like separa-
tion. In the three cases, the difference of switching time is T" = t; — t, = 5. In the first
scenario, the difference between in position is |X| = |z, — x| = 0 and thus Alice and
Bob are timelike separated. In the second scenario, the difference between in position is
| X | = |xs — 5| = 5o and thus Alice and Bob are lightlike separated. In the first scenario,
the difference between in position is | X | = |, — 5| = 100 and thus Alice and Bob are
spacelike separated.
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Figure 3.4: Representation for 141 dimensions of three possible scenarios for Alice and
Bob’s detectors.

3.5.1 Spacetime dependence of correlations

In the scenario where we have two detectors coupling to the field, there are two main ways
in which they can get correlated. First, if the detectors are light-connected, they can talk
to each other by the exchange of “real-quanta”. More precisely, the first detector creates
energy-carrying perturbations that propagate at the speed of light and reach the second
detector, correlating the two of them.

On the other hand, if the detectors are spacelike separated, they cannot exchange
signals, but they can harvest the correlations that pre-exist in the vacuum state of the
field [104]. This is also the case for pure timelike separation since, in 3+1D Minkowski
space, the energy carried by a massless field cannot propagate slower than light either due
to the strong Huygens principle [64].

Figs. 3.5 show how the extracted correlations decay as the spacetime separation between
the detectors increases. Whereas most of the correlation harvesting happens on null-
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contact, we see how detectors can also harvest correlations while spacelike (or timelike)
separated. This is not surprising since local field observables in spacelike separation are,
in general, also correlated [127, , |, albeit with smaller intensity as the spatial and
temporal distance between them increases.

Propagators become smaller as the spacelike distance between detectors increases for
fixed time slices. Thus, the term T}, given in (3.19), becomes smaller as the two detectors,
A and B, are more and more spacelike separated. It is then easy to check with our
formulas that vanishing T}, implies that every correlation measure we have studied also
vanishes. This makes sense as the correlations we are trying to extract from the field
become increasingly small.

In Fig. 3.5 we show the dependence of the different measures of correlation for depending
on their position with respect to each other, when there is hard-sphere smearing. We
observe that correlations are stronger when the two detectors are time-like separated.
Mathematically that is the zone such that ||xg — x| — |tz — t4|| = || X]| — |T]| < 20.
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Figure 3.5: Logarithmic dependence on relative position of target detectors of different
correlation measures.

Coupling strength is set to A2 = 1. The smearing function has been chosen to be 3-
dimensional hard-sphere with radius equal to ¢ = 1, as given in (3.33). We consider a
scenario in which there are no other detectors present, i.e., & = 0. We consider that the
initial state of the field is the vacuum state. Plotted from X =0 to X = 100.
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3.5.2 Coupling strength

The strength of the couplings of detector A and B is quantified by the parameter (we
are assuming the target detectors to be identical; i.e. A = A = X and hence the product
of coupling strengths of detectors A and B, is 5\2) In Fig. (3.6) we plot the dependence on
A2 of (a) the free energy H¥* correlators, (b) mutual information, (c¢) Henderson-Vedral
classical correlation and (d) quantum discord.

We see how all the correlations vanish at A2 = 0 and for a small increase in the \2
the magnitude of correlations increases. This is natural as zero coupling implies that the
(initially uncorrelated) detectors do not interact with the field at all and hence they cannot
correlate with each other. As we increase the coupling, the detectors start interacting with
the field, and the correlations slowly increase in magnitude.

Moreover, in the limit of very strong coupling, A2 — oo all correlations vanish. Applying
the Cauchy-Schwarz inequality to (3.19) we obtain [(ssl, |€as] < (. Since by definition,
( A2 and ¢ > 0, we see that the terms e™¢, et and e~¢~%* all approach zero as 22
tends to infinity. Thus using Eqs. (3.42), (3.45), (3.44), (3.53) and (3.58) we conclude
that all correlation measures must go to zero in the strong coupling limit. Physically what
this means is a detector interacts with the field so strongly, i.e. “kicks” or displaces the
field so much that the second detector is unable to harvest correlations. This particular
phenomenon was studied in the case of non-perturbative entanglement harvesting [115]. In
the strong coupling regime (outside perturbation theory), increasing the coupling strength
provokes a fast decay of correlation harvesting at least for the case of delta-couplings.
Since the harvesting of correlations is usually a competition between non-local terms and
local noise [110], it is possible that this phenomenon is due to the amplification of the local
noise as the intensity of the interaction increases [119]. The strong delta couplings entangle
every single detector with the field locally introducing local noise that plays against the
acquisition of correlations between the two detectors.

Finally, we would like to note that, as the correlations are continuous at all points,
vanish at A2 = 0 and asymptote horizontally to the line y = 0, the existence of a maximum
is implied, as shown in Fig. (3.6). Therefore given any arrangement of target detectors
and interlopers, and any correlation measure, we can always find a coupling strength that
maximizes its value.
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Figure 3.6: Logarithmic dependence of coupling strength for correlation measures between
detector A and B in the absence of other detectors.

The smearing function has been chosen to be 3-dimensional hard-sphere with a radius equal
to o =1, as given in (3.33). We consider the energy gap of the detectors, 2, = Q; = 1 The
initial state of the field is the vacuum. We observe that all correlation measures vanish
at 7 = 0 and have horizontal asymptotes going to 0. As expected, there is at least one
maximum for each correlation measure and each set of fixed parameters.

3.5.3 Influence of the extra detectors

Finally, we discuss the influence of the interloper detectors. They attenuate the correlation
harvested, in general due to the cos §;z term contributed by each interloper j as can easily
be checked in the expressions of the correlation measures- Eqgs. (3.42), (3.45), (3.44), (3.53)
and (3.58). Moreover, notice that the argument of the cosine depends on ¢j5, which is a
function of the relative arrangement of the extra detector and Bob’s detector (the last
detector).
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Figure 3.7: Dependence of the different correlation measures with respect to &.

We consider a scenario in which there is a single interloper detector, I, and we analyze
the dependence of the different correlation measures with respect to & (for the rest of the
detectors, &5 = 0). The term &, depends on the coupling strength of the middle detector
and the relative position between detector I and the last detector, B. Coupling strength is
set to A2 = 0.2. The smearing function has been chosen to be a 3-dimensional hard-sphere
with a radius equal to o = 1, as given in (3.33). We consider the initial state of the field
to be the vacuum state.

We notice that, if we place enough detectors such that |cos¢;s| < 1, the limit of 0
correlations will be achieved. This attenuation of the correlation by extra detectors is
expected, as they introduce more noise in the field in between the time the field interacts
with our target detectors.

As we already discussed in Section 3.3, our most striking result was that when a single
interloper I is placed at a spacetime position (x;,ty), such that &y is an odd multiple of
7/2, all the correlations measures vanish simultaneously as cos & = 0. In figure 3.7 we plot
how the different measures depend on one £z when there is only one interloper detector I
along with the target detectors.
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3.6 Conclusion

In this chapter, we considered N two-level detectors interacting with a coherent state of
a free scalar massless field via a delta-Dirac coupling. We non-perturbatively obtained
the density matrix of the whole system. We particularized our formula and obtained the
joint state for two detectors, Alice and Bob, the first and last to couple to the field, in the
presence of N interloper detectors that coupled to the field at some intermediate times. We
discussed that in this setting, Alice and Bob could generally harvest classical and quantum
correlations, even if entanglement correlation was not possible.

The main result in this chapter is that the presence of a single interloper placed con-
veniently in spacetime and with a particular coupling strength can cancel the harvesting
of correlations between Alice and Bob. The Interloper accomplishes that by modifying
the field in such a way that it “floods” Bob’s detector with entropy. In other words, the
presence of the interloper makes Bob maximally entangled with the field. In fact, the pa-
rameters of the interloper solely depend on Bob’s detector’s parameters and not at all on
Alice’s detector. We particularized this result to 3+1 dimensions and discussed an example
in which the detectors have compact smearing functions. We concluded that an interloper
needs to always be placed lightlike separated from Bob to be successful at sabotaging the
correlation harvesting protocol. Thus, the correlation harvesting cancellation is partially
due to some communication between the Interloper and Bob.

After presenting this first result, we studied several classical and quantum correlation
measures: namely, the correlators between any pair of observables for Alice’s and Bob’s
detectors, their mutual information and their quantum discord. We included analytical
formulas for each of the correlation measures. We studied the dependence of the correlation
measures on the coupling strengths of Alice and Bob. We obtained that there existed some
coupling strengths for which the different correlation measures maximized. For the limit of
strong coupling, it could be obtained analytically that the correlation measures vanished.
Our interpretation was that too much noise was introduced, which was detrimental to the
correlation harvesting protocol. In this same line, we studied that the presence of enough
interloper detectors exponentially deteriorated the harvesting of correlation, and we could
obtain this result from the density matrix of Alice and Bob generally.

The implications and outlook of this project will be described in Chapter 5.
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Chapter 4

Machine learning quantum fields
with detector probes

The results in this chapter are based in the preprint [51], a project result of the collab-
oration with Daniel Grimmer and Eduardo Martin-Martinez. Sections 4.4, 4.6 and 4.9
are verbatim. The paragraphs setting the paramaters in subsections 4.7.2 and 4.8.2 are
verbatim. In 4.7.3, the paragraphs from Eq. (4.34) to Eq. (4.37) are verbatim.

4.1 Introduction

In Chapter 3, we explored how, using local Unruh-DeWitt detectors, one can learn about
correlations and entanglement of quantum field states. In both cases, we used quite
problem-dependent choices for detectors’ geometry and coupling scenarios. These con-
venient choices allowed us to obtain analytical expressions for the detectors states, which
in turn provided us with some information about the field. However, many scenarios may
be too difficult to analyze mathematically or for which we do not even have theoretical
models.

In such cases, a sensible way to obtain information about a quantum field is to analyze
the outcomes of measurements of local probes coupled to the field. It is thinkable that one
could learn about local features of the field using local probes. However, this task seems
more challenging if we are interested in global features of the field, like its geometry or
underlying entanglement structure. Fortunately, this is still theoretically feasible [96, 95].
Indeed, ground and thermal states of quantum fields store global information of the field in
a localized, although scrambled, manner [100, 86, 78, , 70, |. For example, a ground
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state will have information about its boundary conditions even in localized places far away
from its boundaries [5].

Thus, in principle, there exists a map from measurement outcomes of local probes to
claims about local and non-local features of the field. However, this map will be very
convoluted: the information extracted from the field by the local probes is very scrambled.
In some specific situations, one can translate the transition probabilities of the detector
to the features of the field we want to study [129, 58, 5, , 96, 4]. However, in more
challenging scenarios, one may not know what family of probabilities distributions are
adequate for the problem in hand. We then have to find a context-free fit for the raw data
coming from the probe(s) to claims about the field.

Fortunately, this is a well-studied problem in machine learning and deep learning. These
techniques are used to provide insight from large and convoluted data sets by fitting a
very general form of functions. They have been applied to multiple quantum settings in

[ ) Y ) Y Y Y Y Y ]

In this chapter, we use machine learning techniques to study how

1. a particle detector distinguishes boundary conditions before signals can bounce off
of the boundaries and reach the probe,

2. detectors can determine the temperature of the quantum field before thermalization
time, and

3. to distinguish a Fock State and a phase-averaged coherent state.

We obtain all these results by analyzing the outcomes of a single local probe coupled to
the field with the same type of neural network. The first two results are accomplished
using the same measurement protocol, and the third one is slightly modified to be able to
generate the data more easily.

These results work as a proof-of-principle and show that neural networks are useful
context-free tools in the study of non-local properties of the field using only local probes.
This work introduces an operational way to study Quantum Field Theories without the
burden of designing a clever measurement procedure (i.e. with lots of probes or complicated
couplings). We prescribe a simple measurement protocol on the field, not tailored to extract
information about one particular feature. The “difficult” part of the job is then done by the
neural networks, which unravel the outcomes of the probe(s) and can recover information
about any feature of the field.

60



4.2 Setup

We consider a 141 dimensional scalar quantum field with mass m and a harmonic oscillator
probe coupled locally to the field. This harmonic oscillator probe has an excitation energy
of hwy. The free Hamiltonian of this field-probe system is Heppe = He + Hp with

» I 247 N\2 n 2 m2c® , 2

Hy = 5 dz 7 (x)° + (0.0(x))” + 2 o(x)?, (4.1)
- huw

HD - QD (ég +ﬁ?))7 (42)

where x = (¢, #) and where ¢(x) and 7#(x) are the field observables satisfying the cannonical
commutation relations [(¢, 2), 7 (¢, y)] = ihd(z — y) and G, and p, are the probe observables
satisfying [gp, pp] = 1. The probe couples to the field locally via an Unruh-DeWitt type of
interaction, where the Hamiltonian (in the interaction picture) is given by

~

Toer = Ax(0) / “dr F(2) 4 © d(x), (4.3)

—00

where A is their coupling strength, x(¢) is a switching function and F(x) is the probe’s
smearing function. The time evolution generated by (4.3) is implemented by its time-
ordered exponential

0 = T exp {—i / OodtﬁINT(t)] | (4.4)

o0

so that if the initial state of the detector-field system is given by the density operator py,
the final state is given by o

p=UpoUrt, (4.5)
and the final state of the detectors after the interaction can be obtained by tracing over

the field degrees of freedom pp, = tr;[p].

In the two cases we study the switching function is a top-hat function,

1 0<t<T
X(®) :{ 0 else (4.6)

where T" denotes the duration of the coupling.

The smearing function will be given by a Gaussian function with width o centered at
Tp, the position of the detector’s center of mass, i.e.,
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Fr) = —— exp [_M} . (4.7)

oV 2w 202

In the next section, we consider two simplifications to this set up: we take an IR-cutoff
and a probe-induced UV-cutoff. The IR-cutoff can be easily justified by considering we
are studying a quantum field in a cavity. However, a naively chosen UV-cutoff can, in
principle, cause superluminal signalling in our setting [37]. In Section 2.6, we explain how
a probe induces a soft-UV cutoff in our setting, and thus this approximation is harmless
in the right regime.

These two simplifications - the UV-cutoff and IR-cutoff - will allow us to study the
evolution of the coupled system with the powerful Gaussian formalism.

4.3 Simplification and Gaussian formalism

Any smearing function with local support induces a natural UV cutoff for the field-probe
system. As explained in Section 2.6, the coupling of the detector to the field modes is
exponentially suppressed as the modes’ frequencies increase. In particular, if a smearing
function has length scale o, then the probe will effectively not couple to modes with
|k| >> o~'. Thus, we are justified in introducing a UV cutoff K = 16/0 (i.e. we cut
out the modes whose frequencies obey |k| > K), and this cutoff does not change our
analysis nor the physical behaviour of the system. A detailed explanation of the effect of
this particular cutoff and why it can be used is given in Section 2.7. Thus, the UV cutoff
version of the interaction Hamiltonian yields

Hive = AX(8) Y aF(w) 4o @ (1, ), (4.8)

J

where a := 7/K is the spacing of the discrete positions and the terms x; == ja represent
the points where the probe effectively couples to the field.

To simplify our calculations, we also modify the free field Hamiltonian given in Eq.
(2.5). We choose to 1) introduce a hard UV-cutoff on the field Hamiltonian (i.e. we
eliminate the modes with frequency |k| > K everywhere, not just in the interaction Hamil-
tonian) and 2) introduce a first-neighbours approximation for (8,6(x))%. The physical
implications of the second choice are a little bit more subtle, and they are discussed in de-
tail in Section 2.7. There we conclude that a naively chosen cutoff may allow the existence
of superluminal signals in higher frequencies. However, we analyze how the probe couples
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in a feeble way to these frequencies and we quantify the amount of error introduced by
this cutoft.

The resultant field Hamiltonian is as derived in Chapter 2 in Eq. (2.27):

a

A;V _ gzc2ﬁ2(xn> + <¢(Xn+1> — ¢(Xn)) + m; &Q(Xn)- (49)

n

We can further impose an IR-cutoff (i.e. we consider |k| > M for some M). This
is equivalent to restricting the field to a region z € [0,L] where L = Na (i.e., field
in a cavity). Since this cutoff does not induce a problem with super-luminal signal we
have a degree of freedom in choosing L or, equivalently, N. Defining now dimensionless
field operators g, = \/am/h2 ¢(x,) and p, = \/a/m 7 (x,) (which satisfy [4;, p;] = i0;;) we
obtain the following field and interaction Hamiltonians,

o =) 0+ @) T 55 (G — )% 4.10

Hy ; 5~ (Pn+ ) + 55 (Gns1 — ) (4.10)
N

ity = Xox(t) > aF(n) o @ G, (4.11)
n=1

where \g = Ah/\/am is the energy scale of the probe-field coupling. After these UV
and IR cutoff, we obtain Hamiltonians that can be analyzed with the Gaussian formalism,
explained in Section 2.8. We will use both the basis R = (Gos Doy G1, P15 G2y D2y - - - s 4N DN)
and the basis R = (4o, G1s G2y - - - 54Ny Do, P1y D2, - - -, D) and recall that

1 N+1 O 1
N IS _
H=_R'FR, Q) @(_1 0),
. 1 . . 0 1
H=-R"F'R, O R
2 (—]1N+1 On1

where F' and F’ are symmetric matrices. The notation is as follows: matrices M and M’
are written in basis R or R’ respectively. The corresponding Gaussian counterparts of the
operators we defined in equations (2.76),(2.79) and (2.77) are:
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?:LFREE - ﬂD + ﬂgv — FFREE = FD D OQN + 02 D F¢, (4.12)
pAOZpAD0®pAFO _>O-0:O-D0®0-F07 (413)
He, U= Fin, S = 2T, (4.14)

where T" denotes the duration of the coupling as in (4.6). In this case we see that initial
vector of first moments, 7, as defined in Eq. (2.79) is identically zero. This is because the
initial Gaussian states of the different systems, the field and the probe, are not displaced
(they are either the ground or thermal states). Since the Hamiltonian that rules the
evolution does not have a linear term that displaces the Gaussian state (i.e. a defined
in Eq. (2.76)), the vector of moments r = S7, remains identically zero throughout the
interaction.

The initial state of the probe is always the ground state so that o, = 15. The initial
state of the field is a thermal state of inverse temperature 3 := 1/kgT, with respect to the
Hamiltonian Hg" in Eq. (4.10). In basis R’ the covariance matrix is

L coth (Bch\/M> 0

o = | VM .
ro M ) ST eoth (ﬁm62m> : (4.15)

where the symmetric matrix M is defined, from Eq. (4.10), as

. me Ao
Hy = —p'p+—q4 Mq, (4.16)

with ¢ = (¢1,G2,---,4n) and p = (P1,D2,...,Pn). We observe that that the ground
state is a particular thermal state with 77 = 0. In that case, we obtain (4.15) with

coth (ﬁmczm) =1.

The composite system obeys o = SoyST. The state of the detector can be easily
obtained as the submatrix oy, := 01.91.2. We will use the following notation:

oy = (”qq "W’) (4.17)

Opqg Opp

We note, once again that in this case, (¢,) = (pp) = 0, since the vector of moments
7 remains identically zero throughout the interaction. For future purposes, we define
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operator 7y, = (4o +pp)/V/2. In this case, (#,) = 0 and o, = (F2) — (75)? = (4o +Pp)?/2) =
(0gq + Tpp + Tpg + 04p) /2. We can now derive the marginals of the state of the probe, as
explained in Section 2.8, as

W(z) = —— { 5’“3}, (4.18)

= 27.‘_0._qq eXp - 20—qq
1 p2
_ _ , 4.19
Y(p) e exp { 20pp} (4.19)
W) = i (4.20)
)= ex — . .
V2T, P 20,

This means that when a measurement is made of operator ¢, the outcomes will follow
a normal distribution of mean 0 and variance o4,. Therefore, to computationally imitate a
measurement of observable ¢, one just has to pick ¢ following the distribution N (0, 0,,).
Equivalently, measuring the other observables p, and 7y, is equivalent to picking p and r
from N (0, 0,,) and N (0, 0,,) respectively.

In the following section, we describe the measurement protocol that measures some
observables of the detector at different times.

4.4 Measurement protocol

In this section, we propose a simple measurement protocol to produce labelled data (from
a harmonic oscillator probe coupled locally to a quantum field) that can then be processed
to learn about different features of QFT. This measurement protocol does not make any
assumption about the nature of the field and replicates the type of measurements usually
performed in labs, in particular with heterodyne detection.

As we explained, the local probe is a harmonic oscillator with free Hamiltonian o given
in (4.2), where ¢, and p;, are the probe’s quadrature operators satisfying |Gy, pp] =1. We
take the probe to couple to a general field linearly via (4.3) with /i, = ¢p. Our measurement
procedure is as follows:

1. Initialize the field according to some choice of label y.

2. Initialize the probe to its ground state. Couple the probe locally to the field at time
t =0 and let it couple to the field according to a switching function x(t).
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3. At time t,, = Ty, perform a projective measurement of the probe’s ¢, quadrature
and record the result.

4. Repeat steps 1 — 3 but measuring p,, then repeat steps 1 — 3 but measuring the
observable 7, = (qp +]3D)/\/§.

5. Repeat steps 1 — 4 a total of Niyms — 1 more times increasing t,, by At each time.

6. Repeat this whole process Nyoy times.

This measurement procedure yields data D,y € R™, where Ny = 3 X Nipnms X Nrow along
with an associated label, y. Notice that this particular measurement protocol was explained
for illustration: it can be done using different observables and different choices for the probe
model. Even though this procedure could be applied in a lab, in our case, we do not have
access to raw data coming from experiments. In the following section we explain how we
generate data mimicking projective measurements and how we process it.

4.5 Data generation

To generate data, our code replicates the measurement protocol. To make it as clear as
possible, we write the steps of the protocol using the Gaussian formalism in Section 2.8
and its physical meaning:

1. Choose a particular F (the Gaussian equivalent to H, in Eq. (2.76)) and a particular
initial state oy (the Gaussian equivalent to Hy in Eq. (2.79)) according to some choice
of label y. In other words, choose the free Hamiltonian of the field and its initial
state.

2. Compute the initial state of the probe, which is its ground state, op = 15. Compute
the initial joint state ¢ = ¢ @ 0. Compute S(t,,) = Fxim  Compute o(t,,) =
S(tm)o0S(tm)T. The state of the probe is oy, = 01.91.2. In other words, couple the
probe locally to the field at time ¢ = 0 and let it evolve for some time ¢, (recall that
X(t) is a step function, as in (4.6)).

3. Obtain a value ¢(t,,) from the normal distribution N(0, 044(t)). As explained in
Section 4.3, this is equivalent to, at time t,, = T\;x, perform a projective measurement
of the probe’s ¢, quadrature and record the result.
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4. Repeat steps 1 — 3 but picking p(t,,) from the normal distribution N (0, 0, (tm))
(measuring pp,), then repeat steps 1 — 3 but r(¢,,) from the normal distribution
N(0> Urr(tm»( measuring 7, = (dD +ﬁD)/\/§)

5. Repeat steps 1 — 4 a total of Nyyms — 1 more times increasing t,, by At each time.
6. Repeat this whole process Nyoy times.
Following this procedure would result in a data set of Ny =3 X Nyoy X Nypps Teal

numbers. For instance the values may look like those shown in Table 4.1, where Ty,x =
TMIN + (NTIMES - 1) At

q I D
Tuw | 052 1795 11128 ... +2174 40499 -0.754
Tum+ At | -0.651  -0.118 +0.075 ... +0.592 +0.426 -0.487
T+ 2A8 | 20525 42,612 -0587 ... 40242 -0.815 -0.092
T | 41134 40232 -2275 ... -0.007 -0.460 -+0.738

N J/

Noow triples

Table 4.1: Possible Local Probe Measurement Data

Note that each of our Ny, measurements of ¢,(t), denoted as gx(t), are independent
and identically distributed (here, t = Ty + mAt, m € {0,..., Nypygs — 1}). We can sum-
marize these measurement outcomes, g, via their sample mean and sample variance,

NTONI NTOI\«[
B 1 ~ 1 N2
() =+ a(t),  Si(t) = N : > " (a(t) — (1)) (4.21)
TOM k1 TOM ~— k—1

As discussed in Section 4.3, the outcomes §i(t) follow the distribution N (0, oy,(t)).
Therefore, the sample mean, g(t), and sample variance, $,%(t), are sufficient statistics to
summarize the information of the Ny, measurements and thus the compression is lossless.

Similarly we can losslessly compress the measurements of ¢,, 7, and p, at each time
t = Tyuw + mAt. Once compressed, our data is described by Nypes sextuplets of the form
{a(t),7(t),p(t),52(t),52(t),52(t)} and can be represented by a vector Deoye € R? where
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d = 6 Noyes. Notice that even after compression the data may be high-dimensional since
Nines Will generally be very large.

Once this analysis is done, we realize that our code can be sped up when generating
the Ninms sextuplets. As each g ~ N (0, 044(t)) then we have

7 B 1 NTOI\[ O'qq(t)
q(t) Noow ; qr(t) ~ N (0, m), (4.22)
1 NI'OI\I 2 NTOI\/I . 1
2t = s D (alt) — (1) () e = L), (4.23)
TOM k=1 TOM

and similarly the other sample means and variances follow equivalent distributions.

Then, instead of generating every ¢(t), p(t),r(t) a number of times Niyoy, we just gen-
erate the sextuplets {q(t),7(t),p(t), 52(t), 5:(t), 5,(t)} using their distribution at each time
t = Ty + mAt, m € {0,..., Nyps — 1}. From now on, a labeled data point generated

this way will be called (D,y) with D € R®¥mus " and y being the label.

4.6 Machine learning techniques

4.6.1 Preprocessing

As we discussed in the previous section, our measurement procedure and lossless compres-
sion produces labeled data (D,y) with D € R? where d = 6 Nynms and y is the label. To
begin training we collect n instances of this labeled data (in both examples explained in
this thesis, n = 5000), into a n x d design matrix X = (Dy,..., D,)T and a vector of labels
Yy = (Y1,---,Yn)T. We use the first 75% of this data (ng.m = 0.75n) to train the neural
network, Xiain and Yiram. We use the remaining 25% (nyaiq = 0.25n) as validating data,
Xatia and Yyaia, which will be used to test the accuracy of the trained network. Note that
the network will not be exposed to any of the validation data during training.

After we generate the training data, we perform standard preprocessing [13]: we center
the data, do principal component analysis, and whiten the data. Centering the data
consists on subtracting from each datapoint, Dy, of the complet dataset, X, the average
of the training dataset, (i.e. we ”center” the average of the transformed training data to
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the zero vector). Mathematically this process can be expressed as X — X — X8 where

1 Ntrain

avg avg avg avg \T avg
Xtrain - (Dtrain7 Dtrain7 Tt Dtrain) ) Dtrain -
Ntrain

Dy,.
k=1

We note that X8 is a n X d matrix.

Next we do principle component analysis (PCA), which finds a set of “uncorrelated”
vectors to represent the training dataset Xi.i,. To do this we compute the covariance
matrix of our training data and perform a singular value decomposition on it,

1 d
o X Xran = UTAU = ; A &€ (4.24)
where U = (£;,...,£&,)T is the matrix of singular vectors, &; € R? (note that U has shape
d x d and it is orthogonal UUT = UTU = 1,). The diagonal matrix A = diag(\1,... ) is
the matrix of singular values, A\; € Ry. The singular vectors are the directions in our data
that vary independently and the singular values indicate the strength of the variance in
each direction. Using this decomposition we can rewrite our data in this singular basis by
taking X — XUT. After this transformation the training data has a diagonal covariance
matrix, namely A. Finally we can whiten the data by taking X — X A~'/2. The covariance
matrix of the training data is now the identity matrix. The data would now be ready to
begin training the neural network.

4.6.2 Neural network training

Neural networks work by alternatingly applying tuneable linear-affine transformations
(controlled by weights and biases) and fixed non-linear transformations (the activator func-
tion) to their inputs. See Fig. 4.1 for a schematic of a neural network that can be used to
classify the topology of a QFTs based on local probe measurement data.

We will now use the architecture in Fig. 4.1 as a basic illustrative example. In this
example the network accepts a 5-dimensional input, (?), into the left-most layer of the
network (note that in the examples discussed in the main text the input dimension is much
larger). In passing this data to the next layer of the network, a linear-affine transformation
is applied to (@ as, ™ = WMgx® 4+ pM). The weight matrix W here has dimensions
7 x 5 and the bias vector has a dimension of 7 such that " is 7-dimensional. The
7 x5+ 7 = 42 values that determine this linear-affine transformation are left as free
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Figure 4.1: A schematic example of a neural network for processing local probe data to
learn about features of a QFT.

parameters to be optimized during training. Next, a fixed non-linear function, N’ is
applied element-wise to each entry of (! yielding z®) = N®(2"). For instance N’
may be the hyperbolic tangent function or a rectified linear unit.

This process is then repeated at each layer. First a linear affine transformation is
applied to 2z as £® = W@ zM 4+ p® where W has dimensions 5 x 7 and b® has di-
mension 5. Then a fixed non-linear function, N'® is applied element-wise to 2® yielding
2 = N@(x2®?). In the final layer we have 3 = W® 22 + b® where W® has dimen-
sions 2 x 5 and b® has dimension 2 and 2 = N'®)(2®) for some non-linear function,
NG In total this network computes the function f(z™;W,b) = 2 where W and b refer
to this network’s 94 free parameters collectively.

There are two different problem types we need to design a network for, classification and
regression. In classification, our network is tasked with deciding to which of several classes
(given by a discrete label y) our data belongs. In this scenario, we take the number of
neurons in the final layer to be equal to the number of classes and take the final activation
function to be a soft-max. This allows us to interpret the network’s output as a probability
assignment that the input data belongs to each class. In regression, our network is tasked
with assigning the data a continuous label y. In this case, we take the final layer to have
a single neuron.

In the examples discussed in Section 4.7, 4.8 and 4.9, we considered a network consisting
of 60 neurons on the input layer, 30 in the intermediate (hidden) layer and either 2 or 1
neurons in the final layer in the boundary sensing and thermometry cases respectively. All
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of the non-linear activator functions were taken to be leaky rectified linear units.

The network’s weights and biases are tuned to minimize error of the network’s predic-
tions over the training set. To quantify this error we define the following cost functions,

_1 Ntrain
Classification: C(W,b) = Z Uk - log(f(xx; W, b)) (4.25)
Ttrain
k=1
1 Ntrain
Regression: C(W,b) = - (f(zp; W, b) — y)? (4.26)
train k=1

where 7, is the one-hot encoding of the k" data point’s label. For the classification scenario,
our cost function is the cross entropy between the network’s probability assignment and
the expected result. For the regression case, the cost function is the mean square error.
To help reduce overfitting we add an L, regularizer to this cost function, ~ A\y||[W||2. This
penalizes the network for using large weights. Additionally when training the network we
randomly “drop” some fraction of the neurons. This forces the network to be more robust.
The sum of the cost function and the regularizer are then minimized by stochastic gradient
descent.

4.7 Boundary sensing example

In this section, we are going to study the sensitivity of a detector to changes in boundary
conditions of the field. We are going to generate data containing outputs of the probe with
the label corresponding to their particular boundary condition. We are going to process
the outcomes of the probe and train a neural network to classify this data. Finally, we
are going to test the network with unseen data and study how the accuracy of the results
depends on the duration of the coupling of the probe to the field.

4.7.1 Setting different boundary conditions

In this section we are going to consider a detector coupled to one extreme of the cavity,
x = 0. That means that the smearing function is a Gaussian function centered at x, = 0,
as in equation (4.7), i.e. the interaction Hamiltonian is:

N

~ a 2?2902 R

HINT = —0 X(t) Ze $%/2 2 qD ® qn. (427)
oV 2T —
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Figure 4.2: Visual representation of 7:£FULL.
The strength of the interaction between the detector and the different modes decreases as
a Gaussian function. In this case, the second-to-last and last detector are xz-coupled.

To simulate a change of boundary condition, we will modify the coupling of the lattice
to the spatial mode farthest from the probe. We first consider the two following free
Hamiltonians for the field, labelled “Full” and “Cut”, which are exactly equation (4.10)
and a slight modification of it:

N r 9 2 2 7 N-1 39
N B mc® me h 9 Tl
HFULL = Z —D, + <_ + W) qn_ + ; — 5 qn+19n,

— | 2 2 2 — ma?
o N e 9 mc? R\ L] [ 198
cuT — ; -—2 DPn + —2 + ma2 qn_ + ; ma2 dn+19n- ( : )

2
In other words, Hyy = Heur + _QQNQN—l
ma

Visually, the two different scenarios are depicted in Figures 4.2 and 4.3. We summarize
the modified couplings that we consider in Table 4.2.

In this section, we are trying to differentiate the “full” boundary condition and the
“cut” boundary condition. For this purpose we will generate, as per the data generation
in Section 4.5, “time-series” data (remember that this data was composed by means and
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Figure 4.3: Visual representation of Heur
We see that the strength of the interaction between the detector and the different modes
decreases as a Gaussian function. In this case, the second-to-last and last detector are
not xx-coupled.

y-label ‘ Name ‘ Fllast fort <0 ‘ ﬁlast fort >0
y=1 | Full Bond | ¢ (¢n_1®{dy | Sameast <0
y=2 | CutBond | 0 {gny_1®gy | Sameast <0

Table 4.2: Modifications to the coupling between ¢y_; and ¢y, connecting the last spatial
mode to the rest of the lattice. g = h*/ma?.

variances of independent runs of the experiment) from time Ty;y to time Ty,x. We choose
the initial state (with this we mean at ¢t = 0, not ¢t = Ty;y) of the modes to be the ground
state. An interesting question to ask is how well the neural network classifies the labelled
data depending on the interval of time considered in the data generation. Is the network
able to distinguish the two cases before a signal can bounce from the boundary? Is the
UV-induced discretization explained in Section 2.4 allowing superluminal signalling?

In order to answer these questions we need to know the speed of signalling in this
setting. To do this we introduce a new scenario in which a signal is introduced at time
t = 0. In that case, the Hamiltonian is given by:

. . o
HSIGNAL<t> = Heur + @<t)WQNQN717 (4'29)
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where ©(t) = 0 for t <0 and ©(t) = 1 for ¢ > 0. The Hamiltonian in this case is exactly
the same to the Hoyr before t < 0. In Fig. 4.4 we have a visual representation of this
Hamiltonian.

At t = 0 this “instant” connection between modes ¢y_1 and ¢y induces a signal that the
neural network might be able to detect. To make this easier to distinguish, we choose the
initial state of mode ¢y to be a squeezed state of 8 dB instead of the vacuum state. We then

train the neural network to differentiate between case CUT and SIGNAL, as summarized in
Table 4.7.1.

y-label ‘ Name ‘ Hyuy for t <0 ‘ Hyas for t >0 ‘ Initial state of mode IV
y=2 | CutBond | 0 ¢n-1® gy | Sameast <0 vacuum state
Signal 0 Gno1®an | 9 -1 ®qn squeezed state, 8dB

y=3

Table 4.3: Modifications to the coupling between ¢y_; and ¢y, connecting the last spatial
mode to the rest of the lattice. g = h*/ma?.

In summary, we will train two neural networks for the following two tasks:

e Distinguish cases FULL and CUT (cases 1 and 2)

e Distinguish cases CUT and SIGNAL (cases 2 and 3)

Comparing cases 2 and 3 will allow us to measure the signal-propagation speed on the
lattice explicitly. In both cases, the field (neglecting the last spatial mode) is in exactly
the same state prior to ¢ = 0. This disturbance will then propagate and eventually arrive
at our probe system. Thus we can define the effective signalling time as the time it takes
the probe to differentiate between cases 2 and 3. Importantly, if the probe is able to
differentiate cases 1 and 2 in less than this effective signalling time, it cannot be due to
having received a signal from the boundary. Moreover, if our probe is able to differentiate
these cases in less than twice the effective signalling time, it can not be due to the probe
bouncing a signal off the boundary.

4.7.2 Performance of the neural network
To illustrate how our analysis can work in realistic scenarios, we consider a detector of

atomic size. This detector could model, for example, a trapped ion in a potential. As
explained in Section 2.3, Unruh-DeWitt detectors captured the “scalar essence” of the
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Figure 4.4: Visual representation of Heonar.
We see that the strength of the interaction between the detector and the different modes
decreases as a Gaussian function. In this case, the second-to-last and last detector are
not xx-coupled for t < 0 and they are xza-coupled for ¢ > 0.
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electromagnetic interaction between an atom and the electromagnetic field [105]. With
this in mind, we choose a detector with Gaussian smearing function of width, ¢ = 53 pm.

Taking the UV-cutoff at K = 16/0 gives us a lattice spacing of a = 7/K = 10.4 pm.
We take the boundary to be at a distance L = 90a = 4.7 0 = 457 nm. We can quantify how
much this discretization changes the dispersion relation of the field. For our parameters,
the “average relative error” in the dispersion relation, introduced in Section 2.7, is 0.16%.
We take the detector to have an excitation energy hw, = 130 eV and the field to have a
mass mc?> = 1 eV. Note that in this example the field is approximately massless since its
mass is more than a hundred times smaller than any other energy scale in the problem.

Finally, we investigate the strong coupling regime (which is non-perturbative), where
the energy scale of the probe-field coupling is near the probe’s free energy scale, so that
Ao = hwp, = 130 eV. Note that the choice of parameters is just for demonstration purposes;
similar results were also obtained for a broad set of different parameters.

The results are plotted in Fig 4.5. We plot the accuracy of the neural network on
distinguishing between the CUT, and SIGNAL cases with a triangle green line. From the
green triangle line, we can derive the effective speed of propagation of a signal in the lattice.
Since we generate a signal from the further boundary of the cavity at time ¢ = 0, one would
expect to be able to differentiate the CUT and SIGNAL at time typp = Cppp(L — 70), where
L—70 is the length of the cavity corrected to taking into account the extent of the Gaussian
smearing of the detector. The green line in Fig.4.5 indicates that it is impossible for the
network to distinguish between the CUT and SIGNAL cases in less than ~ 15 as. Using
this, we obtain that signal to edge of detector effective speed cper = (L — 70)/15 as = ¢ is
actually the speed of light (in Fig 4.5 a vertical red line indicates the light-crossing time
from the end of the cavity to the detector, which coincides with the sudden improvement on
the accuracy of the network). Indeed our toy model is very approximately relativistically
causal, as a good quantum field theory on the lattice should be.

In the blue circle lines, we plot the ability for the neural network to distinguish between
the cuT and FULL boundary conditions. In this case, we had to distinguish between the
time-evolved states that were initialized as ground states of different Hamiltonians. In this
case, the information about the boundary was scrambled all over the field and accessible
locally: the ground state knows locally about its boundary conditions [96, 5]. Indeed, the
network accuracy shows that the network can distinguish field boundary conditions before
any signal propagates to the detector. This allows the probe to see the boundary ‘without
light’, that is, in the vacuum state of the theory and much before the light-crossing time of
the lattice. Notice that the network can accurately distinguish the two boundary conditions
by considering a number of measurements that is still relatively small as compared with
the typical number of atoms in a macroscopic sensor, Nyoy = 10 < N, ~ 10?4,
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Figure 4.5: Accuracy of a neural network in distinguishing the boundary condition of a
field.

We trained a neural network to predict the boundary condition of a quantum field from
local probe data gathered far from the boundary. The network was asked a) to detect
a signal sent from the boundary (green triangles) and b) to detect a modification of the
field’s boundary condition (blue circles). The network’s accuracy (solid) and the theoretical
bounds (dashed) are plotted as a function of the duration of the probe’s interaction with
the field. A point plotted at time ¢ indicates the network’s accuracy given measurements
taken at Ninms = 10 measurement times between ¢ and the previous plot point. The
network was trained on ngaim = 3750 examples. Each example summarizes Nygy = 102
measurements of each of the probe’s quadratures (¢p, 7, and p,) at each measurement
time. The inset shows details of the causal response to the detector to the signal. The
vertical red line is at the edge-of-detector-to-boundary light-crossing time.

One may still have the lingering doubt of whether this neural network is performing
optimally. In this case, we can find theoretical bounds for the network’s performance,
drawn in dashed lines in Fig 4.5. In the next section, we explain how we can find this
bounds using the Hellinger distance.
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4.7.3 Hellinger analysis

In the previous example, we trained the network to distinguish cases FULL and cUT (cases
1 and 2) or distinguish between cases CUT and SIGNAL (cases 2 and 3). Each of these tasks
consists then of a binary classifications of 60-dimensional points of the following form:

x = (q(t),7(t),p(t), 52(t), 52(t), 52(t)  for t = T, Taw + AL, .., Thax) (4.30)

Where TI\'IAX - TNHN — 10At.

As explained in Section 4.3, each of the elements of this vector follow known probability
distributions, detailed in Eqgs. (4.22) and (4.23). Each of these elements are independently
distributed (since the sample mean and sample variance of normal distributions are inde-
pendent [11]). When we consider high tomography, i.e., the sample variance mean and the
sample variance are computed with many experimental outcomes, we can use the central
limit theorem to obtain the distributions of the sample mean and sample variance. For
example, the sample mean ¢(¢) and sample variance 52(75) follow, in a high tomography
approximation, the distributions

a(0)~ (0589 520~ 00 2 (o), o). qaay

Since we know that each sample statistic, q(t),7(t),p(t), 52(t), 52(t) and 52(t) follows

a normal distribution, we obtain that the probability distriblftion of the 60-dimensional
vector, x, defined in Eq. (4.30), is a multivariate normal probability distribution. Then,
to obtain @ we can either 1) measure the probe 10%* times and calculate its sample statis-
tics, q(t),7(t),p(t),5.(t),5:(t) and 5.(t) or 2) draw a point from a multivariate normal
probability distribution with multivariate mean and sample:

po=((q(6)), (F(t)), (P(t)), 0gq(t), o (t), opp(t)  for t = Ty, Taw + AL, ..., Tyuax) (4.32)
t) o.(t £y 202(t)  202(t) 202 (¢
Y= diag (UQQ( )’ i ( >’ Upp( )7 qq( ) ) UTT( ) ; pp( ) s for t = TMIN7 RS TMAX
NTOM NTOM NTOM NTOM —1 NTOM —1 NTOM —1
(4.33)

This binary classification problem for the CUT and FULL boundary conditions can then be
understood as knowing if a point comes from two different multivariate normal distribu-
tions corresponding to labels CUT and FULL. In general, a binary classification consists in
distinguishing between two probability distributions rg(x) or ge(x), where 6 is some free
parameter of the problem. In terms of our scenario, 6 describes the other details of the
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scenario, like time Ty;y. We will say that r9(x) is associated to label y = 0 (that could
stand for some boundary condition) and gg(x) is associated to label y = 1. The distribu-
tions 7¢(x) and gp(x) provide the odds that some particular data was produced given the
state of the field and measurement procedure.

The optimal strategy (i.e., the one that maximizes your success probability) for this
binary classification problem is to guess y = 1 if ga(x) > ro(x) and y = 0 if rp(x) > go(x),
breaking ties randomly. This strategy succeeds with probability of pguccess = l(1 +

TV(rg,qy)) where 1
TV(re,q0) = 3 / |ro(x) — go()| da (4.34)

is the total variation distance between ry(x) and gy(x). If we can compute this distance,
we can determine for which values of 6 (e.g., for which coupling times) the distributions
ro(x) and go(x) are distinguishable.

The total variation distance is only useful for binary classification problems. It cannot
be used in this way when there are more than two classes or for regression problems, such
as our thermometry example. In the remote boundary sensing scenario, calculating the
total variation distance directly is infeasible. An alternate approach is to compute upper
and lower bounds on TV using the Hellinger distance, H(ry, qg) [20], as

H(rg,q0)* < TV(re,q0) < H(re,q0)\/2 — H(74,0)2 (4.35)

where

Hi(r,q) = %\/ [ (Vi@ - Vala)) de (4:36)

Usually, the Hellingher distance does not have a closed forom. Fortunately, the Hellinger
distance is easy to compute for multivariate normal distribution, r¢(x) = N (x; p,-, 2,) and
qo(x) = N(x; pg, By) for some means, p, and p,, and some covariances, ¥, and X,. The
Hellinger distance between two such multivariate normal distributions is given by [20]

1 =1
. 4 Au™S A
Hirg, go) — 1 — (3UEZa) ) o (L AHTE An) (4.37)
2
det(27) 8

where Ay = p, — pg and ¥ = (X, + X,)/2. Thus if we can compute the means and
covariances of our data in the central limit, we can find bounds for the neural network’s
optimal performance.
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In Fig. 4.5, we plot these bounds to the optimal performance of any network in dashed
lines; in blue, to bound the ability to distinguish the FULL and cUT boundary conditions
and, in green, to bound the ability to distinguish the SIGNAL and cuT. We observe than in
both cases, the performance of our network is bounded by those dashed plots and therefore,
our results are trustworthy.

4.8 Thermometry example

In this section, we are going to study the sensitivity of a detector to changes in KMS
temperature of the field. We are going to generate data containing outputs of the probe
with the label corresponding to the particular temperature. We are going to process the
outcomes of the probe and train a neural network to perform a regression on this data.
Finally, we are going to test the network with unseen data and study how the accuracy of
the results depends on the duration of the coupling of the probe to the field.

4.8.1 Setting different temperatures

In this section we are going to consider a detector coupled to the center of the cavity,
= L/2. That means that the smearing function is a Gaussian function centered at
xp = L/2; as in equation (4.7), i.e. the interaction Hamiltonian is:

~ a,)\o

Hine = X e (zn—L/2)* /20 (jD X Cjn (438)
g

Mz

n=1

The Hamiltonian of the field will be exactly the same as Hyouw:

N N I mc? h? o
Hevrr = Z [Tpn + <T + —)qn} + Z o (jn_an (439)

n=1 n=1

Fig. 4.6 is a visual representation of this type of coupling and of Heorr.

We want to be able to predict the temperature of the field using the outcomes of the
probe. Therefore, we will generate data with a range of temperatures, i.e. the initial state
of the field will be a thermal state of different temperatures (as in Eq. (4.15)). We recall
that the initial state of the probe will be the ground state. We will associate temperature
labels T if the initial state of the field has a temperature in the range 7'+ 10%. The labels
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Figure 4.6: Visual representation of ?:lFULL, the Hamiltonian considered in the thermometer

case.

The strength of the interaction between the detector and the different modes decreases as
a Gaussian function, and it is placed in the middle of the cavity.

T will run from 300uK to 350K in 10uK steps. We will train the neural network with
this data. To check the accuracy of the network, we show it unseen data and plot the
percentage of the data labelled correctly within +1%.

4.8.2 Performance of the neural network

To showcase the broad applicability of our framework, we consider a very different problem
keeping the exact same measurement protocol, coupling between probe and field, and data-
analysis ansatz.

We consider a probe motivated by a superconducting circuit undergoing a long-range
interaction with an open transmission line in a thermal state. Such systems do not
couple strongly to frequencies above 50 GHz [33, 12, 91]. Assuming a Gaussian pro-
file we can match this behavior by taking 3/0 = 50 GHz/c, i.e., 0 = 18 mm [91]. Tak-
ing our UV-cutoff in the field at K = 16/0 = 267 GHz/c gives lattice spacing a =
7/K = 3.5 mm. We couple the circuit to the center of a transmission line of length
L =100a = 19.60 = 353 mm.

We take the circuit to have an energy gap typical of such systems, w, = 10 GHz and
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the field to have a mass mc? = 0.1GHz - h, much smaller than the other energy scales. We
again consider strong-coupling: \g/h = wy, = 10 GHz.

We trained the network to estimate the field’s temperature based only on measurements
of the local probe. Fig 4.7 shows the fraction of the validation data which the network
able to label within £1% of the actual temperature. Note that the neural network can
determine the temperature very accurately even for very low transmission line temperature
(sub-mK). It can do so even before the interaction’s thermalization time scales which is
lower-bounded by the detector’s Heisenberg time, 1/w, = 100 ps.
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Figure 4.7: Accuracy of a neural network in predicting the temperature of a quantum field.
A neural network trained to predict (through regression) the temperature of a quantum
field from local probe data. The network was trained on labeled data corresponding to
field temperatures from a range T+ 10%. The fraction of the validation data which the
network labeled correctly to within +1% is plotted as function of the duration of the probe’s
interaction with the field. A point plotted at time ¢ indicates the network’s accuracy given
measurements taken at Nipgms = 10 measurement times between ¢ and the previous plot
point. The network was trained on n.i, = 7500 examples from each range. Each example
summarizes Nyoy = 10%° measurements of each of the probe’s quadratures (qy, 7, and pp)
at each measurement time. The vertical red line is the probe’s Heisenberg time w;?!.

4.9 A non-Gaussian Example: Distinction between a
Fock State and a Phase-Averaged Coherent State

In this section we show that we can extend our results for scenarios in which we to no rely on
1) the Gaussianity of the probe/field states or, 2) the UV cutoff/bandlimit/discretization
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taken in the main text. In this example, we will also show how to trivially extend the
formalism of the main text to include the fourth moments of the probe system. A relevant
problem in experimental quantum optics is to be able to tell apart Fock states (like a single
photon state) from low amplitude coherent states (produced by stimulated emission) when
the expectation of the number of photons in the state is the same.

Consider a massless scalar field in a 141 dimensional cavity of length L with Dirichlet
boundary conditions. It will be useful for us to take the following mode decomposition of
the field operator,

t ) [Z Sin () (Gm cos(wmt) + D sin(wpt)), (4.40)

where dimensionless quadrature operators ¢, and p,, satisfy canonical commutation re-
lations [Gn, Pm| = 10um and where w,, = mm/L. Note we have taken i = ¢ = 1 in this
section.

We will take the field state to be the vacuum for all modes except for the lowest
frequency one (the m = 1 mode). We will try to determine the initial state of the m = 1
mode by measuring a probe coupled locally to the field in the center of the cavity. We
take the m = 1 mode to be in either a) a Fock state |N) with N excitations, or b) a
phase-averaged coherent state with N excitations on average. That is, a coherent state |a)
for some a € C with |a|? = () = N but with an unknown phase. Note that, as we will
see, neither of these states are Gaussian. The Wigner function for a Fock state is,

)N

WFOCk(Qap; N) = LN<2(q2 + p2>> 67(QQ+p2) (441>

where Ly(z) is the N** Laguerre polynomial. For the unknown phase coherent state, the
fact that we do not know (therefore average over) the phase makes this a non-Gaussian
state. The Wigner function of a phase-averaged coherent state (PAC) is

27

d@ cos — sin 2

Weac(g pi N) = — / o € e~ (a=VN cos(0)*~(p—V/Nsin(0))” (4.42)
0

Moreover, we note that these two states have exactly the same first and second moments:

< >FockN < >FockN 07 <qAﬁ>Fock;N = 07 (443)
(G FoekNn = (D*)Focen = (A + 1/2) oy = N +1/2, (4.44)
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and,

(@)ypacy = (D)pacy =0, (¢P)pacy =0, (4.45)
(@*)paciy = (P*)pacin = (A + 1/2)pacny = N +1/2. (4.46)

Thus no analysis of these two field states in terms of the first and second moments of these
states can differentiate them; these field states can only be distinguished by methods that
are sensitive to their third and higher order moments.
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Figure 4.8: Marginal distributions for a Fock state and a phase averaged coherent states
and the accuracy of a neural network to distinguish both.

a) The marginal distributions for the N = 4 Fock state (solid) and the phase averaged
coherent state with |a|> = 4 (dashed). The distributions are not Gaussian, and they
have the same mean and variance, making them impossible to distinguish with simple
statistical analysis of first and second moments. b) The validation accuracy of a neural
network trained to distinguish two field states from the measurements of a local detector
coupled to the field. In particular, the network differentiates vacuum cavity states with
the following two modifications: 1) the lowest field mode is in an N-particle Fock state or
2) the lowest field mode is in a coherent state with expectation (n;) = N particles and
unknown phase.

It is a non-trivial task to determine in which of these states the field is. Suppose
that (forgoing the localized probe system temporarily) we are somehow able to measure
one of the quadrature operators of the lowest mode (e.g., ¢;) directly. The outcome of
this measurement would be selected from the marginal distributions of Wgee(q, p; V) and
Wpac(q,p; N). These are shown in Fig 4.8a for the case of N = 4. The total variation
distance between these marginals is TV & 0.29 such that best odds one can hope given a
single measurement outcome is (1 + TV)/2 ~ 64.5%.

In actuality, we will attempt to distinguish these field states from the probe’s response
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to the field. This probe will pick up information from all of the field modes, much of which
is irrelevant to the task at hand. Our machine learning algorithm will need to learn to
distinguish the irrelevant noise from these other modes from the (already weak) signal from
the m = 1 mode.

As in Section 4.2, we take the probe to be a harmonic oscillator coupled to the field
through

Honr = Ax(1) / dz F(x) g ® o(t,x). (4.47)

—00

Unlike in the previous examples (Eq. (4.6)) we now consider a switching function x(t) =
o(t) + 6(t — t,,) where t,, is a time just before we measure the probe. Otherwise the
measurement, procedure is identical as described in Section 4.4. Specifically, the probe
undergoes a strong sudden interaction with the field ¢ = 0. Then both the probe and
field evolve freely for a time t,,. The probe undergoes another strong sudden interaction
with the field at ¢ = ¢,,. Finally, we measure one of the probe operators (¢p, pp or 7p).
This measurement procedure is repeated Nioy times for each probe operator and at each
of the Ninms measurement time t,,. It is important to note that since the field state
is not Gaussian, these probe measurement values will not be distributed normally. The
distributions they are drawn from are ultimately derived from the ones in the above figure
and are much noisier due to noise from the other field modes.

As in the main text, we record the sample means and sample variances of these Nyoy
measurements in our compressed data. However, as discussed above, we will need more
than just first and second moments to handle this problem. Thus we additionally include
the centered fourth moments of the distribution of sampled data (sample moments),

s1all) = 51— D (@) — a0, (1.48)

§4J(t) = NT10M il(rk(t) — f(t))47 (449)

Suplt) = D (mult) — B(O)" (4.50)
TOM k=1

where t = t,, is one of our measurement times and {qx(t,,)} are the N;o, measurements
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of ¢p at t = t,,,. Likewise for {ry(t,,)} and {px(¢,n)}. Thus in total our compressed date is

x=(q(t),7(t), p(t), 52(t), 52(t), 55(1), S4,q(t), $4,(t), s4p(t) for t = Ty, Ty + At .. Thiax)
(4.51)

which has dimension 9 X Niprs. As in the main text, we then trained our neural network on
many examples of this compressed data until it can accurately classify whether any given
data came from an interaction with a Fock state or a coherent state. We used exactly the
same neural network architecture, loss function and optimization method. We show how
to generate the different sample moments in Appendix A.5.2.

We considered an optical cavity of length . = 1 cm and a probe with a Gaussian
smearing function of width ¢ = 0.1 mm connected to the center of the cavity, at x =
L/2 = 0.5 cm. As discussed above, in each run of the experiment the probe strongly
interacts with the cavity at two times: first at t = T,,;, = 0 then at t = T,,,;,, + n At for
n=12,..., Nyyps Wwith At = 6.67 ps. As Nipgs = 10 then we have that T},,, = 66.7 ps.

Fig 4.8b shows the validation accuracy of the neural network given different values for
the probe’s frequency, wy. All of the points are calculated with the same tomography,
Nroy = 5000. This shows that the neural network can successfully distinguish between a
Fock state and a phase-averaged coherent state given sample fourth moments. This plot
also provides some physical insight. At resonance, i.e. when the probe frequency is the
same as the frequency of the mode of interest (in Fig 4.8b, a solid vertical line corresponds
to wp, = wy = m/L = 94.2 GHz) we obtain an improvement in the accuracy of the neural
network. Furthermore, a second peak at double the frequency of the first mode (in Fig
4.8b, the dashed vertical line in the figure, corresponding to wp, = 2w; = 188.4 GHz ). This
is expected since for those values of the gap since resonant detectors are more sensitive to
getting excited by capturing field excitations. We see the peaks in the accuracy occur at
the first and second mode resonance of the detector gap. Moreover, it is noteworthy that
the classification task appears to become easier with an increasing number of excitations,
N, where PACs and Fock states become more and more distinguishable.

4.10 Conclusions

In this chapter, we proposed the use of machine learning techniques to process outcomes
of local probes coupled to a quantum field as a context-free tool to learn about different
features of the field.

As proof-of-principle, we studied a one-dimensional scalar field. We showed how using
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the same measurement protocol on a single probe and the same type of neural network,
one can learn about different features of the field, namely its boundary conditions (which
is a non-local feature) and its temperature. Our results showed that the network could
distinguish boundary conditions “without light”, i.e. for the vacuum state of the field and
before light has bounced off the boundaries. To obtain the effective speed of a signal in the
lattice, and thus check how much the discretization of the field had affected the dispersion
relation, we trained the network for a second classification problem. The neural network
needed to distinguish between a field that had been perturbed at the boundary and a
field that had not. We used the Hellinger distance to track the performance of the binary
classification of boundary conditions and the binary classification for the signalling or not
signalling field. We obtained that performance of the networks was inside the bounds
provided for the optimal performance of any classification algorithm.

For the thermometry case, our results showed that the network could predict the tem-
perature of the field before the detector thermalized with the field at temperatures relevant
for semiconducting circuits, which is the setting that motivates our choice of parameters.
Both the results we obtained were not entirely surprising: it is a well-known fact that
fields store scrambled information about their features locally accessible in a large region
of spacetime [100, 86, 78, , 70, |). The novelty of this result was the broad applicabil-
ity of the tools. Usually, one has to adapt measurement protocols and analysis techniques
to study different features of the field. By placing all the complexity on the neural network,
the translation from probes to claims about the features of the fields becomes much easier.

Finally, we discussed a third case for which we did not discretize the field: distinguishing
between a state in which for all modes the initial state is the vacuum and the first mode
is either a Fock state with N excitations and a phase-averaged coherent state with N
excitations on average. This allows us to clear any doubts about whether our results
would work in the absence of UV cutoffs. Also, in this case, we did not have the Gaussian
formalism to study the evolution of the system. Therefore, the problem becomes more
complicated: the information obtained by the probe is no longer encoded solely in its
first and second moments. Our results show that the network could differentiate the two
states better when the number of excitations N was higher. Finally, we observed that at
resonance, i.e. when the probe frequency and the frequency of the first mode coincided.
We interpreted this result as an increased ability of the detector to detect field excitations
when in resonance.

Finally, we discuss the broader implication of these results in Chapter 5.
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Chapter 5

Conclusions and Outlook

5.1 Cancelling the harvesting of correlations

In Chapter 3 we studied how the presence of N interloper detectors affected the ability for
two target detectors, controlled by Alice and Bob, to harvest correlations from a coherent
state of a free scalar massless field. The action of coupling a single interloper detector to
the field provoked the “flooding” of Bob’s detector with entropy. Thus, any correlation
harvesting protocol between Bob and any other detector coupled to the field would be
sabotaged.

This result implies that we may be able to isolate a particular detector. For example, if
we want Bob’s detector to only “collect” properties of the field, we could use an interloper
detector to prevent Bob from entangling to any other system. A setting in which this
isolation would be useful is in the probing of gravitational waves. Since the detection of
gravitational waves is so challenging, one would desire to isolate the detector’s response
from noise. Another extension in the area of general relativity would be to study this
phenomenon in curved spacetimes.

We also observed that the presence of many interloper detectors exponentially sup-
pressed the amount of correlation harvested by Alice and Bob. This result was very pre-
liminary and depended heavily on the Dirac-delta coupling of our choice. This result could
be extended by using more realistic coupling schemes. It would also be very interesting to
consider correlated interloper detectors. Using realistic couplings and correlated detectors,
we could obtain some insight into whether macroscopic detectors are able to harvest cor-
relations. In particular, it would be interesting to study the ability of two conglomerations
or “clouds” of detectors to harvest entanglement or correlations. Combining this study
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with relativistic quantum optics [74], this project could be useful for trapped-ion settings
or optical lattices. For example, the platform of trapped ions naturally provides coupling
(and thus entanglement) between the ions due to the electromagnetic interactions between
them. In fact, one of the technical challenges of this platform is actually “stopping” such
entanglement, and it requires individual addressing of the ions with beams. If we could
“kick” the electromagnetic field at the right moment, with the right strength, we may be
able to break this natural entanglement between the ions.

All these previous ideas are long-term oriented. However, there are several short-term
attainable continuations of this project. The first one would be to not use single delta-Dirac
couplings for the detectors. As we discussed in Chapter 3, this type of interaction hinders
the possibility of entanglement harvesting. Therefore, an extension of this work would
be to consider that each detector couples twice to the field with delta-Dirac couplings.
According to the no-go theorem [115] discussed in Chapter 3, this setting would allow for
entanglement harvesting. Another positive aspect is that it may be possible to obtain
analytic formulas for such coupling choices. Alternatively, one could obtain perturbative
results for couplings of finite duration.

5.2 Machine learning QFT from local probes

In Chapter 4, we proposed the use of machine learning techniques to process outcomes
of local probes coupled to a quantum field as a context-free tool to learn about different
features of the field.

As proof-of-principle, we studied a toy model: we use one detector to probe a one-
dimensional scalar field. We show how using the same measurement protocol on a single
probe and the same type of neural network, one can learn about different features of the
field, namely its boundary conditions (which is a non-local feature) and its temperature.
Our results showed that the network could distinguish boundary conditions “without light”
i.e. for the vacuum state of the field and before light has bounced off the boundaries. For
the thermometry case, our results showed that the network could predict the temperature
of the field before the detector thermalizes with the field.

Both the results we obtained were not entirely surprising: it is a well-known fact that
fields store scrambled information about their features locally accessible in a large region of
spacetime [100, 86, 78, , 70, 145]). The novelty of this result was the broad applicability
of the statistical tools. The same type of network and a very similar measurement protocol
was also useful to distinguish between a Fock state and an average-coherent state. Usually,
one has to adapt measurement protocols and analysis techniques to study different features

90



of the field. By placing all the complexity on the neural network, the translation from
probes to claims about the features of the fields becomes much easier.

This paves the way to the use of machine learning techniques in more complicated
scenarios such as distinguishing gravitational backgrounds [95, ], global state tomogra-
phy [131] with local probes, acknowledging entanglement in analog Hawking radiation [125],
and even new experimental proposals seeking direct evidence of untested QFT phenomena
such as the Unruh effect [133]. Finally, the techniques developed here are directly trans-
latable to their use in many-body quantum physics, where they can be used to address the
problem of measuring many-body observables with local probes in, e.g., quantum phase
transitions [1413].

Finally, in relation to the results in Chapter 3, it would be interesting to combine
machine learning techniques with correlation harvesting protocols. Some work has already
been done in this direction. In [144], the authors found, analytically, that exploiting the
correlation in the noise present in the field they could improve their harvesting protocol.
Also, it was proposed in [0] that a CNN (convolutional neural network) would be able to
exploit the noise correlations to better tolerate the noise present in data. The type of noise
studied and generated in [6] could be understood as a simulation of quantum fluctuations
of a Klein-Gordon field in two dimensions. It seems plausible then that by combining
machine learning techniques and learning from the noise correlations, one would be able to
improve the harvesting protocols. Also, machine learning could be useful in the quest of
entangling macroscopic detectors, made out of ‘clouds” of correlated microscopic detectors.
In principle, the presence of many microscopic detectors could be very noisy. Maybe by
using machine learning, we could exploit the correlations in the noise to achieve the task
of harvesting correlations from a field using macroscopic detectors.
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Appendix A

Non-perturbative calculations for
correlation cancellation

A.1 Calculating non-perturbative time evolution uni-
tary

Starting from equation (3.5) and using the time switching functions x, (t) = n,0(t —t,) we
have

. N
U=Texp {—i/ dtf](t)] =T exp [—iz fIV]
o0 v=1

o0 1 n! N ~ A

= - —iHN)"N(—=1Hpn_1)™N ' (—1H)™
;n!mvgznml!mﬂ...mm( UHy)"™ (—1H—) (i)

(5 ) $ st o) (3 i)
0 mN| M 1=0 mN_1! m1=0 ml!

(A1)

where H, = Mo (t,) @ [d"eF,(x — :B,,)(;Aﬁ(t,,, x). Also we have defined U, = exp [—if[l,]

Note that, to write the second line, we have assumed that ¢; < t, < --- < ty, to
perform the time ordering. Plugging in the expression of the field from Eq. (2.6) we get
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~

Hy =\ (t,) ® / A"z F,(x — @, [ajcei“’*'tv—k'm) n ake—“'k‘tv—k'm)].

(A.2)

1
d"k———
) V2(2m)" K|

Using the Fourier transformation of F,(x —a,) from (3.17), we can perform the integration
over x in the above expression to obtain

~

HI/ - /\z/lly(tu>

[Fy(—k)d};ei(lmtu_km”) + Fy(k)dke—iﬂk\tu—k-my) ' (AS)

1
® [ dk—e—
V2|K|

Using 3, (k) from equation (3.16), we may now rewrite U, as

A

U, = exp {ﬂy ® / d"k [, (k)a}, — By(k)*&k}} (A.4)

Observe that > = 1. Keeping this in mind, we may expand the exponential in U, to
obtain

N 1—f, -
U, = 2” ® Daay + —2 @ D_p, k), (A.5)
In the {|s,)} basis, as given in (3.11), it is easy to see that
my t,) = |1,),| — | —1,)(—1, :SW’
(i) = L)L) = = 1) (-1 = "
fo(ty) =11 ®---®1,_,®5; ®@...1x.
Using this in the expression for U, we obtain equation (3.13)
Uy = ZPS” & ﬁsyﬁy(k) s, =—1,1. (A7)

Sy

Here, PSV =1, ® --®1,1®]|s,) (s,| ®...1y is the projector on to the |s,) subspace.

The unitary operator for the entire interaction U, is thus a product of the individual
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unitaries U, as obtained in equation (3.12). It can be further written as

U:UNUN—I'--UI = Z PSN"'Psl®D5N5N(k)““b5151(k)’ (AS)

{s1,52,...6N }

The summation is over all the possible N-tuples {si,$2,...,sy}, where each s, takes
the value 1 or -1. In equation (2.12), we obtain an expression for the product of two
displacement operators. Using it repeatedly, we can obtain the product of N displacement
operators,

N A

Dsypnk) - - - Dsipik) = Dy (k) +-+5181 (k) €XD [i Im Y _s;s:T;

J=i

, (A.9)

where

4

The evaluation of T;; depends on the kind of smearing function we chose. We provide an
expression for §; and (;; for a hard-sphere smearing function and a Gaussian smearing
function in Appendix A.5.

7, = L4 [ @i k)5 (k). (A.10)

A.2 Calculation of state of detectors

Initially all the detectors are in their respective ground state, |g,), and the field in a
coherent state, |5y(k)), defined in Eq. (3.8). We can write the initial state of all the
detectors and the field in the |s,) basis, as given in (3.11), as

1 1 1 o N
o) = E(|11>+|_11>)®"'®E(|1N>+|_1N>)®|Bo(k)> = ﬁ;b ) @ Digoxy |0) -

(A.11)
The final state of the detector and the fields thus is,

| > UW}O \/—Z ‘ Psl ®DSN5N ~~-D5161(k)2‘§> ®ﬁ,30(k) |0>

(A.12)
:ﬁz‘§>®DsNﬂN(k)"'Dslﬂl( Dﬁo 10).
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Using equation (A.9) to evaluate the product of the displacement operators, we retrieve
Eq. (3.18),

Zexp[ S sjsiIn(Ty)

=0 7>t

Y@ Y sibi(k)). (A.13)

As explained in the text, the first sum is over the possible sets {s1,...,snx}, the second
and third sum are over the indices ¢ that run from 0 to N, with the understanding that
sg = 1. Now that we have found the final joint detector and field state, we can trace out
the field degree of freedom to obtain the state of the detectors,

p=Trl|v) (Y]] = QLNZLS (5'i 223]51 Im(T;;)] exp [—1225 i ITm(T,

=0 7>t =0 j>1

PIELIOPILEIUN (A.15)

1=

We use Eq. (2.14) to calculate the inner product of the coherent states in Eq. (A.14). It
turns out to be

N
< > Sgﬁi(k)‘ > Siﬁz’(k)> = exp [—% > Tij(sisj + sy — 23233‘)] : (A.16)
=0 =0 i=0,j=0

Using the above expression in Eq. (A.14), and after performing some algebraic simplifica-
tions, we obtain the state of all the detectors in Eq. (3.20) as

N
o = QiN D 18) (3 exp | Y Tialsis; — 1) + Z Z sh)(s; — si)] . (A7)
5,5 1=0 =0 j<i

The joint state of any two detectors (say A and B) is readily obtained from (3.20) by
tracing over all other detectors 7, such that ¢ € {1,2,..., N} and i # A,i # B. Without
loss of generality, let’s assume that A < B. Performing the partial trace, we obtain

N
Pt = Z |54, S5) (S, S5|O(s4, Sg, SL, S3) €xplibo(sa, Sg, S}, S§)] H o8 0;(s4, S, S, S),

SAysB1’sf\7S{§ j;ﬁa,b,j:l

(A.18)
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where,

1

O (84, Sp,y Sy, S) = 1 exp[Taa(sasy — 1) + Tup(susy — 1) + (85 — 5)(Tansy, — Tuasa)],
2(sp — sp) Im[Tjs] + 2(s, — &) Im[T},] VO<j<A
0;(Sa, S, 8, 85) = 1 2(ss — s) Im[T}] VA<j<B

0 Vj>B
(A.19)

In this paper we only consider the first and the last detector as our targets for correlation
harvesting. Thus we consider a particular case of the above, where A is the first detector to
interact with the field and B is the last detector to interact with the field, with N detectors
interacting in between. The state of the detectors A and B given in (3.21) is then readily
obtained from Eqgs. (A.18) and (A.19). The density matrix of the target detectors (3.21)
written in the basis {|—1,) |—15), [—1.) |15}, [14) [=1s), [14) |15) } is given as follows:

L pi2 p13 pu
Ll pls 1 pas poa (A.20)

PaB = —

4 Pis Pa3 1 paa
Pis Pag P31

where we consider ¢ := (g = (1o and have the following matrix entries:

R IS | o J¢ .
P12 = €Xp 5 1i{op + 1an H cos(&jn), P13 = €Xp 5 1804 | ;
j=1

N

p23 = exp[—( + Cup + 1€op — 160a] H cos(&n), P24 = €Xp [—g - ifOA} ;
=1
JN C N

p1a = exp[—( — Cup — i&on — i€os) H cos(&jp), pP3a = exp [—5 —1&op — ifAB:| H cos(&jz)
j=1 Jj=1

(A.21)
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A.3 Calculating observable correlations

Here we calculate the correlations F(S’fn, gﬁ) form,n € {1,2,3}. We can write the operators
S? in the basis. For example,

0 010

St = (L)l uhen=| 7 00 o (A.22)
01 00
0100

S0 = Lo (1) (Ll + L) (LD = | ¢ oo Y (A23)
0010

Similarly we can write matrix forms for other operators. Now we can calculate F(S’f, 5“13)
using the density matrix (A.20) and the matrix forms of the appropriate Sy,. For example,
the correlation I'(S}, S7') is given by:

[(S3,5%) = Tr[pauStSP] — Tr[pasSt] Tr[paSL] = (A.24)

- (Relp] + Relpu) — 5 (Relpua]) (Relpus] + Relpnd).  (A.25)

We calculate the other correlations in a similar fashion, and the expression for them in
terms of the elements of the density matrix p,, are given below:

(81, 58) = 5 (Tm{pua] + Refpas]) — 5 (0m{pra]) (Relpus] + Refpas]), (4.26)
(81, 88) = 5 (Relpai] ~ Relpus), (A2)
(83, 57) = 5 (tmlpas] + Tm{pua]) — 5 (Refora]) (mlpss] + Tmip)), (A.28)
(83, 58) = 5 (Relpas] — Relpua)) — 5 (Tmlpro]) (Tmlps] + T[], (4.29)
(83, 55) = 5 (Im{ps] — Tmfprs]). (4.30)
(S5, 5%) =T(S%,5%) =T(S4,52) = 0. (A.31)

Using the density matrix elements from Eq. (A.21), and the expressions for various
['(SA,S?) given above, we can evaluate the expression for correlation between any two

m? n
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local operators O* and O® in Eq. (3.41) to obtain the general expression for I'(O*, OP),
Eq. (3.42).

A particularly interesting correlation to calculate is the correlation between the Hamil-
tonians of the detectors A and B. Note that for any detector v, its Hamiltonian is given
by:

N Q.. —Q
H,=Q,le) (e =—=21 -
e e = 1+ =
Thus, in Eq. (3.42) we use ( = (g = (an, a1 = _TQA, b, = _;23 and ay = a3 = by = b3 = 0,
to obtain,

S (A.32)

F(ﬁA, ]:[B) = (%) (%) (H cos ij> e ¢ [(cosh Cap — €08 &ap) €08 Eop + sinh (s sin &g | -

(A.33)

A.4 Calculating quantum discord

The calculation of quantum discord (3.58) involves the calculation of classical correlation
and mutual information. The calculation of mutual information (3.44) turns out to be
relatively simpler as it only depends on the eigenvalues of the joint density matrix and the
density matrices of reduced subsystems. For classical correlation (3.47) however, analytical
expressions occur only in a few cases such as for X-state density matrices [9], as the
optimisation over the set of von Neumann measurements is harder in general. When the
initial state of the field is the vacuum state (i.e Ty, =0), the density matrix of target
detectors indeed turns out to be an X-state in the basis

{19:) 1) €% |ga) len) , €95 Jen) |gn) , €M e e, ) [es) } (A.34)
. we write the matrix form o, of the state p,5 (3.21) in this basis as:

011 0 0 014
0 0929 02923 0

O-A —
b 0 0'33 033 0

(A.35)

Defining ¢ := (35 = (sa, the matrix elements are:
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N N
1
011 = Z |:1 + e_% + e_% COS £AB H COS(&J’B) + e_c cosh QAB H COS(§j3>] ) (A36)
j=1 Jj=1
1 ¢ ¢ al o
E [1+e72 —e 2 coséyy H cos(€j5) — e ¢ cosh (g H cos(&js) ] (A.37)
j=1 J=1
1 ¢ ¢ al a
033 = 1 [1 —e 2 4e 2cosé,p H cos(&jp) — e ¢ cosh Can H COS(SJ’B)L (A.38)
1
O = 1 [1 —e75 —e 5 cos Ean Hcos Ep) e ¢ cosh Cup HCOS ng (A.39)
7j=1
1 ¢ al
o1y = —Ze’C[ieE sin &, + sinh (5] H cos fJB (A.40)
7=1
1 ¢ al
093 = Ze_c[ie5 sin &, + sinh (5] H cos(&p). (A.41)
7j=1

We show here the calculation of classical correlation and mutual information subsequently.

A.4.1 Mutual information

Recall that the definition of mutual information is given by Eq. (3.44). To calculate it, we
use the matrix form oy, of the state p,; It is given by

Z(oap) = S(0a) + S(os) + Z Ajlogy A (A.42)

J=0

Here \; are the eigenvalues of the matrix o, We first compute S(o,) and S(oy), the
entropies of each of the reduced states:

S(O’A) = —[(0'11 —+ 0'22) lOgQ(O'H + 0'22) + (0'33 + 0'44) 10g2(0'33 + 0'44)], <A43)
S(og) = —[(o11 + 033) logy (011 + 033) + (022 + 044) logy (22 + 044)]. (A.44)
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It’s straightforward to obtain:

N
1 1
o1 + 033 = 5 (1 + ™3 cos Ean H cos(é“jB)), o1 + 099 = 5(1 + e’%), (A.45)
j=1
1 _< al 1 _¢
O + Ogq = 5 1 —e 2 cosé,up Hcos(ij) , 033 + Oug = 5(1 —e2). (A.46)
j=1

Using the following definition of g(z) (3.46) we obtain
¢ al ¢
S(os) =g (e_2 08 §ap H COS(&jB)) ) S(on) =gle2). (A.47)

J=1

We calculate now the term Z?:o Ajlog, Aj. From [9] we note that

1 1 1 1
)\0 :§(a1 + CLQ), )\1 = 5(&1 — (Ig), )\2 = §(b1 + bg), )\3 = 5(()1 — bg), (A48)
1 N
a1 =011 + o4y = 3 (1 + ¢ cosh (up H cos(ij)), (A.49)
j=1
a9 :\/(0'11 - 0'44)2 + 4|0’14|2 = <A50)
0—C/2 N N 2
1+ 2cosé,p H cos(&js) + (1 + =€ sinh? CAB> (H cos(ng)) : (A.51)
=1 j=1
1 N
b1 =099 + 033 = 3 (1 — e cosh oy 1_[1 cos(ij)) , (A.52)
=
by :\/(022 — 033)% + 4]oas|* = (A.53)
674/2 N ) N 2
5 1 —2cos fAle:Il cos(&js) + (1 + e~¢sinh CAB> (Ecos(%)) : (A.54)

The term Z?:o Ajlog, Aj can be manipulated to the form it has in Eq. (A.56). For
example the first two terms in the sum can be written as
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1+ asy/aq ap + ao 1—as/ay ay — as
_a1<Tlog2< 5 )+ 5 logg( 5 )) _

1+asx/a 1+as/a
= ay logy(ay) + a4 (% log, (%)—l—

1—as/a 1—as/a
% log, (%)) = arlogy(a1) — arg(az/ar).

(A.55)
Similarly, Ay logy A2 + A3logy A3 = by logy(by) — b1g(ba/b1). Therefore we obtain
3
— S(pan) = > _ Ajlogy Aj = a1logy(ar) + by logy(br) — arg(as/ar) — big(ba/br).  (A.56)
=0

Hence from Eqgs. (A.47) and (A.56) we retrieve Egs. (3.45) and (3.46).

A.4.2 Classical correlation

Here we follow the approach in [9] to calculate the classical correlation C(p). Recall that
it is defined (3.47) as

C(pa) = S(p) — inf S(paul{Mi}) = S(p) — inf > peS(AR). (A.57)
{Mk:} {Mk} ke{(),l}

Here M;, are von Neumann measurements on the B subsystem; My =V lgs) (gs] VT and

My =V |ey) (es]| VI where V € SU(2)

P = pik(l ® M)p(1® ), pic = Tr| (1@ Mi)ju(1 @ My)|. (A.58)
Each V € SU(2) can be written as V = t1+i7.d , where t,y1,ys,y3 € R satisfy 2 +
v? + 3+ y2 = 1 and & denotes the triad of Pauli operators (o,,0,,0.). As there is a
one-one relation between SU(2) and the set of von Neumann measurements { M}, the
latter can be characterised by the 3 parameter set of SU(2) operators. Thus we can simply
minimise S (ﬁAB|{Mk}) over the possible range of parameters t, vy, y2,y3. To perform our
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calculations we use the matrix 0,5 and all the results are in terms of its matrix elements.
We define the 3 parameters k = t* +y2, m = (ty; + yoy3)%, n = (tya — v1y3) (ty1 + y2y3) and
| = y? +y2 =1— k, which yields a simpler relation for S (ﬁAB\{Mk}) The probability of
an outcome pﬂ@ is given by

po = [(011 + 033)k + (092 + 044)l],

A.59
P1 = [(0’11 + 0'33)l + (O'QQ + O'44)]€]. ( )

The von Neumann entropies of the measurement outcomes O'/(j[z are given by
S(o\) = g(0),  S(oW) = g(0). (A.60)

Note that, g(x) has been defined in Eq. (3.46). € and ¢ in the above equation are given
by

g — \/[(011 — 033)k + (022 — 0u4)l]> + © g — \/[(011 — 033)l + (022 — 0wa)k]> + O
(011 + 033)k + (022 + 0ua)1]? (011 + 033) + (022 + oua)K]?
(A.61)

where © = 4kl[|o14|” + |oas|” + 2 Re(0140%3)] — 16m Re(0140%5) + 161 Im(01403,), according
to [3].

According to [0], the minimum value of S(p.s|{M}) occurs in one of the following
cases : 1) k=1,1=0m =0,n=0)or2) k=1=3,me{0,1},n € {0,+5}. First
we look at the case k =1 = 1/2. It is easy to see that for this case, py = p; = 1/2 and
=06 = \/[011 + 099 — 033 — 044)?> + 40O. Thus, we need to simply minimise g(6) . For
positive 6, g(6) is a monotonically decreasing function. Thus we simply must chose the
maximum value of # out of the 6 possibilities for m and n. Using the elements of the
density matrix from (A.36), we find that

N 2
6 =e %% |1+ dme=S[sinh? C,p + €S sin? &,,] (H cos(ij)) : (A.62)

i=1

Clearly, theta increases with m, so m = 1/4 is the appropriate choice. Thus, when k& =
[ =1/2 we have

N 2
Sl () = (e 1 e-clini? G i) (T ostern)) ) (69

Jj=1
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Now, we look at the case when £ = 1,/ = 0. This is same as the case k = 0,/ = 1. In
either cases, m = n = 0. Thus © = 0. By simply substituting the values of the density
matrix elements, we get,

S(ﬁAB’{Mk}) = pog(0o) + p1g(61),

1
Do = 5(]_ + G—C/Q COS§AB HCOS(SJ‘B))7

i=1

N
1
Py = 5(1 — e ¢/? cos Eap HCOS(ij))a
7=1

(A.64)
e_C/2 —+ e_C COSh CAB vazl COS(&jB)
0y = ’
0 2po
<12 — e cosh o T cos(Ere)
0, =
1 2p

Chosing the minimum out of the two values of S(pss|{My}) from Eq. (A.63) and
(A.64), we get the formula for classical correlation mentioned in Eq. (3.53).

A.4.3 Optimality of discord formula

To check whether the discord formula is correct we need to prove that one of two conditions
for a two-qubit system is correct [27]. To check those conditions we first have to transform
our density matrix (A.35) to a real matrix via a local unitary operation.

One unitary that succeeds in this transformation is Uy ® 1, with

. Uopo 0
(0, e
The only condition needed is that |ug| = |ui1| = 1 and that Im(uguj o) = 0.

Therefore one possible choice is u1; = 1 and

. . ¢
sinh (5 — ie2 sin &,y

V/sinh? ¢,y + €€ sin® €,

(A.66)

U =
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In that case, the density matrix (A.35) transforms to:

011 0 0 —|oas]
_ 0 022 |023| 0
Oap = 0 |023’ a3 0 (A67)
—|0'23| 0 0 044

with the same matrix entries than in the previous appendix.
In that case, it is easy to check from [27] the two following conditions, corresponding

to o2 or o) being the optimal measurement respectively:

4(1023’2) < (011 — 022)(04a — 033), (A.68)
|V 011044 — \/T22033| < 2|093]. (A.69)

It is simple to check with our values that the first condition is always false, independent
of parameters. The second condition though, for the cases we study, is always met. In this
appendix we plot function f(o;;) = ’\/011044 — \/022033| — 2|93 for the different values
that we consider in Fig. A.1, A.2 and A.3.

XZ

1.0

X=10, T=5

X=5, T=5

X=0, T=5

Figure A.1: Plot of function f(o;;) for different coupling strengths.
The smearing function has been chosen to be 3-dimensional hard-sphere with radius equal
to o = 1, as given in (3.33). The initial state of the field is the vacuum. The function is
negative so the formula for quantum discord is optimal for this range of parameters.
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0.000

-0.005

-0.010

10 0

Figure A.2: Plot of function f(c;;) depending on relative position of the detectors A and
B.

Coupling strength is set to A2 = 1. The smearing function has been chosen to be 3-
dimensional hard-sphere with radius equal to ¢ = 1, as given in (3.33). We consider a
scenario in which there are no other detectors, presents, i.e., £ = 0. We consider that
the initial state of the field is the vacuum state. Plotted from X = 0 to X = 100 The
initial state of the field is the vacuum. The function is negative so the formula for quantum
discord is optimal for this range of parameters.

A.5 Calculation of Tj;

Here we intend to evaluate the integral in the definition of 7;; in (A.10). Recall, that

B(k) = —iﬂyﬁ Al

ekl ko)

V2|k| (A.70)
T, =0 48 [ s s, )

4 4
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X=10, T=5

X=5,T=5

X=0, T=5

Figure A.3: Dependence of f(o;;) with respect to &s.

We consider a scenario in which there is a single interloper detector, I, and we analyze
the dependence of f(o;;) with respect to &y (for the rest of the detectors, £ = 0). The
term & depends on the coupling strength of the middle detector and the relative position
between detector I and the last detector, B. Coupling strength is set to A> = 0.2. The
smearing function has been chosen to be 3-dimensional hard-sphere with radius equal to
o =1, as given in (3.33). We consider that the initial state of the field is the vacuum state.
The function is negative so the formula for quantum discord is optimal for this range of
parameters.

Plugging 3, (k) back in the expression for T;;, we see that the required integral can be cast
in the following form, ignoring the constants.

1y = A, [ awE R e, (A7)

where X =x; —x; and T' = t; — ;.

We note that when we have identical detectors (hence smearing functions of all detectors
are same), T;; is constant, independent of the parameters of the detector. It can be readily
seen by substituting X = 0 and T = 0, in the above expression. Thus we define the
constant ¢ := 47T};.

The product of the two Fourier transforms E(—!c)ﬁj(k) can be written as the Fourier
transform of a convolution(we are assuming that F' is a real function), in the following
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way:

Fo(—k) F (k) :ﬁ / / '/ 2 Fy () Fy(a! + =)™ (A72)

Plugging it into equation (A.71) we get the expression

I d"z'd"z" Fj(2)F, o [ qug TR0 A.T3
ij = = et |
’ \/T// ()F( )/ olk| (A.73)

The integral over k can be partially simplified using the properties of Bessel functions of
the first kind, J,(z),

ei|k|T+ik-(:c’—X) /—27r n_q .
d"k dk Jn |kl — X kT (A 74
/ 2] / (|w' X!) < = ')e - (AT

where k = |k|. We perform the above integral for the specific case of 3 spatial dimensions

n = 3), In which case the required Bessel tunction 1s Jy/2(x) = 4/ = sin . us for n = 3,
( 3), in which h ired B 1 f ion i J/() ,/fx' Thus f 3
Eq. (A.74) becomes

P i|k|T+ik-(x'—X) o7 OOdk, Ele’ — X|)elkT A7
/ T =), ke - XD (aT)

To calculate the above, we make use of the following identities:
e* = cos ka + isin ka,

/ dk coska = mé(a),
0

o0 1
/ dk‘sink:oz:{a 047&0}'
0 0 a=10

(A.76)

Now, we can write sin (k|z’ — X|) using *®'~XI and using the above identities, we find
out that:
i T ik (@ — X)) 9 ' — X|
e T x T
&k - 2612 = X|-T ) =3 ( |o' - X|+T )]

(A.77)
Note that since |&’ — X| is always non-negative, hence only one of the Dirac deltas in the
imaginary part will contribute to 7Tj;, depending upon the sign of T.
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We have thus performed the k integral for a 3-D space. This integration doesn’t depend
on the choice of smearing functions of the detector. From this point on, we need to consider
specific examples of smearing functions to compute 7;; using Eqs. (A.73) and (A.77).

A.5.1 Hard sphere smearing function

First we consider the smearing function to be a normalised hard sphere for a 3 dimensional

case: 3 ’ ’
_ ) T @S0
F(x) = { 0 @] > o }, (A.78)

where F'(x) is 0 outside a sphere of radius ¢ centered at the origin.
Imaginary part

For the case of 3 spatial dimensions, ; which is 4 times the imaginary part of Tj; is
calculated from Eqs. (A.77) and (A.73), and is given by:

3 T5 (|2’ — X| —|T))
3.0 13,/ (! ’
= A V2 //d A’z Fy(2')Fy(z' + 2') T X (A.79)

Plugging this smearing function into the above, we notice that the integral over z is simply
the volume of intersection between two n-spheres of radius o separated by a distance z’.
Thus the 2’ integral is easily performed, and in particular the for the 3 dimensional case
it turns out to be g5 (1 — £)2(2 + £) when 2’ < 20 (i.e when there is some intersection
between the spheres) and 0 0therw1se Using this we get

3vV2m 3 x'\2 PN\NTé(|e' — X | —|T)
’ —— ) (2+ — . A.
iy = M, 8ro3 / ¢'w ) < * 20> T||x" — X| (A.80)

To calculate the above we use spherical coordinates and use the variable substitution
r = &’ — X. Without loss of generality, we can choose X = (0,0,|X]|). We observe
that the original volume of integration is a sphere with radius 20 centered in —X. To get
a clearer picture of the integral we can use spherical coordinates, and parametrize r as
r = r(cos ¢sin b, sin ¢psinf, cos§) with ¢ € (0,27) and 6 € (0, 7). We observe that

7+ X|* =724 2r|X| cos 0 + | X |*. (A.81)
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Since we have the term 0(r — |T'|), the volume of integration parametrized by r, ¢, 0 will
become an area parametrized by ¢, 6. This area will be the intersection of a shell centered
in 0 = (0,0, 0) with radius |T'| (called S henceforth) and the sphere with radius 2o centered
in —X (called C henceforth). Clearly, the integral will be 0 whenever there is no part of
the shell S inside the Sphere C'. Thus we need to carefully evaluate the integral depending
upon whether §' is partially or completely inside C.

Let us first consider the case when |T'| > 20. In picture A.4 we represent this situation:

Figure A.4: Auxiliary schematic
The origin of coordinates is the point A and the axis represented is axis z. We have the
original volume of integration, the blue sphere. Since we have the term 6(r — |7']) we see
that the integration area will only be the the red one.

Looking at the picture it is evident that this integral is non-trivial iff |7 — 20 < || <
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|T|+ 20. Otherwise, S is either completely outside C or engulfs C. Either way, there is no
part of S inside C. However, when this condition is satisfied, there is a partial intersection
between S and C. The integral, taking the Dirac delta, and considering the symmetry in
the x-z axis, thus becomes:

g’bj - )\’L)\j 403 (A82)
VITE +2AT( X |cosf + [XP\*( y/IT + 2T|| X cosf + | X |
/ dfsinf|1— 5 2+ 5 ;
9 o g
(A.83)

40? — | X > —|T
o — IX] 7] . Choosing now the

where cos 6y = cos(m — LBAC) = — cos(£BAC) =

2 2 3IX17)
change of coordinates ¢ = ! +2|T”ﬁ2€°sg+|x| we obtain
—2|T| X | sin 6
de = 2 |4|U2’ MY 40, (A.84)
90 — €y = 1, (A85)
X|—|T\2
=06 = (%) . (A.86)
We obtain then
<< 3V2r [0 Ao 2 5o !
&ij = —)\i)\j; ‘)Q / de(1 — /2)2(2 4 €V/%) = %(26 — 2632 ¢ 565/2) 5
o
! ~ (A.87)

3V2m 1 . 1
Z_5 63/2_ _55/2
o X| (5 - o 5 ~ )

= &ij = A

2
where we recall that § = (%) )

Now we consider the case when |T'| < 20. When 20 — |T'| < |z| < |T'| + 20, there is
a partial intersection between § and C. Thus the calculations in the previous case hold
exactly in the same fashion. Now, when |z| < 20 —|T'|, S is completely engulfed by C. For
this case we need to evaluate the integral in (A.82), within the limits 0 to w. Thus &;; for
this case turns out to be

\ 21
o| X|

w

< 3 1 1
&ij = N (6, — 67+ gaiﬂ — 5 4062 - 552/2), (A.88)
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where §_ = (XLI1)" and 5, = (XL

20 20

A.5.2 How to generate moments for a non-Gaussian state
In order to generate moments non-Gaussian states we need to do the following:

1. Calculate the distributions of the discussed sample means, sample second moments,
and sample fourth moments (non centered) are selected from.

2. By central limit theorem these sample statistics distributions are determined by the
first eight moments of the underlying distribution (the marginals of the final probe
state Wigner function).

3. Using parts Gaussian formalism, these final probe moments are given by a symplectic
transformation of the initial probe-field moments.

4. The moments of the initial probe-field state are simple (but not Gaussian).

We will discuss these tasks in reverse order.

The initial probe-field Wigner function is

W(QDapD7Q17p17QZ7p2> cee N) = WVaC(QD7pD) X (WFock<q17p1; N)) X HSLOZQ WVaC(Qn7pn)

(A.89)

or

W(qD7pD7 q1,P1,492,P2, - - - N) - WVaC(QD7pD) X WPAC(QIJPI; N) X H;L.O:Q WV&C(Q’rwpn)
(A.90)

where ¢p and pp are the probe variables and where Wy, (¢, p) = e~ /. Note the probe
and all of the modes are uncorrelated from each other. Thus all “cross moments” separate.
For example as (qpiqeps) = (qap?){(gpd) . Note that these averages are taken w.r.t. the
Wigner function, to translate operator averages to Wigner function averages you need to
permute the operators into the right order.

The statistics of the vacuum Wigner function are

(@vae = 1/2, (0" Wae = 3/4, (¢®)vac = 15/8,  {¢®)vac = 105/16, (A.91)
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with (p") = (¢") and (p"¢™) = (p™)(¢"™) and odd moments vanishing.

The statistics ((¢°)n, (¢*)n, (¢*)n, (¢®)n, (¢®)n) of the Fock state Wigner function
are given by the following table:

. 1 3 15 105
ool b b
Neo. 1 P B & b (492
Noso 11 B ook s |
Noa 1 8 ok ads sl

: 2 4 8 16

with (p™) = (¢™) and (p"¢™) = (p")(¢") and odd moments vanishing.

The statistics ({(¢°)n, (¢*)n, (¢Y)n, (¢®)n, (¢®)n) of the Phase-Averaged Coherenet
state Wigner function are given by the following table:

—0- 13 15 105
N=0:1 2 1 & 4
N=1-1 5 % & db
N=20 1 0 0 & b (A.93)
N=3:1 35 7 3 16
N—d4- 1 0 147 3095 7785
- : 2 4 8 16

with (p") = (¢") and (p"¢™) = (p")(¢™) and odd moments vanishing. Note that zeroth
and second moments match (first and second column) as does the vaccuum state (first
row).

Next let’s see how to translate these moments of the initial field-probe state to the
moments of the final probe state. The key insight for this step is that while the states are
not Gaussian, the dynamics still is. The unitary for the interaction between the probe and
the field is given in the interaction picture by

U(t) = Upne (t) Uit (0) (A.94)

where
Ut (t) = exp (—i)\ (Gp cos(2t) + pp sin(Q)) ® /dm F(x) ¢(t, :c)) (A.95)
— exp (—m %X’T’H(t)X) . (A.96)
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where

A

X = (o, Pp, 41, P1, G2, P2, - - - )7 (A.97)
and
H(t) = u)o()" + v(t)ul)’; (A.98)
u(t) = (cos(t),sin(Q2t),0,0,...)T (A.99)
v(t) = (0,0, Fy cos(wit), Fy sin(wit), F cos(wat), Fy sin(wat), ... )T. (A.100)

where F,, = \/2/L [ dzF(z)sin (w,z). Note that Ut (t) is a Gaussian unitary transforma-
tion and therefore so too is U(t).

Gaussian unitary transformations correspond to symplectic transformations in phase
space,

ULXUq = SX +di (A.101)

for some S with SQST = Q where 2 is the symplectic form. Note that in the above
equation UG is a linear map on the system’s Hilbert space and acts on X component-wise.
On the other hand, S is a linear map on the system’s phase space and acts on X as a
phase space vector, yielding linear combinations of its (operator-valued) components.

Note that this is true even when the state is non-Gaussian. The effect that a Gaussian
unitary has on a state’s Wigner function (even a non-Gaussian Wigner function) is,

p—=UsplU, = X-oULXUs=SX+dl = W(X)—=W(SX+d). (A.102)
Corresponding to the U(t) given above we have
S(t) = Sint(t) Sint(0) (A.103)
where
Sint(t) = exp(AQH(t)). (A.104)

This symplectic transformation is easy to compute. First note that QH(¢) is nilpotent,

127



that is, (QH(t))? = 0 since,

(QH(1))? =Q(u(t)v()T + v()ut))Qu)v(t)T +v(t)u(t)T) (A.105)
=Q(u(t)v(t)"Qu(t)v(t)" + v(t)u(t) " Qu(t)v(t)" + w(t)v(t) " Qu(t)u(t) ™+

(A.106)

+v(t)u(t) Qut)u(t)T) =0 (A.107)

since

v(t)Qu(t) =0, u(®)Qu(t) =0, v(t)"Qu(t)=0, u(t)Qu(t)=0. (A.108)

Since QH(t) is nilpotent we have

Sine(t) = 1+ QH (A.109)
=14+ AQ (u)v(t) +v()u()") (A.110)
(A.111)
and
St (1) =1— QN (A.112)
=1 AQ (u(t)v(t)T +v(t)u(t)). (A.113)

As was discussed above these symplectic transformations are useful because they tell
us how the Wigner function evolves. We can use this to determine the moments of the
final probe distribution from the initial probe field moments. The probe’s Wigner function
after an interaction of duration ¢ is,

Wh(q,p) = / de W (S(1)(q.p. ) (A114)
(A.115)

where = (q1, p1, ¢2, p2) runs over all the field variables. We can extend the integral to be
over all of phase space X = (¢p, pp, ¢1, D1, @2, p2) by adding in delta functions as

W (g, p) = / AX5(q — o) 3(p — po) W(S() X)). (A.116)

Next we define the vectors qo = (1,0,0,...)T and py = (0,1,0,...)7 such that ¢o = g/ X
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and po = pJ X . In this way we have
Wola.0) = [ dX5(a1X — 0) S(p}X ~ p) W(S()X) (A7)

Finally we can do a change of coordinates X — Y = S(¢)X. Note that S(¢) has determi-
nant 1 so no Jacobian factor arises. Doing this change of variables we have,

Wn(g,p) = /dY5(q8 SHT'Y —q)d(py S()T'Y —p) W(Y). (A.118)
Thus the probe’s final Wigner function has been written in terms of the initial probe field

Wigner function. We can use this to compute the moments of the final probe state. Let
us first do the second moments before attempting the higher ones.

The second moments of ¢p in the final probe state is

= /dq/dp 4> Wn(q,p) (A.119)

/dq/dp ’ /dY(S Y — ) SIS Y —p) W(Y)  (A.120)

_ / gl S()"1Y) W(Y) (A121)
= / dY (g} St)TY)(YTS(t) " q0) W(Y) (A.122)
— @St ( / AV YYT W(Y)) St g (A.123)
=q}S(t) TouS(t) qo (A.124)
(A.125)

where oy is the covariance matrix of the initial probe-field state. Note that the initial
probe-field state is not Gaussian, but it still has a matrix of second moments. Similarly,

(P (t)?) = pES(t) TouS(t) ' po (A.126)

(Fo(t)) = (a0 + o) S(1) TouS(0) (a0 + o). (A127)

Thus we can determine the second moments of the final probe state from the second
moments of the initial field-probe state. All we need to do this is 1) the initial covariance
matrix, o9 which we can construct from the second moments discussed above, and 2)
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the vectors Q(t) == S(t)"'qo and P(t) := S(t)"'py which map onto gy and py for each
timepoint. We can compute these from our above discussion as well.

As for higher moments we can follow the next example,

(@)") = [aY@ery) W) (A128)
_ / dY(i Qult) yo)* W(Y) (A.129)
- [av go Q:(1) Q1) Qu(t) Qult) sy e W (Y) (A.130)
- i QO Q0 QU [ ¥ ivyuuW(Y) (A131)
- Y QRO AU S (A132)
_ 5(Q(0). 0. Q(1.Q0) (A133

where Sy;ike = [AY i y; v ye W(Y) = (y; y; y ye) are the entries of the four tensor Sy.
Similarly,

(bp(t)*) = Su(P(t), P(1), P(t), P(t)) (A.134)
(fp(t)") = ;154(62@) + P(1), Q) + P(1), Qt) + P(1), Q(t) + P(1)). (A.135)

For the eighth moment, we have the formula

(@nt) = [ avQury wiy) (A.136)

= Y Qi) Q1) Q) Qe(t) Qu(t) Qu(t) Qolt) Qplt) Ssisiktammos

Z"jikiz7m7n707p:0

(A.137)
= S5(Q(1), Q(t), Q(t), Q(1), Q(1), Q(1), Q(t), Q(t)) (A.138)

where Ssijkemmnop = J Y Yi Ui Y Yo Ym Yn Yo Yp W(Y) = (Y Yj Yk Y Ym Yn Yo Yp) are the
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entries of the four tensor Sg. Similarly,

(bp(1)°) = Ss(P(t), P(t), P(t), P(t), P(t), P(t), P(t), P(t)) (A.139)
(Pp(t)®) = ng(R(t), R(t),R(t), R(t), R(t), R(t), R(t), R(t)). (A.140)
where R(t) = Q(t) + P(t). Finally, we can determine the distributions to draw the sam-

ple mean, sample variance and sample fourth moments according to the following to the
following formula for the central limit theorem in the high tomography limit

- 1

where j1, = (2%)
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